
www.allitebooks.com

http://www.allitebooks.org

FFIRS.indd iiFFIRS.indd ii 3/31/11 8:14:17 AM3/31/11 8:14:17 AM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

www.allitebooks.com

http://www.allitebooks.org

PROFESSIONAL

TEST-DRIVEN DEVELOPMENT WITH C#

INTRODUCTION . xxv

PART I GETTING STARTED

CHAPTER 1 The Road to Test-Driven Development . 3

CHAPTER 2 An Introduction to Unit Testing . 19

CHAPTER 3 A Quick Review of Refactoring .41

CHAPTER 4 Test-Driven Development: Let the Tests Be Your Guide 73

CHAPTER 5 Mocking External Resources . 97

PART II PUTTING BASICS INTO ACTION

CHAPTER 6 Starting the Sample Application . 117

CHAPTER 7 Implementing the First User Story .137

CHAPTER 8 Integration Testing . 169

PART III TDD SCENARIOS

CHAPTER 9 TDD on the Web . 197

CHAPTER 10 Testing Windows Communication Foundation Services 227

CHAPTER 11 Testing WPF and Silverlight Applications . 245

PART IV REQUIREMENTS AND TOOLS

CHAPTER 12 Dealing with Defects and New Requirements . 267

CHAPTER 13 The Great Tool Debate . 279

CHAPTER 14 Conclusions . 299

APPENDIX TDD Katas . 307

INDEX . 311

�

�

�

�

FFIRS.indd iFFIRS.indd i 3/31/11 8:14:15 AM3/31/11 8:14:15 AM

www.allitebooks.com

http://www.allitebooks.org

FFIRS.indd iiFFIRS.indd ii 3/31/11 8:14:17 AM3/31/11 8:14:17 AM

www.allitebooks.com

http://www.allitebooks.org

PROFESSIONAL

Test-Driven Development with C#

FFIRS.indd iiiFFIRS.indd iii 3/31/11 8:14:17 AM3/31/11 8:14:17 AM

www.allitebooks.com

http://www.allitebooks.org

FFIRS.indd ivFFIRS.indd iv 3/31/11 8:14:17 AM3/31/11 8:14:17 AM

www.allitebooks.com

http://www.allitebooks.org

PROFESSIONAL

Test-Driven Development with C#

DEVELOPING REAL WORLD APPLICATIONS WITH TDD

James Bender
Jeff McWherter

FFIRS.indd vFFIRS.indd v 3/31/11 8:14:18 AM3/31/11 8:14:18 AM

www.allitebooks.com

http://www.allitebooks.org

Professional Test-Driven Development with C#: Developing

Real World Applications with TDD

Published by
Wiley Publishing, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2011 by Wiley Publishing, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN: 978-0-470-64320-4
ISBN: 978-1-118-10210-7 (ebk)
ISBN: 978-1-118-10211-4 (ebk)
ISBN: 978-1-118-10212-1 (ebk)

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means,
electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108
of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization
through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers,
MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be addressed to
the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011,
fax (201) 748-6008, or online at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties with
respect to the accuracy or completeness of the contents of this work and specifi cally disclaim all warranties, including
without limitation warranties of fi tness for a particular purpose. No warranty may be created or extended by sales or
promotional materials. The advice and strategies contained herein may not be suitable for every situation. This work
is sold with the understanding that the publisher is not engaged in rendering legal, accounting, or other professional
services. If professional assistance is required, the services of a competent professional person should be sought. Neither
the publisher nor the author shall be liable for damages arising herefrom. The fact that an organization or website is
referred to in this work as a citation and/or a potential source of further information does not mean that the author or the
publisher endorses the information the organization or website may provide or recommendations it may make. Further,
readers should be aware that Internet websites listed in this work may have changed or disappeared between when this
work was written and when it is read.

For general information on our other products and services please contact our Customer Care Department within the
United States at (877) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available
in electronic books.

Library of Congress Control Number: 2011924919

Trademarks: Wiley, the Wiley logo, Wrox, the Wrox logo, Programmer to Programmer, and related trade dress are
trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affi liates, in the United States and other
countries, and may not be used without written permission. All other trademarks are the property of their respective
owners. Wiley Publishing, Inc., is not associated with any product or vendor mentioned in this book.

FFIRS.indd viFFIRS.indd vi 3/31/11 8:14:18 AM3/31/11 8:14:18 AM

www.allitebooks.com

http://www.wiley.com
http://www.wiley.com/go/permissions
http://www.allitebooks.org

 For Gayle. Thank you for being so awesome!

 — James

 To everyone who has believed in me.

 — Jeff

 To my wonderful wife Courtney and my

two amazing kids, Katie and Jacob.

 — Michael

FFIRS.indd viiFFIRS.indd vii 3/31/11 8:14:18 AM3/31/11 8:14:18 AM

www.allitebooks.com

http://www.allitebooks.org

FFIRS.indd viiiFFIRS.indd viii 3/31/11 8:14:19 AM3/31/11 8:14:19 AM

www.allitebooks.com

http://www.allitebooks.org

 ABOUT THE AUTHORS

 JAMES BENDER is Vice Present of Technology for Improving Enterprises and has been involved in
software development and architecture for 17 years. He has worked as a developer and architect
on everything from small, single - user applications to Enterprise - scale, multi - user systems. His
specialties are .NET development and architecture, SOA, WCF, WF, cloud computing, and agile
development methodologies. He is an experienced mentor and author.

 James has spent his career pushing the envelope of software development and pursuing new and
better ways of building applications. He began his career developing credit card processing
applications in C++ on SCO Unix based systems. In the late 90 ’ s James began exploring web
development with both Java based JSP pages and Microsoft ’ s ASP technologies. He was an early
adopter of .NET starting with the fi rst public beta. He continued exploring the .NET technology
stack, focusing on the distributed computing paradigm made possible by .NET web services, which
naturally evolved into a somewhat obsessive interest in Microsoft ’ s Windows Communication
Foundation (WCF).

 James has been practicing agile - based methodologies since 2003, including Scrum and eXtreme
Programming (XP). At part of this interest in agile methodologies, James began exploring test-driven
development at the same time. He was instrumental in introducing the concepts and techniques used
in agile software development and test-driven development to many developers at his clients and in
the software development community in general.

 James is a Microsoft MVP for Visual C#. James is an active member of the development community.
He is the current president of the Central Ohio .NET Developers Group (www.condg.org) and
continues to lead the Columbus Architects Group (www.colarc.org) and is the senior editor of
fi rst - party content for nplus1.org, an educational website aimed toward architects and aspiring
architects. His blog can be found at www.jamescbender.com .

 JEFF MCWHERTER is a partner and director of development at Gravity Works Design and
Development, based in a historic offi ce in Lansing Michigan ’ s Old Town District. A graduate of
Michigan State University with over 12 years of professional software development experience, Jeff
holds numerous certifi cations from Microsoft including Microsoft Certifi ed Solutions Developer
(MCSD), Microsoft Certifi ed Database Administrator (MCDBA), Microsoft Certifi ed Application
Developer (MCAD), and Microsoft Technology Specialist (MCTS).

 In 2010 Jeff was awarded with the Microsoft Most Valuable Professional (MVP) for the third year
in a row. Also in 2010, Jeff received the Ten Over The Next Ten award presented by the Lansing
Regional Chamber of Commerce, which recognizes 10 young professionals to “ watch ” over the next
10 years. Jeff is also a published author, with Testing ASP.NET Web Applications published by
Wrox Press.

FFIRS.indd ixFFIRS.indd ix 3/31/11 8:14:19 AM3/31/11 8:14:19 AM

http://www.condg.org
http://www.colarc.org
http://www.jamescbender.com

 Along with being an author and software developer, Jeff is very active in developing programming
communities across the country by speaking at conferences and organizing events such as the
Lansing Give Camp, which pairs developers with non - profi t organizations for volunteer projects.

 MICHAEL EATON has been developing awesome solutions using Microsoft tools and technologies
since 1994, but in 2001 he broke free from the confi nes of the cube farm to go out on his own.
While he lives in the middle - of - nowhere Michigan, he serves clients throughout the Midwest. Well
known for his dislike of web development and box lunches, his focus over the past few years has
been on XAML - based technologies like WPF and Silverlight. He speaks at regional events and user
groups, runs the Kalamazoo X Conference and helps with the Ann Arbor Give Camp. He is also a
C# MVP. When not working on projects or spending time with his family, he treats his World of
Warcraft addiction with ample doses of time on his XBox 360.

x

ABOUT THE AUTHORS

FFIRS.indd xFFIRS.indd x 3/31/11 8:14:19 AM3/31/11 8:14:19 AM

 ABOUT THE TECHNICAL EDITOR

 MITCHEL SELLERS specializes in software development using Microsoft technologies. He is the CEO
of IowaComputerGurus Inc., a Microsoft C# MVP, a Microsoft Certifi ed Professional, has served
as an author on two books, and served as technical editor on many other books. You will often fi nd
Mitchel interacting with the greater software development community either at events/conferences
or in online discussion forums. To obtain additional information on Mitchel ’ s professional
experience, certifi cations, and publications refer to his resume at MitchelSellers.com .

FFIRS.indd xiFFIRS.indd xi 3/31/11 8:14:19 AM3/31/11 8:14:19 AM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

http://MitchelSellers.com

FFIRS.indd xiiFFIRS.indd xii 3/31/11 8:14:19 AM3/31/11 8:14:19 AM

ACQUISITIONS EDITOR

Paul Reese

PROJECT EDITOR

Sydney Jones

TECHNICAL EDITORS

Jeff McWherter

Mitchell Sellers

PRODUCTION EDITOR

Rebecca Anderson

COPY EDITOR

Gayle Johnson

EDITORIAL DIRECTOR

Robyn B. Siesky

EDITORIAL MANAGER

Mary Beth Wakefi eld

FREELANCER EDITORIAL MANAGER

Rosemarie Graham

ASSOCIATE DIRECTOR OF MARKETING

David Mayhew

PRODUCTION MANAGER

Tim Tate

VICE PRESIDENT AND EXECUTIVE GROUP

PUBLISHER

Richard Swadley

VICE PRESIDENT AND EXECUTIVE PUBLISHER

Barry Pruett

ASSOCIATE PUBLISHER

Jim Minatel

PROJECT COORDINATOR, COVER

Katie Crocker

PROOFREADER

Carrie Hunter, Word One New York

INDEXER

J & J Indexing

COVER DESIGNER

Michael E. Trent

COVER IMAGE

© iStock / technotr

CREDITS

FFIRS.indd xiiiFFIRS.indd xiii 3/31/11 8:14:19 AM3/31/11 8:14:19 AM

FFIRS.indd xivFFIRS.indd xiv 3/31/11 8:14:20 AM3/31/11 8:14:20 AM

 ACKNOWLEDGMENTS

 I WANT TO START BY THANKING MY GIRLFRIEND (with any luck, fi anc é by the time you are reading
this) Gayle. She has been very supportive and EXTREMELY understanding during the process of
writing this book. More than she should have had to be. Thank you.

 I want to thank my parents for making this book possible by making me possible. My mother is so
proud she ’ ll read every page of this book. Bless her heart. I hope she ’ s still proud when she realizes
I lied and this is NOTHING like a Stephen King novel.

 In the understanding and supporting department I would also like to thank Daniel Grey, Mark
Kovacevich, Jeff Perry and everyone else at Improving Enterprises. I ’ d also like to thank Pete
Klassen. We miss you man!

 I ’ d like to thank Jeff McWherter and Michael Eaton for their contributions to this book. Jeff; thanks
for taking some of the load off. Mike; thank you for pushing me to include the “ non - web ” people.
I ’ d also like to thank my editor Sydney for making this book look like I know how to write.

 Brian Prince; thank you for pushing me to get involved in the development community. I was going
to write something funny here, but I couldn ’ t think of anything. I ’ ll getcha in the next one.

 When I was presented with the opportunity to write this book, I almost said no. I want to thank
Ted Neward for talking me into it. So, this is kinda your fault too.

 I want to thank my partners in NPlus1.org Mike Wood and Chris Woodruff for picking up my slack
of the past several months while I worked on this.

 Long list of general thanks: Brahma Ghosh, Brian Sherwin, Bill Sempf, Jeff Blankenburg, Carey
Payette, Caleb Jenkins, Jennifer Marsman, Sarah & Kevin Dutkiewicz, Steve Harman, Josh
Holmes. Thanks to Matt Groves for pimping this book almost as much as I did. I ’ m sure I forgot
someone, so I apologize.

 — James

 FIRST AND FOREMOST I WOULD LIKE TO THANK my very patient wife Carla. Thank you for all the
support, patience, and understanding you have provided to me for all of my endeavors. Thank you to
the staff at Gravity Works — Amelia Marschall, Lauren Colton, Scott Gowell and Dave Smith — for
answering my random questions that appeared to come out of nowhere. And lastly I would like to
thank James for his hard work, dedication, and friendship.

 — Jeff

FFIRS.indd xvFFIRS.indd xv 3/31/11 8:14:20 AM3/31/11 8:14:20 AM

FFIRS.indd xviFFIRS.indd xvi 3/31/11 8:14:20 AM3/31/11 8:14:20 AM

CONTENTS

INTRODUCTION xxv

PART I: GETTING STARTED

CHAPTER 1: THE ROAD TO TEST-DRIVEN DEVELOPMENT 3

The Classical Approach to Software Development 4

A Brief History of Software Engineering 4

From Waterfall to Iterative and Incremental 5

A Quick Introduction to Agile Methodologies 6

A Brief History of Agile Methodologies 6

The Principles and Practices of Test-Driven Development 7

The Concepts Behind TDD 8

TDD as a Design Methodology 8

TDD as a Development Practice 8

The Benefi ts of TDD 9

A Quick Example of the TDD Approach 10

Summary 17

CHAPTER 2: AN INTRODUCTION TO UNIT TESTING 19

What Is a Unit Test? 19

Unit Test Defi nition 20

What Is Not a Unit Test? 20

Other Types of Tests 22

A Brief Look at NUnit 24

What Is a Unit Test Framework? 24

The Basics of NUnit 25

Decoupling with Mock Objects 28

Why Mocking Is Important 28

Dummy, Fake, Stub, and Mock 29

Best and Worst Practices 35

A Brief Look at Moq 36

What Does a Mocking Framework Do? 36

A Bit About Moq 36

Moq Basics 36

Summary 40

TOC.indd xviiTOC.indd xvii 3/31/11 8:16:30 AM3/31/11 8:16:30 AM

xviii

CONTENTS

CHAPTER 3: A QUICK REVIEW OF REFACTORING 41

Why Refactor? 42

A Project’s Lifecycle 42

Maintainability 43

Code Metrics 43

Clean Code Principles 45

OOP Principles 45

Encapsulation 45

Inheritance 46

Polymorphism 48

The SOLID Principles 49

The Single Responsibility Principle 50

The Open/Close Principle 50

The Liskov Substitution Principle 51

The Interface Segregation Principle 51

The Dependency Inversion Principle 52

Code Smells 52

What Is a Code Smell? 52

Duplicate Code and Similar Classes 53

Big Classes and Big Methods 54

Comments 55

Bad Names 56

Feature Envy 57

Too Much If/Switch 58

Try/Catch Bloat 59

Typical Refactoring 60

Extract Classes or Interfaces 60

Extract Methods 62

Rename Variables, Fields, Methods, and Classes 66

Encapsulate Fields 67

Replace Conditional with Polymorphism 68

Allow Type Inference 71

Summary 71

CHAPTER 4: TEST-DRIVEN DEVELOPMENT: LET THE TESTS
BE YOUR GUIDE 73

It Starts with the Test 74

Red, Green, Refactor 76

The Three Phases of TDD 77

The Red Phase 77

The Green Phase 78

TOC.indd xviiiTOC.indd xviii 3/31/11 8:16:30 AM3/31/11 8:16:30 AM

xix

CONTENTS

The Refactoring Phase 79

Starting Again 79

A Refactoring Example 79

The First Feature 80

Making the First Test Pass 83

The Second Feature 83

Refactoring the Unit Tests 85

The Third Feature 87

Refactoring the Business Code 88

Correcting Refactoring Defects 91

The Fourth Feature 93

Summary 94

CHAPTER 5: MOCKING EXTERNAL RESOURCES 97

The Dependency Injection Pattern 98

Working with a Dependency Injection Framework 99

Abstracting the Data Access Layer 108

Moving the Database Concerns Out of the Business Code 108

Isolating Data with the Repository Pattern 108

Injecting the Repository 109

Mocking the Repository 112

Summary 113

PART II: PUTTING BASICS INTO ACTION

CHAPTER 6: STARTING THE SAMPLE APPLICATION 117

Defi ning the Project 118

Developing the Project Overview 118

Defi ning the Target Environment 119

Choosing the Application Technology 120

Defi ning the User Stories 120

Collecting the Stories 120

Defi ning the Product Backlog 122

The Agile Development Process 123

Estimating 124

Working in Iterations 124

Communication Within Your Team 126

Iteration Zero: Your First Iteration 127

Testing in Iteration Zero 127

Ending an Iteration 128

TOC.indd xixTOC.indd xix 3/31/11 8:16:31 AM3/31/11 8:16:31 AM

xx

CONTENTS

Creating the Project 129

Choosing the Frameworks 129

Defi ning the Project Structure 131

Organizing Project Folders 131

Creating the Visual Studio Solution 132

Summary 134

CHAPTER 7: IMPLEMENTING THE FIRST USER STORY 137

The First Test 138

Choosing the First Test 138

Naming the Test 139

Writing the Test 140

Implementing the Functionality 148

Writing the Simplest Thing That Could Possibly Work 148

Running the Passing Test 157

Writing the Next Test 158

Improving the Code by Refactoring 165

Triangulation of Tests 166

Summary 166

CHAPTER 8: INTEGRATION TESTING 169

Integrate Early; Integrate Often 170

Writing Integration Tests 171

How to Manage the Database 171

How to Write Integration Tests 172

Reviewing the ItemTypeRepository 173

Adding Ninject for Dependency Injection 174

Creating the Fluent NHibernate Confi guration 177

Creating the Fluent NHibernate Mapping 179

Creating the Integration Test 183

End-to-End Integration Tests 191

Keeping Various Types of Tests Apart 191

When and How to Run Integration Tests 191

Summary 192

PART III: TDD SCENARIOS

CHAPTER 9: TDD ON THE WEB 197

ASP.NET Web Forms 197

Web Form Organization 198

ASPX Files 198

TOC.indd xxTOC.indd xx 3/31/11 8:16:31 AM3/31/11 8:16:31 AM

xxi

CONTENTS

Code-Behind Files 198

Implementing Test-Driven Development with MVP and Web Forms 199

Working with the ASP.NET MVC 210

MVC 101 211

Microsoft ASP.NET MVC 3.0 212

Creating an ASP.NET MVC Project 212

Creating Your First Test 213

Making Your First Test Pass 215

Creating Your First View 216

Gluing Everything Together 217

Using the MVC Contrib Project 220

ASP.NET MVC Summarized 220

Working with JavaScript 220

JavaScript Testing Frameworks 221

Summary 226

CHAPTER 10: TESTING WINDOWS COMMUNICATION
FOUNDATION SERVICES 227

WCF Services in Your Application 228

Services Are Code Too 228

Testing WCF Services 228

Refactoring for Testability 229

Introducing Dependency Injection to Your Service 231

Writing the Test 236

Stubbing the Dependencies 239

Verifying the Results 243

Trouble Spots to Watch 244

Summary 244

CHAPTER 11: TESTING WPF AND SILVERLIGHT APPLICATIONS 245

The Problem with Testing the User Interface 246

The MVVM Pattern 246

How MVVM Makes WPF/Silverlight Applications Testable 248

Bringing It All Together 261

Summary 263

PART IV: REQUIREMENTS AND TOOLS

CHAPTER 12: DEALING WITH DEFECTS AND NEW REQUIREMENTS 267

Handling Change 268

Change Happens 268

TOC.indd xxiTOC.indd xxi 3/31/11 8:16:32 AM3/31/11 8:16:32 AM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

xxii

CONTENTS

Adding New Features 268

Addressing Defects 269

Starting with a Test 270

Changing the Code 272

Keeping the Tests Passing 276

Summary 276

CHAPTER 13: THE GREAT TOOL DEBATE 279

Test Runners 279

TestDriven.NET 280

Developer Express Test Runner 280

Gallio 281

Unit Testing Frameworks 282

MSTest 282

MbUnit 283

xUnit 284

Mocking Frameworks 285

Rhino Mocks 285

Type Mock 287

Dependency Injection Frameworks 289

Structure Map 289

Unity 291

Windsor 293

Autofac 294

Miscellaneous Useful Tools 295

nCover 295

PEX 295

How to Introduce TDD to Your Team 296

Working in Environments That Are Resistant to Change 297

Working in Environments That Are Accepting of Change 297

Summary 297

CHAPTER 14: CONCLUSIONS 299

What You Have Learned 299

You Are the Client of Your Code 300

Find the Solutions Step by Step 300

Use the Debugger as a Surgical Instrument 300

TDD Best Practices 301

Use Signifi cant Names 301

Write at Least One Test for One Unit of Functionality 301

Keep Your Mocks Simple 302

TOC.indd xxiiTOC.indd xxii 3/31/11 8:16:32 AM3/31/11 8:16:32 AM

xxiii

CONTENTS

The Benefi ts of TDD 302

How to Introduce TDD in Your Team 303

Summary 304

APPENDIX: TDD KATAS 307

Working with TDD Katas 307

Share Your Work 308

OSIM User Stories 308

INDEX 311

TOC.indd xxiiiTOC.indd xxiii 3/31/11 8:16:32 AM3/31/11 8:16:32 AM

FLAST.indd xxivFLAST.indd xxiv 3/31/11 8:15:18 AM3/31/11 8:15:18 AM

 INTRODUCTION

 AS A CONSULTANT, I WORK WITH MANY DEVELOPERS. At each client I get to meet a new team and
see how they develop software. I ’ ve seen great teams, and I ’ ve seen teams that are so broken they
have never had a successful project. Over the years I ’ ve noticed that different teams along this
success continuum have different traits. And I ’ ve started to formulate an idea of what makes a
development team able to develop and deploy applications that are high - quality and deliver value
to the business.

 The observation that most people expect me to make is that the successful teams had smarter, more
competent people, and certainly they did. But the teams that failed had plenty of smart people as
well. Clearly intelligence is not a key factor in success.

 What I observed about the successful teams was that they had a passion for technology and pride
in the work they produced. They were always learning about new tools and techniques, with the
aim of developing software faster and with fewer bugs. On the other hand, the less successful teams
were content to stick with their old ways of doing things and never took an interest in the changes
that were going on around them.

 Not all those successful, passionate development teams were practicing test - driven development
(TDD) when I fi rst found them. However, most of them quickly and eagerly latched on to it
when introduced to the concept. These teams have found that adding the practice of test - driven
development to their process of building software produced immediate, measurable results by
increasing quality and reducing the number of defects in the delivered application.

 Passion is diffi cult to create but easy to kill. In teams that lack passion, the introduction of test -
 driven development has, in many cases, reignited passion in developers. This is particularly true of
developers who have grown tired of doing the same kind of development day in and day out.

 Passion aside, there is another very compelling reason to investigate test - driven development.
Arguably the two biggest changes in recent years with the potential to reach the largest number of
developers are the rise of agile methodologies and test - driven development. Often the two go hand
in hand. I don ’ t believe that an agile methodology can succeed in the long term without the use of
test - driven development, and I have great diffi culty seeing how test - driven development could work
in a waterfall environment.

 Agile is here to stay. It ’ s no longer a “ crazy cowboy coding ” way of working practiced by small
development shops. Large companies that have made huge investments in structuring their
IT departments around waterfalls are starting to build more and more projects with an agile
methodology. Even the most bureaucratic organization in existence, government, is starting to
investigate agile with great success. These developments spell out a clear reality: Developers who
can work in agile environments, including the practice of test - driven development, soon will be
more valuable than those who can ’ t.

FLAST.indd xxvFLAST.indd xxv 3/31/11 8:15:18 AM3/31/11 8:15:18 AM

xxvi

INTRODUCTION

 Test - driven development has not existed in a vacuum. In the past several years, many groups and
movements have been aimed at raising the quality of the software being developed and bringing
business into the process. New principles and ways of doing things have been advanced to help
developers build maintainable applications that serve the needs of the business. Terms such as
software craftsmanship and SOLID have made their way into the lexicon of passionate developers
all over the world. Some developers have even gone so far as to call themselves software artisans or
craftsmen.

 Many books, websites, and workshops have appeared to feed the need to learn test - driven
development and all its supporting pieces. Many of these are very good. But others are nothing
more than commercials for a common and transportable way of doing things that is dressed up
as an expensive and proprietary solution. Many smart, passionate developers talk about and
evangelize test - driven development. However, no “ one - stop shopping ” resource has been able to
take a developer — specifi cally, a .NET developer — from neophyte to, well, still a neophyte, but a
neophyte with some information.

 The fact that you are reading this book indicates that you have some interest in test - driven
development. Maybe you ’ re a developer who ’ s heard a lot about test - driven development but never
really had an opportunity to explore it. Perhaps you ’ re an experienced test - driven developer who is
curious to see how this book is different from all the other books on the subject. In either case, the
fact that you are reading this book indicates that test - driven development has become mainstream
and is worthy of your time to learn, practice, and promote.

 WHO THIS BOOK IS FOR

 Test - driven development is an effective way to build quality into your application from the start.
The supporting principles and practices of test - driven development will enable you and your
development team to quickly write maintainable software that is more aligned with the needs of
the business. If you are a developer interested in improving your skills, this book is for you.

 If you ’ re new to test - driven development, start with Chapter 1. Doing so will give you a good
background in why test - driven development has become such a compelling practice. It will
also introduce you to the concepts of object - oriented programming, the SOLID Principles, and
refactoring. These skills are a crucial foundation for the practice of test - driven development.

 If you ’ ve dabbled in test - driven development, you might want to start with Chapter 3, which
provides a refresher on object - oriented development, the SOLID Principles, and refactoring.
Even seasoned developers sometimes need a reminder of how these concepts relate to application
development. The rest of the book, starting with Chapter 4, provides form and structure for
test - driven development for these developers.

 Developers who are experienced with test - driven development will probably want to start with
Part III. Doing so assumes that you have a high degree of skill with test - driven development,
object - oriented programming (OOP), and SOLID. This part focuses on specifi c scenarios that
.NET developers face. It covers how to practice test - driven development in web - based applications
(including web forms, ASP.NET MVC, and JavaScript), applications built on Windows Presentation

FLAST.indd xxviFLAST.indd xxvi 3/31/11 8:15:19 AM3/31/11 8:15:19 AM

INTRODUCTION

xxvii

Foundation (WPF) with the Model - View - ViewModel (MVVM) pattern, and service applications
built using Microsoft ’ s Windows Communication Foundation (WCF). The most diffi cult part of
an application to test is the edge. These chapters will show you how to make the edges around
your application as thin as possible and therefore more testable.

 WHAT THIS BOOK COVERS

 This book starts by covering the conditions that brought the software industry to the point where test -
 driven development could fl ourish. It ’ s important to understand this history and the conditions that
brought software development to its current state. Avoiding the mistakes of the past is important. But
identifying these antipatterns in your current development practice is even more important.

 To support your practice of test - driven development, this book also includes extensive coverage of
object - oriented programming, agile methodologies, and the SOLID software design and coding
principles.

 Of course, this book covers the concepts inherent in and necessary to test - driven development. The
fi rst tests you will be exposed to are simple and easy to understand. You ’ ll see how the NUnit
unit - testing framework can be used to write unit tests in Visual Studio.

 Later, the dependency injection pattern is introduced. You will see how this pattern is implemented
and how dependency injection frameworks such as Ninject can help manage the dependencies in
your application. The practice of mocking and mocking frameworks also are covered, including
an introduction to the mocking framework Moq.

 The basics of behavior - driven development are covered, but a deep discussion of this topic is not
included. This book explains the idea behind behavior - driven development and showcases the
business - driven development style of naming tests. This book also introduces the NBehave testing
framework. NBehave has many features, but this book simply uses it to provide syntactic sugar
for the tests.

 HOW THIS BOOK IS STRUCTURED

 A great deal of effort has been expended to structure the information in this book so that each
chapter builds upon the lessons in the previous one. The fi rst chapters are designed to provide a
foundation built on the importance of test - driven development and the underlying skills needed to
effectively practice it. Each chapter and section build on a concept such as dependency injection and
mocking until you ’ ve been exposed to all the necessary tools and techniques to practice test - driven
development.

 Incorporating the test - driven development skills taught in the previous chapters, Part III
demonstrates how to practice test - driven development with several of Microsoft ’ s frameworks aimed
at developing interfaces for applications, including ASP.NET MVC, WPF, and WCF.

FLAST.indd xxviiFLAST.indd xxvii 3/31/11 8:15:19 AM3/31/11 8:15:19 AM

xxviii

INTRODUCTION

 The book ends with an appendix that lists some alternative tools that can help you develop
applications using test - driven development. It also lists potential user stories to use as practice if you
are not in a position to use test - driven development in your everyday work.

 WHAT YOU NEED TO USE THIS BOOK

 To follow along with the examples in this book and use the demonstration application available for
download at www.wrox.com , you need the following tools:

 Visual Studio 2010 (any version)

 NUnit version 2.5.2.9222 or later, available at nunit.org

 Moq version 4 beta 4 (build 4.0.10827.0) or later, available at code.google.com/p/moq

 Ninject version 2 (build 2.1.0.91) or later, available at ninject.org

 NBehave version 0.4.5.183 or later, available at nbehave.org

 Fluent NHibernate version 1.1 or later, available at fluentnhibernate.org

 A Database Management System (DBMS) is required for the sample applications. The examples
in this book use Microsoft SQL Server Developer, but any relational database system will
suffi ce.

 CONVENTIONS

 To help you get the most from the text and keep track of what ’ s happening, we use a number of
conventions throughout the book: As for styles in the text:

 We italicize new terms and important words when we introduce them.

 We show keyboard strokes like this: Ctrl+A.

 We show fi lenames, URLs, and code within the text like so: persistence.properties .

 We present code in two different ways:

We use a monofont type with no highlighting for most code examples.
We use bold to emphasize code that’s particularly important in the present context.

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

 The pencil icon indicates notes, tips, hints, tricks, or asides to the current
discussion.

FLAST.indd xxviiiFLAST.indd xxviii 3/31/11 8:15:19 AM3/31/11 8:15:19 AM

www.allitebooks.com

http://www.wrox.com
http://code.google.com/p/moq
http://ninject.org
http://nbehave.org
http://fluentnhibernate.org
http://www.allitebooks.org

INTRODUCTION

xxix

 SOURCE CODE

 As you work through the examples in this book, you may choose either to type in all the code
manually, or to use the source code fi les that accompany the book. All the source code used in this
book is available for download at www.wrox.com . When at the site, simply locate the book ’ s title
(use the Search box or one of the title lists) and click the Download Code link on the book ’ s detail
page to obtain all the source code for the book. Code that is included on the website is highlighted
by the following icon:

Available for
download on
Wrox.com

 Listings include the fi lename in the title. If it is just a code snippet, you ’ ll fi nd the fi lename in a code
note such as this:

 Code snippet fi lename

 Boxes with a warning icon like this one hold important, not - to - be forgotten
information that is directly relevant to the surrounding text.

 Because many books have similar titles, you may fi nd it easiest to search by
ISBN; this book ’ s ISBN is 978 - 0 - 470 - 64320 - 4.

 Once you download the code, just decompress it with your favorite compression tool. Alternately,
you can go to the main Wrox code download page at www.wrox.com/dynamic/books/download
.aspx to see the code available for this book and all other Wrox books.

 ERRATA

 We make every effort to ensure that there are no errors in the text or in the code. However, no one
is perfect, and mistakes do occur. If you fi nd an error in one of our books, like a spelling mistake or
faulty piece of code, we would be very grateful for your feedback. By sending in errata you may save
another reader hours of frustration and at the same time you will be helping us provide even higher
quality information.

FLAST.indd xxixFLAST.indd xxix 3/31/11 8:15:30 AM3/31/11 8:15:30 AM

http://www.wrox.com
http://www.wrox.com/dynamic/books/download.aspx
http://www.wrox.com/dynamic/books/download.aspx

xxx

INTRODUCTION

 To fi nd the errata page for this book, go to www.wrox.com and locate the title using the Search box
or one of the title lists. Then, on the book details page, click the Book Errata link. On this page you
can view all errata that has been submitted for this book and posted by Wrox editors. A complete
book list including links to each book ’ s errata is also available at www.wrox.com/misc-pages/
booklist.shtml .

 If you don ’ t spot “ your ” error on the Book Errata page, go to www.wrox.com/contact/
techsupport.shtml and complete the form there to send us the error you have found. We ’ ll check
the information and, if appropriate, post a message to the book ’ s errata page and fi x the problem in
subsequent editions of the book.

 P2P.WROX.COM

 For author and peer discussion, join the P2P forums at p2p.wrox.com . The forums are a Web - based
system for you to post messages relating to Wrox books and related technologies and interact with
other readers and technology users. The forums offer a subscription feature to e - mail you topics
of interest of your choosing when new posts are made to the forums. Wrox authors, editors, other
industry experts, and your fellow readers are present on these forums.

 At p2p.wrox.com you will fi nd a number of different forums that will help you not only as you read
this book, but also as you develop your own applications. To join the forums, just follow these steps:

 1. Go to p2p.wrox.com and click the Register link.

 2. Read the terms of use and click Agree.

 3. Complete the required information to join as well as any optional information you wish to
provide and click Submit.

 4. You will receive an e - mail with information describing how to verify your account and
complete the joining process.

 You can read messages in the forums without joining P2P but in order to post
your own messages, you must join.

 Once you join, you can post new messages and respond to messages other users post. You can read
messages at any time on the Web. If you would like to have new messages from a particular forum
e - mailed to you, click the Subscribe to this Forum icon by the forum name in the forum listing.

 For more information about how to use the Wrox P2P, be sure to read the P2P FAQs for answers to
questions about how the forum software works as well as many common questions specifi c to P2P
and Wrox books. To read the FAQs, click the FAQ link on any P2P page.

FLAST.indd xxxFLAST.indd xxx 3/31/11 8:15:40 AM3/31/11 8:15:40 AM

http://www.wrox.com
http://www.wrox.com/misc-pages/booklist.shtml
http://www.wrox.com/misc-pages/booklist.shtml
http://www.wrox.com/contact/techsupport.shtml
http://p2p.wrox.com
http://p2p.wrox.com
http://p2p.wrox.com

PROFESSIONAL

Test-Driven Development with C#

FLAST.indd xxxiFLAST.indd xxxi 3/31/11 8:15:45 AM3/31/11 8:15:45 AM

FLAST.indd xxxiiFLAST.indd xxxii 3/31/11 8:15:45 AM3/31/11 8:15:45 AM

PART I

Getting Started

CHAPTER 1: The Road to Test-Driven Development

CHAPTER 2: An Introduction to Unit Testing

CHAPTER 3: A Quick Review of Refactoring

CHAPTER 4: Test-Driven Development: Let the Tests Be Your Guide

CHAPTER 5: Mocking External Resources

�

�

�

�

�

c01.indd 1c01.indd 1 3/31/11 2:48:22 PM3/31/11 2:48:22 PM

c01.indd 2c01.indd 2 3/31/11 2:48:26 PM3/31/11 2:48:26 PM

The Road to Test-Driven
Development

 WHAT ’ S IN THIS CHAPTER?

 How has software development evolved to bring us to TDD

 What an Agile methodology is and how does it diff ers from

traditional waterfall-based technologies

 What TDD is and what the benefi ts of using it are

 Test-Driven Development (TDD) has become one of the most important concepts and
practices in modern software development. To understand why this is, consider the history
of the practice of creating software. TDD was created through an almost evolutionary
process. It came about as a response to the diffi culties and challenges of writing software,
but there was no real plan for its creation. It ’ s a classic case of the traits of a thing that make
that thing more successful and stronger being propagated and the traits that lead to failure
being discarded. The practices of TDD were not created by any single company or individual;
they rose from countless discussions (or, more likely, arguments) about what was done in the
past, why it failed, and what could be done better. If TDD is a structure, such as a house, its
foundation is created from failure. Failed projects, whose developers knew there had to be a
better way, are what TDD has been built upon.

 In this chapter you learn about the history of software development and how the methodology
of managing software projects has moved from favoring waterfall to iterative to agile
methodologies. You ’ ll learn how the practice of Test-Driven Development is a key component
of agile methodologies to ensure that quality code that addresses the business needs is being
produced. I will explain the tenets of Test-Driven Development, outline its benefi ts, and show
you an example of how Test-Driven Development is done.

➤

➤

➤

 1

c01.indd 3c01.indd 3 3/31/11 2:48:26 PM3/31/11 2:48:26 PM

4 ❘ CHAPTER 1 THE ROAD TO TEST-DRIVEN DEVELOPMENT

 THE CLASSICAL APPROACH TO SOFTWARE DEVELOPMENT

 To understand the importance of TDD, it ’ s necessary to see the road that led to it. Over the past
50 years the practice of software development has constantly evolved in an effort to fi nd a balance
between the needs of the business, the capabilities of the current technology, and the methodology
in which developers are most productive. Missteps have occurred along the way, but even they
were important as a means of determining which techniques and methodologies were evolutionary
dead ends. This chapter reviews the road to TDD.

 A Brief History of Software Engineering

 Software development for business began during the age of the mainframe. Each hardware
vendor seemed to have its own unique platform and paradigm for developing software.
Sometimes these systems were similar enough to each other that developers could move from
job to job and platform to platform with very little friction. Other times it was like starting from
scratch. Although the basic concepts of computing were the same, each vendor had its own,
sometimes very unique take on those concepts. Languages were archaic, often requiring many
lines of code to do the simplest things that we take for granted today. And many times what
worked in one implementation of a language or platform didn ’ t work quite the same way
in another.

 The mainframe was a large, expensive piece of equipment. Many companies didn ’ t own one, so the
concept of the service bureau was born: Companies with a mainframe would lease time on their
computer to customers. Unfortunately, this sometimes meant waiting for access to the computer.
Imagine if you wrote a program today but couldn ’ t compile it until next Monday. It would be very
hard to be a productive developer with that kind of constraint. Suppose you attempted to compile
on Monday but encountered an error. You could fi x it, but you wouldn ’ t know if your fi x was
correct for three more days. The limited access to computing resources often meant that testing,
out of necessity, took a backseat to getting the product out the door.

 These were also the days before the concept of waterfall development. Developers, left to their own
devices, often worked in an iterative manner, scoping out specifi c pieces of a system and completing
those, and then adding new features and functionality later. This method worked well, because it
allowed developers to approach application development in a logical manner that kept things in
terms they could understand and manage. Unfortunately, business users and what was logical
and comprehensible to them often were not taken into consideration.

 The second generation of mini - computers emerged in 1977, but they didn ’ t really take off
in business until 1979 with the release of VisiCalc. VisiCalc was the fi rst spreadsheet application
available for the personal computer. It demonstrated that PCs weren ’ t just toys for the home,
but machines that could provide real value to business. PCs offered many advantages over
mainframes, the fi rst one being that they were much less expensive. A business that couldn ’ t
afford even one dedicated mainframe could afford dozens of PCs. And although PCs weren ’ t
as fast as mainframes, their availability made them ideal for day - to - day tasks that didn ’ t require
the power of the mainframe. Developers could write applications for the PC and know right
away if their code worked. They also didn ’ t have to wait days to have their jobs scheduled
and run.

c01.indd 4c01.indd 4 3/31/11 2:48:28 PM3/31/11 2:48:28 PM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

 Things got even better with third - and fourth - generation programming languages. They abstracted
some of the more mundane tasks of their predecessors and allowed developers to be more productive
by focusing on the business problem at hand. These languages also opened software development to
a wider audience who didn ’ t want to deal with the friction of languages such as Assembler and C.
Business and the business computer industry ultimately settled on a few base languages and their
derivatives. This helped developers become more attractive and marketable to business as their skills
became more portable.

 Ultimately business ’ s need to plan brought about the waterfall project methodology. The concept
behind waterfall was that every software project, whose average time span was about two years,
should have every phase from inception to delivery planned from the start. This necessitated a
long period at the beginning for requirements gathering. After all the requirements were gathered,
they were “ thrown over the wall ” to the architects. The architects took the requirements and
designed the system that would be built down to the smallest detail. When they completed this task,
they threw the design over the wall to the developers, who built the system. After the developers
completed their work, they threw the system to the Quality Assurance (QA) department, which
tested the application. As soon as the application was validated, it was deployed to the users.

 Software testing in a waterfall methodology was often a long, diffi cult, ineffi cient, and expensive
process. QA testers would test applications by manually running through test scripts, which were
documents that instructed the tester to carry out an action in the system and described the result the
tester should observe. Sometimes these scripts ran into hundreds of pages. When a change was made
to the system, it could take a tester two or more weeks to completely regression - test the system.
Another issue was that often these test scripts were written by the developer who created the system.
In these cases the scripts usually described how the system would act, not how it should act.

 The fi rst step toward TDD happened with the proliferation of automated QA testing tools. These
recorded a series of actions a user takes on a user interface (UI) and allowed them to be played back
later. This verifi ed that the UI worked correctly. After the initial tests were recorded, the QA tools
also allowed much faster regression testing than manual tests and could be run repeatedly. A large
failing of many of these early tools was that the tests they created were brittle. When an aspect of
the UI changed, the test usually couldn ’ t handle the change, and the test would break. For tools
that used the record/playback model, that meant the test had to be discarded and a new one created.
Later versions of these tools allowed for scripting that would make some of these changes easier
to absorb, but the tests still remained fragile.

 From Waterfall to Iterative and Incremental

 Software development doesn ’ t happen in a void. It doesn ’ t matter if it ’ s an 18 - month project to
create an application to collate the Enterprise ’ s Testing Procedure Specifi cation (TPS) reports or a
website that you built for your child ’ s peewee hockey team; you are using a methodology. You have
requirements, you plan features, and you build the application. After it ’ s tested, you deploy it to a
grateful user base.

 A problem with the waterfall methodology is that all the requirements are gathered early on. In
business, requirements often change for a variety of reasons. Changes in the law, a shift in the
company ’ s strategic direction, or even something as simple as a mistake in the requirements -
 gathering phase could have serious repercussions for the downstream process. The planned - out

The Classical Approach to Software Development ❘ 5

c01.indd 5c01.indd 5 3/31/11 2:48:28 PM3/31/11 2:48:28 PM

6 ❘ CHAPTER 1 THE ROAD TO TEST-DRIVEN DEVELOPMENT

nature of waterfall does not respond well to change. A change request to the system generally must
go through the same requirements/design/development/QA process that the rest of the system did.
This creates a ripple effect that causes the rest of the plan to become inaccurate.

 To create the upfront plan, the work must be estimated early — sometimes years before the actual
work is to be done, and usually by someone who won ’ t actually do the work. This creates a
house of cards in which one wrong estimate can again wreak havoc across the rest of the
project plan.

 The architects aren ’ t blameless either. This era led to “ ivory tower architects ” who created designs
for applications that in practice were impractical or, in some cases, impossible. Developers didn ’ t
help the case either, because many of them simply carried out the architect ’ s design vision, whether
or not it made sense. Many times what was delivered to the business (two years after it had been
requested) did not remotely resemble what was wanted or needed.

 In an effort to solve some of the issues with waterfall, some development shops turned to the
concept of iterative or incremental development. The idea was to take a large waterfall project and
divide it into several smaller waterfall projects. Each subproject would have a defi ned scope and
delivery target and upon completion would feed into the next iteration of the larger project.
This was an improvement, because it resulted in smaller projects that were easier to defi ne and
got software in front of users much faster. However, in the end this was really just several linked
waterfall projects, albeit shorter ones. The individual subproject still did not have a good
mechanism for dealing with the constant change of business and technology. Another step
was needed.

 A QUICK INTRODUCTION TO AGILE METHODOLOGIES

 Unlike waterfall, which seeks to control and constrain the realities of software development,
 agile methodologies embrace them. Change in business is inevitable, and software development
methodologies must be able to adapt. A key failure of the large up - front plan is that estimates
by their very defi nition are always wrong. If they were correct, they wouldn ’ t be estimates; they
would be “ the number. ” An iterative process shows promise, but the iterations themselves, and the
methodology as a whole, must be fl exible and open to change.

 A Brief History of Agile Methodologies

 In February 2001 several proponents of new methodologies such as Scrum, Extreme Programming
(XP), Pragmatic Programming, Feature Driven Development, and others met and drafted the Agile
Manifesto. It reads as follows:

 “ We are uncovering better ways of developing software by doing it and helping
others do it. Through this work we have come to value:

 Individuals and interactions over processes and tools

 Working software over comprehensive documentation

➤

➤

c01.indd 6c01.indd 6 3/31/11 2:48:29 PM3/31/11 2:48:29 PM

 Customer collaboration over contract negotiation

 Responding to change over following a plan

 That is, while there is value in the items on the right, we value the items on the
left more. ”

 The Agile Manifesto itself is not a development methodology. It doesn ’ t prescribe how software
should be developed. It simply states a set of key values that can be used to create and describe
lighter and faster application development methodologies that are more focused on people, working
software, and results than meticulous multiyear project plans and mountains of documentation.

 Many branded agile development methodologies are in use today:

 Scrum

 Extreme Programming (XP)

 Feature Driven Development

 Clear Case

 Adaptive Software Development

 The Principles and Practices of Test-Driven Development

 These methodologies are all different in how they are implemented, but they share some
characteristics:

 They all make communication across the team a high priority. Developers, business users,
and testers are all encouraged to communicate frequently.

 They focus on transparency in the project. The development team does not live in a black
box that obscures their actions from the rest of the team. They use very public artifacts
(a Kanban board, a big visible chart, and so on) to keep the team informed.

 The members of the team are all accountable to each other. The team does not succeed or
fail because of one person; they either succeed or fail as a team.

 Individual developers do not own sections of the code base. The whole team owns the entire
code base, and everyone is responsible for its quality.

 Work is done in short, iterative development cycles, ideally with a release at the end of
each cycle.

 The ability to handle change is a cornerstone of the methodology.

 Broad strokes of a system are defi ned up front, but detailed design is deferred until the
feature is actually scheduled to be developed.

 Agile methodologies are not a silver bullet. They are also not about chaos or “ cowboy coding. ” In
fact, agile methodologies require a larger degree of discipline to administer correctly. Furthermore,
no one true agile methodology exists. Ultimately, each team needs to do what works best for them.
This may mean starting with a branded agile methodology and changing it, or combining aspects

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

A Quick Introduction to Agile Methodologies ❘ 7

c01.indd 7c01.indd 7 3/31/11 2:48:30 PM3/31/11 2:48:30 PM

8 ❘ CHAPTER 1 THE ROAD TO TEST-DRIVEN DEVELOPMENT

of several. You should constantly evaluate your methodology and do more of what works and
less of what doesn ’ t.

 THE CONCEPTS BEHIND TDD

 The history of TDD starts in 1999 with a group of developers who championed a set of concepts
known as Extreme Programing (XP). XP is an agile based methodology that is based on recognizing
what practices in software development are benefi cial and dedicating the bulk of the developers
time and effort to those practices under the philosophy “ if some is good, more is better. ” A key
component of XP is test - fi rst programming. TDD grew out of XP as some developers found they
were not ready to embrace some of the more, at the time, radical concepts, yet found the promise
of improved quality that was delivered by the practice of TDD compelling.

 As mentioned, agile methodologies do not incorporate a big upfront design. Business requirements
are distilled into features for the system. The detailed design for each feature is done when the
feature is scheduled. Features, and their resulting libraries and code, are kept short and simple.

 TDD as a Design Methodology

 When used as an application design methodology, TDD works best when the business user is
engaged in the process to help the developer defi ne the logic that is being created, sometimes going
so far as to defi ne a set of input and its expected output. This is necessary to ensure that the
developers understand the business requirements behind the feature they are developing. TDD
ensures that the fi nal product is in line with the needs of the business. It also helps ensure that
the scope of the feature is adhered to and helps the developer understand what done really means
with respect to the current feature in development.

 TDD as a Development Practice

 As a development practice, TDD is deceptively simple. Unlike development you ’ ve done in the past,
where you may sit down and start by creating a window, a web page, or even a class, in TDD you
start by writing a test. This is known as test fi rst development , and initially it might seem a bit
awkward. However, by writing your test fi rst, what you really are doing is creating the requirement
you are designing for in code. As you work with the business user to defi ne what these tests should
be, you create an executable version of the requirement that is composed of your test. Until these
tests pass, your code does not satisfy the business requirement.

 When you write your fi rst test, the fi rst indication that it fails is the fact that the application does
not compile. This is because your test is attempting to instantiate a class that has not been defi ned,
or it wants to use a method on an object that does not exist. The fi rst step is simply to create the
class you are testing and defi ne whatever method on that class you are attempting to test. At this
point your test will still fail, because the class and method you just created don ’ t do anything.
The next step is to write just enough code to make your test pass. This should be the simplest code
you can create that causes the test to pass. The goal is not to write code based on what might be
coming in the requirement. Until that requirement changes, or a test is added to expose that lack
of functionality, it doesn ’ t get written. This prevents you from writing overly complicated code

c01.indd 8c01.indd 8 3/31/11 2:48:31 PM3/31/11 2:48:31 PM

where a simple algorithm would suffi ce. Remember, one of the goals of TDD is to create code that is
easy to understand and maintain.

 As soon as your fi rst test is passing, add more tests. You should try to have enough tests to ensure
that all the requirements of the feature being tested are being met. As part of this process, you want
to ensure that you are testing your methods for multiple input combinations. This includes values
that fall outside the approved range. These are called negative tests . If your requirement says that
your interest calculation method should handle only percentage rates up to 20%, see what happens
if you try to call it with 21%. Usually this should cause an exception of some sort to be thrown. If
your method takes string arguments, what happens if you pass in an empty string? What happens
if you pass in nulls? Although it ’ s important to keep your tests inside the realm of reality,
triangulating tests to ensure the durability of your code is important too. When the entire
requirement has been expressed in tests, and all the tests pass, you ’ re done.

 THE BENEFITS OF TDD

 When describing TDD to developers, development managers, and project managers who have never
experienced it, I am usually met with skepticism. On paper, creating code does seem like a long and
convoluted process. The benefi ts cannot be ignored, however:

 TDD ensures quality code from the start. Developers are encouraged to write only the
code needed to make the test pass and thus fulfi ll the requirement. If a method has less
code, it ’ s only logical that the code has fewer opportunities for error.

 Whether by design or by coincidence, most TDD practitioners write code that follows the
SOLID principals. These are a set of practices that help developers ensure they are writing
quality software. While the tests generated by the practice of TDD are extremely valuable,
the quality that results as a side - effect is an incredibly important benefi t of TDD. The
SOLID principals will be covered in Chapter 3.

 TDD ensures a high degree of fi delity between the code and the business requirements.
If your requirements are written as tests, and your tests all pass, you can say with a high
degree of confi dence that your code meets the needs of the business.

 TDD encourages the creation of simpler, more focused libraries and APIs. TDD turns
development a bit on its head, because the developer writing the interface to the library
or API is also its fi rst consumer. This gives you a new perspective on how the interface
should be written, and you know instantly if the interface makes sense.

 TDD encourages communication with the business. To create these tests, you are encouraged
to interact with the business users. This way, you can make sure that the input and output
combinations make sense, and you can help the users understand what they are building.

 TDD helps keep unused code out of the system. Most developers have written applications
in which they designed interfaces and wrote methods based on what might happen. This
leads to systems with large parts of code or functionality that are never used. This code is
expensive. You expend effort writing it, and even though that code does nothing, it still
has to be maintained. It also makes things cluttered, distracting you from the important
working code. TDD helps keep this parasite code out of your system.

➤

➤

➤

➤

➤

➤

The Benefi ts of TDD ❘ 9

c01.indd 9c01.indd 9 3/31/11 2:48:31 PM3/31/11 2:48:31 PM

10 ❘ CHAPTER 1 THE ROAD TO TEST-DRIVEN DEVELOPMENT

 TDD provides built - in regression testing. As changes are made to the system and
your code, you always have the suite of tests you created to ensure that tomorrow ’ s
changes do not damage today ’ s functionality.

 TDD puts a stop to recurring bugs. You ’ ve probably been in situations where you are
developing a system and the same bug seems to come back from QA repeatedly. You think
you ’ ve fi nally tracked it down and put a stop to it, only to see it return two weeks later.
With TDD, as soon as a defect is reported, a new test is written to expose it. When this
test passes, and continues to pass, you know the defect is gone for good.

 When developing applications with testability in mind, the result is an architecture that
is open, extensible and fl exible. Dependency Injection (covered in Chapter 5) is a key
component of both TDD and a loosely coupled architecture. This results in a system that
by virtue of its architecture is robust, easy to change, and resistant to defects.

 A QUICK EXAMPLE OF THE TDD APPROACH

 The following exercise takes you through an
example of what it ’ s like to develop a feature for
a system using TDD. For this example, imagine
you have been asked to create a feature that
counts occurrences of a character in a string.
Assume that you are working in an existing
solution, with an existing project structure,
but the class you ’ ll implement this method on
does not exist. Also assume for this example
that your unit - testing frameworks have been
referenced in your project. Don ’ t worry; I cover
how to do this in Chapter 6. Currently, the
solution looks like Figure 1 - 1.

 The ChapterOne.UnitTests project will contain
our unit tests. The ChapterOneExample.Utilities
project will be where our completed class will be
placed. The fi rst step is to create a class in our
unit test project that will contain our unit tests,
as shown in Figure 1 - 2.

 You have a variety of ways to arrange your unit
test classes within your unit test project. Some
developers prefer to place each test class in a
separate code fi le. Some developers like to create
a code fi le for all the test classes for a specifi c
feature. A more common approach, which is
the one taken here, is to create a code fi le class
for all the unit test classes for a specifi c section
of the application — in this case, the utilities
project. If you had a business logic library with several business/domain - based services, you could

➤

➤

➤

FIGURE 1 - 1

FIGURE 1 - 2

c01.indd 10c01.indd 10 3/31/11 2:48:32 PM3/31/11 2:48:32 PM

create a separate code fi le for each domain service ’ s test classes. For this example that would be
overkill, so you ’ ll use one test class for the whole project.

 When you created the UtilitiesTest.cs class, Visual Studio created some boilerplate code:

namespace ChapterOne.UnitTests
{
 public class UtilitiesTests
 {

 }
}

 For the purposes of this example, the name UtilitiesTests is fi ne, but in a real
business development situation it might not be descriptive enough for the other
developers on your team. It defi nitely won ’ t mean much to a nontechnical
business user. Subsequent examples in this book will employ a method for
naming and constructing tests that is more in line with a Business Driven
Development style. It provides human - friendly names and makes the actual test
easier to understand and follow for nontechnical people.

 Now you write your fi rst test. This can be the simplest expression of what your requirements are. This
test passes in the string mysterious and asks the library to count the occurrences of the letter y :

using NUnit.Framework;

namespace ChapterOne.UnitTests
{
 public class UtilitiesTests
 {
 [Test]
 public void ShouldFindOneYInMysterious()
 {
 var stringToCheck = “mysterious”;
 var stringToFind = “y”;
 var expectedResult = 1;
 var classUnderTest = new StringUtilities();

 var actualResult =
 classUnderTest.CountOccurences(stringToCheck, stringToFind);

 Assert.AreEqual(expectedResult, actualResult);
 }
 }
}

 The test method ShouldFindOneYInMysterious is decorated with the attribute Test to tell the unit
test framework that this is a test. The test conditions are set up by defi ning the string to search and
the character to fi nd in it. They also defi ne the expected result. Next the method is invoked under
test and captures the actual result. Finally, an Assert statement determines whether the expected
and actual values are the same.

A Quick Example of the TDD Approach ❘ 11

c01.indd 11c01.indd 11 3/31/11 2:48:33 PM3/31/11 2:48:33 PM

12 ❘ CHAPTER 1 THE ROAD TO TEST-DRIVEN DEVELOPMENT

 The fi rst indication that the test does not pass is the fact that the application does not compile.
This tells you that no one has implemented a StringUtilities class in the application. That ’ s
 what you must do fi rst. To do so you simply add a new class called StringUtilities to your
utilities project. The class that Visual Studio creates looks like this:

namespace ChapterOneExample.Utilities
{
 public class StringUtilities
 {

 }
}

 The test still fails, because you haven ’ t created a CountOccurences method on this class. The next
step in making this test pass is adding that method:

using System;

namespace ChapterOneExample.Utilities
{
 public class StringUtilities
 {
 public int CountOccurences(string stringToCheck,
 string stringToFind)
 {
 throw new NotImplementedException ();
 }
 }
}

 This method initially throws an exception because so far the only reason this test has failed is due
to a failure to compile. This might seem silly, but in TDD you don ’ t take anything for granted; it ’ s
important to see your tests fail before you write your methods. This ensures that you are writing
only enough code to make the test pass. When you run the test, it fails, as shown in Figure 1 - 3.

FIGURE 1 - 3

c01.indd 12c01.indd 12 3/31/11 2:48:54 PM3/31/11 2:48:54 PM

 The reason for the test failure (as shown by the highlighted text) is that you have not implemented
the method. The next step is to write code to make this test pass:

using System;

namespace ChapterOneExample.Utilities
{
 public class StringUtilities
 {
 public int CountOccurences(string stringToCheck,
 string stringToFind)
 {
 var stringAsCharArray = stringToCheck.ToCharArray();
 var stringToCheckForAsChar =
 stringToFind.ToCharArray()[0];
 var occuranceCount = 0;

 for (var characterIndex = 0;
 characterIndex < stringAsCharArray.GetUpperBound(0);
 characterIndex++)
 {
 if (stringAsCharArray[characterIndex] ==
 stringToCheckForAsChar)
 {
 occuranceCount++;
 }
 }

 return occuranceCount;
 }
 }
}

 This may or may not be the best way to implement this method, but if you run the test you can
see in Figure 1 - 4 that it ’ s enough to satisfy this requirement.

FIGURE 1 - 4

A Quick Example of the TDD Approach ❘ 13

c01.indd 13c01.indd 13 3/31/11 2:48:55 PM3/31/11 2:48:55 PM

14 ❘ CHAPTER 1 THE ROAD TO TEST-DRIVEN DEVELOPMENT

 So, right now you know it works when there is one instance of the character you ’ re looking for in
the target word. In the interest of triangulating tests, you need to write another one to verify that
it fi nds multiple instances:

[Test]
public void ShouldFindTwoSInMysterious()
{
 var stringToCheck = “mysterious”;
 var stringToFind = “s”;
 var expectedResult = 2;
 var classUnderTest = new StringUtilities();

 var actualResult = classUnderTest.CountOccurences(stringToCheck, stringToFind);

 Assert.AreEqual(expectedResult, actualResult);
}

 When you run both tests, you can see that the code has a problem, as shown in Figure 1 - 5.

FIGURE 1 - 5

 The test has uncovered a bug in the code. Specifi cally, the for loop is looping through the target string one
fewer time than is needed (string length - 1). After the defect has been found, you can fi x the code:

for (var characterIndex = 0;
 characterIndex < = stringAsCharArray.GetUpperBound(0);
 characterIndex++)

 Now when you run the test, the code behaves the way it should, as shown in Figure 1 - 6.

FIGURE 1 - 6

c01.indd 14c01.indd 14 3/31/11 2:48:55 PM3/31/11 2:48:55 PM

 Now imagine that as you continue to develop your character counter method, you are given a
new requirement. Your business user wants the search to be case - insensitive. That is, the algorithm
shouldn ’ t care if letters are uppercase or lowercase. Your fi rst step is to write a test that expresses
this new requirement:

public void SearchShouldBeCaseSenstive()
 {
 var stringToCheck = “mySterious”;
 var stringToFind = “s”;
 var expectedResult = 2;
 var classUnderTest = new StringUtilities();

 var actualResult =
 classUnderTest.CountOccurences(stringToCheck,
 stringToFind);

 Assert.AreEqual(expectedResult, actualResult);
 }

 Figure 1 - 7 shows that when you run this test, the current implementation does not meet this
new requirement.

FIGURE 1 - 7

 The next step is to update your method to make this test pass while making sure that the other
two tests do not start to fail. This change is easy enough; you simply convert both the string
you are searching and the character you are searching for to uppercase before you run the
search algorithm:

var stringAsCharArray = stringToCheck.ToUpper().ToCharArray();
var stringToCheckForAsChar = stringToFind.ToUpper().ToCharArray()[0];

 Figure 1 - 8 shows the results of running this test again. This change was all that was needed
to make the new test pass, without causing the existing tests to fail, so this requirement
is complete.

A Quick Example of the TDD Approach ❘ 15

c01.indd 15c01.indd 15 3/31/11 2:48:56 PM3/31/11 2:48:56 PM

16 ❘ CHAPTER 1 THE ROAD TO TEST-DRIVEN DEVELOPMENT

 You deploy version one of your string utility class, and before long you have your fi rst defect. When
a user passes in a null as the string to be searched, a null reference exception is thrown. You can
question the responsibility of the calling code to check its values before making the call, or argue
that a null reference exception is appropriate; the string is null, after all. But the truth is that good
developers realize that all input is evil and must be validated independently. And in the end, the
business user would rather have the value – 1 returned. You write a test to demonstrate this defect:

public void ShouldBeAbleToHandleNulls()
{
 string stringToCheck = null;
 var stringToFind = “s”;
 var expectedResult = -1;
 var classUnderTest = new StringUtilities();

 var actualResult = classUnderTest.CountOccurences(stringToCheck, stringToFind);

 Assert.AreEqual(expectedResult, actualResult);
}

 As expected, you can see in Figure 1 - 9 that this test fails when it is run.

FIGURE 1 - 8

FIGURE 1 - 9

c01.indd 16c01.indd 16 3/31/11 2:48:56 PM3/31/11 2:48:56 PM

www.allitebooks.com

http://www.allitebooks.org

 Another code change is needed, this time to validate the incoming arguments and return the
appropriate response if the data fails validation:

public int CountOccurences(string stringToCheck, string stringToFind)
{
 if (stringToCheck == null) return -1;
 var stringAsCharArray = stringToCheck.ToUpper().ToCharArray();

 When you run the test again, the code change corrects the defect, as shown in Figure 1 - 10.

 In addition to ensuring that you have fi xed the defect, this test ensures that the defect doesn ’ t
reappear in the future.

 SUMMARY

 In this chapter you have seen how the history of software development has come full circle to
a preference for iterative development. You also saw how the Agile Manifesto has created a
framework for today ’ s new breed of iterative methodologies. Software developers have also had
to learn the value of change and fi nd ways to adapt their work to the pace of change in the rest of
the business. You saw a basic example of how Test-Driven Development (TDD) can be used to
write robust software that is simple to implement and easy to maintain. You also learned how
these tests can insulate you from introducing new defects while providing a framework for you
to add new features without disrupting current ones. Finally, you learned what tools you need to
start working with TDD.

FIGURE 1 - 10

Summary ❘ 17

c01.indd 17c01.indd 17 3/31/11 2:48:57 PM3/31/11 2:48:57 PM

c01.indd 18c01.indd 18 3/31/11 2:48:57 PM3/31/11 2:48:57 PM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

An Introduction to Unit Testing

 WHAT ’ S IN THIS CHAPTER?

 What a unit test is

 How unit testing diff ers from other types of tests

 How unit testing frameworks can help you write unit tests quickly

and easily

 Why mocking external resources in your test is important when

practicing TDD

 A brief overview of the NUnit unit testing framework and the Moq

mocking framework, two very popular TDD tools in the .NET world

 Unit testing (UT) is the cornerstone of test - driven development (TDD). When your unit tests
are properly aligned with and correctly refl ect your business requirements, they almost become
a living design document — one that can validate the code you ’ ve written with the push of a
button. Unit tests are not diffi cult to write, although they do require a minor change to how
you usually approach writing software. They also represent a few new concepts to master, such
as code isolation and the idea of having stand - in or mock objects to enable your tests to focus
on only the code that is being tested. These new concepts are integral to TDD. The ability to
write isolated, repeatable, and focused tests allows you to ensure that your code is meeting the
business ’ s needs and can continue to evolve without those changes disrupting the code ’ s fi delity
to the business ’ s needs. To help you with these concepts, tools and frameworks such as NUnit
and Moq can make your development process easier, faster, and more rewarding.

 WHAT IS A UNIT TEST?

 Over the years, many different and mutually exclusive defi nitions of the term unit test have
arisen. Many people say “ unit test ” when they really mean component test, integration test,

➤

➤

➤

➤

➤

 2

c02.indd 19c02.indd 19 3/31/11 3:22:37 PM3/31/11 3:22:37 PM

20 ❘ CHAPTER 2 AN INTRODUCTION TO UNIT TESTING

or even user acceptance test (UAT). This can lead to a lot of confusion in software development in
general. In TDD that confusion takes on a whole new dimension when you consider just how central
to the practice of TDD unit tests are. It ’ s important for the sake of communicating with our fellow
developers that we maintain a consistent defi nition of the term “ unit test. ”

 Unit Test Defi nition

 In the simplest terms, a unit test is a test designed to test one unit of work. In this case “ one unit of
work ” means one requirement for one method. The example from Chapter 1 tested an algorithm to
count the number of occurrences of a given character in a given string. You didn ’ t know where the
string or character came from; that detail was unimportant to the given unit of work, which was
counting the occurrences of the character in the string. Everything else was out of scope for the
unit of work.

 The benefi t of this type of test is the fact that it is confi ned to only one specifi c unit of work. You
can focus your efforts on your unit of work. You don ’ t need to know the details of the other players
in the system (unless you have a direct dependency on them). This makes writing the tests, and the
resulting code, easier. Additionally, if a defect does appear in your code that causes your test to fail,
you can be fairly sure that the defect is isolated to your specifi c unit of work. You don ’ t have to
 “ go down the rabbit hole ” searching for which layer of code your defect occurred in. If your
character - counting tests fail, you know that ’ s where the problem is.

 Stylistically, unit tests can be written in a variety of ways, but all unit tests share some common
characteristics. They are:

 Isolated from other code

 Isolated from other developers

 Targeted

 Repeatable

 Predictable

Now that you know the characteristics of a true unit test, the next section discusses some patterns
and characteristics you should avoid.

 What Is Not a Unit Test?

 For starters, you want to avoid tests that cross the boundaries between the code you are testing and
the other parts of the system. This pertains to everything from other classes and services in the same
application to databases, web services, and any other external dependency. When your tests start
to bleed into these other classes, services, and systems, your tests start to lose their focus, and when
they fail, it becomes more diffi cult to target the defective code. The idea behind a unit test is that you
test only what ’ s in that method. When it fails, you don ’ t want to have to hunt through several layers
of code, database tables, or the documentation for third - party products to fi nd a possible answer.

 Another issue arises when you cross these boundaries, especially if that boundary is a shared
resource such as a database. When you share resources with other developers on your team, you

➤

➤

➤

➤

➤

c02.indd 20c02.indd 20 3/31/11 3:22:40 PM3/31/11 3:22:40 PM

potentially can pollute their test results, and your test results can be affected by them. If a test writes
a value to a database, reads it, and then deletes it, the test has clearly broken the boundary. If
you are the only developer on that system, this may not appear to be a problem. But if other
developers are working on the same code, and they all attempt to run the same test that creates
and/or deletes the same record on the same table in the same database, the tests may very well
interfere with each other. This creates an unstable testing environment.

 This is not to say that tests that extend beyond the boundaries of your classes and methods under
test are not of value. A unit of code that cannot be integrated into a larger system is of limited value.
Integration tests are extremely important for gauging a system ’ s overall health and ensuring that
as each component is being developed they can all be combined to form a system. Integration tests
should be created during development as well. A common practice is to complete a feature - based
unit of work (unit tests are complete and passing) and then create integration tests to ensure that the
code you just created can be consumed by (or consume) the rest of the application. A good motto is
 “ Integrate early; integrate often. ”

 In the interest of keeping your tests focused, you also want to be sure that they test only one thing.
According to the Single Responsibility Principle (covered in Chapter 3), each class or method should
have one reason to change. A logical and practical extension of this principle is that each class and
method should have one purpose and do only one thing. As a result, each unit test should test only
one set of requirements. In the example in Chapter 1, the method did one thing: It counted the
occurrences of a particular character in a string. It didn ’ t tell you where the character was found
in the string, if the instances were of the same case, or any information other than how many
occurrences of the character there were. According to the Single Responsibility Principle, those
functions should be served by other methods in the StringUtility class. In turn, the StringUtility
class should not provide functionality for working with numbers, dates, or complex data types.
They are not strings, and by defi nition the StringUtility class works only with strings.

 If you fi nd yourself in a situation where your tests are testing more than one thing, you probably
have violated the Single Responsibility Principle. What this means in terms of unit testing is that
you have unfocused tests that are diffi cult to understand. Also, your tests are likely to become
brittle and fragile over time as more inappropriate functionality is added to the method or class.
Diagnosing problems also becomes a challenge, because your functionality can take multiple paths.
Determining which of these paths contains the defect can be diffi cult. Many times the interaction of
these branches can be the cause of the defects. Defects of this type are also diffi cult to fi x, because a
change to one branch can cause unpredictable behavior in the other.

 Another situation you may fi nd yourself in where you are violating this concept is by mixing your
unit tests and integration test. Remember, a good unit test does not break the boundaries around
what is being tested. If you fi nd you are testing more than one thing in your unit tests, look at the
test itself. You may be pushing too hard against those boundaries.

 Unit tests should be predictable. When you call a method on a class for a given set of input
parameters, the result should always be consistent. Sometimes this principle may seem hard to
adhere to. For example, if you are writing a commodity trading application, it ’ s likely that the
price of gold will be one value at 9 a.m. and a different value at 2:30 p.m. There are also potential
situations where you may need to build the ability to create randomization functionality into
your system.

What Is a Unit Test? ❘ 21

c02.indd 21c02.indd 21 3/31/11 3:22:40 PM3/31/11 3:22:40 PM

22 ❘ CHAPTER 2 AN INTRODUCTION TO UNIT TESTING

 In these cases a good design principle is to abstract the functionality that provides unpredictable
data into another class or method that can be mocked in your unit test. (Mocking is covered in more
detail later in this chapter in the section “ Decoupling with Mock Objects. ”) In the case of your
commodity system, the service that provides the time - sensitive price should be mocked. Depending
on your needs, you may want that test implementation to always return the same value. Or you
may want it to provide a predetermined value given a specifi c time. In the case of randomization,
it would be a good design practice to wrap the randomization in a service class that can also be
mocked by your tests to always return the same value or sequence of values. These predictable sets
of data allow you to write tests that are specifi c and exercise your code effectively without your
having to worry about getting different results in each test run.

 Other Types of Tests

 The focus of this book is unit tests, but those are not the only tests that are important to software
development. Unit tests verify one set of a system ’ s aspects — that the internal classes, methods,
and services meet the business requirements and provide the necessary functionality. A complete
application has many more dimensions than the business - based internals.

 User interface tests verify that the application ’ s user interface operates correctly, that it can be used
by the application ’ s audience, and that it provides a way to access all the necessary functionality.
Within each of these criteria are a myriad of things to consider. Is the application a web - based
application that the user will access with a web browser? Is it a Windows forms - based application
similar to Microsoft Word or Excel? What about Silverlight? What are the usability requirements?
Do you need to make your application accessible to visually impaired people? Who is your audience,
and how computer savvy are they? Are they employees of your company, or are they external
customers? What about security?

 User interface testing clearly is not a trivial matter. Nor is it unimportant when developing a high -
 quality application. Many tools can help you automate various types of user interface testing. Some
are targeted to web - based applications, and others are focused on Windows forms. Ultimately the
best way to perform these types of tests is to employ an experienced and knowledgeable Quality
Assurance department. A skilled QA engineer who understands the business is worth his or her
weight in gold. Often these individuals are the fi nal arbiters of whether a system is ready to be
deployed to production or must be sent back for rework.

 Integration tests are an important step in software development and should not be skipped or left
until the end of development. Many a developer has spent the night before a system was supposed
to be deployed fi ghting defects raised when he attempted to unite the pieces of a system into one
application. This can be alleviated by integrating features with the rest of the systems as they are
completed. In fact, a common practice in agile methodologies is to get software, even if it ’ s not
entirely complete, in front of users quickly. Clearly, this is not possible without integrating your
application. Therefore, you can infer that thorough integration testing is a key component of a
successful agile methodology.

 Unit tests and even integration tests verify that your individual features and your application as a
whole work with one user. But what will happen to your application when 100 users try to access it
at once? This concern is addressed by stress testing your application. Stress testing is simply creating
test conditions that simulate multiple users interacting with your application concurrently. Stress

c02.indd 22c02.indd 22 3/31/11 3:22:41 PM3/31/11 3:22:41 PM

testing is designed to measure response time under load as well as how well an application scales
when it is spread across multiple resources. Most user interface (UI) tools provide some form of
stress testing.

 Stress testing traditionally has been delayed until an application is deployed to some sort of QA
environment. Granted, until the application is deployed to the actual production hardware, it is
diffi cult to determine a baseline performance metric. I feel, though, that stress testing should be
done in some form throughout application development. The numbers generated by stress testing
so early and on nonproduction hardware cannot be used to state the actual application ’ s expected
performance in production. However, stress - testing an application early in its development process
and continuing to gather metrics has an advantage. As the application is built, the development team
knows immediately if new functionality creates a sudden and negative effect on the application ’ s
performance or scalability.

 For example, suppose that, in an application that is undergoing development, the average operation
takes 2 seconds with 100 concurrent users. The team checks in two new features, and suddenly the
average time for the same number of users jumps to 5 seconds. Clearly something in one of those
two features has impacted the application ’ s performance. Because you performed stress testing
along the way, you know that it had to be something in one of the two recently completed features.
If stress testing had been delayed until the end, this information would have been lost in a fog, and
users would simply complain that the system is slow. By performing stress testing along the way,
you can focus on where the problem is and resolve it much more quickly and effi ciently.

 An important step in stress testing is determining a usable performance metric. How many
transactions per hour should the system be able to process? How many concurrent users should the
system support? What are acceptable response times for the system? All developers have worked
on applications where the users have complained that “ It ’ s just slow. ” No doubt many systems can
be optimized, but without some form of metric to measure performance and some idea of what
the target performance is, meaningful optimization is diffi cult to perform for such a subjective
complaint. You need to ask, “ In what way is it slow? ”

 Most applications go through some form of user acceptance testing (UAT), usually at the end of the
application development process. This testing occurs when the business users fi nally get to use the
software in real - world scenarios and evaluate its performance. If the application fulfi lls their needs,
the users sign off on the application, and the next stop usually is production.

 In waterfall methodologies UAT was usually the last step in the project plan before the application
was deployed to production. And in most cases it was also the fi rst time any user saw any part of the
new application. Because the project team normally was working in their own silo away from the
business users, the fi rst round of UAT often ended with long lists of things that the users didn ’ t like.
Some of these got fi xed. Others were deemed low priority, and the users were told they would just have
to live with these issues. Usually a long period of time had transpired between the project ’ s inception
and UAT, and the application may not even have refl ected the current needs of the business.

 Imagine for a moment that you are building a house. For most of us, a house is the most expensive
thing we will ever buy. The opportunity to have a house built to your desires and specifi cations is
something to be excited about. Imagine, though, that when you leave the architect ’ s offi ce for the
last time, you will not be allowed to see the house ’ s progress or make changes to the blueprints

What Is a Unit Test? ❘ 23

c02.indd 23c02.indd 23 3/31/11 3:22:42 PM3/31/11 3:22:42 PM

24 ❘ CHAPTER 2 AN INTRODUCTION TO UNIT TESTING

or design until the house is completed. Imagine that the fi rst time you get to see the house is the
day you move in. How well do you think the house would refl ect what you actually wanted? It
may refl ect what ’ s on the blueprints, but there ’ s a big difference between a drawing and a physical
structure. Amazingly, this is how many companies still develop software.

 In organizations that use agile development methodologies, the users are shown the application
as a work in progress many times before UAT. This allows them to spot features or aspects of
the application that are not working how they want and ensures that as the application is built
it remains aligned with the needs of the business. Developers and development managers benefi t
from this short feedback loop as well, because defects that are found quickly after they have been
introduced to the system are quicker, easier, and less expensive to repair.

 A BRIEF LOOK AT NUNIT

 Many tools can help you perform unit testing. Since TDD ’ s rise in popularity in 2005, the market
for frameworks and tools has exploded. One of the most popular types of unit testing tools are
unit test frameworks. These frameworks let you defi ne your unit test code, control the execution of
the tests, and provide an application to run the tests and report on the success of each test in your
test suite. NUnit is one of the most popular and mature of the .NET unit test frameworks.

 What Is a Unit Test Framework?

 Before unit test frameworks, developers had a diffi cult time creating executable tests. The initial
practice was to create a window in your application that was dubbed the “ test harness. ” This was
simply a window with a button for each test. The results of the tests were either a message box or
some sort of readout on the form itself. With a button for each test, these windows soon became
crowded and unmanageable. Some enterprising developers moved to using console applications
that would execute each test and output the results to the console. This was a step forward in that
developers could spend more time on their test and less on their test harness. It also had the benefi t
that you could easily have it run automatically from a build server.

 These methods worked to a degree, but they didn ’ t provide a common means for creating, executing,
and interrogating tests. Unit test frameworks such as NUnit sought to provide those features. Unit test
frameworks provide a unifi ed programming model to defi ne your tests as simple classes with methods
that call the application code that you want to test. Developers do not need to write their own
test harness; the unit test frameworks provide test runners that allow you to execute all your tests
with the click of a button. With a unit test framework, you can easily insert, set up, and tear down
functionality around your tests. When a test fails, the test runner provides you with information
about the failure, including any exception information that is available and a stack trace.

 As mentioned, NUnit is arguably the most popular unit testing framework for .NET. There is a
good reason for this. NUnit, which is based on JUnit a Java - based unit testing tool. NUnit is stable,
easy to use, and executes quickly. NUnit has an active user community around it. This community
provides the base framework with new features and enhancements while creating many popular
add - ons that make NUnit an appropriate choice for almost any unit testing need. NUnit is easy to
learn and use and has become a standard tool in almost every TDD practitioner ’ s toolbox.

c02.indd 24c02.indd 24 3/31/11 3:22:43 PM3/31/11 3:22:43 PM

 The Basics of NUnit

 Most unit tests you write will have a very simple pattern:

 Perform some activity to set up your test.

 Execute your test.

 Verify its result.

 If necessary, reset your environment.

 Your tests themselves are methods that execute and call the methods you are testing. These methods
must reside in a class, which is called a test fi xture. The following example shows a class using
the TestFixture attribute to indicate that it is a test class, and the Test attribute to indicate the
method that is our test:

namespace NUnitExample
{
 [TestFixture]
 public class ExampleTests
 {
 [Test]
 public void TestMethod()
 {
 Debug.WriteLine(“This is a test”);
 }
 }
}

 Occasionally some setup needs to happen before you run your test, such as populating a dataset,
instantiating a class, or setting up an environment variable. In such a case, you can use the Setup
attribute to defi ne a method that will execute before your test runs:

namespace NUnitExample
{
 [TestFixture]
 public class ExampleTests
 {
 private string _testMessage;

 [SetUp]
 public void SetupForTest()
 {
 _testMessage = “This is a test.”;
 }

 [Test]
 public void TestMethod()
 {
 Debug.WriteLine(_testMessage);
 }
 }
}

➤

➤

➤

➤

A Brief Look at NUnit ❘ 25

c02.indd 25c02.indd 25 3/31/11 3:22:43 PM3/31/11 3:22:43 PM

26 ❘ CHAPTER 2 AN INTRODUCTION TO UNIT TESTING

 In this example, the variable _testMessage is initialized in the SetupForTest method. When
 TestMethod executes, the value that was assigned to the variable _testMessage (“ This is a
test. “) is written to the Debug console. Of course, if you can have setup code for your tests, it
only makes sense that you have code to reset resources used by your tests when they are fi nished.
NUnit provides the TearDown attribute to give you this ability:

namespace NUnitExample
{
 [TestFixture]
 public class ExampleTests
 {
 private string _testMessage;

 [SetUp]
 public void SetupForTest()
 {
 _testMessage = “This is a test.”;
 }

 [Test]
 public void TestMethod()
 {
 Debug.WriteLine(_testMessage);
 }

 [TearDown]
 public void TearDownAfterTest()
 {
 _testMessage = string.Empty;
 }
 }
}

 This example replicates a situation in which you may want or need to reset a resource after a test
has fi nished running. You probably won ’ t need to reset an instance variable, but you might need
to reset an environment variable or roll back a database transaction.

