
www.allitebooks.com

http:///
http://www.allitebooks.org

QGIS Python Programming
Cookbook

Over 140 recipes to help you turn QGIS from a desktop GIS
tool into a powerful automated geospatial framework

Joel Lawhead

BIRMINGHAM - MUMBAI

www.allitebooks.com

http:///
http://www.allitebooks.org

QGIS Python Programming Cookbook

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly
or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: March 2015

Production reference: 1240315

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78398-498-5

www.packtpub.com

www.allitebooks.com

www.packtpub.com
http:///
http://www.allitebooks.org

Credits

Author
Joel Lawhead

Reviewers
Joshua Arnott

Giuseppe De Marco

Jonathan Gross

Luigi Pirelli

Hiroaki Sengoku

Commissioning Editor
Pramila Balan

Acquisition Editor
Sonali Vernekar

Content Development Editor
Prachi Bisht

Technical Editor
Deepti Tuscano

Copy Editor
Dipti Kapadia

Project Coordinator
Shipra Chawhan

Proofreaders
Safis Editing

Maria Gould

Indexer
Hemangini Bari

Production Coordinator
Nitesh Thakur

Cover Work
Nitesh Thakur

www.allitebooks.com

http:///
http://www.allitebooks.org

About the Author

Joel Lawhead is a PMI-certified Project Management Professional (PMP) and the Chief
Information Officer (CIO) of NVisionSolutions Inc., an award-winning firm that specializes in
geospatial technology integration and sensor engineering.

Joel began using Python in 1997 and began combining it with geospatial software
development in 2000. He is the author of Learning Geospatial Analysis with Python, Packt
Publishing. His Python cookbook recipes were featured in two editions of Python Cookbook,
O'Reilly Media. He is also the developer of the widely used, open source Python Shapefile
Library (PyShp) and maintains the geospatial technical blog GeospatialPython.com
and the Twitter feed @SpatialPython, which discuss the use of the Python programming
language within the geospatial industry.

In 2011, Joel reverse engineered and published the undocumented shapefile spatial indexing
format and assisted fellow geospatial Python developer, Marc Pfister, in reversing the
algorithm used, allowing developers around the world to create better-integrated and more
robust geospatial applications involving shapefiles.

Joel served as the lead architect, project manager, and co-developer for geospatial
applications used by US government agencies, including NASA, FEMA, NOAA, the US Navy, and
many other commercial and non-profit organizations. In 2002, he received the international
Esri Special Achievement in GIS award for his work on the Real-Time Emergency Action
Coordination Tool (REACT), for emergency management using geospatial analysis.

I would like to acknowledge my beautiful family, including my wife, Julie,
and four children, Lauren, Will, Lillie, and Lainie, who allowed me to write
yet another book in our limited collective free time. I would also like to
acknowledge my employers and coworkers at NVisionSolutions.com, a bright
team of people dedicated to working together at the exciting bleeding edge
of geospatial technology.

www.allitebooks.com

GeospatialPython.com
http:///
http://www.allitebooks.org

About the Reviewers

Joshua Arnott is an environmental scientist with four years of academic and consultancy
experience. His expertise lies in environmental modeling, with a focus on hydrology and
geoinformatics. He has contributed to a number of GIS-related open source projects, including
QGIS and Shapely. He maintains a blog about programming and GIS at snorfalorpagus.net,
and he likes cats just as much as everyone else on the Internet.

Giuseppe De Marco was born in 1973 in Ferentino, Italy. He has a high school certificate
in humanities and attained a bachelor's degree in agriculture from the University of Pisa.
When he was a small boy, he began to use computers and learn programming languages
(BASIC, Pascal, Fortran, and so on). At the university, he began to encounter open source
software and the Linux OS, and he developed a deep interest in geography and GIS and
other programming languages, such as C++ and Python, by first getting in touch with Esri
commercial products and later with GRASS and QGIS. Since the QGIS 1.7.4 release, he's
been developing plugins for this software, sometimes purely to seek knowledge and at other
times for work. In 2008, he began a professional partnership with two colleagues called
Pienocampo (open field), and his plugins are hosted on Pienocampo's website and on the
QGIS official repository. At the moment, he lives in his hometown Ferentino and works as a
freelance agriculture engineer. His work activities include studying geography, surveying, tree
risk assessment, landscaping, bioengineering, and farm consulting. In 2014, he also began to
teach other colleagues how to use QGIS and other open source software.

I would like to thank my wife, Fabiola; my little daughter, Anna; my mother,
Angela; and my colleagues, Marco De Castris, Ettore Arcangeletti, Luca
Grande, and Ivan Solinas.

www.allitebooks.com

snorfalorpagus.net
http:///
http://www.allitebooks.org

Jonathan Gross is the author of the Open Source GIS blog, http://opensourcegisblog.
blogspot.com/. He has a master's of public health degree in epidemiology from the University
of Michigan, Ann Arbor, and a graduate certificate in geographic information systems from Johns
Hopkins Advanced Academic Programs. He has done graduate coursework in Python and uses
Python for programming small tasks. He is currently an epidemiologist at the Baltimore City
Health Department, Maryland, where he performs spatial analysis on health and crime data.

Luigi Pirelli is a freelance software analyst and developer with a honors degree in
computer science from the University of Bari.

He has worked for 15 years in satellite ground segmentation and direct ingestion systems
for the European Space Agency. Since 2006, he has been involved in the GFOSS world,
contributing to QGIS, GRASS, and the MapServer core, and developing and maintaining
many QGIS plugins. He actively participates in QGIS Hackmeetings.

He is the founder of the OSGEO Italian local chapter GFOSS.it and now lives in Spain,
where he contributes to the GFOSS community. During the past few years, he started
teaching PyQGIS by organizing trainings, from basic to advanced level, supporting
companies to develop their specific QGIS plugins.

He has coauthored Mastering QGIS, Packt Publishing.

He is the founder of the local hackerspace group, Bricolabs.cc that is focused on all
things related to open source hardware. He likes to cycle, repair everything, and train groups
on conflict resolution.

Other than this book, he has also contributed to the guide, Cycling Italy, Lonely Planet.

A special thanks to the QGIS developer community and core developers
because the project is managed in an open way, allowing contribution
from everyone.

I want to thank everyone I have worked with. From each one of them,
I learned something and without them, I wouldn't be here, contributing
to free software and this book.

A special thanks to my friends and neighbors who helped me with my son
during the review of the book.

I would like to dedicate this work to my partner and especially my son,
for having the patience to see me sit in front of the computer for hours
without playing with him.

www.allitebooks.com

http://opensourcegisblog.blogspot.com/
http://opensourcegisblog.blogspot.com/
GFOSS.it
Bricolabs.cc
http:///
http://www.allitebooks.org

Hiroaki Sengoku was born in 1987 in Gifu, Japan. He did his BA in environmental
information from Keio University in 2009. He completed an MA in environmental studies from
the University of Tokyo in 2011 and a PhD in environmental studies from the University of
Tokyo in 2014. He is the founder and CEO of Microbase Inc., which he established when he
was a PhD student. He is interested in the field of microgeographic simulation and has held
many workshops on this. His dream is to create a real SimCity.

Microbase Inc. is the company that creates microdemographic data in Japan. This company
has created simulated urban data, such as people flow or people's lifestyles, using open data.
The members of Microbase Inc. aim to create microdemographic data all over the world and a
simulation platform, such as SimCity, using this data.

You can watch a demo movie at https://www.youtube.com/watch?v=kXKRU4CLJro
and http://microgeodata.com/.

I couldn't have reviewed this book without the help of the members of
Microbase Inc. I'd like to thank them for their help in the reviewing process.
Also, I would like to thank Shipra Chawhan and Paushali Desai, who gave
me the chance to review this book. I had an exciting experience and
appreciate their efforts.

www.allitebooks.com

https://www.youtube.com/watch?v=kXKRU4CLJro
http://microgeodata.com/
http:///
http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can search, access, and read Packt's entire library of books.

Why Subscribe?
f Fully searchable across every book published by Packt
f Copy and paste, print, and bookmark content
f On demand and accessible via a web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access PacktLib
today and view 9 entirely free books. Simply use your login credentials for immediate access.

www.allitebooks.com

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com
http:///
http://www.allitebooks.org

i

Table of Contents
Preface vii
Chapter 1: Automating QGIS 1

Introduction 1
Installing QGIS for development 2
Using the QGIS Python console for interactive control 5
Using the Python ScriptRunner plugin 6
Setting up your QGIS IDE 8
Debugging QGIS Python scripts 13
Navigating the PyQGIS API 17
Creating a QGIS plugin 19
Distributing a plugin 22
Creating a standalone application 25
Storing and reading global preferences 27
Storing and reading project preferences 28
Accessing the script path from within your script 30

Chapter 2: Querying Vector Data 31
Introduction 31
Loading a vector layer from a file sample 32
Loading a vector layer from a spatial database 34
Examining vector layer features 36
Examining vector layer attributes 37
Filtering a layer by geometry 38
Filtering a layer by attributes 40
Buffering a feature intermediate 42
Measuring the distance between two points 44
Measuring the distance along a line sample 45

www.allitebooks.com

http:///
http://www.allitebooks.org

ii

Table of Contents

Calculating the area of a polygon 47
Creating a spatial index 48
Calculating the bearing of a line 49
Loading data from a spreadsheet 51

Chapter 3: Editing Vector Data 55
Introduction 56
Creating a vector layer in memory 56
Adding a point feature to a vector layer 57
Adding a line feature to a vector layer 59
Adding a polygon feature to a vector layer 60
Adding a set of attributes to a vector layer 62
Adding a field to a vector layer 63
Joining a shapefile attribute table to a CSV file 65
Moving vector layer geometry 67
Changing a vector layer feature's attribute 68
Deleting a vector layer feature 70
Deleting a vector layer attribute 71
Reprojecting a vector layer 72
Converting a shapefile to KML 73
Merging shapefiles 74
Splitting a shapefile 75
Generalizing a vector layer 76
Dissolving vector shapes 78
Performing a union on vector shapes 80
Rasterizing a vector layer 82

Chapter 4: Using Raster Data 85
Introduction 86
Loading a raster layer 87
Getting the cell size of a raster layer 89
Obtaining the width and height of a raster 90
Counting raster bands 91
Swapping raster bands 92
Querying the value of a raster at a specified point 93
Reprojecting a raster 94
Creating an elevation hillshade 96
Creating vector contours from elevation data 98
Sampling a raster dataset using a regular grid 100
Adding elevation data to line vertices using a digital elevation model 104

http:///

iii

Table of Contents

Creating a common extent for rasters 106
Resampling raster resolution 108
Counting the unique values in a raster 110
Mosaicing rasters 111
Converting a TIFF image to a JPEG image 112
Creating pyramids for a raster 113
Converting a pixel location to a map coordinate 114
Converting a map coordinate to a pixel location 116
Creating a KML image overlay for a raster 117
Classifying a raster 121
Converting a raster to a vector 122
Georeferencing a raster from control points 124
Clipping a raster using a shapefile 126

Chapter 5: Creating Dynamic Maps 129
Introduction 130
Accessing the map canvas 130
Changing the map units 131
Iterating over layers 132
Symbolizing a vector layer 133
Rendering a single band raster using a color ramp algorithm 135
Creating a complex vector layer symbol 137
Using icons as vector layer symbols 139
Creating a graduated vector layer symbol renderer 141
Creating a categorized vector layer symbol 142
Creating a map bookmark 144
Navigating to a map bookmark 146
Setting scale-based visibility for a layer 147
Using SVG for layer symbols 148
Using pie charts for symbols 150
Using the OpenStreetMap service 154
Using the Bing aerial image service 155
Adding real-time weather data from OpenWeatherMap 157
Labeling features 158
Changing map layer transparency 159
Adding standard map tools to the canvas 160
Using a map tool to draw points on the canvas 163
Using a map tool to draw polygons or lines on the canvas 165
Building a custom selection tool 168
Creating a mouse coordinate tracking tool 171

http:///

iv

Table of Contents

Chapter 6: Composing Static Maps 173
Introduction 173
Creating the simplest map renderer 174
Using the map composer 176
Adding labels to a map for printing 179
Adding a scale bar to the map 181
Adding a north arrow to the map 183
Adding a logo to the map 186
Adding a legend to the map 188
Adding a custom shape to the map 189
Adding a grid to the map 193
Adding a table to the map 195
Adding a world file to a map image 197
Saving a map to a project 199
Loading a map from a project 200

Chapter 7: Interacting with the User 201
Introduction 202
Using log files 202
Creating a simple message dialog 203
Creating a warning dialog 204
Creating an error dialog 205
Displaying a progress bar 206
Creating a simple text input dialog 208
Creating a file input dialog 209
Creating a combobox 211
Creating radio buttons 212
Creating checkboxes 214
Creating tabs 216
Stepping the user through a wizard 218
Keeping dialogs on top 221

Chapter 8: QGIS Workflows 223
Introduction 224
Creating an NDVI 224
Geocoding addresses 227
Creating raster footprints 229
Performing network analysis 233
Routing along streets 236
Tracking a GPS 238
Creating a mapbook 242

http:///

v

Table of Contents

Finding the least cost path 245
Performing nearest neighbor analysis 247
Creating a heat map 249
Creating a dot density map 253
Collecting field data 255
Computing road slope using elevation data 258
Geolocating photos on the map 262
Image change detection 266

Chapter 9: Other Tips and Tricks 269
Introduction 270
Creating tiles from a QGIS map 270
Adding a layer to geojson.io 274
Rendering map layers based on rules 276
Creating a layer style file 280
Using NULL values in PyQGIS 282
Using generators for layer queries 283
Using alpha values to show data density 284
Using the __geo_interface__ protocol 288
Generating points along a line 289
Using expression-based labels 291
Creating dynamic forms in QGIS 292
Calculating length for all selected lines 295
Using a different status bar CRS than the map 296
Creating HTML labels in QGIS 297
Using OpenStreetMap's points of interest in QGIS 300
Visualizing data in 3D with WebGL 302
Visualizing data on a globe 305

Index 309

http:///

http:///

vii

Preface
The open source geographic information system, QGIS, at version 2.6 now rivals even the
most expensive commercial GIS software in both functionality and usability. It is also a
showcase of the best geospatial open source technology available. It is not just a project in
itself, but the marriage of dozens of open source projects in a single, clean interface.

Geospatial technology is not just the combined application of technology to geography.
It is a symphony of geography, mathematics, computer science, statistics, physics, and
other fields. The underlying algorithms implemented by QGIS are so complex that only
a handful of people in the world can understand all of them. Yet, QGIS packages all this
complexity so well that school children, city managers, disease researchers, geologists,
and many other professionals wield this powerful software with ease to make decisions
that improve life on earth.

However, this book is about another feature of QGIS that makes it the best choice for
geospatial work. QGIS has one of the most deeply-integrated and well-designed Python
interfaces of any software, period. In the latest version, there is virtually no aspect of the
program that is off limits to Python, making it the largest geospatial Python library available.
Almost without exception, the Python API, called PyQGIS, is consistent and predictable.

This book exploits the best features of QGIS to demonstrate over 140 reusable recipes,
which you can use to automate workflows in QGIS or to build standalone GIS applications.
Most recipes are very compact, and even if you can't find the exact solution that you are
looking for, you should be able to get close. This book covers a lot of ground and pulls
together fragmented ideas and documentation scattered throughout the Internet as well
as the results of many hours of experimenting at the edges of the PyQGIS API.

http:///

Preface

viii

What this book covers
Chapter 1, Automating QGIS, provides a brief overview of the different ways in which you can
use Python with QGIS, including the QGIS Python console, standalone applications, plugins,
and the Script Runner plugin. This chapter also covers how to set and retrieve application
settings and a few other Python-specific features.

Chapter 2, Querying Vector Data, covers how to extract information from vector data without
changing the data using Python. The topics covered include measuring, loading data from a
database, filtering data, and other related processes.

Chapter 3, Editing Vector Data, introduces the topic of creating and updating data to add new
information. It also teaches you how to break datasets apart based on spatial or database
attributes as well as how to combine datasets. This chapter will also teach you how to convert
data into different formats, change projections, simplify data, and more.

Chapter 4, Using Raster Data, demonstrates 25 recipes to use and transform raster data in
order to create derivative products. This chapter highlights the capability of QGIS as a raster
processing engine and not just a vector GIS.

Chapter 5, Creating Dynamic Maps, transitions into recipes to control QGIS as a whole in
order to control map, project, and application-level settings. It includes recipes to access
external web services and build custom map tools.

Chapter 6, Composing Static Maps, shows you how to create printed maps using the QGIS
Map Composer. You will learn how to place reference elements on a map as well as design
elements such as logos.

Chapter 7, Interacting with the User, teaches you how to control QGIS GUI elements created
by the underlying Qt framework in order to create interactive input widgets for scripts, plugins,
or standalone applications.

Chapter 8, QGIS Workflows, contains more advanced recipes, which result in a finished
product or an extended capability. These recipes target actual tasks that geospatial analysts
or programmers encounter on the job.

Chapter 9, Other Tips and Tricks, contains interesting recipes that fall outside the scope of
the previous chapters. Many of these recipes demonstrate multiple concepts within a single
recipe, which you may find useful for a variety of tasks.

http:///

Preface

ix

What you need for this book
You will need the following software to complete all the recipes in this book; if a specific
version is not available, use the most recent version:

f QGIS 2.6

f Python 2.7.6 (should be included with QGIS itself)

f IBM Java 7 Dev Kit

f Eclipse Luna 4.4.x

f Google Earth 7.1.2.2041

Who this book is for
If you are a geospatial analyst who wants to learn more about automating everyday GIS tasks
or a programmer who is responsible for building GIS applications, this book is for you. Basic
knowledge of Python is essential and some experience with QGIS will be an added advantage.

The short, reusable recipes make concepts easy to understand. You can build larger
applications that are easy to maintain when they are put together.

Sections
In this book, you will find several headings that appear frequently (Getting ready, How to do it,
How it works, There's more, and See also).

To give clear instructions on how to complete a recipe, we use these sections as follows:

Getting ready
This section tells you what to expect in the recipe, and describes how to set up any software or
any preliminary settings required for the recipe.

How to do it…
This section contains the steps required to follow the recipe.

How it works…
This section usually consists of a detailed explanation of what happened in the
previous section.

http:///

Preface

x

There's more…
This section consists of additional information about the recipe in order to make the reader
more knowledgeable about the recipe.

See also
This section provides helpful links to other useful information for the recipe.

Conventions
In this book, you will find a number of styles of text that distinguish between different kinds of
information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"In the QGIS Python Console, we'll import the random module."

A block of code is set as follows:

proj = QgsProject.instance()
proj.title("My QGIS Project")
proj.title()
proj.writeEntry("MyPlugin", "splash", "Geospatial Python Rocks!")
proj.readEntry("MyPlugin", "splash", "Welcome!")[0]

Any command-line input or output is written as follows:

sudo easy_install PyPDF2

New terms and important words are shown in bold. Words that you see on the screen,
in menus or dialog boxes for example, appear in the text like this: "Enter information in the
form and click on the Send button."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

http:///

Preface

xi

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or may have disliked. Reader feedback is important for us to develop
titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased from
your account at http://www.packtpub.com. If you purchased this book elsewhere,
you can visit http://www.packtpub.com/support and register to have the files
e-mailed directly to you.

Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/diagrams used
in this book. The color images will help you better understand the changes in the output.
You can download this file from http://www.packtpub.com/sites/default/files/
downloads/4985OS_ColoredImages.pdf.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do happen.
If you find a mistake in one of our books—maybe a mistake in the text or the code—we would be
grateful if you would report this to us. By doing so, you can save other readers from frustration
and help us improve subsequent versions of this book. If you find any errata, please report them
by visiting http://www.packtpub.com/submit-errata, selecting your book, clicking on
the errata submission form link, and entering the details of your errata. Once your errata are
verified, your submission will be accepted and the errata will be uploaded on our website, or
added to any list of existing errata, under the Errata section of that title. Any existing errata can
be viewed by selecting your title from http://www.packtpub.com/support.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/sites/default/files/downloads/4985OS_ColoredImages.pdf
http://www.packtpub.com/sites/default/files/downloads/4985OS_ColoredImages.pdf
http://www.packtpub.com/submit-errata
http://www.packtpub.com/support
http:///

Preface

xii

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt,
we take the protection of our copyright and licenses very seriously. If you come across any
illegal copies of our works, in any form, on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with any
aspect of the book, and we will do our best to address it.

http:///

1

1
Automating QGIS

In this chapter, we will cover the following recipes:

f Installing QGIS for development

f Using the QGIS Python console

f Using Python's ScriptRunner plugin

f Setting up your QGIS IDE

f Debugging QGIS Python scripts

f Navigating the PyQGIS API

f Creating a QGIS plugin

f Distributing a plugin

f Building a standalone application

f Storing and reading global preferences

f Storing and reading project preferences

f Accessing the script path from within your script

Introduction
This chapter explains how to configure QGIS for automation using Python. In addition to
setting up QGIS, we will also configure the free Eclipse Integrated Development Environment
(IDE) with the PyDev plugin to make writing, editing, and debugging scripts easier. We will also
learn the basics of different types of QGIS automated Python scripts through the PyQGIS API.
Finally, we'll examine some core QGIS plugins that significantly extend the capability of QGIS.

http:///

Automating QGIS

2

Installing QGIS for development
QGIS has a set of Python modules and libraries that can be accessed from the Python console
within QGIS. However, they can also be accessed from outside QGIS to write standalone
applications. First, you must make sure that PyQGIS is installed for your platform, and then
set up some required system environment variables.

In this recipe, we will walk you through the additional steps required beyond the normal
QGIS installation to prepare your system for development. The steps for each platform are
provided, which also include the different styles of Linux package managers.

Getting ready
QGIS uses slightly different installation methods for Windows, GNU/Linux, and Mac OS X. The
Windows installers install everything you need for Python development, including Python itself.

However, on Linux distributions and Mac OS X, you may need to manually install the Python
modules for the system installation of Python. On Mac OS X, you can download installers for
some of the commonly used Python modules with QGIS from http://www.kyngchaos.
com/software/python.

How to do it
On Linux, you have the option to compile from the source or you can just specify the Python
QGIS interface to be installed through your package manager.

Installing PyQGIS using the Debian package manager
1. For Linux distributions based on the Debian Linux package manager, which includes

Ubuntu and Debian, use the following command in a shell:
sudo apt-get update

2. Next, install the QGIS, PyQGIS, and QGIS GRASS plugins:

sudo apt-get install qgis python-qgis qgis-plugin-grass

Installing PyQGIS using the RPM package manager
1. For Linux distributions based on the Red Hat Package Manager (RPM), first update

the package manager, as follows:
sudo yum update

2. Then, install the packages for the QGIS, PyQGIS, and QGIS GRASS plugins:

sudo yum install qgis qgis-python qgis-grass

http://www.kyngchaos.com/software/python
http://www.kyngchaos.com/software/python
http:///

Chapter 1

3

Setting the environment variables
Now, we must set the PYTHONPATH to the PyQGIS directory. At the same time, append the
path to this directory to the PATH variable so that you can use the PyQGIS modules with an
external IDE.

Setting the environment variables on Windows
1. Set the PYTHONPATH variable in a command prompt to the bin directory of the

QGIS installation:
set PYTHONPATH="C:\Program Files\QGIS Brighton\bin"

2. Next, append QGIS's bin directories to the system's PATH variable:

set PATH="C:\Program Files\QGIS Brighton\bin";"C:\Program Files\
QGIS Brighton\bin\apps\qgis\bin";%PATH%

Setting the environment variables on Linux
1. Set the PYTHONPATH variable in a command prompt to the bin directory of the

QGIS installation:
export PYTHONPATH=/usr/share/qgis/python

2. Now, append the QGIS shared library directory to the runtime search path. Note that
this location can vary depending on your particular system configuration:

export LD_LIBRARY_PATH=/usr/share/qgis/python

How it works…
The QGIS installation process and package managers set up the Python module's
configuration internal to QGIS. When you use the Python console inside QGIS, it knows where
all the PyQGIS modules are. However, if you want to use the PyQGIS API outside QGIS, using a
system Python installation on Windows or Linux, it is necessary to set some system variables
so that Python can find the required PyQGIS modules.

There's more…
This recipe uses the default QGIS paths on each platform. If you aren't sure which PyQGIS
path is for your system, you can figure this out from the Python console in QGIS.

Finding the PyQGIS path on Windows
The libraries on Windows are stored in a different location than in the case of other platforms.
To locate the path, you can check the current working directory of the Python console:

1. Start QGIS.

http:///

Automating QGIS

4

2. Select Python Console from the Plugins menu, which appears in the lower-right
corner of the QGIS application window, as shown in the following screenshot:

3. Use the os module to get the current working directory:
import os

os.getcwd()

4. Verify that the current working directory of the Python console is returned.

Finding the location of the QGIS Python installation on other
platforms
Perform the following steps to find the path needed for this recipe on all the platforms
besides Windows:

1. Start QGIS.

2. Start the QGIS Python Console.

3. Use the sys module to locate the PyQGIS path:
import sys

sys.path

4. Python will return a list of paths.

5. Find the path that ends in /python, which is the location of the Python installation
used by QGIS

http:///

Chapter 1

5

Using the QGIS Python console for
interactive control

The QGIS Python console allows you to interactively control QGIS. You can test out ideas or
just do some quick automation. The console is the simplest way to use the QGIS Python API.

How to do it…
In the following steps, we'll open the QGIS Python console, create a vector layer in memory,
and display it on the map:

1. Start QGIS.

2. From the Plugins menu, select Python Console.

3. The following code will create a point on the map canvas:

layer = QgsVectorLayer('Point?crs=epsg:4326', 'MyPoint' ,
'memory')
pr = layer.dataProvider()
pt = QgsFeature()
point1 = QgsPoint(20,20)
pt.setGeometry(QgsGeometry.fromPoint(point1))
pr.addFeatures([pt])
layer.updateExtents()
QgsMapLayerRegistry.instance().addMapLayers([layer])

How it works…
This example uses a memory layer to avoid interacting with any data on disk or a network
to keep things simple. Notice that when we declare the layer type, we add the parameter for
the Coordinate Reference System (CRS) as EPSG:4326. Without this declaration, QGIS will
prompt you to choose one. There are three parts or levels of abstraction to create even a
single point on the map canvas, as shown here:

f First, create a layer that is of the type geometry. Next, set up a data provider to
accept the data source.

f Then, create a generic feature object, followed by the point geometry.

f Next, stack the objects together and add them to the map.

The layer type is memory, meaning that you can define the geometry and the attributes inline
in the code rather than in an external data source. In this recipe, we just define the geometry
and skip the defining of any attributes.

http:///

Automating QGIS

6

Using the Python ScriptRunner plugin
The QGIS Python ScriptRunner plugin provides a middle ground for QGIS automation, between
the interactive console and the overhead of plugins. It provides a script management dialog
that allows you to easily load, create, edit, and run scripts for large-scale QGIS automation.

Getting ready
Install the ScriptRunner plugin using the QGIS plugin manager. Then, run the plugin from the
Plugin menu to open the ScriptRunner dialog. Configure a default editor to edit scripts using
the following steps:

1. Find the gear icon that represents the ScriptRunner Preferences settings dialog box
and click on it.

2. In the General Options section, check the Edit Scripts Using: checkbox.

3. Click on the … button to browse to the location of a text editor on your system.

4. Click on the Open button.

5. Click on the OK button in the Preferences dialog.

How to do it…
1. In the ScriptRunner dialog, click on the New Script icon, as shown in the

following screenshot:

2. Browse to the directory where you can save your script, name the script, and save it.

3. Verify that the new script is loaded in ScriptRunner.

4. Right-click (or control-click on a Mac) on the script name in ScriptRunner and select
Edit Script in External Editor.

5. In the editor, replace the template code with the following code:
from PyQt4.QtCore import *
from PyQt4.QtGui import *
from qgis.core import *
from qgis.gui import *

http:///

Chapter 1

7

def run_script(iface):
 layer = QgsVectorLayer('Polygon?crs=epsg:4326', 'Mississippi'
, "memory")
pr = layer.dataProvider()
 poly = QgsFeature()
 geom = QgsGeometry.fromWkt("POLYGON ((-88.82 34.99,-88.09
34.89,-88.39 30.34,-89.57 30.18,-89.73 31,-91.63 30.99,-90.87
32.37,-91.23 33.44,-90.93 34.23,-90.30 34.99,-88.82 34.99))")
 poly.setGeometry(geom)
 pr.addFeatures([poly])
 layer.updateExtents()
QgsMapLayerRegistry.instance().addMapLayers([layer])

6. Click on the Run Script icon, which is represented by a green-colored arrow.

7. Close the ScriptRunner plugin.

8. Verify that the memory layer polygon was added to the QGIS map, as shown in the
following screenshot:

How it works…
ScriptRunner is a simple but powerful idea. It allows you to build a library of automation
scripts and use them from within QGIS, but without the overhead of building a plugin or
a standalone application. All the Python and system path variables are set correctly and
inherited from QGIS; however, you must still import the QGIS and Qt libraries.

http:///

Automating QGIS

8

Setting up your QGIS IDE
The Eclipse IDE with the PyDev plugin is cross-platform, has advanced debugging tools,
and is free.

You can refer to http://pydev.org/manual_101_install.html
in order to install PyDev correctly.

This tool makes an excellent PyQGIS IDE. Eclipse allows you to have multiple Python
interpreters configured for different Python environments. When you install PyDev, it
automatically finds the installed system Python installations. On Windows, you must also
add the Python interpreter installed with PyQGIS. On all platforms, you must tell PyDev
where the PyQGIS libraries are.

Getting ready
This recipe uses Eclipse and PyDev. You can use the latest version of either package that is
supported by your operating system. All platforms besides Windows rely on the system Python
interpreter. So, there is an extra step in Windows to add the QGIS Python interpreter.

How to do it…
The following steps will walk you through how to add the QGIS-specific Python interpreter to
Eclipse in order to support the running standalone QGIS applications or to debug QGIS plugins.

Adding the QGIS Python interpreter on Windows
The process used to add the QGIS Python interpreter to Eclipse on Windows is different from
the process used on Linux. The following steps describe how to set up the interpreter on the
Windows version of Eclipse:

1. Open Eclipse.

2. From the Window menu, select Preferences. On OS X, you must click on the
Eclipse menu to find the preferences menu.

3. In the pane on the left-hand side of the Preferences window, click on the plus sign
next to PyDev.

4. From the list of PyDev preferences, select Interpreter Python.

5. In the pane labelled Python Interpreters, click on the New button.

http://pydev.org/manual_101_install.html
http:///

Chapter 1

9

6. In the Select interpreter dialog, name the interpreter PyQGIS.

7. Browse to the location of the QGIS Python interpreter called python.exe within
the bin folder of the QGIS program folder. On OS X and Linux, you use can use the
system Python installation. On Windows, Python is included with QGIS. The default
location on Windows is C:\Program Files\QGIS Brighton\bin\python.exe,
as shown in the following screenshot:

8. When you click on the OK button, Eclipse will attempt to automatically add every
Python library it finds to the Python path for this interpreter configuration. We need
to control which libraries are added to prevent conflicts. Click on the Deselect All
button and then click on OK:

www.allitebooks.com

http:///
http://www.allitebooks.org

Automating QGIS

10

9. Eclipse will issue a warning dialog because you haven't selected any core libraries.
Click on the Proceed anyways button, as shown here:

Adding the PyQGIS module paths to the interpreter
Apart from adding the Python interpreter, you must also add the module paths needed
by PyQGIS using the following steps. These steps will require you to switch back and forth
between QGIS and Eclipse:

1. Start QGIS.

2. Start the QGIS Python Console from the Plugins menu.

3. Use the sys module to locate the PyQGIS Python path, as described in the previous
recipe, Setting the environment variables:
import sys

sys.path

http:///

Chapter 1

11

4. We also want to add the PyQGIS API. Next, find that path using the QGIS
Python Console by typing the following command:
qgis

5. For each path in the returned lists, click on the New Folder button in Eclipse's
Libraries pane for your QGIS interpreter, and browse to that folder until all the paths
have been added. If a given folder does not exist on your system, simply ignore it, as
shown here:

6. Click on the OK button in the Preferences dialog.

http:///

Automating QGIS

12

Adding the PyQGIS API to the IDE
To take full advantage of Eclipse's features, including code completion, we will add the QGIS
and Qt4 modules to the PyQGIS Eclipse interpreter preferences. The following steps will allow
Eclipse to suggest the possible methods and properties of QGIS objects as you type; this
feature is known as autocomplete:

1. In the PyDev preferences for the PyQGIS Interpreter, select the Forced Builtins tab,
as shown in the following screenshot:

2. Click on the New button.

3. In the Builtin to add dialog, type qgis:

4. Click on the OK button.

http:///

Chapter 1

13

Adding environment variables
You will also need to create a PATH variable, which points to the QGIS binary libraries,
DLLs on Windows, and other libraries needed by QGIS at runtime on all platforms.

1. In the PyDev preferences dialog, ensure that the PyQGIS interpreter is selected in
the list of interpreters.

2. Select the Environment tab.

3. Click on the New button.

In the Name field, enter PATH.

1. For the Value field, add the path to the QGIS program directory and to any QGIS
directories containing binaries separated by a semicolon. The following is an
example from a Windows machine:

C:\Program Files\QGIS Brighton;C:\Program Files\QGIS Brighton\
bin;C:\Program Files\QGIS Brighton\apps\qgis\bin;C:\Program Files\
QGIS Brighton\apps\Python27\DLLs

How it works…
Eclipse and PyDev use only the information you provide to run a script in the Eclipse
workspace. This approach is very similar to the popular Python tool virtualenv, which provides
a clean environment when writing and debugging code to ensure that you don't waste time
troubleshooting issues caused by the environment.

Debugging QGIS Python scripts
In this recipe, we will configure Eclipse to debug QGIS Python scripts.

How to do it…
Both QGIS and Eclipse must be configured for debugging so that the two pieces of software
can communicate. Eclipse attaches itself to QGIS in order to give you insights into the Python
scripts running in QGIS. This approach allows you to run scripts in a controlled way that can
pause execution while you monitor the program to catch bugs as they occur.

Configuring QGIS
The following steps will add two plugins to QGIS, which allows Eclipse to communicate with QGIS.
One plugin, Plugin Reloader, allows you to reload a QGIS plugin into memory without restarting
QGIS for faster testing. The second plugin, Remote Debug, connects QGIS to Eclipse.

http:///

Automating QGIS

14

Remote Debug is an experimental plugin, so you must ensure that experimental plugins are
visible to the QGIS plugin manager in the list of available plugins.

1. Start QGIS.

2. Under the Plugins menu, select ManageandInstallPlugins…

3. In the left pane of the Plugins dialog, select the Settings tab.

4. Scroll down in the Settings window and ensure that the Show also experimental
plugins checkbox is checked, as shown in the following screesnhot:

5. Click on the OK button.

6. Select the tab labeled All in the pane on the left-hand side of the Plugins window.

7. In the Search dialog at the top of the window, search for Plugin Reloader.

8. Select Plugin Reloader from the search results and then click on the
Install Plugin button.

9. Next, search for the Remote Debug plugin and install it as well.

10. Finally, install the HelloWorld plugin as well.

http:///

Chapter 1

15

Configuring Eclipse
Now that QGIS is configured for debugging in Eclipse, we will configure Eclipse to complete
the debugging communication loop, as shown in the following steps:

1. Start Eclipse.
2. In the File menu, select New and then click on Project.
3. Select General and then click on Project from the NewProject dialog.
4. Click on the Next> button.
5. Give the project the name HelloWorldPlugin.
6. Click on the Finish button.
7. Select the new HelloWorldPlugin project in project explorer and select New;

then, click on Folder from the File menu.
8. In the New Folder dialog, click on the Advanced>> button.
9. Choose the Link to alternate location (Linked Folder) radio button.
10. Click on the Browse button and browse to the location of the HelloWorldPlugin

folder, as shown in the following screenshot:

You can find the location of the HelloWorld plugin from within
the QGIS plugin manager.

11. Click on the Finish button.

http:///

Automating QGIS

16

Testing the debugger
The previous parts of this recipe configured Eclipse and QGIS to work together in order to debug
QGIS plugins. In this section, we will test the configuration using the simplest possible plugin,
HelloWorld, to run Eclipse using the Debug Perspective. We will set up a break point in the
plugin to pause the execution and then monitor plugin execution from within Eclipse, as follows:

1. Under the HelloWorld folder, open the file HelloWorld.py.

2. From the Eclipse Window menu, select OpenPerspective and then click on Other…

3. From the OpenPerspective dialog, select Debug.

4. Click on the OK button.

5. Scroll to the first line of the hello_world() function and double-click on the
left-hand side of the line number to set a break point, which is displayed as a
green-icon:

6. From the Pydev menu, select Start Debug Server.

7. Verify that the server is running by looking for a message in the Debug console at the
bottom of the window, similar to the following:
Debug Server at port: 5678

8. Switch over to QGIS.

9. From the QGIS Plugins menu, select RemoteDebug and then select the
RemoteDebug command.

10. Verify that the QGIS status bar in the lower-left corner of the window displays the
following message:
Python Debugging Active

http:///

Chapter 1

17

11. Now, select HelloWorld from the QGIS Plugins menu and then select HelloWorld.

12. Switch back to Eclipse.

13. Verify that the hello_world() function is highlighted at the break point.

14. From the Run menu, select Resume.

15. Switch back to QGIS.

16. Verify that the HelloWorld dialog box has appeared.

How it works…
The RemoteDebug plugin acts as a client to the PyDev debug server in order to send the
Python script's execution status from QGIS to Eclipse. While it has been around for several
versions of QGIS now, it is still considered experimental.

The PluginReloader plugin can reset plugins that maintain state as they run. The HelloWorld
plugin is so simple that reloading is not needed to test it repeatedly. However, as you debug
more complex plugins, you will need to run it in order to reset it before each test. This method
is far more efficient and easier to use than closing QGIS, editing the plugin code, and
then restarting.

You can find out more about debugging QGIS, including using other
IDEs, at http://docs.qgis.org/2.6/en/docs/pyqgis_
developer_cookbook/ide_debugging.html.

Navigating the PyQGIS API
The QGIS Python API, also known as PyQGIS, allows you to control virtually every aspect of
QGIS. The ability to find the PyQGIS object you need in order to access a particular feature of
QGIS is critical to automation.

Getting ready
The PyQGIS API is based on the QGIS C++ API. The C++ API is kept up to date online and is
well-documented.

The QGIS API's web page is located at http://qgis.org/api/2.6/
modules.html.
Notice the version number, 2.2, in the URL. You can change this
version number to the version of QGIS you are using in order to find the
appropriate documentation.

http://docs.qgis.org/2.6/en/docs/pyqgis_developer_cookbook/ide_debugging.html
http://docs.qgis.org/2.6/en/docs/pyqgis_developer_cookbook/ide_debugging.html
http://qgis.org/api/2.6/modules.html
http://qgis.org/api/2.6/modules.html
http:///

Automating QGIS

18

The PyQGIS API documentation is not updated frequently because it is nearly identical to the
structure of the C++ API. However, the QGIS project on github.com maintains a list of all the
PyQGIS classes for the latest version. The PyQGIS 2.6 API is located at https://github.
com/qgis/QGIS/blob/master/python/qsci_apis/Python-2.6.api.

You can locate the documented class in the main C++ API and read about it. Then, look up the
corresponding Python module and class using the PyQGIS API listing. In most cases, the C++
API name for a class is identical in Python.

In this recipe, we'll locate the PyQGIS class that controls labels in QGIS.

How to do it…
We will perform the following steps to see in which PyQGIS module the QGIS Label object and
QgsLabel are located in:

1. Go to the QGIS API page at http://qgis.org/api/2.6/index.html.

2. Click on the Modules tab.

3. Click on the link QGIS Core Library.

4. Scroll down the list of modules in alphabetical order until you see QgsLabel.

5. Click on the QgsLabel link to access the label object documentation.

6. Now, go to the PyQGIS API listing at https://github.com/qgis/QGIS/blob/
master/python/qsci_apis/Python-2.6.api.

7. Scroll down the alphabetical class listing until you see
qgis.core.QgsLabel.LabelField.

How it works…
The QGIS API is divided into five distinct categories, as follows:

f Core

f GUI

f Analysis

f Map composer

f Network analysis

Most of the time, it's easy to find the class that targets the functionality you need with most
of QGIS being contained in the catch-all Core module. The more you use the API, the quicker
you'll be able to locate the objects you need for your scripts.

www.github.com
https://github.com/qgis/QGIS/blob/master/python/qsci_apis/Python-2.6.api
https://github.com/qgis/QGIS/blob/master/python/qsci_apis/Python-2.6.api
http://qgis.org/api/2.6/index.html
https://github.com/qgis/QGIS/blob/master/python/qsci_apis/Python-2.6.api
https://github.com/qgis/QGIS/blob/master/python/qsci_apis/Python-2.6.api
http:///

Chapter 1

19

There's more…
If you're having trouble locating a class containing the keyword you need, you can use the
search engine on the QGIS API website.

Beware, however, that the results returned by this search engine may
contain items you don't need and can even send you looking in the wrong
direction because of the similar keywords in different modules.

Creating a QGIS plugin
Plugins are the best way to extend QGIS, as they can be easily updated and reused by
other people.

Getting ready
The easiest approach to creating a plugin is to use the Plugin Builder plugin to jumpstart
development. You can find it in the main QGIS plugin repository and install it.

How to do it…
Perform the following steps to create a simple plugin that displays a dialog box with a
custom message:

1. Start QGIS.

2. From the Plugins menu, select Plugin Builder and then click on Plugin Builder under
the submenu.

3. In the QGIS Plugin Builder dialog, name the class MyPlugin.

4. Name the plugin My Plugin.

5. Type a short description, such as A demonstration on building a
QGIS Plugin.

6. Enter myplugin for the Module name.

7. Leave the default version numbers as they are.

8. Enter My Plugin in the Text for the menu item field.

9. Enter your name and email address for author information.

http:///

Automating QGIS

20

10. Ensure that the checkbox labelled Flag the plugin as experimental is checked,
as shown in the following screenshot:

11. Click on the OK button.

12. A file browser dialog will appear; you can choose a folder in which you want
to create your plugin. Select one of the folders called plugins within the python
folder in either the main user directory or the QGIS program directory. The following
examples are from a Windows machine. You should use the folder in your user
directory, which is the preferred place for third-party plugins. QGIS standard plugins
go in the main program directory:
C:\Documents and Settings\Joel\.qgis2\python\plugins

C:\Program Files\QGIS Brighton\apps\qgis\python\plugins

13. Close the follow-on Plugin Builder information dialog by clicking on the OK button.

14. Using the command prompt, navigate to your new plugin template folder.

15. Use the pyrcc4 command to compile the resource file:
pyrcc4 –o resources_rc.py resources.qrc

http:///

Chapter 1

21

If you are on Windows, it is important to use the OSGEO4W shell, which is
installed along with QGIS, for the Qt compilation tools to work properly.

16. In a text editor, such as Windows Notepad or vi on Linux, open the user interface
XML file named myplugin_dialog_base.ui.

17. Insert the following XMLfor a custom label near line 31 and just before the
last </widget> tag. Save the file after this edit:
<widget class="QLabel" name="label">
<property name="geometry">
<rect>
<x>120</x>
<y>80</y>
<width>201</width>
<height>20</height>
</rect>
</property>
<property name="font">

<pointsize>14</pointsize>

</property>
<property name="text">
<string>Geospatial Python Rocks!</string>
</property>
</widget>

18. Now, compile the ui file using the pyuic4 tool:
pyuic4 –o ui_myplugin.py ui_myplugin.ui

19. Your plugin is now ready. Restart QGIS.

20. Select My Plugin from the Plugins menu and then select My Plugin from the
submenu to see the dialog you created within QGIS, as shown here:

http:///

Automating QGIS

22

How it works…
This recipe shows you the bare bones needed to make a working plugin. Although we haven't
altered it, the code for the plugin's behavior is contained in myplugin.py. You can change
the icon and the GUI, and just recompile any time you want. Note that we must compile the
Qt4 portion of the plugin, which creates the dialog box. The entire QGIS GUI is built on the
Qt4 library, so the pyrrc4 compiler and pyuic4 is included to compile the GUI widgets.

You can download the completed plugin with both the source and compiled ui and resource
files at https://geospatialpython.googlecode.com/svn/MyPlugin.zip.

You can find out more about QGIS plugins, including the purpose of the
other files in the directory, in the QGIS documentation at http://docs.
qgis.org/testing/en/docs/pyqgis_developer_cookbook/
plugins.html.

There's more…
We have edited the myplugin_dialog_base.ui XML file by hand to make a small change.
However, there is a better way to use Qt Creator. Qt Creator is a fully-fledged, open source GUI
designer for the Qt framework. It is an easy what-you-see-is-what-you-get editor for Qt Widgets,
including PyQGIS plugins, which uses the included Qt Designer interface. On Windows, Qt
Designer can be found in the QGIS program directory within the bin directory. It is named
designer.exe. On other platforms, Qt Designer is included as part of the qt4-devel package.

You can also download Qt Creator, which includes Qt Designer, from
http://qt-project.org/downloads.

When you run the installer, you can uncheck all the installation options, except the Tools
category to install just the IDE.

Distributing a plugin
Distributing a QGIS plugin means placing the collection of files on a server as a ZIP file, with
a special configuration file, in order to allow the QGIS plugin manager to locate and install
the plugin. The QGIS project has an official repository, but third-party repositories are also
permitted. The official repository is very strict regarding how the plugin is uploaded. So, for
this recipe, we'll set up a simple third-party repository for a sample plugin and test it with the
QGIS plugin manager to avoid polluting the main QGIS repository with a test project.

https://geospatialpython.googlecode.com/svn/MyPlugin.zip
http://docs.qgis.org/testing/en/docs/pyqgis_developer_cookbook/plugins.html
http://docs.qgis.org/testing/en/docs/pyqgis_developer_cookbook/plugins.html
http://docs.qgis.org/testing/en/docs/pyqgis_developer_cookbook/plugins.html
http://qt-project.org/downloads
http:///

Chapter 1

23

Getting ready
In order to complete this recipe, you'll need a sample plugin and a web-accessible directory.
You'll also need a zip tool such as the free 7-zip program (http://www.7-zip.org/
download.html). You can use the MyPlugin example from the Creating a QGIS plugin recipe
as the plugin to distribute. For a web directory, you can use a Google Code repository, GitHub
repository, or an other online directory you can access. Code repositories work well because
they are a good place to store a plugin that you are developing.

How to do it…
In the following steps, we will package our plugin, create a server configuration file for it,
and place it on a server to create a QGIS plugin repository:

1. First, zip up the plugin directory to create a .ZIP file.

2. Rename the .ZIP file to contain the plugin's version number:
Myplugin.0.1.0.zip

3. Upload this file to a publicly accessible web directory.

4. Upload the icon.png file from your plugin directory to the web directory.

5. Next, customize a plugins.xml metadata file for your plugin. Most of the data
you need can be found in the metatdata.txt file in your plugin directory.
The following example provides some guidance:
<?xml version = '1.0' encoding = 'UTF-8'?>
<?xml-stylesheet type="text/xsl" href="" ?>
<plugins>
<pyqgis_plugin name="My Plugin"
 version="0.1.0"
 plugin_id="227">
<description>
<![CDATA[Demonstration of a QGIS Plugin]]>
</description>
<about></about>
<version>0.1.0</version>
<qgis_minimum_version>1.8.0</qgis_minimum_version>
<qgis_maximum_version>2.9.9</qgis_maximum_version>
<homepage>
<![CDATA[https://code.google.com/p/geospatialpython]]>
</homepage>
<file_name>MyPlugin.0.1.0.zip</file_name>
<icon>
http://geospatialpython.googlecode.com/svn/icon_227.png
</icon>
<author_name><![CDATA[Joel Lawhead]]></author_name>

http://www.7-zip.org/download.html
http://www.7-zip.org/download.html
http:///

Automating QGIS

24

<download_url> http://geospatialpython.googlecode.com/svn/
MyPlugin.0.1.0.zip
</download_url>
<uploaded_by><![CDATA[jll]]></uploaded_by>
<create_date>2014-05-16T15:31:19.824333</create_date>
<update_date>2014-07-15T15:31:19.824333</update_date>
<experimental>True</experimental>
<deprecated>False</deprecated>
<tracker>
<![CDATA[http://code.google.com/p/geospatialpython/issues]]>
</tracker>
<repository>
<![CDATA[https://geospatialpython.googlecode.com/svn/]]>
</repository>
<tags>
<![CDATA[development,debugging,tools]]></tags>
<downloads>0</downloads>
<average_vote>0</average_vote>
<rating_votes>0</rating_votes>
</pyqgis_plugin>
</plugins>

6. Upload the plugins.xml file to your web directory.
7. Now, start QGIS and launch the plugins manager by going to the Plugins menu

and selecting Manage and Install Plugins….
8. In the Settings tab of the plugins settings dialog, scroll down and click on

the Add… button.
9. Give the plugin a name and then add the complete URL to your plugins.xml

in the URL field.
10. Click on the OK button.
11. To make things easier, disable the other repositories by selecting the repository

name, clicking on the Edit button, and unchecking the Enable checkbox.
12. Click on the OK button.
13. Click on the Not Installed tab.
14. Your test plugin should be the only plugin listed, so select it from the list.
15. Click on the Install Plugin button in the bottom-right corner of the window.
16. Click on the Close button.
17. Go to the Plugins menu and select your plugin to ensure that it works.

How it works…
The QGIS repository concept is simple and effective. The plugins.xml file contains a
download_url tag that points to a ZIP file plugin on the same server or on a different server.
The name attribute of the pyqgis_plugin tag is what appears in the QGIS plugin manager.

http:///

Chapter 1

25

Creating a standalone application
QGIS is a complete desktop GIS application. However, with PyQGIS, it can also be a
comprehensive geospatial Python library to build standalone applications. In this recipe,
we will build a simple standalone script that creates a map with a line on it.

Getting ready
All you need to do to get ready is ensure that you have configured Eclipse and PyDev for
PyQGIS development, as described in the Setting up your QGIS IDE recipe.

