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Preface
Machine learning is rapidly becoming a fixture in our data-driven world. It is relied upon in
fields as diverse as robotics and medicine to retail and publishing. In this book, you will
learn how to build real-world machine learning applications step by step.

Working through easy-to-understand projects, you will learn how to process various types
of data and how and when to apply different machine learning techniques such as
supervised or unsupervised learning.

Each of the projects in this book provides educational as well as practical value.  For
example, you'll learn how to use clustering techniques to find bargain airfares and how to
use linear regression to find a cheap apartment. This book will teach you how to use
machine learning to collect, analyze, and act on massive quantities of data in an
approachable, no-nonsense manner.

What this book covers
Chapter 1, The Python Machine Learning Ecosystem, delves into Python, which has a deep
and active developer community, and many of these developers come from the scientific
community as well. This has provided Python with a rich array of libraries for scientific
computing. In this chapter, we will discuss the features of these key libraries and how to
prepare your environment to best utilize them.

Chapter 2, Build an App to Find Underpriced Apartments, guides us to build our first
machine learning application, and we begin with a minimal but practical example: building
an application to identify underpriced apartments. By the end of this chapter, we will create
an application that will make finding the right apartment a bit easier.

Chapter 3, Build an App to Find Cheap Airfares, demonstrates how to build an application
that continually monitors fare pricing. Once an anomalous price appears, our app will
generate an alert that we can quickly act on.

Chapter 4, Forecast the IPO Market using Logistic Regression, shows how we can use
machine learning to decide which IPOs are worth a closer look and which ones we may
want to skip.

Chapter 5, Create a Custom Newsfeed, covers how to build a system that understands your
taste in news and will send you a personally tailored newsletter each day.
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Chapter 6, Predict whether Your Content Will Go Viral, examines some of the most shared
content and attempts to find the common elements that differentiate it from the content that
people are less willing to share.

Chapter 7, Forecast the Stock Market with Machine Learning, discusses how to build and test
a trading strategy. There are countless pitfalls to avoid when trying to devise your own
system, and it is quite nearly an impossible task. However, it can be a lot of fun, and
sometimes, it can even be profitable.

Chapter 8, Build an Image Similarity Engine, helps you construct an advanced, image-based,
deep learning application. We will also cover deep learning algorithms to understand why
they are so important and why there is such a hype surrounding them.

Chapter 9, Build a Chatbot, demonstrates how to construct a chatbot from scratch. Along
the way, you'll learn more about the history of the field and its future prospects.

Chapter 10, Build a Recommendation Engine, explores the different varieties of
recommendation systems. We'll see how they're implemented commercially and how they
work. We will also implement our own recommendation engine to find GitHub repos.

What you need for this book
All you need is Python 3.x and a desire to build real-world machine learning projects. You
can refer to the detailed software list provided along with the code files of this book.

Who this book is for
This book targets Python programmers, data scientists, and architects with a good
knowledge of data science and all those who want to build complete Python-based machine
learning systems.

Conventions
In this book, you will find a number of text styles that distinguish between different kinds
of information. Here are some examples of these styles and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "This can
be done by calling .corr() on our DataFrame."

A block of code is set as follows:
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<category>
  <pattern>I LIKE TURTLES</pattern>
  <template>I feel like this whole <set name="topic">turle</set>
  thing could be a problem. What do you like about them?</template>
</category>

Any command-line input or output is written as follows:

sp = pd.read_csv(r'/Users/alexcombs/Downloads/spy.csv')
sp.sort_values('Date', inplace=True)

New terms and important words are shown in bold. Words that you see on the screen, for
example, in menus or dialog boxes, appear in the text like this: "Right-click on the page and
click on Inspect element."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book-what you liked or disliked. Reader feedback is important for us as it helps us develop
titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention the
book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

http://www.packtpub.com/authors
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Downloading the example code
You can download the example code files for this book from your account at h t t p : / / w w w .
p a c k t p u b . c o m. If you purchased this book elsewhere, you can visit h t t p : / / w w w . p a c k t p u
b . c o m / s u p p o r t and register to have the files e-mailed directly to you.

You can download the code files by following these steps:

Log in or register to our website using your e-mail address and password.1.
Hover the mouse pointer on the SUPPORT tab at the top.2.
Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box.4.
Select the book for which you're looking to download the code files.5.
Choose from the drop-down menu where you purchased this book from.6.
Click on Code Download.7.

You can also download the code files by clicking on the Code Files button on the book's
webpage at the Packt Publishing website. This page can be accessed by entering the book's
name in the Search box. Please note that you need to be logged in to your Packt account.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR / 7-Zip for Windows
Zipeg / iZip / UnRarX for Mac
7-Zip / PeaZip for Linux

The code bundle for the book is also hosted on GitHub at h t t p s : / / g i t h u b . c o m / p a c k t p u
b l i s h i n g / p y t h o n m a c h i n e l e a r n i n g b l u e p r i n t s. We also have other code bundles from
our rich catalog of books and videos available at h t t p s : / / g i t h u b . c o m / P a c k t P u b l i s h i n
g /. Check them out!

http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
https://github.com/packtpublishing/pythonmachinelearningblueprints
https://github.com/packtpublishing/pythonmachinelearningblueprints
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
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Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books-maybe a mistake in the text or the code-
we would be grateful if you could report this to us. By doing so, you can save other readers
from frustration and help us improve subsequent versions of this book. If you find any
errata, please report them by visiting h t t p : / / w w w . p a c k t p u b . c o m / s u b m i t - e r r a t a,
selecting your book, clicking on the Errata Submission Form link, and entering the details
of your errata. Once your errata are verified, your submission will be accepted and the
errata will be uploaded to our website or added to any list of existing errata under the
Errata section of that title.

To view the previously submitted errata, go to h t t p s : / / w w w . p a c k t p u b . c o m / b o o k s / c o n
t e n t / s u p p o r t and enter the name of the book in the search field. The required information
will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all media. At
Packt, we take the protection of our copyright and licenses very seriously. If you come
across any illegal copies of our works in any form on the Internet, please provide us with
the location address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated
material.

We appreciate your help in protecting our authors and our ability to bring you valuable
content.

Questions
If you have a problem with any aspect of this book, you can contact us
at questions@packtpub.com, and we will do our best to address the problem.

http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support


1
The Python Machine Learning

Ecosystem
Machine learning is rapidly changing our world. As the centerpiece of artificial intelligence,
it is difficult to go a day without reading how it will transform our lives. Some argue it will
lead us into a Singularity-style techno-utopia. Others suggest we are headed towards a
techno-pocalypse marked by constant battles with job-stealing robots and drone death
squads. But while the pundits may enjoy discussing these hyperbolic futures, the more
mundane reality is that machine learning is rapidly becoming a fixture of our daily lives.
Through subtle but progressive improvements in how we interact with computers and the
world around us, machine learning is quietly improving our lives.

If you shop at online retailers such as Amazon.com, use streaming music or movie services
such as Spotify or Netflix, or even just perform a Google search, you have encountered a
machine learning application. The data generated by the users of these services is collected,
aggregated, and fed into models that improve the services by creating tailored experiences
for each user.

Now is an ideal time to dive into developing machine learning applications, and as you will
discover, Python is an ideal choice with which to develop these applications. Python has a
deep and active developer community, and many of these developers come from the
scientific community as well. This has provided Python with a rich array of libraries for
scientific computing. In this book, we will discuss and use a number of these libraries from
this Python scientific stack.

In the chapters that follow, we'll learn step by step how to build a wide variety of machine
learning applications. But before we begin in earnest, we'll spend the remainder of this
chapter discussing the features of these key libraries and how to prepare your environment
to best utilize them.



The Python Machine Learning Ecosystem

[ 7 ]

We'll cover the following topics in this chapter:

The data science/machine learning workflow
Libraries for each stage of the workflow
Setting up your environment

The data science/machine learning workflow
Building machine learning applications, while similar in many respects to the standard
engineering paradigm, differs in one crucial way: the need to work with data as a raw
material. The success of a data project will, in large part, depend on the quality of the data
that you acquired as well as how it's handled. And because working with data falls into the
domain of data science, it is helpful to understand the data science workflow:

The process proceeds through these six steps in the following order: acquisition, inspection
and exploration, cleaning and preparation, modeling, evaluation, and finally deployment.
There is often the need to circle back to prior steps, such as when inspecting and preparing
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the data or when evaluating and modeling, but the process at a high level can be described
as shown in the preceding diagram.

Let's now discuss each step in detail.

Acquisition
Data for machine learning applications can come from any number of sources; it may be e-
mailed as a CSV file, it may come from pulling down server logs, or it may require building
a custom web scraper. The data may also come in any number of formats. In most cases, it
will be text-based data, but as we'll see, machine learning applications may just as easily be
built utilizing images or even video files. Regardless of the format, once the data is
secured, it is crucial to understand what's in the data—as well as what isn't.

Inspection and exploration
Once the data has been acquired, the next step is to inspect and explore it. At this stage, the
primary goal is to sanity-check the data, and the best way to accomplish this is to look for
things that are either impossible or highly unlikely. As an example, if the data has a unique
identifier, check to see that there is indeed only one; if the data is price-based, check
whether it is always positive; and whatever the data type, check the most extreme cases. Do
they make sense? A good practice is to run some simple statistical tests on the data and
visualize it. Additionally, it is likely that some data is missing or incomplete. It is critical to
take note of this during this stage as it will need to be addressed it later during the cleaning
and preparation stage. Models are only as good as the data that goes into them, so it is
crucial to get this step right.

Cleaning and preparation
When all the data is in order, the next step is to place it in a format that is amenable to
modeling. This stage encompasses a number of processes such as filtering, aggregating,
imputing, and transforming. The type of actions that are necessary will be highly dependent
on the type of data as well as the type of library and algorithm utilized. For example, with
natural-language-based text, the transformations required will be very different from those
required for time series data. We'll see a number of examples of these types of
transformations throughout the book.
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Modeling
Once the data preparation is complete, the next phase is modeling. In this phase, an
appropriate algorithm is selected and a model is trained on the data. There are a number of
best practices to adhere to during this stage, and we will discuss them in detail, but the
basic steps involve splitting the data into training, testing, and validation sets. This splitting
up of the data may seem illogical—especially when more data typically yields better
models—but as we'll see, doing this allows us to get better feedback on how the model will
perform in the real world, and prevents us from the cardinal sin of modeling: overfitting.

Evaluation
Once the model is built and making predictions, the next step is to understand how well the
model does that. This is the question that evaluation seeks to answer. There are a number of
ways to measure the performance of a model, and again it is largely dependent on the type
of data and the model used, but on the whole, we are seeking to answer the question of how
close are the model's predictions to the actual value. There are arrays of confusing-sounding
terms such as root mean-square error, Euclidean distance, and F1 score, but in the end, they
are all just a measure of distance between the actual value and the estimated prediction.

Deployment
Once the model's performance is satisfactory, the next step is deployment. This can take a
number of forms depending on the use case, but common scenarios include utilization as a
feature within another larger application, a bespoke web application, or even just a simple
cron job.

Python libraries and functions
Now that we have an understanding of each step in the data science workflow, we'll take a
look at a selection of useful Python libraries and functions within these libraries for each
step.
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Acquisition
Because one of the more common ways of accessing data is through a RESTful API, one
library that to be aware of is the Python Requests library (h t t p : / / w w w . p y t h o n - r e q u e s t s
. o r g / e n / l a t e s t /). Dubbed HTTP for humans, it provides a clean and simple way to
interact with APIs.

Let's take a look at a sample interaction using Requests to pull down data from GitHub's
API. Here we will make a call to the API and request a list of starred repositories for a user:

import requests
r = requests.get(r"https://api.github.com/users/acombs/starred")
r.json()

This will return a JSON document of all the repositories that the user has starred along with
their attributes. Here is a snippet of the output for the preceding call:

The requests library has an amazing number of features—far too many to cover here, but I
do suggest that you check out the documentation in the link provided above.

Inspection
Because inspecting data is a critical step in the development of machine learning
applications, we'll now have an in-depth look at several libraries that will serve us well in
this task.

http://www.python-requests.org/en/latest/
http://www.python-requests.org/en/latest/
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The Jupyter notebook
There are a number of libraries that will help ease the data inspection process. The first is
the Jupyter notebook with IPython (h t t p : / / i p y t h o n . o r g /). This is a full-fledged,
interactive computing environment that's ideal for data exploration. Unlike most
development environments, the Jupyter notebook is a web-based frontend (to the IPython
kernel) that is divided into individual code blocks or cells. Cells can be run individually or
all at once, depending on the need. This allows the developer to run a scenario, see the
output, then step back through the code, make adjustments, and see the resulting
changes—all without leaving the notebook. Here is a sample interaction in the Jupyter
notebook:

Notice that we have done a number of things here and interacted with not only the IPython
backend, but the terminal shell as well. This particular instance is running a Python 3.5
kernel, but you can just as easily run a Python 2.X kernel if you prefer. Here, we have
imported the Python os library and made a call to find the current working directory (cell
#2), which you can see is the output below the input code cell. We then changed directories
using the os library in cell #3, but then stopped utilizing the os library and began using
Linux-based commands in cell #4. This is done by adding the ! prepend to the cell. In cell
#6, you can see that we were even able to save the shell output to a Python variable
(file_two). This is a great feature that makes file operations a simple task.

http://ipython.org/
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Now let's take a look at some simple data operations using the notebook. This will also be
our first introduction to another indispensable library, pandas.

Pandas
Pandas is a remarkable tool for data analysis. According to the pandas documentation (h t t
p : / / p a n d a s . p y d a t a . o r g / p a n d a s - d o c s / v e r s i o n / 0 . 1 7 . 1 /):

It has the broader goal of becoming the most powerful and flexible open source data
analysis/manipulation tool available in any language.

If it doesn't already live up to this claim, it can't be too far off. Let's now take a look:

import os
import pandas as pd
import requests

PATH = r'/Users/alexcombs/Desktop/iris/'

r =
requests.get('https://archive.ics.uci.edu/ml/machine-learning-databases/iri
s/iris.data')

with open(PATH + 'iris.data', 'w') as f:
    f.write(r.text)

os.chdir(PATH)

df = pd.read_csv(PATH + 'iris.data', names=['sepal length', 'sepal width',
'petal length', 'petal width', 'class'])

df.head()

http://pandas.pydata.org/pandas-docs/version/0.17.1/
http://pandas.pydata.org/pandas-docs/version/0.17.1/
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As seen in the preceding code and screenshot we have downloaded a classic machine
learning dataset, iris.data, from h t t p s : / / a r c h i v e . i c s . u c i . e d u / m l / d a t a s e t s / I r i
s and written it into the iris directory. This is actually a CSV file, and using Pandas, we
made a call to read in the file. We also added column names, as this particular file lacked a
header row. If the file did contain a header row, pandas would have automatically parsed
and reflected this. Compared to other CSV libraries, pandas makes this a simple operation.

Parsing files is just one small feature of this library. To work with datasets that will fit on a
single machine, pandas is the ultimate tool; it is a bit like Excel on steroids. Like the popular
spreadsheet program, the basic units of operation are columns and rows of data in the form
of tables. In the terminology of pandas, columns of data are Series and the table is a
DataFrame.

Using the same iris DataFrame as shown in the preceding screenshot, let's have a look at a
few common operations:

df['sepal length']

The first action was just to select a single column from the DataFrame by referencing it by
its column name. Another way that we can perform this data slicing is to use
the .ix[row,column] notation. Let's select the first two columns and first four rows using
this notation:

df.ix[:3,:2]

https://archive.ics.uci.edu/ml/datasets/Iris
https://archive.ics.uci.edu/ml/datasets/Iris
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The preceding code generates the following output:

Using the .ix notation and Python list slicing syntax, we were able to select a slice of this
DataFrame. Now let's take it up a notch and use a list iterator to select just the width
columns:

df.ix[:3, [x for x in df.columns if 'width' in x]]

The preceding code generates the following output:

What we have done here is create a list that is a subset of all the columns. The
preceding df.columns returns a list of all the columns and our iteration uses a conditional
statement to select only those with width in the title. Obviously, in this situation, we could
have just as easily typed out the columns that we wanted in a list, but this illustrates the
power available when dealing with much larger datasets.

We've seen how to select slices based on their position in the DataFrame, but let's now look
at another method to select data. This time we will select a subset of the data based on some
specific conditions. We start by listing all the available unique classes and then selecting one
of these:

df['class'].unique()
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The preceding code generates the following output:

df[df['class']=='Iris-virginica']

In the far right-hand column, we can see that our DataFrame only contains data for the
Iris-virginica class. In fact, the size of the DataFrame is now 50 rows, down from the
original 150 rows:

df.count()

df[df['class']=='Iris-virginica'].count()
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We can also see that the index on the left retains the original row numbers. We can now
save this data as a new DataFrame and reset the index, as shown in the following code and
screenshot:

virginica = df[df['class']=='Iris-virginica'].reset_index(drop=True)
virginica

We have selected data by placing a condition on one column; let's now add more
conditions. We'll go back to our original DataFrame and select data using two conditions:

 df[(df['class']=='Iris-virginica')&(df['petal width']>2.2)]
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The DataFrame now includes data only from the Iris-virginica class with a petal width
greater than 2.2.

Let's now use pandas to get some quick descriptive statistics from our Iris dataset:

df.describe()
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With a call to the DataFrame .describe() method, we received a breakdown of the
descriptive statistics for each of the relevant columns. (Notice that class was automatically
removed as it is not relevant for this.)

We could also pass in custom percentiles if we wanted more granular information:

 df.describe(percentiles=[.20,.40,.80,.90,.95])

Next, let's check whether there is any correlation between these features. This can be done
by calling .corr() on our DataFrame:

df.corr()
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The default returns the Pearson correlation coefficient for each row-column pair. This can
be switched to Kendall's tau or Spearman's rank correlation coefficient by passing in a
method argument (for instance, .corr(method="spearman") or
.corr(method="kendall")).

Visualization
So far, we have seen how to select portions of a DataFrame and get summary statistics from
our data, but let's now move on to learning how to visually inspect the data. But first, why
even bother with visual inspection? Let's see an example to understand why.

The following table illustrates the summary statistics for four distinct series of x and y
values:

Series of x and y Values

Mean of x 9

Mean of y 7.5

Sample variance of x 11

Sample variance of y 4.1

Correlation between x and y 0.816

Regression line y=3.00+0.500x

 

Based on the series having identical summary statistics, we might assume that these series
would appear visually similar. We would, of course, be wrong. Very wrong. The four series
are part of Anscombe's quartet, and they were deliberately created to illustrate the
importance of visual data inspection. Each series is plotted in the following image:
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The Anscombe's quartet taken from h t t p s : / / e n . w i k i p e d i a . o r g / w i k i / A n s c o m b e % 2 7 s _
q u a r t e t.

Clearly, we would not treat these datasets as identical after having visualized them. So now
that we understand the importance of visualization, let's take a look at a pair of useful
Python libraries for this.

The matplotlib library
The first library that we'll take a look at is matplotlib. It is the great grandfather of Python
plotting libraries. Originally created to emulate the plotting functionality of MATLAB, it
grew into a fully-featured library in its own right with an enormous range of functionality.
For those that have not come from a MATLAB background, it can be hard to understand
how all the pieces work together to create the graphs.

We'll break down the pieces into logical components to make sense of what's going on.
Before diving into matplotlib in full, let's set up our Jupyter notebook to allow us to see
our graphs in line. To do this, we'll need to add the following lines to our import
statements:

import matplotlib.pyplot as plt
plt.style.use('ggplot')
%matplotlib inline
import numpy as np

www.allitebooks.com

https://en.wikipedia.org/wiki/Anscombe%27s_quartet
https://en.wikipedia.org/wiki/Anscombe%27s_quartet
http://www.allitebooks.org
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The first line imports matplotlib, the second line sets the styling to approximate R's
ggplot library (this requires matplotlib 1.41), the third line sets the plots so that they are
visible in the notebook, and the final line imports numpy. We'll use numpy for a number of
operations later in the chapter.

Now, let's generate our first graph on the Iris dataset using the following code:

fig, ax = plt.subplots(figsize=(6,4))
ax.hist(df['petal width'], color='black');
ax.set_ylabel('Count', fontsize=12)
ax.set_xlabel('Width', fontsize=12)
plt.title('Iris Petal Width', fontsize=14, y=1.01)

The preceding code generates the following output:

There is a lot going on even in this simple example, but we'll break it down line by line. The
first line creates a single subplot with a width of 6″ and height of 4″. We then plot a
histogram of the petal width from our iris DataFrame by calling .hist() and passing in
our data. We also set the bar color to black here. The next two lines place labels on our y
and x axes, respectively, and the final line sets the title for our graph. We tweak the title's y
position relative to the top of the graph with the y parameter and increase the font size
slightly over the default. This gives us a nice histogram of our petal width data. Let's now
expand on this and generate histograms for each column of our iris dataset:

fig, ax = plt.subplots(2,2, figsize=(6,4))

ax[0][0].hist(df['petal width'], color='black');
ax[0][0].set_ylabel('Count', fontsize=12)
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ax[0][0].set_xlabel('Width', fontsize=12)
ax[0][0].set_title('Iris Petal Width', fontsize=14, y=1.01)

ax[0][1].hist(df['petal length'], color='black');
ax[0][1].set_ylabel('Count', fontsize=12)
ax[0][1].set_xlabel('Lenth', fontsize=12)
ax[0][1].set_title('Iris Petal Lenth', fontsize=14, y=1.01)

ax[1][0].hist(df['sepal width'], color='black');
ax[1][0].set_ylabel('Count', fontsize=12)
ax[1][0].set_xlabel('Width', fontsize=12)
ax[1][0].set_title('Iris Sepal Width', fontsize=14, y=1.01)

ax[1][1].hist(df['sepal length'], color='black');
ax[1][1].set_ylabel('Count', fontsize=12)
ax[1][1].set_xlabel('Length', fontsize=12)
ax[1][1].set_title('Iris Sepal Length', fontsize=14, y=1.01)

plt.tight_layout()

The output for the preceding code is shown in the following screenshot:

Obviously, this is not the most efficient way to code this, but it is useful to demonstrate how
matplotlib works. Notice that instead of the single subplot object, ax, that we had in the
first example, we now have four subplots, which are accessed through what is now the ax
array. A new addition to the code is the call to plt.tight_layout(); this method will
nicely adjust the subplots automatically to avoid crowding.



The Python Machine Learning Ecosystem

[ 23 ]

Let's now take a look at a few other types of plots available in matplotlib. One useful plot
is a scatterplot. Here, we will plot the petal width against the petal length:

fig, ax = plt.subplots(figsize=(6,6))
ax.scatter(df['petal width'],df['petal length'], color='green')
ax.set_xlabel('Petal Width')
ax.set_ylabel('Petal Length')
ax.set_title('Petal Scatterplot')

The preceding code generates the following output:

As explained earlier, we could add multiple subplots to examine each facet.

Another plot we could examine is a simple line plot. Here we look at a plot of the petal
length:

fig, ax = plt.subplots(figsize=(6,6))
ax.plot(df['petal length'], color='blue')
ax.set_xlabel('Specimen Number')
ax.set_ylabel('Petal Length')
ax.set_title('Petal Length Plot')
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The preceding code generates the following output:

Based on this simple line plot, we can already see that there are distinctive clusters of
lengths for each class—remember that our sample dataset had 50 ordered examples of each
class. This tells us that the petal length is likely to be a useful feature to discriminate
between classes.

Let's look at one final type of chart from the matplotlib library, the bar chart. This is
perhaps one of the more common charts that you'll see. Here, we'll plot a bar chart for the
mean of each feature for the three classes of irises, and to make it more interesting, we'll
make it a stacked bar chart with a number of additional matplotlib features:

fig, ax = plt.subplots(figsize=(6,6))
bar_width = .8
labels = [x for x in df.columns if 'length' in x or 'width' in x]
ver_y = [df[df['class']=='Iris-versicolor'][x].mean() for x in
labels]
vir_y = [df[df['class']=='Iris-virginica'][x].mean() for x in
labels]
set_y = [df[df['class']=='Iris-setosa'][x].mean() for x in labels]
x = np.arange(len(labels))
ax.bar(x, vir_y, bar_width, bottom=set_y, color='darkgrey')
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ax.bar(x, set_y, bar_width, bottom=ver_y, color='white')
ax.bar(x, ver_y, bar_width, color='black')
ax.set_xticks(x + (bar_width/2))
ax.set_xticklabels(labels, rotation=-70, fontsize=12);
ax.set_title('Mean Feature Measurement By Class', y=1.01)
ax.legend(['Virginica','Setosa','Versicolor'])

The preceding code generates the following output:

To generate the bar chart, we need to pass the x and y values to the .bar() method. In this
case, the x values will just be an array of the length of the features that we are interested
in—four here, or one for each column in our DataFrame. The np.arange() function is an
easy way to generate this, but we could nearly as easily input this array manually. As we
don't want the x axis to display this 1 through 4, we call the .set_xticklabels() method
and pass in the column names that we want to display. To line up the x labels properly, we
also need to adjust the spacing of the labels; this is why we set xticks to x plus half the size
of bar_width, which we also set earlier at 0.8. The y values come from taking the mean of
each feature for each class. We then plot each by calling .bar(). It is important to note that
we pass in a bottom parameter for each series that sets its minimum y point equal to the
maximum y point of the series below it. This creates the stacked bars. Finally, we add a
legend that describes each series. The names are inserted into the legend list in order of the
placement of the bars from top to bottom.
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The seaborn library
The next visualization library that we'll look at is called seaborn (h t t p : / / s t a n f o r d . e d u /
~ m w a s k o m / s o f t w a r e / s e a b o r n / i n d e x . h t m l). It is a library that was created specifically
for statistical visualizations. In fact, it is perfect for use with pandas DataFrames where the
columns are features and rows are observations. This style of DataFrame is called tidy data,
and it is the most common form for machine learning applications.

Let's now take a look at the power of seaborn:

    import seaborn as sns
    sns.pairplot(df, hue="class")

With just these two lines of code, we get the following output:

http://stanford.edu/~mwaskom/software/seaborn/index.html
http://stanford.edu/~mwaskom/software/seaborn/index.html
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Having just detailed the intricate nuances of matplotlib, the simplicity with which we
generated this plot is notable. All of our features have been plotted against each other and
properly labeled with just two lines of code. Was learning pages of matplotlib a waste,
when seaborn makes these types of visualizations so simple? Fortunately, that isn't the
case as seaborn is built on top of matplotlib. In fact, we can use all of what we learned
about matplotlib to modify and work with seaborn. Let's take a look at another
visualization:

fig, ax = plt.subplots(2, 2, figsize=(7, 7))
sns.set(style='white', palette='muted')
sns.violinplot(x=df['class'], y=df['sepal length'], ax=ax[0,0])
sns.violinplot(x=df['class'], y=df['sepal width'], ax=ax[0,1])
sns.violinplot(x=df['class'], y=df['petal length'], ax=ax[1,0])
sns.violinplot(x=df['class'], y=df['petal width'], ax=ax[1,1])
fig.suptitle('Violin Plots', fontsize=16, y=1.03)
for i in ax.flat:
    plt.setp(i.get_xticklabels(), rotation=-90)
fig.tight_layout()

The preceding lines of code generate the following output:
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Here, we generated a violin plot for each of the four features. A violin plot displays the
distribution of the features. For example, we can easily see that the petal length of iris-
setosa is highly clustered between 1 and 2 cm, while iris-virginica is much more
dispersed from near 4 to over 7 cm. We can also notice that we have used much of the same
code that we used when constructing the matplotlib graphs. The main difference is the
addition of the sns.plot() calls in place of the ax.plot() calls previously. We have also
added a title above all of the subplots rather than over each individually with the
fig.suptitle() method. One other notable addition is the iteration over each of the
subplots to change the rotation of xticklabels. We call ax.flat() and then iterate over
each subplot axis to set a particular property using .setp(). This prevents us from having
to individually type out ax[0][0]…ax[1][1] and set the properties as we did in the
earlier matplotlib subplot code.

The graphs we've used here are a great start, but there are hundreds of styles of graphs that
you can generate using matplotlib and seaborn. I highly recommend that you dig into
the documentation for these two libraries-it will be time well spent.

Preparation
We've learned a great deal about inspecting the data that we have, but now let's move on to
learning how to process and manipulate our data. Here we will learn about the
Series.map(), Series.apply(), DataFrame.apply(), DataFrame.applymap(), and
DataFrame.groupby() methods of pandas. These are invaluable for working with data
and are especially useful in the context of machine learning for feature engineering, a
concept that we will discuss in detail in later chapters.

Map
The map method works on series, so in our case, we will use it to transform a column of our
DataFrame, which remember is just a pandas Series. Suppose that we decide that the class
names are a bit long for our taste and we would like to code them using our special three-
letter coding system. We'll use the map method with a Python dictionary as the argument to
accomplish this. We'll pass in a replacement for each of the unique iris types:

df['class'] = df['class'].map({'Iris-setosa': 'SET', 'Iris-virginica':
'VIR', 'Iris-versicolor': 'VER'})
df
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Let's look at what we have done here. We ran the map method over each of the values of the
existing class column. As each value was found in the Python dictionary, it was added to
the return series. We assigned this return series to the same class name, so it replaced our
original class column. Had we chosen a different name, say short class, this column
would have been appended to the DataFrame and we would then have the original class
column plus the new short class column.

We could have instead passed another Series or function to the map method to perform this
transformation on a column, but this is functionality that is also available through the apply
method, which we'll take a look at next. The dictionary functionality is unique to the map
method, and the most common reason to choose map over apply for a single column
transformation. Let's now take a look at the apply method.

Apply
The apply method allows us to work with both DataFrames and Series. We'll start with an
example that would work equally well with map, then we'll move on to examples that
would work only with apply.

Using the iris DataFrame, let's make a new column based on the petal width. We
previously saw that the mean for the petal width was 1.3. Let's now create a new column in
our DataFrame, wide petal, that contains binary values based on the value in the petal
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width column. If the petal width is equal to or wider than the median, we will code it with
a 1, and if it is less than the median, we will code it 0. We'll do this using the apply method
on the petal width column:

df['wide petal'] = df['petal width'].apply(lambda v: 1 if v >= 1.3 else 0)
df

The preceding code generates the following output:

A few things happened here; let's walk through them step by step. First, we were able to
append a new column to the DataFrame simply using the column selection syntax for a
column name that we want to create, in this case, wide petal. We set this new column
equal to the output of the apply method. Here, we ran apply on the petal width column,
which returned the corresponding values in the wide petal column. The apply method
works by running through each value of the petal width column. If the value is greater or
equal to 1.3, the function returns 1; otherwise, it returns . This type of transformation is a
fairly common feature-engineering transformation in machine learning, so it is good to be
familiar with how to perform it.

Let's now take a look at using apply on a DataFrame rather than a single Series. We'll now
create a feature based on petal area:

df['petal area'] = df.apply(lambda r: r['petal length'] * r['petal width'],
axis=1)
df
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Notice that we called apply, not on a Series here, but on the entire DataFrame, and because
apply was called on the entire DataFrame, we passed in axis=1 in order to tell pandas
that we want to apply the function row-wise. If we passed in axis=0, then the function
would operate column-wise. Here, each column is processed sequentially, and we choose to
multiply the values from the petal length and petal width columns. The resultant
series then becomes the petal area column in our DataFrame. This type of power and
flexibility is what makes pandas an indispensable tool for data manipulation.

Applymap
We've looked at manipulating columns and explained how to work with rows, but suppose
that you'd like to perform a function across all data cells in your DataFrame; this is where
applymap is the right tool. Let's take a look at an example:

df.applymap(lambda v: np.log(v) if isinstance(v, float) else v)
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Here, we called applymap on our DataFrame in order to get the log of every value
(np.log() utilizes the numpy library to return this value) if that value is an instance of the
type float. This type checking prevents returning an error or a float for the class or wide
petal columns, which are string and integer values respectively. Common uses for
applymap are to transform or format each cell based on meeting some conditional criteria.

Groupby
Let's now look at an operation that is highly useful but often difficult for new pandas users
to get their heads around—the DataFrame .groupby() method. We'll walk through a
number of examples step by step in order to illustrate the most important functionality.

The groupby operation does exactly what it says—it groups data based on some class or
classes that you choose. Let's take a look at a simple example using our iris dataset. We'll
go back and reimport our original iris dataset and run our first groupby operation:

 df.groupby('class').mean()
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Data for each class is partitioned and the mean for each feature is provided. Let's take it a
step further now and get full descriptive statistics for each class:

 df.groupby('class').describe()

Now we can see the full breakdown bucketed by class. Let's now look at some other
groupby operations that we can perform. We saw previously that the petal length and
width had some relatively clear boundaries between classes; let's see how we might use
groupby to see this:

 df.groupby('petal width')['class'].unique().to_frame()
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In this case, we grouped each unique class by the petal width that they were associated
with. This is a manageable number of measurements to group by, but if it were to become
much larger, we would likely need to partition the measurements into brackets. As we saw
previously, this can be accomplished with the apply method.

Let's now take a look at a custom aggregation function:

df.groupby('class')['petal width']\
.agg({'delta': lambda x: x.max() - x.min(), 'max': np.max, 'min': np.min})
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In this code, we grouped the petal width by class using the functions: np.max and np.min,
and a lambda function that returns the maximum petal width minus the minimum petal
width. (The two np functions are from the numpy library.) These were passed to the .agg()
method in the form of a dictionary in order to return a DataFrame with the keys as column
names. A single function can be run or the functions can be passed as a list, but the column
names are less informative.

We've only just touched on the functionality of the groupby method; there
is a lot more to learn, so I encourage you to read the documentation at h t t
p : / / p a n d a s . p y d a t a . o r g / p a n d a s - d o c s / s t a b l e /.

We now have a solid base-level understanding of how to manipulate and prepare data in
preparation for our next step, which is modeling. We will now move on to discuss the
primary libraries in the Python machine learning ecosystem.

Modeling and evaluation
Python has an excellent selection of well-documented libraries for statistical modeling and
machine learning. We'll touch on just a few of the most popular libraries below.

Statsmodels
The first library that we'll cover is the statsmodels library (h t t p : / / s t a t s m o d e l s . s o u r c
e f o r g e . n e t /). Statsmodels is a Python package that was developed to explore data,
estimate models, and run statistical tests. Let's use it here to build a simple linear regression
model of the relationship between the sepal length and sepal width for the setosa class.

First, let's visually inspect the relationship with a scatterplot:

fig, ax = plt.subplots(figsize=(7,7))
ax.scatter(df['sepal width'][:50], df['sepal length'][:50])

http://pandas.pydata.org/pandas-docs/stable/
http://pandas.pydata.org/pandas-docs/stable/
http://statsmodels.sourceforge.net/
http://statsmodels.sourceforge.net/
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ax.set_ylabel('Sepal Length')
ax.set_xlabel('Sepal Width')
ax.set_title('Setosa Sepal Width vs. Sepal Length', fontsize=14,
y=1.02)

The preceding code generates the following output:

We can see that there appears to be a positive linear relationship, that is, as the sepal width
increases, sepal length does as well. We next run a linear regression model on the data
using statsmodels to estimate the strength of this relationship:

import statsmodels.api as sm

y = df['sepal length'][:50]
x = df['sepal width'][:50]
X = sm.add_constant(x)

results = sm.OLS(y, X).fit()
print(results.summary())
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The preceding code generates the following output:

The preceding screenshot shows the results of our simple regression model. As this is a
linear regression, the model takes the format of Y = Β0+Β1X, where B0 is the intercept and
B1 is the regression coefficient. Here, the formula would be Sepal Length = 2.6447 + 0.6909 *
Sepal Width. We can also see that R2 for the model is a respectable 0.558, and the p-value
(Prob) is highly significant—at least for this class.