 Right now the test executes, but it doesn ’ t really test anything. You can change that by using an
 assert — a way of telling the test runner application the fi nal result of the test. Many different types
of asserts available in NUnit test conditions such as equality of two values, whether two reference
type variables point to same object, and whether various conditions are met. Some examples later
in the book demonstrate how to use a framework called NBehave to write the asserts in your
tests; that syntax is covered in Chapter 7. For now, because these tests don ’ t use NUnit asserts
extensively, I ’ ll just cover the most basic ones. In the fi rst example, the test simply verifi es whether
the length of _testMessage is greater than 0:

[Test]
public void MessageLengthGreaterThanZero()
{
 if (_testMessage.Length > 0)
 {

c02.indd 26c02.indd 26 3/31/11 3:22:44 PM3/31/11 3:22:44 PM

 Assert.Pass();
 }
 else
 {
 Assert.Fail();
 }
}

 There is an NUnit assert that would verify
that the length of _testMessage is more
than 0, but this example just focuses on the
basic asserts that you could use for general
purposes. This test checks the length of
 _testMessage . If it ’ s more than 0, the test
calls Assert.Pass , which tells the test runner
that the test passes, as shown in Figure 2 - 1.

 To see Assert.Fail work, you add a test to
see if the length of the value in _testMessage
is greater than 100:

[Test]
public void MessageLengthGreaterThan100()
{
 if (_testMessage.Length > 100)
 {
 Assert.Pass();
 }
 else
 {
 Assert.Fail();
 }
}

 When the test is run, it fails because Assert
.Fail is called, as shown in Figure 2 - 2.

 Many other types of asserts are available in
NUnit. For the project that I ’ ll be building
in later chapters, I ’ ll use NBehave to write
the asserts, which will provide a more
business - friendly syntax. But with knowledge
of Assert.Pass and Assert.Fail , you could
opt out to native NUnit if needed without
having to know the other types of asserts. Some other asserts available from the NUnit library are:

 Assert.AreEqual(expected, actual) — This method is overloaded to take any type of
value for expected or actual, so long as both arguments are of the same type. Passing in
different types of numerical arguments for each parameter will still work as the method
can up - cast or down - cast as needed. For example, passing in an integer and a double will
not cause an error. For value types, this assert will verify that the expected and actual

➤

FIGURE 2 - 1

FIGURE 2 - 2

A Brief Look at NUnit ❘ 27

c02.indd 27c02.indd 27 3/31/11 3:22:44 PM3/31/11 3:22:44 PM

28 ❘ CHAPTER 2 AN INTRODUCTION TO UNIT TESTING

parameters have the same value. When passing in a reference type (an object) the method
will use the result of the objects Equals method to determine if this assert succeeds. There
is a corollary assert called AreNotEqual which verifi es that the two values are not equal.

 Assert.AreSame(expected, actual) — This assert takes reference types as its arguments.
It is used to determine whether the object passed in for expected and the argument passed
in for actual are the same object. This means that both objects occupy the same space in
memory and are not simply copies of one another. There is a corollary assert called Assert
.AreNotSame that verifi es that the two objects are not the same object.

 Assert.IsTrue(bool) / Assert.IsFalse(bool) — This assert takes either a Boolean
variable or a logical condition that can be evaluated to a Boolean result.

 Assert.IsNull(object) / Assert.IsNotNull(object) — This assert will examine a
reference type and determine whether it is null.

 Assert.Greater(x,y) / Assert.GreaterOrEqual(x,y) — Evaluates either two value
types or two reference types that implement the IComparable interface to determine if x is
greater that y (x > y) or if x is greater than or equal to y (x > = y). Like AreEqual , Greater /
 GreaterOrEqual can take two different types of numbers, provided it was up - cast/
down - cast appropriately to make the comparison. NUnit also provides Assert.Less and
 Assert.LessOrEqual which behave in the same way, but verify that x is less than y (x < y)
or that x is less than or equal to y (x < = y).

 The asserts listed here are the most commonly used asserts in NUnit, but there are many more
available in the NUnit library. If you are interested in the full list of asserts available in NUnit,
 www.nunit.org has extensive documentation organized by version.

 DECOUPLING WITH MOCK OBJECTS

 A well - written piece of software tries to limit dependencies. There comes a point, however, where
each of your components must be coupled with another to form a greater whole. These couplings
create a web of dependencies within your application that usually end in an external resource, be
it a database, web service, fi le system, or other resource. Mock objects are designed to stand in for
these other components in your application and the external resources they sometimes represent.
This allows you to test your code without having to worry about the consequences of interacting
with other resources.

 Why Mocking Is Important

 When you write unit tests for a method, your intention is to test only the code in that method. This
is by design; you are attempting to isolate the code under test. The reason for this is that you want to
assess the validity of only that piece of code for a given condition. A condition can be defi ned as not
only the input data for that method, but also the context and environment that the code will execute in.

 By isolating that code, you can ensure that any failing tests point squarely to a problem with that
specifi c method, not a method in a far - fl ung corner of the system. For this example, it ’ s okay
to assume that the other components your method works with are correct and have been tested
themselves and that you can rely on the quality of these components and tests. (I ’ ll talk more about

➤

➤

➤

➤

c02.indd 28c02.indd 28 3/31/11 3:22:44 PM3/31/11 3:22:44 PM

http://www.nunit.org

dealing with third - party components in Chapter 5.) You care about only the method in front of you
at that point in time.

 Unit tests should also be able to be run quickly. Even in a small application, if TDD is applied
correctly, is it not unusual to have hundreds of unit tests. Your goal is to have developers run these
tests frequently during their development to ensure that changes they are making to their methods
and classes are not negatively impacting other parts of the system. If only a small amount of work
is done between a successful test and a failed test, you need to examine only that small amount of
work to determine what went wrong. If these tests take several hours or even just minutes to run,
they will not be run frequently enough.

 A test that is never run is worthless. Most tests that take a long time to run do so because they are
interacting with an external resource, such as a database. Database calls can be slow, especially
if you are executing hundreds at once against a development database. An object that mocks that
database can return predefi ned values for predefi ned parameters instantly without having to connect
to a database and execute a SQL query. This provides much faster execution than querying the
database directly.

 Unit tests should be predictable and consistent. When writing a method and its corresponding tests,
you should be able to be certain that if your method receives X and Y as arguments, Z will always
be returned. External resources, and the data they contain, change over time. If your method and
the test that invokes it rely on an external resource, you can ’ t guarantee that you will always get the
same results for the same input parameters. By mocking this resource, you can be sure that you ’ re
always getting consistent and reliable data to test your method against.

 Finally, most development projects are undertaken by teams of more than one person. In these
cases, your unit tests should be able to run without impacting the test results of your teammates.
Perhaps your test suite contains tests that change the state of a database table and other tests that
rely on the data in that table. If so, there is a good chance that if two or more developers run the
tests concurrently, they will all have failing tests. They are stepping on each other ’ s data, and none
are getting the data they are expecting. Mocking these external resources ensures that you won ’ t
cause tests run by other developers to fail based on incorrect or unexpected data.

 Dummy, Fake, Stub, and Mock

 Mock is somewhat of a generic term that covers a family of stand - in objects for use in unit testing.
Dummy objects are simple mocks that stand in for an external resource. They usually return a
predefi ned response for a method when that method is invoked, but they usually can ’ t vary that
response based on the input parameters. Many developers who don ’ t want to incur the overhead
of a mocking framework and don ’ t need the functionality provided by one use hand - rolled dummy
objects in their tests.

 For the purposes of these examples I will not be using a mocking framework.
I will be hand - rolling these mocks, which will enable you to see the internals of
each type of mock and have a better understanding of what is going on in each
type of mock. The mocking framework used for the examples in this book, Moq,
will be introduced later in this chapter in the section, “ A Brief Look at Moq. ”

Decoupling with Mock Objects ❘ 29

c02.indd 29c02.indd 29 3/31/11 3:22:45 PM3/31/11 3:22:45 PM

30 ❘ CHAPTER 2 AN INTRODUCTION TO UNIT TESTING

 The examples in this section, include tests for a class called DependentClass . DependentClass has
a dependency on a class that implements the interface IDependency . DependentClass has a method
called get GetValue that takes a string as a parameter. The implementation of GetValue in the
 DependentClass class calls the GetValue method on the implementation of IDependency that is
provided to the DependentClass as a constructor argument when an instance of DependentClass
is created. The defi nition of DependentClass and IDependency are shown here:

internal interface IDependency
{
 int GetValue();
}

internal class DependentClass
{
 private readonly IDependency _dependency;

 public DependentClass(IDependency dependency)
 {
 _dependency = dependency;
 }

 public int GetValue(string s)
 {
 return _dependency.GetValue(s);
 }
}

 In the following code, you can see that I have a test that will test the implementation of
 DependentClass when it has been passed an instance of DummyDependency , a dummy object that
implements the IDependency interface:

[TestFixture]
public class DummyTestClass
{
 [Test]
 public void TestWithADummy()
 {
 var dependency = new DummyDependency();
 var dependentClass = new DependentClass(dependency);
 const string param = “abc”;
 const int expectedResultOne = 1;

 var resultOne = dependentClass.GetValue(param);
 Assert.AreEqual(expectedResultOne, resultOne);
 }
}

public class DummyDependency : IDependency
{
 public int GetValue(string s)
 {
 return 1;
 }
}

c02.indd 30c02.indd 30 3/31/11 3:23:02 PM3/31/11 3:23:02 PM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

 The test method creates an instance of the DummyDependency class and passes it in as the
implementation of IDependency that DependentClass needs at instantiation. The test calls
 GetValue on the instance of DependentClass and passes the string “ abc ” as its parameter.

 The DummyDependency class has an implementation of GetValue that simply returns the value one.
This satisfi es the test; the value one is the expected result and the dummy object DummyDependency
satisfi es that requirement.

 But you can easily see the limitations of the dummy object. In spite of whatever value is passed in by
the test, the dummy object can react only one way; by returning a value of one. There are occasions
where this limitation is not an issue. But for most tests that are verifying business domain logic, a
more robust means of mocking is necessary.

 Fakes and stubs are a step up from dummy objects in that they can vary their response based on
input parameters. For example, a stub of a database may return the name Rick Nash for user ID 61
and the name Steve Mason for user ID 1. Aside from that, no logic is invoked. A stub generally
cannot track how many times a method was called or in what order a sequence of methods were
called. An example of a stub is provided here:

[TestFixture]
public class StubTestClass
{
 [Test]
 public void TestWithAStub()
 {
 var dependency = new StubDependency();
 var dependentClass = new DependentClass(dependency);
 const string param1 = “abc”;
 const string param2 = “xyz”;
 const int expectedResultOne = 1;
 const int expectedResultTwo = 2;

 var resultOne = dependentClass.GetValue(param1);
 var resultTwo = dependentClass.GetValue(param2);
 Assert.AreEqual(expectedResultOne, resultOne);
 Assert.AreEqual(expectedResultTwo, resultTwo);
 }
}

public class StubDependency : IDependency
{
 public int GetValue(string s)
 {
 if (s == “abc”)
 return 1;
 if (s == “xyz”)
 return 2;
 return 0;
 }
}

 The preceding example creates a new class called StubDependency that implements the
 IDependency interface. Unlike the DummyDependency , the implementation of GetValue on

Decoupling with Mock Objects ❘ 31

c02.indd 31c02.indd 31 3/31/11 3:23:02 PM3/31/11 3:23:02 PM

32 ❘ CHAPTER 2 AN INTRODUCTION TO UNIT TESTING

 StubDependency has some logic to returned different values based on different input parameters.
This stub is able to respond to different stimuli in different specifi c ways. This provides a much
more robust way of mocking than dummy objects.

 A mock is a step up from fakes and stubs. Mocks provide the same functionality as stubs but are
more complex. They can have rules defi ned for them that dictate in what order methods on their
API must be called. Most mocks can track how many times a method was called and can react
based on that information. Mocks generally know the context of each call and can react differently
in different situations. Because of this, mocks require some knowledge of the class they are mocking.

 For the example of a mock, I ’ ve added a few members to the IDependency interface and
 DependentClass class:

internal interface IDependency
{
 int GetValue(string s);
 void CallMeFirst();
 int CallMeTwice(string s);
 void CallMeLast();
}

internal class DependentClass
{
 private readonly IDependency _dependency;

 public DependentClass(IDependency dependency)
 {
 _dependency = dependency;
 }

 public int GetValue(string s)
 {
 return _dependency.GetValue(s);
 }

 public void CallMeFirst()
 {
 _dependency.CallMeFirst();
 }

 public void CallMeLast()
 {
 _dependency.CallMeLast();
 }

 public int CallMeTwice(string s)
 {
 return _dependency.CallMeTwice(s);
 }
}

 IDependency interface and the DependentClass class include three methods: CallMeFirst ,
 CallMeTwice , and CallMeLast . In many APIs you work with as a developer, specifi c methods

c02.indd 32c02.indd 32 3/31/11 3:23:03 PM3/31/11 3:23:03 PM

have to be called in a specifi c order and methods need to be called a specifi c number of times. As is
indicated by the new method names of the IDependency interface and the DependentClass class,
the method CallMeFirst must be called fi rst, the CallMeTwice method must be called two times
and the CallMeLast method must be the last method called for a particular transaction.

 To enforce these rules, you need to write a somewhat more sophisticated and complex mocking class
that the previous two examples:

public class MockDependency : IDependency
{
 private int _callMeTwiceCalled;
 private bool _callMeLastCalled;
 private bool _callMeFirstCalled;

 public int GetValue(string s)
 {
 if (s == “abc”)
 return 1;
 if (s == “xyz”)
 return 2;
 return 0;
 }

 public void CallMeFirst()
 {
 if ((_callMeTwiceCalled > 0)|| _callMeLastCalled)
 throw new AssertionException(“CallMeFirst not first method called”);
 _callMeFirstCalled = true;
 }

 public int CallMeTwice(string s)
 {
 if (!_callMeFirstCalled)
 throw new AssertionException(“CallMeTwice called before CallMeFirst”);
 if (_callMeLastCalled)
 throw new AssertionException(“CallMeTwice called after CallMeLast”);
 if (_callMeTwiceCalled > = 2)
 throw new AssertionException(“CallMeTwice called more than twice”);
 _callMeTwiceCalled++;
 return GetValue(s);
 }

 public void CallMeLast()
 {
 if (!_callMeFirstCalled)
 throw new AssertionException(“CallMeLast called before CallMeFirst”);
 if (_callMeTwiceCalled !=2)
 throw new AssertionException(
 string.Format(“CallMeTwice not called {0} times”,
_callMeTwiceCalled));
 _callMeLastCalled = true;
 }
}

Decoupling with Mock Objects ❘ 33

c02.indd 33c02.indd 33 3/31/11 3:23:03 PM3/31/11 3:23:03 PM

34 ❘ CHAPTER 2 AN INTRODUCTION TO UNIT TESTING

 To be sure that the methods of the implementation of IDependency used by the DummyClass are
used correctly it ’ s necessary to build a mock that not only returns values, but encapsulates all the
rules of the API. Each method must check to make sure that it ’ s been called in the correct order. In
the case of CallMeTwice the method must also verify that it has been called the appropriate number
of times.

 Before I show you the test based on the MockDependency mocking class, I want to make a couple of
points. Clearly based on the code in this example, hand - rolling mocks is ineffi cient, time consuming
and introduces a profound amount of brittleness to your code base. It is for that reason that most
developers choose to employ a mocking framework and avoid hand - rolling mocks.

 Secondly, you can see in this example that the MockDependency class is required to have quite a bit
of knowledge of how the DependentClass uses it. The amount of and type of knowledge necessary
in most cases clearly violates many principals of object - oriented programming and good coding
practices. In some cases, using a mock that has this level of knowledge is necessary, but if you fi nd
yourself doing this kind of mocking often you should take another look at your application design
and your code.

 The test that tests the DependentClass implementation that uses an implementation of
 IDependency based on MockDependency is listed here:

[TestFixture]
public class MockTestClass
{
 [Test]
 public void TestWithAMock()
 {
 var dependency = new MockDependency();
 var dependentClass = new DependentClass(dependency);

 const string param1 = “abc”;
 const string param2 = “xyz”;
 const int expectedResultOne = 1;
 const int expectedResultTwo = 2;

 dependentClass.CallMeFirst();
 var resultOne = dependentClass.CallMeTwice(param1);
 var resultTwo = dependentClass.CallMeTwice(param2);
 dependentClass.CallMeLast();

 Assert.AreEqual(expectedResultOne, resultOne);
 Assert.AreEqual(expectedResultTwo, resultTwo);
 }
 }

 With so many options when it comes to types of mocks, a common question is which one to use.
The answer is that it depends. In general, you ’ ll want to favor fakes and stubs. Mocks are useful
when you need to replicate a more complex interaction with a component, but they usually require
more confi guration and overhead than is needed for most unit tests. Favoring stubs also ensures
that you are designing your system to be loosely coupled; requiring a calling method to know an

c02.indd 34c02.indd 34 3/31/11 3:23:04 PM3/31/11 3:23:04 PM

extensive set of rules to use an API is not very loose. Finally, you should use a spy when a method
on a mocked resource does not have a conventional output.

 Best and Worst Practices

 When using mocks in TDD, you should be aware of some concepts and guidelines:

 Dependency Injection — Mocking is a key concept that makes TDD a viable way of writing
software. To use mocking effectively, your application should use Dependency Injection. In
short, this means that instead of statically creating objects that your class is dependent on as
part of the class ’ s internal instantiation process, you should provide the class with instances
of those objects that conform to the interface needed by the dependency. These instances
should be passed in as constructor arguments to the object as it is being created. This
makes it easy to substitute mocked objects for actual objects that would be used by the fully
integrated application. Dependency Injection is explained in more detail in Chapter 5.

 Design for the interface, not the implementation — When consuming another class or
resource as a dependency, your concern should not be how it performs its tasks, just what
the interface is. Likewise, you should use interfaces when designing and building your
service ’ s classes to abstract the functionality from the API. This design not only makes your
code less brittle and more open for extension, but it also makes mocking easier and more
effi cient.

 Try to limit dependencies — Most code needs to be dependent on something. It could
be a database to store and retrieve data, or a web service to authenticate a user, or
another domain service in your application. Given that, you should work to limit the
things that your code is dependent on. Not only do a large number of dependencies
signify a brittle system, but such a system also is more diffi cult to mock and
test effectively.

 Do not mock private methods — When you are writing a test and your code is dependent
on another class, you should mock only the public methods. And even then, you should
mock only those you will use directly; don ’ t overmock. Mocking private methods requires
knowledge of the internal function of the service you are mocking — knowledge that,
according to the encapsulation rule, you should not have. As a consumer of a service, you
should only concern yourself with the methods on the public interface; the protected and
private methods should be invisible to you.

 Don ’ t cheat — As you continue with your practice of TDD, you ’ ll be tempted at times to
take shortcuts with your mocking. Maybe it ’ s because a particular dependency requires
a mock that is a little more complicated than you ’ re used to. Maybe the stubbed method
must return a complex data or object graph that you just don ’ t feel like creating. Don ’ t let
yourself get caught in that trap. Tests form the quality baseline for your applications. Your
tests rely on mocks and stubs to ensure that they can correctly interact with the various
dependencies your system will contain. If you take shortcuts with your mocks, your tests
and, by extension, your software will suffer.

➤

➤

➤

➤

➤

Decoupling with Mock Objects ❘ 35

c02.indd 35c02.indd 35 3/31/11 3:23:04 PM3/31/11 3:23:04 PM

36 ❘ CHAPTER 2 AN INTRODUCTION TO UNIT TESTING

 A BRIEF LOOK AT MOQ

 .NET has many mocking frameworks. For years Rhino Mocks was the mocking framework for .NET,
and many applications used it extensively in test suites. In addition to Rhino Mocks, other mocking
frameworks such as NUnit Mocks, TypeMock, and Easy Mock have gained popularity. They are all
good frameworks and offer various features that may make them more or less appealing to various
developers and development teams. Some developers still prefer to hand - roll their own mocks, but
this is becoming less frequent as mocking frameworks have become more widespread, full - featured,
and easy to use. A mocking framework is defi nitely preferable to rolling your own mocks, and it can
make your TDD experience more effi cient and fulfi lling. Moq is quickly becoming one of the most
popular mocking frameworks for .NET. It has a solid list of features, is easy to use, and has a large
community support base, which ensures constant improvement and development of Moq ’ s features.

 What Does a Mocking Framework Do?

 A mocking framework gives you the facilities to quickly create and consume stubs and mocks. Using
a mocking frameworks API, you can create your mocks and inject your own testing functionality
at runtime. Mocking frameworks also give you a Domain - Specifi c Language (DSL) for defi ning
execution rules for your mocked resources.

 A Bit About Moq

 Moq is an open - source .NET mocking framework that is published under the BSD license. Moq was
built to take advantage of new language features in .NET 3.5 and C# 3.0 — specifi cally, lambdas.
Moq eschews the record/playback functionality that many mocking frameworks use in favor of a
more declarative syntax. Moq was developed to be lightweight and simple to use. Moq has a very
active user and supporter community, with updates and bug fi xes being checked in to the code
bases almost daily.

 Moq Basics

 Moq is easy to use. The following example shows you how to create mocks and stubs for tests
based on this class and interface:

public interface ILongRunningLibrary
{
 string RunForALongTime(int interval);
}

public class LongRunningLibrary : ILongRunningLibrary
{
 public string RunForALongTime(int interval)
 {
 var timeToWait = interval*1000;

c02.indd 36c02.indd 36 3/31/11 3:23:05 PM3/31/11 3:23:05 PM

 Thread.Sleep(timeToWait);
 return string.Format(“Waited {0} seconds”, interval);
 }
}

 The purpose of this method is to simulate a long - running process, such as a database query. In
this example I start by showing you how a long - running process can make the process of testing
very slow as the test must wait for the long running test to execute. Later in this example, I replace
the long running process that simulates accessing a database with a mock that stands in for the
database call without actually accessing the database. This example shows how to run it without
using a stub:

[TestFixture]
public class MoqExamples
{
 private ILongRunningLibrary _longRunningLibrary;

 [SetUp]
 public void SetupForTest()
 {
 _longRunningLibrary = new LongRunningLibrary();
 }

 [Test]
 public void TestLongRunningLibrary()
 {
 const int interval = 30;
 var result = _longRunningLibrary.RunForALongTime(interval);
 Debug.WriteLine(“Return from method was ‘{0}’”, result);
 }
}

 As you can see, this test simply instantiates the LongRunningLibrary and calls the RunForALongTime
method. The test then writes the results of this method to the debug console. If you run this test in
the test runner, the test waits while the method executes and then writes the output to the debug
console, as shown in Figure 2 - 3.

FIGURE 2 - 3

 The test passed, but 30 seconds is a long time to wait. Imagine if you were running 10 of these. Or
even 100! You ’ re also a bit at the mercy of the implementation of the RunForALongTime method and
the rest of the LongRunningLibrary class. If that class were to change or have a defect, you may not
get a meaningful pass or failure of your test.

A Brief Look at Moq ❘ 37

c02.indd 37c02.indd 37 3/31/11 3:23:05 PM3/31/11 3:23:05 PM

38 ❘ CHAPTER 2 AN INTRODUCTION TO UNIT TESTING

 The fi rst thing you must do is declare a new type for the variable _longRunningLibrary . Instead
of creating a concrete instance, you will ask Moq to create a mocked instance based on the
 ILongRunningLibrary interface:

private Mock < ILongRunningLibrary > _longRunningLibrary;

[SetUp]
public void SetupForTest()
{
 _longRunningLibrary = new Mock < ILongRunningLibrary > ();
}

 Because _longRunningLibrary is now a mock, you have to deal with it a bit differently in the test
method. To access the methods on the mocked instance, you need to use the Object property
of the mocked object:

[Test]
public void TestLongRunningLibrary()
{
 const int interval = 30;
 var result = _longRunningLibrary.Object.RunForALongTime(interval);
 Debug.WriteLine(“Return from method was ‘{0}’”, result);
}

 If you run it now, you don ’ t get quite the result you expected, as shown in Figure 2 - 4.

FIGURE 2 - 4

 The test failed because a mocked instance of LongRunningLibrary was provided, but not an
implementation for the mocked method. This is easily corrected:

_longRunningLibrary
 .Setup(lrl = > lrl.RunForALongTime(30))
 .Returns(“This method has been mocked!”);

In this example, you are telling Moq that when the RunForALongTime method is called on the
mocked instance of LongRunningLibrary with an argument of 30, you just want it to return the
string “ This method has been mocked! “ . If you run this in the test runner now, the test passes,
as shown in Figure 2 - 5.

c02.indd 38c02.indd 38 3/31/11 3:23:05 PM3/31/11 3:23:05 PM

 Right now your stub is only set up to take a value of 30
as its input parameter. If you were to run the test again,
but this time pass in 100, you would see that although
your test passes, you don ’ t get the response from the
stubbed method you expected, as shown in Figure 2 - 6.

 Generally, you should use static values when mocking
your methods. You want to make sure you have expected
outputs for expected inputs when testing. But there will be times when this is impractical. In these
cases Moq gives you a couple of options.

 The fi rst is to use Moq ’ s It.IsAny method to specify that although your stub expects a value of a
specifi c type, any value of that type is acceptable. For example, if you make this change to the stub
method setup code:

_longRunningLibrary
 .Setup(lrl = > lrl.RunForALongTime(It.IsAny < int > ()))
 .Returns(“This method has been mocked!”);

and then run the same test where you pass 100 as the
interval instead of 30, you get the response in your test
runner shown in Figure 2 - 7.

 The ability to accept any value of a specifi ed type is
powerful and should not be overused. Traditionally, an
issue with this type of stub has been that because most
stubs return a static value, there was no way to verify on the other side that a valid value was passed
into the stub. Moq provides a facility to access the input parameters of a stubbed method and use
them however you like in the return value. In this case, you append the value to the end of your
return value:

_longRunningLibrary
 .Setup(lrl = > lrl.RunForALongTime(It.IsAny < int > ()))
 .Returns((int s) = >
 string.Format(
 “This method has been mocked! The input value was {0}”, s));

 Now when you run your test in the test
runner, you can see that your input
parameter has been included in the return
string value, as shown in Figure 2 - 8.

FIGURE 2 - 5

FIGURE 2 - 6

FIGURE 2 - 7

FIGURE 2 - 8

A Brief Look at Moq ❘ 39

c02.indd 39c02.indd 39 3/31/11 3:23:06 PM3/31/11 3:23:06 PM

40 ❘ CHAPTER 2 AN INTRODUCTION TO UNIT TESTING

 In some situations you will want to verify that a method throws an exception for a specifi ed set
of conditions. For this example let ’ s assume that 0 is an invalid interval and should throw an
 ArgumentException . You can add a setup for your stub to specify that 0 as an argument should
cause ArgumentException to be thrown from your stub:

_longRunningLibrary = new Mock < ILongRunningLibrary > ();
_longRunningLibrary
 .Setup(lrl = > lrl.RunForALongTime(It.IsAny < int > ()))
 .Returns((int s) = >
 string.Format(
 “This method has been mocked!
 The input value was {0}”, s));
_longRunningLibrary
 .Setup(lrl = > lrl.RunForALongTime(0))
 .Throws(new ArgumentException(“0 is not a valid interval”));

 The order in which you call your setup methods is important. Moq stacks these rules, so if you were
to put the setup that has a rule for 0 as a parameter fi rst, it would be overwritten by the rule that
covers any integer being passed in. Therefore, the exception would never happen. In general, you
want to put the least - specifi c setups fi rst in the stack, followed by the most - specifi c. You can think
of this stack as a sort of sieve; you want to catch every combination you can at the correct level. If
the fi rst levels are too restrictive, the condition will be caught too soon and at the incorrect level.
Creating these stacks can be a bit of an art, but with practice it will become simple.

 When I change the interval to 0 and rerun the test, I get the
result shown in Figure 2 - 9.

 Moq is a powerful mocking framework that provides
mocking and stubbing for a wide variety of scenarios. This
chapter has covered only a small number of Moq ’ s features.
As you progress through this book, I ’ ll demonstrate other
features of Moq as needed. But the ability to create stubs that respond to value arguments and
return static or dynamic value, along with the ability to throw exceptions, should cover the vast
majority of situations you fi nd yourself creating stubs for.

 SUMMARY

 Unit tests should be designed to isolate and verify small parts of code. If your test strays into calls
across multiple methods, you should think about your test and class design. Integration tests are
important, but they serve a different purpose than unit tests. Don ’ t confuse the purpose of unit tests
with these other types of tests. Keep your unit tests small and simple and refl ective of the business
needs. Only write unit tests against your class ’ s public interface, and use interfaces liberally.

 NUnit and Moq are crucial tools for effectively practicing TDD. NUnit is an easy - to - use and
widely popular unit testing framework for .NET. It provides facilities to write unit tests that can be
executed by a test running, quickly giving you results of your test run. Moq lets you create mocks
and stubs of external resources and intra - application dependencies so that you know you ’ re focusing
on only the specifi c code under test. Moq lets you create objects that stand in for these resources
and provide some limited functionality for the code under test to verify its functionality.

FIGURE 2 - 9

c02.indd 40c02.indd 40 3/31/11 3:23:06 PM3/31/11 3:23:06 PM

A Quick Review of Refactoring

 WHAT ’ S IN THIS CHAPTER?

 Why Refactoring application code is important

 How Clean Code principals such as OOP and SOLID help you build

robust applications

 How to identify and fi x some of the most common design and

coding mistakes in application development

 No code is perfect. For developers, accepting this fact is very freeing. There will always
be something you could have done better, although maybe you don ’ t realize it at the time.
Looking at code you ’ ve written in previous years, you may sometimes fi nd small, subtle things
you would like to change to make the code faster, more aligned with the business, or simply
easier to maintain. Other times you may say, “ If only I knew then what I know now, I would
have done this completely different. ”

 Refactoring is the act of changing the internal implementation of a class or method
with the aim of making the code more readable and maintainable. Refactoring also
reduces the code ’ s overall complexity without changing the external behavior of the class
or method. These alterations can be as simple as changing the name of a method or
variable to moving methods from one class to another or even splitting large classes
into several smaller ones. Refactoring allows you to continuously change and improve
your code.

 This chapter explains why refactoring your code is important. It reviews object - oriented
programming and the SOLID Principles. It also shows you some common coding and design
problems, colloquially referred to as “ code smells, ” and demonstrates common patterns for
eliminating them from your code.

➤

➤

➤

 3

c03.indd 41c03.indd 41 3/31/11 3:26:18 PM3/31/11 3:26:18 PM

42 ❘ CHAPTER 3 A QUICK REVIEW OF REFACTORING

 WHY REFACTOR?

 When practicing TDD, the goal when initially writing a method or creating a class is to simply
make the test pass and nothing more. At this point you ’ re not necessarily looking for style points or
to make your code reusable or elegant. You ’ re simply trying to make the tests “ all green, ” meaning
that the tests all pass. Once you ’ ve accomplished this, the next step is to improve your code. In
practice this is a very practical approach. Many developers spend too much time trying to make
their code elegant and beautiful the fi rst time through. They end up missing some important pieces
of business functionality that they then have to somehow work into their code. By starting from a
point of complete business functionality before making your code beautiful, you ensure that the top
priority — working business code — is met before anything else. Unit tests help you make sure
that no matter what you change in the name of refactoring, your code still meets the business need.
This is the genesis of the term fearless refactoring .

 A Project ’ s Lifecycle

 TDD involves a lot of new concepts for many developers, such as mocking and dependency
injection (covered in Chapter 5). These are relatively simple to understand and to get comfortable
with compared to one of the major (if not the prime) tenets of TDD: Write a test before you
write your code. The idea behind TDD (remember, the fi rst D stands for driven) is that your tests
become living, breathing executable versions of your business (and sometimes your nonfunctional
or technical) requirements. By employing this test - fi rst philosophy, you can ensure that you
never write code that does not add some value to the application. An example of using test - fi rst
development is the focus of Chapter 6.

 Once you have a test, your goal is to write just enough code to make that test pass. No more,
no less. Your strategy should be how to get from point A (a failing test) to point B (all tests
passing) with the shortest and straightest line possible. Don ’ t worry about other aspects of
the system yet.

 Also, don ’ t worry about an aspect of the feature that is not in the tests but that you are almost
certain the business will want. For example; a feature specifi es that a method take an integer as
an input parameter. You just know that that input parameter has be a value of 100 or less. Your
test should only test for numbers; there is nothing in the feature about limiting to numbers with
values of 100 or less. Until that feature gets scheduled, and a unit test is created for it, it ’ s not a
requirement. What happens if that feature never actually gets scheduled? At best you ’ ve written
code that provides no value but that must be maintained along with the rest of the code base. At
worst you ’ ve needlessly overcomplicated what should have been a simple piece of functionality.
The software development term YAGNI stands for You Aren ’ t Going to Need It. If that feature gets
scheduled, at that point you can write those tests and the necessary code to make them pass. For
now, worry only about the test for the current feature you are working on.

 After you ’ ve concluded that your test passes and you haven ’ t broken anything else in the application
(all tests pass), it ’ s time to look at potential areas to improve. Maybe your variable or method names
no longer refl ect the true intent of the value or functionality provided. Perhaps you ’ ve duplicated
some functionality in your new code. Maybe you have a function that is a bit long, and breaking it
up would improve its readability. In any case, now is the time to refactor.

c03.indd 42c03.indd 42 3/31/11 3:26:26 PM3/31/11 3:26:26 PM

 Start by making a small improvement to your code, such as renaming a variable. Once you ’ ve
done that, run your tests to verify that the external functionality of your class or method has not
changed. Don ’ t run the tests for only the code you just wrote; run them all. This is necessary to
ensure that you have not caused an adverse side effect somewhere else in the code base. When you ’ re
satisfi ed that your change has not had any adverse effect, improve the next issue with your code, and
run the tests again. Repeat as needed. This practice is known as “ red, green, refactor. ” This means
that you start with a test that fails because you haven ’ t implemented the logic to make it pass yet.
Then you implement the test so that it passes. Finally, you refactor to improve the code while not
breaking the test.

 Maintainability

 It ’ s been established that when practicing TDD, your initial goal when writing code is simply to
make the tests pass. As time goes on and the application and the business it supports evolve, the
application must change to either support new functionality or change how the current business
logic performs its function. The ability to quickly and easily make these changes is important.
Refactoring code for readability is an important step in managing an application. Not just for other
developers, but for ourselves. Every developer has had the unfortunate experience of looking at code
he or she wrote in the past and not remembering what, how, or why the code does what it does.

 Refactoring for maintainability should work to simplify the code wherever possible. This includes
making sure that methods are short, control structures are simple, and variable and method names
are descriptive and clear. Think of refactoring for maintainability as leaving your future self a hint
so that you can remember what motivated you to write the code in the fi rst place.

 Code Metrics

 Measuring the quality of a code base is a subjective task. There are almost as many ideas of what
constitutes quality as there are developers. However, a few specifi cs can give you some hints about
what ’ s under the hood in your application.

 Code test coverage (code coverage) measures how much of your code base is exercised by your unit
test suite. This metric is controversial, because the number tells only part of the story. A code base
with less than 100% coverage does not necessarily mean that the code lacks quality. A code base with
100% coverage ensures only that its quality is as good as the tests that exercise it.

 The fi rst question to ask when looking at code coverage is what parts of the code base are being
measured. In most cases I fi nd that it is more important to write tests based on the functional parts
of the source code. This encompasses almost everything except entity objects, data transfer objects,
and any object or structure whose sole purpose is to contain data. The reason for this is that my
tests test only functionality; a structure that holds data should have no moving parts. Therefore, I
could argue that these should not be included in my code coverage metric because they could skew
the result low.

 On the other hand, the goal of TDD is to write only the code that you need to make the tests pass.
If you have several fi elds on a data structure that a test is not using, why do you need them? Code
coverage will quickly uncover what is not being used, allowing you to examine the need for those
fi elds. Of course, there are situations in which your data structures interact with external systems

Why Refactor? ❘ 43

c03.indd 43c03.indd 43 3/31/11 3:26:26 PM3/31/11 3:26:26 PM

44 ❘ CHAPTER 3 A QUICK REVIEW OF REFACTORING

that use the fi elds in question. In the end you have to use some intelligence and be prepared to do
some research when examining code coverage numbers for data entities.

 Luckily, the story with functional code in your application is a little more cut and dried. For starters,
you should always include any functional code in your code coverage metric. This code should exist
only because a test requires it to; therefore, it should have a high code coverage number. Any code in
this category that is not covered should be examined. This examination will always reveal one of two
outcomes: You are missing a test, or the code is unneeded and should be deleted.

 Missing tests are clearly a problem and should be addressed immediately. This also uncovers a
signifi cant issue with relying too much on code coverage as an indicator of code quality: Your code
coverage number is only as good and reliable as your tests are. If your tests are of low quality, a
100% code coverage number is worthless.

 If you have a complete set of tests for your requirements, but you still have code that is not covered
by a unit test, that code is probably not needed and can be deleted. Notice I said deleted, not
commented out. Unused code is like a parasite in your code base; it provides no value, yet it must
be maintained as if it were a contributing part of the application. The only thing this code
contributes is noise, so it should be removed to make development easier. If you are using a version
control system (and you absolutely should be), you can always replace the code later if you need it
(be sure to write a test for it at this time). So it ’ s never really gone forever, but it doesn ’ t belong in
your working code.

 A metric that has seen a bit of a comeback in recent years (but not in how it was used in the past) is
the lines - of - code count. Previously this number was expected to be high and was a bit of a bragging
point for some developers and managers, because it indicated that the developers were doing a lot of
work. Unfortunately, this perception is a bit backwards. Developers should be looking for ways to do
more with fewer lines of code.

 It ’ s a fact that the more lines of code you have in a method or class, the greater the chance that
defects will emerge. Keeping your methods shorter and more focused reduces the complexity and
the likelihood that the code has a fl aw. The more lines of code you write, the more chances you give
yourself to write the wrong code.

 It ’ s also more likely that if you are writing more lines of code, you are duplicating functionality that
already exists somewhere in the application. The concept of don ’ t repeat yourself (DRY) in software
development states that each unit of functionality should appear in a code base only once. I ’ ll explain
this concept more in the discussion of the Single Responsibility Principle later in this chapter.

 Cyclomatic complexity is a metric that has been around for a long time. But due to an infl ux
of metric tools, it has only recently become widely used as a code metric in the business world.
Cyclomatic complexity measures the number of unique paths that exist in a method, class, or
application. A higher number indicates more possible unique paths and therefore a higher degree
of complexity in the code.

 Code is complex. There is no way around it. At some point your code evaluates a condition and branches
off in another direction. The less complex a system is, the easier it is to understand and maintain. Code
that has a high cyclomatic complexity number should be refactored to make it simpler. A couple of ways
you can do this are to locate methods with several unique paths and to extract some of that branch logic

c03.indd 44c03.indd 44 3/31/11 3:26:27 PM3/31/11 3:26:27 PM

to other methods. Another approach would be to utilize polymorphism (covered later in this chapter) to
help remove any control structures that exist only to determine an object ’ s exact concrete type.

 CLEAN CODE PRINCIPLES

 A growing software craftsmanship movement has, among other things, begun to champion the
idea of developers continuing to study their craft, with a goal of being able to write clean code. In
summary, the point of this movement and philosophy is that developers should always strive to learn
and try to write the best possible code they can based on a set of prescribed practices and principles.

 OOP Principles

 Object - oriented programming (OOP) is a method of abstracting real - world objects into classes
that code can use. The idea is that if you can model your business problems in code, it will be
easier to create applications that correctly address those business problems in a way that is more
refl ective of the real world. Most modern development languages support OOP. OOP makes it easier
to conceptualize and develop your applications to meet the business ’ s needs while keeping your
individual units of code small and reusable. Having a solid basis in OOP will make many of the
concepts you ’ ll use in TDD easier to understand and work with.

 In general terms, OOP has three major tenets. Over the years many people have insisted that there
are others. These people are not necessarily wrong. But when you scratch the surface of these
claims, you quickly fi nd that these additional tenets are intended to either tout the advantages of one
language over another or disparage a language or platform as not being truly OOP. Or perhaps they
constitute a wish list a developer may have for features he wants to see in his language of choice.
These other tenets are not necessarily invalid; binding and messaging are important concepts and in
some languages are just as important as the tenets discussed here. But OOP ’ s three universal tenets
are encapsulation, inheritance, and polymorphism.

 Encapsulation

 The encapsulation rule states that the classes you create should be black boxes. In other words, the
internals of a class should be inaccessible to a client. The client ’ s only means of interacting with or
changing the state of a class should be that class ’ s public interface. At no time should the client have
or need any knowledge of how a class performs its actions. The client knows only what methods
and/or properties to use to get the information or interaction it needs.

 You really don ’ t care how the client of a class does its work, so long as you get the results you need.
The class also needs to be assured that it is free to perform its work without the risk of unauthorized
changes to its internal state. When you design your classes, it is important to scope your methods,
properties, and variables correctly. Only members that are part of the public interface should be
declared public. Only members that must be used by a descendant of the class should be declared
protected. Everything else is private. A good rule of thumb for developers new to this concept is to
make everything private until it needs to be public. Also, you should never allow a member variable
to be anything other than private; if a descendant class needs to use the variable, make it accessible

Clean Code Principles ❘ 45

c03.indd 45c03.indd 45 3/31/11 3:26:27 PM3/31/11 3:26:27 PM

46 ❘ CHAPTER 3 A QUICK REVIEW OF REFACTORING

through a protected property. If the variable needs to be part of the public interface, wrap it in a
public property. You should never simply allow unmonitored or uncontrolled access to an internal
variable.

 Inheritance

 As you build the classes in your application, you will soon fi nd that some classes have natural
hierarchical relationships to each other. These classes may be similar, but they are not quite equal
in functionality. In these cases you can place the common functionality in a base class and have
your more - specifi c classes derive from that class. This is called inheritance and is a very important
concept in OOP.

 Assume that you are writing a payroll application that has entities for hourly employees, salaried
employees, and seasonal employees. (See Figure 3-1.)

Employee

Class

HourlyEmployee

Class
 Employee

SeasonalEmployee

Class
 Employee

SalariedEmployee

Class
 Employee

FIGURE 3 - 1

 Your business rules indicate that compensation (salary, benefi ts, insurance) is computed differently
for each type of employee. However, all three have many things in common. Each employee
has some biographical information (name, address, work history, tax information), and certain
processes are the same for each, such as getting the employee ’ s information from the database.

 By utilizing inheritance, you can create an Employee base class that encapsulates all the common
functionality for all three employee types. You then create classes for Hourly , Salary , and
 Seasonal employees. These three more - specifi c classes derive from, or inherit from, your
Employee base class. Your derived classes have access to the functionality of the Employee base
class simply by virtue of their ancestor/descendant relationship.

 Classes that inherit from a base class have a few options as to how they handle the functionality
provided in the base class. They can take that functionality as is, simply allowing clients to call
those methods on their instantiated objects as if the derived class contained the same functionality
locally. The derived class may choose to override the base class ’ s implementation and extend it
by calling the base class ’ s implementation from its own implementation, or simply ignore the
functionality provided by the base class.

c03.indd 46c03.indd 46 3/31/11 3:26:28 PM3/31/11 3:26:28 PM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

 Base classes also have some say in how their functionality is consumed by the derived class. The base
class can declare some or all of its methods as abstract methods. This means that the derived class
must provide its own implementation based on the interface defi ned in the base class.

 Inheritance clearly gives developers a lot of power to reuse and leverage existing code. It ’ s important,
however, to make sure that inheritance is not overused. Deep inheritance trees can introduce new
types of complexities. They can end up making the code brittle and diffi cult to change if a unit
of logic in the middle of the hierarchy has to be altered. In some cases using composition over
inheritance is preferable. For example, an entity called PayableEmployee had been inserted into the
 Employee hierarchy (Figure 3 - 2).

Employee

Class

PayableEmployee

Class
 Employee

HourlyEmployee

Class
 PayableEmployee

SalariedEmployee

Class
 PayableEmployee

SeasonalEmployee

Class
 PayableEmployee

FIGURE 3 - 2

 In this hierarchy, the logic that computes employee ’ s payroll is encapsulated in the
 PayableEmployee class. But what happens if the likely event that the business decides to pay
each employee type based on a different algorithm? Should more classes be introduced into the
class hierarchy? That would solve the problem at hand, but what if there was logic in the payment
algorithm that could be partially shared between the classes? Do you then add yet another layer of
inheritance to account for this? Before long the class hierarchy, even for something as simple as this
example would become hopelessly complicated.

 A better strategy here would be to use composition. Instead of putting the logic to pay employees
in a class in the Employee hierarchy, I will defi ne a standardized interface to a payroll computation
module called IEmployeePayrollService . The Employee class will include a protected member
variable that can hold a class that implements the IEmployeePayrollService interface (Figure 3 - 3).

Clean Code Principles ❘ 47

c03.indd 47c03.indd 47 3/31/11 3:26:28 PM3/31/11 3:26:28 PM

48 ❘ CHAPTER 3 A QUICK REVIEW OF REFACTORING

 Now each employee can consume any type of class to calculate payroll they need, provided that it
implement the standardized employee payroll service interface.

 Polymorphism

 Polymorphism may be the most misunderstood tenet of OOP. Polymorphism is the concept that
although two classes may share the same behavior, they can implement that behavior in very
different ways. Polymorphism is somewhat related to inheritance and the relationships between
classes that it creates.

 For example, in the Employee example just discussed, the Hourly , Salary , and Seasonal employee
classes may all inherit from the Employee base class an abstract method called ComputePay . (An
 abstract member is a member where the interface is declared in the base, but the derived class
must provide its own implementation.) The ComputePay method can call the appropriate method
or methods on the class ’ s instance of the IEmployeePayrollService interface described in the
previous section on Inheritance

 Although the interface for this method would be identical across all three derived classes, the
means they use to determine the employee ’ s pay are very different. Salary employees would have a
set number based on their salary. Hourly and seasonal employees would have an hourly rate that
is multiplied by the number of hours they worked in the last pay period. However, in our example,
hourly workers receive time and a half for overtime, but seasonal workers do not. Each has the
 ComputePay method, and each one returns a dollar amount for the employee ’ s paycheck, but they
use different means to arrive at that number.

 The real power of polymorphism is realized when you consider that any class derived from the
 Employee base class can be treated as an employee regardless of its actual concrete implementation.
When payday arrives at the company used in our example, the payroll system needs to issue checks
for all employees. With polymorphism the system simply needs to iterate through the list of active
employees and call ComputePay on each one. It doesn ’ t need to know what type of employee it ’ s
computing the paycheck amount for; the concrete type has the specifi c implementation it needs. The
application simply must collect the number that the method returns.

FIGURE 3 - 3

Employee

Class

Fields

HourlyEmployee

Class
 Employee

SeasonalEmployee

Class
 Employee

SalariedEmployee

Class
 Employee

IEmployeePayrollService

InterfaceIEmpl ...

c03.indd 48c03.indd 48 3/31/11 3:26:28 PM3/31/11 3:26:28 PM

 Without polymorphism, the system would have to do one of two things. The fi rst alternative would
be to sort all the employees into three groups (Salary, Hourly, and Seasonal) and process each group
in its own unique manner. The other alternative would be to loop through all the active employees,
and for each employee a decision would have to be made to determine how to pay that employee.
Either of these alternatives results in additional code that not only makes the process slower, but
also makes it more complicated and introduces more points of failure. With polymorphism you
let the computer do the work for you. An example of this can be found in the section “ Replace
Conditional with Polymorphism. ”

 For example, I have the hierarchy of animals shown in Figure 3-4:

Animal
Abstract Class

Bird

Class
 Animal

Fish

Class
 Animal

Dog

Class
 Animal

FIGURE 3 - 4

 In addition to all being animals, each of these animals is able to move. But they all move in different
ways; dogs run, birds fl y, and fi sh swim. Because they all inherit from Animal, I can reference each
sub - type (dogs, birds and fi sh) as animals. But what if I want to make these animals move? Would
the best approach be to implement a Run method on Dog, a Fly method on Bird and a Swim method
on Fish? This may seem intuitive, but it creates some severe limitations. Let ’ s say I had a reference in
my code to some type of Animal. How would I make it move? Which method do I call? To answer
that question I would fi rst have to determine what specifi c type of Animal I ’ m dealing with. This is
ineffi cient and defeats the purpose of having an animal hierarchy.

 A better approach would be to create an abstract method on the Animal class called Move . Each
animal that inherits from hierarchy would then create an implementation of this method and
provide its specifi c method of moving. In this case, I don ’ t need to know what specifi c type of
Animal I have, I know I can call the Move method and the animal will move appropriately.

 The SOLID Principles

 In the early 2000s, Robert “ Uncle Bob ” Martin introduced a series of fi ve principles for developing
software with OOP that were designed to lead to higher - quality systems that were easier to maintain.
These SOLID Principles became a sort of map for developers in both designing new applications and
refactoring existing code bases.

Clean Code Principles ❘ 49

c03.indd 49c03.indd 49 3/31/11 3:26:29 PM3/31/11 3:26:29 PM

50 ❘ CHAPTER 3 A QUICK REVIEW OF REFACTORING

 The Single Responsibility Principle

 The Single Responsibility Principle (SRP) states that each method or class should have one and
only one reason to change. This means by extension that each method or class should do
one thing or have a single responsibility. Of all the SOLID Principles, this is the one that most
developers feel they completely understand. Ironically, it ’ s also probably the most commonly
violated principle.

 Let ’ s revisit the Employee example from the preceding section. Each of the three employee
subclasses (Hourly , Salary , and Seasonal) has a ComputeVacationTime method. This may seem
logical; an employee works and accrues vacation time. The employee goes on vacation and uses
vacation time. But think for a moment about the other things in the Employee classes. Employee
biographical information is stored in those classes. There are now two identifi ed possible reasons
for those classes to change: a change to the type or structure of an employee ’ s biographical
information, or a change in how an employee ’ s vacation time is calculated.

 According to the SRP, one of these pieces of information needs to be moved. In this case, I believe
the biographical information should stay, because that information defi nes an employee. The
vacation time calculation should be extracted to a domain service, because the means of computing
an employee ’ s vacation time is not something that defi nes the employee for our purposes. In the end
you would have an Employee class, which now has only one reason to change, and a Vacation
Time Calculation Service, which likewise has only one reason to change.

 The Open/Close Principle

 The Open/Close Principle (OCP) is the concept that software (methods, classes, and so on) should
be open for extension but closed for modifi cation. If this sounds very similar to the OOP tenet of
inheritance, it should. They are closely related. In fact, in .NET the Open/Close Principle relies
on inheritance.

 The point of the OCP is that, as a developer, occasionally either you are supplied with base classes
or you produce a framework of base classes for another developer to use. Consumers should not
be able to use those base classes; they are closed for modifi cation. This is necessary because other
consumers may rely on the functionality that is provided by that base class. Allowing consumers
to change these base classes can have a ripple effect that reaches into the far corners of not only
your application, but also applications across the Enterprise. Another issue is that at some point
the consumer probably will receive an upgraded version of the base class. Before the consumer can
upgrade, she must fi nd a way to handle the customizations she ’ s created inside the previous version
of the base class.

 The question then becomes, “ Well, I need to change something about how this base class works.
What should I do? ” The answer comes in the other half of the OCP; the base class should be
open for extension. In this case extension refers to creating a derived class that inherits from
the base class and that can extend or override the base class functionality to provide the specifi c
functionality that the consumer needs. This allows the consumer to use a modifi ed version of the
class while not impacting other consumers of the class. It also makes it easier for the consumer
to use upgraded versions of the base class in the future, because she is unconcerned with her
modifi cations being lost.

c03.indd 50c03.indd 50 3/31/11 3:26:29 PM3/31/11 3:26:29 PM

 The Liskov Substitution Principle

 What inheritance is to the OCP, polymorphism is to the Liskov Substitution Principle (LSP). The
LSP states that an object used in your application should be replaceable by the super class without
breaking the application. This is also commonly called design by contract .

 If you ’ ll recall the earlier polymorphism example, the ComputePay method used a list of type
 Employee in which Employee was a base type (the super type). The classes Salary , Hourly , and
 Seasonal all inherited from Employee and therefore were subtypes of Employee .

 According to the LSP, even though you ’ ve declared your list as being a list of Employee , you can
still populate it with concrete instances of Salary , Hourly , and Seasonal . By virtue of inheritance,
they all support the same contract (public set of methods, or API) that Employee declares. The
application can iterate through the list and call methods that are defi ned on Employee on the items
in your list without knowing or caring specifi cally what type they are. If they support the contact,
the call is legal.

 The Interface Segregation Principle

 Up until now I ’ ve used class - based inheritance in my examples and haven ’ t talked much about
interfaces. To review, an interface is simply a contract you defi ne (in code) that your class agrees to
implement. This agreement requires your class to supply an implementation of every method
that interface defi nes. How the method is implemented is up to the class, so long as it honors the
contract by supporting the defi nition in the interface. Interfaces are a very powerful tool in .NET;
they support inheritance and polymorphism the same way classes do.

 The Interface Segregation Principle (ISP) states that clients should not be forced to rely on interfaces
they do not use. For example, a banking system may have a service that evaluates applications for
credit. For the sake of argument, assume that this service handles not only secured credit (car and
boat loans, mortgages) but also unsecured credit (credit cards, letters of credit, equity credit lines).
If you are developing a client to help fi nance specialists at car dealerships get car loans for their
customers, you really don ’ t care about anything else on this service except the methods to apply for
car loans. Without the ISP, your application must know about these other methods.

 While this doesn ’ t seem like a problem initially, at best it creates additional complexity for your
application, because the API you are now developing against has many more methods than are
needed. This can lead to confusion and potentially errors from calling the wrong method. It ’ s
also possible that a part of the API that your application doesn ’ t use could change, which would
necessitate a change on your end. Now you are incurring maintenance costs on your application
for functionality you don ’ t use, want, or even care about. This situation also represents a security
risk. This application is specifi cally for car loans. What happens if an unscrupulous developer takes
advantage of this bloated API to allow other types of credit to be secured from the application?
Such a problem goes beyond broken or unmaintainable code.

 The solution is to create several smaller, more granular interfaces for this service that are specifi c
to the client ’ s needs. In the case of this sample application, an interface specifi cally for car loans
would be appropriate. Your application can access the same class with the same implementation, but
this time it uses a specifi c interface with a subset of the methods on the actual service. This reduces

Clean Code Principles ❘ 51

c03.indd 51c03.indd 51 3/31/11 3:26:29 PM3/31/11 3:26:29 PM

52 ❘ CHAPTER 3 A QUICK REVIEW OF REFACTORING

your complexity, insulates your application from changes in other sections of the API, and helps
close the security hole.

 Applying the ISP in your code does not mean that the service is completely secure.
Good coding practices to ensure proper authentication and authorization should
still be used.

 The Dependency Inversion Principle

 In a perfect world there would be no coupling or binding of components in an application. Also,
developers would be able to change anything they wanted without having to worry about causing
defects or (my favorite euphemism) “ unintended side effects ” elsewhere in the application. Sadly,
we do not live in a perfect world. Therefore, our components need to bind to each other or
couple at some point to form an actual application.

 The Dependency Inversion Principle (DIP) states that code should depend on abstractions, not
concrete implementations, and that those abstractions should not depend on details; the details
should depend on the abstractions. Your classes may rely on other classes to perform their work
(an Employee service may rely on a data access component to save and retrieve employees from a
data store). However, they should not rely on a specifi c concrete implementation of that class, just
an abstraction of it. This means that your Employee service would not know (or care) what specifi c
data access component is being used — only that its abstraction, or code contract (or interface),
supports the methods needed to save and retrieve an employee.

 Clearly, this concept makes your system much more fl exible. If your classes care only that
the components they use support a specifi c contract and not a specifi c type, you can change the
functionality of these low - level services quickly and easily with minimal impact on the rest of
the system. In Chapter 6 you ’ ll see how this also allows you to mock these dependencies for testing.
At some point you need to provide a concrete implementation of this low - level service to your class
for it to do its work. The most common way of doing this, especially for practitioners of TDD in
.NET, is the Dependency Injection (DI) pattern. DI patterns are covered in detail in Chapter 6.

 CODE SMELLS

 Again, no code is perfect. This is a fact of life. But developers who practice TDD still strive to make
their code as good as possible. A key skill to help you do that is the ability to evaluate code and to
quickly and easily identify common potential trouble spots without having to run the application.
These common problems are called code smells .

 What Is a Code Smell?

 Over the many years that applications have been developed, developers have always needed to
solve a common recurring series of problems in code. These problems eventually found a series of
common, widely known, widely used solutions. These solutions became known as patterns . As a

c03.indd 52c03.indd 52 3/31/11 3:26:30 PM3/31/11 3:26:30 PM

corollary, over the many years that applications have been developed, developers have always made
many common recurring mistakes. These mistakes, and the problems they tend to cause, are called
 antipatterns . Code smells are simply a collection of commonly known and widely found code - based
antipatterns. This section demonstrates a few of the more common code smells. The next section
focuses on some common steps to correct them.

 Duplicate Code and Similar Classes

 Consider the following code:

public class WidgetService
{
 private const double PricePerWidget = 1.5;

 public double GetQuoteForWidgets(int quantity)
 {
 return PricePerWidget*quantity;
 }

 public string PlaceOrderForWidgets(int quantity)
 {
 var invoice = new Invoice
 {
 TotalPrice = PricePerWidget*quantity
 };
 return invoice.InvoiceNumber;
 }
}

This simple WidgetService provides a quote for a specifi c number of widgets and creates an
invoice when a client places an order. However, this code has a major fl aw. If you look at the
 GetQuoteForWidgets and PlaceOrderForWidgets methods, you ’ ll see that the functionality for
determining the total cost for an order of widgets is duplicated (X � PricePerWidget multiplied
by quantity).

 This is a clear violation of the SRP: Someone has taken the logic that is to be used for the same
purpose and repeated it in this application. Suppose a new business requirement is introduced to
change how the price of an order of widgets is calculated. The developer would have to make sure
he located and updated every place in the code where this logic exists, and then he would have to
adequately regression - test all those code paths.

 This code smell is not confi ned to duplicate code in the same class. For example:

public class WidgetService
{
 private const double PricePerWidget = 1.5;

 public string PlaceOrderForWidgets(int quantity)
 {
 var invoice = new Invoice
 {

Code Smells ❘ 53

c03.indd 53c03.indd 53 3/31/11 3:26:35 PM3/31/11 3:26:35 PM

54 ❘ CHAPTER 3 A QUICK REVIEW OF REFACTORING

 TotalPrice = PricePerWidget*quantity*1.15
 };
 return invoice.InvoiceNumber;
 }
}

public class DoDadService
{
 private const double PricePerDoDad = 2.25;

 public string PlaceOrderForDoDad(int quantity)
 {
 var invoice = new Invoice
 {
 TotalPrice = PricePerDoDad*quantity*1.15
 };
 return invoice.InvoiceNumber;
 }
}

The business has expanded and now also offers DoDads for sale. To accommodate this new
line of business, the development staff has created a DoDadService . Looking at the methods for
 PlaceOrderForWidgets and PlaceOrderForDoDad , you can see that they are almost identical.
This represents another duplication of code, this time across classes, which can lead to maintenance
and quality issues down the road.

 Big Classes and Big Methods

 Bigger is not better. Here ’ s a case in point:

public string PlaceOrderForWidgets(int quantity, string customerNumber)
{
 var invoice = new Invoice
 {
 InvoiceNumber = Guid.NewGuid().ToString(),
 TotalPrice = PricePerWidget*quantity,
 Quantity = quantity
 };

 var customer = _customerService.GetCustomer(customerNumber);
 invoice.CustomerName = customer.CustomerName;
 invoice.CustomerAddress = customer.CustomerAddress;
 invoice.CustomerBillingInformation = customer.CustomerBillingInformation;

 double tax;
 switch (invoice.CustomerAddress.State.ToUpper())
 {
 case “OH”:
 tax = invoice.TotalPrice*.15;
 break;
 case “MI”:
 tax = invoice.TotalPrice*.22;
 break;

c03.indd 54c03.indd 54 3/31/11 3:26:36 PM3/31/11 3:26:36 PM

 case “NV”:
 tax = invoice.TotalPrice*.05;
 break;
 default:
 tax = 0.0;
 break;
 }

 var shippingPrice = invoice.TotalPrice * .1;
 invoice.TotalPrice += shippingPrice;
 invoice.TotalPrice += tax;

 var paymentAuthorizationCode = _paymentProcessingService.ProcessPayment(
 invoice.TotalPrice,
 customer.CustomerBillingInformation);
 invoice.Approved = ! string.IsNullOrEmpty(paymentAuthorizationCode);
 _invoiceService.Post(invoice);
 return invoice.InvoiceNumber;
}

This code has many issues — the most obvious being how long it is. When I see a method this
long, the fi rst thing I look for are violations of the SRP. In this case I can see at least fi ve different
business functions. This method creates an invoice, associates the invoice with a customer,
determines tax based on the customers state, determines shipping costs, and authorizes payment.
This means that there are at least fi ve different reasons that this method might have to change. This
is unacceptable.

 Another common problem with long methods is that they tend to be complex and diffi cult to
follow. Any veteran ASP.NET developer probably has a story about the Page_Load method that was
hundreds of lines long and had complex logic branching to try to accommodate all possible states
that the page could be rendered in. I have seen some that had over 1,400 lines of code. That ’ s one
method, not an entire class! These methods got so big the developers were forced to put regions in
them to help keep track of the individual parts of the method. Regions are another code smell due
to the face that they obfuscate the code you are working on and are an indication that your class or
method is too long and unfocused.

 These long methods and large classes are usually a major source of trouble in an application. They
are diffi cult to maintain and almost impossible to completely understand, and their sheer size makes
them a breeding ground for bugs. Keep your classes and methods small and nimble. I would rather
have an application with 100 small classes than 15 that have thousands of lines of code. Smaller is
easier to maintain, easier to understand, and easier to work with.

 Comments

 A controversial view, although one I believe in, is that unless you ’ re writing device drivers, or some
other “ down to the metal ” code, comments in code are a code smell. The fact is that although most
comments are created with the best of intentions, they end up adding no value to your code. They
are out of date almost as soon as they are written. They are usually inaccurate, which can cause real
damage when a developer takes them at their word and uses that knowledge to make changes to a

Code Smells ❘ 55

c03.indd 55c03.indd 55 3/31/11 3:26:36 PM3/31/11 3:26:36 PM

56 ❘ CHAPTER 3 A QUICK REVIEW OF REFACTORING

code base. In the end, comments are simply line noise. For everything comments are supposed to do,
another tool or technique does it better.

 In terms of comments designed to make the code understandable, the solution is to simply make
the code more comprehensible. Don ’ t obfuscate your code with meaningless names and overly
complicated control structures. Well - written code should be clean and easy to follow. Comments
become a crutch to justify sloppy code.

 In terms of tracking who changed what in a code base, source control systems do a much better
job than comments do. Source control systems, such as Team Foundation Server, Subversion, and
Git, can track commits developers make to a repository and what was in that commit better than
expecting a developer to leave a comment. Developers often forget to leave a comment. A source
control system never forgets. In this case the tool is already doing the work, so why ask developers
to duplicate it, especially when you know they won ’ t do it as well as the tool does?

 Source control systems also keep a historical record of code. I ’ ve seen many developers comment
out large sections of code they are not using instead of simply deleting it on the off chance they may
need it later. If you ’ re not using the code, delete it. It adds no value, and you removed it for a reason.
If you do need that code later, you can easily retrieve it from your source control system.

 Comment headers on classes or methods, sometimes referred to as “ Triple Slash Comments ” are no
exception to this. Many developers start these with the best of intentions, but the result is always
the same. The comment is soon inaccurate and incomplete. Developers who read them take them
at face value and as a result make decisions based on bad information, which causes a great deal of
damage to a code base. The blocks of comments also generate a large amount of line noise which
only serves to distract developers from the code. In the end, if your methods and class are short,
focused and well written, these comment blocks are completely unnecessary.

 Bad Names

 A key component of disposing of comments in your code is banishing bad names for variables, methods,
and classes. Everything in your application should have a meaningful and descriptive name.

 Consider this method:

public double GetValue(int a, int b)
{
 var answer = (a*a)*b*P;
 return answer;
}

This method is a commonly known mathematical formula. But what is it? The method name
gives you no clue, and the variables and constant P provide no help either. If you had to guess,
what would you say? (The answer is given later in the chapter.)

 It may seem like a small detail, but a bad name for a variable, method, or class in your code can
create a large amount of complexity. Short, nondescriptive names serve only to obfuscate your
code, many times from yourself. This method may seem to make sense today, but look at it again
in a month. Do you think you ’ ll be able to remember what the parameter a represents? If you

c03.indd 56c03.indd 56 3/31/11 3:26:36 PM3/31/11 3:26:36 PM

don ’ t, what chance does anyone else on your team have? I talk more about good naming in the
section “ Rename Variables, Fields, Methods, and Classes. ”

 Feature Envy

 Let ’ s revisit the code from the big classes, big methods example:

public string PlaceOrderForWidgets(int quantity, string customerNumber)
{
 var invoice = new Invoice
 {
 InvoiceNumber = Guid.NewGuid().ToString(),
 TotalPrice = PricePerWidget*quantity,
 Quantity = quantity
 };

 var customer = _customerService.GetCustomer(customerNumber);
 invoice.CustomerName = customer.CustomerName;
 invoice.CustomerAddress = customer.CustomerAddress;
 invoice.CustomerBillingInformation = customer.CustomerBillingInformation;

 if (customer.LoyaltyProgram == “Super Adamantium Deluxe”)
 {
 invoice.TotalPrice = invoice.TotalPrice*.85;
 }

 double tax;
 switch (invoice.CustomerAddress.State.ToUpper())
 {
 case “OH”:
 tax = invoice.TotalPrice*.15;
 break;
 case “MI”:
 tax = invoice.TotalPrice*.22;
 break;
 case “NV”:
 tax = invoice.TotalPrice*.05;
 break;
 default:
 tax = 0.0;
 break;
 }

 var shippingPrice = invoice.TotalPrice * .1;
 invoice.TotalPrice += shippingPrice;
 invoice.TotalPrice += tax;

 var paymentAuthorizationCode = _paymentProcessingService.ProcessPayment(
 invoice.TotalPrice,
 customer.CustomerBillingInformation);
 invoice.Approved = ! string.IsNullOrEmpty(paymentAuthorizationCode);
 _invoiceService.Post(invoice);
 return invoice.InvoiceNumber;
}

Code Smells ❘ 57

c03.indd 57c03.indd 57 3/31/11 3:26:37 PM3/31/11 3:26:37 PM

58 ❘ CHAPTER 3 A QUICK REVIEW OF REFACTORING

 In addition to the previously mentioned length of this method, this code has another problem: It
uses a property or method from the Invoice class on almost every line. A class that uses too many
methods of another class is said to suffer from feature envy. In this case the PlaceOrderForWidgets
method is clearly envious of the Invoice class. In situations like this, you see functionality that
clearly wants to exist somewhere else, be it another class, method, or module. A chief problem that
arises from feature envy is brittle code. By relying so much on the Invoice class, the developer has
made this method dependent on it. Changes to Invoice could easily mean changes to this method.
This method ’ s dependency on the Invoice class needs to be reduced. I ’ ll show you how to fi x this
problem in the section “ Extract Methods. ”

 Too Much If/Switch

 At their core, applications are designed to evaluate data and execute some sort of functionality
based on that evaluation. The most common control structures for doing this are the If Then Else
structure and the Switch Case structure. It ’ s certainly not uncommon to make liberal use of these
in an application, but consider this method:

public double CalculatePrice(int quantity, string cutomerState,
 string customerStatus)
{
 var basePrice = quantity*PricePerWidget;
 switch (cutomerState)
 {
 case “OH”:
 if (quantity > = 1000 & & quantity < 9999)
 {
 basePrice = basePrice*.95;
 }
 else if(quantity > = 10000)
 {
 basePrice = basePrice*.90;
 }
 break;
 case “MI”:
 switch (customerStatus)
 {
 case “Premier”:
 basePrice = basePrice*.85;
 break;
 case “Preffered”:
 basePrice = basePrice*90;
 break;
 case “Standard”:
 basePrice = basePrice*.95;
 break;
 }
 break;
 default:
 if (quantity > 10000)
 {
 basePrice = basePrice*.95;

c03.indd 58c03.indd 58 3/31/11 3:26:37 PM3/31/11 3:26:37 PM

 }
 break;
 }

 return basePrice;
}

 The high number of evaluations (If and Switch blocks) in this code introduce quite a bit of
complexity and decrease the code ’ s readability. Even if the simple code in this example revealed a
defect it could be diffi cult to easily diagnose and correct. In reality, the pricing algorithm for a real
product would likely be far more complicated. As an added problem, this method spits in the eye of
the SRP: This method contains three different pricing algorithms. This complexity and brittleness
can be reduced by limiting the number of If and Switch blocks in your methods. You ’ ll examine
how to fi x this code in the section “ Extract Methods. ”

 Try/Catch Bloat

 Handling exceptions is a very important task in application development. A standing rule for
my development team is that a user should never encounter an unhandled exception. This does
not mean that every line of code should be placed in a Try block — only blocks of code in which
something exceptional could happen. An exhaustive list of these things is outside the scope of this
book. Some common tasks that should occur in a Try / Catch block are connecting to or interacting
with a database, working with a fi le, and calling a web service.

 Much like If and Switch blocks, it ’ s easy to get carried away with what gets placed inside
a Try / Catch block:

public Customer GetCustomer(string customerId)
{
 try
 {
 var command = new SqlCommand();
 var reader = command.ExecuteReader();
 var customer = new Customer();
 while (reader.Read())
 {
 customer.CustomerId = customerId;
 customer.CustomerName = reader[“CustomerName”].ToString();
 customer.CustomerStatus = reader[“CustomerState”].ToString();
 customer.LoyaltyProgram = reader[“CustomerLoyaltyProgram”].ToString();
 }
 return customer;
 }
 catch (Exception exception)
 {
 _logger.LogException(exception);
 var customer = new Customer {CustomerStatus = “unknown”};
 return customer;
 }
}

Code Smells ❘ 59

c03.indd 59c03.indd 59 3/31/11 3:26:37 PM3/31/11 3:26:37 PM

60 ❘ CHAPTER 3 A QUICK REVIEW OF REFACTORING

 Best practices for using ADO.NET aside, you can see that this method suffers from some of the same
problems as the previous example. For starters, not only does this method contain code to create and
execute the command to retrieve the customer from the database, but it also contains code to handle
an exception that may be thrown. Albeit subtle, this violates the SRP on several levels.

 The code in the Try block is doing two separate tasks: creating the ADO.NET command to get the
customer from the database, and then mapping the data from the reader to a customer object. This
might seem like one task, but it really represents two reasons to change. If the stored procedure
used to get the customer were to have its input parameters changed, the code to build the command
would have to change. If the data structure of either the customer dataset being returned from the
stored procedure or the customer class itself changed, that would be another reason.

 The Catch block contains another violation of SRP. The method contains code to handle an
exception that may result from the call to the database. This is a reason to change. The current
algorithm for handling exceptions that arise when retrieving a customer is to log the exception
and then return a customer object with a status of “ unknown. ” Tomorrow the procedure could be
completely different. This represents another reason that this method would have to change.

 Widespread violations of SRP aside, the bloat in the Try / Catch block makes this method a bit long
and introduces some unnecessary layers of complexity. According to the SRP, the mechanics of a
 Try / Catch block (calling a unit of work, catching an exception that is thrown) is enough of a reason
to change in and of itself and should not be mixed with business or other infrastructure logic. This
method will be fi xed in the section “ Extract Methods. ”

 TYPICAL REFACTORING

 To review, code smells are a series of commonly known coding antipatterns. Because they are
commonly known, and widespread, developers have been able to develop some common and
well - known ways of dealing with and fi xing these code smells. These are called refactoring patterns.
This section focuses on some of the more common refactoring patterns and explains how and when
to apply them to your code.

 Extract Classes or Interfaces

 There are many reasons why you may want to split a class into smaller, more focused classes or
have a series of more granular interfaces extracted from it. If a class is very large, it is probably
doing too many things. If a class violates the SRP, it is a candidate to be split. If there is a design
or technical reason that the class must remain in one piece, or the class is small but is still doing too
many different things, extracting interfaces is a good alternative. Another good time to consider
extracting interfaces from a class is when the client cares about only a portion of the class ’ s
public interface. Consider the following class:

public class InvoiceService
{
 public string CreateInvoice(Invoice invoice) {...}

 public string ProcessPayment(Invoice invoice, double amount) {...}

c03.indd 60c03.indd 60 3/31/11 3:26:38 PM3/31/11 3:26:38 PM

 public double GetAmountOwed(Invoice invoice) {...}

 public double GetTotalAmountInvoicedLastFY(Customer customer) {...}

 public double GetTotalAmountPaidLastFY(Customer customer) {...}
}

 Although this may not be considered a large class, it does perform several related, yet separate
functions that are used by different parts of the system. The CreateInvoice method could be
used by an order placement system or e - commerce website when a customer places an order.
 ProcessPayment and GetAmountOwed might be consumed by an accounts receivable or customer
service system. GetTotalAmountInvoicedLastFY and GetTotalAmountPaidLastFY might be
used by an accounting or end - of - year reporting service. Size of the class aside, clearly the individual
consumers of this class don ’ t need to know about methods they don ’ t use. In this case, it would
make sense to refactor this class by extracting its interfaces:

public interface IInvoiceCreatingService
{
 string CreateInvoice(Invoice invoice);
}

public interface IInvoicePaymentService
{
 string ProcessPayment(Invoice invoice, double amount);
 double GetAmountOwed(Invoice invoice);
}

public interface IInvoiceReportingService
{
 double GetTotalAmountInvoicedLastFY(Customer customer);
 double GetTotalAmountPaidLastFY(Customer customer);
}

public class InvoiceService : IInvoiceCreatingService, IInvoicePaymentService,
 IInvoiceReportingService
{
 public string CreateInvoice(Invoice invoice) {...}

 public string ProcessPayment(Invoice invoice, double amount) {...}

 public double GetAmountOwed(Invoice invoice) {...}

 public double GetTotalAmountInvoicedLastFY(Customer customer) {...}

 public double GetTotalAmountPaidLastFY(Customer customer) {...}
}

 This refactor doesn ’ t move any functionality out of the class, but it does change how clients
consume it. Instead of having a concrete class with several methods the client doesn ’ t care about,
and in some cases shouldn ’ t have access to, this refactor has an instance of a class that it knows
supports the interface it cares about. The concrete implementation could be anything; it doesn ’ t

Typical Refactoring ❘ 61

c03.indd 61c03.indd 61 3/31/11 3:26:38 PM3/31/11 3:26:38 PM

62 ❘ CHAPTER 3 A QUICK REVIEW OF REFACTORING

matter. So long as the code contract, by way of the interface, is supported, the client can use the
object as expected.

 Extract Methods

 Let ’ s take another look at the PlaceOrderForWidgets example from the earlier “ Big Classes
and Big Methods ” section:

public string PlaceOrderForWidgets(int quantity, string customerNumber)
{
 var invoice = new Invoice
 {
 InvoiceNumber = Guid.NewGuid().ToString(),
 TotalPrice = PricePerWidget*quantity,
 Quantity = quantity
 };

 var customer = _customerService.GetCustomer(customerNumber);
 invoice.CustomerName = customer.CustomerName;
 invoice.CustomerAddress = customer.CustomerAddress;
 invoice.CustomerBillingInformation = customer.CustomerBillingInformation;

 double tax;
 switch (invoice.CustomerAddress.State.ToUpper())
 {
 case “OH”:
 tax = invoice.TotalPrice*.15;
 break;
 case “MI”:
 tax = invoice.TotalPrice*.22;
 break;
 case “NV”:
 tax = invoice.TotalPrice*.05;
 break;
 default:
 tax = 0.0;
 break;
 }

 var shippingPrice = invoice.TotalPrice * .1;
 invoice.TotalPrice += shippingPrice;
 invoice.TotalPrice += tax;

 var paymentAuthorizationCode = _paymentProcessingService.ProcessPayment(
 invoice.TotalPrice,
 customer.CustomerBillingInformation);
 invoice.Approved = ! string.IsNullOrEmpty(paymentAuthorizationCode);
 _invoiceService.Post(invoice);
 return invoice.InvoiceNumber;
}

 As mentioned, this method violates the SRP by performing fi ve different tasks. This can be corrected
by identifying and isolating specifi c tasks in the method and extracting them to another method.

c03.indd 62c03.indd 62 3/31/11 3:26:38 PM3/31/11 3:26:38 PM

The most obvious piece of functionality that can be extracted, although it appears midway through the
class, is the code that calculates the tax on the order. This code can be pulled out to a method called
 CalculateTaxForInvoice , which is called from the PlaceOrderForWidgets method:

public string PlaceOrderForWidgets(int quantity, string customerNumber)
{
 var invoice = new Invoice
 {
 InvoiceNumber = Guid.NewGuid().ToString(),
 TotalPrice = PricePerWidget*quantity,
 Quantity = quantity
 };

 var customer = _customerService.GetCustomer(customerNumber);
 invoice.CustomerName = customer.CustomerName;
 invoice.CustomerAddress = customer.CustomerAddress;
 invoice.CustomerBillingInformation = customer.CustomerBillingInformation;

 var tax = CalculateTaxForInvoice(invoice);

 var shippingPrice = invoice.TotalPrice * .1;
 invoice.TotalPrice += shippingPrice;
 invoice.TotalPrice += tax;

 var paymentAuthorizationCode = _paymentProcessingService.ProcessPayment(
 invoice.TotalPrice,
 customer.CustomerBillingInformation);
 invoice.Approved = ! string.IsNullOrEmpty(paymentAuthorizationCode);
 _invoiceService.Post(invoice);
 return invoice.InvoiceNumber;
}

private double CalculateTaxForInvoice(Invoice invoice)
{
 double tax;
 switch (invoice.CustomerAddress.State.ToUpper())
 {
 case “OH”:
 tax = invoice.TotalPrice*.15;
 break;
 case “MI”:
 tax = invoice.TotalPrice*.22;
 break;
 case “NV”:
 tax = invoice.TotalPrice*.05;
 break;
 default:
 tax = 0.0;
 break;
 }
 return tax;
}

Typical Refactoring ❘ 63

c03.indd 63c03.indd 63 3/31/11 3:26:38 PM3/31/11 3:26:38 PM

64 ❘ CHAPTER 3 A QUICK REVIEW OF REFACTORING

 Already this method is starting to look much better! It ’ s shorter and easier to read. Abstracting the
functionality to calculate tax to the CalculateTaxForInvoice method has removed one responsibility
from the PlaceOrderForWidgets code. The tax still gets calculated; it ’ s just happening somewhere
else. You can tell by the specifi c method name where it is happening, but you don ’ t need to look at the
code that calculates tax every time you look at this method — only when you need to do something
with how tax is calculated.