How to do it…
In PyDev, create a new project called MyMap with a Python script called MyMap.py,
as follows:

1. In the Eclipse File menu, select New and then click on PyDev Project.

2. In the PyDev project's Name field, enter MyMap.

3. Next, select the Python radio button from the Project Type list.

4. From the Interpreter pull-down menu, select PyQGIS.

5. Leave the radio button checked for Add project directory to the
PYTHONPATH.

6. Click on the Finish button.

7. Now, select the project in the PyDev package explorer.

8. From the File menu, select New and then click on File.

9. Name the file myMap.py.

10. Click on the Finish button.

11. Add the following code to the file that is open in the editor:
from qgis.core import *
from qgis.gui import *
from qgis.utils import *
from PyQt4.QtCore import *
from PyQt4.QtGui import *

app = QgsApplication([], True)
app.setPrefixPath("C:/Program Files/QGIS Brighton/apps/qgis",
True)
app.initQgis()
canvas = QgsMapCanvas()
canvas.setWindowTitle("PyQGIS Standalone Application Example")

http:///

Automating QGIS

26

canvas.setCanvasColor(Qt.white)
layer = QgsVectorLayer('LineString?crs=epsg:4326', 'MyLine' ,
"memory")
pr = layer.dataProvider()
linstr = QgsFeature()
geom = QgsGeometry.fromWkt("LINESTRING (1 1, 10 15, 40 35)")
linstr.setGeometry(geom)
pr.addFeatures([linstr])
layer.updateExtents()
QgsMapLayerRegistry.instance().addMapLayer(layer)
canvas.setExtent(layer.extent())
canvas.setLayerSet([QgsMapCanvasLayer(layer)])
canvas.zoomToFullExtent()
canvas.freeze(True)
canvas.show()
canvas.refresh()
canvas.freeze(False)
canvas.repaint()
exitcode = app._exec()
QgsApplication.exitQgis()
sys.exit(exitcode)

12. From the Run menu, select Run.

13. Verify that the standalone QGIS map appears in a new window, as shown here:

http:///

Chapter 1

27

How it works…
This recipe uses as little code as possible to create a map canvas and to draw a line in order
to demonstrate the skeleton of a standalone application, which can be built up further to add
more functionality.

To create the line geometry, we use Well-Known Text (WKT), which provides a simple way to
define the line vertices without creating a bunch of objects. Towards the end of this code, we
use a workaround for a bug in QGIS 2.2 by freezing the canvas. When the canvas is frozen,
it does not respond to any events which, in the case of this bug, prevent the canvas from
updating. Once we refresh the canvas, we unfreeze it and then repaint it to draw the line.
This workaround will still work in QGIS 2.4 and 2.6 but is not necessary.

There's more...
The standalone application can be compiled into an executable that can be distributed
without installing QGIS, using py2exe or PyInstaller:

You can find our more about py2exe at http://www.py2exe.org.

You can learn more about PyInstaller at https://github.com/pyinstaller/
pyinstaller/wiki.

Storing and reading global preferences
PyQGIS allows you to store application-level preferences and retrieve them.

Getting ready
This code can be run in any type of PyQGIS application. In this example, we'll run it in the QGIS
Python console for an easy demonstration. In this example, we'll change the default CRS for
new projects and then read the value back from the global settings.

How to do it…
In this recipe, we will set the default projection used by QGIS for new projects using the
Python console:

1. Start QGIS.

2. From the Plugins menu, select Python Console.

http://www.py2exe.org
https://github.com/pyinstaller/pyinstaller/wiki
https://github.com/pyinstaller/pyinstaller/wiki
http:///

Automating QGIS

28

3. We will need to import the Qt core library, as follows:
from PyQt4.QtCore import *

4. In the Python console, run the following code:

settings = QSettings(QSettings.NativeFormat, QSettings.UserScope,
'QuantumGIS', 'QGis')
settings.setValue('/Projections/projectDefaultCrs', 'EPSG:2278')
settings.value('/Projections/projectDefaultCrs')

How it works…
This API is actually the Qt API that QGIS relies on for settings. In the QSettings object,
we specify the NativeFormat for storage, which is the default format for the platform. On
Windows, the format is the registry; on OS X, it's the plist files; and on Unix, it's the text files.
The other QSettings parameters are the organization and the application, often used as a
hierarchy to store information. Note that even after changing these settings, it may be that
none of the properties in the QGIS GUI change immediately. In some cases, such as Windows,
the system must be restarted for registry changes to take effect. However, everything will work
programmatically.

There's more…
If you want to see all the options that you can change, call the allKeys() method of
QSettings; this will return a list of all the setting names.

Storing and reading project preferences
The QGIS application settings are stored using the Qt API. However, QGIS project settings have
their own object. In this recipe, we'll set and read the project title and then set and read a
custom preference for a plugin.

Getting ready
We are going to set a plugin preference using the sample plugin created in the previous
recipe, Creating a QGIS plugin. You can substitute the name of any plugin you want, however.
We will also run this recipe in the QGIS Python console for quick testing, but this code will
normally be used in a plugin.

http:///

Chapter 1

29

How to do it…
In this recipe, we will first write and then read the title of the current project. Then, we will
create a custom value for a plugin called splash, which can be used for the plugin startup
splash screen if desired.

1. Start QGIS.

2. From the Plugins menu, select Python Console.

3. In the console, run the following code:
proj = QgsProject.instance()
proj.title("My QGIS Project")
proj.title()
proj.writeEntry("MyPlugin", "splash", "Geospatial Python Rocks!")
proj.readEntry("MyPlugin", "splash", "Welcome!")[0]

How it works…
In the first two lines, we change the title of the current active project and then echo it back.
In the next set of two lines, we set up and read custom settings for a plugin. Notice that the
readEntry() method returns a tuple with the desired text and a boolean, acknowledging
that the value is set. So, we extract the first index to get the text. The read method also allows
the default text in case that property is not set (rather than throw an exception which must
be handled) as well as the boolean value False to inform you that the default text was used
because the property was not set. The values you set using this method are stored in the
project's XML file when you save it.

There's more…
The QgsProject object has a number of methods and properties that may be useful.
The QGIS API documentation details all of them at http://qgis.org/api/2.6/
classQgsProject.html.

www.allitebooks.com

http://qgis.org/api/2.6/classQgsProject.html
http://qgis.org/api/2.6/classQgsProject.html
http:///
http://www.allitebooks.org

Automating QGIS

30

Accessing the script path from within
your script

Sometimes, you need to know exactly where the current working directory is so that you can
access external resources.

Getting ready
This code uses the Python built-in library and can be used in any context. We will run this
recipe in the QGIS Python console.

How to do it…
In this recipe, we will get the current working directory of the Python console, which can
change with configuration:

1. Start QGIS.

2. From the Plugins menu, select Python Console.

3. In the Python console, run the following code:
import os
os.getcwd()

How it works…
QGIS relies heavily on file system paths to run the application and to manage external
data. When writing cross-platform QGIS code, you cannot assume the working directory
of your script.

There's more…
On his blog, one of the QGIS developers has an excellent post about the various aspects
of path variables in QGIS beyond just the execution directory; you can check it out at
http://spatialgalaxy.net/2013/11/06/getting-paths-with-pyqgis/.

http://spatialgalaxy.net/2013/11/06/getting-paths-with-pyqgis/
http:///

31

2
Querying Vector Data

In this chapter, we will cover the following recipes:

f Loading a vector layer from a file

f Loading a vector layer from a geodatabase

f Examining vector layer features

f Examining vector layer attributes

f Filtering a layer by geometry

f Filtering a layer by attributes

f Buffering a feature

f Measuring the distance between two points

f Measuring the distance along a line

f Calculating the area of a polygon

f Creating a spatial index

f Calculating the bearing of a line

Introduction
This chapter demonstrates how to work with vector data through Python in QGIS. We will first
work through loading different sources of vector data. Next, we'll move on to examining the
contents of the data. Then, we'll spend the remainder of the chapter performing spatial and
database operations on vector data.

http:///

Querying Vector Data

32

Loading a vector layer from a file sample
This recipe describes the most common type of data used in QGIS, a file. In most cases,
you'll start a QGIS project by loading a shapefile.

Getting ready
For ease of following the examples in this book, it is recommended that you create a directory
called qgis_data in your root or user directory, which provides a short pathname. This setup
will help prevent the occurrence of any frustrating errors resulting from path-related issues
on a given system. In this recipe and others, we'll use a point shapefile of New York City
museums, which you can download from https://geospatialpython.googlecode.
com/svn/NYC_MUSEUMS_GEO.zip.

Unzip this file and place the shapfile's contents in a directory named nyc within your
qgis_data directory.

How to do it...
Now, we'll walk through the steps of loading a shapefile and adding it to the map, as follows:

1. Start QGIS.

2. From the Plugins menu, select Python Console.

3. In the Python console, create the layer:
layer = QgsVectorLayer("/qgis_data/nyc/NYC_MUSEUMS_GEO.shp",
"New York City Museums", "ogr")

4. Next, ensure that the layer was created as expected:
if not layer.isValid():

 print "Layer %s did not load" % layer.name()

5. Finally, add the layer to the layer registry:

QgsMapLayerRegistry.instance().addMapLayers([layer])

https://geospatialpython.googlecode.com/svn/NYC_MUSEUMS_GEO.zip
https://geospatialpython.googlecode.com/svn/NYC_MUSEUMS_GEO.zip
http:///

Chapter 2

33

Verify that your QGIS map looks similar to the following image:

How it works...
The QgsVectorLayer object requires the location of the file, a name for the layer in QGIS,
and a data provider that provides the right parser and capabilities managed for the file format.
Most vector layers are covered by the ogr data provider, which attempts to guess the format
from the file name extension in order to use the appropriate driver. The formats available
with this data provider are listed at http://www.gdal.org/ogr_formats.html.

Once we have created the QgsVector object, we do a quick check using the layer.
isValid() method to see whether the file was loaded properly. We won't use this method
in every recipe to keep the code short, but this method is often very important. It's usually the
only indication that something has gone wrong. If you have a typo in the filename or you try to
connect to an online data source but have no network connection, you won't see any errors.
Your first indication will be another method failing further into your code, which
will make tracking down the root cause more difficult.

http://www.gdal.org/ogr_formats.html
http:///

Querying Vector Data

34

In the last line, we add the vector layer to the QgsMapLayerRegistry, which makes it
available on the map. The registry keeps track of all the layers in the project. The reason
why QGIS works this way is so you can load multiple layers, style them, filter them, and do
other operations before exposing them to the user on the map.

Loading a vector layer from a spatial
database

The PostGIS geodatabase is based on the open source Postgres database. The geodatabase
provides powerful geospatial data management and operations. PyQGIS fully supports
PostGIS as a data source. In this recipe, we'll add a layer from a PostGIS database.

Getting ready
Installing and configuring PostGIS is beyond the scope of this book, so we'll use a sample
geospatial database interface from the excellent service www.QGISCloud.com. www.
QGISCloud.com has its own Python plugin called QGIS Cloud. You can sign up for free
and create your own geodatabase online by following the site's instructions, or you can
use the example used in the recipe.

How to do it...
Perform the following steps to load a PostGIS layer into a QGIS map:

1. First, create a new DataSourceURI instance:
uri = QgsDataSourceURI()

2. Next, create the database connection string:
uri.setConnection("spacialdb.com", "9999", "lzmjzm_hwpqlf",
"lzmjzm_hwpqlf", "0e9fcc39")

3. Now, describe the data source:
uri.setDataSource("public", "islands", "wkb_geometry", "")

4. Then, create the layer:
layer = QgsVectorLayer(uri.uri(), "Islands", "postgres")

www.QGISCloud.com
www.QGISCloud.com
www.QGISCloud.com
http:///

Chapter 2

35

5. Just to be safe, make sure everything works:
if not layer.isValid():

 print "Layer %s did not load" % layer.name()

6. Finally, add the layer to the map if everything is okay:

QgsMapLayerRegistry.instance().addMapLayers([layer])

You can see the islands layer in the map, as shown in the following screenshot:

How it works...
PyQGIS provides an object in the API to create a PostGIS data source in
QgsDataSourceURI(). The connection string parameters in the second line of code
are the database server, port, database name, user, and password. In the example, the
database, username, and password are randomly generated unique names. The data source
parameters are the schema name, table name, geometry column, and an optional SQL WHERE
to subset the layer as needed.

http:///

Querying Vector Data

36

Examining vector layer features
Once a vector layer is loaded, you may want to investigate the data. In this recipe, we'll load a
vector point layer from a shapefile and take a look at the x and y values of the first point.

Getting ready
We'll use the same New York City Museums layer from Loading a vector layer from a file
recipe in this chapter. You can download the layer from https://geospatialpython.
googlecode.com/svn/NYC_MUSEUMS_GEO.zip.

Unzip that file and place the shapefile's contents in a directory named nyc within your
qgis_data directory, within your root or home directory.

How to do it...
In this recipe, we will load the layer, get the features, grab the first feature, obtain its
geometry, and take a look at the values for the first point:

1. First, load the layer:
layer =
QgsVectorLayer("/qgis_data/nyc/NYC_MUSEUMS_GEO.shp", "New
York City Museums", "ogr")

2. Next, get an iterator of the layer's features:
features = layer.getFeatures()

3. Now, get the first feature from the iterator:
f = features.next()

4. Then, get the feature's geometry:
g = f.geometry()

5. Finally, get the point's values:
g.asPoint()

6. Verify that the Python console output is similar to the following QgsPoint object:

(-74.0138,40.7038)

https://geospatialpython.googlecode.com/svn/NYC_MUSEUMS_GEO.zip
https://geospatialpython.googlecode.com/svn/NYC_MUSEUMS_GEO.zip
http:///

Chapter 2

37

How it works...
When you access a layer's features or geometry using the previously demonstrated methods,
PyQGIS returns a Python iterator. The iterator data structure allows Python to work efficiently
with very large data sets without keeping the entire dataset in memory.

Examining vector layer attributes
A true GIS layer contains both spatial geometry and database attributes. In this recipe, we'll
access a vector point layer's attributes in PyQGIS. We'll use a file-based layer from a shapefile,
but once a layer is loaded in QGIS, every vector layer works the same way.

Getting ready
Once again, we'll use the same New York City Museums layer from the Loading a
vector layer from a file recipe in this chapter. You can download the layer from
https://geospatialpython.googlecode.com/svn/NYC_MUSEUMS_GEO.zip.

Unzip that file and place the shapefile's contents in a directory named nyc within your
qgis_data directory, within your root or home directory.

How to do it...
In the following steps, we'll load the layer, access the features iterator, grab the first
feature, and then view the attributes as a Python list:

1. First, load the shapefile as a vector layer:
layer =
QgsVectorLayer("/qgis_data/nyc/NYC_MUSEUMS_GEO.shp", "New
York City Museums", "ogr")

2. Next, get the features iterator:
features = layer.getFeatures()

3. Now, grab the first feature from the iterator:
f = features.next()

4. Finally, examine the attributes as a Python list:
f.attributes()

5. Verify that the Python console's output resembles the following list:
[u'Alexander Hamilton U.S. Custom House', u'(212) 514-3700',
u'http://www.oldnycustomhouse.gov/', u'1 Bowling Grn', NULL, u'New
York', 10004.0, -74.013756, 40.703817]

https://geospatialpython.googlecode.com/svn/NYC_MUSEUMS_GEO.zip
http:///

Querying Vector Data

38

How it works...
Examining attributes is consistent with accessing the point values of a layer's geometry.
Note that all string attribute values are returned as unicode strings, which is the case for all
QGIS strings. Unicode allows the internationalization (that is, translation) of QGIS for other
languages besides English.

There's more...
The attribute values don't mean much without the knowledge of what those values represent.
You will also need to know the fields. You can get the fields as a list by accessing the fields
iterator and calling the name() method for each field. This operation is easily accomplished
with a Python list comprehension:

[c.name() for c in f.fields().toList()]

This example returns the following result:

[u'NAME', u'TEL', u'URL', u'ADRESS1', u'ADDRESS2', u'CITY', u'ZIP',
u'XCOORD', u'YCOORD']

Filtering a layer by geometry
In this recipe, we'll perform a spatial operation to select a subset of a point layer based on the
points contained in an overlapping polygon layer. We'll use shapefiles in both cases, with one
being a point layer and the other a polygon. This kind of subset is one of the most common
GIS operations.

Getting ready
We will need two new shapefiles that have not been used in previous recipes. You can
download the point layer from https://geospatialpython.googlecode.com/files/
MSCities_Geo_Pts.zip.

Similarly, you can download the geometry layer from https://geospatialpython.
googlecode.com/files/GIS_CensusTract.zip.

Unzip these shapefiles and place them in a directory named ms within your qgis_data
directory, within your root or home directory.

https://geospatialpython.googlecode.com/files/MSCities_Geo_Pts.zip
https://geospatialpython.googlecode.com/files/MSCities_Geo_Pts.zip
https://geospatialpython.googlecode.com/files/GIS_CensusTract.zip
https://geospatialpython.googlecode.com/files/GIS_CensusTract.zip
http:///

Chapter 2

39

How to do it...
In this recipe, we will perform several steps to select features in the point layer that fall
within the polygon layer, as follows:

1. First, load the point layer:
lyrPts = QgsVectorLayer("/qgis_data/ms/MSCities_Geo_Pts.shp",
"MSCities_Geo_Pts", "ogr")

2. Next, load the polygon layer:
lyrPoly = QgsVectorLayer("/qgis_data/ms/GIS_CensusTract_poly.shp",
"GIS_CensusTract_poly", "ogr")

3. Add the layers to the map using a list:
QgsMapLayerRegistry.instance().addMapLayers([lyrPts,lyrPoly])

4. Access the polygon layer's features:
ftsPoly = lyrPoly.getFeatures()

5. Now, iterate through the polygon's features:
for feat in ftsPoly:

6. Grab each feature's geometry:
 geomPoly = feat.geometry()

7. Access the point features and filter the point features by the polygon's bounding box:
 featsPnt = lyrPts.getFeatures(QgsFeatureRequest().
setFilterRect(geomPoly.boundingBox()))

8. Iterate through each point and check whether it's within the polygon itself:
 for featPnt in featsPnt:

 if featPnt.geometry().within(geomPoly):

9. If the polygon contains the point, print the point's ID and select the point:
 print featPnt.id()

 lyrPts.select(featPnt.id())

10. Now, set the polygon layer as the active map layer:
iface.setActiveLayer(lyrPoly)

11. Zoom to the polygon layer's maximum extent:

iface.zoomToActiveLayer()

http:///

Querying Vector Data

40

Verify that your map looks similar to the following image:

How it works...
While QGIS has a number of tools for spatial selection, PyQGIS doesn't have a dedicated API
for these types of functions. However, there are just enough methods in the API, thanks to
the underlying ogr/GEOS library, that you can easily create your own spatial filters for two
layers. Step 7 isn't entirely necessary, but we gain some efficiency using the bounding box
of the polygon to limit the number of point features we're examining. Calculations involving
rectangles are far quicker than detailed point-in-polygon queries. So, we quickly reduce the
number of points we need to iterate through for the more expensive spatial operations.

Filtering a layer by attributes
In addition to the spatial queries outlined in the previous recipe, we can also subset a layer
by its attributes. This type of query resembles a more traditional relational database query
and in fact uses SQL statements. In this recipe, we will filter a point shapefile-based layer
by an attribute.

http:///

Chapter 2

41

Getting ready
We'll use the same New York City Museums layer used in the previous recipes in this chapter.
You can download the layer from https://geospatialpython.googlecode.com/svn/
NYC_MUSEUMS_GEO.zip.

Unzip that file and place the shapefile's contents in a directory named nyc within your
qgis_data directory, within your root or home directory.

How to do it...
In this recipe, we'll filter the layer by an attribute, select the filtered features, and zoom to
them, as follows:

1. First, we load the point layer:
lyrPts = QgsVectorLayer("/qgis_data/nyc/NYC_MUSEUMS_GEO.shp",
"Museums", "ogr")

2. Next, we add the layer to the map in order to visualize the points:
QgsMapLayerRegistry.instance().addMapLayers([lyrPts])

3. Now, we filter the point layer to points with attributes that match a specific zip code:
selection = lyrPts.getFeatures(QgsFeatureRequest().
setFilterExpression(u'"ZIP" = 10002'))

4. Then, we use a list comprehension to create a list of feature IDs that are fed to the
feature selection method:
lyrPts.setSelectedFeatures([s.id() for s in selection])

5. Finally, we zoom to the selection:

iface.mapCanvas().zoomToSelected()

Verify that the point layer has three selected features, shown in yellow.

How it works...
This recipe takes advantage of QGIS filter expressions, highlighted in step 3. These filter
expressions are a subset of SQL. The QgsFeatureRequest handles the query expression
as an optional argument to return an iterator with just the features you want. These queries
also allow some basic geometry manipulation. This recipe also introduces the mapCanvas().
zoomToSelected() method, which is a convenient way to set the map's extent to the
features of interest.

https://geospatialpython.googlecode.com/svn/NYC_MUSEUMS_GEO.zip
https://geospatialpython.googlecode.com/svn/NYC_MUSEUMS_GEO.zip
http:///

Querying Vector Data

42

Buffering a feature intermediate
Buffering a feature creates a polygon around a feature as a selection geometry or just a
simple visualization. In this recipe, we'll buffer a point in a point feature and add the returned
polygon geometry to the map.

Getting ready
Once again, we'll use the same New York City Museums layer. You can download the layer
from https://geospatialpython.googlecode.com/svn/NYC_MUSEUMS_GEO.zip.

Unzip that file and place the shapefile's contents in a directory named nyc within your
qgis_data directory, within your root or home directory.

How to do it...
This recipe involves both a spatial operation and multiple visualizations. To do this,
perform the following steps:

1. First, load the layer:
lyr = QgsVectorLayer("/qgis_data/nyc/NYC_MUSEUMS_GEO.shp",
"Museums", "ogr")

2. Next, visualize the layer on the map:
QgsMapLayerRegistry.instance().addMapLayers([lyr])

3. Access the layer's features:
fts = lyr.getFeatures()

4. Grab the first feature:
ft = fts.next()

5. Select this feature:
lyr.setSelectedFeatures([ft.id()])

6. Create the buffer:
buff = ft.geometry().buffer(.2,8)

7. Set up a memory layer for the buffer's geometry:
buffLyr = QgsVectorLayer('Polygon?crs=EPSG:4326', 'Buffer' ,
'memory')

8. Access the layer's data provider:
pr = buffLyr.dataProvider()

https://geospatialpython.googlecode.com/svn/NYC_MUSEUMS_GEO.zip
http:///

Chapter 2

43

9. Create a new feature:
b = QgsFeature()

10. Set the feature's geometry with the buffer geometry:
b.setGeometry(buff)

11. Add the feature to the data provider:
pr.addFeatures([b])

12. Update the buffer layer's extents:
buffLyr.updateExtents()

13. Set the buffer layer's transparency so that you can see other features as well:
buffLyr.setLayerTransparency(70)

14. Add the buffer layer to the map:

QgsMapLayerRegistry.instance().addMapLayers([buffLyr])

Verify that your map looks similar to this screenshot:

http:///

Querying Vector Data

44

How it works...
The interesting portion of this recipe starts with Step 6, which creates the buffer geometry.
The parameters for the buffer() method are the distance in map units for the buffer
followed by the number of straight line segments used to approximate curves. The more
segments you specify, the more the buffer appears like a circle. However, more segments
equals greater geometric complexity and therefore slower rendering, as well as slower
geometry calculations. The other interesting feature of this recipe is Step 13, in which we set
the transparency of the layer to 70 percent. We also introduce the way to create a new layer,
which is done in memory. Later chapters will go more in depth on creating data.

Measuring the distance between two points
In the QgsDistanceArea object, PyQGIS has excellent capabilities for measuring the
distance. We'll use this object for several recipes, starting with measuring the distance
between two points.

Getting ready
If you don't already have the New York City Museums layer used in the previous recipes in this
chapter, download the layer from https://geospatialpython.googlecode.com/svn/
NYC_MUSEUMS_GEO.zip.

Unzip that file and place the shapefile's contents in a directory named nyc within your
qgis_data directory, within your root or home directory.

How to do it...
In the following steps, we'll extract the first and last points in the layer's point order and
measure their distance:

1. First, import the library that contains the QGIS contents:
from qgis.core import QGis

2. Then, load the layer:
lyr = QgsVectorLayer("/qgis_data/nyc/NYC_MUSEUMS_GEO.shp",
"Museums", "ogr")

3. Access the features:
fts = lyr.getFeatures()

4. Get the first feature:
first = fts.next()

https://geospatialpython.googlecode.com/svn/NYC_MUSEUMS_GEO.zip
https://geospatialpython.googlecode.com/svn/NYC_MUSEUMS_GEO.zip
http:///

Chapter 2

45

5. Set a placeholder for the last feature:
last = fts.next()

6. Iterate through the features until you get the last one:
for f in fts:

 last = f

7. Create a measurement object:
d = QgsDistanceArea()

8. Measure the distance:
m = d.measureLine(first.geometry().asPoint(),
last.geometry().asPoint())

9. Convert the measurement value from decimal degrees to meters:
d.convertMeasurement(m, 2, 0, False)

10. Ensure that your Python console output looks similar to this tuple:

(4401.1622240174165, 0)

How it works...
The QgsDistanceArea object accepts different types of geometry as input. In this case, we
use two points. The map units for this layer are in decimal degrees, which isn't meaningful for
a distance measurement. So, we use the QgsDistanceArea.convertMeasurement()
method to covert the output to meters. The parameters for the method are the measurement
output, the input units (in decimal degrees), the output units (meters), and a boolean to denote
whether this conversion is an area calculation verses a linear measurement.

The returned tuple is the measurement value and the units. The value 0 tells us that the
output is in meters.

Measuring the distance along a line sample
In this recipe, we'll measure the distance along a line with multiple vertices.

Getting ready
For this recipe, we'll use a line shapefile with two features. You can download the shapefile
as a .ZIP file from https://geospatialpython.googlecode.com/svn/paths.zip

Unzip the shapefile into a directory named qgis_data/shapes within your root or
home directory.

https://geospatialpython.googlecode.com/svn/paths.zip
http:///

Querying Vector Data

46

How to do it...
The steps for this recipe are fairly straightforward. We'll extract the geometry from the first
line feature and pass it to the measurement object, as shown here:

1. First, we must load the QGIS constants library:
from qgis.core import QGis

2. Load the line layer:
lyr = QgsVectorLayer("/qgis_data/shapes/paths.shp", "Route",
"ogr")

3. Grab the features:
fts = lyr.getFeatures()

4. Get the first feature:
route = fts.next()

5. Create the measurement object instance:
d = QgsDistanceArea()

6. Then, we must configure the QgsDistanceArea object to use the ellipsoidal mode for
accurate measurements in meters:
d.setEllipsoidalMode(True)

7. Pass the line's geometry to the measureLine method:
m = d.measureLine(route.geometry().asPolyline())

8. Convert the measurement output to miles:

d.convertMeasurement(m, QGis.Meters, QGis.NauticalMiles, False)

Ensure that your output looks similar to the following:

(2314126.583384674, 7)

How it works...
The QgsDistanceArea object can perform any type of measurement, based on the method you
call. When you convert the measurement from meters (represented by 0) to miles (identified
by the number 7), you will get a tuple with the measurement in miles and the unit identifier.
The QGIS API documentation shows the values for all the unit constants

(http://qgis.org/api/classQGis.html).

http://qgis.org/api/classQGis.html
http:///

Chapter 2

47

Calculating the area of a polygon
This recipe simply measures the area of a polygon.

Getting ready
For this recipe, we'll use a single-feature polygon shapefile, which you can download from
https://geospatialpython.googlecode.com/files/Mississippi.zip

Unzip the shapefile and put it in a directory named qgis_data/ms within your root or
home directory.

How to do it...
Perform the following steps to measure the area of a large polygon:

1. First, import the QGIS constants library, as follows:
from qgis.core import QGis

2. Load the layer:
lyr = QgsVectorLayer("/qgis_data/ms/mississippi.shp",
"Mississippi", "ogr")

3. Access the layer's features:
fts = lyr.getFeatures()

4. Get the boundary feature:
boundary = fts.next()

5. Create the measurement object instance:
d = QgsDistanceArea()

6. Pass the polygon list to the measureArea() method:
m = d.measurePolygon(boundary.geometry().asPolygon()[0])

7. Convert the measurement from decimal degrees to miles:
d.convertMeasurement(m, QGis.Degrees, QGis.NauticalMiles,
True)

8. Verify that your output looks similar to the following:

(42955.47889640281, 7)

https://geospatialpython.googlecode.com/files/Mississippi.zip
http:///

Querying Vector Data

48

How it works...
PyQIS has no measureArea() method, but it has a measurePolygon() method in the
QgsDistanceArea object. The method accepts a list of points. In this case, when we
convert the measurement output from decimal degrees to miles, we also specify True in the
convertMeasurement() method so that QGIS knows that it is an area calculation. Note
that when we get the boundary geometry as a polygon, we use an index of 0, suggesting that
there is more than one polygon. A polygon geometry can have inner rings, which are specified
as additional polygons. The outermost ring, in this case the only ring, is the first polygon.

Creating a spatial index
Until now, the recipes in this book used the raw geometry for each layer of operations. In this
recipe, we'll take a different approach and create a spatial index for a layer before we run
operations on it. A spatial index optimizes a layer for spatial queries by creating additional,
simpler geometries that can be used to narrow down the field of possibilities within the
complex geometry.

Getting ready
If you don't already have the New York City Museums layer used in the previous recipes in this
chapter, download the layer from https://geospatialpython.googlecode.com/svn/
NYC_MUSEUMS_GEO.zip.

Unzip that file and place the shapefile's contents in a directory named nyc within your
qgis_data directory, within your root or home directory.

How to do it...
In this recipe, we'll create a spatial index for a point layer and then we'll use it to perform a
spatial query, as follows:

1. Load the layer:
lyr = QgsVectorLayer("/qgis_data/nyc/NYC_MUSEUMS_GEO.shp",
"Museums", "ogr")

2. Get the features:
fts = lyr.getFeatures()

https://geospatialpython.googlecode.com/svn/NYC_MUSEUMS_GEO.zip
https://geospatialpython.googlecode.com/svn/NYC_MUSEUMS_GEO.zip
http:///

Chapter 2

49

3. Get the first feature in the set:
first = fts.next()

4. Now, create the spatial index:
index = QgsSpatialIndex()

5. Begin loading the features:
index.insertFeature(first)

6. Insert the remaining features:
for f in fts:

 index.insertFeature(f)

7. Now, select the IDs of 3 points nearest to the first point. We use the number 4
because the starting point is included in the output:

hood = index.nearestNeighbor(first.geometry().asPoint(), 4)

How it works...
The index speeds up spatial operations. However, you must add each feature one by one.
Also, note that the nearestNeighbor() method returns the ID of the starting point as
part of the output. So, if you want 4 points, you must specify 5.

Calculating the bearing of a line
Sometimes, you need to know the compass bearing of a line to create specialized symbology
or use as input in a spatial calculation. Even though its name only mentions distance and
area, the versatile QgsDistanceArea object includes this function as well. In this recipe,
we'll calculate the bearing of the end points of a line. However, this recipe will work with any
two points.

Getting ready
We'll use the line shapefile used in a previous recipe. You can download the shapefile
as a .ZIP file from https://geospatialpython.googlecode.com/svn/paths.zip

Unzip the shapefile into a directory named qgis_data/shapes within your root or
home directory.

https://geospatialpython.googlecode.com/svn/paths.zip
http:///

Querying Vector Data

50

How to do it...
The steps to be performed are as simple as getting the two points we need and running them
through the bearing function, converting from radians to degrees, and then converting to a
positive compass bearing:

1. First, import the Python math module:
import math

2. Next, load the layer:
lyr = QgsVectorLayer("/qgis_data/shapes/paths.shp", "Route",
"ogr")

3. Now, grab the features:
fts = lyr.getFeatures()

4. Then, grab the first line feature:
route = fts.next()

5. Create the measurement object:
d = QgsDistanceArea()

6. You must set the ellipsoidal mode to True in order to project the data before
calculating the bearing:
d.setEllipsoidalMode(True)

7. Get all the points as a list:
points = route.geometry().asPolyline()

8. Get the first point:
first = points[0]

9. Grab the last point:
last = points[-1]

10. Calculate the bearing in radians:
r = d.bearing(first, last)

11. Now convert radians to degrees:
b = math.degrees(r)

http:///

Chapter 2

51

12. Ensure that the bearing is positive:
if b < 0: b += 360

13. View the output:

print b

Verify that the bearing is close to the following number:

320.3356091875395

How it works...
The default output of the bearing calculation is in radians. However, the Python math
module makes conversion a snap of the fingers. If the conversion of degrees results in a
negative number, most of the time we will want to add that number to 360 in order to
get a compass bearing, as we did here.

Loading data from a spreadsheet
Spreadsheets are one of the most common methods used to collect and store simple
geographic data. QGIS can work with text files called CSV or comma-separated values files.
Any spreadsheet can be converted to a CSV using the spreadsheet program. As long as the
CSV data has a column representing x values, one column representing y values, and other
columns representing data with the first row containing field names, QGIS can import it. Many
organizations distribute geographic information as a CSV, so sooner or later you will find
yourself importing a CSV. Moreover, PyQGIS let's you do it programmatically. Note that a CSV
can be delimited by any character as long as it is consistent. Also, the file extension of the
CSV file doesn't matter as long as you specify the file type for QGIS.

Getting ready
We'll use a sample CSV file with point features representing points of interest in a region.
You can download this sample from https://geospatialpython.googlecode.com/
svn/MS_Features.txt.

Save this to your qgis_data/ms directory in your root or home directory.

https://geospatialpython.googlecode.com/svn/MS_Features.txt
https://geospatialpython.googlecode.com/svn/MS_Features.txt
http:///

Querying Vector Data

52

How to do it...
We will build a URI string to load the CSV as a vector layer. All of the parameters used to
describe the structure of the CSV are included in the URI, as follows:

1. First, we build the base URI string with the filename:
uri="""file:///qgis_data/ms/MS_Features.txt?"""

2. Next, we tell QGIS that the file is a CSV file:
uri += """type=csv&"""

3. Now, we specify our delimiter, which is a pipe ("|"), as a URL-encoded value:
uri += """delimiter=%7C&"""

4. Next, we tell QGIS to trim any spaces at the ends of the fields:
uri += """trimFields=Yes&"""

5. Now, the most important part, we specify the x field:
uri += """xField=PRIM_LONG_DEC&"""

6. Then, we specify the y field:
uri += """yField=PRIM_LAT_DEC&"""

7. We decline the spatial index option:
uri += """spatialIndex=no&"""

8. We decline the subset option:
uri += """subsetIndex=no&"""

9. We tell QGIS not to watch the file for changes:
uri += """watchFile=no&"""

10. Finally, we complete the uri with the CRS of the layer:
uri += """crs=epsg:4326"""

11. We load the layer using the delimitedtext data provider:
layer=QgsVectorLayer(uri,"MS Features","delimitedtext")

12. Finally, we add it to the map:

QgsMapLayerRegistry.instance().addMapLayers([layer])

http:///

Chapter 2

53

Verify that your map looks similar to the map shown in the following screenshot:

How it works...
The URI is quite extensive, but necessary to give QGIS enough information to properly load the
layer. We used strings in this simple example, but using the QUrl object is safer, as it handles
the encoding for you. The documentation for the QUrl class is in the Qt documentation at
http://qt-project.org/doc/qt-4.8/qurl.html.

Note that in the URI, we tell QGIS that the type is CSV, but when we load the layer, the type
is delimitedtext. QGIS will ignore empty fields as long as all of the columns are balanced.

There's more...
If you're having trouble loading a layer, you can use the QGIS Add Delimited Text Layer… dialog
under the Layer menu to figure out the correct parameters. Once the layer is loaded, you can
take a look at its metadata to see the URI QGIS constructed to load it. You can also get the
correct parameters from a loaded, delimited text layer using the layer.source() method
programmatically. And, of course, both of these methods work with any type of layer, not just
delimited text. Unlike other layer types, however, you cannot edit delimited text layers in QGIS.

http://qt-project.org/doc/qt-4.8/qurl.html
http:///

http:///

55

Editing Vector Data

In this chapter, we will cover the following recipes:

f Creating a vector layer in memory

f Adding a point feature to a vector layer

f Adding a line feature to a vector layer

f Adding a polygon feature to a vector layer

f Adding a set of attributes to a vector layer

f Adding a field to a vector layer

f Joining a shapefile attribute table to a CSV file

f Moving vector layer geometry

f Changing a vector layer attribute

f Deleting vector layer geometry

f Deleting a vector layer field

f Deleting vector layer attributes

f Reprojecting a vector layer

f Converting a shapefile to Keyhole Markup Language (KML)

f Merging shapefiles

f Splitting a shapefile

f Generalizing a vector layer

f Dissolving vector shapes

f Performing a union on vector shapes

f Rasterizing a vector layer

3

http:///

Editing Vector Data

56

Introduction
This chapter details how to edit QGIS vector data using the Python API. The QgsVectorLayer
object contains the basics of adding, editing, and deleting features. All other geospatial
operations are accessed through the Processing Toolbox or even through custom scripts.

Creating a vector layer in memory
Sometimes, you need to create a temporary data set for quick output or as an intermediate
step in a more complex operation without the overhead of actually writing a file to disk.
PyQGIS employs memory layers that allow you to create a complete vector data set, including
the geometry, fields, and attributes, virtually. Once the memory layer is created, you can work
with it in the same way you would work with a vector layer loaded from disk.

Getting ready
This recipe entirely runs inside the PyQGIS console, so no preparation or external resources
are required.

How to do it...
We will create a Point vector layer, named Layer 1 with a few fields and then validate it:

1. Start QGIS.

2. From the Plugins menu, select Python Console.

3. In the Python console, create a QgsVectorLayer, including fields, and specify it as
a memory data provider:
vectorLyr =
QgsVectorLayer('Point?crs=epsg:4326&field=city:string(25)&f
ield=population:nt', 'Layer 1' , "memory")

4. Now, validate the layer and ensure that the console returns True:

vectorLyr.isValid()

http:///

Chapter 3

57

How it works...
The QgsVectorLayer requires three arguments. The last argument specifies the type,
which in this case is memory. The second argument specifies the layer name. Normally, the
first argument is the path to the file on disk, which is used to create the layer. In the case
of the memory layer, the first argument becomes the construction string for the layer. The
format uses query parameters that follow the convention key = value. We first specify the
coordinate reference system and then specify the fields we want. In this case, we specify the
first field, a string for city names, and then an integer field for population.

There's more…
You can easily see how describing a layer's attribute table structure in a string can become
unwieldy. You can also use a Python-ordered dictionary to build the string dynamically,
as shown in the following steps.

1. First, you need to import the OrderedDict container, which remembers the order in
which keys are inserted:
from collections import OrderedDict

2. Then, build an ordered dictionary that contains attribute names and types:
fields =
OrderedDict([('city','str(25)'),('population','int')])

3. Next, build a string by joining the output of a Python list comprehension that loops
through the ordered dictionary:
path = '&'.join(['field={}:{}'.format(k,v) for k,v in
fields.items()])

4. Finally, use this string to define the layer:

vectorLyr = QgsVectorLayer('Point?crs=epsg:4326&' + path,
'Layer 1' , "memory")

Adding a point feature to a vector layer
This recipe performs the simplest possible edit to a vector layer instantiated from a shapefile.
We will add a point to an existing point layer.

http:///

Editing Vector Data

58

Getting ready
For this recipe, download the zipped shapefile from https://geospatialpython.
googlecode.com/svn/NYC_MUSEUMS_GEO.zip.

Extract the .shp, .shx, and .dbf files to the /qgis_data/nyc directory.

How to do it...
We will load the vector layer from the shapefile, create a new geometry object as a point,
create a new feature, set the geometry, and add it to the layer's data provider. Finally, we will
update the extent of the layer to make sure that the bounding box of the layer encapsulates
the new point:

1. Start QGIS.

2. From the Plugins menu, select Python Console.

3. First, load the layer:
vectorLyr =
QgsVectorLayer('/qgis_data/nyc/NYC_MUSEUMS_GEO.shp', 'Museums'
, "ogr")

4. Now, will access the layer's data provider:
vpr = vectorLyr.dataProvider()

5. Next, create a new point using the QgsGeometry object:
pnt = QgsGeometry.fromPoint(QgsPoint(-74.80,40.549))

6. Now, will create a new QgsFeature object to house the geometry:
f = QgsFeature()

7. Next, set the geometry of the feature using our point:
f.setGeometry(pnt)

8. Then, place the features into the layer's feature list:
vpr.addFeatures([f])

9. Finally, update the layer's extent to complete the addition:

vectorLyr.updateExtents()

https://geospatialpython.googlecode.com/svn/NYC_MUSEUMS_GEO.zip
https://geospatialpython.googlecode.com/svn/NYC_MUSEUMS_GEO.zip
http:///

Chapter 3

59

How it works...
PyQGIS abstracts the points within a layer into four levels. At the lowest level is the QgsPoint
object, which contains nothing more than the coordinates of the point. This object is added to
an abstract QgsGeometry object. This object becomes the geometric part of a QgsFeature
object, which also has the ability to store and manage attributes. All the features are managed
by the QgsDataProvider object. The data provider manages the geospatial aspect of a layer
to separate that aspect from styling and other presentation-related portions. QGIS has another
editing approach in Python, which is called an editing buffer. When you use an editing buffer,
the changes can be displayed, but they are not permanent until you commit them. The most
common use case for this editing method is in GUI applications where the user may decide to
roll back the changes by cancelling the editing session. The PyQGIS Developer Cookbook has
an example of using and editing buffers in Python, and is available at http://docs.qgis.
org/2.6/en/docs/pyqgis_developer_cookbook/vector.html.

Adding a line feature to a vector layer
Adding a line to a vector layer in QGIS is identical to adding a single point, but here you just
have to add more points to the QgsGeometry object.

Getting ready
For this recipe, you will need to download a zipped line shapefile that contains two line
features from https://geospatialpython.googlecode.com/svn/paths.zip.

Extract the ZIP file to a directory named paths in your /qgis_data directory.

How to do it...
In this recipe, we will load the line layer from the shapefile, build a list of points, create a
new geometry object, and add the points as a line. We will also create a new feature, set the
geometry, and add it to the layer's data provider. Finally, we will update the extent of the layer
to make sure that the bounding box of the layer encapsulates the new feature:

1. Start QGIS.

2. From the Plugins menu, select Python Console.

3. First, load the line layer and ensure that it is valid:
vectorLyr = QgsVectorLayer('/qgis_data/paths/paths.shp',
'Paths' , "ogr")

vectorLyr.isValid()

http://docs.qgis.org/2.6/en/docs/pyqgis_developer_cookbook/vector.html
http://docs.qgis.org/2.6/en/docs/pyqgis_developer_cookbook/vector.html
https://geospatialpython.googlecode.com/svn/paths.zip
http:///

Editing Vector Data

60

4. Next, access the layer's data provider:
vpr = vectorLyr.dataProvider()

5. Now, build our list of points for a new line:
points = []

points.append(QgsPoint(430841,5589485))

points.append(QgsPoint(432438,5575114))

points.append(QgsPoint(447252,5567663))

6. Then, create a geometry object from the line:
line = QgsGeometry.fromPolyline(points)

7. Create a feature and set its geometry to the line:
f = QgsFeature()

f.setGeometry(line)

8. Finally, add the feature to the layer data provider and update the extent:

vpr.addFeatures([f])

vectorLyr.updateExtents()

How it works...
As with all the geometry in QGIS, we use the four-step process of building points, geometry,
feature, and data provider to add the line. Interestingly, the QgsGeometry object accepts
Python lists for the collection of points instead of creating a formal object, as is done with the
QgsPoint object.

Adding a polygon feature to a vector layer
In this recipe, we'll add a polygon to a layer. A polygon is the most complex kind of geometry.
However, in QGIS, the API is very similar to a line.

Getting ready
For this recipe, we'll use a simple polygon shapefile, which you can download as a ZIP file from
https://geospatialpython.googlecode.com/files/polygon.zip.

Extract this shapefile to a folder called polygon in your /qgis_data directory.

https://geospatialpython.googlecode.com/files/polygon.zip
http:///

Chapter 3

61

How to do it...
This recipe will follow the standard PyQGIS process of loading a layer, building a feature,
and adding it to the layer's data provider, as follows:

1. Start QGIS.

2. From the Plugins menu, select Python Console.

3. First, load the layer and validate it:
vectorLyr =
QgsVectorLayer('/qgis_data/polygon/polygon.shp', 'Polygon'
, "ogr")

vectorLyr.isValid()

4. Next, access the layer's data provider:
vpr = vectorLyr.dataProvider()

5. Now, build a list of points for the polygon:
points = []

points.append(QgsPoint(-123.26,49.06))

points.append(QgsPoint(-127.19,43.07))

points.append(QgsPoint(-120.70,35.21))

points.append(QgsPoint(-115.89,40.02))

points.append(QgsPoint(-113.04,48.47))

points.append(QgsPoint(-123.26,49.06))

6. Next, create a geometry object and ingest the points as a polygon. We nest our list
of points in another list because a polygon can have inner rings, which will consist of
additional lists of points being added to this list:
poly = QgsGeometry.fromPolygon([points])

7. Next, build the feature object and add the points:
f = QgsFeature()

f.setGeometry(poly)

8. Finally, add the feature to the layer's data provider and update the extents:

vpr.addFeatures([f])

http:///

Editing Vector Data

62

How it works...
Adding a polygon is very similar to adding a line, with one key difference that is a common
pitfall. The last point must be identical to the first point in order to close the polygon. If you
don't repeat the first point, you won't receive any errors, but the polygon will not be displayed
in QGIS, which can be difficult to troubleshoot.

Adding a set of attributes to a vector layer
Each QGIS feature has two parts, the geometry and the attributes. In this recipe, we'll add an
attribute for a layer from an existing dataset.

Getting ready
We will use a point shapefile with museum data for New York City, which you can download
as a ZIP file from https://geospatialpython.googlecode.com/svn/NYC_MUSEUMS_
GEO.zip.

Extract this shapefile to the /qgis_data/nyc directory.

How to do it...
A feature must have geometry, but it does not require attributes. So, we will create a new
feature, add some attributes, and then add everything to the layer, as follows:

1. Start QGIS.

2. From the Plugins menu, select Python Console.

3. First, load the layer and validate it:
vectorLyr = QgsVectorLayer('/qgis_data/nyc/NYC_MUSEUMS_GEO.shp',
'Museums' , "ogr")

vectorLyr.isValid()

4. Next, access the layer's data provider so that we can get the list of fields:
vpr = vectorLyr.dataProvider()

5. Now, create a point geometry, which in this case is a new museum:
pnt = QgsGeometry.fromPoint(QgsPoint(-74.13401,40.62148))

6. Next, get the fields object for the layer that we'll need to create a new feature for:
fields = vpr.fields()

https://geospatialpython.googlecode.com/svn/NYC_MUSEUMS_GEO.zip
https://geospatialpython.googlecode.com/svn/NYC_MUSEUMS_GEO.zip
http:///

Chapter 3

63

7. Then, create a new feature and initialize the attributes:
f = QgsFeature(fields)

8. Now, set the geometry of our new museum feature:
f.setGeometry(pnt)

9. Now, we are able to add a new attribute. Adding an attribute is similar to updating a
Python dictionary, as shown here:
f['NAME'] = 'Python Museum'

10. Finally, we add the feature to the layer and update the extents:

vpr.addFeatures([f])

vectorLyr.updateExtents()

How it works...
PyQGIS attributes are defined as an ordered array. The syntax for referencing a field is
similar to the syntax for a Python dictionary. We use the layer's data provider object to perform
the actual editing. When we use this approach, no signals are triggered at the layer object
level. If we are just trying to edit data on the filesystem, that's okay, but if the layer is going to
be added to the map canvas for display or user interaction, then you should use the editing
buffer in the QgsVectorLayer object. This editing buffer allows you to commit or roll back
changes and also keeps track of the state of the layer when things are changed.

Adding a field to a vector layer
This recipe demonstrates how to add a new field to a layer. Each field represents a new
column in a dataset for which each feature has a new attribute. When you add a new
attribute, all the features are set to NULL for that field index.

Getting ready
We will use the New York City museums' shapefile used in other recipes, which you can
download as a ZIP file from https://geospatialpython.googlecode.com/svn/NYC_
MUSEUMS_GEO.zip.

Extract this shapefile to /qgis_data/nyc.

https://geospatialpython.googlecode.com/svn/NYC_MUSEUMS_GEO.zip
https://geospatialpython.googlecode.com/svn/NYC_MUSEUMS_GEO.zip
http:///

Editing Vector Data

64

How to do it...
All the data management for a layer is handled through the layer's data provider and the
fields are no different. We will load the layer, access the data provider, define the new field,
and finalize the change, as follows:

1. Start QGIS.

2. From the Plugins menu, select Python Console.

3. First, you must import the Qt library's data types, which PyQGIS uses to specify the
layer field's data types:
from PyQt4.QtCore import QVariant

4. Next, load and validate the layer:
vectorLyr =
QgsVectorLayer('/qgis_data/nyc/NYC_MUSEUMS_GEO.shp', 'Museums'
, "ogr")

vectorLyr.isValid()

5. Then, access the layer data provider:
vpr = vectorLyr.dataProvider()

6. Now, add a Python list of QgsField objects, which defines the field name and type.
In this case, we'll add one field named Admission as a Double:
vpr.addAttributes([QgsField("Admission", QVariant.Double)])

7. Finally, update the fields to complete the change:

vectorLyr.updateFields()

How it works...
The nomenclature used for the fields and attributes in QGIS is a little inconsistent
and can be confusing if you've used other GIS packages. In QGIS, a column is a field that
has a name and a type. The attribute table holds a value for each field column
and each feature row. However, in the QgsVectorDataProvider object, you use the
addAttributes() method to add a new field column. Also, in other GIS software, you
may see the use of the word field and attribute reversed.

http:///

Chapter 3

65

Joining a shapefile attribute table to
a CSV file

Joining attribute tables to other database tables allows you to use a spatial dataset in order
to reference a dataset without any geometry, using a common key between the data tables.
A very common use case for this is to join a vector dataset of census attributes to a more
detailed census attribute dataset. The use case we will demonstrate here links a US census
track file to a detailed CSV file that contains more in-depth information.

Getting ready
For this recipe, you will need a census tract shapefile and a CSV file containing the
appropriate census data for the shapefile. You can download the sample data set from
https://geospatialpython.googlecode.com/svn/census.zip.

Extract this data to a directory named /qgis_data/census.