Let's now use the results object to plot our regression line:

fig, ax = plt.subplots(figsize=(7,7))
ax.plot(x, results.fittedvalues, label='regression line')
ax.scatter(x, y, label='data point', color='r')
ax.set_ylabel('Sepal Length')
ax.set_xlabel('Sepal Width')
ax.set_title('Setosa Sepal Width vs. Sepal Length', fontsize=14,
y=1.02)
ax.legend(loc=2)
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The preceding code generates the following output:

By plotting results.fittedvalues, we can get the resulting regression line from our
model.

There are a number of other statistical functions and tests in the statsmodels package, and
I invite you to explore them. It is an exceptionally useful package for standard statistical
modeling in Python. Let's now move on to the king of Python machine learning packages,
scikit-learn.

Scikit-learn
Scikit-learn is an amazing Python library with unrivaled documentation designed to
provide a consistent API to dozens of algorithms. It is built on—and is itself—a core
component of the Python scientific stack, namely, NumPy, SciPy, pandas, and matplotlib.
Here are some of the areas that scikit-learn covers: classification, regression, clustering,
dimensionality reduction, model selection, and preprocessing.
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We'll look at a few examples. First, we will build a classifier using our iris data, and then
we'll look at how we can evaluate our model using the tools of scikit-learn.

The first step to building a machine learning model in scikit-learn is understanding how the
data must be structured. The independent variables should be a numeric n x m matrix, X; a
dependent variable, y; and an n x 1 vector. The y vector may be either numeric continuous
or categorical or string categorical. These are then passed into the .fit() method on the
chosen classifier. This is the great benefit of using scikit-learn; each classifier utilizes the
same methods to the extent that's possible. This makes swapping them in and out a breeze.
Let's see this in action in our first example:

from sklearn.ensemble import RandomForestClassifier
from sklearn.cross_validation import train_test_split

clf = RandomForestClassifier(max_depth=5, n_estimators=10)

X = df.ix[:,:4]
y = df.ix[:,4]

X_train, X_test, y_train, y_test = train_test_split(X, y,
test_size=.3)

clf.fit(X_train,y_train)

y_pred = clf.predict(X_test)

rf = pd.DataFrame(list(zip(y_pred, y_test)), columns=['predicted',
'actual'])
rf['correct'] = rf.apply(lambda r: 1 if r['predicted'] ==
r['actual'] else 0, axis=1)
rf
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The preceding code generates the following output:

Now, let's take a look at the following line of code:

    rf['correct'].sum()/rf['correct'].count()

This will generate the following output:

In the preceding few lines of code, we built, trained, and tested a classifier that has a 95%
accuracy level on our Iris dataset. Let's unpack each of the steps. In the first two lines of
code, we made a couple of imports; the first two are from scikit-learn, which, thankfully, is
shortened to sklearn in import statements. The first import is a random forest classifier,
and the second is a module to split our data into training and testing cohorts. This data
partitioning is critical in building machine learning applications for a number of reasons.
We'll get into this in later chapters, but suffice it to say for now that it is a must. This
train_test_split module also shuffles our data, which again is important as the order
can contain information that would bias your actual predictions

www.allitebooks.com
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In this book we'll be using the latest Python version, as of the time of
writing, which is version 3.5. If you are on Python version 2.X, you will
need to add an additional import statement for integer division to work as
it does in Python 3.X. Without this line, your accuracy will be reported as 0
rather than 95%. That line is as follows:

from __future__ import division

The first curious-looking line after the imports instantiates our classifier, in this case, a
random forest classifier. We select a forest that uses 10 decision trees, and each tree is
allowed a maximum split depth of five. This is put in place to avoid overfitting, something
that we will discuss in depth in later chapters.

The next two lines create our X matrix and y vector. Our original iris DataFrame
contained four features: the petal width and length and the sepal width and length. These
features are selected and become our independent feature matrix, X. The last column, the
iris class names, then become our dependent y vector.

These are then passed into the train_test_split method, which shuffles and partitions
our data into four subsets, X_train, X_test, y_train, and y_test. The test_size
parameter is set to .3, which means that 30% of our dataset will be allocated to the X_test
and y_test partitions, while the rest will be allocated to the training partitions, X_train
and y_train.

Next, our model is fit using the training data. Having trained the model, we then call the
predict method on our classifier using our test data. Remember that the test data is data that
the classifier has not seen. The return of this prediction is a list of prediction labels. We then
create a DataFrame of the actual labels versus the predicted labels. We finally sum the
correct predictions and divide by the total number of instances, which we can see gave us a
very accurate prediction. Let's now see which features gave us the most discriminative or
predictive power:

f_importances = clf.feature_importances_f_names = df.columns[:4]
f_std = np.std([tree.feature_importances_ for tree in
clf.estimators_], axis=0)

zz = zip(f_importances, f_names, f_std)
zzs = sorted(zz, key=lambda x: x[0], reverse=True)

imps = [x[0] for x in zzs]
labels = [x[1] for x in zzs]
errs = [x[2] for x in zzs]
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plt.bar(range(len(f_importances)), imps, color="r", yerr=errs,
align="center")
plt.xticks(range(len(f_importances)), labels);

As we expected, based upon our earlier visual analysis, the petal length and width have
more discriminative power when differentiating between the iris classes. Where exactly
did these numbers come from though? The random forest has a method called
.feature_importances_ that returns the relative power of the feature to split at the
leaves. If a feature is able to consistently and cleanly split a group into distinct classes, it
will have a high feature importance. This number will always sum to one. As you will
notice here, we have included the standard deviation, which helps to illustrate how
consistent each feature is. This is generated by taking the feature importance for each of the
features for each ten trees and calculating the standard deviation.

Let's now take a look at one more example using scikit-learn. We will now switch our
classifier and use a support vector machine (SVM):

from sklearn.multiclass import OneVsRestClassifier
from sklearn.svm import SVC
from sklearn.cross_validation import train_test_split

clf = OneVsRestClassifier(SVC(kernel='linear'))

X = df.ix[:,:4]
y = np.array(df.ix[:,4]).astype(str)

X_train, X_test, y_train, y_test = train_test_split(X, y,
test_size=.3)
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clf.fit(X_train,y_train)

y_pred = clf.predict(X_test)

rf = pd.DataFrame(list(zip(y_pred, y_test)), columns=['predicted',
'actual'])
rf['correct'] = rf.apply(lambda r: 1 if r['predicted'] ==
r['actual'] else 0, axis=1)
rf

The preceding code generates the following output:

Now, let's execute the following line of code:

    rf['correct'].sum()/rf['correct'].count()

The preceding code generates the following output:
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Here, we have swapped in a support vector machine without changing virtually any of our
code. The only changes were the ones related to the importing of the SVM instead of the
random forest, and the line that instantiates the classifier. (One small change to the format
of the y labels was required, as the SVM wasn't able to interpret them as NumPy strings like
the random forest classifier was).

This is just a fraction of the capability of scikit-learn, but it should serve to illustrate the
functionality and power of this magnificent tool for machine learning applications. There
are a number of additional machine learning libraries that we won't have a chance to
discuss here but will explore in later chapters, but I strongly suggest that if this is your first
time utilizing a machine learning library and you want a strong general purpose tool, scikit-
learn is your go-to choice.

Deployment
There are a number of options available when putting a machine learning model into
production. It depends substantially on the nature of the application. Deployment could
include anything from a cron job run on your local machine to a full-scale implementation
deployed on an Amazon EC2 instance.

We won't go into detail about specific implementations here, but we will have a chance to
delve into different deployment examples throughout the book.

Setting up your machine learning
environment
We've covered a number of libraries throughout this chapter that can be installed
individually with pip, Python's package manager. I would strongly urge you, however, to
go with a prepacked solution such as Continuum's Anaconda Python distribution. This is a
a single executable that contains nearly all the packages and dependencies needed. And
because the distribution is targeted to Python scientific stack users, it is essentially a one-
and-done solution.

Anaconda also includes a package manager that makes updating packages a simple task.
Simply type conda update <package_name>, and the library will be updated to the most
recent stable release.
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Summary
In this chapter, we introduced the data science/machine learning workflow. We saw how to
take our data step by step through each stage of the pipeline, going from acquisition all the
way through to deployment. We also covered key features of each of the most important
libraries in the Python scientific stack.

We will now take this knowledge and these lessons and begin to apply them to create
unique and useful machine learning applications. In the next chapter, we'll see how we can
apply regression modeling to find a cheap apartment. Let's get started!



2
Build an App to Find

Underpriced Apartments
In the previous chapter, we learned the essentials for working with data. We'll now apply
this knowledge to build our first machine learning application. We'll begin with a minimal
but practical example: building an application to identify underpriced apartments.

If you've ever searched for an apartment, you will appreciate how frustrating the process
can be. Not only is it time-consuming, but even when you do find an apartment that you
like, how do you know if it's the right apartment?

You likely have a target budget and location in mind. However, if you are anything like me,
you are also willing to make a few trade-offs. For example, I live in New York City, and
being near an amenity like the subway is a big plus. But how much is that really worth?
Should I trade being in a building with an elevator for being closer to the train? How many
minutes of walking to the train is worth walking up a flight up stairs? When renting, there
are dozens of questions like this to consider. So how might we use machine learning to help
us make these decisions?

We'll spend the remainder of this chapter exploring just that. We won't be able to get
answers to all the questions that we have (for reasons that will become clear later), but by
the end of the chapter, we'll have created an application that will make finding the right
apartment just a little bit easier.

We'll cover the following topics in this chapter:

Sourcing the apartment listing data
Inspecting and preparing the data
Visualizing the data
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Building a regression model
Forecasting

Sourcing the apartment listing data
In the early 1970s, if you wanted to purchase a stock, you would need to engage a broker
who would charge you a fixed commission of nearly 1%. If you wanted to purchase an
airline ticket, you would need to contact a travel agent who would earn a commission of
around 7%. If you wanted to sell a home, you would contact a real estate agent who would
earn a commission of 6%. In 2016, you can do the first two essentially for free. The last one
remains as it was in the 1970s.

Why is this the case, and more importantly, what does any of this have to do with machine
learning? The reality is, it all comes down to data and who has access to it.

You might assume that you can access troves of real estate listing data quite easily through
APIs or by web-scraping real estate websites. You would be wrong. Well, wrong if you
intend to follow the terms and conditions of these sites. Real estate data is tightly controlled
by the National Association of Realtors (NAR) who run Multiple Listing Service (MLS).
This is a service that aggregates the listing data and is available to brokers and agents only
at great expense. So, as you might imagine, they aren't too keen on letting just anyone
download it, en masse.

This is unfortunate, as opening up this data would undoubtedly lead to useful consumer
applications. This seems especially important for a purchase decision that represents the
largest portion of a family's budget.

With this said, not all hope is lost. Although getting data directly from MLS providers is
forbidden by the terms of service, we can utilize third-party tools to pull down the data.

We'll now take a look at one useful tool for getting the data we need.

Pulling listing data using import.io
There are a number of excellent Python–based libraries for scraping web pages including
requests, Beautiful Soup, and Scrapy. We'll explore some of these and more in the chapters
that follow, but for our purposes here, we're going to utilize a code-free alternative.
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Import.io (h t t p : / / w w w . i m p o r t . i o) is a free, web-based service that automates web
scraping. This is a great option that will allow us to avoid having to create a web scraper
from scratch. And fortunately for us, they provide a sample API with real estate listing data
from Zillow.com.

The following image is from h t t p : / / w w w . i m p o r t . i o / e x a m p l e s. Type Zillow.com into
the import.io search box to retrieve the sample Zillow data.

Image from https://www.import.io/examples/

The data that they provide is for San Francisco, but we'll be using New York in our
example. To change the city, we'll need to replace the URL that they provide in the demo
for the URL that lists the data we're interested in.

We can do this by opening a separate browser tab and navigating over to Zillow.com. We
need to perform an apartment search there. Let's limit the search to apartments priced
between $1,500 and $3,000 in Manhattan.

http://www.import.io
http://www.import.io/examples
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Once the results are returned, we'll need to copy the Zillow.com URL from browser bar,
and paste it in the import.io extraction box in the other tab as shown in the following
screenshots.

Image from https://www.zillow.com
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Copy the URL from the Zillow.com search bar as seen in the preceding image. Paste that in
the import.io search bar as seen in the following image.

Image from https://www.import.io/

Click on the Extract data button in the upper left-hand corner, and you will be presented
with a table of results with just the data you want.

We can now easily download our data just by clicking on Download CSV. The pop-up
dialog box will ask us how many pages we want to download, and as we can see, our
search on Zillow returned 2,640 results; we'd need to download 106 pages to get the entire
dataset. Import.io will allow us to download only 20, so we'll have to make do with that for
now.
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Inspecting and preparing the data
We now have a dataset of 500 apartment listings. Let's take a look at what's in our data.
We'll begin by importing the data with pandas in a Jupyter Notebook:

import pandas as pd
import re
import numpy as np
import matplotlib.pyplot as plt

plt.style.use('ggplot')
%matplotlib inline

pd.set_option("display.max_columns", 30)
pd.set_option("display.max_colwidth", 100)
pd.set_option("display.precision", 3)

# Use the file location of your Import.io csv
CSV_PATH = r"/Users/alexcombs/Downloads/magic.csv"

df = pd.read_csv(CSV_PATH)
df.columns

The preceding code generates the following output:

The last line, df.columns, gives us the column header output for our data. Let's also use
df.head().T to see a sample of the data. The .T syntax at the end of the line transposes
our DataFrame to display it vertically:
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Already, we can see that our data has a number of missing values (NaN). It's also going to
require a number of operations to normalize this data. The columns in our dataset (or rows
in the image above since they are transposed) appear to represent the individual lines of
data for each listing on Zillow. It also appears that there are two types of listings—one type
is for an individual unit, and the other type is for multiple units.
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The two types can be seen in the following image.

The two listings correspond to the images seen on Zillow.com.

Image from https://www.zillow.com/
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The key to splitting these up is the listingtype_value header. We'll split up our data
into those that are single units, Apartment for Rent, versus those that are multiple units,
Apartments for Rent:

# multiple units
mu = df[df['listingtype_value'].str.contains('Apartments For')]

# single units
su = df[df['listingtype_value'].str.contains('Apartment For')]

Now let's see the number of listings in each:

    len(mu)

The preceding code generates the following output:

161

len(su)

The preceding code generates the following output:

339

As most of the listings fall in the single unit group, we'll work with this for now.

Next, we need to format the data in a standard structure. For example, at a minimum, we'll
need a column for the number of bedrooms, number of bathrooms, square footage, and
address.

On examination, we already have a clean price column, pricelarge_value_prices.
Fortunately, there are no missing values in the column, so we won't lose any listings for lack
of data.

The number of bedrooms and bathrooms and the square footage will require some parsing
as they are all clumped together into a single column. Let's fix that.

Let's take a look at the column first:

su['propertyinfo_value']
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The preceding code generates the following output:

The data seems to always include the number of bedrooms and bathrooms and will
occasionally include additional information such as the year. Let's check this assumption
before we proceed with parsing:

# check the number of rows that do not contain 'bd' or 'Studio'
len(su[~(su['propertyinfo_value'].str.contains('Studio')\
|su['propertyinfo_value'].str.contains('bd'))])

The preceding code generates the following output:

0

Now let's take a look at the following lines of code:

# check the number of rows that do not contain 'ba'
len(su[~(su['propertyinfo_value'].str.contains('ba'))])

The preceding code generates the following output:

6

It appears that several rows are missing data for the number of bathrooms. There are a
number of reasons why this might be the case, and there are a number of methods we could
use to address this. One example would be to fill in, or impute, these missing data points.
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The subject of missing data could fill an entire chapter quite easily, if not an entire book,
and I do suggest investing the time to understand the topic; it is a critical component of the
modeling process. For our purposes here, however, we will assume that the data is
randomly missing and will not unduly bias our sample if we drop the listings with missing
bathrooms:

# select those listings with a bath
no_baths = su[~(su['propertyinfo_value'].str.contains('ba'))]

# exclude those missing bathroom info
sucln = su[~su.index.isin(no_baths.index)]

Now we can move on to parse out the bedroom and bathroom information:

# split using the bullet
def parse_info(row):
        if not 'sqft' in row:
            br, ba = row.split('')[:2]
            sqft = np.nan
        else:
            br, ba, sqft = row.split('.')[:3]
        return pd.Series({'Beds': br, 'Baths': ba, 'Sqft': sqft})

attr = sucln['propertyinfo_value'].apply(parse_info)

attr

The preceding code generates the following output:
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What did we do here? We ran the apply function on our propertyinfo_value column. This
then returned a DataFrame with columns for each of the individual apartment attributes.
We have a couple of additional steps to go before we're finished. We need to remove the
strings (bd, ba, and sqft) from the values, and we need to join this new DataFrame back to
our original data. Let's do this now:

#remove the strings from our values
attr_cln = attr.applymap(lambda x: x.strip().split(' ')[0] if
isinstance(x,str) else np.nan)

attr_cln

The preceding code generates the following output:

Let's take a look at the following code:

sujnd = sucln.join(attr_cln)

sujnd.T
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The preceding code generates the following output:
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At this point, our dataset is starting to come together. We'll be able to test assumptions
about the value of the apartments based on the number of bedrooms, bathrooms and square
footage. But as they say, real estate is all about location. Let's take the same approach that
we used before to parse out the apartments' attributes and apply this to the address.

We'll also try to extract the floor information where we can. We assume that in a pattern
where a letter follows a number, the number represents the floor of the building:

# parse out zip, floor
def parse_addy(r):
    so_zip = re.search(', NY(\d+)', r)
    so_flr = re.search('(?:APT|#)\s+(\d+)[A-Z]+,', r)
    if so_zip:
        zipc = so_zip.group(1)
    else:
        zipc = np.nan
    if so_flr:
        flr = so_flr.group(1)
    else:
        flr = np.nan
    return pd.Series({'Zip':zipc, 'Floor': flr})

flrzip = sujnd['routable_link/_text'].apply(parse_addy)

suf = sujnd.join(flrzip)

suf.T

The preceding code generates the following output:
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As you can see, we were able to successfully parse out the floor and ZIP information where
present. This gave us 320 ZIP codes of the 333 listings and 164 floors.
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One last bit of clean up, and we'll be ready to begin examining our dataset.

# we'll reduce the data down to the columns of interest
sudf = suf[['pricelarge_value_prices', 'Beds', 'Baths', 'Sqft', 'Floor',
'Zip']]

# we'll also clean up the weird column name and reset our index
sudf.rename(columns={'pricelarge_value_prices':'Rent'}, inplace=True)

sudf.reset_index(drop=True, inplace=True)

sudf

The preceding code generates the following output:

Analyzing the data
At this point, our data is in the format that we need in order to begin our analysis. We'll
begin by looking at some summary statistics:

sudf.describe()

The preceding code generates the following output:
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Here we see the statistical breakdown of the rent. Don't forget that we selected only the
apartments priced between $1,500 and $3,000 a month in our original data pull from Zillow.
One thing that we can't see here is the average number of bedrooms and bathrooms or the
average floor. We have two problems causing this. The first relates to the bedrooms. We
need all numerical data to get the stats. We can fix this by calling a studio apartment what it
really is, a zero-bedroom apartment:

# we'll replace 'Studio' with 0 where present
sudf.loc[:,'Beds'] = sudf['Beds'].map(lambda x: 0 if 'Studio' in x else x)

sudf

The preceding code generates the following output:



Build an App to Find Underpriced Apartments

[ 63 ]

This fixes our first problem, but we still have another problem. Any columns that we want
statistical data for have to have a numeric datatype. As you can see in the following
screenshot, this isn't the case:

sudf.info()

The preceding code generates the following output:

We can fix this by changing the datatype as shown in the following code:

# let's fix the datatype for the columns
sudf.loc[:,'Rent'] = sudf['Rent'].astype(int)
sudf.loc[:,'Beds'] = sudf['Beds'].astype(int)

# half baths require a float
sudf.loc[:,'Baths'] = sudf['Baths'].astype(float)

# with NaNs we need float, but we have to replace commas first
sudf.loc[:,'Sqft'] = sudf['Sqft'].str.replace(',','')

sudf.loc[:,'Sqft'] = sudf['Sqft'].astype(float)
sudf.loc[:,'Floor'] = sudf['Floor'].astype(float)

Let's execute the following line of code and look at the results:

sudf.info()
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The preceding code generates the following output:

Let's execute the following line of code so that we finally get our statistics:

sudf.describe()

The preceding code generates the following output:

Our numbers for rent, bedroom, bathrooms, and square footage all look good, but there
seems to be a problem with the Floor column. There are a number of very tall buildings in
New York, but none I imagine are over 1,000 floors.
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A quick look reveals that APT 1107A gave us this result. Most likely, this is an 11th floor
apartment, but just to be safe and consistent, we'll drop the listing. Fortunately, this was the
only listing above the 30th floor, so we appear to be in good shape:

# index 318 was the problem listing, so we'll drop it
sudf = sudf.drop([318])

sudf.describe()

The preceding code generates the following output:

Our data looks good now, so let's continue with the analysis. Let's pivot the data to first
examine the price by the ZIP code and number of bedrooms. Pandas has a
.pivot_table() function that makes this easy:

sudf.pivot_table('Rent', 'Zip', 'Beds', aggfunc='mean')
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The preceding code generates the following output:

This operation lets us view the mean price by the ZIP code. As you can see, as we add to the
number of bedrooms, we see fewer listings—as evidenced by the NaN values. To explore
this further, we can pivot on the count of listings:

sudf.pivot_table('Rent', 'Zip', 'Beds', aggfunc='count')
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The preceding code generates the following output:
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As we can see, our data is sparse when viewed at the level of ZIP codes and bedrooms. This
is unfortunate; ideally, we would have more data. Despite this, we can still work with what
we have.

Let's now move on to examining at our data visually.

Visualizing the data
As the data is based on ZIP codes, the best way to visualize it is with a heat map. If you're
unfamiliar with a heat map, it is simply a visualization that represents the data according to
a color spectrum. Let's do this now using a Python mapping library called folium (h t t p s :
/ / g i t h u b . c o m / p y t h o n - v i s u a l i z a t i o n / f o l i u m).

Based upon the lack of availability of apartments in the two- and three-bedroom range, let's
pare down our dataset to include only studios and one bedrooms:

su_lt_two = sudf[sudf['Beds']<2]

Now we'll go ahead and create our visualization:

import folium

map = folium.Map(location=[40.748817, -73.985428], zoom_start=13)
map.geo_json(geo_path=r'/Users/alexcombs/Downloads/nyc.json',
data=su_lt_two,
             columns=['Zip', 'Rent'],
             key_on='feature.properties.postalCode',
             threshold_scale=[1700.00, 1900.00, 2100.00, 2300.00, 2500.00,
2750.00],
             fill_color='YlOrRd', fill_opacity=0.7, line_opacity=0.2,
             legend_name='Rent (%)',
              reset=True)
map.create_map(path='nyc.html')

https://github.com/python-visualization/folium
https://github.com/python-visualization/folium
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The preceding code generates the following output:

There's a lot going on here, so let's take it step by step. After importing folium, we create a
.Map() object. We need to pass in coordinates and a zoom level to center the map. I did a
Google search for the coordinates of the Empire State Building (you'll need to flip the sign
on the longitude) and adjusted the zoom to get it centered where I wanted it.

The next line requires something called a GeoJSON file. This is an open format to represent
geographic attributes. I found one by searching for NYC GeoJSON files—specifically ones
with ZIP code mappings. Once you have the GeoJSON file passed in with the ZIP codes,
you need to pass in your DataFrame.
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Then you'll need to reference the key column (Zip in this case) as well as the column that
you wish to use for the heat map. In our case, we'll use median rent. The other options
determine the color pallette, values where the colors change, and certain other parameters
to adjust the legend and coloring. Finally, the last line determines the name of the output
file.

If you are using this on your local machine, you may run into a problem
using Chrome. The shading will appear not to work. Chrome rejects it as a
cross-origin request, and because of this, you won't be able to see the heat
map overlay. Internet Explorer and Safari should work.

With the heat map completed, we can begin to get a sense of which areas have higher or
lower rents. This can help when targeting a particular area to rent, but let's take our analysis
deeper using regression modeling.

Modeling the data
Let's begin using our one- and two-bedroom dataset. We're going to examine the effect that
the ZIP code and number of bedrooms have on the rental price. We'll use two packages
here: the first, statsmodels, we discussed briefly in the previous chapter, but the second
package, patsy (h t t p s : / / p a t s y . r e a d t h e d o c s . o r g / e n / l a t e s t / i n d e x . h t m l), makes
working with statsmodels easier. Patsy allows the use of R-style formulas when running
a regression.

Let's do this now:

import patsy
import statsmodels.api as sm

f = 'Rent ~ Zip + Beds'
y, X = patsy.dmatrices(f, su_lt_two, return_type='dataframe')

results = sm.OLS(y, X).fit()
print(results.summary())

https://patsy.readthedocs.org/en/latest/index.html
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The preceding code generates the following output:

With these few lines of code, we have just run our first machine learning algorithm.

While most people don't tend to think of linear regression as machine
learning, that's exactly what it is. Linear regression is a type of supervised
machine learning. Supervised, in this context, simply means that we
provide the output values for our training set.

Let's now unpack what happened here. After our imports, we have two lines that relate to
the patsy module. The first line is the formula that we will be using. On the left-hand side
(before the tilde) is our response or dependent variable, Rent. On the right-hand side, we
have our independent or predictor variables, Zip and Beds. This formula simply means
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that we want to know how the ZIP code and number of bedrooms will affect the rental
price.

Our formula is then passed to patsy.dmatrices() along with our DataFrame containing
the corresponding column names. Patsy is then set to return a DataFrame with our X matrix
of predictor variables and a y vector with our response variable. These are then passed to
sm.OLS(), which we also call .fit() on to run our model. Finally, we print out the results
of the model.

As you can see, there is a lot of information provided in the result output. Let's begin by
looking at the topmost section. We can see that the model included 262 observations, it has
an adjusted R2 of .283, and it is significant with an F-statistic probability of 1.21e-10.
What is the significance of this? It means that we have created a model that is able to
explain about a third of the variance in price just using bedrooms and the ZIP code. Is this a
good result? In order to better answer this, let's now look at the center section of the output.

The center section provides us with information on each of the independent variables in our
model. From left to right, we can see the following information: the variable, variable's
coefficient in the model, standard error, t-statistic, p-value for the t-statistic, and 95%
confidence interval.

What does all of this tell us? If we look at the p-value column, we can determine if our
individual variables are statistically significant. Statistically significant in a regression
model means that the relationship between an independent variable and response variable
is unlikely to have occurred by chance. Typically, statisticians use a p-value of .05 when
determining this. A .05 p-value means that the results that we see would occur by chance
only 5% of the time. In terms of our output here, the number of bedrooms are clearly
significant. What about the ZIP codes?

The first thing to notice here is that our intercept represents the 10001 ZIP code. When
modeling a linear regression, an intercept is needed. The intercept is simply where the
regression line meets the y axis. Statsmodels will automatically select one of the predictor
variables to use as the intercept. Here, it decided on Chelsea (10001).

Like the number of bedrooms, the intercept is statistically significant. However, what about
the other ZIP codes?

For the most part, they are not significant. However, let's take a look at a few that are. The
ZIP codes—10027, 10029, and 10035—are all highly significant and all have highly
negative confidence intervals. This tells us that they will tend to have a lower rental price
than a similarly equipped apartment in Chelsea.
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As Chelsea is considered a posh area in New York, and these three neighborhoods are in or
around the Harlem area – which certainly would not be considered posh – the model fits
with our real-world intuitions.

Let's now use our model to make a number of forecasts.

Forecasting
Let's say that we've decided, from our prior analysis, that we are interested in three
particular ZIP codes: 10002, 10003, and 10009. How can we use our model to determine
what we should pay for a given apartment? Let's now take a look.

First, we need to know what the inputs to the model looked like so that we can know how
to enter a new set of values. Let's take a look at our X matrix:

X.head()

The preceding code generates the following output:

What we can see is that our input is coded with what is called a dummy variable. To
represent a ZIP code feature, as it is not numerical, dummy coding is used. If the apartment
is in 10003, then this column will be coded as 1 while all the other ZIP codes are coded as
zero. Beds will be coded according to the actual number as they are numerical. So, lets' now
create our own input row to predict:

to_pred_idx = X.iloc[0].index
to_pred_zeros = np.zeros(len(to_pred_idx))
tpdf = pd.DataFrame(to_pred_zeros, index=to_pred_idx, columns=['value'])

tpdf
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The preceding code generates the following output:

We have just used the index from the X matrix and filled in the data all with zeros. Let's
now fill in our values. We going to price a one-bedroom apartment in the 10009 area code:

tpdf.loc['Intercept'] = 1
tpdf.loc['Beds'] = 1
tpdf.loc['Zip[T.10009]'] = 1

tpdf

The intercept value for a linear regression must always be set to 1 for the
model to return accurate statistical values.
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The preceding code generates the following output:

Here we can see the intercept and the 10009 zip code has been set to 1.

And here, we can see the number of bedrooms has been set to 1 as well.

We set our features to the appropriate values, so let's now use our model to return a
prediction:

results.predict(tpdf['value'])

The preceding code generates the following output:

2529.5604669841355
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Remember that results was the variable name we saved our model to. This model object
has a .predict() method, which we call with our input values. As you can see, the model
returns a predicted value.

What if we want to add another bedroom?

Let's change our inputs and see:

tpdf['value'] = 0
tpdf.loc['Intercept'] = 1
tpdf.loc['Beds'] = 2
tpdf.loc['Zip[T.10009]'] = 1

tpdf

The preceding code generates the following output:

We can see that bedrooms has been updated to 2.

Now we'll run the prediction again:

results.predict(tpdf['value'])

The preceding code generates the following output:

2738.035104645339

Looks like that extra bedroom will cost us about $200 more a month. What if we choose
10002 instead? Let's implement this in our code:

tpdf['value'] = 0
tpdf.loc['Intercept'] = 1
tpdf.loc['Beds'] = 2
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tpdf.loc['Zip[T.10002]'] = 1

results.predict(tpdf['value'])

The preceding code generates the following output:

2651.1763504369078

According to our model, it appears that we could save some money if we choose the 10002
area over the 10009 area for our two-bedroom apartment.

Extending the model
At this point, we have only examined the relationship between the ZIP code, bedrooms, and
rental price. While our model had some explanatory power, we had a minimal dataset and
far too few features to adequately examine the complex world of real estate valuation.

Fortunately, however, if we were to add more data and features to the model, we could use
the exact same framework to expand our analysis.

Some possible future extensions to explore would be utilizing data for restaurants and bars
available from APIs such as Foursquare or Yelp, or walkability and transportation
proximity measures from providers such as Walk Score.

There are a number of ways to extend the model, and I suggest that you pursue working on
a project, such as by exploring a variety of measures. With more data being released every
day, the chance to improve your model can only increase.

Summary
In this chapter, you learned how to acquire data on real estate listings, utilize the
functionality of pandas to manipulate and sanitize this data, inspect the data visually with
heat maps, and finally, build and use regression modeling to price out an apartment.

At this point, we have just scratched the surface of machine learning. We'll continue to
explore different algorithms and applications in the chapters that follow.

In the next chapter, we'll explore how we can use clustering algorithms to find ultra-rare,
heavily-discounted airfares.
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Build an App to Find Cheap

Airfares
Let's talk about mistakes. They're a part of life; everyone makes them – even airlines.

In 2014, I happened to be reading my Twitter feed one afternoon when one of the accounts I
follow tweeted that a major U.S. airline had fares to Europe that were significantly below
what would be expected. At that time, the cheapest fare from New York to Vienna was
around $800. However, the advertised fares for a select number of dates were between $350
and $450. This seemed too good to be true, but it wasn't. I had chanced upon what's known
in the industry as a mistake fare.

In the super-secretive society of travel hackers and mileage junkies, it's well-known that
airlines occasionally – and accidentally – post fares that exclude fuel surcharges.
Remarkably, this isn't the only type of mistake that they make. You might expect that
advanced algorithms would be updating fares for each flight, taking into account an
enormous number of factors. For the most part, you'd be right. However, due to legacy
systems and the complexity of dealing with multiple carriers and multiple jurisdictions,
mistakes do occur.

Now that you know these fares exist, how can you get in on them? Machine learning, of
course! As they typically last just a few hours before they disappear, we're going to build an
application that continually monitors fare pricing. Once an anomalous price appears, our
app will generate an alert that we can quickly act on.

We'll cover the following topics in this chapter:

Sourcing airfare pricing on the Web
Retrieving fare data with advanced web scraping techniques
Parsing the Document Object Model to extract prices
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Identifying outlier fares with clustering techniques
Sending real-time text alerts with IFTTT

Sourcing airfare pricing data
Fortunately, airfare pricing data is easier to obtain than real estate data, so it isn't hard to
find. There are both free and paid API sources as well as numerous websites that provide
the data. I tested a number of these services, but in the end, there was only one that
provided the data in a workable format. This format made it super simple to find the
lowest-priced flights months in advance.

Before I tell you which service it is, let me show you the typical flight search interface:

Image from https://www.expedia.com/

The problem with this type of interface for our purposes – and all the APIs have the same
fields – is that we would need to run queries for all the dates that we are interested in for
every possible trip length for each airport. While possible, it is ugly and would take far too
much effort.

Fortunately, there is a better way. There is a little-known tool that Google provides called
the Flight Explorer. This tool lets you view the lowest cost fares from one region to another
over a period of months.
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Here is an example of a search for 8-12 day trips from New York to Europe. The cities are
returned sorted in order of price, from the lowest cost to highest:

Image from https://www.google.com/flights/explore/

This format is ideal to find mistake fares as the results are returned sorted by price for an
entire region over a 60-day period. This ensures that outlier fares surface to the top when
they occur.
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That's the good news. The bad news is that Google has made pulling down this data
programmatically quite challenging. Fortunately, with a bit of clever coding, we can still get
the data that we need.

Retrieving the fare data with advanced web
scraping techniques
We've seen in the previous chapters how to use the requests library to retrieve web pages.
As I've said before, it is a fantastic tool, but, unfortunately, won't work for us here. The page
that we want to scrape is entirely AJAX-based. Asynchronous JavaScript (AJAX) is a
method to retrieve data from a server without having to reload the page. What this means
for us is that we'll need to use a browser to retrieve the data. While this might sound like it
would require an enormous amount of overhead, there are two libraries that when used
together make it a lightweight task.

The two libraries are Selenium and PhantomJS. Selenium is a powerful tool to automate
web browsers, and PhantomJS is a browser. Why use PhantomJS rather than Firefox or
Chrome? PhantomJS is what's known as a headless browser. This means that it has no UI.
This keeps it lean, making it ideal for what we're trying to do.

To install PhantomJS, you can download the binaries or source from h t t p
: / / p h a n t o m j s . o r g / d o w n l o a d . h t m l. As for Selenium, it can be pip-
installed.

We'll also need another library called BeautifulSoup4 to parse the data from the page. If
you don't have this installed, you should pip-install this as well.

With this done, let's get started. We'll start out working the Jupyter notebook. Jupyter
works best for exploratory analysis. Later, when we've completed our exploration, we'll
move on to working in a text editor. Text editors are better for writing code that we want to
deploy as an app.