 Another piece of responsibility that can be extracted is the code that creates and populates the
 Invoice object. Although an invoice is integral to placing an order for widgets, it is a separate and
distinct task (a subtask, really) and should be pulled out. Think of it this way: The process to place
an order for widgets may change, but that may not necessitate a change to how an invoice is created.
Similarly, the company may enter another line of business at some point that requires a change to
the Invoice class. The process of ordering widgets does not change (the new fi eld is not used for
widget orders), but the code in the PlaceOrderForWidgets method may be required to change to
accommodate the change in Invoice .

 Before this method can be extracted, a change must be made elsewhere in the method. Examine
the code that gets paymentAuthorizationCode :

var paymentAuthorizationCode = _paymentProcessingService.ProcessPayment(
 invoice.TotalPrice, customer.CustomerBillingInformation);

 The code that creates the invoice needs a Customer object. The only other place in this method
where Customer is used is this line of code. Examination reveals that the method simply needs
 CustomerBillingInformation to get payment approval. This is already being gathered by the
code that creates the invoice:

invoice.CustomerBillingInformation = customer.CustomerBillingInformation;

 This data is not being changed anywhere else in this method. So does it have to come from the
customer object specifi cally? In some applications, particularly if multiple threads are executing,
it may. For this application it doesn ’ t. So the fi rst step is to change the code that calls the
 ProcessPayment method:

var paymentAuthorizationCode = _paymentProcessingService.ProcessPayment(
 invoice.TotalPrice, invoice.CustomerBillingInformation);

 Now that that ’ s done, extracting the invoice - creating functionality is a trivial matter, as you can see
from my fi nished methods here:

public string PlaceOrderForWidgets(int quantity, string customerNumber)
{
 var invoice = GetInvoice(quantity, customerNumber);
 var tax = CalculateTaxForInvoice(invoice);

 var shippingPrice = invoice.TotalPrice * .1;
 invoice.TotalPrice += shippingPrice;
 invoice.TotalPrice += tax;

 var paymentAuthorizationCode = _paymentProcessingService.ProcessPayment(
 invoice.TotalPrice, invoice.CustomerBillingInformation);

c03.indd 64c03.indd 64 3/31/11 3:26:39 PM3/31/11 3:26:39 PM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

 invoice.Approved = ! string.IsNullOrEmpty(paymentAuthorizationCode);
 _invoiceService.Post(invoice);
 return invoice.InvoiceNumber;
}

private Invoice GetInvoice(int quantity, string customerNumber)
{
 var invoice = new Invoice
 {
 InvoiceNumber = Guid.NewGuid().ToString(),
 TotalPrice = PricePerWidget*quantity,
 Quantity = quantity
 };

 var customer = _customerService.GetCustomer(customerNumber);
 invoice.CustomerName = customer.CustomerName;
 invoice.CustomerAddress = customer.CustomerAddress;
 invoice.CustomerBillingInformation = customer.CustomerBillingInformation;
 return invoice;
}

 The new method GetInvoice is not perfect by any means (in real life I would reorder some
statements to make it even shorter and easier to read), but it ’ s a big step beyond what was there
before. Turning your attention to the PlaceOrderForWidgets method, it ’ s clear that after
extracting only two units of functionality, this method is much more readable, less complicated, and
easier to maintain.

 In practice I would continue refactoring this method to extract the shipping price computation,
total price computation, payment authorization functionality, and approval functionality. After
those methods were extracted, I might fi nd more groups of functionality that could be extracted.
Or perhaps I would fi nd that the methods I pulled out of PlaceOrderForWidgets still violated the
SRP, so I would extract methods from them.

 Let ’ s look again at the example from the section “ Try / Catch Bloat ” :

public Customer GetCustomer(string customerId)
{
 try
 {
 var command = new SqlCommand();
 var reader = command.ExecuteReader();
 var customer = new Customer();
 while (reader.Read())
 {
 customer.CustomerId = customerId;
 customer.CustomerName = reader[“CustomerName”].ToString();
 customer.CustomerStatus = reader[“CustomerState”].ToString();
 customer.LoyaltyProgram = reader[“CustomerLoyaltyProgram”].ToString();
 }
 return customer;
 }
 catch (Exception exception)
 {

Typical Refactoring ❘ 65

c03.indd 65c03.indd 65 3/31/11 3:26:39 PM3/31/11 3:26:39 PM

66 ❘ CHAPTER 3 A QUICK REVIEW OF REFACTORING

 _logger.LogException(exception);
 var customer = new Customer {CustomerStatus = “unknown”};
 return customer;
 }
}

 As mentioned, having the business code in the Try / Catch block is a violation of the SRP. Extracting
the methods in each block to external methods makes this method simpler and easier to understand:

public Customer GetCustomer(string customerId)
{
 try
 {
 return GetCustomerFromDataStore(customerId);
 }
 catch (Exception exception)
 {
 return HandleDataStoreExceptionWhenRetrievingCustomer(exception);
 }
}

private static Customer GetCustomerFromDataStore(string customerId)
{
 var command = new SqlCommand();
 var reader = command.ExecuteReader();
 var customer = new Customer();
 while (reader.Read())
 {
 customer.CustomerId = customerId;
 customer.CustomerName = reader[“CustomerName”].ToString();
 customer.CustomerStatus = reader[“CustomerState”].ToString();
 customer.LoyaltyProgram = reader[“CustomerLoyaltyProgram”].ToString();
 }
 return customer;
}

private Customer
 HandleDataStoreExceptionWhenRetrievingCustomer(Exception exception)
{
 _logger.LogException(exception);
 var customer = new Customer { CustomerStatus = “unknown” };
 return customer;
}

 Like the previous example, some method extraction could be done here. It ’ s important to
remember that method extraction is an iterative process. You should always be on the lookout
for functionality that violates the SRP and that should be on its own.

 Rename Variables, Fields, Methods, and Classes

 Let ’ s review the code sample from the section “ Bad Names ” :

public double GetValue(int a, int b)
{

c03.indd 66c03.indd 66 3/31/11 3:26:39 PM3/31/11 3:26:39 PM

www.allitebooks.com

http://www.allitebooks.org

 var answer = (a*a)*b*P;
 return answer;
}

That was several pages ago. Have you fi gured out what it is yet?

 Let ’ s look at the same method, but this time with a well - named variable and a descriptive method name:

public double GetVolumeOfACylinder(int radius, int height)
{
 var volumeOfACylinder = (radius*radius)*height*Pi;
 return volumeOfACylinder;
}

It ’ s now clear what this method does. Even if it did not have the descriptive method name, or
the variable name volumeOfACylinder , you could deduce from the code used to perform the
calculation that this code determines the volume of a cylinder. This is a simple example, but with
a little care taken toward naming, you can make your code much clearer and easier to understand.

 Names should be clear, deliberate, and written in common, everyday language. Try not to use acronyms
unless they are well known in your company, your business, or software development in general. Don ’ t
be afraid of long names. A long, descriptive name is much more desirable than a short name that gives
no clue as to its intent. Visual Studio, like most modern development environments, provides some form
of autocomplete. Use it. Don ’ t let “ That name is too long ” be an excuse for poor naming.

 Encapsulate Fields

 Classes use member variables to track and maintain their internal state. Per the encapsulation rule,
these member variables are scoped as private and are not directly accessible to external clients. This
is a protective measure to ensure that the class ’ s runtime state does not get corrupted.

 Sometimes clients need access to fi elds on a class. For example, in the Widget class shown here, the
model number is clearly something that the clients of this class will need to be able to access:

public class Widget
{
 private object _internalWidgetState;
 public string _widgetModelNumber;
}

On the surface, and naming issues aside, this seems like perfectly reasonable code. But what ’ s to
stop a client from changing the value of _widgetModelNumber ? It ’ s declared as public, which means
that any external object can change that member variable; nothing can be done to prevent it.

 A better way to handle situations like this is to encapsulate that member variable in a fi eld
(sometimes called a property or “ getter and setter ”):

public class Widget
{
 private object _internalWidgetState;
 public string ModelNumber { get; private set; }
}

Typical Refactoring ❘ 67

c03.indd 67c03.indd 67 3/31/11 3:26:40 PM3/31/11 3:26:40 PM

68 ❘ CHAPTER 3 A QUICK REVIEW OF REFACTORING

For starters, the name ModelNumber is nicer and falls in line with more naming standards than
 _widgetModelNumber . But the real power of a fi eld is that although ModelNumber is still accessible
externally, it ’ s in a read - only state. The set is scoped as private, which means that only the Widget
object itself can set that value.

 Replace Conditional with Polymorphism

 In the following example, you have been asked to write software to dispatch fueling trucks to
various locations for a variety of vehicles. To know how much fuel to send, you need to know
how much fuel is currently in the tank of each vehicle. This application supports three types of
vehicles, as demonstrated by the following classes:

public class Car : Vehicle
{
 public int AmountOfFuelNeededToFillTank()
 {
 return 12;
 }
}

public class Airplane : Vehicle
{
 public int AmountOfFuelNeededToFillLeftFuelTank()
 {
 return 3;
 }

 public int AmountOfFuelNeededToFillRightFuelTank()
 {
 return 4;
 }
}

public class Boat : Vehicle
{
 public int AmountOfFuelNeededToFillFrontFuelTank()
 {
 return 8;
 }

 public int AmountOfFuelNeededToFillRearFuelTank()
 {
 return 10;
 }
}

 The application must look at each vehicle on a fuel truck ’ s route to determine how much fuel to load
onto the truck. The code to do this could look something like this:

public class FuelingStation
{
 public int AddFuelToTruck(List < Vehicle > vehiclesOnRoute)

c03.indd 68c03.indd 68 3/31/11 3:26:40 PM3/31/11 3:26:40 PM

 {
 var amountOfFuelToLoadOnTruck = 0;
 foreach (var vehicle in vehiclesOnRoute)
 {
 if (vehicle is Car)
 {
 amountOfFuelToLoadOnTruck += ((Car) vehicle)
 .AmountOfFuelNeededToFillTank();
 }
 else if(vehicle is Airplane)
 {
 amountOfFuelToLoadOnTruck +=
 ((Airplane) vehicle).AmountOfFuelNeededToFillLeftFuelTank();
 amountOfFuelToLoadOnTruck +=
 ((Airplane) vehicle).AmountOfFuelNeededToFillRightFuelTank();
 }
 else if(vehicle is Boat)
 {
 amountOfFuelToLoadOnTruck +=
 ((Boat) vehicle).AmountOfFuelNeededToFillFrontFuelTank();
 amountOfFuelToLoadOnTruck +=
 ((Boat) vehicle).AmountOfFuelNeededToFillRearFuelTank();
 }
 }
 return amountOfFuelToLoadOnTruck;
 }
}

 Each vehicle on the fuel truck ’ s route is represented by a vehicle in the vehiclesOnRoute list. To
determine how much fuel to send, the code must iterate through the list and add up the space needed
to fi ll the tanks from each vehicle. For Car this is pretty straightforward; a car (usually) has one fuel
tank. Airplanes have two (one on each wing) that can be drained at different rates. Boats can have
forward and rear tanks that also can have differing amounts of fuel. Therefore, the logic to get the
amount of fuel needed for each vehicle type is different.

 The code in the AddFuelToTruck method tries to handle this by determining which specifi c concrete
vehicle type it is looking at in each iteration of the loop and then casting vehicle to the specifi c
type so that it can call the methods specifi c to that type to get the fuel information.

 Not only is all this casting ineffi cient, but the AddFuelToTruck method also is forced into a position
of having to know specifi cs about each vehicle type that it really shouldn ’ t know or care about. If
a new vehicle type is added, or a change is made to an existing vehicle type, this method has to
change. This is another violation of the SRP.

 This method can be refactored to remove the need for this intimate knowledge of the vehicle types
by using polymorphism. First, an interface called IFuelable is created:

public interface IFuelable
{
 int GetTotalAmountOfFuelNeededForVehicle();
}

Typical Refactoring ❘ 69

c03.indd 69c03.indd 69 3/31/11 3:26:40 PM3/31/11 3:26:40 PM

70 ❘ CHAPTER 3 A QUICK REVIEW OF REFACTORING

 Because good naming standards have been used, it ’ s pretty clear that the one and only method on
the IFuelable interface, GetTotalAmountOfFuelNeededForVehicle , returns the total amount
of fuel that needs to be added to the vehicle to fi ll the tanks. The next step is to implement the
interface on the Vehicle classes:

public class Car : Vehicle, IFuelable
{
 public int GetTotalAmountOfFuelNeededForVehicle()
 {
 return AmountOfFuelNeededToFillTank();
 }
}

public class Airplane : Vehicle, IFuelable
{
 public int GetTotalAmountOfFuelNeededForVehicle()
 {
 return AmountOfFuelNeededToFillLeftFuelTank() +
 AmountOfFuelNeededToFillRightFuelTank();
 }
}

public class Boat : Vehicle, IFuelable
{
 public int GetTotalAmountOfFuelNeededForVehicle()
 {
 return AmountOfFuelNeededToFillFrontFuelTank() +
 AmountOfFuelNeededToFillRearFuelTank();
 }
}

 For the sake of clarity, I removed the AmoutOfFuelNeeded... methods from this listing, but they
are still in the code. The addition of the IFuelable interface to the declaration forced me to add
the GetTotalAmountOfFuelNeededForVehicle to each vehicle class. This allows the developer to
encapsulate the algorithm for computing the amount of fuel needed to completely fi ll the vehicle
on each vehicle type, where it belongs. When the AddFuelToTruck method is refactored to take
advantage of this interface, it becomes much shorter, more effi cient, and easier to read:

public int AddFuelToTruck(List < IFuelable > vehiclesOnRoute)
{
 var amountOfFuelToLoadOnTruck = 0;
 foreach (var vehicle in vehiclesOnRoute)
 {
 amountOfFuelToLoadOnTruck +=
 vehicle.GetTotalAmountOfFuelNeededForVehicle();
 }
 return amountOfFuelToLoadOnTruck;
}

 Additionally, the need for the AddFuelToTruck method to know the total amount of fuel needed for
each vehicle disappears, and it can focus on simply adding up how much fuel needs to be loaded.

c03.indd 70c03.indd 70 3/31/11 3:26:41 PM3/31/11 3:26:41 PM

 By using the features of LINQ built into .NET, this could be refactored into an even smaller method:

public int AddFuelToTruck(List < IFuelable > vehiclesOnRoute)
{
 return vehiclesOnRoute
 .Sum(vehicle = > vehicle.GetTotalAmountOfFuelNeededForVehicle());
}

Due to the use of polymorphism, this method can now take advantage of the Sum method on the
 List object to be even shorter and easier to read.

 Allow Type Inference

 Most languages on the .NET platform are statically typed. This means that the developer must
declare each variable and method as being of a specifi c type. C# 3 introduced the concept of
type inference to .NET. This simply means that although C# is still a statically typed language,
developers can allow the compiler to determine what type a variable should be based on how it
is initialized. To be clear, this type inference does not happen at runtime; if the compiler can ’ t
determine the type when the application is compiled, it generates an error.

 Type inference is done in C# using the var keyword. Instead of declaring your variable as being
of a specifi c type, you declare it as a var :

Customer declaredAsCustomer = new Customer(); //declared with a specific type
var typeInferredCustomer = new Customer(); //declared using the var keyword

Both declaredAsCustomer and typeInferredCustomer are instances of the Customer class and
behave and can be used in the exact same way. The difference is that you don ’ t have to specifi cally
tell the compiler that typeInferredCustomer is a Customer object.

 The benefi t of the var keyword is that it generates code that can be more readable; some developers
view the simple declaration of a variable as line noise. The var keyword minimizes this. Refactoring
can be easier with variables declared using var , because the compiler determines what type the
variable should be declared as. If a developer changes how a variable is initialized, the compiler fi xes
the variable declaration automatically.

 Use of the var keyword is controversial. Some developers think it is a bad practice, because it
obfuscates what type you are working with. This can be true, but I would suggest that this is a
problem only in situations with long methods and violations of the SRP. If developers keep the rest
of their code clean, the use of the var keyword should not be a burden.

 SUMMARY

 Developers never write perfect code the fi rst time. In practice, trying to write the “ perfect method ”
the fi rst time through is a mistake. Strive to get your application working and your tests passing.
With a suite of unit tests that validate your code, you can refactor fearlessly.

 Refactoring is to code what editing is to a book or article. Be merciless with your code. Refactor
it to increase maintainability. Refactor to make your code more testable. Refactor it to ensure

Summary ❘ 71

c03.indd 71c03.indd 71 3/31/11 3:26:41 PM3/31/11 3:26:41 PM

72 ❘ CHAPTER 3 A QUICK REVIEW OF REFACTORING

that it obeys the three tenets of OOP: encapsulation, inheritance, and polymorphism. Refactor to
make sure you are abiding by the SOLID Principles: Single Responsibility, Open/Closed, Liskov
Substitution, Interface Segregation, and Dependency Inversion. All these things not only increase
the quality of your code, but also sharpen your skills as a developer and make you a better
practitioner of TDD.

 Code smells are antipatterns in code. Learn to identify them. Familiarize yourself with refactoring
patterns to be able to quickly and easily deal with these code smells. Be sure to use your unit tests to
verify that you have not broken the code ’ s business functionality with your refactoring.

 Finally, continue to study the tenets of OOP and the SOLID Principles. These concepts are not
destinations; they are journeys. You ’ ll always have opportunities to improve how you write code.
Don ’ t stop learning.

c03.indd 72c03.indd 72 3/31/11 3:26:41 PM3/31/11 3:26:41 PM

Test - Driven Development:
Let the Tests Be Your Guide

 WHAT ’ S IN THIS CHAPTER?

 How TDD developers let the tests drive the code they develop

 The TDD work fl ow from requirements to working code

 The three phases of coding a feature in TDD

 How a good test ensures good code

 How to defi ne what “ done ” is

 As mentioned in Chapter 3, the aspect of TDD that developers seem to struggle with most
is the idea that you should use tests to drive your initial development. For years developers
have thought of tests as a way to validate their code when it was complete and ready for
delivery. Tests were used in a work fl ow that took a set of requirements, turned those
requirements into working code, and then verifi ed the code using tests.

 The problem with this paradigm is that it delays testing until the end of the process.
Even the smallest application will have some defects. Without tests you lose the ability to
quickly and easily determine where in the code the defect is occurring. It also becomes very
diffi cult to design and write unit tests around existing code, because testability probably was
not a priority when the code was written. Refactoring is diffi cult, because you have no quick
and easy way to verify that your refactored code still works the way you intended.

 The easiest way to solve this problem is to turn the entire process upside down. In this chapter
you will see how writing tests, based on the business requirements of your application before
the fi rst line of code is written, can ensure that all the code you write is exercised by a test.
Practicing test - fi rst development can also help ensure that you are only writing code that your

➤

➤

➤

➤

➤

 4

c04.indd 73c04.indd 73 3/31/11 3:27:28 PM3/31/11 3:27:28 PM

74 ❘ CHAPTER 4 TEST-DRIVEN DEVELOPMENT: LET THE TESTS BE YOUR GUIDE

application needs to carry out its assigned tasks; you will not have the burden of managing code
that does not contribute in a constructive way to your application.

 The work fl ow in TDD is often described as “ Red, Green, Refactor. ” This describes a series of steps
that starts with a failing test, the developer then writes just enough code to make the test pass, and
works to improve that code. In the section called “ Red - Green - Refactor, ” you ’ ll see the importance
of these steps and how following them leads to lean, effi cient code that satisfi es the needs of the
business with fewer defects.

 IT STARTS WITH THE TEST

 The fi rst D in TDD stands for “ driven. ” This means that in your practice of TDD, you must let the
tests drive your development. This seems like a simple enough concept. However, when developers
who are new to TDD start trying to work in a test - driven manner, they tend to fall back into their
old, comfortable routines.

 Most traditional development work fl ows start with requirements gathering. The business managers
sit down, usually with a project manager and an architect, and sketch the broad strokes of a system.
This process goes through several iterations in which the design is refi ned and details are expanded.
Finally, a set of specifi cations for either a new application or a change to an existing one is produced.

 For development teams or developers who don ’ t practice TDD, the next step is to write the code. As
a developer, you use specifi cations derived from the business requirements to defi ne entities, service
classes, and application work fl ows. At this point the system ’ s quality depends on the developer ’ s
understanding of the technical specifi cations and business requirements as written. When you are
done (or you have reached a point that represents your concept of “ done ”), you send the application
to QA for testing. Invariably, QA fi nds defects in the feature.

 Now it becomes your job to correct the defects. Without unit tests to help locate and diagnose
the defect, most developers turn to the debugger, placing breakpoints in code where they think the
defect could be happening. This is sometimes called the “ shotgun approach. ” It ’ s unfocused and
ineffi cient. If an application has many layers of services and abstractions, you may have to spend a
lot of time looking through all of them to fi nd the source of the problem. The end result is that you
spend more time locating the defect than actually fi xing the code. This is not a very effi cient use of
your development time.

 To add insult to injury, it becomes much harder to write unit tests for code when no forethought has
been given to the concept of testability. TDD forces you to think about how you are designing and
building your software to make it fl exible and loosely coupled. Many developers who don ’ t practice
TDD think they are writing loosely coupled and fl exible software. But when they don ’ t have some
external element keeping them honest (in this case, the unit tests), developers tend to fi nd ways
to cut corners. This is natural, because developers have been trained to “ Optimize, optimize,
optimize! ” for years; they haven ’ t been taught to think about maintainability.

 In the end this process results in you spending an incredible amount of time to fi x even a trivial
defect. If you had some built - in way to determine where the defect was coming from, it would save
quite a bit of time. Better yet, if you had some automated way of ensuring that your code refl ected

c04.indd 74c04.indd 74 3/31/11 3:27:31 PM3/31/11 3:27:31 PM

the business requirements and technical specifi cations, the defect may never have happened in the
fi rst place.

 Practitioners of TDD still start with a set of business requirements. The place where TDD deviates
from traditional development is the next step. Before you write a single line of code for a feature
(including creating a new class to contain that code), you write a unit test based on the current
requirement you are working on.

 Unit tests are derived from the business requirements and technical specifi cations. Because of this,
the unit tests become living, executable representations of the requirements and specifi cations.
They cease to be something in a document that is quickly forgotten by the developers. They become
runnable code that you can use to verify that you are creating the functionality intended by the
business. These requirements become tangible things that you, as the developer, can interact with.

 After a unit test that represents the requirements and specifi cations that have been created, you can
begin writing code. Your goal at this point is to write the simplest and smallest amount of code to
make the test pass. Don ’ t worry if the code feels incomplete or unfi nished; if it meets the current
unit test, which has been derived from a requirement, it ’ s complete.

 As a corollary, don ’ t write code that you do not have a unit test for. Don ’ t worry about writing code
to accommodate requirements that might or even probably will be found; requirements don ’ t exist
until they ’ ve been documented and had a test created for them. No code gets written unless a test
requires it to exist.

 As you build functionality for a requirement, you will likely uncover other parts of the application
that need to be designed and built. This is especially common if you are working in an Agile -
 based methodology. In most of these methodologies a high - level architecture may be defi ned, but
a big, detailed, up - front design phase does not occur. Detailed design is deferred until a feature
or requirement is actually scheduled. This keeps development teams from incurring the overhead
of doing a detailed design for features and functionality that never actually get scheduled for
development.

 When these new subsystems and other pieces of functionality emerge, make sure that you are creating
tests for those pieces of code as well. For example, you may be assigned a feature that reads “ Retrieve
a Person object by Person ID. ” To implement this test, you might fi rst create a Person business
domain service, perhaps called PersonService . This service would represent the mechanism through
which the constituent parts of the application would get a person by Person ID. The objective of
 PersonService is to provide a Person object based on a set of business rules. However, according to
the SRP, it would not actually be responsible for retrieving the Person data from the database. One
reason for the PersonService to change would be the business rules around how a person can
be retrieved (for example, instead of Person ID, a Person should be retrieved by some other fi eld
on the database table.) Another reason for the PersonService to change would be how the data is
actually retrieved from the data store (for example, initially the Person data is stored in a database,
but at some point is relocated to a data store behind a web service).

 To accommodate the needed separation of concerns, you could create a PersonRepository
class that takes care of the mechanics of getting the data that represents a person from the database.
This new class ’ s only reason to change is if the way a person is retrieved from a database changes.

It Starts with the Test ❘ 75

c04.indd 75c04.indd 75 3/31/11 3:27:31 PM3/31/11 3:27:31 PM

76 ❘ CHAPTER 4 TEST-DRIVEN DEVELOPMENT: LET THE TESTS BE YOUR GUIDE

The business rules around creating a person are in the PersonService , so PersonRepository
needs to worry only about data access.

 This new class represents a new test that needs to be written. Remember that unit tests are isolated
to the specifi c class and method they are testing. This means that your tests for PersonService
should not be responsible for verifying the functionality of PersonRepository . In fact, the
specifi c instance of PersonService that is used by the unit test should not use a concrete
instance specifi cally of PersonRepository . It should use a mock object that implements
the same interface as PersonRepository . (Mocking is covered in detail in Chapter 5.)

 This means that in addition to the unit tests for PersonService , you must also write unit tests for
 PersonRepository . Since you are only working on PersonService right now, you need to defi ne
only the interface for PersonRepository and the method that will get a person from the data
store by Person ID. Since you ’ ll be using a mock of PersonRepository for the PersonService , the
database - specifi c functionality isn ’ t needed to make the test for PersonService pass.

 After the tests for PersonService pass, it ’ s time to turn your attention to PersonRepository .
Your requirement is that PersonRepository should be able to get person data from a database
based on a Person ID. Your task is to write just enough code to return the person data given a
specifi c Person ID. Remember that unit tests for repository classes are just like unit tests for any
other class; they need to be able to be isolated from their specifi c dependencies. Most database
persistence frameworks provide a mechanism to mock the data context and allow you to
write isolated unit tests for your repositories. Consult your framework ’ s documentation for
specifi c details.

 Once the unit tests for both PersonService and PersonRepository are complete, the next step is to
integrate them. In this case you want your tests to break boundaries; your test should call methods
on a concrete instance of PersonService , which should in turn call methods on a concrete instance
of PersonRepository , which should access a data store that has person data in it. The point of
writing integration tests is to ensure that your PersonService and PersonRepository classes work
together. It ’ s not uncommon to create two components in isolation, only to fi nd that they don ’ t
support each other. By integrating small pieces of the application early on, you can ensure that the
components you are building now will be able to be combined into a larger application later.

 RED, GREEN, REFACTOR

 TDD has many colloquialisms and anagrams. You ’ ve already read about OOP, SOLID, and DRY.
These three are all very important not only to TDD, but also to good software development
practices in general. But if one saying, phrase, or mantra sums up the core beliefs of TDD, it ’ s red,
green, refactor . It reminds you of the TDD work fl ow of requirements fl owing into tests, which then
fl ow into code. It also sets the expectation that refactoring will occur. Developers and managers
who are unfamiliar with TDD often hear the word refactor and assume it means to fi x what wasn ’ t
done right the fi rst time. This perception of what refactoring means is simply not true. Writing code
is an iterative process. Refactoring is the continued refi nement of your code to make it the most
simple, readable, and best it can be.

c04.indd 76c04.indd 76 3/31/11 3:27:32 PM3/31/11 3:27:32 PM

 The Three Phases of TDD

 Red, green, refactor defi nes the work fl ow that developers follow when practicing TDD. As
illustrated earlier, the sequence of steps taken in writing code is important. When followed, this
order of steps (requirements, test, code) helps ensure that you have tests for the code you are writing
and that you are writing only code that you have a test for.

 The term gold plating refers to the addition of functionality to an application that was not requested
by the user or the business but that still costs money to develop and maintain. The functionality
being added may seem like a good idea. But functionality that is unneeded and unused, but that
requires resources to create and maintain, is wasteful. The requirements defi ne the system ’ s features
and functionality, not the whims of developers.

 The Red Phase

 When starting with TDD, most developers ask, “ How can I write a test for something that doesn ’ t
exist? ” In fact, many of your tests will be for classes or methods that don ’ t currently exist. This
means that your test won ’ t even compile, which is essentially the same as having a failing test. That ’ s
OK; remember that you are letting the tests drive the need for the code to exist.

 After you create your fi rst test, the next step is one or more support actions. Early in the
development of your application, the next thing you do could be creating a project in your Visual
Studio solution. If so, you ’ ll need to add a reference to the new project from your test project.

 Maybe you already have the project and it ’ s referenced from your test project. Then your next step
may be creating a new interface for a service that your unit test requires. Your test won ’ t compile, so
it fails until you create this interface. The unit test probably still won ’ t compile at this point; without
a concrete implementation of your service, you get a compiler error. Therefore, you need to create a
concrete implementation for this new service.

 Or maybe the interface and service already exist, but no method exists for the test you are writing. By
writing the test fi rst, and being the fi rst consumer of this method, you ’ ll have some insight into how
developers will work with this service. Without TDD, developers often create public interfaces for
their service in a manner that makes it easy for them, without any thought about how the interface
will be consumed. Although the API may make sense to you as you are writing the service, it may
be very diffi cult for the consumer of the service to understand and use. By using your own interface
to write tests, you can experience what it ’ s like for consumers of your service to use the service. This
helps you defi ne interfaces that are simple to use and easy to understand for your end users.

 The last obvious permutation is that you already have an interface and a class, and the method you
are testing already exists, but you are testing a new requirement for that method. This test will fail
as well, because you haven ’ t written any code to make it pass. In this case the next step is to write
code to make the new test pass while not causing the existing tests to fail.

 In any case, when you fi rst write your test, for whatever reason, it will fail. Either it won ’ t compile,
or the test will compile and run but will fail due to not getting an expected result from the method
under test. You are currently in the red phase. Your goal now is to move into the green phase.

Red, Green, Refactor ❘ 77

c04.indd 77c04.indd 77 3/31/11 3:27:33 PM3/31/11 3:27:33 PM

78 ❘ CHAPTER 4 TEST-DRIVEN DEVELOPMENT: LET THE TESTS BE YOUR GUIDE

 The Green Phase

 If your test is failing, you are in the red phase. The key to getting to the green phase is to write just
enough code to make your new test pass while not causing any of the other tests to fail. The concept
of writing “ just enough ” code to make a test pass is another philosophical hurdle that developers
new to TDD sometimes struggle to get over.

 For example, suppose you have a requirement that makes it necessary to add a new method to an
existing service. The rest of the requirement states that, given an input value of 61, the new method
should return false. Many developers who do not practice TDD would agree that the following code
example would be the least amount of code necessary to make the test pass:

public bool MyMethod(int inputParameter)
{
 if (inputParameter == 61)
 {
 return false;
 }
 return true;

}

 It ’ s perfectly reasonable to assume that this is what the method should do, but this is not the
least amount of code to make the test pass. The requirement and test do not state anything about
a condition to make the method return true; the code only says that for situations in which
 inputParameter equals 61, it should return false. The code shown here may in fact look like what
the fi nal version of this method should be. But until a test is created to verify a situation in which a
value of true is returned, you shouldn ’ t assume anything.

 The following code illustrates the absolute minimum amount of code needed to make the test pass:

public bool MyMethod(int inputParameter)
{
 return false;

}

 Looking at this implementation, it may seem incomplete. It certainly looks unfi nished; the method
expects a value for inputParameter but doesn ’ t use it. The point of this exercise is to ensure that
you are writing just enough code to make the test pass, and thus complete the business requirement.
If the only current documented business requirement is that method return false when the value
of inputParameter is false , then the previous example does meet the business requirement. As
more requirements for this feature or functionality are fl eshed out, more tests will be created. These
additional tests will cause you to expand on the functionality of this method. As this method grows,
it may be appropriate to add more branches to the if statement. On the other hand a more complex
algorithm may be needed. The point is to not introduce complexity to your code until and unless
you need to.

 As soon as enough code has been created to make the tests pass, you ’ re ready to enter the
refactoring phase.

c04.indd 78c04.indd 78 3/31/11 3:27:33 PM3/31/11 3:27:33 PM

 The Refactoring Phase

 Until now the goal has been just to get the unit tests to pass. Notice that so far you haven ’ t worried
about maintainability, readability, or overall code quality. Now that you ’ ve created some unit tests
that validate the business requirements, it ’ s time to turn your attention to bringing these three
attributes to your code. This practice is called refactoring .

 Whether practicing TDD or not, developers always fi nd the need to tweak and tinker with their
code. Essentially this is what happens when you refactor code. The benefi t of refactoring with TDD
is that you have a suite of unit tests to validate that your code still meets the business requirements.
Periodically examine your business code and your unit tests, and look for opportunities to enhance
them by refactoring. Refactor code by making small changes and then using the unit tests to validate
that the refactored code still works. So long as the tests pass, your code is correct.

 Starting Again

 You now have a unit test that passes. You have a method that contains the simplest and shortest
code necessary to make the test pass. You ’ ve also had an opportunity to refactor that code to ensure
that it ’ s readable and maintainable. The next step is to do it again.

 If you think back to the code sample in the preceding section, the least amount of code to satisfy
the test was to simply return false. Although this is valid to make the test pass and satisfy the
current test, it probably is incomplete from a business standpoint. As development continues, more
requirements and features will be scheduled for development. These requirements and features
translate into new tests. The complete set of these tests — your test suite — refl ects all the business
functionality expected of the application. This creates a triangulation of tests that ensures, so long
as the tests all pass, that the application meets the needs of the business.

 An important point to remember when practicing TDD is that your code, and the test results it
generates, is only as good as your tests. I ’ ve talked about refactoring code, but don ’ t be afraid to
refactor your unit tests as well. If a test no longer refl ects the requirements, refactor them. If you
fi nd a gap in your test, refactor it. If you fi nd that your test misrepresents a requirement, refactor it.
Keep your tests clean and maintained. They are just as important to your application as any other
piece of code.

 A REFACTORING EXAMPLE

 Suppose that one of your friends is developing a tic - tac - toe game. He has created the front end that
allows users to manage turns and to pick the square in which to place their mark. For this example,
he has asked you to create a service that he can use to determine if either player has won by placing
his or her mark in three adjacent squares to form a row horizontally, vertically, or diagonally.

 By way of requirements, your friend tells you that he plans to represent the game board by creating
a 3 - by - 3 multidimensional array of char data types, with the x - axis representing horizontal rows
and the y - axis representing vertical columns. This array will be passed into the method you will
write as the input parameter. Your friend wants the library to return the mark of the winning
player (an X or an O) or a space character if neither player wins.

A Refactoring Example ❘ 79

c04.indd 79c04.indd 79 3/31/11 3:27:34 PM3/31/11 3:27:34 PM

80 ❘ CHAPTER 4 TEST-DRIVEN DEVELOPMENT: LET THE TESTS BE YOUR GUIDE

 The First Feature

 For this task you create a blank solution in Visual Studio called
 TicTacToe . To that solution you add a class library called TicTacToe
.UnitTests that contains a class called GameWinnerServiceTests
(which makes the fully qualifi ed name of this class TicTacToe
.UnitTests.GameWinnerServiceTests). You also add a reference to
NUnit, which will serve as your unit test framework (see Figure 4 - 1).

 The fi rst feature your friend asks you to implement states that if no
player has three in a row (horizontally, vertically, or diagonally), no one
wins, and your method should return an empty character. Your fi rst
test is relatively easy. You pass in an empty array (no player has three
in a row) and expect back an empty character (the expected response to
neither player ’ s having three in a row):

[TestFixture]
public class GameWinnerServiceTests
{
 [Test]
 public void NeitherPlayerHasThreeInARow()
 {
 const char expected = ‘ ‘;
 var gameBoard = new char[3,3] { {‘ ‘, ‘ ‘, ‘ ‘},
 {‘ ‘, ‘ ‘, ‘ ‘},
 {‘ ‘, ‘ ‘, ‘ ‘}};
 var actual = gameWinnerService.Validate(gameBoard);
 Assert.AreEqual(expected, actual);
 }
}

 GameWinnerServiceTests.cs

 Right away you ’ ll notice that the code is trying to call the Validate method on the variable
 _gameWinnerService , which you haven ’ t declared yet. Since you need an instance of the
 GameWinnerService you are creating, go ahead and declare that variable (I ’ ve left out the class
declaration for the GameWinnerService test class for clarity):

[Test]
public void NeitherPlayerHasThreeInARow()
{
 IGameWinnerService gameWinnerService;
 const char expected = ‘ ‘;
 var gameBoard = new char[3,3] { {‘ ‘, ‘ ‘, ‘ ‘},

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Available for
download on
Wrox.com

 To follow along with the example shown here, download the code from www
.wrox.com .

FIGURE 4 - 1

c04.indd 80c04.indd 80 3/31/11 3:27:34 PM3/31/11 3:27:34 PM

http://www.wrox.com
http://www.wrox.com

 {‘ ‘, ‘ ‘, ‘ ‘},
 {‘ ‘, ‘ ‘, ‘ ‘} };
 var actual = gameWinnerService.Validate(gameBoard);
 Assert.AreEqual(expected, actual);
}

 GameWinnerServiceTests.cs

 As it stands, this test still won ’ t pass, because IGameWinnerService
has not been defi ned. Before this test existed, you didn ’ t need
 IGameWinnerService , so it had no reason to exist. There is now
a test that requires IGameWinnerService to be defi ned, so that ’ s
your next step. You start by creating a new class library in your
solution called TicTacToe.Services and renaming the Class1.cs
fi le it creates GameWinnerService.cs . But don ’ t allow Visual
Studio to rename the class inside the fi le, because you ’ ll just delete
it (see Figure 4 - 2).

 In the GameWinnerService.cs fi le you delete the declaration
for Class1 and replace it with the declaration for the
IGameWinnerService interface:

namespace TicTacToe.Services
{
 public interface IGameWinnerService
 {
 }
}

 GameWinnerService.cs

 Returning to the unit test, you need to add a reference in your TicTacToe.UnitTests class library
to your new TicTacToe.Services class library. Once you ’ ve added this reference, your declaration
of gameWinnerService as a type of IGameWinnerService no longer causes a compiler error.
However, because this interface has no methods yet, your call to gameWinnerService.Validate
does cause a compiler error. Therefore, your next step is to add a declaration of the Validate
method to the IGameWinnerService interface:

public interface IGameWinnerService
{
 char Validate(char[,] gameBoard);
}

 GameWinnerService.cs

 When this is done, your code still doesn ’ t compile. Right now, you ’ re attempting to use
 gameWinnerService without creating a concrete instance. The next step in making the test pass
is creating a concrete instance of a class that supports the IGameWinnerService interface. In

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Available for
download on
Wrox.com

FIGURE 4 - 2

A Refactoring Example ❘ 81

c04.indd 81c04.indd 81 3/31/11 3:27:46 PM3/31/11 3:27:46 PM

82 ❘ CHAPTER 4 TEST-DRIVEN DEVELOPMENT: LET THE TESTS BE YOUR GUIDE

the GameWinnerService.cs fi le, create a class called GameWinnerService that implements the
 IGameWinnerService interface:

public class GameWinnerService : IGameWinnerService
{
 public char Validate(char[,] gameBoard)
 {
 throw new NotImplementedException ();
 }
}

 GameWinnerService.cs

 Strictly speaking, this method has no implementation. In fact, it throws an exception stating that
fact. But that ’ s OK; you ’ re writing just enough code to get to the next step. When you add code
to your unit test in the NeitherPlayerHasThreeInARow method to create a concrete instance of
 GameWinnerService and assign it to the gameWinnerService variable, the application compiles.
Right now that ’ s all you care about.

 Add code to the NeitherPlayerHasThreeInARow method to instantiate a concrete instance of
 GameWinnerService :

[Test]
public void NeitherPlayerHasThreeInARow()
{
 IGameWinnerService gameWinnerService;
 gameWinnerService = new GameWinnerService();
 const char expected = ‘ ‘;
 var gameBoard = new char[3,3] { {‘ ‘, ‘ ‘, ‘ ‘},
 {‘ ‘, ‘ ‘, ‘ ‘},
 {‘ ‘, ‘ ‘, ‘ ‘} };
 var actual = gameWinnerService.Validate(gameBoard);
 Assert.AreEqual(expected, actual);
}

 GameWinnerServiceTests.cs

 The code compiles. When you run your test, (as expected) it fails because the Validate method
is not implemented, as shown in Figure 4 - 3.

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Available for
download on
Wrox.com

FIGURE 4 - 3

c04.indd 82c04.indd 82 3/31/11 3:27:47 PM3/31/11 3:27:47 PM

 Making the First Test Pass

 Again, this is okay. You need to see the test fail for many reasons. You need to make sure your test
really tests something; a test that never fails doesn ’ t really test your code. Although at this stage it ’ s
unlikely, you need to verify that you haven ’ t written too much code. You also need to make sure that
you ’ re not re - creating functionality. If your test passes now, without your having to write any more
code, there ’ s a good chance you could be duplicating work. Since a goal is to keep your code as
DRY as possible, you need to make sure you ’ re not reimplementing something that already exists.

 Now it ’ s time to start thinking about moving into the green phase. Your goal now is to write just
enough code to make the test pass. It turns out this is pretty easy to do:

public char Validate(char[,] gameBoard)
{
 return ‘ ‘;
}

 GameWinnerService.cs

 Looking at this code, you might think, “ That ’ s not how the rules of tic - tac - toe work, ” and you
would be right. But your current requirement isn ’ t to implement all the rules of tic - tac - toe — only
the rule that if neither player has three squares in a row, no one wins. The requirement says nothing
about conditions that should return a winner, or about having symbols for either player on the game
board. Those requirements do not exist yet. As evidenced by the passing test (shown in Figure 4 - 4),
this implementation of the Validate method meets that requirement.

Available for
download on
Wrox.com

Available for
download on
Wrox.com

FIGURE 4 - 4

 The current test passes. Because nothing in either the business code (GameWinnerService)
or the unit test (GameWinnerServiceTests) needs refactoring, you move on to the next business
requirement.

 The Second Feature

 The second feature states that if a player ’ s symbol appears in all three cells in the top horizontal
row, the player ’ s symbol should be returned as the winning symbol. Here ’ s the unit test for this
requirement:

[Test]
public void PlayerWithAllSpacesInTopRowIsWinner()
{
 IGameWinnerService gameWinnerService;
 gameWinnerService = new GameWinnerService();

Available for
download on
Wrox.com

Available for
download on
Wrox.com

A Refactoring Example ❘ 83

c04.indd 83c04.indd 83 3/31/11 3:27:48 PM3/31/11 3:27:48 PM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

84 ❘ CHAPTER 4 TEST-DRIVEN DEVELOPMENT: LET THE TESTS BE YOUR GUIDE

 const char expected = ‘X’;
 var gameBoard = new char[3, 3]
 { {expected, expected, expected},
 {‘ ‘, ‘ ‘, ‘ ‘},
 {‘ ‘, ‘ ‘, ‘ ‘} };
 var actual = gameWinnerService.Validate(gameBoard);
 Assert.AreEqual(expected.ToString(),
 actual.ToString());
}

 GameWinnerServiceTests.cs

 This is very similar to the previous test. It constructs a multidimensional array to serve as your game
board and passes it as a parameter to the Validate method of the GameWinnerService instance
 gameWinnerService . The difference is that this time you populate the top row, and the value of the
variable expected , with the value ‘X’ , which is what you are using as the symbol for your player.
When this test calls the Validate method, it expects to get a char with a value of ‘X’ as the return
value from Validate . When you run this test, it does not pass, as shown in Figure 4 - 5.

FIGURE 4 - 5

 Your next step is to implement just enough functionality to make this test pass:

public char Validate(char[,] gameBoard)
{
 var columnOneChar = gameBoard[0, 0];
 var columnTwoChar = gameBoard[0, 1];
 var columnThreeChar = gameBoard[0, 2];
 if (columnOneChar == columnTwoChar & &
 columnTwoChar == columnThreeChar)
 {
 return columnOneChar;
 }
 return ‘ ‘;
}

 GameWinnerService.cs

 Again, this is not necessarily the most effi cient or complete logic for a tic - tac - toe game; it is simply what is
needed to make your test pass. In this case all you care about is ensuring that if the same symbol appears
across the top row, that symbol is returned from the method. As shown in Figure 4 - 6, this test passes.

Available for
download on
Wrox.com

Available for
download on
Wrox.com

c04.indd 84c04.indd 84 3/31/11 3:27:49 PM3/31/11 3:27:49 PM

 Before moving on to the next test, let ’ s look at the unit tests now in the GameWinnerServiceTests class:

[TestFixture]
public class GameWinnerServiceTests
{
 [Test]
 public void NeitherPlayerHasThreeInARow()
 {
 IGameWinnerService gameWinnerService;
 gameWinnerService = new GameWinnerService();
 const char expected = ‘ ‘;
 var gameBoard = new char[3,3] { {‘ ‘, ‘ ‘, ‘ ‘},
 {‘ ‘, ‘ ‘, ‘ ‘},
 {‘ ‘, ‘ ‘, ‘ ‘} };
 var actual = gameWinnerService.Validate(gameBoard);
 Assert.AreEqual(expected, actual);
 }

 [Test]
 public void PlayerWithAllSpacesInTopRowIsWinner()
 {
 IGameWinnerService gameWinnerService;
 gameWinnerService = new GameWinnerService();
 const char expected = ‘X’;
 var gameBoard = new char[3, 3] { {expected, expected, expected},
 {‘ ‘, ‘ ‘, ‘ ‘},
 {‘ ‘, ‘ ‘, ‘ ‘} };
 var actual = gameWinnerService.Validate(gameBoard);
 Assert.AreEqual(expected.ToString(), actual.ToString());
 }
}

 GameWinnerServiceTests.cs

 Refactoring the Unit Tests

 You can see that even with just two tests written, it ’ s time to refactor the unit test code a bit. For starters,
both tests use an instance of the GameWinnerService . Since the tests use the exact same concrete
implementation of this class, and access it through the same abstract interface, you can remove the
declarations of IGameWinnerService from the individual tests and make it a member variable:

IGameWinnerService _gameWinnerService;
 GameWinnerServiceTests.cs

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Available for
download on
Wrox.com

FIGURE 4 - 6

A Refactoring Example ❘ 85

c04.indd 85c04.indd 85 3/31/11 3:27:50 PM3/31/11 3:27:50 PM

86 ❘ CHAPTER 4 TEST-DRIVEN DEVELOPMENT: LET THE TESTS BE YOUR GUIDE

 Not only can the declaration be extracted from the individual unit tests, so can the creation of the
concrete instance of GameWinnerService and the assignment of that object to _gameWinnerService .
You do this by creating a setup method for the GameWinnerServiceTests class and adding the code
to create the concrete instance of GameWinnerService :

[SetUp]
public void SetupUnitTests()
{
 _gameWinnerService = new GameWinnerService();
}

 GameWinnerServiceTests.cs

 At this point you run the unit tests to ensure that your refactoring hasn ’ t broken anything, as shown
in Figure 4 - 7.

Available for
download on
Wrox.com

Available for
download on
Wrox.com

 The tests are already looking quite a bit DRYer, but one other data construct is used in both unit
tests — the game board. That can easily be extracted to a member variable as well:

private char[,] _gameBoard;

 GameWinnerServiceTests.cs

 As with the extraction of _gameWinnerService , the creation of the concrete instance of
the _gameBoard member variable can be moved out of the individual unit tests and put in the
 SetupUnitTests method:

[SetUp]
public void SetupUnitTests()
{
 _gameWinnerService = new GameWinnerService();
 _gameBoard = new char[3, 3]
 {
 {‘ ‘, ‘ ‘, ‘ ‘},
 {‘ ‘, ‘ ‘, ‘ ‘},
 {‘ ‘, ‘ ‘, ‘ ‘}
 };
}

 GameWinnerServiceTests.cs

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Available for
download on
Wrox.com

FIGURE 4 - 7

c04.indd 86c04.indd 86 3/31/11 3:27:50 PM3/31/11 3:27:50 PM

 Now that these changes have been made, you run the unit tests again to make sure they are still
working as before (see Figure 4-8).

FIGURE 4 - 8

FIGURE 4 - 9

 The Third Feature

 With the refactoring of the unit tests complete, it ’ s time to start on the third feature The new requirement
states that if a player has his character in all three rows of the fi rst column, his symbol should be
returned from the Validate method, indicating that he has won. This is very similar to the requirement
for the last test, as you can see from the code for the unit test that exercises this requirement:

[Test]
public void PlayerWithAllSpacesInFirstColumnIsWinner()
{
 const char expected = ‘X’;
 for (var columnIndex = 0; columnIndex < 3; columnIndex++)
 {
 _gameBoard[columnIndex, 0] = expected;
 }
 var actual = _gameWinnerService.Validate(_gameBoard);
 Assert.AreEqual(expected.ToString(), actual.ToString());
}

 GameWinnerServiceTests.cs

 Running the test shows that it fails, as shown in Figure 4 - 9.

Available for
download on
Wrox.com

Available for
download on
Wrox.com

 As with the previous failing test, you write just enough code in the Validate method to make this
test pass:

public char Validate(char[,] gameBoard)
{
 var columnOneChar = gameBoard[0, 0];

Available for
download on
Wrox.com

Available for
download on
Wrox.com

A Refactoring Example ❘ 87

c04.indd 87c04.indd 87 3/31/11 3:27:51 PM3/31/11 3:27:51 PM

88 ❘ CHAPTER 4 TEST-DRIVEN DEVELOPMENT: LET THE TESTS BE YOUR GUIDE

 var columnTwoChar = gameBoard[0, 1];
 var columnThreeChar = gameBoard[0, 2];
 if (columnOneChar == columnTwoChar & & columnTwoChar == columnThreeChar)
 {
 return columnOneChar;
 }

 var rowTwoChar = gameBoard[1, 0];
 var rowThreeChar = gameBoard[2, 0];
 if (columnOneChar == rowTwoChar & & rowTwoChar == rowThreeChar)
 {
 return columnOneChar;
 }
 return ‘ ‘;
}

 GameWinnerService.cs

 Running the tests shows that this code was enough not only to make your new test pass, but also to
keep the other two passing (see Figure 4 - 10).

FIGURE 4 - 10

 Refactoring the Business Code

 Before going on to the next requirement, you want to do a little more refactoring. This time you
turn your attention to the Validate method in the GameWinnerService class:

public char Validate(char[,] gameBoard)
{
 var columnOneChar = gameBoard[0, 0];
 var columnTwoChar = gameBoard[0, 1];
 var columnThreeChar = gameBoard[0, 2];
 if (columnOneChar == columnTwoChar & &
 columnTwoChar == columnThreeChar)
 {
 return columnOneChar;
 }

 var rowTwoChar = gameBoard[1, 0];
 var rowThreeChar = gameBoard[2, 0];
 if (columnOneChar == rowTwoChar & &
 rowTwoChar == rowThreeChar)
 {
 return columnOneChar;

Available for
download on
Wrox.com

Available for
download on
Wrox.com

c04.indd 88c04.indd 88 3/31/11 3:27:52 PM3/31/11 3:27:52 PM

 }
 return ‘ ‘;
}

 GameWinnerService.cs

 You may notice two things pretty quickly when looking at this method: It ’ s a bit long, and it violates
the Single Responsibility Principle (SRP). It ’ s not unusual to fi nd that these two code smells usually
appear together. In this case both problems can be fi xed with the same set of refactoring steps.
Begin by looking at the fi rst violation of the SRP.

 This method does three things. It checks for three in a row in the top row, it checks for three in a
row in the fi rst column, and it checks for neither of the fi rst two conditions. The fi rst thing you want
to do is extract to a separate method the code that checks the fi rst row:

private static char CheckForThreeInARowInHorizontalRow(char[,] gameBoard)
{
 var columnOneChar = gameBoard[0, 0];
 var columnTwoChar = gameBoard[0, 1];
 var columnThreeChar = gameBoard[0, 2];
 if (columnOneChar == columnTwoChar & & columnTwoChar == columnThreeChar)
 {
 return columnOneChar;
 }
 return ‘ ‘;
}

 GameWinnerService.cs

 The code in the Validate method that invokes this method should now look like this:

public char Validate(char[,] gameBoard)
{
 var currentWinningSymbol = ‘ ‘;
 currentWinningSymbol = CheckForThreeInARowInHorizontalRow(gameBoard);

 var rowOneChar = gameBoard[0, 0];
 var rowTwoChar = gameBoard[1, 0];
 var rowThreeChar = gameBoard[2, 0];
 if (rowOneChar == rowTwoChar & & rowTwoChar == rowThreeChar)
 {
 currentWinningSymbol = rowOneChar;
 }

 return currentWinningSymbol;
}

 GameWinnerService.cs

 As you can see, you needed to make some signifi cant changes to the logic of the Validate method, but
the method already looks much better. The logic is more straightforward, the method is easier to read,

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Available for
download on
Wrox.com

A Refactoring Example ❘ 89

c04.indd 89c04.indd 89 3/31/11 3:27:53 PM3/31/11 3:27:53 PM

90 ❘ CHAPTER 4 TEST-DRIVEN DEVELOPMENT: LET THE TESTS BE YOUR GUIDE

 The tests all pass, which means the refactoring performed on the Validate method was successful.
Next you extract to a method the code that checks for three in a row in the fi rst vertical column,
just as you did with the code for three in a row in a horizontal row:

private static char CheckForThreeInARowInVerticalColumn(char[,] gameBoard)
{
 var rowOneChar = gameBoard[0, 0];
 var rowTwoChar = gameBoard[1, 0];
 var rowThreeChar = gameBoard[2, 0];
 if (rowOneChar == rowTwoChar & &
 rowTwoChar == rowThreeChar)
 {
 return rowOneChar;
 }
 return ‘ ‘;
}

 GameWinnerService.cs

 After you refactor the code in the Validate method to accommodate the extraction of the code that
checks for three in a row in the fi rst column, the Validate method looks like this:

public char Validate(char[,] gameBoard)
{
 var currentWinningSymbol = ‘ ‘;
 currentWinningSymbol = CheckForThreeInARowInHorizontalRow(gameBoard);
 currentWinningSymbol = CheckForThreeInARowInVerticalColumn(gameBoard);
 return currentWinningSymbol;
}

 GameWinnerService.cs

 This code may look correct, but running the unit tests reveals that it changes the external
functionality of (breaks) the Validate method, as shown in Figure 4 - 12.

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Available for
download on
Wrox.com

FIGURE 4 - 11

and it ’ s easier to understand what ’ s going on. You now need to run the unit tests to verify that you
haven ’ t changed (broken) any of the external behavior of the Validate method. (See Figure 4 - 11.)

c04.indd 90c04.indd 90 3/31/11 3:27:53 PM3/31/11 3:27:53 PM

 Correcting Refactoring Defects

 Taking another look at the code, it appears that if the CheckForThreeInARowInHorizontalRow method
returns a winning symbol, it is overwritten by the call to CheckForThreeInARowInVerticalColumn .
This method returns an empty character because, in that test case, neither player has three in a row in the
fi rst vertical column.

 The value of unit tests when refactoring should be made clear by this example. You can spot a bug in
your code immediately, and because you made only a few small changes, it ’ s easy to determine where
the code broke and why. You could engage in refactoring in the fi rst place due to the security that
unit tests provide. You don ’ t have to worry about changes causing bugs to appear in code without
your knowledge. Your unit tests give you a clear picture of the health of the entire code base.

 Before you proceed to the next feature, you need to fi x this bug by adding code to the Validate
method to see if the call to CheckForThreeInARowInHorizontalRow returns a winning symbol.
If it does, you immediately return from the Validate method and don ’ t even bother to call the
 CheckForThreeInARowInVerticalColumn method:

public char Validate(char[,] gameBoard)
{
 var currentWinningSymbol = ‘ ‘;
 currentWinningSymbol = CheckForThreeInARowInHorizontalRow(gameBoard);
 if (currentWinningSymbol != ‘ ‘)
 return currentWinningSymbol;
 currentWinningSymbol = CheckForThreeInARowInVerticalColumn(gameBoard);
 return currentWinningSymbol;
}

 GameWinnerService.cs

 Running the unit tests assures you that these changes fi x the failing test and don ’ t break the other
two tests, as shown in Figure 4 - 13.

Available for
download on
Wrox.com

Available for
download on
Wrox.com

FIGURE 4 - 12

FIGURE 4 - 13

A Refactoring Example ❘ 91

c04.indd 91c04.indd 91 3/31/11 3:27:54 PM3/31/11 3:27:54 PM

92 ❘ CHAPTER 4 TEST-DRIVEN DEVELOPMENT: LET THE TESTS BE YOUR GUIDE

 Before extracting to their own methods the logic that checked for matches in the fi rst row and fi rst
column, there was only one place where this code used the literal value of an empty character (’ ‘).
In that case it was fi ne to have it in the code, because you used it only once. Now you ’ ll be using it in
four different places and three different methods. It ’ s time to extract the literal value from the code
and declare it as a private constant:

private const char SymbolForNoWinner = ‘ ‘;

 GameWinnerService.cs

 You can now replace all uses of the literal value in the code for the GameWinnerService class with
this new constant:

private const char SymbolForNoWinner = ‘ ‘;

 GameWinnerService.cs

 If sometime in the future you need to change the value you ’ re using to indicate that there is no
winner, you have to change it in only one place, not four.

 You need to change one last thing before moving on. The current version of the Validate method
looks like this:

public char Validate(char[,] gameBoard)
{
 var currentWinningSymbol = SymbolForNoWinner;
 currentWinningSymbol = CheckForThreeInARowInHorizontalRow(gameBoard);
 if (currentWinningSymbol != SymbolForNoWinner)
 return currentWinningSymbol;
 currentWinningSymbol = CheckForThreeInARowInVerticalColumn(gameBoard);
 return currentWinningSymbol;
}

 GameWinnerService.cs

 There is no need to assign currentWinningSymbol a default value, because you overwrite that
value anyway. In fact, you can declare currentWinningSymbol and assign it to the return value
of CheckForThreeInARowInHorizontalRow on a single line of code:

public char Validate(char[,] gameBoard)
{
 var currentWinningSymbol = CheckForThreeInARowInHorizontalRow(gameBoard);
 if (currentWinningSymbol != SymbolForNoWinner)
 return currentWinningSymbol;
 currentWinningSymbol = CheckForThreeInARowInVerticalColumn(gameBoard);
 return currentWinningSymbol;
}

 GameWinnerService.cs

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Available for
download on
Wrox.com

c04.indd 92c04.indd 92 3/31/11 3:27:55 PM3/31/11 3:27:55 PM

 This removes an unnecessary line of code. This may not seem like much, unless you consider that
in Chapter 3 I pointed out that the more lines of code you write, the more chances you give yourself
to write the wrong code. By eliminating an unneeded line of code, you reduce the chance that the
 Validate method has a bug.

 The Fourth Feature

 Now that the refactoring is done, it ’ s time to move on to the next feature. The new requirement
states that if a user has three in a row diagonally, starting in the upper - left corner, going through
the center, and fi nishing in the lower - right corner, he or she is the winner. The unit test for this
requirement looks like this:

[Test]
public void PlayerWithThreeInARowDiagonallyDownAndToRightIsWinner()
{
 const char expected = ‘X’;
 for (var cellIndex = 0; cellIndex < 3; cellIndex++)
 {
 _gameBoard[cellIndex, cellIndex] = expected;
 }
 var actual = _gameWinnerService.Validate(_gameBoard);
 Assert.AreEqual(expected.ToString(), actual.ToString());
}

 GameWinnerServiceTests.cs

 Running this new unit test reveals that it does not pass, as shown in Figure 4 - 14.

Available for
download on
Wrox.com

Available for
download on
Wrox.com

FIGURE 4 - 14

 As with the three previous unit tests, your next task is to write just enough code to make this test pass.
Because you refactored the Validate method, you know that checking for a winner with three in a
row diagonally would be a new reason for the Validate method to change. Start by creating a private
method called CheckForThreeInARowDiagonally , which you can call from the Validate method:

private static char CheckForThreeInARowDiagonally(char[,] gameBoard)
{
 var cellOneChar = gameBoard[0, 0];
 var cellTwoChar = gameBoard[1, 1];
 var cellThreeChar = gameBoard[2, 2];

Available for
download on
Wrox.com

Available for
download on
Wrox.com

A Refactoring Example ❘ 93

c04.indd 93c04.indd 93 3/31/11 3:27:56 PM3/31/11 3:27:56 PM

94 ❘ CHAPTER 4 TEST-DRIVEN DEVELOPMENT: LET THE TESTS BE YOUR GUIDE

 if (cellOneChar == cellTwoChar & &
 cellTwoChar == cellThreeChar)
 {
 return cellOneChar;
 }
 return SymbolForNoWinner;
}

 GameWinnerService.cs

 Now you just need to call this new method from the Validate method:

public char Validate(char[,] gameBoard)
{
 var currentWinningSymbol = CheckForThreeInARowInHorizontalRow(gameBoard);
 if (currentWinningSymbol != SymbolForNoWinner)
 return currentWinningSymbol;
 currentWinningSymbol = CheckForThreeInARowInVerticalColumn(gameBoard);
 if (currentWinningSymbol != SymbolForNoWinner)
 return currentWinningSymbol;
 currentWinningSymbol = CheckForThreeInARowDiagonally(gameBoard);
 return currentWinningSymbol;

}

 GameWinnerService.cs

 Running the unit tests shows that not only does the new test pass, but all the other unit tests still
pass as well (see Figure 4 - 15).

Available for
download on
Wrox.com

Available for
download on
Wrox.com

FIGURE 4 - 15

 The GameWinnerService is by no means complete at this point. This project will be available for
download from the Wrox website at www.wrox.com . I urge you to download it and practice the work
fl ow you ’ ve learned in this chapter, as well as the refactoring skills from Chapter 3, and complete
 GameWinnerService on your own. It ’ s a great way to practice and get used to the TDD work fl ow
of “ red, green, refactor. ”

 SUMMARY

 Developers who practice TDD use several frameworks and tools you may not yet be familiar with.
But a more diffi cult hurdle to get over than learning new tools and frameworks may be changing
how you think about and approach writing software. Writing a test before you write the code you

c04.indd 94c04.indd 94 3/31/11 3:27:57 PM3/31/11 3:27:57 PM

http://www.wrox.com

are testing may not seem natural at fi rst, so you may need to spend some time unlearning what you
know about writing code.

 The mantra of “ red, green, refactor ” defi nes the work fl ow for practicing TDD. Write your test fi rst,
even if it won ’ t compile. Write just enough code to make that test pass. Don ’ t worry if it ’ s not pretty
or you don ’ t feel you ’ ve covered all the bases the business will care about; that ’ s not your priority
right now. Just worry about the requirement in front of you at this moment. If your tests meet the
current business requirements and they pass, you ’ re done. Once you have written enough code to
complete the business functionality, refactor your code to make it readable and maintainable.

 Remember that tests are part of your code base too. Your code will be only as good as your tests
are. Don ’ t just test the “ happy path. ” Make sure you triangulate your tests to expose weaknesses in
your code. Treat your tests as if they were part of your business logic; do not let code rot set in.

 Download the tic - tac - toe GameWinnerService example from this chapter and complete it. Come up
with your own feature to defi ne game rules. Write tests and then add to the GameWinnerService to
make those tests pass. Constantly refactor your business code and your unit tests to keep them lean
and focused.

Summary ❘ 95

c04.indd 95c04.indd 95 3/31/11 3:27:57 PM3/31/11 3:27:57 PM

c04.indd 96c04.indd 96 3/31/11 3:27:58 PM3/31/11 3:27:58 PM

Mocking External Resources

 WHAT ’ S IN THIS CHAPTER?

 Why statically binding components creates brittle systems

 How the dependency injection pattern can help you by dynamically

binding these components

 How a dependency injection framework can help you manage the

dependencies within your application

 How to eff ectively mock your application ’ s data access code with

the repository pattern

 Most applications you ’ ll write as a business application developer are composed of various
components (some you ’ ll create; others will come from a third party) that are combined to
perform a task. Sometimes these components represent external resources, such as a database,
a web service, a fi le system, or even a physical device. These external resources are required
by the components in your application, yet you still need to be able to test the components in
isolation, away from the external resources. Developers practicing TDD do this by providing
stand - ins for these external resources at runtime. These stand - ins are called mocks .

 To use mocks, and to truly isolate the individual components under test, you need an
alternative to statically binding the individual components. The dependency injection pattern
can be used to inject the concrete implementations of these components at runtime or during
testing. Dependency injection frameworks help you manage the web of dependencies and
ensure that the correct concrete implementation is provided based on the context your
component is being used in.

➤

➤

➤

➤

 5

c05.indd 97c05.indd 97 3/31/11 3:29:19 PM3/31/11 3:29:19 PM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

 THE DEPENDENCY INJECTION PATTERN

 In a traditional application designed with OOP, you create service and entity classes to abstract
real - world processes and entities. An application is then composed of these various service and
entity classes. This composition creates dependencies between the classes in your applications. The
most obvious way to express and manage these dependencies is to statically create them in code as
part of your class ’ s initialization process. (This example can be found in the Before folder in the
downloaded code sample on www.wrox.com .)

public class BusinessService
{
 private readonly string _databaseConnectionString =
ConfigurationManager.ConnectionStrings[“MyConnectionString”].ConnectionString;
 private readonly string _webServiceAddress =
 ConfigurationManager.AppSettings[“MyWebServiceAddress”];
 private readonly LoggingDataSink _loggingDataSink;

 private DataAccessComponent _dataAccessComponent;
 private WebServiceProxy _webServiceProxy;
 private LoggingComponent _loggingComponent;

 public BusinessService()
 {
 _loggingDataSink = new LoggingDataSink();
 _loggingComponent = new LoggingComponent(_loggingDataSink);
 _webServiceProxy = new WebServiceProxy(_webServiceAddress);
 _dataAccessComponent = new DataAccessComponent(_databaseConnectionString);
 }
}

 BusinessService.cs

 Several problems occur when this method is used to handle dependencies between classes. The
most obvious problem is that this code is statically bound to the specifi c concrete implementations
you used when writing this class. There is no way to change the concrete object used in these
dependencies without opening the code. This static binding also makes it impossible to substitute
mock objects for any of the dependencies, which makes isolating any of the code in this class ’ s
methods for unit testing out of the question.

 This point is further complicated by the fact that none of these dependencies are contract - based.
Instead, they rely on specifi c defi nitions of classes. Relying on concrete classes instead of abstract
interfaces limits your ability to swap out these services. To open this class for alteration (by
defi nition of the Open/Close Principle [OCP]), you must be careful to replace the dependencies with
classes that support the same API or be prepared to make signifi cant changes to this class.

 The last major problem with this approach is that BusinessService class is required to know far
too much about the classes it ’ s dependent on simply to create concrete instances of them. It must
know that DataAccessComponent requires a connection string, that WebServiceProxy requires a
service address, and that LoggingComponent requires a data sink for its messages. This violates the
SRP, because the knowledge to create these classes must surely exist elsewhere in the application. In

Available for
download on
Wrox.com

Available for
download on
Wrox.com

98 ❘ CHAPTER 5 MOCKING EXTERNAL RESOURCES

c05.indd 98c05.indd 98 3/31/11 3:29:21 PM3/31/11 3:29:21 PM

http://www.wrox.com

fact, you can be assured that the same exact code is replicated anywhere in the application that these
dependency classes are used. This means that if any of these classes change this class, potentially
many more have to change as well.

 The dependency injection pattern provides a framework that allows you to provide concrete
instances of dependency objects to a class when that class is created. The easiest and most common
way of injecting these dependencies is by passing them into an object as constructor arguments.
Taking the previous example and refactoring it to the dependency injection pattern would yield a
class that looks like this. (This example can be found in the After folder in the downloaded code
sample on www.wrox.com .)

public class BusinessService
{
 private IDataAccessComponent _dataAccessComponent;
 private IWebServiceProxy _webServiceProxy;
 private ILoggingComponent _loggingComponent;

 public BusinessService(IDataAccessComponent dataAccessComponent,
 IWebServiceProxy webServiceProxy,
 ILoggingComponent loggingComponent)
 {
 _loggingComponent = loggingComponent;
 _webServiceProxy = webServiceProxy;
 _dataAccessComponent = dataAccessComponent;
 }
}

 BusinessService.cs

 Implementing the dependency injection pattern has already done a lot to make the BusinessService
easier to understand and maintain. Limiting dependencies is still important. A class with too many
constructor arguments is a code smell in and of itself, but the dependency injection patterns have made
it much easier to manage the dependencies that this class does have.

 Aside from the improved readability and maintainability of BusinessService , you can now inject
whatever implementations of the dependencies you like when you invoke this class, provided that
they implement the prescribed interface. You can provide different implementations of these based
on rules or confi guration values. This is very helpful in situations where you might want the instance
of this application in your QA environment to use a test database or web service and to switch to the
production instances of these resources when the application is promoted to production. The major
advantage for you as a TDD developer is that mocked instances of these services can be injected
into this class for testing. This allows you to provide stand - in implementations that provide canned
responses and enables you to isolate the code in this class for testing.

 Working with a Dependency Injection Framework

 The previous example showed how the dependencies for a class can be injected using constructor
arguments, which created a cleaner implementation of BusinessService . But the logic to create

Available for
download on
Wrox.com

Available for
download on
Wrox.com

The Dependency Injection Pattern ❘ 99

c05.indd 99c05.indd 99 3/31/11 3:29:22 PM3/31/11 3:29:22 PM

http://www.wrox.com

100 ❘ CHAPTER 5 MOCKING EXTERNAL RESOURCES

the concrete implementations of these dependency objects didn ’ t just disappear; it has to be moved
somewhere else in the code base. But where?

 Many OOP developers are familiar with one or more factory patterns such as factory, abstract factory,
builder and prototype. These are all derivatives of a basic pattern for creating classes in an application.
Essentially all factory patterns describe a means of getting an instance of an object that implements a
specifi ed interface. The requestor knows only which interface it requires. The factory can determine
which particular class to give the requestor based on which interface is requested, and on any
confi guration settings or context - based rules the factory developer provides.

 The factory pattern is very useful for abstracting the logic and details needed to create dependency
objects so that they do not have to appear in an application ’ s business domain code. A problem
arises with large applications, however. As more and more services and dependencies are added
to the application, the task of managing and maintaining the factories becomes quite diffi cult and
time - consuming.

 Dependency injection (DI) frameworks give developers an alternative to the traditional factory
patterns. They allow you to quickly and easily defi ne the dependencies within a system and the rules
for creating the appropriate concrete objects based on those dependencies. These rules and settings can
be used to build an entire tree of classes, relieving you of needing to know what your dependencies are
dependent on. In short, a DI framework does all the work of a factory class with much less work on
your part. The examples in this book use the Ninject DI framework, version 2.1.0.91 developed by
Nate Kohari and available for download at www.ninject.org .

 The following code revisits the example from the previous section. I ’ ve already changed the declared
types for DataAccessComponent , WebServiceProxy , and LoggingComponent to the appropriate
interfaces and added an interface ILoggingDataSink to the LoggingDataSink class. I ’ ve also
deleted all code lines that threw a NotImplementedException :

public class BusinessService
{
 private readonly string _databaseConnectionString =
 ConfigurationManager
 .ConnectionStrings[“MyConnectionString”].ConnectionString;
 private readonly string _webServiceAddress =
 ConfigurationManager.AppSettings[“MyWebServiceAddress”];
 private readonly ILoggingDataSink _loggingDataSink;

 private DataAccessComponent _dataAccessComponent;
 private WebServiceProxy _webServiceProxy;
 private LoggingComponent _loggingComponent;

 public BusinessService()
 {
 _loggingDataSink = new LoggingDataSink();
 _loggingComponent = new LoggingComponent(_loggingDataSink);
 _webServiceProxy = new WebServiceProxy(_webServiceAddress);
 _dataAccessComponent = new DataAccessComponent(_databaseConnectionString);
 }
}

 BusinessService.cs

Available for
download on
Wrox.com

Available for
download on
Wrox.com

c05.indd 100c05.indd 100 3/31/11 3:29:22 PM3/31/11 3:29:22 PM

http://www.ninject.org

 Interfaces are very important in harnessing the power of dependency injection. By declaring my
member variables as interfaces above, I ’ m implicitly stating that I don ’ t care what the specifi c
concrete implementation of each service is, I only care that it implements the interface that it ’ s
being declared as. This enables me to delegate the task of determining what my specifi c concrete
type should be to my dependency injection framework. The dependency injection framework then
becomes the sole storehouse of the rules and logic to determine which concrete instance to use
when. The use of interfaces helps to make this possible.

 This example shows you how to use the Ninject DI framework to take
care of the dependencies and their creation. To use Ninject, you must
add a reference to the Ninject framework assembly (Ninject.dll) to
your project, as shown in Figure 5 - 1.

 Ninject needs a class to store the rules it uses to create the concrete
instances of your dependencies. These classes are called modules.
The next step is to create a new class to hold the rules for the
 BusinessApplication.Core project. I ’ ll call it CoreModule . In order
to be used by Ninject, this class must inherit from NinjectModule and
provide an implementation for the Load method:

public class CoreModule : NinjectModule
{
 public override void Load()
 {
 throw new NotImplementedException ();
 }
}

 CoreModule.cs

 By providing a concrete implementation for the abstract class NinjectModule , CoreModule can give
Ninject the information it needs to build concrete classes based on requests from consumers. The
overridden Load method is where you defi ne the rules for creating your classes. Start with an easy
one: LoggingDataSink :

public override void Load()
{
 Bind < ILoggingDataSink > ().To < LoggingDataSink > ();
}

 CoreModule.cs

 I chose LoggingDataSink for this fi rst example because it takes no input parameters and is actually
used as an input parameter for one of my other concrete classes. This example uses the Bind command
from Ninject to specify that any requests to Ninject for a class that implements the ILoggingDataSink
interface should return a concrete instance of LoggingDataSink , which is specifi ed with the To
extension method.

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Available for
download on
Wrox.com

 FIGURE 5 - 1

The Dependency Injection Pattern ❘ 101

c05.indd 101c05.indd 101 3/31/11 3:29:23 PM3/31/11 3:29:23 PM

102 ❘ CHAPTER 5 MOCKING EXTERNAL RESOURCES

 The next binding to create is the binding for LoggingComponent . The syntax to create this binding
is exactly the same as the binding for LoggingDataSink :

public override void Load()
{
 Bind < ILoggingDataSink > ().To < LoggingDataSink > ();
 Bind < ILoggingComponent > ().To < LoggingComponent > ();
}

 CoreModule.cs

 Remember, LoggingComponent takes an instance of ILoggingDataSink as a constructor parameter.
But you ’ ll notice that the example does not specify a rule in Ninject that shows how this relationship
is structured or how LoggingComponent gets the correct concrete instance of ILoggingDataSink .
The benefi t of a DI framework is that you don ’ t have to specify this. Ninject can examine
 LoggingComponent and see that it has one constructor. It also can see that this constructor takes
a parameter of type ILoggingDataSink . Since Ninject has a rule for how ILoggingDataSink gets
created, it can infer that when creating an instance of LoggingComponent , it also needs to create an
instance of a class that implements ILoggingDataSink (in this case, LoggingDataSink) and pass
it to LoggingComponent as a constructor parameter. You don ’ t need to do anything else; you get
this functionality for free. This functionality extends through however many layers are needed. For
example, if LoggingDataSink had a constructor argument that Ninject could satisfy (meaning that
Ninject has the information it needs to create an object that conforms to the constructor parameter),
Ninject would take care of that creation as well. You do not need to do anything else other than
specify additional rules.

 DataAccessComponent is a little more complicated than LoggingComponent . It has a dependency
and takes a constructor parameter, but for DataAccessComponent this parameter is a string from
the application ’ s confi guration fi le, not another class.

 There will always be situations in which a class requires something as a constructor parameter that
Ninject cannot provide. The connection string that is pulled from the application confi guration
fi le for DataAccessComponent falls into this category. To handle instantiation logic that is more
complicated than simply mapping an interface to a class, Ninject lets you create providers for
specifi c interfaces.

 A provider is simply a class that allows you to abstract complex creational logic from the code in
your module. To create a provider, you create a class and inherit from the abstract Provider class
that ships with Ninject:

public class DataAccessComponentProvider : Provider < IDataAccessComponent >
{
 protected override IDataAccessComponent CreateInstance(IContext context)
 {
 throw new NotImplementedException ();
 }
}

 CoreModule.cs

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Available for
download on
Wrox.com

c05.indd 102c05.indd 102 3/31/11 3:29:24 PM3/31/11 3:29:24 PM

 The generic type provided to the provider base is the interface that this provider will be bound to — in
this case, IDataAccessComponent . You need to provide an implementation for the CreateInstance
method that returns an instance of a class that implements the IDataAccessComponent interface.
In the case of the sample application, this is an instance of the DataAccessComponent to which you
provide the connection string value from the application ’ s confi guration fi le:

protected override IDataAccessComponent CreateInstance(IContext context)
{
 var databaseConnectionString =
 ConfigurationManager
 .ConnectionStrings[“MyConnectionString”].ConnectionString;
 return new DataAccessComponent(databaseConnectionString);
}

 CoreModule.cs

 The code to retrieve the connection string from the application ’ s confi guration fi le and return an
instance of DataAccessComponent is simple and easy to understand. Placing this code in its own
provider class enables you to abstract the DataAccessComponent creation logic from the simpler
rules listed in the Load method of CoreModule . You now need to add a reference to the Load method
of the CoreModule class to enable Ninject to know how to create a DataAccessComponent when an
 IDataAccessComponent is requested:

public override void Load()
{
 Bind < ILoggingDataSink > ().To < LoggingDataSink > ();
 Bind < ILoggingComponent > ().To < LoggingComponent > ();
 Bind < IDataAccessComponent > ().ToProvider(new DataAccessComponentProvider());
}

 CoreModule.cs

 That ’ s all you need. When you request an instance of IDataAccessComponent from Ninject, you are
provided with a properly created DataAccessComponent .

 The code to create a provider for my WebServiceProxy is almost identical:

public class WebServiceProxyComponentProvider : Provider < IWebServiceProxy >
{
 protected override IWebServiceProxy CreateInstance(IContext context)
 {
 var webServiceAddress = ConfigurationManager.AppSettings
 [“MyWebServiceAddress”];
 return new WebServiceProxy(webServiceAddress);
 }
}

 CoreModule.cs

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Available for
download on
Wrox.com

The Dependency Injection Pattern ❘ 103

c05.indd 103c05.indd 103 3/31/11 3:29:24 PM3/31/11 3:29:24 PM

104 ❘ CHAPTER 5 MOCKING EXTERNAL RESOURCES

 The change to CoreModule to inform Ninject about this new provider is just as simple as the change
to add DataAccessComponentProvider :

public override void Load()
{
 Bind < ILoggingDataSink > ().To < LoggingDataSink > ();
 Bind < ILoggingComponent > ().To < LoggingComponent > ();
 Bind < IDataAccessComponent > ().ToProvider(new DataAccessComponentProvider());
 Bind < IWebServiceProxy > ().ToProvider(new WebServiceProxyComponentProvider());
}

 CoreModule.cs

 With CoreModule complete, you can refactor the BusinessService class to remove the logic needed
to create the dependency objects:

public class BusinessService
{
 private ILoggingComponent _loggingComponent;
 private IWebServiceProxy _webServiceProxy;
 private IDataAccessComponent _dataAccessComponent;

 public BusinessService(ILoggingComponent loggingComponent
 IWebServiceProxy webServiceProxy,
 IDataAccessComponent dataAccessComponent)
 {
 _loggingComponent = loggingComponent;
 _webServiceProxy = webServiceProxy;
 _dataAccessComponent = dataAccessComponent;
 }
}

 BusinessService.cs

 This implementation of BusinessService is much cleaner than the previous version. Removing
the logic necessary to create and maintain the dependency objects prevents you from violating the
SRP, because only one place in this code would need to change if the routine to create these
dependency objects changed. The BusinessService class also no longer needs to care how these
objects get created; it ’ s satisfi ed that the objects it ’ s receiving implement that proper interface.
That ’ s good enough.