How to do it...
The join operation is quite involved. We'll perform this operation and save the layer as a
new shapefile with the joined attributes. Then we'll load the new layer and compare the
field count to the original layer to ensure that the join occurred. We'll use the terms target
layer and join layer. The target layer will be the shapefile, and the join layer
will be a CSV with some additional fields we want to add to the shapefile. To do this, perform
the following steps:

1. Start QGIS.

2. From the Plugins menu, select Python Console.

3. First, load the county's census track layer and validate it:
vectorLyr =
QgsVectorLayer('/qgis_data/census/hancock_tracts.shp',
'Hancock' , "ogr")

vectorLyr.isValid()

4. Now, load the CSV file as a layer and validate it as well:
infoLyr =
QgsVectorLayer('/qgis_data/census/ACS_12_5YR_S1901_with_ann
.csv', 'Census' , "ogr")

infoLyr.isValid()

https://geospatialpython.googlecode.com/svn/census.zip
http:///

Editing Vector Data

66

5. Once this is done, you must add both the layers to the map registry for the two layers
to interact for the join. However, set the visibility to False, so the layers do not
appear on the map:
QgsMapLayerRegistry.instance().addMapLayers([vectorLyr,info
Lyr], False)

6. Next, you must create a special join object:
info = QgsVectorJoinInfo()

7. The join object needs the layer ID of the CSV file:
info.joinLayerId = infoLyr.id()

8. Next, specify the key field from the CSV file whose values correspond to the
values in the shapefile:
info.joinFieldName = "GEOid2"

9. Then, specify the corresponding field in the shapefile:
info.targetFieldName = "GEOID"

10. Set the memoryCache property to True in order to speed up access to the
joined data:
info.memoryCache = True

11. Add the join to the layer now:
vectorLyr.addJoin(info)

12. Next, write out the joined shapefile to a new file on disk:
QgsVectorFileWriter.writeAsVectorFormat(vectorLyr,
"/qgis_data/census/joined.shp", "CP120", None, "ESRI
Shapefile")

13. Now, load the new shapefile back in as a layer for verification:
joinedLyr = QgsVectorLayer('/qgis_data/census/joined.shp',
'Joined' , "ogr")

14. Verify that the field count in the original layer is 12:
vectorLyr.dataProvider().fields().count()

15. Finally, verify that the new layer has a field count of 142 from the join:

joinedLyr.dataProvider().fields().count()

http:///

Chapter 3

67

How it works...
This recipe reaches out to the very edge of the PyQGIS API, forcing you to use some
workarounds. Most recipes for data manipulation can be performed programmatically
without writing data to disk or loading layers onto the map, but joins are different. Because
the QgsVectorJoinInfo object needs the layer ID of the CSV layer, we must add both the
layers to the map layer registry. Fortunately, we can do this without making them visible, if
we are just trying to write a data manipulation script. A join is designed to be a temporary
operation to query a dataset. Oddly, PyQGIS lets you create the join, but you cannot query it.
This limitation is the reason why if you want to work with the joined data, you must write it to a
new shapefile and reload it. Fortunately, PyQGIS allows you to do that.

There's more...
You can find an alternate method that works around the PyQGIS limitation in a Processing
Toolbox script, which manually matches the joined data in Python, at https://github.
com/rldhont/Quantum-GIS/blob/master/python/plugins/processing/algs/
qgis/JoinAttributes.py.

Moving vector layer geometry
Sometimes, you need to change the location of a feature. You can do this by deleting and
re-adding the feature, but PyQGIS provides a simple way to change the geometry.

Getting ready
You will need the New York City museums' shapefile, which you can download as a ZIP file
from https://geospatialpython.googlecode.com/svn/NYC_MUSEUMS_GEO.zip.

Extract this shapefile to /qgis_data/nyc.

How to do it...
We will load the shapefile as a vector layer, validate it, define the feature ID we want to
change, create the new geometry, and change the feature in the layer. To do this, perform
the following steps:

1. Start QGIS.

2. From the Plugins menu, select Python Console.

https://github.com/rldhont/Quantum-GIS/blob/master/python/plugins/processing/algs/qgis/JoinAttributes.py
https://github.com/rldhont/Quantum-GIS/blob/master/python/plugins/processing/algs/qgis/JoinAttributes.py
https://github.com/rldhont/Quantum-GIS/blob/master/python/plugins/processing/algs/qgis/JoinAttributes.py
https://geospatialpython.googlecode.com/svn/NYC_MUSEUMS_GEO.zip
http:///

Editing Vector Data

68

3. First, load the layer and validate it:
vectorLyr =
QgsVectorLayer('/qgis_data/nyc/NYC_MUSEUMS_GEO.shp',
'Museums' , "ogr")

vectorLyr.isValid()

4. Next, define the feature ID we are interested in changing:
feat_id = 22

5. Now, create the new point geometry, which will become the new location:
geom = QgsGeometry.fromPoint(QgsPoint(-74.20378,40.89642))

6. Finally, change the geometry and replace it with our new geometry, specifying the
feature ID:

vectorLyr.dataProvider().changeGeometryValues({feat_id : geom})

How it works...
The changeGeometryValues() method makes editing a snap of the fingers. If we had to
delete and then re-add the feature, we would have to go through the trouble of reading the
attributes, preserving them, and then re-adding them with the new feature. You must, of
course, know the feature ID of the feature you want to change. How you determine this ID
depends on your application. Typically, you will query the attributes to find a specific value,
or you can do a spatial operation of some sort.

Changing a vector layer feature's attribute
The process to change an attribute in a feature is straightforward and well-supported by
the PyQGIS API. In this recipe, we'll change a single attribute, but you can change as many
attributes of a feature as desired at once.

Getting ready
You will need the New York City museums' shapefile used in other recipes, which you can
download as a ZIP file from https://geospatialpython.googlecode.com/svn/NYC_
MUSEUMS_GEO.zip.

Extract this shapefile to /qgis_data/nyc.

https://geospatialpython.googlecode.com/svn/NYC_MUSEUMS_GEO.zip
https://geospatialpython.googlecode.com/svn/NYC_MUSEUMS_GEO.zip
http:///

Chapter 3

69

How to do it...
We will load the shapefile as a vector layer, validate it, define the feature IDs of the fields
we want to change, get the index of the field names that we will change, define the new
attribute value as an attribute index and value, and change the feature in the layer.
To do this, we need to perform the following steps:

1. Start QGIS.

2. From the Plugins menu, select Python Console.

3. First, load the layer and validate it:
vectorLyr =
QgsVectorLayer('/qgis_data/nyc/NYC_MUSEUMS_GEO.shp',
'Museums' , "ogr")

vectorLyr.isValid()

4. Next, define the feature IDs you want to change:
fid1 = 22

fid2 = 23

5. Then, get the index of the fields you want to change, which are the telephone
number and city name:
tel = vectorLyr.fieldNameIndex("TEL")

city = vectorLyr.fieldNameIndex("CITY")

6. Now, create the Python dictionary for the attribute index and the new value,
which in this case is an imaginary phone number:
attr1 = {tel:"(555) 555-1111", city:"NYC"}

attr2 = {tel:"(555) 555-2222", city:"NYC"}

7. Finally, use the layer's data provider to update the fields:

vectorLyr.dataProvider().changeAttributeValues({fid1:attr1,
fid2:attr2})

How it works...
Changing attributes is very similar to changing the geometry within a feature. We explicitly
name the feature IDs in this example, but in a real-world program, you would collect these IDs
as a part of some other process output, such as a spatial selection. An example of this type of
spatial selection is available in the Filtering a layer by Geometry recipe, in Chapter 2, Querying
Vector Data.

http:///

Editing Vector Data

70

Deleting a vector layer feature
In this recipe, we'll completely remove a feature, including the geometry and attributes,
from a layer.

Getting ready
You will need the New York City museums' shapefile used in other recipes, which you can
download as a ZIP file from https://geospatialpython.googlecode.com/svn/NYC_
MUSEUMS_GEO.zip.

Extract this shapefile to /qgis_data/nyc.

How to do it...
All we need to do is load the layer and then delete the desired features by ID, using the layer's
data provider:

1. Start QGIS.

2. From the Plugins menu, select Python Console.

3. First, load and validate the layer:
vectorLyr =
QgsVectorLayer('/qgis_data/nyc/NYC_MUSEUMS_GEO.shp',
'Museums' , "ogr")

vectorLyr.isValid()

4. Next, specify a Python list containing feature IDs. In this case, we have two:

vectorLyr.dataProvider().deleteFeatures([22, 95])

How it works...
This operation cannot be simpler or better designed. There are a number of ways in which
we can programmatically fill a Python list with feature IDs. For example, we can use the
Chapter 2, Filtering a Layer by Attributes in this recipe. Then, we just pass this list to the
layer's data provider and we are done.

https://geospatialpython.googlecode.com/svn/NYC_MUSEUMS_GEO.zip
https://geospatialpython.googlecode.com/svn/NYC_MUSEUMS_GEO.zip
http:///

Chapter 3

71

Deleting a vector layer attribute
In this recipe, we'll wipe out an entire attribute and all the feature fields for a vector layer.

Getting ready
You will need the New York City museums' shapefile used in other recipes, which you can
download as a ZIP file from https://geospatialpython.googlecode.com/svn/NYC_
MUSEUMS_GEO.zip.

Extract this shapefile to /qgis_data/nyc.

How to do it...
This operation is straight forward. We'll load and validate the layer, use the layer's data
provider to delete the attribute by index, and finally, we will update all the fields to remove
the orphaned values. To do this, we need to perform the following steps:

1. Start QGIS.

2. From the Plugins menu, select Python Console.

3. First, load and validate the layer:
vectorLyr =
QgsVectorLayer('/qgis_data/nyc/NYC_MUSEUMS_GEO.shp',
'Museums' , "ogr")

vectorLyr.isValid()

4. Then, delete the first attribute:
vectorLyr.dataProvider().deleteAttributes([1])

5. Finally, update the fields:

vectorLyr.updateFields()

How it works...
Because we are changing the actual structure of the layer data, we must call the
updateFields() method of the layer to remove the field values which no longer
have an attribute.

https://geospatialpython.googlecode.com/svn/NYC_MUSEUMS_GEO.zip
https://geospatialpython.googlecode.com/svn/NYC_MUSEUMS_GEO.zip
http:///

Editing Vector Data

72

Reprojecting a vector layer
We will use the Processing Toolbox in QGIS to reproject a layer to a different
coordinate system.

Getting ready
For this recipe, we'll need the Mississippi cities' shapefile in the Mississippi Trans
Mercator projection (EPSG 3814), which can be downloaded as a ZIP file from
https://geospatialpython.googlecode.com/files/MSCities_MSTM.zip.

Extract the zipped shapefile to a directory named /qgis_data/ms.

How to do it...
To reproject the layer, we'll simply call the qgis:reprojectlayer processing algorithm,
specifying the input shapefile, the new projection, and the output file name. To do this,
perform the following steps:

1. Start QGIS.

2. From the Plugins menu, select Python Console.

3. First, you need to import the processing module:
import processing

4. Next, run the reprojection alogoritm, as follows:

processing.runalg("qgis:reprojectlayer",
"/qgis_data/ms/MSCities_MSTM.shp", "epsg:4326",
"/qgis_data/ms/MSCities_MSTM_4326.shp")

How it works...
The source data starts out in EPSG 3814, but we want to project it to WGS 84 Geographic,
which is commonly used to deal with global datasets and is usually the default coordinate
reference system for GPS devices. The target EPSG code is 4326. Dealing with map
projections can be quite complex. This QGIS tutorial has some more examples and explains
more about map projections at http://manual.linfiniti.com/en/vector_
analysis/reproject_transform.html.

https://geospatialpython.googlecode.com/files/MSCities_MSTM.zip
http://manual.linfiniti.com/en/vector_analysis/reproject_transform.html
http://manual.linfiniti.com/en/vector_analysis/reproject_transform.html
http:///

Chapter 3

73

Converting a shapefile to KML
In this recipe, we'll convert a layer to KML. KML is an Open Geospatial Consortium (OGC)
standard and is supported by the underlying OGR library used by QGIS.

Getting ready
For this recipe, download the following zipped shapefile and extract it to a directory
named /qgis_data/hancock:

https://geospatialpython.googlecode.com/files/hancock.zip

How to do it...
To convert a shapefile to the KML XML format, we'll load the layer and then use the
QgsVectorFileWriter object to save it as KML:

1. Start QGIS.

2. From the Plugins menu, select Python Console.

3. First load the layer and validate it:
vectorLyr =
QgsVectorLayer('/qgis_data/hancock/hancock.shp', 'Hancock'
, "ogr")

vectorLyr.isValid()

4. Then, establish the destination CRS. KML should always be in EPS:4326:
dest_crs = QgsCoordinateReferenceSystem(4326)

5. Next, use the file writer to save it as a KML file by specifying the file type as KML:

QgsVectorFileWriter.writeAsVectorFormat(vectorLyr,
"/qgis_data/hancock/hancock.kml", "utf-8", dest_crs, "KML")

How it works...
You will end up with a KML file in the directory next to your shapefile. KML supports styling
information. QGIS uses some default styling information that you can change, either by hand
using a text editor, or programmatically using an XML library such as Python's ElementTree.
KML is one of many standard vector formats you can export using this method.

https://geospatialpython.googlecode.com/files/hancock.zip
http:///

Editing Vector Data

74

Merging shapefiles
Merging shapefiles with matching projections and attribute structures is a very common
operation. In QGIS, the best way to merge vector datasets is to use another GIS system
included with QGIS on Windows and OSX called SAGA. On other platforms, you must install
SAGA separately and activate it in the Processing Toolbox configuration. In PyQGIS, you can
access SAGA functions through the Processing Toolbox. SAGA is yet another open source GIS
that is similar to QGIS. However, both packages have strengths and weaknesses. By using
SAGA through the Processing Toolbox, you can have the best of both systems.

Getting ready
In this recipe, we'll merge some building footprint shapefiles from adjoining areas into a single
shapefile. You can download the sample dataset from https://geospatialpython.
googlecode.com/files/tiled_footprints.zip.

Extract the zipped shapefiles to a directory named /qgis_data/tiled_footprints.

How to do it...
We will locate all the .shp files in the data directory and hand them to the
saga:mergeshapeslayers object in order to merge them.

1. Start QGIS.

2. From the Plugins menu, select Python Console.

3. Import the Python glob module for wildcard file matching:
import glob

4. Next, import the processing module for the merge algorithm:
import processing

5. Now, specify the path of our data directory:
pth = "/qgis_data/tiled_footprints/"

6. Locate all the .shp files:
files = glob.glob(pth + "*.shp")

7. Then, specify the output name of the merged shapefile:
out = pth + "merged.shp"

8. Finally, run the algorithm that will load the merged shapefile on to the map:
processing.runandload("saga:mergeshapeslayers",files.pop(0),";
".join(files),out)

https://geospatialpython.googlecode.com/files/tiled_footprints.zip
https://geospatialpython.googlecode.com/files/tiled_footprints.zip
http:///

Chapter 3

75

How it works...
The algorithm accepts a base file and then a semicolon-separated list of additional files to be
merged, and it finally accepts the output filename. The glob module creates a list of the files.
To get the base file, we use the list pop() method to get the first filename. Then, we use the
Python string's join() method to make the required delimited list for the rest.

There's more...
QGIS has its own merge method available through the processing module called
qgis:mergevectorlayers, but it is limited because it only merges two files.
The SAGA method allows any number of files to be merged.

Splitting a shapefile
Sometimes, you need to split a shapefile in order to break a larger dataset into more
manageable sizes or to isolate a specific area of interest. There is a script in the Processing
Toolbox that splits a shapefile by attribute. It is very useful, even though it is provided as an
example of how to write processing scripts.

Getting ready
We will split a census tract shapefile by county. You can download the sample zipped shapefile
from https://geospatialpython.googlecode.com/files/GIS_CensusTract.zip.

1. Extract the zipped shapefile to a directory named /qgis_data/census.

2. You also need the following script for the Processing Toolbox:
https://geospatialpython.googlecode.com/svn/Split_vector_layer
_by_attribute.py

3. Next, use the following steps to add the script to the Processing Toolbox:

4. Download the script to your /qgis_data/ directory.

5. In the QGIS Processing Toolbox, open the Scripts tree menu and then go to
the Tools submenu.

6. Then, double-click on the Add script from file command.

7. In the File dialog, navigate to the script. Select the Script and click on the
Open button.

The stage is set now. Perform the steps in the next section to split the shapefile.

https://geospatialpython.googlecode.com/files/GIS_CensusTract.zip
https://geospatialpython.googlecode.com/svn/Split_vector_layer _by_attribute.py
https://geospatialpython.googlecode.com/svn/Split_vector_layer _by_attribute.py
http:///

Editing Vector Data

76

How to do it...
This recipe is as simple as running the algorithm and specifying the filename and data
attribute. Perform the following steps:

1. Start QGIS.

2. From the Plugins menu, select Python Console.

3. Import the processing module:
import processing

4. Define your data directory as a variable to shorten the processing command:
pth = "/qgis_data/census/"

5. Finally, run the algorithm:

processing.runalg("script:splitvectorlayerbyattribute",pth +
"GIS_CensusTract_poly.shp","COUNTY_8",pth + "split")

How it works...
The algorithm will dump the split files in the data directory, numbered sequentially.

Generalizing a vector layer
Generalizing the geometry, also known as simplifying, removes points from a vector layer to
reduce the space required to store the data on disk, the bandwidth needed to move it over a
network, and the processing power required to perform analysis with it or display it in QGIS.
In many cases, the geometry of a layer contains redundant points along with straight lines
that can be removed without changing the spatial properties of a layer, with the exception of
topology constraints.

Getting ready
For this recipe, we will use a boundary file for the state of Mississippi, which you can download
from https://geospatialpython.googlecode.com/files/Mississippi.zip.

Extract the zipped shapefile to a directory named /qgis_data/ms.

https://geospatialpython.googlecode.com/files/Mississippi.zip
http:///

Chapter 3

77

How to do it...
Generalizing is native to QGIS, but we will access it in PyQGIS through the Processing Toolbox
using the qgis:simplifygeometries algorithm, as follows:

1. Start QGIS.

2. From the Plugins menu, select Python Console.

3. Import the processing module:
import processing

4. Now, run the processing algorithm, specifying the algorithm name, input data,
tolerance value, spacing between points — which defines how close two points are in
map units before one is deleted — and the output dataset's name:

processing.runandload("qgis:simplifygeometries","/qgis_data/ms/
mississippi.shp",0.3,"/qgis_data/ms/generalize.shp")

How it works...
The simplicity of the simplifygeometries command makes the operation look simple.
However, the simplification is itself quite complex. The same settings rarely produce desirable
results across multiple datasets.

The shapefile in this recipe starts out quite complex with hundreds of points, as seen in the
following visualization:

http:///

Editing Vector Data

78

The simplified version has only 10 points, as seen in the following image:

Dissolving vector shapes
Dissolving shapes can take two different forms. You can combine a group of adjoining shapes
by the outermost boundary of the entire dataset, or you can also group the adjoining shapes
with the same attribute value.

Getting ready
Download the GIS census tract shapefile, which contains tracts for several counties from
https://geospatialpython.googlecode.com/files/GIS_CensusTract.zip.

Extract it to your /qgis_data directory, in a directory called census.

https://geospatialpython.googlecode.com/files/GIS_CensusTract.zip
http:///

Chapter 3

79

How to do it...
We will use the Processing Toolbox for this recipe and specifically a native QGIS algorithm
called dissolve, as follows:

1. Start QGIS.

2. From the Plugins menu, select Python Console.

3. Import the processing module:
import processing

4. Next, run the dissolve algorithm, specifying the input data—False to specify that
we don't want to dissolve all the shapes into one but to use an attribute instead—the
attribute we want to use, and the output filename:

processing.runandload("qgis:dissolve","/qgis_data/census/
GIS_CensusTract_poly.shp",False,"COUNTY_8","/qgis_data/census/
dissovle.shp")

How it works...
By only changing the boolean in the statement to True, we can dissolve all adjoining shapes
into one. It is also important to note that QGIS will assign the fields of the first shape it
encounters in each group to the final shape. In most cases, this will make the attributes
virtually useless. This operation is primarily a spatial task.

You can see that each county boundary has a number of census tracts in the original layer,
as shown in the following image:

www.allitebooks.com

http:///
http://www.allitebooks.org

Editing Vector Data

80

Once the shapes are dissolved, you are left with only the county boundaries, as shown in
this image:

Performing a union on vector shapes
A union turns two overlapping shapes into one. This task can be easily accomplished with
the Processing Toolbox. In this recipe, we'll merge the outline of a covered building with the
footprint of the main building.

Getting ready
You can download the building files from https://geospatialpython.googlecode.
com/svn/union.zip and extract them to a directory named /qgis_data/union.

How to do it...
All we need to do is run the qgis:union algorithm, as follows:

1. Start QGIS.

2. From the Plugins menu, select Python Console.

3. Import the processing module:
import processing

https://geospatialpython.googlecode.com/svn/union.zip
https://geospatialpython.googlecode.com/svn/union.zip
http:///

Chapter 3

81

4. Now, run the algorithm by specifying the two input shapes and a single output file:

processing.runandload("qgis:union","/qgis_data/union/building.
shp","/qgis_data/union/walkway.shp","/qgis_data/union/union.shp")

How it works...
As you can tell from the structure of the command, this tool can only combine two shapes at
once. It finds where the two shapes meet and then removes the overlap, joining them at the
meeting point.

In the original data, the shapefile starts out as two distinct shapes, as shown in this image:

Once the union is complete, the shapes are now one shapefile, with the overlap being a
separate feature, as shown in this image:

http:///

Editing Vector Data

82

Rasterizing a vector layer
Sometimes, a raster dataset is the most efficient way to display a complex vector that is
merely a backdrop in a map. In these cases, you can rasterize a vector layer to turn it into
an image.

Getting ready
We will demonstrate how to rasterize a vector layer using the following contour shapefile,
which you can download from https://geospatialpython.googlecode.com/svn/
contour.zip.

Extract it to your /qgis_data/rasters directory.

How to do it...
We will run the gdalogr:rasterize algorithm to convert this vector data to a raster,
as follows:

1. Start QGIS.

2. From the Plugins menu, select Python Console.

3. Import the processing module:
import processing

4. Run the algorithm, specifying the input data, the attribute from which raster
values need to be drawn, 0 in order to specify pixel dimensions for the output
instead of map dimensions, width and height, and finally the output raster name:

processing.runalg("gdalogr:rasterize","/qgis_data/rasters/cont
our.shp","ELEV",0,1000,1000,"/qgis_data/rasters/contour.tif")

How it works...
If you want to specify the output dimensions in map units, use 1 instead of 0. Note that the
symbology of the layer becomes frozen once you convert it to a raster. The raster is also no
longer dynamically scalable.

https://geospatialpython.googlecode.com/svn/contour.zip
https://geospatialpython.googlecode.com/svn/contour.zip
http:///

Chapter 3

83

The following image shows the rasterized output of the elevation contour shapefile:

http:///

http:///

85

4
Using Raster Data

In this chapter, we will cover the following recipes:

f Loading a raster layer

f Getting the cell size of a raster layer

f Obtaining the width and height of a raster

f Counting raster bands

f Swapping raster bands

f Querying the value of a raster at a specified point

f Reprojecting a raster

f Creating an elevation hillshade

f Creating vector contours from elevation data

f Sampling a raster dataset using a regular grid

f Adding elevation data to line using a digital elevation model

f Creating a common extent for rasters

f Resampling raster resolution

f Counting the unique values in a raster

f Mosaicing rasters

f Converting a TIFF image to a JPEG image

f Creating pyramids for a raster

f Converting a pixel location to a map coordinate

http:///

Using Raster Data

86

f Converting a map coordinate to a pixel location

f Creating a KML image overlay for a raster

f Classifying a raster

f Converting a raster to a vector

f Georeferencing a raster from ground control points

f Clipping a raster using a shapefile

Introduction
This chapter shows you how to bring raster data into a GIS and create derivative raster
products using QGIS and Python. QGIS is equally adept at working with raster data as with
vector data, by incorporating leading-edge open source libraries and algorithms, including
GDAL, SAGA, and the Orfeo Toolbox. QGIS provides a consistent interface to for large array of
remote sensing tools. We will switch back and forth between visually working with raster data
and using QGIS as a processing engine via the Processing Toolbox, to completely automating
remote sensing workflows.

Raster data consists of rows and columns of cells or pixels, with each cell representing a
single value. The easiest way to think of raster data is as images, which is how they are
typically represented by software. However, raster datasets are not necessarily stored as
images. They can also be ASCII text files or binary large objects (BLOBs) in databases.

Another difference between geospatial raster data and regular digital images is their
resolution. Digital images express resolution as dots-per-inch, if they are printed in full
size. Resolution can also be expressed as the total number of pixels in the image, defined
as megapixels. However, geospatial raster data uses the ground distance that each cell
represents. For example, a raster dataset with a two-feet resolution means that a single cell
represents two feet on the ground. This also means that only objects larger than two feet can
be identified visually in the dataset.

Raster datasets may contain multiple bands, meaning that different wavelengths of light can
be collected at the same time over the same area. Often, this range is from 3 to 7 bands
wide, but it can be several hundred bands wide in hyperspectral systems. These bands are
viewed individually or swapped in and out as the RGB bands of an image. They can also be
recombined using mathematics into a derived single band image and then recolored using a
set number of classes, representing similar values within the dataset.

http:///

Chapter 4

87

Loading a raster layer
The QGSRasterLayer API provides a convenient, high-level interface to raster data.
To use this interface, we must load a layer into QGIS. The API allows you to work with a
layer without adding it to the map. In this way, we'll load layer and then add it to the map.

Getting ready
As with the other recipes in this book, you need to create a directory called qgis_data in
our root or user directory, which provides a short pathname without spaces. This setup will
help prevent any frustrating errors that result from path-related issues on a given system. In
this recipe, and the others, we'll use a Landsat satellite image of the Mississippi Gulf Coast,
which you can download from https://geospatialpython.googlecode.com/files/
SatImage.zip.

Unzip the SatImage.tif and SatImage.tfw files and place them in a directory named
rasters within your qgis_data directory.

How to do it...
Now, we'll go through how to load a raster layer and then step by step add it to the map

1. Start QGIS.

2. From the Plugins menu, select Python Console.

3. Then, in the Python Console, create the layer by specifying the source file and a
layer name:
rasterLyr = QgsRasterLayer("/qgis_data/rasters/SatImage.tif",
"Gulf Coast")

4. Next, ensure that the layer is created as expected. The following command should
return True:
rasterLyr.isValid()

5. Finally, add the layer to the layer registry:
QgsMapLayerRegistry.instance().addMapLayers([rasterLyr])

https://geospatialpython.googlecode.com/files/SatImage.zip
https://geospatialpython.googlecode.com/files/SatImage.zip
http:///

Using Raster Data

88

6. Verify that your QGIS map looks similar to the following image:

QGIS zooms to the extent of the raster layer when it is loaded as shown in this example of a Landsat satellite
image of the Mississippi Gulf Coast

How it works...
The QgsRasterLayer object requires the location of the file and a name for the layer in
QGIS. The underlying GDAL library determines the appropriate method of loading the layer.
This approach contrasts with the QgsVectorLayer() method, which requires you to specify
a data provider. Raster layers also have a data provider, but unlike vector layers, all raster
layers are managed through GDAL. One of the best features of QGIS is that it combines the
best of breed open source geospatial tools into one package. GDAL can be used as a library
as we are using it here from Python or as a command-line tool.

Once we have created the QgsRasterLayer object, we do a quick check using the
rasterLayer.isValid() method to see whether the file was loaded properly. This method
will return True if the layer is valid. We won't use this method in every recipe; however, it is a
best practice, especially when building dynamic applications that accept user input. Because
most of the PyQGIS API is built around C libraries, many methods do not throw exceptions if an
operation fails. You must use specialized methods to verify the output.

Finally, we add the layer to the map layer registry, which makes it available on the map and
in the legend. The registry keeps track of all the loaded layers by separating, loading, and
visualizing the layers. QGIS allows you to work behind the scenes in order to perform unlimited
intermediate processes on a layer before adding the final product to the map.

http:///

Chapter 4

89

Getting the cell size of a raster layer
The first key element of a geospatial raster is the width and height, in pixels. The second key
element is the ground distance of each pixel, also called the pixel size. Once you know the cell
size and a coordinate somewhere on the image (usually the upper-left corner), you can begin
using remote sensing tools on the image. In this recipe, we'll query the cell size of a raster.

Getting ready
Once again, we will use the SatImage raster available at https://geospatialpython.
googlecode.com/files/SatImage.zip.

Place this raster in your /qgis_data/rasters directory.

How to do it...
We will load the raster as a layer and then use the QgsRasterLayer API to get the cell size
for the x and y axis. To do this, we need to perform the following steps:

1. Start QGIS.

2. From the Plugins menu, select Python Console.

3. Load the layer and validate it:
rasterLyr = QgsRasterLayer("/qgis_data/rasters/satimage.tif",
"Sat Image")

rasterLyr.isValid()

4. Now, call the x distance method, which should return 0.00029932313140079714:
rasterLyr.rasterUnitsPerPixelX()

5. Then, call the y distance, which should be 0.00029932313140079714:

rasterLyr.rasterUnitsPerPixelY()

How it works...
GDAL provides this information, which is passed through to the layer API. Note that while
the x and y values are essentially the same in this case, it is entirely possible for the x and y
distances to be different—especially if an image is projected or warped in some way.

https://geospatialpython.googlecode.com/files/SatImage.zip
https://geospatialpython.googlecode.com/files/SatImage.zip
http:///

Using Raster Data

90

Obtaining the width and height of a raster
All raster layers have a width and height in pixels. Because remote sensing data can be
considered an image as well as an array or matrix, you will often see different terms used,
including columns and rows or pixels and lines. These different terms surface many times
within the QGIS API.

Getting ready
We will use the SatImage raster again, which is available at https://geospatialpython.
googlecode.com/files/SatImage.zip.

Place this raster in your /qgis_data/rasters directory.

How to do it...
1. Start QGIS.

2. From the Plugins menu, select Python Console.

3. In the Python Console, load the layer and ensure that it is valid:
rasterLyr = QgsRasterLayer("/qgis_data/rasters/satimage.tif",
"satimage")

rasterLyr.isValid()

Check the name of SatImage after unzipping.

4. Obtain the layer's width, which should be 2592:
rasterLyr.width()

5. Now, get the raster's height, which will return 2693:

rasterLyr.height()

How it works...
The width and height of a raster are critical pieces of information for many algorithms,
including calculating the map units that the raster occupies.

https://geospatialpython.googlecode.com/files/SatImage.zip
https://geospatialpython.googlecode.com/files/SatImage.zip
http:///

Chapter 4

91

Counting raster bands
A raster might have one or more bands. Bands represent layers of information within a raster.
Each band has the same number of columns and rows.

Getting ready
We will again use the SatImage raster available at https://geospatialpython.
googlecode.com/files/SatImage.zip.

Place this raster in your /qgis_data/rasters directory.

How to do it...
We will load the layer and then print the band count to the console. To do this, we need to
perform the following steps:

1. Start QGIS.

2. From the Plugins menu, select Python Console.

3. In the Python Console, load the layer and ensure that it is valid:
rasterLyr = QgsRasterLayer("/qgis_data/rasters/satimage.tif",
"Sat Image")

rasterLyr.isValid()

4. Now, get the band count, which should be 3 in this case:

rasterLyr.bandCount()

How it works...
It is important to note that raster bands are not zero-based indexes. When you want to access
the first band, you reference it as 1 instead of 0. Most sequences within a programming
context start with 0.

https://geospatialpython.googlecode.com/files/SatImage.zip
https://geospatialpython.googlecode.com/files/SatImage.zip
http:///

Using Raster Data

92

Swapping raster bands
Computer displays render images in the visible spectrum of red, green, and blue light (RGB).
However, raster images may contain bands outside the visible spectrum. These types of
rasters make poor visualizations, so you will often want to recombine the bands to change
the RGB values.

Getting ready
For this recipe, we will use a false-color image, which you can download from
https://geospatialpython.googlecode.com/files/FalseColor.zip.

Unzip this tif file and place it in your /qgis_data/rasters directory.

How to do it...
We will load this raster and swap the order of the first and second bands. Then, we will add it
to the map. To do this, we need to perform the following steps:

1. Start QGIS.

2. From the Plugins menu, select Python Console.

3. In the Python Console, load the layer and ensure that it is valid:
rasterLyr =
QgsRasterLayer("/qgis_data/rasters/FalseColor.tif", "Band
Swap")

rasterLyr.isValid()

4. Now, we must access the layer renderer in order to manipulate the order of the
bands displayed. Note that this change does not affect the underlying data:
ren = rasterLyr.renderer()

5. Next, we will set the red band to band 2:
ren.setRedBand(2)

6. Now, we will set the green band to band 1:
ren.setGreenBand(1)

7. Finally, add the altered raster layer to the map:

QgsMapLayerRegistry.instance().addMapLayers([rasterLyr])

https://geospatialpython.googlecode.com/files/FalseColor.zip
http:///

Chapter 4

93

How it works...
Load the source image into QGIS as well to compare the results. In the false-color image,
vegetation appears red, while in the band-swapped image, trees appear a more natural
green and the water is blue. QGIS uses the RGB order to allow you to continue to reference
the bands by number. Even though band 2 is displayed first, it is still referenced as band 2.
Also, notice that the band order is controlled by a QgsMultiBandColorRenderer object
instantiated by the layer rather than the layer itself. The type of renderer that is needed is
determined at load time by the data type and number of bands.

There's more...
The QgsMultiBandColorRenderer() method has other methods to control contrast
enhancement for each band, such as setRedContrastEnhancement(). You can learn
more about raster renderers for different types of data in the QGIS API documentation at
http://qgis.org/api/classQgsRasterRenderer.html.

Querying the value of a raster at a
specified point

A common remote sensing operation is to get the raster data value at a specified coordinate.
In this recipe, we'll query the data value in the center of the image. It so happens that the
raster layer will calculate the center coordinate of its extent for you.

Getting ready
As with many recipes in this chapter, we will again use the SatImage raster, which is available
at https://geospatialpython.googlecode.com/files/SatImage.zip.

Place this raster in your /qgis_data/rasters directory.

How to do it...
We will load the layer, get the center coordinate, and then query the value. To do this, we need
to perform the following steps:

1. First, load and validate the layer:
rasterLyr = QgsRasterLayer("/qgis_data/rasters/satimage.tif",
"Sat Image")

rasterLyr.isValid()

http://qgis.org/api/classQgsRasterRenderer.html
https://geospatialpython.googlecode.com/files/SatImage.zip
http:///

Using Raster Data

94

2. Next, get the layer's center point from its QgsRectangle extent object, which will
return a tuple with the x and y values:
c = rasterLyr.extent().center()

3. Now, using the layer's data provider, we can query the data value at that point using
the identify() method:
qry = rasterLyr.dataProvider().identify(c,
QgsRaster.IdentifyFormatValue)

4. Because a query error won't throw an exception, we must validate the query:
qry.isValid()

5. Finally, we can view the query results, which will return a Python dictionary with each
band number as the key pointing to the data values in that band:
qry.results()

6. Verify that you get the following output:

{1: 17.0, 2: 66.0, 3: 56.0}

How it works...
This recipe is short compared to others, however, we have touched upon several portions of
the PyQGIS raster API. First start with a raster layer and get the extents; we then calculate
the center and create a point at the center coordinates, and lastly we query the raster at that
point. If we were to perform this same, seemingly simple operation using the Python API of
the underlying GDAL library, which does the work, this example would have be approximately
seven times longer.

Reprojecting a raster
A core requirement for all geospatial analysis is the ability to change the map projection
of data in order to allow different layers to be open on the same map. Reprojection can
be challenging, but QGIS makes it a snap of the fingers. Starting with this recipe, we will
begin using the powerful QGIS Processing Toolbox. The Processing Toolbox wraps over 600
algorithms into a highly consistent API, available to Python and also as interactive tools. This
toolbox was originally a third-party plugin named SEXTANTE, but is now a standard plugin
distributed with QGIS.

http:///

Chapter 4

95

Getting ready
As with many recipes in this chapter, we will use the SatImage raster available at
https://geospatialpython.googlecode.com/files/SatImage.zip.

Place this raster in your /qgis_data/rasters directory.

How to do it...
In this recipe, we will use the gdal warp algorithm of the processing module to reproject
our image from EPSG 4326 to 3722. To do this, we need to perform the following steps:

1. Start QGIS.

2. From the Plugins menu, select Python Console.

3. The first line of code is used to import the processing module:
import processing

4. Next, we load our raster layer and validate it:
rasterLyr = QgsRasterLayer("/qgis_data/rasters/SatImage.tif",
"Reproject")

rasterLyr.isValid()

5. Finally, we run the gdal warp algorithm by inserting the correct parameters,
including the layer reference, current projection, desired projection, None for changes
to the resolution, 0 to represent nearest neighbor resampling, None for additional
parameters, 0 –Byte output raster data type (1 for int16), and an output name
for the reprojected image:
processing.runalg("gdalogr:warpreproject", rasterLyr,
"EPSG:4326", "EPSG:3722", None, 0, None, "/0,
qgis_data/rasters/warped.tif")

6. Verify that the output image, warped.tif, was properly created in the filesystem.

How it works...
The Processing Toolbox is essentially a wrapper for command-line tools. However, unlike the
tools it accesses, the toolbox provides a consistent and mostly predictable API. Users familiar
with Esri's ArcGIS ArcToolbox will find this approach familiar. Besides consistency, the toolbox
adds additional validation of parameters and logging, making these tools more user friendly.
It is important to remember that you must explicitly import the processing module. PyQGIS
automatically loads the QGIS API, but this module is not yet included. Remember that it was a
third-party plugin until fairly recently.

https://geospatialpython.googlecode.com/files/SatImage.zip
http:///

Using Raster Data

96

There's more...
The runalg() method, short for the run algorithm, is the most common way to run
processing commands. There are other processing methods that you can use though. If you
want to load the output of your command straight into QGIS, you can swap runalg() for the
runandload() method. All arguments to the method remain the same. You can also get a
list of processing algorithms with descriptions by running processing.alglist(). For any
given algorithm, you can run the alghelp() command to see the types of input it requires,
such as processing.alghelp("gdalogr:warpproject"). You can also write your own
processing scripts based on combinations of algorithms and add them to the processing
toolbox. There is also a visual modeler for chaining processing commands together.

Creating an elevation hillshade
A hillshade, or shaded relief, is a technique to visualize elevation data in order to make it
photorealistic for presentation as a map. This capability is part of GDAL and is available in
QGIS in two different ways. It is a tool in the Terrain Analysis menu under the Raster menu
and it is also an algorithm in the Processing Toolbox.

Getting ready
You will need to download a DEM from https://geospatialpython.googlecode.com/
files/dem.zip.

Unzip the file named dem.asc and place it in your /qgis_data/rasters directory.

How to do it...
In this recipe, we will load the DEM layer and run the Hillshade processing algorithm
against it. To do this, we need to perform the following steps:

1. Start QGIS.

2. From the Plugins menu, select Python Console.

3. Import the processing module:
import processing

4. Load and validate the layer:
rasterLyr = QgsRasterLayer("/qgis_data/rasters/dem.asc",
"Hillshade")

rasterLyr.isValid()

https://geospatialpython.googlecode.com/files/dem.zip
https://geospatialpython.googlecode.com/files/dem.zip
http:///

Chapter 4

97

5. Run the Hillshade algorithm, providing the algorithm name, layer reference,
band number, compute edges option, zevenbergen option for smoother terrain,
z-factor elevation exaggeration number, scaling ratio of vertical to horizontal units,
azimuth (angle of the light source), altitude (height of the light source), and output
image's name:
processing.runandload("gdalogr:hillshade", rasterLyr, 1,
False, False, 1.0, 1.0, 315.0, 45.0,
"/qgis_data/rasters/hillshade.tif")

6. Verify that the output image, hillshade.tif, looks similar to the following
image in QGIS. It should be automatically loaded into QGIS via the processing.
runandload() method:

How it works...
The Hillshade algorithm simulates a light source over an elevation dataset to make it more
visually appealing. Most of the time, the only variables in the algorithm you need to alter are
the z-factor, azimuth, and altitude to get different effects. However, if the resulting image
doesn't look right, you may need to alter the scale. According to the GDAL documentation, if
your DEM is in degrees, you should set a scale of 111120, and if it is in meters, you should
set a scale of 370400. This dataset covers a small area such that a scale of 1 is sufficient. For
more information on these values, see the gdaldem documentation at http://www.gdal.
org/gdaldem.html.

http://www.gdal.org/gdaldem.html
http://www.gdal.org/gdaldem.html
http:///

Using Raster Data

98

Creating vector contours from elevation
data

Contours provides an effective visualization of terrain data by tracing a line along the same
elevation to form a loop at set intervals in the dataset. Similar to the hillshade capability in
QGIS, the Contour tool is provided by GDAL both as a menu option under the Raster menu in
the Extraction category as well as a Processing Toolbox algorithm.

Getting ready
This recipe uses the DEM from https://geospatialpython.googlecode.com/files/
dem.zip, which is used in the other recipes as well.

Unzip the file named dem.asc and place it in your /qgis_data/rasters directory.

How to do it...
In this recipe, we will load and validate the DEM layer, add it to the map, and then produce
and load the contour vector as a layer. To do this, we need to perform the following steps:

1. Start QGIS.

2. From the Plugins menu, select Python Console.

3. Import the processing module.
import processing

4. Load and validate the DEM:
rasterLyr = QgsRasterLayer("/qgis_data/rasters/dem.asc",
"DEM")

rasterLyr.isValid()

5. Add the DEM to the map using the mapLayerRegistry method:
QgsMapLayerRegistry.instance().addMapLayers([rasterLyr])

6. Run the contour algorithm and draw the results on top of the DEM layer, specifying
the algorithm name, layer reference, interval between contour lines in map units,
name of the vector data attribute field that will contain the elevation value, any extra
parameters, and output filename:
processing.runandload("gdalogr:contour", rasterLyr, 50.0,
"Elv", None, "/qgis_data/rasters/contours.shp")

https://geospatialpython.googlecode.com/files/dem.zip
https://geospatialpython.googlecode.com/files/dem.zip
http:///

Chapter 4

99

7. Verify that the output in QGIS looks similar to the following screenshot:

This recipe overlays the resulting elevation contours over the DEM as a way to convert elevation data into a
vector data set.

How it works...
The contour algorithm creates a vector dataset, that is a shapefile. The layer attribute table
contains the elevation values for each line. Depending on the resolution of the elevation
dataset, you may need to change the contour interval to stop the contours from becoming too
crowded or too sparse at your desired map resolution. Usually, autogenerated contours like
this are a starting point, and you must manually edit the result to make it visually appealing.
You may want to smoothen lines or remove unnecessary small loops.

http:///

Using Raster Data

100

Sampling a raster dataset using a regular
grid

Sometimes, you need to sample a raster dataset at regular intervals in order to provide
summary statistics or for quality assurance purposes on the raster data. A common way to
accomplish this regular sampling is to create a point grid over the dataset, query the grid at
each point, and assign the results as attributes to those points. In this recipe, we will perform
this type of sampling over a satellite image. QGIS has a tool to perform this operation called
regular points, which is in the Vector menu under Research Tools. However, there is no tool
in the QGIS API to perform this operation programmatically. However, we can implement this
algorithm directly using Python's numpy module.

Getting ready
In this recipe, we will use the previously used SatImage raster, available at
https://geospatialpython.googlecode.com/files/SatImage.zip.

Place this raster in your /qgis_data/rasters directory.

How to do it...
The order of operation for this recipe is to load the raster layer, create a vector layer in
memory, add points at regular intervals, sample the raster layer at these points, and then
add the sampling data as attributes for each point. To do this, we need to perform the
following steps:

1. Start QGIS.

2. From the Plugins menu, select Python Console.

3. We will need to import the numpy module, which is included with QGIS, as well as
the Qt core module:
import numpy

from PyQt4.QtCore import *

4. Now, we will create a spacing variable to control how far apart the points are
in map units:
spacing = .1

https://geospatialpython.googlecode.com/files/SatImage.zip
http:///

Chapter 4

101

5. Next, we will create an inset variable to determine how close to the edge of the
image the points start, in map units:
inset = .04

6. Now, we load and validate the raster layer:
rasterLyr = QgsRasterLayer("/qgis_data/rasters/satimage.tif",
"Sat Image")

rasterLyr.isValid()

7. Next, we collect the coordinate reference system and extent from the raster layer in
order to transfer it to the point layer:
rpr = rasterLyr.dataProvider()

epsg = rasterLyr.crs().postgisSrid()

ext = rasterLyr.extent()

8. Now, we create an in-memory vector point layer, which won't be written to disk:
vectorLyr = QgsVectorLayer('Point?crs=epsg:%s' % epsg, 'Grid'
, "memory")

9. In order to add points to the vector layer, we must access its data provider:
vpr = vectorLyr.dataProvider()

qd = QVariant.Double

10. Next, we create the attributes' fields to store the raster data samples:
vpr.addAttributes([QgsField("Red", qd), QgsField("Green", qd),
QgsField("Blue", qd)])

vectorLyr.updateFields()

11. We use the inset variable to set up the layer's extents inside the raster layer:
xmin = ext.xMinimum() + inset

xmax = ext.xMaximum()

ymin = ext.yMinimum() + inset

ymax = ext.yMaximum() – inset

12. Now, we use the numpy module to efficiently create the coordinates of the points in
our regular grid:
pts = [(x,y) for x in (i for i in numpy.arange(xmin, xmax,
spacing)) for y in (j for j in numpy.arange(ymin, ymax,
spacing))]

http:///

Using Raster Data

102

13. Then, we create a list to store the point features we will create:
feats = []

14. In one loop, we create the point features, query the raster, and then update the
attribute table. We store the points in a list for now:
for x,y in pts:

 f = QgsFeature()

 f.initAttributes(3)

 p = QgsPoint(x,y)

 qry = rasterLyr.dataProvider().identify(p,
QgsRaster.IdentifyFormatValue)

 r = qry.results()

 f.setAttribute(0, r[1])

 f.setAttribute(1, r[2])

 f.setAttribute(2, r[3])

 f.setGeometry(QgsGeometry.fromPoint(p))

 feats.append(f)

15. Next, we pass the list of points to the data provider of the points layer:
vpr.addFeatures(feats)

16. Now, we update the layer's extents:
vectorLyr.updateExtents()

17. Then, we add both the raster and vector layers to the map in the list. The last item in
the list is on top:
QgsMapLayerRegistry.instance().addMapLayers([rasterLyr,vector
yr])

18. Finally, we refresh the map to see the result:

canvas = iface.mapCanvas()

canvas.setExtent(rasterLyr.extent())

canvas.refresh()

http:///

Chapter 4

103

How it works...
The following screenshot shows the end result, with one of the points in the grid identified
using the Identify Features map tool. The results dialog shows the raster values of the
selected point:

When you use the QGIS Identification Tool to click on one of the points, the results dialog shows the extracted
Red, Green, and Blue values from the image.

Using memory layers in QGIS is an easy way to perform quick, one-off operations without the
overhead of creating files on disk. Memory layers also tend to be fast if your machine has the
resources to spare.

There's more...
In this example, we used a regular grid, but we could have just as easily modified the
numpy-based algorithm to create a random points grid, which in some cases is more useful.
However, the Processing Toolbox also has a simple algorithm for random points called
grass:v.random.

http:///

Using Raster Data

104

Adding elevation data to line vertices using
a digital elevation model

If you have a transportation route through some terrain, it is useful to know the elevation
profile of that route. This operation can be accomplished using the points that make up the
line along the route to query a DEM and to assign elevation values to that point. In this recipe,
we'll do exactly that.

Getting ready
You will need an elevation grid and a route. You can download this dataset from
https://geospatialpython.googlecode.com/svn/path.zip.

Unzip the path directory containing a shapefile and the elevation grid. Place the whole
path directory in your qgis_data/rasters directory.

How to do it...
We will need two processing algorithms to complete this recipe. We will load the raster and
vector layers, convert the line feature to points, and then use these points to query the raster.
The resulting point dataset will serve as the elevation profile for the route. To do this, we need
to perform the following steps:

1. Start QGIS.

2. From the Plugins menu, select Python Console.

3. Import the processing module:
import processing

4. Set up the filenames as variables, so they can be used throughout the script:
pth = "/qgis_data/rasters/path/"

rasterPth = pth + "elevation.asc"

vectorPth = pth + "path.shp"

pointsPth = pth + "points.shp"

elvPointsPth = pth + "elvPoints.shp"

5. Load and validate the source layers:
rasterLyr = QgsRasterLayer(rasterPth, "Elevation")

rasterLyr.isValid()

vectorLyr = QgsVectorLayer(vectorPth, "Path", "ogr")

vectorLyr.isValid()

https://geospatialpython.googlecode.com/svn/path.zip
http:///

Chapter 4

105

6. Add the layers to the map:
QgsMapLayerRegistry.instance().addMapLayers([vectorLyr,
rasterLyr])

7. Create an intermediate point dataset from the line using a SAGA algorithm in the
Processing Toolbox:
processing.runalg("saga:convertlinestopoints", vectorLyr,
False, 1, pointsPth)

8. Finally, use another processing algorithm from SAGA to create the final dataset with
the grid values assigned to the points:

processing.runandload("saga:addgridvaluestopoints", pointsPth,
rasterPth, 0, elvPointsPth)

How it works...
The following image saved from QGIS shows the DEM, route line, and elevation points with
elevation labels, all displayed on the map, with some styling:

It is necessary to convert the lines to points because a line feature can only have one set of
attributes. You can perform the same operation with a polygon as well.

http:///

Using Raster Data

106

There's more...
Instead of running two algorithms, we can build a processing script that combines these
two algorithms into one interface and then added it to the toolbox. In the Processing Toolbox,
there is a category called Scripts, which has a tool called Create new script. Double-clicking
on this tool will bring up an editor that lets you build your own processing scripts. Depending
on your platform, you may need to install or configure SAGA to use this algorithm. You can
find binary packages for Linux at http://sourceforge.net/p/saga-gis/wiki/
Binary%20Packages/.

Also, on Linux, you may need to change the following option:

1. In the Processing menu, select Options….

2. In the Options dialog, open the Providers tree menu and then open the Saga
tree menu.

3. Uncheck the Use 2.0.8 syntax option.

Creating a common extent for rasters
If you are trying to compare two raster images, it is important that they have the same extent
and resolution. Most software packages won't even allow you to attempt to compare images
if they don't have the same extent. Sometimes, you have images that overlap but do not share
a common extent and/or are of different resolutions. The following illustration is an example
of this scenario:

In this recipe, we'll take two overlapping images and give them the same extents.

http://sourceforge.net/p/saga-gis/wiki/Binary%20Packages/
http://sourceforge.net/p/saga-gis/wiki/Binary%20Packages/
http:///

Chapter 4

107

Getting ready
You can download two overlapping images from https://geospatialpython.
googlecode.com/svn/overlap.zip.

Unzip the images and place them in your /qgis_data/rasters directory.

You will also need to download the following processing script from:

https://geospatialpython.googlecode.com/svn/unify_extents.zip

Unzip the contents and place the scripts in your \.qgis2\processing\scripts directory,
found within your user directory. For example, on a Windows 64-bit machine, the directory will
be C:\Users\<username>\.qgis2\processing\scripts, replacing <username> with
your username.