First, we will import the libraries:

import pandas as pd
import numpy as np

from selenium import webdriver
from selenium.webdriver.common.desired_capabilities import
DesiredCapabilities

http://phantomjs.org/download.html
http://phantomjs.org/download.html
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from bs4 import BeautifulSoup

import matplotlib.pyplot as plt
%matplotlib inline

Next, we'll set up the code to instantiate the browser object. It is this object that will pull
down the page for us. You can select the airports or regions that you'd like by running a
search in your browser and copying the URL. Here, I'm searching for trips between New
York airports and several cities in Asia:

url =
"https://www.google.com/flights/explore/#explore;f=JFK,EWR,LGA;t=
HND,NRT,TPE,HKG,KIX;s=1;li=8;lx=12;d=2016-04-01"

driver = webdriver.PhantomJS()

dcap = dict(DesiredCapabilities.PHANTOMJS)
dcap["phantomjs.page.settings.userAgent"] = ("Mozilla/5.0
(Macintosh; Intel Mac OS X 10_10_5) AppleWebKit/537.36 (KHTML, like
Gecko) Chrome/46.0.2490.80 Safari/537.36")

driver = webdriver.PhantomJS(desired_capabilities=dcap,
service_args=['--ignore-ssl-errors=true'])

driver.implicitly_wait(20)
driver.get(url)

We need to send the receiving server a user agent. You can use the agent I listed here, or
you can swap this out for your own agent if you prefer. It becomes important when we get
to the parsing stage. If you are using one agent to select Document Object Model (DOM)
elements in your normal browser and then passing a different agent in your code, you may
end up with problems parsing the page as the DOM can be user agent-dependent.

You can find your user agent just by running a Google search for what is my user
agent?. Copy this information and then use it in the preceding code if you plan on using
this for other scrapers.

Once the preceding code has been run, you can use the following line to save a screenshot
of the page. Check it to make sure that everything looks good:

driver.save_screenshot(r'flight_explorer.png')

If all goes as planned, you should see True as the output and have a file with the image of
the page that you scraped. It should look just like the page in your normal web browser.

Next, we'll move on to parsing the page to extract the pricing information.
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Parsing the DOM to extract pricing data
The DOM is the collection of elements that form the structure a web page. If you have ever
viewed the source of a web page, you have seen the components of the DOM. They include
elements and tags such as body, div, class, and id. We'll need to work with these
elements to extract the data we need.

Let's take a look at the DOM for our Google page. To see it, right-click on the page and click
on Inspect element. This should be the same for Firefox or Chrome. This will open the
developer tab that allows you to see the page source information. Once this is open, choose
the element selector in the upper left corner, and click on one of the price bars to jump to
that element.

Image from https://www.google.com/flights/explore/
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The first thing that you are likely to notice is that there isn't any pricing data in the div tags.
If you hover over the bars, a tooltip will display the fare, but this is all done with JavaScript
and is not available with the DOM. In fact, the only thing available is the height of the bar
that represents the fare. So, how can we get data that isn't there? We deduce it!

The page does give us just enough clues to infer the price using the height of the bars. You'll
notice that the one fare listed for each city is the best fare. You can see it to the left-hand side
of the bar graph. This div provides you with the pricing as text, as shown in the following
screenshot:

Image from https://www.google.com/flights/explore/
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You will also notice that each city has a bar that matches the lowest fare. It's highlighted in a
darker shade than the other bars. As it has a unique class that generates this coloring, we
can find it. Once we find it, we can use its height divided by its price to determine the price
per pixel. Using this, it becomes a simple exercise to derive the price for each flight.

Let's code this now.

The first step is to feed the page source to BeautifulSoup:

s = BeautifulSoup(driver.page_source, "lxml")

We can then retrieve a list of all the best prices:

best_price_tags = s.findAll('div', 'FTWFGDB-w-e')
best_prices = []
for tag in best_price_tags:
    best_prices.append(int(tag.text.replace('$','')))

As the city with the cheapest fare rises to the top, we can just use it:

best_price = best_prices[0]

Next, we'll get the list of bar heights for each:

best_height_tags = s.findAll('div', 'FTWFGDB-w-f')
best_heights = []
for t in best_height_tags:
    best_heights.append(float(t.attrs['style']\
    .split('height:')[1].replace('px;','')))

Again, we'll only need the first one:

best_height = best_heights[0]

Then we can calculate the price per pixel of the height:

pph = np.array(best_price)/np.array(best_height)

Next, we'll retrieve the bar heights for all flights in each city:

cities = s.findAll('div', 'FTWFGDB-w-o')

hlist=[]
for bar in cities[0]\
    .findAll('div', 'FTWFGDB-w-x'):
    hlist.append(float(bar['style']\
                       .split('height: ')[1]\
                       .replace('px;',''))*pph)
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fares = pd.DataFrame(hlist, columns=['price'])

This completed, we now have a DataFrame with the cheapest fare for a two-month period.
Let's take a look:

fares.min()

The preceding code generates the following output:

Our minimum fare should match the one that we see on the page, and it does. Let's now
take a look at the full list.

Everything looks good. We can now move on to setting up our outlier detection.

Identifying outlier fares with clustering
techniques
Airfares are updated continually throughout the day. If we're trying to identify fares that
are priced well below what they should be priced, how might we do this without machine
learning? It seems like it would be fairly simple, but when you start to consider the options
available, it quickly becomes more far complex than anticipated.
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One option would be to get the prices for every city and set a threshold so that if they fell
below that price, you would trigger an alert. This might work, but do you set a percentage
alert below the currently lowest price? A strict dollar-level trigger? Then, where exactly do
you place it? What if fares naturally decline due to seasonal factors? Maybe you could check
each bar for deviation from the median bar. What if prices are nearly flat and then there is a
minor drop? Maybe check each bar's height versus its neighboring bars. What if the mistake
fare occurs across more than just one day?

As you can see, it's not as simple as it might appear. Given that, how do we avoid the
headaches of storing pricing data for each city, dealing with seasonality, and trying to set
thresholds? We use a clustering algorithm instead.

There are a number of clustering algorithms available, but for the type of data that we are
working with here, we will use an algorithm known as density-based spatial clustering of
applications with noise (DBSCAN). It is an exceedingly effective algorithm that tends to
identify clusters of points the same way in that humans do. The following image is a
visualization taken from scikit-learn's documentation. It demonstrates DBSCAN's
effectiveness across a range of different data distributions:

Image from http://scikit-learn.org/stable/auto_examples/cluster/plot_cluster_comparison.html
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As you can see, it is quite powerful. Let's now discuss how the algorithm works.

To understand the DBSCAN algorithm, first we need to discuss two parameters that must
be set for the algorithm to work. The first parameter is called epsilon. This parameter
determines the distance two points can be from each other and still be in the same cluster. If
epsilon is large, then any two points are more likely to cluster together. The second
parameter is called min points. This is the minimum number of points (including the
current point) that are required to create a cluster. If min points are one, then every point
will be one in a cluster. If min points are greater than one, then it's possible for some points
to not be affiliated with any cluster. These then become the noise– the N in DBSCAN.

The DBSCAN algorithm proceeds as follows. Randomly select a point from the set of all
points. Search epsilon distance in all directions from this point. If min points are within this
epsilon distance, all points within epsilon become affiliated with a cluster (the colored areas
seen in the preceding image). Repeat the procedure by checking all the new points that
were added to the cluster. Continue this until no new points can be added to this current
cluster. When this occurs, the first cluster is complete. Now begin again by randomly
selecting a new point outside the closed cluster. Repeat this same procedure until no new
clusters can be formed.

Now that we have an understanding of how the algorithm works, let's apply it to the airfare
data. We'll begin by creating a simple graph of the fares to inspect:

fig, ax = plt.subplots(figsize=(10,6))
plt.scatter(np.arange(len(fares['price'])),fares['price'])
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The output for the preceding code is shown as follows:

We can see that fares flatline for a number of weeks and then begin to rise dramatically.
Most people would likely see this as four major clusters. Let's now set up our code to
identify and display the clusters.

First, we will set up a price frame that we can pass to the DBSCAN object:

px = [x for x in fares['price']]
ff = pd.DataFrame(px, columns=['fare']).reset_index()

Then we'll need to import a couple libraries for the clustering:

from sklearn.cluster import DBSCAN
from sklearn.preprocessing import StandardScaler

Finally, the following code will apply the DBSCAN algorithm to our fare data and output a
visualization:

X = StandardScaler().fit_transform(ff)
db = DBSCAN(eps=.5, min_samples=1).fit(X)

labels = db.labels_
clusters = len(set(labels))
unique_labels = set(labels)
colors = plt.cm.Spectral(np.linspace(0, 1, len(unique_labels)))



Build an App to Find Cheap Airfares

[ 90 ]

plt.subplots(figsize=(12,8))

for k, c in zip(unique_labels, colors):
    class_member_mask = (labels == k)
    xy = X[class_member_mask]
    plt.plot(xy[:, 0], xy[:, 1], 'o', markerfacecolor=c,
            markeredgecolor='k', markersize=14)

plt.title("Total Clusters: {}".format(clusters), fontsize=14,
        y=1.01)

Let's unpack this line by line. In the first line, we are utilizing StandardScaler(); this
object will take our data, subtract the mean from each point, and divide each by the
standard deviation. This step gets all of our data on the same basis and readies it for the
algorithm. The standardized data is then passed to the DBSCAN object. Here, we are setting
the two parameters that we discussed earlier. We set eps, or our epsilon distance, equal to
.5, and set min_samples to 1. The next line sets labels equal to the array of the labels
output from the algorithm. Every point (as min_points is set to 1) will be associated with a
cluster ID. These clusters will be labeled from 0 to n-1, where n is the total number of
clusters. The next two lines get the total number of clusters and their unique labels, and the
line that begins with colors generates a color map for our graph. The remainder of the
code then sets up our graph by applying a unique color to each cluster and setting a title for
the graph with the total number of clusters.

Let's take a look at the output for our fare data:

www.allitebooks.com

http://www.allitebooks.org
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As you can see, the algorithm has identified four distinct clusters, which is exactly what we
had hoped for. Now, having just told you how well it worked with these parameters, I'm
going to suggest changing them. Why mess with perfection? Well, let's take a look at a few
scenarios in which we introduce artificial fares.

With our current fare series and the same parameters, let's introduce a new fare into the
mix.

We'll begin by replacing data point #10 in our series. We'll change it from $656 to $600:

You'll notice that it becomes its own cluster near the bottom of the graph. However, while
the fare has clear separation from the other fares, it is not far enough that we would want to
be alerted to it.

Let's increase the epsilon parameter so that we are only clustering two groups: typical fares
and extraordinary fares.
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We'll now keep the same dummy fare, but increase the epsilon to 1.5:

You can see that we now have two clusters. Our $600 fare has been placed in the main
cluster, and the fare at the far right-hand side at the top of the graph has been placed in its
own cluster. This looks reasonable as the far right-hand side fare is a clear outlier. Let's test
this a bit more. How far would we need to drop our dummy fare to have it in its own
cluster?
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The following screenshot illustrates the results of dropping the dummy fare further.

Dropping it to $550, we can see that it is still a part of the primary cluster:
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Dropping it to $545 puts it in its own cluster. This seems like a reasonable level, but let's
now run a few other scenarios using other cities.

This is the Tokyo Narita Airport series. We have a single cluster, which is what we'd hope.
Let's swap in a dummy fare now. We'll swap fare #45 in the series. We'll move it from $970
to $600. This is a major decline – far more than the $111 decline that triggered a new cluster
in the other series – but it is clearly within the range of typical prices, so we wouldn't want a
new cluster to form:
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You can see that it didn't. Why is this the case if there is such a large distance between our
dummy fare and the two fares to its left and right? This is because we are working with the
entire series and not just the immediate neighbors for each point. Most likely, our dummy
data point was recruited to the cluster by the points to its left. Let's try one more scenario.
We'll swap a fare out to the right – further from our lower left cluster:

Here we have swapped fare #55 from $1176 to $700. This resulted in a new cluster. The fare
is within the range of the other fares in the full series, but it is certainly an outlier at this
point. We most likely don't want to be alerted to it, however.

As we don't want to be alerted every time there is more than a single cluster, we need to set
up rules for the scenarios where we do want to be alerted.

First, as we are looking for mistake fares, we expect them to be equal to the lowest price
displayed. We can group by cluster and retrieve the minimum price:

pf = pd.concat([ff, pd.DataFrame(db.labels_,
                                columns=['cluster'])], axis=1)
pf
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The preceding code generates the following output:

The following code will aggregate by cluster and display the minimum price and count:

rf = pf.groupby('cluster')['fare'].agg(['min','count'])
rf

The preceding code generates the following output:

We also expect that the mistake cluster will be smaller than the main cluster. We'll set a
limit on the size of our mistake cluster by requiring it to be less than the 10th percentile for
count. In this case, it would be less than seven fares. This figure will vary depending on the
number and size of clusters, but this should be a workable figure. To see the quantile
breakdown, you can use the following line of code:

rf.describe([.10,.25,.5,.75,.9])
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The preceding code generates the following output:

Let's add one more condition. Let's set a minimum distance between the lowest priced
cluster and the second lowest priced. Doing so will prevent a scenario like the one seen in
the following output:

Here the fare is the lowest, but it is just below the range of the other cluster. Setting a
minimum distance will cut down the false alerts that we receive. Let's set it at $100 initially.
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Now that we have our outlier detection rules, let's move on to how we can put it all
together with a real-time fare-alert app.

Sending real-time alerts using IFTTT
To have a chance at getting these cheap fares, we're going to need to know in near real time
when they happen. To accomplish this, we'll use a service called If This Then That
(IFTTT). This is a free service that allows you to connect a huge number of services together
with a series of triggers and actions. Want to save all the pictures that you've liked on
Instagram to your iPhone Photos? Want to get an e-mail every time a particular person
tweets? Want your Facebook updates posted to Twitter? IFTTT does all of this and more.

To get started with IFTTT:

Sign up for and account at h t t p : / / w w w . i f t t t . c o m1.
Sign up for the Maker channel at h t t p s : / / i f t t t . c o m / m a k e r2.
Sign up for the SMS channel at h t t p s : / / i f t t t . c o m / s m s3.

The Maker channel allows HTTP requests to be sent and received, and the SMS channel
does the same for SMS messages.

Once you've created an account and activated the two channels, click on My Recipes from
the home page, then click on Create a Recipe:

Image from https://ifttt.com/

http://www.ifttt.com
https://ifttt.com/maker
https://ifttt.com/sms
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Then search for and select the Maker channel:

Image from https://ifttt.com/

Next, select Receive a web request:

Image from https://ifttt.com/

Then we'll create an event called fare_alert:
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Image from https://ifttt.com/

Next, we'll set up the that:

Image from https://ifttt.com/

Search for SMS and select it. Then choose Send me an SMS:

Image from https://ifttt.com/
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After this, we'll fill in the field with fare_alert. Make sure to replace the curly braces:

Image from https://ifttt.com/

Once this is complete, you can customize your message with the city and airfare:

Image from https://ifttt.com/

To test the setup, go to h t t p : / / w w w . i f t t t . c o m / m a k e r, and click on How to Trigger
Events. Then fill in fare_alert for event, and place the test city and fare in the value1
and value2 boxes:

http://www.ifttt.com/maker
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Image from https://ifttt.com/

Finally, click on Test It, and you should receive a text message in just a few seconds.

Now that we have all the pieces in place, it's time to pull it all together into a single script
that will monitor fares 24/7.

Putting it all together
Up until this point, we've worked in the Jupyter notebook, but now to deploy our app, we'll
move to working in a text editor. The notebook is excellent for exploratory analysis and
visualization, but running a background job is best done with a simple .py file. So let's get
started.

We'll begin with our imports. You may need to pip-install a few of these if you don't
already have them installed:

import sys
import pandas as pd
import numpy as np

import requests

from selenium import webdriver
from selenium.webdriver.common.desired_capabilities import
DesiredCapabilities
from selenium.webdriver.common.by import By
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from selenium.webdriver.support.ui import WebDriverWait
from selenium.webdriver.support import expected_conditions as EC

from bs4 import BeautifulSoup

from sklearn.cluster import DBSCAN
from sklearn.preprocessing import StandardScaler

import schedule
import time

Next, we'll create a function that pulls down the data and runs our clustering algorithm.
Notice that we're including an explicit wait when we retrieve our data. As the page has an
AJAX request, we need to add this wait time to ensure that the page's pricing data has been
returned before we move on. If the scraping still fails for some reason, we'll send a text
noting this failure:

def check_flights():
    url = "https://www.google.com/flights/explore/#explore;f=JFK,
        EWR,LGA;t=HND,NRT,TPE,HKG,KIX;s=1;li=8;lx=12;d=2016-04-01"

    driver = webdriver.PhantomJS()

    dcap = dict(DesiredCapabilities.PHANTOMJS)
    dcap["phantomjs.page.settings.userAgent"] = \
        ("Mozilla/5.0 (Macintosh; Intel Mac OS X 10_10_5)
AppleWebKit/537.36 (KHTML, like Gecko) Chrome/46.0.2490.80 Safari/537.36")

    driver = webdriver.PhantomJS(desired_capabilities=dcap,
                                 service_args=['--ignore-ssl-
                                 errors=true'])
    driver.get(url)

    wait = WebDriverWait(driver, 20)
    wait.until(EC.visibility_of_element_located((By.CSS_SELECTOR,
    "span.FTWFGDB-v-c")))

    s = BeautifulSoup(driver.page_source, "lxml")

    best_price_tags = s.findAll('div', 'FTWFGDB-w-e')

    # check if scrape worked - alert if it fails and shutdown
    if len(best_price_tags) < 4:
        print('Failed to Load Page Data')
requests.post('https://maker.ifttt.com/trigger/fare_alert/with/key/MY_SECRE
T_KEY',data={"value1": "script", "value2": "failed",
"value3": ""})
        sys.exit(0)
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    else:
        print('Successfully Loaded Page Data')

    best_prices = []
    for tag in best_price_tags:
        best_prices.append(int(tag.text.replace('$', '')))

    best_price = best_prices[0]

    best_height_tags = s.findAll('div', 'FTWFGDB-w-f')
    best_heights = []
    for t in best_height_tags:
        best_heights.append(float(t.attrs['style']
                                   .split('height:')[1].replace('px;',
'')))

    best_height = best_heights[0]

    # price per pixel of height
    pph = np.array(best_price)/np.array(best_height)

    cities = s.findAll('div', 'FTWFGDB-w-o')

    hlist = []
    for bar in cities[0].findAll('div', 'FTWFGDB-w-x'):
        hlist.append(float(bar['style'].split('height: ')[1]
                                       .replace('px;', '')) * pph)

    fares = pd.DataFrame(hlist, columns=['price'])
    px = [x for x in fares['price']]
    ff = pd.DataFrame(px, columns=['fare']).reset_index()

    # begin the clustering
    X = StandardScaler().fit_transform(ff)
    db = DBSCAN(eps=1.5, min_samples=1).fit(X)

    labels = db.labels_
    clusters = len(set(labels))

    pf = pd.concat([ff, pd.DataFrame(db.labels_, columns=
['cluster'])], axis=1)

    rf = pf.groupby('cluster')['fare']\
           .agg(['min', 'count']).sort_values('min',
scending=True)
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Now we'll check whether our rules have trigger. If yes, we'll send a request to receive a text:

    # set up our rules
    # must have more than one cluster
    # cluster min must be equal to lowest price fare
    # cluster size must be less than 10th percentile
    # cluster must be $100 less the next lowest-priced cluster
    if clusters > 1\
       and ff['fare'].min() == rf.iloc[0]['min']\
       and rf.iloc[0]['count'] < rf['count'].quantile(.10)\
       and rf.iloc[0]['fare'] + 100 < rf.iloc[1]['fare']:
        city = s.find('span', 'FTWFGDB-v-c').text
        fare = s.find('div', 'FTWFGDB-w-e').text
requests.post('https://maker.ifttt.com/trigger/fare_alert/with/key/MY_SECRE
T_KEY', data={"value1": city, "value2": fare, "value3": ""})
    else:
        print('no alert triggered')

Finally, we'll include a scheduler. This will run our code every 60 minutes:

# set up the scheduler to run our code every 60 min
schedule.every(60).minutes.do(check_flights)

while 1:
    schedule.run_pending()
    time.sleep(1)

That should do it. We can now save this as fare_alerter.py, and run it from the
command line. It will continue running and check fares every 60 minutes. If a mistake fare
occurs, we'll be one of the first to know!

Note that this is a minimal implementation of this code. To create a proper
implementation, good logging practices should be put in place in lieu of
the print statements shown here. For more information on how to
implement logging, see h t t p s : / / d o c s . p y t h o n . o r g / 3 . 4 / h o w t o / l o g g i
n g . h t m l # l o g g i n g - b a s i c - t u t o r i a l.

https://docs.python.org/3.4/howto/logging.html#logging-basic-tutorial
https://docs.python.org/3.4/howto/logging.html#logging-basic-tutorial
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Summary
We've covered a lot of ground in this chapter. We've learned how to find the best airfare
data on the Web, how to work with the DOM to find and parse the HTML elements, how to
cluster data into meaningful groups, and finally how to send text alerts from code using
web requests in IFTTT. While what we've covered here is for airfares, nearly everything that
we've done could be reused for any type of pricing you'd like to be alerted to.

If you do decide to use it for airfares though, I hope it provides you with many happy
travels!

In the next chapter, we'll cover how to use classification algorithms to help predict the IPO
market.



4
Forecast the IPO Market using

Logistic Regression
In the late 1990s, getting in on the right IPO was like winning the lottery. First day returns
for some technology companies were many times their initial offering price. If you were
lucky enough to get in an allocation, you were in for a windfall. Here are a few of the top
first-day performers from the period:

VA Linux up 697%, 12/09/99
Globe.com up 606%, 11/13/98
Foundry Networks up 525%, 9/28/99

While the days of dotcom mania are far behind us, IPOs can still have outsized first-day
returns. Here are a just few that have risen over 100% on their first day of trading in the past
year:

Seres Therapeutics up 185%, 06/26/15
Audro Biotech up 147%, 4/15/15
Shake Shack up 118%, 1/30/15

As you can see, this is still a market worth paying attention to. In this chapter, we'll take a
closer look at the IPO market. We'll see how we can use machine learning to help us decide
which IPOs are worth a closer look and which ones we may want to take a pass on.

We'll cover the following topics in this chapter:

The IPO market
Data cleansing and feature engineering
Binary classification with logistic regression
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Model evaluation
Feature importance

The IPO market
Before we jump in and begin modeling, let's first discuss what an IPO, or initial public
offering, is and what the research tells us about this market. After that, we'll discuss a
number of strategies that we can apply.

What is an IPO?
An initial public offering is the process whereby a private company becomes a public
company. Public offerings raise capital for the company and give the general public an
opportunity to invest in the company by buying its shares.

Though there are variations in how this occurs, in the typical offering, a company enlists the
aid of one or more investment banks to underwrite their offering. This means that the banks
make a guarantee to the company that they will purchase all of the shares being offered at
the IPO price on the day of the offering. The underwriters, of course, do not intend to keep
all of the shares themselves. With the help of the offering company, they go on what's called
a roadshow to drum up interest from institutional clients. These clients put in a subscription
for the shares which indicates their interest in buying shares on the day of the IPO. This is a
nonbinding contract since the price of the offering is not finalized until the day of the IPO.
The underwriter will then set the offer price, given the level of interest expressed.

What is interesting from our perspective is that research has consistently shown a
systematic underpricing of IPOs. There are a number of theories for why this happens, and
why this level of underpricing seems to vary over time, but suffice it to say, studies have
shown billions of dollars are left on the table every year.

In an IPO, “money left on the table” is the difference between the offering price of the
shares and the first day's closing price.

One other point that should be mentioned before we move on is the difference between the
offering price and the opening price. While you can occasionally get in on the deal through
your broker and receive the IPO at its offering price, in nearly all instances you, as a
member of the general public, will have to purchase the IPO at the (typically higher)
opening price. We'll build our models under this assumption.
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Recent IPO market performance
Let's now take a look at the performance of the IPO market. We are going to pull down data
from IPOScoop.com. This is a service that provides ratings for upcoming IPOs. Go to h t t p
s : / / w w w . i p o s c o o p . c o m / s c o o p - t r a c k - r e c o r d - f r o m - 2 0 0 0 - t o - p r e s e n t / and click on
the button at the bottom of the page to download the spreadsheet. We'll load this into
pandas and run a number of visualizations using our Jupyter notebook.

First, we'll set up the imports that we'll need throughout the chapter. Then, we'll pull in the
data, as follows:

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from patsy import dmatrix
from sklearn.ensemble import RandomForestClassifier
from sklearn import linear_model
%matplotlib inline
ipos = pd.read_csv(r'/Users/alexcombs/Downloads/ipo_data.csv',
encoding='latin-1')
ipos

The preceding code generates the following output:

Here, we can see that we have some great information on each IPO: the offering date, issuer,
offering price, opening price, and price changes. Let's first explore the performance data by
year.

https://www.iposcoop.com/
https://www.iposcoop.com/scoop-track-record-from-2000-to-present/
https://www.iposcoop.com/scoop-track-record-from-2000-to-present/
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We'll first need to perform some cleanup to properly format the columns. We'll get rid of
the dollar signs and the percentage marks:

ipos = ipos.applymap(lambda x: x if not '$' in str(x) else
x.replace('$',''))
ipos = ipos.applymap(lambda x: x if not '%' in str(x) else
x.replace('%',''))
ipos

The preceding code generates the following output:

Next, we'll fix the data types for the columns. They are all objects currently, and we want
numeric types for the aggregations and manipulations that we will perform:

ipos.info()

The preceding code generates the following output:
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There are some 'N/C' values in our data that we'll need to replace first. After this, we can
change the data types:

ipos.replace('N/C',0, inplace=True)
ipos['Date'] = pd.to_datetime(ipos['Date'])
ipos['Offer Price'] = ipos['Offer Price'].astype('float')
ipos['Opening Price'] = ipos['Opening Price'].astype('float')
ipos['1st Day Close'] = ipos['1st Day Close'].astype('float')
ipos['1st Day % Px Chng '] = ipos['1st Day % Px Chng '].astype('float')
ipos['$ Chg Close'] = ipos['$ Chg Close'].astype('float')
ipos['$ Chg Opening'] = ipos['$ Chg Opening'].astype('float')
ipos['Star Ratings'] = ipos['Star Ratings'].astype('int')

Note that this throws an error, as seen in the following:

This means one of our dates is not properly formatted. We find this based on the previous
stack trace and fix it:

ipos[ipos['Date']=='11/120']

After fixing the error, we will observe the following output:

The proper date is 11/20/2012, so we'll set it and rerun the preceding data type fixes. After
that, everything should go smoothly:

ipos.loc[1660, 'Date'] = '2012-11-20'

ipos['Date'] = pd.to_datetime(ipos['Date'])
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ipos['Offer Price'] = ipos['Offer Price'].astype('float')
ipos['Opening Price'] = ipos['Opening Price'].astype('float')
ipos['1st Day Close'] = ipos['1st Day Close'].astype('float')
ipos['1st Day % Px Chng '] = ipos['1st Day % Px Chng']
.astype('float')
ipos['$ Chg Close'] = ipos['$ Chg Close'].astype('float')
ipos['$ Chg Opening'] = ipos['$ Chg Opening'].astype('float')
ipos['Star Ratings'] = ipos['Star Ratings'].astype('int')

ipos.info()

The preceding code generates the following output:

Now, finally, we can start our exploration. Let's start with average first day percentage gain:

ipos.groupby(ipos['Date'].dt.year)['1st Day % Px Chng ']\
.mean().plot(kind='bar', figsize=(15,10), color='k', title='1st Day Mean
IPO Percentage Change')
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The preceding code generates the following output:

Those are some healthy percentages in recent years. Let's now take a look at how the
median compares to the mean:

ipos.groupby(ipos['Date'].dt.year)['1st Day % Px Chng ']\
.median().plot(kind='bar', figsize=(15,10), color='k', title='1st Day
Median IPO Percentage Change')
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The preceding code generates the following output:

From this, we can clearly see that the distribution of returns is skewed by some large
outliers. Let's now take a look at them:

ipos['1st Day % Px Chng '].describe()

The preceding code generates the following output:
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Now we can plot it as well:

ipos['1st Day % Px Chng '].hist(figsize=(15,7), bins=100, color='grey')

The preceding code generates the following output:

From this, we can see that most returns cluster around zero, but there is a long tail to the
right with a number of true homerun offerings.

We've looked at the first day percentage change, which is the offering price to the closing
price, but as I noted earlier, there is very little chance of getting in on the offering price.
Since that's the case, let's now look at the returns for the opening price to the closing price.
Do all of the gains go to those who get on the offering, or is there still an opportunity to
jump in and capture an outsized return on the first day?

To answer this, we'll first create two new columns:

ipos['$ Chg Open to Close'] = ipos['$ Chg Close'] - ipos['$ Chg Opening']
ipos['% Chg Open to Close'] = (ipos['$ Chg Open to Close']/ipos['Opening
Price']) * 100
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The preceding code generates the following output:

Next, we'll generate our statistics:

ipos['% Chg Open to Close'].describe()

Immediately, this looks suspect. While IPOs can fall after their opening, a drop of nearly
99% seems unrealistic. After some investigating, it looks like the two worst performers
were, in fact, bad data points. This is just a fact of life when working with real-world data,
so we'll correct these and regenerate our data:

ipos.loc[440, '$ Chg Opening'] = .09
ipos.loc[1264, '$ Chg Opening'] = .01
ipos.loc[1264, 'Opening Price'] = 11.26

ipos['$ Chg Open to Close'] = ipos['$ Chg Close'] - ipos['$ Chg Opening']
ipos['% Chg Open to Close'] = (ipos['$ Chg Open to Close']/ipos['Opening
Price']) * 100

ipos['% Chg Open to Close'].describe()
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The preceding code generates the following output:

This down to a 40% loss, and still looks suspect, but after taking a closer look, it was the
Zillow IPO. Zillow opened extremely hot, but quickly came back to earth before the closing
bell. This tells us we appear to have cleaned out our bad data points.

We'll move forward now and hope that we have cleaned up the bulk of the errors:

ipos['% Chg Open to Close'].hist(figsize=(15,7), bins=100, color='grey')

The preceding code generates the following output:

Finally, we can see the shape of the distribution for opening to closing prices. Compared to
the distribution of offering to closing prices, there are noticeable differences. Both the mean
and the median have fallen considerably, and the bars immediately to the right of zero look
like they've had a healthy shave, while the ones to the left seem to have grown in equal
proportion. Note that the long tail on the right-hand side is less pronounced, but still
evident, so there is still a glimmer of hope.
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Baseline IPO strategy
Now that we have a sense of the market, let's explore a few strategies. How would we fare
if we were to purchase every IPO at its opening price and sell it at the close? We'll take a
look at the 2015 year-to-date data:

ipos[ipos['Date']>='2015-01-01']['$ Chg Open to Close'].describe()

The preceding code generates the following output:

ipos[ipos['Date']>='2015-01-01']['$ Chg Open to Close'].sum()

The preceding code generates the following output:

Let's also break out the winning trades and losing trades:

ipos[(ipos['Date']>='2015-01-01')&(ipos['$ Chg Open to Close']>0)]['$ Chg
Open to Close'].describe()

The preceding code generates the following output:

ipos[(ipos['Date']>='2015-01-01')&(ipos['$ Chg Open to Close']<0)]['$ Chg
Open to Close'].describe()
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The preceding code generates the following output:

So, we see that if we invested in every IPO this year, we would have been quite busy
investing in 147 IPOs with about half making us money and half losing us money. On the
whole, this would have been profitable as the gains from our winning IPOs would have
ended up covering our losses and then a bit. This, of course, assumes there are no slippage
or commission costs, which there inevitably are in the real world. However, this is clearly
not a golden ticket to riches with a mean percentage return of less than 1%.

Slippage is the difference between your attempted entry or exit price for a
target stock and the price at which your order is actually fulfilled.

Let's see if we can use machine learning to help improve our results from a naive approach.
A reasonable strategy would seem to be targeting that long right tail, so we'll focus on that.

Feature engineering
What might impact the performance of an offering as it begins trading? Perhaps the recent
performance of the market in general or the prestige of the underwriters could impact it.
Perhaps the day of the week or the month that it trades is important. The consideration and
inclusion of these factors in a model is called feature engineering, and modeling this is
nearly as important as the data that you use to build the model. If your features aren't
informative, your model simply won't have value.

Let's begin this process by adding a few features that we expect may influence the
performance of an IPO.
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We'll begin by retrieving data for the S&P 500 index. This is perhaps the best proxy for the
general U.S. market. We can download this from Yahoo! Finance at h t t p s : / / f i n a n c e . y a
h o o . c o m / q / h p ? s = % 5 E G S P C & a = 0 0 & b = 1 & c = 2 0 0 0 & d = 1 1 & e = 1 7 & f = 2 0 1 5 & g = d. We can then
import the data using pandas:

sp = pd.read_csv(r'/Users/alexcombs/Downloads/spy.csv')
sp.sort_values('Date', inplace=True)
sp.reset_index(drop=True, inplace=True)
sp

The preceding code generates the following output:

Because broad market performance over the past week would be a logical influence on a
stock, let's add this to our DataFrame. We'll take the closing price of the S&P 500 yesterday
as a percent of its close seven days ago:

def get_week_chg(ipo_dt):
    try:
        day_ago_idx =  sp[sp['Date']==str(ipo_dt.date())].index[0]
- 1
        week_ago_idx = sp[sp['Date']==str(ipo_dt.date())].index[0] - 8
        chg = (sp.iloc[day_ago_idx]['Close'] - \
sp.iloc[week_ago_idx]['Close'])/(sp.iloc[week_ago_idx]['Close'])
        return chg * 100
    except:
        print('error', ipo_dt.date())

ipos['SP Week Change'] = ipos['Date'].map(get_week_chg)

https://finance.yahoo.com/q/hp?s=%5EGSPC&a=00&b=1&c=2000&d=11&e=17&f=2015&g=d
https://finance.yahoo.com/q/hp?s=%5EGSPC&a=00&b=1&c=2000&d=11&e=17&f=2015&g=d


Forecast the IPO Market using Logistic Regression

[ 121 ]

The preceding code generates the following output:

Running this gives us several dates that fail, which tells us that our IPO dates may have a
few errors. Checking the IPOs that have these dates indicates that they are off. Here's one
example and the code to correct all of the errors:

ipos[ipos['Date']=='2009-08-01']

The preceding code generates the following output:

The actual IPO date for EM is 8/12/15, so we'll correct it and the others based upon what a
bit of research shows us as their true offering dates:

ipos.loc[1175, 'Date'] = pd.to_datetime('2009-08-12')
ipos.loc[1660, 'Date'] = pd.to_datetime('2012-11-20')
ipos.loc[2251, 'Date'] = pd.to_datetime('2015-05-21')
ipos.loc[2252, 'Date'] = pd.to_datetime('2015-05-21')

Running the function again will correctly add the one week change for all offerings:

ipos['SP Week Change'] = ipos['Date'].map(get_week_chg)

Now, let's add the S&P 500 percentage change from the close the previous day of the IPO to
the next day's opening of the IPO:

def get_cto_chg(ipo_dt):
    try:
        today_open_idx =  sp[sp['Date']==str(ipo_dt.date())].index[0]
        yday_close_idx = sp[sp['Date']==str(ipo_dt.date())].index[0] - 1
        chg = (sp.iloc[today_open_idx]['Open'] - \
sp.iloc[yday_close_idx]['Close'])/(sp.iloc[yday_close_idx]['Close'])
        return chg * 100
    except:
        print('error', ipo_dt)
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ipos['SP Close to Open Chg Pct'] = ipos['Date'].map(get_cto_chg)

The preceding code generates the following output:

Now, let's tidy up the underwriter data. This is going to take some work. We'll perform a
number of steps. First, we'll add a column for the lead underwriter or manager. Next, we'll
standardize the data. Finally, we'll add a column representing the total count of
underwriters involved.