 So, how do you create an instance of BusinessService ? When using a DI framework, you can ’ t
 “ new - up ” objects like you ’ re used to:

var businessService = new BusinessService();

 Without constructor parameters, this will not compile. Instead, you need to ask Ninject for an instance
of BusinessService . Most DI frameworks provide a sort of repository class that enables you to
request objects from the framework. In Ninject this repository is called the kernel. To demonstrate

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Available for
download on
Wrox.com

c05.indd 104c05.indd 104 3/31/11 3:29:25 PM3/31/11 3:29:25 PM

requesting an object from the kernel, you ’ ll create a unit test. The fi rst step
is to create a project to contain the unit tests, as shown in Figure 5 - 2.

 In addition to the nunit.framework assembly, you add a reference to
the Ninject assembly that you need to create your kernel. The kernel is the
instance of the Ninject StandardKernel class that you will create to be
your interface to the Ninject framework. You will ask this instance of
the StandardKernel for classes by calling the Get method and specifying
what interface you need an instance of. The StandardKernel uses the rules
provided during its construction to determine what concrete instance should
be returned, and return a fully completed object graph to the calling method.

 Next you create a unit test to test getting an instance of
 BusinessService from the Ninject kernel:

[TestFixture]
public class BusinessServiceTests
{
 [Test]
 public void ShouldBeAbleToGetBusinessServiceFromNinject()
 {
 BusinessService actual;

 Assert.IsNotNull(actual);
 }
}

 BusinessServiceTests.cs

 Attempting to run this test fails, because the code does not compile at
this point, as shown in Figure 5 - 3.

 To make this test runnable, you need to request an object to assign to
 actual from the Ninject kernel. To use the Ninject classes you need
to add a using statement for the Ninject assembly to the beginning of your unit test:

using Ninject;

 BusinessServiceTests.cs

 Now you need to add code to your unit test to create an instance of the Ninject kernel and request
an instance of BusinessService from it:

[Test]
public void ShouldBeAbleToGetBusinessServiceFromNinject()
{
 BusinessService actual;
 var kernel = new StandardKernel(new CoreModule());
 actual = kernel.Get < BusinessService > ();

 Assert.IsNotNull(actual);
}

 BusinessServiceTests.cs

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Available for
download on
Wrox.com

 FIGURE 5 - 2

 FIGURE 5 - 3

The Dependency Injection Pattern ❘ 105

c05.indd 105c05.indd 105 3/31/11 3:29:26 PM3/31/11 3:29:26 PM

106 ❘ CHAPTER 5 MOCKING EXTERNAL RESOURCES

 When creating an instance of Ninject ’ s StandardKernel , you need to provide it with an instance
of CoreModule . This is how Ninject is made aware of the rules and steps needed to create objects.
In the example here, StandardKernel takes only one module (CoreModule) as its rule set. In this
example this is fi ne, because only one library (BusinessApplication.Core) is being worked with.
But what if you had several assemblies? You could make one master module that has the creation
rules for everything in your solution, but this is not a good idea. It requires whatever project the
master module is placed in to know far too much about the other projects and assemblies. It also
limits the reuse of the components in this solution. If you have a component in library B, but its
creation rules are contained in a module in library A, you are now dependent on library A and all
its dependencies. To solve this problem, create one module for every project in your solution that
provides the creational rules for only the classes and interfaces in that library. This means that the
libraries are less dependent on each other and reuse is much easier.

 The constructor for StandardKernel has an override that takes an array of modules. This allows
you to create a single kernel for your application (in practice, this kernel should be a singleton) that
has all the information necessary to create anything you need anywhere in the application. The
syntax to create a kernel like this is simple:

var kernel = new StandardKernel(new ModuleA(),
 new ModuleB(),
 new ModuleC());

 Running the tests shows that an issue still exists, as shown in Figure 5 - 4.

 FIGURE 5 - 4

 The stack trace tells you that line 32 in the CoreModule.cs fi le has an issue:

var databaseConnectionString =
 ConfigurationManager
 .ConnectionStrings[“MyConnectionString”].ConnectionString;

 CoreModules.cs

Available for
download on
Wrox.com

Available for
download on
Wrox.com

c05.indd 106c05.indd 106 3/31/11 3:29:27 PM3/31/11 3:29:27 PM

 When a unit test requires information from application confi guration fi les (web.config or app
.config), it needs its own instance of this fi le. It doesn ’ t matter if this fi le is added to the
Visual Studio project the test appears in or is copied from another project. It cannot access a
confi guration fi le from another project. To resolve this, you can add an app.config fi le to the
 BusinessApplication.UnitTests project and populate it with a sample connection string:

 < ?xml version=”1.0” encoding=”utf-8” ? >
 < configuration >
 < connectionStrings >
 < add name=”MyConnectionString” connectionString=”Sample Configuration”/ >
 < /connectionStrings >
 < /configuration >

 app.confi g

 Now when you run the test, Ninject has created an instance of BusinessService , with all its
dependent objects, as shown in Figure 5 - 5.

Available for
download on
Wrox.com

Available for
download on
Wrox.com

 FIGURE 5 - 5

 Earlier, when you created CoreModule , rules for creating BusinessService were left unspecifi ed.
Since you asked Ninject for an instance of a specifi c concrete class and not an object to satisfy an
interface, Ninject simply used the rules it had for the classes BusinessService is dependent on and
returned a concrete instance of the BusinessService class. The examples in CoreModule showed
binding an interface to a concrete class, but you can also bind concrete classes to classes:

Bind < BusinessService > ().To < BusinessService > ();

 When binding a class to itself, Ninject provides a shortcut in its syntax:

Bind < BusinessService > ().ToSelf();

 Of course, if you were to create an IBusinessService interface and have BusinessService implement
this interface, you could bind the two and have your test request an instance of IBusinessService from
the Ninject kernel:

IBusinessService actual;
var kernel = new StandardKernel(new CoreModule());
actual = kernel.Get < IBusinessService > ();

 The remaining examples in this book use Ninject extensively and demonstrate many more features
of the framework.

The Dependency Injection Pattern ❘ 107

c05.indd 107c05.indd 107 3/31/11 3:29:27 PM3/31/11 3:29:27 PM

108 ❘ CHAPTER 5 MOCKING EXTERNAL RESOURCES

 ABSTRACTING THE DATA ACCESS LAYER

 Most business applications use some sort of data store. It could be a traditional Database
Management System (DBMS), a text or binary fi le, a web service, or some other mechanism for
persisting data. Data manipulation and persistence are the focus of most of what you will do as a
business developer. But when writing unit tests, it ’ s important that you isolate code being tested,
even code that needs to be involved in accessing data. The repository pattern lets you abstract the
components of your application that are responsible for accessing external data stores from your
business logic and thus create isolated tests for that business logic.

 Moving the Database Concerns Out of the Business Code

 When .NET 1.0 was released, it featured an update to Microsoft ’ s ActiveX Data Object (ADO)
framework called ADO.NET. ADO.NET was not simply a .NET port of ADO; it added many features
designed to allow developers to quickly and easily work with classes and objects. As such, early users
of ADO.NET adopted a “ smart object ” architecture in which each class was given the ability to be
self - persisting. More often than not this included embedding quite a bit of ADO.NET code within the
class itself using either data readers or datasets to retrieve and store data to the database.

 Although this did create a code base where developers could quickly and easily develop these self -
 persisting objects, it caused many other issues. Having the data access logic distributed throughout
the application created many maintenance problems, because changes to how one class was to be
handled by the database rarely stayed isolated to that class. Because of this, no single point of failure
could be built around database access. Changes and defects in how data access was accomplished
sometimes required extensive renovation of the application code base.

 This also raised issues in systems with complex relationships between classes. In some situations a
class couldn ’ t properly instantiate itself without also instantiating several subobjects. This created a
problem similar to the issues in the previous section, where the logic and rules around how specifi c
concrete objects are created became fragmented and spread throughout the application. It was
impossible not to violate the SRP and have a working system in these cases.

 Finally, this pattern made writing isolated unit testing a nightmare, if it was possible at all.
The tightly embedded ADO.NET code could not be quickly or easily decoupled from the business
logic. This made providing mock objects for these database connection points diffi cult, if not
impossible.

 Isolating Data with the Repository Pattern

 Eventually developers decided that although smart objects could be helpful, it was a bigger benefi t
to move the data access logic away from the business entities. Doing so created a decoupling
that allowed the business development to proceed and evolve independently from data access and
data store development. This independence meant that the back - end data store could change,
sometimes in dramatic ways, and the business domain logic and entities were insulated from these
changes. This loose coupling made it easier for developers to write isolated unit tests for their
business logic.

c05.indd 108c05.indd 108 3/31/11 3:29:28 PM3/31/11 3:29:28 PM

 In short, the repository pattern states that all data access will be encapsulated into a repository
object, which the business domain classes will use to perform any and all persistence work (see
Figure 5 - 6).

Business Domain
Service

Data Store

Entity Repository

Interfaces with Data Store to
translate stored data to/from
entity objects

Responds with entity objects
or success/failure return
values

Issues CRUD (Create, Retrieve,
Update, Delete) commands

 FIGURE 5 - 6

 Repositories create a shim between the business domain and the data store. The repository encapsulates
the knowledge of how the data is stored in a fl attened format and how that data is translated from
this fl at form to an entity object. Each entity should have its own repository. However, repositories for
different types should have similar interfaces and a common base class to help the data access code
remain DRY and to make learning how to work with the repository easier.

 Repositories can be used with any number of data access techniques, including ADO.NET, web
services, and fl at fi le storage. Many object relational mapper (ORM) frameworks make creating
repositories easy. In systems when frameworks such as Entity Framework or nHibernate are used
to manage persistence, it ’ s possible to write a single repository that takes an entity type as a generic
type and offl oads the type - specifi c work to the framework. Check your ORM ’ s documentation for
more information.

 Injecting the Repository

 You can make some additions to the solution from the previous example by creating a Person
entity.

public class Person
{
 public int Id { get; set; }
 public string FirstName { get; set; }
 public string LastName { get; set; }
}

 Person.cs

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Abstracting the Data Access Layer ❘ 109

c05.indd 109c05.indd 109 3/31/11 3:29:28 PM3/31/11 3:29:28 PM

110 ❘ CHAPTER 5 MOCKING EXTERNAL RESOURCES

 A PersonService class serves as the business domain class that works with Person objects from
a standpoint of enforcing business rules and using Person in business work fl ows. Here is the
interface for PersonService :

public interface IPersonService
{
 Person GetPerson (int personId);
}

 PersonService.cs

 PersonService uses an instance of PersonRepository for data persistence. This example
implements only the GetPerson method, and instead of using a database back end, it uses an IList
member variable to hold Person data:

public interface IPersonRepository
{
 Person GetPerson(int personId);
}

public class PersonRepository : IPersonRepository
{
 private readonly IList < Person > _personList;

 public Person GetPerson(int personId)
 {
 return _personList.Where(person = person.Id == personId).FirstOrDefault();
 }

 public PersonRepository()
 {
 _personList = new List < Person >
 {
 new Person {Id = 1, FirstName = “John”,
 LastName = “Doe”},
 new Person {Id = 2, FirstName = “Richard”,
 LastName = “Roe”},
 new Person {Id = 1, FirstName = “Amy”,
 LastName = “Adams”}
 };
 }
}

 PersonRepository.cs

 Now that pieces of the application in play are defi ned, you can implement PersonSevice :

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Available for
download on
Wrox.com

c05.indd 110c05.indd 110 3/31/11 3:29:29 PM3/31/11 3:29:29 PM

public class PersonService : IPersonService
{
 public PersonService()
 {

 }

 public Person GetPerson (int personId)
 {
 return new Person();
 }
}

 PersonService.cs

 Right now PersonService has an empty constructor. You need to inject PersonRepository so
that PersonService has a way to access the data store and change the implementation of the
 GetPerson method:

public class PersonService : IPersonService
{
 private readonly IPersonRepository _personRepository;

 public PersonService(IPersonRepository personRepository)
 {
 _personRepository = personRepository;
 }
 public Person GetPerson (int personId)
 {
 return _personRepository.GetPerson(personId);
 }
}

 PersonService.cs

 Finally, you need to defi ne the rules for creating PersonService and PersonRepository in
 CoreModule :

Bind < IPersonRepository > ().To < PersonRepository > ();
Bind < IPersonService > ().To < PersonService > ();

 CoreModule.cs

 To verify that everything is wired correctly, you want to write a unit test to verify that you can get
an instance of PersonService from Ninject and get a Person that indicates that PersonService
could call PersonRepository :

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Abstracting the Data Access Layer ❘ 111

c05.indd 111c05.indd 111 3/31/11 3:29:29 PM3/31/11 3:29:29 PM

112 ❘ CHAPTER 5 MOCKING EXTERNAL RESOURCES

[TestFixture]
public class PersonServiceTests
{
 [Test]
 public void ShouldBeAbleToCallPersonServiceAndGetPerson()
 {
 var expected = new Person {Id = 1, FirstName = “John”, LastName = “Doe”};
 var kernel = new StandardKernel(new CoreModule());
 var personService = kernel.Get < PersonService > ();
 var actual = personService.GetPerson(expected.Id);

 Assert.AreEqual(expected.Id, actual.Id);
 Assert.AreEqual(expected.FirstName, actual.FirstName);
 Assert.AreEqual(expected.LastName, actual.LastName);
 }
}

 PersonServiceTests.cs

 Running the unit test and seeing that it passes demonstrates that PersonService and PersonRepository
get created correctly, as shown in Figure 5 - 7.

Available for
download on
Wrox.com

Available for
download on
Wrox.com

 FIGURE 5 - 7

 Mocking the Repository

 The unit test runs, but a signifi cant problem remains. Because it breaks the boundaries between
 PersonService and PersonRepository , it ’ s not truly a unit test. To make this an actual unit test,
you need to provide a mocked object to stand in for PersonRepository in PersonService . This
example shows how to create the mock for PersonRepository using the Moq framework:

var personReposityMock = new Mock < IPersonRepository > ();
personReposityMock
 .Setup(pr = pr.GetPerson(1))
 .Returns(new Person {Id = 1, FirstName = “Bob”, LastName = “Smith”});
var personService = new PersonService(personReposityMock.Object);

 PersonServiceTests.cs

 The basics of Moq were covered in Chapter 2, but I ’ ll do a quick review by explaining what
I ’ ve done here. The fi rst line of this snippet asks the Moq framework to create a mock or
stand - in object based on the IPersonRepository called personRepositoryMock . Right now
 personRepositoryMock is an empty class that implements the IPersonRepository interface; it
has methods, but they won ’ t actually do anything until an implementation is provided for them.

Available for
download on
Wrox.com

Available for
download on
Wrox.com

c05.indd 112c05.indd 112 3/31/11 3:29:30 PM3/31/11 3:29:30 PM

This is accomplished in the next line by using the Setup and Returns extension methods in Moq
to tell personRepositoryMock that when GetPerson is called on it with a parameter of 1, it
should return the Person object described in the Returns extension method. Finally, I create an
instance of PersonService by hand (I ’ m no longer using Ninject) and inject the mocked version of
 PersonRepository (personRepositoryMock) by passing it in as a constructor parameter.

 Here ’ s the entire test, with the code to create the mocked version of PersonRepository :

[Test]
public void ShouldBeAbleToCallPersonServiceAndGetPerson()
{
 var expected = new Person {Id = 1, FirstName = “John”, LastName = “Doe”};
 var personReposityMock = new Mock < IPersonRepository > ();
 personReposityMock
 .Setup(pr = > pr.GetPerson(1))
 .Returns(new Person {Id = 1, FirstName = “Bob”, LastName = “Smith”});
 var personService = new PersonService(personReposityMock.Object);
 var actual = personService.GetPerson(expected.Id);

 Assert.AreEqual(expected.Id, actual.Id);
 Assert.AreEqual(expected.FirstName, actual.FirstName);
 Assert.AreEqual(expected.LastName, actual.LastName);
}

 PersonServiceTests.cs

 Notice that in the setup for personRepositoryMock the Person object does not match expectations.
Therefore, the test should fail, as shown in Figure 5 - 8.

Available for
download on
Wrox.com

Available for
download on
Wrox.com

 FIGURE 5 - 8

 The failing test, and the message that the fi rst names do not match, demonstrate that this test version of
 PersonService is using the mocked version of PersonRepository , not the actual implementation
of the class.

 SUMMARY

 Most applications you will write in your career as a business developer will rely on external
resources of some sort. These could be databases, web services, fi le systems, or even pieces of
physical equipment. In spite of this, you still need to ensure that the unit tests you write are isolated

Summary ❘ 113

c05.indd 113c05.indd 113 3/31/11 3:29:31 PM3/31/11 3:29:31 PM

114 ❘ CHAPTER 5 MOCKING EXTERNAL RESOURCES

to exercise only the specifi c method you are testing independent of any dependencies.
The traditional approach of statically creating these dependencies creates applications that are
brittle and diffi cult to maintain.

 The dependency injection pattern allows you to defi ne these dependencies based on interfaces instead
of concrete implementations. The concrete implementations of these interfaces can be provided, or
injected, into the object at runtime. This enables you to vary the concrete implementation for these
dependencies based on the context the object is being used in. At runtime your application can vary
the concrete implementation based on the environment (Production, QA, Development). For unit
testing you can inject mocked objects to stand in for actual implementations. This allows you to keep
your tests isolated and predictable.

 Accessing data is a very common requirement for business applications. Many developers have
tried embedding the code to perform persistence actions in the actual class defi nitions themselves.
This causes issues with data access code being distributed throughout the application and makes
maintenance diffi cult.

 By using the repository pattern, you can isolate this functionality from your business logic. This
creates a clean separation between business domain logic and the infrastructure needed to perform
persistence. It also makes mocking data access in your unit tests easier, because this code is no
longer tightly bound to your business domain code.

c05.indd 114c05.indd 114 3/31/11 3:29:32 PM3/31/11 3:29:32 PM

PART II

Putting Basics into Action

CHAPTER 6: Starting the Sample Application

CHAPTER 7: Implementing the First User Story

CHAPTER 8: Integration Testing

�

�

�

c06.indd 115c06.indd 115 3/31/11 3:35:38 PM3/31/11 3:35:38 PM

c06.indd 116c06.indd 116 3/31/11 3:35:41 PM3/31/11 3:35:41 PM

Starting the Sample Application

 WHAT ’ S IN THIS CHAPTER?

 How business requirements drive features that defi ne unit tests

 What steps to take before application development begins

 How to make decisions about application technologies

 How user stories drive agile application development methodologies

 Why project organization is important and what to keep in mind

when creating your project

 Before you write a single line of code for an application, you must complete many tasks. An
application is defi ned by a set of functional business requirements and a set of nonfunctional,
technical requirements. The functional requirements describe what the application must do to
meet the business ’ s needs. The nonfunctional requirements describe a set of conditions or
parameters within which the application must exist. After this information is gathered,
functional requirements are used to create user stories, which are decomposed into features
that are assigned to developers to be built. Nonfunctional requirements are used to determine
the application platform and structure, as well as what frameworks, if any, should be used
in the application.

 In this chapter you see the various steps and decisions that are necessary before starting
to write an application. You ’ ll be given an insight into a working agile implementation.
You ’ ll see what decisions are made before the topic of technology is even discussed, and how
the proper technology is chosen once those decisions are made. Finally, you ’ ll see how to start
your project by creating the basic projects needed for the sample application in a Visual
Studio solution.

➤

➤

➤

➤

➤

 6

c06.indd 117c06.indd 117 3/31/11 3:35:41 PM3/31/11 3:35:41 PM

118 ❘ CHAPTER 6 STARTING THE SAMPLE APPLICATION

 DEFINING THE PROJECT

 Most developers like to write code. In most cases, this is what led us to become developers in the
fi rst place. Most developers try to solve a given problem with code. Many developers communicate
in code. Some developers even think in code! Given the option, I believe most developers would
attempt to do all communicating and problem solving in code. Unfortunately for them, the rest of
the business does not communicate, let alone think, in code.

 No application gets written without a set of requirements. Even a small application that you might
write to keep track of your DVD collection has some sort of requirements - gathering phase, even
if it ’ s very informal. Before you can write an application, you need to know what the application
is supposed to do. In addition to knowing what the application will do, you must know how the
application is to be built and under what conditions it will have to run. All these decisions should
be made before development begins.

 The business functionality of the application is defi ned by the business requirements. The
technological foundation of the application is defi ned by the target environment and the choice of
technologies used to build the application. In an ideal situation, while the technological choices
made should complement the business, the business would not be made to bend to the whim of the
chosen technology. Unfortunately, ideal situations are rare. For that reason, it ’ s important to deal
with the business needs early on, and let them drive the technological needs.

 The target environment defi nes what resources the application requires to perform its task as
well as what limitations the application must work within. The defi nition of this environment
is important to ensure that your application has the necessary resources at deployment, and has
been designed and built in such a way that it does not attempt to exceed its means. The choice of
technologies used to build the application is important as well. In many cases this will already be
decided for you; your company may have standardized on a specifi c version of .NET and a handful
of application frameworks. In other cases you may need to make the case for an inclusion new
framework or an upgraded to the latest version of .NET. These factors have a great deal of
infl uence on how an application is designed and built, and the sooner you can make these
decisions the better.

 Developing the Project Overview

 As a business developer, you ’ ll spend most of your time building applications to suit a particular
need of the business. It could be an application to streamline or automate an existing process or
application to help the company take advantage of a new revenue stream. In any case, a set of
high - level requirements must be gathered to identify the application ’ s business needs.

 A project overview is a high - level description of the application ’ s business needs. It describes the
application ’ s overall purpose, some of the key work fl ows, and the major user roles and types for
the application. This overview is designed to provide the broad strokes of the business requirements.
No detailed design or user story creation is done at this point. The idea is to simply identify the
large, high - level pieces of the application so that they can be broken down at the next stage.

c06.indd 118c06.indd 118 3/31/11 3:35:43 PM3/31/11 3:35:43 PM

 The next few chapters describe the building of an offi ce supply inventory management system, the
code for which will be available on www.wrox.com . I ’ ll call this application OSIM for short. As part
of the project overview for OSIM, I have identifi ed the application ’ s major business needs:

 The application must keep track of inventory currently in stock.

 The application must allow users to add new types of items to the inventory list.

 The application must allow users to log replenishments of items into inventory.

 The application must allow users to log items being removed from inventory for use.

 Users must be authenticated.

 Notice that this list doesn ’ t specify how any of these tasks should be done. It doesn ’ t address any
technology - specifi c issues. In fact, you could meet all these business requirements with a notebook
kept locked in a fi ling cabinet. The point of the project overview is not to start solving a business
problem using technology. The purpose is to identify the needs while taking an objective and
somewhat detached view of the technology that will be used. A pitfall with involving technology
at this stage of the project is that the people involved, driven by the developers, will subconsciously
try to guide or bend the requirements to a specifi c technology or solution they already have in mind.
This is the opposite of what should be done: The technology should serve the needs of the business,
not vice versa.

 Defi ning the Target Environment

 Often the needs of the business will impact what the target environment of your application will be.
When thinking about the environment that your application will be deployed to, you need to do more
than simply consider what operating system the server will run. You need to think about how the
application will be used. Will it be a web - based application? Will it run on the user ’ s desktop? Maybe
it will run on a mobile platform. Will you need to deploy web services as part of your application?

 It ’ s also important to think about how the application will be built, and what sort of infrastructure -
 based requirements will be levied against it. Does the application have multiple tiers? How many
concurrent users do you expect to have at peak times? What kind of response time does the application
need to provide? Will the application need to scale? Will it be expected to scale vertically (moving
to a more powerful server) or horizontally (deploying the application to more servers) or both? How
do those needs affect your application architecture?

 The application ’ s target environment should be described in the application ’ s nonfunctional
requirements. In some cases a target environment will already be defi ned, and your application must
be designed to fi t that mold. In other cases a new environment will be created, but there may be
other constraints, such as budget and company hardware and/or software standards. These all need
to be taken into account when defi ning your application ’ s target environment.

 For the OSIM application, the target environment will have to accommodate a multitiered
application. As part of the technical requirements, the business owner has stated that he wants
the application to have a web - based front end, a Windows client - based front end, and a web services
interface for external trading partners and various existing Enterprise reporting tools. The tiers
will consist of the user interface tier (this includes any application - external web services), a business

➤

➤

➤

➤

➤

Defi ning the Project ❘ 119

c06.indd 119c06.indd 119 3/31/11 3:35:43 PM3/31/11 3:35:43 PM

http://www.wrox.com

120 ❘ CHAPTER 6 STARTING THE SAMPLE APPLICATION

logic tier, and a data storage tier. Because this is a small, interdepartmental application, you ’ re
expecting no more than two to four concurrent users; however, the tiered architecture gives this
application room for growth. Based on this, you defi ne your target environment as a Microsoft
Windows server running IIS 7 or later (this does not have to be a dedicated server) and Microsoft
SQL Server 2008 R2.

 Choosing the Application Technology

 After a target environment has been defi ned, you must settle on an application platform. You
have many platforms to choose from. J2EE, .NET, Ruby on Rails, and PHP are some of the more
popular platforms for creating web applications. The choices you made when defi ning the target
environment will provide some guidance in choosing an application platform, because some server
operating systems are better at supporting specifi c application platforms.

 Beyond the operating system, you must consider some other things when choosing an application
platform. Does your development staff already have a high degree of knowledge and experience
with a specifi c platform? Do you already have a signifi cant investment in a particular platform?
What platform best fi ts the needs of the application you ’ re building? Finally, you want to choose
an application platform that has a future and will continue to be supported going forward.

 After you have selected a platform, you still face many decisions. Will your application use an
Object Relational Mapper (ORM). If so, which one? Which dependency injection (DI) framework
should you use? What about a unit test framework? Which one is best suited to your needs? What
about a web framework? The answers to these questions can be arrived at much like the answer to
which application platform to use: Find a tool that fi ts your needs, has good support, and will be
there in the future.

 The OSIM application will use several frameworks, which are discussed in the section “ Choosing
the Frameworks. ” The frameworks I focus on for the purposes of this book are nUnit, nBehave,
Moq, and Ninject. The others are listed for illustrative purposes and for a level of completeness. No
prior experience with those frameworks is necessary to follow along.

 DEFINING THE USER STORIES

 In an agile development methodology, user stories defi ne business rules and work fl ows for the
application. These user stories, which are driven by the business ’ s needs, become the application ’ s
functional requirements. As user stories are collected, they are decomposed into application features
that are assigned to developers, which the developers then use to defi ne their tests, which drive
development. For more background on agile methodologies, please refer to the section “ A Quick
Introduction to Agile Methodologies ” in Chapter 1.

 Collecting the Stories

 User stories are representations of the business requirements for an application. They should
describe the expected interactions the business users will have with the application. The act of
collecting user stories roughly correlates to the activities described in the section “ The Project

c06.indd 120c06.indd 120 3/31/11 3:35:44 PM3/31/11 3:35:44 PM

Overview ” above. Therefore at this point you should be trying to remain technology - agnostic while
defi ning the users ’ interaction with the system in broad terms.

 Gathering the information needed to create these stories and then reengaging with the business
to validate them can be one of the most diffi cult tasks on an application development project.
Developers tend to think technology fi rst. Business users are usually not as technologically savvy as
the development team. To engage these business users, it ’ s important to communicate with them in a
language, setting, and manner that make them comfortable. For that reason, if your team has access
to a business analyst (BA), I highly recommend taking advantage of this person ’ s skill in gathering
the user stories.

 Unfortunately, not all development teams have a BA on staff. In these cases it ’ s
up to the architect, lead developer, or even just members of the development
team to work with the project manager (PM) to engage the business and defi ne
the user stories. The important thing at this stage is to communicate in some
manner with the business.

 There are many techniques that can be used to communicate with the business and get the needed
information to create the user stories. Some techniques are very intrusive, while others are more
passive. The three most common (from intrusive to passive) are shadowing, client interviews and
joint application design (JAD) sessions.

 Client interviews can be helpful because they allow the developer (or PM) to communicate one on
one with the business user. A client interview is simply an opportunity to sit down with the business
user in a distraction free environment (or as close to distraction free as possible) and ask them
questions about the application. These can be one - on - one or in a group interview. Client interviews
can be a formal question and answer session, an informal conversation or maybe a demo by the
business user of the existing system. In many cases they also give the developer an opportunity to
see how the business user currently does his or her job. This can provide invaluable information
to the developer when it comes to creating user stories. Client interviews also have the benefi t of
having relatively low impact on the business users (remember, they have their own jobs to do
in addition to helping you derive user stories) and offer much fl exibility in terms of scheduling. An
issue with relying on client interviews too much is that often you will receive confl icting information
from different users. In this case it ’ s important to reengage the business users who provided the
confl icting information and try to reach a resolution.

 The client interview tends to represent a happy medium when it comes to gathering requirements
from users. At one end of the spectrum is shadowing the business users for a period of time.
Shadowing simply means following the users for a period of time and observing them perform
their work. Shadowing lets you learn a lot about the business problem domain; in many cases
a developer can learn things that would never have come up in a client interview. On the other
hand, shadowing can be an extreme inconvenience to both the business users and the developer.
Furthermore, issues arise when business users must perform actions where a security risk would
be created by allowing a developer to shadow them. For example, a nurse works with private

Defi ning the User Stories ❘ 121

c06.indd 121c06.indd 121 3/31/11 3:35:45 PM3/31/11 3:35:45 PM

122 ❘ CHAPTER 6 STARTING THE SAMPLE APPLICATION

patient information and treats patients. Under HIPAA rules, a developer, or anyone else, for
that matter, cannot be put in a position where he or she could inadvertently learn private patient
information or be privy to a patient ’ s ailment or course of treatment. Shadowing can be used in
extreme cases, but be mindful of the disruptions it can cause.

 At the other end of the spectrum is the concept of gathering all the business users at once and
collecting a set of user stories in one large JAD session. These JAD sessions can be multiday
affairs with all the business users or, in the case of large systems, representatives of all business
user groups. JAD sessions usually take place offsite to minimize distractions. The benefi t of a JAD
session is that all the disparate business units are present, so confl icts that would otherwise exist
after client interviews or shadowing can be dealt with immediately. This process can also be helpful
for business users in terms of understanding the needs of other parts of the business and how
those needs relate to their own. JAD sessions can be very disruptive to the business users because
they are required to spend perhaps several days working with the development team to derive user
stories and not doing their normal jobs. Depending on what those business users do, this may be
impractical. A way to alleviate part of this problem is to spread out JAD sessions so that they are
not on consecutive days.

 The user stories themselves should be descriptions of a user ’ s interaction with the application. An
effort should be made to keep the individual user stories as isolated from each other as possible.
But in the interest of keeping the user stories short and comprehensible, it ’ s perfectly acceptable to
have one user story start where another ends or branches off. Above all, the user stories should be
easy for business users and development staff to understand. They should add business value to the
system and be something that users can test as soon as the development team has completed the
features necessary to satisfy the user story.

 The goal of all three approaches is to gather a set of user’s stories. For example, a user story for the
OSIM application called “ Logging in New Inventory of Existing Items ” might read like this:

 Once the new inventory has been received and counted, an authorized user logs into the OSIM
system using the OSIM log in page. Once the user has logged in they select the item “ log in new
inventory ” in the navigation menu. The application takes the user to the add inventory page. The
user selects the type of inventory from the item type list and inputs the quantity received in the
quantity text box. The user then clicks the “ save ” button and the inventory count is updated and
the page controls cleared out to allow the user to enter more inventory.

 If the item type does not exist in the list of item types, a new item type must be added. Refer
to the user story “ Adding new Item Types. ” If the user attempts to input a non - numerical value
into the quantity fi eld, the application should not allow it. If the user clicks the “ save ” button,
but has not selected an item type from the list or added a quantity that is more than zero, the page
should inform the user that the information is invalid and direct them to fi x the errors and click
save again.

 Defi ning the Product Backlog

 In short, the product backlog (PB) is simply a list of work that needs to be done to complete an
application. Once user stories are created to defi ne the business requirements, they are decomposed
into features that will be assigned to a developer. Some development teams elect to put individual

c06.indd 122c06.indd 122 3/31/11 3:35:56 PM3/31/11 3:35:56 PM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

features into a PB. Other teams put whole user stories in the PB and allow the developers to develop
the individual features of the user story as they think best. Neither approach is right or wrong. It ’ s a
question of what works best for your development team on any given project.

 A feature is a unit of work that provides value to the system by satisfying a functional requirement
while not violating any nonfunctional requirements. Multiple user stories may refer to the same
feature. For example, multiple user stories may mention the user ’ s logging into the application.
Creating a log in page may be a feature derived from these user stories, but each user story
presumably does not need its own log in page. The log in page feature will satisfy a requirement
of each user story that references logging in. There is no need to create a separate feature for each
user story.

 Another important aspect of a feature is that it can be tested. There should be some way to verify
that the feature works correctly without a user ’ s having to run the application in a debugger or run
a SQL script to determine if a value in an entity was changed. Certain infrastructure tasks that don ’ t
directly infl uence the user ’ s perception of the system must be performed in an application. As many
of these as possible should be done in Iteration Zero (described in the next section).

 Users are assigned work from the PB as prioritized by the business with guidance from the PM
and architect. In most agile processes, the features in the PB are represented by story or feature
cards, which the PM keeps a master list of. Although many tools can be used to maintain PB lists,
Microsoft Excel is still the most popular tool for this purpose. Managing the PB is covered in the
next section.

 THE AGILE DEVELOPMENT PROCESS

 All agile processes are different. A variety of branded agile methodologies are available. However,
many development shops have found it preferable to use these as starting points, modify the process
to suit their particular needs, and then keep any single prepackaged methodology intact. In fact,
most branded methodologies encourage this by providing a set of core values and a mechanism
known as a retrospective to change the process around these core values. Ultimately, every mature
agile process differs in some way to suit the needs of the development staff, Enterprise, or project
the methodology is being used in.

 Remember that this book is not about agile development. Agile development is discussed
here to provide a framework and context for the use of TDD because most agile development
methodologies rely heavily on the benefi ts of TDD.

 All agile processes are slightly different, but some common themes and values permeate the agile
landscape. A few principles defi ne agile practices. While changing and tweaking agile processes is
encouraged, it ’ s generally a good idea not to stray too far from these core principles.

 Most agile processes focus on the idea of small, easy - to - manage - and - understand units of work being
done in short iterations. These units of work should be focused on a specifi c, testable feature of the
system. The testability aspect is very important. Another core principle in agile is to get software in
front of users as quickly and often as possible. If a feature cannot be tested by either a QA tester or
a business user, the feature ’ s value is questionable.

The Agile Development Process ❘ 123

c06.indd 123c06.indd 123 3/31/11 3:35:56 PM3/31/11 3:35:56 PM

124 ❘ CHAPTER 6 STARTING THE SAMPLE APPLICATION

 Estimating

 By their nature, estimates are always wrong. Agile methodologies do not seek to obfuscate or deny
this fact; they embrace it. In many older methodologies, the estimates were usually done by a PM
or architect. In some cases a lead developer may have been involved, but for the most part the
estimate was not done by the people who would actually perform the work. It ’ s diffi cult enough
for most people to accurately estimate their own productivity. Doing so for others is an exercise
in futility. Agile methodologies advance the idea that the people doing the work should provide
the estimates.

 Moreover, as time goes on, those estimates can and should be adjusted based on the growing
body of knowledge about the business problem domain and the application itself. In 1981 Barry
Boehm developed a concept that would become the basis of a phenomenon known as the Cone of
Uncertainty. This concept was fi rst applied to software development by Steve McConnell in his
1997 book Software Project Survival Guide (Microsoft Press, ISBN: 9781572316218). The Cone
of Uncertainty as it applies to software development states that estimates of work made at the
beginning of a project are likely to be inaccurate by a factor of 4. This means that the actual work
required to complete a feature could be as little as 25% of the actual estimate or as much as 400%
of that estimate. As the project continues, the estimate of work needed to complete the feature
becomes more accurate. But it is entirely accurate only when the feature is complete.

 For software development teams, this means that the estimate for a given feature made at a project ’ s
inception could be off by as much as 400%. In most methodologies these radically inaccurate
estimates are baked into a project plan, taken as gospel, and later used as a metric to measure
the project ’ s success or failure. In reality, this estimate, especially one done at the beginning of the
project, is the developer ’ s best guess based on the information available at that time. In most cases
it is incomplete, inaccurate, and likely to change.

 A more logical approach is to periodically re - estimate the features in the PB. These new estimates
are based on actual knowledge the development team has gained from working in the application
for a period of time. While still likely to be inaccurate, these estimates will be closer than the previous
estimate. This reassessment allows the PM to refi ne the project plan and provides a more accurate
judgment of whether the development team is on track.

 Working in Iterations

 The rest of this section describes the agile process I use on my teams. It ’ s important to understand
that I did not create this process myself, and it was not created overnight. It ’ s the product of
many different developers and development teams (including PMs, BAs, and clients) working on many
different projects over the course of several years. The process has grown and evolved with the
input of many people and will likely continue to grow beyond the publication of this book. I ’ m not
saying the process described here is the best process for you or your team. It very well may not be.
I am a consultant at a company that specializes in custom application development project work for
a variety of clients in many different industries with many different project types. This process has
been tuned for that purpose. If that does not describe your working environment, this process may
not work for you. It ’ s simply one way of working with an agile methodology, and it ’ s provided here
as a means to demonstrate what an agile methodology may look like.

c06.indd 124c06.indd 124 3/31/11 3:35:57 PM3/31/11 3:35:57 PM

 Agile preaches short iterations. I prefer to keep my iterations either one or two weeks in duration.
The exception to this rule is what I call Iteration Zero. Iteration Zero is the fi rst iteration
and usually commences toward the end of the requirements - gathering phase when the major
nonfunctional requirements have been gathered and the user stories are being refi ned. Iteration Zero
is my setup iteration. During this time I, or a member of my team, am creating the development
environment. This includes setting up any application servers the team will need, as well as setting
up the QA environment and confi guring the continuous integration (CI) server. Other tasks that are
done as part of Iteration Zero include setting up the basic solution and projects in Visual Studio and
creating a source control repository to store them in. As part of this process I also reference any
third - party assemblies in the appropriate Visual Studio projects. Once the development team has
been formed, I make sure that they have the appropriate credentials on any systems they will need
access to during development. If I have some basic screen layouts available, I work with a user
interface (UI) developer to sprint ahead of the group and create some boilerplate web pages or
forms to help the developers get a jump start on their development.

 Iteration Zero does not have a set time frame. Sometimes it can take a couple weeks. On smaller
projects I can have everything ready in a few hours. The important thing is that I have basic
infrastructure and services ready for the development team when Iteration One (the fi rst proper
development iteration) begins.

 Before the fi rst iteration starts, I and the PM meet with the business owner. This does not mean all
the business users; it means the one or two people who are the project ’ s sponsors or stakeholders
on the business side. The purpose of this meeting is to plan the work for the next iteration. This
meeting will be repeated toward the end of each iteration, except the last one.

 The business owner, with suggestions and guidance from the PM and the architect or lead
developer, selects the work to be done in the next iteration. The business owner is provided with the
number of productive hours that the project team will have for the next iteration. Productive hours
are hours the developer spends writing code. I arrive at the number of productive hours for each
developer by taking the number of hours in the developer ’ s normal work schedule (for example, if
this were a two - week iteration, the developer would normally be working 80 hours) and subtracting
hours that I don ’ t expect the developer to be writing code. This could be due to vacation, holidays,
meetings, or any other overhead in running the project. Additionally, if the developer is a new
developer, or new to the project, I ’ ll take some hours off his productive - hours number to account for
the learning curve he will experience.

 It ’ s important that clients not equate nonproductive hours with hours that are wasted. In my
case, since my business owners are clients, I can explain to them that they are not being billed for
holidays or vacation. I also remind them that although the developer ’ s primary purpose is to write
code, other tasks on the project that do not involve writing code also are necessary. For developers
with learning curve hours, I explain that the business owner is paying less for this resource. It ’ s
reasonable to assume that because these developers are less experienced, it will take them longer to
complete a task than a more experienced (and expensive) developer.

 The business owner is allowed to schedule features or stories only while he has productive hours
left to use. For example, if a team has a total of 100 productive hours, and the sum of the features
the business owner has already scheduled is 95, they may pick any combination of features still
in the PB that does not cause the schedule hours to exceed 100. This means that they may not select

The Agile Development Process ❘ 125

c06.indd 125c06.indd 125 3/31/11 3:35:58 PM3/31/11 3:35:58 PM

126 ❘ CHAPTER 6 STARTING THE SAMPLE APPLICATION

features that add up to 6 hours, pushing the total to 101. The developers have been asked to
give their best good - faith estimate for the features. It is up to the PM and the technical lead to
support their team and hold a hard line on these numbers. Remember, the team is committing
to complete all the tasks scheduled for the iteration; don ’ t handicap them by overcommitting them.

 What happens more often is that the business owner can ’ t fi nd a permutation of features that equals
exactly the number of productive hours. This does not mean that those hours go to waste. Business
owners are allowed to select features to place in a “ parking lot. ” This means that they are not really
part of the work scheduled for the iteration, but if time is left over, the business owner wants the
developers to work on a feature from this parking lot. Features that go in the parking lot should
be small and low - priority, because they might not get done in the current iteration (in fact, they
can span several iterations). The business owner needs to understand that although the features
scheduled for the iteration are commitments for the development team, items placed in the parking
lot are not.

 My iterations always begin on Monday. Since I like to make my iterations either one or two weeks,
it ’ s easier to manage an iteration if it starts on the fi rst day of the week and ends on a Friday. If
Monday is a holiday, the iteration still starts on Monday, but I account for the holiday by deducting
one day ’ s worth of hours from each developer. On the Friday before the iteration starts, I call a
quick meeting (less than 15 minutes) with the development teams and briefl y go over what features
are scheduled for the next iteration and who they are assigned to. The purpose of this meeting is not
to raise or solve problems with the features; it ’ s simply to make everyone aware of what ’ s scheduled
for the next iteration and who ’ s been assigned to do what. Problems, issues, or concerns with
particular features or stories are discussed after the meeting, allowing those who are not involved to
return to work.

 Communication Within Your Team

 This highlights a key component of this process: individual communication as opposed to group
meetings. Most developers dread meetings. They are seen as a waste of time, especially when
a dozen people are called in to discuss a topic that they believe really affects only two or three
people. A much faster and more effi cient way to handle these issues is to encourage the two or
three individuals who are interested in or affected by the topic to have an ad hoc conversation and
attempt to engage other individuals they deem necessary to the discussion.

 An argument can be made that everyone on a team should know what ’ s going on at any given time.
However, I don ’ t agree with that. For one thing, even on a small team, it ’ s almost impossible for
any one person to know every detail of every user story, feature, nonfunctional requirement,
and decision that is made. To expect your development staff to keep all this information in their
heads at all times is unreasonable. I have found that a better approach is to have a wiki for
the project.

 A wiki is a user - updateable website that can easily and quickly be used to store information about
a project. As groups of developers meet and make decisions, or fi nd solutions to problems, they put
their fi ndings and decisions in the wiki. Because the wiki is searchable, other developers on the team
can consult it when they have questions or want to understand why certain decisions were made
during application development. The combination of small - group discussions and the wiki greatly
relieves the need for long, unproductive meetings.

c06.indd 126c06.indd 126 3/31/11 3:35:58 PM3/31/11 3:35:58 PM

 Iteration Zero: Your First Iteration

 On the morning of the fi rst day of the iteration, the developer selects an assigned feature or user
story to start with. A developer may be assigned more than one feature or story, and the order in
which to do them is largely up to that person. During the scheduling process, a good deal of effort
is made to try to keep potential bottlenecks to a minimum, but they do occasionally arise. In these
cases developers are encouraged to discuss the order in which work will be done to ensure that no
one is waiting on someone else for a long period of time. In some cases the developers may choose
to pair - program on their features if they are closely related.

 After the developer has selected the feature to begin working on, the next step is to read the user
story and meet with the BA, PM, or some other subject matter expert (SME) who represents the
business on the development team. This role of business advocate on the development team is
critical and should not be left unfi lled. The developer must meet with this person and go over the
feature to ensure that he or she understands the feature or user story from the business ’ s point
of view. Many defects in an application arise simply because the developer thought he or she
understood the business need, but did not.

 When the SME and the developer agree on how the feature or user story should be developed from
a business perspective, the developer meets with the architect or lead developer on the project. The
purpose of this meeting is for the developer to explain how he or she plans to design and develop
the code needed to complete the feature and to ensure that it fi ts within the larger vision of the
application. It ’ s important that an application ’ s code and functionality be consistent, regardless of
who wrote the code. The goal of this discussion is to help ensure that consistency.

 Testing in Iteration Zero

 After the developer meets with the SME and the architect or lead developer and understands the
business need behind the feature and how the feature fi ts into the larger application, he begins
development. Using TDD, he starts by writing unit tests for his feature. After the developer has
written a unit test, he writes just enough code to make the test pass. If the test passes, the developer
continues writing unit tests and then code to make the test pass until he has passing unit tests for
all the requirements in the feature. While in this process, the developer should be running the entire
suite of unit tests to ensure that his new code has not broken any existing functionality already
in the application. Finally, the developer writes integration tests to ensure that the components
he has written for his feature integrate correctly with the rest of the application. As soon as all these
tests pass, the developer commits his code to the main development branch and marks the feature
complete and ready for QA to test.

 In my development shop we have a CI server that watches for commits to the main development
branch. When a commit occurs, the CI server builds the application and runs all the unit and
integration tests. If any unit or integration test fails, the build is marked as failed, and the
development team is notifi ed. The top priority when the build fails is fi xing the code to get a good
build. The team switches priorities and works together to resolve any issues and restore the build to
a successful state as quickly as possible.

 If the build is successful, the compiled application is deployed to the QA environment. The QA
group is notifi ed of what features or defect fi xes are in the new build. A QA tester verifi es that the

The Agile Development Process ❘ 127

c06.indd 127c06.indd 127 3/31/11 3:35:59 PM3/31/11 3:35:59 PM

128 ❘ CHAPTER 6 STARTING THE SAMPLE APPLICATION

feature is complete or correct, or that the defect has been corrected. If the feature is incomplete, or
defects are still present, the QA tester notifi es the developer of his or her fi ndings.

 If the QA tester is satisfi ed that the feature is complete and correct, or that the defect in question has
been fi xed, he or she marks the feature as complete, or the defect as closed. The build is promoted to
a client QA environment (an environment where the client can access the application). Only the QA
tester can mark a feature as complete or a defect as closed. Neither the PM or architect can override
the QA decision. If disagreement arises, the involved parties can discuss the matter. However, the
QA retains the power to determine what is complete and what is not.

 Ending an Iteration

 Because my iterations are one or two weeks and they always begin on Monday, I know that Friday is
the last day of my iteration. A show - and - tell meeting with the business is scheduled for the Monday
or Tuesday after the end of the iteration. This is an opportunity to show the client the work that
has been done in the last iteration. It ’ s also a good opportunity for the development team to interact
with the business users and gain a better understanding of the business requirements.

 This meeting is extremely important to the project ’ s success and should not be skipped. One of the
main pillars of agile methodologies is the rapid feedback provided by business users. It ’ s important
to make the business users understand that they are not seeing a completed application, but a work
in progress. The point of having the business look at this application, even though it is unfi nished,
is to determine if the development team has correctly translated the business ’ s requirements and
needs into the application. In cases where the application does not meet the business ’ s needs, there
are two possible outcomes: defects and changes.

 Defects are differences between the stated business requirements and the application ’ s behavior. This
can be anything as minor as a misspelled label on a web page to a missing step in a business work fl ow.
Defects identifi ed right away are much easier and less expensive to correct than a defect that is found
six months later or, worse, after the application has been put into production. Defects that arise from
this show - and - tell meeting are always top - priority items; the development team needs to correct these
defects before continuing with further development.

 Changes are events where the application refl ects the business requirements, but the business
requirements for some reason are inaccurate. This could be because of a defect in the requirements -
 gathering phase. It could be due to a change in the business that occurred since the requirements
were gathered. It could be a situation where the business didn ’ t take some factor into consideration
when creating the business requirements. Whatever the case, these changes should either have new
user stories created or cause changes to existing user stories. These new or altered user stories need
to be verifi ed and decomposed into features, which then must be estimated. These new user stories
and features are added to the PB to be scheduled for a later iteration.

 Iterations continue as long as the client or business user has work remaining and the resources to
continue development. As a consultant, I fi nd that clients often choose to end development with
some features still in the PB. This is because when requirements are gathered for an application,
business users, and even some developers, tend to start creating requirements documents that more
resemble wish lists than a list of the actual business needs. Many features are nice to have but are
not crucial to the application ’ s functionality. Many clients, when asked to schedule these feature and

c06.indd 128c06.indd 128 3/31/11 3:35:59 PM3/31/11 3:35:59 PM

thus commit budget to them, decline to do so. They may not see the value in those features. They
may want to defer the feature until their next budget year. They may simply decide that the feature
is not worth the money it would require to build. This is OK. The strength of an agile methodology is
the ability to focus on what adds value to an application and to make rational and well - informed
decisions about the things that do not add value.

 CREATING THE PROJECT

 You should not take for granted the structure of your solutions and projects in Visual Studio.
Organization will set you free, and it ’ s important to make sure that your development assets are
organized in a logical and consistent manner. Project organization is the fi rst line of defense for your
application architecture, because the project structure helps defi ne and drive the composite parts
of the application. The organizational structure of your project should be logical. It should be clear
where specifi c components exist. This clarity helps the developers understand how to partition their
components and how to fi nd components in the application that others have created.

 Choosing the Frameworks

 Software development involves many repetitive tasks. Many of these, although critical to the
application ’ s function and success, are not really considered to add business value. Functionality
such as data persistence, logging, and dependency injection are all things that applications rely
on. But from a business standpoint it doesn ’ t matter how much attention and care you put into
writing a data access library, because it doesn ’ t directly solve a business problem. This type of
code is called plumbing code, and it was the impetus of the phrase among developers “ Don ’ t be
a plumber. ”

 For tasks that are repetitive, time - consuming, or diffi cult to implement, developers have come to rely
on frameworks. A framework is a library or set of libraries that you utilize in your application to
perform a task that is similar from application to application. For example, most .NET applications
use some sort of database. The code that accesses the database and handles data persistence does
not add any business value, yet writing this code can take a long time. That ’ s time that the developer
could spend writing code that adds business value to the application. Instead of writing the same
boilerplate data access code repeatedly, you could use a persistence framework to handle the data
persistence chores.

 Hundreds of frameworks exist for all sorts of development tasks. Odds are if you fi nd yourself
writing the same code to solve the same problem on project after project, a framework can perform
that task for you. Frameworks should be used liberally in your application where they make sense.
Although frameworks provide a lot of power by automating common tasks, they are generally
designed to do one specifi c thing. Do not ask a logging framework to be a persistence framework;
that ’ s not what it was meant to do.

 When choosing a framework for your application, you must keep in mind a few points. Does the
framework you ’ re looking at provide the functionality you need? This may seem like an obvious
question, but many developers have tried to utilize a framework that does something “ kind of ” like
the task they are using it for. Sometimes this is OK; most frameworks are open - source and can be

Creating the Project ❘ 129

c06.indd 129c06.indd 129 3/31/11 3:36:00 PM3/31/11 3:36:00 PM

130 ❘ CHAPTER 6 STARTING THE SAMPLE APPLICATION

extended or modifi ed to suit your needs. But making sure that the framework ’ s intended class is as
close to your need as possible will make this retrofi t much easier.

 Pick a framework that offers support. Many frameworks are open - source projects. For these
open - source frameworks, make sure a large, active community is involved in adding new features,
fi xing defects, and providing education. If the framework is a third - party tool that you are
purchasing, make sure it ’ s from a reputable company that can provide references and offers some
sort of online tutorial or support.

 Last, consider the learning curve. You may have team members who are familiar with the DI framework
structure map. If this is the case, don ’ t insist that they use Ninject. The team already has knowledge in
place; use it. If they are unfamiliar with both tools, ask a few senior members of the team to look at each
framework and give you their thoughts on which one would be easier for the team to use. Nothing can
kill team morale faster than being forced to use a tool they dislike and don ’ t understand.

 There are some reasons not to pick a particular framework. If your chief argument for the
selection of a framework is “ It ’ s new and cool, ” you might want to reevaluate your decision. New
frameworks are often exciting and offer features that their predecessors did not have. And certainly
many new frameworks are perfectly fi ne to use. But you need to make sure that the framework
meets an actual need besides relieving your boredom or serving as resume fi ller.

 For development of the OSIM application, I have elected to use .NET 4.0 as my application
framework. I will employ these frameworks to aid the development:

 ASP.NET MVC is a web framework for .NET designed to allow web sites to be built using
the model/view/controller (MVC) pattern.

 Automapper is an open - source framework that lets you easily map your entity objects that
will be used internally in the application to your data transfer objects (DTOs) that will be
used by the front ends.

 WPF is a framework for building Microsoft Windows client applications.

 WCF is a framework for building web services in .NET.

 Fluent NHibernate is an ORM that serves as the persistence (data access) layer in the
application.

 nUnit is a unit testing framework.

 nBehave is a business - driven development (BDD) naming library that lets you write your
tests in a more fl uent and business - user - friendly manner.

 Moq is a mocking framework.

 Ninject is a DI framework.

 This list includes many non - Microsoft frameworks and tools. The reason for the use of these
frameworks here is that despite not being from Microsoft, these frameworks are all extremely popular,
and there is a good chance you will encounter them in your practice of TDD. Microsoft has done an
excellent job of providing many examples of how these various frameworks integrate together. Few
widely known resources exist that address integration of a large group of non - Microsoft frameworks.

➤

➤

➤

➤

➤

➤

➤

➤

➤

c06.indd 130c06.indd 130 3/31/11 3:36:00 PM3/31/11 3:36:00 PM

 Also, while Microsoft has done a good job of creating ORM frameworks (Entity Framework), unit
testing frameworks (MS Test), and dependency injection frameworks (Unity), the frameworks I ’ ve
chosen to use here, and in my everyday development, have benefi ts over the Microsoft counterparts,
and work better in my development shop. If you wish to use the Microsoft counterparts to these
frameworks you will have no disadvantage in developing software or practicing TDD. While the
examples in this book may not translate one - for - one with the Microsoft frameworks, the concepts
still apply.

 Defi ning the Project Structure

 This section describes how I structure my Visual Studio projects. Like the methodology described
previously, this structure is the product of many developers working over many projects. Our teams
would come up with ideas to alleviate issues, try them, and then evaluate the result. It took several
projects over a period of years for this structure to get to this level of refi nement, and like our
methodology, it is still subject to change as needed.

 What many developers don ’ t realize is that the project structure really exists in two places: the
structure of projects, fi les, and objects in the Visual Studio solution, and how the project is laid out
in the fi le system. How the project is arranged in the fi le system is just as important as how your
Visual Studio solution is structured, because many fi les and assets are part of a project but don ’ t
necessarily reside in the Visual Studio solution. If you are developing a marketing website with a
lot of custom graphics, you may choose not to store these as part of the Visual Studio solution to
keep memory usage low. Third - party assemblies can also be a troublesome asset to manage. Laying
out all the project fi les in a consistent manner and having your source code repository mirror that
structure makes it easy for developers to fi nd fi les and other assets. It also helps developers get the
application up and running quickly once it has been pulled to the local drive from the source control
repository.

 Organizing Project Folders

 I have a folder on my local hard drive called DevProjects where I keep all my applications, be
they .NET projects or some other platform. As a consultant I have many clients, and within this
 DevProjects folder I have a subfolder for each client. When starting a new project, I go to that
client ’ s subfolder in the DevProjects folder and create a folder for the project. When I bind my
solution to my source control server, I do so at this project folder level so that all subfolders within it
are included and tracked in the source code repository. Within that project folder I always create at
least two more subfolders called src and libs .

 The src folder contains the source code for the project. This is the folder I will tell Visual Studio
to create its project in when the time comes. This folder ’ s structure will be managed via the Visual
Studio IDE. I will create folders in my Visual Studio project, and Visual Studio will create the
folders on the fi le system. Anything that is part of the Visual Studio project, meaning that I can
access the fi le or asset via the Visual Studio Solution Explorer, goes in the src folder.

 The libs folder contains all the third - party assemblies and any supporting fi les they may need. When
I need to add a third - party assembly to my Visual Studio project, I fi rst copy it and its needed support
fi les to the libs folder. Next, I go to Visual Studio and add a reference to the assembly I just copied

Creating the Project ❘ 131

c06.indd 131c06.indd 131 3/31/11 3:36:01 PM3/31/11 3:36:01 PM

132 ❘ CHAPTER 6 STARTING THE SAMPLE APPLICATION

to the libs folder. Since this project is bound to the source control repository at the project level,
everything in this libs folder is included and tracked in source control. Because the references to
assemblies in Visual Studio projects use relative paths, I know that no matter where on my hard
drive this project is located, it will use the assemblies from its libs folder.

 When a developer pulls the project to a machine for the fi rst time, or even refreshes his current
source from the source control repository, he is assured of getting all the third - party assemblies
needed to build and run the application. He also knows that he has the exact versions of these
assemblies that the application has been designed to work with. The developer no longer has to
wonder if he has the correct version of a given framework installed. He also doesn ’ t have to look
through his system to fi nd the exact assembly the project is looking for. It ’ s already there. In some
cases you will have different projects in different Visual Studio solutions that use different versions
of the same framework. By keeping the assemblies grouped with the source code that uses them, you
no longer have to worry about your application ’ s using the wrong version of a given framework.

 It is true that with this paradigm you have multiple copies of the same assembly. It ’ s also true that
the assemblies have to be stored in your version control system. Some developers do not like to do
this. I have found, however, that the benefi t of keeping the assemblies close to the source code far
outweighs the concerns and arguments against keeping multiple copies of these fi les, or keeping
them in the source control repository.

 On occasion I create other folders in the project folder. If the project isn ’ t using a document
collaboration system (but it should be), I create a docs folder to hold project documentation. The
advantage of putting the documents there is that they remain close to the code and benefi t from
the version - control features of the source code control system. If a project is using a desktop
database engine (such as Microsoft Access) and isn ’ t using a Database Management System (DBMS),
or if I need to include SQL scripts as part of the project, I create a db folder to store these assets.

 Again, these are two extreme cases. In general your project should use a document collaboration
server such as SharePoint to store project documents. If your application uses a DBMS system,
the need for a db folder is similarly reduced. I resist creating these or any other folders, because the
proliferation of folders is generally a sign of bad application development habits.

 Creating the Visual Studio Solution

 After the folder structure has been created, it ’ s time to create the Visual Studio solution. Again,
an organized structure in your Visual Studio solution is important. The projects in your solution
ultimately become the individual assemblies in your application. Not partitioning this functionality
correctly can leave you with bloated assemblies that have an inappropriate mix of functionality that
makes deploying and scaling the application diffi cult.

 I start by creating an empty Visual Studio solution, as
shown in Figure 6 - 1. The reason for this is that when I
create my projects I want their names to refl ect the
namespace the assembly represents. If you allow Visual
Studio to create a solution for you when you create a project,
the solution ’ s name is derived from the project ’ s name,
and you lose some fl exibility with how you name your
individual projects.

FIGURE 6 - 1

c06.indd 132c06.indd 132 3/31/11 3:36:02 PM3/31/11 3:36:02 PM

 Good project naming is very important to the organization of your solution. A project name should
refl ect the namespace it represents and describe what features and functionality the resulting
assembly will provide. All applications need a class library that will house the core or business
domain services and entities. This is generally the fi rst
project I create. In the case of the example for this book,
I ’ m creating a class library called OSIM.Core , although a
name such as OSIM.Domain would be acceptable as well.
As soon as the project is created, I delete the Class1.cs
fi le that Visual Studio prepopulates the project with, and
I create two folders within the project: Entities and
 DomainServices (see Figure 6 - 2).

 In addition to keeping the names clear, the project and
folder - naming conventions mirror the namespaces. For example, if I were to create a Person class in
the Entities folder, that class ’ s fully qualifi ed name would be OSIM.Core.Entities.Person .

 One school of thought in TDD says that I should not create this project until I need to. TDD does
push the idea of not writing any code until you need it to pass a test. By extension, you could say
I shouldn ’ t create that project until I need it, and this would be a valid point. However, on my
team, I want the major projects in place so that on the fi rst day of Iteration One, the development
team can start writing code immediately. This is a bit of a gray area where the ideas of testing fi rst
and being pragmatic can be at odds. In the end you have to evaluate your situation and do what
works best for your team and your project.

 Speaking of tests, I know that the next two projects I always need in any solution are for my unit
tests and my integration tests. I ’ ll create those projects next, as shown in Figure 6 - 3.

 Within my test projects I like to create some structure to keep my tests organized by creating a folder
for each project in my solution. Currently I have only the OSIM.Core project, so I ’ ll just create the
folders for that project, as shown in Figure 6 - 4.

FIGURE 6 - 2

FIGURE 6 - 4FIGURE 6 - 3

 Based on the current high - level design of the OSIM application, I know that this application will
have three front ends: a web - based front end developed on the ASP.NET MVC 2 framework, a

Creating the Project ❘ 133

c06.indd 133c06.indd 133 3/31/11 3:36:02 PM3/31/11 3:36:02 PM

134 ❘ CHAPTER 6 STARTING THE SAMPLE APPLICATION

Windows client front end developed using WPF, and a
web services interface using WCF. And yes, web services
are a front end. They represent an access point for an
external user to interact with the application just the same
as a web page or a Windows form. The only difference
is that instead of a human directly interacting with the
interface, the user needs a web service proxy of some sort
to use the interface. I ’ ll create the appropriate project
types for each of these interfaces, as shown in Figure 6 - 5.

 Now that I have three more projects in my solution, I
should add folders to the test projects for them, as shown
in Figure 6 - 6.

 Currently these are all the projects I need for my
application based on the initial high - level design. Later
in the project I may fi nd that I need other projects for
support purposes. When creating these, the fi rst question
to ask is “ Does this really belong in a separate project? ”
Many developers talk themselves into creating new
projects in the name of granularity. In some cases what
results are two assemblies that are so reliant on each
other, on their own they provide little to no value. Often
errors arise because an attempt is made to deploy an
application with one assembly but not the other. If two
or more classes really require each other to function,
they should not be split into different projects.

 If you truly need to create a separate assembly, make sure your naming convention continues
to identify what project this new project is supporting, and how. For example, if you wanted to
create a project to contain themes for the Windows client project, a good name would be OSIM
.WinClient.Themes .

 For now, this project structure is complete. I ’ m sure I ’ ll have to add structural elements as the
project progresses, but I don ’ t want to start the application development project by overcomplicating
my environment. In general you want to keep your project structure as simple and clean as possible
and make changes and additions only if they are needed.

 SUMMARY

 Many tasks must be completed in an application development project before you start writing code.
The fi rst task is to gather the business and technical requirements. In agile methodologies this
consists of a high - level project overview that helps you defi ne the application ’ s size and scope. Agile
methodologies steer away from the concept of a big up - front design and just seek to get the broad
picture. Detailed design is deferred until the user story or feature is scheduled.

 After the high - level requirements have been gathered, a target environment must be defi ned. This
environment will help shape the type of application you develop and can help drive out many of

FIGURE 6 - 5

FIGURE 6 - 6

c06.indd 134c06.indd 134 3/31/11 3:36:02 PM3/31/11 3:36:02 PM

the nonfunctional technical requirements. After this environment has been defi ned, the various
application technologies must be selected.

 The business requirements are used to create the user stories, which defi ne where the application ’ s
business value comes from. User stories should be technology - agnostic and testable. Otherwise, the
requirements might be bent to fi t the technology, which is the opposite of what your goal should
be. These user stories are broken into features that are added to a product backlog and assigned to
developers during development project iterations.

 When you develop an application using an agile process, your iterations should be short and
end with a deliverable to the business. Make sure that the business understands that this is not
a complete system, and get feedback on what has been done so far. If there are defects, fi x them
immediately. If changes are needed, create new user stories and place them in the PB. It is much
easier to correct the application during development than during production.

 The structure of your application in both the fi le system and Visual Studio is important. It should
be clear, simple, and consistent. Making your structure easy for developers to understand and work
with will help keep the project ’ s assets partitioned correctly and make it easier for developers new
to the project to understand the architecture and code base.

Summary ❘ 135

c06.indd 135c06.indd 135 3/31/11 3:36:03 PM3/31/11 3:36:03 PM

c06.indd 136c06.indd 136 3/31/11 3:36:03 PM3/31/11 3:36:03 PM

Implementing the First
User Story

 WHAT ’ S IN THIS CHAPTER?

 How to decompose user stories into features

 How to develop by writing unit tests before you write business code

 What a business - driven development (BDD) naming style looks like

 How BDD can help you write tests that are clear and easy to

understand

 How unit tests enable you to refactor code without fear of breaking

features or functionality

 Why triangulation of tests is important to ensure the quality of

your code

 Now that the overall scope and high - level design for the offi ce supply inventory
management (OSIM) application have been defi ned, it ’ s time to start constructing the
application. As outlined in my agile - based methodology, construction starts with the business
owner choosing the user stories or features to be developed in the fi rst iteration. With some
guidance from the PM and the application architect, the business owners have decided on the
following user story:

 A user should be able to add a new type of item to the application.

 This is a logical place to start, because this is an inventory management system. To manage
inventory (and work with the features that would be provided by the other user stories), the
users need to have a list of items in inventory.

➤

➤

➤

➤

➤

➤

 7

c07.indd 137c07.indd 137 3/31/11 3:36:30 PM3/31/11 3:36:30 PM

138 ❘ CHAPTER 7 IMPLEMENTING THE FIRST USER STORY

 To start, you need to break the larger user story into smaller features. Features should be small,
simple, isolated, and testable. For the current user story, I ’ ve come up with this list of features:

 An item type entity and a persistence layer that can store the item entity in the data store

 An item type domain service that can provide a list of item types in the data store

 A user interface to enable business users to list existing item types and create new ones

 This list of features demonstrates the layers and parts of the application needed for a nontechnical
business user to verify that this user story is completed. Once this user story is completed, a
nontechnical business user will be able to use the application to create new item types and then
verify that they were completed correctly by viewing them in the list of item types. The technical
staff does not need to be involved. The business user does not need a developer or DBA to run a
query on the data store to verify that the item type was in fact created. Working on their own,
business users can verify that the user story is complete and working correctly.

 Now that the features are defi ned, you need to determine in what order you ’ ll build them.
Applications, like onions, parfaits, and ogres, are built on the idea of layers. Because applications
are built in layers, the application construction should start at the core, and layers should be built
upon so that each subsequent layer builds on the functionality of the one beneath it. At the core of
OSIM, as with most business applications, is the data store. Like most applications, the outermost
layer of OSIM is an interface, which could be a web page, Windows client application, or service layer.
Therefore, here ’ s the logical progression for development of these features:

 1. The item type entity and persistence layer

 2. The item type business domain service

 3. The front - end user interface that will allow business users to interact with the item type
business domain service

 TDD is used in this example to build this application, so you need to determine what your fi rst test
should be.

 THE FIRST TEST

 Picking the fi rst test to write for any feature is an important task. It sets the feature ’ s direction and
tone. It also ensures that the components and methods needed for the feature are built and layered
in the correct order. The fi rst test is usually for the most basic requirement of the feature you are
building. As such, it indicates that as you continue development and move to refactoring, you never
stray too far from the basics of the functionality that the feature needs to provide.

 Choosing the First Test

 In choosing the fi rst test to write, you need to be sure that you really understand the user story and
the business need behind it. The technological implementation will fl ow from the business need.
In most cases a clear, logical progression determines how the features of each user story should
be built. (Generally speaking, each application has a user interface layer of some sort on top of a

➤

➤

➤

c07.indd 138c07.indd 138 3/31/11 3:36:32 PM3/31/11 3:36:32 PM

business domain layer, with a persistence layer that communicates with a data store of some sort at
the core. In some larger applications some of these layers are subdivided or use external resources,
which can create some split or sublayering.

 Regardless of how architecturally complex an application may be, I fi nd it is generally easier to start
by building features that are closest to the core of the application and then build out. This enables
you to keep the core of the application as simple as possible. The layers built on top of this core have
a simple set of APIs to work with, which in turn helps drive their interfaces toward simplicity. With a
well - defi ned core, you can quickly and easily develop new features without duplicating a lot of code.

 Some developers choose to start development at the UI layer and work in. There is nothing wrong
with this approach per se. As you write the tests for the layer you are currently developing, however,
you need to defi ne the API for the layer beneath the current layer and stub it out. This can be a good
way to do development, because it creates APIs that are driven more by the consumers of the library
based on their needs and less by library developers who think they know what downstream clients
need. I use this approach often. The key to success is being able to go back and write the tests for
the methods you are creating the stubs for. This is not so much a technology or process issue as it
is a discipline issue. After you have developed the discipline needed in TDD, you can certainly try
this approach. It can be more effi cient for systems that are principally driven by a single UI. In cases
where you are focusing on a set of libraries that will be consumed by a wide variety of consumers,
I fi nd the bottom - up approach more effi cient. In any case, feel free to try both, and do what works
best for you.

 In the case of the current feature, which is the ability to store an item type to the data store, the fi rst
test will be to ensure that a valid item type entity is saved to the data store. This will be validated by
ensuring that a valid item type ID number is returned from the persistence layer.

 Naming the Test

 Unit tests are just methods on classes. Therefore, you can give your test any name that is a valid
method name in .NET. However, in keeping with the spirit of TDD, I fi nd it desirable to give
my tests names that are meaningful and descriptive. To that end, I borrow a bit from another
development methodology: behavior - driven development (BDD).

 BDD is an extension to the ideals put forth by TDD. BDD stresses stakeholder involvement in the
software development process with both the technical and nontechnical groups. It can be thought
of as a sort of agile - based methodology that stresses collaboration across groups. As a matter of
course, most teams that practice some sort of agile methodology end up following many of the
tenets of BDD. BDD itself is a broad topic and therefore is not covered in detail in this book.

 For the unit tests I write, I like to use a BDD style for naming tests. This style stresses complete,
descriptive names that are business - user - friendly and attempts to avoid using technical terms. BDD
is about making your class, method, and variable names mirror plain English as much as possible.

 In my usage of this style I think of the description of my test as a sentence. The class name that
contains the test, as well as any base class it implements, should spell out a set of conditions under
which the test will run. For the current feature, you start by creating a class that describes the most
basic of these preconditions: working with the item type repository. This class will be called when_
working_with_the_item_type_repository and will be where you put the code that initializes a

The First Test ❘ 139

c07.indd 139c07.indd 139 3/31/11 3:36:33 PM3/31/11 3:36:33 PM

140 ❘ CHAPTER 7 IMPLEMENTING THE FIRST USER STORY

testable ItemType repository. As a result, when_working_with_the_item_type_repository will
become a base class for all the unit tests that test the ItemType repository.

 The naming style used here is important. Many developers dislike the idea of using the underscore
character in the name of a class or method. When it comes to production code that will be read
only by other developers and technical staff, I agree. However, a goal of TDD is to ensure that your
tests refl ect the business needs, requirements, and rules. Therefore, it ’ s important to involve the
nontechnical business users in your coding practices when it comes to writing your unit tests. Most
technical staff have years of experience in reading class and method names presented in camel case
(such as GetItemsFromDatabaseByCustomerId). They are comfortable with it, and reading these
names comes easily. This is not the case with most business users, however. For them, a name with
words separated by underscores is easier to read and understand. Because you, on the technical
side of the business, are reaching out to the business, it ’ s important that you try to meet them at
least halfway. To that end, naming your tests in a manner that is more pleasing and easier for the
business to understand is a must. It ’ s also important that names of test classes and methods avoid
use of technical terms that business users may not understand.

 The base class when_working_with_the_item_type_repository will not actually contain a
unit test. That is an incomplete description of an executable action. The name indicates that you
are working with the item type repository, but it doesn ’ t indicate what you are doing with it. To
complete this set of conditions, you need to create a class that inherits from when_working_with_
the_item_type_repository and that describes, in both name and code, the remainder of the
initial condition. The class that inherits from when_working_with_the_item_type_repository
and that implements the unit test will be called and_saving_a_valid_item_type . The name of this
class, when taken with the base class it inherits from, clearly defi nes a starting condition for the test:
When working with the item type repository, and saving a valid item, something will happen. That
 “ something ” is the name of the unit test method.

 When naming your actual unit test method, try to complete the sentence you created with the class
name. If you were to describe the point of the test to a business user, you might say something like
 “ When working with the item type repository, and saving a valid item type, a valid item type ID
should be returned. ” Using this model, it ’ s easy to see that the name of the unit test method should
be then_a_valid_item_type_id_should_be_returned .

 Writing the Test

 To help me write my tests in a BDD style, I use a framework called NBehave which can be
downloaded at nbehave.org . NBehave is a BDD framework for .NET that allows developers to
create specifi cations (business rules written in plain English) and link them to executable test code.
This in effect creates a domain - specifi c language (DSL) that allows nontechnical business users to
write tests based on a framework provided by the DSL created with NBehave.

 The ability to write and execute these testing DSLs with NBehave is powerful. However, in this
book I simply use NBehave to provide syntactic sugar that will help keep my unit tests more
readable and manageable in a BDD style. As the example continues throughout this book, I ’ ll point
out where I use these syntactic features of NBehave.

 With the naming scheme and high - level class layout for the fi rst set of tests in place, you can now
start writing them. But before you create test classes for this feature, you have some housekeeping to

c07.indd 140c07.indd 140 3/31/11 3:36:33 PM3/31/11 3:36:33 PM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

http://nbehave.org

perform. To use the NBehave framework, you need to add references to
the NBehave assemblies. Specifi cally, you need two: NBehave.Spec
.Framework , which is the base NBehave assembly, and NBehave.Spec
.NUnit , which provides syntactic sugar and enables NBehave to work
with NUnit. You also need to add a reference to the NUnit assembly
 nunit.framework to enable you to write and run your unit tests, as
shown in Figure 7 - 1.

 Next you need to add a Specification base class. The Specification
class in this example was developed by a team I used to work on. It
provides a base class for unit tests written in a BDD style. It ensures that
all unit test classes derive from the NBehave class SpecBase and that all
derived classes are marked as unit tests for NUnit. You create the
 Specification class in the OSIM.UnitTests project and use this code
to defi ne the class:

[TestFixture]
public class Specification : SpecBase
{

}

 Specifi cation.cs

 Now that the setup tasks are complete, you are ready to start writing
the unit tests for the feature. First you create a class fi le to hold the unit
tests in the OSIM.Core folder of the OSIM.UnitTests project and call it
 ItemRepositoryTests.cs , as shown in Figure 7 - 2.

 Remove the class defi nition for ItemRepositoryTests that Visual Studio
places in the fi le so that you are left with a .cs fi le that contains only a
namespace defi nition:

namespace OSIM.UnitTests.OSIM.Core
{

}

 ItemRepositoryTests.cs

 Now you ’ re ready to create your unit test classes. Start with the when_working_with_the_item_
type_repository base class:

public class when_working_with_the_item_type_repository : Specification
{

}

 ItemRepositoryTests.cs

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Available for
download on
Wrox.com

 FIGURE 7 - 1

 FIGURE 7 - 2

The First Test ❘ 141

c07.indd 141c07.indd 141 3/31/11 3:36:34 PM3/31/11 3:36:34 PM

142 ❘ CHAPTER 7 IMPLEMENTING THE FIRST USER STORY

 Right now this class doesn ’ t do much other than inherit from Specification and thus identify
itself to NUnit as a class that may contain unit tests. It also inherits the functionality provided by the
NBehave SpecBase class. Once you begin writing the test for this example, and others, the common
code to set up your test environment is placed in this class, and other test classes inherit from it.

 Next, create the class to contain the unit test for the current feature, and_saving_a_valid_item_type :

public class and_saving_a_valid_item_type :
 when_working_with_the_item_type_repository
{

}

 ItemRepositoryTests.cs

 Generally speaking I keep all the unit tests for a particular class in the same .cs fi le. Many
developers prefer to have a one - class - per - fi le rule. I agree with this practice for production code
(although it doesn ’ t extend to interfaces, but more on that later). However, for unit tests I have
found it ’ s easier to place all the tests for a particular piece of the application side by side in the
same fi le. For starters, business users seem to fi nd it easier to navigate through tests if they are all
located in the same place. This makes sense, because most business users are used to dealing with
documents. If they are working on a contract, they don ’ t have each paragraph in a separate fi le;
it ’ s all in one place. That ’ s how business users are conditioned to think about information. In your
effort to meet them halfway, consolidating tests into one fi le is a small price to pay. Additionally,
because you plan to have a lot of tests (on many of my projects, the number of unit tests runs into
the hundreds or thousands), it ’ s impractical to put each unit test in its own fi le. Doing this would
cause the Solution Explorer in Visual Studio to run very slowly. If you get into a situation where
you have a .cs fi le of unit tests that has become too big to manage, look into splitting it along some
logical seam. But I always opt to have a few large fi les rather than many small fi les for my unit tests.

 The next step in constructing this unit test is to create the actual test method then_a_valid_
item_type_id_should_be_returned . You add that method, with the attribute that defi nes it as an
executable unit test, to the and_saving_a_valid_item_type class:

public class and_saving_a_valid_item_type :
 when_working_with_the_item_type_repository
{
 [Test]
 public void then_a_valid_item_type_id_should_be_returned()
 {

 }
}

 ItemRepositoryTests.cs

 Now that you have the test classes set up, you can turn your attention to writing the test logic. Every
test has three fundamental parts: setting up the starting conditions and environment, executing the
code under test, and evaluating the result. Setting up the initial environment may seem to be the fi rst

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Available for
download on
Wrox.com

c07.indd 142c07.indd 142 3/31/11 3:36:35 PM3/31/11 3:36:35 PM

order of business. But remember that a key ideal of TDD is to write only code that is essential, and
to not write that code until you need it. The convention is most often applied to the business logic
that is written using TDD, but it can and should be applied to the tests you write as well. In this
case, the fi rst thing you want to write is the code that calls the feature you are working on.

 Having subdivided this test into three tasks (setting up the environment, executing the code under
test, evaluating the result), now you need at least three methods — one to perform each of these
tasks. You already have the then_a_valid_item_type_id_should_be_returned method, and it
may seem the logical place to call your code under test and measure the result. But remember that the
SOLID Principles, including the Single Responsibility Principle (SRP), also should be applied to your
tests, in a pragmatic manner. Therefore, you want to have a method for setting up the context your
test will run under, a method for executing the code under test, and a method to evaluate the result.

 In keeping with the BDD style of your class and method names being meaningful and nontechnical
and creating an almost sentence - like construct for the parts of the test, you want the method that
executes the code under test to be as descriptive as possible. However, because this method will be
something that presumably appears in almost every test, you need it to be generic as well. Luckily,
NBehave provides just the method you need: Because_of . In the and_saving_a_valid_item_type
class, you can create an overridden implementation of this method (the base method appears in the
NBehave class SpecBase):

protected override void Because_of()
{
 base.Because_of();
}

 ItemRepositoryTests.cs

 In most cases you won ’ t need to call the base class version of this method, so the call to the base
class ’ s implementation of Because_of can be removed. Instead, you want to add code that calls your
code under test and saves the result for later evaluation by the then_a_valid_item_id_should_be_
returned method:

protected override void Because_of()
{
 _result = _itemTypeRepository.Save(_testItemType);
}

 ItemRepositoryTests.cs

 You hold the return value in a member variable called _result . Keep an instance of your repository
that ’ s under test in the _itemTypeRepository member variable and pass in an item type that is
stored in the _testItemType member variable. Currently, the and_saving_a_valid_item_type
class looks like this:

public class and_saving_a_valid_item_type :
 when_working_with_the_item_type_repository
{
 private int _result;

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Available for
download on
Wrox.com

The First Test ❘ 143

c07.indd 143c07.indd 143 3/31/11 3:36:35 PM3/31/11 3:36:35 PM

144 ❘ CHAPTER 7 IMPLEMENTING THE FIRST USER STORY

 private IItemTypeRepository _itemTypeRepository;
 private ItemType _testItemType;

 protected override void Because_of()
 {
 _result = _itemTypeRepository.Save(_testItemType);
 }

 [Test]
 public void then_a_valid_item_type_id_should_be_returned()
 {

 }
}

 ItemRepositoryTests.cs

 Now that you ’ ve defi ned the code to execute the code under test, you can add code to the then_a_
valid_item_type_id_should_be_returned method to evaluate the result that is returned and
stored in the _result member variable:

 [Test]
public void then_a_valid_item_type_id_should_be_returned()
{
 _result.ShouldEqual(_itemTypeId);
}

 ItemRepositoryTests.cs

 This demonstrates another example that takes advantage of the syntactic sugar provided by NBehave
to make the unit - testing code more readable by business users. The ShouldEqual method is simply
another way of writing the asserts demonstrated in Chapter 4. In this case, though, instead of
business users having to understand what an assert is and how its syntax works, they can read the
code like a sentence. For example, if you were to read that line of code out loud, you might say
something like “ Result should equal item type ID. ” Compare that with what you would say when
reading an assert from left to right, like a sentence. One is clearly easier to understand than the other.