Make sure you restart QGIS. This script is a modified version of the one created by Yury
Ryabov on his blog at http://ssrebelious.blogspot.com/2014/01/unifying-
extent-and-resolution-of.html.

The original script used a confirmation dialog that required user interaction. The modified
script adheres to the Processing Toolbox programming conventions and allows you to use
it programmatically as well.

How to do it...
The only step in QGIS is to run the newly created processing command. To do this, we need
to perform the following steps:

1. Start QGIS.

2. From the Plugins menu, select Python Console.

3. Import the processing module:
import processing

4. Run the newly added processing algorithm, specifying the algorithm name, path to
the two images, an optional no data value, an output directory for the unified images,
and a Boolean flag to load the images into QGIS:
processing.runalg("script:unifyextentandresolution","/qgis_dat
a/rasters/Image2.tif;/qgis_data/rasters/Image1.tif",-
9999,"/qgis_data/rasters",True)

5. In the QGIS table of contents, verify that you have two images named:

Image1_unified.tif

Image2_unfied.tif

https://geospatialpython.googlecode.com/svn/overlap.zip
https://geospatialpython.googlecode.com/svn/overlap.zip
https://geospatialpython.googlecode.com/svn/unify_extents.zip
http://ssrebelious.blogspot.com/2014/01/unifying-extent-and-resolution-of.html
http://ssrebelious.blogspot.com/2014/01/unifying-extent-and-resolution-of.html
http:///

Using Raster Data

108

How it works...
The following screenshot shows the common extent for the rasters, by setting the
transparency of Image1_unified.tif to the pixel 0,0,0:

If you don't use the transparency setting, you will see that both images fill the non-overlapping
areas with no data within the minimum bounding box of both extents. The no data values,
specified as -9999, will be ignored by other processing algorithms.

Resampling raster resolution
Resampling an image allows you to change the current resolution of an image to a different
resolution. Resampling to a lower resolution, also known as downsampling, requires you to
remove pixels from the image while maintaining the geospatial referencing integrity of the
dataset. In the QGIS Processing Toolbox, the gdalogr:warpproject algorithm is used,
which is the same as the algorithm used for reprojection.

Getting ready
We will again use the SatImage raster available at https://geospatialpython.
googlecode.com/files/SatImage.zip.

Place this raster in your /qgis_data/rasters directory.

https://geospatialpython.googlecode.com/files/SatImage.zip
https://geospatialpython.googlecode.com/files/SatImage.zip
http:///

Chapter 4

109

How to do it...
There's an extra step in this process, where we will get the current pixel resolution of
the raster as a reference to calculate the new resolution and pass it to the algorithm.
To do this, we need to perform the following steps:

1. Start QGIS.

2. From the Plugins menu, select Python Console.

3. Import the processing module:
import processing

4. Load and validate the raster layer:
rasterLyr = QgsRasterLayer("/qgis_data/rasters/SatImage.tif",
"Resample")

rasterLyr.isValid()

5. The algorithm requires projection information. We are not changing it, so just
assign the current projection to a variable:
epsg = rasterLyr.crs().postgisSrid()

srs = "EPSG:%s" % epsg

6. Get the current pixel's ground distance and multiply it by 2 to calculate half the
ground resolution. We only use the X distance because in this case, it is identical
to the Y distance:
res = rasterLyr.rasterUnitsPerPixelX() * 2

7. Run the resampling algorithm, specifying the algorithm name, layer reference, input
and then output spatial reference system, desired resolution, resampling algorithm
(0 is the nearest neighbor), any additional parameters, 0 for output raster data type,
and the output filename:
processing.runalg("gdalogr:warpreproject", rasterLyr, srs,
srs, res, 0, None, 0, "/qgis_data/rasters/resampled.tif")

8. Verify that the resampled.tif image was created in your /qgis_data/rasters
directory.

How it works...
It is counterintuitive at first to reduce the resolution by multiplying it. However, by increasing
the spatial coverage of each pixel, it takes less pixels to cover the extent of the raster. You
can easily compare the difference between the two in QGIS visually by loading both the
images and zooming to an area with buildings or other detailed structures and then turning
one layer off or on.

http:///

Using Raster Data

110

Counting the unique values in a raster
Remotely-sensed images are not just pictures; they are data. The value of the pixels has
meaning that can be automatically analyzed by a computer. The ability to run statistical
algorithms on a dataset is key to remote sensing. This recipe counts the number of unique
combinations of pixels across multiple bands. A use case for this recipe will be to assess
the results of image classification, which is a recipe that we'll cover later in this chapter.
This recipe is in contrast to the typical histogram function, which totals the unique values
and the frequency of each value per band.

Getting ready
We will use the SatImage raster available at https://geospatialpython.googlecode.
com/files/SatImage.zip.

Place this raster in your /qgis_data/rasters directory.

How to do it...
This algorithm relies completely on the numpy module, which is included with PyQGIS. Numpy
can be accessed through the GDAL package's gdalnumeric module. To do this, we need to
perform the following steps:

1. Start QGIS.

2. From the Plugins menu, select Python Console.

3. First, we must import the bridge module called gdalnumeric, which connects GDAL
to Numpy in order to perform an array math on geospatial images:
import gdalnumeric

4. Now, we will load our raster image directly into a multidimensional array:
a = gdalnumeric.LoadFile("/qgis_data/rasters/satimage.tif")

5. The following code counts the number of pixel combinations in the image:
b = a.T.ravel()

c=b.reshape((b.size/3,3))

order = gdalnumeric.numpy.lexsort(c.T)

c = c[order]

diff = gdalnumeric.numpy.diff(c, axis=0)

ui = gdalnumeric.numpy.ones(len(c), 'bool')

ui[1:] = (diff != 0).any(axis=1)

u = c[ui]

https://geospatialpython.googlecode.com/files/SatImage.zip
https://geospatialpython.googlecode.com/files/SatImage.zip
http:///

Chapter 4

111

6. Now, we can take a look at the size of the resulting one-dimensional array to get the
unique values count:
u.size

Lastly, verify that the result is 16085631.

How it works...
The numpy module is an open source equivalent of the commercial package Matlab.
You can learn more about Numpy at: http://Numpy.org.

When you load an image using Numpy, it is loaded as a multidimensional array of numbers.
Numpy allows you to do an array math on the entire array using operators and specialized
functions, in the same way you would on variables containing a single numeric value.

Mosaicing rasters
Mosaicing rasters is the process of fusing multiple geospatial images with the same
resolution and map projection into one raster. In this recipe, we'll combine two overlapping
satellite images into a single dataset.

Getting ready
You will need to download the overlapping dataset from https://geospatialpython.
googlecode.com/svn/overlap.zip if you haven't downloaded it from a previous recipe.

Place the two images in your /qgis_data/rasters/ directory.

How to do it...
This process is relatively straightforward and has a dedicated algorithm within the Processing
Toolbox. Perform the following steps:

1. Start QGIS.

2. From the Plugins menu, select Python Console.

3. Run the gdalogr:merge algorithm, specifying the process name, two images,
a boolean to use the pseudocolor palette from the first image, a boolean to stack
each image into a separate band, and the output filename:
processing.runalg("gdalogr:merge","C:/qgis_data/rasters/Image2
.tif;C:/qgis_data/rasters/Image1.tif",False,False,"/qgis_data/
rasters/merged.tif")

4. Verify that the merged.tif image has been created and displays the two images as
a single raster within QGIS.

http://www.numpy.org
https://geospatialpython.googlecode.com/svn/overlap.zip
https://geospatialpython.googlecode.com/svn/overlap.zip
http:///

Using Raster Data

112

How it works...
The merge processing algorithm is a simplified version of the actual gdal_merge
command-line utility. This algorithm is limited to the GDAL output and aggregates the
extent of input rasters. It can only merge two rasters at a time. The gdal_merge tool has far
more options, including additional output formats, the ability to merge more than two rasters
at once, the ability to control the extent, and more. You can also use the GDAL API directly
to take advantage of these features, but it will take far more code than what is used in this
simple example.

Converting a TIFF image to a JPEG image
Image format conversion is a part of nearly every geospatial project. Rasters come in dozens
of different specialized formats, making conversion to a more common format a necessity.
The GDAL utilities include a tool called gdal_translate specifically for format conversion.
Unfortunately, the algorithm in the Processing Toolbox is limited in functionality. For format
conversion, it is easier to use the core GDAL API.

Getting ready
We will use the SatImage raster available at https://geospatialpython.googlecode.
com/files/SatImage.zip.

Place this raster in your /qgis_data/rasters directory.

How to do it...
In this recipe, we'll open a TIFFimage using GDAL and copy it to a new dataset as a JPEG2000
image, which allows you to use the common JPEG format while maintaining geospatial
information. To do this, we need to perform the following steps:

1. Start QGIS.

2. From the Plugins menu, select Python Console.

3. Import the gdal module:
from osgeo import gdal

4. Get a GDAL driver for our desired format:
drv = gdal.GetDriverByName("JP2OpenJPEG")

https://geospatialpython.googlecode.com/files/SatImage.zip
https://geospatialpython.googlecode.com/files/SatImage.zip
http:///

Chapter 4

113

5. Open the source image:
src = gdal.Open("/qgis_data/rasters/satimage.tif")

6. Copy the source dataset to the new format:

tgt = drv.CreateCopy("/qgis_data/rasters/satimage.jp2", src)

How it works...
For the straight format conversion of an image format, the core GDAL library is extremely
fast and simple. GDAL supports the creation of over 60 raster formats and the reading of
over 130 raster formats.

Creating pyramids for a raster
Pyramids, or overview images, sacrifice the disk space for map rendering speed by storing
resampled, lower-resolution versions of images in the file alongside the full resolution image.
Once you have finalized a raster, building pyramid overviews is a good idea.

Getting ready
For this recipe, we will use a false-color image, that you can download from
https://geospatialpython.googlecode.com/files/FalseColor.zip.

Unzip this TIF file and place it in your /qgis_data/rasters directory.

How to do it...
The Processing Toolbox has a dedicated algorithm for building pyramid images. Perform the
following steps to create pyramids for a raster

1. Start QGIS.

2. From the Plugins menu, select Python Console.

3. Import the processing module:
import processing

4. Run the gdalogr:overviews algorithm, specifying the process name, input
image, overview levels, the option to remove existing overviews, resampling method
(0 is the nearest neighbor), and overview format (1 is internal):
processing.runalg("gdalogr:overviews","/qgis_data/rasters/Fals
eColor.tif","2 4 8 16",True,0,1)

https://geospatialpython.googlecode.com/files/FalseColor.zip
http:///

Using Raster Data

114

5. Now, load the raster into QGIS by dragging and dropping it from the filesystem
onto the map canvas.

6. Double-click on the layer name in the map's legend to open the Layer
Properties dialog.

7. In the Layer Properties dialog, click on the Pyramids tab and verify that the layer
has multiple resolutions listed.

How it works...
The concept of overview images is quite simple. You resample the images several times, and
then a viewer chooses the most appropriate, smallest file to load on the map, depending
on scale. The overviews can be stored in the header of the file for certain formats or as
an external file format. The level of overviews needed depends largely on the file size and
resolution of your current image, but is really arbitrary. In this example, we double the scale
by a factor of 2, which a is common practice. Most of the zoom tools in the applications will
double the scale when you click to zoom in. The factor of 2 gives you enough zoom levels, so
that you usually won't zoom to a level where there is no pyramid image. There is a point of
diminishing returns if you create too many levels because pyramids take up additional disk
space. Usually 4 to 5 levels is effective.

Converting a pixel location to a map
coordinate

The ability to view rasters in a geospatial context relies on the conversion of pixel locations to
coordinates on the ground. Sooner or later when you use Python to write geospatial programs,
you'll have to perform this conversion yourself.

Getting ready
We will use the SatImage raster available at:

https://geospatialpython.googlecode.com/files/SatImage.zip

Place this raster in your /qgis_data/rasters directory.

https://geospatialpython.googlecode.com/files/SatImage.zip
http:///

Chapter 4

115

How to do it...
We will use GDAL to extract the information needed to convert pixels to coordinates and then
use pure Python to perform the calculation. We'll use the center pixel of the image as the
location to convert.

1. Start QGIS.

2. From the Plugins menu select Python Console

3. We need to import the gdal module:
from osgeo import gdal

4. Then, we need to define the reusable function that does the conversion accepting a
GDAL GeoTransform object containing the raster georeferencing information and
the pixel's x,y values:
def Pixel2world(geoMatrix, x, y):

 ulX = geoMatrix[0]

 ulY = geoMatrix[3]

 xDist = geoMatrix[1]

 yDist = geoMatrix[5]

 coorX = (ulX + (x * xDist))

 coorY = (ulY + (y * yDist))

 return (coorX, coorY)

5. Now, we'll open the image in GDAL
src = gdal.Open("/qgis_data/rasters/Satimage.tif")

6. Next, get the GeoTransform object from the image:
geoTrans = src.GetGeoTransform()

7. Now, calculate the center pixel of the image:
centerX = src.RasterXSize/2

centerY = src.RasterYSize/2

8. Finally, perform the conversion by calling our function:
Pixel2world(geoTrans, centerX, centerY)

9. Verify the coordinates returned are close to the following output:

(-89.59486002580364, 30.510227817850406)

http:///

Using Raster Data

116

How it works...
Pixel conversion is just a scaling ratio between two planes, the image coordinate system
and the Earth coordinate system. When dealing with large areas, this conversion can
become a more complex projection because the curvature of the Earth comes into play.
The GDAL website has a nice tutorial about the geotransform object at the following URL:
http://www.gdal.org/gdal_tutorial.html

Converting a map coordinate to a pixel
location

When you receive a map coordinate as user input or from some other source, you must be
able to convert it back to the appropriate pixel location on a raster.

Getting ready
We will use the SatImage raster available at:

https://geospatialpython.googlecode.com/files/SatImage.zip

Place this raster in your /qgis_data/rasters directory.

How to do it...
Similar to the previous recipe, we will define a function, extract the GDAL GeoTransform
object from our raster, and use it for the conversion.

1. Start QGIS.

2. From the Plugins menu select Python Console

3. We need to import the gdal module:
from osgeo import gdal

4. Then, we need to define the reusable function that does the coordinate to pixel
conversion. We get the GDAL GeoTransform object containing the raster
georeferencing information and the map x,y coordinates:
def world2Pixel(geoMatrix, x, y):

 ulX = geoMatrix[0]

 ulY = geoMatrix[3]

 xDist = geoMatrix[1]

http://www.gdal.org/gdal_tutorial.html
https://geospatialpython.googlecode.com/files/SatImage.zip
http:///

Chapter 4

117

 yDist = geoMatrix[5]

 rtnX = geoMatrix[2]

 rtnY = geoMatrix[4]

 pixel = int((x - ulX) / xDist)

 line = int((y - ulY) / yDist)

 return (pixel, line)

5. Next, we open the source image:
src = gdal.Open("/qgis_data/rasters/satimage.tif")

6. Now, get the GeoTransform object:
geoTrans = src.GetGeoTransform()

7. Finally, perform the conversion:
world2Pixel(geoTrans, -89.59486002580364, 30.510227817850406)

8. Verify your output is the following:

(1296, 1346)

How it works...
This conversion is very reliable over small areas, but as the area of interest expands you must
account for elevation as well, which requires a far more complex transformation depending on
how an image was generated.

The following presentation from the University of Massachusetts does an
excellent job of explain the challenges of georeferencing data:
http://courses.umass.edu/nrc592g-cschweik/pdfs/
Class_3_Georeferencing_concepts.pdf

Creating a KML image overlay for a raster
GoogleEarth is one of the most widely available geospatial viewers in existence. The XML
data format used by GoogleEarth for geospatial data is called KML. The Open Geospatial
Consortium adopted KML as a data standard. Converting rasters into a KML overlay
compressed in a KMZ archive file is a very popular way to make data available to end users
who know how to use GoogleEarth.

http://courses.umass.edu/nrc592g-cschweik/pdfs/Class_3_Georeferencing_concepts.pdf
http://courses.umass.edu/nrc592g-cschweik/pdfs/Class_3_Georeferencing_concepts.pdf
http:///

Using Raster Data

118

Getting ready
We will use the SatImage raster again available at the following URL if you haven't downloaded
it from previous recipes:

https://geospatialpython.googlecode.com/files/SatImage.zip

Place this raster in your /qgis_data/rasters directory.

How to do it...
In this recipe, we'll create a KML document describing our image. Then we'll convert the
image to a JPEG in memory using GDAL's specialized virtual file system and write all of the
contents directly to a KMZ file using Python's zipfile module.

1. Start QGIS.

2. From the Plugins menu select Python Console

3. We need to import the gdal module as well as the Python zipfile module:
from osgeo import gdal

import zipfile

4. Next, we'll open our satellite image in gdal:
srcf = "/qgis_data/rasters/Satimage.tif"

5. Now, we'll create a variable with our virtualized file name, using the GDAL virtual file
naming convention beginning with vismem:
vfn = "/vsimem/satimage.jpg"

6. We create the JPEG gdal driver object for the output format:
drv = gdal.GetDriverByName('JPEG')

7. Now, we can open the source file:
src = gdal.Open(srcf)

8. Then, we can copy that source file to our virtual JPEG:
tgt = drv.CreateCopy(vfn, src)

9. Now, we are going to create a raster layer in QGIS for our raster, just for the benefit of
it calculating the image's extent:
rasterLyr = QgsRasterLayer(srcf, "SatImage")

https://geospatialpython.googlecode.com/files/SatImage.zip
http:///

Chapter 4

119

10. Next, we get the layer's extent:
e = rasterLyr.extent()

11. Next, we format our KML document template and insert the image extents:
kml = """<?xml version="1.0" encoding="UTF-8"?>
<kml xmlns="http://www.opengis.net/kml/2.2">
 <Document>
 <name>QGIS KML Example</name>
 <GroundOverlay>
 <name>SatImage</name>
 <drawOrder>30</drawOrder>
 <Icon>
 <href>SatImage.jpg</href>
 </Icon>
 <LatLonBox>
 <north>%s</north>
 <south>%s</south>
 <east>%s</east>
 <west>%s</west>
 </LatLonBox>
 </GroundOverlay>
 </Document>
</kml>""" %(e.yMaximum(), e.yMinimum(), e.xMaximum(),
e.xMinimum())

12. Now, we open our virtual JPEG in GDAL and prepare it for reading:
vsifile = gdal.VSIFOpenL(vfn,'r')

gdal.VSIFSeekL(vsifile, 0, 2)

vsileng = gdal.VSIFTellL(vsifile)

gdal.VSIFSeekL(vsifile, 0, 0)

13. Finally, we write our KML document and virtual JPEG into a zipped KMZ file:
z = zipfile.ZipFile("/qgis_data/rasters/satimage.kmz", "w",
zipfile.ZIP_DEFLATED)

z.writestr("doc.kml", kml)

z.writestr("SatImage.jpg", gdal.VSIFReadL(1, vsileng, vsifile))

z.close()

http:///

Using Raster Data

120

14. Now, open the KMZ file in GoogleEarth and verify it looks like the following screenshot:

How it works...
KML is a straightforward XML format. There are entire libraries in Python dedicated to reading
and writing it, but for a simple export to share an image or two, the PyQGIS console is more
than adequate. While we run this script in the QGIS Python interpreter, it could be run outside
of QGIS using just GDAL.

There's more...
The Orfeo Toolbox has a processing algorithm called otb:imagetokmzexport which has a
much more sophisticated KMZ export tool for images.

http:///

Chapter 4

121

Classifying a raster
Image classification is one of the most complex aspects of remote sensing. While QGIS
is able to color pixels based on values for visualization, it stops short of doing much
classification. It does provide a Raster Calculator tool where you can perform arbitrary math
formulas on an image, however it does not attempt to implement any common algorithms.
The Orfeo Toolbox is dedicated purely to remote sensing and includes an automated
classification algorithm called K-means clustering, which groups pixels into an arbitrary
number of similar classes to create a new image. We can do a nice demonstration of image
classification using this algorithm.

Getting ready
For this recipe, we will use a false color image which you can download here:

https://geospatialpython.googlecode.com/files/FalseColor.zip

Unzip this TIFF file and place it in your /qgis_data/rasters directory.

How to do it...
All we need to do is run the algorithm on our input image. The important parameters are the
second, third, sixth, and tenth parameters. They define the input image name, the amount of
RAM to dedicate to the task, the number of classes, and the output name respectively.

1. First, import the processing module in the QGIS Python Console:
import processing

2. Next, run the otb algorithm using the processing.runandload() method to
display the output in QGIS:
processing.runandload("otb:unsupervisedkmeansimageclassificati
on","/qgis_data/rasters/FalseColor.tif",768,None,10000,3,1000,
0.95,"/qgis_data/rasters/classify.tif",None)

3. When the image loads in QGIS, double click the layer name in the Table of Contents.

4. In the Layer Properties dialog, choose Style.

5. Change the Render type menu to Singleband pseudocolor.

https://geospatialpython.googlecode.com/files/FalseColor.zip
http:///

Using Raster Data

122

6. Change the color map menu on the right to Spectral.

7. Click the Classify button.

8. Choose the Ok button at the bottom of the window.

9. Verify your image looks similar to the following image, except without the class labels:

How it works...
Keeping the class number low allows the automated classification algorithm to focus on
the major features in the image and helps when us to achieve a very high level of accuracy
determining overall land use. Additional automated classification would require supervised
analysis with training data sets and more in-depth preparation. But the overall concept would
remain the same. QGIS has a nice plugin for semi-automatic classification. You can learn more
about it at the following URL:

https://plugins.qgis.org/plugins/SemiAutomaticClassificationPlugin/

Converting a raster to a vector
Raster datasets represent real-world features efficiently but can have limited usage for
geospatial analysis. Once you have classified an image into a manageable data set, you can
convert those raster classes into a vector data set for more sophisticated GIS analysis. GDAL
has a function for this operation called polygonize.

https://plugins.qgis.org/plugins/SemiAutomaticClassificationPlugin/
http:///

Chapter 4

123

Getting ready
You will need to download the following classified raster and place it in your /qgis_data/
rasters directory:

https://geospatialpython.googlecode.com/svn/landuse_bay.zip

How to do it...
Normally, you would save the output of this recipe as a shapefile. We won't specify an
output file name. The Processing Toolbox will assign it a temporary filename and return that
filename. We'll simply load the temporary file into QGIS. The algorithm allows you to write to a
shapefile by specifying it as the last parameter.

1. In the QGIS Python Console, import the processing module:
import processing

2. Next, run the algorithm specifying the process name, input image, the field name for
the class number, and optionally the output shapefile:
processing.runalg("gdalogr:polygonize","C:/qgis_data/rasters/l
anduse_bay.tif","DN",None)

3. You should get a vector layer with three classes, defined as polygons, denoting
developed areas. In the sample image below, we have assigned unique colors to
each class: developed area (darkest), water (midtones), and land (lightest color):

https://geospatialpython.googlecode.com/svn/landuse_bay.zip
http:///

Using Raster Data

124

How it works...
GDAL looks for clusters of pixels and creates polygons around them. It is important to
have as few classes as possible. If there is too much variation in the pixels, then GDAL will
create a polygon around each pixel in the image. You turn this recipe into a true analysis
product by using the recipe in Chapter 1, Calculating the Area of a Polygon to quantify each
class of land use.

Georeferencing a raster from control points
Sometimes a raster that represents features on the earth is just an image with no
georeferencing information. That is certainly the case with historical scanned maps. However,
you can use a referenced data set of the same area to create tie points, or ground control
points, and then use an algorithm to warp the image to fit the model of the earth. It is common
for data collection systems to just store the ground control points (GCP) along with the raster to
keep the image in as raw a format as possible. Each change to an image holds the possibility of
losing data. So georeferencing an image on demand is often the best approach.

In this recipe, we'll georeference a historical survey map of the Louisiana and Mississippi
Gulf Coast from 1853. The control points were manually created with the QGIS Georeferencer
plugin and saved to a standardized control point file.

Getting ready
Download the following zip file, unzip the contents, and put the georef directory in
/qgis_data/rasters:

https://geospatialpython.googlecode.com/svn/georef.zip

How to do it...
We will use a low-level module of the processing API to access some specialized GDAL
utility functions.

1. In the QGIS Python Console, import the GdalUtils module:
from processing.algs.gdal.GdalUtils import GdalUtils

2. Now, we will set up some path names for source and target data, which will be
used multiple times:
src = "/qgis_data/rasters/georef/1853survey.jpg"

points = "/qgis_data/rasters/georef/1853Survey.points"

trans = "/qgis_data/rasters/georef/1835survey_trans.tif"

final = "/qgis_data/rasters/georef/1835survey_georef.tif"

https://geospatialpython.googlecode.com/svn/georef.zip
http:///

Chapter 4

125

3. Next, we will open up our GCP file and read past the header line:
gcp = open(points, "rb")

hdr = gcp.readline()

4. Then, we can begin building our first gdal utility command:
command = ["gdal_translate"]

5. Loop through the GCP file and append the points to the command arguments:
for line in gcp:

 x,y,col,row,e = line.split(",")

 command.append("-gcp")

 command.append("%s" % col)

 command.append("%s" % abs(float(row)))

 command.append("%s" % x)

 command.append("%s" % y)

6. Now, add the input and output file to the command:
command.append(src)

command.append(trans)

7. Next, we can execute the first command:
GdalUtils.runGdal(command, None)

8. Next, we change the command to warp the image:
command = ["gdalwarp"]

command.extend(["-r", "near", "-order", "3", "-co",
"COMPRESS=NONE", "-dstalpha"])

9. Add the output of the last command as the input and use the final image path
as the output:
command.append(trans)

command.append(final)

10. Now, run the warp command to complete the task:

GdalUtils.runGdal(command, None)

http:///

Using Raster Data

126

How it works...
The GdalUtils API exposes the underlying tools used by the Processing Toolbox algorithm,
yet provides a robust cross-platform approach that is better than other traditional methods of
accessing external programs from Python. If you pull the output image into QGIS and compare
it to the USGS coastline shapefile, you can see the results are fairly accurate and could be
improved with additional control points and referenced data. The number of GCPs required for
a given image is a matter of trial and error. Adding more GCPs won't necessarily lead to better
results. You can find out more about creating GCPs in the QGIS documentation:

http://docs.qgis.org/2.6/en/docs/user_manual/plugins/plugins_
georeferencer.html

Clipping a raster using a shapefile
Sometimes you need to use a subset of an image which covers an area of interest for a
project. In fact, areas of an image outside your area of interest can distract your audience
from the idea you are trying to convey. Clipping a raster to a vector boundary allows you to only
use the portions of the raster you need. It can also save processing time by eliminating areas
outside your area of interest.

Getting ready
We will use the SatImage raster again available at the following URL if you haven't downloaded
it from previous recipes:

https://geospatialpython.googlecode.com/files/SatImage.zip

Place this raster in your /qgis_data/rasters directory.

How to do it...
Clipping is a common operation and GDAL is well suited for it.

1. First, in the QGIS Python Console, run import the processing module:
import processing

2. Next, run the processing command specifying the input image name as the second
argument and the output image as the seventh argument:
processing.runandload("gdalogr:cliprasterbymasklayer","/qgis_d
ata/rasters/SatImage.tif","/qgis_data/hancock/hancock.shp","no
ne",False,False,"","/qgis_data/rasters/clipped.tif")

http://docs.qgis.org/2.6/en/docs/user_manual/plugins/plugins_georeferencer.html
http://docs.qgis.org/2.6/en/docs/user_manual/plugins/plugins_georeferencer.html
https://geospatialpython.googlecode.com/files/SatImage.zip
http:///

Chapter 4

127

3. Verify your output raster looks like the following screenshot:

How it works...
GDAL creates a no data mask outside the shapefile boundary. To the extent of the original
image remains the same, however you no longer visualize it and processing algorithms will
ignore the no data values.

http:///

http:///

129

Creating Dynamic Maps

In this chapter, we will cover the following recipes:

f Accessing the map canvas

f Changing the map units

f Iterating over layers

f Symbolizing a vector layer

f Rendering a single band raster using a color ramp algorithm

f Creating a complex vector layer symbol

f Using icons as vector layer symbols

f Creating a graduated vector layer symbol

f Creating a categorized vector layer symbol

f Creating a map bookmark

f Navigating to a map bookmark

f Setting scale-based visibility for a layer

f Using SVG for layer symbols

f Using pie charts for symbols

f Using the OpenStreetMap service

f Using the Bing aerial image service

f Adding real-time weather data from OpenWeatherMap

f Labeling a feature

f Changing map layer transparency

f Adding standard map tools to the canvas

f Using a map tool to draw points on the canvas

5

http:///

Creating Dynamic Maps

130

f Using a map tool to draw polygons or lines on the canvas

f Building a custom selection tool

f Creating a mouse coordinate tracking tool

Introduction
In this chapter, we'll programmatically create dynamic maps using Python to control every
aspect of the QGIS map canvas. We'll learn how to use custom symbology, labels, map
bookmarks, and even real-time data. We'll also go beyond the canvas to create custom map
tools. You will see that every aspect of QGIS is up for grabs with Python, to write your own
application. Sometimes, the PyQGIS API may not directly support your application goal, but
there is nearly always a way to accomplish what you set out to do with QGIS.

Accessing the map canvas
Maps in QGIS are controlled through the map canvas. In this recipe, we'll access the canvas
and then check one of its properties to ensure that we have control over the object.

Getting ready
The only thing you need to do for this recipe is to open QGIS and select Python Console from
the Plugins menu.

How to do it...
We will assign the map canvas to a variable named canvas. Then, we'll check the size
property of the canvas to get its size in pixels. To do this, perform the following steps:

1. Enter the following line in the QGIS Python Console:
canvas = qgis.utils.iface.mapCanvas()

2. Now, to ensure that we have properly accessed the canvas, check its size in pixels
using the following line of code:
canvas.size()

3. Verify that QGIS returns a QSize object that contains the canvas's pixel size,
similar to the following format:

PyQt4.QtCore.QSize(698, 138)

http:///

Chapter 5

131

How it works...
Everything in QGIS centers on the canvas. The canvas is part of the QGIS interface or iface
API. Anything you see on the screen when using QGIS is generated through the iface API.
Note that the iface object is only available to scripts and plugins. When you are building a
standalone application, you must initialize your own QgsMapCanvas object.

Changing the map units
Changing the units of measurement on a map, or map units, is a very common operation,
depending on the purpose of your map or the standards of your organization or country.
In this recipe, we'll read the map units used by QGIS and then change them for your project.

Getting ready
The only preparation you need for this recipe is to open QGIS and select Python Console from
the Plugins menu.

How to do it...
In the following steps, we'll access the map canvas, check the map unit type, and then alter it
to a different setting.

1. First, access the map canvas, as follows:
canvas = iface.mapCanvas()

2. Now, get the map units type. By default, it should be the number 2:
canvas.mapUnits()

3. Now, let's set the map units to meters using the built-in enumerator:

canvas.setMapUnits(QGis.Meters)

How it works...
QGIS has seven different map units, which are enumerated in the following order:

0 Meters

1 Feet

2 Degrees

3 UnknownUnit

http:///

Creating Dynamic Maps

132

4 DecimalDegrees

5 DegreesMinutesSeconds

6 DegreesDecimalMinutes

7 NauticalMiles

It is important to note that changing the map units just changes the unit of measurement for
the measurement tool and the display in the status bar; it does not change the underlying
map projection. You'll notice this difference if you try to run an operation in the Processing
Toolbox, which depends on projected data in meters, if the data is unprojected. The most
common use case for changing map units is to switch between imperial and metric units,
depending on the user's preference.

Iterating over layers
For many GIS operations, you need to loop through the map layers to look for specific
information or to apply a change to all the layers. In this recipe, we'll loop through the
layers and get information about them.

Getting ready
We'll need two layers in the same map projection to perform this recipe. You can download
the first layer as a ZIP file from https://geospatialpython.googlecode.com/files/
MSCities_Geo_Pts.zip.

You can download the second zipped layer from https://geospatialpython.
googlecode.com/files/Mississippi.zip.

Unzip both of these layers into a directory named ms within your qgis_data directory.

How to do it...
We will add the layers to the map through the map registry. Then, we will iterate through the
map layers and print each layer's title. To do this, perform the following steps:

1. First, let's open the polygon and the point layer using the QGIS Python Console:
lyr_1 =
QgsVectorLayer("/Users/joellawhead/qgis_data/ms/mississippi.sh
p", "Mississippi", "ogr")

lyr_2 =
QgsVectorLayer("/Users/joellawhead/qgis_data/ms/MSCities_Geo_P
ts.shp", "Cities", "ogr")

https://geospatialpython.googlecode.com/files/MSCities_Geo_Pts.zip
https://geospatialpython.googlecode.com/files/MSCities_Geo_Pts.zip
https://geospatialpython.googlecode.com/files/Mississippi.zip
https://geospatialpython.googlecode.com/files/Mississippi.zip
http:///

Chapter 5

133

2. Next, get the map layer registry instance:
registry = QgsMapLayerRegistry.instance()

3. Now add the vector layers to the map:
registry.addMapLayers([lyr_2, lyr_1])

4. Then, we retrieve the layers as an interator:
layers = registry.mapLayers()

5. Finally, we loop through the layers and print the titles:
for l in layers:

 printl.title()

6. Verify that you can read the layer titles in the Python Console, similar to the
following format:

Cities20140904160234792

Mississippi20140904160234635

How it works...
Layers in QGIS are independent of the map canvas until you add them to the map layer
registry. They have an ID as soon as they are created. When added to the map, they become
part of the canvas, where they pick up titles, symbols, and many other attributes. In this case,
you can use the map layer registry to iterate through them and access them to change the
way they look or to add and extract data.

Symbolizing a vector layer
The appearance of the layers on a QGIS map is controlled by its symbology. A layer's
symbology includes the renderer and one or more symbols. The renderer provides rules
dictating the appearance of symbols. The symbols describe properties, including color,
shape, size, and linewidth. In this recipe, we'll load a vector layer, change its symbology,
and refresh the map.

Getting ready
Download the following zipped shapefile and extract it to your qgis_data directory into
a folder named ms from https://geospatialpython.googlecode.com/files/
Mississippi.zip.

https://geospatialpython.googlecode.com/files/Mississippi.zip
https://geospatialpython.googlecode.com/files/Mississippi.zip
http:///

Creating Dynamic Maps

134

How to do it...
We will load a layer, add it to the map layer registry, change the layer's color, and then refresh
the map. To do this, perform the following steps:

1. First, using the QGIS Python Console, we must import the QtGui library in order to
access the QColor object that is used to describe colors in the PyQGIS API:
from PyQt4.QtGui import *

2. Next, we create our vector layer, as follows:
lyr =
QgsVectorLayer("/Users/joellawhead/qgis_data/ms/mississippi.sh
p", "Mississippi", "ogr")

3. Then, we add it to the map layer registry:
QgsMapLayerRegistry.instance().addMapLayer(lyr)

4. Now, we access the layer's symbol list through the layer's renderer object:
symbols = lyr.rendererV2().symbols()

5. Next, we reference the first symbol, which in this case is the only symbol:
sym = symbols[0]

6. Once we have the symbol, we can set its color:
sym.setColor(QColor.fromRgb(255,0,0))

7. We must remember to repaint the layer in order to force the update:

lyr.triggerRepaint()

How it works...
Changing the color of a layer sounds simple, but remember that in QGIS, anything you see
must be altered through the canvas API. Therefore, we add the layer to the map and access
the layer's symbology through its renderer. The map canvas is rendered as a raster image.
The renderer is responsible for turning the layer data into a bitmap image, so the presentation
information for a layer is stored with its renderer.

http:///

Chapter 5

135

Rendering a single band raster using a
color ramp algorithm

A color ramp allows you to render a raster using just a few colors to represent different ranges
of cell values that have similar meaning, in order to group them. The approach that will be
used in this recipe is the most common way to render elevation data.

Getting ready
You can download a sample DEM from https://geospatialpython.googlecode.com/
files/dem.zip, which you can unzip in a directory named rasters in your qgis_data
directory.

How to do it...
In the following steps, we will set up objects to color a raster, create a list establishing the
color ramp ranges, apply the ramp to the layer renderer, and finally add the layer to the map.
To do this, we need to perform the following steps:

1. First, we import the QtGui library for color objects in the QGIS Python Console:
from PyQt4 import QtGui

2. Next, we load the raster layer, as follows:
lyr =
QgsRasterLayer("/Users/joellawhead/qgis_data/rasters/dem.asc",
"DEM")

3. Now, we create a generic raster shader object:
s = QgsRasterShader()

4. Then, we instantiate the specialized ramp shader object:
c = QgsColorRampShader()

5. We must name a type for the ramp shader. In this case, we use an
INTERPOLATED shader:
c.setColorRampType(QgsColorRampShader.INTERPOLATED)

https://geospatialpython.googlecode.com/files/dem.zip
https://geospatialpython.googlecode.com/files/dem.zip
http:///

Creating Dynamic Maps

136

6. Now, we'll create a list of our color ramp definitions:
i = []

7. Then, we populate the list with color ramp values that correspond to elevation
value ranges:
i.append(QgsColorRampShader.ColorRampItem(400,
QtGui.QColor('#d7191c'), '400'))

i.append(QgsColorRampShader.ColorRampItem(900,
QtGui.QColor('#fdae61'), '900'))

i.append(QgsColorRampShader.ColorRampItem(1500,
QtGui.QColor('#ffffbf'), '1500'))

i.append(QgsColorRampShader.ColorRampItem(2000,
QtGui.QColor('#abdda4'), '2000'))

i.append(QgsColorRampShader.ColorRampItem(2500,
QtGui.QColor('#2b83ba'), '2500'))

8. Now we assign the color ramp to our shader:
c.setColorRampItemList(i)

9. Now, we tell the generic raster shader to use the color ramp:
s.setRasterShaderFunction(c)

10. Next, we create a raster renderer object with the shader:
ps = QgsSingleBandPseudoColorRenderer(lyr.dataProvider(), 1,
s)

11. We assign the renderer to the raster layer:
lyr.setRenderer(ps)

12. Finally, we add the layer to the canvas in order to view it:

QgsMapLayerRegistry.instance().addMapLayer(lyr)

How it works…
While it takes a stack of four objects to create a color ramp, this recipe demonstrates how
flexible the PyQGIS API is. Typically, the more objects it takes to accomplish an operation in
QGIS, the richer the API is, giving you the flexibility to make complex maps.

http:///

Chapter 5

137

Notice that in each ColorRampItem object, you specify a starting elevation value, the
color, and a label as the string. The range for the color ramp ends at any value less than the
following item. So, in this case, the first color will be assigned to the cells with a value between
400 and 899. The following screenshot shows the applied color ramp.

Creating a complex vector layer symbol
The true power of QGIS symbology lies in its ability to stack multiple symbols in order to
create a single complex symbol. This ability makes it possible to create virtually any type
of map symbol you can imagine. In this recipe, we'll merge two symbols to create a single
symbol and begin unlocking the potential of complex symbols.

Getting ready
For this recipe, we will need a line shapefile, which you can download and extract from
https://geospatialpython.googlecode.com/svn/paths.zip.

Add this shapefile to a directory named shapes in your qgis_data directory.

https://geospatialpython.googlecode.com/svn/paths.zip
http:///

Creating Dynamic Maps

138

How to do it…
Using the QGISPythonConsole,we will create a classic railroad line symbol by placing a
series of short, rotated line markers along a regular line symbol. To do this, we need to
perform the following steps:

1. First, we load our line shapefile:
lyr =
QgsVectorLayer("/Users/joellawhead/qgis_data/shapes/paths.shp"
, "Route", "ogr")

2. Next, we get the symbol list and reference the default symbol:
symbolList = lyr.rendererV2().symbols()

symbol = symbolList[0]

3. Then, we create a shorter variable name for the symbol layer registry:
symLyrReg = QgsSymbolLayerV2Registry

4. Now, we set up the line style for a simple line using a Python dictionary:
lineStyle = {'width':'0.26', 'color':'0,0,0'}

5. Then, we create an abstract symbol layer for a simple line:
symLyr1Meta =
symLyrReg.instance().symbolLayerMetadata("SimpleLine")

6. We instantiate a symbol layer from the abstract layer using the line style properties:
symLyr1 = symLyr1Meta.createSymbolLayer(lineStyle)

7. Now, we add the symbol layer to the layer's symbol:
symbol.appendSymbolLayer(symLyr1)

8. Now, in order to create the rails on the railroad, we begin building a marker line style
with another Python dictionary, as follows:
markerStyle = {}

markerStyle['width'] = '0.26'

markerStyle['color'] = '0,0,0'

markerStyle['interval'] = '3'

markerStyle['interval_unit'] = 'MM'

markerStyle['placement'] = 'interval'

markerStyle['rotate'] = '1'

http:///

Chapter 5

139

9. Then, we create the marker line abstract symbol layer for the second symbol:
symLyr2Meta =
symLyrReg.instance().symbolLayerMetadata("MarkerLine")

10. We instatiate the symbol layer, as shown here:
symLyr2 = symLyr2Meta.createSymbolLayer(markerStyle)

11. Now, we must work with a subsymbol that defines the markers along the marker line:
sybSym = symLyr2.subSymbol()

12. We must delete the default subsymbol:
sybSym.deleteSymbolLayer(0)

13. Now, we set up the style for our rail marker using a dictionary:
railStyle = {'size':'2', 'color':'0,0,0', 'name':'line',
'angle':'0'}

14. Now, we repeat the process of building a symbol layer and add it to the subsymbol:
railMeta =
symLyrReg.instance().symbolLayerMetadata("SimpleMarker")

rail = railMeta.createSymbolLayer(railStyle)

sybSym.appendSymbolLayer(rail)

15. Then, we add the subsymbol to the second symbol layer:
symbol.appendSymbolLayer(symLyr2)

16. Finally, we add the layer to the map:

QgsMapLayerRegistry.instance().addMapLayer(lyr)

How it works…
First, we must create a simple line symbol. The marker line by itself will render correctly,
but the underlying simple line will be a randomly chosen color. We must also change the
subsymbol of the marker line because the default subsymbol is a simple circle.

Using icons as vector layer symbols
In addition to the default symbol types available in QGIS, you can also use TrueType fonts as
map symbols. TrueType fonts are scalable vector graphics that can be used as point markers.
In this recipe, we'll create this type of symbol.

http:///

Creating Dynamic Maps

140

Getting ready
You can download the point shapefile used in this recipe from
https://geospatialpython.googlecode.com/files/NYC_MUSEUMS_GEO.zip.

Extract it to your qgis_data directory in a folder named nyc.

How to do it…
We will load a point shapefile as a layer and then use the character G in a freely-available font
called Webdings, which is probably already on your system, to render a building icon on each
point in the layer. To do this, we need to perform the following steps:

1. First, we'll define the path to our point shapefile:
src = "/qgis_data/nyc/NYC_MUSEUMS_GEO.shp"

2. Then, we'll load the vector layer:
lyr = QgsVectorLayer(src, "Museums", "ogr")

3. Now, we'll use a Python dictionary to define the font properties:
fontStyle = {}

fontStyle['color'] = '#000000'

fontStyle['font'] = 'Webdings'

fontStyle['chr'] = 'G'

fontStyle['size'] = '6'

4. Now, we'll create a font symbol layer:
symLyr1 = QgsFontMarkerSymbolLayerV2.create(fontStyle)

5. Then, we'll change the default symbol layer of the vector layer to our font's
symbol information:
lyr.rendererV2().symbols()[0].changeSymbolLayer(0, symLyr1)

6. Finally, we'll add the layer to the map:

QgsMapLayerRegistry.instance().addMapLayer(lyr)

How it works…
The font marker symbol layer is just another type of marker layer; however, the range of
possibilities with vector fonts is far broader than the built-in fonts in QGIS. Many industries
define standard cartographic symbols using customized fonts as markers.

https://geospatialpython.googlecode.com/files/NYC_MUSEUMS_GEO.zip
http:///

Chapter 5

141

Creating a graduated vector layer symbol
renderer

A graduated vector layer symbol renderer is the vector equivalent of a raster color ramp.
You can group features into similar ranges and use a limited set of colors to visually identify
these ranges. In this recipe, we'll render a graduated symbol using a polygon shapefile.

Getting ready
You can download a shapefile containing a set of urban area polygons from
https://geospatialpython.googlecode.com/files/MS_UrbanAnC10.zip.

Extract this file to a directory named ms in your qgis_data directory.

How to do it...
We will classify each urban area by population size using a graduated symbol, as follows:

1. First, we import the QColor object to build our color range.
from PyQt4.QtGui import QColor

2. Next, we load our polygon shapefile as a vector layer:
lyr = QgsVectorLayer("/qgis_data/ms/MS_UrbanAnC10.shp", "Urban
Areas", "ogr")

3. Now, we build some nested Python tuples that define the symbol graduation.
Each item in the tuple contains a range label, range start value, range end value,
and a color name, as shown here:
population = (

("Village", 0.0, 3159.0, "cyan"),

("Small town", 3160.0, 4388.0, "blue"),

("Town", 43889.0, 6105.0, "green"),

("City", 6106.0, 10481.0, "yellow"),

("Large City", 10482.0, 27165, "orange"),

("Metropolis", 27165.0, 1060061.0, "red"))

4. Then, we establish a Python list to hold our QGIS renderer objects:
ranges = []

https://geospatialpython.googlecode.com/files/MS_UrbanAnC10.zip
http:///

Creating Dynamic Maps

142

5. Next, we loop through our range list, build the QGIS symbols, and add them to the
renderer list:
for label, lower, upper, color in population:

sym = QgsSymbolV2.defaultSymbol(lyr.geometryType())

sym.setColor(QColor(color))

rng = QgsRendererRangeV2(lower, upper, sym, label)

ranges.append(rng)

6. Now, reference the field name containing the population values in the
shapefile attributes:
field = "POP"

7. Then, we create the renderer:
renderer = QgsGraduatedSymbolRendererV2(field, ranges)

8. We assign the renderer to the layer:
lyr.setRendererV2(renderer)

9. Finally, we add the map to the layer:

QgsMapLayerRegistry.instance().addMapLayer(lyr)

How it works...
The approach to using a graduated symbol for a vector layer is very similar to the color ramp
shader for a raster layer. You can have as many ranges as you'd like by extending the Python
tuple that is used to build the ranges. Of course, you can also build your own algorithms by
programmatically examining the data fields first and then dividing up the values in equal
intervals or some other scheme.

Creating a categorized vector layer symbol
A categorized vector layer symbol allows you to create distinct categories with colors and labels
for unique features. This approach is typically used for datasets with a limited number of unique
types of features. In this recipe, we'll categorize a vector layer into three different categories.

Getting ready
For this recipe, we'll use a land use shapefile, which you can download from
https://geospatialpython.googlecode.com/svn/landuse_shp.zip.

Extract it to a directory named hancock in your qgis_data directory.

https://geospatialpython.googlecode.com/svn/landuse_shp.zip
http:///

Chapter 5

143

How to do it...
We will load the vector layer, create three categories of land use, and render them as
categorized symbols. To do this, we need to perform the following steps:

1. First, we need to import the QColor object for our category colors:
from PyQt4.QtGui import QColor

2. Then, we load the vector layer:
lyr =
QgsVectorLayer("Users/joellawhead/qgis_data/hancock/landuse.sh
p", "Land Use", "ogr")

3. Next, we'll create our three land use categories using a Python dictionary with a
field value as the key, color name, and label:
landuse = {

 "0":("yellow", "Developed"),

 "1":("darkcyan", "Water"),

 "2":("green", "Land")}

4. Now, we can build our categorized renderer items:
categories = []

for terrain, (color, label) in landuse.items():

 sym = QgsSymbolV2.defaultSymbol(lyr.geometryType())

 sym.setColor(QColor(color))

 category = QgsRendererCategoryV2(terrain, sym, label)

 categories.append(category)

5. We name the field containing the land use value:
field = "DN"

6. Next, we build the renderer:
renderer = QgsCategorizedSymbolRendererV2(field, categories)

7. We add the renderer to the layer:
lyr.setRendererV2(renderer)

8. Finally, we add the categorized layer to the map:

QgsMapLayerRegistry.instance().addMapLayer(lyr)

http:///

Creating Dynamic Maps

144

How it works...
There are only slight differences in the configurations of the various types of renderers in
QGIS. Setting them up by first defining the properties of the renderer using native Python
objects makes your code easier to read and ultimately manage. The following map image
illustrates the categorized symbol in this recipe:

Creating a map bookmark
Map bookmarks allow you to save a location on a map in QGIS, so you can quickly jump to the
points you need to view repeatedly without manually panning and zooming the map. PyQGIS
does not contain API commands to read, write, and zoom to bookmarks. Fortunately, QGIS
stores the bookmarks in an SQLite database. Python has a built-in SQLite library that we can
use to manipulate bookmarks using the database API.

Getting ready
You can download a census tract polygon shapefile to use with this recipe from
https://geospatialpython.googlecode.com/files/GIS_CensusTract.zip.

Extract it to your qgis_data directory. We are going to create a bookmark that uses an area
of interest within this shapefile, so you can manually load the bookmark in order to test it out.

https://geospatialpython.googlecode.com/files/GIS_CensusTract.zip
http:///

Chapter 5

145

How to do it...
We will access the QGIS configuration variables to get the path of the user database, which
stores the bookmarks. Then, we'll connect to this database and execute a SQL query that
inserts a bookmark. Finally, we'll commit the changes to the database, as follows:

1. First, using the QGIS PythonConsole, we must import Python's built-in SQLite library:
import sqlite3

2. Next, get the path to the database:
dbPath = QgsApplication.qgisUserDbFilePath()

3. Now, we connect to the database:
db = sqlite3.connect(dbPath)

4. Then, we need a database cursor to manipulate the database:
cursor = db.cursor()

5. Now, we can execute the SQL query, which is a string. In the VALUES portion of the
query, we will leave the bookmark ID as NULL but give it a name, then we leave the
project name NULL and set the extents, as follows:
cursor.execute("""INSERT INTO tbl_bookmarks(

 bookmark_id, name, project_name,

 xmin, ymin, xmax, ymax,

 projection_srid)

 VALUES(NULL, "BSL", NULL,

 -89.51715550010032,

 30.233838337125075,

 -89.27257255649518,

 30.381717490617945,

 4269)""")

6. Then, we commit the changes:
db.commit()

7. To test the map bookmark, load the census tract layer onto the map by dragging and
dropping it from your filesystem into QGIS.

8. Next, click on the View menu in QGIS and select ShowBookmarks.

9. Then, select the BSL bookmark and click on the ZoomTo button.

10. Verify that the map snapped to an area of interest close to the polygons, with
OBJECTIDs from 4625 to 4627.

http:///

Creating Dynamic Maps

146

How it works...
Even when QGIS doesn't provide a high-level API, you can almost always use Python to dig
deeper and access the information you want. QGIS is built on open source software, therefore
no part of the program is truly off-limits.