First, we parse out the lead manager by splitting the data and removing white space:

ipos['Lead Mgr'] = ipos['Lead/Joint-Lead Mangager'].map(lambda x:
x.split('/')[0])
ipos['Lead Mgr'] = ipos['Lead Mgr'].map(lambda x: x.strip())

Next, printing out the different lead managers shows just how much cleanup is going to be
required to standardize the bank's names:

for n in pd.DataFrame(ipos['Lead Mgr'].unique(),
columns=['Name']).sort('Name')['Name']:
    print(n)

The preceding code generates the following output:
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There are two ways to do this if you're following along. The first way, and undoubtedly the
easier of the two, is to trust that we have done the work for you and simply copy and paste
the code on the following pages. The other is to perform a lot of iterative partial string
matching and correcting by yourself. The first option is strongly recommended:

ipos.loc[ipos['Lead Mgr'].str.contains('Hambrecht'),'Lead Mgr'] = 'WR
Hambrecht+Co.'
ipos.loc[ipos['Lead Mgr'].str.contains('Edwards'), 'Lead Mgr'] = 'AG
Edwards'
ipos.loc[ipos['Lead Mgr'].str.contains('Edwrads'), 'Lead Mgr'] = 'AG
Edwards'
ipos.loc[ipos['Lead Mgr'].str.contains('Barclay'), 'Lead Mgr'] = 'Barclays'
ipos.loc[ipos['Lead Mgr'].str.contains('Aegis'), 'Lead Mgr'] = 'Aegis
Capital'
ipos.loc[ipos['Lead Mgr'].str.contains('Deutsche'), 'Lead Mgr'] = 'Deutsche
Bank'
ipos.loc[ipos['Lead Mgr'].str.contains('Suisse'), 'Lead Mgr'] = 'CSFB'
ipos.loc[ipos['Lead Mgr'].str.contains('CS.?F'), 'Lead Mgr'] = 'CSFB'
ipos.loc[ipos['Lead Mgr'].str.contains('^Early'), 'Lead Mgr'] =
'EarlyBirdCapital'
ipos.loc[325,'Lead Mgr'] = 'Maximum Captial'
ipos.loc[ipos['Lead Mgr'].str.contains('Keefe'), 'Lead Mgr'] = 'Keefe,
Bruyette & Woods'
ipos.loc[ipos['Lead Mgr'].str.contains('Stan'), 'Lead Mgr'] = 'Morgan
Stanley'
ipos.loc[ipos['Lead Mgr'].str.contains('P. Morg'), 'Lead Mgr'] = 'JP
Morgan'
ipos.loc[ipos['Lead Mgr'].str.contains('PM'), 'Lead Mgr'] = 'JP Morgan'
ipos.loc[ipos['Lead Mgr'].str.contains('J\.P\.'), 'Lead Mgr'] = 'JP Morgan'
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ipos.loc[ipos['Lead Mgr'].str.contains('Banc of'), 'Lead Mgr'] = 'Banc of
America'
ipos.loc[ipos['Lead Mgr'].str.contains('Lych'), 'Lead Mgr'] = 'BofA Merrill
Lynch'
ipos.loc[ipos['Lead Mgr'].str.contains('Merrill$'), 'Lead Mgr'] = 'Merrill
Lynch'
ipos.loc[ipos['Lead Mgr'].str.contains('Lymch'), 'Lead Mgr'] = 'Merrill
Lynch'
ipos.loc[ipos['Lead Mgr'].str.contains('A Merril Lynch'), 'Lead Mgr'] =
'BofA Merrill Lynch'
ipos.loc[ipos['Lead Mgr'].str.contains('Merril '), 'Lead Mgr'] = 'Merrill
Lynch'
ipos.loc[ipos['Lead Mgr'].str.contains('BofA$'), 'Lead Mgr'] = 'BofA
Merrill Lynch'
ipos.loc[ipos['Lead Mgr'].str.contains('SANDLER'), 'Lead Mgr'] = 'Sandler
O'neil + Partners'
ipos.loc[ipos['Lead Mgr'].str.contains('Sandler'), 'Lead Mgr'] = 'Sandler
O'Neil + Partners'
ipos.loc[ipos['Lead Mgr'].str.contains('Renshaw'), 'Lead Mgr'] = 'Rodman &
Renshaw'
ipos.loc[ipos['Lead Mgr'].str.contains('Baird'), 'Lead Mgr'] = 'RW Baird'
ipos.loc[ipos['Lead Mgr'].str.contains('Cantor'), 'Lead Mgr'] = 'Cantor
Fitzgerald'
ipos.loc[ipos['Lead Mgr'].str.contains('Goldman'), 'Lead Mgr'] = 'Goldman
Sachs'
ipos.loc[ipos['Lead Mgr'].str.contains('Bear'), 'Lead Mgr'] = 'Bear
Stearns'
ipos.loc[ipos['Lead Mgr'].str.contains('BoA'), 'Lead Mgr'] = 'BofA Merrill
Lynch'
ipos.loc[ipos['Lead Mgr'].str.contains('Broadband'), 'Lead Mgr'] =
'Broadband Capital'
ipos.loc[ipos['Lead Mgr'].str.contains('Davidson'), 'Lead Mgr'] = 'DA
Davidson'
ipos.loc[ipos['Lead Mgr'].str.contains('Feltl'), 'Lead Mgr'] = 'Feltl &
Co.'
ipos.loc[ipos['Lead Mgr'].str.contains('China'), 'Lead Mgr'] = 'China
International'
ipos.loc[ipos['Lead Mgr'].str.contains('Cit'), 'Lead Mgr'] = 'Citigroup'
ipos.loc[ipos['Lead Mgr'].str.contains('Ferris'), 'Lead Mgr'] = 'Ferris
Baker Watts'
ipos.loc[ipos['Lead Mgr'].str.contains('Friedman|Freidman|FBR'), 'Lead
Mgr'] = 'Friedman Billings Ramsey'
ipos.loc[ipos['Lead Mgr'].str.contains('^I-'), 'Lead Mgr'] = 'I-Bankers'
ipos.loc[ipos['Lead Mgr'].str.contains('Gunn'), 'Lead Mgr'] = 'Gunn Allen'
ipos.loc[ipos['Lead Mgr'].str.contains('Jeffer'), 'Lead Mgr'] = 'Jefferies'
ipos.loc[ipos['Lead Mgr'].str.contains('Oppen'), 'Lead Mgr'] =
'Oppenheimer'
ipos.loc[ipos['Lead Mgr'].str.contains('JMP'), 'Lead Mgr'] = 'JMP
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Securities'
ipos.loc[ipos['Lead Mgr'].str.contains('Rice'), 'Lead Mgr'] = 'Johnson
Rice'
ipos.loc[ipos['Lead Mgr'].str.contains('Ladenburg'), 'Lead Mgr'] =
'Ladenburg Thalmann'
ipos.loc[ipos['Lead Mgr'].str.contains('Piper'), 'Lead Mgr'] = 'Piper
Jaffray'
ipos.loc[ipos['Lead Mgr'].str.contains('Pali'), 'Lead Mgr'] = 'Pali
Capital'
ipos.loc[ipos['Lead Mgr'].str.contains('Paulson'), 'Lead Mgr'] = 'Paulson
Investment Co.'
ipos.loc[ipos['Lead Mgr'].str.contains('Roth'), 'Lead Mgr'] = 'Roth
Capital'
ipos.loc[ipos['Lead Mgr'].str.contains('Stifel'), 'Lead Mgr'] = 'Stifel
Nicolaus'
ipos.loc[ipos['Lead Mgr'].str.contains('SunTrust'), 'Lead Mgr'] = 'SunTrust
Robinson'
ipos.loc[ipos['Lead Mgr'].str.contains('Wachovia'), 'Lead Mgr'] =
'Wachovia'
ipos.loc[ipos['Lead Mgr'].str.contains('Wedbush'), 'Lead Mgr'] = 'Wedbush
Morgan'
ipos.loc[ipos['Lead Mgr'].str.contains('Blair'), 'Lead Mgr'] = 'William
Blair'
ipos.loc[ipos['Lead Mgr'].str.contains('Wunderlich'), 'Lead Mgr'] =
'Wunderlich'
ipos.loc[ipos['Lead Mgr'].str.contains('Max'), 'Lead Mgr'] = 'Maxim Group'
ipos.loc[ipos['Lead Mgr'].str.contains('CIBC'), 'Lead Mgr'] = 'CIBC'
ipos.loc[ipos['Lead Mgr'].str.contains('CRT'), 'Lead Mgr'] = 'CRT Capital'
ipos.loc[ipos['Lead Mgr'].str.contains('HCF'),'Lead Mgr'] = 'HCFP Brenner'
ipos.loc[ipos['Lead Mgr'].str.contains('Cohen'), 'Lead Mgr']  = 'Cohen &
Co.'
ipos.loc[ipos['Lead Mgr'].str.contains('Cowen'), 'Lead Mgr'] = 'Cowen &
Co.'
ipos.loc[ipos['Lead Mgr'].str.contains('Leerink'), 'Lead Mgr']  = 'Leerink
Partners'
ipos.loc[ipos['Lead Mgr'].str.contains('Lynch\xca'), 'Lead Mgr'] = 'Merrill
Lynch'

After this process is complete, you can run the following again to see the updated list:

for n in pd.DataFrame(ipos['Lead Mgr'].unique(),
columns=['Name']).sort_values('Name')['Name']:
    print(n)
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The preceding code generates the following output:

As we can see, the list is tidy now. With this completed, we'll add a count of underwriters:

ipos['Total Underwriters'] = ipos['Lead/Joint-Lead Mangager'].map(lambda x:
len(x.split('/')))

Next, we'll add a couple of date features. We'll add the day of the week and the month:

ipos['Week Day'] = ipos['Date'].dt.dayofweek.map({0:'Mon', 1:'Tues',
2:'Wed',\
3:'Thurs', 4:'Fri', 5:'Sat', 6:'Sun'})
ipos['Month'] = ipos['Date'].map(lambda x: x.month)
ipos['Month'] = ipos['Month'].map({1:'Jan', 2:'Feb', 3:'Mar', 4:'Apr',
5:'May', 6:'Jun',7:'Jul',\
8:'Aug', 9:'Sep', 10:'Oct', 11:'Nov', 12:'Dec'})
ipos

The preceding code generates the following output:
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If all goes as expected, our DataFrame should look like the preceding image. We'll now add
a couple final features that relate to the change between the offer price and the opening and
closing prices:

ipos['Gap Open Pct'] = (ipos['$ Chg Opening'].astype('float')/ipos['Opening
Price'].astype('float')) * 100
ipos['Open to Close Pct'] = (ipos['$ Chg Close'].astype('float') -\
ipos['$ Chg Opening'].astype('float'))/\
ipos['Opening Price'].astype('float') * 100

That should do it for our features for now. We can always add more if we come across
useful data that we think would improve the model, but this should get us started.

However, before we start feeding these features to the model, we need to consider which
features to select. We have to be extremely careful not to “leak” information when adding
features. This is a common mistake that happens when information is provided to the
model from data that would not be available at the time. For example, adding the closing
price to our model would completely invalidate the results. By doing this, we would be
essentially giving the model the answer it is trying to predict. Usually, leakage mistakes are
more subtle than this, but they are a concern nonetheless.

We'll add the following as features:

Month
Day of the week
Lead manager
Total underwriters
Offer to open gap percentage
Dollar change from offer to open
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Offering price
Opening price
S&P close to open percent
S&P prior week change

With all of our model's features completed, we'll next prepare them for use by our model.
We're going to use the Patsy library for this. Patsy can be pip-installed if needed. Patsy
takes data in its raw form and transforms it into a matrix that is appropriate for the building
of statistical models:

from patsy import dmatrix
X = dmatrix('Month + Q("Week Day") + Q("Total Underwriters") + Q("Gap Open
Pct") + Q("$ Chg Opening") +\
Q("Lead Mgr") + Q("Offer Price") + Q("Opening Price") +\
Q("SP Close to Open Chg Pct") + Q("SP Week Change")', data=ipos,
return_type='dataframe')
X

The preceding code generates the following output:

We can see that Patsy has reconfigured our categorical data into multiple columns while
keeping our continuous data in a single column. This is called dummy coding. In this
format, each month except one will get its own column. The same is true for each broker.
For example, if the particular IPO instance (row) was in May, then May will have 1 in the
May column while all the other month columns are  for this row. There are always n-1
feature columns for each categorical feature. The one that is excluded becomes the baseline
that the others are compared against.
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Finally, Patsy also adds an intercept column. This is a column of 1s that is needed for
regression models to function properly.

With this completed, we'll move on to to the modeling phase.

Binary classification
Instead of attempting to predict exactly what the total first day return will be, we are going
to attempt to predict if the IPO will be one we should buy for a trade or not. It is here that
we should point out this is not investment advice and that this is for illustrative purposes
only. Please don't run out and start day trading IPOs with this model willy-nilly. It will end
badly. Now, to predict a binary outcome (that's a 1 or 0, yes or no), we will start with a
model called a logistic regression. A logistic regression utilizes a logistic function. This is
ideal as it has several mathematical properties that make it easy to work with:

Due to the logistic function's form, it is particularly suited to providing probability
estimates, and from these estimates, binary responses. Anything greater than 0.5 is
classified as 1, and everything below 0.5 is classified as 0. These 1s and 0s can correspond to
anything we would like to classify, but in this application, it will determine if we buy the
offering (1) or do not (0).

Let's go ahead and apply this model to our data. We're going to split our data in a
somewhat unusual way. The standard practice in machine learning models is to randomize
which instances are fed to the model as training data and which are used as test data.
However, because this data is time-based, we are going to use everything but the current
year for training. We will then test on the 2015 year-to-date data:

# 2188 is the first index of 2015 data - data is date sorted
X_train, X_test = X[:2188], X[2188:]
y_train = ipos['$ Chg Open to Close'][:2188].map(lambda x: 1 if x >= 1 else
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0)
y_test = ipos['$ Chg Open to Close'][2188:].map(lambda x: 1 if x >= 1 else
0)

With the preceding code, we split our data into training and test sets. Note that we have
also arbitrarily set a $1 threshold for the positive outcome. This is intended to align with our
strategy of targeting the long-tail winners rather than just any positive close.

We'll now fit the model, as follows:

clf = linear_model.LogisticRegression()
clf.fit(X_train, y_train)

The preceding code will generate the following output:

We can now evaluate the model on our hold-out 2015 data:

clf.score(X_test, y_test)

The preceding code will generate the following output:

From this, we can see about 82% of our predictions were accurate. This is certainly looking
better than our baseline rate for 2015, but this can also be misleading as the actual
percentage of IPOs that gained more than $1 is very low. This means guessing zero for all
would give us about the same result, but let's compare the two.

First our baseline is as follows:

ipos[(ipos['Date']>='2015-01-01')]['$ Chg Open to Close'].describe()
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The preceding code generates the following output:

Next, we'll get our predicted result. We'll set up a DataFrame with our results first, then
output them:

pred_label = clf.predict(X_test)
results=[]
for pl, tl, idx, chg in zip(pred_label, y_test, y_test.index,
ipos.ix[y_test.index]['$ Chg Open to Close']):
    if pl == tl:
        results.append([idx, chg, pl, tl, 1])
    else:
        results.append([idx, chg, pl, tl, 0])
rf = pd.DataFrame(results, columns=['index', '$ chg', 'predicted',
'actual', 'correct'])
rf

The preceding code generates the following output:

rf[rf['predicted']==1]['$ chg'].describe()
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The preceding code generates the following output:

So, the total went from 147 buys to 6. Our mean went from $0.23 to $2.99, but our median
went down from $0 to $-0.02. Let's look at a plot of our returns:

fig, ax = plt.subplots(figsize=(15,10))
rf[rf['predicted']==1]['$ chg'].plot(kind='bar')
ax.set_title('Model Predicted Buys', y=1.01)
ax.set_ylabel('$ Change Open to Close')
ax.set_xlabel('Index')

The preceding code generates the following output:
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From this, it looks like we got the big winner of the year along with a couple other minor
wins and losses. This isn't a lot to go on as far as a test of our model. We could have just
been very lucky to catch this win. We need to assess the robustness of our model. We can do
this in several ways, but let's do just two things. We'll first drop our threshold from $1 to
$0.25 to see how the model holds up:

X_train, X_test = X[:2188], X[2188:]
y_train = ipos['$ Chg Open to Close'][:2188].map(lambda x: 1 if x >= .25
else 0)
y_test = ipos['$ Chg Open to Close'][2188:].map(lambda x: 1 if x >= .25
else 0)
clf = linear_model.LogisticRegression()
clf.fit(X_train, y_train)
clf.score(X_test, y_test)

The preceding code generates the following output:

Now we'll examine our results:

pred_label = clf.predict(X_test)
results=[]
for pl, tl, idx, chg in zip(pred_label, y_test, y_test.index,
ipos.ix[y_test.index]['$ Chg Open to Close']):
    if pl == tl:
        results.append([idx, chg, pl, tl, 1])
    else:
        results.append([idx, chg, pl, tl, 0])
rf = pd.DataFrame(results, columns=['index', '$ chg', 'predicted',
'actual', 'correct'])
rf[rf['predicted']==1]['$ chg'].describe()

The preceding code generates the following output:
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Looking at the results, our accuracy dropped, as did our mean. However, our count went
from 9 to 25, and we're still far above the baseline approach. Let's do one more test. Let's
now remove 2014 from our training data and include it in our test:

X_train, X_test = X[:1900], X[1900:]
y_train = ipos['$ Chg Open to Close'][:1900].map(lambda x: 1 if x >= .25
else 0)
y_test = ipos['$ Chg Open to Close'][1900:].map(lambda x: 1 if x >= .25
else 0)
clf = linear_model.LogisticRegression()
clf.fit(X_train, y_train)
clf.score(X_test, y_test)

The preceding code generates the following output:

Once again, we'll examine the results:

pred_label = clf.predict(X_test)
results=[]
for pl, tl, idx, chg in zip(pred_label, y_test, y_test.index,
ipos.ix[y_test.index]['$ Chg Open to Close']):
    if pl == tl:
        results.append([idx, chg, pl, tl, 1])
    else:
        results.append([idx, chg, pl, tl, 0])
rf = pd.DataFrame(results, columns=['index', '$ chg', 'predicted',
'actual', 'correct'])
rf[rf['predicted']==1]['$ chg'].describe()

The preceding code generates the following output:
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With the 2014 included in our test data, we can see that our mean dropped, but the model
continues to appear better than the naive approach of investing in every IPO as seen in the
proceeding table:

Model Trades Total Gain Avg. Per Trade

2014-2015 naive 435 61 0.14

2104-2015 .25 LR 72 63.14 0.88

2015 naive 147 33.74 0.23

2015 .25 LR 25 45.52 1.82

2015 1 LR 6 25.20 4.20

 

Let's now move on to examine which features were most important in our model.

Feature importance
Which features increase the probability that an offering will be successful? There is,
unfortunately, no simple answer to this. However, we'll take a look at two ways of
assessing this. Because we built our model using a logistic regression, one thing we can
examine is the coefficient for each parameter. Remember that the logistic function takes the
following form:

ln(p/1-p) = B0 + B1x

Here, p represents the probability of our positive outcome, B0 is our intercept, and B1 is the
coefficient for our feature. Once we fit our model, these coefficients can be examined. Let's
retrieve them now:

f fv = pd.DataFrame(X_train.columns, clf.coef_.T).reset_index()
fv.columns = ['Coef', 'Feature']
fv.sort_values('Coef', ascending=0).reset_index(drop=True)
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The preceding code generates the following output:

For categorical features, a positive sign on the feature' coefficient tells us that when present,
this feature increases the probability of a positive outcome versus the baseline. For
continuous features, a positive sign tells us that an increase in the value of this feature
corresponds to an increase in the probability of a positive outcome. The size of the
coefficient tells us the magnitude of the increase in probability. Let's examine this by
looking at the days of the week:

fv[fv['Feature'].str.contains('Week Day')]

The preceding code generates the following output:

From the preceding screenshot, we can see that Friday is missing. This means that Friday is
the baseline against which all other treatments are compared. We also see that only
Thursday has increased odds of having a successful IPO based on our model.
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It is important to note that the coefficient does not represent the actual increase in odds over
the baseline. To get this value, we must take the exponential of it. For Thursday, the
increase in odds over Friday is e(0.053885) = 1.055. This means that holding all else constant,
the odds that Thursday will have a successful IPO are 5.5% greater than Friday. We can also
see that Monday is the worst day of the week for IPOs with e(-0.132437) = 0.876 or about a
12.4% decrease in the odds of a successful IPO.

Coming back to feature importance, you most likely think at this point that you can take the
features with the largest positive coefficients, throw them into a model, and you'll have
everything that you' need to dominate the new issue market. Not so fast.

Let's look at top two features based on the size of their positive coefficient:

ipos[ipos['Lead Mgr'].str.contains('Keegan|Towbin')]

The preceding code generates the following output:

Our top two features represent a sum total of four IPOs. This is why it is difficult to extract
this information from logistic regression models, especially ones of this complexity.

All is not lost, however. We can utilize another model known as a random forest classifier
to get our importance measures. This chapter won't go into depth about how this model
works, but it should give similar results to the logistic regression model, and as bonus, it
will provide a very nice summary of which features have the highest influence on a positive
outcome.
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Using the same training and test data as earlier, we'll fit the random forest classifier:

clf_rf = RandomForestClassifier(n_estimators=1000)
clf_rf.fit(X_train, y_train)
f_importances = clf_rf.feature_importances_
f_names = X_train
f_std = np.std([tree.feature_importances_ for tree in clf_rf.estimators_],
axis=0)
zz = zip(f_importances, f_names, f_std)
zzs = sorted(zz, key=lambda x: x[0], reverse=True)
imps = [x[0] for x in zzs[:20]]
labels = [x[1] for x in zzs[:20]]
errs = [x[2] for x in zzs[:20]]
plt.subplots(figsize=(15,10))
plt.bar(range(20), imps, color="r", yerr=errs, align="center")
plt.xticks(range(20), labels, rotation=-70);

The preceding code generates the following output:
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The output from this gives us a ranked list of feature importance along with error bars for
each. Looking at the list, these rankings would seem to make sense with gap opening
percentage and dollar change from opening leading the pack.

Summary
We've covered a lot of ground this chapter, but we've only just cracked the surface for how
to build this type of model. Hopefully, you've gained a better understanding of the
modeling process from cleaning the data, to engineering the features, to testing. Hopefully,
you'll use this information to extend the model on your own and improve upon it.

In the next chapter, we'll turn our attention to a very different domain as we move from
numerical data to text-based data.



5
Create a Custom Newsfeed

I read a lot. Some might even say compulsively. I've been known to consume more than a
hundred articles on some days. Despite this, I frequently find myself searching for more to
read. I suffer from this sneaking suspicion that I have missed something interesting and will
forever suffer a gap in my knowledge!

If you suffer from similar symptoms, fear not, because in this chapter, I'm going to reveal
one simple trick to finding all the articles that you want to read without having to dig
through the dozens that you don't.

By the end of this chapter, you'll have learned how to build a system that understands your
taste in news, and will send you a personally tailored newsletter each day.

Here's what we'll cover in this chapter:

Creating a supervised training set with the Pocket app
Leveraging the Pocket API to retrieve stories
Using the embed.ly API to extract story bodies
Natural language processing basics
Support vector machines
IFTTT integration with RSS feeds and Google Sheets
Setting up a daily personal newsletter
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Creating a supervised training set with the
Pocket app
Before we can create a model of our taste in news articles, we need training data. This
training data will be fed into our model in order to teach it to discriminate between the
articles that we'd be interested in and the ones that we would not. To build this corpus, we
will need to annotate a large number of articles that correspond to these interests. For each
article, we'll label it either “y” or “n”. This will indicate whether the article is the one that
we would want to have sent to us in our daily digest or not.

To simplify this process, we will use the Pocket app. Pocket is an application that allows
you to save stories to read later. You simply install the browser extension, and then click on
the Pocket icon in your browser's toolbar when you wish to save a story. The article is saved
to your personal repository. One of the great features of Pocket for our purposes is its
ability to save the article with a tag of your choosing. We'll use this feature to mark
interesting articles as “y” and non-interesting articles as “n”.

Installing the Pocket Chrome extension
We use Google Chrome here, but other browsers should work similarly. For Chrome, go
into the Google App Store and look for the Extensions section:

Image from https://chrome.google.com/webstore/search/pocket
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Click on the blue Add to Chrome button. If you already have an account, log in, and if you
do not have an account, go ahead and sign up (it's free). Once this is complete, you should
see the Pocket icon in the upper right-hand corner of your browser. It will be greyed out,
but once there is an article you wish to save, you can click on it. It will turn red once the
article has been saved.

The greyed out icon can be seen in the upper right-hand corner. When the icon is clicked, it
turns red to indicated the article has been saved.

Image from https://www.wsj.com

Now comes the fun part! Begin saving articles all the that you come across. Tag the
interesting ones with “y”, and the non-interesting ones with “n”. This is going to take some
work. Your end results will only be as good as your training set, so you're going to to need
to do this for hundreds of articles. If you forget to tag an article when you save it, you can
always go to the site, h t t p : / / w w w . g e t . p o c k e t . c o m, to tag it there.

Using the Pocket API to retrieve stories
Now that you've diligently saved your articles to Pocket, the next step is to retrieve them.
To accomplish this, we'll use the Pocket API. You can sign up for an account at h t t p s : / / g e
t p o c k e t . c o m / d e v e l o p e r / a p p s / n e w. Click on Create New App in the upper left-hand
side and fill in the details to get your API key. Make sure to click all of the permissions so
that you can add, change, and retrieve articles.

http://www.get.pocket.com
https://getpocket.com/developer/apps/new
https://getpocket.com/developer/apps/new
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Image from https://getpocket.com/developer

Once you have filled this in and submitted it, you will receive your CONSUMER KEY. You
can find this in the upper left-hand corner under My Apps. This will look like the following
screen, but obviously with a real key:
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Image from https://getpocket.com/developer

Once this is set, you are ready to move on the the next step, which is to set up the
authorizations. We'll do this now. It requires that you input your consumer key and a
redirect URL. The redirect URL can be anything. Here I have used my Twitter account:

import requests
auth_params = {'consumer_key': 'MY_CONSUMER_KEY', 'redirect_uri':
    'https://www.twitter.com/acombs'}
    tkn = requests.post('https://getpocket.com/v3/oauth/request',
    data=auth_params)
tkn.content
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This results in the following output:

The output will have the code that you'll need for the next step. Place the following in your
browser bar:

h t t p s : / / g e t p o c k e t . c o m / a u t h / a u t h o r i z e ? r e q u e s t _ t o k e n = s o m e _ l o n g _ c o d e & r e d i r
e c t _ u r i = h t t p s % 3 A / / w w w . t w i t t e r . c o m / a c o m b s

If you change the redirect URL to one of your own, make sure to URL encode it. There are a
number of resources for this. One option is to use the Python library urllib, another is to use
a free online source.

At this point, you should be presented with an authorization screen. Go ahead and approve
it, and we can move on to the next step:

usr_params = {'consumer_key':'my_consumer_key', 'code':
    'some_long_code'}
    usr = requests.post('https://getpocket.com/v3/oauth/authorize',
    data=usr_params)
usr.content

We'll use the following output code here to move on to retrieving the stories:

First, we retrieve the stories tagged “n”:

no_params = {'consumer_key':'my_consumer_key', 'access_token':
    'some_super_long_code',
    'tag': 'n'}
    no_result = requests.post('https://getpocket.com/v3/get',
    data=no_params)
no_result.text

https://getpocket.com/auth/authorize?request_token=some_long_code&redirect_uri=https%3A//www.twitter.com/acombs
https://getpocket.com/auth/authorize?request_token=some_long_code&redirect_uri=https%3A//www.twitter.com/acombs
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The preceding code generates the following output:

Note that we have a long JSON string on all the articles that we tagged “n”. There are
several keys in this, but we are really only interested in the URL at this point. We'll go
ahead and create a list of all the URLs from this:

no_jf = json.loads(no_result.text)
no_jd = no_jf['list']
no_urls=[]
for i in no_jd.values():
    no_urls.append(i.get('resolved_url'))
no_urls

The preceding code generates the following output:

This list contains all the URLs of stories that we aren't interested in. Now, let's put this in a
DataFrame object and tag it as such:

import pandas
no_uf = pd.DataFrame(no_urls, columns=['urls'])
no_uf = no_uf.assign(wanted = lambda x: 'n')
no_uf
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The preceding code generates the following output:

Now, we're all set with the unwanted stories. Let's do the same thing with the stories that
we are interested in:

ye_params = {'consumer_key': 'my_consumer_key', 'access_token':
    'some_super_long_token',
    'tag': 'y'}
yes_result = requests.post('https://getpocket.com/v3/get',
data=yes_params)
yes_jf = json.loads(yes_result.text)
yes_jd = yes_jf['list']
yes_urls=[]
for i in yes_jd.values():
    yes_urls.append(i.get('resolved_url'))
yes_uf = pd.DataFrame(yes_urls, columns=['urls'])
yes_uf = yes_uf.assign(wanted = lambda x: 'y')
yes_uf

The preceding code generates the following output:
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Now that we have both types of stories for our training data, let's join them together into a
single DataFrame:

df = pd.concat([yes_uf, no_uf])
df.dropna(inplace=1)
df

The preceding code generates the following output:

Now that we're set with all our URLs and their corresponding tags in a single frame, we'll
move on to downloading the HTML for each article. We'll use another free service for this
called embed.ly.
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Using the embed.ly API to download story
bodies
We have all the URLs for our stories, but unfortunately this isn't enough to train on. We'll
need the full article body. This could become an enormous challenge if we needed to build
our own scraper for dozens of sites. We would need to write code to target the article body
while carefully avoiding all the other site gunk that surrounds it. Fortunately, there are a
number of free services that will do this for us. We're going to be using embed.ly to do this,
but there are a number of other services that you also could use.

The first step is to sign up for embed.ly API access. You can do this at h t t p s : / / a p p . e m b e d
. l y / s i g n u p. This is a straightforward process. Once you confirm your registration, you
will receive an API key. This is really all you'll need. You just use this key in your HTTP
request. Let's do this now:

import urllib
def get_html(x):
    qurl = urllib.parse.quote(x)
    rhtml = requests.get('https://api.embedly.com/1/extract?url=' +
    qurl + '&key=some_api_key')
    ctnt = json.loads(rhtml.text).get('content')
return ctnt
df.loc[:,'html'] = df['urls'].map(get_html)
df.dropna(inplace=1)
df

The preceding code generates the following output:

With that, we have the HTML of each story.

https://app.embed.ly/signup
https://app.embed.ly/signup
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We need to feed plain text to our model rather than HTML, so we will use a parser to strip
out the markup tags:

from bs4 import BeautifulSoup
def get_text(x):
    soup = BeautifulSoup(x, 'lxml')
    text = soup.get_text()
    return text
df.loc[:,'text'] = df['html'].map(get_text)
df

The preceding code generates the following output:

With this, we have our training set ready. We can now move on to a discussion of how to
transform our text into something that our model can work with.

Natural language processing basics
If machine learning models only operate on numerical data, how can we transform our text
into a numerical representation? This is the focus of natural language processing, or NLP.
We'll need to get a brief overview of the principles of NLP before we can work our data.
And rather than using the data we have already collected from Pocket, we'll work with a
minimal example to keep it simple enough to illustrate the principles. Once those are clear,
we can then apply them to our newsfeed corpus.
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We'll begin with a small corpus of three sentences:

The new kitten played with the other kittens
She ate lunch
She loved her kitten

We'll first convert our corpus into a bag-of-words (BOW) representation. We'll skip
preprocessing for now. Converting our corpus into bag-of-words representation involves
taking each word and its count to create a term-document matrix. In a term-document
matrix, each unique word is assigned to a column, and each document is assigned to a row.
At the intersection of the two is the count:

the new kitten played with other kittens she ate lunch loved her

1 1 1 1 1 1 1 1 0 0 0 0 0

2 0 0 0 0 0 0 0 1 1 1 0 0

3 0 0 1 0 0 0 0 1 0 0 1 1

 

Note that for these three short sentences, we already have 12 features. As you can imagine,
if we were dealing with true documents, such as news articles or even books, the number of
features would explode into the hundreds of thousands. To mitigate this, we can take a
number of steps to remove features that add little to no informational value to our analysis.

The first step that we can take is to remove stop words. These are words that are so
common that they typically tell you nothing about the content of the document. Common
examples of English stop words are “the”, “is”, “at”, “which”, and “on”. We'll remove these
and re-compute our term-document matrix:

new kitten played kittens ate lunch loved

1 1 1 1 1 0 0 0

2 0 0 0 0 1 1 0

3 0 1 0 0 0 0 1

 

As you can see, the number of features was reduced from 12 to seven. This is great, but we
can take it even further. We can perform stemming or lemmatization to further reduce the
features. Note that in our matrix we have both “kitten” and “kittens”. Using stemming or
lemmatization, we can consolidate this into just “kitten”:
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new kitten play eat lunch love

1 1 2 1 0 0 0

2 0 0 0 1 1 0

3 0 1 0 0 0 1

 

Our new matrix consolidated “kittens” and “kitten”, but something else happened as well.
We lost the suffixes to “played” and “loved”, but “ate” was transformed to “eat”. Why?
This is what lemmatization does. If you remember your grade school grammar classes,
we've gone from the inflectional form to the base form of the word. Now, if lemmatization
is the transformation to the base form of a word, what is stemming? Stemming has the same
goal, but it uses a less sophisticated approach. This approach can sometimes produce
pseudo-words rather than the actual base form. For example, in lemmatization, if you were
to reduce the word “ponies”, you would get “pony”; with stemming, you'd get “poni”.

Now, let's go further to apply another transformation to our matrix. So far, we used a
simple count of each word, but we can apply an algorithm that will act like a filter on our
data to enhance the words that are unique to each document. This algorithm is called term
frequency-inverse document frequency or tf-idf.

We calculate this tf-idf ratio for each term in our matrix. Let's calculate it for a couple of
examples. For the word “new” in document one, the term frequency is just the count, which
is 1. The inverse document frequency is calculated as the log of the number of documents in
the corpus over the number of documents the term appears in. For “new” this is log (3/1), or
.4471. So for the complete tf-idf value, we have tf * idf, or here it is 1 x .4471, or just .4471. For
the word “kitten” in document one, the tf-idf is 2 * log (3/2), or .3522.

Completing this for the remainder of terms and documents, we have the following:

new kitten play eat lunch love

1 .4471 .3522 .4471 0 0 0

2 0 0 0 .4471 .4471 0

3 0 .1761 0 0 0 .4471

 

Why do all of this? To obtain a high tf-idf value, a term would need to have a high number
of occurrences in low number of documents. In this way, documents can be said to be
represented by terms with high tf-idf values.
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With this framework, we'll now convert our training set into a tf-idf matrix:

from sklearn.feature_extraction.text import TfidfVectorizer
vect = TfidfVectorizer(ngram_range=(1,3), stop_words='english', min_df=3)
tv = vect.fit_transform(df['text'])

With these three lines, we have converted all our documents into a tf-idf vector. A couple of
points to note. We passed in a number of parameters: ngram_range, stop_words, and
min_df. Let's discuss each of these.