 Attempting to run this test now will fail. In fact, the code won ’ t even compile. This test executes a
method on an interface (IItemTypeRepository) that doesn ’ t exist and is trying to pass in a class
type (ItemType) that also doesn ’ t exist. If you ’ ve been following along and writing this code in
Visual Studio, no doubt you are seeing a lot of red right now. The next step is to fi x that by creating
some business classes.

 The question of in what order to create your business classes is not one that can be quantifi ed and
spelled out in a book. Actually, it depends. In this case, you have an IItemTypeRepository that has
a Save method that takes an object that is of type ItemType as an argument. For the sake of making
development easier in this example when you get to the item type repository, you create ItemType
fi rst so that it exists when the time comes to write the repository code.

Available for
download on
Wrox.com

Available for
download on
Wrox.com

c07.indd 144c07.indd 144 3/31/11 3:36:36 PM3/31/11 3:36:36 PM

 In the OSIM.Core project is a folder called Entities . In that folder, create a class
called ItemType , as shown in Figure 7 - 3.

 Right now you don ’ t have any specifi c requirements about what kind of data
should comprise an ItemType . But the class ItemType has to be persistable
(meaning that it can be saved to a database). In order to save an entity to the
database, the entity must have a unique ID. This enables the application to fi nd
that specifi c entity in the database later. Therefore, it ’ s reasonable to assume that the ItemType class
should have a defi nition for a public property of type int called Id . As well, Fluent NHibernate
(FNH), the Object Relational Mapper (ORM) that will be used to handle data persistence in
Chapter 8, requires that this property be declared as virtual, so you need to make that declaration
as well. I ’ ll explain why the virtual keyword is needed when I discuss FNH mappings in Chapter 8.

public class ItemType
{
 public virtual int Id { get; set; }
}

 ItemType.cs

 Returning to the test, you need to add a using statement to the top of the ItemRepositoryTests
.cs fi le:

using OSIM.Core.Entities;

 ItemRepositoryTests.cs

 The test should now be able to resolve the ItemType class. The next step is to create the
 IItemTypeRepository interface. To accomplish this, you need to create a new folder in the OSIM
.Core project called Persistence as shown in Figure 7 - 4.

 This folder houses the persistence (data access) logic for the OSIM application. You need to create a
fi le to store the IItemTypeRepository and the concrete ItemTypeRepository classes, so you need
to add a new class to the Persistence folder in the OSIM.Core project called ItemTypeRepository ,
as shown in Figure 7 - 5.

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Available for
download on
Wrox.com

 FIGURE 7 - 3

 FIGURE 7 - 4 FIGURE 7 - 5

The First Test ❘ 145

c07.indd 145c07.indd 145 3/31/11 3:36:37 PM3/31/11 3:36:37 PM

146 ❘ CHAPTER 7 IMPLEMENTING THE FIRST USER STORY

 Because you created this as a class, Visual Studio includes a default implementation for you:

namespace OSIM.Core.Persistence
{
 public class ItemTypeRepository
 {

 }
}

 ItemTypeRepository.cs

 The SOLID Principles say that when developing code you should concern yourself with
contracts and interfaces instead of concrete implementations. In the test you reference the
 ItemTypeRepository from an interface called IItemTypeRepository . Therefore, you need to add
an interface called IItemTypeRepository that the ItemTypeRepository class will implement:

namespace OSIM.Core.Persistence
{
 public interface IItemTypeRepository
 {

 }

 public class ItemTypeRepository : IItemTypeRepository
 {

 }
}

 ItemTypeRepository.cs

 Notice that the interface and the repository are in the same .cs fi le. This is not a mistake.
Conventional wisdom says that these entities should be in separate fi les. But if an interface is
implemented by only a single class, why do they need to be in separate fi les? I have found that
in most cases keeping the interface and the concrete class in the same fi le makes managing these
entities easier and does not limit how I work with the interface or the concrete class. In some
situations it makes sense to place the interfaces in separate fi les. In fact, sometimes the interfaces
should be placed in separate projects. But I have found these to be edge cases. If one of these cases
does arise, it ’ s a simple matter to move the interface to another fi le or project. Therefore, you can
start from a position of developing for the majority of cases and keep the interface and the concrete
class in the same fi le.

 Returning to the OSIM.UnitTest project, you can a using statement for the OSIM.Core
.Persistence namespace to the ItemRepositoryTests.cs fi le to allow the and_saving_a_valid_
item_type unit test class to resolve the IItemRepository interface. Here are the complete contents
of the ItemRepositoryTest.cs fi le:

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Available for
download on
Wrox.com

c07.indd 146c07.indd 146 3/31/11 3:36:38 PM3/31/11 3:36:38 PM

using NBehave.Spec.NUnit;
using NUnit.Framework;
using OSIM.Core.Entities;
using OSIM.Core.Persistence;

namespace OSIM.UnitTests.OSIM.Core
{
 public class when_working_with_the_item_type_repository : Specification
 {

 }

 public class and_saving_a_valid_item_type :
when_ working _with_the_item_type_repository
 {
 private int _result;
 private IItemTypeRepository _itemTypeRepository;
 private ItemType _testItemType;
 private int _itemTypeId;

 protected override void Because_of()
 {
 _result = _itemTypeRepository.Save(_testItemType);
 }

 [Test]
 public void then_a_valid_item_type_id_should_be_returned()
 {
 _result.ShouldEqual(_itemTypeId);
 }
 }
}

 ItemRepositoryTests.cs

 The last order of business before you can compile and run this test is to add a Save method
to the IItemRepository interface. This will also create the need to add a Save method to the
 ItemRepository class:

using System;
using OSIM.Core.Entities;

namespace OSIM.Core.Persistence
{
 public interface IItemTypeRepository
 {
 int Save(ItemType itemType);
 }

 public class ItemTypeRepository : IItemTypeRepository
 {

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Available for
download on
Wrox.com

The First Test ❘ 147

c07.indd 147c07.indd 147 3/31/11 3:36:38 PM3/31/11 3:36:38 PM

148 ❘ CHAPTER 7 IMPLEMENTING THE FIRST USER STORY

 public int Save(ItemType itemType)
 {
 throw new NotImplementedException ();
 }
 }
}

 ItemTypeRepository.cs

 Currently the implementation of the Save method on ItemRepository doesn ’ t do anything. That ’ s
fi ne. Remember that the goal right now is to write just enough code to make the test pass. Until now
you ’ ve been unable to compile the code, so you haven ’ t seen a failing test yet. You don ’ t want to
write any code until you know code needs to be written.

 Sure enough, compiling and running the test does show that the test currently fails, as shown in
Figure 7 - 6.

 FIGURE 7 - 6

 IMPLEMENTING THE FUNCTIONALITY

 Even though it took a while to get there, it is important to see that the test fails. If the test had
passed, this could have meant several things. A passing test might indicate that the code does not
correctly exercise the requirement or feature that you are currently developing. A failing test is
important because it helps confi rm that the test correctly references functionality that does not yet
exist in the application. A passing test could also show that the requirement you ’ re working on is a
duplicate of some sort, or that this particular feature of the current user story was already satisfi ed
by a previous requirement, feature, or user story. In any of these cases, it ’ s important to investigate
any test that passes without any application code being written.

 Writing the Simplest Thing That Could Possibly Work

 Because the test failed, your goal now is to write just enough code to make the test pass.
In some cases this is as easy and trivial as writing or changing a single line of code. This is fi ne.

c07.indd 148c07.indd 148 3/31/11 3:36:39 PM3/31/11 3:36:39 PM

Implementing the Functionality ❘ 149

It ’ s important to meet only the current business requirement and not try to guess what will be
needed in the future. It ’ s also important to keep your code as simple as possible. Simple code is less
likely to have defects and is easier to maintain in the future.

 In this example, the implementation of the feature will end up being a little more involved than
just a single line of code. It is still important, even in situations where you know you need to do a
lot of work to make a test pass, to work in increments, to test frequently, and to write only code at
the instant you need it, not before. Running the test (not just your test, but all the tests) frequently,
even when you know it will not pass, ensures that in the act of developing your current feature ’ s
functionality you are not breaking features in other parts of the application. Odds are that you
will affect other code in the application at some point. This is not always a bad thing and can even
be necessary at times. Knowing about it as soon as it happens, especially if it ’ s unexpected and
creates a negative impact, will help you understand how your code is interacting with the rest of the
application. If the effect on the other feature is unintended, it will be much easier to fi x the sooner
you know about it, because the list of changes that could have caused the error is relatively short.

 According to my results, a null object error occurred on line 22 of the ItemRepositoryTests.cs
fi le. The line this turns out to be is the call to ItemTypeRepository in the Because_of method of
the and_saving_a_valid_item_type test class:

protected override void Because_of()
{
 _result = _itemTypeRepository.Save(_testItemType);
}

 ItemRepositoryTests.cs

 This test fails because although _itemTypeRepository has been defi ned, the variable has not been
populated with an object yet. Chapter 2 demonstrated the Setup attribute that NUnit provides for
setting up some execution context before each test runs. Because this example uses a BDD style
of naming and NBehave to provide a framework for BDD - style tests, you have another option.
Ultimately, your class inherits from the NBehave class SpecBase , which provides a virtual method
called Establish_context . The Establish_context method provides a place to create the context
under which your test will run. Because I tend to build my unit test classes as layers of classes that
each defi ne a precondition for my test, having a common method that exists in the class hierarchy to
create the execution context is convenient. It ’ s also easy to understand for business users to whom
I may want to show my test.

 To get past this initial failure of the test, you only need to create an object of type
 ItemTypeRepository and store it in the _itemTypeRepository member variable:

protected override void Establish_context()
{
 base.Establish_context();

 _itemTypeRepository = new ItemTypeRepository();
}

 ItemRepositoryTests.cs

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Available for
download on
Wrox.com

c07.indd 149c07.indd 149 3/31/11 3:36:40 PM3/31/11 3:36:40 PM

150 ❘ CHAPTER 7 IMPLEMENTING THE FIRST USER STORY

 With that task done, you should run the tests again. In this case the test probably will still fail, but
you should stay in the habit of running the tests often. At the very least, run them when you fi nish
each small task along the way to completing your feature, as shown in Figure 7 - 7.

 FIGURE 7 - 7

 As expected, the test still fails. But it is failing in a different place and for a different reason. This
indicates that you are making progress. The new failure is due to a System.NotImplementedException
occurring in the Save method of ItemTypeRepository — specifi cally, on line 15 of the
 ItemTypeRepository.cs fi le:

public class ItemTypeRepository : IItemTypeRepository
{
 public int Save(ItemType itemType)
 {
 throw new NotImplementedException ();
 }
}

 ItemTypeRepository.cs

 I use Resharper by JetBrains (www.jetbrains.com) to augment my Visual Studio development
environment. When this method was created by Resharper, it automatically added this
implementation that throws the NotImplementedException for me. If you are not using Resharper
it is still a good idea to create this initial implementation to remind you that the code has not been
implemented.

 To complete this feature, you need to implement this method. Right now you just want to write the
simplest code possible that may work:

Available for
download on
Wrox.com

Available for
download on
Wrox.com

c07.indd 150c07.indd 150 3/31/11 3:36:40 PM3/31/11 3:36:40 PM

http://www.jetbrains.com

Implementing the Functionality ❘ 151

public class ItemTypeRepository : IItemTypeRepository
{
 public int Save(ItemType itemType)
 {
 return 1;
 }
}

 ItemTypeRepository.cs

 No one can deny that this is the simplest code that may satisfy the needs of the test. Granted, it is
unlikely that this single line of code will be the solution to this feature or the user story it is derived
from. But based on where you are now in the life cycle of this feature, it is the logical next step.
Running the test again yields another failed test, as shown in Figure 7 - 8.

Available for
download on
Wrox.com

Available for
download on
Wrox.com

 FIGURE 7 - 8

 In this case, the number that is returned from the repository method is not what the test was
expecting. It ’ s clear that some more context is needed.

 To defi ne the context more completely, you need to tell the test what ItemType Id value it should
expect from the call to the Save method on ItemTypeRepository . If I am writing tests to save data
to a data store and I am getting an Id number of some sort in return, I like to have my unit test
randomly select this number at execution:

protected override void Establish_context()
{
 base.Establish_context();

 var randomNumberGenerator = new Random();
 _itemTypeId = randomNumberGenerator.Next(32000);

 _itemTypeRepository = new ItemTypeRepository();
}

 ItemRepositoryTests.cs

Available for
download on
Wrox.com

Available for
download on
Wrox.com

c07.indd 151c07.indd 151 3/31/11 3:36:41 PM3/31/11 3:36:41 PM

152 ❘ CHAPTER 7 IMPLEMENTING THE FIRST USER STORY

 On the surface, you may look at this unit test and think that I have introduced some degree of
unpredictability. But this isn ’ t the case. I expect the Save method on the ItemTypeRepository class
to always respond the same way: It should return an ID number for an entity that is being saved to
the data store. I have created a situation in which the ID number that gets returned from the
 ItemTypeRepository is different each time the test is run, but remains the same during the scope of
each individual execution of this test. Because this determining of a random ID number is done as
part of the process that creates the context for the test, it doesn ’ t introduce any unpredictability to
the test. I ’ m simply changing the value of the ID number that gets returned; the steps to return that
ID number have not changed. In case this distinction still is not quite clear, I will touch on it later
when I demonstrate creating a mocked dependency for ItemTypeRepository .

 If you run this test again, you will see that it fails, as shown in Figure 7 - 9.

 FIGURE 7 - 9

 In this case the test expects 4472 to be returned as the value for the ItemType Id . The current
implementation of Save for the ItemTypeRepository class returns 1.

 It ’ s time to take the next step in making this test pass. At this stage it is helpful to think about the
design of the application. Specifi cally, it ’ s time to discuss how the data persistence will be implemented.

 This application uses the Object Relational Mapper (ORM) framework Fluent NHibernate (FNH)
for data persistence. I explained the concept behind ORMs in Chapter 5, and I ’ ll show how it is used
to handle data persistence in this example in Chapter 8. The .NET world offers a variety of ORM
frameworks to choose from. I chose FNH for this example because it ’ s the framework I am most
familiar with. This does not mean that FNH is the best ORM for your project. If you or your team
have more experience with an ORM such as Entity Framework, and that tool serves your needs, it ’ s
probably the right ORM for you. The examples in this book that use FNH are portable, and you
should be able to implement the same practices with any ORM you and your team decide to use.

 If you ’ re unfamiliar with FNH, don ’ t worry. This example doesn ’ t use any
advanced features of the FNH framework. I will also stop and briefl y explain the
steps in the example that are specifi c to FNH.

c07.indd 152c07.indd 152 3/31/11 3:36:42 PM3/31/11 3:36:42 PM

Implementing the Functionality ❘ 153

 FNH, like most modern ORMs, encourages the use of the repository
pattern discussed in Chapter 5. Because I use FNH frequently, I already
have developed a base generic repository that can be used for projects
that employ FNH. As with the Specification class, I utilize this
class on most of my projects. This repository will be included with the
code samples that are available for download; however, this example
demonstrates how to build a repository from scratch.

 FNH provides a Session class that handles all interaction with the
data store. Calls from the application code to the repository always end
with one or more calls to the FNH Session object. A Session object
is created by an instance of the FNH interface type ISessionFactory .
To use these types in your ItemTypeRepository , you need to add
references to the FluentNHibernate and NHibernate assemblies, as
shown in Figure 7 - 10.

 Before the ItemTypeRepository can recognize the classes in the FNH
framework, you will need to add a using statement to the ItemTypeRepository.cs fi le:

using NHibernate;

 ItemTypeRepository.cs

 Now you need to add a member variable to the ItemTypeRepository class to store the
 ISessionFactory object:

public class ItemTypeRepository : IItemTypeRepository
{
 private ISessionFactory _sessionFactory;

 public int Save(ItemType itemType)
 {
 return 1;
 }
}

 ItemTypeRepository.cs

 Finally, you need to add a constructor to the ItemTypeRepository class that allows a class that
implements ISessionFactory to be supplied when ItemTypeRepository is created:

public ItemTypeRepository(ISessionFactory sessionFactory)
{
 _sessionFactory = sessionFactory;
}

 ItemTypeRepository.cs

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Available for
download on
Wrox.com

 FIGURE 7 - 10

c07.indd 153c07.indd 153 3/31/11 3:36:53 PM3/31/11 3:36:53 PM

154 ❘ CHAPTER 7 IMPLEMENTING THE FIRST USER STORY

 To review, here is a complete listing of the current ItemTypeRepository class:

public class ItemTypeRepository : IItemTypeRepository
{
 private ISessionFactory _sessionFactory;

 public ItemTypeRepository(ISessionFactory sessionFactory)
 {
 _sessionFactory = sessionFactory;
 }

 public int Save(ItemType itemType)
 {
 return 1;
 }
}

 ItemTypeRepository.cs

 Now is a good time to try to run the tests. Unfortunately, the
application no longer compiles. When you created the constructor
on ItemTypeRepository that allowed clients to inject a value
for ISessionFactory , you removed the default (no parameter)
constructor. To use ItemTypeRepository , you need to provide a value
for the constructor that implements ISessionFactory . Because this
is a unit test, and you need to keep the code in ItemTypeRepository
isolated, you need to provide a mocked object instead of a valid FNH
Session Factory.

 As you ’ ll recall from Chapter 2, the mocking framework Moq lets you
create mock or stub objects to inject into the classes you are testing
to ensure that code is isolated from external dependencies. To use the
Moq framework, you fi rst need to add a reference to it to the OSIM
.UnitTests project, as shown in Figure 7 - 11.

 The next step is to add code to the Establish_context method of the
 and_saving_a_valid_item_type class to create a mock object based
on the FNH ISessionFactory interface:

protected override void Establish_context()
{
 base.Establish_context();

 var randomNumberGenerator = new Random();
 _itemTypeId = randomNumberGenerator.Next(32000);
 var sessionFactory = new Mock < ISessionFactory > ();

 _itemTypeRepository = new ItemTypeRepository();
}

 ItemRepositoryTests.cs

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Available for
download on
Wrox.com

 FIGURE 7 - 11

c07.indd 154c07.indd 154 3/31/11 3:36:54 PM3/31/11 3:36:54 PM

Implementing the Functionality ❘ 155

 You ’ ll notice that Visual Studio indicates that it doesn ’ t have a
defi nition for ISessionFactory . This is because the OSIM.UnitTests
project has no reference for the FNH libraries. They need to be added
(see Figure 7 - 12).

 You then need to add a using statement to the ItemRepositoryTests
.cs fi le to include the required FNH namespace:

using NHibernate;

 Now you can use your mocked Session Factory as a constructor
parameter for ItemTypeRepository :

protected override void Establish_context()
{
 base.Establish_context();

 var randomNumberGenerator = new Random();
 _itemTypeId = randomNumberGenerator.Next(32000);
 var sessionFactory = new Mock < ISessionFactory > ();

 _itemTypeRepository = new ItemTypeRepository(sessionFactory.Object);
}

 ItemRepositoryTests.cs

 It ’ s now time to create an implementation of the Save method of the ItemTypeRepository
method that calls the FNH API. As mentioned, all database access with FNH is done through
the Session class. You get an instance of this Session class from an instance of an object that
implements the FNH ISessionFactory interface. Here ’ s the implementation of the Save method in
 ItemTypeRepository that utilizes the Session class to save the ItemType to the database:

public int Save(ItemType itemType)
{
 int id;
 using (var session = _sessionFactory.OpenSession())
 {
 id = (int) session.Save(itemType);
 session.Flush();
 }
 return id;
}

 ItemTypeRepository.cs

 These FNH - specifi c commands require a bit of explanation if you ’ ve never used the FNH
framework. The fi rst thing you do is get a Session from SessionFactory . This is essentially your
connection to the database. SessionFactory is confi gured with the information needed to connect
to the database when it ’ s created. This topic is covered in more detail in Chapter 8. The fi rst call is

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Available for
download on
Wrox.com

 FIGURE 7 - 12

c07.indd 155c07.indd 155 3/31/11 3:36:54 PM3/31/11 3:36:54 PM

156 ❘ CHAPTER 7 IMPLEMENTING THE FIRST USER STORY

to the Save method of the Session object. This method saves the entity to the database and returns
the value of the primary key or ID. Specifying which fi eld in the entity is the ID is done in the
mapping, which is covered in Chapter 8. Next you call Flush to ensure that any pending operations
to the database are complete. When the end of the using block is reached, the Session is closed.

 Running the test again yields another failure, as shown in Figure 7 - 13.

 FIGURE 7 - 13

 Line 26 of the ItemTypeRepository.cs fi le is the call to the Save method of the Session class.
 NullReferenceException tells you that SessionFactory returned a null object when the
 OpenSession method was called. This means that you need to add another mock object to the test
to stand in for Session . You also need to add a stub method for SessionFactory.OpenSession
that returns the mocked Session object:

protected override void Establish_context()
{
 base.Establish_context();

 var randomNumberGenerator = new Random();
 _itemTypeId = randomNumberGenerator.Next(32000);
 var sessionFactory = new Mock < ISessionFactory > ();
 var session = new Mock < ISession > ();

 sessionFactory.Setup(sf = > sf.OpenSession()).Returns(session.Object);

 _itemTypeRepository = new ItemTypeRepository(sessionFactory.Object);
}

 ItemRepositoryTests.cs

 This syntax should look similar to the code in the section “ Moq Basics ” in Chapter 2. It instructs
the mock that will stand in for SessionFactory to return the mock you are creating for Session
when the OpenSession method on the SessionFactory object is called. Running the test at this
point shows that your work is still not done though (see Figure 7 - 14).

Available for
download on
Wrox.com

Available for
download on
Wrox.com

c07.indd 156c07.indd 156 3/31/11 3:36:55 PM3/31/11 3:36:55 PM

Implementing the Functionality ❘ 157

 The fi nal hurdle is supplying the Session mock with a stubbed implementation of the Save method.
In this case you want the Save method to return the random ItemType Id that you are generating
in the Establish_context method of the test class:

session.Setup(s = > s.Save(_testItemType)).Returns(_itemTypeId);

 ItemRepositoryTests.cs

 Here ’ s the complete implementation of Establish_context :

protected override void Establish_context()
{
 base.Establish_context();

 var randomNumberGenerator = new Random();
 _itemTypeId = randomNumberGenerator.Next(32000);
 var sessionFactory = new Mock < ISessionFactory > ();
 var session = new Mock < ISession > ();

 session.Setup(s = > s.Save(_testItemType)).Returns(_itemTypeId);
 sessionFactory.Setup(sf = > sf.OpenSession()).Returns(session.Object);

 _itemTypeRepository = new ItemTypeRepository(sessionFactory.Object);
}

 ItemRepositoryTests.cs

 Running the Passing Test

 As shown in Figure 7 - 15, the test now passes.

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Available for
download on
Wrox.com

 FIGURE 7 - 14

c07.indd 157c07.indd 157 3/31/11 3:36:56 PM3/31/11 3:36:56 PM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

158 ❘ CHAPTER 7 IMPLEMENTING THE FIRST USER STORY

 This passing test means that you are done with this feature. In a work environment you will
probably come back later and do some refactoring, but this passing test is proof that the feature is
complete based on the requirements and can be integrated into the rest of the codebase.

 If you are like most developers I know, you have an urge to fuss over and tinker with code and
add things that make it “ better. ” Resist that urge. Adding unrequested functionality, sometimes
called “ gold plating, ” tends to cause more problems than it solves. The addition takes time, adds
complexity to the codebase, creates maintenance overhead, and can affect the behavior of other
areas of the systems that are covered by the requirements. Don ’ t fall into the “ Well, the business
probably will need it ” trap. Until the business specifi cally asks for additional functionality, it is
unneeded. It ’ s not a matter of being lazy; it ’ s a matter of keeping the codebase and the application
as simple as possible while providing the business with the functionality it needs. In the current
example, a documented business requirement is fi nished. That requirement has been translated into
a unit test. The code satisfi es that test. This is the defi nition of done.

 Writing the Next Test

 With this test done, it ’ s time to look at the user story or feature again and determine if any more
tests need to be written. In this case, you determine that you want to write a test to make sure that if
someone tries to save a null object to the database, the repository throws an exception. As with any
other feature or requirement, the fi rst step is to write a test. Open the ItemRepositoryTests.cs fi le
(if it ’ s not already open) and add a new test class for this base that inherits from the when_working_
with_the_item_type_repository base class:

public class and_saving_an_invalid_item_type :
when_working_with_the_item_type_repository
{

}

 ItemRepositoryTests.cs

 Next you add a method to validate that the result of the test is what you ’ re expecting — in this case,
that an ArgumentNullException is thrown:

public class and_saving_an_invalid_item_type :
when_working_with_the_item_type_repository
{
 private Exception _result;

 [Test]

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Available for
download on
Wrox.com

 FIGURE 7 - 15

c07.indd 158c07.indd 158 3/31/11 3:36:57 PM3/31/11 3:36:57 PM

Implementing the Functionality ❘ 159

 public void then_an_argument_null_exception_should_be_raised()
 {
 _result.ShouldBeInstanceOfType(typeof(ArgumentNullException));
 }
}

 ItemRepositoryTests.cs

 This code declares _result as type Exception , which is the base type of ArgumentNullException .
This is because although you expect the call to ItemTypeRepository to raise an exception, you
want to verify the type of exception that is thrown. If you declare _result as the specifi c type
you ’ re looking for (in this case, ArgumentNullException), and something completely different is
thrown, such as an exception of type NullReferenceException , your test experiences a runtime
error before it can evaluate the result. By declaring _result to be a variable of type Exception , you
can store the exception that is thrown regardless of the specifi c type.

 So, how does _result get populated? The previous example used an override implementation of the
 Because_of method that called the method under test and stored the return output in the _result
member variable:

protected override void Because_of()
{
 _result = _itemTypeRepository.Save(_testItemType);
}

 ItemRepositoryTests.cs

 In this case, because you need to capture an exception that is thrown when the Save method on
the ItemTypeRepository is called, you need to structure your implementation of the Because_of
method a little differently. For this test, you want to place the call to Save in a Try / Catch block, and
in the Catch section store the exception object in the _result member variable:

protected override void Because_of()
{
 try
 {
 _itemTypeRepository.Save(null);
 }
 catch (Exception exception)
 {
 _result = exception;
 }
}

 ItemRepositoryTests.cs

 If you were to try to run this test, you would get a compiler error. The unit test class
 and_saving_an_invalid_item_type does not have a declaration for the member variable
 _itemTypeRepository . This member variable was created and instantiated in the previous test as
part of the and_saving_a_valid_item_type class. You could do the same thing in the

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Available for
download on
Wrox.com

c07.indd 159c07.indd 159 3/31/11 3:36:57 PM3/31/11 3:36:57 PM

160 ❘ CHAPTER 7 IMPLEMENTING THE FIRST USER STORY

 and_saving_an_invalid_item_type class. But you ’ ve already written this code once. Although
some code duplication in unit tests is acceptable, you still want to keep the unit test code as DRY
(don ’ t repeat yourself) as possible. Both the and_saving_a_valid_item_type and and_saving_an_
invalid_item_type classes inherit from the when_working_with_the_item_type_repository
base class. To reduce the code duplication, move the declaration and code to create the mock for
 _itemTypeRepository in that base class:

public class when_working_with_the_item_type_repository : Specification
{
 protected IItemTypeRepository _itemTypeRepository;

 protected override void Establish_context()
 {
 base.Establish_context();
 _itemTypeRepository = new ItemTypeRepository(sessionFactory.Object);
 }
}

 ItemRepositoryTests.cs

 You remove the declaration of _itemTypeRepository from the and_saving_a_valid_item_type
class and from the line that instantiates the instance of ItemTypeRepository :

public class and_saving_a_valid_item_type :
when_working_with_the_item_type_repository
{
 private int _result;
 private ItemType _testItemType;
 private int _itemTypeId;

 protected override void Establish_context()
 {
 base.Establish_context();

 var randomNumberGenerator = new Random();
 _itemTypeId = randomNumberGenerator.Next(32000);
 var sessionFactory = new Mock < ISessionFactory > ();
 var session = new Mock < ISession > ();

 session.Setup(s = > s.Save(_testItemType)).Returns(_itemTypeId);
 sessionFactory.Setup(sf = > sf.OpenSession()).Returns(session.Object);
 }
}

 ItemRepositoryTests.cs

 You ’ ve moved the declaration and instantiation of the mock for ItemTypeRepository , but the
 ItemTypeRepository mock relies on the mock of SessionFactory , which in turn relies on the
mock of the Session object. You need to create these as instance variables of the when_working_
with_the_item_type_repository class:

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Available for
download on
Wrox.com

c07.indd 160c07.indd 160 3/31/11 3:36:58 PM3/31/11 3:36:58 PM

Implementing the Functionality ❘ 161

public class when_working_with_the_item_type_repository : Specification
{
 protected IItemTypeRepository _itemTypeRepository;
 protected Mock < ISessionFactory > _sessionFactory;
 protected Mock < ISession > _session;

 protected override void Establish_context()
 {
 base.Establish_context();

 _sessionFactory = new Mock < ISessionFactory > ();
 _session = new Mock < ISession > ();

 _itemTypeRepository = new ItemTypeRepository(_sessionFactory.Object);
 }
}

 ItemRepositoryTests.cs

 Next, you need to move the line of code that stubs the CreateSession method of the
 SessionFactory mock from the Establish_context method of the and_saving_a_valid_
item_type class to the Establish_context method of the when_working_with_the_item_type_
repository class:

protected override void Establish_context()
{
 base.Establish_context();

 _sessionFactory = new Mock < ISessionFactory > ();
 _session = new Mock < ISession > ();

 _sessionFactory.Setup(sf = > sf.OpenSession()).Returns(_session.Object);

 _itemTypeRepository = new ItemTypeRepository(_sessionFactory.Object);
}

 ItemRepositoryTests.cs

 This change leaves the Establish_context method of the and_saving_a_valid_item_type class
looking like this:

protected override void Establish_context()
{
 base.Establish_context();

 var randomNumberGenerator = new Random();
 _itemTypeId = randomNumberGenerator.Next(32000);

 session.Setup(s = > s.Save(_testItemType)).Returns(_itemTypeId);
}

 ItemRepositoryTests.cs

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Available for
download on
Wrox.com

c07.indd 161c07.indd 161 3/31/11 3:36:59 PM3/31/11 3:36:59 PM

162 ❘ CHAPTER 7 IMPLEMENTING THE FIRST USER STORY

 The last change you need to make is to have the Establish_context method of the and_saving_
a_valid_item_type class use the member variable _session from the when_working_with_the_
type_repository class:

protected override void Establish_context()
{
 base.Establish_context();

 var randomNumberGenerator = new Random();
 _itemTypeId = randomNumberGenerator.Next(32000);

 _session.Setup(s = > s.Save(_testItemType)).Returns(_itemTypeId);
}

 ItemRepositoryTests.cs

 Moving these declarations enables you to reuse quite a bit of code over not only these two tests,
but also any additional tests you may need to write. Keeping the _session variable as a protected
member of the base class when_working_with_the_item_type_repository enables you to
restub that method individually for each test class you do. The Establish_context method in
 when_working_with_the_item_type_repository takes care of stubbing the session factory so
that you don ’ t need to tell it to return the mock of Session for every test. Because more tests were
added to this class, this turns out to be an effi cient way of arranging things.

 Before you consider the refactoring of the test class fi nished, you want to rerun the then_a_valid_
item_type_id_should_be_returned test in the and_saving_a_valid_item_type test class, as
shown in Figure 7 - 16.

Available for
download on
Wrox.com

Available for
download on
Wrox.com

 FIGURE 7 - 16

 The NUnit unit test runner has picked up the new then_an_argument_null_should_be_raised
unit test. But for now you should be concerned with only the existing then_a_valid_item_type_
id_should_be_returned test. You should be more concerned about that one right now because
you want to make sure that refactoring your unit test classes (and_saving_a_valid_item_type
and when_working_with_the_item_type_repository) hasn ’ t broken the tests in any way. The
test passed before refactoring, and if you didn ’ t make any changes to the business code, you can
be reasonably sure that you have not broken the test. When refactoring your unit tests, running
the existing tests to ensure that they all still pass and that you haven ’ t broken any of them is an
important step. Do not skip it!

c07.indd 162c07.indd 162 3/31/11 3:37:00 PM3/31/11 3:37:00 PM

Implementing the Functionality ❘ 163

 Because the refactor of the unit test classes is complete for now, you can move on to looking at the
new test class (and_saving_an_invalid_item_type) and running this test for the fi rst time (see
Figure 7 - 17).

 FIGURE 7 - 17

 You get an unexpected exception from the call to Save on the ItemTypeRepository class. This is a
great example of why it was important to declare _result broadly as a type Exception and not the
more narrowly focused ArgumentNullException . The reason for this failing test is that the mock of
the Session class does not have a stub for the method Save that reacts to the value null. Because the
mechanics of creating the mocks of the SessionFactory and Session objects are taken care of in
the when_working_with_the_item_type_repository class, all you need to do is declare the stub
for the Save method:

protected override void Establish_context()
{
 base.Establish_context();

 _session.Setup(s = > s.Save(null)).Throws(new ArgumentNullException());
}

 ItemRepositoryTests.cs

 With the stubbed Save method set up on the Session object, it ’ s time to run the test again, as
shown in Figure 7 - 18.

Available for
download on
Wrox.com

Available for
download on
Wrox.com

 FIGURE 7 - 18

c07.indd 163c07.indd 163 3/31/11 3:37:00 PM3/31/11 3:37:00 PM

164 ❘ CHAPTER 7 IMPLEMENTING THE FIRST USER STORY

 Now that the Session mock is throwing the proper exception, the test passes. Here ’ s the complete
 ItemRepositoryTests.cs fi le:

using System;
using Moq;
using NBehave.Spec.NUnit;
using NHibernate;
using NUnit.Framework;
using OSIM.Core.Entities;
using OSIM.Core.Persistence;

namespace OSIM.UnitTests.OSIM.Core
{
 public class when_working_with_the_item_type_repository : Specification
 {
 protected IItemTypeRepository _itemTypeRepository;
 protected Mock < ISessionFactory > _sessionFactory;
 protected Mock < ISession > _session;

 protected override void Establish_context()
 {
 base.Establish_context();

 _sessionFactory = new Mock < ISessionFactory > ();
 _session = new Mock < ISession > ();

 _sessionFactory.Setup(sf = > sf.OpenSession()).Returns(_session.Object);

 _itemTypeRepository = new ItemTypeRepository(_sessionFactory.Object);
 }
 }

 public class and_saving_an_invalid_item_type :
 when_working_with_the_item_type_repository
 {
 private Exception _result;

 protected override void Establish_context()
 {
 base.Establish_context();

 _session.Setup(s = > s.Save(null)).Throws(new ArgumentNullException());
 }

 protected override void Because_of()
 {
 try
 {
 _itemTypeRepository.Save(null);
 }
 catch (Exception exception)
 {
 _result = exception;
 }

Available for
download on
Wrox.com

Available for
download on
Wrox.com

c07.indd 164c07.indd 164 3/31/11 3:37:01 PM3/31/11 3:37:01 PM

 }

 [Test]
 public void then_an_argument_null_exception_should_be_raised()
 {
 _result.ShouldBeInstanceOfType(typeof(ArgumentNullException));
 }
 }

 public class and_saving_a_valid_item_type :
 when_working_with_the_item_type_repository
 {
 private int _result;
 private ItemType _testItemType;
 private int _itemTypeId;

 protected override void Establish_context()
 {
 base.Establish_context();

 var randomNumberGenerator = new Random();
 _itemTypeId = randomNumberGenerator.Next(32000);

 _session.Setup(s = > s.Save(_testItemType)).Returns(_itemTypeId);
 }

 protected override void Because_of()
 {
 _result = _itemTypeRepository.Save(_testItemType);
 }

 [Test]
 public void then_a_valid_item_type_id_should_be_returned()
 {
 _result.ShouldEqual(_itemTypeId);
 }
 }
}

 ItemRepositoryTests.cs

 IMPROVING THE CODE BY REFACTORING

 When you start writing code using TDD, your only goal is to make the tests pass. Don ’ t worry
about writing code that is elegant or functional or pretty. Make sure that you can meet the
primary purpose of development: satisfying the needs of the business. The passing tests, which are
themselves based on business requirements, indicate that business needs are being met. After the
business needs are met, you should think about refactoring.

 As stated in Chapter 4, refactoring is the act of improving on existing code to make it more effi cient,
more readable, and more maintainable without affecting the code ’ s external behavior. Having a

Improving the Code by Refactoring ❘ 165

c07.indd 165c07.indd 165 3/31/11 3:37:02 PM3/31/11 3:37:02 PM

166 ❘ CHAPTER 7 IMPLEMENTING THE FIRST USER STORY

suite of passing unit tests allows you to freely refactor your code and know exactly when you ’ ve
gone beyond the point of having code that satisfi es the business. Now is the time to put on your
editor hat and take a good, hard look at your code. Is it readable? Can someone new to the team
look at your code and quickly understand its function and how the code accomplishes this? Does
your code meet the SOLID Principles? Do you have a lot of duplicate code? Are you effectively using
interfaces and abstractions? Are your dependencies being injected to keep your coupling loose? Now
is the time to address these questions. Work to make your code better, but keep your tests passing.

 TRIANGULATION OF TESTS

 The “ happy path ” is always easy to test. If your unit tests stay on the happy path or tests one set
of input values that fall within the middle range of the possible inputs, they are not telling you the
whole story. Actually, it ’ s worse than that: They lie to you. They tell you that your code satisfi es the
business needs and have a high degree of quality. This isn ’ t true.

 The problem is that all input is evil. When you don ’ t build tests that probe the boundaries of your
code and go beyond, you are essentially crossing your fi ngers and hoping that the users never push
the boundaries of your application. Users just want software that works. They don ’ t understand
concepts of memory size, out - of - bounds errors, null object exceptions, or the problems that arise
from using values that are either higher or lower than the range of values your code expects. And
they shouldn ’ t have to; your application should worry about these issues.

 When writing unit tests, be sure they explore the boundaries of what your method expects. If your
method expects a value between 1 and 10, write a test that passes in 5. Then write tests that pass
in 1 and 10. Then write tests that pass in 0 and 11. Make sure that your code knows what to do
with the unexpected. That was the point of the and_saving_an_invalid_item_type test class
and its then_an_agrument_null_exception_should_be_raised test. I wanted to make sure that
the ItemTypeRepository class would be able to handle the case in which a client called the Save
method with a null object and respond accordingly. Triangulate your tests to ensure the quality of
your code.

 SUMMARY

 The fi rst user story or feature you develop for an application is important. The success of this fi rst
unit of work can set the tone and defi ne the project ’ s values. When planning your work, order your
features in a logical manner that starts toward the core of your application and builds out. When
breaking your user stories into features, be sure to keep them small, isolated, and testable.

 When creating your unit tests, use a consistent standard for naming classes, methods, and variables.
The names you give them should be meaningful — not only to developers but also to nontechnical
business users who may be asked to validate your tests. Investigate BDD naming styles and
conventions, and apply this knowledge to naming your classes, methods, and variables.

 See your test fail before you write any code. This is important to ensure that your test is testing
functionality that does not exist. If your test passes without any code being written, this could
mean many things. Perhaps this is a duplicate feature. It could be that the functionality needed was

c07.indd 166c07.indd 166 3/31/11 3:37:02 PM3/31/11 3:37:02 PM

created as a side effect of a previous feature. Another possibility is that your test is not testing the
correct functionality. Find the reason; don ’ t just assume that a test that passes in this manner means
it ’ s OK to proceed with development.

 Write just enough code to make your test pass — no more. When implementing the business code
to make your test pass, always try to do the simplest thing that might work. When the test passes,
you are done. Do not gold - plate. If a feature, defect, or request for a piece of functionality doesn ’ t
appear in the user stories or feature list, do not build it. Wait until it ’ s needed; do not preempt the
process.

 Be sure to triangulate your tests. Testing the best - case scenario or the “ happy path ” does nothing
to ensure that you are creating quality code. Test the edge cases for your methods: input parameters
that are on the boundaries of what is expected, values that fall out of these boundaries, and
unexpected values and conditions. Remember, all input is evil.

 With a suite of passing tests, you know that your application meets the needs of the business. When
those needs are met, work on refactoring your code to make it more optimized, readable, and
maintainable. Keep the SOLID Principles in mind, and use them as a guide when refactoring your
code. Keep your tests passing, and you ’ ll know that your code still meets the needs of your business.

 Finally, look at ORM frameworks such as NHibernate and Entity Framework to help accelerate
your development. Offl oading your data access functionality to a framework like this can make
development faster and less prone to defects.

Summary ❘ 167

c07.indd 167c07.indd 167 3/31/11 3:37:03 PM3/31/11 3:37:03 PM

c07.indd 168c07.indd 168 3/31/11 3:37:03 PM3/31/11 3:37:03 PM

Integration Testing

 WHAT ’ S IN THIS CHAPTER?

 How integration tests are diff erent from unit tests and why

integration tests are important

 Why it ’ s important to start writing and running integration tests early

 How to write an automated integration test with NUnit and

where the practice deviates from writing unit tests with NUnit

 What end - to - end tests are and why they are critical to the success

of an application development eff ort

 How to manage the external resources that are used by integration

and end - to - end tests

 When and how integration and end - to - end tests should be run

 The point of unit tests in TDD is to drive the development of discrete components and
sections of an application. To that end, it ’ s important to keep the unit tests and the code they
exercise isolated from other components or external resources. In fact, tests that test the same
unit of functionality should be isolated from each other. This means that these tests can be
run in any order or combination and produce the same predictable results. This is necessary
to ensure that the application ’ s individual components are being developed in a simple, loosely
coupled, and complete manner. The isolation of unit tests also makes it easier to diagnose
and correct defects that cause tests to fail.

 There comes a time, however, when an application ’ s components must be combined. Ensuring
that these various parts come together correctly is the job of integration tests. Integration
tests verify that the various components and external resources of the application you are
developing work together correctly.

➤

➤

➤

➤

➤

➤

 8

c08.indd 169c08.indd 169 3/31/11 3:37:33 PM3/31/11 3:37:33 PM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

170 ❘ CHAPTER 8 INTEGRATION TESTING

 INTEGRATE EARLY; INTEGRATE OFTEN

 When using TDD, classes and methods are developed based on tests. Specifi cally, they are developed
based on the idea that the tests mirror the specifi cations and functional requirements. When you
write enough code to make all the tests pass, your class and/or method meets all the specifi cations
and requirements. Other classes, external resources, and other components of the application are
mocked and stubbed to allow the code you are testing to be tested in isolation. The kind of testing
ensures the quality of the individual classes and components.

 Because of this concept of isolation, true TDD unit tests by defi nition guarantee quality only up
to the edge of the current class or method. This results in a series of seams that exist between the
classes, components, and external resources used by the application as a whole. These seams are
defi ned by the interfaces provided by the various classes, components, and external resources. Even
when an interface seems clear in its intent, problems can still arise when the time comes to join two
or more pieces of software to form an application. You should ensure that these dependencies are
mocked and stubbed correctly. However, it is still possible for errors and defects to be introduced.
Perhaps the input being provided to a method isn ’ t what was expected. Maybe a method ’ s output is
not what the consuming class wants. In many scenarios, classes, components, and resources are
well designed and have well - written unit tests that all pass. Yet, these classes, components, and
external resources don ’ t function as expected when they are linked. Many of these problems can
be mitigated with good design and communication. But even in the most optimal situations,
integration issues can still arise. Only by testing the integration of these components, classes, and
external resources can you be sure that the seams of the application you are developing are solid
and dependable.

 An integration test is a test designed to target the various seams in an application and ensure that
the pieces of the application work together correctly. They are similar to unit tests in that the same
automated unit testing framework can (and should) be used to create them. They differ in that
unlike unit tests, which use mocks to isolate specifi c methods and classes under test, integration
tests cover all the application code between the method that the integration test was written for, all
the way to the lowest level of the system, usually the data store.

 As important as integration testing is, many developers are content to leave it until the end of the
project. This is a mistake. Many software developers whose experience predates the emergence of
TDD (and even many others) can tell you at least one horror story about a long night spent before
an application ’ s launch or deployment to QA trying to fi gure out why two or more components of a
larger system simply refused to work together. Clearly, this schism was unanticipated, and in many
cases the development team was forced to pull an all - nighter to diagnose and correct the problem.
Many times the solution was a patch or shim. I saw one that was literally designed and drawn on
the back of a pizza box. These patches and shims (which in most cases were created without any
documentation to describe them) usually fi xed the symptoms. But what most developers didn ’ t
realize, or want to talk about, was that the underlying problem still existed. It was just hiding,
waiting for an unsuspecting junior developer who was assigned to maintain the application.

 The good news is that it doesn ’ t have to be this way. In fact, it really shouldn ’ t be this way. These
late - night hack sessions can easily be avoided if the development team starts automated integration
testing early in the project and maintains it throughout the development cycle.

c08.indd 170c08.indd 170 3/31/11 3:37:35 PM3/31/11 3:37:35 PM

 Creating automated integration tests early in the development cycle and running them on a consistent
schedule will help you fi nd and fi x errors that develop between the seams of the classes, components,
and external resources that comprise your application. If an automated integration test fails, you ’ ll
know right away that an issue has developed along one of these seams in your application, not in two
months during deployment. Running them regularly, say as part of your CI process, will provide you
with a short list of suspects when a defect is introduced into the application.

 In cases where you are working in brownfi eld development (you are maintaining, extending, or
enhancing an existing application) without existing unit tests, integration tests may be the only
option available for automated testing if practices such as dependency injection were not employed
in the application design or coding practices up front. On these older projects, particularly if
they have large code bases or are already in production, it is usually economically unfeasible to
reengineer the code base to introduce the dependency injection that would allow true unit testing.
In these cases, remember that any testing (even integration testing) is better than no testing at all.

 As you continue to develop and enhance these larger existing applications, you should attempt
to introduce the techniques and methods that will make it possible to unit - test sections of the
application. A full - scale rewrite of the application may be impossible, but you should work to
improve the application from within whenever you can.

 WRITING INTEGRATION TESTS

 Writing integration tests is similar to writing unit tests. In fact, you will use a lot of the same
frameworks to write your integration tests that you use to write your unit tests. The difference
is that when you write integration tests, the goal is not necessarily to test the individual units of
code. The goal of integration testing is to test the seams between the individual pieces of code.
This means that the isolation rule that I talked about previously at length no longer applies. Well,
that ’ s not exactly true; the tests are isolated by the seam or seams they are testing, but they interact
with several different classes and components — perhaps even an external resource. The goal of
integration tests is to make sure that these different components all work together.

 In practice, this means that at some point your integration tests will have to interact with some
external resources. Your tests could read and write data to a database. Your tests could call a
web service. Your tests could interact with fi les or folders on the hard drive. Because of this, it ’ s
important that you have access to an environment with test versions of all these resources over
which you can exercise some measure of control. Before each test you need to reset the environment
to a consistent pretest state. If you added or changed data in a database, you need to either remove
it or put it back the way it was. If you call a web service, you need a test version of that service that
responds consistently and correctly based on the input you pass to it. You need to be sure that you
can put the fi le system back in order and undo any changes your tests have caused.

 How to Manage the Database

 One thing unit tests, integration tests, and end - to - end tests have in common is that they expect
their environment to be in a specifi c state at the beginning. For unit tests this is easy, because the
dependency on external resources is removed through dependency injection and mocking. For

Writing Integration Tests ❘ 171

c08.indd 171c08.indd 171 3/31/11 3:37:36 PM3/31/11 3:37:36 PM

172 ❘ CHAPTER 8 INTEGRATION TESTING

integration tests and end - to - end tests this is little more complicated, because external resources are
an integral part of these tests.

 The external resource most commonly used by integration tests and end - to - end tests is a database. The
need to have a consistent starting environment for integration and end - to - end tests means that before
these tests are run, the data in the database must be placed in a specifi c state. In the example used
in this chapter this is an easy task; the confi guration used by Fluent NHibernate for my integration
test burns down and rebuilds the database for each test run. The effi ciency of this approach is
debatable, but you can be assured that your database is always in a consistent state when the
test is run.

 In cases where you are not using an ORM, or when the burn down/rebuild approach is impractical,
you need to build some sort of rollback action into your test to ensure that your tests always run in
a consistent environment. This can take a couple different forms. In many cases the logical place
and time to perform this database cleanup is during the initialization of the test. This ensures that
your environment is always in the correct state to execute your tests.

 In some cases it may be easier and more practical to run a reset script or stored procedure at the end
of your test. In these cases you want to be sure to structure your test so that this script or procedure
runs every time the test is run, regardless of the test ’ s success or failure. In these cases, you would
need to run this script as soon as you have retrieved the data you need to validate the test, but
before you begin the actual validation. This is because NUnit, and most unit - testing frameworks,
end execution of the test on the fi rst failed assertion. This means that if you wait to perform the
database cleanup until after all the assertions are complete, the cleanup will not happen if the
test fails.

 How to Write Integration Tests

 In the previous chapter I started developing the core of what will ultimately evolve into the data
access layer for the OSIM application. Recall that the current implementation was written only to
make the tests (and_saving_an_invalid_item_type.then_an_argument_null_exception_should_
be_raised and and_saving_a_valid_item_type.then_a_valid_item_type_id_should_be_
returned) pass.

 These are unit tests and are designed to focus solely on the code in the Save method of a class
that implements the IItemTypeRepository interface. This particular implementation of the
 IItemTypeRepository interface uses Fluent NHibernate to perform its data access. As a result,
the Save method is ultimately dependent on an instance of one object that implements Fluent
NHibernate ’ s ISessionFactory interface, as well as an instance of an object that implements
Fluent NHibernate ’ s ISession interface. To keep the unit tests isolated (ensuring that they test
only the code in the Save method of this implementation of IItemTypeRepository) you can
pass in mock objects that implement ISessionFactory and ISession interfaces. I will show
you how to provide these mocked objects with stubs for methods defi ned by the interfaces
as needed. In the end, the code in the Save method is tested, but I haven ’ t verifi ed that the
implementation of IItemTypeRepository can actually save an instance of the ItemType class
to the database.

c08.indd 172c08.indd 172 3/31/11 3:37:37 PM3/31/11 3:37:37 PM

 Reviewing the ItemTypeRepository

 In truth, ItemTypeRepository (the implementation of IItemTypeRepository) will not save
an instance of the ItemType class to the database. By way of review, this is code for the current
implementation of ItemTypeRepository :

using System;
using NHibernate;
using OSIM.Core.Entities;

namespace OSIM.Persistence
{
 public interface IItemTypeRepository
 {
 int Save(ItemType itemType);
 ItemType GetById(int id);
 }

 public class ItemTypeRepository : IItemTypeRepository
 {
 private ISessionFactory _sessionFactory;

 public ItemTypeRepository(ISessionFactory sessionFactory)
 {
 _sessionFactory = sessionFactory;
 }

 public int Save(ItemType itemType)
 {
 int id;
 using (var session = _sessionFactory.OpenSession())
 {
 id = (int) session.Save(itemType);
 session.Flush();
 }
 return id;
 }

 public ItemType GetById(int id)
 {
 using (var session = _sessionFactory.OpenSession())
 {
 return session.Get < ItemType > (id);
 }
 }
 }
}

 ItemTypeRepository.cs

 You may notice that I ’ ve added a new method since the preceding chapter. GetById enables
consumers of ItemTypeRepository to retrieve an instance of an ItemType by supplying the ID,
which is the primary key for the ItemType data table in the database. Specifying the primary key for
an entity is covered later in this chapter, in the section on Fluent NHibernate mappings. The code to

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Writing Integration Tests ❘ 173

c08.indd 173c08.indd 173 3/31/11 3:37:37 PM3/31/11 3:37:37 PM

174 ❘ CHAPTER 8 INTEGRATION TESTING

call the Fluent NHibernate session to get an ItemType by ID in the code listed above is trivial, so I
won ’ t spend time describing it. Fluent NHibernate does have facilities to search for entities by fi elds
other than the primary key, but that is beyond the scope of this book. Please refer to the Fluent
NHibernate documentation for details on search criteria.

 Right now, ItemTypeRepository has only one implementation of a constructor:

public ItemTypeRepository(ISessionFactory sessionFactory)
{
 _sessionFactory = sessionFactory;
}

 ItemTypeRepository.cs

 This constructor takes an instance of ISessionFactory as the sole parameter. Right now it is being
used to pass in the mocked instance of ISessionFactory . For the purposes of integration, you need
to somehow provide an object that is a working implementation of the ISessionFactory interface.
You have a variety of ways to provide an implementation of the ISessionFactory interface to the
 ItemTypeRepository upon creation. I prefer to use Ninject, which was covered in Chapter 5 to
handle class instantiation and dependency resolution. There ’ s no reason you can ’ t use it to provide
a correctly created and confi gured instance of ISessionFactory to each
 ItemTypeRepository at the time the ItemTypeRepository is created.

 Adding Ninject for Dependency Injection

 To use Ninject to create the ItemTypeRepository and its dependencies,
including an instance of ISessionFactory , fi rst you need to create a
module class for the OSIM.IntegrationTests project. Call this new
class IntegrationTestsModule , as shown in Figure 8 - 1.

 To use Ninject, you need to add a reference to the Ninject assembly in
the OSIM.IntegrationTests project, as shown in Figure 8 - 2.

 After you add the Ninject library to the OSIM.IntegrationTests
project, you can start working on the IntegrationTestsModule
class. The fi rst step is to add a using statement to the
 IntegrationTestModule.cs fi le for the OSIM.Core.Persistence
namespace:

using OSIM.Core.Persistence;

 IntegrationTestModule.cs

 Next you need to add a reference to the NHibernate assembly to the OSIM.IntegrationTests
project, as shown in Figure 8 - 3.

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Available for
download on
Wrox.com

FIGURE 8 - 1

FIGURE 8 - 2

c08.indd 174c08.indd 174 3/31/11 3:37:38 PM3/31/11 3:37:38 PM

 You also need to add a reference to the NHibernate namespace:

using NHibernate;

 IntegrationTestModule.cs

 Last, you need to add a using statement for the Ninject.Modules namespace and change the
defi nition of IntegrationTestModule to inherit from the NinjectModule base class provided by
Ninject. After that, the contents of the IntegrationTestModule.cs fi le should look like this:

using NHibernate;
using Ninject.Modules;
using OSIM.Core.Persistence;

namespace OSIM.IntegrationTests
{
 public class IntegrationTestModule : NinjectModule
 {

 }
}

 IntegrationTestModule.cs

 Right now IntegrationTestModule won ’ t compile. NinjectModule has an abstract method called
 Load that you need to implement:

public class IntegrationTestModule : NinjectModule
{
 public override void Load()
 {
 throw new NotImplementedException ();
 }
}

 IntegrationTestModule.cs

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Available for
download on
Wrox.com

 FIGURE 8 - 3

Writing Integration Tests ❘ 175

c08.indd 175c08.indd 175 3/31/11 3:37:38 PM3/31/11 3:37:38 PM

176 ❘ CHAPTER 8 INTEGRATION TESTING

 The application will compile now, but if you were to try to use the IntegrationTestModule
to build an instance of ItemTypeRepository — or anything, for that matter — a
 NotImplementedException would be thrown. You need to add some binding rules to this module
so that it can create an instance of the ItemTypeRepository class when Ninject is asked for an
instance of IItemTypeRepository . The fi rst rule is easy; when Ninject is asked for an instance of
 IItemTypeRepository , an instance of ItemTypeRepository should be returned:

public override void Load()
{
 Bind < IItemTypeRepository > ().To < ItemTypeRepository > ();
}

 IntegrationTestModule.cs

 The next step is more complex. You can ’ t just bind an instance of the SessionFactory class
to the ISessionFactory interface. Fluent NHibernate doesn ’ t provide an implementation of a
class that implements ISessionFactory that you can instantiate in code. You need to invoke the
Fluent NHibernate static class Fluently by providing it with a set of confi guration information
that Fluent NHibernate can use to create an instance of an object that implements the
 ISessionFactory interface.

 In this example I want to use a Ninject provider. A provider is a class whose job is to create and return
an object that implements a specifi c interface. Providers also enable developers to instantiate objects to
defi ne instantiation rules that are more complex than simply stating “ If I ask for X, give me Y. ” The
rules for instantiating a confi gured instance of ISessionFactory defi nitely fall into this category.

 The fi rst step is to add a binding rule to the Load method of the IntegrationTestModule that instructs
Ninject to utilize the specifi ed provider when satisfying a request for the interface in question:

public override void Load()
{
 Bind < IItemTypeRepository > ().To < ItemTypeRepository > ();
 Bind < ISessionFactory > ().ToProvider
 (new IntegrationTestSessionFactoryProvider());
}

 IntegrationTestModule.cs

 You need to create an instance of IntegrationTestSessionFactoryProvider . For the sake of
simplicity, you can just create this class in the IntegrationTestModule.cs fi le and place it after the
defi nition of IntegrationTestModule . Technically, the IntegrationTestSessionFactoryProvider
class needs to implement the IProvider interface that Ninject provides. But an easier way to build
this class than implementing the IProvider interface is to inherit from the Provider < T > base class,
also provided by Ninject. To use this base class, you need to add another using statement to the
 IntegrationTestModule.cs fi le:

using Ninject.Activation;

 IntegrationTestModule.cs

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Available for
download on
Wrox.com

c08.indd 176c08.indd 176 3/31/11 3:37:39 PM3/31/11 3:37:39 PM

 You also need to add a reference to the OSIM.Core project and add a using statement to bring in the
namespace where ItemType is located:

using OSIM.Core.Entities;

 IntegrationTestModule.cs

 Next, you need to defi ne the IntegrationTestSessionFactoryProvider class:

public class IntegrationTestSessionFactoryProvider : Provider < ISessoinFactory >
{
}

 IntegrationTestModule.cs

 The Provider base class defi nes an abstract method called CreateInstance , for which you need to
supply an implementation:

public class IntegrationTestSessionFactoryProvider : Provider < ISessionFactory >
{
 protected override ISessionFactory CreateInstance(IContext context)
 {
 throw new NotImplementedException ();
 }
}

 IntegrationTestModule.cs

 The IntegrationTestModule will provide Ninject with the rules and information necessary
to create instances of your classes and complete object graphs for running integration tests. For
production, you want to use Ninject modules that create actual production dependencies. I have
included a fi le in the Persistence folder of the OSIM.Core project with a sample of what a
production Ninject module might look like.

 Creating the Fluent NHibernate Confi guration

 You need to call the Fluent NHibernate Fluently static class and provide the necessary
confi guration information to access a database:

public class IntegrationTestSessionFactoryProvider : Provider < ISessionFactory >
{
 protected override ISessionFactory CreateInstance(IContext context)
 {
 var sessionFactory = Fluently.Configure()
 .Database(MsSqlConfiguration.MsSql2008
 .ConnectionString(c = > c.Is(ConfigurationManager.AppSettings
 [“localDb”])).ShowSql())
 .Mappings(m = > m.FluentMappings.AddFromAssemblyOf < ItemTypeMap > ()

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Writing Integration Tests ❘ 177

c08.indd 177c08.indd 177 3/31/11 3:37:40 PM3/31/11 3:37:40 PM

178 ❘ CHAPTER 8 INTEGRATION TESTING

 .ExportTo(@”C:\Temp”))
 .ExposeConfiguration(cfg = > new SchemaExport(cfg).Create(true, true))
 .BuildSessionFactory();

 return sessionFactory;
 }
}

 IntegrationTestModule.cs

 This code bears some explanation. As mentioned in Chapter 7, Fluent NHibernate uses an object
that implements the ISession interface to access the database. This implementation of ISession is
provided by ISessionFactory . To get an instance of an object that implements ISessionFactory ,
you need to use the Fluent NHibernate Fluently.Configure API. Luckily, these API calls are all
implemented as extension methods, which makes creating this ISessionFactory implementation
a bit easier.

 The process starts by calling the Fluently.Configure method. You add a call to the extension
method Database to the call to Configure . The Database method tells Fluent NHibernate where
the database is located and what kind of DBMS it is using. In this case, I am using an instance
of Microsoft SQL Server 2008. The connection string is stored in the AppSettings section of my
confi guration fi le under the key localDb .

 Next you need to tell Fluent NHibernate where the mappings for the entity objects are located. I ’ ll
touch on NHibernate mappings later in this chapter, but in this case I ’ m telling Fluent NHibernate
that the mappings are located in the same assembly that the ItemTypeMap class is defi ned in. The
 ItemTypeMap class is the Fluent NHibernate mapping class for the ItemType class. This class
doesn ’ t exist yet, but it will be created in the OSIM.Core project.

 The ExportTo method instructs Fluent NHibernate to export the mapping information to a fi le in
the Temp directory on the C drive. This fi le can be very helpful if the object - to - data table mappings
that Fluent NHibernate generates are incorrect or are not what you expected.

 I use the call to the ExposeConfiguration method to destroy and regenerate my database schema,
which is managed by the call to the Create method of a newly created SchemaExport object. This
is very helpful for integration tests because object structures often change during development,
and having to manually alter the database table to store the data for these classes can be tedious. It
also ensures that you are always working with a new, clean database schema instance. This means
that you have less work to do with respect to resetting your testing environment. When moving to
production, you want to be sure that you remove the call to ExposeConfiguration , or you risk
dropping your production database. The ExposeConfiguration method and the SchemaExport
classes are very powerful. You should consult the Fluent NHibernate documentation to fully
understand their usage beyond this example.

 BuildSchemaFactory is the fi nal call. It starts the process to create the ISessionFactory instance
based on the confi guration information you have provided.

 Because the integration test will store data in a database, you need to create a development
database. This project uses Microsoft SQL Server 2008 R2 as the DBMS. Create a database called

c08.indd 178c08.indd 178 3/31/11 3:37:41 PM3/31/11 3:37:41 PM

 OSIM.Dev and accept all the normal defaults for its creation, as
shown in Figure 8 - 4.

 Creating the Fluent NHibernate Mapping

 The next step is to create the object - to - data - table mapping
for the ItemType class. Fluent NHibernate, like all ORM
frameworks, requires a mapping of some sort that instructs
the ORM how to translate the public fi elds in a class to fi elds
in a data table. Traditional NHibernate uses XML fi les, which
can be diffi cult to understand and prone to defects. Fluent
NHibernate is an extension to the NHibernate framework that enables developers to create these
mappings in C# or VB.NET. This is a major benefi t over traditional NHibernate XML mappings.
For one thing, most developers are more familiar and comfortable with C# or VB.NET. Working
in the language you are more comfortable with and skilled in is always preferable. And because
the mapping fi les are compiled as opposed to being read at runtime, fewer errors occur in Fluent
NHibernate mappings.

 The location of these mappings is important. Although they are dependent on the entity types in the
OSIM application, they are technically part of the persistence layer. For that reason, I like to keep
them with the repository and other persistence logic in the OSIM.Core project.

 FIGURE 8 - 4

 A question you might be asking yourself right now is “ Why is he putting the
persistence logic in the core domain project? ” As developers we ’ re taught to
separate out all the pieces of the application into separate assemblies. The reason
given for this need for separation is that when a change is made one assembly can
easily be swapped in for another. In fact this ad hoc “ plug - and - play ” ability with
assemblies is a bit overstated. In many cases, not matter how much separation
and abstraction you introduce into your application code base, changes to one
assembly almost always require changes in most, if not all, of the other assemblies.

 What does this have to do with keeping the persistence logic in the core domain
project? The answer is simplicity. Yes, applications should be architected to keep
divergent functions separate, such as data access and presentation. But this,
along with all architectural choices comes with a cost. I see the value of keeping
my presentation logic separate from my domain services as being greater than the
cost (in complexity) that I incur by separating them. For a small departmental
application, like the OSIM application in the example, I don ’ t see the benefi t of
separating the domain services and the persistence logic as outweighing the cost
(again, in complexity) that I incur by separating them.

 True, this application could be architected to keep the persistence logic in its
own separate assembly. But doing this would require other changes in the
architecture to remove the potential for circular dependencies. And in large

Writing Integration Tests ❘ 179

c08.indd 179c08.indd 179 3/31/11 3:37:42 PM3/31/11 3:37:42 PM

180 ❘ CHAPTER 8 INTEGRATION TESTING

 You start by creating a folder in the Persistence folder of the OSIM.Core project called Mappings ,
as shown in Figure 8 - 5.

 Next you create a class in the Mappings folder called ItemTypeMap , as shown in Figure 8 - 6.

applications, where different components will need to be scaled at different
rates, it ’ s important to keep these separate. But most applications are small
departmental applications that, even in a large enterprise are only going to be
deployed to a handful of users. In these cases, pragmatism wins out. I can always
refactor the application if I need to pull the persistence, or any other layer for that
matter out into its own assembly.

 The other argument you ’ ll see is that it makes switching from one persistence
framework to another more diffi cult. I view this as a non - starter; if someone
came to me and wanted to do this I would need to have a pretty good reason for
this change for me to be supportive. The primary issue being that no matter how
separated your persistence layer is from the rest of your application, changing
persistence framework isn ’ t as simple as changing the batteries in a remote control;
you are going to have to do some major renovation. Not just to accommodate
the new API, but to handle changes between the frameworks for things like
transactional support and connection pooling. There ’ s an old adage I like to
remind my clients and developers when issues like these come up; if it ain ’ t broke,
don ’ t fi x it!

 FIGURE 8 - 5 FIGURE 8 - 6

 Visual Studio creates a stub class in the ItemTypeMap.cs fi le:

namespace OSIM.Core.Persistence.Mappings
{
 public class ItemTypeMap
 {

 }
}

 ItemTypeMap.cs

Available for
download on
Wrox.com

Available for
download on
Wrox.com

c08.indd 180c08.indd 180 3/31/11 3:37:53 PM3/31/11 3:37:53 PM

 To make this a Fluent NHibernate mapping class, you need to add using statements for the
 OSIM.Core.Entities namespace (where the declaration of ItemType is located) and the
 FluentNHibernate.Mapping namespace (where the defi nitions of the FluentNHibernate mapping
classes are located). Then you need to change the declaration of the ItemTypeMap class so that it
inherits from the ClassMap < T > Fluent NHibernate base class. ClassMap < T > is a generalized class,
and you need to pass in the type that you want this class to be (a map) — in this case, ItemType — as
the generic type parameter:

using FluentNHibernate.Mapping;
using OSIM.Core.Entities;

namespace OSIM.Persistence.Mappings
{
 public class ItemTypeMap : ClassMap < ItemType >
 {

 }
}

 ItemTypeMap.cs

 Fluent NHibernate expects a default constructor in every mapping class that provides the mapping
information for the entity that is being mapped by the mapping class. Here ’ s how you add that to
 ItemTypeMap :

public class ItemTypeMap : ClassMap < ItemType >
{
 public ItemTypeMap()
 {

 }
}

 ItemTypeMap.cs

 Before you create the mapping for ItemType , let ’ s revisit the defi nition of that class. Here is the
current defi nition of ItemType :

namespace OSIM.Core.Entities
{
 public class ItemType
 {
 public virtual int Id { get; set; }
 }
}

 ItemTypeMap.cs

 Right now, there ’ s not much to it. In fact, the only fi eld in ItemType is the Id fi eld, which serves
as the entity ’ s primary key. The reason for this somewhat anemic defi nition is that the current unit

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Writing Integration Tests ❘ 181

c08.indd 181c08.indd 181 3/31/11 3:37:54 PM3/31/11 3:37:54 PM

182 ❘ CHAPTER 8 INTEGRATION TESTING

tests do not call for any other fi elds in the defi nition of ItemType . For the purposes of this example,
though, you add a name fi eld, because it makes this example a bit more meaningful:

namespace OSIM.Core.Entities
{
 public class ItemType
 {
 public virtual int Id { get; set; }
 public virtual string Name { get; set; }
 }
}

 ItemTypeMap.cs

 At this point, you might be wondering why these fi elds are declared as virtual. The short
explanation is that Fluent NHibernate uses refl ection as part of its process when creating data table
schemas, and storing and reading data from the database. Without declaring these fi elds as virtual,
Fluent NHibernate wouldn ’ t be able to do its magic.

 Inevitably, even if you ’ ve been working with Fluent NHibernate for some time, you will occasionally
forget about this requirement. A good rule of thumb is that if you get a mapping error that doesn ’ t
seem to make sense, fi rst check to make sure that all the public members of the class that you are
mapping are declared as virtual members. That usually is the problem.

 It ’ s fi nally time to create the mapping for ItemType . Returning to the ItemTypeMap class, you add
the mapping rules for Id and Name to the default constructor for ItemTypeMap :

public class ItemTypeMap : ClassMap < ItemType >
{
 public ItemTypeMap()
 {
 Id(x = > x.Id);
 Map(x = > x.Name);
 }
}

 ItemTypeMap.cs

 Id and Map are the two most commonly used Fluent NHibernate mapping commands. Id specifi es
in which fi eld or fi elds in the entity class map to the primary key of the table the data will be stored.
The Map command simply tells Fluent NHibernate to map that fi eld in the entity class to a fi eld of
the same name and type in the data table. The result of this mapping class is the creation of a table
called ItemTypes with two columns: Id (which is the primary key) and Name . There are extensions
for things such as relationships and indexes, which will be used later in the project. Also, some
complex commands allow you to do things such as store two similar types in the same table and
create complex relationships. You can even store data in tables or fi elds where the name of the table
or fi eld in the database does not match the class or fi eld name in the application code. This is all
covered in the Fluent NHibernate documentation.

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Available for
download on
Wrox.com

c08.indd 182c08.indd 182 3/31/11 3:37:54 PM3/31/11 3:37:54 PM

 Creating the Integration Test

 The next step is to put the connection string for the database in a
confi guration fi le. First, you add an app.config fi le to the OSIM
.IntegrationTests project, as shown in Figure 8 - 7.

 The reason this fi le is created in the OSIM.IntegrationTests project is
because when I run this integration test, the OSIM.IntegrationTests
assembly becomes the execution context. Therefore, the .NET runtime,
via the NUnit test runner, looks for a confi guration fi le for the OSIM
.IntegrationTests assembly. If it can ’ t fi nd it, a runtime error occurs.

 Next you create an appSettings section to the App.config fi le and put a key called localDb in the
 appSettings section with the connection string for the OSIM.Dev database:

 < ?xml version=”1.0” encoding=”utf-8” ? >
 < configuration >
 < appSettings >
 < add key=”localDb” value=”Data Source=JAMES-PC;Initial Catalog=OSIM.Dev;
 Integrated Security=True”/ >
 < /appSettings >
 < /configuration >

 App.confi g

 Now that all the database and ORM work is done, you can fi nally get around to writing your test.
Unlike with unit tests, you don ’ t care so much about seeing the test fail fi rst; in fact, in many cases
the test passes right away. This is because although unit tests are designed to drive development
(they demonstrate that code needs to be written), the purpose of integration tests is verifi cation.
(You already expect the code to exist and work; you just want to verify this expectation.)

 If you don ’ t have an OSIM.Core.Persistence folder in your OSIM.IntegrationTests project yet,
go ahead and add one, as shown in Figure 8 - 8.

 Now that you have a location for your ItemTypeRepository tests, you create a new cs fi le to store
the test classes, as shown in Figure 8 - 9.

Available for
download on
Wrox.com

Available for
download on
Wrox.com

 FIGURE 8 - 7

 FIGURE 8 - 8 FIGURE 8 - 9

Writing Integration Tests ❘ 183

c08.indd 183c08.indd 183 3/31/11 3:37:55 PM3/31/11 3:37:55 PM

184 ❘ CHAPTER 8 INTEGRATION TESTING

 Visual Studio creates its normal stub class in the ItemTypeRepositoryTests.cs fi le:

namespace OSIM.IntegrationTests.OSIM.Persistence
{
 public class ItemTypeRepositoryTests
 {

 }
}

 ItemTypeRepositoryTests.cs

 Per the BDD naming style employed in this project, change the name of the ItemTypeRepositoryTests
class to when_using_the_item_type_repository , and have it inherit from the Specification base
class. For this class to compile, you also need to add references to the OSIM.UnitTests project as
well as the NBehave.Spec.NUnit and NBehave.Spec.Framework assemblies. You also need to add
a using statement to bring in the OSIM.UnitTests namespace:

using OSIM.UnitTests;

namespace OSIM.IntegrationTests.OSIM.Persistence
{
 public class when_using_the_item_type_repository : Specification
 {

 }
}

 ItemTypeRepositoryTests.cs

 Like the when_working_with_the_item_type_repository class created for the unit tests in the
preceding chapter, this class serves two purposes. Its defi nition helps you build a BDD - style name
for your test that completely and correctly describes the action you ’ re testing. It also provides a base
class where you can perform common setup steps that will be needed by all the integration tests for
 ItemTypeRepository . For now, you leave the when_using_the_item_type_repository class and
build the class that will contain the actual integration test.

 Another difference between integration and unit tests is that whereas unit tests should be focused
on one step or piece of functionality at a time, it ’ s perfectly acceptable for integration tests to test
several steps at once. This current test is a good example. You want to verify that you can write to
and read from the database with ItemTypeRepository . In an automated test you can ’ t verify that
you can read from the database without adding something to it, and you can ’ t verify that you can
write to the database without reading back the value to make sure it was saved correctly.

 Because of this, the test names of the integration tests, including the one you ’ re about to write for
the ItemTypeRepository , are a bit less focused than the names of the unit tests. In this case, the
name of the test class — and_attempting_to_save_and_read_a_value_from_a_datastore —
 describes both actions you must perform to ensure that ItemTypeRepository is working correctly:

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Available for
download on
Wrox.com

c08.indd 184c08.indd 184 3/31/11 3:37:56 PM3/31/11 3:37:56 PM

public class and_attempting_to_save_and_read_a_value_from_the_datastore :
 when_using_the_item_type_repository
{

}

 ItemTypeRepositoryTests.cs

 The test method name describes the expected output of both of these steps:

 [Test]
public void then_the_item_type_saved_to_the_database_should_equal_the_item_type
_retrieved()
{

}

 ItemTypeRepositoryTests.cs

 Because you haven ’ t referenced the NUnit assembly in the OSIM.IntegrationTests project, do that
now, as shown in Figure 8 - 10.

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Available for
download on
Wrox.com

 FIGURE 8 - 10

Writing Integration Tests ❘ 185

c08.indd 185c08.indd 185 3/31/11 3:37:57 PM3/31/11 3:37:57 PM

186 ❘ CHAPTER 8 INTEGRATION TESTING

 You also need to add a using statement to bring the NUnit.Framework namespaces into the
 ItemTypeRepositoryTests.cs fi le:

using NUnit.Framework;

ItemTypeRepositoryTests.cs

 The list of steps to perform an integration test is a little longer and more involved than the steps to
perform a unit test. This is logical, because the integration test covers a wider breadth of application
functionality. In essence you know that you want to create and populate an ItemType object, store
it in the database, retrieve that same item type into a different instance of ItemType , and then verify
that the fi elds match. The code for the then_the_item_type_saved_to_the_database_should_
equal_the_item_type_retrieved method is actually pretty simple. You just want to iterate
through the fi elds on the retrieved (actual) instance of ItemType and make sure that the values
match the corresponding values on the stored (expected) instance of the ItemType object:

 [Test]
public void
then_the_item_type_saved_to_the_database_should_equal_the_item_type_retrieved()
{
 _result.Id.ShouldEqual(_expected.Id);
 _result.Name.ShouldEqual(_expected.Name);
}

 ItemTypeRepositoryTests.cs

 To complete this code so that it compiles, you need to add declarations of _expected and _result to
the and_attempting_to_save_and_read_a_value_from_the_datastore class. You also need to
add using statements for the NBehave.Spec.NUnit and OSIM.Core.Entities namespaces. Here is
the complete content of the ItemTypeRepository.cs fi le to this point:

using NBehave.Spec.NUnit;
using NUnit.Framework;
using OSIM.Core.Entities;
using OSIM.UnitTests;

namespace OSIM.IntegrationTests.OSIM.Persistence
{
 public class when_using_the_item_type_repository : Specification
 {

 }

 public class and_attempting_to_save_and_read_a_value_from_the_datastore :
 when_using_the_item_type_repository
 {
 private ItemType _expected;
 private ItemType _result;

 [Test]

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Available for
download on
Wrox.com

c08.indd 186c08.indd 186 3/31/11 3:37:57 PM3/31/11 3:37:57 PM

 public void
then_the_item_type_saved_to_the_database_should_equal_the_item_type_retrieved()
 {
 _result.Id.ShouldEqual(_expected.Id);
 _result.Name.ShouldEqual(_expected.Name);
 }
 }
}

 ItemTypeRepositoryTests.cs

 The next step I like to take is to write the Because_of method for the test. In this case you need to
save an instance of the ItemType class to the database using the ItemTypeRepository . Then, using
the same ItemTypeRepository , retrieve the same data you just saved to the database (using the Id
value returned by ItemTypeRepository) into a different instance of ItemType , which is represented
by the _result member variable:

protected override void Because_of()
{
 var itemTypeId = _itemTypeRepository.Save(_expected);
 _result = _itemTypeRepository.GetById(itemTypeId);
}

 ItemTypeRepositoryTests.cs

 You also need to add a using statement to import the OSIM.Core.Persistence namespace:

using OSIM.Core.Persistence;

 ItemTypeRepositoryTests.cs

 All that ’ s left is to write the Establish_context method. The fi rst task in the Establish_context
method is to create an instance of ItemTypeRepository and assign it to the _itemTypeRepository
member variable. Because Ninject is the dependency injection framework in this example, you
need to create an instance of Ninject ’ s standard kernel and provide it with an instance of the
 IntegrationTestModule class. It contains the rules for creating an ItemTypeRepository for
integration testing:

private StandardKernel _kernel;

protected override void Establish_context()
{
 base.Establish_context();
 _kernel = new StandardKernel(new IntegrationTestModule());

}

 ItemTypeRepositoryTests.cs

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Writing Integration Tests ❘ 187

c08.indd 187c08.indd 187 3/31/11 3:37:58 PM3/31/11 3:37:58 PM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

188 ❘ CHAPTER 8 INTEGRATION TESTING

 To use the Ninject Standard Kernel, you need to add a using statement for the Ninject namespace:

using Ninject;

 ItemTypeRepositoryTests.cs

 Now you need to ask Ninject for an instance of a class that implements the IItemTypeRepository
interface. When you instantiated the StandardKernel object for the _kernel member variable, you
provided it with an instance of the IntegrationTestModule class. The IntegrationTestModule
class has all the rules and steps Ninject needs to create an instance of a class that implements the
 IItemTypeRepository interface for purposes of integration testing. You simply need to ask the
 _kernel object for an object that implements the IItemTypeRepository interface. Ninject takes
care of all the creation steps:

protected override void Establish_context()
{
 base.Establish_context();

 _kernel = new StandardKernel(new IntegrationTestModule());
 _itemTypeRepository = _kernel.Get < IItemTypeRepository > ();
}

 ItemTypeRepositoryTests.cs

 Before moving forward, let ’ s stop and take a look at the current code from a pragmatic point of view.
The ItemTypeRepository.cs fi le contains the class when_using_the_item_type_repository ,
which and_attempting_to_save_and_read_a_value_from_the_datastore inherits. It ’ s
reasonable to assume that all classes that perform integration testing for ItemTypeRepository will
inherit in some way from the when_using_the_item_type_repository class. It ’ s also reasonable
to assume that most (if not all) classes that perform integration testing on the ItemTypeRepository
class will need an instance of an object that implements the IItemTypeRepository interface that is
the same as the other ItemTypeRepository test classes. Therefore, it would make sense to move the
declaration of the _kernel and _itemTypeRepository member variables, as well as the code that
instantiates them, to the when_using_the_item_type_repository base class.