Navigating to a map bookmark
Map bookmarks store important locations on a map, so you can quickly find them later.
You can programmatically navigate to bookmarks using the Python sqlite3 library in order
to access the bookmarks database table in the QGIS user database and then use the
PyQGIS canvas API.

Getting ready
We will use a census tract layer to test out the bookmark navigation. You can download the
zipped shapefile from https://geospatialpython.googlecode.com/files/GIS_
CensusTract.zip.

Manually load this layer into QGIS after extracting it from the ZIP file. Also, make sure that you
have completed the previous recipe, Creating a map bookmark. You will need a bookmark
named BSL for an area of interest in this shapefile.

How to do it...
We will retrieve a bookmark from the QGIS user database and then set the map's extents to
this bookmark. To do this, perform the following steps:

1. First, import the Python sqlite3 library:
import sqlite3

2. Next, get the location of the user database from the QGIS data:
dbPath = QgsApplication.qgisUserDbFilePath()

3. Now, we connect to the database:
db = sqlite3.connect(dbPath)

4. Then, we need a database cursor to run queries:
cursor = db.cursor()

https://geospatialpython.googlecode.com/files/GIS_CensusTract.zip
https://geospatialpython.googlecode.com/files/GIS_CensusTract.zip
http:///

Chapter 5

147

5. Now, we can get the bookmark information for the bookmark named BSL:
cursor.execute("""SELECT * FROM tbl_bookmarks WHERE
name='BSL'""")

6. Now, we'll get the complete results from the query:
row = cursor.fetchone()

7. Then, we split the values of the result into multiple variables:
id,mark_name,project,xmin,ymin,xmax,ymax,srid = row

8. Now, we can use the bookmark to create a QGIS extent rectangle:
rect = QgsRectangle(xmin, ymin, xmax, ymax)

9. Next, we reference the map canvas:
canvas = qgis.utils.iface.mapCanvas()

10. Finally, we set the extent of the canvas to the rectangle and then refresh the canvas:

canvas.setExtent(rect)

canvas.refresh()

How it works...
Reading and writing bookmarks with SQLite is straightforward even though its not a part
of the main PyQGIS API. Notice that bookmarks have a placeholder for a project name,
which you can use to filter bookmarks by project if needed.

Setting scale-based visibility for a layer
Sometimes, a GIS layer only makes sense when it is displayed at a certain scale, for example, a
complex road network. PyQGIS supports scale-based visibility to programmatically set the scale
range, in which a layer is displayed. In this recipe, we'll investigate scale-dependent layers.

Getting ready
You will need the sample census tract shapefile available as a ZIP file from
https://geospatialpython.googlecode.com/files/GIS_CensusTract.zip.

Extract the zipped layer to a directory named census in your qgis_data directory.

https://geospatialpython.googlecode.com/files/GIS_CensusTract.zip
http:///

Creating Dynamic Maps

148

How to do it...
We will load the vector layer, toggle scale-based visibility, set the visibility range, and then
add the layer to the map. To do this, perform the following steps:

1. First, we load the layer:
lyr =
QgsVectorLayer("/Users/joellawhead/qgis_data/census/GIS_Census
Tract_poly.shp", "Census", "ogr")

2. Next, we toggle scale-based visibility:
lyr.toggleScaleBasedVisibility(True)

3. Then, we set the minimum and maximum map scales at which the layer is visible:
lyr.setMinimumScale(22945.0)

lyr.setMaximumScale(1000000.0)

4. Now, we add the layer to the map:
QgsMapLayerRegistry.instance().addMapLayer(lyr)

5. Finally, manually zoom in and out of the map to ensure that the layer disappears and
reappears at the proper scales.

How it works...
The map scale is a ratio of map units to physical map size, expressed as a floating-point
number. You must remember to toggle scale-dependent visibility so that QGIS knows that it
needs to check the range each time the map scale changes.

Using SVG for layer symbols
Scalable Vector Graphics (SVG) are an XML standard that defines vector graphics that can be
scaled at any resolution. QGIS can use SVG files as markers for points. In this recipe, we'll use
Python to apply one of the SVG symbols included with QGIS to a point layer.

http:///

Chapter 5

149

Getting ready
For this recipe, download the following zipped point shapefile layer from
https://geospatialpython.googlecode.com/files/NYC_MUSEUMS_GEO.zip.

Extract it to your qgis_data directory.

How to do it...
In the following steps, we'll load the vector layer, build a symbol layer and renderer, and add it
to the layer, as follows:

1. First, we'll define the path to the shapefile:
src =
"/Users/joellawhead/qgis_data/NYC_MUSEUMS_GEO/NYC_MUSEUMS_GEO.
shp"

2. Next, we'll load the layer:
lyr = QgsVectorLayer(src, "Museums", "ogr")

3. Now, we define the properties of the symbol, including the location of the SVG file as
a Python dictionary:
svgStyle = {}

svgStyle['fill'] = '#0000ff'

svgStyle['name'] = 'landmark/tourism=museum.svg'

svgStyle['outline'] = '#000000'

svgStyle['outline-width'] = '6.8'

svgStyle['size'] = '6'

4. Then, we create an SVG symbol layer:
symLyr1 = QgsSvgMarkerSymbolLayerV2.create(svgStyle)

5. Now, we change the layer renderer's default symbol layer:
lyr.rendererV2().symbols()[0].changeSymbolLayer(0, symLyr1)

6. Finally, we add the layer to the map in order to view the SVG symbol:

QgsMapLayerRegistry.instance().addMapLayer(lyr)

https://geospatialpython.googlecode.com/files/NYC_MUSEUMS_GEO.zip
http:///

Creating Dynamic Maps

150

How it works...
The default SVG layers are stored in the QGIS application directory. There are numerous
graphics available that cover many common uses. You can also add your own graphics
as well. The following map image shows the recipe's output:

Using pie charts for symbols
QGIS has the ability to use dynamic pie charts as symbols describing the statistics in a given
region. In this recipe, we'll use pie chart symbols on a polygon layer in QGIS.

Getting ready
For this recipe, download the following zipped shapefile and extract it to a directory named
ms in your qgis_data directory from https://geospatialpython.googlecode.com/
svn/County10PopnHou.zip.

How to do it...
As with other renderers, we will build a symbol layer, add it to a renderer, and display the layer
on the map. The pie chart diagram renderers are more complex than other renderers but have
many more options. Perform the following steps to create a pie chart map:

1. First, we import the PyQt GUI library:
from PyQt4.QtGui import *

2. Then, we load the layer:
lyr =
QgsVectorLayer("/Users/joellawhead/qgis_data/ms/County10PopnHo
u.shp", "Population", "ogr")

https://geospatialpython.googlecode.com/svn/County10PopnHou.zip
https://geospatialpython.googlecode.com/svn/County10PopnHou.zip
http:///

Chapter 5

151

3. Next, we set up categories based on attribute names:
categories = [u'PCT_WHT', u'PCT_BLK', u'PCT_AMIND',
u'PCT_ASIAN', u'PCT_HAW', u'PCT_ORA', u'PCT_MR', u'PCT_HISP']

4. Now, we set up a list of corresponding colors for each category:
colors =
['#3727fa','#01daae','#f849a6','#268605','#6810ff','#453990','
#630f2f','#07dd45']

5. Next, we convert the hex color values to QColor objects:
qcolors = []

for c in colors:

 qcolors.append(QColor(c))

6. Now, we reference the map canvas:
canvas = iface.mapCanvas()

7. Then, we create a pie diagram object:
diagram = QgsPieDiagram()

8. Then, we create a diagram settings object:
ds = QgsDiagramSettings()

9. Now, we define all the diagram settings that will be used for the renderer:
ds.font = QFont("Helvetica", 12)

ds.transparency = 0

ds.categoryColors = qcolors

ds.categoryAttributes = categories

ds.size = QSizeF(100.0, 100.0)

ds.sizeType = 0

ds.labelPlacementMethod = 1

ds.scaleByArea = True

ds.minimumSize = 0

ds.BackgroundColor = QColor(255,255,255,0)

ds.PenColor = QColor("black")

ds.penWidth = 0

10. Now, we can create our diagram renderer:
dr = QgsLinearlyInterpolatedDiagramRenderer()

http:///

Creating Dynamic Maps

152

11. We must set a few size parameters for our diagrams:
dr.setLowerValue(0.0)

dr.setLowerSize(QSizeF(0.0, 0.0))

dr.setUpperValue(2000000)

dr.setUpperSize(QSizeF(40,40))

dr.setClassificationAttribute(6)

12. Then, we can add our diagram to the renderer:
dr.setDiagram(diagram)

13. Next, we add the renderer to the layer:
lyr.setDiagramRenderer(dr)

14. Now, we apply some additional placement settings at the layer level:
dls = QgsDiagramLayerSettings()

dls.dist = 0

dls.priority = 0

dls.xPosColumn = -1

dls.yPosColumn = -1

dls.placement = 0

lyr.setDiagramLayerSettings(dls)

15. In QGIS 2.6, the diagram renderer is tied to the new PAL labeling engine, so we need
to activate this engine:
label = QgsPalLayerSettings()

label.readFromLayer(lyr)

label.enabled = True

label.writeToLayer(lyr)

16. Next, we delete any cached images that are rendered and force the layer to repaint:
if hasattr(lyr, "setCacheImage"):

 lyr.setCacheImage(None)

lyr.triggerRepaint()

17. Finally, we add our diagram layer to the map:

QgsMapLayerRegistry.instance().addMapLayer(lyr)

http:///

Chapter 5

153

How it works...
The basics of pie chart diagram symbols are straightforward and work in a similar way to
other types of symbols and renderers. However, it gets a little confusing as we need to apply
settings at three different levels – the diagram level, the render level, and the layer level. It
turns out they are actually quite complex. Most of the settings are poorly documented, if at all.
Fortunately, most of them are self-explanatory. The following screenshot shows an example of
the completed pie chart diagram map:

There's more...
To learn more about what is possible with pie chart diagram symbols, you can experiment with
this recipe in the Script Runner plugin, where you can change or remove settings and quickly
re-render the map. You can also manually change the settings using the QGIS dialogs and
then export the style to an XML file and see what settings are used. Most of them map to the
Python API well.

http:///

Creating Dynamic Maps

154

Using the OpenStreetMap service
Cloud-based technology is moving more and more data to the Internet, and GIS is no
exception. QGIS can load web-based data using Open GIS Consortium standards, such as
Web Map Service (WMS). The easiest way to add WMS layers is using the Geospatial Data
Abstraction Library (GDAL) and its virtual filesystem feature to load a tiled layer.

Getting ready
You don't need to do any preparation for this recipe, other than opening the Python console
plugin within QGIS.

How to do it...
We will create an XML template that describes the tiled web service from OpenStreetMap
we want to import. Then, we'll turn it into a GDAL virtual file and load it as a QGIS raster layer.
To do this, we need to perform the following steps:

1. First, we import the GDAL library:
from osgeo import gdal

2. Next, we'll create our XML template, describing the OpenStreetMap tiled web service:
xml = """<GDAL_WMS>
<Service name="TMS">
<ServerUrl>http://tile.openstreetmap.org/${z}/${x}/${y}.png</
ServerUrl>
</Service>
<DataWindow>
<UpperLeftX>-20037508.34</UpperLeftX>
<UpperLeftY>20037508.34</UpperLeftY>
<LowerRightX>20037508.34</LowerRightX>
<LowerRightY>-20037508.34</LowerRightY>
<TileLevel>18</TileLevel>
<TileCountX>1</TileCountX>
<TileCountY>1</TileCountY>
<YOrigin>top</YOrigin>
</DataWindow>
<Projection>EPSG:900913</Projection>
<BlockSizeX>256</BlockSizeX>

http:///

Chapter 5

155

<BlockSizeY>256</BlockSizeY>
<BandsCount>3</BandsCount>
<Cache />
</GDAL_WMS>"""

3. Now, we'll create the path for our GDAL virtual filesystem's file:
vfn = "/vsimem/osm.xml"

4. Next, we use GDAL to create the virtual file using the path and the XML document:
gdal.FileFromMemBuffer(vfn, xml)

5. Now, we can create a raster layer from the virtual file:
rasterLyr = QgsRasterLayer(vfn, "OSM")

6. Before we add the layer to the map, we'll make sure that it's valid:
rasterLyr.isValid()

7. Finally, add the layer to the map:

QgsMapLayerRegistry.instance().addMapLayers([rasterLyr])

How it works...
There are other ways to load tiled map services such as OpenStreetMap into QGIS
programmatically, but GDAL is by far the most robust. The prefix vsimem tells GDAL to use
a virtual file in order to manage the tiles. This approach frees you from the need to manage
downloaded tiles on disk directly and allows you to focus on your application's functionality.

Using the Bing aerial image service
While there are many services that provide street map tiles, there are far fewer services that
provide imagery services. One excellent free service for both maps and, more importantly,
imagery is Microsoft's Bing map services. We can access Bing imagery programmatically in
QGIS using GDAL's WMS capability coupled with virtual files.

Getting ready
You don't need to do any preparation for this recipe other than opening the Python console
plugin within QGIS.

http:///

Creating Dynamic Maps

156

How to do it...
Similar to the approach used for the previous Using the OpenStreetMap service recipe,
we will create an XML file as a string to describe the service, turn it into a GDAL virtual file,
and load it as a raster in QGIS. To do this, we need to perform the following steps:

1. First, we import the GDAL library:
from osgeo import gdal

2. Next, we create the XML file, describing the Bing service as a string:
xml = """<GDAL_WMS>
 <Service name="VirtualEarth">
 <ServerUrl>
 http://a${server_num}.ortho.tiles.virtualearth.net/tiles/
a${quadkey}.jpeg?g=90
 </ServerUrl>
 </Service>
 <MaxConnections>4</MaxConnections>
 <Cache/>
</GDAL_WMS>"""

3. Now, we create the virtual file path for the XML file:
vfn = "/vsimem/bing.xml"

4. Then, we turn the XML file into a GDAL virtual file:
gdal.FileFromMemBuffer(vfn, xml)

5. Now, we can add the file as a QGIS raster layer and check its validity:
rasterLyr = QgsRasterLayer(vfn, "BING")

rasterLyr.isValid()

6. Finally, we add the layer to the map:

QgsMapLayerRegistry.instance().addMapLayers([rasterLyr])

How it works...
GDAL has drivers for various map services. The service name for Bing is VirtualEarth.
The ${} clauses in the server URL provide placeholders, which will be replaced with
instance-specific data when GDAL downloads styles. When using this data, you should be
aware that it has copyright restrictions. Be sure to read the Bing usage agreement online.

http:///

Chapter 5

157

Adding real-time weather data from
OpenWeatherMap

Real-time data is one of the most exciting data types you can add to a modern map. Most
data producers make data available through Open GIS Consortium standards. One such
example is OpenWeatherMap, which offers an OGC Web Map Service (WMS) for different
real-time weather data layers. In this recipe, we'll access this service to access a real-time
weather data layer.

Getting ready
To prepare for this recipe, you just need to open the QGIS Python Console by clicking on the
Plugins menu and selecting Python Console.

How to do it...
We will add a WMS weather data layer for precipitation to a QGIS map, as follows:

1. First, we specify the parameters for the service:
service =
'crs=EPSG:900913&dpiMode=7&featureCount=10&format=image/png&la
yers=precipitation&styles=&url=http://wms.openweathermap.org/s
ervice'

2. Next, we create the raster layer, specifying wms as the type:
rlayer = QgsRasterLayer(service, "precip", "wms")

3. Finally, we add the precipitation layer to the map:

QgsMapLayerRegistry.instance().addMapLayers([rlayer])

How it works...
A WMS request is typically an HTTP GET request with all of the parameters as part of
the URL. In PyQGIS, you use a URL-encoded format and specify the parameters separately
from the URL.

http:///

Creating Dynamic Maps

158

The following map image shows the output of the precipitation layer in QGIS:

Labeling features
Once your map layers are styled, the next step to creating a complete map is labeling features.
We'll explore the basics of labeling in this recipe.

Getting ready
Download the following zipped shapefile from https://geospatialpython.
googlecode.com/files/MSCities_Geo_Pts.zip.

Extract the shapefile to a directory named ms in your qgis_data shapefile.

How to do it...
We will load the point shapefile layer, create a label object, set its properties, apply it to the
layer, and then add the layer to the map. To do this, we need to perform the following steps:

1. First, to save space, we'll specify the path to the shapefile:
src = "/Users/joellawhead/qgis_data/ms/MSCities_Geo_Pts.shp"

2. Next, we'll load the layer:
lyr = QgsVectorLayer(src, "Museums", "ogr")

https://geospatialpython.googlecode.com/files/MSCities_Geo_Pts.zip
https://geospatialpython.googlecode.com/files/MSCities_Geo_Pts.zip
http:///

Chapter 5

159

3. Then, we'll create the labeling object:
label = QgsPalLayerSettings()

4. Now, we'll configure the labels, starting with the current layer settings being read:
label.readFromLayer(lyr)

label.enabled = True

5. Then, we specify the attribute for the label data:
label.fieldName = 'NAME10'

6. Then, we can set the placement and size options:
label.placement= QgsPalLayerSettings.AroundPoint

label.setDataDefinedProperty(QgsPalLayerSettings.Size,True,Tru
e,'8','')

7. Next, we commit the changes to the layer:
label.writeToLayer(lyr)

8. Finally, we can add the layer to the map to view the labels:

QgsMapLayerRegistry.instance().addMapLayers([lyr])

How it works...
An interesting part of labeling is the round-trip read and write process to access the layer data
and the assignment of the labeling properties. Labeling can be quite complex, but this recipe
covers the basics needed to get started.

Changing map layer transparency
Map layer transparency allows you to change the opacity of a layer, so the items behind it
are visible to some degree. A common technique is to make a vector layer polygon partially
transparent in order to allow the underlying imagery or elevation data to add texture to the data.

Getting ready
In a directory called ms, in your qgis_data directory, download and extract the following
shapefile from

https://geospatialpython.googlecode.com/files/Mississippi.zip.

https://geospatialpython.googlecode.com/files/Mississippi.zip
http:///

Creating Dynamic Maps

160

How to do it...
The process is extremely simple. Transparency is just a method:

1. First, we load the shapefile layer:
lyr =
QgsVectorLayer("/Users/joellawhead/qgis_data/ms/mississippi.sh
p", "Mississippi", "ogr")

2. Next, we set the layer's transparency to 50 percent:
lyr.setLayerTransparency(50)

3. Finally, we add this layer to the map:

QgsMapLayerRegistry.instance().addMapLayer(lyr)

How it works...
If you set the transparency to 100 percent, the layer is completely opaque. If you set it to 0,
the layer becomes completely invisible.

Adding standard map tools to the canvas
In this recipe, you'll learn how to add standard map navigation tools to a standalone map
canvas. Creating the simplest possible interactive application provides a framework to begin
building specialized geospatial applications using QGIS as a library.

Getting ready
Download the following zipped shapefile and extract it to your qgis_data directory into
a folder named ms from https://geospatialpython.googlecode.com/files/
Mississippi.zip.

How to do it...
We will walk through the steps required to create a map canvas, add a layer to it, and then
add some tools to zoom and pan the map, as follows:

1. First, because we are working outside the QGIS Python interpreter, we need to import
some QGIS and Qt libraries:
from qgis.gui import *

from qgis.core import *

https://geospatialpython.googlecode.com/files/Mississippi.zip
https://geospatialpython.googlecode.com/files/Mississippi.zip
http:///

Chapter 5

161

from PyQt4.QtGui import *

from PyQt4.QtCore import SIGNAL, Qt

import sys, os

2. Then, we must set the location of our main QGIS application directory. This setting is
platform-dependent:
OSX:

QgsApplication.setPrefixPath("/Applications/QGIS.app/Contents/
MacOS/", True)

Windows:

app.setPrefixPath("C:/Program Files/QGIS
Valmiera/apps/qgis", True)

3. Next, we begin initializing the class:
class MyWnd(QMainWindow):

 def __init__(self):

4. Now, we can initialize the application and create the map canvas:
QMainWindow.__init__(self)

QgsApplication.setPrefixPath("/Applications/QGIS.app/Contents/
MacOS/", True)

QgsApplication.initQgis()

self.canvas = QgsMapCanvas()

self.canvas.setCanvasColor(Qt.white)

5. Then, we can load the shapefile layer and add it to the canvas:
self.lyr = QgsVectorLayer("/Users/joellawhead/qgis_data/ms/
mississippi.shp", "Mississippi", "ogr")

QgsMapLayerRegistry.instance().addMapLayer(self.lyr)

self.canvas.setExtent(self.lyr.extent())

self.canvas.setLayerSet([QgsMapCanvasLayer(self.lyr)])

self.setCentralWidget(self.canvas)

6. Next, we define the buttons that will be visible on the toolbar:
actionZoomIn = QAction("Zoom in", self)

actionZoomOut = QAction("Zoom out", self)

actionPan = QAction("Pan", self)

actionZoomIn.setCheckable(True)

actionZoomOut.setCheckable(True)

actionPan.setCheckable(True)

http:///

Creating Dynamic Maps

162

7. Now, we connect the signal created when the buttons are clicked to the Python
methods that will provide each tool's functionality:
actionZoomIn.triggered.connect(self.zoomIn)

actionZoomOut.triggered.connect(self.zoomOut)

actionPan.triggered.connect(self.pan)

8. Next, we create our toolbar and add the buttons:
self.toolbar = self.addToolBar("Canvas actions")

(actionZoomIn)

self.toolbar.addAction(actionZoomOut)

self.toolbar.addAction(actionPan)

9. Then, we connect the buttons to the applications states:
self.toolPan = QgsMapToolPan(self.canvas)

self.toolPan.setAction(actionPan)

self.toolZoomIn = QgsMapToolZoom(self.canvas, False) # false =
in

self.toolZoomIn.setAction(actionZoomIn)

self.toolZoomOut = QgsMapToolZoom(self.canvas, True) # true =
out

self.toolZoomOut.setAction(actionZoomOut)

10. Then, we define which button will be selected when the application loads:
self.pan()

11. Now, we define the Python methods that control the application's behavior for
each tool:
defzoomIn(self):

self.canvas.setMapTool(self.toolZoomIn)

defzoomOut(self):

self.canvas.setMapTool(self.toolZoomOut)

def pan(self):

self.canvas.setMapTool(self.toolPan)

12. Then, we create a Qt application that uses our application window class:
class MainApp(QApplication):

def __init__(self):

QApplication.__init__(self,[],True)

wdg = MyWnd()

wdg.show()

self.exec_()

http:///

Chapter 5

163

13. Finally, we enter the program's main loop:

if __name__ == "__main__":

import sys

app = MainApp()

How it works...
An application is a continuously running program loop that ends only when we quit the
application. QGIS is based on the Qt windowing library, so our application class inherits from
the main window class that provides the canvas and the ability to create toolbars and dialogs.
This is a lot of setup, even for an extremely simple application, but once the framework for an
application is complete, it becomes much easier to extend it.

Using a map tool to draw points on
the canvas

QGIS contains a built-in functionality to zoom and pan the map in custom applications.
It also contains the basic hooks to build your own interactive tools. In this recipe, we'll create
an interactive point tool that lets you mark locations on the map by clicking on a point.

Getting ready
We will use the application framework from the previous Adding standard map tools to
the canvas recipe, so complete that recipe first. We will extend that application with a
new tool. The complete version of this application is available in the code samples
provided with this book.

How to do it...
We will set up the button, signal trigger, and actions as we do with all map tools.
However, because we are building a new tool, we must also define a class to define
exactly what the tool does. To do this, we need to perform the following actions:

1. First, we define our point tool's button in the actions portion of our application.
Place this line after the QAction("Pan") method:
actionPoint = QAction("Point", self)

2. In the next section, we make sure that when we click on the button,
it stays selected:
actionPoint.setCheckable(True)

http:///

Creating Dynamic Maps

164

3. In the section after that, we define the method that is used when the button
is triggered:
self.connect(actionPoint, SIGNAL("triggered()"), self.point)

4. Now, we add the button to the toolbar along with the other buttons:
self.toolbar.addAction(actionPoint)

5. Then, we link the application to our specialized tool class:
self.toolPoint = PointMapTool(self.canvas)

self.toolPoint.setAction(actionPoint)

6. We set the point tool to be selected when the application loads:
self.point()

7. Now, we define the method in the main application class for our tool:
def point(self):

self.canvas.setMapTool(self.toolPoint)

8. Now, we create a class that describes the type of tool we have and the output it
provides. The output is a point on the canvas, defined in the canvasPressEvent
method, that receives the button-click event. We will inherit from a generic tool
called the QgsMapToolEmitPoint in order to create points:

classPointMapTool(QgsMapToolEmitPoint):

def __init__(self, canvas):

self.canvas = canvas

QgsMapToolEmitPoint.__init__(self, self.canvas)

self.point = None

defcanvasPressEvent(self, e):

self.point = self.toMapCoordinates(e.pos())

printself.point.x(), self.point.y()

m = QgsVertexMarker(self.canvas)

m.setCenter(self.point)

m.setColor(QColor(0,255,0))

m.setIconSize(5)

m.setIconType(QgsVertexMarker.ICON_BOX) # or ICON_CROSS,
ICON_X

m.setPenWidth(3)

http:///

Chapter 5

165

How it works...
For custom tools, PyQGIS provides a set of generic tools for the common functions that you
can extend and piece together. In this case, the EmitPoint tool handles the details of the
events and map functionality when you click on a location on the map.

Using a map tool to draw polygons or lines
on the canvas

In this recipe, we'll create a tool to draw polygons on the canvas. This tool is an important tool
because it opens the doors to even more advanced tools. Once you have a polygon on the
canvas, you can do all sorts of operations that involve querying and geometry.

Getting ready
We will use the application framework from the Adding standard map tools to the canvas
recipe, so complete that recipe. We will extend that application with a new tool. The complete
version of this application is available in the code samples provided with this book.

How to do it...
We will add a new tool to the toolbar and also create a class that describes our polygon tool,
as follows:

1. First, we define our polygon tool's button in the actions portion of our application.
Place this line after the QAction("Pan") method:
actionPoly = QAction("Polygon", self)

2. In the next section, we make sure that when we click on the button, it stays selected:
actionPoly.setCheckable(True)

3. In the section after that, we define the method used when the button is triggered:
self.connect(actionPoly, SIGNAL("triggered()"), self.poly)

4. Now, we add the button to the toolbar along with the other buttons:
self.toolbar.addAction(actionPoly)

http:///

Creating Dynamic Maps

166

5. Then, we link the application to our specialized tool class:
self.toolPoly = PolyMapTool(self.canvas)

self.toolPoly.setAction(actionPoly)

6. We set the point tool to be selected when the application loads:
self.poly()

7. Now, we define the method in the main application class for our tool:

def poly(self):

self.canvas.setMapTool(self.toolPoly)

Now, we create a class that describes the type of tool we have and the output it provides.
The output is a point on the canvas defined in the canvasPressEvent method, which
receives the button-click event and the showPoly method. We will inherit from a generic tool
in order to create points called the QgsMapToolEmitPoint; we will also use an object called
QgsRubberBand for handling polygons:

classPolyMapTool(QgsMapToolEmitPoint):

def __init__(self, canvas):

self.canvas = canvas

QgsMapToolEmitPoint.__init__(self, self.canvas)

self.rubberband = QgsRubberBand(self.canvas, QGis.Polygon)

self.rubberband.setColor(Qt.red)

self.rubberband.setWidth(1)

self.point = None

self.points = []

defcanvasPressEvent(self, e):

self.point = self.toMapCoordinates(e.pos())

m = QgsVertexMarker(self.canvas)

m.setCenter(self.point)

m.setColor(QColor(0,255,0))

m.setIconSize(5)

m.setIconType(QgsVertexMarker.ICON_BOX)

m.setPenWidth(3)

http:///

Chapter 5

167

self.points.append(self.point)

self.isEmittingPoint = True

self.showPoly()

defshowPoly(self):

self.rubberband.reset(QGis.Polygon)

for point in self.points[:-1]:

self.rubberband.addPoint(point, False)

self.rubberband.addPoint(self.points[-1], True)

self.rubberband.show()

How it works...
All the settings for the polygon are contained in the custom class. There is a key property,
called EmittingPoint, which we use to detect whether we are still adding points to the polygon.
This value starts out as false. If this is the case, we reset our polygon object and begin drawing
a new one. The following screenshot shows a polygon drawn with this tool on a map:

http:///

Creating Dynamic Maps

168

Building a custom selection tool
In this recipe, we will build a custom tool that both draws a shape on the map and interacts
with other features on the map. These two basic functions are the basis for almost any map
tool you would want to build, either in a standalone QGIS application like this one, or by
extending the QGIS desktop application with a plugin.

Getting ready
We will use the application framework from the Adding standard map tools to the
canvas recipe, so complete that recipe first. We will extend that application with a new tool.
The complete version of this application is available in the code samples provided with this
book. It will also be beneficial to study the other two tool-related recipes, A map tool to draw
polygons or lines on the canvas and A map tool to draw points on the canvas, as this recipe
builds on them as well.

You will also need the following zipped shapefile from https://geospatialpython.
googlecode.com/files/NYC_MUSEUMS_GEO.zip.

Download and extract it to your qgis_data directory.

How to do it...
We will add a new tool to the toolbar and also create a class describing our selection tool,
including how to draw the selection polygon and how to select the features. To do this, we
need to perform the following steps:

1. First, we define our polygon tool's button in the actions portion of our application.
Place this line after the QAction("Pan") method:
actionSelect = QAction("Select", self)

2. In the next section, we make sure that when we click on the button, it stays selected:
actionSelect.setCheckable(True)

3. In the section after that, we define the method used when the button is triggered:
self.connect(actionSelect, SIGNAL("triggered()"), self.select)

4. Now, we add the button to the toolbar along with the other buttons:
self.toolbar.addAction(actionSelect)

https://geospatialpython.googlecode.com/files/NYC_MUSEUMS_GEO.zip
https://geospatialpython.googlecode.com/files/NYC_MUSEUMS_GEO.zip
http:///

Chapter 5

169

5. Then, we link the application to our specialized tool class:
self.toolSelect = SelectMapTool(self.canvas, self.lyr)

self.toolSelect.setAction(actionSelect)

6. We set the point tool to be selected when the application loads:
self.select()

7. Now, we define the method in the main application class for our tool:
def select(self):

self.canvas.setMapTool(self.toolSelect)

8. Next, we create a class that describes the type of tool we have and how it works. The
output is a point on the canvas defined in the canvasPressEvent method, which
receives the button click-event and the selectPoly method. We will inherit from a
generic tool to create points called the QgsMapToolEmitPoint; we will also use an
object called QgsRubberBand to handle polygons. However, we must also perform
the selection process to highlight the features that fall within our selection polygon:

classSelectMapTool(QgsMapToolEmitPoint):

def __init__(self, canvas, lyr):

self.canvas = canvas

self.lyr = lyr

QgsMapToolEmitPoint.__init__(self, self.canvas)

self.rubberband = QgsRubberBand(self.canvas, QGis.Polygon)

self.rubberband.setColor(QColor(255,255,0,50))

self.rubberband.setWidth(1)

self.point = None

self.points = []

defcanvasPressEvent(self, e):

self.point = self.toMapCoordinates(e.pos())

m = QgsVertexMarker(self.canvas)

m.setCenter(self.point)

m.setColor(QColor(0,255,0))

m.setIconSize(5)

m.setIconType(QgsVertexMarker.ICON_BOX)

m.setPenWidth(3)

self.points.append(self.point)

self.isEmittingPoint = True

http:///

Creating Dynamic Maps

170

self.selectPoly()

defselectPoly(self):

self.rubberband.reset(QGis.Polygon)

for point in self.points[:-1]:

self.rubberband.addPoint(point, False)

self.rubberband.addPoint(self.points[-1], True)

self.rubberband.show()

iflen(self.points) > 2:

g = self.rubberband.asGeometry()

featsPnt = self.lyr.getFeatures(QgsFeatureRequest().
setFilterRect(g.boundingBox()))

forfeatPnt in featsPnt:

iffeatPnt.geometry().within(g):

self.lyr.select(featPnt.id())

How it works...
QGIS has a generic tool for highlighting features, but in this case, we can use the standard
selection functionality, which simplifies our code. With the exception of a dialog to load new
layers and the ability to show attributes, we have a very basic but nearly complete standalone
GIS application.The following screenshot shows the selection tool in action:

http:///

Chapter 5

171

Creating a mouse coordinate tracking tool
In this recipe, we'll build a tool that tracks and displays the mouse coordinates in real time.
This tool will also demonstrate how to interact with the status bar of a QGIS application.

Getting ready
We will use the application framework from the Adding standard map tools to the canvas
recipe, so complete that recipe first. We will extend that application with the coordinate
tracking tool. A complete version of this application is available in the code samples provided
with this book. It will also be beneficial to study the other two tool-related recipes in this
chapter, A map tool to draw polygons or lines on the canvas and A map tool to draw points on
the canvas, as this recipe builds on them as well.

How to do it...
We will add an event filter to the basic standalone QGIS application and use it to grab the
current mouse coordinates as well as update the status bar. To do this, we need to perform
the following steps:

1. As the last line of our application's __init__ method, insert the following line to
create a default status bar message when the application loads:
self.statusBar().showMessage(u"x: --, y: --")

2. Immediately after the application's __init__ method, we will add the following
event filter method:
defeventFilter(self, source, event):

ifevent.type() == QEvent.MouseMove:

ifevent.buttons() == Qt.NoButton:

pos = event.pos()

x = pos.x()

y = pos.y()

p = self.canvas.getCoordinateTransform().toMapCoordinates(x, y)

self.statusBar().showMessage(u"x: %s, y: %s" % (p.x(), p.y()))

else:

pass

returnQMainWindow.eventFilter(self, source, event)

http:///

Creating Dynamic Maps

172

3. In the MainApp class, as the second-last line, we must install the event filter using
the following code:

self.installEventFilter(wdg)

How it works...
In the Qt framework, in order to watch out for mouse events, we must insert an event filter
that allows us to monitor all the events in the application. Within the default event filter
method, we can then process any event we want. In this case, we watch for any movements
of the mouse.

http:///

173

Composing Static Maps

In this chapter, we will cover the following recipes:

f Creating the simplest map renderer

f Using the map composer

f Adding labels to a map for printing

f Adding a scale bar to the map

f Adding a north arrow to the map

f Adding a logo to the map

f Adding a legend to the map

f Adding a custom shape to the map

f Adding a grid to the map

f Adding a table to the map

f Saving a map to a PNG image

f Adding a world file to a map image

f Saving a map to a project

f Loading a map from a project

Introduction
In this chapter, we'll create maps using PyQGIS, Qt image objects, and QGIS Map Composer to
create map layouts that can be exported as documents or images. The QGIS Map Composer is
designed to create static map layouts with decorative and reference elements, for printing or
inclusion in another document.

6

http:///

Composing Static Maps

174

Creating the simplest map renderer
In order to turn a dynamic GIS map into a static map image or document, you must create a
renderer to freeze the map view and create a graphic version of it. In this recipe, we'll render a
map to a JPEG image and save it.

Getting ready
You will need to download the following zipped shapefile and extract it to your qgis_data
directory, to a subdirectory named hancock:

https://geospatialpython.googlecode.com/svn/hancock.zip

You will also need to open the Python Console under the Plugins menu in QGIS. You can run
these lines of code inside the console.

How to do it...
In this recipe, we will load our shapefile, add it to the map, create a blank image, set up
the map view, render the map image, and save it. To do this, we need to perform the
following steps:

1. First, we need to import the underlying Qt libraries required for image handling:
from PyQt4.QtGui import *

from PyQt4.QtCore import *

2. Next, we load the layer and add it to the map:
lyr = QgsVectorLayer("/qgis_data/hancock/hancock.shp", "Hancock",
"ogr")

reg = QgsMapLayerRegistry.instance()

reg.addMapLayer(lyr)

3. Now, we create a blank image to accept the map image:
i = QImage(QSize(600,600), QImage.Format_ARGB32_Premultiplied)

c = QColor("white")

i.fill(c.rgb())

p = QPainter()

p.begin(i)

https://geospatialpython.googlecode.com/svn/hancock.zip
http:///

Chapter 6

175

4. Then, we access the map renderer:
r = QgsMapRenderer()

5. Now, we get the IDs of the map layers:
lyrs = reg.mapLayers().keys()

6. Then, we use the newly initialized renderer layers in the map:
r.setLayerSet(lyrs)

7. Now, we get the full extent of the map as a rectangle:
rect = QgsRectangle(r.fullExtent())

8. Then, we set a scale for the renderer. Smaller numbers produce a larger map scale,
and larger numbers produce a smaller map scale. We can change the map scale
to create a buffer around the map image:
rect.scale(1.1)

9. Next, we set the extent of the renderer to the rectangle:
r.setExtent(rect)

10. Now we set the output size and resolution of the image. The resolution is
automatically calculated:
r.setOutputSize(i.size(), i.logicalDpiX())

11. Now, we can render the map and finalize the image:
r.render(p)

p.end()

12. Finally, we save the map image:
i.save("/qgis_data/map.jpg","jpg")

13. Verify that you have a map image in your qgis_data directory, similar to the map
displayed in QGIS.

How it works...
QGIS uses the underlying Qt GUI library to create common image types. We haven't used any
of the QGIS composer objects to render the image; however, this rendering technique is used
to save maps created with the QGIS composer.

http:///

Composing Static Maps

176

There's more...
The QImage object supports other image formats as well. To save a map image to a PNG,
replace the last step in the How to do it… section with the following code:

i.save("/qgis_data/map.png","png")

Using the map composer
The QGIS Map Composer allows you to combine a map with nonspatial elements that help
enhance our understanding of the map. In this recipe, we'll create a basic map composition.
A composition requires you to define the physical paper size and output format. Even a simple
composition example such as this has over 20 lines of configuration options.

Getting ready
You will need to download the following zipped shapefile and extract it to your qgis_data
directory, to a subdirectory named hancock:

https://geospatialpython.googlecode.com/svn/hancock.zip

You will also need to open the Python Console under the Plugins menu in QGIS. You can run
this recipe in the console or wrap it in a script for the Script Runner plugin, using the template
provided with the plugin.

How to do it...
In this recipe, the major steps are to load the shapefile into a map, build the map composition,
and render it to an image, described as follows:

1. First, we need to import the Qt libraries for image handling:
from PyQt4.QtGui import *

from PyQt4.QtCore import *

2. Next, we load the layer and add it to the map:
lyr = QgsVectorLayer("/qgis_data/hancock/hancock.shp", "Hancock",
"ogr")

reg = QgsMapLayerRegistry.instance()

reg.addMapLayer(lyr)

https://geospatialpython.googlecode.com/svn/hancock.zip
http:///

Chapter 6

177

3. Now, we create a blank image to accept the map image:
i = QImage(QSize(600,600), QImage.Format_ARGB32_Premultiplied)

c = QColor("white")

i.fill(c.rgb())

p = QPainter()

p.begin(i)

4. Next, we get the IDs of the map layers:
lyrs = reg.mapLayers().keys()

5. Then, we access the map renderer:
mr = iface.mapCanvas().mapRenderer()

6. We then use the newly initialized renderer layers in the map:
mr.setLayerSet(lyrs)

7. Now, we get the full extent of the map as a rectangle:
rect = QgsRectangle(lyr.extent())

8. Then, we set the scale for the renderer. Smaller numbers produce a larger map
scale, and larger numbers produce a smaller map scale to add an image buffer
around the map:
rect.scale(1.2)

9. Now, we set the map renderer's extent to the full map's extent:
mr.setExtent(rect)

10. Next, we begin using the QGIS composer by creating a new composition and
assigning it the map renderer:
c = QgsComposition(mr)

11. Then, we set the composition style. We will define it as Print, which will allow us to
create both PDF documents and images. The alternative is to define it as a postscript,
which is often used for direct output to printer devices:
c.setPlotStyle(QgsComposition.Print)

12. Now, we define our paper size, which is specified in millimeters. In this case, we will
use the equivalent of an 8.5 x 11 inch sheet of paper, which is the US letter size:
c.setPaperSize(215.9, 279.4)

http:///

Composing Static Maps

178

13. Next, we'll calculate dimensions for the map so that it takes up approximately half
the page and is centered:
w, h = c.paperWidth() * .50, c.paperHeight() * .50

x = (c.paperWidth() - w) / 2

y = ((c.paperHeight() - h)) / 2

14. Then, we create the map composer object and set its extent:
composerMap = QgsComposerMap(c,x,y,w,h)

composerMap.setNewExtent(rect)

15. Next, we give the map a frame around its border and add it to the page:
composerMap.setFrameEnabled(True)

c.addItem(composerMap)

16. Now, we ensure that the resolution of the composition is set. The resolution defines
how much detail the output contains. Lower resolutions contain less detail and create
smaller files. Higher resolutions provide more image detail but create larger files:
dpi = c.printResolution()

c.setPrintResolution(dpi)

17. We now convert the dots-per-inch resolution to dots-per-millimeter:
 mm_in_inch = 25.4

dpmm = dpi / mm_in_inch

width = int(dpmm * c.paperWidth())

height = int(dpmm * c.paperHeight())

18. Next, we initialize the image:
image = QImage(QSize(width, height), QImage.Format_ARGB32)

image.setDotsPerMeterX(dpmm * 1000)

image.setDotsPerMeterY(dpmm * 1000)

image.fill(0)

19. Now, we render the composition:
imagePainter = QPainter(image)

sourceArea = QRectF(0, 0, c.paperWidth(), c.paperHeight())

targetArea = QRectF(0, 0, width, height)

c.render(imagePainter, targetArea, sourceArea)

imagePainter.end()

20. Finally, we save the composition as a JPEG image:

image.save("/Users/joellawhead/qgis_data/map.jpg", "jpg")

http:///

Chapter 6

179

Verify that the output image resembles the following sample image:

How it works...
Map compositions are very powerful, but they can also be quite complex. You are managing
the composition that represents a virtual sheet of paper. On that composition, you place
objects, such as the map. Then, you must also manage the rendering of the composition
as an image. All these items are independently configurable, which can sometimes lead to
unexpected results with the sizing or visibility of items.

There's more…
In the upcoming versions of QGIS, the map composer class may be renamed as the
print layout class. You can find out more information about this proposed change at
https://github.com/qgis/QGIS-Enhancement-Proposals/pull/9

Adding labels to a map for printing
The QgsComposition object allows you to place arbitrary text anywhere in the composition.
In this recipe, we'll demonstrate how to add a label to a map composition.

Getting ready
You will need to download the following zipped shapefile and extract it to your qgis_data
directory, to a subdirectory named hancock:

https://geospatialpython.googlecode.com/svn/hancock.zip

https://github.com/qgis/QGIS-Enhancement-Proposals/pull/9
https://geospatialpython.googlecode.com/svn/hancock.zip
http:///

Composing Static Maps

180

In addition to the shapefile, you will also need the MapComposer class. This class
encapsulates the boilerplate composer code in a reusable way to make adding other elements
easier. You can download it from https://geospatialpython.googlecode.com/svn/
MapComposer.py.

This file must be accessible from the QGIS Python console by ensuring that it is in the Python
path directory. Place the file in the .qgis2/python directory within your home directory.

How to do it...
To add a label to a composition, we'll first build the map composition, create a label, and then
save the composition as an image. To do this, we need to perform the following steps:

1. First, we need to import the Qt GUI libraries and the MapComposer class:
from PyQt4.QtGui import *

from PyQt4.QtCore import *

import MapComposer

2. Next, we create a layer with the shapefile, setting the path to the shapefile in order to
match your system:
lyr = QgsVectorLayer("/Users/joellawhead/qgis_data/hancock/
hancock.shp", "Hancock", "ogr")

3. Now, we add this layer to the map:
reg = QgsMapLayerRegistry.instance()

reg.addMapLayer(lyr)

4. Next, we access the map renderer:
mr = iface.mapCanvas().mapRenderer()

5. Then, we create a MapComposer object, passing in the map layer registry and the
map renderer:
qc = MapComposer.MapComposer(qmlr=reg, qmr=mr)

6. Now, we create a new label object:
qc.label = QgsComposerLabel(qc.c)

7. We can set the label text to any string:
qc.label.setText("Hancock County")

8. We can automatically set the size of the label container to fit the string we used:
qc.label.adjustSizeToText()

https://geospatialpython.googlecode.com/svn/MapComposer.py
https://geospatialpython.googlecode.com/svn/MapComposer.py
http:///

Chapter 6

181

9. Now, we add a frame around the label box:
qc.label.setFrameEnabled(True)

10. Then, we set the position of the label on the page, which is at the top-left corner
of the map:
qc.label.setItemPosition(qc.x,qc.y-10)

11. Next, we add the label the map composition now that it is configured:
qc.c.addItem(qc.label)

12. Finally, we save the composition image:
qc.output("/Users/joellawhead/qgis_data/map.jpg", "jpg")

13. Verify that your output image has a text label in a frame at the top-left corner
of the map.

How it works...
In this case, we created a very simple label based on defaults. However, labels can be
customized to change the font, size, color, and style for print-quality compositions. Also,
note that the x,y values used to place items in a composition start in the upper-left corner
of the page. As you move an item down the page, the y value increases.

Adding a scale bar to the map
A scale bar is one of the most important elements of a map composition, as it defines the
scale of the map to determine the ground distance on the map. QGIS composer allows you
to create several different types of scale bars from a simple text scale ratio to a graphical,
double scale bar with two measurement systems. In this recipe, we'll create a scale bar that
measures in kilometres.

Getting ready
You will need to download the following zipped shapefile and extract it to your qgis_data
directory, to a subdirectory named ms:

https://geospatialpython.googlecode.com/svn/mississippi.zip

In addition to the shapefile, you will also need the MapComposer class. This class
encapsulates the boilerplate composer code in a reusable way to make adding other elements
easier. You can download it from https://geospatialpython.googlecode.com/svn/
MapComposer.py.

https://geospatialpython.googlecode.com/svn/mississippi.zip
https://geospatialpython.googlecode.com/svn/MapComposer.py
https://geospatialpython.googlecode.com/svn/MapComposer.py
http:///

Composing Static Maps

182

This file must be accessible from the QGIS Python console; ensure that it is in the Python path
directory. Place the file in the .qgis2/python directory within your home directory.

For the scale bar to display correctly, you must ensure that QGIS is set to automatically
reproject data on the fly. In QGIS, go to the Settings menu and select Options. In the Options
dialog, select the CRS panel. In the Default CRS for new projects section, check the Enable
'on the fly' reprojection by default radio button. Click on the OK button to confirm the setting.

How to do it...
First, we will generate the map, then we'll generate the composition, and finally we'll create
the scale bar and place it in the lower-right corner of the map. To do this, we need to perform
the following steps:

1. First, we need to import the libraries we'll need:
from PyQt4.QtCore import *

from PyQt4.QtGui import *

from qgis.core import *

from qgis.gui import *

import MapComposer

2. Then, we'll build the map renderer using the shapefile:
lyr = QgsVectorLayer("/Users/joellawhead/qgis_data/ms/
mmississippi.shp", "Mississippi", "ogr")

reg = QgsMapLayerRegistry.instance()

reg.addMapLayer(lyr)

mr = iface.mapCanvas().mapRenderer()

3. Next, we'll create the MapComposer object using the layer registry and map renderer:
qc = MapComposer.MapComposer(qmlr=reg, qmr=mr)

4. Now, we'll initialize the scale bar object:
qc.scalebar = QgsComposerScaleBar(qc.c)

5. Then, we define the scale bar type. The default is a text scale, but we'll create a
more traditional box scale bar:
qc.scalebar.setStyle('Single Box')

6. Next, we apply the scale bar to the map and set the scale bar graphic to the
default size:
qc.scalebar.setComposerMap(qc.composerMap)

qc.scalebar.applyDefaultSize()

http:///

Chapter 6

183

7. We use the scale bar size, map size, and map position to calculate the desired
position of the scale bar, in the lower-right corner of the map:
sbw = qc.scalebar.rect().width()

sbh = qc.scalebar.rect().height()

mcw = qc.composerMap.rect().width()

mch = qc.composerMap.rect().height()

sbx = qc.x + (mcw - sbw)

sby = qc.y + mch

8. Then, we set the calculated position of the scale bar and add it to the composition:
qc.scalebar.setItemPosition(sbx, sby)

qc.c.addItem(qc.scalebar)

9. Finally, we save the composition to an image:

qc.output("/Users/joellawhead/qgis_data/map.jpg", "jpg")

How it works...
The scale bar will display in kilometres if the map projection is set correctly, which is why it is
important to have automatic reprojection enabled in the QGIS settings. The location of the scale
bar within the composition is not important, as long as the composerMap object is applied to it.

Adding a north arrow to the map
North arrows are another common cartographic element found even in ancient maps, which
show the orientation of the map relative to either true, gird, or magnetic north. Sometimes,
these symbols can be quite elaborate. However, QGIS provides a basic line arrow element that
we will use in combination with a map label to make a basic north arrow.

Getting ready
You will need to download the following zipped shapefile and extract it to your qgis_data
directory, to a subdirectory named ms:

https://geospatialpython.googlecode.com/svn/Mississippi.zip

In addition to the shapefile, you will also need the MapComposer class to simplify the
code needed to add this one element. If you haven't already used it in a previous recipe,
you can download it from https://geospatialpython.googlecode.com/svn/
MapComposer.py.

https://geospatialpython.googlecode.com/svn/Mississippi.zip
https://geospatialpython.googlecode.com/svn/MapComposer.py
https://geospatialpython.googlecode.com/svn/MapComposer.py
http:///

Composing Static Maps

184

This file must be accessible from the QGIS Python Console; for this, you need to ensure that
it is in the Python path directory. Place the file in the .qgis2/python directory within your
home directory.

How to do it...
In this recipe, we will create a map composition, draw an arrow to the right of the map,
and then place a label with a capital letter N below the arrow. To do this, we need to perform
the following steps:

1. First, we import the Qt and MapComposer Python libraries:
from PyQt4.QtCore import *

from PyQt4.QtGui import *

from qgis.core import *

from qgis.gui import *

import MapComposer

2. Next, we create the map composition object:
lyr = QgsVectorLayer("/qgis_data/ms/mississippi.shp",
"Mississippi", "ogr")

reg = QgsMapLayerRegistry.instance()

reg.addMapLayer(lyr)

mr = iface.mapCanvas().mapRenderer()

qc = MapComposer.MapComposer(qmlr=reg, qmr=mr)

3. Now, we calculate the position of the arrow along the right-hand side of the map,
set its position, and then add it to the composition:
mcw = qc.composerMap.rect().width()

mch = qc.composerMap.rect().height()

ax = qc.x + mcw + 10

ay = (qc.y + mch) - 10

afy = ay - 20

qc.arrow = QgsComposerArrow(QPointF(ax, ay), QPointF(ax,afy),
qc.c)

qc.c.addItem(qc.arrow)

http:///

Chapter 6

185

4. Then, we create a capital letter N label and add it to the composition just below
the arrow:
f = QFont()

f.setBold(True)

f.setFamily("Times New Roman")

f.setPointSize(30)

qc.labelNorth = QgsComposerLabel(qc.c)

qc.labelNorth.setText("N")

qc.labelNorth.setFont(f)

qc.labelNorth.adjustSizeToText()

qc.labelNorth.setFrameEnabled(False)

qc.labelNorth.setItemPosition(ax - 5, ay)

qc.c.addItem(qc.labelNorth)

5. Finally, we save the composition to an image:

qc.output("/qgis_data/map.jpg", "jpg")

Verify that your output image looks similar to the following:

http:///

Composing Static Maps

186

How it works...
The QGIS composer doesn't have a dedicated north arrow or compass rose object. However, it
is quite simple to construct one, as demonstrated in the preceding section. The arrow is just a
graphic. The direction of the arrow is controlled by the location of the start point and the end
point listed, respectively, when you create the QgsComposerArrow object.