First, ngram_range is how the document is tokenized. In our prior examples, we used each
word as a token, but here we are using every one to three word sequence as tokens. Let's
take our second sentence, “She ate lunch.” We'll ignore stop words for the moment. The
ngrams for this sentence would be: “she”, “she ate”, “she ate lunch”, “ate”, “ate lunch”, and
“lunch”.

Next, we have stop_words. We pass in “english” for this to remove all the English stop
words. As discussed previously, this removes all terms that lack informational content.

Finally, we have min_df. This removes all words from consideration that don't appear in at
least three documents. Adding this removes very rare terms and cuts down on the size of
our matrix.

Now that our article corpus is in a workable numerical format, we'll move on to feeding it
to our classifier.

Support vector machines
We're going to be utilizing a new classifier in this chapter, the linear support vector
machine. A support vector machine is an algorithm that attempts to linearly separate data
points into classes using a “maximum-margin hyperplane”. This is a mouthful, so let's look
at what this really means.

Suppose we have two classes of data, and we want to separate them with a line. (We'll just
deal with two features, or dimensions, here.) What is the most effective way to place this
line?
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Image from https://commons.wikimedia.org/wiki/File:Svm_separating_hyperplanes_(SVG).svg

In the preceding figure, line H1 does not effectively discriminate between the two classes, so
we can eliminate this one. Line H2 is able to discriminate between them cleanly, but H3 is
the maximum-margin line. This means that the line is centered between the two nearest
points of each class, which are known as the support vectors. These can be seen as the
dotted lines in the following figure:

Image from https://commons.wikimedia.org/wiki/File:Svm_max_sep_hyperplane_with_margin.png
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But, what if the data isn't able to be separated into classes so neatly? What if there is overlap
between the points? In this situation there are still options. One is to use what's called a soft-
margin SVM. This formulation still maximizes the margin, but with the tradeoff being a
penalty for points that fall on the wrong side of the margin. The other option is to use
what's called the kernel trick. This method transforms the data into a higher dimensional
space where the data can be linearly separated.

Here we have two classes that cannot be separated with a single linear plane.

Image from https://www.cs.utah.edu/~piyush/teaching/15-9-print.pdf

But the implementation of a kernel maps our previous image into a higher dimension as
seen in the following image. This allows the data to be linearly separated.

Image from https://www.cs.utah.edu/~piyush/teaching/15-9-print.pdf

We have taken a one dimensional feature space and mapped it onto a two dimensional
feature space. The mapping simply takes each x value and maps it to x, x2. This
transformation allows us to add a linear separating plane.
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With this covered, let's now feed our tf-idf matrix into to our SVM:

from sklearn.svm import LinearSVC
clf = LinearSVC()
model = clf.fit(tv, df['wanted'])

The tv parameter is our matrix, and the df['wanted'] method is our list of labels.
Remember this is either 'y' or 'n' representing if we are interested in the article or not. Once
this runs, or model is trained.

One thing we aren't doing in this chapter is formally evaluating our model. You should
almost always have a hold out set to evaluate your model against, but because we are going
to be continuously updating our model, and evaluating it daily, we'll skip this step for this
chapter. Just remember this is generally a terrible idea.

Let's now move on to setting up our daily feed of news items.

IFTTT integration with feeds, Google Sheets,
and e-mail
We used Pocket to build our training set, but now we need a streaming feed of articles to
run our model against. To set this up, we'll use IFTT once again, as well as Google Sheets,
and a Python library that will allow us to work with Google Sheets.

Setting up news feeds and Google Sheets
through IFTTT
Hopefully, you have an IFTTT account set up at this point, but if not go ahead and set this
up now. More details can be found in Chapter 3, Build an App to Find Cheap Airfares. Once
this is done, you'll need to set up integration with feeds and with Google Sheets.
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First click on Channels, search for feeds, and click to set this up:

Image from https://www.iftt.com

You'll just need to click on Connect.

Image from https://www.iftt.com

Next, click on Channels again in the upper right-hand corner. This time search for Google
Drive:
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Image from https://www.iftt.com

Click on this. It should take you to a page where you select the Google account that you
want to connect to. Choose the account and then click on Allow to enable IFTT to access
your Google Drive account. Once this is done, you should see the following:

Image from https://www.iftt.com
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Now with our channels connected, we can set up our feed. Click on My Recipes, and then
on Create a Recipe. That will bring you here:

Image from https://www.iftt.com

Click on this. Search for feed, and then click on it. This should bring you here:

Image from https://www.iftt.com

From here, click on New feed item:

Image from https://www.iftt.com
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Then, add the URL to the box and click on Create Trigger. Once this is done, you'll be
brought back to add the that action:

Image from https://www.iftt.com

Click on that, search for Google Drive, and then click on its icon. Once this is done, you'll
find yourself here:

Image from https://www.iftt.com
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We want to our news items to flow into a Google Drive spreadsheet, so click on Add row to
spreadsheet. You'll then have an opportunity to customize the spreadsheet:

Image from https://www.iftt.com

I gave this spreadsheet the name NewStories, and placed it in a Google Drive folder called
IFTTT. Click on Create Action to finish this recipe, and soon you'll start seeing news items
flow into your Google Drive spreadsheet. Note that it will only add new items as they come
in, not items that existed at the time you created the sheet. I recommend adding a number
of feeds. You will need to create individual recipes for each. It is best if you add feeds for
the sites that are in your training set, for example, the ones you saved with Pocket.

Give the stories a day or two to build up in the sheet. They should soon look something like
the following:
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Image from https://docs.google.com

Fortunately, the full article HTML body is included. This means we won't have to use
embed.ly to download it for each article. We will still need to download the articles from
Google Sheets, and then process the text to strip out the HTML tags, but this can all be done
rather easily.

To pull down the articles, we'll use a Python library called gspread. This can be pip
installed. Once that's done, you'll need to follow the directions to set up oauth2. This can be
found at h t t p : / / g s p r e a d . r e a d t h e d o c s . o r g / e n / l a t e s t / o a u t h 2 . h t m l. You will end
up downloading a JSON credentials file. Once you have this file, you can find the e-mail
address in it with the client_email key. You then need to share the NewStories
spreadsheet that you are sending the stories to with that e-mail. Just click on the blue Share
button in the upper right-hand corner of the sheet, and paste the e-mail in here. You will
end up receiving a failed to send message in your Gmail account, but this is expected. Make
sure to swap in your path to the file and the name of the file in the following code:

import gspread
from oauth2client.client import SignedJwtAssertionCredentials
json_key = json.load(open(r'/PATH_TO_KEY/KEY.json'))
scope = ['https://spreadsheets.google.com/feeds']
credentials = SignedJwtAssertionCredentials(json_key['client_email'],
json_key['private_key'].encode(), scope)
gc = gspread.authorize(credentials)

http://gspread.readthedocs.org/en/latest/oauth2.html


Create a Custom Newsfeed

[ 163 ]

Now, if everything went well, it should run without errors. Next, you can download the
stories:

ws = gc.open("NewStories")
sh = ws.sheet1
zd = list(zip(sh.col_values(2),sh.col_values(3), sh.col_values(4)))
zf = pd.DataFrame(zd, columns=['title','urls','html'])
zf.replace('', pd.np.nan, inplace=True)
zf.dropna(inplace=True)
zf

With this, we downloaded all of the articles from our feed and placed them into a
DataFrame object. We now need to strip out the HTML tags. We can use the function that
we used earlier to retrieve the text. We'll then transform it using our tf-idf vectorizer:

zf.loc[:,'text'] = zf['html'].map(get_text) zf.reset_index(drop=True,
inplace=True)
test_matrix = vect.transform(zf['text'])
test_matrix

The preceding code generates the following output:

Here, we see that our vectorization was successful. Let's now pass this into our model to get
back the results:

results = pd.DataFrame(model.predict(test_matrix),
columns = ['wanted'])
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The preceding code generates the following output:

We can see that we have results for each story. Let's join this with the stories themselves so
that we can evaluate the results:

rez = pd.merge(results,zf, left_index=True, right_index=True)
rez

Definitely nailed these two as my interests lie outside of High School Musical and Full
House.

At this point, we can improve the model by going through the results and correcting errors.
You'll need to do this for yourself, but here is how I made changes to my own:

change_to_no = [130, 145, 148, 163, 178, 199, 219, 222, 223, 226, 235, 279,
348, 357, 427, 440, 542, 544, 546, 568, 614, 619, 660, 668, 679, 686, 740,
829]
change_to_yes = [0, 9, 29, 35, 42, 71, 110, 190, 319, 335, 344, 371, 385,
399, 408, 409, 422, 472, 520, 534, 672]
for i in rez.iloc[change_to_yes].index:
    rez.iloc[i]['wanted'] = 'y'
for i in rez.iloc[change_to_no].index:
    rez.iloc[i]['wanted'] = 'n'
rez
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The preceding code generates the following output:

This may look like a lot of changes, but for over 900 articles evaluated, I had to change very
few. By making these corrections, we can now feed this back into our model to improve it
even more. Let's add these results to our earlier training data and then rebuild the model:

combined = pd.concat([df[['wanted', 'text']], rez[['wanted',
'text']]])
combined

The preceding code generates the following output:

Now we rebuild the model.

tvcomb = vect.fit_transform(combined['text'], combined['wanted'])
model = clf.fit(tvcomb, combined['wanted'])
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We have now retrained our model with all available data. You may want to do this a
number of times as you get more results over the days and weeks. The more that you add,
the better your results will be.

We'll assume you have a well trained model at this point, and are ready to begin using it.
Let's now see how we can deploy this to set up a personalized news feed.

Setting up your daily personal newsletter
In order to set up a personal e-mail with news stories, we're going to utilize IFTTT again. As
we did before, in Chapter 3, Build an App to Find Cheap Airfares, we'll use the Maker
Channel to send a POST request. This time, however, the payload will be our news stories.
If you haven't set up the Maker Channel, do this now. Instructions can be found in Chapter
3, Build an App to Find Cheap Airfares. You should also set up the Gmail channel. Once that is
complete, we'll add a recipe to combine the two.

First, click on Create a Recipe from the IFTTT home page. Then, search for the Maker
Channel:

Image from https://www.iftt.com
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Select this, then select Receive a web request:

Image from https://www.iftt.com

Then, give the request a name. I'm using news_event:

Image from https://www.iftt.com

Finish by clicking on Create Trigger. Next, click on that to set up the e-mail piece. Search
for Gmail and click on the icon seen as follows:
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Image from https://www.iftt.com

Once you have clicked on Gmail, click on Send an e-mail. From here, you can customize
your e-mail message.

Image from https://www.iftt.com

Input your e-mail address, a subject line, and finally, include Value1 in the e-mail body. We
will pass our story title and link into this with our POST request. Click on Create Recipe to
finalize this.
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Now, we're ready to generate the script that will run on a schedule automatically sending
us articles of interest. We're going to create a separate script for this, but one last thing that
we need to do in our existing code is serialize our vectorizer and our model:

import pickle
pickle.dump(model, open
(r'/Users/alexcombs/Downloads/news_model_pickle.p', 'wb'))
pickle.dump(vect, open
(r'/Users/alexcombs/Downloads/news_vect_pickle.p', 'wb'))

With this, we have saved everything that we need from our model. In our new script, we
will read these in to generate our new predictions. We're going to use the same scheduling
library to run the code that we used in Chapter 3, Build an App to Find Cheap Airfares.
Putting it all together, we have the following script:

 

# get our imports.
import pandas as pd

from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.svm import LinearSVC

import schedule
import time

import pickle

import json

import gspread

import requests
from bs4 import BeautifulSoup

from oauth2client.client import SignedJwtAssertionCredentials

# create our fetching function
def fetch_news():
    try:
        vect = pickle.load(open(r'/Users/alexcombs/Downloads/
        news_vect_pickle.p', 'rb'))
        model = pickle.load(open(r'/Users/alexcombs/Downloads/
        news_model_pickle.p', 'rb'))

        json_key = json.load(open(r'/Users/alexcombs/Downloads/
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        APIKEY.json'))
        scope = ['https://spreadsheets.google.com/feeds']
        credentials = SignedJwtAssertionCredentials(json_key
        ['client_email'], json_key['private_key'].encode(), scope)
        gc = gspread.authorize(credentials)

        ws = gc.open("NewStories")
        sh = ws.sheet1
        zd = list(zip(sh.col_values(2), sh.col_values(3),
        sh.col_values(4)))
        zf = pd.DataFrame(zd, columns=['title', 'urls', 'html'])
        zf.replace('', pd.np.nan, inplace=True)
        zf.dropna(inplace=True)

        def get_text(x):
            soup = BeautifulSoup(x, 'lxml')
            text = soup.get_text()
            return text

        zf.loc[:, 'text'] = zf['html'].map(get_text)

        tv = vect.transform(zf['text'])
        res = model.predict(tv)

        rf = pd.DataFrame(res, columns=['wanted'])
        rez = pd.merge(rf, zf, left_index=True, right_index=True)

        news_str = ''
        for t, u in zip(rez[rez['wanted'] == 'y']['title'],
        rez[rez['wanted'] == 'y']['urls']):
            news_str = news_str + t + '\n' + u + '\n'

        payload = {"value1": news_str}
        r = requests.post('https://maker.ifttt.com/trigger/
        news_event/with/key/IFTTT_KEY', data=payload)

        # cleanup worksheet
        lenv = len(sh.col_values(1))
        cell_list = sh.range('A1:F' + str(lenv))
        for cell in cell_list:
            cell.value = ""
        sh.update_cells(cell_list)
        print(r.text)
    except:
        print('Failed')

schedule.every(480).minutes.do(fetch_news)
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while 1:
    schedule.run_pending()
    time.sleep(1)

What this script will do is run every 4 hours, pull down the news stories from Google
Sheets, run the stories through the model, generate an e-mail by sending a POST request to
IFTTT for the stories that are predicted to be of interest, and then finally, it will clear out the
stories in the spreadsheet so that only new stories get sent in the next e-mail.

Congratulations! You now have your own personalize news feed!

Summary
In this chapter, we learned how to work with text data when training machine learning
models. We also learned the basics of NLP and of Support Vector Machines. In the next
chapter, we'll go further with these skills, and attempt to predict what sort of content will
go viral.



6
Predict whether Your Content

Will Go Viral
It all began with a wager. It was 2001, and Jonah Peretti, a graduate student at MIT at the
time, was procrastinating. Instead of writing his thesis, he decided to take up Nike on their
offer to personalize a pair of sneakers. Under a recently-launched program, anyone could
do this from Nike's new website, NIKEiD. The only problem, at least from Nike's point of
view, was that emblazoning a pair of their shoes with the word “sweatshop”, as Peretti had
requested, was a non-starter. Peretti, in a series of e-mails to the company, demurred
pointing out that in no way did the word “sweatshop” fall into any of the categories of
objectionable terms that they had outlined that should cause his request to be rejected.

Peretti, believing others might find the back-and-forth with Nike's customer service
representatives as amusing as he did, forwarded the messages on to a number of his close
friends. Within days, the e-mails had found their way into inboxes across the world. Major
media outlets, such as Time, Salon, The Guardian, and even the Today Show had picked up
on it. Peretti was at the center of a viral sensation.

Soon after, the question that began nagging at Peretti was whether this sort of thing could
be replicated. His friend, Cameron Marlow, had been preparing to write his PhD thesis on
viral phenomena, and was was sure that such things were far too complex for anyone to
engineer. Marlow wagered Peretti that he could not repeat the success he had enjoyed with
that original set of e-mails with Nike. Peretti took the bet.

Fast forward 15 years, and Jonah Peretti leads the website whose name has become
synonymous with viral content—BuzzFeed. With more than 77 million unique visitors in
2015, it ranked higher than the New York Times in total reach. I think it's safe to say Peretti
won the bet.
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But how exactly did he do it? How did Peretti piece together the secret formula to create
content that spreads like wildfire? In this chapter, we'll attempt to unravel some these
mysteries. We'll examine some of the most-shared content and attempt to find the common
elements that differentiate it from the content that people are less willing to share.

We'll cover the following topics in this chapter:

What does research tell us about virality?
Sourcing shared counts and content
Exploring the features of shareability
Building a predictive content scoring model

What does research tell us about virality?
Understanding sharing behavior is big business. As consumers become blind to traditional
advertising, the push is on to go beyond simple pitches to tell engaging stories.
Increasingly, the success of these endeavors is measured in social shares. Why go to so
much trouble? Because as a brand, every share received represents another consumer that
reached—all without spending an additional cent.

Due to this value, several researchers have examined sharing behavior in the hopes of
understanding what motivates it.

Among the reasons researchers have found:

To provide practical value to others (an altruistic motive)
To associate ourselves with certain ideas and concepts (an identity motive)
To bond with others around a common emotion (a communal motive)

With regard to the last motive, one particularly well-designed study looked at the 7,000
pieces of content from the New York Times to examine the effect of emotion on sharing.
They found that simple emotional sentiment was not enough to explain sharing behavior,
but when combined with emotional arousal, the explanatory power was greater. For
example, while sadness has a strong negative valence, it is considered to be a low arousal
state. Anger, on the other hand, has a negative valence paired with a high arousal state. As
such, stories that sadden the reader tend to generate far fewer stories than anger-inducing
stories:
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Figure taken from “What Makes Online Content Viral?” by Jonah Berger and Katherine L. Milkman. Journal of Marketing Research available at
http://jonahberger.com/wp-content/uploads/2013/02/ViralityB.pdf

This covers the motivational aspects. However, if we hold those factors constant, how do
other attributes affect the virality of a piece of content? Some of these factors could include:
headline wording, headline length, headline parts of speech, content length, social network
of post, topic, timeliness of subject matter, and so on. Without a doubt, a person could
spend their entire life studying this phenomenon. For now, however, we'll just spend the
next 30 or so pages doing so.

Sourcing shared counts and content
Before we can begin exploring which features make content shareable, we need to get our
hands on a fair amount of content. We'll also need the share counts for each piece of content
from the various social networks. Fortunately, we can source this without too much
difficulty. I'll be using the site ruzzit.com.

http://www.ruzzit.com
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This is a relatively new site—it's still in beta, but it tracks the most-shared content over time,
which is exactly what we need:

We're going to have to scrape the content from the page—there is no API, unfortunately.
And because the site uses an infinite scroll, we'll need to use our old friends from Chapter
3, Build an App to Find Cheap Airfares, Selenium and PhantomJS. Let's get started with the
scraping now.

We'll begin with the imports that we'll need initially:

import requests
import pandas as pd
import numpy as np
import json
import time
from selenium import webdriver
    pd.set_option('display.max_colwidth', 200)

Next, we'll set up our Selenium browser. We'll use the URL that is generated by selecting
only articles from the past year from the site. We're going to size the browser so that we get
the standard desktop appearance, and pace our calls at 15 seconds each as a matter of
etiquette. We are also going to scroll down for the equivalent of 50 pages (there are 10
articles on each page):
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browser = webdriver.PhantomJS()
browser.set_window_size(1080,800)
browser.get("http://www.ruzzit.com/en-US/Timeline?media=Articles&timeline=Y
ear1&networks=All")
time.sleep(3)
pg_scroll_count = 50
while pg_scroll_count:
    browser.execute_script("window.scrollTo(0,
    document.body.scrollHeight);")
    time.sleep(15)
    pg_scroll_count -= 1
titles = browser.find_elements_by_class_name("article_title")
link_class = browser.find_elements_by_class_name("link_read_more_article")
stats = browser.find_elements_by_class_name("ruzzit_statistics_area")

Finally, in the last section, we selected the elements of the page that we need for our
analysis. We will need to parse them further to retrieve the text; we'll do that next.

I have chosen to exclude Twitter share counts from this analysis. The company made the
decision in late 2015 to remove this count from their standard API. Due to this, the counts
displayed may not be reliable. Better to exclude them rather than take the risk in tainting
the data:

all_data = []
for title, link, stat in zip(titles, link_class, stats):
    all_data.append((title.text,\
                     link.get_attribute("href"),\
                     stat.find_element_by_class_name("col-md-
                     12").text.split(' shares')[0],
                     stat.find_element_by_class_name("col-md-
                     12").text.split('tweets\n')
                     [1].split('likes\n0')[0],
                     stat.find_element_by_class_name("col-md-
                     12").text.split('1's\n')[1].split(' pins')[0],
                     stat.find_element_by_class_name("col-md-
                     12").text.split('pins\n')[1]))

Next, we'll put this into a DataFrame:

df = pd.DataFrame(all_data, columns=['title', 'link', 'fb', 'lnkdn',
'pins', 'date'])
df
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The preceding code generates the following output:

This is a good start, but we're going to need to clean this up. You'll notice that all the links
are redirects from ruzzit.com. We'll fix this by following the link to retrieve the original
site's link, as follows:

df = df.assign(redirect = df['link'].map(lambda x: requests.get(x).url))

This line uses the requests library to retrieve the true URL for the story (after the
redirection):

If we examine our DataFrame now, we can see that we have the original link for the site.
You will also notice that we have the homepage for CNN in the first row. After taking a
look, there were 17 stories that directed to the homepage of a site. This is because the story
had been removed. One other issue is that some links directed to images rather than
articles.
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The following code will identity both of these issues and remove the offending rows:

def check_home(x):
    if '.com' in x:
        if len(x.split('.com')[1]) < 2:
            return 1
        else:
            return 0
    else:
        return 0
def check_img(x):
    if '.gif' in x or '.jpg' in x:
        return 1
    else:
        return 0
df = df.assign(pg_missing = df['pg_missing'].map(check_home))
df = df.assign(img_link = df['redirect'].map(check_img))
dfc = df[(df['img_link']!=1)&(df['pg_missing']!=1)]
dfc

The preceding code generates the following output:

Let's now take the next step and retrieve the full article and additional metadata. As in the
last chapter, we'll use the API from embed.ly. If you need help getting set up, head back to
the previous chapter for details. We'll use embed.ly to retrieve the article's title, HTML,
and some additional data such as the entities referenced and images:

def get_data(x):
    try:
        data = requests.get('https://api.embedly.com/1/extract?
        key=SECRET_KEY7&url=' + x)
        json_data = json.loads(data.text)
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        return json_data
    except:
        print('Failed')
        return None
dfc = dfc.assign(json_data = dfc['redirect'].map(get_data))
dfc

 

The preceding code generates the following output:

We now have a column of JSON data for each article. We will now parse this out into
individual columns for the features that we are interested in exploring. We'll start with the
basics: site, title, HTML, and the number of images:

def get_title(x):
    try:
        return x.get('title')
    except:
        return None
def get_site(x):
    try:
        return x.get('provider_name')
    except:
        return None
def get_images(x):
    try:
        return len(x.get('images'))
    except:
        return None
def get_html(x):
    try:
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        return x.get('content')
    except:
        return None
dfc = dfc.assign(title = dfc['json_data'].map(get_title))
dfc = dfc.assign(site = dfc['json_data'].map(get_site))
dfc = dfc.assign(img_count = dfc['json_data'].map(get_images))
dfc = dfc.assign(html = dfc['json_data'].map(get_html))
dfc

 

The preceding code generates the following output:

The majority of the rows did retrieve the HTML of the page, but there were a fair number
that returned nothing. After examining the blank ones, it appears they are primarily from
BuzzFeed. This makes sense as the pages are primarily pictures and quizzes. This is a minor
annoyance, but we'll have to make do.

Let's now take the HTML and convert it into text. We'll use the BeautifulSoup library to
do this for us:

from bs4 import BeautifulSoup
def text_from_html(x):
    try:
        soup = BeautifulSoup(x, 'lxml')
        return soup.get_text()
    except:
        return None
dfc = dfc.assign(text = dfc['html'].map(text_from_html))
dfc



Predict whether Your Content Will Go Viral

[ 181 ]

The preceding code generates the following output:

Let's now add additional features. We'll add the most prominent color of the first image on
the page. The colors for each image are listed by their RGB value in the JSON data that we
got from embed.ly, so this will be a simple task:

import matplotlib.colors as mpc
def get_rgb(x):
    try:
        if x.get('images'):
            main_color = x.get('images')[0].get('colors')
            [0].get('color')
            return main_color
    except:
        return None
def get_hex(x):
    try:
        if x.get('images'):
            main_color = x.get('images')[0].get('colors')
            [0].get('color')
            return mpc.rgb2hex([(x/255) for x in main_color])
    except:
        return None
dfc = dfc.assign(main_hex = dfc['json_data'].map(get_hex))
dfc = dfc.assign(main_rgb = dfc['json_data'].map(get_rgb))
dfc
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The preceding code generates the following output:

We've pulled the most prominent color from the first image as an RGB value, but we have
also transformed it into a HEX value as well. We'll use this later when we examine the
image colors.

We're nearly done with our data manipulations, but we do need to convert some of the
figures that we retrieved from Ruzzit. The share numbers that we have are for display
purposes rather than for analysis as you can see in the following image:
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We'll need to clean up the fb, lnkdn, pins, and date columns by converting them from a
string representation to a numeric one that we can work with as follows:

def clean_counts(x):
    if 'M' in str(x):
        d = x.split('M')[0]
        dm = float(d) * 1000000
        return dm
    elif 'k' in str(x):
        d = x.split('k')[0]
        dk = float(d.replace(',','')) * 1000
        return dk
    elif ',' in str(x):
        d = x.replace(',','')
        return int(d)
    else:
        return x
dfc = dfc.assign(fb = dfc['fb'].map(clean_counts))
dfc = dfc.assign(lnkdn = dfc['lnkdn'].map(clean_counts))
dfc = dfc.assign(pins = dfc['pins'].map(clean_counts))
dfc = dfc.assign(date = pd.to_datetime(dfc['date'], dayfirst=True))
dfc

The preceding code generates the following output:

Finally, we'll add our last feature, column-word count. We can derive this from splitting our
text on whitespace and taking the count. Let's do this now:

def get_word_count(x):
    if not x is None:
        return len(x.split(' '))
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    else:
        return None
dfc = dfc.assign(word_count = dfc['text'].map(get_word_count))
dfc

The preceding code generates the following output:

With our data now ready, we can begin to perform our analysis. We're going to attempt to
find what makes content highly shareable.

Exploring the features of shareability
The stories that we have collected here represent approximately the 500 most shared pieces
of content over the past year. We're going to try to deconstruct these articles to find the
common traits that make them so shareable. We'll begin by looking at the image data.

Exploring image data
Let's begin by looking at the number of images that are included with each story. We'll run
a value count and then plot the numbers:

dfc['img_count'].value_counts().to_frame('count')
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The preceding code generates the following output:

Now, let's plot that same information:

fig, ax = plt.subplots(figsize=(8,6))
y = dfc['img_count'].value_counts().sort_index()
x = y.sort_index().index
plt.bar(x, y, color='k', align='center')
plt.title('Image Count Frequency', fontsize=16, y=1.01)
ax.set_xlim(-.5,5.5)
ax.set_ylabel('Count')
ax.set_xlabel('Number of Images')

 

The preceding code generates the following output:
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Already, the numbers are surprising. The vast majority of stories have five pictures in them,
while having one or less is quite rare.

So, we see that people tend to share content with lots of images. Let's now take a look at the
most common colors in those images:

mci = dfc['main_hex'].value_counts().to_frame('count')
mci

The preceding code generates the following output:

This isn't extremely helpful given that we don't see HEX values as colors. We can, however,
use a new feature in pandas, called conditional formatting, to help us out:

mci['color'] = ' '
def color_cells(x):
    return 'background-color: ' + x.index
mci.style.apply(color_cells, subset=['color'], axis=0)
mci



Predict whether Your Content Will Go Viral

[ 187 ]

The preceding code generates the following output:

This certainly helps. We can see a number of colors including a bit of blue and black and
green (rendered here in grayscale), but the colors are so granular that we have over 450
unique in total. Let's use a bit of clustering to get this down to a more manageable range. As
we have the RBG values for each color, we can create a three-dimensional space to cluster
them using the K-means algorithm. I won't go into the details of the algorithm here, but this
is a fairly simple iterative algorithm, which is based upon generating clusters by measuring
the distance to centers and repeating this procedure iteratively. The algorithm does require
that we select the k, or the number of clusters that we expect. As RGB ranges from 0 to 256,
we'll use the square root of 256, which is 16. This should give us a manageable number
while retaining the characteristics of our palette.

We'll first split our RGB values into individual columns as follows:

def get_csplit(x):
    try:
        return x[0], x[1], x[2]
    except:
        return None, None, None
dfc['reds'], dfc['greens'], dfc['blues'] =
zip(*dfc['main_rgb'].map(get_csplit))
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Next, we'll use this to run our K-means model and retrieve the center values:

from sklearn.cluster import KMeans
clf = KMeans(n_clusters=16)
clf.fit(dfc[['reds', 'greens', 'blues']].dropna())
clusters = pd.DataFrame(clf.cluster_centers_, columns=['r', 'g', 'b'])
clusters

The preceding code generates the following output:

We now have the sixteen most popular dominant colors from the first image in each
picture. Let's see what they are using our pandas DataFrame.style() method and the
function that we just created to color our cells. We'll need to set our index equal to the hex
value of the three columns to use our color_cells function, so we'll do this as well:

def hexify(x):
    rgb = [round(x['r']), round(x['g']), round(x['b'])]
    hxc = mpc.rgb2hex([(x/255) for x in rgb])
    return hxc
clusters.index = clusters.apply(hexify, axis=1)
clusters['color'] = ' '
clusters.style.apply(color_cells, subset=['color'], axis=0)
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The preceding code generates the following output:

So, there you have it. These are the most common colors seen (at least in the first image) in
the most-shared content. A bit more on the drab side than expected: some blue and red, but
mostly shades of brown.

Let's now move on to examine the headlines of our stories.

Exploring the headlines
We'll start by creating a function that we can use to examine the most common tuples. We'll
set it up so that we can use it later as well on the body text:

from nltk.util import ngrams
from nltk.corpus import stopwords
import re
def get_word_stats(txt_series, n, rem_stops=False):
    txt_words = []
    txt_len = []
    for w in txt_series:
        if w is not None:



Predict whether Your Content Will Go Viral

[ 190 ]

            if rem_stops == False:
                word_list = [x for x in ngrams(re.findall('[a-z0-
                9']+', w.lower()), n)]
            else:
                word_list = [y for y in ngrams([x for x in
                re.findall('[a-z0-9']+', w.lower())\
                if x not in stopwords.words('english')], n)]
                word_list_len = len(list(word_list))
                txt_words.extend(word_list)
                txt_len.append(word_list_len)
    return pd.Series(txt_words).value_counts().to_frame('count'),
    pd.DataFrame(txt_len, columns=['count'])

There is a lot in here, so let's unpack it. We created a function that takes in a Series, an
integer, and a Boolean value. The integer determines the n we'll use for n-gram parsing,
while the Boolean determines whether we exclude stop words. The function returns the
number of tuples per row and the frequency for each tuple.

Let's run it now on our headlines keeping in the stop words. We'll begin with just single
words:

hw,hl = get_word_stats(dfc['title'], 1, 0)
hl

The preceding code generates the following output:

Now that we have the word count for each headline, let's see what the stats look like:

hl.describe()
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The preceding code generates the following output:

We can see the median headline length for our viral stories comes in at exactly 11 words.
Let's take a look at the most frequently used words:

That's not exactly useful, but it's in line with what we might expect. Let's take a look at the
same information for bi-grams:

hw,hl = get_word_stats(dfc['title'], 2, 0)
hw
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The preceding code generates the following output:

This is definitely more interesting. We can start to see some of the components of the
headlines that we see over and over again. The two that stand out are (donald, trump)
and (dies, at). Trump makes sense as he's made some headline-grabbing statements,
but it's surprising to see the dies headlines. A quick look at the headlines over the past year
reveals that a number of high-profile people died recently, so this makes some sense.

Let's now run it with the stop words removed:

hw,hl = get_word_stats(dfc['title'], 2, 1)
hw

The preceding code generates the following output:
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Again, we see many things that we might expect. It looks like if we changed how we parsed
numbers (replacing each of them with a single identifier, such as [number]) that we would
likely see more of these bubble up. I'll leave this as an exercise for you if you'd like to
attempt it.

Let's now take a look at tri-grams:

hw,hl = get_word_stats(dfc['title'], 3, 0)

It seems the more words that we include, the more the headlines come to resemble the
classic BuzzFeed prototype. In fact, let's see if this is the case. We haven't looked at which
sites produce the most viral stories; let's see whether BuzzFeed leads the charts:

dfc['site'].value_counts().to_frame()
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The preceding code generates the following output:

We can clearly see that BuzzFeed dominates list, and in a distant second place, we see The
Huffington Post, which incidentally is another site that Jonah Peretti worked for. It seems
that studying the science of virality can pay big dividends.

So far, we have examined images and headlines, let's now move on to examining the full
text of the stories.

Exploring the story content
In the previous section, we created a function to examine the common n-grams found in our
story headlines, now let's apply this to explore the full content of our stories.

We'll start by exploring bi-grams with the stop words removed. Because headlines are so
short compared to the story bodies, it makes sense to look at them with the stop words
intact, but within the story, it typically makes sense to eliminate them:

hw,hl = get_word_stats(dfc['text'], 2, 1)
hw



Predict whether Your Content Will Go Viral

[ 195 ]

The preceding code generates the following output:

Interestingly, we see that the frivolity we saw in the headlines has completely disappeared.
The text is now filled with content discussing terrorism, politics, and race relations.

How is it possible that the headlines are light-hearted while the text is dark and
controversial? I would suggest that 13 Puppies Who Look Like Elvis is going to have a lot less
text than The History of US Race Relations.

Let's take a look at one more. We'll evaluate the tri-grams for the story bodies:

hw,hl = get_word_stats(dfc['text'], 3, 1)
hw
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The preceding code generates the following output:

We appear to have suddenly entered the land of advertising and social pandering. With
this, let's move on to building a predictive model for content scoring.

Building a predictive content scoring model
Let's now use what we learned to create a model that can estimate the share counts for a
given piece of content. We'll use the features that we have already created, as well as a few
additional features.

Ideally, we would have a much larger sample of content, especially content that had more
typical share counts. Despite this, we'll make do with what we have here.

We're going to use an algorithm called random forest regression. In prior chapters, we
looked at a more typical implementation of random forests, which is based upon
classification. Here, we're going to use a regression and attempt to predict the share counts.
We could bucket our share classes into ranges, but it is preferable to use regression when
dealing with continuous variables.
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To begin, we'll create a bare-bones model. We'll use the number of images, the site, and the
word count. We'll train our model on the number of Facebook likes.

We'll first import the sci-kit learn library, then we'll prepare our data by removing the rows
with nulls, resetting our index, and finally splitting the frame into our training and testing
set:

from sklearn.ensemble import RandomForestRegressor
all_data = dfc.dropna(subset=['img_count', 'word_count'])
all_data.reset_index(inplace=True, drop=True)
train_index = []
test_index = []
for i in all_data.index:
    result = np.random.choice(2, p=[.65,.35])
    if result == 1:
        test_index.append(i)
    else:
        train_index.append(i)

We used a random number generator with a probability set for approximately 2/3 and 1/3 to
determine which row items (based on their index) would be placed in each set. Setting the
probabilities like this ensures that we get approximately twice the number of rows in our
training set as compared to the test set. We can print this out as seen in the following:

print('test length:', len(test_index), '\ntrain length:', len(train_index))

The preceding code generates the following output:

Now, we'll continue on with preparing our data. Next, we need to set up categorical
encoding for our sites. Currently, our DataFrame object has the name for each site
represented with a string. We need to use dummy encoding. This creates a column for each
site. If the row is for that particular site, then that column will be filled in with 1; all the
other site columns be filled in with 0. Let's do that now:

sites = pd.get_dummies(all_data['site'])
sites
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The preceding code generates the following output:

The dummy encoding can be seen in the preceding image.