 After moving the declarations and creating an Establish_context method in the when_using_
the_item_type_repository class to do this, the when_using_the_item_type_repository and
 and_attempting_to_save_and_read_a_value_from_the_datastore classes should look like this:

public class when_using_the_item_type_repository : Specification
{
 protected IItemTypeRepository _itemTypeRepository;
 protected StandardKernel _kernel;

 protected override void Establish_context()
 {
 base.Establish_context();

 _kernel = new StandardKernel(new IntegrationTestModule());

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Available for
download on
Wrox.com

c08.indd 188c08.indd 188 3/31/11 3:37:59 PM3/31/11 3:37:59 PM

 _itemTypeRepository = _kernel.Get < IItemTypeRepository > ();
 }
}

public class and_attempting_to_save_and_read_a_value_from_the_datastore :
when_using_the_item_type_repository
{
 private ItemType _expected;
 private ItemType _result;

 protected override void Establish_context()
 {
 base.Establish_context();
 }

 protected override void Because_of()
 {
 var itemTypeId = _itemTypeRepository.Save(_expected);
 _result = _itemTypeRepository.GetById(itemTypeId);
 }

 [Test]
 public void then_the_item_type_saved_to_the_database_should_equal_the_item_type
_retrieved()
 {
 _result.Id.ShouldEqual(_expected.Id);
 _result.Name.ShouldEqual(_expected.Name);
 }
}

 ItemTypeRepositoryTests.cs

 The last order of business before you run this test is to create an instance of the ItemType class for
the _expected member variable, which you need to save to the database:

protected override void Establish_context()
{
 base.Establish_context();

 _expected = new ItemType {Name = Guid.NewGuid().ToString()};
}

 ItemTypeRepositoryTests.cs

 I like using Guid s as string test data. It ’ s easy to get a random value every time. And because it ’ s
always a new and different value, I don ’ t have to worry about situations in which old data doesn ’ t
get cleaned out of the database for whatever reason, corrupting my test results. Of course, to use a
 Guid you need to add a using statement for the System namespace (if you don ’ t already have one):

using System;

 ItemTypeRepositoryTests.cs

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Writing Integration Tests ❘ 189

c08.indd 189c08.indd 189 3/31/11 3:38:00 PM3/31/11 3:38:00 PM

190 ❘ CHAPTER 8 INTEGRATION TESTING

 All that ’ s left is to run the test. As you can see from Figure 8 - 11, the test passes without your having
to write additional code.

 If I want further verifi cation, I simply need
to use my favorite database management tool
(for this example I ’ m using SQL Management
Studio) and look at the contents of my
database and table (see Figure 8 - 12).

 When I wrote my unit tests, I wrote the
tests before I wrote the code. I could
certainly have taken that same approach
here. In reality, the only code I wrote was code to handle injecting an object that implements
 ISessionFactory into the ItemTypeRepository class, the Ninject module to handle the creation
of said ItemTypeRepository class, and the Fluent NHibernate confi guration to connect to the
development database. The difference between the three activities I just described and the user
stories and features that drive unit tests is that the functionality I needed to implement to make the
integration test pass was not code that added business value. It was code that supported the code
that adds business value.

 That ’ s not to say that this code and this functionality are unimportant. If users can ’ t save their data
to a data store and retrieve it later, the application itself is not as usable. But if you are writing an
application to process mortgage payments or track inventory of prescription drugs, your business
users are far more concerned with the business rules that are implemented in the application than
what framework is used to store that information to a database, or what patterns are used to create
the objects in the system.

 Another reason I tend to write my integration test fi rst is, frankly, habit. In my day job as a
consultant, I supervise a lot of developers who are young and inexperienced. Even some of the
seasoned veterans have not been exposed to concepts such as ORMs and IOC containers. In my
function as a development lead, I want to make sure that these tools and concepts are adhered to. If
I simply gave a developer with no experience in IOC containers the task of writing this integration
test, they likely would hand - roll an object factory of some sort or, worse, create statically bound
member variables. In this case, and in another situation, where integration tests vary from unit tests
(at least for me), I want my developers, especially ones who are inexperienced with these new tools
and techniques, to keep the usage of these tools and techniques in the front of their minds. When
they write unit tests I prefer the opposite; they should only be thinking about meeting the immediate
business need identifi ed by the feature or user story. Any other concerns are secondary and can
be dealt with via refactoring at the point of integration. When fastening together the pieces of the
system, I want my teams to be sure they are using the correct glue.

 FIGURE 8 - 11

 FIGURE 8 - 12

c08.indd 190c08.indd 190 3/31/11 3:38:01 PM3/31/11 3:38:01 PM

 End - to - End Integration Tests

 The purpose of unit tests is to drive development of code by creating executable and automated
tests that verify that the application addresses the business need as defi ned by the features and user
stories. The purpose of integration tests is to ensure that the application ’ s various components work
together to form a larger application. An end - to - end test verifi es that the application addresses
all the requirements of a feature or user story and that the functionality is complete and correctly
integrated. Unit tests cover a specifi c unit of business functionality, and integration tests cover the
seams between components. End - to - end tests cover the entire system from as close as possible to the
front end or user interface all the way through to the back - end data store, web service, or any other
external dependencies the application may have.

 End - to - end tests are very valuable for a couple of reasons. They verify the complete integration of
the application across all layers. They also ensure that the needs of the feature or user story are
being met in a more holistic manner.

 Like unit and integration tests, end - to - end tests have some unique characteristics of their own. Any
given test suite has relatively few end - to - end tests in comparison to the unit tests and integration
tests. Unlike unit tests, which cover a specifi c small - business task, end - to - end tests target complete
business work fl ows. Therefore, whereas a unit test has a very narrow focus, an end - to - end test
covers a wide breadth of functionality. Unlike integration tests, end - to - end tests don ’ t care about
specifi c seams. In fact, they should be completely unaware that such seams exist. Most end - to - end
tests should start by creating an instance of the closest possible access point to the user interface.
If the user interface is something that can be used, such as is the case with ASP.NET MVC
applications, applications written in WPF or Silverlight that utilize the MVVM pattern, or WCF/
ASMX services, that should be the starting point for the end - to - end test. The end - to - end test then
simply allows that object to call functionality that cascades down to the classes in the other layers.
The end - to - end test does not care that an ItemTypeRepository was used. Its concern is that when
a user supplies the correct information and invokes the same code as the Save button on an input
form, the data is saved and a proper result is returned.

 Keeping Various Types of Tests Apart

 The entire test suite for your application will be composed of unit tests, integration tests, and end -
 to - end tests, and these tests all serve different purposes. Developers should run unit tests frequently.
They should run integration tests less frequently, and end - to - end tests even less often. For purposes of
managing what tests get run and how often, it ’ s important to keep the various types of tests isolated
from each other. To this end, I usually create two testing projects in my Visual Studio solution for
each application: a unit test project and an integration test project (which also contains my end - to -
 end tests). Keeping them in separate projects, and therefore separate assemblies, enables me to have
more control over when these tests are run. This will be covered in more detail in the next section.

 WHEN AND HOW TO RUN INTEGRATION TESTS

 Integration tests, especially end - to - end tests, can take much longer to run than unit tests, due to
their need to interact with the application ’ s external dependencies. The need to interact with these

When and How to Run Integration Tests ❘ 191

c08.indd 191c08.indd 191 3/31/11 3:38:01 PM3/31/11 3:38:01 PM

192 ❘ CHAPTER 8 INTEGRATION TESTING

external dependencies can also cause issues if two or more developers attempt to run these tests
concurrently. For these reasons, integration and end - to - end tests are not, and should not be, run as
often as unit tests.

 When being run by developers, integration and end - to - end tests should be run when the developers
have completed or are close to completing a feature or user story. This is necessary to ensure that
you have not introduced any defects into the application ’ s current functionality. Some developers or
development teams create a practice that developers need not run integration and end - to - end tests
that do not relate to the work, function, or user story that the developer is working on at the time.
This can be a fi ne practice, provided that the application is segmented to make it easy to determine
which tests are germane and which tests don ’ t need to be run. At the very least, these tests must be
run before you commit any code to the main code repository.

 Integration and end - to - end tests should also be run as part of a CI process. One of the purposes of
a CI process is to ensure that all the various components and sections of an application integrate
and function correctly before the application is released to the QA staff. This ensures that the
QA staff does not spend time testing an application that has already been fl agged as unworkable.
Another benefi t of running these tests as part of the CI process is that it does not tie up development
resources while the tests are running. CI servers can execute long - running tests as part of the build
process and report on which tests, if any, fail. In the meantime the development staff can continue
working on other features or user stories. This is an attractive feature for teams who are working
on applications where the integration and end - to - end tests can take a long time to run. Needless
to say, any tests that fail as part of the CI process should become the top priority of the application
development team. All other activities should be suspended until the build is in an “ all green ”
state again.

 SUMMARY

 Integration tests are important to the quality of your application. Unit tests ensure that the
individual components meet the business requirements as documented by the features and user
stories. Integration tests ensure that these individual components work together correctly to create a
functioning application.

 When writing integration tests, you want to concentrate on the seams between the individual
components in your application. In addition to the seams between the various internal components,
you want to target the seams between your application and external resources such as databases,
web services, fi le systems, and anything else that is not specifi cally a part of your application.

 Like unit tests, integration tests expect to execute in an environment that is in a predictable state.
Unlike unit tests, which rely on injected dependency objects and mocking to provide a stubbed
environment, integration tests must use test versions of the actual external resources objects. As
part of your integration test suite, you need to ensure that you are returning the test execution
environment to a consistent state before the integration tests run.

 Unit tests test the internal functioning of your application ’ s individual components, and integration
tests test the seams between the individual components of your application. End - to - end tests are a
specialized type of integration test that verifi es that the application code can execute entire business

c08.indd 192c08.indd 192 3/31/11 3:38:02 PM3/31/11 3:38:02 PM

workfl ows based on the application ’ s user stories. Your application test suite will contain many
unit and integration tests, each of which will focus on a relatively small piece of functionality. By
contrast, your application test suite will contain comparatively few end - to - end tests, each of which
will cover a broader scope of functionality.

 Integration and end - to - end tests take longer to execute than unit tests because of how they use
non - mocked components and external resources. Due to this longer runtime, it ’ s advisable for
developers not to run integration and end - to - end tests as often as they run unit tests. Integration
tests should be run periodically throughout the course of developing a feature or user story.
End - to - end tests should be run before the developer commits the code to the main source repository
branch. Integration tests, as well as end - to - end and unit tests, should be run as part of the
development team ’ s CI process. Any build with a failing test should be considered a failed build,
and the development team ’ s priority should shift to getting the tests and the build working again.
The overarching goal is always to put quality software in front of the users. This can be done only
with a successful CI process.

Summary ❘ 193

c08.indd 193c08.indd 193 3/31/11 3:38:02 PM3/31/11 3:38:02 PM

c08.indd 194c08.indd 194 3/31/11 3:38:02 PM3/31/11 3:38:02 PM

PART III

TDD Scenarios

CHAPTER 9: TDD on the Web

CHAPTER 10: Testing Windows Communication Foundation Services

CHAPTER 11: Testing WPF and Silverlight Applications

�

�

�

c09.indd 195c09.indd 195 3/31/11 3:38:32 PM3/31/11 3:38:32 PM

c09.indd 196c09.indd 196 3/31/11 3:38:35 PM3/31/11 3:38:35 PM

TDD on the Web
by Jeff McWherter

 WHAT ’ S IN THIS CHAPTER?

 TDD with Web Forms

 TDD with MVC

 TDD with JavaScript

 Previous chapters have discussed tools and theory to describe exactly what test - driven
development is. It ’ s now time to apply this knowledge to practical examples and bring test-
driven development to the world that many software developers live in: the web.

 You might be thinking that web frameworks (primarily ASP.NET Web Forms) do not
separate concerns very well. The single reasonability principal is something we have been
very strict about not breaking while performing TDD. From C# or Visual Basic code mixed
into the ASPX fi les, to common JavaScript functions being copied from page to page, many
web frameworks don ’ t follow many of the rules outlined in previous chapters. This chapter
discusses patterns that will make it easier to test web applications, including frameworks that
don ’ t separate concerns very well. This chapter will start with ASP.NET Web Forms and move
onto a fairly new Microsoft framework called ASP.NET MVC, you will learn the techniques
required to not only make your web applications more testable, create them using TDD.

 Entire books have been written about testing for the web, such as Testing ASP.NET Web
Applications by Jeff McWherter and Ben Hall (Wrox, 2009, ISBN: 978-0-470-49664-0). This
chapter summarizes the important points about this topic. By the end of this chapter, you will
understand how to develop your web applications using TDD.

 ASP.NET WEB FORMS

 In January 2002, ASP.NET was released with version 1.0 of the .NET Framework. This
release marked a major milestone for web developers using Microsoft technologies, allowing

➤

➤

➤

 9

c09.indd 197c09.indd 197 3/31/11 3:38:35 PM3/31/11 3:38:35 PM

198 ❘ CHAPTER 9 TDD ON THE WEB

them to produce powerful web applications using languages such as Visual Basic.NET and C#. ASP
.NET includes tools you can use to develop web applications quickly by taking advantage of built -
 in controls that take care of the basic create, read, update, and delete (CRUD) operations for you.
Components that shipped with the ASP.NET framework enabled you to drag and drop controls
into your applications. This functionality allowed for a quick development process. But during that
process the architecture and testability of many applications were never considered. Because these
web applications stayed in the fi eld as developers moved on to different companies or projects,
patch after patch was applied to applications developed in this way, and the cost to maintain
them increased.

 Although these issues still exist to this day, you can use some techniques and patterns to unit - test
ASP.NET Web Form applications.

 Web Form Organization

 A Web Form is made up of two parts. The ASPX fi le contains HTML, CSS, JavaScript, and
ASP.NET markup. The second part is the code - behind fi le, either a CS or VB fi le that contains
the executable code. Let ’ s take a moment to discuss what should be contained in these fi les.

 ASPX Files

 ASPX fi les are the view of your web application pages that the user sees. As such, no business
logic should be contained within them. ASPX fi les should be clean and easy for web and graphic
designers to read. Not everyone has the luxury of sending ASPX fi les to a designer, but when you
do, you want the designer to be able to understand the fi les. Logic that accesses the database inside
ASPX fi les not only violates the rules about separation of concern but also makes your code diffi cult
for other people to read. Your ASPX fi les should not be littered with < % tags.

 Code - Behind Files

 You should think of code - behind fi les as the controller for what the view renders. Code - behind fi les
hook into the ASP.NET page life cycle and have a tight dependency to the ASP.NET runtime, which
can make testing these fi les diffi cult. Therefore, you should keep code - behind fi les as thin as possible
so that they contain only “ glue code. ” The default way that Visual Studio and ASP.NET Web Forms
currently act encourages developers to store a large amount of logic in these fi les, which is actually
in opposition to the patterns required for TDD.

 Glue code is code that does not contribute functionality to the application.
The purpose of glue code is only to “ glue ” together parts of code that normally
would be incompatible. Most of the time, due to its simplistic nature, glue code
does not need to be tested.

 One of the best ways within ASP.NET Web Forms to keep clean code - behind fi les and have a good
separation of concern is to follow the model - view - presenter (MVP) design pattern, shown in Figure 9 - 1.

c09.indd 198c09.indd 198 3/31/11 3:38:37 PM3/31/11 3:38:37 PM

At its core the presenter acts as the middle layer, similar to the controller object within the model -
 view - controller (MVC) pattern, which is covered later in this chapter. The presenter retrieves the
data, persists it, and then formats it for display in the view. The view is the interface that displays
the data, and the model represents the data or the domain model. The MVP pattern has been
around since the early ’ 90s and is a popular method for following the SOLID design principles.

View
Forwards user events

Invokes a method based on events State chnage events

Updates send back

Presenter

Model

 FIGURE 9 - 1

 FIGURE 9 - 2

ASP.NET Web Forms ❘ 199

 Implementing Test - Driven Development with MVP and Web Forms

 This example creates an application that lists recently read books. You will be concerned with
displaying the data to the user. Figure 9 - 2 shows what you will be building.

c09.indd 199c09.indd 199 3/31/11 3:38:48 PM3/31/11 3:38:48 PM

200 ❘ CHAPTER 9 TDD ON THE WEB

 Project Layout

 Before you begin creating your fi rst test, you should start with the organization of the project. You
create an ASP.NET web application and name it Wrox.BooksRead.Web . This name is created from
a standard Company.ProjectName.Component naming schema. Keeping a project organized and
clean will help with maintenance down the road. The key is to be consistent when naming your
projects. Nothing fancy has been added to the Wrox.BooksRead.Web project; currently it is just a
default ASP.NET web application.

 Another Windows Class Library project, Wrox.BooksRead
.Tests , also needs to be added. This project will hold your
tests for the web application. Included in this application is
a Lib folder that will hold the external binaries required for
testing the Wrox.BooksRead.Web application. NUnit and
Rhino Mocks (a popular mocking framework) also need to
be added. At this point all the projects shown in Figure 9 - 3
should be compiled, and you are ready to create your
fi rst test.

 The First Test

 Often it ’ s diffi cult to choose where to start when using a
pattern such as MVP or MVC. The controller or presenter
usually is the best place to start because of the amount of
application logic that each object contains. You could start
with tests around the model, but working with the controller/
presenter helps you defi ne exactly what the model will look like.
Here is the fi rst test:

 public class when_using_the_books_read_controller : Specification
 {
 }

 public class and_getting_a_list_of_books : when_using_the_books_read_controller
 {

 }

 public class and_when_calling_getdata_bind_should_be_called :
 and_getting_a_list_of_books
 {
 IDisplayBooksReadView _view;
 DisplayBooksReadController _controller;

 protected override void Establish_context()
 {
 base.Establish_context();
 _view = MockRepository.GenerateMock < IDisplayBooksReadView > ();

Available for
download on
Wrox.com

Available for
download on
Wrox.com

 FIGURE 9 - 3

c09.indd 200c09.indd 200 3/31/11 3:38:49 PM3/31/11 3:38:49 PM

 _view.Expect(v = > v.Bind());
 _controller = new DisplayBooksReadController(_view);

 }

 protected override void Because_of()
 {
 _controller.GetData(this, EventArgs.Empty);
 }

 [Test]
 public void then_getdata_should_call_bind()
 {
 _view.VerifyAllExpectations();
 }
 }

 DisplayBookReadControllerTests.cs

 As you examine this test, you should be able to pick out a few recognizable parts. At fi rst glance
you may wonder what, if anything, this code has to do with a Web Form application. In this
example you try to create a fake view and a real controller. Then you try to load the data using
the methods in the controller and check to make sure that the fake view has the data from the
controller. Remember, at this point you are testing the interaction of the controller, not the view.
This is why you can use a fake view. As expected, the class won ’ t compile, because so many
things are missing.

 When it ’ s time to implement the code,
it may be easier to do so within one fi le, use
a refactoring tool such as Resharper
or Refactor, and then select the Move Type
To File menu option, as shown in Figure 9 - 4.

 Just to get the test to compile, you need to
add the following components:

 IDisplayBooksReadView

 The BookRead object

 DisplayBooksReadController

 IDisplayBooksReadView is the contract that your views need to adhere to. The view needs to
be aware of the data that will be displayed, and this is handled in the Data fi eld that you added to
the view. In this case it happens to be a List of BookRead objects, and right now you really don ’ t
care what it looks like. The Bind method binds the data to the controls on the view, and the view

➤

➤

➤

 FIGURE 9 - 4

ASP.NET Web Forms ❘ 201

c09.indd 201c09.indd 201 3/31/11 3:38:49 PM3/31/11 3:38:49 PM

202 ❘ CHAPTER 9 TDD ON THE WEB

uses the DataRequested event to ask the controller for the data. IDisplayBooksReadView should
look like this:

public interface IDisplayBooksReadView
{
 event EventHandler DataRequested;
 List < BookRead > Data { get; set; }
 void Bind();
}

 IDisplayBooksReadView.cs

 The BookRead object, as shown here, is the model. At this point you don ’ t need to defi ne that it is
contained in this object; you just need to create it so that your tests will compile:

public class BookRead
{
}

 BookRead.cs

 DisplayBooksReadController is the presenter for part of the application. The presenter is
responsible for the communication between the view and the model. As such, the presenter has
a fi eld that contains the view you are working with which eventually will get passed into the
constructor of the presenter object, and a function that will get the data from whatever type of
data source you determine is necessary. Here is the code for DisplayBooksReadController :

public class DisplayBooksReadController
{
 public IDisplayBooksReadView View { get; set; }

 public DisplayBooksReadController(IDisplayBooksReadView view)
 {
 }

 public void GetData(object sender, EventArgs e)
 {
 }
}

 DisplayBooksReadController.cs

 As shown in Figure 9 - 5, the test is still failing, but at least it is compiling. You are getting a null
reference exception when trying to count the number of data items that the controller passed into
the view. There are two ways to fi x this. You can use a mocking framework and mock the data, or
you can just hard - code some objects and call it good (also known as stubbing). This example shows
how to stub the ReadBook data. Later in this chapter, you will work with the relationship between
tests, databases, and mock objects.

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Available for
download on
Wrox.com

c09.indd 202c09.indd 202 3/31/11 3:38:50 PM3/31/11 3:38:50 PM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

 To complete this task, you need to implement the controller:

public class DisplayBooksReadController
{
 public IDisplayBooksReadView View { get; set; }

 public DisplayBooksReadController(IDisplayBooksReadView view)
 {
 View = view;
 View.DataRequested += GetData;
 }

 public void GetData(object sender, EventArgs e)
 {
 View.Data = new List < BookRead > {
 new BookRead{ReadBookId = 1, Name = @”Testing ASP.NET Web
 Applications”, Author = “Jeff McWherter/Ben Hall”, ISBN =
 “978-0470496640”, StartDate = new DateTime(2010, 2, 1),
 EndDate = new DateTime(2010, 2, 12), Rating = 10,
 PurchaseLink = “http://www.amazon.com” },
 new BookRead{ReadBookId = 2, Name = @”Test Driven Development:
 By Example”, Author = “Kent Beck”, ISBN = “978-0321146533”,
 StartDate = new DateTime(2010, 2, 1), EndDate =
 new DateTime(2010, 2, 12), Rating = 9, PurchaseLink =
 “http://www.amazon.com” },
 new BookRead{ReadBookId = 3, Name = “Test2”, Author =
 “Author3”, ISBN = “22222222”, StartDate = new DateTime(2010, 3,
 1), EndDate = new DateTime(2010, 3, 12), Rating = 3,
 PurchaseLink = “http://www.msu.edu” }

Available for
download on
Wrox.com

Available for
download on
Wrox.com

 FIGURE 9 - 5

ASP.NET Web Forms ❘ 203

c09.indd 203c09.indd 203 3/31/11 3:38:51 PM3/31/11 3:38:51 PM

204 ❘ CHAPTER 9 TDD ON THE WEB

 };
 View.Bind();
 }
}

 DisplayBooksReadController.cs

 Starting with the constructor of the DisplayBooksReadController class, you set the view property
to the view that was passed into the controller and then wire up the DataRequested event to the
 GetData method. GetData returns three stubbed - out ReadBook objects. Implementing the controller
means that it ’ s time to defi ne the model as follows:

public class BookRead
{
 public int ReadBookId { get; set; }
 public string Name { get; set; }
 public string Author { get; set; }
 public string ISBN { get; set; }
 public DateTime StartDate { get; set; }
 public DateTime EndDate { get; set; }
 public int Rating { get; set; }
 public string PurchaseLink { get; set; }
}

 BookRead.cs

 The fi rst test of the Web Forms MVP project should pass. Because of the MVP pattern, you can
isolate the class from the ASP.NET life cycle and create tests to ensure that the functionality of this
class works correctly.

 Creating More Tests

 Now the controller is fully implemented. Because the example started with the controller, you don ’ t
have any tests regarding the view. You need to test to ensure that the constructor on the view is
wiring up all the events you expect, which is only one at this point — the DataRequested event.
You can create a Mock object for the view, inject it into the controller, and then verify that the
 DataRequested event was wired up. Remember that the DataRequested event is wired up in the
controller to the GetData function. Because you already implemented the functionality, this test
should pass without your having to add any more code.

 public class and_wireing_the_events_by_the_constructor :
 and_getting_a_list_of_books
 {
 IDisplayBooksReadView _view;

 protected override void Establish_context()
 {
 base.Establish_context();
 _view = MockRepository.GenerateMock < IDisplayBooksReadView > ();
 _view.Expect(v = > v.DataRequested += null).IgnoreArguments();

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Available for
download on
Wrox.com

c09.indd 204c09.indd 204 3/31/11 3:38:51 PM3/31/11 3:38:51 PM

 }

 protected override void Because_of()
 {
 new DisplayBooksReadController(_view);
 }

 [Test]
 public void then_the_constructor_should_wire_up_events()
 {
 _view.VerifyAllExpectations();
 }
 }

 DisplayBooksReadControllerTests.cs

 After the GetData function and the DataRequested event fi re, the controller calls the Bind method
on the view. The bind method within the view is where the data is bound to the controls in the
ASPX fi le. Code that looks like ListBox1.DataSouce � data would be found in this method, but
I ’ m getting a bit ahead of myself. First you need to ensure that the bind method is called, from the
 GetData function within the controller. To do this you create another mock of the view and then
verify that the Bind method was called. Again, after you implement all this logic, this should pass.

 public class and_when_calling_getdata_bind_should_be_called :
 and_getting_a_list_of_books
 {
 IDisplayBooksReadView _view;
 DisplayBooksReadController _controller;

 protected override void Establish_context()
 {
 base.Establish_context();
 _view = MockRepository.GenerateMock < IDisplayBooksReadView > ();
 _view.Expect(v = > v.Bind());
 _controller = new DisplayBooksReadController(_view);
 }

 protected override void Because_of()
 {
 _controller.GetData(this, EventArgs.Empty);
 }

 [Test]
 public void then_getdata_should_call_bind()
 {
 _view.VerifyAllExpectations();
 }
 }

 DisplayBooksReadControllerTests.cs

Available for
download on
Wrox.com

Available for
download on
Wrox.com

ASP.NET Web Forms ❘ 205

c09.indd 205c09.indd 205 3/31/11 3:38:52 PM3/31/11 3:38:52 PM

206 ❘ CHAPTER 9 TDD ON THE WEB

 All the “ plumbing ” code needed to display the recently read books in an ASP.NET Web Form is
now implemented. Before I show you the glue code for wiring all this together, I want to briefl y
cover the concept of helpers.

 Helpers

 Helper methods help other methods perform tasks. Usually they are common tasks shared between
other methods in your application. For example, on the web it ’ s common to truncate text to a
set number of characters and then append ellipses to the end to indicate that the text has been
truncated. This type of method is not specifi c to the Read Book view; it can be used with any other
view in this application, so you would create an HTMLHelper class that contains a truncate method
to help you display text in this manner. If I haven ’ t said it before, I ’ ll say it now: TDD is about
repetition. You start by creating a test for the Truncate method:

public class when_using_the_html_helper_to_truncate_text : Specification
{
 protected string _textToTruncate;
 protected string _expected;
 protected string _actual;
 protected int _numberToTruncate;

 protected override void Because_of()
 {
 _actual = HTMLHelper.Truncate(_textToTruncate, _numberToTruncate);
 }
}

public class and_passing_a_string_that_needs_to_be_truncated :
 when_using_the_html_helper_to_truncate_text
{
 protected override void Establish_context()
 {
 _textToTruncate = “This is my text”;
 _expected = “This ...”;
 _numberToTruncate = 5;
 }

 [Test]
 public void then_the_text_should_be_truncated_with_ellipses()
 {
 _expected.ShouldEqual(_actual);
 }
}

 HTMLHelpersTests.cs

 Next, you implement enough code to get the test to pass:

public static string Truncate(string input, int length)
{
 if (input.Length < = length)
 return input;

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Available for
download on
Wrox.com

c09.indd 206c09.indd 206 3/31/11 3:38:53 PM3/31/11 3:38:53 PM

 else
 return input.Substring(0, length) + “...”;

}

 HTMLHelper.cs

 Now go back and create more tests:

public class and_passing_a_string_that_does_not_need_to_be_truncated :
 when_using_the_html_helper_to_truncate_text
{
 protected override void Establish_context()
 {
 _textToTruncate = “This is my text”;
 _expected = “This is my text”;
 _numberToTruncate = 0;
 }

 [Test]
 public void then_the_text_should_not_be_truncated()
 {
 _expected.ShouldEqual(_actual);
 }
}

public class and_passing_a_string_that_is_less_that_what_needs_to_be_truncated :
 when_using_the_html_helper_to_truncate_text
{
 protected override void Establish_context()
 {
 _textToTruncate = “This is my text”;
 _expected = “This is my text”;
 _numberToTruncate = 50;
 }

 [Test]
 public void then_the_text_should_not_contain_ellipses()
 {
 _expected.ShouldEqual(_actual);
 }
}

public class and_pass_a_null_value : when_using_the_html_helper_to_truncate_text
{
 protected override void Establish_context()
 {
 _textToTruncate = null;
 _expected = string.Empty;
 _numberToTruncate = 50;
 }

 [Test]

Available for
download on
Wrox.com

Available for
download on
Wrox.com

ASP.NET Web Forms ❘ 207

c09.indd 207c09.indd 207 3/31/11 3:38:53 PM3/31/11 3:38:53 PM

208 ❘ CHAPTER 9 TDD ON THE WEB

 public void then_the_text_should_return_empty_string()
 {
 _expected.ShouldEqual(_actual);
 }
}

 HTMLHelpersTests.cs

 Then refactor the implementation to make the tests pass:

public static string Truncate(string input, int length)
{
 if (length == 0)
 return input;

 if (String.IsNullOrEmpty(input))
 return string.Empty;

 if (input.Length < = length)
 return input;
 else
 return input.Substring(0, length) + “...”;

}

 HTMLHelper.cs

 Gluing Everything Together

 At this point all the logic needed to display Read Books has been created. All that ’ s left is
gluing this logic to the Web Form. The following code is the default page of the Read Books
Web Form application. The fi rst thing to notice is that the Default page needs to implement
 IDisplayBooksReadView . Adding module - level variables enables you to persist the controller and
the data. You should also defi ne an event for DataRequested . In the Page_Load function, you
simply create a new controller and then fi re the DataRequested event.

 As a result of the DataRequested event ’ s being fi red, the Bind function is called, and the data is
bound to the screen. This is clean and easy to read once you understand the concept:

public partial class _Default : System.Web.UI.Page, IDisplayBooksReadView
{
 private DisplayBooksReadController Controller;
 public event EventHandler DataRequested;
 public List < BookRead > Data { get; set; }

 protected void Page_Load(object sender, EventArgs e)
 {
 Controller = new DisplayBooksReadController(this);
 DataRequested(sender, e);
 }

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Available for
download on
Wrox.com

c09.indd 208c09.indd 208 3/31/11 3:38:54 PM3/31/11 3:38:54 PM

 public void Bind()
 {
 rptBooksRead.DataSource = Data;
 rptBooksRead.DataBind();
 }
}

 Default.aspx.cs

 As a developer, you may not think about what designers have to go through when they receive your
code. Just like everything in the code - behind, your goal should be to keep your markup as clean as
possible. The following example uses a repeater. You want to try to avoid datagrids because they
add ugly code that is not easy to test and that is diffi cult for designers to work with. Keep < % tags
to a minimum; implement them only when you need to show a fi eld. These strategies allow you to
create markup that most designers or developers can go into and understand easily.

 < asp:Repeater ID=”rptBooksRead” runat=”server” >
 < ItemTemplate >
 < div class=”readBook” >
 < div class=”bookInfo” >
 < h2 > < %#Wrox.BooksRead.Web.Helpers.HTMLHelper.Truncate(((
 Wrox.BooksRead.Web.BookRead)Container.DataItem).Name, 25) % >
 < /h2 >
 < p > < %# ((Wrox.BooksRead.Web.BookRead)Container.DataItem)
 .Author % > < /p >
 < p > ISBN: < %# ((Wrox.BooksRead.Web.BookRead)Container.DataItem).ISBN
% > < /p >
 < p > Date Finished: < %# ((Wrox.BooksRead.Web.BookRead)Container
 .DataItem)
 .EndDate.ToString(“MM/dd/yyyy”)% >
 < /p >
 < a href=’ < %#
((Wrox.BooksRead.Web.BookRead)Container.DataItem).PurchaseLink % > ’
 target=”_blank” > Purchase < /a >
 < /div >

 < div class=”ratingContainer” >
 < span class=”rating” > < %#
 ((Wrox.BooksRead.Web.BookRead)Container.DataItem)
 .Rating % >
 < /span >
 < /div >

 < div style=”clear:both;” / >
 < hr / >
 < /div >
 < /ItemTemplate >
 < /asp:Repeater >

 Wrox.BooksRead.Web Default.aspx

Available for
download on
Wrox.com

Available for
download on
Wrox.com

ASP.NET Web Forms ❘ 209

c09.indd 209c09.indd 209 3/31/11 3:38:54 PM3/31/11 3:38:54 PM

210 ❘ CHAPTER 9 TDD ON THE WEB

 As you can see in Figure 9 - 6, three read books are displayed.

 FIGURE 9 - 6

 In the MVP example, I showed you how to isolate objects and create Web Forms that are testable.
The MVP pattern was never adopted as a mainstream approach to developing ASP.NET Web
Forms, but it ’ s a good place to start when you are forced to continue development with ASP.NET
Web Forms and don ’ t have the option of using new frameworks such as ASP.NET MVC.

 This was a simple example, but testing the MVP pattern breaks down when you are working
at the lower levels of the ASP.NET Framework and need to start mocking objects, such as the
 HTTPResponse object. With the recent demand from Microsoft developers to deliver a framework
that is highly testable, the ASP.NET MVC framework was born.

 WORKING WITH THE ASP.NET MVC

 In 1979, while working at Xerox PARC, Trygve Reenskaug, a Norwegian computer scientist,
published a paper titled “ Applications Programming in Smalltalk - 80: How to Use Model - View

c09.indd 210c09.indd 210 3/31/11 3:38:55 PM3/31/11 3:38:55 PM

Controllers. ” It was in this paper that Reenskaug formally documented this software design pattern.
Even though the MVC design pattern has been around for over 30 years, it has gained popularity
recently mostly because of the success of Ruby on Rails. Ruby on Rails helped show developers
that highly testable web applications can be created. Developers who use Ruby on Rails are always
bragging about how testable their code is. It was only a matter of time before other web platforms
implemented MVC frameworks. In 2011, just about every programming language, from Cold
Fusion to PHP, has a framework for MVC. The code may look different, but each framework is
based on Reenskaug ’ s work. MVC is not just for the web. Many GUI frameworks, including Cocoa
(the programming environment for Mac OS X), took inspiration from Reenskaug ’ s Small Talk
framework. In Cocoa, developers are encouraged to use this pattern.

 In March 2009, Microsoft released the ASP.NET MVC Framework 1.0 to the public. The code was
released as open source under the Microsoft Public License, so if you want to see what the framework
is doing under the covers, you can have a look. The ASP.NET MVC Framework team is agile,
releasing early and often to get feedback from the community. It has been great to see the feedback
given to this team implemented! Microsoft has made it clear that the ASP.NET MVC framework is
not intended to replace ASP.NET Web Forms. It was created to give developers a choice.

 When this book was being written, we counted 16 ASP.NET MVC books on the market, and
numerous others mentioned ASP.NET MVC in some way. It is not our intention to make you an
MVC expert, but we do hope to give you a good idea of how MVC web applications can be created
using the TDD techniques you have learned thus far.

 MVC 101

 Reenskaug states that he “ created the model - view - controller pattern as an obvious solution to the
general problem of giving users control over their information as seen from multiple perspectives. ”
Figure 9 - 7 shows the MVC design pattern.

View Controller Model

HTTP

HTML

Request

Response

 FIGURE 9 - 7

 For this chapter, we defi ne MVC as follows:

 Model — The model manages the data in the application. Classes that store and manipulate
the database are combined with business logic.

 View — The view renders the model into an interface that the users can interact with.
HTML, JSON, and XML are common forms of views.

 Controller — The controller orchestrates the communication between the model and the
view. The controller receives input from the view and initiates a response from the model.
The controller decides which view to render — HTML, XML, or JSON — depending on
which view was requested. Validation logic also lives within the controller.

➤

➤

➤

Working with the ASP.NET MVC ❘ 211

c09.indd 211c09.indd 211 3/31/11 3:38:55 PM3/31/11 3:38:55 PM

212 ❘ CHAPTER 9 TDD ON THE WEB

 Microsoft ASP.NET MVC 3.0

 Previous chapters implemented the OSIM example using various technologies such as WCF. Visual
Studio 2010 ships with ASP.NET MVC 2.0, but this example uses ASP.NET MVC 3.0, which is
available for download at http://www.asp.net/mvc/mvc3 .

 MVC frameworks rely on convention over confi guration, so as long as you follow the convention,
things tend to “ just work. ” Routes are an important tenet of the ASP.NET MVC. Simply put, routes
in the MVC framework specify how an HTTP request should be handled. In the past, with ASP
.NET Web Forms, you had little control over how requests worked. Requests were tightly coupled to
the page handling the request. The following code is default code that is added to the Global.asax
fi le when you create an ASP.NET MVC application:

routes.MapRoute(“Default”, // Route name
 “{controller}/{action}/{id}”, // URL with parameters
 new { controller = “Home”, action = “Index”, id =
 UrlParameter.Optional });

 Global.asax.cs

 It ’ s important to note this, because many newcomers to ASP.NET MVC overlook this fact. Basically the
code states that the URL will look like this: http:// url / controller / action / id or http:// localhost
/ home / index , assuming that you have an index method within a controller class named home .

 Creating an ASP.NET MVC Project

 Creating an ASP.NET MVC project is as simple as selecting MVC 3 Web Application, found under
the Web project types when you create a new project, as shown in Figure 9 - 8.

Available for
download on
Wrox.com

Available for
download on
Wrox.com

 FIGURE 9 - 8

c09.indd 212c09.indd 212 3/31/11 3:38:56 PM3/31/11 3:38:56 PM

http://www.asp.net/mvc/mvc3

 After you select the MVC 3.0 project type, you can choose from two default templates —
Empty or Internet Application. When you select the Internet Application template, a new project
that contains default HTML/CSS styling is created. Also included in this project are default views
and controllers for a home page, as well as the basics for authentication. To follow along with this
example, select the Empty template, as shown in Figure 9 - 9.

 Figure 9 - 10 shows the default structure that the framework creates. It includes the following
folders:

 FIGURE 9 - 9 FIGURE 9 - 10

 Content contains HTML, CSS, and image fi les.

 Controllers contains your controller classes.

 Models contains model classes.

 Scripts contains JavaScript needed for your application.

 Views contains your views. Each controller has a subdirectory under this directory that
contains views for the CRUD operations.

 Creating Your First Test

 Based on previous examples, this example implements the same functionality used in the OSIM
project, revolving around the item type concept. You list, create, and edit the item types.

 In many situations developers start a project with the data model already in place. This is one of
those projects, because we discussed testing the data layer in depth in previous chapters. You know
that the developer who created the OSIM.Core module, which contains the data layer, has a full test
suite surrounding it, so there is no need to create tests for this assembly. Because you will be working
with item types, let ’ s start by creating a test for the controller that ensures that the controller will get
the item type data to display.

➤

➤

➤

➤

➤

Working with the ASP.NET MVC ❘ 213

c09.indd 213c09.indd 213 3/31/11 3:38:57 PM3/31/11 3:38:57 PM

214 ❘ CHAPTER 9 TDD ON THE WEB

 You begin with the setup of our test. The fi rst thing you need to do is set up the item type repository
object. You also set up a mock to return a list of three item types when the GetAll method is called
from this repository:

public class when_working_with_the_item_type_controller : Specification
{
 protected Mock < IItemTypeRepository > _itemRepository
 = new Mock < IItemTypeRepository > ();
 protected ItemType _itemOne;
 protected ItemType _itemTwo;
 protected ItemType _itemThree;

 protected override void Establish_context()
 {
 _itemOne = new ItemType { Id = 1, Name = “USB drives” };
 _itemTwo = new ItemType { Id = 2, Name = “Nerf darts” };
 _itemThree = new ItemType { Id = 3, Name = “Flying Monkeys” };
 var itemTypeList = new List < ItemType >
 {
 _itemOne,
 _itemTwo,
 _itemThree
 };

 _itemRepository.Setup(x = > x.GetAll)
 .Returns(itemTypeList);
 }
}

 ItemTypeControllerTests.cs

 With our setup logic in place for the item type repository, you can create your fi rst test. The fi rst
page you will create lists the item types. You want to test to ensure that the controller is working
with the repository correctly. The following test ensures that when a controller is created, the model
is set correctly from the repository:

public class and_trying_to_load_the_index_page :
 when_working_with_the_item_type_controller
{
 Object _model;
 int _expectedNumberOfItemsInModel;

 protected override void Establish_context()
 {
 base.Establish_context();
 _expectedNumberOfItemsInModel = _itemRepository.Object.GetAll.Count;
 }

 protected override void Because_of()
 {
 _model = ((ViewResult)new

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Available for
download on
Wrox.com

c09.indd 214c09.indd 214 3/31/11 3:38:57 PM3/31/11 3:38:57 PM

 ItemTypeController(_itemRepository.Object).Index()).ViewData.Model;
 }

 [Test]
 public void then_a_valid_list_of_items_should_be_retunred_in_the_model()
 {
 _expectedNumberOfItemsInModel.ShouldEqual(((List < ItemType >)_model).Count);
 _itemOne.ShouldEqual(((List < ItemType >)_model)[0]);
 }
}

 ItemTypeControllerTests.cs

 Making Your First Test Pass

 Now that you have a test, you can create your
controller, named ItemTypeController .
Right - click the Controllers folder and select
Add ➪ Controller to access a dialog box that
allows you to create the controller, as shown in
Figure 9 - 11.

 You have the option of letting Visual Studio
create all the action methods for create, edit,
and so on, but because you do not have tests
for them, you will want to handle these yourself in the future. For now, implement only the Index
method. After the Controller class is created, you fi ll in the blanks with the following code:

public class ItemTypeController : Controller
{

 IItemTypeRepository _itemTypeRepository;

 public ItemTypeController(IItemTypeRepository itemRepository)
 {

 _itemTypeRepository = itemRepository;
 }

 public ActionResult Index()
 {
 ViewData.Model = _itemTypeRepository.GetAll;
 return View();
 }
}

 ItemTypeController.cs

 Most notable in the ItemTypeController code is the addition of a constructor that takes in an
 Item repository. This is how you get the instance of the repository. With this logic in place, your test
will pass, but the website will not function as you would expect.

Available for
download on
Wrox.com

Available for
download on
Wrox.com

 FIGURE 9 - 11

Working with the ASP.NET MVC ❘ 215

c09.indd 215c09.indd 215 3/31/11 3:38:58 PM3/31/11 3:38:58 PM

216 ❘ CHAPTER 9 TDD ON THE WEB

 Creating Your First View

 You need to create a view that displays
the item Types. You will want to create a
subdirectory called ItemType under the Views
directory to keep things organized. After the
subdirectory is created, right - click the newly
created ItemType directory and select Add ➪
View. You see a dialog box similar to the one
shown in Figure 9 - 12.

 When creating a view with ASP.NET MVC
3.0, you have two default options for the
view engine. It ’ s outside the scope of this
book to discuss the view engines in depth,
but view engines render the markup for the
page. Each view engine renders the markup
a bit differently, and some have advantages
over others. By default Microsoft ASP.NET
MVC 3.0 ships with the Razor and ASPX view
engines. Other open source view engines such
as Spark and NHaml can be used as well. This example uses the Razor view engine.

 Checking the “ Create a strongly - typed view ” check box and selecting your ItemType class from
the OSIM.Core.Entities namespace causes the ASP.NET Framework to generate a scaffold for
this view. Scaffolding is simply a template containing markup to render your model in a view.
Scaffolding gets you from point A to point C quickly. You have different options to select for the
scaffold template. In this case you are listing the item types on the screen, so you should choose
the List template. The following code is rendered for the Index view:

@model IEnumerable < OSIM.Core.Entities.ItemType >

@{
 ViewBag.Title = “ItemType”;
}

 < h2 > ItemType < /h2 >

 < p > @Html.ActionLink(“Create New”, “Create”) < /p >
 < table >
 < tr >
 < th > < /th >
 < th > Name < /th >
 < /tr >
 @foreach (var item in Model) {
 < tr >
 < td > @Html.ActionLink(“Edit”, “Edit”, new { id=item.Id }) | < /td >
 < td > @item.Name < /td >
 < /tr >
 }
 < /table >

 Index.cshtml

Available for
download on
Wrox.com

Available for
download on
Wrox.com

 FIGURE 9 - 12

c09.indd 216c09.indd 216 3/31/11 3:38:58 PM3/31/11 3:38:58 PM

 It ’ s important to name your view in the ItemType directory index. This is because MVC is based
on convention, and with the defaults you set up in the controller (the Index method), the MVC
framework will look for a fi le with this name. Figure 9 - 13 shows what happens when the framework
cannot fi nd the correct fi le.

 FIGURE 9 - 13

 This is not to say that you could not create custom routes. Although you could name the view
whatever you wanted, generally this approach is frowned on.

 Gluing Everything Together

 With the Index view in place, you are one step closer to getting the website application up and
running. A bit of glue code needs to be added to handle your dependency injection. As with the
examples in previous chapters, this example shows you how to use Ninject to inject dependencies
into your controller. Remember the constructor you added to the item type controller that took in
the item type repository? This logic injects this dependency of the repository into your controller for
you. This code is found in the Global.asax.cs fi le.

public class MvcApplication : NinjectHttpApplication
{
 protected override void OnApplicationStarted()
 {
 base.OnApplicationStarted();

 AreaRegistration.RegisterAllAreas();
 RegisterGlobalFilters(GlobalFilters.Filters);
 RegisterRoutes(RouteTable.Routes);
 }

 public static void RegisterGlobalFilters(GlobalFilterCollection filters)
 {

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Working with the ASP.NET MVC ❘ 217

c09.indd 217c09.indd 217 3/31/11 3:38:59 PM3/31/11 3:38:59 PM

218 ❘ CHAPTER 9 TDD ON THE WEB

 filters.Add(new HandleErrorAttribute());
 }

 public static void RegisterRoutes(RouteCollection routes)
 {
 routes.IgnoreRoute(“{resource}.axd/{*pathInfo}”);

 routes.MapRoute(
 “Default”, // Route name
 “{controller}/{action}/{id}”, // URL with parameters
 new { controller = “ItemType”, action = “Index”, id =
 UrlParameter.Optional });
 }

 protected override IKernel CreateKernel()
 {
 return new StandardKernel(new PersistenceModule(), new
 CoreServicesModule());
 }
}

 Global.asax.cs

 Most notable in this example is that instead of Global.asax inheriting from
 System.Web.HttpApplication , it inherits from NinjectHttpApplication ,
which requires a reference to the Ninject.Web.MVC assembly. Inheriting from
 NinjectHTTPApplication as well as implementing the CreateKernel method to
map your dependencies is all the glue code you need to get your web application up
and running. You may also note, in the RegisterRoutes method, in this example
you change the default controller name from Home to ItemType so that it defaults to
the only controller you created. If you do not do this, your web application looks for
a home controller that doesn ’ t exist. Running the web application renders a website
similar to the one shown in Figure 9 - 14.

 Now that you have implemented your fi rst feature, you can go back and create tests that involve
creating and editing item types. I ’ ll forgo creating the controllers and views for these features and
just show the tests:

public class and_trying_to_create_a_new_valid_item_type :
 when_working_with_the_item_type_controller
{
 ItemType _newItemType;
 ItemTypeController _controller;
 RedirectToRouteResult _result;
 string _expectedRouteName;

 protected override void Establish_context()
 {
 base.Establish_context();
 _expectedRouteName = “Index”;
 _newItemType = new ItemType() { Id = 99, Name = “New Item” };

Available for
download on
Wrox.com

Available for
download on
Wrox.com

 FIGURE 9 - 14

c09.indd 218c09.indd 218 3/31/11 3:39:00 PM3/31/11 3:39:00 PM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

 _controller = new ItemTypeController(_itemRepository.Object);
 }

 protected override void Because_of()
 {
 _result = _controller.Create(_newItemType) as RedirectToRouteResult;
 }

 [Test]
 public void then_a_new_item_type_should_be_created_and_
 the_redirected_to_the_correct_view()
 {
 _result.ShouldNotBeNull();
 _result.RouteValues.Values.ShouldContain(_expectedRouteName);
 }
}

public class and_trying_to_create_a_new_invalid_item_type :
 when_working_with_the_item_type_controller
{
 ItemType _newItemType;
 ItemTypeController _controller;
 ViewResult _result;
 string _expectedRouteName;

 protected override void Establish_context()
 {
 base.Establish_context();
 _expectedRouteName = “create”;
 _newItemType = new ItemType() { Id = 99, Name = “New Item” };
 _controller = new ItemTypeController(_itemRepository.Object);
 _controller.ModelState.AddModelError(“key”, “model is invalid”);
 }

 protected override void Because_of()
 {
 _result = _controller.Create(_newItemType) as ViewResult;
 }

 [Test]
 public void then_a_new_item_type_should_not_be_created()
 {
 _result.ShouldNotBeNull();
 _result.ViewName.ShouldEqual(_expectedRouteName);
 }
}

public class and_trying_to_edit_an_existing_item :
 when_working_with_the_item_type_controller
{
 string _expectedRouteName;
 ItemTypeController _controller;
 ViewResult _result;

Working with the ASP.NET MVC ❘ 219

c09.indd 219c09.indd 219 3/31/11 3:39:00 PM3/31/11 3:39:00 PM

220 ❘ CHAPTER 9 TDD ON THE WEB

 protected override void Establish_context()
 {
 base.Establish_context();
 _expectedRouteName = “edit”;
 _controller = new ItemTypeController(_itemRepository.Object);
 _result = _controller.Edit(_itemOne.Id) as ViewResult;
 }

 protected override void Because_of()
 {
 }

 [Test]
 public void then_a_valid_edit_view_should_be_returned()
 {
 _expectedRouteName.ShouldEqual(_result.ViewName);
 }
}

 ItemTypeControllerTests.cs

 Using the MVC Contrib Project

 The open source MVC Contrib project can be found at http://mvccontrib.codeplex.com/ . This
project adds a great deal of functionality to the ASP.NET MVC framework and is useful for MVC
developers. The MVC Contrib project includes features to help with unit testing and much more.
The MVC Contrib project fi lls in gaps in the ASP.NET MVC framework. The MVC Contrib project
is a must for anyone who is looking to develop ASP.NET MVC applications.

 ASP.NET MVC Summarized

 ASP.NET MVC requires a different way of thinking when you are developing web applications
on the Microsoft stack. At fi rst it can be a bit overwhelming due to the number of new tools and
concepts you need to understand to build even the simplest web application. After you learn the
basics, however, you will realize that using the ASP.NET MVC framework forces you and your
coworkers to create clean code that is easy to read, test, and maintain.

 WORKING WITH JAVASCRIPT

 Many web developers have a love - hate relationship with JavaScript. In most situations, web
developers don ’ t hate JavaScript per se; they hate the Document Object Model (DOM) in most web
browsers. In recent years JavaScript frameworks such as jQuery and Prototype have relieved the
pain that the DOM has caused web developers. These frameworks make it easier for you to work
with the DOM and reduce the number of tests you need to create to test your JavaScript. Remember,
you don ’ t need to test the framework.

 One of the most common mistakes web developers make when it comes to JavaScript is not
abstracting their logic into different fi les. Many developers chuck everything into one script fi le or

c09.indd 220c09.indd 220 3/31/11 3:39:01 PM3/31/11 3:39:01 PM

http://mvccontrib.codeplex.com/

duplicate functionality over many different web pages. They don ’ t realize that testing frameworks
exist for JavaScript, or that you can create JavaScript using TDD methods.

 JavaScript is a real language, and code should be treated as such. Rules that you have learned
about SOLID apply to JavaScript. When JavaScript code is created in this manner, it is easy to test
and maintain. Some web developers complain that an HTML page that is required to download
multiple JavaScript fi les loads slowly, and they are correct. Using techniques such as combining and
minifying during the build process resolves these slow page load issues. Testing performance is a
different topic; for now I will focus on creating testable code.

 JavaScript Testing Frameworks

 As with most languages, multiple frameworks allow you to test your JavaScript code. Frameworks
such as qUnit, Screw Unit, and jsUnit are all open source testing frameworks that act similarly
to NUnit but are designed for testing JavaScript. The examples here use qUnit — the testing
framework that the jQuery team has selected to test its popular JavaScript framework. qUnit has
been around for quite some time, and because of the success with the jQuery project, it has a large
following. When open source projects have large followings, it means you can fi nd documentation
and fi le bugs and get frequent software updates.

 In these examples of using TDD with JavaScript, you will look at something a bit more complicated
than any JavaScript you would be testing in any of the previous applications covered in this chapter.
Most of the JavaScript you would add in these applications would be considered glue code, and
testing would occur during the integration or functionality testing phase.

 The following example shows how you create JavaScript that
represents a bank account. This object holds the current balance,
and a function transfers funds between two accounts. The fi rst
step is to set up the qUnit framework. Doing so is fairly simple.
Figure 9 - 15 shows the directory set up for this application. You
see it includes jQuery, qUnit JavaScript, and the qUnit style
sheet. You create your tests in the js folder.

 When the framework is ready, you can write your fi rst test.
qUnit tests are written in JavaScript, and the runner is contained
within the HTML. Just like testing within C# or Visual Basic,
you should keep separate fi les for each object you are testing.
In this case, you are testing the account object, so you create
 AccountTests.htm , which will contain all the tests for the account object that you will create.

 As with other testing frameworks, you want to write your test so that it describes what the test is
trying to accomplish. In this example, you just want to create an account object that has an account
number as well as a balance:

 < script type=”text/javascript” >
test(‘Should_Create_An_Account_Object_With_Balance’, function() {
 var checkingAccount = new Account(564858510, 600);
 equals(checkingAccount.Balance, 600);
});
 < /script >

 FIGURE 9 - 15

Working with JavaScript ❘ 221

c09.indd 221c09.indd 221 3/31/11 3:39:01 PM3/31/11 3:39:01 PM

222 ❘ CHAPTER 9 TDD ON THE WEB

 To fi nish the implementation of this test, you need to fi nish adding the test runner implementation
code. The following code shows the full implementation of the test you will run.

 < html xmlns=”http://www.w3.org/1999/xhtml” >
 < head >
 < title > Account Tests < /title >
 < link rel=”stylesheet” href=”QUnit.css” type=”text/css” media=”screen” / >
 < script type=”text/javascript” src=”../jquery-1.4.4.js” > < /script >
 < script type=”text/javascript” src=”../qunit.js” > < /script >
 < script type=”text/javascript” src=”../Account.js” > < /script >

 < script type=”text/javascript” >
 test(‘Should_Create_An_Account_Object_With_Balance’, function() {

 var checkingAccount = new Account(564858510, 600);
 equals(checkingAccount.Balance, 600);

 });

 < /script >
 < /head >
 < body >
 < h1 id=”qunit-header” > Account Unit Tests < /h1 >
 < h2 id=”qunit-banner” > < /h2 >
 < div id=”qunit-testrunner-toolbar” > < /div >
 < h2 id=”qunit-userAgent” > < /h2 >
 < ol id=”qunit-tests” > < /ol >
 < div id=”qunit-fixture” > test markup < /div >
 < /body >
 < /html >

 AccountTests.htm

 After your test and running logic are in place, you are ready to run the test. You should expect this
test to fail, because you have not implemented the account object yet. Figure 9 - 16 represents this.

Available for
download on
Wrox.com

Available for
download on
Wrox.com

 FIGURE 9 - 16

 With your test failing, you are ready to implement the account JavaScript:

function Account(accountNumber, balance)
{
 this.AccountNumber = accountNumber;
 this.Balance = balance;
}

 Account.js

Available for
download on
Wrox.com

Available for
download on
Wrox.com

c09.indd 222c09.indd 222 3/31/11 3:39:02 PM3/31/11 3:39:02 PM

 As shown in Figure 9 - 17, the test now passes.

 FIGURE 9 - 17

 Let ’ s now fulfi ll the requirement for the account object to transfer funds between objects. In a test
named Should_Transfer_From_Checking_To_Savings_Successfully , create two accounts with
balances, and then transfer funds from one of them to the other. When you run the test, you expect
failure, as shown in Figure 9 - 18.

test(‘Should_Transfer_From_Checking_To_Savings_Successfully’,
function() {
 var checkingAccount = new Account(564858510, 600);
 var savingsAccount = new Account(564858507, 100);

 checkingAccount.Transfer(savingsAccount, 100);
 equals(savingsAccount.Balance, 200);
 equals(checkingAccount.Balance, 500);
});

 AccountTests.htm

Available for
download on
Wrox.com

Available for
download on
Wrox.com

 FIGURE 9 - 18

 After the test fails, you can implement the code required to transfer funds. All the tests pass, as
shown in Figure 9 - 19.

function Account(accountNumber, balance)
{
 this.AccountNumber = accountNumber;
 this.Balance = balance;
}

Account.prototype. Transfer = function(toAccount, amount)
{
 toAccount.Balance += amount;
 this.Balance = this.Balance - amount;
}

 Account.js

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Working with JavaScript ❘ 223

c09.indd 223c09.indd 223 3/31/11 3:39:02 PM3/31/11 3:39:02 PM

224 ❘ CHAPTER 9 TDD ON THE WEB

 You have implemented only the bare minimum for the JavaScript account object tests to pass, but you
are not done yet. Business rules and boundary conditions need to be tested as well. The fi rst one would
be to test what happens if an account tries to transfer more than it has. Let ’ s write a test to see:

 test(‘Should_Not_Transfer_From_When_The_From_Account_Has_Insufficent_Funds’,
function () {
 var checkingAccount = new Account(564858510, 600);
 var savingsAccount = new Account(564858507, 100);

 checkingAccount.Transfer(savingsAccount, 700);
 equals(savingsAccount.Balance, 100);
 equals(checkingAccount.Balance, 600);
 });

 Account.js

 As shown in Figure 9 - 20, this test fails.

Available for
download on
Wrox.com

Available for
download on
Wrox.com

 FIGURE 9 - 20

 The test you wrote expects that when you try to transfer $700 from an account that has only $600,
the accounts will still have the same balance, meaning that the transfer did not occur. If you look
closely at the error shown in Figure 9 - 20, you see that the transfer did occur. The application has a
bug, and you should fi x it before someone notices. This problem can be resolved quickly by simply
placing a guard statement that checks to see if the amount being transferred is more than the current
balance. If it is, don ’ t perform the transfer; just return:

 FIGURE 9 - 19

c09.indd 224c09.indd 224 3/31/11 3:39:03 PM3/31/11 3:39:03 PM

Account.prototype.Transfer = function (toAccount, amount) {
 if (this.Balance < amount) {
 return;
 }

 toAccount.Balance += amount;
 this.Balance = this.Balance - amount;
}

 Account.js

 Figure 9 - 21 shows that all the tests now pass.

Available for
download on
Wrox.com

Available for
download on
Wrox.com

 FIGURE 9 - 21

 By now you should start feeling the repetition of TDD, which is important. In a real - world situation,
you would have tests that cover all scenarios. Previous chapters discussed what exactly to test, but
for our purposes, this example is suffi cient.

 After you have created tests for the entire object, you can implement your newly developed object in
production code. The following code is the implementation of the JavaScript account object. I have
written a suite of tests around the account object, and the code shown is considered glue code or
jQuery framework code that does not need to be tested at this level:

 < html xmlns=”http://www.w3.org/1999/xhtml” >
 < head >
 < title > Simple qUnit Test < /title >
 < script type=”text/javascript” src=”js/account.js” > < /script >
 < script type=”text/javascript” src=”js/jQuery-1.4.4.js” > < /script >
 < /head >
 < body >
 < div >
 Savings Balance: < span id=”SavingsBalance” > < /span >
 < /div >
 < div >
 Checking Balance: < span id=”CheckingBalance” > < /span >
 < /div >
 < /body >

 < script type=”text/javascript” >
 var checkingAccount = new Account(564858510, 600);
 var savingsAccount = new Account(564858507, 100);

 savingsAccount.Transfer(checkingAccount, 100);

 jQuery(“document”).ready(function () {
 jQuery(“#SavingsBalance”).text(savingsAccount.Balance);

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Working with JavaScript ❘ 225

c09.indd 225c09.indd 225 3/31/11 3:39:04 PM3/31/11 3:39:04 PM

226 ❘ CHAPTER 9 TDD ON THE WEB

 jQuery(“#CheckingBalance”).text(checkingAccount.Balance);
 });
 < /script >
 < /html >

 Default.aspx

 Figure 9 - 22 shows the project ’ s fi nal organization.

 SUMMARY

 Test - driven development on the web can sometimes be
cumbersome. This chapter introduced frameworks and concepts
that allow you to start creating highly testable web applications.
You have probably worked in environments where teams do not
want to try new concepts, but many of the concepts in this chapter
can be introduced slowly to teams using existing tools they have
access to.

 ASP.NET MVC is a new way of thinking for many Microsoft web
developers. Microsoft has stated that ASP.NET Web Forms is not
going away anytime soon. The MVC framework is an additional
tool that you can choose to use.

 Like all the TDD practices discussed previously, the best way to learn these practices is to get out
and meet other developers who practice them every day. Free conferences such as Day of .NET and
Code Camps are a great way to meet people and hone your newly developed skills.

 FIGURE 9 - 22

c09.indd 226c09.indd 226 3/31/11 3:39:05 PM3/31/11 3:39:05 PM

Testing Windows Communication
Foundation Services

 WHAT ’ S IN THIS CHAPTER?

 Understanding why Windows Communication Foundation (WCF)

services are an important part of your application

 Recognizing WCF services as interface code, similar to a Windows

form or web page

 Refactoring your WCF services to employ dependency injection

 Understanding the role that transports play in testing

WCF services

 Like web pages or desktop windows, services are an interface to your application. As with
the other interfaces to your application, your application ’ s services need to be tested to
ensure that they meet all the requirements that have been specifi ed for them as an interface
to your application. Testing services is especially necessary, because unlike Windows forms
or web pages, errors and defects can be easily obfuscated or swallowed by a services layer in
ways that make diagnosing defects extremely diffi cult.

 WCF is the standard framework for creating services in .NET. However, many developers
are intimidated by even the basics of WCF. As a result, even developers who are willing to
learn WCF fi nd testing services to be a daunting proposition. The skills to properly test WCF
services are not diffi cult to learn. This chapter provides you with the tools and knowledge you
need to test your WCF services.

➤

➤

➤

➤

 10

c10.indd 227c10.indd 227 3/31/11 3:39:32 PM3/31/11 3:39:32 PM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

228 ❘ CHAPTER 10 TESTING WINDOWS COMMUNICATION FOUNDATION SERVICES

 WCF SERVICES IN YOUR APPLICATION

 Services are important to your application. As an architectural tool, services allow you to develop
broad, adaptive systems that would not be possible using only static binding or an application
confi ned to a single physical machine. Services enhance scalability and increase fl exibility. Some
would argue that services are the last word in the quest for the loosely coupled system. The rising
popularity of mobile devices, the desire for more responsive web applications via JavaScript and
AJAX calls, frameworks such as Silverlight, and the resurgence of REST are all breathing new
life into an architectural concept that until a few years ago was seen as the sole domain of ivory -
 tower architects and service - oriented architecture (SOA) geeks. For these reasons, more and more
applications will begin to include a service interface requirement of some kind.

 Services Are Code Too

 The actual code in your service should be very simple. In other words, the code should do almost
nothing. The most complicated action a service should perform on its own is translate data between
data transfer objects (DTOs) and domain entity objects. The service may also perform some simple data
validation, similar to what would be done on a web page or a Windows form. Aside from that, your
service should call methods only on domain services or a business model object of some sort.

 In spite of how simple the code for your service should be, your service is still code. As such, it
is still prone to defects and sensitive to changes made in other areas of the application. You need
to ensure that your service is using the correct domain service or model. Validation rules must
be verifi ed. Data translations must be rechecked periodically to ensure that changes to an entity
domain class have not disrupted the service ’ s operation. Services are external entry points to an
application, meaning that they enable the automated input of data; much like a web page or web
form would for a user. This means that the validation and verifi cation of services must be verifi ed as
well to ensure proper security for the application. For these reasons, it ’ s important to test services
as much as you would test any other interface to an application.

 TESTING WCF SERVICES

 Unlike domain services or entities, you do not have direct control over the instantiation of your WCF
services. This has led to the belief that WCF services cannot take advantage of dependency
injection and therefore cannot be unit - tested. This is a fallacy. Most of the popular dependency injection
frameworks available today provide some facility for injecting dependencies into WCF services. All
you need are some changes to how the service implementation is constructed, and a couple of minor
tweaks to how the WCF projects are confi gured.

 This chapter assumes a basic level of knowledge and skill with WCF. If you
are unfamiliar with WCF, many books are available on the subject. My blog at
 www.jamescbender.com hosts an ongoing WCF instructional series that is
perfect for developers who have not used WCF.

c10.indd 228c10.indd 228 3/31/11 3:39:34 PM3/31/11 3:39:34 PM

http://www.jamescbender.com

Testing WCF Services ❘ 229

 Refactoring for Testability

 Like domain services and entities, in an ideal world you write the tests for your WCF services
before you write the code. Test fi rst is a major tenet of TDD (remember, the second D stands for
driven). This chapter starts with an existing WCF service and refactors it to make it testable. There
are a couple reasons for this demonstration. You are far more likely to encounter codebases where
the domain - specifi c code, and even the ASP.NET MVC or WPF interfaces, have been designed for
testability — specifi cally, the ability to accept dependencies. WCF services are in the unique position
of being relatively easy to refactor to accept dependencies. The service is an interface. As such, it is
at the edge of the application, which means that it should have no references that would break from
the creation of a new constructor to accept dependencies. Additionally, because access to services is
done via proxy, and the caller has no role in the instantiation of the service class, the instantiation
provider can be changed at will with almost no risk of introducing a breaking change.

 Finally, I recognize the learning curve that some developers experience with WCF. I hope that,
by starting with a working service, you will have more confi dence in attempting to introduce
dependency injection into a working WCF service than you would by trying to build a working
service and introduce dependency injection at the same time. You should
apply all the techniques in this chapter to future development of WCF
services, and you should adopt a test - fi rst paradigm when you feel
comfortable with the frameworks.

 I ’ ve added a simple WCF service to the OSIM application that returns a list
of ItemType s as a string array. (This demo, as well as all the demos for this
book, are available on wrox.com .) I ’ ve called this InventoryService and
created it in the OSIM.ExternalServices project, as shown in Figure 10 - 1.

 The implementation of the InventoryService service simply creates an instance of the
 ItemTypeService domain service class (which I created to support this service). It also returns the
result of a call to the GetItemTypes method of the ItemTypeService after that result has been
fl attened to a string array:

using System.Linq;
using Ninject;
using OSIM.Core.Services;
using OSIM.Persistence;

namespace OSIM.ExternalServices
{
 public class InventoryService : IInventoryService
 {

 public string[] GetItemTypes()
 {
 var kernel =
 new StandardKernel(new PersistenceModule(), new
 CoreServicesModule());
 var itemTypeService = kernel.Get < IItemTypeService > ();

 var itemTypeList = itemTypeService.GetItemTypes()
 .Select(x = > x.Name)

Available for
download on
Wrox.com

Available for
download on
Wrox.com

 FIGURE 10 - 1

c10.indd 229c10.indd 229 3/31/11 3:39:45 PM3/31/11 3:39:45 PM

http://wrox.com

230 ❘ CHAPTER 10 TESTING WINDOWS COMMUNICATION FOUNDATION SERVICES

 .ToArray();

 return itemTypeList;
 }
 }
}

 InventoryService.svc.cs

 To follow along in the implementation of the GetItemTypes method of InventoryService , you
create an instance of a Ninject StandardKernel class and provide it with implementations of
the PersistenceModule (which contains the rules and logic to create ItemTypeRepository and
connect it to the database) and CoreServicesModule (which contains the rules for instantiation of a
class that implements the IItemTypeService interface). The code in these modules is simple and is
irrelevant to the rest of this example, so I will not provide a detailed explanation of it here. Feel free
to examine the code in the downloadable sample available at www.wrox.com .

 First the instance of the StandardKernel is used to get an instance of an object that implements
the IItemTypeService interface. Then call the GetItemTypes method on that implementation of the
 IItemTypeService interface is called, which returns an instance of an object that implements
the IList < ItemType > interface (a list of ItemType objects).

 The ItemType class has two properties: Id and Name . The GetItemTypes method returns ItemType s
used in the system (presumably retrieved from a data store). Because you need only the names, you
can use the Select LINQ command to select only the names from each item in the list of ItemType s
returned from the GetItemTypes method call. Then employ the ToArray extension method to convert
the result of the Select command to a string array, which the service returns, as shown in Figure 10 - 2.

 FIGURE 10 - 2

c10.indd 230c10.indd 230 3/31/11 3:39:46 PM3/31/11 3:39:46 PM

http://www.wrox.com

Testing WCF Services ❘ 231

 Introducing Dependency Injection to Your Service

 Even though the code in the InventoryService is very simple, it still needs to be tested. A
fundamental barrier to testing the InventoryService is that it ’ s dependent on an implementation
of the IItemTypeService interface, but currently there is no way to inject an instance of an object
that implements the IItemTypeService interface. This means that the test is dependent on whatever
implementation of the IItemTypeService interface is provided by the statically bound Ninject
modules.

 WCF service applications share a similar trait with ASP.NET applications and Windows
Forms/WPF applications in that the instantiation of WCF services, ASP.NET pages, and
Windows forms is performed by the .NET runtime. This limits what can be done in terms of
instantiation of these objects without delving deep into the .NET runtime. In response to the desire
of more and more developers to use dependency injection with these objects, Microsoft has built
some hooks into the .NET runtime that enable you to use dependency injection with these types
of objects.

 Ninject has a large library of extensions that are designed to enable dependency injection via Ninject
in a variety of situations. Among them are the Ninject.Extensions.Wcf extensions, which provide
a set of classes that enable dependency injection via Ninject
for WCF services. Adding these extensions takes only a few
steps, and it allows your WCF services to use dependency
injection seamlessly.

 The Ninject WCF extension contains two assemblies used
in this example: Ninject.Extensions.Wcf and Ninject
.Extensions.Wcf.CommonServiceLocator . You add these as
references to the OSIM.ExternalServices projects, as shown
in Figure 10 - 3.

 These two assemblies contain the Ninject classes needed to retrofi t the WCF service application
(OSIM.ExternalServices) to be a Ninject application.

 The fi rst change you need to implement is to make the OSIM.ExternalServices application an
instance of a Ninject WCF application. You do so by changing the class that the OSIM
.ExternalServices application inherits from. This information is located in the Global.asax.cs
fi le. By default, this fi le is not added to the WCF Services project at creation time. The convention
is that you create this fi le only if you need to modify some behavior it provides, such as application
start activities. If this fi le is not included, the .NET runtime uses a standard defi nition of this class
to create your application.

 In this case you need to change the base class for the Global class, so add this fi le to the OSIM
.ExternalServices project. To do this, right - click the OSIM.ExternalServices project and select
Add - - > New Item. The Add New Item dialog, shown in Figure 10 - 4, is displayed.

 FIGURE 10 - 3

c10.indd 231c10.indd 231 3/31/11 3:39:47 PM3/31/11 3:39:47 PM

232 ❘ CHAPTER 10 TESTING WINDOWS COMMUNICATION FOUNDATION SERVICES

 As shown in Figure 10 - 4, you select the Global Application Class fi le type.
Leave the default name of Global.asax , and click the Add button. The
 Global.asax fi le is added to the OSIM.ExternalServices project, as
shown in Figure 10 - 5.

 Viewing the contents of the Global.asax fi le reveals that the Global class
currently inherits from System.Web.HttpApplication :

namespace OSIM.ExternalServices
{
 public class Global : System.Web.HttpApplication
 {
 ...

 }
}

 Global.asax.cs

 To use the Ninject WCF extensions in the OSIM.ExternalServices project, you need to change
the declaration of the Global class to inherit from the NinjectWcfApplication base class. The
 NinjectWcfApplication class is located in the Ninject.Extensions.Wcf namespace. Because you

Available for
download on
Wrox.com

Available for
download on
Wrox.com

 FIGURE 10 - 4

 FIGURE 10 - 5

c10.indd 232c10.indd 232 3/31/11 3:39:47 PM3/31/11 3:39:47 PM

Testing WCF Services ❘ 233

also need access to a class in the Ninject root namespace, you add using statements to include these
namespaces in the Global.asax.cs fi le:

using Ninject;
using Ninject.Extensions.Wcf;

 Next you change the declaration of the Global class so that it inherits from
 NinjectWcfApplication instead of System.Web.HttpApplication :

namespace OSIM.ExternalServices
{
 public class Global : NinjectWcfApplication
 {

 ...
 }
}

 Global.asax.cs

 The NinjectWcfApplication base class defi nes an abstract method called CreateKernel that must
be implemented by the Global class:

protected override IKernel CreateKernel()
{
 throw new NotImplementedException ();
}

 Global.asax.cs

 The purpose of the CreateKernel method is to provide the developer with a place to reference the
Ninject modules that contain the rules for creating the various classes that will be used by the WCF
services in the current application. You return to this method after you fi nish retrofi tting the OSIM
.ExternalServices application and create a Ninject module for the InventoryService WCF service.

 In the OSIM.ExternalServices project is a fi le called InventoryService.svc . This fi le is similar
to .aspx fi les in that it provides some runtime metadata about the InventoryService service
endpoint and a link to the actual implementation of InventoryService in the InventoryService
.svc.cs code - behind fi le:

 < %@ ServiceHost Language=”C#” Debug=”true”
 Service=”OSIM.ExternalServices.InventoryService”
CodeBehind=”InventoryService.svc.cs” % >

 InventoryService.cs

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Available for
download on
Wrox.com

c10.indd 233c10.indd 233 3/31/11 3:39:48 PM3/31/11 3:39:48 PM

234 ❘ CHAPTER 10 TESTING WINDOWS COMMUNICATION FOUNDATION SERVICES

 One of the attributes of the ServiceHost directive is Factory . The Factory attribute specifi es what
class should be used to instantiate the WCF service. When the attribute is not supplied, the .NET
runtime uses the standard WCF service factory to create the instance of the service implementation.
As part of the retrofi t to enable dependency injection in the OSIM.ExternalServices project, you
change the factory used to instantiate InventoryService to NinjectServiceHostFactory :

 < %@ ServiceHost Language=”C#” Debug=”true”
Service=”OSIM.ExternalServices.InventoryService”
CodeBehind=”InventoryService.svc.cs”
Factory=”Ninject.Extensions.Wcf.NinjectServiceHostFactory”% >

 InventoryService.cs

 That is the last step needed to convert the internal mechanics of OSIM
.InventoryService and the InventoryService.svc fi le to use Ninject.
The next steps are the standard steps to employ dependency injection in
a class with Ninject.

 First, you need to create a Ninject module to store the rules for how
the service implementation classes are created. Call this module
 ExternalServicesModule , and place it in a new folder in the OSIM
.ExternalServices project called Modules , as shown in Figure 10 - 6.

 In the ExternalServicesModule.cs fi le, create the ExternalServicesModule class in the same
manner you created the other Ninject modules in the previous chapters:

using Ninject.Modules;

namespace OSIM.ExternalServices.Modules
{
 public class ExternalServicesModule : NinjectModule
 {
 public override void Load()
 {
 Bind < IInventoryService > ().To < InventoryService > ();
 }
 }
}

 ExternalServicesModule.cs

 The OSIM.ExternalServices project has only one service, InventoryService , so that ’ s the only
interface/class pair you need to provide binding information for. You use the other modules from the
appropriate projects to provide the rules for the ItemTypeService and all its needed dependencies.

 It ’ s time to return your attention to the CreateKernel method of the Global class in the Global
.asax.cs fi le. Now that you have a module for the OSIM.ExternalServices classes, you can provide
the implementation of this method that will create a kernel for the OSIM.ExternalServices WCF
Services application to use. First, you need to add using statements for the various Ninject modules
you will need in the OSIM.ExternalServices project:

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Available for
download on
Wrox.com

 FIGURE 10 - 6

c10.indd 234c10.indd 234 3/31/11 3:39:49 PM3/31/11 3:39:49 PM

Testing WCF Services ❘ 235

using OSIM.Core.Services;
using OSIM.ExternalServices.Modules;
using OSIM.Persistence;

 ExternalServicesModule.cs

 Now add the implementation of the CreateKernel method that provides an instance of the
Ninject StandardKernel that is based on the PersistenceModule , CoreServicesModule , and
 ExternalServicesModule :

protected override IKernel CreateKernel()
{
 return new StandardKernel(new PersistenceModule(),
 new CoreServicesModule(),
 new ExternalServicesModule());
}

 ExternalServicesModule.cs

 Now we ’ ll return to the actual InventoryService implementation. Currently, it looks like this:

public class InventoryService : IInventoryService
{
 public string[] GetItemTypes()
 {
 var kernel =
 new StandardKernel(new PersistenceModule(), new
 CoreServicesModule());
 var itemTypeService = kernel.Get < IItemTypeService > ();

 var itemTypeList = itemTypeService.GetItemTypes()
 .Select(x = > x.Name)
 .ToArray();

 return itemTypeList;
 }
}

 InventoryService.svc.cs

 To complete the conversion of InventoryService from relying on statically bound services to injected
services, you need to add a constructor to the InventoryService class that accepts an instance of an
object that implements the IItemTypeService interface and stores it in a member variable:

private IItemTypeService _itemTypeService;

public InventoryService(IItemTypeService itemTypeService)
{
 _itemTypeService = itemTypeService;
}

 ItemTypeService.svc.cs

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Available for
download on
Wrox.com

c10.indd 235c10.indd 235 3/31/11 3:39:49 PM3/31/11 3:39:49 PM

236 ❘ CHAPTER 10 TESTING WINDOWS COMMUNICATION FOUNDATION SERVICES

 The fi nal step is to remove the code from the GetItemTypes method that creates the Ninject kernel
and uses the kernel to get an instance of a class that implements IItemTypeService . You also need
to change any code that calls the local instance of IItemTypeService to use the member variable
 _itemTypeService instead:

public string[] GetItemTypes()
{
 var itemTypeList = _itemTypeService.GetItemTypes()
 .Select(x = > x.Name)
 .ToArray();

 return itemTypeList;
}

 ItemTypeService.svc.cs

 Immediately you should notice that the code in the GetItemTypes method is much cleaner and
easier to understand. You compile that application and call the GetItemTypes method from the
WCF Test client again to verify that the service is still working correctly, as shown in Figure 10 - 7.

Available for
download on
Wrox.com

Available for
download on
Wrox.com

 FIGURE 10 - 7

 Writing the Test

 Now that you can inject a mocked instance of a class that implements the IItemType interface, you
can write a unit test for the InventoryService WCF service. You start by creating a cs fi le to hold

c10.indd 236c10.indd 236 3/31/11 3:39:50 PM3/31/11 3:39:50 PM

Testing WCF Services ❘ 237

your unit tests. I ’ ve placed this fi le in the OSIM.ExternalServices folder of the OSIM.UnitTests
project and called it InventoryServiceTests.cs , as shown in Figure 10 - 8.