There's more...
You can extend this example to have an arrow point in multiple compass directions.
You can also use an image of a more elaborate compass rose added to the composition.
We'll demonstrate how to add images in the next recipe. Note that the arrow element can
also be used to point to items on the map with an associated label.

Adding a logo to the map
An important part of customizing a map is to add your logo or other graphics to the
composition. In this recipe, we'll add a simple logo to the map.

Getting ready
You will need to download the following zipped shapefile and extract it to your qgis_data
directory, to a subdirectory named ms:

https://geospatialpython.googlecode.com/svn/Mississippi.zip

You will also need a logo image, which you can download from
https://geospatialpython.googlecode.com/svn/trunk/logo.png.

Place the image in your qgis_data/rasters directory.

If you haven't already done so in the previous recipe, download the MapComposer library from
https://geospatialpython.googlecode.com/svn/MapComposer.py, to simplify the
creation of the map composition.

Place the file in the .qgis2/python directory within your home directory.

https://geospatialpython.googlecode.com/svn/Mississippi.zip
https://geospatialpython.googlecode.com/svn/trunk/logo.png
https://geospatialpython.googlecode.com/svn/MapComposer.py
http:///

Chapter 6

187

How to do it...
In this recipe, we will create the map composition, add the logo image, and save the map as
an image. To do this, we need to perform the following steps:

1. First, we need to import the Qt GUI, core QGIS, QGIS GUI, and MapComposer libraries:
from PyQt4.QtCore import *

from PyQt4.QtGui import *

from qgis.core import *

from qgis.gui import *

import MapComposer

2. Next, we will build a basic map composition using the shapefile:
lyr = QgsVectorLayer("/qgis_data/ms/mississippi.shp",
"Mississippi", "ogr")

reg = QgsMapLayerRegistry.instance()

reg.addMapLayer(lyr)

mr = iface.mapCanvas().mapRenderer()

qc = MapComposer.MapComposer(qmlr=reg, qmr=mr)

3. Now, we initialize the picture object:
qc.logo = QgsComposerPicture(qc.c)

4. Then, we set the path of the picture to our image file:
qc.logo.setPictureFile("/qgis_data/rasters/logo.png")

5. We must set the size of the box or scene rectangle such that it is large enough to
contain the logo. Otherwise, the picture will appear cropped:
qc.logo.setSceneRect(QRectF(0,0,50,70))

6. Next, we calculate the position of the logo relative to the map image. We'll place
the logo near the top-left corner of the map:
lx = qc.x + 50

ly = qc.y – 120

7. Now, we set the logo's position and add it to the map composition:
 mcw = qc.composerMap.rect().width()

 mch = qc.composerMap.rect().height()

 lx = qc.x

ly = qc.y - 20

8. Finally, we save the composition as an image:
qc.output("/qgis_data/map.jpg", "jpg")

http:///

Composing Static Maps

188

How it works...
This recipe is very straight forward, as the QgsComposerPicture is an extremely simple
object. You can use JPG, PNG, or SVG images. This technique can be used to add custom
north arrows or other cartographic elements as well.

Adding a legend to the map
A map legend decodes the symbology used in a thematic GIS map for the reader. Legends are
tightly integrated into QGIS, and in this recipe, we'll add the default legend from the map to
the print composition.

Getting ready
Download the shapefile for this map from https://geospatialpython.googlecode.
com/svn/Mississippi.zip and extract it to your qgis_data directory in a subdirectory
named ms.

As with the previous recipes in this chapter, we will use the MapComposer library from
https://geospatialpython.googlecode.com/svn/MapComposer.py to simplify
the creation of the map composition.

Place the file in the .qgis2/python directory within your home directory.

How to do it...
This recipe is as simple as creating the map, adding the automatically generated legend,
and saving the output to an image. To do this, we need to perform the following steps:

1. First, we will need to load the Qt and QGIS GUI libraries followed by the
MapComposer library:
from PyQt4.QtCore import *

from PyQt4.QtGui import *

from qgis.core import *

from qgis.gui import *

import MapComposer

https://geospatialpython.googlecode.com/svn/Mississippi.zip
https://geospatialpython.googlecode.com/svn/Mississippi.zip
https://geospatialpython.googlecode.com/svn/MapComposer.py
http:///

Chapter 6

189

2. Next, we will load the shapefile as a layer and create the map composition with the
MapComposer library, passing it the map layer registry and map renderer:
lyr = QgsVectorLayer("/qgis_data/ms/mississippi.shp",
"Mississippi", "ogr")

reg = QgsMapLayerRegistry.instance()

reg.addMapLayer(lyr)

mr = iface.mapCanvas().mapRenderer()

qc = MapComposer.MapComposer(qmlr=reg, qmr=mr)

3. Now, we initialize the legend object:
qc.legend = QgsComposerLegend(qc.c)

4. We now tell the legend which layer set we want to use:
qc.legend.model().setLayerSet(qc.qmr.layerSet())

5. Then, we set the legend's position to the left-hand side of the map and add it
to the composition:
qc.legend.setItemPosition(5, qc.y)

qc.c.addItem(qc.legend)

6. Finally, we output the composition to the map:

qc.output("/qgis_data/map.jpg", "jpg")

How it works...
Adding a legend is quite simple. QGIS will carry over the styling that is autogenerated when the
layer is loaded or manually set by the user. Of course, you can also save layer styling, which is
loaded with the layer and used by the legend. However, if you're generating a composition in
the background such as in a standalone application, for example, every aspect of the legend
is customizable through the PyQGIS API.

Adding a custom shape to the map
The QGIS composer has an object for drawing and styling nonspatial shapes, including
rectangles, ellipses, and triangles. In this recipe, we'll add some rectangles filled with
different colors, which will resemble a simple bar chart, as an example of using shapes.

http:///

Composing Static Maps

190

Getting ready
Download the zipped shapefile for this map from https://geospatialpython.
googlecode.com/svn/Mississippi.zip and extract it to your qgis_data directory,
to in a subdirectory named ms.

We will also use the MapComposer library from https://geospatialpython.
googlecode.com/svn/MapComposer.py to simplify the creation of the map composition.

Place the file in the .qgis2/python directory within your home directory.

How to do it...
First, we will create a simple map composition with the shapefile. Then, we will define the style
properties for our rectangles. Next, we will draw the rectangles, apply the symbols, and render
the composition. To do this, we need to perform the following steps:

1. First, we must import the PyQGIS and Qt GUI libraries as well as the MapComposer
library, as follows:
from PyQt4.QtCore import *

from PyQt4.QtGui import *

from qgis.core import *

from qgis.gui import *

import MapComposer

2. Next, we create the map composition by using the shapefile:
lyr = QgsVectorLayer("/qgis_data/ms/mississippi.shp",
"Mississippi", "ogr")

reg = QgsMapLayerRegistry.instance()

reg.addMapLayer(lyr)

mr = iface.mapCanvas().mapRenderer()

qc = MapComposer.MapComposer(qmlr=reg, qmr=mr)

3. Now, we create three basic fill symbols by building Python dictionaries with color
properties and initialize the symbols with these dictionaries:
red = {'color':'255,0,0,255','color_border':'0,0,0,255'}

redsym = QgsFillSymbolV2.createSimple(red)

blue = {'color':'0,0,255,255','color_border':'0,0,0,255'}

https://geospatialpython.googlecode.com/svn/Mississippi.zip
https://geospatialpython.googlecode.com/svn/Mississippi.zip
https://geospatialpython.googlecode.com/svn/MapComposer.py
https://geospatialpython.googlecode.com/svn/MapComposer.py
http:///

Chapter 6

191

bluesym = QgsFillSymbolV2.createSimple(blue)

yellow = {'color':'255,255,0,255','color_border':'0,0,0,255'}

yellowsym = QgsFillSymbolV2.createSimple(yellow)

4. Then, we calculate the y position of the first shape, relative to the map:
mch = qc.composerMap.rect().height()

sy = qc.y + mch

5. We create the first shape and set it to the type 1, which is a rectangle:
qc.shape1 = QgsComposerShape(10,sy-25,10,25,qc.c)

qc.shape1.setShapeType(1)

6. Next, we tell the shape to use a symbol, set the symbol for one of our three fill
symbols, and add the shape to the composition:
qc.shape1.setUseSymbolV2(True)

qc.shape1.setShapeStyleSymbol(redsym)

qc.c.addItem(qc.shape1)

7. We repeat the process with two other shapes, changing their position, size,
and symbols to make them look different:
qc.shape2 = QgsComposerShape(22,sy-18,10,18,qc.c)

qc.shape2.setShapeType(1)

qc.shape2.setUseSymbolV2(True)

qc.shape2.setShapeStyleSymbol(bluesym)

qc.c.addItem(qc.shape2)

qc.shape3 = QgsComposerShape(34,sy-12,10,12,qc.c)

qc.shape3.setShapeType(1)

qc.shape3.setUseSymbolV2(True)

qc.shape3.setShapeStyleSymbol(yellowsym)

qc.c.addItem(qc.shape3)

8. Finally, we output the composition as an image:

qc.output("/qgis_data/map.jpg", "jpg")

http:///

Composing Static Maps

192

Verify that your output image looks similar to the following:

How it works...
This simple graphical output is nearly 40 lines of code. While there may be some limited uses
for dealing with these shapes, in most cases, the simpler route will be to just import images.
However, it provides a good foundation for a richer graphics API, as QGIS continues to evolve.

There's more...
If you are using fill symbols within a Python plugin in a QGIS version less than 2.6, you must
ensure that the symbols are defined in the global scope, or QGIS will crash due to a bug.
The easiest way to include the variables in the global scope is to define them immediately
after the import statements. It also affects scripts that are run in the Script Runner plugin.
This bug was fixed in version 2.6 and subsequent versions.

http:///

Chapter 6

193

Adding a grid to the map
An annotated reference grid is useful for map products used to locate features. This recipe
teaches you how to add both reference lines on a map and annotations for the lines around
the edges of the map.

Getting ready
You will need a shapefile for this map from https://geospatialpython.googlecode.
com/svn/Mississippi.zip, and you need to extract it to your qgis_data directory,
to a subdirectory named ms.

As with the previous recipes in this chapter, we will use the MapComposer library from
https://geospatialpython.googlecode.com/svn/MapComposer.py to simplify
the creation of the map composition.

Place the file in the .qgis2/python directory within your home directory.

How to do it...
In this recipe, the general steps are to create the map composition, establish the overall grid
parameters, define the grid line placement, and then style the grid and annotations. To do
this, we need to perform the following steps:

1. First, we need to import all the GUI libraries and the MapComposer library:
from PyQt4.QtCore import *

from PyQt4.QtGui import *

from qgis.core import *

from qgis.gui import *

import MapComposer

2. Next, we create the map composition using the shapefile:
lyr = QgsVectorLayer("/qgis_data/ms/mmississippi.shp",
"Mississippi", "ogr")

reg = QgsMapLayerRegistry.instance()

reg.addMapLayer(lyr)

mr = iface.mapCanvas().mapRenderer()

qc = MapComposer.MapComposer(qmlr=reg, qmr=mr)

https://geospatialpython.googlecode.com/svn/Mississippi.zip
https://geospatialpython.googlecode.com/svn/Mississippi.zip
https://geospatialpython.googlecode.com/svn/MapComposer.py
http:///

Composing Static Maps

194

3. Now, we are going to create some variables to shorten some unusually long method
and object names:
setGridAnnoPos = qc.composerMap.setGridAnnotationPosition

setGridAnnoDir = qc.composerMap.setGridAnnotationDirection

qcm = QgsComposerMap

4. Then, we enable the grid, set the line spacing, and use solid lines for the grid:
qc.composerMap.setGridEnabled(True)

qc.composerMap.setGridIntervalX(.75)

qc.composerMap.setGridIntervalY(.75)

qc.composerMap.setGridStyle(qcm.Solid)

5. Next, we enable the annotation numbers for coordinates and set the decimal
precision to 0 for whole numbers:
qc.composerMap.setShowGridAnnotation(True)

qc.composerMap.setGridAnnotationPrecision(0)

6. Now, we go around the map composition frame and define locations and directions
for each set of grid lines, using our shorter variable names from the previous steps:
setGridAnnoPos(qcm.OutsideMapFrame, qcm.Top)

setGridAnnoDir(qcm.Horizontal, qcm.Top)

setGridAnnoPos(qcm.OutsideMapFrame, qcm.Bottom)

setGridAnnoDir(qcm.Horizontal, qcm.Bottom)

setGridAnnoPos(qcm.OutsideMapFrame, qcm.Left)

setGridAnnoDir(qcm.Vertical, qcm.Left)

setGridAnnoPos(qcm.OutsideMapFrame, qcm.Right)

setGridAnnoDir(qcm.Vertical, qcm.Right)

7. Finally, we set some additional styling for the grid lines and annotations before
adding the whole map to the overall composition:
qc.composerMap.setAnnotationFrameDistance(1)

qc.composerMap.setGridPenWidth(.2)

qc.composerMap.setGridPenColor(QColor(0, 0, 0))

qc.composerMap.setAnnotationFontColor(QColor(0, 0, 0))

qc.c.addComposerMap(qc.composerMap)

8. We output the composition to an image:

qc.output("/qgis_data/map.jpg", "jpg")

http:///

Chapter 6

195

Verify that your output image looks similar to the following:

How it works...
This recipe has a lot of steps because the grids are customizable. The order of operations is
important as well. Notice that we do not add the map to the composition until the very end.
Often, you will make what seem to be minor changes and the grid may not render. Hence,
modify this recipe carefully.

Adding a table to the map
QGIS composer provides an object to add a table to a composition, representing either the
attributes of a vector layer or an arbitrary text table you create. In this recipe, we'll add a table
to the composition with the attributes of our map layer shapefile.

Getting ready
Download the shapefile for this map from https://geospatialpython.googlecode.
com/svn/Mississippi.zip and extract it to your qgis_data directory, to a subdirectory
named ms.

As with the previous recipes in this chapter, we will use the MapComposer library from
https://geospatialpython.googlecode.com/svn/MapComposer.py to simplify the
creation of the map composition.

Place the file in the .qgis2/python directory within your home directory.

https://geospatialpython.googlecode.com/svn/Mississippi.zip
https://geospatialpython.googlecode.com/svn/Mississippi.zip
https://geospatialpython.googlecode.com/svn/MapComposer.py
http:///

Composing Static Maps

196

How to do it...
The following steps will create a map composition, add the table, and output the composition
to an image:

1. First, we import our GUI libraries and the MapComposer library:
from PyQt4.QtCore import *

from PyQt4.QtGui import *

from qgisfromqgis.core import *

from qgisfromqgis.gui import *

import MapComposer

2. Next, we create the map composition:
lyr = QgsVectorLayer("/qgis_data/ms/mississippi.shp",
"Mississippi", "ogr")

reg = QgsMapLayerRegistry.instance()

reg.addMapLayer(lyr)

mr = iface.mapCanvas().mapRenderer()

qc = MapComposer.MapComposer(qmlr=reg, qmr=mr)

3. Now, we can initialize the table object:
qc.table = QgsComposerAttributeTable(qc.c)

4. Then, we reference the related map:
qc.table.setComposerMap(qc.composerMap)

5. Next, we can specify the layer whose attributes we want to display in the table:
qc.table.setVectorLayer(lyr)

6. Now, we can position the table below the map and add it to the composition:
mch = qc.composerMap.rect().height()

qc.table.setItemPosition(qc.x, qc.y + mch + 20)

qc.c.addItem(qc.table)

7. Finally, we output the composition to an image:

qc.output("/qgis_data/map.jpg", "jpg")

http:///

Chapter 6

197

How it works...
The table object is very straight forward. Using the attributes of a vector layer is automatic.
You can also build the table cell by cell if you want to display customized information.

Adding a world file to a map image
Exporting a map as an image removes all of its spatial information. However, you can create
an external text file called a world file, which provides the georeferencing information for the
raster image, so that it can be used by GIS software, including QGIS, as a raster layer. In this
recipe, we'll export a map composition as an image and create a world file with it.

Getting ready
You will need to download the zipped shapefile from https://geospatialpython.
googlecode.com/svn/Mississippi.zip and extract it to your qgis_data directory,
to a subdirectory named ms.

In addition to the shapefile, you will also need the MapComposer class to simplify the
code needed to add this one element. If you have not already used it in a previous recipe,
you can download it from https://geospatialpython.googlecode.com/svn/
MapComposer.py.

This file must be accessible from the QGIS Python console; for this, you need to ensure that
it is in the python path directory. Place the file in the .qgis2/python directory within your
home directory.

How to do it...
First, we'll create the map composition, then we'll save it as an image, and finally we'll
generate the world file. To do this, we need to perform the following steps:

1. First, we need to import the GUI and MapComposer libraries:
from PyQt4.QtCore import *

from PyQt4.QtGui import *

from qgisfromqgis.core import *

from qgisfromqgis.gui import *

import MapComposer

https://geospatialpython.googlecode.com/svn/Mississippi.zip
https://geospatialpython.googlecode.com/svn/Mississippi.zip
https://geospatialpython.googlecode.com/svn/MapComposer.py
https://geospatialpython.googlecode.com/svn/MapComposer.py
http:///

Composing Static Maps

198

2. Next, we'll create the map's composition using the MapComposer libraries:
lyr = QgsVectorLayer("/qgis_data/ms/mississippi.shp",
"Mississippi", "ogr")

reg = QgsMapLayerRegistry.instance()

reg.addMapLayer(lyr)

mr = iface.mapCanvas().mapRenderer()

qc = MapComposer.MapComposer(qmlr=reg, qmr=mr)

3. Now, we'll define the name of our output file:
output = "/qgis_data/map"

4. Then, we can export the composition as an image:
qc.output(output + ".jpg", "jpg")

5. Now, we'll create an object that contains the world file's information:
qc.c.setWorldFileMap(qc.composerMap)

qc.c.setGenerateWorldFile(True)

wf = qc.c.computeWorldFileParameters()

6. Finally, we'll open a text file and write each line of the text file:

with open(output + ".jgw", "w") as f:

 f.write("%s\n" % wf[0])

 f.write("%s\n" % wf[1])

 f.write("%s\n" % wf[3])

 f.write("%s\n" % wf[4])

 f.write("%s\n" % wf[2])

 f.write("%s\n" % wf[5])

How it works...
The world file contains the ground distance per pixel and the upper-left coordinate of the map
image. The QGIS composer automatically generates this information based on the referenced
map. The world file's name must be the same as the image with an extension that uses the
first and last letter of the image file extension plus the letter w. For example, a .TIFF image
file will have a world file with the extension .TFW. You can learn more about what the world file
variables in each line mean at http://en.wikipedia.org/wiki/World_file.

http://en.wikipedia.org/wiki/World_file
http:///

Chapter 6

199

Saving a map to a project
Saving a project automatically can be useful for autosave features or as part of a process to
autogenerate projects from dynamically updated data. In this recipe, we'll save a QGIS project
to a .qgs project file.

Getting ready
You will need to download the following zipped shapefile and extract it to your qgis_data
directory, to a subdirectory named ms:

https://geospatialpython.googlecode.com/svn/Mississippi.zip

How to do it...
We will create a simple QGIS project by loading a shapefile layer, then we'll access the project
object, and save the map project to a file, as follows:

1. First, we need the Qt core library in the QGIS Python console:
from PyQt4.QtCore import *

2. Next, we load the shapefile and add it to the map:
lyr = QgsVectorLayer("/Users/joellawhead/qgis_data/ms/mississippi.
shp", "Mississippi", "ogr")

reg = QgsMapLayerRegistry.instance()

reg.addMapLayer(lyr)

3. Then, we create a file object to save our project:
f = QFileInfo("/Users/joellawhead/qgis_data/myProject.qgs")

4. Now, we can access the QGIS project object instance:
p = QgsProject.instance()

5. Finally, we can save the project by writing it to the file object:

p.write(f)

How it works...
QGIS simply creates and XML document with all the project settings and GIS map settings.
You can read and even modify the XML output by hand.

https://geospatialpython.googlecode.com/svn/Mississippi.zip
http:///

Composing Static Maps

200

Loading a map from a project
This recipe demonstrates how to load a project from a .qgs XML file. Loading a project will
set up the map and project settings for a previously saved project within QGIS.

Getting ready
You will need to complete the previous recipe, Saving a map to a project, so that you have a
project named myProject.qgs in your qgis_data folder.

How to do it...
For this recipe, you need to set up a file object, set a resource path, and then read the file
object that references the project file. To do this, you need to perform the following steps:

1. First, we import the core Qt library for the file object:
from PyQt4.QtCore import *

2. Next, we initiate the file object with the path to the project file:
f = QFileInfo("/Users/joellawhead/qgis_data/myProject.qgs")

3. Now, we access the project object:
p = QgsProject.instance()

4. Then, we set the resource path for QGIS to find data and other files, in case the
project was saved with relative paths instead of absolute paths:
p.readPath("/Users/joellawhead/qgis_data/")

5. Finally, we tell the project object to read the project file in order to load the map:

p.read(f)

How it works...
QGIS has a setting to save references to data and other files either as relative paths,
which are relative to the project file, or absolute paths, which contain the full path. If the
saved paths are absolute, PyQGIS will be unable to locate data sources. Setting the read
path to the full system path of the project file ensures that QGIS can find all the referenced
files in the project file, if they are saved as relative paths.

http:///

201

Interacting with
the User

In this chapter, we will cover the following recipes:

f Using log files

f Creating a simple message dialog

f Creating a warning dialog

f Creating an error dialog

f Displaying a progress bar

f Creating a simple text input dialog

f Creating a file input dialog

f Creating a combobox

f Creating radio buttons

f Creating checkboxes

f Creating tabs

f Stepping the user through a wizard

f Keeping dialogs on top

7

http:///

Interacting with the User

202

Introduction
QGIS has been built using the comprehensive graphical user interface framework called Qt.
Both QGIS and Qt have Python APIs. In this chapter, we'll learn how to interact with the user
in order to collect and display information outside the default QGIS interface. Qt has excellent
documentation of its own, and since QGIS is built on top of Qt, all of this documentation
applies to QGIS. You can find the Qt documentation at http://qt-project.org.

Using log files
Log files provide a way to track exactly what is going on in a Python plugin or script, by
creating messages that are available even if the script or QGIS crashes. These log messages
make troubleshooting easier. In this recipe, we'll demonstrate two methods used for logging.
One method is using actual log files on the filesystem, and the other is using the QGIS Log
Messages window, which is available by clicking on the yellow triangle with an exclamation
point at the bottom-right corner of the QGIS application window, or by selecting View menu,
then clicking on Panels, and then checking Log Messages.

Getting ready
To use log files, we must configure the QGIS_LOG_FILE environment variable by performing
the following steps so that QGIS knows where to write log messages:

1. From the QGIS Settings menu, select Options.

2. In the Options dialog, select System panel.

3. In the System panel, scroll down to the Environment section.

4. In the Environment section, check the Use custom variables checkbox.

5. Click on the Add button.

6. In the Variable field, enter QGIS_LOG_FILE.

7. In the Value field, enter /qgis_data/log.txt or the path to another directory
where you have write permissions.

8. Click on the OK button to close the Options dialog.

9. Restart QGIS for the environment variable to take effect.

http://qt-project.org
http:///

Chapter 7

203

How to do it...
We will write a message to our custom log file configured in the previous section, and then
write a message to the tabbed QGIS Log Messages window. To do this, we need to perform
the following steps:

1. First, open the Python Console in QGIS.

2. Next, we'll write the following log file message:
QgsLogger.logMessageToFile("This is a message to a log file.")

3. Then, we'll write a message to the QGIS Log Messages window, specifying the
message as the first argument and a name for the tab in which the message
will appear:
QgsMessageLog.logMessage("This is a message from the Python
Console", "Python Console")

4. Now, open the log file and check whether the message has appeared.

5. Finally, open the QGIS Log Messages window, click on the Python Console tab,
and verify that the second log message appears.

How it works...
The traditional log file provides a simple and portable way to record information from QGIS
using Python. The Log Messages window is a more structured way to view information
from many different sources, with a tabbed interface and a convenient timestamp on each
message. In most cases, you'll probably want to use the Log Messages window because
QGIS users are familiar with it. However, use it sparingly. It's OK to log lots of messages when
testing code, but restrict logging for plugins or applications to serious errors only. Heavy
logging — for example, logging messages while looping over every feature in a layer — can slow
down QGIS or even cause it to crash.

Creating a simple message dialog
Message dialogs pop up to grab the user's attention and to display important information.
In this recipe, we'll create a simple information dialog.

Getting ready
Open the QGIS Python Console by going to the Plugins menu and selecting Python Console.

http:///

Interacting with the User

204

How to do it...
We will create a message dialog and display some text in it, as follows:

1. First, we need to import the GUI library:
from PyQt4.QtGui import *

2. Then, we'll create the message dialog:
msg = QMessageBox()

3. Next, we'll set the message we want to display:
msg.setText("This is a simple information message.")

4. Finally, we call the execution method to display the message dialog:

msg.show()

How it works...
Note that we are directly using the underlying Qt framework from which QGIS is built.
QGIS API's objects begin with Qgs, while Qt objects begin with just the letter Q.

There's more…
A message dialog box should also be used sparingly because it is a popup that can
become annoying to the user or can get lost in the array of open windows and dialogs
on a user's desktop. The preferred method for a QGIS information message is to use
the QgsMessageBar() method, which is well-documented in the PyQGIS Developer
Cookbook found at http://docs.qgis.org/testing/en/docs/pyqgis_developer_
cookbook/communicating.html

Creating a warning dialog
Sometimes, you need to notify a user when an issue is detected, which might lead to
problems if the user continues. This situation calls for a warning dialog, which we will
demonstrate in this recipe.

Getting ready
Open the QGIS Python Console by going to the Plugins menu and selecting Python Console.

http://docs.qgis.org/testing/en/docs/pyqgis_developer_cookbook/communicating.html
http://docs.qgis.org/testing/en/docs/pyqgis_developer_cookbook/communicating.html
http:///

Chapter 7

205

How to do it...
In this recipe, we will create a dialog, set the warning message and a warning icon,
and display the dialog, as follows:

1. First, we import the GUI library:
from PyQt4.QtGui import *

2. Next, we initialize the warning dialog:
msg = QMessageBox()

3. Then, we set the warning message:
msg.setText("This is a warning...")

4. Now, add a warning icon to the dialog that has an enumeration index of 2:
msg.setIcon(QMessageBox.Warning)

5. Finally, we call the execution method to display the dialog:

msg.show()

How it works...
Message dialogs should be used sparingly because they interrupt the user experience and
can easily become annoying. However, sometimes it is important to prevent a user from
taking an action that may cause data corruption or a program to crash.

Creating an error dialog
You can issue an error dialog box when you need to end a process due to a serious error.
In this recipe, we'll create an example of an error dialog.

Getting ready
Open the QGIS Python Console by selecting the Plugins menu and then clicking on
Python Console.

http:///

Interacting with the User

206

How to do it...
In this recipe, we will create a dialog, assign an error message, set an error icon, and display
the dialog, as follows:

1. First, we need to import the GUI library:
from PyQt4.QtGui import *

2. Next, we initialize the dialog:
msg = QMessageBox()

3. Then, we set the error message:
msg.setText("This is an error!")

4. Subsequently, we set an icon number for the error icon:
msg.setIcon(QMessageBox.Critical)

5. Finally, we execute the error dialog:

msg.show()

How it works...
An important feature of modal windows is that they always stay on top of the application,
regardless of whether the user changes the window's focus. This feature ensures that the
user addresses the dialog before they proceed.

Displaying a progress bar
A progress bar is a dynamic dialog that displays the percentage complete bar for a running
process that the user must wait for before continuing. A progress bar is more advanced than
a simple dialog because it needs to be updated continuously. In this recipe, we'll create a
simple progress dialog based on a timer.

Getting ready
No groundwork is required for this recipe.

http:///

Chapter 7

207

How to do it...
The steps for this recipe include creating a custom class based on the QProgressBar,
initializing the dialog and setting its size and title, creating a timer, connecting the progress
bar to the timer, starting the time, and displaying the progress. To do this, we need to perform
the following steps:

1. First, we must import both the GUI and QGIS core libraries:
from PyQt4.QtGui import *

from PyQt4.QtCore import *

2. Next, we create a custom class for our progress bar, including a method to increase
the value of the progress bar:
class Bar(QProgressBar):

 value = 0

 def increaseValue(self):

 self.setValue(self.value)

 self.value = self.value+1

3. Now, we set the progress bar:
bar = Bar()

4. Next, we set the progress bar's size and title:
bar.resize(300,40)

bar.setWindowTitle('Working...')

5. Then, we initialize the timer, which will serve as the process we monitor:
timer = QTimer()

6. Now, connect the the timer's timeout signal to the increaseValue method,
which we created earlier. Whenever the timer finishes its countdown, it will emit the
timeout signal and notify the increaseValue method.
timer.timeout.connect(bar.increaseValue)

7. Now, we will start the timer, specifying an interval of 500 milliseconds. The timer will
call its timeout() signal every 0.5 seconds:
timer.start(500)

8. Finally, we show the progress bar and start the progress meter:

bar.show()

http:///

Interacting with the User

208

How it works...
The progress bar will stop when its value reaches 100, but our timer will continue to run
until the stop() method is called. In a more realistic implementation, you will need a way to
determine whether the monitored process is complete. The indicator might be the creation
of a file, or even better, a signal. The Qt framework uses the concept of signals and slots
to connect GUI elements. A GUI is event-based, with multiple events occurring at different
times, including user actions and other triggers. The signal/slot system allows you to define
reactions to events when they occur, without writing code to continuously monitor changes.
In this recipe, we use the predefined signal from the timer and create our own slot. A slot is
just a method identified as a slot by passing it to a signal's connect() method. The following
screenshot shows an example of the progress bar:

There's more…
In a complex GUI application such as QGIS, you will end up with multiple signals that trigger
multiple slots simultaneously. You must take care that a rapidly updating element such as a
progress bar doesn't slow down the application. Using a thread to only update the progress
bar when something has truly changed is more efficient. For an example of this technique,
take a look at http://snorf.net/blog/2013/12/07/multithreading-in-qgis-
python-plugins/.

Using the QgsMessageBar object is preferred to display informative messages, but it
can also accept widgets such as the progress bar. The PyQGIS Developer Cookbook has
an example that shows how to place the progress bar in the QgsMessageBar object
(http://docs.qgis.org/testing/en/docs/pyqgis_developer_cookbook/
communicating.html)

Creating a simple text input dialog
In this recipe, we'll demonstrate one of the simplest methods used for accepting input from
a user, a text input dialog.

Getting ready
Open the QGIS Python Console by selecting the Plugins menu and then clicking on
Python Console.

 http://snorf.net/blog/2013/12/07/multithreading-in-qgis-python-plugins/
 http://snorf.net/blog/2013/12/07/multithreading-in-qgis-python-plugins/
http://docs.qgis.org/testing/en/docs/pyqgis_developer_cookbook/communicating.html
http://docs.qgis.org/testing/en/docs/pyqgis_developer_cookbook/communicating.html
http:///

Chapter 7

209

How to do it...
In this recipe, we will initialize the dialog and then configure its title and label. We'll set the
editing mode and the default text. When you click on the OK button, the text will be printed
to the Python Console. To do this, we need to perform the following steps:

1. First, we need to import the GUI library:
from PyQt4.QtGui import *

2. Next, we initialize the dialog:
qid = QInputDialog()

3. Now, we set the window's title, label text, editing mode, and default text:
title = "Enter Your Name"

label = "Name: "

mode = QLineEdit.Normal

default = "<your name here>"

4. We configure the dialog while capturing the user input and the return
code in variables:
text, ok = QInputDialog.getText(qid, title, label, mode, default)

5. When the dialog appears, type in some text and click on the OK button.

6. Now, we print the user input to the console:
print text

7. Finally, verify that the correct text is printed to the Python Console.

How it works...
The editing mode differentiates between normal, which we used here, and password,
to obscure typed passwords. Although we haven't used it in this example, the return code
is a Boolean, which can be used to verify that the user input occurred.

Creating a file input dialog
The best way to get a filename from the user is to have them browse to the file using a dialog.
You can have the user type in a filename using the text input dialog, but this method is prone
to errors. In this recipe, we'll create a file dialog and print the chosen filename to the console.

http:///

Interacting with the User

210

Getting ready
Open the QGIS Python Console by selecting the Plugins menu and then clicking on
Python Console.

How to do it...
In this recipe, we will create and configure the dialog, browse to a file, and print the
chosen filename, as follows:

1. First, we import the GUI library:
from PyQt4.QtGui import *

2. Next, we initialize the file dialog and specify its window title:
qfd = QFileDialog()

title = 'Open File'

3. Now, we specify a path to the directory we want the file dialog to start in:
path = "/Users/joellawhead/qgis_data"

4. Then, we configure the file dialog with the preceding parameters and assign the
output to a variable:
f = QFileDialog.getOpenFileName(qfd, title, path)

5. When the dialog appears, browse to a file, select it, and click on the OK button.

6. Finally, we print the chosen filename to the console:

print f

How it works...
The file dialog simply provides a filename. After the user selects the file, you must open it or
perform some other operation on it. If the user cancels the file dialog, the file variable is just
an empty string. You can use the QFileInfo object to get the path of the selected file:

from PyQt4.QtCore import *path = QFileInfo(f).path()

Then, you can save this path in the project settings, as demonstrated in Chapter 1,
Automating QGIS. This way, next time when you open a file dialog, you will start in the
same directory location as the previous file, which is usually more convenient.

http:///

Chapter 7

211

There's more…
You can also use the QFileDialog() method to get the filenames to be saved. You can use
the FileMode enumeration to restrict the user to selecting directories as well.

Creating a combobox
A combobox provides a drop-down list to limit the user's selection to a defined set of choices.
In this recipe, we'll create a simple combobox.

Getting ready
Open the QGIS Python Console by selecting the Plugins menu and then clicking on
Python Console.

How to do it...
In this recipe, we will initialize the combobox widget, add choices to it, resize it, display it,
and then capture the user input in a variable for printing to the console. To do this, we need
to perform the following steps:

1. Frist, we import the GUI library:
from PyQt4.QtGui import *

2. Now, we create our combobox object:
cb = QComboBox()

3. Next, we add the items that we want the user to choose from:
cb.addItems(["North", "South", "West", "East"])

4. Then, we resize the widget:
cb.resize(200,35)

5. Now we can display the widget to the user:
cb.show()

6. Next, we need to select an item from the list.

7. Now, we set the user's choice to a variable:
text = cb.currentText()

8. Finally, we can print the selection:
print text

9. Verify that the selection is printed to the console.

http:///

Interacting with the User

212

How it works...
Items added to the combobox are a Python list. This feature makes it easy to dynamically
generate choices using Python as the result of a database query or other dynamic data.
You may also want the index of the object in the list, which you can access with the
currentIndex property.

Creating radio buttons
Radio buttons are good for user input when you want the user to select an exclusive choice
from a list of options, as opposed to checkboxes, which let a user select many or all of the
options available. For longer lists of choices, a combobox is a better option. Once a radio
button is selected, you can unselect it only by choosing another radio button.

Getting ready
Open the QGIS Python Console by selecting the Plugins menu and then clicking on
Python Console.

How to do it...
Radio buttons are easier to manage as part of a class, so we'll create a custom class
that also includes a textbox to view which radio button is selected. To do this, perform
the following steps:

1. First, we'll import both the GUI and the core QGIS libraries:
from PyQt4.QtCore import *

from PyQt4.QtGui import *

2. Next, we'll create the RadioButton class and set up the radio buttons and
the textbox:
class RadioButton(QWidget):

 def __init__(self, parent=None):

 QWidget.__init__(self, parent)

3. We must also define a layout to manage the placement of the widgets, as follows:
self.layout = QVBoxLayout()

self.rb1 = QRadioButton('Option 1')

self.rb2 = QRadioButton('Option 2')

self.rb3 = QRadioButton('Option 3')

self.textbox = QLineEdit()

http:///

Chapter 7

213

4. Now, we'll connect the toggled signal of each radio button to the methods you'll define
in just a moment, in order to detect when a radio button is selected:
self.rb1.toggled.connect(self.rb1_active)

self.rb2.toggled.connect(self.rb2_active)

self.rb3.toggled.connect(self.rb3_active)

5. Then, we'll add the radio buttons and the textbox to the layout:
self.layout.addWidget(self.rb1)

self.layout.addWidget(self.rb2)

self.layout.addWidget(self.rb3)

self.layout.addWidget(self.textbox)

6. Now, we can define the layout for the custom widget we are building:
 self.setLayout(self.layout)

7. Next, we can define the methods to indicate which radio button is selected. You can
also define these options in a single method, but for a better understanding, three
methods are easier:
def rb1_active(self, on):

 if on:

 self.textbox.setText('Option 1 selected')

def rb2_active(self, on):

 if on:

 self.textbox.setText('Option 2 selected')

def rb3_active(self, on):

 if on:

 self.textbox.setText('Option 3 selected')

8. We are now ready to initialize our class and display the radio buttons:
buttons = RadioButton()

buttons.show()

9. Finally, click on each of the three radio buttons and verify that the text in the textbox
changes to indicate that the radio button you clicked on is selected.

How it works...
Radio buttons are almost always grouped together as a single object because they are related
options. Many GUI frameworks expose them as a single object in the API; however, Qt keeps
them as separate objects for maximum control.

http:///

Interacting with the User

214

Creating checkboxes
Checkboxes are closely related to radio buttons, in that they offer options around a single
theme. However, unlike radio buttons, checkboxes can be selected or unselected. You
can also select more than one checkbox at a time. In this recipe, we'll create a dialog with
checkboxes and some textboxes to programmatically track which checkboxes are selected.

Getting ready
Open the QGIS Python Console by selecting the Plugins menu and then clicking on
Python Console.

How to do it...
In this recipe, we'll use a class to manage the checkboxes and the textbox widgets, as follows:

1. First, we import the GUI and QGIS core libraries:
from PyQt4.QtCore import *

from PyQt4.QtGui import *

2. Next, we create our custom class for the checkboxes and textboxes:
class CheckBox(QWidget):

 def __init__(self, parent=None):

 QWidget.__init__(self, parent)

3. Next, we'll need a layout object to manage the placement of the widgets:
self.layout = QVBoxLayout()

4. Now, we'll add three checkboxes and three textboxes:
 self.cb1 = QCheckBox('Option 1')

 self.cb2 = QCheckBox('Option 2')

 self.cb3 = QCheckBox('Option 3')

 self.textbox1 = QLineEdit()

 self.textbox2 = QLineEdit()

 self.textbox3 = QLineEdit()

5. Then, we'll connect the status signals of the checkboxes to the methods that
we'll define later:
 self.cb1.toggled.connect(self.cb1_active)

 self.cb2.toggled.connect(self.cb2_active)

 self.cb3.toggled.connect(self.cb3_active)

http:///

Chapter 7

215

6. Next, we must add the widgets to the layout:
 self.layout.addWidget(self.cb1)

 self.layout.addWidget(self.cb2)

 self.layout.addWidget(self.cb3)

 self.layout.addWidget(self.textbox1)

 self.layout.addWidget(self.textbox2)

 self.layout.addWidget(self.textbox3)

7. Now, we set our custom class's layout to the layout we created:
 self.setLayout(self.layout)

8. We then create the methods that change the textboxes each time a checkbox
is toggled:
 # First checkbox

 def cb1_active(self, on):

 if on:

 self.textbox1.setText('Option 1 selected')

 else: self.textbox1.setText('')

 # Second checkbox

 def cb2_active(self, on):

 if on:

 self.textbox2.setText('Option 2 selected')

 else: self.textbox2.setText('')

 # Third checkbox

 def cb3_active(self, on):

 if on:

 self.textbox3.setText('Option 3 selected')

 else: self.textbox3.setText('')

9. Now, we are ready to initialize our custom class and display the dialog:
buttons = CheckBox()

buttons.show()

10. Toggle the checkboxes separately and simultaneously and then verify that the
textboxes reflect the changes.

http:///

Interacting with the User

216

How it works...
Textboxes allow you to verify that you are programmatically catching the signal from the
checkboxes as they are toggled. You can also use a single checkbox as a Boolean for an
option with only two choices. When you run this recipe, the result should look similar to the
following screenshot:

Creating tabs
Tabs allow you to condense the information from several screens into a relatively small place.
Tabs provide titles at the top of the window, which present an individual widget layout for each
title when clicked. In this recipe, we'll create a simple tabbed interface.

Getting ready
Open the QGIS Python Console by selecting the Plugins menu and then clicking on
Python Console.

http:///

Chapter 7

217

How to do it...
We will create an overarching tab widget. Then, we'll create three generic widgets to represent
our tabs. We'll set up layouts with three different GUI widgets and assign each layout to our
tab widgets. Finally, we'll add our tabs to the tab widget and display it. To do this, we need to
perform the following steps:

1. First, we need to import the GUI and QGIS core libraries:
from PyQt4.QtCore import *

from PyQt4.QtGui import *

2. Next, we create our tab and configure its title and size:
qtw = QTabWidget()

qtw.setWindowTitle("PyQGIS Tab Example")

qtw.resize(400,300)

3. Now, we initialize our tab widgets:
tab1 = QWidget()

tab2 = QWidget()

tab3 = QWidget()

4. Then, we'll set up a widget and a layout with a rich text input box, using HTML tags
for bold text for our first tab:
layout1 = QVBoxLayout()

layout1.addWidget(QTextEdit("Type text here"))

tab1.setLayout(layout1)

5. Now, we'll set up a simple button for our second tab, following the same format as
the first tab:
layout2 = QVBoxLayout()

layout2.addWidget(QPushButton("Button"))

tab2.setLayout(layout2)

6. Next, we'll create the widget and the layout for our third tab with a simple text label:
layout3 = QVBoxLayout()

layout3.addWidget(QLabel("Label text example"))

tab3.setLayout(layout3)

http:///

Interacting with the User

218

7. Then, we'll add the tabs to the tab window:
qtw.addTab(tab1, "First Tab")

qtw.addTab(tab2, "Second Tab")

qtw.addTab(tab3, "Third Tab")

8. Finally, we'll display the tab window:
qtw.show()

9. Verify that you can click on each tab and interact with the widgets.

How it works...
The key to this recipe is the QTabWidget().method. Everything else is just arbitrary
layouts and widgets, which are ultimately contained in the tab widget.

The general rule of thumb for tabs is to keep the information in
them independently.

There is no way to predict how the user will interact with a tabbed interface, and if the
information across tabs is dependent, problems will arise.

Stepping the user through a wizard
A wizard is a series of dialogs that lead the user through a sequence of steps. The information
on each page of a wizard might relate in some way to the information on other pages. In this
recipe, we'll create a simple three-page wizard to collect some information from the user and
display it back to them.

Getting ready
Open the QGIS Python Console by selecting the Plugins menu and then clicking on
Python Console.

How to do it...
We will create three classes, each representing a page of our wizard. The first two pages
will collect information and the third page will display it back to the user. We will create a
QWizard object to tie the page classes together. We will also use the concept of wizard
fields to pass information among the pages.

http:///

Chapter 7

219

To do this, we need to perform the following steps:

1. First, we import the GUI and QGIS core libraries:
from PyQt4.QtCore import *

from PyQt4.QtGui import *

2. Next, we create the class for the first page of our wizard and add a textbox to collect
the user's name as the uname variable:
class Page1(QWizardPage):

 def __init__(self, parent=None):

 super(Page1, self).__init__(parent)

 self.setTitle("What's Your Name?")

 self.setSubTitle("Please enter your name.")

 self.label = QLabel("Name:")

 self.uname = QLineEdit("<enter your name>")

3. Now, we register the uname field so that we'll be able to access the entered value
later on, without having to keep track of the variable itself:
 self.registerField("uname", self.uname)

4. Then, we set up the layout for the page:
 layout = QVBoxLayout()

 layout.addWidget(self.label)

 layout.addWidget(self.uname)

 self.setLayout(layout)

5. Next, we'll set the class for our second page:
class Page2(QWizardPage):

 def __init__(self, parent=None):

 super(Page2, self).__init__(parent)

 self.setTitle("When's Your Birthday?")

 self.setSubTitle("Select Your Birthday.")

6. Then, we'll add a calendar widget to get the user's birthday:
 self.cal = QCalendarWidget()

7. We'll register the selected date as a field, to be accessed later on:
 self.registerField("cal", self.cal, "selectedDate")

http:///

Interacting with the User

220

8. Then, we'll set up the layout for this page:
 layout = QVBoxLayout()

 layout.addWidget(self.cal)

 self.setLayout(layout)

9. We are now ready to set up the third page, which will display the user's information.
We'll use simple labels, which are dynamically populated in the next step:
class Page3(QWizardPage):

 def __init__(self, parent=None):

 super(Page3, self).__init__(parent)

 self.setTitle("About You")

 self.setSubTitle("Here is Your Information:")

 self.name_lbl = QLabel()

 self.date_lbl = QLabel()

 layout = QVBoxLayout()

 layout.addWidget(self.name_lbl)

 layout.addWidget(self.date_lbl)

 self.setLayout(layout)

10. Now, we set up the initialization of the page. We will first access the fields registered
from the previous pages to grab the user input:
 def initializePage(self):

 uname = self.field("uname")

 date = self.field("cal").toString()

11. Then, all we have to do is set those values to the text for the labels using Python
string formatting:
 self.name_lbl.setText("Your name is %s" % uname)

 self.date_lbl.setText("Your birthday is %s" % date)

12. Finally, we create our wizard widget, add pages, and display the wizard:

wiz = QWizard()

wiz.addPage(Page1())

wiz.addPage(Page2())

wiz.addPage(Page3())

wiz.show()

http:///

Chapter 7

221

How it works...
The wizard interface shares many traits with the tab widget, with some important differences.
The wizard only allows the user to move back and forth in a linear progression based on
the page order. It can share information among pages if the information is registered as
fields, which then makes the pages global to the scope of the wizard. However, the field()
method is a protected method, so your pages must be defined as classes inherited from the
QWizardPage object for the registered fields to work as expected. The following screenshot
shows the calendar screen of the wizard:

Keeping dialogs on top
It's easy to lose track of windows that pop up in front of QGIS. As soon as the user changes
focus to move the main QGIS application window, your dialog can disappear behind it, forcing
the user to rearrange their whole desktop to find the smaller window again. Fortunately, Qt
has a window setting called hint, which allows you to force a window to stay on top. This type
of dialog is called a modal dialog. In this recipe, we'll create a message dialog using hint.

Getting ready
Open the QGIS Python Console by selecting the Plugins menu and then clicking on
Python Console.

http:///

Interacting with the User

222

How to do it...
In this recipe, we will create a simple message dialog and set it to stay on top, as follows:

1. First, we import the Qt GUI and QGIS core libraries:
from PyQt4.QtGui import *

from PyQt4.QtCore import *

2. Next, we create the text for our message:
msg = " This window will always stay on top."

3. Now, we create our dialog and specify the message and hint:
lbl = QLabel(msg, None, Qt.WindowStaysOnTopHint)

4. We can resize and show the dialog:
lbl.resize(400,400)

lbl.show()

5. Click on the main QGIS application window to change the window focus and
verify that the dialog stays on top of QGIS.

How it works...
This simple technique can help to ensure that a user addresses an important dialog
before moving on.

http:///

223

8
QGIS Workflows

In this chapter, we will cover the following recipes:

f Creating an NDVI

f Geocoding addresses

f Creating raster footprints

f Performing network analysis

f Routing along streets

f Tracking a GPS

f Creating a mapbook

f Finding the least cost path

f Performing nearest neighbor analysis

f Creating a heat map

f Creating a dot density map

f Collecting field data

f Computing road slope using elevation data

f Geolocating photos on the map

f Image change detection

http:///

QGIS Workflows

224

Introduction
In this chapter, we'll use Python to perform a variety of common geospatial tasks in QGIS,
which may be complete workflows in themselves or key pieces of larger workflows.

Creating an NDVI
A Normalized Difference Vegetation Index (NDVI) is one of the oldest remote sensing
algorithms used to detect green vegetation in an area of interest, using the red and
near-infrared bands of an image. The chlorophyll in plants absorbs visible light, including
the red band, while the cell structures of plants reflect near-infrared light. The NDVI formula
provides a ratio of near-infrared light to the total incoming radiation, which serves as an
indicator of vegetation density. This recipe will use Python to control the QGIS raster calculator
in order to create an NDVI using a multispectral image of a farm field.

Getting ready
Download the image from https://geospatialpython.googlecode.com/svn/farm-
field.tif and place it in your qgis_data to a directory named rasters.