We'll now continue by splitting our data into training and test sets as follows:

y_train = all_data.iloc[train_index]['fb'].astype(int)
X_train_nosite = all_data.iloc[train_index][['img_count', 'word_count']]
X_train = pd.merge(X_train_nosite, sites.iloc[train_index],
left_index=True, right_index=True)
y_test = all_data.iloc[test_index]['fb'].astype(int)
X_test_nosite = all_data.iloc[test_index][['img_count', 'word_count']]
X_test = pd.merge(X_test_nosite, sites.iloc[test_index], left_index=True,
right_index=True)

With this, we've set up our X_test, X_train, y_test, and y_train variables. We'll use
this now to build our model:

clf = RandomForestRegressor(n_estimators=1000)
clf.fit(X_train, y_train)
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With these two lines of code, we have trained our model. Let's now use it to predict the
Facebook likes for our testing set:

y_actual = y_test
deltas = pd.DataFrame(list(zip(y_pred, y_actual, (y_pred -
y_actual)/(y_actual))), columns=['predicted', 'actual', 'delta'])
deltas

The preceding code generates following output:

Here we see side by side the predicted value, the actual value, and the difference as a
percentage. Let's take a look at the descriptive stats for this:

deltas['delta'].describe()

The preceding code generates the following output:

This looks amazing. Our median error is 0! Well, unfortunately, this isn't a particularly
useful bit of information as errors are on both sides—positive and negative, and they tend
to average out, which is what we see here. Let's now look at a more informative metric to
evaluate our model. We're going to look at root mean square error as a percentage of the
actual mean.
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To first illustrate why this is more useful, let's run the following scenario on two sample
series:

a = pd.Series([10,10,10,10])
b = pd.Series([12,8,8,12])
np.sqrt(np.mean((b-a)**2))/np.mean(a)

This results in the following output:

Now compare this to the mean:

(b-a).mean()

This results in the following output:

Clearly the former is the more meaningful statistic. Let's now run this for our model:

np.sqrt(np.mean((y_pred-y_actual)**2))/np.mean(y_actual)

The preceding code generates the following output:

Suddenly, our awesome model is a lot less awesome. Let's now add another feature to our
model. Let's see whether adding the counts for words will help our model. We'll use a count
vectorizer to do this. Much like what we did with the site names, we'll transform individual
words and n-grams into features:

from sklearn.feature_extraction.text import CountVectorizer
vect = CountVectorizer(ngram_range=(1,3)) X_titles_all =
vect.fit_transform(all_data['title'])
X_titles_train = X_titles_all[train_index]
X_titles_test = X_titles_all[test_index]
X_test = pd.merge(X_test, pd.DataFrame(X_titles_test.toarray(),
index=X_test.index), left_index=True, right_index=True)
X_train = pd.merge(X_train, pd.DataFrame(X_titles_train.toarray(),
index=X_train.index), left_index=True, right_index=True)



Predict whether Your Content Will Go Viral

[ 201 ]

In these lines, we joined our existing features to our new n-gram features. Let's now train
our model and see if we have any improvement:

clf.fit(X_train, y_train)
y_pred = clf.predict(X_test)
deltas = pd.DataFrame(list(zip(y_pred, y_actual, (y_pred -
y_actual)/(y_actual))), columns=['predicted', 'actual', 'delta'])
deltas

The preceding code generates the following output:

Checking our errors again, we see the following:

np.sqrt(np.mean((y_pred-y_actual)**2))/np.mean(y_actual)

This results in the following output:

It appears that we have a modestly improved model. Let's add one more feature to our
model now. Let's add the word count of the title, as follows:

all_data = all_data.assign(title_wc = all_data['title'].map(lambda x:
len(x.split(' '))))
X_train = pd.merge(X_train, all_data[['title_wc']], left_index=True,
right_index=True)
X_test = pd.merge(X_test, all_data[['title_wc']], left_index=True,
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right_index=True)
clf.fit(X_train, y_train)
y_pred = clf.predict(X_test)
np.sqrt(np.mean((y_pred-y_actual)**2))/np.mean(y_actual)

The preceding code generates the following output:

It appears that each feature has modestly improved our model. There are certainly more
features that we could add to our model. For example, we could add the day of the week
and the hour of the posting, we could determine if the article is a listicle by running a regex
on the headline, or we could examine the sentiment of each article. This only begins to
touch on the features that could be important to model virality. We would certainly need to
go much further to continue reducing the error in our model.

I should also note that we have performed only the most cursory testing of our model. Each
measurement should be run multiple times to get a more accurate representation of the true
error rate. It is possible that there is no statistically discernable difference between our last
two models, as we only performed one test.

Summary
In this chapter, we examined the common features of viral content, and how we can build a
model to predict virality using a random forest regression. We also learned how to combine
multiple types of features and how to split our model into training and testing sets.

Hopefully, you will take what you've learned here to build the next viral empire. If this
doesn't work out, perhaps the next chapter on mastering the stock market will be be
useful…



7
Forecast the Stock Market with

Machine Learning
In biology, there is fairly well-known phenomenon called the Red Queen's race. The idea is
that every organism is engaged in a race not to gain some outsized advantage, but merely to
keep pace with an ever-changing environment filled with opposing organisms.

The term comes from a quote in Lewis Carol's Through the Looking Glass: “Now, here, you
see, it takes all the running you can do, to keep in the same place”.

One example of this phenomenon can be seen with the rise of antibiotic-resistant superbugs
such as MRSA. As we've developed stronger and stronger antibiotics, these bacteria have
developed better and better defenses to defeat our drugs.

This may seem like it has little to do with the stock market, but this same phenomenon is at
play every day in the financial markets. Just like living organisms, markets evolve, and
what works one day quickly fails to work to next.

For example, occasionally a paper will be published that alerts the financial world to the
existence of a phenomenon that is based upon some profitable anomaly. Frequently this
phenomenon is the downstream effect of some outside-imposed, real-world constraint.
Take for example year-end tax loss sales. Due to the nature of the tax laws, it makes sense
for traders to sell their losses at the end of the year. This causes downward price pressure
appears on the losing stocks toward year-end that causes the stocks to be discounted
beyond their fair market value. This also means that in January, the downward pressure is
gone, and in its place is upward pressure as new money is put to work in these now
undervalued assets. Once this phenomenon has been broadcast, however, it only makes
sense for traders to attempt to get ahead of it and begin buying those stocks in late
December and selling to other traders in January. These new traders seeking to gain an
early edge now dilute the effect by entering the market.
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They are relieving the year-end selling pressure and decreasing the January buying
pressure. The effect is essentially arbitraged away right along with the profitability. What
once worked no longer works, and traders begin to abandon the strategy and move on to
the next new thing. To stay in the same place, traders must quickly adapt.

In this chapter, we'll spend some time discussing how to build and test a trading strategy.
We'll spend even more time, however, on how not to do this. There are countless pitfalls to
avoid when trying to devise your own system, and it is quite nearly an impossible task.
However, it can be a lot of fun – and sometimes, it can even be profitable.

We'll cover the following topics in this chapter:

Types of market analysis
What does research tell us about the stock market?
How to develop a trading system

Building and evaluating your machine learning models

Please don't do dumb things with the information in this chapter. Do not
risk money that you can't afford to lose. If you do decide to use anything
that you learned here to trade, you're on your own. This shouldn't be
deemed investment advice of any kind, and I accept no responsibility for
your actions.

Types of market analysis
Let's begin with a discussion of some key terms and methods of analysis when dealing with
the financial markets. Though there are countless financial instruments such as stocks,
bonds, ETFs, currencies, swaps, and so on, we'll limit our discussion to stocks and the stock
market. A stock is simply a fractional share of ownership in a public company. The price of
a stock is expected to increase when future prospects for the company rise, and decrease as
these prospects decline.

Investors generally fall into one of two camps. The first camp believes in fundamental
analysis. Fundamental analysts pour through company financials looking for information
that indicates that somehow the market is undervaluing the shares of a company. These
investors look at various factors such as revenue, earnings, and cash flow. They also
examine numerous ratios relating to these values. Many times this involves looking at how
one company's financials compare to another's.
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The second camp of investors are the technical analysts. Technical analysts believe that the
share price of a stock already reflects all the available public information, and that looking
through the fundamentals is largely a waste of time. They believe that by looking at
historical prices—stock charts—one can see areas where prices are likely to rise, fall, or
stagnate. Generally, they feel that these charts reveal clues to investor psychology.

What both groups have in common is an underlying belief that the right analysis can lead to
profits. Is this true, however?

What does research tell us about the stock
market?
Perhaps the most influential theory of the stock market over the last 50 years is the efficient-
market hypothesis. This theory was developed by Eugene Fama, and it states that markets
are rational and all available information is adequately reflected in stock prices. As such, it
is impossible for an investor to consistently “beat the market” on a risk-adjusted basis. The
efficient-market hypothesis is often discussed as having three forms: a weak form, a semi-
strong form, and a strong form.

In the weak form, the market is efficient in the sense that one cannot use past information
from prices to predict future prices. Information is reflected in stocks relatively quickly.
Also, while technical analysis would be ineffective, in some scenarios, a fundamental
analysis could be effective.

In the semi-strong form, prices immediately reflect all the relevant new public information
in an unbiased manner. Here, neither technical nor fundamental analysis would be
effective. Finally, in the strong form, stock prices reflect all public and private information.

Based on these theories, there isn't a lot of hope of making money by exploiting patterns in
the market. Fortunately, while the market operates in a largely efficient manner on the
whole, distinct pockets of inefficiency have been uncovered. Most of these tend to be
ephemeral, but some do persist. One of the most pervasive—even according to Fama—is
the outperformance of momentum strategies.

So, what exactly is a momentum strategy? There are a number of variations on the theme,
but the basic idea is that stocks are ranked from the highest to lowest according to their
return over some prior period. The top performers are bought and held for some period of
time, and then the process is repeated after some fixed holding period. A typical long-only
momentum strategy may involve buying the top 25 performing stocks in the S&P 500 over
the past year, holding them for a year, and then repeating the process.
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This may sound like an absurdly simple strategy—and it is. However, it has consistently
returned results that defy expectation. Why? As you can imagine, a lot of research has
examined this effect, and the hypothesis is that there is something inherently, systemically
biased about how humans deal with new information. Research suggests that they
underreact to news in the short term and then overreact to news in the long term.

Will this effect be arbitraged away as more traders learn of it and pile in? There has been
some evidence of this in recent years, but it remains unclear. Regardless, the effect was real
and persisted far longer than can be currently be accounted for by the efficient-market
hypothesis, so there is hope. With this slight glimmer of hope, let's now move on to seeing
how we may go about finding our own anomalies.

How to develop a trading strategy
We'll begin our strategy development by focusing on the technical aspects. Let's take a look
at the S&P 500 over the last several years. We'll use the functionality of pandas to import
our data. This will give us access to several sources of stock data, including Yahoo! and
Google.

First, we'll need to install the datareader package. This can be pip-installed from the
command line using pip install pandas_datareader.

Then, we'll go ahead an set our imports, as follows:

import pandas as pd
from pandas_datareader import data, wb
import matplotlib.pyplot as plt

%matplotlib inline
pd.set_option('display.max_colwidth', 200)

Now, we'll get our data for the SPY ETF. This instrument represents the stocks of the S&P
500. We'll pull data from the start of 2010 through the beginning of March 2016:

import pandas_datareader as pdr

start_date = pd.to_datetime('2010-01-01')
stop_date = pd.to_datetime('2016-03-01')

spy = pdr.data.get_data_yahoo('SPY', start_date, stop_date)
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The preceding code generates the following output:

We can now plot our data. We'll select only the closing price, as follows:

spy_c = spy['Close']

fig, ax = plt.subplots(figsize=(15,10))
spy_c.plot(color='k')
plt.title("SPY", fontsize=20)

The preceding code generates the following output:
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In the preceding figure, we see the price chart of the daily closing price of the S&P 500 for
the period that we selected. Let's run a bit of analysis to see what the returns over this
period could have been if we had invested in this ETF.

We'll pull data for the first open first:

first_open = spy['Open'].iloc[0]
first_open

The preceding code generates the following output:

Next, let's get the closing price on the final day of the period:

last_close = spy['Close'].iloc[-1]
last_close

This will result in the following output:

And finally, let's see the change over the full period:

last_close - first_open

The preceding code generates the following output:

So, it appears that a purchase of 100 shares at the start of the period would have cost us
approximately $11,237, and at the end of the period, that same 100 shares would have been
valued at roughly $19,811. This transaction would have given us a gain of over 76% over the
period. Not bad at all.

Let's now take a look at the return over the same period for just the intraday gains. This
assumes that we buy the stock at the open of each day and sell it at the close of that same
day:

spy['Daily Change'] = pd.Series(spy['Close'] - spy['Open'])
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This will give us the change from the open to the close each day. Let's take a look at this:

spy['Daily Change']

The preceding code generates the following output:

Let's now sum those changes over the period:

spy['Daily Change'].sum()

The preceding code generates the following output:

So, as you can see, we have gone from a gain of over 85 points to one of just over 41 points.
Ouch! More than half the market's gains came from holding overnight during the period.

The overnight returns were better than the intraday returns, but how about the volatility?
Returns are always judged on a risk-adjusted basis, so let's take a look at how the overnight
trades compared to the intraday trades on the basis of their standard deviation.

We can use NumPy to calculate this for us, as follows:

np.std(spy['Daily Change'])
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The preceding code generates the following output:

Now, let's get the standard deviation.

spy['Overnight Change'] = pd.Series(spy['Open'] - spy['Close'].shift(1))
np.std(spy['Overnight Change'])

The preceding code generates the following output:

So, our overnight trading had lower volatility as compared to the intraday trading as well.
However, not all volatility is created equal. Let's compare the mean change on downside
days versus upside days for both strategies .

First, let's look at the upside days:

spy[spy['Daily Change']<0]['Daily Change'].mean()

The preceding code generates the following output:

Now, we'll look at the downside days:

spy[spy['Overnight Change']<0]['Overnight Change'].mean()

The preceding code generates the following output:

Again, we see that the average downside move is less for our overnight trading strategy
versus our intraday trading strategy.

So far, we looked at everything in terms of points, but let's now move to looking at returns.
This will help put our gains and losses in a more realistic context. Continuing with our
three strategies, we'll construct a pandas series for each scenario: daily returns (close to
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close change), intraday returns (open to close), and overnight returns (close to open) as
follows:

daily_rtn = ((spy['Close'] -
spy['Close'].shift(1))/spy['Close'].shift(1))*100
id_rtn = ((spy['Close'] - spy['Open'])/spy['Open'])*100
on_rtn = ((spy['Open'] - spy['Close'].shift(1))/spy['Close'].shift(1))*100

What we've done is use the pandas .shift() method to subtract each series from the prior
day's series. For example, for the first Series in the preceding code, we subtracted the close
one day ago from the current closing price for each day. A new Series is generated that
contains one less data point due to the differencing. If you print out the new Series, you
can see the following:

daily_rtn

The preceding code generates the following output:

Let's now take a look at the statistics for all three strategies. We'll create a function that can
take in each series of returns, and will print out the summary results. We're going to get
statistics for each of our winning, losing, and breakeven trades, and something called the 
Sharpe ratio. I said earlier that returns are judged on a risk-adjusted basis. This is exactly
what the Sharpe ratio provides us. It is a method of comparing returns by accounting for
the volatility of these returns. Here, we use the Sharpe ratio with an adjustment to
annualize the ratio:

def get_stats(s, n=252):
    s = s.dropna()
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    wins = len(s[s>0])
    losses = len(s[s<0])
    evens = len(s[s==0])
    mean_w = round(s[s>0].mean(), 3)
    mean_l = round(s[s<0].mean(), 3)
    win_r = round(wins/losses, 3)
    mean_trd = round(s.mean(), 3)
    sd = round(np.std(s), 3)
    max_l = round(s.min(), 3)
    max_w = round(s.max(), 3)
    sharpe_r = round((s.mean()/np.std(s))*np.sqrt(n), 4)
    cnt = len(s)
    print('Trades:', cnt,\
          '\nWins:', wins,\
          '\nLosses:', losses,\
          '\nBreakeven:', evens,\
          '\nWin/Loss Ratio', win_r,\
          '\nMean Win:', mean_w,\
          '\nMean Loss:', mean_l,\
          '\nMean', mean_trd,\
          '\nStd Dev:', sd,\
          '\nMax Loss:', max_l,\
          '\nMax Win:', max_w,\
          '\nSharpe Ratio:', sharpe_r)

Let's now run each strategy to see the stats. We'll start with the buy and hold strategy (daily
returns) and then move to the other two, as follows:

get_stats(daily_rtn)

The preceding code generates the following output:

get_stats(id_rtn)
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The preceding code generates the following output:

get_stats(on_rtn)

The preceding code generates the following output:

As you can see, the buy and hold strategy has the highest mean return as well as the highest
standard deviation of the three. This also has the largest daily drawdown (loss). Also notice
that even though the overnight-only strategy has nearly the same mean return as the
intraday strategy, it has substantially less volatility. This, in turn, gives it a Sharpe ratio that
is higher than the intraday strategy.

At this point, we have a solid baseline to compare our future strategies. Now, I am going to
tell you about a strategy that blows all three of these strategies out of the water.
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Let's take a look at the statistics for this new mystery strategy:

With this strategy, I have nearly tripled the Sharpe ratio over buy and hold, lowered the
volatility substantially, increased the max win, and reduced the max loss by nearly half.

How did I devise this market-trouncing strategy? Wait for it…. I did this by generating
1,000 trials of random overnight signals (either to buy or not) for the test period and then
picked the best performing one. This gave me the strategy with the best 1,000 random
signals.

This is obviously not the way to beat the market. So then, why did I do this? I did it to
demonstrate that if you test enough strategies, the fact is that just by random chance, you
will come across a few strategies that appear to be amazing. This is the called the data
mining fallacy, and it is a real risk in trading strategy development. This is why it is so
important that a strategy is anchored in real-world behavior—behavior that is
systematically biased due to some real-world constraint. If you want an edge in trading,
you don't trade the markets, you trade with the people who trade markets.

Our edge comes from thoughtfully understanding how people might react to certain
situations.

Extending our analysis period
Let's now extend our analysis. First, we'll pull data for the index starting from the year 2000:

start_date = pd.to_datetime('2000-01-01')
stop_date = pd.to_datetime('2016-03-01')
sp = pdr.data.get_data_yahoo('SPY', start_date, stop_date)

Let's have a look at our chart now:

fig, ax = plt.subplots(figsize=(15,10))
sp['Close'].plot(color='k')
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plt.title("SPY", fontsize=20)

The preceding code generates the following output:

Here, we see the price action for the SPY from the start of 2000 through March 1, 2016.
There has certainly been a lot of movement in that period as the market has experienced
both highly positive and highly negative regimes.

Let's get our baseline for our new expanded period for our three base strategies.

First, let's set up our variables for each of them, as follows:

long_day_rtn = ((sp['Close'] -
sp['Close'].shift(1))/sp['Close'].shift(1))*100

long_id_rtn = ((sp['Close'] - sp['Open'])/sp['Open'])*100
long_on_rtn = ((sp['Open'] -
sp['Close'].shift(1))/sp['Close'].shift(1))*100

Now, let's see what the point totals are for each of them.

First, close to close:1.

(sp['Close'] - sp['Close'].shift(1)).sum()
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The preceding code generates the following output:

Then, open to close:2.

    (sp['Close'] - sp['Open']).sum()

The preceding code generates the following output:

Finally, close to open:3.

    (sp['Open'] - sp['Close'].shift(1)).sum()

The preceding code generates the following output:

Now, let's look at the statistics for each of them.

First, we get the statistic for close to close:4.

    get_stats(long_day_rtn)

The preceding code generates the following output:
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Next, we retrieve the intra-day return statistics:5.

    get_stats(long_id_rtn)

The preceding code generates the following output:

Finally, we get the overnight return statistics:6.

    get_stats(long_on_rtn)

The preceding code generates the following output:

We can see that the differences between the three are even more pronounced over a longer
period. If we only held this S&P ETF during the day over the past 16 years, we would have
lost money. If we held the ETF only overnight, we would have improved our returns by
more than 50%! Obviously this presumes no trading costs and no taxes along with perfect
fills, but regardless, this is a remarkable finding.
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Building our model with a support vector
regression
Now that we have a baseline to compare to, let's build our first regression model. We're
going to start with a very basic model using only the stock's prior closing values to predict
the next day's close. We're going to build this model using a support vector regression. With
this, let's set up our model.

The first step is to set up a DataFrame object that contains price history for each day. We're
going to include the past 20 closes in our model, as follows:

for i in range(1, 21, 1):
    sp.loc[:,'Close Minus ' + str(i)] = sp['Close'].shift(i)
sp20 = sp[[x for x in sp.columns if 'Close Minus' in x or x ==
'Close']].iloc[20:,]
sp20

The preceding code generates the following output:

This code gives us each day's closing price along with the prior 20 all on the same line.

This will form the basis of the X array that we will feed our model. However, before we're
ready for this, there are a few additional steps.

First, we'll reverse our columns so that time runs left to right, as follows:

sp20 = sp20.iloc[:,::-1]
sp20



Forecast the Stock Market with Machine Learning

[ 219 ]

The preceding code generates the following output:

Now, let's import our support vector machine and set our our training and test matrices and
our target vectors for each:

from sklearn.svm import SVR
clf = SVR(kernel='linear')
X_train = sp20[:-1000]
y_train = sp20['Close'].shift(-1)[:-1000]
X_test = sp20[-1000:]
y_test = sp20['Close'].shift(-1)[-1000:]

We had just a bit over 4,000 data points to work with, and choose to use the last 1,000 for
testing. Let's now fit our model and use it to test out out-of-sample data, as follows:

model = clf.fit(X_train, y_train)
preds = model.predict(X_test)

Now that we have our predictions, let's compare them to our actual data:

tf = pd.DataFrame(list(zip(y_test, preds)), columns=['Next Day Close',
'Predicted Next Close'], index=y_test.index)
tf
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The preceding code generates the following output:

Evaluating our model's performance
Let's now look at the performance of our model. We're going to buy the next day's open if
the close is predicted to be higher than the open. We'll then sell at the close that same day.

We'll next add a few extra data points to our DataFrame object to calculate our results, as
follows:

cdc = sp[['Close']].iloc[-1000:]
ndo = sp[['Open']].iloc[-1000:].shift(-1)
tf1 = pd.merge(tf, cdc, left_index=True, right_index=True)
tf2 = pd.merge(tf1, ndo, left_index=True, right_index=True)
tf2.columns = ['Next Day Close', 'Predicted Next Close', 'Current Day
Close', 'Next Day Open']
tf2
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The preceding code generates the following output:

Here we'll add the following code to get our signal and our profit and loss for the signal:

def get_signal(r):
    if r['Predicted Next Close'] > r['Next Day Open']:
        return 1
    else:
        return 0
def get_ret(r):
    if r['Signal'] == 1:
        return ((r['Next Day Close'] - r['Next Day Open'])/r['Next
        Day Open']) * 100
    else:
        return 0
tf2 = tf2.assign(Signal = tf2.apply(get_signal, axis=1))
tf2 = tf2.assign(PnL = tf2.apply(get_ret, axis=1))
tf2
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The preceding code generates the following output:

Let's now see whether we were able to successfully predict the next day's price using just
the price history. We'll start by calculating the points gained, as follows:

(tf2[tf2['Signal']==1]['Next Day Close'] - tf2[tf2['Signal']==1]['Next Day
Open']).sum()

The preceding code generates the following output:

Ouch! Not looking too hot so far. But what about the period that we tested? We never
evaluated it in isolation. How many points would our basic intraday strategy have
generated during this last 1,000 days:

(sp['Close'].iloc[-1000:] - sp['Open'].iloc[-1000:]).sum()

The preceding code generates the following output:

So, it looks as if our strategy has failed to even match the basic intraday buying strategy.
Let's get the full stats to compare the two.

First, the basic intraday strategy for the period is as follows:

get_stats((sp['Close'].iloc[-1000:] -
sp['Open'].iloc[-1000:])/sp['Open'].iloc[-1000:] * 100)
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The preceding code generates the following output:

Now, the results for our model are as follows:

get_stats(tf2['PnL'])

The preceding code generates the following output:

This looks bad. What if we modified our trading strategy? What if we only took trades that
were expected to be greater by a point or more instead of just being any amount greater
than the open. Would this help? Let's try it out. We'll re-run our strategy with a modified
signal, as follows:

def get_signal(r):
    if r['Predicted Next Close'] > r['Next Day Open'] + 1:
        return 1
    else:
        return 0
def get_ret(r):
    if r['Signal'] == 1:
        return ((r['Next Day Close'] - r['Next Day Open'])/r['Next
        Day Open']) * 100
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    else:
        return 0
tf2 = tf2.assign(Signal = tf2.apply(get_signal, axis=1))
tf2 = tf2.assign(PnL = tf2.apply(get_ret, axis=1))
(tf2[tf2['Signal']==1]['Next Day Close'] - tf2[tf2['Signal']==1]['Next Day
Open']).sum()

The preceding code generates the following output:

Now the stats are as follows:

get_stats(tf2['PnL'])

The preceding code generates the following output:

We have gone from bad to worse. It appears that if past price history suggests good things
to come, you can expect precisely the opposite. We seem to have developed a contrarian
indicator with our model. What if we explore this? Let's see what our gains would look like
if we flipped our model so that when we predict strong gains, we don't trade, but otherwise
we do, as follows:

def get_signal(r):
    if r['Predicted Next Close'] > r['Next Day Open'] + 1:
        return 0
    else:
        return 1
def get_ret(r):
    if r['Signal'] == 1:
        return ((r['Next Day Close'] - r['Next Day Open'])/r['Next
        Day Open']) * 100
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    else:
        return 0
tf2 = tf2.assign(Signal = tf2.apply(get_signal, axis=1))
tf2 = tf2.assign(PnL = tf2.apply(get_ret, axis=1))
(tf2[tf2['Signal']==1]['Next Day Close'] - tf2[tf2['Signal']==1]['Next Day
Open']).sum()

The preceding code generates the following output:

Let's get our stats:

get_stats(tf2['PnL'])

This will result in the following output:

It looks like we do have a contrarian indicator here. When our model predicts strong next
day gains, the market significantly underperforms (at least for our test period). Would this
hold true in most scenarios? Not likely. Markets tend to flip from regimes of mean reversion
to regimes of trend persistence. Let's re-run our model for a different period to test it
further:

X_train = sp20[:-2000]
y_train = sp20['Close'].shift(-1)[:-2000]
X_test = sp20[-2000:-1000]
y_test = sp20['Close'].shift(-1)[-2000:-1000]
model = clf.fit(X_train, y_train)
preds = model.predict(X_test)
tf = pd.DataFrame(list(zip(y_test, preds)), columns=['Next Day Close',
'Predicted Next Close'], index=y_test.index)
cdc = sp[['Close']].iloc[-2000:-1000]
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ndo = sp[['Open']].iloc[-2000:-1000].shift(-1)
tf1 = pd.merge(tf, cdc, left_index=True, right_index=True)
tf2 = pd.merge(tf1, ndo, left_index=True, right_index=True)
tf2.columns = ['Next Day Close', 'Predicted Next Close', 'Current Day
Close', 'Next Day Open']
def get_signal(r):
    if r['Predicted Next Close'] > r['Next Day Open'] + 1:
        return 0
    else:
        return 1
def get_ret(r):
    if r['Signal'] == 1:
        return ((r['Next Day Close'] - r['Next Day Open'])/r['Next
        Day Open']) * 100
    else:
        return 0
tf2 = tf2.assign(Signal = tf2.apply(get_signal, axis=1))
tf2 = tf2.assign(PnL = tf2.apply(get_ret, axis=1))
(tf2[tf2['Signal']==1]['Next Day Close'] - tf2[tf2['Signal']==1]['Next Day
Open']).sum()

The preceding code generates the following output:

So, we can see that our new model and testing period returned over 33 points. Let's
compare this to the intraday strategy for this same time period:

(sp['Close'].iloc[-2000:-1000] - sp['Open'].iloc[-2000:-1000]).sum()

This results in the following output:

So, it appears that our contrarian model significantly outperformed during our new testing
period as well.

At this point, there are a number of extensions that we could make to this model. We
haven't even touched on using technical indicators or the fundamental data in our model,
and we have limited our trades to one day. All of this could be tweaked and extended upon.
However, at this point, I want to introduce another model that uses a completely different
algorithm. This algorithm is called dynamic time warping. What it does is give you a
metric that represents the similarity between two time series.
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Modeling with Dynamic Time Warping
To get started, we'll need to pip install the fastdtw library from the command line using pip
install fastdtw.

Once this is done, we'll import the additional libraries that we'll need, as follows:

from scipy.spatial.distance import euclidean
from fastdtw import fastdtw

Next, we'll create the function that will take in two series and return the distance between
them:

def dtw_dist(x, y):
    distance, path = fastdtw(x, y, dist=euclidean)
    return distance

Now, we'll split our 16 years of time series data into distinct five day periods. We'll pair
together each period with one additional point. This will serve to create our x and y data, as
follows:

tseries = []
tlen = 5
for i in range(tlen, len(sp), tlen):
    pctc = sp['Close'].iloc[i-tlen:i].pct_change()[1:].values * 100
    res = sp['Close'].iloc[i-tlen:i+1].pct_change()[-1] * 100
    tseries.append((pctc, res))

We can take a look at our first series to get an idea of what the data looks like:

tseries[0]

The preceding code generates the following output:

Now that we have each series, we can run them through our algorithm to get the distance
metric for each series against every other series:

dist_pairs = []
for i in range(len(tseries)):
    for j in range(len(tseries)):
        dist = dtw_dist(tseries[i][0], tseries[j][0])
        dist_pairs.append((i,j,dist,tseries[i][1], tseries[j][1]))
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Once we have this, we can place it into a DataFrame object. We'll drop series that have zero
distance as they represent the same series. We'll also sort by the date of the series and look
only at the ones where the first series is chronologically before the second:

dist_frame = pd.DataFrame(dist_pairs, columns=['A','B','Dist', 'A Ret', 'B
Ret'])
sf =
dist_frame[dist_frame['Dist']>0].sort_values(['A','B']).reset_index(drop=1)
sfe = sf[sf['A']<sf['B']]

Finally, we'll limit our trades to where the distance is less than 1 and the first series has a
positive return:

winf = sfe[(sfe['Dist']<=1)&(sfe['A Ret']>0)]
winf

The preceding code generates the following output:

Let's see what one of our top patterns looks like when plotted:

plt.plot(np.arange(4), tseries[6][0])
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The preceding code generates the following output:

Now, we'll plot the second one:

plt.plot(np.arange(4), tseries[598][0])

The preceding code will generate the following output:

As we can see, the curves are nearly identical, which is exactly what we want. We're going
to try to find all of the curves that have positive next-day gains. Then, once we have a curve
that is highly similar to one of these profitable curves, we'll buy it in anticipation of another
gain.
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Let's now construct a function to evaluate our trades. We'll buy the similar curves unless
they fail to return a positive result. If this happens, we'll eliminate them:

excluded = {}
return_list = []
def get_returns(r):
    if excluded.get(r['A']) is None:
        return_list.append(r['B Ret'])
        if r['B Ret'] < 0:
            excluded.update({r['A']:1})
winf.apply(get_returns, axis=1);

Now that we have all the returns from our trades stored in return_list, let's evaluate the
results:

get_stats(pd.Series(return_list))

The preceding code generates the following output:

These results are by far the best that we've seen. The win/loss ratio and the mean are far
above our other models. It appears that we may be on to something with this new model,
especially compared to the others that we've seen.

At this point, to further vet our model, we should explore its robustness by examining other
time periods for our matches. Does extending beyond the four days improve the model?
Should we always exclude the patterns that generate a loss? There are many additional
questions we could explore at this point, but I'll leave it as an exercise for the reader. If you
do utilize these techniques, know that we have just scratched the surface, and that far more
testing is required over additional windows to appropriately test these models.
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Summary
In this chapter, we took a look at the stock market. We learned how to formulate a trading
strategy using machine learning. We built the first strategy using a support vector
regression and the second using dynamic time warping.

There is no doubt that the material of this chapter could fill a book in itself. Many of the
most important components of a trading strategy, we didn't even cover. These include
portfolio construction, risk mitigation, and money management. These are fundamental to
any real strategy—arguably more important than trade signals.

Hopefully, this will serve as a jumping point for your own explorations. However, again I
caution you that “beating the market” is a nearly impossible game. It is one in which you
are competing against the brightest minds in the world. If you do decide to try, I wish you
the best of luck. Just remember that I warned you if it doesn't turn out like you hoped!

In the next chapter we will examine how to build an image similarity engine.



8
Build an Image Similarity

Engine
So far in our journey, we have worked exclusively with numbers and text. In this chapter,
we'll jump into the world of images. While this might seem to require some next-level
wizardry, I can assure you that transforming images into a machine-readable format is just
as simple as transforming text is.

We'll start out simply with what is arguably the “hello world” of image-based machine
learning: digit recognition. By the end of the chapter, however, we will have constructed an
advanced, image-based deep learning application. To what noble end will we build this
highly advanced application? Why finding our spirit animal, of course!

We'll also spend a fair amount of time covering deep learning algorithms to understand
why they are so important and why there is so much hype surrounding them.

We'll cover the following topics in this chapter:

Machine learning on images
Working with images
Finding similar images
Understanding deep learning
Building an image similarity engine
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Machine learning on images
While the applications of machine learning for text and numerical data tend to be the most
discussed, there are similarly a large number of applications for images. Many of these tend
to be in areas of cutting-edge research with profound implications.

We are quite accustomed today to running a Google search to find some odd snippet of text
from a news story that we read three weeks ago and having the first result be just what we
wanted. Now, imagine if we could do the same thing for pictures, movies, and GIFs. For
example, let's say you saw a GIF six months ago that is perfectly apropos for your current
Slack conversation, but all you can remember is that it involved a llama and a man trying to
feed him. Right now, you'd have a tough time locating it because most image searches
involve hashtags and the text surrounding the image. Over the last few years, however,
companies such as Google have made amazing progress in having machines label the
contents of images. When this research is fully released and out “in the wild,” it will
radically transform how we search for images.

In this blog post from Google Research (h t t p : / / g o o g l e r e s e a r c h . b l o g s p o t . c o m / 2 0 1 4 /
1 1 / a - p i c t u r e - i s - w o r t h - t h o u s a n d - c o h e r e n t . h t m l), they describe their progress
toward this goal and explain some of the technical challenges in accomplishing it. For
example, in the following image, we see two pizzas on top of a stove:

Image from https://research.googleblog.com/2014/11/a-picture-is-worth-thousand-coherent.html

http://googleresearch.blogspot.com/2014/11/a-picture-is-worth-thousand-coherent.html
http://googleresearch.blogspot.com/2014/11/a-picture-is-worth-thousand-coherent.html
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In order to label the image as such requires not just an understanding of each of the objects,
but their relationship to one another. And even then, the label needs to match up with a
natural-sounding phrase—one that would likely match a human's description. For example,
even though it is technically correct, a person would never label it “an oven under a pizza
next to a pizza”.