 To test the InventoryService , you need to add a reference to the OSIM.ExternalServices project
to the OSIM.UnitTests project, as shown in Figure 10 - 9.

 FIGURE 10 - 8 FIGURE 10 - 9

 Next you create your test class, and its base class, using the same BDD naming style used previously:

namespace OSIM.UnitTests.OSIM.ExternalServices
{
 public class when_using_the_external_inventory_service : Specification
 {

 }

 public class and_getting_a_list_of_item_types :
when_using_the_external_inventory_service
 {

 }
}

 InventoryServiceTests.cs

 To use the attributes in the NUnit framework, you need to add a using statement to bring in the
 NUnit.Framework namespace. You also need to create an instance of the InventoryService class,
so you need the OSIM.ExternalServices namespace as well. Because you will be creating a mocked
instance of the IItemTypeService core domain service, you need to add using statements for the
Moq namespace as well as the OSIM.Core.Services namespace. Finally, as with the previous unit

Available for
download on
Wrox.com

Available for
download on
Wrox.com

c10.indd 237c10.indd 237 3/31/11 3:39:51 PM3/31/11 3:39:51 PM

238 ❘ CHAPTER 10 TESTING WINDOWS COMMUNICATION FOUNDATION SERVICES

tests, you use the extension methods provided by NBehave to evaluate the results, so you need to
include the NBehave.Spec.NUnit namespace:

using Moq;
using NBehave.Spec.NUnit;
using NUnit.Framework;
using OSIM.Core.Services;
using OSIM.ExternalServices;

 InventoryServiceTests.cs

 The Because_of method for the test exercises the GetItemTypes method of InventoryService and
stores the resulting string array in the member variable results:

protected override void Because_of()
{
 _result = _inventoryService.GetItemTypes();
}

 InventoryServiceTests.cs

 Of course, this requires that you declare the _result and _inventoryService member variables:

private IInventoryService _inventoryService;
private string[] _result;

 InventoryServiceTests.cs

 Next you create the actual test method for this test class. To ensure that the
 InventoryService is performing correctly, you need to verify that the correct number of
elements exists in the _result array and that the three items that you have the mock of
 IItemTypeService return are each represented in the _results array. I ’ ll call this method
 then_a_list_of_item_types_should_be_returned :

 [Test]
public void then_a_list_of_item_types_should_be_returned()
{
 _result.Count().ShouldEqual(_expectedNumberOfItems);
 _result.OfType < string > ().Select(x = > x == _itemOneName)
 .FirstOrDefault()
 .ShouldNotBeNull();
 _result.OfType < string > ().Select(x = > x == _itemTwoName)
 .FirstOrDefault()
 .ShouldNotBeNull();
 _result.OfType < string > ().Select(x = > x == _itemThreeName)
 .FirstOrDefault()
 .ShouldNotBeNull();
}

 InventoryServiceTests.cs

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Available for
download on
Wrox.com

c10.indd 238c10.indd 238 3/31/11 3:39:52 PM3/31/11 3:39:52 PM

Testing WCF Services ❘ 239

 This example uses the Select LINQ statement to verify that the items that were given names in the
test setup exist in the _results string array. You need to add a using statement to bring the LINQ
namespace into this class:

using System.Linq;

InventoryServiceTests.cs

 Several member variables are used in the then_a_list_of_item_types_should_be_returned test
method to represent the expected values for this test. You need to declare them in the test class:

private int _expectedNumberOfItems;
private string _itemOneName;
private string _itemTwoName;
private string _itemThreeName;

 InventoryServiceTests.cs

 The test compiles, so it ’ s time to run it and observe the results. At this point I expect the test to fail,
as it does (see Figure 10 - 10).

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Available for
download on
Wrox.com

 FIGURE 10 - 10

 Stubbing the Dependencies

 Line 41 of the InventoryServiceTests.cs fi le is the call to the GetItemTypes method of the
 _inventoryService member variable. In previous chapters I stressed that you should not write
any code unless you have a failing test that requires that the code be written. When you are
writing tests, the same rule applies. Because InventoryService has existing application code,

c10.indd 239c10.indd 239 3/31/11 3:39:53 PM3/31/11 3:39:53 PM

240 ❘ CHAPTER 10 TESTING WINDOWS COMMUNICATION FOUNDATION SERVICES

you may not need to write any additional code for it. But you want to make sure that you ’ re not
creating an overly complicated test to verify the existing logic. From the failing test, you can see
that you need to supply an instance of a class that implements the IInventoryService interface
in the _inventoryService member variable. You add an Establish_context method to the
 and_getting_a_list_of_item_types test class so that you can provide an instance of a class that
implements the IInventoryService interface:

protected override void Establish_context()
{
 base.Establish_context();

 _itemTypeService = new Mock < IItemTypeService > ();
 _inventoryService = new InventoryService(_itemTypeService.Object);
}

 InventoryServiceTests.cs

 InventoryService requires an instance of a class that implements the IItemTypeService
interface. Because this is a unit test, you want to supply a mocked object based on the
 IItemTypeService interface to stand in for that dependency. This means you need to add a
declaration of the _itemTypeService member variable to the class defi nition:

private Mock < IItemTypeService > _itemTypeService;

 InventoryServiceTests.cs

 At this point you ’ ve satisfi ed the defect that caused the test to fail. It ’ s time to run it again and see if
you have done enough to make the test pass, as shown in Figure 10 - 11.

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Available for
download on
Wrox.com

 FIGURE 10 - 11

c10.indd 240c10.indd 240 3/31/11 3:39:54 PM3/31/11 3:39:54 PM

Testing WCF Services ❘ 241

 This new error points out something interesting: Line 19 of the InventoryService.svc.cs fi le
raised ArgumentNullException :

var itemTypeList = _itemTypeService.GetItemTypes()
 .Select(x = > x.Name)
 .ToArray();

 InventoryServiceTests.cs

 This line of code works fi ne, provided that the result of the GetItemTypes method of the
 ItemTypeService does not return null. What has happened is that as I was attempting to write
a test that I could use to verify functionality that seemed to be working, I uncovered a potential
defect. Without this effort, the defect would have gone undiscovered. By thoroughly unit testing,
even something as seemingly simple as the GetItemTypes method of the InventoryService class,
I uncovered a potential bug in the system. This bug easily could have made its way through the QA
process and not been discovered until production. This should be a lesson: Don ’ t underestimate the
power of tests. It doesn ’ t matter how simple code seems; defects can lurk anywhere.

 Chapter 12 covers testing and correcting this defect. For the time being, the solution for this test is
to provide a stub for the mock of IItemTypeService that returns a populated ItemType array to
 InventoryService :

_itemOneName = “USB drives”;
_itemTwoName = “Nerf darts”;
_itemThreeName = “Flying Monkeys”;
var itemTypeOne = new ItemType {Id = 1, Name = _itemOneName};
var itemTypeTwo = new ItemType {Id = 2, Name = _itemTwoName};
var itemTypeThree = new ItemType {Id = 3, Name = _itemThreeName};
var itemTypeList = new List < ItemType >
 {
 itemTypeOne,
 itemTypeTwo,
 itemTypeThree
 };
_expectedNumberOfItems = itemTypeList.Count;
_itemTypeService.Setup(x = > x.GetItemTypes())
 .Returns(itemTypeList);

 InventoryServiceTests.cs

 ItemType resides in the OSIM.Core.Entities namespace, so you need to add a using statement
to bring that namespace into this test class. Likewise, you use the List class from the System
.Collections.Generic namespace, which requires a using statement as well:

using System.Collections.Generic;
using OSIM.Core.Entities;

 InventoryServiceTests.cs

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Available for
download on
Wrox.com

c10.indd 241c10.indd 241 3/31/11 3:39:55 PM3/31/11 3:39:55 PM

242 ❘ CHAPTER 10 TESTING WINDOWS COMMUNICATION FOUNDATION SERVICES

 The complete implementation of the test in the InventoryServiceTests.cs fi le should now look
like this:

using System.Collections.Generic;
using OSIM.Core.Entities;
using System.Linq;
using Moq;
using NBehave.Spec.NUnit;
using NUnit.Framework;
using OSIM.Core.Services;
using OSIM.ExternalServices;

namespace OSIM.UnitTests.OSIM.ExternalServices
{
 public class when_using_the_external_inventory_service : Specification
 {

 }

 public class and_getting_a_list_of_item_types :
 when_using_the_external_inventory_service
 {
 private IInventoryService _inventoryService;
 private string[] _result;
 private Mock < IItemTypeService > _itemTypeService;
 private int _expectedNumberOfItems;
 private string _itemOneName;
 private string _itemTwoName;
 private string _itemThreeName;

 protected override void Establish_context()
 {
 base.Establish_context();

 _itemTypeService = new Mock < IItemTypeService > ();
 _inventoryService = new InventoryService(_itemTypeService.Object);

 _itemOneName = “USB drives”;
 _itemTwoName = “Nerf darts”;
 _itemThreeName = “Flying Monkeys”;
 var itemTypeOne = new ItemType {Id = 1, Name = _itemOneName};
 var itemTypeTwo = new ItemType {Id = 2, Name = _itemTwoName};
 var itemTypeThree = new ItemType {Id = 3, Name = _itemThreeName};
 var itemTypeList = new List < ItemType >
 {
 itemTypeOne,
 itemTypeTwo,
 itemTypeThree
 };
 _expectedNumberOfItems = itemTypeList.Count;
 _itemTypeService.Setup(x = > x.GetItemTypes())
 .Returns(itemTypeList);
 }

Available for
download on
Wrox.com

Available for
download on
Wrox.com

c10.indd 242c10.indd 242 3/31/11 3:39:55 PM3/31/11 3:39:55 PM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Testing WCF Services ❘ 243

 protected override void Because_of()
 {
 _result = _inventoryService.GetItemTypes();
 }

 [Test]
 public void then_a_list_of_item_types_should_be_returned()
 {
 _result.Count().ShouldEqual(_expectedNumberOfItems);
 _result.OfType < string > ().Select(x = > x == _itemOneName)
 .FirstOrDefault()
 .ShouldNotBeNull();
 _result.OfType < string > ().Select(x = > x == _itemTwoName)
 .FirstOrDefault()
 .ShouldNotBeNull();
 _result.OfType < string > ().Select(x = > x == _itemThreeName)
 .FirstOrDefault()
 .ShouldNotBeNull();
 }
 }
}

 InventoryServiceTests.cs

 Verifying the Results

 The next step is to rerun the test, as shown in Figure 10 - 12.

 FIGURE 10 - 12

c10.indd 243c10.indd 243 3/31/11 3:39:56 PM3/31/11 3:39:56 PM

244 ❘ CHAPTER 10 TESTING WINDOWS COMMUNICATION FOUNDATION SERVICES

 The passing test indicates that you have verifi ed the functionality of InventoryService .
As development goes forward, you have this and other tests to verify that functionality of
 InventoryService is not damaged.

 Trouble Spots to Watch

 WCF services are unlike other classes that you work with in your application. By design,
they communicate with other applications and processes via a communications channel. This
communications channel employs some sort of transport to deliver messages to and from your
WCF service.

 The most commonly used transports are HTTP and TCP. WCF also offers inter - machine
communication via named pipes and queued delivery via Microsoft Message Queuing (MSMQ). In
addition to these primary transport methods, WCF provides an open architecture that enables you
to create custom channels to use any transport available.

 Most of the time, the choice of transport employed by a service does not pose an issue for testing. In
some cases a WCF service may be designed to take advantage of a particular attribute of a specifi c
transport type. Testing WCF services can also be complicated by the ability of WCF services to be
called asynchronously.

 You need to put a bit more thought into these cases. You should think about how the method
under test of the service implementation can be called in a way that closely replicates the attributes
of the transport that you are attempting to exploit. These situations represent edge cases in the
development of services, but it ’ s important to know they exist. As these situations arise, I fi nd myself
turning to the Internet. Websites such as Stack Overfl ow (stackoverfl ow.com) and the MSDN
developer forums (social.msdn.microsoft.com/Forums/en-US/categories) are visited daily by
developers who are dealing with challenges similar to yours. When in doubt, ask the people on these
sites for advice. It can save you a lot of frustration and help keep your WCF services testable.

 SUMMARY

 WCF services are becoming more widespread in .NET applications. As the users ’ needs change and
new form factors such as mobile devices become popular, the need for services will only increase.
It ’ s important to have a testing strategy for WCF services in your application development practice.

 Well - designed WCF services contain no business logic. Instead, they rely on the business logic in the
application domain layer, which the WCF service consumes. The WCF service itself should concern
itself only with processing specifi c to itself, such as validation and type translation. This results in
WCF services that are short and simple. But these services are still code and still need to be tested.

 With dependency injection frameworks such as Ninject, you can eliminate statically bound
dependencies from your WCF services. The ability to inject dependencies opens the door to WCF
services that are testable. Once the WCF service application can support dependency injection, it
becomes a simple matter to test your WCF services as you would any other class: Supply the test
implementation with mocked dependencies, and verify their functionality.

c10.indd 244c10.indd 244 3/31/11 3:39:56 PM3/31/11 3:39:56 PM

http://stackoverflow.com
http://social.msdn.microsoft.com/Forums/en-US/categories

Testing WPF and Silverlight
Applications
by Michael Eaton

 WHAT ’ S IN THIS CHAPTER?

 Why testing WPF and Silverlight applications is hard

 The basics of the MVVM pattern

 Windows Presentation Foundation (WPF) and Silverlight are both powerful frameworks
that allow you to create visually stunning applications. Both frameworks use Extensible
Application Markup Language (XAML) as their markup language. WPF is used for
creating desktop - based applications, and Silverlight is used to develop mostly browser - based
applications and Windows Phone 7 applications. Despite the fact that these technologies are
extremely powerful, testing applications developed using these frameworks can be diffi cult.
Following in the footsteps of previous technologies such as ASP.NET and WinForms, WPF
and Silverlight both default to using code - behind fi les. Code - behind fi les are great for getting
an application up and running quickly, but they make it extremely diffi cult, if not impossible,
to write automated tests for your applications. Code - behind - based applications can also be
diffi cult to maintain, especially as more and more functionality is added. In the world of
ASP.NET, the MVC pattern has become the standard for creating highly testable applications
while avoiding the pain points of the code - behind.

 By the end of this chapter, you will have an understanding of why testing the user interface is
diffi cult. You will learn about patterns that help alleviate some, if not most, of the diffi culty
of testing WPF and Silverlight - based applications and you will see how to create a WPF
application using test - driven development.

➤

➤

 11

c11.indd 245c11.indd 245 3/31/11 3:51:08 PM3/31/11 3:51:08 PM

246 ❘ CHAPTER 11 TESTING WPF AND SILVERLIGHT APPLICATIONS

 THE PROBLEM WITH TESTING THE USER INTERFACE

 Even though XAML enforces a clean separation of the user interface and your logic, using the code -
 behind fi le actually tightly couples the two. This coupling means that you can ’ t instantiate the
code - behind without the user interface. In a code - behind - based application, all user code that handles
user interactions, validation, and even calls to the database or other services can end up in the
code - behind. In an automated test, you don ’ t really want to be forced to create the UI just to test the
logic behind it. It ’ s possible to create the UI from a unit test, but this makes testing more diffi cult and
error - prone. It becomes even more diffi cult when the code - behind interacts with other services.

 To write automated tests for WPF and Silverlight applications, you need to fully separate the logic
from the user interface in such a way that you can instantiate one without the other. There are many
ways to do this, but one pattern has recently emerged and become the de facto standard for WPF
development and is becoming more popular in Silverlight development, as discussed next.

 The MVVM Pattern

 Although it ’ s not a silver bullet, the Model - View - ViewModel (MVVM,
sometimes pronounced “ moovem ”) pattern facilitates testing by putting screen -
 level code into a class that ’ s completely separated from XAML. Not only does
MVVM help with testability, but it also helps with reusability. If you work with
a user experience (UX) designer, you can focus solely on the markup instead of
worrying about any programming or the business logic. Microsoft Expression
Blend is a great designer - centric tool that works perfectly with the MVVM
model. Figure 11 - 1 is a high - level overview of how MVVM works.

 In a nutshell, the model contains your data, the view presents your data, and the
ViewModel ties the two together, sorting and fi ltering the data as needed. The
ViewModel also provides methods and commands for the view. Each view
(the XAML) has a corresponding ViewModel. The ViewModel has no knowledge
of the view, but the view usually has intimate knowledge of the ViewModel, at least
in terms of what it ’ s binding to. It ’ s also possible for multiple views to use the same
ViewModel. Each ViewModel pulls in the necessary models based on its needs. The
models themselves tend to be plain old code objects that aren ’ t much more than
containers for your data, although they may or may not be your domain models.

 For the view to use the ViewModel, it must bind to public properties exposed by the ViewModel.
This is normally done by setting the view ’ s DataContext to be an instance of the ViewModel and
then binding each control to individual properties of the ViewModel. Because of this, you can avoid
almost any code in the code - behind, at least as it relates to populating controls. If you ’ re coming
from a WinForms or possibly a Classic Visual Basic (versions 3 through 6) background, data binding
always sounded good, but it tended to fall apart when used outside of basic scenarios. The data

The View
XAML

The ViewModel
Provides data and
logic for the View

The Model
Provides data only

 FIGURE 11 - 1

 This chapter assumes a basic level of knowledge and skill with WPF and
Silverlight. If you are unfamiliar with these technologies, many books and
websites on these subjects are available.

c11.indd 246c11.indd 246 3/31/11 3:51:11 PM3/31/11 3:51:11 PM

The Problem with Testing the User Interface ❘ 247

binding in Silverlight and WPF is a huge improvement over previous incarnations, and it makes
MVVM easy to use. The following code shows basic examples of a model, a ViewModel, and a view:

public class MyModel
{
 public string FirstName { get; set; }
 public string LastName { get; set; }
}

public class MyViewModel : INotifyPropertyChanged
{
Private MyModel _instanceOfMyModel;
public MyViewModel(MyModel instanceOfMyModel)
 {
 _instanceOfMyModel = instanceOfMyModel;
 }

 private string _firstName;
 public string FirstName
 {
 get { return _firstName; }
 set
 {
 _firstName = value;
 OnPropertyChanged(“FirstName”);
 }
 }

 private string _lastName;
 public string LastName
 {
 get { return _lastName; }
 set
 {
 _lastName = value;
 OnPropertyChanged(“LastName”);
 }
 }

 public event PropertyChangedEventHandler PropertyChanged;
 private void OnPropertyChanged(string propertyName)
 {
 if(PropertyChanged != null)
 PropertyChanged(this, new PropertyChangedEventArgs(propertyName));
 }
}

 < Window x:Class=”WpfApplication1.MainWindow”
 xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
 Title=”MainWindow” Height=”350” Width=”525” >
 < Grid >
 < TextBox Text=”{Binding FirstName}” / >
 < TextBox Text=”{Binding LastName}” / >
 < /Grid >
 < /Window >

c11.indd 247c11.indd 247 3/31/11 3:51:21 PM3/31/11 3:51:21 PM

248 ❘ CHAPTER 11 TESTING WPF AND SILVERLIGHT APPLICATIONS

 The code to make it all work together can be as simple as this:

var vm = new MyViewModel(new MyModel { FirstName = “John”, LastName = “Doe” };
var view = new MainWindow { DataContext = vm };
view.Show();

 You ’ ll notice that the constructor in the example takes a single argument:

public MyViewModel(MyModel instanceOfMyModel)
 {
 _instanceOfMyModel = instanceOfMyModel;
 }

 The argument in this case is an instance of the model that holds the data we want the view to
display. While it may seem strange to pass in our data this way, it sets us up for using a dependency
injection framework like Ninject if and when we need it.

 The INotifyPropertyChanged interface is a key component of data binding. It is used to notify
binding clients when a property has changed. For example, if a text box is bound to the property
of a ViewModel and the ViewModel implements INotifyPropertyChanged , as long as the property
raises the NotifyPropertyChanged event whenever that property is changed, the view will be
notifi ed and updated.

 Although it is possible to use the MVVM pattern without a framework, I strongly suggest that you
avoid writing all the MVVM plumbing yourself and fi nd a framework you ’ re comfortable with.
Using a framework lets you focus more on the business and less on the pattern ’ s implementation
details. Some of the more popular MVVM frameworks include Prism (http://compositewpf
.codeplex.com), created and maintained by the Microsoft Patterns and Practices team, MVVM Light
(http://mvvmlight.codeplex.com/), written by Laurent Bugnion; MVVM Foundation (http://
mvvmfoundation.codeplex.com/), written by Josh Smith; Cinch (http://cinch.codeplex.com/),
written by Sacha Barber; and Caliburn.Micro (http://caliburnmicro.codeplex.com/), written by
Rob Eisenberg.

 Each has its own strengths and weaknesses, so you should check them all out and make an informed
decision based on your needs. My preferred framework is Caliburn.Micro, so unless otherwise
noted, all the examples in this chapter use it. One of the great things it brings to the table is the
ability to bind without actually writing any binding statements. It ’ s able to do this based simply
on how you name your classes, properties and methods. It may sound confusing, but behind the
scenes, Caliburn.Micro is actually creating the necessary binding statements – it ’ s just removing
that particular step for us. Caliburn.Micro is extremely fl exible and allows you to tweak much of
its behavior. Because it is open source, if it doesn ’ t do exactly what you want, you can do what I ’ ve
done on several occasions and modify the code. I ’ ll barely scratch the surface of what Caliburn.
Micro can do, so be sure to check the website and Eisenberg ’ s blog. If your company has an aversion
towards open source, Prism is a great framework.

 How MVVM Makes WPF/Silverlight Applications Testable

 MVVM allows you to completely separate your user interface from the code that manages it.
Because of this separation, you can instantiate the management code without having to worry about

c11.indd 248c11.indd 248 3/31/11 3:51:22 PM3/31/11 3:51:22 PM

http://compositewpf.codeplex.com
http://compositewpf.codeplex.com
http://mvvmlight.codeplex.com/
http://mvvmfoundation.codeplex.com/
http://mvvmfoundation.codeplex.com/
http://cinch.codeplex.com/
http://caliburnmicro.codeplex.com/

The Problem with Testing the User Interface ❘ 249

displaying the user interface. In an automated test suite, the last thing you
want to do is worry about a window appearing that needs you to click a
button or enter some text.

 A typical WPF application that uses the MVVM pattern has, in some form or
another, Models, Views, and ViewModels, along with various other folders
and classes. I structure my applications so that they look like Figure 11 - 2.

 Many times, the models are in a project that is entirely separate from your
Views and ViewModels.

 When it comes to testing an application that uses the MVVM pattern, you focus all your testing
efforts on the ViewModel. In fact, a good way to think about it is that interacting directly with the
ViewModel should be exactly like working with the view, at least from the end users ’ perspective.

 Let ’ s consider the following user story:

 A user should be able to search for item types.

 If you break this into smaller pieces, you need the following:

 A text box for entering the item to search for

 A Search button that initiates the search process

 A list box to display the search results

 A Clear button in case the user wants to reset the search criteria

 A Cancel button to close the Search screen

 I ’ m a strong believer in not allowing the user to perform an action until all the requirements are
met. In this case, the following requirements must be dealt with during the sign - in process:

 The user cannot click the Search button to initiate the search process until the search crite-
ria has been entered.

 The user can click the Clear button only if he or she has entered something to search for.

 If the user successfully searches, the results must be displayed in a list box.

 The user can click the Cancel button at any time.

 If you use the standard code - behind to handle the button click events and data entry validation, you
would have a tough time automating the test and would end up manually starting the application
and typing whatever came to mind to see if you get the expected results. A much better way is to
start writing tests against a yet - to - be - written ViewModel.

➤

➤

➤

➤

➤

➤

➤

➤

➤

 FIGURE 11 - 2

 One of the tenets of Caliburn.Micro is the idea of convention over
confi guration. Because of this, I have adopted a specifi c naming convention for
my ViewModels and the methods and properties they contain. Don ’ t be too
concerned if my conventions seem strange or don ’ t match what you currently
use, because Caliburn.Micro allows you to customize the conventions used.

c11.indd 249c11.indd 249 3/31/11 3:51:22 PM3/31/11 3:51:22 PM

250 ❘ CHAPTER 11 TESTING WPF AND SILVERLIGHT APPLICATIONS

 Using the BDD naming style, you start by writing the base class for the initial set of tests:

public class when_attempting_to_search : Specification
{
}

 SearchTests.cs

 Once you have your base class, you can move on to writing the test to handle the case where the
search criteria property is empty. Remember, if the search criteria property is empty, meaning that
the user didn ’ t enter anything, the user should not be allowed to search. The Because_of method
for this test sets the Criteria property to string.Empty and then puts the Boolean result of the
 CanSearch property of SearchViewModel in the _result variable:

Using System;
Using NBehave.Spec.NUnit;
Using NUnit.Framework;
Namespace OSIM.UnitTests.OSIM.WinClient
{
 Public class and_the_search_criteria_is_blank : when_attempting_to_search
 {
 Protected override void Because_of()
 {
 _searchViewModel.Criteria = string.Empty;
 _result = _searchViewModel.CanSearch;
 }
 . . .
 }
}

 SearchTests.cs

 Immediately after the Because_of method, you declare the variables you need and then create the
actual SearchViewModel instance in the Establish_context method:

Private bool _result;
Private ISearchViewModel _searchViewModel;
Protected override void Establish_context()
{
 base.Establish_context();
 _searchViewModel = new SearchViewModel();
}

 SearchTests.cs

 The then_cansearch_should_be_false test simply checks the _result variable, which holds the
value of the CanSearch property, to ensure that it ’ s false:

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Available for
download on
Wrox.com

c11.indd 250c11.indd 250 3/31/11 3:51:28 PM3/31/11 3:51:28 PM

The Problem with Testing the User Interface ❘ 251

[Test]
Public void then_cansearch_should_be_false()
{
 _result.ShouldEqual(false);
}

 SearchTests.cs

 Again, because you write your tests fi rst, you can ’ t build successfully, because you are missing
 ISearchViewModel . You start with the basics with this interface and then write just enough code to
get the test to pass:

public interface ISearchViewModel
{
 string Criteria { get; set; }
 bool CanSearch { get; }
}

 SearchViewModel.cs

 Next is a bare - bones concrete implementation of ISearchViewModel :

public class SearchViewModel : PropertyChangedBase,ISearchViewModel
{
 public string Criteria { get; set; }
 public bool CanSearch { get { return true; }
}

 SearchViewModel.cs

 PropertyChangedBase is part of the Caliburn.Micro framework. It is an implementation of
 INotifyPropertyChanged , including a convenience method that eliminates the need to scatter
magic strings all over the ViewModels. The whole idea behind INotifyPropertyChanged is
that when a property in a ViewModel is bound to a control in a view, any changes made to that
property automatically are refl ected in the view. Although implementing INotifyPropertyChanged
isn ’ t a requirement of these tests, if you know the application will need it, as is the case with
this example, you can include it here even though the need at this point isn ’ t quite apparent.
 INotifyPropertyChanged is one of those things that makes binding really awesome, but it does
add some friction to the process of writing the ViewModels. Using a framework such as Caliburn
.Micro reduces a bit of that friction.

 After you add PropertyChangedBase to SearchViewModel , you need to modify your property set
methods to raise the notifi cation. Caliburn.Micro provides two methods to do so. One method takes
the name of the property as a string, much as if you had implemented INotifyPropertyChanged
yourself:

NotifyOfPropertyChange(“Criteria”);

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Available for
download on
Wrox.com

c11.indd 251c11.indd 251 3/31/11 3:51:28 PM3/31/11 3:51:28 PM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

252 ❘ CHAPTER 11 TESTING WPF AND SILVERLIGHT APPLICATIONS

 The other method takes a lambda expression:

NotifyOfPropertyChange(() = > Criteria);

 My preference is the lambda expression, so for this example you need to expand the Criteria
property in SearchViewModel to use the second version:

Private string _criteria;
Public string Criteria
{
 Get { return _criteria; }
 set
 {
 _criteria = value;
 NotifyOfPropertyChange(() = > Criteria);

 }
}

 SearchViewModel.cs

 Running the test should give you a failure and the familiar red bar. Remember this line of code?

Public bool CanSearch { get { return true; }

 SearchViewModel.cs

 In CanSearch the value of true is hard - coded because you want to ensure a failing test so that you
can stick with the red - green - refactor work fl ow. Because the test is meant to ensure that something
must be in the Criteria property, and because you want a passing test now, change this property as
follows:

Public bool CanSearch
{
 Get { return !string.IsNullOrEmpty(Criteria); }
}

 SearchViewModel.cs

 Rerunning the test should give you a pass and a green bar. Now it ’ s time to refactor to make sure
the code does something other than return a hard - coded value:

Public bool CanSearch

 When you run the test again, you get a pass and the green bar.

 The next test makes sure the user can search if the Criteria property has a value:

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Available for
download on
Wrox.com

c11.indd 252c11.indd 252 3/31/11 3:51:29 PM3/31/11 3:51:29 PM

The Problem with Testing the User Interface ❘ 253

Public class and_the_search_criteria_is_not_blank : when_attempting_to_search
{
 Private bool _result;
 Private ISearchViewModel _searchViewModel;

 Protected override void Establish_context()
 {
 base.Establish_context();
 _searchViewModel = new SearchViewModel();
 }

 Protected override void Because_of()
 {
 _searchViewModel.Criteria = “foo”;
 _result = _searchViewModel.CanSearch;
 }

 [Test]
 Public void then_cansearch_should_be_true()
 {
 _result.ShouldEqual(true);
 }
}

 SearchTests.cs

 Because of the code you wrote to get and_the_search_criteria_is_blank , this test passed the
fi rst time.

 To meet the requirements of the user story, you still must write tests to help drive out the rest of the
ViewModel. The fi rst tests you wrote simply checked to make sure the user could initiate the search
process if the search criteria property was not empty.

 What about the case where the user wants to click the Clear button and reset the Search criteria
property to a blank? The Clear button should be enabled only if the user has entered something to
search for. You write two tests for this requirement. The fi rst tests the case when Criteria is empty:

Public class and_wanting_to_clear_when_criteria_is_empty :
 when_attempting_to_search
{
 Private bool _result;
 private ISearchViewModel _searchViewModel;
 protected override void Establish_context()
 {
 base.Establish_context();
 _searchViewModel = new SearchViewModel();
 }

 Protected override void Because_of()
 {
 _result = _searchViewModel.CanClear;
 }

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Available for
download on
Wrox.com

c11.indd 253c11.indd 253 3/31/11 3:51:30 PM3/31/11 3:51:30 PM

254 ❘ CHAPTER 11 TESTING WPF AND SILVERLIGHT APPLICATIONS

 [Test]
 Public void then_canclear_should_be_false()
 {
 _result.ShouldEqual(true);
 }
}

 SearchTests.cs

 Of course, this won ’ t compile, because SearchViewModel doesn ’ t have a CanClear property. Adding
this is pretty simple. First you need to update the ISearchViewModel interface:

bool CanClear { get; }

 SearchViewModel.cs

 The implementation of the CanClear property in SearchViewModel is about as simple as it gets:

public bool CanClear
{
 get { return false; }
}

 SearchViewModel.cs

 The green bar shows that the test failed, so now it ’ s time to make it pass. This is as simple as
changing the CanClear property:

public bool CanClear
{
 get { return !string.IsNullOrEmpty(Criteria); }
}

 SearchViewModel.cs

 The green bar should appear after that change. Now it ’ s time to write the opposite test:

public class and_wanting_to_clear_when_criteria_is_not_empty :
 when_attempting_to_search
{
 private bool _result;
 private ISearchViewModel _searchViewModel;
 protected override void Establish_context()
 {
 base.Establish_context();
 _searchViewModel = new SearchViewModel();
 _searchViewModel.Criteria = “foo”;
 }

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Available for
download on
Wrox.com

c11.indd 254c11.indd 254 3/31/11 3:51:31 PM3/31/11 3:51:31 PM

The Problem with Testing the User Interface ❘ 255

 protected override void Because_of()
 {
 _result = _searchViewModel.CanClear;
 }

 [Test]
 public void then_canclear_should_be_false()
 {
 _result.ShouldEqual(true);
 }
}

 SearchTests.cs

 You ’ ve now written tests to make sure the user enters something to search for before he or she can
actually search. You also wrote a test to make sure the user can always clear and start over. What
happens if the user enters the search criteria and actually searches or clears? Start with the clear test.
When the user clicks the Clear button, two things should occur. First, the criteria should be reset to
blank. Second, if there are any results, they should be removed.

 Because you ’ re using the MVVM pattern, instead of writing code in the SearchButton_Click or
 ClearButton_Click events, you need to somehow write code that can be bound to the buttons.
Using Caliburn.Micro, all you need to do is create methods in the ViewModel that have the same
name as the control in the view. So, if you have a button with x:Name= “ Clear ” in your view, all
you need is a method in SearchViewModel also named “ Clear “ . This is yet another reason to use
frameworks such as Caliburn.Micro.

public class and_executing_clear : when_attempting_to_search
{
 private bool _canClear;
 private string _result;
 private ISearchViewModel _searchViewModel;
 protected override void Establish_context()
 {
 base.Establish_context();
 _searchViewModel = new SearchViewModel();
 _searchViewModel.Criteria = “foo”;
 }

 protected override void Because_of()
 {
 _canClear = _searchViewModel.CanClear;
 _searchViewModel.Clear();
 _result = _searchViewModel.Criteria;
 }

 [Test]
 public void then_criteria_should_be_blank()
 {
 _result.ShouldEqual(string.Empty);
 }
}

 SearchTests.cs

Available for
download on
Wrox.com

Available for
download on
Wrox.com

c11.indd 255c11.indd 255 3/31/11 3:51:32 PM3/31/11 3:51:32 PM

256 ❘ CHAPTER 11 TESTING WPF AND SILVERLIGHT APPLICATIONS

 Running this test results in a failure because the build failed due to the missing Clear method in
 SearchViewModel . After updating ISearchViewModel , you write just enough code to get the test to
fail properly. Here ’ s the updated ISearchViewModel :

public interface ISearchViewModel
{
 string Criteria { get; set; }
 bool CanSearch { get; }
 bool CanClear { get; }
 void Clear();
}

 SearchViewModel.cs

 Here ’ s the simplest implementation of the Clear method in SearchViewModel :

public void Clear()
{
}

 SearchViewModel.cs

 The red bar appears with the following message:

Test ‘OSIM.UnitTests.OSIM.WinClient.and_executing_clear
.then_criteria_should_be_blank’ failed:
 Expected string length 0 but was 3. Strings differ at index 0.
 Expected: < string.Empty >
 But was: “foo”
 -----------^

 SearchViewModel.cs

 To make this test pass, you need to modify the Clear method:

public void Clear()
{
 Criteria = string.Empty;
}

 SearchViewModel.cs

 You ’ re back to seeing all green, but something is still missing. When the user clicks the Clear
button, not only should the criteria be reset to blank, but any results that are present should be
removed.

 Now you simply add another test to the and_executing_clear class:

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Available for
download on
Wrox.com

c11.indd 256c11.indd 256 3/31/11 3:51:32 PM3/31/11 3:51:32 PM

The Problem with Testing the User Interface ❘ 257

[Test]
public void then_results_should_be_cleared()
{
 _searchResults.ShouldBeNull();
}

 SearchTests.cs

 Because you can ’ t build, you need to update ISearchViewModel and SearchViewModel to support
search results. The results are List < ItemType > :

public interface ISearchViewModel
{
 // previous code not shown
 List < ItemType > Results { get; set; }

 SearchViewModel.cs

 Here ’ s the simplest implementation:

Private List < ItemType > _results;
public List < ItemType > Results
{
 get { return _results; }
 set
 {
 _results = value;
 OnPropertyChanged(() = > Results);
 }
}

 SearchViewModel.cs

 Instead of the red bar you might be expecting, the test passed! This is always a red fl ag to check on
the code you just wrote, because it ’ s never a good thing to expect a failure but then see the test pass.

 If you look at the test, you can see what happened:

[Test]
public void then_results_should_be_cleared()
{
 _searchResults.ShouldBeNull();
}

 SearchTests.cs

 The simplest implementation of Results always returns null because you are not actually creating
the results yet. You ’ ll deal with that in the Search tests, but you can take a shortcut now and

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Available for
download on
Wrox.com

c11.indd 257c11.indd 257 3/31/11 3:51:33 PM3/31/11 3:51:33 PM

258 ❘ CHAPTER 11 TESTING WPF AND SILVERLIGHT APPLICATIONS

modify the Establish_context() method of the and_executing_clear test to set Results to new
List < ItemType > () :

protected override void Establish_context()
{
 base.Establish_context();
 _searchViewModel = new SearchViewModel();
 _searchViewModel.Criteria = “foo”;
 _searchViewModel.Results = new List < ItemType > ();
}

 SearchTests.cs

 Running the test again gives you the familiar red bar and the failure you were expecting. To get the
test to pass, you need to make sure that when Clear is executed, the Results are set to null. The
 Clear method should now look like this:

public void Clear()
{
 Criteria = string.Empty;
 Results = null;
}

 SearchViewModel.cs

 The green bar tells you that everything is working as expected, so it ’ s time to move on to more tests
to drive out the rest of the SignInViewModel class. The previous tests were all part of the when_
attempting_to_search specifi cation and were all related to the behavior that occurs before the
user can even click the Search button. Now you ’ re fi rmly in new territory: The user has entered the
item to search for and clicked the Search button. Although you haven ’ t created the view yet, much
work still needs to be done in the ViewModel.

 You start by creating another base class named when_searching :

Public class when_searching : Specification { }

 SearchTests.cs

 The fi rst test to write checks for a user who is searching for an item that doesn ’ t exist:

Public class and_searching_for_an_item_that_does_not_exist : when_searching
{
 Private List < ItemType > _results;
 Private bool _canSearch;
 Private ISearchViewModel _searchViewModel;
 Protected override void Establish_context()
 {
 base.Establish_context();

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Available for
download on
Wrox.com

c11.indd 258c11.indd 258 3/31/11 3:51:34 PM3/31/11 3:51:34 PM

The Problem with Testing the User Interface ❘ 259

 _searchViewModel = new SearchViewModel();
 _searchViewModel.Criteria = “foo”;
 }

 SearchTests.cs

 Notice how the Criteria property of _searchViewModel is set to “ foo “ ? That is a way of
emulating a user ’ s entering the name of an ItemType that doesn ’ t exist. Remember, when you fi nally
bind a text box in the Criteria property of SearchViewModel , anything typed into the text box is
refl ected in the ViewModel itself.

 The Because_of() method exercises the Search method of SearchViewModel . When the search is
complete, a value indicating whether results were returned is stored in the _result variable. Notice
how you also store a copy of the CanSearch property:

 Protected override void Because_of()
 {
 _canSearch = _searchViewModel.CanSearch;
 _searchViewModel.Search();
 _results = _searchViewModel. Results;
 }

 SearchTests.cs

 The test then_results_should_be_null does a couple things. First, it ensures that the user can
sign in. This helps catch silly errors such as not setting up the test correctly in Establish_context.
Then the test checks to see if the ErrorMessage property was set correctly, because the password
was incorrect when the SignIn method was called:

 [Test]
 Public void then_results_should_be_null()
 {
 _canSearch.ShouldBeTrue();
 _results.ShouldBeNull();
 }
}

 SearchTests.cs

 Again, the build fails because SearchViewModel doesn ’ t contain the Search method. After you
add the following to the ISearchViewModel interface, you can write just enough real code in
 SearchViewModel to get the test to fail:

Void Search();

 SearchViewModel.cs

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Available for
download on
Wrox.com

c11.indd 259c11.indd 259 3/31/11 3:51:35 PM3/31/11 3:51:35 PM

260 ❘ CHAPTER 11 TESTING WPF AND SILVERLIGHT APPLICATIONS

 The most basic code you can write to implement the Search method in SearchViewModel to get a
build running looks like this:

Public void Search()
{
 Results = new List < ItemType > ();
}

 SearchViewModel.cs

 Running this test should result in a failure and the red bar. Now it ’ s time to refactor the
 SignInViewModel to get this particular test to pass:

public void Search()
{
 if(Criteria == “foo”)
 Results = null;
 else
 Results = new List < ItemType > ();
}

 SearchViewModel.cs

 Once this test is passing, it ’ s time to write and_searching_for_an_itemtype_that_does_exist .
The setup is the same, except for this code:

protected override void Establish_context()
{
 base.Establish_context();
 _searchViewModel = new SearchViewModel();
 _searchViewModel.Criteria = “USB”;
}

[Test]
public void then_results_should_be_null()
{
 _canSearch.ShouldEqual(true);
 _results.ShouldNotBeEmpty();
}

 SearchTests.cs

 The red bar appears, telling you the test failed. Recall the implementation of Search :

public void Search()
{
 if(Criteria == “foo”)
 Results = null;
 else
 Results = new List < ItemType > ();
}

 SearchViewModel.cs

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Available for
download on
Wrox.com

c11.indd 260c11.indd 260 3/31/11 3:51:36 PM3/31/11 3:51:36 PM

The Problem with Testing the User Interface ❘ 261

 The simplest way to get this particular test to pass is to modify Search to return some hard - coded values:

public void Search()
{
 if (Criteria == “foo”)
 Results = null;
 else
 {
 Results = new List < ItemType > ();
 if (Criteria == “USB”)
 {
 Results.Add(new ItemType { Id = 1, Name = “USB Key - 2GB” });
 Results.Add(new ItemType { Id = 2, Name = “USB Key - 4GB” });
 Results.Add(new ItemType { Id = 3, Name = “USB Key - 8GB” });
 Results.Add(new ItemType { Id = 4, Name = “USB Key - 16GB” });
 }
 }
}

 SearchViewModel.cs

 Running the test results in the familiar green bar. In the grand scheme of things, instead of hard -
 coding data, you ’ ll call methods in a service or possibly a repository class, pass in the criteria, and
set results to the output from those methods.

 Bringing It All Together

 Finally, it ’ s time to implement SearchView ! Thankfully this is a simple process. You ’ ll notice there are
absolutely no binding statements due to the naming conventions used and the great things Caliburn
.Micro brings to us. Our Criteria textbox is named Criteria. Caliburn.Micro looks at the ViewModel
to fi nd a property with a matching name. Once it fi nds a match, it will create the actual binding:

 < UserControl x:Class=”OSIM.WinClient.SearchView”
 xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
 Background=”LightGray”
Height=”200” Width=”325” >
 < Grid >
 < DockPanel LastChildFill=”True” >
 < StackPanel
 Orientation=”Horizontal”
 DockPanel.Dock=”Top” >

 < TextBlock Text=”Criteria:” Margin=”0,0,5,0”/ >
 < TextBox x:Name=”Criteria” Width=”100” Margin=”0,0,5,0” / >
 < Button x:Name=”Search” Content=”Search” Margin=”5,0,5,0”/ >
 < Button x:Name=”Clear” Content=”Clear” Margin=”5,0,5,0”/ >
 < /StackPanel >
 < ListBox x:Name=”Results” DisplayMemberPath=”Name”/ >
 < /DockPanel >
 < /Grid >
 < /UserControl >

 SearchView.xaml

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Available for
download on
Wrox.com

c11.indd 261c11.indd 261 3/31/11 3:51:37 PM3/31/11 3:51:37 PM

262 ❘ CHAPTER 11 TESTING WPF AND SILVERLIGHT APPLICATIONS

 The project now looks like Figure 11 - 3.

 To take advantage of Caliburn.Micro, you need to do a little setup work
in the WPF project. The fi rst step is to modify App.xaml to remove the
 StartupUri tag. App.xaml.cs should be trimmed so that it ’ s not much
more than this:

public partial class App : Application
{
 public App()
 {
 }
}

 App.xaml.cs

 The next step is to add a “ bootstrapper ” to the project that confi gures the framework. In the root of
the WinClient project, you create a class named WinClientBootstrapper that looks like this:

public class WinClientBootstrapper : Bootstrapper < SearchViewModel > { }

 App.xaml.cs

 That ’ s all you need. Remember that you write the simplest bootstrapper possible to get your project
working. The Caliburn.Micro website (http://caliburnmicro.codeplex.com/) contains a lot of
great content that describes all the things you can do with the bootstrapper, so be sure to check it
out. Now you add a little XAML to app.xaml :

 < Application x:Class=”OSIM.WinClient.App”
 xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
 xmlns:local=”clr-namespace:OSIM.WinClient”
 >
 < Application.Resources >
 < ResourceDictionary >
 < ResourceDictionary.MergedDictionaries >
 < ResourceDictionary >
 < local:WinClientBootstrapper x:Key=”bootstrapper”/ >
 < /ResourceDictionary >
 < /ResourceDictionary.MergedDictionaries >
 < /ResourceDictionary >
 < /Application.Resources >
 < /Application >

 App.xaml.cs

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Available for
download on
Wrox.com

 FIGURE 11 - 3

c11.indd 262c11.indd 262 3/31/11 3:51:37 PM3/31/11 3:51:37 PM

http://caliburnmicro.codeplex.com/

 If you ’ re writing a Silverlight application, App.xaml looks a little different:

 < Application x:Class=”OSIM.WinClient.App”
 xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
 xmlns:local=”clr-namespace:OSIM.WinClient”
 >
 < Application.Resources >
 < local:WinClientBootstrapper x:Key=”bootstrapper”/ >
 < /Application.Resources >
 < /Application >

 App.xaml.cs

 That ’ s it. That ’ s all you need to use Caliburn.Micro. Based on
the conventions used, and with the modifi cations to App.xaml
and the WinClientBootstrapper class, when you run the
WinClient application, the basic search screen appears. Notice
how the Search and Clear buttons are disabled until something
is entered into the Criteria fi eld. If something is in the Criteria
text box and then you click the Clear button, the contents are
cleared, and the Search and Clear buttons are disabled again.
Entering some criteria and clicking the Search button displays
a list of matching ItemType s. Figure 11 - 4 shows the very basic
search screen.

 This project was approached from the standpoint of writing the ViewModel fi rst and then writing
tests to support the needed functionality. You could have just as easily started with the view, but
either way, you have created an application that has been thoroughly unit - tested and that meets the
requirements of the user story presented at the beginning of the chapter.

 SUMMARY

 WPF and Silverlight are powerful frameworks for creating rich applications using XAML. Writing unit -
 testing applications with these frameworks can be diffi cult, but it is not something you should avoid. As
with WCF and ASP.NET, it is important to have a fi rm testing strategy for your varied clients.

 Instead of working around the limitations of the code - behind paradigm and trying to instantiate the
tightly coupled classes, the MVVM pattern facilitates a true separation of the user interface and the
code that controls it.

 Not only does using MVVM allow you to unit - test your applications, but it also makes your
applications more maintainable. It also helps the developer/designer relationship by allowing
designers to work only in the XAML without having to worry about the code. Several great MVVM
frameworks remove the burden of implementing this pattern, letting you focus on the process of
writing great software.

Available for
download on
Wrox.com

Available for
download on
Wrox.com

 FIGURE 11 - 4

Summary ❘ 263

c11.indd 263c11.indd 263 3/31/11 3:51:38 PM3/31/11 3:51:38 PM

c11.indd 264c11.indd 264 3/31/11 3:51:39 PM3/31/11 3:51:39 PM

 PART IV

Requirements and Tools

 CHAPTER 12: Dealing with Defects and New Requirements

 CHAPTER 13: The Great Tool Debate

 CHAPTER 14: Conclusions

�

�

�

c12.indd 265c12.indd 265 3/31/11 3:52:13 PM3/31/11 3:52:13 PM

c12.indd 266c12.indd 266 3/31/11 3:52:16 PM3/31/11 3:52:16 PM

Dealing with Defects and
New Requirements

 WHAT ’ S IN THIS CHAPTER?

 Understanding why applications need to be fl exible in a modern

business computing environment

 Using TDD to deal with changes to your application

 Building more fl exible applications through TDD

 Practicing TDD in a situation where a new feature has been

introduced or a defect identifi ed in an application

 Application development efforts do not live in a vacuum. The increasing popularity of
agile project methodologies is testament to that fact. Even in an agile environment, most
development efforts span months — if not years — between the time the fi rst requirement is
documented and the day the application is deployed to production. That leaves a lot of time
for requirements to change.

 Change doesn ’ t end after an application reaches production. No matter how good a job the
development team and QA department do, most applications have some sort of defect that
isn ’ t discovered until the application reaches production. Even if an application makes it to
production and no defects are found, actions and infl uences from a variety of external forces
(customer, government, market forces) can demonstrate a need for changes in an application.

 In TDD, defects and new requirements represent opportunities to create new tests. By
approaching defects and new requirements with a test - fi rst philosophy, you can more easily
deliver a quality application without damaging existing functionality. Reading this book
has helped you acquire the skills and knowledge you need to handle these situations. Now
it ’ s simply a matter of taking those skills and that knowledge and applying them in a slightly
different manner.

➤

➤

➤

➤

 12

c12.indd 267c12.indd 267 3/31/11 3:52:16 PM3/31/11 3:52:16 PM

268 ❘ CHAPTER 12 DEALING WITH DEFECTS AND NEW REQUIREMENTS

 HANDLING CHANGE

 Change is inevitable. Historically, most business applications have not dealt with change well. This
is because most applications, despite the best intentions of the developer and architects, become
brittle and fragile. Without the security of a unit and integration test suite, most applications
devolve into the code equivalent of a Jenga tower. Before long, the application is so unstable that
most developers are afraid to touch it, lest the whole thing come tumbling down.

 These applications lacked automated unit and integration tests. Without a method to automatically
regression - test an application that had a change made to it, no one could guarantee that the
application would function properly after the change. Developing an application while practicing
TDD provides a suite of these tests to ensure that as changes are made, the application itself remains
stable.

 The practice of TDD has another side effect that makes applications more fl exible in the face of
change. Developers who practice TDD, whether by design or as a side effect of writing code for
testability, seem to follow the SOLID principles more than developers who do not practice TDD.
Adhering to the SOLID principles results in software that is easier to maintain and extend. This is
clearly a benefi t in an environment where change is inevitable.

 Change Happens

 An application might need to change after being deployed to production for a number of reasons.
Perhaps the company has adopted a new business strategy or identifi ed a new market to enter. Many
business sectors such as fi nance and medicine are heavily regulated by state and federal government.
New laws and regulations are being passed all the time. Customers who use an application might
want new features to be added or changes to be made to existing functionality. And no application
is immune to defects.

 Whatever the source or reason for a change to your application, as a developer you must address
new requirements and defects. In an application where TDD has been practiced from the start, the
approach may be obvious. But even in cases where an application has not been developed using
TDD, the practice can and should still be employed when developing new features and fi xing
defects. Tests ensure a degree of quality in your application, and this commitment to quality should
be carried through post - deployment development work.

 Adding New Features

 New features can be introduced into an application at any time. New features introduced during
the normal development cycle when an agile methodology is being used are nothing noteworthy.
They are added to the project backlog and scheduled like any other feature. Features introduced
after the application has been deployed to production, when the bulk of the development team has
presumably moved on to another project, are a bit different.

 It ’ s important that features introduced after an application ’ s primary development life cycle has ended
are treated like features that are known and built during that application ’ s primary development life
cycle. Do not fall into the trap of thinking that corners can be cut and quality compromised in the
name of speed because the application is “ done. ” There will always be new features. There will always

c12.indd 268c12.indd 268 3/31/11 3:52:18 PM3/31/11 3:52:18 PM

Handling Change ❘ 269

be defects. Allowing yourself as a developer to take a shortcut at the expense of quality sends you
down a slippery slope that leads to a brittle, unmaintainable application with an incomplete test suite.

 When a new feature for an application is added, it needs to go through the same process that other
features of the application went through. The same discovery and design process that was used to
build the other features of the application need to be employed again. This is true even if the new
feature is small. There are no small features. A wise person once said, “ Judge me by my size, do
you? ” An improperly designed and implemented “ small feature ” can wreak just as much havoc,
cause as much damage, and anger a user base as quickly as a mishandled “ large ” feature.

 As soon as the new feature has been properly designed, with input from the business and the
technical side of the project, development can begin. Like the features developed during the primary
application development life cycle, the development of the new feature begins with a test. Again,
as with the previous development of the application, the test should fail. A failing test for a new
feature signifi es that your test is likely testing for the right (nonexistent) functionality and that the
functionality in question is truly not implemented in the application. If your test passes without
your having to write any additional code, you have some research to do. Is your test really testing
for the new functionality? Is it testing in the correct place? Does the feature in question already
exist in the application and is somehow being obscured by something else in the application? These
questions must be answered before you proceed.

 After the correct test is written, your goal is the same as during the application ’ s primary
development life cycle: You should strive to write just enough code to make the test pass. At the
same time, you must make sure that no existing tests begin to fail. If they do, you should determine
why and work to make those tests, in addition to the new tests, pass. After all the tests are passing,
the new feature is complete and ready for deployment.

 Addressing Defects

 On my development teams, a defect is defi ned as functionality in code that does not refl ect the
documented specifi cations via the user stories and/or features. That means that a defect can exist
only if the application functions differently than described by a specifi cation the development team
has in hand. When a business user tells a developer, “ The application specifi cations say a tax rate
of 7.5% should be applied in this situation, but the application is applying a tax rate of 6%, ” he
is describing a defect. The specifi cation states that the tax rate should be 7.5% for a given set of
circumstances, but it is not. When a business user tells a developer, “ I know the specifi cation says
that on Tuesdays customers who order more than fi ve items get a 15% discount, but what I meant
was that when a user orders $100 or more of merchandise on Friday, he gets free shipping, ” he is
describing a new feature. Technically, the business user is describing two features if he really wants
me to remove the functionality for the discount applied on Tuesdays.

 The distinction can be important even if the approach is the same. When a new feature is requested,
the work is scheduled for development based on the development team ’ s bandwidth and the priority
that the business has assigned to the new feature. If the business wants the feature implemented
right away, another feature on the schedule must be postponed. When a defect is reported,
depending on its severity, the development team reprioritizes their work to fi x the defect as soon as
possible. Defects always have a high priority because quality is important to the development team.
The team is personally invested in the delivery of a quality application, and they will work to fi x the
defect and deliver the agreed - upon features by the end of the iteration.

c12.indd 269c12.indd 269 3/31/11 3:52:19 PM3/31/11 3:52:19 PM

270 ❘ CHAPTER 12 DEALING WITH DEFECTS AND NEW REQUIREMENTS

 When developing fi xes for defects, the approach is the same as the development approach for
features. The fi rst step is to discuss the defect with the business to make sure the development team
understands how the application should behave and how that behavior is different from how the
application currently functions. After the business rules have been revalidated, you start by writing
a test. As with new features, this test should fail. A nonfailing test may indicate that you are not
testing the correct thing. The test should expose the defect. That way, you can be assured that not
only is the defect fi xed, but it won ’ t reappear.

 Starting with a Test

 In Chapter 11, a potential defect was uncovered during the development of the InventoryService
WCF service, as shown in Figure 12 - 1.

 FIGURE 12 - 1

 For review, here is the code that generated this error:

public string[] GetItemTypes()
{
 var itemTypeList = _itemTypeService.GetItemTypes()
 .Select(x = > x.Name)
 .ToArray();

 return itemTypeList;
}

 InventoryService.svc.cs

Available for
download on
Wrox.com

Available for
download on
Wrox.com

c12.indd 270c12.indd 270 3/31/11 3:52:19 PM3/31/11 3:52:19 PM

Handling Change ❘ 271

 The error occurs when the GetItemTypes method of ItemTypeService returns a null.
This is an undesirable behavior for this method. Granted, the GetItemTypes method of
 ItemTypeService should never have cause to return a null. Even if no ItemTypes are in the data
store, Fluent NHibernate still returns an empty instance of a list. The GetItemTypes method on
 ItemTypeService simply passes that empty list up the chain to the GetItemTypes method on
 InventoryService .

 So why worry about it? On my team we have a requirement on all applications in production: The
user should never see an unhandled exception. Aside from being a potential security leak, most
users would not know how to recover from such a situation. Most users would also be upset that the
application had died and must be restarted, causing them to potentially lose work. The user needs to
be isolated and protected from the unhandled .NET exception.

 I start working on this defect by creating a test. Specifi cally, I want to see a test where the stub on
the GetItemTypes method of ItemTypeService returns a null:

public class and_getting_a_list_of_item_types_when_the_returned_list_is_null :
 when_using_the_external_inventory_service
{
 private IInventoryService _inventoryService;
 private string[] _result;
 private Mock < IItemTypeService > _itemTypeService;

 protected override void Establish_context()
 {
 base.Establish_context();

 _itemTypeService = new Mock < IItemTypeService > ();
 _inventoryService = new InventoryService(_itemTypeService.Object);

 List < ItemType > itemTypeList = null;
 _itemTypeService.Setup(x = > x.GetItemTypes())
 .Returns(itemTypeList);
 }

 protected override void Because_of()
 {
 _result = _inventoryService.GetItemTypes();
 }

 [Test]
 public void then_an_empty_list_of_item_types_should_be_returned()
 {
 _result.ShouldNotBeNull();
 _result.Count().ShouldEqual(0);
 }
}

 InventoryServiceTests.cs

Available for
download on
Wrox.com

Available for
download on
Wrox.com

c12.indd 271c12.indd 271 3/31/11 3:52:20 PM3/31/11 3:52:20 PM

272 ❘ CHAPTER 12 DEALING WITH DEFECTS AND NEW REQUIREMENTS

 This test should look similar to the test written to verify the functionality of the InventoryService
WCF service in Chapter 10. In fact, it ’ s almost identical — with two exceptions. The fi rst change
to point out is that instead of returning a List of ItemTypes , the GetItemTypes stub on the
 ItemTypeService mock returns a null. This replicates a situation in which the GetItemType
method on the ItemTypeService class returns a null. The other change is that the test method
 then_a_list_of_item_types_should_be_returned does not look for items in the List . It simply
verifi es that the _result member variable is not null and that it is empty.

 After running this test, you can see in Figure 12 - 2 that it fails and thus represents the circumstances
that cause the defect in InventoryService to appear.

 FIGURE 12 - 2

 Changing the Code

 You now have a test that exposes a defect in the InventoryService WCF service. Before you start
writing code, you should run all the tests and verify that the test for the defect is in fact the only test
that is currently failing. That test is shown in Figure 12 - 3.

 The next step is to look at the code for the GetItemTypes method of InventoryService and fi nd
out where the defect is occurring. The entire GetItemTypes method is shown here:

c12.indd 272c12.indd 272 3/31/11 3:52:20 PM3/31/11 3:52:20 PM

Handling Change ❘ 273

public string[] GetItemTypes()
{
 var itemTypeList = _itemTypeService.GetItemTypes()
 .Select(x = > x.Name)
 .ToArray();

 return itemTypeList;
}

 InventoryService.svc.cs

 Line 17 of the InventoryService.svc.cs fi le is the line with the call to the _itemTypeService
.GetItemTypes method in the GetItemTypes method of InventoryService . The fi x for this code
is simple. You need a way to capture the output of the _itemTypeService.GetItemTypes method
before the Select and ToArray extension methods are invoked and check the result for null. If the
result of the _itemTypeService.GetItemTypes method is null, you need to return an empty string
array:

public string[] GetItemTypes()
{
 var itemTypeList = _itemTypeService.GetItemTypes();
 if (itemTypeList == null)
 {
 return new string[0];
 }

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Available for
download on
Wrox.com

 FIGURE 12 - 3

c12.indd 273c12.indd 273 3/31/11 3:52:21 PM3/31/11 3:52:21 PM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

274 ❘ CHAPTER 12 DEALING WITH DEFECTS AND NEW REQUIREMENTS

 var itemTypeArray = itemTypeList.Select(x = > x.Name)
 .ToArray();

 return itemTypeArray;
}

 InventoryService.svc.cs

 Rerunning the test in and_getting_a_list_of_item_types_when_the_returned_list_is_null
shows that the new code corrects this defect, as shown in Figure 12 - 4.

 FIGURE 12 - 4

 The new implementation of GetItemTypes in InventoryService works. But the code is starting
to get a little complicated and long. It ’ s also starting to fl irt with no longer following the SOLID
principles — specifi cally, the Single Responsibility Principle (SRP).

 You should refactor this code a little to make it a bit cleaner. The main change to make to the
 GetItemTypes method is to extract the functionality that checks the result of the _itemTypeService
.GetItemTypes method for null. If the returned List of ItemTypes is not null, it pulls the information
out of the List and transforms it into a string array to be returned by InventoryService . You
accomplish this by changing the code thusly:

public string[] GetItemTypes()
{
 var itemTypeList = _itemTypeService.GetItemTypes();
 var itemTypeArray = ReturnValidItemNameListArray(itemTypeList);

 return itemTypeArray;

Available for
download on
Wrox.com

Available for
download on
Wrox.com

c12.indd 274c12.indd 274 3/31/11 3:52:22 PM3/31/11 3:52:22 PM

Handling Change ❘ 275

}

private static string[] ReturnValidItemNameListArray(IEnumerable < ItemType >
itemTypeList)
{
 return itemTypeList == null ?
 new string[0] :
 itemTypeList.Select(x = > x.Name).ToArray();
}

 InventoryService.svc.cs

 This snippet adds a method called ReturnValidItemNameListArray , which takes as a
parameter the returned List from the call to the _itemTypeService.GetItemTypes method.
 ReturnValidItemNameListArray checks the input parameter itemTypeList to determine if it is
null. If it is, ReturnValidItemNameListArray returns an empty string array. If itemTypeList
is not null, ReturnValidItemNameListArray selects the names from ItemTypeList and then
transforms that list into an array that is returned from the ReturnValidItemNameListArray
method. The GetItemTypes method simply needs to return the result of the
 ReturnValidItemNameListArray method.

 The extraction of logic from the GetItemTypes method on InventoryService immediately
makes that method more readable. Likewise, because ReturnValidItemNameListArray does only
one thing, that algorithm is more readable as well. In the GetItemTypes method, you could have
simply returned the result of the ReturnValidItemNameListArray method without storing it in
 itemTypeArray . In this case, however, storing the result of the ReturnValidItemNameListArray
method in the itemTypeArray variable enhances readability, so I chose to keep the variable.

 Running the test after performing this refactoring action shows that the refactoring didn ’ t introduce
any defects into the code, as shown in Figure 12 - 5.

 FIGURE 12 - 5

c12.indd 275c12.indd 275 3/31/11 3:52:23 PM3/31/11 3:52:23 PM

276 ❘ CHAPTER 12 DEALING WITH DEFECTS AND NEW REQUIREMENTS

 The test passes. By defi nition this refactoring is not all that is required to fi x this defect. It ’ s time to
verify that the code changes have not introduced any more defects.

 Keeping the Tests Passing

 In addition to fi xing a defect or adding a feature, it ’ s important to make sure that you aren ’ t breaking
any preexisting functionality. I have a suite of unit tests that verify that all the other functionality in
this application works. By running the whole suite of tests, you can verify that you have fi xed this
defect while not introducing any more defects into the application, as shown in Figure 12 - 6

 FIGURE 12 - 6

 All the tests, including the new test created to address the defect in the InventoryService WCF
service, are passing. This means that the defect has been fi xed, and no other functionality in the
application has been damaged. This application now can be sent to QA to be verifi ed for production.

 SUMMARY

 Change in business is inevitable. Changes in laws, market forces, and business strategies are regular
occurrences. Resistance is futile. Instead, application developers need to learn to embrace change.
The correct and dedicated practice of TDD will give your application an advantage by making it
more fl exible and adaptable for change.

 When you ’ re working with a new feature, you must employ the same business analysis, design, and
estimation protocols that were used to develop the application. This is true even for applications
that have already shipped or been deployed to production. Do not fall into the trap of cutting

c12.indd 276c12.indd 276 3/31/11 3:52:23 PM3/31/11 3:52:23 PM

corners under the claim, “ Well, it ’ s just a small change. ” Even small changes implemented poorly
can severely damage an application and customer trust.

 Whether you ’ re working with a new feature or a defect, the fi rst step in the development process
is the same: writing a test. This test should initially fail. If this test passes, some investigation is
required. Does your test test for the correct functionality or defect? Are you testing the right part of
the application? Does the newly requested functionality already exist as a side effect of some other
functionality? Remember that just because a test passes immediately doesn ’ t mean that you have
fi xed the defect or that the new functionality exists in the application.

 After your new test is written and you ’ ve seen it fail, the steps are the same as when you ’ re doing
primary development of the application. Write just enough code to make the new test or tests pass.
When the new tests pass, you have either fi xed the defect or implemented the new feature. Refactor
where necessary, but do not add more code than is required. Use the entire test suite to verify that
the other parts of the application have not been negatively impacted by your change. As soon as all
the tests, old and new, are passing, your application is ready to be sent to QA for verifi cation and
deployment to production.

Summary ❘ 277

c12.indd 277c12.indd 277 3/31/11 3:52:23 PM3/31/11 3:52:23 PM

c12.indd 278c12.indd 278 3/31/11 3:52:24 PM3/31/11 3:52:24 PM

The Great Tool Debate
by Jeff McWherter

 WHAT ’ S IN THIS CHAPTER?

 Unit - testing frameworks

 Mocking frameworks

 Dependency injection frameworks

 Miscellaneous useful tools

 How to introduce TDD to your team

 As with many other procedures in the software development industry, test - driven development
and the tools used in this discipline can cause many debates among software developers. These
debates are often religious wars over which tool is best. This chapter discusses the different
types of tools that are useful with test - driven development processes and offers opinions about
the tools. This chapter will help you decide which tools are best for you.

 TEST RUNNERS

 Having a test runner that you are comfortable with is crucial to following test - driven
development practices. Many testing frameworks such as NUnit (used in the majority of
examples in the previous chapters) ship with a GUI for running tests. You have learned that
unit tests need to run fast, but having feedback about your tests and a way to run them
that you are comfortable with ensures that you will run your tests. Often, alternatives
to these GUIs that ship with unit - testing frameworks can make your life easier.

➤

➤

➤

➤

➤

 13

c13.indd 279c13.indd 279 3/31/11 3:52:47 PM3/31/11 3:52:47 PM

280 ❘ CHAPTER 13 THE GREAT TOOL DEBATE

 TestDriven.NET

 TestDriven.Net is a popular test runner that supports running tests
created in frameworks such as NUnit, MbUnit, and MSTest. TestDriven
.Net personal edition is free to students and open source developers.
Corporate developers must pay a modest fee, but it ’ s worth not having to
keep open the GUI interface to these testing frameworks.

 TestDriven.Net integrates into Visual Studio. You can run a test by right -
 clicking it and selecting Run Test, as shown in Figure 13 - 1.

 It ’ s highly recommended that you create a keyboard shortcut so that you
do not need to right - click each time you want to run your tests. To set
up keyboard shortcuts in Visual Studio, select Options ➪ Keyboard ➪
Settings, as shown in Figure 13 - 2.

 FIGURE 13 - 1

 FIGURE 13 - 2

 Many test runners such as TestDriven.Net also allow you to debug your tests. Stepping into a test is
useful when you are trying to fi gure out exactly what is going on in a complex test. The commercial
and personal versions of TestDriven.Net can be downloaded at http://www.testdriven.net/
download.aspx .

 Developer Express Test Runner

 Recent versions of Code Rush, the powerful coding assistance tool from Developer Express, include
a well - written test runner. It is similar to other test runners but fi ts within Code Rush, providing
users with a highly extensible tool. It also works great right out of the box. Code Rush has become
known as the Visual Studio add - on that helps developers write code fast and provides suggestions in
an aesthetically pleasing way. As with other test runners, you can perform testing by right - clicking

c13.indd 280c13.indd 280 3/31/11 3:52:49 PM3/31/11 3:52:49 PM

http://www.testdriven.net/download.aspx
http://www.testdriven.net/download.aspx

the test/test fi xture or by setting up a keyboard shortcut. Not only is the Developer Express test
runner fast, but it also makes it easy to see which tests passed and failed, as with the test code
shown in Figure 13 - 3.

 FIGURE 13 - 3

 More information about Code Rush can be found at http://www.devexpress.com/Products/
Visual_Studio_Add-in/index.xml .

 Gallio

 Gallio is a highly extensible automation platform that provides a common object model for tools
such as test runners and runtime services to interoperate. Simply put, Gallio is a GUI test runner
that runs tests created using MbUnit, MbUnitCpp, MSTest, NBehave, NUnit, xUnit, csUnit, and
RSPec. Gallio also provides various levels of support and integration with MSBuild, NAnt, Pex,
CCNet, Powershell, Resharper, TestDriven.Net, dotCover, TypeMock, and Visual Studio. You can
fi nd out more about Gallio at http://www.gallio.org .

 Figure 13 - 4 shows the Gallio Icarus GUI running tests created in MbUnit and NUnit in the same
project. I once worked with a developer who had a bad habit of switching testing frameworks
midway through a project. Gallio would have been benefi cial on this project.

Test Runners ❘ 281

c13.indd 281c13.indd 281 3/31/11 3:52:49 PM3/31/11 3:52:49 PM

http://www.devexpress.com/Products/Visual_Studio_Add-in/index.xml
http://www.devexpress.com/Products/Visual_Studio_Add-in/index.xml
http://www.gallio.org

282 ❘ CHAPTER 13 THE GREAT TOOL DEBATE

 UNIT TESTING FRAMEWORKS

 Unit - testing frameworks are like a good pair of work boots. You hate them at fi rst because they are
uncomfortable, but the more you wear them, the more you start to love them. By the time you have
to get a new pair of boots, or a new testing framework in this case, you start to complain again
because it ’ s uncomfortable. Unit - testing frameworks tend to cause the most religious wars between
the different testing tools.

 MSTest

 MSTest is the testing framework created by Microsoft that has been included in specifi c versions of
Visual Studio since 2005. MSTest sparks many heated discussions among developers. When all is said
and done, MSTest is similar to many of the other unit - testing frameworks, with a slightly different
syntax. It has been my experience that the tests run slower, but you should make your own call.

 The syntax for MSTest is much like that for NUnit, except that the Test Fixture has a TestClass
attribute, and the actual tests have a TestMethod attribute:

 [TestClass]
public class HTMLHelpersTests
{
 [TestMethod]
 public void Should_Truncate_Text_Over_Five_Characters_Long()
 {

Available for
download on
Wrox.com

Available for
download on
Wrox.com

 FIGURE 13 - 4

c13.indd 282c13.indd 282 3/31/11 3:52:50 PM3/31/11 3:52:50 PM

 string textToTruncate = “This is my text”;
 string expected = “This ..”;
 string actual = HTMLHelper.Truncate(textToTruncate, 5);
 Assert.AreEqual(expected, actual);
 }

 [TestMethod]
 public void Should_Not_Truncate_Text_When_No_Length_Is_Passed_In()
 {
 string textToTruncate = “This is my text”;
 string expected = “This is my text”;
 string actual = HTMLHelper.Truncate(textToTruncate, 0);

 Assert.AreEqual(expected, actual);
 }
}

 MSTest.cs

 As shown in Figure 13 - 5, MSTests are run in a similar fashion as using a test runner that is included
with Visual Studio.

 FIGURE 13 - 5

 As a unit - testing framework, MSTest is ranked low on our recommended list because of its speed
issues. But this is no reason to dismiss the other wonderful testing tools included, such as database -
 driven tests, performance testing tools, and ordered tests.

 MbUnit

 In 2004 Jonathan “ Peli ” de Halleux created MbUnit (called gUnit at the time) based on a series
of articles by Marc Clifton. Out of the box, MbUnit supports a concept called row tests. You can
create a single test and have multiple sets of data to execute the test against defi ned as method
attributes. Each set of data is executed separately and treated as a unique test within the runner.

 The following code is a test for a static method called Add that simply adds together two
integers. The following test has three inputs: value a , value b , and the expected result. Using
the Row attribute, you can create the input for the test.

Unit Testing Frameworks ❘ 283

c13.indd 283c13.indd 283 3/31/11 3:52:51 PM3/31/11 3:52:51 PM

284 ❘ CHAPTER 13 THE GREAT TOOL DEBATE

 [TestFixture]
public class MathStuffTests
{
 [RowTest]
 [Row(5, 3, 8)]
 [Row(0, 0, 0)]
 [Row(-1, -2, -3)]
 public void AddTests(int a, int b, int expected)
 {
 int test = MathStuff.Add(a, b);
 Assert.AreEqual(test, expected);
 }
}

 MbUnit.cs

 As shown in Figure 13 - 6, the MbUnit test runner treats this as three separate tests when reporting
the test results.

Available for
download on
Wrox.com

Available for
download on
Wrox.com

 FIGURE 13 - 6

 MbUnit can be downloaded at http://www.mbunit.com/ .

 xUnit

 xUnit is an open source testing framework developed by Brad Wilson of Microsoft with cooperation
from Jim Newkirk, one of the original authors of NUnit. xUnit takes a minimalist approach that
provides framework features through method attributes. This minimalist approach helps keep tests
simple and clean. One of the major differences between xUnit and the other testing frameworks

c13.indd 284c13.indd 284 3/31/11 3:52:51 PM3/31/11 3:52:51 PM

http://www.mbunit.com/

discussed so far is the lack of Setup and Teardown method attributes. Keeping with the simplistic
theme of xUnit, you use the constructor and a dispose method of your test class when you need to
implement setup or teardown functionality.

 Based on the knowledge of NUnit you have gained in previous chapters, the following code example
should look very similar. xUnit tests have an attribute of Fact . The [Fact(Timeout � 20)]
attribute is useful when you need to ensure that a method returns within a specifi ed time.

 [Fact]
public void AddTest()
{
 int expected = 10;
 int actual = MathStuff.Add(5, 5);
 Assert.Equal(expected,actual);
}

[Fact(Timeout = 20)]
public void TimeOutTest()
{
 System.Threading.Thread.Sleep(40);
 Assert.Equal(1, 1);
}

 For more information about the minimalist syntax of xUnit, see the syntax comparison chart of
NUnit, MbUnit, MSTest, and xUnit found on the xUnit project page on Code Plex at http://xunit
.codeplex.com/wikipage?title=Comparisons & ProjectName=xunit .

 MOCKING FRAMEWORKS

 Chapter 2 discussed the basics of mocking objects, and throughout this book we have been using
the Moq framework because of its simple syntax. Moq is becoming a popular mocking framework,
but it is not the only framework available. Other frameworks have features that allow you to mock
objects differently.

 Moq uses a declarative syntax for mocking objects, which is different from the record/playback
method of mocking that many mocking frameworks support. Many of these frameworks are moving
away from the record/playback method in favor of an arrange, act, and assert (AAA) method
because of its ease of use.

 Rhino Mocks

 Rhino Mocks is a free mocking framework created by Orin Eini, who is also known for his work
on the nHibernate and Castle projects. Rhino Mocks is popular because of its ease of use and list of
power features. Although the syntax is not as clean as Moq ’ s, it is a worthwhile tool to check out.
Rhino Mocks supports two different styles of mocking objects: the record/playback method and the
arrange, act, and assert syntax. Record/playback is now considered to be the older way of mocking
objects, but it makes sense to consider the differences.

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Mocking Frameworks ❘ 285

c13.indd 285c13.indd 285 3/31/11 3:52:52 PM3/31/11 3:52:52 PM

http://xunit.codeplex.com/wikipage?title=Comparisons&ProjectName=xunit
http://xunit.codeplex.com/wikipage?title=Comparisons&ProjectName=xunit

286 ❘ CHAPTER 13 THE GREAT TOOL DEBATE

 The following example uses the AAA style of mocking objects, which is similar to mocking with
Moq, as you learned in Chapter 2. The basic Rhino Mocks syntax looks like this:

MockRepository mocks = new MockRepository();
IDependency dependency = mocks.CreateMock < IDependency > ();

// create our expectations
Expect.Call(dependency.GetSomething(“parameter”)).Return(“result”);
dependency.DoSomething();
mocks.ReplayAll();

// test the middle layer
Thing thing = new Thing(dependency);
thing.DoWork();

// verify the expectations
mocks.VerifyAll();

 RhinoMocks.cs

 This example sets up a mock object for the IDependency interface that will eventually get passed
into the Thing class. Two expectations are set for the mock: The GetSomething method is
called, with a string parameter and a return value, and the DoSomething method is called off the
dependency. Expectations are verifi ed with the VerifyAll method on the mock object.

 You can take Rhino Mocks a bit further and create a test that is actually useful to a project:

 [Test]
public void Mocking_With_Rhino_Mocks()
{
 MockRepository mocks = new Rhino.Mocks.MockRepository();

 // create the repository object; the real object would make calls to the DB
 IItemTypeRepository repository = mocks.CreateMock < IItemTypeRepository > ();

 // mock the call to get an item with the ID of 2 and return null,
 // to mock not finding an item
 Rhino.Mocks.Expect.Call(repository.GetById(2)).Return(null);

 // get the mocking ready
 mocks.ReplayAll();

 // inject our mock into our service layer
 ItemPresenter presenter = new ItemPresenter(repository);

 // service.GetItem will call the mocked repository, which will call
 // repository.GetByID, which will return null
 ItemType item = presenter.GetItem(2);

 // should be null
 Assert.IsNull(item);
}

 RhinoMocks.cs

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Available for
download on
Wrox.com

c13.indd 286c13.indd 286 3/31/11 3:52:52 PM3/31/11 3:52:52 PM

 In some cases you may want to throw an exception in your mock object instead of returning
a value. It ’ s a good idea to create tests that simulate faults. The following example simulates a
 DivideByZeroException error within the MethodThatThrowsError method:

itemRepository.Expect(m = > m.MethodThatThrowsError(“”)).Throw(new
 DivideByZeroException(“Error”));

 RhinoMocks.cs

 Working with events in Rhino Mocks is just as simple. First you need to gain access to the Event
Raiser, and then you simulate an event being raised, as shown in the following example. The
 MyEvent event is simulated, and it returns a string value for “ result “ :

itemRepository.GetEventRaiser(v = > v.MyEvent += null).Raise(“result”);

 RhinoMocks.cs

 You can also use the record/playback syntax to mock objects using Rhino Mocks. Record/playback
is a two - stage process. In the record stage, you defi ne how you want the mock to be interacted with.
In the second stage of playback, you enter your test code and interact with the Mock object:

MockRepository mocks = new MockRepository();
IItemTypeRepository mock = mocks.CreateMock < IItemTypeRepository > ();

using (mocks.Record())
{
 Expect.Call(mock.GetById(3)).Return(null);
}

using (mocks.Playback())
{
 Assert.AreEqual(null, mock.GetById(3));
}

 RhinoMocks.cs

 Rhino Mocks has a strong following and is a good mocking tool to consider. To start working
with Rhino Mocks, visit http://www.ayende.com/projects/rhino-mocks.aspx .

 Type Mock

 Type Mock is different from Rhino Mocks and Moq in that it uses intermediate language (IL) to
replace real implementations with the mock implementation at runtime. Type Mock can mock any
object in your system at any time, so there is no need to worry about how to inject your model into the
system. It ’ s also important to note that Type Mock is a commercial product and therefore is not free.

 The other major advantage of Type Mock is that the mock object does not need to inherit from an
interface. Type Mock can mock concrete implementations of objects. With Type Mock, you can

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Mocking Frameworks ❘ 287

c13.indd 287c13.indd 287 3/31/11 3:52:53 PM3/31/11 3:52:53 PM

http://www.ayende.com/projects/rhino-mocks.aspx

288 ❘ CHAPTER 13 THE GREAT TOOL DEBATE

mock objects that are not in your control, such as third - party libraries or even parts of the .NET
framework.