How to do it...
We will load the raster as a QGIS raster layer, perform the NDVI algorithm, and finally apply a
color ramp to the raster so that we can easily visualize the green vegetation in the image.
To do this, we need to perform the following steps:

1. In the QGIS Python Console, import the following libraries:
from PyQt4.QtGui import *

from PyQt4.QtCore import *

from qgis.analysis import *

2. Now, load the raster image as a layer using the following code:
rasterName = "farm"

raster = QgsRasterLayer("/Users/joellawhead/qgis_data/\

rasters/farm-field.tif", rasterName)

3. Then, create entries in the QGIS raster calculator for the two bands using the
following code:
ir = QgsRasterCalculatorEntry()

r = QgsRasterCalculatorEntry()

https://geospatialpython.googlecode.com/svn/farm-field.tif
https://geospatialpython.googlecode.com/svn/farm-field.tif
http:///

Chapter 8

225

4. Now, using the following lines of code, assign the raster layer as the raster
component of each calculator entry:
ir.raster = raster

r.raster = raster

5. Select the appropriate band for each entry, so the calculator will use the data we
need for the NDVI. The red and infrared band numbers are typically listed in the
raster's metadata:
ir.bandNumber = 2

r.bandNumber = 1

6. Next, assign a reference ID to each entry using the special QGIS naming convention,
as shown here, with the name of the layer as a prefix followed by an @ symbol and the
band number as a suffix:
ir.ref = rasterName + "@2"

r.ref = rasterName + "@1"

7. Build the raster calculator expression with the following code:
references = (ir.ref, r.ref, ir.ref, r.ref)

exp = "1.0 * (%s - %s) / 1.0 + (%s + %s)" % references

8. Then, specify the output name of the NDVI image:
output = "/Users/joellawhead/qgis_data/rasters/ndvi.tif"

9. Set up the variables for the rest of the raster calculator call by defining the raster's
extent, its width and height in columns and rows, and the raster entries we defined in
the previous steps:
e = raster.extent()

w = raster.width()

h = raster.height()

entries = [ir,r]

10. Now, create the NDVI using our expression:
ndvi = QgsRasterCalculator(exp, output, "GTiff", e, w, h,
entries)

ndvi.processCalculation()

11. Next, load the NDVI output as a raster layer:
lyr = QgsRasterLayer(output, "NDVI")

http:///

QGIS Workflows

226

12. We must perform a histogram stretch on the image, otherwise the differences
in values will be difficult to see. A stretch is performed using a QGIS contrast
enhancement algorithm:
algorithm = QgsContrastEnhancement.StretchToMinimumMaximum

limits = QgsRaster.ContrastEnhancementMinMax

lyr.setContrastEnhancement(algorithm, limits)

13. Next, build a color ramp shader to colorize the NDVI, as follows:
s = QgsRasterShader()

c = QgsColorRampShader()

c.setColorRampType(QgsColorRampShader.INTERPOLATED)

14. Then, add entries for each color in the image. Each entry consists of a lower value
range, a color, and a label. The color in an entry will continue from the lower value
until it encounters a higher value or the maximum value. Note that we will use a
variable alias for the extremely long name of the QGIS ColorRampItem object:
i = []

qri = QgsColorRampShader.ColorRampItem

i.append(qri(0, QColor(0,0,0,0), 'NODATA'))

i.append(qri(214, QColor(120,69,25,255), 'Lowest Biomass'))

i.append(qri(236, QColor(255,178,74,255), 'Lower Biomass'))

i.append(qri(258, QColor(255,237,166,255), 'Low Biomass'))

i.append(qri(280, QColor(173,232,94,255), 'Moderate Biomass'))

i.append(qri(303, QColor(135,181,64,255), 'High Biomass'))

i.append(qri(325, QColor(3,156,0,255), 'Higher Biomass'))

i.append(qri(400, QColor(1,100,0,255), 'Highest Biomass'))

15. Now, we can add the entries to the shader and apply it to the image:
c.setColorRampItemList(i)

s.setRasterShaderFunction(c)

ps = QgsSingleBandPseudoColorRenderer(lyr.dataProvider(), 1,
s)

lyr.setRenderer(ps)

16. Finally, add the classified NDVI image to the map in order to visualize it:

QgsMapLayerRegistry.instance().addMapLayer(lyr)

http:///

Chapter 8

227

How it works...
The QGIS raster calculator is exactly what its name implies. It allows you to perform array
math on images. Both the QGIS raster menu and the Processing Toolbox have several raster
processing tools, but the raster calculator can perform custom analysis that can be defined in
a single mathematical equation. The NDVI algorithm is the infrared band minus the red band
divided by the infrared band plus the red band, or (IR-R)/(IR+R). In our calculator expression,
we multiply each side of the equation by 1.0 to avoid division-by-zero errors. Your output should
look similar to the following image if you load the result into QGIS. In this screenshot, NODATA
values are represented as black; however, your QGIS installation may default to using white:

Geocoding addresses
Geocoding is the process of turning an address into earth coordinates. Geocoding requires
a comprehensive dataset that ties zip codes, cities, streets, and street numbers (or street
number ranges) to the coordinates. In order to have a geocoder that works for any address
in the world with reasonable accuracy, you need to use a cloud service because geocoding
datasets are very dense and can be quite large. Creating a geocoding dataset for any area
beyond a few square miles requires a significant amount of resources. There are several
services available, including Google and MapQuest. In QGIS, the easiest way to access these
services is through the QGIS Python GeoCoding plugin. In this recipe, we'll use this plugin to
programmatically geocode an address.

http:///

QGIS Workflows

228

Getting ready
You will need to install the QGIS Python GeoCoding plugin by Alessandro Pasotti for this
exercise, as follows:

1. From the QGIS Plugins menu, select Manage and Install Plugins….

2. In the Plugins dialog search box, search for Geocoding.

3. Select GeoCoding plugin and click on the Install plugin button.

How to do it...
In this recipe, we will access the GeoCoding plugin methods using Python, feed the
plugin an address, and print the resulting coordinates. To do this, we need to perform
the following steps:

1. In the QGIS Python Console, import the OpenStreetMap geoCoding object using
the following code:
from GeoCoding.geopy.geocoders import Nominatim

2. Next, we'll create our geocoder:
geocoder = Nominatim()

3. Then, using the following code, we'll geocode an address:
location = geocoder.geocode("The Ugly Pirate, Bay Saint Louis,
MS 39520")

4. Finally, we'll print the results to see the coordinates:
print location

5. Check whether you have received the following output printed to the console:

(u'The Ugly Pirate, 144, Demontluzin Street, Bay St. Louis,
Hancock County, Mississippi, 39520, United States of America',
(30.3124059, -89.3281418))

How it works...
The GeoCoding plugin is designed to be used with the QGIS GUI interface. However, like most
QGIS plugins, it is written in Python and we can access it through the Python console.

http:///

Chapter 8

229

This trick doesn't work with every plugin. Sometimes, the user interface
is too intertwined with the plugin's GUI that you can't programmatically
use the plugin's methods without triggering the GUI.

However, in most cases, you can use the plugins to not only extend QGIS but also for its
powerful Python API. If you write a plugin yourself, consider making it accessible to the QGIS
Python console in order to make it even more useful.

There's more...
The GeoCoding plugin also provides the Google geocoding engine as a service. Note that the
Google mapping API, including geocoding, comes with some limitations that can be found at
https://developers.google.com/maps-engine/documentation/limits.

Creating raster footprints
A common way to catalog raster datasets that consist of a large number of files is by creating
a vector dataset with polygon footprints of the extent of each raster file. The vector footprint
files can be easily loaded in QGIS or served over the Web. This recipe demonstrates a method
to create a footprint vector from a directory full of raster files. We will build this program as a
Processing Toolbox script, which is easier to build than a QGIS plugin and provides both a GUI
and a clean programming API.

Getting ready
Download the sample raster image scenes from https://geospatialpython.
googlecode.com/svn/scenes.zip. Unzip the scenes directory into a directory named
rasters in your qgis_data directory.

For this recipe, we will create a new Processing Toolbox script using the following steps:

1. In the QGIS Processing Toolbox, expand the Scripts tree menu.

2. Next, expand the Tools tree menu.

3. Finally, double-click on the Create new script item to bring up the processing
script editor.

https://developers.google.com/maps-engine/documentation/limits
https://geospatialpython.googlecode.com/svn/scenes.zip
https://geospatialpython.googlecode.com/svn/scenes.zip
http:///

QGIS Workflows

230

How to do it...
First, we will use the Processing Toolbox header naming conventions ,which will
simultaneously define our GUI and the input and output variables. Then, we'll create the
logic, which processes a raster directory and calculates the image extents, and finally we'll
create the vector file. To do this, we need to perform the following steps:

1. First, we define our input variables using comments to tell the Processing Toolbox
to add these to the GUI when the script is invoked by a user. The first item defines
the script's group menu to place our script in the toolbox, the second item defines
the directory containing the rasters, and the third item is the output name of our
shapefile. The script must start with these comments. Each item also declares a
type allowed by the Processing Toolbox API. The names of the variables in these
comments become available to the script:
##Vector=group

##Input_Raster_Directory=folder

##Output_Footprints_Vector=output vector

2. Next, we import the Python libraries we will need, using the following commands:
import os

from qgis.core import *

3. Now, we get a list of files in the raster directory. The following script makes no attempt
to filter the files by type. If there are other types of data in the directory that are not
raster files, they will be included as well:
files = os.listdir(Input_Raster_Directory)

4. Then, we declare a couple of variables, which will hold our raster extents and the
coordinate reference string, as shown here:
footprints = []

crs = ""

5. Now, we loop through the rasters, load them as a raster layer to grab their extents,
store them as point data in Python dictionaries, and add them to our list of footprints
for temporary storage. If the raster can't be processed, a warning is issued using the
Processing Toolbox progress object:
for f in files:

 try:

 fn = os.path.join(Input_Raster_Directory, f)

 lyr = QgsRasterLayer(fn, "Input Raster")

http:///

Chapter 8

231

 crs = lyr.crs()

 e = lyr.extent()

 ulx = e.xMinimum()

 uly = e.yMaximum()

 lrx = e.xMaximum()

 lry = e.yMinimum()

 ul = (ulx, uly)

 ur = (lrx, uly)

 lr = (lrx, lry)

 ll = (ulx, lry)

 fp = {}

 points = []

 points.append(QgsPoint(*ul))

 points.append(QgsPoint(*ur))

 points.append(QgsPoint(*lr))

 points.append(QgsPoint(*ll))

 points.append(QgsPoint(*ul))

 fp["points"] = points

 fp["raster"] = fn

 footprints.append(fp)

 except:

 progress.setInfo("Warning: The file %s does not appear to
be a \

valid raster file." % f)

6. Using the following code, we will create a memory vector layer to build the footprint
vector before writing it to a shapefile:
vectorLyr =
QgsVectorLayer("Polygon?crs=%s&field=raster:string(100)" \

% crs, "Footprints" , "memory")

vpr = vectorLyr.dataProvider()

7. Now, we'll turn our list of extents into features:
features = []

for fp in footprints:

 poly = QgsGeometry.fromPolygon([fp["points"]])

http:///

QGIS Workflows

232

 f = QgsFeature()

 f.setGeometry(poly)

 f.setAttributes([fp["raster"]])

 features.append(f)

vpr.addFeatures(features)

vectorLyr.updateExtents()

8. We'll then set up the file driver and the CRS for the shapefile:
driver = "Esri Shapefile"

epsg = crs.postgisSrid()

srs = "EPSG:%s" % epsg

9. Finally, we'll write the selected output file, specifying the layer we are saving to disk;
the name of the output file; the file encoding, which might change depending on the
input; the coordinate reference system; and the driver for the output file type, which
in this case is a shapefile:

error = QgsVectorFileWriter.writeAsVectorFormat\
(vectorLyr, Output_Footprints_Vector, \"utf-8", srs, driver)

if error == QgsVectorFileWriter.NoError:

 pass

else:

 progress.setInfo("Unable to output footprints.")

How it works...
It is important to remember that a Processing Toolbox script can be run in several different
contexts: as a GUI process such as a plugin, as a programmatic script from the Python
console, a Python plugin, or the Graphical Modeler framework. Therefore, it is important to
follow the documented Processing Toolbox API so that it can work as expected in all of these
contexts. This includes defining clear inputs and outputs and using the progress object. The
progress object is the proper way to provide feedback to the user for both progress bars and
messages. Although the API allows you to define outputs that let the user select different OGR
and GDAL outputs, only shapefiles and GeoTiffs seem to be supported currently.

There's more...
The Graphical Modeler tool within the Processing Toolbox lets you visually chain different
processing algorithms together to create complex workflows. Another interesting plugin is the
Processing Workflows plugin, which not only allows you to chain algorithms together but also
provides a nice tabbed interface with instructions for the end user to help beginners through
complicated geospatial workflows.

http:///

Chapter 8

233

The following screenshot shows the raster footprints over an OpenStreetMap basemap:

Performing network analysis
Network analysis allows you to find the most efficient route between two points along a
defined network of connected lines. These lines might represent streets, pipes in a water
system, the Internet, or any number of connected systems. Network analysis abstracts this
common problem so that the same techniques and algorithms can be applied across a wide
variety of applications. In this recipe, we'll use a generic line network to perform analysis using
the Dijkstra algorithm, which is one of the oldest algorithms used to find the shortest path.
QGIS has all of this functionality built in.

Getting ready
First, download the vector dataset from the following link, which includes two shapefiles,
and unzip it to a directory named shapes in your qgis_data directory:

https://geospatialpython.googlecode.com/svn/network.zip

https://geospatialpython.googlecode.com/svn/network.zip
http:///

QGIS Workflows

234

How to do it...
We will create a network graph by defining the beginning and end of our network of lines, and
then use this graph to determine the shortest route along the line network between our two
points. To do this, we need to perform the following steps:

1. In the QGIS Python Console, we'll first import the libraries we'll need, including the
QGIS Network Analyzer:
from qgis.core import *

from qgis.gui import *

from qgis.networkanalysis import *

from PyQt4.QtCore import *

2. Next, we'll load our line network shapefile and the shapefile containing the points
along the network we want the Network Analyzer to consider when selecting a route:
network =
QgsVectorLayer("/Users/joellawhead/qgis_data/shapes/\Network.s
hp", "Network Layer", "ogr")

waypoints =
QgsVectorLayer("/Users/joellawhead/qgis_data/shapes/\
NetworkPoints.shp", "Waypoints", "ogr")

3. Now, we will create a graph director to define the properties of the graph. The
director object accepts our line shapfile, a field ID for direction information, and
some other documented integer codes involving direction properties in the network.
In our example, we're going to tell the director to ignore directions. The properter
object is a basic algorithm for a routing strategy that gets added to the network graph
and considers line length:
director = QgsLineVectorLayerDirector(network, -1, '', '', '',
3)

properter = QgsDistanceArcProperter()

director.addProperter(properter)

crs = network.crs()

4. Now, we create the GraphBuilder object to actually convert the line network
into a graph:
builder = QgsGraphBuilder(crs)

5. We define the two points that are the start and end of our route:
ptStart = QgsPoint(-0.8095638694, -0.1578175511)

ptStop = QgsPoint(0.8907435677, 0.4430834924)

http:///

Chapter 8

235

6. Then, we tell the director to turn our point layer into tie points in our network,
which define the waypoints along our network and can also optionally provide
resistance values:
tiePoints = director.makeGraph(builder, [ptStart, ptStop])

7. Now, we can use the following code to build the graph:
graph = builder.graph()

8. We now locate our start and end points as tie points in the graph:
tStart = tiePoints[0]

tStop = tiePoints[1]

idStart = graph.findVertex(tStart)

idStop = graph.findVertex(tStop)

9. Then, we can tell the Analyzer to use our start point in order to find the shortest
route through the network:
(tree, cost) = QgsGraphAnalyzer.dijkstra(graph, idStart, 0)

10. Next, we loop through the resulting tree and grab the points along the output route:
p = []

curPos = idStop

while curPos != idStart:

p.append(graph.vertex(graph.arc(tree[curPos]).inVertex()).point())

curPos = graph.arc(tree[curPos]).outVertex()

p.append(tStart)

11. Now, we'll load our two input shapefiles onto the map and create a rubber band in
order to visualize the route:
QgsMapLayerRegistry.instance().addMapLayers([network,waypoints])

rb = QgsRubberBand(iface.mapCanvas())

rb.setColor(Qt.red)

12. Finally, we'll add the route points to the rubber band in order to see the output of
the Network Analyzer:

for pnt in p:

 rb.addPoint(pnt)

http:///

QGIS Workflows

236

How it works...
This recipe is an extremely simple example to be used as a starting point for the investigation
of a very complex and powerful tool. The line network shapefiles can have a field defining each
line as one-way in a certain direction or bi-directional. The point shapefile provides waypoints
along the network, as well as resistance values, which might represent elevation, traffic
density, or other factors that will make a route less desirable. The output will look similar to
the following image:

More information and examples of the network analysis tool are available in the QGIS
documentation at http://docs.qgis.org/testing/en/docs/pyqgis_developer_
cookbook/network_analysis.html.

Routing along streets
Sometimes, you may want to find the best driving route between two addresses. Street routing
has now become so commonplace that we take it for granted. However, if you explore the
recipes on geocoding and network analysis in this book, you will begin to see what a complex
challenge street routing truly is. To perform routing operations in QGIS, we'll use the QGIS
GeoSearch plugin, which is written in Python, so that we can access it from the console.

http://docs.qgis.org/testing/en/docs/pyqgis_developer_cookbook/network_analysis.html
http://docs.qgis.org/testing/en/docs/pyqgis_developer_cookbook/network_analysis.html
http:///

Chapter 8

237

Getting ready
You will need to install the QGIS Python GeoSearch plugin for this exercise in order to do
the routing, as well as the QGIS OpenLayers Plugin to overlay the result on a Google map,
as follows:

1. From the QGIS Plugins menu, select Manage and Install Plugins….

2. If you have the QGIS GeoCoding Plugin installed, then you must uninstall it, as
sometimes it conflicts with the GeoSearch plugin. So, select this in the plugin list
and click on the Uninstall plugin button.

3. In the Plugins dialog search box, search for GeoSearch.

4. Select the GeoSearch plugin and click on the Install plugin button.

5. Next, in the Plugins search dialog, search for OpenLayers.

6. Select the OpenLayers plugin and click on the Install plugin button.

How to do it...
We will invoke the GeoSearch plugin's routing function, which uses Google's routing engine,
and display the result over a Google map from the OpenLayers plugin. To do this, we need to
perform the following steps:

1. In the QGIS Python Console, we first import the QGIS utils library as well as the
required portions of the GeoSearch plugin:
import qgis.utils

from GeoSearch import geosearchdialog, GoogleMapsApi

2. Next, we'll use the QGIS utils library to access the OpenLayers plugin:
openLyrs = qgis.utils.plugins['openlayers_plugin']

3. The GeoSearch plugin isn't really designed for programmatic use, so in order to
invoke this plugin, we must invoke it through the GUI interface, but then we need to
pass blank values so that it doesn't trigger the GUI plugin interface:
g = geosearchdialog.GeoSearchDialog(iface)

g.SearchRoute([])

4. Now, using the following code, we can safely create our routing engine object:
d = GoogleMapsApi.directions.Directions()

5. Next, we create our origin and destination addresses:
origin = "Boston, MA"

dest = "2517 Main Rd, Dedham, ME 04429"

http:///

QGIS Workflows

238

6. Then, we can calculate the route using the simplest possible options, as shown here:
route = d.GetDirections(origin, dest, mode = "driving", \
 waypoints=None, avoid=None, units="imperial")

7. Now, we use the OpenLayers plugin to add the Google Maps base map to the
QGIS map:
layerType = openLyrs._olLayerTypeRegistry.getById(4)

openLyrs.addLayer(layerType)

8. Finally, we use the GeoSearch plugin to create a QGIS layer on top of the base
map for our route:

g.CreateVectorLayerGeoSearch_Route(route)

How it works...
Even though they are built in Python, neither the GeoSearch nor OpenLayers plugins are
designed to be used with Python by a programmer. However, we are still able to use the tools
in a script without much trouble. To take advantage of some of the routing options available
with the GeoSearch plugin, you can use its GUI to see what is available and then add those
options to your script. Beware that most plugins don't have a true API, so a slight change to
the plugin in a future version can break your script.

Tracking a GPS
QGIS has the ability to connect to a GPS that uses the NMEA standard. QGIS can use a serial
connection to the GPS or communicate with it through the open source software called
gpsd using the QGIS GPS information panel. The location information from the GPS can be
displayed on the QGIS map, and QGIS can even automatically pan the map to follow the GPS
point. In this recipe, we'll use the QGIS API to process NMEA sentences and update a point on
a global map. The information needed to connect to different GPS units can vary widely, so
we'll use an online NMEA sentence generator to get some simulated GPS information.

Getting ready
This recipe doesn't require any preparation.

How to do it...
We'll grab a batch of NMEA GPS sentences from a free online generator, create a worldwide
basemap using online geojson data, create a vector point layer to represent the GPS, and
finally loop through the sentences and make our track point move around the map.

http:///

Chapter 8

239

To do this, we need to perform the following steps:

1. First, we need to import some standard Python libraries using the QGIS
Python Console:
import urllib

import urllib2

import time

2. Next, we'll connect to the online NMEA generator, download a batch of
sentences, and turn them into a list, as follows:
url = 'http://freenmea.net/api/emitnmea'

values = {'types' : 'default'}

data = urllib.urlencode(values)

req = urllib2.Request(url, data)

response = urllib2.urlopen(req)

results = response.read().split("\n")

3. Next, we can add our world countries basemap using a geojson service:
wb =
"https://raw.githubusercontent.com/johan/world.geo.json/master
/countries.geo.json"

basemap = QgsVectorLayer(wb, "Countries", "ogr")

qmr = QgsMapLayerRegistry.instance()

qmr.addMapLayer(basemap)

4. Now, we can create our GPS point layer and access its data provider:
vectorLyr = QgsVectorLayer('Point?crs=epsg:4326', \'GPS Point'
, "memory")

vpr = vectorLyr.dataProvider()

5. Then, we need some variables to hold the current coordinates as we loop
through the locations, and we'll also access the mapCanvas object:
cLat = None

cLon = None

canvas = iface.mapCanvas()

6. Next, we'll create a GPS connection object for data processing. If we are using
a live GPS object, we will use this line to enter the device's information:
c = QgsNMEAConnection(None)

http:///

QGIS Workflows

240

7. Now, we set up a flag to determine whether we are processing the first point or not:
firstPt = True

8. We can loop through the NMEA sentences now, but we must check the sentence type
to see which type of information we are using. In a live GPS connection, QGIS handles
this part automatically and this part of the code will be unnecessary:
for r in results:

 l = len(r)

 if "GGA" in r:

 c.processGGASentence(r,l)

 elif "RMC" in r:

 c.processRMCSentence(r,l)

 elif "GSV" in r:

 c.processGSVSentence(r,l)

 elif "VTG" in r:

 c.processVTGSentence(r,l)

 elif "GSA" in r:

 c.processGSASentence(r,l)

9. Then, we can get the current GPS information:
 i=c.currentGPSInformation()

10. Now, we will check this information to make sure that the GPS location has actually
changed since the previous loop before we try to update the map:
 if i.latitude and i.longitude:

 lat = i.latitude

 lon = i.longitude

 if lat==cLat and lon==cLon:

 continue

 cLat = lat

 cLon = lon

 pnt = QgsGeometry.fromPoint(QgsPoint(lon,lat))

http:///

Chapter 8

241

11. Now that we have a new point, we check whether this is the first point and add
the whole layer to the map if it is. Otherwise, we edit the layer and add a new
feature, as follows:
 if firstPt:

 firstPt = False

 f = QgsFeature()

 f.setGeometry(pnt)

 vpr.addFeatures([f])

 qmr.addMapLayer(vectorLyr)

 else:

 print lon, lat

 vectorLyr.startEditing()

 vectorLyr.changeGeometry(1,pnt)

 vectorLyr.commitChanges()

12. Finally, we refresh the map and watch the tracking point jump to a new location:

 vectorLyr.setCacheImage(None)

 vectorLyr.updateExtents()

 vectorLyr.triggerRepaint()

 time.sleep(1)

How it works...
A live GPS will move in a linear, incremental path across the map. In this recipe, we used
randomly-generated points that leap around the world, but the concept is the same. To
connect a live GPS, you will need to use QGIS's GPS information GUI first to establish
a connection, or at least get the correct connection information, and then use Python
to automate things from there. Once you have the location information, you can easily
manipulate the QGIS map using Python.

There's more...
The NMEA standard is old and widely used, but it is a poorly-designed protocol by
modern standards. Nearly every smartphone has a GPS now, but they do not use the NMEA
protocol. There are, however, several apps available for nearly every smartphone platform that
will output the phone's GPS as NMEA sentences, which can be used by QGIS. Later in this
chapter, in the Collecting field data recipe, we'll demonstrate another method for tracking a
cell phone, GPS, or even estimated locations for digital devices, which is much simpler and
much more modern.

http:///

QGIS Workflows

242

Creating a mapbook
A mapbook is an automatically-generated document, which can also be called an atlas.
A mapbook takes a dataset and breaks it down into smaller, detailed maps based on a
coverage layer that zooms the larger map to each feature in the coverage in order to make
a page of the mapbook. The coverage layer may or may not be the same as the map layer
featured on each page of the mapbook. In this recipe, we'll create a mapbook that features
all the countries in the world.

Getting ready
For this recipe, you need to download the world countries dataset from
https://geospatialpython.googlecode.com/svn/countries.zip and put it
in a directory named shapes within your qgis_data directory.

Next, you'll need to install the PyPDF2 library. On Linux or OS X, just open a console and run
the following command:

sudo easy_install PyPDF2

On Windows, open the OSGEO4W console from your start menu and run this:

easy_install PyPDF2

Finally, in your qgis_data directory, create a folder called atlas to store the
mapbook's output.

How to do it...
We will build a QGIS composition and set it to atlas mode. Then, we'll add a composer map,
where each country will be featured, and an overview map. Next, we'll run the atlas process to
produce each page of the mapbook as separate PDF files. Finally, we'll combine the individual
PDFs into a single PDF file. To do this, we need to perform the following steps:

1. First, import all the libraries that are needed:
from PyQt4.QtCore import *

from PyQt4.QtGui import *

from qgis.core import *

import PyPDF2

import os

https://geospatialpython.googlecode.com/svn/countries.zip
http:///

Chapter 8

243

2. Next, create variables related to the output files, including the mapbook's name,
the coverage layer, and the naming pattern for the individual PDF files:
filenames = []

mapbook = "/Users/joellawhead/qgis_data/atlas/mapbook.pdf"

coverage = "/Users/joellawhead/qgis_data/shapes/countries.shp"

atlasPattern = "/Users/joellawhead/qgis_data/atlas/output_"

3. Now, add the coverage layer to the map using the following code:
vlyr = QgsVectorLayer(coverage, "Countries", "ogr")

QgsMapLayerRegistry.instance().addMapLayer(vlyr)

4. Next, establish the map renderer:
mr = QgsMapRenderer()

mr.setLayerSet([vlyr.id()])

mr.setProjectionsEnabled(True)

mr.setMapUnits(QGis.DecimalDegrees)

crs = QgsCoordinateReferenceSystem()

crs.createFromSrid(4326)

mr.setDestinationCrs(crs)

5. Then, set up the composition:
c = QgsComposition(mr)

c.setPaperSize(297, 210)

6. Create a symbol for the coverage layer:
gray = {"color": "155,155,155"}

mapSym = QgsFillSymbolV2.createSimple(gray)

renderer = QgsSingleSymbolRendererV2(mapSym)

vlyr.setRendererV2(renderer)

7. Now, add the first composer map to the composition, as shown here:
atlasMap = QgsComposerMap(c, 20, 20, 130, 130)

atlasMap.setFrameEnabled(True)

c.addComposerMap(atlasMap)

8. Then, create the atlas framework:
atlas = c.atlasComposition()

atlas.setCoverageLayer(vlyr)

atlas.setHideCoverage(False)

atlas.setEnabled(True)

c.setAtlasMode(QgsComposition.ExportAtlas)

http:///

QGIS Workflows

244

9. Next, establish the overview map:
ov = QgsComposerMap(c, 180, 20, 50, 50)

ov.setFrameEnabled(True)

ov.setOverviewFrameMap(atlasMap.id())

c.addComposerMap(ov)

rect = QgsRectangle(vlyr.extent())

ov.setNewExtent(rect)

10. Then, create the overview map symbol:
yellow = {"color": "255,255,0,255"}

ovSym = QgsFillSymbolV2.createSimple(yellow)

ov.setOverviewFrameMapSymbol(ovSym)

11. Next, you need to label each page with the name of the country, which is stored
in the CNTRY_NAME field of the shapefile:
lbl = QgsComposerLabel(c)

c.addComposerLabel(lbl)

lbl.setText('[% "CNTRY_NAME" %]')

lbl.setFont(QgsFontUtils.getStandardTestFont())

lbl.adjustSizeToText()

lbl.setSceneRect(QRectF(150, 5, 60, 15))

12. Now, we'll tell the atlas to use automatic scaling for each country in order to best fit
each map in the window:
atlasMap.setAtlasDriven(True)

atlasMap.setAtlasScalingMode(QgsComposerMap.Auto)

atlasMap.setAtlasMargin(0.10)

13. Now we tell the atlas to loop through all the features and create PDF maps, as
follows:
atlas.setFilenamePattern("'%s' || $feature" % atlasPattern)

atlas.beginRender()

for i in range(0, atlas.numFeatures()):

 atlas.prepareForFeature(i)

 filename = atlas.currentFilename() + ".pdf"

 print "Writing file %s" % filename

 filenames.append(filename)

 c.exportAsPDF(filename)

atlas.endRender()

http:///

Chapter 8

245

14. Finally, we will use the PyPDF2 library to combine the individual PDF files into a single
PDF file, as shown here:

output = PyPDF2.PdfFileWriter()

for f in filenames:

 pdf = open(f, "rb")

 page = PyPDF2.PdfFileReader(pdf)

 output.addPage(page.getPage(0))

 os.remove(f)

print "Writing final mapbook..."

book = open(mapbook, "wb")

output.write(book)

with open(mapbook, 'wb') as book:

 output.write(book)

How it works...
You can customize the template that creates the individual pages as much as you want.
The GUI atlas tool can export the atlas to a single file, but this functionality is not available in
PyQIS, so we use the pure Python PyPDF2 library. You can also create a template in the GUI,
save it, and load it with Python, but it is often easier to make changes if you have the layout
available in the code. You should also know that the PDF pages are just images. The maps are
exported as rasters, so the mapbook will not be searchable and the file size can be large.

Finding the least cost path
Least cost path (LCP) analysis is the raster equivalent of network analysis, which is used to
find the optimal path between two points in a raster. In this recipe, we'll perform LCP analysis
on a digital elevation model (DEM).

Getting ready
You need to download the following DEM and extract the ZIP file to your qgis_data/
rasters directory: https://geospatialpython.googlecode.com/svn/lcp.zip

How to do it...
We will load our DEM and two shapefiles consisting of start and end points. Then, we'll use
GRASS through the Processing Toolbox to create a cumulative cost layer that assigns a cost
to each cell in a raster based on its elevation, the value of the other cells around it, and its
distance to and from the end points.

https://geospatialpython.googlecode.com/svn/lcp.zip
http:///

QGIS Workflows

246

Then, we'll use a SAGA processing algorithm to find the least cost path between two points.
Finally, we'll load the output onto the map. To do this, we need to perform the following steps:

1. First, we'll import the QGIS processing Python library:
import processing

2. Now, we'll set the paths to the layers, as follows:
path = "/Users/joellawhead/qgis_data/rasters"/"

dem = path + "dem.asc"

start = path + "start-point.shp"

finish = path + "end-point.shp"

3. We need the DEM's extent as a string for the algorithms:
demLyr = QgsRasterLayer(dem, "DEM")

ext = demLyr.extent()

xmin = ext.xMinimum()

ymin = ext.yMinimum()

xmax = ext.xMaximum()

ymax = ext.xMaximum()

box = "%s,%s,%s,%s" % (xmin,xmax,ymin,ymax)

4. Using the following code, we will establish the end points as layers:
a = QgsVectorLayer(start, "Start", "ogr")

b = QgsVectorLayer(finish, "End", "ogr")

5. Then, we'll create the cumulative cost raster, specifying the algorithm name,
cost layer (DEM), start point layer, end point layer, speed or accuracy option,
keep null values option, extent of interest, cell size (0 for default), and some
additional defaults:
tmpCost = processing.runalg("grass:r.cost",dem,a,b,\

False,False,box,0,-1,0.0001,None)

cost = tmpCost["output"]

6. We also need to combine the points into a single layer for the SAGA algorithm:
tmpMerge =
processing.runalg("saga:mergeshapeslayers",\start,finish,None)

merge = tmpMerge["OUT"]

http:///

Chapter 8

247

7. Next, we set up the inputs and outputs for the LCP algorithm:
vLyr = QgsVectorLayer(merge, "Destination Points", "ogr")

rLyr = QgsRasterLayer(cost, "Accumulated Cost")

line = path + "path.shp"

8. Then, we run the LCP analysis using the following code:
results =
processing.runalg("saga:leastcostpaths",\lyr,rLyr,demLyr,None,
line)

9. Finally, we can load the path to view it:

path = QgsVectorLayer(line, "Least Cost Path", "ogr")

QgsMapLayerRegistry.instance().addMapLayers([demLyr, \ vLyr,
path])

How it works...
GRASS has an LCP algorithm too, but the SAGA algorithm is easier to use. GRASS does a great
job of creating the cost grid. Processing Toolbox algorithms allow you to create temporary files
that are deleted when QGIS closes. So, we use temporary files for the intermediate products,
including the cost grid and the merged shapefile.

Performing nearest neighbor analysis
Nearest neighbor analysis relates one point to the nearest point in one or more datasets.
In this recipe, we'll relate one set of points to the closest point from another dataset. In this
case, we'll find the closest major city for each entry in a catalog of unidentified flying object
(UFO) sightings from the National UFO reporting center. This analysis will tell you which major
cities have the most UFO activity. The UFO catalog data just contains latitude and longitude
points, so we'll use nearest neighbor analysis to assign names to places.

Getting ready
Download the following ZIP file and extract it to a directory named ufo in your qgis_data
directory:

https://geospatialpython.googlecode.com/svn/ufo.zip

https://geospatialpython.googlecode.com/svn/ufo.zip
http:///

QGIS Workflows

248

You will also need the MMQGIS plugin:

1. From the QGIS Plugins menu, select Manage and Install Plugins….

2. In the Plugins dialog search box, search for mmqgis.

3. Select the MMQGIS plugin and click on the Install plugin button.

How to do it...
This recipe is simple. Here, we will load the layers and run the nearest neighbor algorithm
within the MMQGIS plugin, as follows:

1. First, we'll import the MMQGIS plugin:
from mmqgis import mmqgis_library as mmqgis

2. Next, as shown here, we'll load all our datasets:
srcPath = "/qgis_data/ufo/ufo-sightings.shp"

dstPath = "/qgis_data/ufo/major-cities.shp"

usPth = "/qgis_data/ufo/continental-us.shp"

output = "/qgis_data/ufo/alien_invasion.shp"

srcName = "UFO Sightings"

dstName = "Major Cities"

usName = "Continental US"

source = QgsVector(srcPath, srcName, "ogr")

dest = QgsVector(dstPath, dstName, "ogr")

us = QgsVector(usPath, usName, "ogr")

3. Finally, we'll run and load the algorithm, which will draw lines from each UFO sighting
point to the nearest city:

mmqgis.mmqgis_hub_distance(iface, srcName, dstName, \"NAME",
"Miles", True, output, True)

How it works...
There are a couple of different nearest neighbor algorithms in QGIS, but the MMQGIS version
is an excellent implementation and has the best visualization. Like the other recipes in
this chapter, the plugin doesn't have an intentional Python API, so a good way to explore its
functionality is to use the GUI interface before taking a look at the Python code. The following
image shows the output, with UFO sightings represented by smaller points and hub lines
leading to the cities, which are represented by larger, darker points.

http:///

Chapter 8

249

Creating a heat map
A heat map is used to show the geographic clustering of data using a raster image that
shows density. The clustering can also be weighed using a field in the data to not only show
geographic density but also an intensity factor. In this recipe, we'll use earthquake point
data to create a heat map of the impact of an earthquake and weigh the clustering by the
earthquake's magnitude.

Getting ready
This recipe requires no preparation.

How to do it...
We will build a map with a worldwide base layer of countries and earthquake locations,
both in GeoJSON. Next, we'll run the SAGA kernel density estimation algorithm to produce
the heat map image. We'll create a layer from the output, add a color shader to it, and
add it to the map.

http:///

QGIS Workflows

250

To do this, we need to perform the following steps:

1. First, we'll import the Python libraries that we'll need in the Python console:
from PyQt4.QtCore import *

from PyQt4.QtGui import *

import processing

2. Next, using the following code, we'll define our map layers and the output
raster name:
countries =
"https://raw.githubusercontent.com/johan/\world.geo.json/maste
r/countries.geo.json"

quakes =
"https://geospatialpython.googlecode.com/\svn/quakes2014.geojs
on"

output = "/Users/joellawhead/qgis_data/rasters/heat.tif"

3. Now we'll add the layers to the map:
basemap = QgsVectorLayer(countries, "World", "ogr")

quakeLyr = QgsVectorLayer(quakes, "Earthquakes", "ogr")

QgsMapLayerRegistry.instance().addMapLayers([quakeLyr,
basemap])

4. We need to get the extent of the earthquake layer for the Processing Toolbox
algorithm to use:
ext = quakeLyr.extent()

xmin = ext.xMinimum()

ymin = ext.yMinimum()

xmax = ext.xMaximum()

ymax = ext.xMaximum()

box = "%s,%s,%s,%s" % (xmin,xmax,ymin,ymax)

5. Now, we can run the kernel density estimation algorithm by specifying the mag or
magnitude field as our weighting factor:
processing.runalg("saga:kerneldensityestimation",quakeLyr,"mag
",10,0,0,box,1,output)

http:///

Chapter 8

251

6. Next, we load the output as a layer:
heat = QgsRasterLayer(output, "Earthquake Heatmap")

7. Then, we create the color ramp shader and apply it to the layer:
algorithm = QgsContrastEnhancement.StretchToMinimumMaximum

limits = QgsRaster.ContrastEnhancementMinMax

heat.setContrastEnhancement(algorithm, limits)

s = QgsRasterShader()

c = QgsColorRampShader()

c.setColorRampType(QgsColorRampShader.INTERPOLATED)

i = []

qri = QgsColorRampShader.ColorRampItem

i.append(qri(0, QColor(255,255,178,255), \

'Lowest Earthquake Impact'))

i.append(qri(0.106023, QColor(254,204,92,255), \

'Lower Earthquake Impact'))

i.append(qri(0.212045, QColor(253,141,60,255), \

'Moderate Earthquake Impact'))

i.append(qri(0.318068, QColor(240,59,32,255), \

'Higher Earthquake Impact'))

i.append(qri(0.42409, QColor(189,0,38,255), \

'Highest Earthquake Impact'))

c.setColorRampItemList(i)

s.setRasterShaderFunction(c)

ps = QgsSingleBandPseudoColorRenderer(heat.dataProvider(),\ 1,
s)

heat.setRenderer(ps)

8. Finally, we add the Heatmap to our map:

QgsMapLayerRegistry.instance().addMapLayers([heat])

http:///

QGIS Workflows

252

How it works...
The kernel density estimation algorithm looks at the point dataset and forms clusters.
The higher the value, the denser is the cluster. The algorithm then increases values based
on the weighting factor, which is the earthquake's magnitude. The output image is, of course,
a grayscale geotiff, but we use the color ramp shader to make the visualization easier to
understand. The following screenshot shows the expected output:

There's more...
QGIS has a fantastic plugin available, called heat map, that works well on a wide variety of
data automatically. However, it is written in C++ and does not have a Python API.

http:///

Chapter 8

253

Creating a dot density map
A dot density map uses point density to illustrate a field value within a polygon. We'll use this
technique to illustrate population density in some US census bureau tracts.

Getting ready
You will need to download the census tract layer and extract it to a directory named census
in your qgis_data directory from https://geospatialpython.googlecode.com/
files/GIS_CensusTract.zip.

How to do it...
We will load the census layer, create a memory layer, loop through the features in the census
layer, calculate a random point within the feature for every 100 people, and finally add the
point to the memory layer. To do this, we need to perform the following steps:

1. In the QGIS Python Console, we'll import the random module:
import random

2. Next, we'll load the census layer:
src = "/Users/joellawhead/qgis_data/census/\

GIS_CensusTract_poly.shp"

tractLyr = QgsVectorLayer(src, "Census Tracts", "ogr")

3. Then, we'll create our memory layer:
popLyr = QgsVectorLayer('Point?crs=epsg:4326', "Population" ,
"memory")

4. We need the index for the population value:
i = tractLyr.fieldNameIndex('POPULAT11')

5. Now, we get our census layer's features as an iterator:
features = tractLyr.getFeatures()

6. We need a data provider for the memory layer so that we can edit it:
vpr = popLyr.dataProvider()

https://geospatialpython.googlecode.com/files/GIS_CensusTract.zip
https://geospatialpython.googlecode.com/files/GIS_CensusTract.zip
http:///

QGIS Workflows

254

7. We'll create a list to store our random points:
dotFeatures = []

8. Then, we can loop through the features and calculate the density points:
for feature in features:

 pop = feature.attributes()[i]

 density = pop / 100

 found = 0

 dots = []

 g = feature.geometry()

 minx = g.boundingBox().xMinimum()

 miny = g.boundingBox().yMinimum()

 maxx = g.boundingBox().xMaximum()

 maxy = g.boundingBox().yMaximum()

 while found < density:

 x = random.uniform(minx,maxx)

 y = random.uniform(miny,maxy)

 pnt = QgsPoint(x,y)

 if g.contains(pnt):

 dots.append(pnt)

 found += 1

 geom = QgsGeometry.fromMultiPoint(dots)

 f = QgsFeature()

 f.setGeometry(geom)

 dotFeatures.append(f)

9. Now, we can add our features to the memory layer using the following code and add
them to the map in order to see the result:

vpr.addFeatures(dotFeatures)

popLyr.updateExtents()

QgsMapLayerRegistry.instance().addMapLayers(\
[popLyr,tractLyr])

http:///

Chapter 8

255

How it works...
This approach is slightly inefficient; it uses a brute-force approach that can place randomly
generated points outside irregular polygons. We use the feature's extents to contain the
random points as close as possible and then use the geometry contains method to verify
that the point is inside the polygon. The following screenshot shows a sample of the output:

Collecting field data
For decades, collecting field observation data from the field into a GIS required hours of
manual data entry or, at best, loading data after the trip. Smartphones and laptops with
cellular connections have revolutionzed this process. In this recipe, we'll use a simple but
interesting geojson-based framework to enter information and a map location from any
Internet-connected device with a web browser and update a map in QGIS.

Getting ready
There is no preparation required for this recipe.

http:///

QGIS Workflows

256

How to do it...
We will load a world boundaries layer and the field data layer onto a QGIS map, go to the field
data mobile website and create an entry, and then refresh the QGIS map to see the update.
To do this, we need to perform the following steps:

1. In the QGIS Python Console, add the following geojson layers:
wb = "https://raw.githubusercontent.com/johan/\
world.geo.json/master/countries.geo.json"

basemap = QgsVectorLayer(wb, "Countries", "ogr")

observations = \

QgsVectorLayer("http://bit.ly/QGISFieldApp", \

"Field Observations", "ogr")

QgsMapLayerRegistry.instance().addMapLayers(\
[basemap, observations])

2. Now, in a browser on your computer, or preferably on a mobile device with a data
connection, go to http://geospatialpython.github.io/qgis/fieldwork.
html. The application will ask you for permission to use your location, which you
should temporarily allow for the program to work.

3. Enter information in the form and click on the Send button.

4. Verify that you can see the geojson data, including your submission, at
https://api.myjson.com/bins/3ztvz.

5. Finally, update the map in QGIS by zooming or panning and locate your record.

How it works...
The simple mobile-friendly web page uses the Leaflet.js library for mapping and HTML5 for the
form submission. The data is stored as a snippet on the MyJSON.com service. This approach
serves our examples and demonstrates the client-server model. However, it is not very robust
because users working concurrently can easily overwrite each other's data. So, if you don't
see your update, try it again once or twice and it will probably work. Sample observations
are reset from time to time in order to keep the site lightweight. Note that it's important to
refresh the map either manually or programmatically to force QGIS to refresh the network link.
You can get the source code for the mobile page on GitHub.com (https://github.com/
GeospatialPython/qgis).

http://geospatialpython.github.io/qgis/fieldwork.html
http://geospatialpython.github.io/qgis/fieldwork.html
https://api.myjson.com/bins/3ztvz
https://github.com/GeospatialPython/qgis
https://github.com/GeospatialPython/qgis
http:///

Chapter 8

257

The following image shows the mobile field application on an iPhone:

http:///

QGIS Workflows

258

This image shows how the corresponding data looks in QGIS:

Computing road slope using elevation data
A common geospatial workflow is to assign raster values to a coincident vector layer so that
you can style or perform further analysis on the vector layer. This recipe will use this concept
to illustrate the steepness of a road using color by mapping values to the road vector from a
slope raster.

Getting ready
You will need to download a zipped directory from https://geospatialpython.
googlecode.com/svn/road.zip and place the directory, named road, in your
qgis_data directory.

https://geospatialpython.googlecode.com/svn/road.zip
https://geospatialpython.googlecode.com/svn/road.zip
http:///

Chapter 8

259

How to do it...
We'll start with a DEM and compute its slope. Then, we'll load a road vector layer and
break it into interval lengths of 500 meters. Next, we'll load the layer and style it using green,
yellow, and red values for each segment to show the range of steepness. We'll overlay this
layer on a hillshade of the DEM for a nice visualization. To do this, we need to perform the
following steps:

1. First, we need to import the QGIS processing module, the QGIS constants module,
the Qt GUI module, and the os module in the QGIS Python Console:
from qgis.core import *

from PyQt4.QtGui import *

import processing

2. Now, we need to set the coordinate reference system (CRS) of our project to
that of our digital elevation model (DEM), which is EPSG code 26910, so we
can work with the data in meters instead of decimal degrees:
myCrs = QgsCoordinateReferenceSystem(26910,
QgsCoordinateReferenceSystem.EpsgCrsId)

iface.mapCanvas().mapRenderer().setDestinationCrs(myCrs)

iface.mapCanvas().setMapUnits(QGis.Meters)

iface.mapCanvas().refresh()

3. Now, we'll set the paths of all the layers. For this, we'll use intermediate layers
that we create so that we can change them in one place, if needed:
src_dir = "/Users/joellawhead/qgis_data/road/"

dem = os.path.join(src_dir, "dem.asc")

road = os.path.join(src_dir, "road.shp")

slope = os.path.join(src_dir, "slope.tif")

segRoad = os.path.join(src_dir, "segRoad.shp")

steepness = os.path.join(src_dir, "steepness.shp")

hillshade = os.path.join(src_dir, "hillshade.tif")

4. We will load the DEM and road layer so that we can get the extents for the
processing algorithms:
demLyr = QgsRasterLayer(dem, "DEM")

roadLyr = QgsVectorLayer(road, "Road", "ogr")

http:///

QGIS Workflows

260

5. Now, build a string with the DEM extent using the following code:
ext = demLyr.extent()

xmin = ext.xMinimum()

ymin = ext.yMinimum()

xmax = ext.xMaximum()

ymax = ext.yMaximum()

demBox = "%s,%s,%s,%s" % (xmin,xmax,ymin,ymax)

6. Next, compute the slope grid:
processing.runalg("grass:r.slope",dem,0,0,1,0,True,\
demBox,0,slope)

7. Then, we can get the extent of the road layer as a string:
ext = roadLyr.extent()

xmin = ext.xMinimum()

ymin = ext.yMinimum()

xmax = ext.xMaximum()

ymax = ext.yMaximum()

roadBox = "%s,%s,%s,%s" % (xmin,xmax,ymin,ymax)

8. Now, we'll break the road layer into segments of 500 meters to have a meaningful
length for the slope valuation:
processing.runalg("grass:v.split.length",road,500,\

roadBox,-1,0.0001,0,segRoad)

9. Next, we'll add the slope and segmented layer to the map interface for the next
algorithm, but we'll keep them hidden from view using the boolean False
option in the addMapLayers method:
slopeLyr = QgsRasterLayer(slope, "Slope")

segRoadLyr = QgsVectorLayer(segRoad, \

"Segmented Road", "ogr")

QgsMapLayerRegistry.instance().addMapLayers([\
segRoadLyr,slopeLyr], False)

http:///

Chapter 8

261

10. Now, we can transfer the slope values to the segmented road layer in order to
create the steepness layer:
processing.runalg("saga:addgridvaluestoshapes",\
segRoad,slope,0,steepness)

11. Now, we can load the steepness layer:
steepLyr = QgsVectorLayer(steepness, \ "Road Gradient", "ogr")

12. We'll style the steepness layer to use the stoplight red, yellow, and green values,
with red being the steepest:
roadGrade = (
("Rolling Hill", 0.0, 20.0, "green"),

("Steep", 20.0, 40.0, "yellow"),

("Very Steep", 40.0, 90.0, "red"))

ranges = []

for label, lower, upper, color in roadGrade:

 sym = QgsSymbolV2.defaultSymbol(steepLyr.geometryType())

 sym.setColor(QColor(color))

 sym.setWidth(3.0)

 rng = QgsRendererRangeV2(lower, upper, sym, label)

 ranges.append(rng)

field = "slope"

renderer = QgsGraduatedSymbolRendererV2(field, ranges)

steepLyr.setRendererV2(renderer)

13. Next, we'll create a hillshade from the DEM for visualization and load everything
onto the map:

processing.runalg("saga:analyticalhillshading",dem,\

0,315,45,4,hillshade)

hs = QgsRasterLayer(hillshade, "Terrain")

QgsMapLayerRegistry.instance().addMapLayers([steepLyr, hs])

http:///

QGIS Workflows

262

How it works...
For each of our 500-meter line segments, the algorithm averages the underlying slope
values. This workflow is fairly simple and also provides all the building blocks you need for
a more complex version. While performing calculations that involve measurements over a
relatively small area, using projected data is the best option. The following image shows how
the output looks:

Geolocating photos on the map
Photos taken with GPS-enabled cameras, including smartphones, store location information in
the header of the file, in a format called EXIF tags. These tags are largely based on the same
header tags used by the TIFF image standard. In this recipe, we'll use these tags to create
locations on a map for some photos and provide links to open them.