Another application of machine learning for images is facial recognition. You may have
seen the recent news stories discussing Facebook's DeepFace technology. It was reported
that this application was so advanced, it could actually recognize a person even if the image
was of back of their head—and it did this with near-perfect accuracy.

While this may seem to have frightening implications for society at large, for Facebook, this
is invaluable technology. Once a person has been tagged in a single photo, no additional
tagging is needed—all future photos tagging takes place automatically.

It should be noted how difficult a task this is. Changes to a person's hair, clothing, age—not
to mention the varying photo angles and lighting in each photo—make this an
extraordinarily challenging task, even for people. In fact, just as computers have begun to
surpassing people on games such as Go, they are also beginning to best us on these types of
recognition tasks as well.

This new level of machine mastery comes from a relatively new class of algorithms that fall
under the umbrella term “Deep Learning“. We'll explore deep learning in depth later in
this chapter in order to understand how it differs from other algorithms and why it's so
successful. For now, however, we will start at the beginning; we'll take a look at the basics
of how to work with images.

Working with images
When we first introduced natural language processing, we learned that we would need to
perform some sort of transformation in order to represent the words numerically. We did
this by creating a term-document matrix. Now that we're dealing with pictures, we'll need
to perform another sort of transformation to render the images in a numeric form.
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Let's take a look at an image of a few handwritten digits:

These particular digits are taken from the MNIST database of handwritten digits. (Yes, this
really is a thing.) This database contains tens of thousands digits like this collected from the
handwriting samples of US Census Bureau employees and high school students.

Let's suppose now that we wanted to use machine learning to recognize these digits. How
might we represent them numerically from the data that we have?

One way might be to map each pixel in our image to a value in a numeric matrix of the
same size. We could then represent some property of that pixel as a value in our matrix. In
fact, this is exactly how it's done.

Each digit image is scaled and centered to a given canvas size (28×28 or 64×64 pixels), and
then the color intensity of each pixel is represented as a value between 0 and 1 in our matrix
where 1 is pure black and 0 is pure white. This procedure is known as gray scaling.

With this simple method, we turn a real world “thing” into a numerical representation that
can utilized in our machine learning algorithms.

Let's now take a look at a sample of this. We'll load the MNIST database available within
scikit-learn:

from sklearn import datasets
import matplotlib.pyplot as plt
import numpy as np
%matplotlib inline
digits = datasets.load_digits()
def display_img(img_no):
    fig, ax = plt.subplots()
    ax.set_xticklabels([])
    ax.set_yticklabels([])
    ax.matshow(digits.images[img_no], cmap = plt.cm.binary);
display_img(0)
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The preceding code generates the following output:

In the preceding code, we loaded the necessary packages, followed by the digits dataset,
and finally, we displayed the first digit using matplotlib. This is a crude representation
because it is scaled to 8×8, or 64 total pixels. The actual matrix representation can be seen by
running the following command:

digits.images[0]

The preceding code generates the following output:

These particular digits are scaled between 0 and 16, but we can see how they relate to the
color intensity in the image at the level of each pixel. If we were to apply this in our
algorithm, we would need to flatten the 8×8 matrix into a single vector of length 64. We can
see this as follows:

digits.data[0].shape

The preceding code generates the following output:

This then will become a row—our feature vector—in our training set. We can also see the
associated label for our data with the following command:

digits.target[0]
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The preceding code generates the following output:

We now have everything we need to feed this image data into our algorithms.

So far we have only discussed how we would work with black and white images, but not
surprisingly, working with color is just as simple. Each pixel can be represented using three
features, one for each RGB value. Alternatively, the mean of three RGB values could be
used if retaining a single feature was preferred.

Now that we have transformed our images into a representation we can work with, let's
take a look at which algorithms we might want to use.

Finding similar images
Typically, the MNIST database of digits is used in classification tasks, that is, given the
handwritten digit, find its target label. We'll be using it in a different manner here. For a
given image, we'll attempt to find the image in the set that is the most similar to it. This is
an unsupervised task as opposed to a supervised task since we won't be making use of the
labels.

We'll start with an algorithm that we introduced earlier in the book when we dealt with
text-based features. That algorithm is cosine similarity. Recall that this algorithm computes
a unit-vector for each row of our X matrix. The dot product of each against every other is
then taken, which gives us the cosine angle between each vector. The end result is that we
have a single metric that tells us how “close” two images are. Let's take a look now.

First, we'll import the libraries that we'll need:

import pandas as pd
from sklearn.metrics.pairwise import cosine_similarity

Then, we'll compute the similarity between the first image—our zero—and all other images:

X = digits.data
co_sim = cosine_similarity(X[0].reshape(1,-1), X)

As we are inputting a 1D array, scikit-learn will require that we reshape the array in the
latest versions.
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Finally, we'll put the results in a pandas DataFrame object and take a look at our results:

cosf = pd.DataFrame(co_sim).T
cosf.columns = ['similarity']
cosf.sort_values('similarity', ascending=False)

This will result in the following output:

We can see the first row is a 1—perfect similarity—because this is our original image. Below
this are all the other images sorted by the order of similarity. Let's take a look now at image
number 877. We'll display it using the function that we created earlier:

display_img(877)

This results in the following output:
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We can see that this image is also a zero, showing us that we are on the right track. Let's
take a look at image number 0 side-by-side with image number 877.

We can see that these two zeroes are remarkably similar. I would wager that they were
created by the same person, in fact.

Now, let's have a bit of fun with this. What might we expect is the opposite of a zero? Let's
find out. The least similar image is number 1626:

display_img(1626)

This results in the following output:

Shockingly, we just confirmed binary coding. The opposite of a 1 is, in fact, a 0. Huzzah!
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Let's now take a look at another algorithm that we frequently used in image-based machine
learning applications. It is called the chi-squared kernel, and like just like cosine similarity,
it will give us a scalar value that tells us the similarity of two vectors:

Let's look at how the chi-squared kernel similarity compares to the cosine similarity that we
ran earlier:

from sklearn.metrics.pairwise import chi2_kernel
k_sim = chi2_kernel(X[0].reshape(1,-1), X)
kf = pd.DataFrame(k_sim).T
kf.columns = ['similarity']
kf.sort_values('similarity', ascending=False)

The preceding code generates the following output:
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While the order is somewhat different from the results of cosine similarity, most of the same
values are present in the top values listed.

Let's take a look at the most similar image from the chi-squared kernel:

display_img(1167)

This will result in the following output:

Again, we have a zero that is remarkably similar to our original image.

Why choose one of these (cosine similarity versus chi-squared kernel) over the other? While
you can use either and get similar results—as we've seen—cosine similarity has proven to
be the preferred choice for natural language processing work, while chi-squared kernels are
the go-to choice for image-based tasks.

At this point, it makes sense to wonder how we can possibly get from tiny black and white
boxes containing a single digit to figuring out if an image is of a pizza, or a monkey, or a
motorcycle. There just doesn't seem to be enough information to discern this from what
we've done so far. And, in fact, this is absolutely true.
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Just as we would have a nearly impossible time discerning Moby Dick from Pride and
Prejudice using only counts of letters, we need to add another layer of abstraction. With
text, this means using words and combinations of words, and with visual information,
analogously, we use clusters of pixels. These clusters of pixels form what is called a visual
vocabulary, and this method is known as bag of visual words. The terminology was chosen
because in the same way the text bag of words disregards word order, bag of visual words
ignores the spatial order of its visual vocabulary.

At this point, to further illustrate the bag of visual words process, let's walk through the
concept at a higher level. Since the origin of bag of visual words comes from texture
recognition, we'll use the following example:

Julesz, 1981; Cula & Dana, 2001; Leung & Malik 2001; Mori, Belongie & Malik, 2001; Schmid 2001; Varma & Zisserman, 2002, 2003; Lazebnik, Schmid &
Ponce, 2003

Here, we have three different textures. Each comprises a repeating series of textural units
called textrons. These form the basis of our visual vocabulary:
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Each sample can then be represented as a histogram over these features, as shown in the
following figure:

As we can see, the analogy holds closely to that of a bag of words where each document is a
histogram over words.

Now, at this point, I should point out that this description is primarily conceptual. There is
far more involved in the actual implementation of bag of visual words. The full details are
beyond the scope of the book, but some of the work includes selecting points of interest for
use as the visual vocabulary and transformations that normalize and make the features
scale invariant.

Once the preprocessing is done, just as in text processing, a similarity matrix is computed
and the data is fed into the algorithm for classification. Again, like text processing, this is
typically an SVM.
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Understanding deep learning
While bag of visual words methods have impressive performance, recently, newer methods
utilizing what is termed Deep Learning have arisen. Deep learning has brought new life
into the field of artificial intelligence as it continues to trounce benchmark after benchmark.
We will use deep learning later in this chapter for our image similarity engine, but first,
we'll walk through what exactly deep learning is and why it is such an important
breakthrough.

Deep learning has its roots in algorithms that have been around for decades. These
algorithms, called perceptrons, are modeled on the the neurons in the brain.

At some point in your biology classes, you most likely learned about how neurons work.
The basics are the following:

Each neuron is connected to a network of other neurons.
When a neuron fires, it sends signals to the neurons that it is connected to.
The neurons that receive this signal then either fire themselves or do not, based
upon some established threshold requirement for activation.

This is the basis for the perception model as can be seen in the following figure:

We can think of the neuron as an individual decision-making unit. Let's suppose the task of
the neuron is to determine whether or not we should accept a new job offer. In this scenario,
our relevant inputs may be the location, the pay, our impression of our future manager, and
the office. In this case, we have a binary decision: 1, accept the job, or 0, do not. Each of
these inputs help us determine whether to take the job or not, but, clearly, they are not all
equally influential. For example, if the office is a 10/10 but the pay is a 2/10, chances are we
won't accept the offer. On the other hand, if the office is a 2/10 but the pay is a 10/10, we will
likely accept it. Pay, therefore, is more important in the decision-making process than the
look of the office. In the language of perceptrons, we would say the pay input has a higher
weight. Taking together all of our inputs—our x's—modified by their weights—our
w's—we come to a value that then either triggers our function or not.
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Mathematically, we have the following:

So far, we have discussed the perceptron as as a decision unit, but we have not yet
discussed how learning takes place.

To understand learning, let's try to learn a few decision rules with our perceptron.

The first rule that we'd like to learn is called an AND function. The AND function works
like this: we have two inputs, and when both are positive, we'd like our function to output a
1. If one input is negative, or both are negative, we'd like it to output a 0. We'll set our
weights to random numbers between 1 and 0.

Let's now begin our learning process. Our X1 input is equal to 1 and our X2 input is equal
to -1. W1 is randomly set to 0.8, and W2 is randomly set to 0.2. As both must be positive for
our output to be 1, then our threshold is any value greater than 1.

Therefore, we have W1*X1 + W2*X2 as 1 * 0.8 + -1 * 0.4 = 0.8 – 0.4 = 0.4. Now, since we expect
our output to be 0, we can say that we have an error of 0.4. We will now attempt to improve
our model by pushing these errors back down to the inputs in order to update the weights.
To do this, we will evaluate each in turn using the following formula:

Here, wi is the weight of the ith input, t is the target outcome, and o is the actual outcome.
Here, our target outcome is 0, and our actual outcome is 0.4. Ignore the n term for now. This
is the learning rate. It determines how large or small our updates should be. For now, we
will assume it is set to 1.

Let's look at X1 to update its weight. Therefore, we have 1 * (0 – 0.4) * 1, which equals -0.4.
That is our w delta; therefore, updating equation 1, we have 0.8 – 0.4, which gives us our
new weight for W1 as 0.4. Therefore, the weight for X1 has come down. What about the
weight for X2?
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Let's take a look. That one is 1 * (0 – 0.4) * -1, which equals 0.4. Updating the weight, we
have 0.2 + 0.4 = 0.6. Therefore, as we can see, the weights are approaching parity, which is
exactly as we would expect. If we were to continue to run this, given a small enough
learning rate, the model would converge, and we would have learned our AND function.

Though this model seems almost absurdly simple—and make no mistake, it has glaring
limitations (such as the inability to learn XOR functions)—it is the basic building block of of
today's deep learning frameworks. Innovations to this model were gradually applied that
improved its ability to learn increasingly complex representations, innovations such as
incorporating sigmoid functions in place of step functions, stacking neurons to form layered
networks, and better methods to allocate errors down through lower layers.

Taken together, these updates made it possible to learn not only nonlinear representations
are necessary to learn an XOR function, but essentially any pattern. By stacking the layers of
neurons—one's output feeding in as another's input—each higher level is able to detect
increasingly complicated representations of the data.

In the following image we see this process for a facial recognition task:

http://www.andrewng.org

From left to right in the preceding images, we can trace the increasing complexity of the
representations that occur in each hidden layer of a deep learning network.
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In the following diagram, we see a network with just 1 hidden layer, but having many
hidden layers is common practice and the origin of the term deep in deep learning.

We can think of this as being like the parable of the blind men and the elephant:

“The blind man who feels a leg says the elephant is like a pillar; the one who feels the tail
says the elephant is like a rope; the one who feels the trunk says the elephant is like a tree
branch; the one who feels the ear says the elephant is like a hand fan; the one who feels the
belly says the elephant is like a wall; and the one who feels the tusk says the elephant is like
a solid pipe”

-Wikipedia

No single individual has access to the entire picture, so they cannot properly say what they
are evaluating in isolation. But, seeing that same collection of attributes together again and
again and being told it is an elephant, we can be confident that the next time we have a
pillar + rope + tree branch + hand fan + wall + pipe combination that is likely an elephant.

Now that we have a better understanding of what deep learning is, we will move on to
creating an application using deep learning.

Building an image similarity engine
If you made it this far through the chapter, you're now in for a treat. We will harness the
power of the greatest advances in artificial intelligence to do something truly important. We
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will find your spirit animal. Well, not exactly. We will use it to find the cat you most look
like in the CIFAR-10 image dataset. The Cifa-whut? The CIFAR-10 dataset is a set of images
used as a standard in computer vision research. It includes tens of thousands of images in
10 classes, things such as dogs and frogs and airplanes and automobiles. Most importantly
for us, however, this includes cats.

Now, one thing to understand about deep learning is that of all the algorithms that we
discussed, it tends to be the most powerful, but also the least friendly for the “home-
gamers”. By this, I mean this tends to require more training time and more computational
horsepower to run than other algorithms. In fact, this is one of the reasons neural
architectures were not adopted sooner. Only with the advent of cheap GPUs, or graphical
processing units, did it become a workable option for researchers.

Due to this, we will take two big measures to reduce processing time for our models.

The first measure is to utilize GraphLab Create. Create is a popular framework for large-
scale machine learning. This provides a nice API that is a bit like the steroid-fed love child
of pandas and scikit-learn. Typically, it is used as a paid service—it requires a licence,
but this is offered free of charge for academic use, which appears to include Bootcamps and
Massive Open Online Courses (MOOCs) such as Coursera. Make sure to check the site for
details.

Graphlab installation is straightforward. Details can be found at h t t p s : / / d a t o . c o m / d o w n
l o a d / i n s t a l l - g r a p h l a b - c r e a t e - c o m m a n d - l i n e . h t m l. Essentially, it just requires
filling in a form to get a license and then copying and pasting the pip command they
provide.

Note that you will have to use Python 2.7. Python 3 is not supported at
this time.

The next measure that we will use to speed along processing time is to use something called
transfer learning. The idea behind transfer learning is to harness the power of massive,
highly trained, deep learning networks, which are targeted to a very specific task. We then
lop off the final layers of these networks in order to use the lower levels as our features for a
task that they have not been trained on. Remember the lower levels have much less
specificity in terms of aggregate representation of the item. In the world of digit recognition,
the lower levels may be about representing loopy-ness or straightness, while the higher
levels would be more about 0 or 1-ness, and in the world of elephant recognition, they are
more about hand fan-iness and tree branch-iness. In transfer learning, we can extract those
lower-level features in order to apply them to new domains—ones that they weren't
specifically trained on.

https://dato.com/download/install-graphlab-create-command-line.html
https://dato.com/download/install-graphlab-create-command-line.html


Build an Image Similarity Engine

[ 249 ]

A lot of information in this section draws on the Coursera course on
machine learning foundations available at h t t p s : / / w w w . c o u r s e r a . o r g
/ l e a r n / m l - f o u n d a t i o n s. I highly recommend it if you are interested in
going deeper into this material.

With that let's begin our coding. Our spirit animal awaits.

We'll begin with our imports:

import graphlab
graphlab.canvas.set_target('ipynb')

Next, we'll load the set of images that we'll be use from the CIFAR-10 dataset:

gl_img =
graphlab.SFrame('http://s3.amazonaws.com/dato-datasets/coursera/deep_learni
ng/image_train_data')
gl_img

This will result in the following output:

You will notice several columns of identifying information, such as the id and the label, but
you will also notice the column labelled “deep features“. These are the features that were
extracted from a large, trained deep learning network. We'll explain how we can use them
in a bit. For now, let's keep moving.

We can take a look at the images with the following line of code:

gl_img['image'][0:5].show()

https://www.coursera.org/learn/ml-foundations
https://www.coursera.org/learn/ml-foundations
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This results in the following output:

The images are exceedingly small, unfortunately, but you can resize them to be a bit more
visible:

graphlab.image_analysis.resize(gl_img['image'][2:3], 96,96).show()

This will result in the following output:

Now that we have all of the images we'll need for making comparisons loaded, we'll just
need to load in our own image. I will load in one of my own that should be appropriate to
this task. However, naturally, you'll need to load your own in that spot:

img = graphlab.Image('/Users/alexcombs/Downloads/profile_pic.jpg')
ppsf = graphlab.SArray([img])
ppsf = graphlab.image_analysis.resize(ppsf, 32,32)
ppsf.show()
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This results in the following output:

Next, we need to get that image into the frame that contains our previously-trained images.
However, to do this, we'll need to extract its features. Let's do this now:

ppsf = graphlab.SFrame(ppsf).rename({'X1': 'image'})
ppsf

The preceding code generates the following output:

And now, we'll extract the images deep features:

ppsf['deep_features'] = deep_learning_model.extract_features(ppsf)
ppsf

The preceding code generates the following output:
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At this point, we just need a few final touches to get our image on par with the comparison
images:

ppsf['label'] = 'me'
gl_img['id'].max()

The preceding code generates the following output:

We see that the max ID in the frame is 49,970. We will give my picture a value of 50,000
just to be easy to remember if necessary:

ppsf['id'] = 50000
ppsf

The preceding code generates the following output:

Almost there; now we'll just join everything together using these columns:

labels = ['id', 'image', 'label', 'deep_features']
part_train = gl_img[labels]
new_train = part_train.append(ppsf[labels])
new_train.tail()
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This will result in the following output:

Okay, we now have one big frame with all our images, and their deep features represented
as a vector. At this point, we can use a very simple model to find the most similar image.

We'll use k-nearest neighbors model first to compare one random cat to the others in the set
just to get a feel for the success of our model:

knn_model =
graphlab.nearest_neighbors.create(new_train,features=['deep_features'],
label='id')

The preceding code generates the following output:

Let's get our test kitten:

cat_test = new_train[-2:-1]
graphlab.image_analysis.resize(cat_test['image'], 96,96).show()
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This results in the following output:

Therefore, this adorable pixelated little monster is our test subject. Let's find his
doppelgangers:

sim_frame = knn_model.query(cat_test)
sim_frame

The preceding code generates the following output:
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Now, finally, let's look at our kitty matches:

def reveal_my_twin(x):
    return gl_img.filter_by(x['reference_label'],'id')
spirit_animal = reveal_my_twin(knn_model.query(cat_test))
spirit_animal['image'].show()

This will result in the following output:

There we have it. Every image is a cat, and I'd say they look like our target kitty.

Let's run it once again on another kitten. I'll leave out the coding and just show you our
target cat and his matches.

First, our target:

And now his matches:
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That's image number 145, and I'd have to give the matches decent marks. Now, however,
on to the moment that we've all been waiting for. Let's reveal my animal twin:

me_test = new_train[-1:]
graphlab.image_analysis.resize(me_test['image'], 96,96).show()

This results in the following output:

Now, we'll run a search for my nearest match:

sim_frame = knn_model.query(me_test)
sim_frame

The preceding code generates the following output:
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Now, we load the result:

graphlab.image_analysis.resize(spirit_animal['image'][0:1], 96,96).show()

This results in the following output:

I'll take it. I'm thinking it's the all about the hat, but I will definitely accept him as my spirit
animal.

Summary
In this chapter, we had a grand tour of the highlights of machine learning for computer-
vision applications. We discussed a number of techniques used in the field and how to
create a working application using a number of these techniques. We also discussed the
principles of deep learning and how it can be applied for both feature extraction and
classification. Most importantly, however, you now have a scientifically sound
methodology for finding your spirit animal. This alone was surely worth the price of the
book.

In the next chapter, we'll take a look at how to create a chatbot application.



9
Build a Chatbot

For nearly as long as we have had computers, we have imagined a time when we would be
able to converse with them. As it played out in the movies, these machines would be hyper-
intelligent agents. Beyond just being able to hold a conversation, these bots would be able to
examine our emotions and to even contradict our orders when necessary such as in the film
2001: A Space Odyssey.

Eleven years after that movie was to have taken place, Apple introduced Siri to the world
with the release of the iPhone 4S. For anyone who has used Siri, it is clear that we have a
long way to go before we face anything comparable to the intelligence displayed by the
HAL 9000 unit in the film. But despite the clunkiness that these agents—or chatbots—have
demonstrated in the recent past, the field is rapidly advancing.

In this chapter, we are going to learn how to construct a chatbot from scratch. Along the
way, we'll learn more about the history of the field and its future prospects.

We'll cover the following topics in this chapter:

The Turing test
The history of chatbots
The design of chatbots
Building a chatbot

The Turing test
In 1950, Alan Turing posed the question, “Can machines think?” in one of his more famous
papers. Being the practical genius that he was, he decided not to tackle this question head
on, but rather to pose it in the framework of the “problem of other minds”. This problem
poses the question, “How do we truly know that other people have minds like our own?”.
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As we can only observe their behavior—and not the inner workings of their mind, we must
take it on faith that they are like us. Turing proposed that if a machine behaved as if it was
intelligent, then in fact, we should view it as such. This, in a nutshell, is the Turing test.
Passing this test means convincing humans that a machine is a fellow human.

You may wonder at this point whether a program ever passed the Turing test successfully.
The answer is that there really is no official Turing test. The closest thing to an official event
is the Loebner Prize. This is a contest held annually that awards modest prizes to chatbots
that appear to be the most convincingly human to a panel of judges. If this sounds rigorous
and academic, it has been described as anything but. Loebner's sponsorship for the contest
is said to have been a product of his total disdain for labor of any kind.

Hopefully, by this point, you realized that any claims about “passing the Turing test” are
more spectacle than actual science. Despite this, however, Turing's original concept is a
useful construct.

The history of chatbots
I still remember the day my father sat me down in front of his IBM XT with its black and
green flickering monitor and asked me to talk to “it”. The conversation went something like
the following:

>Hello? How are you feeling today?

>Hi. Who is this?

>Hi there… how are you today?

>I'm fine. You didn't tell me who you are.

>We should be discussing you, not me.

>We should? Why?

>Let's change focus a bit… Tell me about your family.

>You are impossible to have a conversation with.

>Can you elaborate on that?

>You are killing me.

>Perhaps you would like me to be killing you.
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>Ok, you are freaking me out.

>Perhaps you're really talking about yourself?

>What?? That makes no sense.

>How would an answer to that help you?

>END

>Very Interesting.

>QUIT

>Thank you for talking with me.

>#$###$#@@….

The “it” that I talked to was a program called ELIZA. Written in the mid-1960s at MIT's
Artificial Intelligence Lab by Joseph Weizenbaum, ELIZA was created to mimic the
responses of a Rogerian psychotherapist. Though nearly comical when examined in any
depth, the program was capable of convincing some users that they were chatting with an
actual human. This was a remarkable feat considering it was a scant 200 lines of code that
used randomization and regular expressions to parrot back responses. Even today, this
simple program remains a staple of popular culture. If you ask Siri who ELIZA is, she will
tell you she is a friend and brilliant psychiatrist.

If ELIZA was an early example of chatbots, what have we seen after this? In recent years,
there has been an explosion of new chatbots; most notable of these is Cleverbot.

Cleverbot was released to the world via the web in 1997. Since then, this bot has racked up
hundreds of millions of conversions. Unlike early chatbots, Cleverbot (as the name
suggests) appears to become more intelligent with each conversion. Though the exact
details of the workings of the algorithm are difficult to find, it is said to work by recording
all conversations in a database and finding the most appropriate response by identifying
the most similar questions and responses in the database.

I made up a nonsensical question in the following screenshot, and you can see that it found
something similar to the object of my question in terms of a string match.
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I persisted:

Again I got something…similar?

You'll also notice that topics can persist across the conversation. In response to my answer, I
was asked to go into more detail and justify my answer. This is one of the things that
appears to make Cleverbot, well, clever.

While chatbots that learn from humans can be quite amusing, they can also have a darker
side.

Just this past year, Microsoft released a chatbot named Tay on Twitter. People were invited
to ask questions of Tay, and Tay would respond in accordance with her “personality”.
Microsoft had apparently programmed the bot to appear to be 19-year-old American girl.
She was intended to be your virtual “bestie”; the only problem was she started sounding
like she would rather hang with the Nazi youth than you.
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As a result of a series of unbelievably inflammatory tweets, Microsoft was forced to pull
Tay off Twitter and issue an apology:

“As many of you know by now, on Wednesday we launched a chatbot called Tay. We are
deeply sorry for the unintended offensive and hurtful tweets from Tay, which do not
represent who we are or what we stand for, nor how we designed Tay. Tay is now offline
and we'll look to bring Tay back only when we are confident we can better anticipate
malicious intent that conflicts with our principles and values.”

-March 25, 2016 Official Microsoft Blog

Clearly, brands that want to release chatbots into the wild in the future should take a lesson
from this debacle.

There is no doubt that brands are embracing chatbots. Everyone from Facebook to Taco Bell
is getting in on the game.

Witness the TacoBot:

Yes, this is a real thing, and despite the stumbles such as Tay, there is a good chance the
future of UI looks a lot like TacoBot. One last example might even help explain why.

Quartz recently launched an app that turns news into a conversation. Rather than lay out
the day's stories as a flat list, you are engaged in a chat as if you were getting news from a
friend.



Build a Chatbot

[ 263 ]

David Gasca, a PM at Twitter, describes his experience using the app in a post on Medium.
He describes how the conversational nature invoked feelings that were normally only
triggered in human relationships. This is his take on how he felt when he encountered an ad
in the app:

“Unlike a simple display ad, in a conversational relationship with my app, I feel like I owe
something to it: I want to click. At the most subconscious level, I feel the need to
reciprocate and not let the app down: The app has given me this content. It's been very nice
so far and I enjoyed the GIFs. I should probably click since it's asking nicely.”
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If this experience is universal—and I expect that it is—this could be the next big thing in
advertising, and have no doubt that advertising profits will drive UI design:

“The more the bot acts like a human, the more it will be treated like a human.”

-Mat Webb, technologist and co-author of Mind Hacks

At this point, you are probably dying to know how these things work, so let's get on with it!

The design of chatbots
The original ELIZA application was two-hundred odd lines of code. The Python NLTK
implementation is similarly short. An excerpt can be seen at the following link from NLTK's
website (h t t p : / / w w w . n l t k . o r g / _ m o d u l e s / n l t k / c h a t / e l i z a . h t m l). I have also
reproduced an except below:

      # Natural Language Toolkit: Eliza
      #
      # Copyright (C) 2001-2016 NLTK Project
      # Authors: Steven Bird <stevenbird1@gmail.com>
      # Edward Loper <edloper@gmail.com>
      # URL: <http://nltk.org/>
      # For license information, see LICENSE.TXT
      # Based on an Eliza implementation by Joe Strout
        <joe@strout.net>,
      # Jeff Epler <jepler@inetnebr.com> and Jez Higgins
        <mailto:jez@jezuk.co.uk>.
      # a translation table used to convert things you say into
        things the
      # computer says back, e.g. "I am" --> "you are"
from __future__ import print_function
from nltk.chat.util import Chat, reflections

     # a table of response pairs, where each pair consists of a
     # regular expression, and a list of possible responses,
     # with group-macros labelled as %1, %2.
    pairs = ((r'I need (.*)',("Why do you need %1?", "Would it
              really help you to get %1?","Are you sure you need
              %1?")),(r'Why don't you (.*)',
            ("Do you really think I don't %1?","Perhaps eventually
             I will %1.","Do you really want me to %1?")),
    [snip](r'(.*)\?',("Why do you ask that?", "Please consider
           whether you can answer your own question.",
           "Perhaps the answer lies within yourself?",
           "Why don't you tell me?")),

http://www.nltk.org/_modules/nltk/chat/eliza.html
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    (r'quit',("Thank you for talking with me.","Good-bye.",
    "Thank you, that will be $150.  Have a good day!")),
    (r'(.*)',("Please tell me more.","Let's change focus a bit...
              Tell me about your family.","Can you elaborate on
              that?","Why do you say that %1?","I see.",
              "Very interesting.","%1.","I see.  And what does that
               tell you?","How does that make you feel?",
              "How do you feel when you say that?"))
    )
    eliza_chatbot = Chat(pairs, reflections)
    def eliza_chat():
        print("Therapist\n---------")
        print("Talk to the program by typing in plain English,
              using normal upper-")
        print('and lower-case letters and punctuation. Enter "quit"
              when done.')
        print('='*72)
        print("Hello.  How are you feeling today?")
    eliza_chatbot.converse()
    def demo():
        eliza_chat()
    if __name__ == "__main__":
        demo()

As you can see from this code, input text was parsed and then matched against a series of
regular expressions. Once the input was matched, a randomized response (that sometimes
echoed back a portion of the input) was returned. So, something such as I need a taco would
trigger a response of Would it really help you to get a taco? Obviously, the answer is yes, and
fortunately, we have advanced to the point that technology can provide one to you (bless
you, TacoBot), but this was still in the early days. Shockingly, some people did actually
believe ELIZA was a real human.

However, what about more advanced bots? How are they constructed?

Surprisingly, most of the chatbots that you're likely to encounter don't use machine
learning; they use what's known as retrieval-based models. This means responses are
predefined according to the question and the context. The most common architecture for
these bots is something called Artificial Intelligence Markup Language (AIML). AIML is
an XML-based schema to represent how the bot should interact to the user's input. It's really
just a more advanced version of how ELIZA works.

Let's take a look at how responses are generated using AIML. First, all inputs are
preprocessed to normalize them. This means when you input “Waaazzup???”, it is mapped
to “WHAT IS UP”. This preprocessing step funnels down the myriad ways of saying the
same thing into one input that can run against a single rule. Punctuation and other
extraneous inputs are removed as well at this point. Once this is complete, the input is
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matched against the appropriate rule. The following is a sample template:

<category>
  <pattern>WHAT IS UP</pattern>
  <template>The sky, duh. Pfft. Humans...</template>
</category>

This is the basic setup, but you can also layer in wildcards, randomization, and
prioritization schemes. For example, the following pattern uses wildcard matching:

<category>
  <pattern>* FOR ME<pattern>
  <template>I'm a bot. I don't <star/>. Ever.</template>
</category>

Here, the * wildcard matches one or more words before FOR ME and then repeats these
back in the output template. If the user were to type in Dance for me!, the response
would be, I'm a bot. I don't dance. Ever.

As you can see, these rules don't make for anything that approximates any type of real
intelligence, but there are a few tricks that strengthen the illusion. One of the better ones is
the ability to generate responses conditioned to a topic.

For example, here is a rule that invokes a topic:

<category>
  <pattern>I LIKE TURTLES</pattern>
  <template>I feel like this whole <set name="topic">turle</set>
    thing could be a problem. What do you like about them?
  </template>
</category>

Once the topic is set, then the rules specific to that context can be matched:

<topic name="turtles">

  <category>
    <pattern>* SHELL IS *</pattern>
    <template>I dislike turtles primarily because of their shells.
      What other creepy things do you like about turtles?
    </template>
  </category>

  <category>
    <pattern>* HIDE *</pattern>
    <template>I wish like a turtle that I could hide from this
conversation.</template>
  </category>
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</topic>

Let's see what this interaction looks like:

>I like turtles!

>I feel like this whole turtle thing could be a problem. What do you like about them?

>I like how they hide in their shell

>I wish like a turtle I could hide from this conversation.

You can see that the continuity across the conversation adds a measure of realism.

You probably think that this can't be state-of-the-art in this age of deep learning, and you're
right. While most bots are rule-based, the next generation of chatbots are emerging, and
they are based on neural networks.

In 2015, Oriol Vinyas and Quoc Le of Google published a paper (h t t p : / / a r x i v . o r g / p d f /
1 5 0 6 . 0 5 8 6 9 v 1 . p d f), which described the construction of a neural network, based on
sequence-to-sequence models. This type of model maps an input sequence, such as “ABC”,
to an output sequence, such as “XYZ”. These inputs and outputs can be translations from
one language to another for example. However, in the case of their work here, the training
data was not language translation, but rather tech support transcripts and movie dialog.
While the results from both models are both interesting, it was the interactions that were
based on movie model that stole the headlines.

The following are sample interactions taken from the paper:

http://arxiv.org/pdf/1506.05869v1.pdf
http://arxiv.org/pdf/1506.05869v1.pdf
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None of this was explicitly encoded by humans or present in a training set as asked, and
yet, looking at this is, it is frighteningly like speaking with a human. However, let's see
more…

Note that the model responds with what appears to be knowledge of gender (he, she), of
place (England), and career (player). Even questions of meaning, ethics, and morality are
fair game:

The conversation continues:
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If this transcript doesn't give you a slight chill of fear for the future, there's a chance you
may already be some sort of AI.

I wholeheartedly recommend reading the entire paper. It isn't overly technical, and it will
definitely give you a glimpse of where this technology is headed.

We talked a lot about the history, types, and design of chatbots, but let's now move on to
building our own!

Building a chatbot
Now, having seen what is possible in terms of chatbots, you most likely want to build the
best, most state-of-the-art, Google-level bot out there, right? Well, just put that out of your
mind right now because we will do just the opposite! We will build the best, most awful bot
ever!

Let me tell you why. Building a chatbot comparable to what Google built takes some
serious hardware and time. You aren't going to whip up a model on your MacBook Pro that
takes anything less than a month or two to run with any type of real training set. This
means that you will have to rent some time on an AWS box, and not just any box. This box
will need to have some heavy-duty specs and preferably be GPU-enabled. You are more
than welcome to attempt such a thing. However, if your goal is just to build something very
cool and engaging, I have you covered here.

I should also warn you in advance, although Cleverbot is no Tay, the conversations can get
a bit salty. If you are easily offended, you may want to find a different training set.

Ok, let's get started!

First, as always, we need training data. Again, as always, this is the most challenging step in
the process. Fortunately, I have come across an amazing repository of conversational data.
The notsocleverbot.com site has people submit the most absurd conversations they have
with Cleverbot. How can you ask for a better training set?

Let's take a look at a sample conversation between Cleverbot and a user from the site:
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So, this is where we'll begin. We'll need to download the transcripts from the site to get
started. To do this, we will use the same tool that we used in Chapter 2, Build an App to
Find Underpriced Apartments, import.io:
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You'll just need to paste the link into the form on the page. The format will be like the
following: h t t p : / / w w w . n o t s o c l e v e r b o t . c o m / i n d e x . p h p ? p a g e = 1.

Once this is submitted, the site will process the request and return a page back that looks
like the following:

From here, if everything looks right, click on the pink Done button near the top right.