 The following code is very similar to the Rhino Mocks syntax:

// Arrange
IItemTypeRepository repository = Isolate.Fake.Instance < IItemTypeRepository > ();
Isolate.WhenCalled(() = > repository.GetById(2)).WillReturn(null);

// Act
ItemPresenter presenter = new ItemPresenter(repository);
ItemType item = presenter.GetItem(2);

// Assert
Assert.IsNull(item);

 TypeMock.cs

 The true power of TypeMock comes into play when you don ’ t have an interface and you need
to mock something like DateTime.Now . Consider the following code. It has a method called
 IsExpired that looks at a constant value of 11/21/1981 and compares it to DateTime.Now to see if
the item is expired:

public class Item
{
 private DateTime EXPIRATION_DATE = new DateTime(1981, 11, 21);

 public bool IsExpired()
 {
 bool tmpRtn = false;

 if (DateTime.Now > EXPIRATION_DATE)
 tmpRtn = true;

 return tmpRtn;
 }
}

 TypeMock.cs

 You could write logic to abstract your call to DateTime.Now out of this method and pass a date into
the IsExpired method. But using TypeMock you can mock DateTime.Now and test to ensure that
your IsExpired method is checking for expired dates.

 In the following Isolated test, when DateTime.Now is called, a new date is returned. In the fi rst
test it is an expired date, and the second test returns a nonexpired date:

 [Test, Isolated]
public void Item_Should_Be_Expired()
{
 Isolate.WhenCalled(() = > DateTime.Now).WillReturn(new DateTime(1981, 11, 22));

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Available for
download on
Wrox.com

c13.indd 288c13.indd 288 3/31/11 3:52:54 PM3/31/11 3:52:54 PM

Dependency Injection Frameworks ❘ 289

 Item item = new Item();
 Assert.True(item.IsExpired());
}

[Test, Isolated]
public void Item_Should_Not_Be_Expired()
{
 Isolate.WhenCalled(() = > DateTime.Now).WillReturn(new DateTime(1981, 11, 21));

 Item item = new Item();
 Assert.IsFalse(item.IsExpired());
}

 TypeMock.cs

 With features such as the ability to mock any object, Type Mock is great for legacy applications,
where testing was an afterthought. Information about the Type Mock isolation framework can be
found at http://www.typemock.com/ .

 DEPENDENCY INJECTION FRAMEWORKS

 If you think of your application as a puzzle, dependency injection (DI) frameworks are the tools that
put these puzzle pieces together. Some might even say that dependency injection frameworks are just
an implementation of a super factory design pattern. Chapter 5 discussed the basics of dependency
injection. The examples used Ninject, but Ninject is not the only dependency injection framework
on the market.

 In the past, most dependency injection frameworks were confi gured by using XML fi les that soon
became diffi cult to maintain. Most modern dependency injection frameworks still support this
method of confi guration, but this method is generally frowned on and has been traded in for cleaner
approaches. This section explores a few alternative dependency injection frameworks using the
example from Chapter 5 to inject dependencies into a business application.

 When choosing a dependency injection framework, you should follow two rules:

 Keep the framework at a distance.

 Focus on the Inversion of Control pattern.

 Structure Map

 Structure Map is an open source container framework that has a fl uent API that makes the code
easy to read and maintain. One of the more powerful features of Structure Map is the automocking
container.

 The Structure Map automocking feature allows you to create stubs automatically when requested by
the test. Even though you still need to set your expectations on the mocks, this saves time when you
create mocks in your tests.

➤

➤

c13.indd 289c13.indd 289 3/31/11 3:52:54 PM3/31/11 3:52:54 PM

http://www.typemock.com/

290 ❘ CHAPTER 13 THE GREAT TOOL DEBATE

 The following example re - creates the example from Chapter 5 that used Ninject to inject
dependencies into a business application class. First you need to map interfaces to their respective
concrete implementations. In Structure Map, as well as most DI frameworks, this step is performed
only once, when the application starts. Depending on the number of objects you are mapping, this
could be an expensive process. In web applications this is usually done in the Global.asax fi le, but
for these short examples we will create a bootstrap class that is called to set up the mappings:

 public static class StructureMap_IoCBootStrapper
 {
 public static void SetupForIoC()
 {
 // the setup. If we were working with ASP.net this would occur in
 // Global.asax
 ObjectFactory.Initialize(x = >
 {
 x.ForRequestedType < ILoggingDataSink > ()
 .TheDefaultIsConcreteType < LoggingDataSink > ();

 x.ForRequestedType < ILoggingComponent > ()
 .TheDefaultIsConcreteType < LoggingComponent > ()

 x.ForRequestedType < IDataAccessComponent > ()
 .TheDefaultIsConcreteType < DataAccessComponent > ();

 x.ForRequestedType < IWebServiceProxy > ()
 .TheDefaultIsConcreteType < WebServiceProxyComponentProvider > ();

 x.ForRequestedType < IPersonRepository > ()
 .TheDefaultIsConcreteType < PersonRepository > ();

 x.ForRequestedType < IPersonService > ()
 .TheDefaultIsConcreteType < PersonService > ();
 });
 }
 }

 StructureMap.cs

 The fi rst thing you do in this example is create an instance of the object factory and call
 initialize . The initialize method takes an expression that allows you to confi gure Structure
Map. With this logic added, you can inject dependencies into the business application.

public class StructureMap_ThingThatImplementsABusinessService
{
 public StructureMap_ThingThatImplementsABusinessService()
 {
 StructureMap_IoCBootStraper.SetupForIoC();

 // getting our objects to work with. This usually occurs in the
 // constructor of the class you need the objects for
 var logger = ObjectFactory.GetInstance < ILoggingComponent > ();
 var personRepository = ObjectFactory.GetInstance < IPersonRepository > ();

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Available for
download on
Wrox.com

c13.indd 290c13.indd 290 3/31/11 3:52:55 PM3/31/11 3:52:55 PM

Dependency Injection Frameworks ❘ 291

 // start working with our objects that have been loaded
 var person = personRepository.GetPerson(3);
 }

}

 StructureMap.cs

 The last example here re - creates the example found in Chapter 5 that used Ninject. It does not map
all the dependencies, as was done in Chapter 5 for simplicity. Mapping every dependency could
get cumbersome on large projects. Another great feature of Structure Map is the autoregistration
or autoscan feature. Structure Map looks at your interfaces and tries to match them to concrete
implementations based on default conventions. For instance, if you have an interface of Ifoobar , it ’ s
more than likely that it matches the Foobar class. If the default mapping is incorrect, you can create
profi les to set the correct mapping.

 public static void SetupForIoC_Scan()
 {
 // the setup. If we were working with ASP.net this would occur in
 // Global.asax
 ObjectFactory.Initialize(x = >
 {
 x.Scan(s = >
 {
 s.TheCallingAssembly();
 s.WithDefaultConventions();
 });
 });
 }

 StructureMap.cs

 The Open Source Structure Map project can be found at http://structuremap.net/structuremap/ .

 Unity

 From the Patterns and Practices group at Microsoft, Unity is the youngest of the DI frameworks
discussed in this chapter. Unity does not support many of the advanced features that these other DI
frameworks do, but it supports enough to get the job done.

 To implement the example that you should be very familiar with by now, you need to add project
references to the Microsoft.Practices.Unity assembly as well as the Microsoft.Practices
.ObjectBuilder2 assembly. After that, in the bootstrap class, you create a UnityContainer
object and then start the mappings, as shown in the following code:

public static class Unity_IoCBootStraper
{
 public static UnityContainer BaseContainer = new UnityContainer();

 public static void SetupForIoC()

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Available for
download on
Wrox.com

c13.indd 291c13.indd 291 3/31/11 3:52:56 PM3/31/11 3:52:56 PM

http://structuremap.net/structuremap/

292 ❘ CHAPTER 13 THE GREAT TOOL DEBATE

 {
 // the setup. If we were working with ASP.net this would occur in
 // Global.asax
 BaseContainer.RegisterType < ILoggingDataSink, LoggingDataSink > ();
 BaseContainer.RegisterType < ILoggingComponent, LoggingComponent > ();
 BaseContainer.RegisterType < IDataAccessComponent, DataAccessComponent > ();
 BaseContainer.RegisterType < IWebServiceProxy,
 WebServiceProxyComponentProvider > ();
 BaseContainer.RegisterType < IPersonRepository, PersonRepository > ();
 BaseContainer.RegisterType < IPersonService, PersonService > ();
 }
}

 Unity.cs

 To get your dependencies in your business object, you can simply call the resolve method from the
 UnityContainer object:

public class Unity_BusinessApplication
{

 public Unity_BusinessApplication()
 {
 Unity_IoCBootStraper.SetupForIoC();

 // getting our objects to work with. This usually occurs in the
 // constructor of the class you need the objects for
 var logger = Unity_IoCBootStraper.BaseContainer
 .Resolve < ILoggingComponent > ();

 var personRepository = Unity_IoCBootStraper.BaseContainer
 .Resolve < IPersonRepository > ();

 // start working with our objects that have been loaded
 var person = personRepository.GetPerson(3);
 }
}

 Unity.cs

 By default, when you resolve an object in the UnityContainer object, you get a new instance of that
object based on the default mappings. One of the nice features of Unity is that you can change this
functionality and return a singleton of that object if needed. The RegisterType function has an
overload that takes a LifeTimeManager object. Unity comes with a Container Controlled Lifetime
Manager that is, in fact, a singleton:

BaseContainer.RegisterType < ILoggingComponent, LoggingComponent > (new
 ContainerControlledLifetimeManager());

 Unity is open source and can be found on CodePlex at http://unity.codeplex.com/ . The large
amount of documentation and webcasts make Unity a good place to start for people new to the
Inversion of Control pattern.

Available for
download on
Wrox.com

Available for
download on
Wrox.com

c13.indd 292c13.indd 292 3/31/11 3:52:56 PM3/31/11 3:52:56 PM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

http://unity.codeplex.com/

Dependency Injection Frameworks ❘ 293

 Windsor

 Maintained within the Castle project, Windsor was one of the fi rst open source dependency
injection frameworks to appear for .NET. Out of all the dependency injection frameworks discussed
here, Windsor has the largest following and provides the most mature and powerful implementation
of dependency injection. Because this project has so many features, there may be a relatively high
learning curve for using some of the more advanced features. The following code implements an
example. As you can see, it ’ s very similar to the other dependency injection frameworks:

public static class Windsor_IoCBootStraper
{
 public static WindsorContainer BaseContainer = new WindsorContainer();

 public static void SetupForIoC()
 {
 // the setup. If we were working with ASP.net this would occur in
 // Global.asax.
 BaseContainer.AddComponent < ILoggingDataSink, LoggingDataSink > ();
 BaseContainer.AddComponent < ILoggingComponent, LoggingComponent > ();
 BaseContainer.AddComponent < IDataAccessComponent, DataAccessComponent > ();
 BaseContainer.AddComponent < IWebServiceProxy,
 WebServiceProxyComponentProvider > ();
 BaseContainer.AddComponent < IPersonRepository, PersonRepository > ();
 BaseContainer.AddComponent < IPersonService, PersonService > ();
 }
}

public class Windsor_BusinessApplication
{

 public Windsor_BusinessApplication()
 {
 Windsor_IoCBootStraper.SetupForIoC();

 // getting our objects to work with. This usually occurs in the
 // constructor of the class you need the objects for
 var logger = Unity_IoCBootStraper.BaseContainer
 .Resolve < ILoggingComponent > ();

 var personRepository = Unity_IoCBootStraper.BaseContainer
 .Resolve < IPersonRepository > ();

 // start working with our objects that have been loaded
 var person = personRepository.GetPerson(3);
 }
}

 Windsor.cs

 Castle Windsor can be downloaded from http://stw.castleproject.org/Windsor.MainPage
.ashx .

Available for
download on
Wrox.com

Available for
download on
Wrox.com

c13.indd 293c13.indd 293 3/31/11 3:52:57 PM3/31/11 3:52:57 PM

http://stw.castleproject.org/Windsor.MainPage.ashx
http://stw.castleproject.org/Windsor.MainPage.ashx

294 ❘ CHAPTER 13 THE GREAT TOOL DEBATE

 Autofac

 Autofac was one of the fi rst dependency injection frameworks to include an interface that allows
confi guration without XML fi les. Because of this, many developers started to work with this
dependency injection framework. With Autofac, your components can be created using refl ection,
lambda expressions, or a ready - made instance. The ContainerBuilder object provides the
 Register functionality and all the methods needed to support the registration of objects, as
demonstrated here:

public static class AutoF ac_IoCBootStraper
{
 public static IContainer BaseContainer { get; private set; }

 public static void SetupForIoC()
 {
 var builder = new ContainerBuilder();
 builder.RegisterType < IPersonRepository > ().As < PersonRepository > ();

 BaseContainer = builder.Build();
 }

 public static TService Resolve < TService > ()
 {
 return BaseContainer.Resolve < TService > ();
 }
}

 AutoFac.cs

 To inject dependencies into a business application, you simply need to call the Resolve method
found within the bootstrap class:

public class AutoFac_BusinessApplication
{

 public AutoFac_BusinessApplication()
 {
 AutoFac_IoCBootStraper.SetupForIoC();

 // getting our objects to work with. This usually occurs in the
 // constructor of the class you need the objects for
 var logger = AutoFac_IoCBootStraper.Resolve < ILoggingComponent > ();
 var personRepository = AutoFac_IoCBootStraper
 .Resolve < IPersonRepository > ();

 // start working with our objects that have been loaded
 var person = personRepository.GetPerson(3);
 }
}

 In most situations, the difference in performance between the dependency injection frameworks
won ’ t impact your decision about which one to use, but note that AutoFac is the fastest of the

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Available for
download on
Wrox.com

c13.indd 294c13.indd 294 3/31/11 3:52:57 PM3/31/11 3:52:57 PM

frameworks listed here. The Autofac framework can be found on Google code at http://code
.google.com/p/autofac/ .

 MISCELLANEOUS USEFUL TOOLS

 Some tools fall under the miscellaneous category. They are not required to perform TDD but are
useful when it comes to testing your application.

 nCover

 nCover is a code coverage testing tool. It analyzes your tests and code and reports the percentage of
code covered by the tests. There are two versions of nCover. One is open source, and the other is a
commercial product that contains more features.

 Figure 13 - 7 shows the test coverage for the Wrox.BooksRead.Web project. You can see that the
 HTMLHelper class has 100% test coverage, whereas the other projects have 0% test coverage. In this
example, the only tests created are for HTMLHelper , so this makes sense.

 FIGURE 13 - 7

 nCover can be downloaded at http://www.ncover.com/ .

 PEX

 PEX, short for Program Exploration, is a project from Microsoft Research that generates unit
tests from existing code. PEX is a Visual Studio add - in that with a small amount of confi guration
generates a suite of parameterized unit tests that give your code a large amount of code coverage.

Miscellaneous Useful Tools ❘ 295

c13.indd 295c13.indd 295 3/31/11 3:52:58 PM3/31/11 3:52:58 PM

http://code.google.com/p/autofac/
http://code.google.com/p/autofac/
http://www.ncover.com/

296 ❘ CHAPTER 13 THE GREAT TOOL DEBATE

Not only does PEX generate the tests, but it also provides suggestions on how to resolve tests that
fail. PEX is great for running on legacy code or fi nding edge or corner cases that have been handled
incorrectly. PEX is not a silver bullet and should be used with caution. Not only is TDD about
testing; it ’ s also about design. On the other hand, PEX is solely about fi nding bugs. Figure 13 - 8
shows that PEX created fi ve unit tests for the Truncate HTML function, with one of them failing.

 FIGURE 13 - 8

 Test 4 failed because it passed in a negative number. This is the benefi t of PEX: It caught an
edge case that the original unit tests missed. You should go back and add a test within the
 HTMLHelpersTests class and add the following test to test for this edge case:

[Test]
public void Should_Not_Truncate_Text_When_Length_Is_Less_Than_Zero()
{
 string textToTruncate = “This is my text”;
 string expected = “This is my text”;
 string actual = HTMLHelper.Truncate(textToTruncate, int.MinValue);
 Assert.AreEqual(expected, actual);
}

 You can learn more about PEX at http://research.microsoft.com/en-us/projects/pex/ .

 HOW TO INTRODUCE TDD TO YOUR TEAM

 You might be wondering how a section on introducing TDD to your team is related to tools, but
being able to change someone ’ s core thinking is a valuable tool. We are asked this question so often
and have debated it so many times that it simply boils down to this: Either you ’ re working with

c13.indd 296c13.indd 296 3/31/11 3:52:58 PM3/31/11 3:52:58 PM

http://research.microsoft.com/en-us/projects/pex/

people who want to better themselves by learning new processes, or you ’ re not. If your workplace
values quality and people over process, introducing TDD is easy.

 Working in Environments That Are Resistant to Change

 When you leave at the end of the day, the code you checked into version control is your mark on the
project. If it does not work, you are responsible for it. TDD has an initial learning curve, but once
you get past that, you will create code as quickly as ever. Even if a team is unwilling to change to
follow TDD practices, you can change. Get past this learning curve on your own time by pairing
with someone who practices TDD. When you are comfortable, slowly start implementing what
you have learned about TDD into your projects. I suggest that you do not go back and refactor
everything in your existing codebase; just start slowly and track metrics. Managers like charts, and
when you can show them that the last release had 20% fewer defects than the previous one, you can
tell them you implemented TDD on your portion of the project.

 At that point, the manager will either be mad that you did this or happy that the system has 20%
fewer defects. If the manager is upset, it ’ s probably time to move on to a different position where
your ideas are valued. This method of introducing a new concept to a team is told best in Chapter 1
of The Pragmatic Programmer by Andrew Hunt and David Thomas (Addison - Wesley, 1999, ISBN:
9780201616224). It relates two stories about stone soup and boiled frogs. In the latter example, if
you drop a frog into a pot of boiling water, it jumps right out. However, if you drop the frog into
cold water and then slowly heat the water until it boils, the frog keeps adjusting to the increasing
temperature and stays in the water until it dies.

 Working in Environments That Are Accepting of Change

 Some companies allow employees to grow and learn new things. If you are working at a place like
this, the best way to teach your team about TDD is to bring in a mentor. A pair programming
strategy is the best way to get developers up to speed. The authors of this book learned TDD from
pairing with other people. This is the best way to learn this process. Having a mentor who knows
TDD well can help get the slower members on the team up to speed faster than having them read
about TDD in a book.

 If your company is unwilling to have someone come in for the day, events such as code retreats are
a great place to pair with up someone for the day and write code. For more information about code
retreats, go to http://coderetreat.ning.com/ .

 SUMMARY

 This chapter has examined many tools that help with the TDD process. When you explore new
tools, we suggest that you come up with a simple example, replicate it using the various tools, and
then come to your own conclusion.

 NUnit has been around for years and has a large following, but this does not necessarily make it the
best tool for the job. xUnit is the new testing framework on the scene and is radically different from
NUnit in many ways. Tools that are radically different are the tools you should be trying, because

Summary ❘ 297

c13.indd 297c13.indd 297 3/31/11 3:52:59 PM3/31/11 3:52:59 PM

http://coderetreat.ning.com/

298 ❘ CHAPTER 13 THE GREAT TOOL DEBATE

they are the ones that may make your life easier. Thinking outside the box and trying new things
will help in many ways.

 You will evolve as a software developer throughout your career. You should be able to look back at
code you wrote in the past and wonder, “ What was I thinking? ” This is how you get better at doing
your job. Exploring new tools is just one way to improve yourself.

 When it comes to choosing which tools to work with, select the ones you are most comfortable
with. In some business situations open - source tools are not allowed. Many times these tools are not
allowed out of a fear of open source for various reasons. Excuses such as licensing issues or “ I can ’ t
call someone on the phone and get support ” are common. Learn how to make a case for how these
tools make you more productive. When it boils down to selecting a tool, no one has ever been fi red
for using Microsoft.

c13.indd 298c13.indd 298 3/31/11 3:52:59 PM3/31/11 3:52:59 PM

Conclusions

 WHAT ’ S IN THIS CHAPTER?

 Reviewing the concepts and techniques covered in this book

 Understanding best practices for working with TDD

 Reviewing benefi ts of developing with TDD

 How to introduce TDD to your development team

 This book has given you much information to give you a good foundation for becoming a
TDD developer. You have learned the principles and techniques to practice TDD. You can
apply many of these techniques to your everyday development tasks to help ensure that you
are delivering well - written, quality software.

 In addition to the principles and techniques of TDD, you have learned many of the techniques,
ideas, and principles that support the test - driven development of applications. You ’ ve learned
that the SOLID Principles provide a set of guidelines for developing well - written and
maintainable applications. You ’ ve seen how agile - based development methodologies give
the development team the necessary time, space, and information to successfully develop
applications using a TDD approach.

 This book contains a lot of information. But even if you read this book 100 times, the only
way these principles and techniques become real is through daily adoption in the real world.
TDD is like learning a language: If you don ’ t practice and use it every day, your skills will
never reach their full potential. As you prepare to go forth in your practice of TDD, keep in
mind the parting advice from this chapter.

 WHAT YOU HAVE LEARNED

 In addition to some pointers about incidental frameworks and patterns such as Fluent
NHibernate and the repository, this book has given you a solid foundation in TDD principles.

➤

➤

➤

➤

 14

CH014.indd 299CH014.indd 299 3/31/11 8:11:07 AM3/31/11 8:11:07 AM

300 ❘ CHAPTER 14 CONCLUSIONS

You ’ ve learned some core patterns and techniques needed for the successful practice of TDD, such
as dependency injection. You ’ ve also seen how adhering to the SOLID Principles and development
using an agile methodology can support TDD developers in their work. This chapter offers a few
last pointers to help you in the practice of TDD.

 You Are the Client of Your Code

 As a developer, you consume services and components when constructing your software. These
pieces come together to form a whole greater than the sum of their parts. Usually, these services
and components are things that you or a member of your development team has written. This
means that the primary consumers of these services and components you develop are you and your
development team. These services and components should be simple to understand and easy to
use. A new member of your development team should quickly and easily be able to determine the
function and usage of these services and components by their names and method signatures.

 In TDD you are the fi rst client of any service or component you create. By writing a test for the
service or component you are creating, you are the fi rst one to consume that service or component.
Is the service or component easy to use? Do the naming and method signatures give you a clear
picture of how the service should work? Is the interface clean and free of confusing names or
duplicated functionality? By using TDD to develop these services and components, you make
yourself the fi rst consumer. Are you creating a service or component that you would fi nd easy to
use? By deriving your service and component interfaces from the practice of TDD, you will create
interfaces and classes that are elegant, intuitive, and simple to use.

 Find the Solutions Step by Step

 Developing a software application is a big job. Approaching the development of any application
as a single large step is a futile approach that sets up you and your team for failure. A well - known
saying in software development is “ Don ’ t try to boil the ocean. ” It means that a large task may seem
complex and impossible, but if you break it into several smaller tasks, suddenly the job doesn ’ t seem
so diffi cult. Software can be complicated. Instead of trying to address all the problems encompassed
by a software application development effort at once, deal with it as several smaller problems.
Tackle these smaller problems one at a time in a manageable way. Instead of thinking of a feature or
user story as a 40 - hour task, it might be easier to think of it as 10 four - hours tasks. Even better, you
could break it into 20 two - hour tasks.

 Dealing with smaller tasks offers many advantages. Smaller tasks are easier to understand. Instead
of working with a macro problem that encompasses so many moving parts, deal only with a focused
section of scope at a time. Smaller tasks are easier to implement. Instead of waiting a week to know
if you have successfully addressed the problem at hand, you can know in a matter of hours. This
enables a developer to build momentum and a sense of accomplishment.

 Use the Debugger as a Surgical Instrument

 Developers who do not use TDD tend to lean on the debugger as a primary development tool. For
most developers who do not employ TDD, the fi rst step in verifying code is often to watch that

CH014.indd 300CH014.indd 300 3/31/11 8:11:09 AM3/31/11 8:11:09 AM

code execute in the debugger and see what it does. For these developers the debugger is a blunt
instrument: a club they must use repeatedly to beat their code into shape. This approach is wasteful.

 The process of verifying code in the debugger is slow. Developers usually have to set the break
point several lines or even methods before the code they want to watch and step to the code in
question. Because a developer is required to step through the code and manually view and evaluate
the data, this process is slow. In the same amount of time it takes a developer to step through a unit
of functionality with the debugger and verify that the functionality is correct, you could run the
tests for all your features and know right away if they are working. Using a debugger also produces
inconsistent results. In most cases, the application requires some form of user interaction to get to
the functionality you need to verify, so there is room for error. You can easily input the wrong value
or press the wrong button.

 Developers who do use TDD tend to make conservative use of the debugger. The tests verify that the
code works; there is no need to watch it execute line by line in the debugger. If your tests are well
written and your code is simple, the debugger is simply not needed as often.

 When you use TDD, your use of the debugger is much more focused and narrow. Because the tests
isolate each unit of functionality, you know exactly where to look in your code for the defect. You
can set a break point in the immediate vicinity of the defect and go directly to the trouble spot in the
code. When you get there you know what you are looking for, because you have a failing test that
describes the error you are getting. After you locate the cause of the problem, you can write a test
that can be used to ensure that the problem does not occur again. The test is repeatable and fast,
which means that you can continue to verify that the code is working correctly repeatedly without
having to run the code in the debugger again.

 TDD BEST PRACTICES

 Ultimately, your practice of TDD should refl ect your needs and those of your development team
and application. There is a lot of room to customize your team ’ s approach and methodology when
practicing TDD. Most successful development teams follow similar strategies. In your continued
practice of TDD, you should remember these guidelines.

 Use Signifi cant Names

 Names are important. Good names make it easy to identify the purpose and function of a class,
method, or variable. Conversely, bad names make it almost impossible to identify the intent of these
objects. When naming your tests, be sure to be specifi c about what you are naming your classes and
test methods. Class and method names should clearly spell out the preconditions or assumptions
for your tests, the action or functionality you are testing, and what result you are looking for to
constitute a successful test. Keeping names descriptive is a key component of keeping your code
readable and maintainable.

 Write at Least One Test for One Unit of Functionality

 The fi rst D in TDD stands for driven. This means that before writing code to add functionality to an
application, you should write a test. By necessity this means that each unit of functionality has at least

TDD Best Practices ❘ 301

CH014.indd 301CH014.indd 301 3/31/11 8:11:10 AM3/31/11 8:11:10 AM

302 ❘ CHAPTER 14 CONCLUSIONS

one test. For many types of functionality, one test is not enough. Tests that test only the “ happy path ”
of your code are easy to write. Unfortunately, these tests often do not tell the whole story.

 It ’ s important to test your code not only for the acceptable range of input parameters, but also for
cases in which the inputs fall outside the acceptable regions. The fi rst step is to fi nd out from the
business what the acceptable range of input is for the method in question. Obviously, you should
test for values that fall squarely in this range. But you should also test the boundaries of that range.
Does the method work the same if you pass in the absolute minimum or maximum value for an
input parameter as it does when the value for this parameter is squarely between the minimum and
maximum? You should have a test to verify that. What about values that fall outside the defi ned
boundaries? Remember, all input is evil. You should test for values that fall outside the acceptable
range to ensure that your code can handle such occurrences gracefully.

 Keep Your Mocks Simple

 A strict mock has a set of rules or expectations as to in what order its methods are called, and how
many times (and with what arguments) its methods are called. I haven ’ t spent much time discussing
them in this book. That ’ s because in general I don ’ t like using strict mocks. The need for a strict
mock in a unit test indicates that the service or component being mocked may have a needlessly
complicated interface. The knowledge necessary to consume and mock this service or component
starts to blur the lines where a service or component ’ s internal functionality is encapsulated from
other classes. The functionality in question is abstracted for a reason: to make consumption easier.
A litany of rules that must be obeyed and therefore mocked for a service or component to be used
makes mocking that service or component diffi cult. It also results in brittle tests, because those rules
may change and would require a corresponding change in the test.

 In some situations, strict mocking is necessary. Certain services and components in the .NET
framework or other toolkits may have a more complex interface than you would like. In these cases
the framework or toolkit API is unlikely to change drastically (especially if you never upgrade it),
so the tests are not as brittle as if you were strictly mocking your own components or services. In
the end, a strict mock is better than no mock at all.

 In general, mocks should be kept simple. Do not mock more than you need to. An interface may
have a dozen methods, but you care about only one of them. Mock only the one you care about, and
leave the 11 other methods unmocked. This makes your tests easier to understand and ensures that
you are not writing more code than is necessary to make your test pass.

 THE BENEFITS OF TDD

 The primary benefi t of TDD is having a suite of tests that you can call on at any time to verify the
correct functionality of your application. This in itself is a tremendous benefi t. It ensures that
the application always works as described. A suite of passing tests ensures that as development
continues, existing functionality is not damaged. Other indirect benefi ts of TDD are worth noting:

 Better design — To really take advantage of TDD, your application should make liberal use
of the DI pattern. The use of DI promotes loose coupling in your application. No service or

➤

CH014.indd 302CH014.indd 302 3/31/11 8:11:10 AM3/31/11 8:11:10 AM

component is statically bound to another. This introduces a great deal of fl exibility in your
application, leaving it open to change and extension.

 Most practitioners of TDD employ the SOLID Principles. Whether this is by design or is a
side effect of writing testable code, the result is the same. The code that is written is easier
to understand, more maintainable, and extremely fl exible. This translates into code that
delivers a high degree of quality to the client.

 Fewer defects — By practicing TDD, you are writing working business code, not defects.
Because you have a suite of tests that accurately refl ect the business needs and requirements,
and because those tests pass, you can feel confi dent that your code contains few, if any,
defects resulting from the business requirements being incorrectly implemented. Defects
may still arise from defective or incomplete requirements. You handle these defects by fi rst
writing a test to identify them and then fi xing them. The existence of this test verifi es that
the defect will not return.

 The quality of your code is contingent on your tests. If they do not accurately refl ect your
application ’ s business requirements, they cannot demonstrate that your code has a high
degree of quality. It ’ s important to make sure that the same eye for quality that you apply
to your code is also applied to your tests.

 A relaxed team — Most developers do not like working with a codebase that is unstable
or diffi cult to understand. When an application is developed using TDD, you can use a
suite of tests to verify the correct functioning of the codebase at every step. Applications
that are built through TDD tend to be better designed, making it easier for developers to
quickly get up to speed and effect positive change in a codebase. This includes the tendency
for applications built with TDD to employ smaller, more focused classes that are easier to
work with. All this leads to fewer defects, which developers also like. In turn, this creates a
happy, more relaxed team that can be more productive.

 HOW TO INTRODUCE TDD IN YOUR TEAM

 TDD can be intimidating to some developers. This is especially true for developers who do not
spend the requisite amount of time away from work learning new technologies and techniques. The
TDD approach is quite a departure from the traditional way of developing software. This drastic
change can be diffi cult for some developers to understand and deal with. Some strategies can help
members of your development team understand and adopt TDD. Telling them about this book is a
good start. In addition, you can use some strategies to get your teammates interested in TDD.

 TDD is easiest to introduce in greenfi eld or new projects. When a project is being planned, or
development has just started, it ’ s easy to design the application around dependency injection (DI). If
you are just starting to develop a new project, start by introducing the team to DI. Adopting DI is a
big step, and for a team unfamiliar with TDD, DI is a good introduction to the principles they will
learn in their continued practice of TDD. As soon as the team understands and feels comfortable
using DI, begin introducing them to the idea of writing automated unit tests. After the team has
developed the needed skills to write unit tests, introduce the concept of test fi rst. Take small steps;
don ’ t overwhelm your team. Wait between each step until the team is comfortable with the new

➤

➤

How to Introduce TDD in Your Team ❘ 303

CH014.indd 303CH014.indd 303 3/31/11 8:11:11 AM3/31/11 8:11:11 AM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

304 ❘ CHAPTER 14 CONCLUSIONS

practice, pattern, or technology. There is no set timetable for this; you know your team, and you ’ ll
know when they are ready for the next step.

 Most developers work on brownfi eld projects — those that have been under development for some
time or are in maintenance mode. These projects are the most diffi cult to introduce TDD to. Most
of these applications do not employ DI, which makes true unit testing diffi cult. I do not advocate
stopping all feature development or maintenance on a system for a long period of time to introduce DI.
This is simply not cost - effective. A better approach is to start introducing the concepts of TDD
as you continue writing or maintaining the application. Add DI where you can and where it will
not damage or destabilize the application. As new features are written or defects fi xed, write tests
around this new work. Initially it will be easier to write integration tests instead of unit tests. That
is fi ne; integration tests are better than no tests at all. The book Working Effectively with Legacy
Code by Michael C. Feathers (Prentice Hall, 2004, ISBN: 9780131177055) provides many strategies
and techniques for testing in applications that were not built with testability in mind.

 Getting management buy - in for TDD can be a diffi cult task. TDD, especially for a developer
or development team who is learning it, represents a signifi cant learning curve that can make
initial development much slower. Managers are tasked with getting software delivered on time, at
or below budget. You must learn to speak to them about TDD in their language. A good tactic is
to demonstrate that although the upfront development takes longer, the dramatically lower defect
count after the application reaches QA and the higher customer satisfaction after the application is
deployed more than make up for the perceived slower start - up. Managers like charts and fi gures.
Quantify this information, and demonstrate real savings. Many studies on the Internet can support
your point. Take advantage of these. Show that TDD provides more value than development without
TDD, and your manager will have to pay attention.

 SUMMARY

 This book has taught you the principles and techniques of TDD. However, there is more to TDD
than what can be contained in any book. TDD is a journey, not a destination. This book can prepare
you to start the journey to becoming a TDD developer, but it is up to you to make it happen.

 You are the primary client of your code. The TDD approach can help you create and defi ne
interfaces to services and components that make development easy. As you write your tests, think
about how you are using the method or class under test. Does it make sense? Is it intuitive? Does
it require a lot of training or explanation to use properly? If you don ’ t like the answers to these
questions, consider redesigning the interface to make it better.

 Do not try to boil the ocean. Large tasks with lots of moving parts can be diffi cult to complete.
Break these larger tasks into smaller, simpler ones. Completing these smaller tasks makes the work
easier. Being able to complete several small tasks quickly will help you build momentum and feel a
sense of accomplishment.

 Through your practice of TDD, you ’ ll reap many benefi ts. Your application will have fewer defects,
because your code will refl ect your business requirements. As a side effect of the principles you ’ ll
employ to keep your code testable, you ’ ll enjoy a system of better - defi ned classes, interfaces, and
methods. Your code will represent the business ’ s needs and requirements, creating a happy user

CH014.indd 304CH014.indd 304 3/31/11 8:11:11 AM3/31/11 8:11:11 AM

base. Finally, your development team will enjoy the satisfaction of delivering a well - designed
application with a high - quality codebase.

 When introducing TDD to your team, start slowly. TDD is a dramatic change from what they
are used to. Start with DI, a bedrock principle of TDD. Once your team understands and feels
comfortable with DI, introduce the idea of writing tests. As your team becomes comfortable and
profi cient with each principle, practice, or technology, you can introduce the next one. Do not
introduce change too quickly. Keep your fi nger on the pulse of your team. When they are ready
for the next step, you ’ ll know.

Summary ❘ 305

CH014.indd 305CH014.indd 305 3/31/11 8:11:12 AM3/31/11 8:11:12 AM

CH014.indd 306CH014.indd 306 3/31/11 8:11:12 AM3/31/11 8:11:12 AM

TDD Katas

 WHAT ’ S IN THIS APPENDIX?

 The importance of practicing what you have learned in this book

 Why you must share your code with others

 How practicing the wrong thing wastes time

 The OSIM katas

 Kata is the Japanese word for practice. I fi rst heard the term when I was 8 and started taking
tae kwon do classes. A kata is a series of choreographed moves designed to help students
sharpen their technique and commit to memory specifi c patterns of attacks and blocks. If
you ’ ve ever seen two highly skilled and trained martial artists fi ght, you ’ ve no doubt noticed
the incredible speed with which they move and string together attacks and blocks. That is the
result of hours upon hours of kata.

 Practice makes perfect. Talent helps. But most athletes, musicians, and anybody else who has
achieved great success in their fi eld will tell you that practice is what turns the potential of
talent into the reality of success. In his book Outliers (Little, Brown and Company, 2008,
ISBN: 9780316017923), Malcolm Gladwell defi nes the “ 10,000 - Hour Rule. ” In short, the rule
states that the key to success is mostly a matter of practicing a specifi c task for approximately
10,000 hours. He makes a compelling argument, citing the success of the Beatles, Bill Gates,
and Tiger Woods.

 WORKING WITH TDD KATAS

 Practice is important for building the skills required to be a productive TDD developer. You
must master new technical skills such as dependency injection, MVC/MVVM, unit - testing
frameworks, and supporting frameworks such as NBehave. You also must make many mental

➤

➤

➤

➤

 APPENDIX

BAPP01.indd 307BAPP01.indd 307 3/31/11 8:11:53 AM3/31/11 8:11:53 AM

308 ❘ APPENDIX TDD KATAS

adjustments when approaching TDD, such as adopting the SOLID Principles and becoming
comfortable with the idea of test - fi rst development.

 For the purposes of creating a TDD kata, this appendix provides a series of user stories for the OSIM
application. This application is sparse and incomplete by design. My hope is that you will take
these user stories and complete the OSIM as a form of kata. Do it once. Then do it again. Then do
it again. Keep doing it until you are comfortable with your TDD skills. This is especially necessary
if you are not currently working in an environment that supports TDD. Your skill is like a saw. It
could be made by the best craftsman using the fi nest materials, but if you do not maintain it, it will
not stay sharp for long.

 SHARE YOUR WORK

 Several years ago I started playing ice hockey. A big part of hockey (I would say 90%) is the ability
to skate. I already knew how to skate a bit, but I hadn ’ t really reached a level where I could be
competitive. I started practicing in earnest; I grabbed every bit of available ice time and spent hours
practicing. I was getting pretty good, but one thing still bothered me: my turns. A professional hockey
player can make tight, fast turns without losing any speed. I wanted to be able to do that, so I spent
countless hours practicing. The problem is I never got any better at it. I didn ’ t understand. I thought I
was doing exactly what I saw everybody else doing, so why wasn ’ t I improving? It became frustrating.

 One day I was at an open practice, and I spoke to a friend who does some coaching. I explained my
problem and asked if he could help. He had me skate out and make a few turns. He knew right away
what my problem was: My feet were too far apart. I made the prescribed change to my technique,
and before long I could make turns the way I wanted. I would never have known that if someone
hadn ’ t looked at what I was doing and given me another perspective.

 It ’ s the same with software development — specifi cally, learning a new technique such as TDD. It ’ s
important to share your code with others. Other people will see problems that you are blind to.
Other people will have a viewpoint you have not considered. Other people will see sloppy technique
creeping in where you think you are being honest. Other people will be able to see where you might
be going wrong in work that you are emotionally attached to. Do not underestimate the power
of sharing your work and getting feedback from others. I spent many hours practicing the wrong
way to turn. That was a huge waste of time and effort. Do not make the same mistake I did; start
showing your code to others as soon as possible.

 OSIM USER STORIES

 The following is a list of user stories for the OSIM application. Notice that they describe only
the system ’ s desired functionality, not how it should be implemented. It ’ s up to you to make that
decision. Make a copy of the OSIM application, and start implementing these user stories. Add
some user stories of your own if you feel you need to practice a specifi c area. When you are done
and have shown the code to someone else, throw it out and start over.

 The user must be able to log into the application and be authenticated.

 The user must be able to log out of the application.

➤

➤

BAPP01.indd 308BAPP01.indd 308 3/31/11 8:12:00 AM3/31/11 8:12:00 AM

 The user must be able to view a list of available item types.

 The user must be able to add item types to the system.

 The user must be able to delete item types from the system.

 The user must be able to log in new inventory and record the quantity received.

 The user must be able to log out inventory as being distributed.

 The system must keep track of what supplies (type and quantity) are distributed to
which department.

 The system must keep track of a per - item internal price for each item type (the price the
supply department charges other departments for supplies).

 The system must keep a running total of current inventory.

 The system must keep a running total of each department ’ s monthly supply bill.

 The system must allow users to specify a reorder level for each item type.

 The system must alert the users when the current stock of an item type has fallen below
the reorder level.

 The system must prepare a bill for each department on a monthly basis.

 The system must keep track of the per - item vendor price for each item type (the price the
external vendor charges for each item).

 The system must produce a monthly usage report (how many of each item were distributed).

 The system must produce a monthly cost report (how much was paid to external vendors,
and for what).

 The system must produce a monthly internal revenue report (how much was paid by
internal departments, and for what).

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

OSIM User Stories ❘ 309

BAPP01.indd 309BAPP01.indd 309 3/31/11 8:12:01 AM3/31/11 8:12:01 AM

BAPP01.indd 310BAPP01.indd 310 3/31/11 8:12:01 AM3/31/11 8:12:01 AM

INDEX

bindex.indd 311bindex.indd 311 3/31/11 8:12:43 AM3/31/11 8:12:43 AM

bindex.indd 312bindex.indd 312 3/31/11 8:12:48 AM3/31/11 8:12:48 AM

313

INDEX

A

AAA (arrange, act, and assert) method
in mocking frameworks, 285
in Rhino Mocks, 286

abstraction
of data access layer, 108
Dependency Inversion Principle (DIP)

and, 52
polymorphism and, 48–49

accessing data, 108
accountability, principles of TDD, 7
Adaptive Software Development, 7
ADO.NET

issues with dependencies in, 108
using repositories with, 109

Agile Manifesto, 6–7
agile methodologies

applying to application development, 123
estimating in, 124
history of, 6–7
integration tests in, 22
iterative cycles in, 124–127
overview of, 6
TDD approach based on, 299
user stories in, 120

antipatterns. See code smells
APIs, simplicity and focus of, 9
application development project

applying agile process to, 123
choosing frameworks, 129–131
choosing technology, 120
collecting user stories, 120–122
communicating with team, 126
creating project, 129

creating Visual Studio solution, 132–134
defi ning product backlog (PB), 122–123
defi ning project, 118
defi ning structure, 131
defi ning target environment, 119–120
developing project overview, 118–119
ending iterations, 128–129
estimating and, 124
iterative cycles in, 124–127
organizing folders, 131–132
overview of, 117
summary, 134–135

architectural tool, WCF services as, 228
arrange, act, and assert (AAA) method

in mocking frameworks, 285
in Rhino Mocks, 286

ASP.NET
MVC. See Model-View-Controller (MVC)
Web Forms. See Web Forms

ASPX fi les, in organizing Web Forms,
198–199

assemblies, libs folder for third-party,
131–132

asserts, NUnit
function of, 26–27
list of common, 27–28

Autofac, as dependency injection framework,
294–295

automapper, 130

B

BA (business analyst)
participation in Iteration Zero, 127
value in collecting user stories, 121

bindex.indd 313bindex.indd 313 3/31/11 8:12:48 AM3/31/11 8:12:48 AM

314

base classes
inheritance and, 46–47
polymorphism and, 48

behavior-driven development (BDD)
class and method names, 143
names/naming, 184
NBehave framework for BDD-style tests,

149
test names and, 139

boundaries, unit tests and, 20–21
breakpoints, in debugging, 74
brownfi eld development, integration tests and,

171
browser-based applications, Silverlight for, 245
bugs. See also debugging; defects

correcting refactoring defects, 91–93
preventing recurring bugs in TDD, 10

business analyst (BA)
participation in Iteration Zero, 127
value in collecting user stories, 121

Business Driven Development style, 11
business requirements (functional)

changes to, 267
defi ning projects and, 118
determining, 126
features satisfying, 123
fi delity of code to, 9
project overview and, 118–119
starting with, 75
tests mirroring, 170
user stories as basis of, 120–121
writing only for current requirements, 149

business rules, user stories as basis
of, 120

BusinessService class, 98–99

C

Caliburn.Micro
convention over confi guration in, 249
framework for working with MVVM

pattern, 248
set up for, 262–263

camel case, in naming tests, 140

changes. See also defects
adding new features, 268–269
ending iterations and, 128
handling, 268
overview of, 267
summary, 276–277

CI (continuous integration) servers, 127
class libraries, in organization of project

structure, 133
classes

bad names as code smell, 56–57
basing on tests, 170
big classes resulting in code smells, 54–55
extracting for refactoring patterns, 60–62
inheritance and, 46
polymorphism and, 48
renaming during refactoring, 66–67
setting up for unit tests, 141–142
similar classes resulting in code smells, 53–54
Single Responsibility Principle (SRP) and, 50
storing test classes in same .cs fi le, 142
test fi xture and, 25

Clear Case, in history of agile methodologies, 7
client interviews, for collecting user stories,

121–122
code

benefi ts of TDD, 9
changing/correcting, 272–276
developers as fi rst client of, 300
duplication resulting in code smells, 53–54
metrics for measuring quality of, 43–45
MVVM pattern facilitating reuse, 246
OOP principles for clean code, 45–48
quality of code base in TDD principles, 7
refactoring. See refactoring
removing unused, 9
services as, 228
writing simplest code possible, 148–157

code coverage tests
metrics for, 43–44
nCover tool for, 295

Code Rush, 280
code smells

bad names as, 56–57

base classes – code smells

bindex.indd 314bindex.indd 314 3/31/11 8:12:48 AM3/31/11 8:12:48 AM

315

big classes and big methods resulting in,
54–55

comments as, 55–56
duplication of code and similar classes

resulting in, 53–54
feature envy resulting in, 57–58
overuse of If Then Else structure and
Switch case structures, 58–59

overuse of Try/Catch blocks, 59–60
overview of, 52–53
violation of Single Responsibility Principle

and overly long method, 89
code-behind

coupling user interface with logic, 246
diffi cult of maintaining applications based

on, 245
keeping it clean and simple, 209
in organization of Web Form, 198–199

comments, as code smells, 55–56
communication

with development team, 126
encouraging between developers and

users, 9
principles of TDD, 7

Cone of Uncertainty, 124
continuous integration (CI) servers, 127
control systems, as alternative to comments in

tracking, 56
controllers, MVC

creating, 215
injecting dependency of repository into,

217–220
overview of, 211

create, read, update, delete (CRUD) operations,
in ASP.NET, 198

.cs fi le, storing class tests in, 142
cyclomatic complexity, metrics for measuring

quality, 44–45

D

data
persistence of, 109, 152–155
repository pattern for isolating, 108–109

data access layer, abstracting, 108
data stores

abstracting the data access layer, 108
repository pattern for isolating data, 109

Database Management System (DBMS), 108
databases

db folder for, 132
managing in integration testing, 171–172
moving database issues out of business

code, 108
db folder, 132
DBMS (Database Management System), 108
debugging

breakpoints in, 74
correcting refactoring defects, 91–93
PEX resolving code failures, 296
preventing recurring bugs in TDD, 10
surgical use of debuggers, 300–301
test runner including debugging capability,

280
defects

addressing, 269–270
changing/correcting code, 272–276
correcting refactoring defects, 91–93
ending iterations and, 128
fewer defects as benefi t of TDD, 303
overview of, 267
PEX resolving code failures, 296
preventing recurring bugs in TDD, 10
“shotgun approach” to correcting, 74
summary, 276–277
testing for, 270–272
verifying correction of, 276

dependencies
decoupling with mock objects, 28
issues with ADO.NET, 108
limiting number of, 35
managing using dependency injection, 97
mocking and, 30–31
problems with static dependencies, 98
refactoring WCF services to accept, 229

dependency injection (DI)
interfaces and, 101
issues with dependencies, 98–99

code-behind – dependency injection (DI)

bindex.indd 315bindex.indd 315 3/31/11 8:12:49 AM3/31/11 8:12:49 AM

316

dependency injection (DI) (continued)
mocking and, 35
Ninject for, 101–107, 174–177
of repository into controller, 217–220
services and, 228

dependency injection frameworks
Autofac, 294–295
overview of, 289
Structure Map, 289–291
Unity, 291–292
Windsor, 293

Dependency Inversion Principle (DIP), 52
derived classes

inheritance and, 46–47
polymorphism and, 48

design
benefi ts of TDD, 302–303
deferring details of, 7
TDD as design methodology, 8

design by contract, Liskov Substitution Principle
(LSP) and, 51

desktop-based applications, WPF for, 245
Developer Express

Code Rush, 280–281
running tests with, 280–281

developers/development
Adaptive Software Development, 7
application development project. See

application development project
behavior-driven development (BDD). See

behavior-driven development (BDD)
Feature Driven Development, 6–7
software development. See software development
TDD as development practice, 8–9
test fi rst. See TDD (Test-Driven

Development), introduction to
waterfall approach to, 5–6
work fl ows in traditional, 74

DI. See dependency injection (DI)
DIP (Dependency Inversion Principle), 52
docs folder, for documentation, 132
Document Object Model (DOM), 220
documentation, docs folder for, 132
DOM (Document Object Model), 220

domain-specifi c languages (DSLs), 140
DRY (don’t repeat yourself)

applying to tic-tac-toe game, 31–32, 83, 86,
99–100, 120

metrics for measuring quality of code, 44, 52,
231–236

DSLs (domain-specifi c languages), 140
dummy objects, mocking external resources,

29–35

E

Easy Mock, 36
encapsulation

of fi elds, 67–68
OOP principles for clean code, 45–46

end-to-end tests
overview of, 191
state of environment and, 171

Entity Framework, repositories for managing
data persistence, 109

environment
defi ning target environment in application

development, 119–120
resistance to and acceptance of change in

working environments, 296
that are resistant to or acceptant of change,

297
errors. See defects
estimating, application development and, 124
exception handling. See also defects

not permitting users to see unhandled
exception, 271

overuse of Try/Catch blocks, 59–60
Extensible Application Markup Language

(XAML), 245
external resources

databases, 172
end-to-end tests and, 172
integration tests and, 170–171
mocking. See mocking external resources

Extreme Programming (XP)
history of agile methodologies, 6–7
test-fi rst programming in, 8

dependency injection (DI) – Extreme Programming (XP)

bindex.indd 316bindex.indd 316 3/31/11 8:12:50 AM3/31/11 8:12:50 AM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

317

F

factory objects, in OOP (object oriented
programming), 100

factory patterns, dependency injection and,
100, 289

fake objects
compared with Dummy objects, 31
when to use, 34

fearless refactoring, 42
Feature Driven Development, 6–7
feature envy, resulting in code smell, 57–58
features

adding new, 268–269
addressing defects in, 269–270
breaking user story into, 138
developing, 123
starting at core and building out, 139
user stories as basis of, 120

fi elds
encapsulation of, 67–68
renaming, 66–67

fi xes, addressing defects, 270
Fluent NHibernate (FNH). See also NHibernate

commands in, 155–156
for data persistence, 152–155
defi nition of, 130
as object relational mapper (ORM), 179

folders
naming conventions, 133
organizing for application development

project, 131–132
frameworks

for BDD-style tests, 149
choosing for application development,

129–131
data persistence and, 152–155
dependency injection, 99–107
JavaScript, 221–226
mocking, 36–40, 112–113
open-source, 129–130
for working with MVVM pattern, 248

front ends, organization of project structure,
133–134

functional requirements. See business
requirements (functional)

G

Gallio, running tests with, 281–282
gold plating

adding unnecessary functionality, 77
resisting, 158

H

“happy path” tests
limitations of, 302
mistrusting, 166

helper methods, Web Forms, 206–208
HTTP, as WCF transporter, 244

I

If Then Else structure, overuse resulting in
code smells, 58–59

IL (Intermediate Language), in Type Mock,
287

infrastructure, defi ning target environment
in application development. See also
environment, 119

inheritance
OOP principles for clean code, 46–48
Open/Close Principle (OCP) and, 50
writing fi rst test and, 142

integration tests
in agile methodology, 22
combining separate unit tests, 76
creating, 183–190
creating NHibernate confi guration,

177–179
creating NHibernate mapping, 179–182
during development process, 21
end-to-end and unit tests compared with,

191
how to write, 172
integrating early and often, 170–171
interacting with external resources, 171

factory objects, in OOP (object oriented programming) – integration tests

bindex.indd 317bindex.indd 317 3/31/11 8:12:50 AM3/31/11 8:12:50 AM

318

integration tests (continued)
ItemTypeRepository and, 173–174
keeping separate from other types of tests, 191
managing databases in, 171–172
Ninject for dependency injection, 174–177
in organization of project structure, 133
overview of, 169
state of environment and, 171
summary, 192–193
when and how to run, 191–192

Interface Segregation Principle (ISP), 51–52
interfaces

adding business classes to tests, 146
defi nition of, 51
Dependency Injection (DI) and, 101
designing for interface not implementation, 35
extracting for refactoring, 60–62
Interface Segregation Principle (ISP), 24,

51–52
services as, 229

Intermediate Language (IL), in Type Mock, 287
interviews, for collecting user stories, 121–122
Inversion of Control pattern

dependency injection and, 289
Dependency Inversion Principle (DIP), 52
in Unity, 292

ISP (Interface Segration Principle), 51–52
ISP (Interface Segregation Principle), 78
ItemTypeRepository

integration tests and, 173–174
unit tests and, 172

Iteration Zero
overview of, 127
tasks in, 125
tests in, 127–128

iterative cycles
ending, 128–129
incremental approach to development, 6
Iteration Zero, 125, 127–128
length of, 124–125
planning, 125
principles of TDD and, 7
when to start, 126
in writing code, 76

J

JAD (joint application design) session, for
collecting user stories, 121–122

JavaScript
overview of, 220–221
testing frameworks for, 221–226

JetBrains Resharper, 150, 201
joint application design (JAD) session, for

collecting user stories, 121–122
jsUnit, 221
JUnit, 24

K

katas (practices), in TDD
overview of, 307
sharing your work, 308
user stories for practice application, 308–309
working with TDD, 307–308

L

learning curve, choosing frameworks and, 130
libraries

asserts in NUnit library, 27–28
in organization of project structure, 133
simplicity and focus of in TDD, 9

libs folder, for third-party assemblies,
131–132

line-of-code counts, for measuring quality of
code, 44

Liskov Substitution Principle (LSP), 51
logic, adding to Web Forms, 208–210
long-running processes, simulating with Moq

framework, 37–40
loose coupling, isolating data with repository

pattern, 108
LSP (Liskov Substitution Principle), 51

M

mainframe computers, in history of software
development, 4

integration tests – mainframe computers, in history of software development

bindex.indd 318bindex.indd 318 3/31/11 8:12:51 AM3/31/11 8:12:51 AM

319

maintainability
developers and, 74
refactoring for, 43

MbUnit
Gallio support for, 281
MSTest support for, 282–283
TestDriven.NET support for, 280
unit-testing with, 283–284

meetings, wikis as alternative to, 126
methods

bad names as code smell, 56–57
based on tests, 170
big methods resulting in code smells, 54–55,

89
extracting for refactoring patterns, 62–66,

90, 92
renaming in refactoring patterns, 66–67
Single Responsibility Principle (SRP), 50

metrics
for code quality, 43–45
in stress testing, 23

Microsoft ASP.NET MVC. See Model-View-
Controller (MVC)

Microsoft Expression Blend, 246
Microsoft Message Queueing (MSMQ), 244
mini-computers, in history of software

development, 4
mock objects

example of, 32–34
use in long-running process, 36–40
using with views, 204
when to use, 34

mocking external resources
abstracting the data access layer, 108
best/worst practices, 35
decoupling with, 28
dependency injection and, 98–99
Dummy, Fake, Stub, and Mock objects,

29–35
importance of, 28–29
injecting the repository, 109–112
isolating data with repository pattern, 108–109
keeping mocks simple, 302
mock objects, 28–29

Moq framework, 36–40
moving database issues out of business

code, 108
overview of, 97
repository mocks, 112–113
stub objects in WCF services, 239–243
stub objects in Web Forms project, 202
summary, 113–114
working with dependency injection

frameworks, 99–107
mocking frameworks

Easy Mock, 36
overview of, 285
Rhino Mocks, 285–287
Type Mock, 287–289

model
in MVC structure, 211
in MVVM pattern, 246–248

Model-View-Controller (MVC)
aspects of, 211
creating fi rst test, 213–215
creating fi rst view, 216–217
creating project with, 212–213
creating testable applications with, 245
defi nition of, 130
fi rst test with, 200–204
history of, 210–211
injecting repository into controller, 217–220
open source MVC Contrib Project, 220
passing fi rst test, 215
summary, 220, 226
version 3.0, 211

Model-View-Presenter (MVP)
fi rst test, 200–204
implementing TDD with, 199
overview of, 199
Web Forms, 199

Model-View-ViewModel (MVVM)
how it makes WPF and Silverlight

applications testable, 248–261
overview of, 246–248
setting up Caliburn.Micro framework for,

262–263
modules, storing rules in, 101

maintainability – modules, storing rules in

bindex.indd 319bindex.indd 319 3/31/11 8:12:51 AM3/31/11 8:12:51 AM

320

Moq framework
arrange, act, and assert (AAA) method and,

285
creating mocks and stubs, 36–40
defi nition of, 130
mocking repository with, 112–113
overview of, 36
writing simplest code possible to pass test,

154–157
MSTest

TestDriven.NET support for, 280
unit-testing with, 282–283

MVC. See Model-View-Controller (MVC)
MVC Contrib Project, 220
MVP. See Model-View-Presenter (MVP)
MVVM. See Model-View-ViewModel (MVVM)
MVVM Foundation, 248
MVVM Light, 248

N

named pipes, WCF and, 244
names/naming

bad names as code smell, 56–57
organization of project structure, 133
renaming variables, fi elds, methods, and

classes in refactoring patterns, 66–67
of tests, 139–140
using signifi cant names, 301

NBehave
Because_of method, 143
defi nition of, 130
framework for BDD-style tests, 149
Gallio support for, 281
making test code more readable, 144
writing NUnit asserts, 26–27
writing tests in BDD style, 140–141

nCover, testing code coverage with, 295
negative tests, in test fi rst development, 9
.NET

choosing frameworks for application
development, 130

mocking frameworks, 36
unit testing frameworks, 24

NHibernate
commands in Fluent NHibernate,

155–156
creating confi guration, 177–179
creating mapping, 179–182
data persistence with Fluent NHibernate,

152–155
defi nition of Fluent NHibernate, 130
repositories for managing data

persistence, 109
Ninject

defi nition of, 130
for dependency injection, 174–177
example using, 101–107
extension for WCF services, 231–236
using Ninject Standard Kernel, 188

nonfunctional requirements
changes to, 267
defi ning target environment in application

development, 119–120
determining, 126
features not violating, 123

NUnit
adding business classes to tests, 144–148
asserts in, 26–28
defi nition of, 130
Gallio support for, 281
as mocking framework, 36
setting up classes for unit testing,

141–142
Setup attribute, 25–26
test running GUI in, 279
TestDriven.NET support for, 280
as unit test framework, 24
writing test logic, 142–143

O

object oriented programming (OOP)
encapsulation, 45–46
inheritance, 46–48
principles for clean code, 45
SOLID principles and, 49–52
use of factory objects in, 100

Moq framework – object oriented programming (OOP)

bindex.indd 320bindex.indd 320 3/31/11 8:12:52 AM3/31/11 8:12:52 AM

321

object relational mappers (ORMs)
choosing application technology, 120
creating repositories, 109
for data persistence, 152–153
Fluent NHibernate as, 179

object-to-data-table mapping. See object
relational mappers (ORMs)

OOP. See object oriented programming (OOP)
Open/Close Principle (OCP), 50, 98
open-source frameworks, 129–130
operating systems, choosing application

technology, 120
ORMs. See object relational mappers (ORMs)

P

patterns
antipatterns. See code smells
in dealing with code smells, 60
dependency injection as alternative to factory

patterns, 100
encapsulating fi elds, 67–68
extracting classes or interfaces, 60–62
extracting methods, 62–66, 90, 92
Inversion of Control, 52, 289, 292
MVC. See Model-View-Controller (MVC)
MVP. See Model-View-Presenter (MVP)
MVVM. See Model-View-ViewModel

(MVVM)
renaming, 66–67
replacing conditional with polymorphism,

68–71
repository. See repository pattern
solutions to code smells, 52
working with dependency injection

frameworks, 99–107
PB. See product backlog (PB)
performance metrics, in stress testing, 23
persistence, of data

ORM and FNH frameworks for, 152–155
repositories used for managing, 109

PEX (program extensions), 295–296
platforms, choosing application technology,

120

plumbing code, 129
PM. See project manager (PM)
polymorphism

Liskov Substitution Principle (LSP) and, 51
OOP principles for clean code, 48–49
removing control structures, 45
replacing conditional with, 68–71

practices
introduction to TDD, 7–8
katas. See katas (practices), in TDD

predictability, of unit tests, 21–22
principles, TDD, 7–8
Prism framework, for working with MVVM

pattern, 248
private methods, not mocking, 35
product backlog (PB)

adding new features to, 268
estimation during, 124

program extensions (PEX), 295–296
project lifecycle, refactoring and, 42–43
project manager (PM)

defi ning project backlog, 123
estimating and, 124
iterative approach of, 125
participation in Iteration Zero, 127
role in collecting user stories, 121

projects
application development. See application

development project
creating with MVC, 212–213
developing overview of, 118–119
laying out Web Form project, 200
preparing for, 118
stub objects in Web Form project, 202

Q

QA (quality assurance)
testing in Iteration Zero, 127–128
tools in history of TDD, 5
triangulating tests for, 166
user interface tests and, 22
work fl ows in traditional development, 74

qUnit, 221

object relational mappers (ORMs) – qUnit

bindex.indd 321bindex.indd 321 3/31/11 8:12:52 AM3/31/11 8:12:52 AM

322

R

randomization, unit tests and, 22
“red, green, refactor” practice

green phase, 78
overview of, 76
red phase, 77
refactoring phase, 43, 79

red phase, tests failing during, 77
Refactor tool, 201
refactoring

applying to unit tests, 162–163
bad names, 56–57
big classes and big methods, 54–55
code smells and, 52–53
comments, 55–56
defects, 274–276
Dependency Inversion Principle (DIP)

and, 52
duplicate code and similar classes, 53–54
encapsulation rule for clean code, 45–46,

67–68
extracting classes or interfaces in, 60–62
extracting methods in, 62–66
feature envy, 57–58
to improve code, 165–166
inheritance in writing clean code, 46–48
Interface Segregation Principle (ISP), 51–52,

122–123
Liskov Substitution Principle (LSP), 51
maintainability and, 43
metrics for measuring code quality, 43–45
OOP principles for clean code, 45
Open/Close Principle (OCP), 50
overuse of if then else structure and
switch case structures, 58–59

overuse of Try/Catch blocks, 59–60
overview of, 41
patterns for dealing with code smells, 60
polymorphism in writing clean code,

48–49
project lifecycle and, 42–43
reasons for using, 42
refi ning code by, 79

renaming variables, fi elds, methods, and
classes, 66–67

replacing conditional with polymorphism,
68–71

Single Responsibility Principle (SRP), 50
SOLID principles, 49
summary, 71–72
type inference and, 71
WCF services, 229–230

refactoring example (tic-tac-toe game)
applying to unit tests, 85–87, 88–91
correcting defects, 91–93
overview of, 79
tests for fi rst feature, 80–83
tests for fourth feature of tic-tac-toe game,

93–94
tests for second feature, 83–85
tests for third feature, 87–88

regression testing
following changes to application, 268
in TDD, 10

repository pattern
dependency injection (DI) and, 109–112
isolating data with, 108–109
mocking the repository, 112–113

Resharper
from JetBrains, 150
as refactoring tool, 201

reuse, MVVM pattern facilitating code reuse,
246

Rhino Mocks, as mocking frameworks, 36,
285–287

S

Screw Unit, as JavaScript testing framework,
221

Scrum, in history of agile methodologies, 6–7
services, WCF

overview of, 227
problem areas, 244
refactoring for testability, 229–230
stubbing dependencies in, 239–243
summary, 244

randomization – services, WCF

bindex.indd 322bindex.indd 322 3/31/11 8:12:53 AM3/31/11 8:12:53 AM

323

testing, 228
using dependency injection with, 231–236
verifying results, 243–244
writing test for, 236–239

Setup attribute, defi ning methods for tests,
25–26

shadowing, collecting user stories, 121
sharing your work, 308
“shotgun approach,” to correcting defects, 74
Silverlight

applying MVVM pattern, 261–263
diffi culty in testing user interface, 246
facilitating application tests, 248–261
overview of, 245

Single Responsibility Principle (SRP)
accommodating separation of concerns in

coding, 75–76
dependencies and, 98–99
example of violation of, 53–54
overuse of Try/Catch blocks, 60
overview of, 50
pragmatic application when writing unit

tests, 143
testing one thing at a time, 21
in tic-tac-toe example, 89

smart objects, in ADO.NET, 108
SMEs (subject matter experts), 127
software development

history of, 4–5
iterative (incremental) approach to, 6
repetitive tasks in, 129
waterfall approach to, 5–6

SOLID principles
Dependency Inversion Principle (DIP), 52
focus on contracts and interfaces instead of

concrete implementations, 146
guidelines for well-written/maintainable

applications, 299
Interface Segration Principle (ISP), 51–52
Interface Segregation Principle (ISP),

217–220
Liskov Substitution Principle (LSP), 51
maintainability and extensibility of

applications, 268

Model-View-Presenter (MVP) pattern and,
199

Open/Close Principle (OCP), 50
overview of, 49
pragmatic approach to writing unit tests, 143
Single Responsibility Principle (SRP), 50
in writing code, 9

source code, src folder for, 131
spy, use in mocking, 35
src folder, for source code, 131
SRP. See Single Responsibility Principle (SRP)
stakeholders, behavior-driven development

and, 139
step by step approach, to tasks, 300
stress tests, 22–23
structure, defi ning for application development

project, 131
Structure Map, as dependency injection

frameworks, 289–291
stub objects

applying in test example, 163
example of use of, 31–32
in long-running processes, 36–40
use with WCF service, 239–243
use with Web Forms, 202
when to use, 34–35

subject matter experts (SMEs), 127
Switch case structures, overuse resulting in

code smells, 58–59

T

target environment, defi ning for application
development project, 119–120

tasks, step by step approach to, 300
TCP, as WCF transporter, 244
TDD (Test-Driven Development), introduction to

agile methodologies and, 6–7
benefi ts of, 9–10
as design methodology, 8
as development practice, 8–9
history of software engineering and, 4–6
overview of, 3
principles and practices, 7–8

Setup attribute – TDD (Test-Driven Development)

bindex.indd 323bindex.indd 323 3/31/11 8:12:53 AM3/31/11 8:12:53 AM

324

team
benefi ts of TDD to, 303
communicating with, 126
introducing TDD to, 296, 303–304
working environments and, 296

technology, choosing for application development
project, 120

test fi xture
MSTest, 282–283
test methods in, 25

test runners
Developer Express, 280–281
Gallio, 281–282
overview of, 279
TestDriven.NET, 280

testability
MVVM pattern facilitating, 246
in TDD, 10

TestDriven.NET, 280
test-fi rst development

project lifecycle and, 42
TDD as development practice, 8–9
writing tests and, 73–74
in XP (Extreme Programming), 8

tests. See also by individual types
acceptable range and, 302
adding business classes, 144–148
adding new features and, 269
adding test logic, 142–143
Business Driven Development style, 11
for defects, 270–272
as driving factor in development, 74–76
at end vs. at beginning, 73
for features generally, 123
green phase, 78
naming, 139–140
organizing project structure, 133
overview of, 140
“red, green, refactor” practice, 76
red phase, 77
refactoring phase, 79
running the passing test, 157–158
setting up classes for, 141–142
summary, 94–95

test-fi rst development, 73–74
triangulating to ensure quality, 10–17, 166
types of, 22–24
verifying defect correction, 276
writing at least one test for each unit of

functionality, 301–302
writing fi rst, 138–139
writing second test, 158–165
writing simplest code possible to pass,

148–157
tests, for tic-tac-toe game

correcting defects, 91–93
for fi rst feature, 80–83
for fourth feature, 93–94
for second feature, 83–85
for third feature, 87–88

tests, JavaScript, 221–226
tests, MVC

passing fi rst, 215
writing fi rst, 213–215

tests, Web Forms
additional tests, 204–206
fi rst test, 200–204

tier structure, defi ning target environment in
application development, 119–120

tools
Autofac, 294–295
dependency injection frameworks, 289
Developer Express, 280–281
Gallio, 281–282
MBUnit, 283–284
mocking frameworks, 285
MSTest, 282–283
nCover, 295
overview of, 279
PEX, 295–296
Rhino Mocks, 285–287
Structure Map, 289–291
summary, 297–298
test runners, 279
TestDriven.NET, 280
Type Mock, 287–289
unit-testing frameworks, 282
Unity, 291–292

team – tools

bindex.indd 324bindex.indd 324 3/31/11 8:12:54 AM3/31/11 8:12:54 AM

325

Windsor, 293
xUnit, 284–285

tracking, control systems as alternative to, 56
transparency, principles of TDD, 7
transport, WCF, 244
Try/Catch blocks, overuse resulting in code

smells, 59–60
type inference, 71
Type Mock, as mocking frameworks, 36,

287–289

U

UATs (user acceptance tests), 23–24
UI. See user interface (UI)
unit tests (UTs)

adding business classes, 144–148
best/worst mocking practices, 35
characteristics of, 20
deriving from business requirements, 75
Dummy, Fake, Stub, and Mock objects in,

29–35
end-to-end tests and integration tests

compared with, 191
function of in TDD, 169
integration tests compared with, 171, 184
isolation and integration of, 76
making WPF/Silverlight applications testable,

248–261
Moq framework and, 36–40
NUnit for, 24–28
options for arranging classes, 10–11
organizing project structure, 133
overview of, 19
PEX for generating from existing code,

295–296
refactoring, 42, 79, 162–163
refactoring for tic-tac-toe game, 85–87,

88–91
setting up classes for, 141–142
state of environment and, 171
storing class tests in same .cs fi le, 142
summary, 40
test runners, 279–282

what they are, 19–20
what they are not, 20–22
writing for WCF service, 236–239
writing test logic, 142–143

unit-testing frameworks
MBUnit, 283–284
MSTest, 282–283
overview of, 282
xUnit, 284–285

Unity, as dependency injection frameworks,
291–292

user acceptance tests (UATs), 23–24
user interface (UI)

diffi culty in testing for WPF or Silverlight
applications, 246

QA testing and, 5
starting development at UI layer, 139
testing, 22

user stories
collecting for application development

project, 120–122
example for practice application, 308–309
using MVVM pattern and, 249

user stories, implementing
choosing fi rst test, 138–139
naming tests, 139–140
overview of, 137–138
refactoring to improve code, 165–166
running the passing test, 157–158
summary, 166–167
triangulating tests to ensure quality of code,

28–29, 166
writing fi rst test, 140–148
writing second test, 158–165
writing simplest code possible to pass test,

148–157
UTs. See unit tests (UTs)

V

var keyword, type inference and, 71
variables

bad names as code smell, 56–57
renaming in refactoring patterns, 66–67

tracking – variables

bindex.indd 325bindex.indd 325 3/31/11 8:12:54 AM3/31/11 8:12:54 AM

326

view engines, 216
ViewModel, MVVM

overview of, 246–248
testing, 249

views, MVC
creating fi rst view, 216–217
overview of, 211

views, MVVM, 246–248
Visual Studio

coding assistance tool for, 280–281
creating project solution, 132–134
defi ning project structure, 131
MSTest included with, 282
organizing project folders, 131–132
TestDriven.NET integration with, 280

W

waterfall approach, to software development
overview of, 5–6
UATs (user acceptance tests) and, 23–24

WCF. See Windows Communication
Foundation (WCF)

Web, TDD on
ASP.NET Web Forms. See Web Forms
JavaScript and. See JavaScript
MVC and. See Model-View-Controller

(MVC)
overview of, 197

Web Forms
adding logic to, 208–210
additional tests, 204–206
ASPX fi les and code behind fi les, 198–199
fi rst test, 200–204
helper methods, 206–208
implementing TDD with MVP and, 199
organization of, 198
overview of, 197–198
project layout, 200
summary, 226

wikis, communicating with team via, 126
Windows Communication Foundation (WCF)

defi nition of, 130
overview of, 227

problem areas, 244
refactoring for testability, 229–230
services, 228
stubbing dependencies, 239–243
summary, 244
testing services, 228
using dependency injection with services,

231–236
verifying results, 243–244
writing test for, 236–239

Windows Presentation Foundation (WPF)
applying MVVM pattern to, 261–263
defi nition of, 130
diffi culty in testing user interface, 246
facilitating testing of WPF applications,

248–261
overview of, 245
summary, 263

Windsor, as dependency injection framework,
293

work fl ows, in traditional development, 74
working environments, teams and, 296
WPF. See Windows Presentation Foundation

(WPF)
writing code

inheritance in writing clean code,
46–48

iterative cycles in, 76
just enough to pass tests, 78, 148–157
polymorphism in writing clean code,

48–49
SOLID principles in, 9

writing tests
in BDD style, 140–141
fi rst test, 138–139, 142–148
integration tests, 171–172
at least one test for each unit of functionality,

301–302
for MVC service, 213–215
NUnit asserts, 26–27
only for current requirements, 149
second and subsequent tests, 158–165
test-fi rst development and, 73–74
for WCF service, 236–239

view engines – writing tests

bindex.indd 326bindex.indd 326 3/31/11 8:12:55 AM3/31/11 8:12:55 AM

327

X

XAML (Extensible Application Markup
Language), 245

XML fi les, dependency injection and, 289
XP (Extreme Programming)

history of agile methodologies, 6–7
test-fi rst programming in, 8

xUnit
Gallio supported for, 281
unit-testing with, 284–285

Y

YAGNI (You Aren’t Going to Need It), 42

XAML (Extensible Application Markup Language) – YAGNI (You Aren’t Going to Need It)

bindex.indd 327bindex.indd 327 3/31/11 8:12:56 AM3/31/11 8:12:56 AM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

	WroxBooks
	Professional Test-Driven Development with C#: Developing Real World Applications with TDD
	Contents
	Introduction
	Part I: Getting Started
	Chapter 1: The Road to Test-Driven Development
	The Classical Approach to Software Development
	A Brief History of Software Engineering
	From Waterfall to Iterative and Incremental

	A Quick Introduction to Agile Methodologies
	A Brief History of Agile Methodologies
	The Principles and Practices of Test-Driven Development

	The Concepts Behind TDD
	TDD as a Design Methodology
	TDD as a Development Practice

	The Benefits of TDD
	A Quick Example of the TDD Approach
	Summary

	Chapter 2: An Introduction to Unit Testing
	What Is a Unit Test?
	Unit Test Definition
	What Is Not a Unit Test?
	Other Types of Tests

	A Brief Look at NUnit
	What Is a Unit Test Framework?
	The Basics of NUnit

	Decoupling with Mock Objects
	Why Mocking Is Important
	Dummy, Fake, Stub, and Mock
	Best and Worst Practices

	A Brief Look at Moq
	What Does a Mocking Framework Do?
	A Bit About Moq
	Moq Basics

	Summary

	Chapter 3: A Quick Review of Refactoring
	Why Refactor?
	A Project's Lifecycle
	Maintainability
	Code Metrics

	Clean Code Principles
	OOP Principles
	Encapsulation
	Inheritance
	Polymorphism

	The SOLID Principles
	The Single Responsibility Principle
	The Open/Close Principle
	The Liskov Substitution Principle
	The Interface Segregation Principle
	The Dependency Inversion Principle

	Code Smells
	What Is a Code Smell?
	Duplicate Code and Similar Classes
	Big Classes and Big Methods
	Comments
	Bad Names
	Feature Envy
	Too Much If/Switch
	Try/Catch Bloat

	Typical Refactoring
	Extract Classes or Interfaces
	Extract Methods
	Rename Variables, Fields, Methods, and Classes
	Encapsulate Fields
	Replace Conditional with Polymorphism
	Allow Type Inference

	Summary

	Chapter 4: Test-Driven Development: Let the Tests Be Your Guide
	It Starts with the Test
	Red, Green, Refactor
	The Three Phases of TDD
	The Red Phase
	The Green Phase
	The Refactoring Phase
	Starting Again

	A Refactoring Example
	The First Feature
	Making the First Test Pass
	The Second Feature
	Refactoring the Unit Tests
	The Third Feature
	Refactoring the Business Code
	Correcting Refactoring Defects
	The Fourth Feature

	Summary

	Chapter 5: Mocking External Resources
	The Dependency Injection Pattern
	Working with a Dependency Injection Framework

	Abstracting the Data Access Layer
	Moving the Database Concerns Out of the Business Code
	Isolating Data with the Repository Pattern
	Injecting the Repository
	Mocking the Repository

	Summary

	Part II: Putting Basics into Action
	Chapter 6: Starting the Sample Application
	Defining the Project
	Developing the Project Overview
	Defining the Target Environment
	Choosing the Application Technology

	Defining the User Stories
	Collecting the Stories
	Defining the Product Backlog

	The Agile Development Process
	Estimating
	Working in Iterations
	Communication Within Your Team
	Iteration Zero: Your First Iteration
	Testing in Iteration Zero
	Ending an Iteration

	Creating the Project
	Choosing the Frameworks
	Defining the Project Structure
	Organizing Project Folders
	Creating the Visual Studio Solution

	Summary

	Chapter 7: Implementing the First User Story
	The First Test
	Choosing the First Test
	Naming the Test
	Writing the Test

	Implementing the Functionality
	Writing the Simplest Thing That Could Possibly Work
	Running the Passing Test
	Writing the Next Test

	Improving the Code by Refactoring
	Triangulation of Tests
	Summary

	Chapter 8: Integration Testing
	Integrate Early; Integrate Often
	Writing Integration Tests
	How to Manage the Database
	How to Write Integration Tests
	Reviewing the ItemTypeRepository
	Adding Ninject for Dependency Injection
	Creating the Fluent NHibernate Configuration
	Creating the Fluent NHibernate Mapping
	Creating the Integration Test

	End-to-End Integration Tests
	Keeping Various Types of Tests Apart

	When and How to Run Integration Tests
	Summary

	Part III: TDD Scenarios
	Chapter 9: TDD on The Web
	ASP.NET Web Forms
	Web Form Organization
	ASPX Files
	Code-Behind Files
	Implementing Test-Driven Development with MVP and Web Forms

	Working with the ASP.NET MVC
	MVC 101
	Microsoft ASP.NET MVC 3.0
	Creating an ASP.NET MVC Project
	Creating Your First Test
	Making Your First Test Pass
	Creating Your First View
	Gluing Everything Together

	Using the MVC Contrib Project
	ASP.NET MVC Summarized

	Working with JavaScript
	JavaScript Testing Frameworks

	Summary

	Chapter 10: Testing Windows Communication Foundation Services
	WCF Services in Your Application
	Services Are Code Too

	Testing WCF Services
	Refactoring for Testability
	Introducing Dependency Injection to Your Service
	Writing the Test
	Stubbing the Dependencies
	Verifying the Results
	Trouble Spots to Watch

	Summary

	Chapter 11: Testing WPF and Silverlight Applications
	The Problem with Testing the User Interface
	The MVVM Pattern
	How MVVM Makes WPF/Silverlight Applications Testable
	Bringing It All Together

	Summary

	Part IV: Requirements and Tools
	Chapter 12: Dealing with Defects and New Requirements
	Handling Change
	Change Happens
	Adding New Features
	Addressing Defects

	Starting with a Test
	Changing the Code
	Keeping the Tests Passing

	Summary

	Chapter 13: The Great Tool Debate
	Test Runners
	TestDriven.NET
	Developer Express Test Runner
	Gallio

	Unit Testing Frameworks
	MSTest
	MbUnit
	xUnit

	Mocking Frameworks
	Rhino Mocks
	Type Mock

	Dependency Injection Frameworks
	Structure Map
	Unity
	Windsor
	Autofac

	Miscellaneous Useful Tools
	nCover
	PEX

	How to Introduce TDD to Your Team
	Working in Environments That Are Resistant to Change
	Working in Environments That Are Accepting of Change

	Summary

	Chapter 14: Conclusions
	What You Have Learned
	You Are the Client of Your Code
	Find the Solutions Step by Step
	Use the Debugger as a Surgical Instrument

	TDD Best Practices
	Use Significant Names
	Write at Least One Test for One Unit of Functionality
	Keep Your Mocks Simple

	The Benefits of TDD
	How to Introduce TDD in Your Team
	Summary

	Appendix: TDD Katas
	Working with TDD Katas
	Share Your Work
	OSIM User Stories

	Index