The site will process the page and then bring you to the following page:

http://www.notsocleverbot.com/index.php?page=1
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Next, click on the Show URL Generator button in the middle:
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Next, you can set the range of numbers that you'd like to download from. For example,
1-20, by 1 step. Obviously, the more pages you capture, the better this model will be.
However, remember that you are taxing the server, so please be considerate.

Once this is done, click on Add to list and hit Return in the text box, and you should be able
to click on Save. It will begin running, and when it is complete, you will be able to
download the data as a CSV file.

Next, we'll use our Jupyter notebook to examine and process the data. We'll first import
pandas and the Python regular expressions library, re. We will also set the option in
pandas to widen our column width so that we can see the data better:

import pandas as pd
import re
pd.set_option('display.max_colwidth',200)

Now, we'll load in our data:

df = pd.read_csv('/Users/alexcombs/Downloads/nscb.csv')
df

The preceding code generates the following output:

As we're only interested in the first column, the conversation data, we'll parse this out:

convo = df.iloc[:,0]
convo

The preceding code generates the following output:
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We can see in the preceding screenshot that we have interactions between User and
Cleverbot, and that either can initiate the conversation. To get the data in the format that
we need, we'll have to parse it into question and response pairs. We aren't necessarily
concerned with who says what, but we are concerned with matching up each response to
each question. We'll see why in a bit. Let's now perform a bit of regular expression magic on
the text:

clist = []
def qa_pairs(x):
    cpairs = re.findall(": (.*?)(?:$|\n)", x)
    clist.extend(list(zip(cpairs, cpairs[1:])))
convo.map(qa_pairs);
convo_frame = pd.Series(dict(clist)).to_frame().reset_index()
convo_frame.columns = ['q', 'a']

The preceding code results in the following output:



Build a Chatbot

[ 275 ]

Okay, there's a lot of code there. What just happened? We first created a list to hold our
question and response tuples. We then passed our conversations through a function to split
them into these pairs using regular expressions.

Finally, we set it all into a pandas DataFrame with columns labelled q and a.

We will now apply a bit of algorithmic magic to match up the closest question to the one a
user inputs:

from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity
vectorizer = TfidfVectorizer(ngram_range=(1,3))
vec = vectorizer.fit_transform(convo_frame['q'])

What we did in the preceding code was to import our TfidfVectorization library and
the cosine similarity library. We then used our training data to create a tf-idf matrix. We can
now use this to transform our own new questions and measure the similarity to existing
questions in our training set.

We covered cosine similarity and tf-idf algorithms in detail in Chapter 5,
Create a Custom Newsfeed, so flip back there if you want to understand how
these work under the hood.

Let's now get our similarity scores:

my_q = vectorizer.transform(['Hi. My name is Alex.'])
cs = cosine_similarity(my_q, vec)
rs = pd.Series(cs[0]).sort_values(ascending=0)
top5 = rs.iloc[0:5]
top5

The preceding code generates the following output:

What are we looking at here? This is the cosine similarity between the question I asked and
the top five closest questions. To the left is the index and on the right is the cosine similarity.
Let's take a look at these:
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convo_frame.iloc[top5.index]['q']

This results in the following output:

As we can see, nothing is exactly the same, but there are definitely some similarities.

Let's now take a look at the response:

rsi = rs.index[0]
rsi
convo_frame.iloc[rsi]['a']

The preceding code results in the following output:

Okay, so our bot seems to have an attitude already. Let's push further.

We'll create a handy function so that we can test a number of statements easily:

def get_response(q):
    my_q = vectorizer.transform([q])
    cs = cosine_similarity(my_q, vec)
    rs = pd.Series(cs[0]).sort_values(ascending=0)
    rsi = rs.index[0]
    return convo_frame.iloc[rsi]['a']
get_response('Yes, I am clearly more clever than you will ever be!')

This results in the following output:

We have clearly created a monster, so we'll continue:

get_response('You are a stupid machine. Why must I prove anything to you?')
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This results in the following output:

I'm enjoying this. Let's keep rolling with it:

get_response('My spirit animal is a menacing cat. What is yours?')

To which I responded:

get_response('I mean I didn't actually name it.')

This results in the following output:

Continuing:

get_response('Do you have a name suggestion?')

This results in the following output:

To which I respond:

get_response('I think it might be a bit aggressive for a kitten')

This results in the following output:
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I attempt to calm the situation:

get_response('No need to involve the police.')

This results in the following output:

And finally,

get_response('And I you, Cleverbot')

This results in the following output:

Remarkably, this may be one of the best conversations I've had in a while: bot or no bot.

Now that we have created this cake-based intelligence, let's set it up so that we can actually
chat with it via text message.

We'll need a few things to make this work. The first is a twilio account. They will provide a
free account that lets us send and receive text messages.

Go to h t t p : / / w w . t w i l i o . c o m and click to sign up for a free developer API key. You'll set
up some login credentials, after which they will text your phone to confirm your number.
Once this is set up, you'll be able to find the details in their Quickstart documentation.
Make sure that you select Python from the drop-down menu in the upper left-hand corner.

http://ww.twilio.com
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Sending messages from Python code is simple, but you will need to request a twilio
number. This is the number that you will use to send a receive messages in your code. The
receiving bit is a little more complicated because it requires that you to have a webserver
running. The documentation is succinct, so you shouldn't have that hard a time getting it set
up. You will need to paste a public-facing flask server's URL in under the area where you
manage your twilio numbers. Just click on the number and it will bring you to the spot to
paste in your URL:
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Once this is all set up, you will just need to make sure that you have your Flask web server
up and running. I have condensed all the code here for you to use on your Flask app:

from flask import Flask, request, redirect
import twilio.twiml
import pandas as pd
import re
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity
app = Flask(__name__)
PATH_TO_CSV = 'your/path/here.csv'
df = pd.read_csv(PATH_TO_CSV)
convo = df.iloc[:,0]
clist = []
def qa_pairs(x):
    cpairs = re.findall(": (.*?)(?:$|\n)", x)
    clist.extend(list(zip(cpairs, cpairs[1:])))
convo.map(qa_pairs);
convo_frame = pd.Series(dict(clist)).to_frame().reset_index()
convo_frame.columns = ['q', 'a']
vectorizer = TfidfVectorizer(ngram_range=(1,3))
vec = vectorizer.fit_transform(convo_frame['q'])
@app.route("/", methods=['GET', 'POST'])
def get_response():
    input_str = request.values.get('Body')
    def get_response(q):
        my_q = vectorizer.transform([input_str])
        cs = cosine_similarity(my_q, vec)
        rs = pd.Series(cs[0]).sort_values(ascending=0)
        rsi = rs.index[0]
        return convo_frame.iloc[rsi]['a']
    resp = twilio.twiml.Response()
    if input_str:
        resp.message(get_response(input_str))
        return str(resp)
    else:
        resp.message('Something bad happened here.')
        return str(resp)

It looks like there is a lot going on, but essentially we use the same code that we used
before, only now we grab the POST data that twilio sends—the text body
specifically—rather than the data we hand-entered before into our get_request function.

If all goes as planned, you should have your very own weirdo bestie that you can text
anytime, and what could be better than that?!
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Summary
In this chapter, we had a full tour of the chatbot landscape. It is clear that we are on the cusp
of an explosion of these sorts of applications. Hopefully, this chapter has inspired you to
create your own bot, but if not, at least perhaps you have a much richer understanding of
how these applications work and how they will shape our future.

I'll let the app say the final words:

get_response("Say goodbye, Clevercake")

In the next chapter we'll dive into the world of recommendation engines.



10
Build a Recommendation

Engine
Like so many things, this was born of frustration and stiff cocktails. It was a Saturday, and
two young men were once again stuck without a date for the night. As they sat pouring
drinks and sharing laments, the two Harvard freshman began to flesh out an idea. What if
instead of relying on random chance to meet the right girl, they could use a computer
algorithm?

They felt that the key to matching people up would be to create a set of questions that
provided the sort of information everyone is really looking for on those first few awkward
dates. By matching people using these questionnaires, dates that wouldn't have gone
anywhere could be eliminated. The process would be super-efficient.

The idea was to market their new service to college students in Boston and around the
country. In short order, this is exactly what they did.

Soon after, the digital matchmaking service that they built went on to become a huge
success. It received national media attention and generated tens of thousands of matches
over the course of the next few years.

In fact, the company was so successful that a larger company seeking to use its technology
eventually bought it out.

If you're thinking I might be talking about OkCupid, you would be wrong—and also off by
about 40 years. The company that I'm speaking of did all of this beginning in 1965—a time
when computing the matches was done using punch cards on an IBM 1401 mainframe. It
also took three days to just to run the computations.
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Oddly enough, however, there is a connection between OkCupid its 1965 precursor,
Compatibility Research, Inc. The co-founder of Compatibility Research is Jeff Tarr, whose
daughter, Jennifer Tarr, is the wife of OkCupid's co-founder Chris Coyne. Small world
indeed.

Why is any of this relevant to a chapter on building a recommendation engine? This is
because it is very likely that this was one of the first. While most people tend to think of
recommendation engines as tools to find closely-related products or music and movies
they'll like, the original incarnation was to find potential mates. As a model for thinking
about how these systems work, it provides a good frame of reference.

In this chapter, we'll explore the different varieties of recommendation systems. We'll see
how they're implemented commercially and how they work internally. Finally, we'll
implement our own recommendation engine to find GitHub repos.

We'll cover the following topics in this chapter:

Collaborative filtering
Content-based filtering
Hybrid systems
Building a recommendation engine

Collaborative filtering
In early 2012, a story broke about a man who had come into a Target store wielding a fistful
of coupons addressed to his high-school-aged daughter. He had come to berate the
manager because this set of coupons were exclusively for things such as baby clothes,
formula, and furniture.

On hearing the man's complaint, the manager apologized profusely. In fact, he felt so bad
that he wanted to follow up several days later over the phone to explain how this had
happened. Only this time, on the phone, the father was the one apologizing. It seems his
daughter was, in fact, pregnant. Her shopping habits had given her away.

The algorithm that gave her away was most likely based, at least in part, on collaborative
filtering.

So, what is collaborative filtering?

Collaborative filtering is based on the idea that out there somewhere you have a taste
doppelganger. The assumption is that you have rated a certain set of items in a way that is
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very similar to the way this doppelganger has (or doppelgangers have) rated them, but then
each of you has rated additional items that the other has not. As you have established that
your tastes are similar, recommendations can be generated from the items your
doppelganger has rated highly but which you have not rated and vice versa. This is, in a
way, is very much like digital matchmaking, but with the outcome being songs or products
your match likes rather than actual dates with them.

In the case of our pregnant high schooler, when she bought the right combination of
unscented lotions, cotton balls, and vitamin supplements, she likely found herself paired up
with people who went on to buy cribs and diapers at some point later.

User-to-user filtering
Let's go through an example to see how this works in practice.

We'll start with something called a utility matrix. This is similar to a term-document matrix,
but instead of terms and documents, we'll represent products and users.

Here, we'll assume that we have customers A-D and a set of products that they have rated
on a scale from 0 to 5:

Snarky's
Potato
Chips

SoSo
SmoothLotion

DufflyBeer BetterTapWater XXLargeLivin'Football
Jersey

SnowyCottonBalls Disposos'Diapers

A 4 5 3 5

B 4 4 5

C 2 2 1

D 5 3 5 4

We've previously seen that when we want to find similar items, we can use cosine
similarity. Let's try this here. We'll find the user most like user A. As we have a sparse
vector that contains many unrated items, we'll input something for these missing values.
We'll just go with 0 here. We'll start by comparing user A to user B:

from sklearn.metrics.pairwise import cosine_similarity
cosine_similarity(np.array([4,0,5,3,5,0,0]).reshape(1,-1),\
                  np.array([0,4,0,4,0,5,0]).reshape(1,-1))

The preceding code generates the following output:



Build a Recommendation Engine

[ 285 ]

As we can see, these two don't have a high similarity rating, which makes sense because
they have no ratings in common.

Let's now look at user C compared to user A:

cosine_similarity(np.array([4,0,5,3,5,0,0]).reshape(1,-1),\
                  np.array([2,0,2,0,1,0,0]).reshape(1,-1))

The preceding code generates the following output:

Here, we see that they have a high similarity rating (remember 1 is perfect similarity),
despite the fact they rated the same products very differently. Why do we get these results?
The problem lies with our choice of using 0 for the unrated products. It registers as strong
(negative) agreement on these unrated products. In this case, 0 isn't neutral.

So, how can we fix this?

What we can do instead of just using 0 for the missing values is to recenter each user's
ratings so that the mean rating is 0, or neutral. We do this by taking each user rating and
subtracting the mean for all ratings of that user. For example, for user A, the mean is 17/4, or
4.25. We then subtract this from every individual rating that user A provided.

Once this is done, we then continue on finding the mean for every other user and
subtracting it from each of their ratings until every user has been completed.

This process will result in a table like the following. Note that each user row sums to 0
(ignore the rounding issues here):

Snarky's
Potato
Chips

SoSo
SmoothLotion

DufflyBeer BetterTapWater XXLargeLivin'Football
Jersey

SnowyCottonBalls Disposos'Diapers

A -.25 .75 -1.25 .75

B -.33 -.33 .66

C .33 .33 -.66

D .75 -1.25 .75 -.25

Let's now try our cosine similarity on our newly-centered data. We'll do user A compared to
user B and C again.

First, the comparison between A and B is as follows:

cosine_similarity(np.array([-.25,0,.75,-1.25,.75,0,0])\



Build a Recommendation Engine

[ 286 ]

                  .reshape(1,-1),\
                  np.array([0,-.33,0,-.33,0,.66,0])\
                  .reshape(1,-1))

The preceding code generates the following output:

Now, let's try between A and C:

cosine_similarity(np.array([-.25,0,.75,-1.25,.75,0,0])\
                  .reshape(1,-1),\
                  np.array([.33,0,.33,0,-.66,0,0])\
                  .reshape(1,-1))

The preceding code generates the following output:

We can see that the similarity between A and B increased slightly, while the similarity
between A and C decreased dramatically. This is exactly as we hoped.

This centering process, besides helping us deal with missing values, also has the side benefit
of helping us deal with difficult or easy raters as now everyone is centered on a mean of 0.
Note that this formula is equivalent to the Pearson correlation coefficient, and just like that
coefficient, the values fall between -1 and 1.

Let's now take this framework and use it to predict the rating of a product. We'll limit our
example to three users, X, Y, and Z, and we'll predict the rating of a product that X has not
rated, but Y and Z who are very similar to X, have rated.

We'll start with our base ratings for each user:

Snarky's
Potato
Chips

SoSo
SmoothLotion

DufflyBeer BetterTapWater XXLargeLivin'Football
Jersey

SnowyCottonBalls Disposos'Diapers

X 4 3 4

Y 3.5 2.5 4 4

Z 4 3.5 4.5 4.5
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Next, we'll center these ratings:

Snarky's
Potato
Chips

SoSo
SmoothLotion

DufflyBeer BetterTapWater XXLargeLivin'Football
Jersey

SnowyCottonBalls Disposos'Diapers

X .33 -.66 .33 ?

Y 0 -1 .5 .5

Z -.125 -.625 .375 .375

Now, we'd like to know what rating user X might be likely to give Disposos' Diapers.
Using the ratings from user Y and user Z, we can calculate this by taking the weighted
average according to their centered cosine similarity.

Let's first get this figure for user Y:

user_x = [0,.33,0,-.66,0,33,0]
user_y = [0,0,0,-1,0,.5,.5]
    cosine_similarity(np.array(user_x).reshape(1,-1),\
    np.array(user_y).reshape(1,-1))

The preceding code generates the following output:

Now for user Z:

user_x = [0,.33,0,-.66,0,33,0]
user_z = [0,-.125,0,-.625,0,.375,.375]

cosine_similarity(np.array(user_x).reshape(1,-1),\
                  np.array(user_z).reshape(1,-1))

The preceding code generates the following output:

Therefore, we now have a figure for the similarity between user X and user Y (42447212)
and user Z (.46571861).

Putting it all together, we weigh each users rating by their similarity to X, and then divide
by the total similarity:

(.42447212 * (4) + .46571861 * (4.5)) / (.42447212 + .46571861) = 4.26
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We can see that the expected rating of user X for Disposo's Diapers is 4.26. (Better send a
coupon!)

Item-to-item filtering
Now so far, we've only looked at user-to-user collaborative filtering, but there is another
method that we can use. In practice, this method far outperforms user-to-user filtering; it's
called item-to-item filtering. Here's how it works: rather than match each user up with
other similar users based on their ratings history, each rated item is compared against all
other items to find the most similar ones, again using centered cosine similarity.

Let's take a look at how this works.

Again, we have a utility matrix. This time we'll look at users' ratings of songs. The users are
along the columns and the songs are along the rows:

U1 U2 U3 U4 U5

S1 2 4 5

S2 3 3

S3 1 5 4

S4 4 4 4

S5 3 5

 

Now, suppose we want to know the rating that U3 will assign to S5. Instead of looking for
similar users, we'll look for songs that are similar based upon how they were rated across
the users.

Let's take a look at an example.

First, we start by centering each song row and calculating the cosine similarity for each
versus our target row, which is S5:

U1 U2 U3 U4 U5 CntrdCoSim

S1 -1.66 .33 1.33 .98

S2 0 0 0

S3 -2.33 1.66 .66 .72
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S4 0 0 0 0

S5 -1 ? 1 1

 

You can see the far-right column was calculated with the centered cosine similarity for each
row versus row S5.

We next need to select a number, k, which is the number of nearest neighbors that we'll use
to rate song for U3. We use k = 2 in our simple example.

We can see that S1 and song S3 are the most similar, so we'll use these two along with the
ratings U3 had for S1 and S3 (4 and 5, respectively).

Let's now calculate the rating:

(.98 * (4) + .72 * (5)) / (.98 + .72) = 4.42

Therefore, based on this item-to-item collaborative filtering, we can see U3 is likely to rate
S5 very highly at 4.42 from our calculations.

Earlier, I said that user-to-user filtering is less effective than item-to-item filtering. Why is
this so?

There is a good chance you have friends who really enjoy some of things that you enjoy as
well, but then each of you has other areas that the other has absolutely no interest in.

For example, perhaps you both love Game of Thrones, but your friend also loves
Norwegian death metal. You, however, would rather be dead than listen to Norwegian
death metal. If you are similar in many ways—excluding the death metal—with user-to-
user recommendations, you will still see a lot of recommendations for bands with names
that include words, such as flaming, axe, skull, and bludgeon. With item-to-item filtering,
you will most likely be spared from these suggestions.

Let's wrap this discussion up with a quick code sample.

First, we'll create our example DataFrame:

import pandas as pd
import numpy as np
from sklearn.metrics.pairwise import cosine_similarity

df = pd.DataFrame({'U1':[2 , None, 1, None, 3], 'U2': [None, 3, None, 4,
None],\
                   'U3': [4, None, 5, 4, None], 'U4': [None, 3, None, 4,
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None], 'U5': [5, None, 4, None, 5]})

df.index = ['S1', 'S2', 'S3', 'S4', 'S5']

df

The preceding code generates the following output:

We will now create a function that will take in our ratings matrix along with a user and
item. The function will return the expected rating of that item for that user based on
collaborative filtering.

def get_sim(ratings, target_user, target_item, k=2):
centered_ratings = ratings.apply(lambda x: x - x.mean(), axis=1)
csim_list = []
for i in centered_ratings.index:
csim_list.append(cosine_similarity(np.nan_to_num(centered_ratings.loc[i,:].
values).reshape(1, -1),
np.nan_to_num(centered_ratings.loc[target_item,:]).reshape(1, -1)).item())
new_ratings = pd.DataFrame({'similarity': csim_list, 'rating':
ratings[target_user]}, index=ratings.index)
top = new_ratings.dropna().sort_values('similarity',
ascending=False)[:k].copy()
top['multiple'] = top['rating'] * top['similarity']
result = top['multiple'].sum()/top['similarity'].sum()
    return result

We can now pass in our values and get back the expected rating for the user-item pair.

get_sim(df, 'U3', 'S5', 2)
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The preceding code generates the following output:

We can see this matches up with our earlier analysis.

Thus far, we've looked at users and items as a single entity when making comparisons, but
now let's move on to look at another method that decomposes our users and items into
what maybe called feature baskets.

Content-based filtering
As a musician himself, Tim Westergren spent years on the road listening to other talented
musicians, wondering why they could never get ahead. Their music was good, as good as
anything you might hear on the radio. Yet, somehow, they just never caught their big break.
He imagined that it must be because their music just never got in front of enough of the
right people.

Tim eventually quit his job as a musician and took another job as a composer for movie
scores. It was there that he began to think of each piece of music as having a distinct
structure or DNA that you can decompose into constituent parts.

After giving it some thought, he began to consider creating a company around this idea of
building a musical genome. He ran the idea by one of his friends who had created and sold
a company previously. He loved Tim's idea. He began helping him write a business plan
and gather an initial round of funding for the project. It was a go.

Over the next several years, they employed a small army of musicians who meticulously
codified almost 400 distinct features on a 0 to 5 point scale for over a million pieces of
music—all by hand, or perhaps by ear as it were. Each 3 or 4 minute song would take nearly
a half hour to grade.

The features included parameters such as how gravelly the lead singer's voice was, or how
many beats per minute the tempo was. It took nearly a year for their first prototype to be
completed. Built entirely in Excel using a VBA macro, it took nearly 4 minutes just to return
a single recommendation. However, in the end, it worked and it worked well.

We now know this company as Pandora Music, and chances are that you have either heard
of it or used its products as it has millions of daily users around the world. Without a doubt,
it is a triumphant example of content-based filtering.
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Rather than treating each song as a single indivisible unit, in content-based filtering, the
songs become feature vectors that can be compared using our friend cosine similarity.

Not only can these songs be decomposed into feature vectors, but the same can be done to
listeners as well. The listeners taste profiles become a vector in this space such that we can
measure their taste profiles and the songs themselves.

For Tim Westergren, this was the magic, because rather than rely on the popularity of the
music like so many recommendations do, the recommendations from this system were
made based upon the inherent structural similarity. Maybe someone never head of song X,
but if they like song Y, then they should like song X because it is genetically almost identical.
That is content-based filtering.

Hybrid systems
We've now looked at the two primary forms of recommendation systems. However, it
should be noted that in any large-scale production environment, recommendation engines
will likely leverage both of these. This is known as a hybrid system, and the reason hybrid
systems are preferred is that it helps eliminate the drawbacks that can be present when
using either system alone. The two systems together create a more robust solution.

Let's examine the pros and cons of each type.

Collaborative filtering:

The pros of collaborative filtering are as follows:

There is no need to hand-craft features

The cons of collaborative filtering are as follows:

It doesn't work well without a large number of items and users
There is sparsity when the number of items far exceeds number that could be
purchased

Content-based filtering:

The pros of content-based filtering are as follows:

It doesn't require a large number of users
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The cons of content-based filtering are as follows:

Defining the right features can be a challenge
There is a lack of serendipity

Content-based filtering is a better choice when a company lacks a large user base, but as it
grows, adding on collaborative filtering can help introduce more serendipity into the
recommendations.

Now that we are familiar with the types and inner workings of recommendation engines,
let's begin constructing our own.

Building a recommendation engine
One thing I love to stumble on is a really useful GitHub repo. There are repos that contain
everything from hand-curated tutorials on machine learning to libraries that will save
dozens of lines of code when using ElasticSearch. The trouble is, finding these libraries is
far more difficult than it should be. Fortunately, we now have the knowledge to leverage
the GitHub API in a way that will help us find these code gems.

We'll use the GitHub API to create a recommendation engine based on collaborative
filtering. The plan is to get all the repos that I have starred over time and to then get a list of
all the creators of these repos. Then we'll get a list of all the repos that each of these users
has starred. Once this is done, we can compare our starred repos to find the most similar
users to me (or to you if you run this for your own repo, which I do suggest). Once we have
found the most similar GitHub users, we can use the repos they starred (and that I haven't
starred) to generate a set of recommendations.

Let's get started. First, we'll import the libraries that we'll need:

import pandas as pd
import numpy as np
import requests
import json

Now, you will need to have opened an account with GitHub and to have starred a number
of repos for this to work for your GitHub handle, but you won't actually need to sign up for
the developer program. You can get an authorization token from your profile, which will
allow you to use the API. You can also get it to work with this code, but the limits are too
restrictive to make it useable for our example.
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To create a token for use with the API, go to the following URL h t t p s : / / g i t h u b . c o m / s e t
t i n g s / t o k e n s. Here, you will see a button in the upper-right hand corner, as in the
following image:

You'll need to click on the Generate new token button. Once you have done this, you need
to copy the token it gives you for use in the following code. Make sure that you enclose both
in quotes:

myun = YOUR_GITHUB_HANDLE
mypw = YOUR_PERSONAL_TOKEN

Now, we'll create the function that will pull the names of every repo you have starred:

my_starred_repos = []
def get_starred_by_me():
    resp_list = []
    last_resp = ''
    first_url_to_get = 'https://api.github.com/user/starred'
    first_url_resp = requests.get(first_url_to_get, auth=
    (myun,mypw))
    last_resp = first_url_resp
    resp_list.append(json.loads(first_url_resp.text))

    while last_resp.links.get('next'):
        next_url_to_get = last_resp.links['next']['url']
        next_url_resp = requests.get(next_url_to_get, auth=
        (myun,mypw))
        last_resp = next_url_resp
        resp_list.append(json.loads(next_url_resp.text))
    
    for i in resp_list:
        for j in i:
            msr = j['html_url']
            my_starred_repos.append(msr)

There's a lot going on in there, but, essentially, we query the API to get our own starred
repos. GitHub uses pagination rather than return everything in one call. Due to this, we'll
need to check the .links that are returned from each response. As long as there is a next
link to call, we'll continue to do so.

https://github.com/settings/tokens
https://github.com/settings/tokens
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Next, we just need to call the function that we created:

get_starred_by_me()

Then, we can see the full list of starred repos:

my_starred_repos

This code will result in output similar to the following:

Next, we need to parse out the user names for each of the libraries that we starred so that
we can retrieve the libraries they starred:

my_starred_users = []
for ln in my_starred_repos:
    right_split = ln.split('.com/')[1]
    starred_usr = right_split.split('/')[0]
    my_starred_users.append(starred_usr)

my_starred_users

The preceding code generates the following output:
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Now that we have the handles for all of the users that we starred, we'll need to retrieve all
the repos that they starred:

The following function will do just that:

starred_repos = {k:[] for k in set(my_starred_users)}
def get_starred_by_user(user_name):
    starred_resp_list = []
    last_resp = ''
    first_url_to_get = 'https://api.github.com/users/'+ user_name
    +'/starred'
    first_url_resp = requests.get(first_url_to_get, auth=
    (myun,mypw))
    last_resp = first_url_resp
    starred_resp_list.append(json.loads(first_url_resp.text))

    while last_resp.links.get('next'):
        next_url_to_get = last_resp.links['next']['url']
        next_url_resp = requests.get(next_url_to_get, auth=
        (myun,mypw))
        last_resp = next_url_resp

starred_resp_list.append(json.loads(next_url_resp.text))

    for i in starred_resp_list:
        for j in i:
            sr = j['html_url']
            starred_repos.get(user_name).append(sr)

This function works in nearly the same way as the function that we called earlier, but it calls
a different endpoint. It will add their starred repos to a dict that we'll use later.

Let's call it now. It may take a few minutes to run depending on the number of repos each
user has starred. I actually had one that starred over 4,000 repos:

for usr in list(set(my_starred_users)):
    print(usr)
    try:
        get_starred_by_user(usr)
    except:
        print('failed for user', usr)
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The preceding code generates the following output:

Note that I turned the list of starred users into a set before I called it. I noticed some
duplication that resulted from starring multiple repos under one user handle, so it makes
sense to follow this step to reduce extra calls.

We now need to build a feature set that includes all the starred repos of everyone we have
starred:

repo_vocab = [item for sl in list(starred_repos.values()) for item in sl]

Next, we'll convert that to a set to remove duplicates that may be present from multiple
users starring the same repos:

repo_set = list(set(repo_vocab))

Let's see how many this produces:

len(repo_vocab)

The preceding code generates the following output::

I had starred just over 80 repos, and together the users of these repos starred over 12,000
unique repos. You can imagine that if we went one degree further out how many we would
see.

Now that we have the full feature set, or repo vocabulary, we need to run every user to
create a binary vector that contains a 1 for every repo they have starred and a 0 for every
repo they have not:
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all_usr_vector = []
for k,v in starred_repos.items():
    usr_vector = []
    for url in repo_set:
        if url in v:
            usr_vector.extend([1])
        else:
            usr_vector.extend([0])
    all_usr_vector.append(usr_vector)

What we just did was check for every user if they had starred every repo in our repo
vocabulary. If they did, they received a 1, if they didn't they received a 0.

At this point, we have a 12,378 item binary vector for each user—all 79 of them. Let's now
put this into a DataFrame. The row index will be the user handles that we starred, and the
columns will be the repo vocab:

df = pd.DataFrame(all_usr_vector, columns=repo_set,
index=starred_repos.keys())
df

The preceding code generates the following output:

Next, in order to compare ourselves to the other users, we need to add our own row to this
frame:

my_repo_comp = []
for i in df.columns:
    if i in my_starred_repos:
        my_repo_comp.append(1)
    else:
        my_repo_comp.append(0)

mrc = pd.Series(my_repo_comp).to_frame('acombs').T
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mrc

The preceding code generates the following output:

We now need to add the appropriate column names and to concatenate this to our other
DataFrame:

mrc.columns = df.columns

fdf = pd.concat([df, mrc])

fdf

The preceding code generates the following output:

You can see that in the preceding screenshot, I was also added into the DataFrame.

From here, we just need to calculate the similarity between ourselves and the other users
that we starred. We'll do this now using the pearsonr function, which we'll need to import
from scipy:

from scipy.stats import pearsonr

sim_score = {}
for i in range(len(fdf)):
    ss = pearsonr(fdf.iloc[-1,:], fdf.iloc[i,:])
    sim_score.update({i: ss[0]})

sf = pd.Series(sim_score).to_frame('similarity')
sf
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The preceding code generates the following output:

What we've just done is compare our vector, the last one in the DataFrame, to every other
user's vector to generate a centered cosine similarity (Pearson correlation coefficient). Some
values are, by necessity, NaN (not a number) because they have starred no repos and, thus,
result in division by zero in the calculation.

Let's now sort these values to return the index of the user's who are most similar:

sf.sort_values('similarity', ascending=False)

The preceding code generates the following output:
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There we have it, these are the most similar users and, thus, the ones that we can use to
recommend repos that we might enjoy. Let's take a look at these users and what they have
starred that we may like.

You can ignore the first user with a perfect similarity score; this is our own repo. Going
down the list, the three nearest matches are user 31, user 5, and user 71. Let's look at each:

fdf.index[31]

The preceding code generates the following output:

Let's take a look at who this is and their repo:

From h t t p s : / / g i t h u b . c o m / l m c i n n e s, we can see who the repo belongs to.

This is the author of hdbscan—an excellent library—who also happens to be a contributor
to scikit-learn and matplotlib:

https://github.com/lmcinnes
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Let's also see what he has starred. There are a couple ways to do this: we can either use our
code, or just click under their picture on stars. Let's do both for this one, just to compare and
make sure that everything matches up.

First via code:

fdf.iloc[31,:][fdf.iloc[31,:]==1]

The preceding code generates the following output:
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We see thirteen starred repos. Let's compare these to the ones from GitHub's site:

Here, we can see they are identical. Notice also that we can ID the repos that we have both
starred: they are the ones labeled Unstar.

Unfortunately, with just 13 starred repos, there aren't a lot of repos to generate
recommendations.

The next user in terms of similarity, is actually a friend and former colleague, Charles Chi:

fdf.index[5]
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The preceding code generates the following output:

And his GitHub profile below:

Here we see the repos he has starred:
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Charles has starred 27 repos, so there are definitely some recommendations to be found
there.

Finally, let's look at the third most similar user:

fdf.index[71]

This results in the following output:

This user, Artem Ruster, has starred nearly 500 repos:

We can see the starred repos in the following image:
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This is definitely fertile ground to generate recommendations. Let's now do just that; let's
use the links from these three to produce some recommendations.

First, we need to gather the links to the repos they have starred that I have not. We'll create
a DataFrame that has the repos I have starred as well as the three most similar users to me:

all_recs =
fdf.iloc[[31,5,71,79],:][fdf.iloc[[31,5,71,79],:]==1].fillna(0).T
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The preceding code generates the following output:

Don't worry if it looks like it is all zeros, this is a sparse matrix so most will be 0. Let's see if
there are any repos that we have all starred:

all_recs[(all_recs==1).all(axis=1)]

This code will produce the following output:

As, we can see, we all seem to love scikit-learn; no surprise there. Let's see what they
might have all starred that I missed. We'll start by creating a frame that excludes me, then,
we'll query it for commonly starred repos:

str_recs_tmp = all_recs[all_recs['acombs']==0].copy()
str_recs = str_recs_tmp.iloc[:,:-1].copy()
str_recs

The preceding code generates the following output:
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Ok, so it looks like I haven't been missing anything super-obvious. Let's see whether there
any repos that at least two out of three users starred. To find this, we'll just sum across the
rows:

str_recs[str_recs.sum(axis=1)>1]

The preceding code generates the following output:

This looks promising as there are a number of repos that both cchi and rushter have starred.
Looking at the repo names, there appears to be a lot of “awesome” going on here. Maybe I
should have just skipped this whole recommendation thing and keyword searched for
“awesome”.

At this point, I have to say I'm impressed with the results. These are definitely repos that
interest me, and I will definitely be checking them out.

So far, we generated the recommendations using collaborative filtering and then performed
some light additional filtering using aggregation. If we wanted to go further, we could
order the recommendation based upon the total number of stars they received. You can
achieve this by making another call to the GitHub API. There is an endpoint that provides
this information.

Another thing we can do to improve the results is to add a layer of content-based filtering.
This is the hybridization step that we discussed earlier. We need to create a set of features
from our own repo that was indicative of the types of things that we would be interested in.
One way to do this would be to create a feature set by tokenizing the names of the repos
that we have starred along with their descriptions.
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Here is a look at my starred repos:

As you can imagine, this would generate a set of word features that we can use to vet the
repos of the ones that we found using collaborative filtering. This would include a lot of
words, such as Python, Machine Learning, Data Science, and so on. This would ensure that
users who are less similar to us still provide recommendations that are based on our own
interests. It would also reduce the serendipity of the recommendations, which is something
you should consider. It's possible, for example, that there are repos unlike anything I have
starred currently that I would be very interested in finding. It's certainly a possibility.

What would that content-based filtering step look like in terms of a DataFrame? The
columns will be word features (n-grams) and the rows will be the repos generated from our
collaborative filtering step. We would just run the similarity process once again using our
own repo for comparison.
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Summary
In this chapter, we learned about recommendation engines. We learned about the two
primary types of systems in use today: collaborative filtering and content-based filtering.
We also learned how they can be used together to form a hybrid system. We also spent
some time discussing the pros and cons of each type of system. Finally, we learned step-by-
step how to build a recommendation engine from scratch using the GitHub API.

I hope you build your own recommendation engine using the guidance in this chapter, and
I hope you find many resources that are useful to you. I know I have found a number of
things that I will certainly use.

Best of luck to you on your journey building recommendation engines, and best of luck to
you with all the machine-learning-based techniques we have covered in this book. Machine
learning opens a new world of possibilities that will affect nearly every area of our lives in
the coming years, and you have taken the first steps to entering this new world of
possibility.
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