Getting ready
You will need to download some sample geotagged photos from https://github.com/
GeospatialPython/qgis/blob/gh-pages/photos.zip?raw=true and place them
in a directory named photos in your qgis_data directory.

https://github.com/GeospatialPython/qgis/blob/gh-pages/photos.zip?raw=true
https://github.com/GeospatialPython/qgis/blob/gh-pages/photos.zip?raw=true
http:///

Chapter 8

263

How to do it...
QGIS requires the Python Imaging Library (PIL), which should already be included with your
installation. PIL can parse EXIF tags. We will gather the filenames of the photos, parse the
location information, convert it to decimal degrees, create the point vector layer, add the
photo locations, and add an action link to the attributes. To do this, we need to perform the
following steps:

1. In the QGIS Python Console, import the libraries that we'll need, including k for
parsing image data and the glob module for doing wildcard file searches:
import glob

import Image

from ExifTags import TAGS

2. Next, we'll create a function that can parse the header data:
def exif(img):

 exif_data = {}

 try:

 i = Image.open(img)

 tags = i._getexif()

 for tag, value in tags.items():

 decoded = TAGS.get(tag, tag)

 exif_data[decoded] = value

 except:

 pass

 return exif_data

3. Now, we'll create a function that can convert degrees-minute-seconds to decimal
degrees, which is how coordinates are stored in JPEG images:
def dms2dd(d, m, s, i):

 sec = float((m * 60) + s)

 dec = float(sec / 3600)

 deg = float(d + dec)

 if i.upper() == 'W':

 deg = deg * -1

 elif i.upper() == 'S':

 deg = deg * -1

 return float(deg)

4. Next, we'll define a function to parse the location data from the header data:
def gps(exif):

 lat = None

http:///

QGIS Workflows

264

 lon = None

 if exif['GPSInfo']:

 # Lat

 coords = exif['GPSInfo']

 i = coords[1]

 d = coords[2][0][0]

 m = coords[2][1][0]

 s = coords[2][2][0]

 lat = dms2dd(d, m ,s, i)

 # Lon

 i = coords[3]

 d = coords[4][0][0]

 m = coords[4][1][0]

 s = coords[4][2][0]

 lon = dms2dd(d, m ,s, i)

 return lat, lon

5. Next, we'll loop through the photos directory, get the filenames, parse the location
information, and build a simple dictionary to store the information, as follows:
photos = {}

photo_dir = "/Users/joellawhead/qgis_data/photos/"

files = glob.glob(photo_dir + "*.jpg")

for f in files:

 e = exif(f)

 lat, lon = gps(e)

 photos[f] = [lon, lat]

6. Now, we'll set up the vector layer for editing:
lyr_info = "Point?crs=epsg:4326&field=photo:string(75)"

vectorLyr = QgsVectorLayer(lyr_info, \"Geotagged Photos" ,
"memory")

vpr = vectorLyr.dataProvider()

7. We'll add the photo details to the vector layer:
features = []

for pth, p in photos.items():

 lon, lat = p

 pnt = QgsGeometry.fromPoint(QgsPoint(lon,lat))

 f = QgsFeature()

 f.setGeometry(pnt)

 f.setAttributes([pth])

 features.append(f)

http:///

Chapter 8

265

vpr.addFeatures(features)

vectorLyr.updateExtents()

8. Now, we can add the layer to the map and make the active layer:
QgsMapLayerRegistry.instance().addMapLayer(vectorLyr)

iface.setActiveLayer(vectorLyr)

activeLyr = iface.activeLayer()

9. Finally, we'll add an action that allows you to click on it and open the photo:

actions = activeLyr.actions()

actions.addAction(QgsAction.OpenUrl, "Photos", \'[% "photo"
%]')

How it works...
Using the included PIL EXIF parser, getting location information and adding it to a vector layer
is relatively straightforward. The interesting part of this recipe is the QGIS action to open the
photo. This action is a default option for opening a URL. However, you can also use Python
expressions as actions to perform a variety of tasks. The following screenshot shows an
example of the data visualization and photo popup:

http:///

QGIS Workflows

266

There's more...
Another plugin called Photo2Shape is available, but it requires you to install an external
EXIF tag parser.

Image change detection
Change detection allows you to automatically highlight the differences between two images
in the same area if they are properly orthorectified. In this recipe, we'll do a simple difference
change detection on two images, which are several years apart, to see the differences in
urban development and the natural environment.

Getting ready
You can download the two images for this recipe from https://github.com/
GeospatialPython/qgis/blob/gh-pages/change-detection.zip?raw=true and
put them in a directory named change-detection in the rasters directory of your qgis_
data directory. Note that the file is 55 megabytes, so it may take several minutes to download.

How to do it...
We'll use the QGIS raster calculator to subtract the images in order to get the difference,
which will highlight significant changes. We'll also add a color ramp shader to the output in
order to visualize the changes. To do this, we need to perform the following steps:

1. First, we need to import the libraries that we need in to the QGIS console:
from PyQt4.QtGui import *

from PyQt4.QtCore import *

from qgis.analysis import *

2. Now, we'll set up the path names and raster names for our images:
before = "/Users/joellawhead/qgis_data/rasters/change-
detection/before.tif"

after = "/Users/joellawhead/qgis_data/rasters/change-
detection/after.tif"

beforeName = "Before"

afterName = "After"

https://github.com/GeospatialPython/qgis/blob/gh-pages/change-detection.zip?raw=true
https://github.com/GeospatialPython/qgis/blob/gh-pages/change-detection.zip?raw=true
http:///

Chapter 8

267

3. Next, we'll establish our images as raster layers:
beforeRaster = QgsRasterLayer(before, beforeName)

afterRaster = QgsRasterLayer(after, afterName)

4. Then, we can build the calculator entries:
beforeEntry = QgsRasterCalculatorEntry()

afterEntry = QgsRasterCalculatorEntry()

beforeEntry.raster = beforeRaster

afterEntry.raster = afterRaster

beforeEntry.bandNumber = 1

afterEntry.bandNumber = 2

beforeEntry.ref = beforeName + "@1"

afterEntry.ref = afterName + "@2"

entries = [afterEntry, beforeEntry]

5. Now, we'll set up the simple expression that does the math for remote sensing:
exp = "%s - %s" % (afterEntry.ref, beforeEntry.ref)

6. Then, we can set up the output file path, the raster extent, and pixel width and height:
output = "/Users/joellawhead/qgis_data/rasters/change-
detection/change.tif"

e = beforeRaster.extent()

w = beforeRaster.width()

h = beforeRaster.height()

7. Now, we perform the calculation:
change = QgsRasterCalculator(exp, output, "GTiff", e, w, h,
entries)

change.processCalculation()

8. Finally, we'll load the output as a layer, create the color ramp shader, apply it to the
layer, and add it to the map, as shown here:

lyr = QgsRasterLayer(output, "Change")

algorithm = QgsContrastEnhancement.StretchToMinimumMaximum

limits = QgsRaster.ContrastEnhancementMinMax

http:///

QGIS Workflows

268

lyr.setContrastEnhancement(algorithm, limits)

s = QgsRasterShader()

c = QgsColorRampShader()

c.setColorRampType(QgsColorRampShader.INTERPOLATED)

i = []

qri = QgsColorRampShader.ColorRampItem

i.append(qri(0, QColor(0,0,0,0), 'NODATA'))

i.append(qri(-101, QColor(123,50,148,255), 'Significant Itensity
Decrease'))

i.append(qri(-42.2395, QColor(194,165,207,255), 'Minor Itensity
Decrease'))

i.append(qri(16.649, QColor(247,247,247,0), 'No Change'))

i.append(qri(75.5375, QColor(166,219,160,255), 'Minor Itensity
Increase'))

i.append(qri(135, QColor(0,136,55,255), 'Significant Itensity
Increase'))

c.setColorRampItemList(i)

s.setRasterShaderFunction(c)

ps = QgsSingleBandPseudoColorRenderer(lyr.dataProvider(), 1, s)

lyr.setRenderer(ps)

QgsMapLayerRegistry.instance().addMapLayer(lyr)

How it works...
The concept is simple. We subtract the older image data from the new image data.
Concentrating on urban areas tends to be highly reflective and results in higher image
pixel values. If a building is added in the new image, it will be brighter than its surroundings.
If a building is removed, the new image will be darker in that area. The same holds true for
vegetation, to some extent.

http:///

269

9
Other Tips and Tricks

In this chapter, we will cover the following recipes:

f Creating tiles from a QGIS map

f Adding a layer to geojson.io

f Rendering map layers based on rules

f Creating a layer style file

f Using NULL values in PyQGIS

f Using generators for layer queries

f Using alpha values to show data density

f Using the __geo_interface__ protocol

f Generating points along a line

f Using expression-based labels

f Creating dynamic forms in QGIS

f Calculating length for all the selected lines

f Using a different status bar CRS than the map

f Creating HTML labels in QGIS

f Using OpenStreetMap's points of interest in QGIS

f Visualizing data in 3D with WebGL

f Visualizing data on a globe

http:///

Other Tips and Tricks

270

Introduction
This chapter provides interesting and valuable QGIS Python tricks that didn't fit into any
topics in other chapters. Each recipe has a specific purpose, but in many cases, a recipe may
demonstrate multiple concepts that you'll find useful in other programs. All the recipes in this
chapter run in the QGIS Python console.

Creating tiles from a QGIS map
This recipe creates a set of Internet web map tiles from your QGIS map. What's interesting
about this recipe is that once the static map tiles are generated, you can serve them up
locally or from any web-accessible directory using the client-side browser's JavaScript without
the need of a map server, or you can serve them (for example, distribute them on a portable
USB drive).

Getting ready
You will need to download the zipped shapefile from https://geospatialpython.
googlecode.com/svn/countries.zip.

Unzip the shapefile to a directory named shapes in your qgis_data directory. Next, create
a directory called tilecache in your qgis_data directory. You will also need to install the
QTiles plugin using the QGIS Plugin Manager. This plugin is experimental, so make sure
that the Show also experimental plugins checkbox is checked in the QGIS Plugin Manager's
Settings tab.

How to do it...
We will load the shapefile and randomly color each country. We'll then manipulate the QTiles
plugin using Python to generate map tiles for 5 zoom levels' worth of tiles. To do this, we need
to perform the following steps:

1. First, we need to import all the necessary Python libraries, including the QTiles plugin:
from PyQt4.QtCore import *

from PyQt4.QtGui import *

import qtiles

import random

https://geospatialpython.googlecode.com/svn/countries.zip
https://geospatialpython.googlecode.com/svn/countries.zip
http:///

Chapter 9

271

2. Now, we create a color function that can produce random colors. This function
accepts a mixed color, which defaults to white, to change the overall tone of the
color palette:
def randomColor(mix=(255,255,255)):

 red = random.randrange(0,256)

 green = random.randrange(0,256)

 blue = random.randrange(0,256)

 r,g,b = mix

 red = (red + r) / 2

 green = (green + g) / 2

 blue = (blue + b) / 2

 return (red, green, blue)

3. Next, we'll create a simple callback function for notification of when the tile
generation is done. This function will normally be used to create a message
bar or other notification, but we'll keep things simple here:
def done():

 print "FINISHED!!"

4. Now, we set the path to the shapefile and the tile's output direction:
shp = "/qgis_data/shapes/countries.shp"

dir = "/qgis_data/tilecache"

5. Then, we load the shapefile:
layer = QgsVectorLayer(shp, "Countries", "ogr")

6. After that, we define the field that is used to color the countries:
field = 'CNTRY_NAME'

7. Now, we need to get all the features so that we can loop through them:
features = layer.getFeatures()

8. We'll build our color renderer:
categories = []

for feature in features:

 country = feature[field]

 sym = QgsSymbolV2.defaultSymbol(layer.geometryType())

 r,g,b = randomColor()

 sym.setColor(QColor(r,g,b,255))

 category = QgsRendererCategoryV2(country, sym, country)

 categories.append(category)

http:///

Other Tips and Tricks

272

9. Then, we'll set the layer renderer and add it to the map:
renderer = QgsCategorizedSymbolRendererV2(field, categories)

layer.setRendererV2(renderer)

QgsMapLayerRegistry.instance().addMapLayer(layer)

10. Now, we'll set all the properties we need for the image tiles, including the map
elements and image properties:
canvas = iface.mapCanvas()

layers = canvas.mapSettings().layers()

extent = canvas.extent()

minZoom = 0

maxZoom = 5

width = 256

height = 256

transp = 255

quality = 70

format = "PNG"

outputPath = QFileInfo(dir)

rootDir = "countries"

antialiasing = False

tmsConvention = True

mapUrl = False

viewer = True

11. We are ready to generate the tiles using the efficient threading system of the
QTiles plugin. We'll create a thread object and pass it all of the tile settings
previously mentioned:
tt = qtiles.tilingthread.TilingThread(layers, extent, minZoom,
maxZoom, width, height, transp,

quality, format, outputPath, rootDir, antialiasing, tmsConvention,

mapUrl, viewer)

12. Then, we can connect the finish signal to our simple callback function:
tt.processFinished.connect(done)

13. Finally, we start the tiling process:
tt.start()

http:///

Chapter 9

273

14. Once you receive the completion message, check the output directory and verify that
there is an HTML file named countries.html and a directory named countries.

15. Double-click on the countries.html page to open it in a browser.

16. Once the map loads, click on the plus symbol (+) in the upper-left corner twice to
zoom the map.

17. Next, pan around to see the tiled version of your map load.

How it works...
You can generate up to 16 zoom levels with this plugin. After eight zoom levels, the tile
generation process takes a long time and the tile set becomes quite large on the filesystem,
totaling hundreds of megabytes. One way to avoid creating a lot of files is to use the mbtiles
format, which stores all the data in a single file. However, you need a web application using
GDAL to access it.

You can see a working example of the output recipe stored in a
github.io web directory at http://geospatialpython.
github.io/qgis/tiles/countries.html.

The following image shows the output in a browser:

http://geospatialpython.github.io/qgis/tiles/countries.html
http://geospatialpython.github.io/qgis/tiles/countries.html
http:///

Other Tips and Tricks

274

Adding a layer to geojson.io
Cloud services have become common and geospatial maps are no exception. This recipe uses
a service named geojson.io, which serves vector layers online, which you can upload from
QGIS using Python.

Getting ready
For this recipe, you will need to install the qgisio plugin using the QGIS Plugin Manager.

You will also need a shapefile in a geodetic coordinate system (WGS84) from
https://geospatialpython.googlecode.com/svn/union.zip.

Decompress the ZIP file and place it in your qgis_data directory named shapes.

How to do it...
We will convert our shapefile to GeoJSON using a temporary file. We'll then use Python to call
the qgisio plugin in order to upload the data to be displayed online. To do this, we need to
perform the following steps:

1. First, we need to import all the relevant Python libraries:
from PyQt4.QtCore import *

from PyQt4.QtGui import *

from qgis.core import *

from tempfile import mkstemp

import os

from qgisio import geojsonio

2. Now, we set up the layer and get the layer's name:
layer = QgsVectorLayer("/qgis_data/shapes/building.shp",
"Building", "ogr")

name = layer.name()

3. Next, we establish a temporary file using the Python tempfile module for the
GeoJSON conversion:
handle, tmpfile = mkstemp(suffix='.geojson')

os.close(handle)

https://geospatialpython.googlecode.com/svn/union.zip
http:///

Chapter 9

275

4. Now, we'll establish the coordinate reference system needed for the conversion,
which must be WGS84 Geographic, to work with the cloud service:
crs = QgsCoordinateReferenceSystem(4326,

QgsCoordinateReferenceSystem.PostgisCrsId)

5. Next, we can write out the layer as GeoJSON:
error = QgsVectorFileWriter.writeAsVectorFormat(layer, tmpfile,

 "utf-8", crs, "GeoJSON", onlySelected=False)

6. Then, we can make sure that the conversion didn't have any problems:
if error != QgsVectorFileWriter.NoError:

 print "Unable to write geoJSON!"

7. Now, we can read the GeoJSON content:
with open(str(tmpfile), 'r') as f:

 contents = f.read()

8. We then need to remove the temporary file:
os.remove(tmpfile)

9. We are ready to upload our GeoJSON to geojson.io using the qgisio module:
url = geojsonio._create_gist(contents, "Layer exported from QGIS",
name + ".geojson")

10. We can then use the Qt library to open the map in a browser:

QDesktopServices.openUrl(QUrl(url))

How it works...
This recipe actually uses two cloud services. The GeoJSON data is stored on a
https://github.com service named Gist that allows you to store code snippets
such as JSON. The geojson.io service can read data from Gist.

Note that sometimes it can take several seconds to several minutes
for the generated URL to become available online.

https://github.com
http:///

Other Tips and Tricks

276

This screenshot shows the building layer on an OSM map on geojson.io, with the GeoJSON
displayed next to the map:

There's more...
There are additional advanced services that can serve QGIS maps, including
www.QGISCloud.com and www.CartoDB.com, which can also display raster maps. Both of
these services have free options and QGIS plugins. However, they are far more difficult to script
from Python if you are trying to automate publishing maps to the Web as part of a workflow.

Rendering map layers based on rules
Rendering rules provide a powerful way to control how and when a layer is displayed relative
to other layers or to the properties of the layer itself. Using a rule-based renderer, this recipe
demonstrates how to color code a layer based on an attribute.

Getting ready
You will need to download a zipped shapefile from https://geospatialpython.
googlecode.com/svn/ms_rails_mstm.zip.

Unzip it and place it in the directory named ms in your qgis_data directory.

www.QGISCloud.com
www.CartoDB.com
https://geospatialpython.googlecode.com/svn/ms_rails_mstm.zip
https://geospatialpython.googlecode.com/svn/ms_rails_mstm.zip
http:///

Chapter 9

277

In this same directory, download and unzip the following shapefile:

https://geospatialpython.googlecode.com/files/Mississippi.zip

Finally, add this shapefile to the directory as well:

https://geospatialpython.googlecode.com/svn/jackson.zip

How to do it...
We will set up a railroad layer, then we'll set up our rules as Python tuples to color code it
based on the frequency of use. Finally, we'll add some other layers to the map for reference.
To do this, we need to perform the following steps:

1. First, we need to import the QTGui library to work with colors:
from PyQt4.QtGui import *

2. Next, we'll set up our data path to avoid typing it repeatedly. Replace this string with
the path to your qgis_data directory:
prefix = "/Users/joellawhead/qgis_data/ms/"

3. Now, we can load our railroad layer:
rails = QgsVectorLayer(prefix + "ms_rails_mstm.shp", "Railways",
"ogr")

4. Then, we can define our rules as a set of tuples. Each rule defines a label and an
expression, detailing which attribute values make up that rule, a color name, and the
minimum/maximum map scale values at which the described features are visible:
rules = (

 ('Heavily Used', '"DEN09CODE" > 3', 'red', (0,
6000000)),

 ('Moderately Used', '"DEN09CODE" < 4 AND "DEN09CODE" >
1', 'orange', (0, 1500000)),

 ('Lightly Used', '"DEN09CODE" < 2', 'grey', (0,
250000)),

)

5. Next, we create a rule-based renderer and a base symbol to begin applying our rules:
sym_rails = QgsSymbolV2.defaultSymbol(rails.geometryType())

rend_rails = QgsRuleBasedRendererV2(sym_rails)

6. The rules are a hierarchy based on a root rule, so we must access the root first:
root_rule = rend_rails.rootRule()

https://geospatialpython.googlecode.com/files/Mississippi.zip
https://geospatialpython.googlecode.com/svn/jackson.zip
http:///

Other Tips and Tricks

278

7. Now, we will loop through our rules, clone the default rule, and append our custom
rule to the tree:
for label, exp, color, scale in rules:

 # create a clone (i.e. a copy) of the default rule

 rule = root_rule.children()[0].clone()

 # set the label, exp and color

 rule.setLabel(label)

 rule.setFilterExpression(exp)

 rule.symbol().setColor(QColor(color))

 # set the scale limits if they have been specified

 if scale is not None:

 rule.setScaleMinDenom(scale[0])

 rule.setScaleMaxDenom(scale[1])

append the rule to the list of rules

 root_rule.appendChild(rule)

8. We can now delete the default rule, which isn't part of our rendering scheme:
root_rule.removeChildAt(0)

9. Now, we apply the renderer to our rails layer:
rails.setRendererV2(rend_rails)

10. We'll establish and style a city layer, which will provide a focal point to zoom into so
that we can easily see the scale-based rendering effect:
jax = QgsVectorLayer(prefix + "jackson.shp", "Jackson", "ogr")

jax_style = {}

jax_style['color'] = "#ffff00"

jax_style['name'] = 'regular_star'

jax_style['outline'] = '#000000'

jax_style['outline-width'] = '1'

jax_style['size'] = '8'

sym_jax = QgsSimpleMarkerSymbolLayerV2.create(jax_style)

jax.rendererV2().symbols()[0].changeSymbolLayer(0, sym_jax)

11. Then, we'll set up and style a border layer around both the datasets:
ms = QgsVectorLayer(prefix + "mississippi.shp", "Mississippi",
"ogr")

ms_style = {}yea

http:///

Chapter 9

279

ms_style['color'] = "#F7F5EB"

sym_ms = QgsSimpleFillSymbolLayerV2.create(ms_style)

ms.rendererV2().symbols()[0].changeSymbolLayer(0, sym_ms)

12. Finally, we'll add everything to the map:

QgsMapLayerRegistry.instance().addMapLayers([jax, rails, ms])

How it works...
Rules are a hierarchical collection of symbols and expressions. Symbols are collections of
symbol layers. This recipe is relatively simple but contains over 50 lines of code. Rendering
is one of the most complex features to code in QGIS. However, rules also have their own sets
of properties, separate from layers and symbols. Notice that in this recipe, we are able to set
labels and filters for the rules, properties that are normally relegated to layers. One way to
think of rules is as separate layers. We can do the same thing by loading our railroad layer
as a new layer for each rule. Rules are a more compact way to break up the rendering for a
single layer.

This image shows the rendering at a scale where all the rule outputs are visible:

http:///

Other Tips and Tricks

280

Creating a layer style file
Layer styling is one of the most complex aspects of the QGIS Python API. Once you've
developed the style for a layer, it is often useful to save the styling to the QGIS Markup
Language (QML) in the XML format.

Getting ready
You will need to download the zipped directory named saveqml and decompress it to your
qgis_data/rasters directory from https://geospatialpython.googlecode.com/
svn/saveqml.zip.

How to do it...
We will create a color ramp for a DEM and make it semi transparent to overlay a hillshaded
tiff of the DEM. We'll save the style we create to a QML file. To do this, we need to perform
the following steps:

1. First, we'll need the following Python Qt libraries:
from PyQt4.QtCore import *

from PyQt4.QtGui import *

2. Next, we'll load our two raster layers:
hs = QgsRasterLayer("/qgis_data/saveqml/hillshade.tif",
"Hillshade")

dem = QgsRasterLayer("/qgis_data/saveqml/dem.asc", "DEM")

3. Next, we'll perform a histogram stretch on our DEM for better visualization:
algorithm = QgsContrastEnhancement.StretchToMinimumMaximum

limits = QgsRaster.ContrastEnhancementMinMax

dem.setContrastEnhancement(algorithm, limits)

4. Now, we'll create a visually pleasing color ramp based on the elevation values
of the DEM as a renderer and apply it to the layer:
s = QgsRasterShader()

c = QgsColorRampShader()

https://geospatialpython.googlecode.com/svn/saveqml.zip
https://geospatialpython.googlecode.com/svn/saveqml.zip
http:///

Chapter 9

281

c.setColorRampType(QgsColorRampShader.INTERPOLATED)

i = []

qri = QgsColorRampShader.ColorRampItem

i.append(qri(356.334, QColor(63,159,152,255), '356.334'))

i.append(qri(649.292, QColor(96,235,155,255), '649.292'))

i.append(qri(942.25, QColor(100,246,174,255), '942.25'))

i.append(qri(1235.21, QColor(248,251,155,255), '1235.21'))

i.append(qri(1528.17, QColor(246,190,39,255), '1528.17'))

i.append(qri(1821.13, QColor(242,155,39,255), '1821.13'))

i.append(qri(2114.08, QColor(165,84,26,255), '2114.08'))

i.append(qri(2300, QColor(236,119,83,255), '2300'))

i.append(qri(2700, QColor(203,203,203,255), '2700'))

c.setColorRampItemList(i)

s.setRasterShaderFunction(c)

ps = QgsSingleBandPseudoColorRenderer(dem.dataProvider(), 1, s)

ps.setOpacity(0.5)

dem.setRenderer(ps)

5. Now, we can add the layers to the map:
QgsMapLayerRegistry.instance().addMapLayers([dem, hs])

6. Finally, with this line, we can save the DEM's styling to a reusable QML file:

dem.saveNamedStyle("/qgis_data/saveqml/dem.qml")

How it works...
The QML format is easy to read and can be edited by hand. The saveNamedStyle() method
works on vector layers in the exact same way. Instead of styling the preceding code, you can
just reference the QML file using the loadNamedStyle() method:

dem.loadNamedStyle("/qgis_data/saveqml/dem.qml")

If you save the QML file along with a shapefile and use the same filename (with the .qml
extension), then QGIS will load the style automatically when the shapefile is loaded.

http:///

Other Tips and Tricks

282

Using NULL values in PyQGIS
QGIS can use NULL values as field values. Python has no concept of NULL values.
The closest type it has is the None type. You must be aware of this fact when working with
Python in QGIS. In this recipe, we'll explore the implications of QGIS's NULL values in Python.
The computing of a NULL value involves a pointer that is an uninitialized, undefined, empty,
or meaningless value.

Getting ready
In your qgis_data/shapes directory, download the shapefile from
https://geospatialpython.googlecode.com/svn/NullExample.zip,
which contains some NULL field values, and unzip it.

How to do it...
We will load the shapefile and grab its first feature. Then, we'll access one of its NULL
field values. Next, we'll run through some tests that allow you to see how the NULL
values behave in Python. To do this, we need to perform the following steps:

1. First, we'll load the shapefile and access its first feature:
lyrPth = "/qgis_data/shapes/NullExample.shp"

lyr = QgsVectorLayer(lyrPth, "Null Field Example", "ogr")

features = lyr.getFeatures()

f = features.next()

2. Next, we'll grab one of the NULL field values:
value = f["SAMPLE"]

3. Now, we'll check the NULL value's type:
print "Check python value type:"

print type(value)

4. Then, we'll see whether the value is the Python None type:
print "Check if value is None:"

print value is None

5. Now, we'll see whether it is equivalent to None:
print "Check if value == None:"

print value == None

https://geospatialpython.googlecode.com/svn/NullExample.zip
http:///

Chapter 9

283

6. Next, we'll see whether the value matches the QGIS NULL type:
print "Check if value == NULL:"

print value == NULL

7. Then, we'll see whether it is actually NULL:
print "Check if value is NULL:"

print value is NULL

8. Finally, we'll do a type match to the QGIS NULL:

print "Check type(value) is type(NULL):"

print type(value) is type(NULL)

How it works...
As you can see, the type of the NULL value is PyQt4.QtCore.QPyNullVariant. This class
is a special type injected into the PyQt framework. It is important to note the cases where the
comparison using the is operator returns a different value than the == operator comparison.
You should be aware of the differences to avoid unexpected results in your code.

Using generators for layer queries
Python generators provide an efficient way to process large datasets. A QGIS developer named
Nathan Woodrow has created a simple Python QGIS query engine that uses generators to
easily fetch features from QGIS layers. We'll use this engine in this recipe to query a layer.

Getting ready
You need to install the query engine using easy_install or by downloading it and adding it
to your QGIS Python installation. To use easy_install, run the following command from a
console, which downloads a clone of the original code that includes a Python setup file:

easy_install

https://github.com/GeospatialPython/qquery/archive/master.zip

You can also download the ZIP file from https://github.com/NathanW2/qquery/
archive/master.zip and copy the contents to your working directory or the site-
packages directory of your QGIS Python installation.

You will also need to download the zipped shapefile and decompress it to a directory named
ms in your qgis_data directory from the following location:

https://geospatialpython.googlecode.com/files/MS_UrbanAnC10.zip

https://github.com/GeospatialPython/qquery/archive/master.zip
https://github.com/NathanW2/qquery/archive/master.zip
https://github.com/NathanW2/qquery/archive/master.zip
https://geospatialpython.googlecode.com/files/MS_UrbanAnC10.zip
http:///

Other Tips and Tricks

284

How to do it...
We'll load a layer containing population data. Then, we'll use the query engine to perform a
simple query for an urban area with less than 50,000 people. We'll filter the results to only
give us three columns, place name, population level, and land area. To do this, we need to
perform the following steps:

1. First, we import the query engine module:
from query import query

2. Then, we set up the path to our shapefile and load it as a vector layer:
pth = "/Users/joellawhead/qgis_data/ms/MS_UrbanAnC10.shp"

layer = QgsVectorLayer(pth, "Urban Areas", "ogr")

3. Now, we can run the query, which uses Python's dot notation to perform a where
clause search and then filter using a select statement. This line will return a
generator with the result:
q = (query(layer).where("POP > 50000").select('NAME10', "POP",
"AREALAND", "POPDEN"))

4. Finally, we'll use the query's generator to iterate to the first result:

q().next()

How it works...
As you can see, this module is quite handy. To perform this same query using the default
PyQGIS API, it would take nearly four times as much code.

Using alpha values to show data density
Thematic maps often use a color ramp based on a single color to show data density. Darker
colors show a higher concentration of objects, while lighter colors show lower concentrations.
You can use a transparency ramp instead of a color ramp to show density as well. This
technique is useful if you want to overlay the density layer on imagery or other vector layers.
In this recipe, we'll be using some bear-sighting data to show the concentration of bears over
an area. We'll use alpha values to show the density. We'll use an unusual hexagonal grid to
divide the area and a rule-based renderer to build the display.

http:///

Chapter 9

285

Getting ready
You will need to install the MMQGIS plugin, which is used to build the hexagonal grid using the
QGIS Plugin Manager.

You also need to download the bear data from https://geospatialpython.
googlecode.com/svn/bear-data.zip, unzip the shapefile, and put it in the ms directory
of your qgis_data directory.

How to do it...
We will load the bear data. Then, we will use the MMQGIS plugin to generate the hexagonal
grid. Then, we'll use the Processing Toolbox to clip the hexagon to the bear shapefile, and join
the shapefile attribute data to the hexagon grid. Finally, we'll use a rule-based renderer to
apply alpha values based on bear-sighting density and add the result to the map. To do this,
we need to perform the following steps:

1. First, we import all the libraries we'll need, including the processing engine,
the PyQt GUI library for color management, and the MMQGIS plugin:
import processing

from PyQt4.QtGui import *

from mmqgis import mmqgis_library as mmqgis

2. Next, we'll set up the paths for all of our input and output shapefiles:
dir = "/qgis_data/ms/"

source = dir + "bear-data.shp"

grid = dir + "grid.shp"

clipped_grid = dir + "clipped_grid.shp"

output = dir + "ms-bear-sightings.shp"

3. Now, we can set up the input shapefile as a layer:
layer = QgsVectorLayer(source, "bear data", "ogr")

4. We'll need the extent of the shapefile to create the grid as well as the width and
height, in map units:
e = layer.extent()

llx = e.xMinimum()

lly = e.yMinimum()

w = e.width()

h = e.height()

https://geospatialpython.googlecode.com/svn/bear-data.zip
https://geospatialpython.googlecode.com/svn/bear-data.zip
http:///

Other Tips and Tricks

286

5. Now, we can use the MMQGIS plugin to generate the grid over the entire shapefile's
extent. We'll use a grid cell size of one-tenth of a degree (approximately 6 miles):
mmqgis.mmqgis_grid(iface, grid, .1, .1, w, h, llx, lly, "Hexagon
(polygon)", False)

6. Then, we can clip the grid to the shape of our source data using the
Processing Toolbox:
processing.runalg("qgis:clip",grid,source,clipped_grid)

7. Next, we need to do a spatial join in order to match the source data's attributes
based on counties to each grid cell:
processing.runalg("qgis:joinbylocation",source,clipped_grid,0,
"sum,mean,min,max,median",0,0,output)

8. Now, we can add this output as a layer:
bears = QgsVectorLayer(output, "Bear Sightings", "ogr")

9. Next, we create our rendering rule set as Python tuples, specifying a label,
value expression, color, and alpha level for the symbols between 0 and 1:
rules = (

 ('RARE', '"BEARS" < 5', (227,26,28,255), .2),

 ('UNCOMMON', '"BEARS" > 5 AND "BEARS" < 15', (227,26,28,255),
.4),

 ('OCCASIONAL', '"BEARS" > 14 AND "BEARS" < 50',
(227,26,28,255), .6),

 ('FREQUENT', '"BEARS" > 50', (227,26,28,255), 1),

)

10. We then create the default symbol rule renderer and add the rules to the renderer:
sym_bears = QgsFillSymbolV2.createSimple({"outline_
color":"white","outline_width":".26"})

rend_bears = QgsRuleBasedRendererV2(sym_bears)

root_rule = rend_bears.rootRule()

for label, exp, color, alpha in rules:

 # create a clone (i.e. a copy) of the default rule

rule = root_rule.children()[0].clone()

 # set the label, exp and color

rule.setLabel(label)

rule.setFilterExpression(exp)

r,g,b,a = color

rule.symbol().setColor(QColor(r,g,b,a))

http:///

Chapter 9

287

 # set the transparency level

rule.symbol().setAlpha(alpha)

 # append the rule to the list of rules

root_rule.appendChild(rule)

11. We remove the default rule:
root_rule.removeChildAt(0)

12. We apply the renderer to the layer:
bears.setRendererV2(rend_bears)

13. Finally, we add the finished density layer to the map:

QgsMapLayerRegistry.instance().addMapLayer(bears)

How it works...
The rule-based renderer forms the core of this recipe. However, the hexagonal grid provides a
more interesting way to visualize statistical data. Like a dot-based density map, hexagons are
not entirely spatially accurate or precise but make it very easy to understand the overall trend
of the data. The interesting feature of hexagons is their centroid, which is equidistant to each
of their neighbors, whereas with a square grid, the diagonal neighbors are further away.

This image shows how the resulting map will look:

http:///

Other Tips and Tricks

288

Using the __geo_interface__ protocol
The __geo_interface__ protocol is a new protocol created by Sean Gillies and is targeted
mainly at Python to provide a string representation of geographic data following Python's
built-in protocols. The string representation for geographic data is basically GeoJSON.

You can read more about this protocol at https://gist.github.com/
sgillies/2217756.

Two developers, Nathan Woodrow and Martin Laloux, refined a version of this protocol for
QGIS Python data objects. This recipe borrows from their examples to provide a code snippet
that you can put at the beginning of your Python scripts to retrofit QGIS features and geometry
objects with a __geo_interface__ method.

Getting ready
This recipe requires no preparation.

How to do it...
We will create two functions: one for features and one for geometry. We'll then use Python's
dynamic capability to patch the QGIS objects with a __geo_interface__ built-in
method. To do this, we need to perform the following steps:

1. First, we'll need the Python json module:
import json

2. Next, we'll create our function for the features that take a feature as input and return
a GeoJSON-like object:
def mapping_feature(feature):

geom = feature.geometry()

 properties = {}

 fields = [field.name() for field in feature.fields()]

 properties = dict(zip(fields, feature.attributes()))

 return { 'type' : 'Feature',

 'properties' : properties,

 'geometry' : geom.__geo_interface__}

https://gist.github.com/sgillies/2217756
https://gist.github.com/sgillies/2217756
http:///

Chapter 9

289

3. Now, we'll create the geometry function:
def mapping_geometry(geometry):

geo = geometry.exportToGeoJSON()

return json.loads(geo)

4. Finally, we'll patch the QGIS feature and geometry objects with our custom built-in to
call our functions when the built-in is accessed:

QgsFeature.__geo_interface__ = property(lambda self:
mapping_feature(self))

QgsGeometry.__geo_interface__ = property(lambda self:
mapping_geometry(self))

How it works...
This recipe is surprisingly simple but exploits some of Python's most interesting features.
First, note that the feature function actually calls the geometry function as part of its output.
Also, note that adding the __geo_interface__ built-in function is as simple as using the
double-underscore naming convention and Python's built-in property method to declare
lambda functions as internal to the objects. Another interesting Python feature is that the
QGIS objects are able to pass themselves to our custom functions using the self keyword.

Generating points along a line
You can generate points within a polygon in a fairly simple way by using the point in polygon
method. However, sometimes you may want to generate points along a line. You can randomly
place points inside the polygon's extent — which is essentially just a rectangular polygon — or
you can place points at random locations along the line at random distances. In this recipe,
we'll demonstrate both of these methods.

Getting ready
You will need to download the zipped shapefile and place it in a directory named shapes in
your qgis_data directory from the following:

https://geospatialpython.googlecode.com/svn/path.zip

https://geospatialpython.googlecode.com/svn/path.zip
http:///

Other Tips and Tricks

290

How to do it...
First, we will generate random points along a line using a grass() function in the Processing
Toolbox. Then, we'll generate points within the line's extent using a native QGIS processing
function. To do this, we need to perform the following steps:

1. First, we need to import the processing module:
import processing

2. Then, we'll load the line layer onto the map:
line = QgsVectorLayer("/qgis_data/shapes/path.shp", "Line",
"ogr")

QgsMapLayerRegistry.instance().addMapLayer(line)

3. Next, we'll generate points along the line by specifying the path to the shapefile, a
maximum distance between the points in map units (meters), the type of feature we
want to output (vertices), extent, snap tolerance option, minimum distance between
the points, output type, and output name. We won't specify the name and tell QGIS to
load the output automatically:
processing.runandload("grass:v.to.points",line,"1000",False,
False,True,"435727.015026,458285.819185,5566442.32879,5591754.
78979",-1,0.0001,0,None)

4. Finally, we'll create some points within the lines' extent and load them as well:

processing.runandload("qgis:randompointsinextent","435727.0150
26,458285.819185,5566442.32879,5591754.78979",100,100,None)

How it works...
The first algorithm puts the points on the line. The second places them within the vicinity. Both
approaches have different use cases.

There's more...
Another option will be to create a buffer around the line at a specified distance and clip the
output of the second algorithm so that the points aren't near the corners of the line extent.
The QgsGeometry class also has an interpolate which allows you to create a point on a line
at a specified distance from its origin. This is documented at http://qgis.org/api/
classQgsGeometry.html#a8c3bb1b01d941219f2321e6c6c3db7e1.

http://qgis.org/api/classQgsGeometry.html#a8c3bb1b01d941219f2321e6c6c3db7e1
http://qgis.org/api/classQgsGeometry.html#a8c3bb1b01d941219f2321e6c6c3db7e1
http:///

Chapter 9

291

Using expression-based labels
Expressions are a kind of mini-programming language or SQL-like language found throughout
different QGIS functions to select features. One important use of expressions is to control
labels. Maps easily become cluttered if you label every single feature. Expressions make it
easy to limit labels to important features. You can filter labels using expressions from within
Python, as we will do in this recipe.

Getting ready
You will need to download the zipped shapefile and decompress it to a directory named ms
in your qgis_data directory from the following:

https://geospatialpython.googlecode.com/files/MS_UrbanAnC10.zip

How to do it...
We'll use the QGIS PAL labeling engine to filter labels based on a field name. After loading the
layer, we'll create our PAL settings and write them to the layer. Finally, we'll add the layer to the
map. To do this, we need to perform the following steps:

1. First, we'll set up the path to our shapefile:
pth = "/Users/joellawhead/qgis_data/ms/MS_UrbanAnC10.shp"

2. Next, we'll load our layer:
lyr = QgsVectorLayer(pth, "Urban Areas", "ogr")

3. Now, we create a labeling object and read the layer's current labeling settings:
palyr = QgsPalLayerSettings()

palyr.readFromLayer(lyr)

4. We create our expression to only label the features whose population field is greater
than 50,000:
palyr.fieldName = 'CASE WHEN "POP" > 50000 THEN NAME10 END'

5. Then, we enable these settings:
palyr.enabled = True

6. Finally, we apply the labeling filter to the layer and add it to the map:

palyr.writeToLayer(lyr)

QgsMapLayerRegistry.instance().addMapLayer(lyr)

https://geospatialpython.googlecode.com/files/MS_UrbanAnC10.zip
http:///

Other Tips and Tricks

292

How it works...
While labels are a function of the layer, the settings for the labeling engine are controlled
by an external object and then applied to the layer.

Creating dynamic forms in QGIS
When you edit the fields of a layer in QGIS, you have the option of using a spreadsheet-like
table view or you can use a database-style form view. Forms are useful because you can
change the design of the form and add interactive features that react to user input in order
to better control data editing. In this recipe, we'll add some custom validation to a form that
checks user input for valid values.

Getting ready
You will need to download the zipped shapefile and decompress it to a directory named ms
in your qgis_data directory from the following:

https://geospatialpython.googlecode.com/files/MS_UrbanAnC10.zip

You'll also need to create a blank Python file called validate.py, which you'll edit
as shown in the following steps. Put the validate.py file in the ms directory of your
qgis_data directory with the shapefile.

How to do it...
We'll create the two functions we need for our validation engine. Then, we'll use the QGIS
interface to attach the action to the layer. Make sure that you add the following code to the
validate.py file in the same directory as the shapefile, as follows:

1. First, we'll import the Qt libraries:
from PyQt4.QtCore import *

from PyQt4.QtGui import *

2. Next, we'll create some global variables for the attribute we'll be validating and the
form dialog:
popFld = None

dynamicDialog = None

https://geospatialpython.googlecode.com/files/MS_UrbanAnC10.zip
http:///

Chapter 9

293

3. Now, we'll begin building the function that changes the behavior of the dialog and
create variables for the field we want to validate and the submit button:
def dynamicForm(dialog,lyrId,featId):

 globaldynamicDialog

 dynamicDialog = dialog

 globalpopFld = dialog.findChild(QLineEdit,"POP")

 buttonBox=\

 dialog.findChild(QDialogButtonBox,"buttonBox")

4. We must disconnect the dialog from the action that controls the form acceptance:
buttonBox.accepted.disconnect(dynamicDialog.accept)

5. Next, we reconnect the dialogs, actions to our custom actions:
buttonBox.accepted.connect(validate)

buttonBox.rejected.connect(dynamicDialog.reject)

6. Now, we'll create the validation function that will reject the form if the population field
has a value less than 1:
def validate():

if not float(popFld.text()) > 0:

 msg = QMessageBox(f)

 msg.setText("Population must be \

 greater than zero.")

 msg.exec_()

 else:

 dynamicDialog.accept()

7. Next, open QGIS and drag and drop the shapefile from your filesystem onto the
map canvas.

8. Save the project and give it a name in the same directory as the validate.py file.

9. In the QGIS legend, double-click on the layer name.

10. Select the Fields tab on the left-hand side of the Layer Properties dialog.

11. In the Fields tab at the top-right of the screen, enter the following line into the
PythonInit Function field:
validate.dynamicForm

12. Click on the OK button, in the bottom-right of the Layer Properties dialog.

http:///

Other Tips and Tricks

294

13. Now, use the identify tool to select a feature.

14. In the Feature Properties dialog, click on the form icon in the top-left of the image.

15. Once the feature form is open, switch back to the QGIS Legend, right-click on the
layer name, and select Toggle Editing.

16. Switch back to the feature form, scroll down to the POP field, and change the
value to 0.

17. Now, click on the OK button and verify that you've received the warning dialog,
which requires the value to be greater than 0.

How it works...
The validate.py file must be in your Python path. Putting this file in the same directory
as the project makes the functions available. Validation is one of the simplest functions you
can implement.

This screenshot shows the rejection message when the population is set to 0:

http:///

Chapter 9

295

Calculating length for all selected lines
If you need to calculate the total of a given dataset property, such as length, the easiest thing
to do is use Python. In this recipe, we'll total the length of the railways in a dataset.

Getting ready
You will need to download a zipped shapefile from https://geospatialpython.
googlecode.com/svn/ms_rails_mstm.zip.

Unzip it and place it in directory named ms in your qgis_data directory.

How to do it...
We will load the layer, loop through the features while keeping a running total of line lengths,
and finally convert the result to kilometers. To do this, we need to perform the following steps:

1. First, we'll set up the path to our shapefile:
pth = "/Users/joellawhead/qgis_data/ms/ms_rails_mstm.shp"

2. Then, we'll load the layer:
lyr = QgsVectorLayer(pth, "Railroads", "ogr")

3. Next, we need a variable to total the line lengths:
total = 0

4. Now, we loop through the layer, getting the length of each line:
for f in lyr.getFeatures():

 geom = f.geometry()

 total += geom.length()

5. Finally, we print the total length converted to kilometers and format the string to only
show two decimal places:

print "%0.2f total kilometers of rails." % (total / 1000)

How it works...
This function is simple, but it's not directly available in the QGIS API. You can use a similar
technique to total up the area of a set of polygons or perform conditional counting.

https://geospatialpython.googlecode.com/svn/ms_rails_mstm.zip
https://geospatialpython.googlecode.com/svn/ms_rails_mstm.zip
http:///

Other Tips and Tricks

296

Using a different status bar CRS than the
map

Sometimes, you may want to display a different coordinate system for the mouse
coordinates in the status bar than what the source data is. With this recipe, you can
set a different coordinate system without changing the data coordinate reference system
or the CRS for the map.

Getting ready
Download the zipped shapefile and unzip it to your qgis_data/ms directory from
the following:

https://geospatialpython.googlecode.com/files/MSCities_Geo.zip

How to do it...
We will load our layer, establish a message in the status bar, create a special event
listener to transform the map coordinates at the mouse's location to our alternate CRS,
and then connect the map signal for the mouse's map coordinates to our listener function.
To do this, we need to perform the following steps:

1. First, we need to import the Qt core library:
from PyQt4.QtCore import *

2. Then, we will set up the path to the shapefile and load it as a layer:
pth = "/qgis_data/ms/MSCities_Geo_Pts.shp"

lyr = QgsVectorLayer(pth, "Cities", "ogr")

3. Now, we add the layer to the map:
QgsMapLayerRegistry.instance().addMapLayer(lyr)

4. Next, we create a default message that will be displayed in the status bar and will
be replaced by the alternate coordinates later, when the event listener is active:
msg = "Alternate CRS (x: %s, y: %s)"

5. Then, we display our default message in the left-hand side of the status bar
as a placeholder:
iface.mainWindow().statusBar().showMessage(msg % ("--", "--"))

https://geospatialpython.googlecode.com/files/MSCities_Geo.zip
http:///

Chapter 9

297

6. Now, we create our custom event-listener function to transform the mouse's map
location to our custom CRS, which in this case is EPSG 3815:
def listen_xyCoordinates(point):

 crsSrc = iface.mapCanvas().mapRenderer().destinationCrs()

 crsDest = QgsCoordinateReferenceSystem(3815)

 xform = QgsCoordinateTransform(crsSrc, crsDest)

 xpoint = xform.transform(point)

 iface.mainWindow().statusBar().showMessage(msg %
(xpoint.x(), xpoint.y()))

7. Next, we connect the map canvas signal that is emitted when the mouse coordinates
are updated to our custom event listener:
QObject.connect(iface.mapCanvas(), SIGNAL("xyCoordinates(const
QgsPoint &)"), listen_xyCoordinates)

8. Finally, verify that when you move the mouse around the map, the status bar is
updated with the transformed coordinates.

How it works...
The coordinate transformation engine in QGIS is very fast. Normally, QGIS tries to transform
everything to WGS84 Geographic, but sometimes you need to view coordinates in a different
reference system.

Creating HTML labels in QGIS
QGIS map tips allow you to hover the mouse cursor over a feature in order to create a popup
that displays information. This information is normally a data field, but you can also display
other types of information using a subset of HTML tags. In this recipe, we'll create an HTML
map tip that displays a Google Street View image at the feature's location.

Getting ready
In your qgis_data directory, create a directory named tmp.

You will also need to download the following zipped shapefile and place it in your qgis_
data/nyc directory:

https://geospatialpython.googlecode.com/files/NYC_MUSEUMS_GEO.zip

https://geospatialpython.googlecode.com/files/NYC_MUSEUMS_GEO.zip
http:///

Other Tips and Tricks

298

How to do it...
We will create a function to process the Google data and register it as a QGIS function.
Then, we'll load the layer and set its map tip display field. To do this, we need to perform
the following steps:

1. First, we need to import the Python libraries we'll need:
from qgis.utils import qgsfunction

from qgis.core import QGis

import urllib

2. Next, we'll set a special QGIS Python decorator that registers our function as
a QGIS function. The first argument, 0, means that the function won't accept
any arguments itself. The second argument, Python, defines the group in
which the function will appear when you use the expression builder:
@qgsfunction(0, "Python")

3. We'll create a function that accepts a feature and uses its geometry to pull
down a Google Street View image. We must cache the images locally because
the Qt widget that displays the map tips only allows you to use local images:
def googleStreetView(values, feature, parent):

x,y = feature.geometry().asPoint()

baseurl = "https://maps.googleapis.com/maps/api/streetview?"

w = 400

h = 400

fov = 90

heading = 235

pitch = 10

params = "size=%sx%s&" % (w,h)

params += "location=%s,%s&" % (y,x)

params += "fov=%s&heading=%s&pitch=%s" % (fov, heading, pitch)

url = baseurl + params

tmpdir = "/qgis_data/tmp/"

img = tmpdir + str(feature.id()) + ".jpg"

urllib.urlretrieve(url, img)

return img

http:///

Chapter 9

299

4. Now, we can load the layer:
pth = "/qgis_data/nyc/nyc_museums_geo.shp"

lyr = QgsVectorLayer(pth, "New York City Museums", "ogr")

5. Next, we can set the display field using a special QGIS tag with the name of
our function:
lyr.setDisplayField('')

6. Finally, we add it to the map:
QgsMapLayerRegistry.instance().addMapLayer(lyr)

7. Select the map tips tool and hover over the different points to see the
Google Street View images.

How it works...
The key to this recipe is the @qgsfunction decorator. When you register the function in this
way, it shows up in the menus for Python functions in expressions. The function must also
have the parent and value parameters, but we didn't need them in this case.

The following screenshot shows a Google Street View map tip:

http:///

Other Tips and Tricks

300

There's more...
If you don't need the function any more, you must unregister it for the function to go away.
The unregister command uses the following convention, referencing the function name
with a dollar sign:

QgsExpression.unregisterFunction("$googleStreetView")

Using OpenStreetMap's points of interest
in QGIS

OpenStreetMap has an API called Overpass that lets you access OSM data dynamically.
In this recipe, we'll add some OSM tourism points of interest to a map.

Getting ready
You will need to use the QGIS Plugin Manager to install the Quick OSM plugin.

You will also need to download the following shapefile and unzip it to your
qgis_data/ms directory:

https://geospatialpython.googlecode.com/svn/MSCoast_geo.zip

How to do it...
We will load our base layer that defines the area of interest. Then, we'll use the Processing
Toolbox to build a query for OSM, download the data, and add it to the map. To do this,
we need to perform the following steps:

1. First, we need to import the processing module:
import processing

2. Next, we need to load the base layer:
lyr = QgsVectorLayer("/qgis_data/ms/MSCoast_geo.shp", "MS
Coast", "ogr")

3. Then, we'll need the layer's extents for the processing algorithms:
ext = lyr.extent()

w = ext.xMinimum()

s = ext.yMinimum()

e = ext.xMaximum()

n = ext.yMaximum()

https://geospatialpython.googlecode.com/svn/MSCoast_geo.zip
http:///

Chapter 9

301

4. Next, we create the query:
factory = processing.runalg("quickosm:queryfactory",\

"tourism","","%s,%s,%s,%s" % (w,e,s,n),"",25)

q = factory["OUTPUT_QUERY"]

5. The Quick OSM algorithm has a bug in its output, so we'll create a properly formatted
XML tag and perform a string replace:
bbox_query = """<bbox-query e="%s" n="%s" s="%s" \ w="%s"/>"""
% (e,n,s,w)

bad_xml = """<bbox-query %s,%s,%s,%s/>""" % (w,e,s,n)

good_query = q.replace(bad_xml, bbox_query)

6. Now, we download the OSM data using our query:
results = processing.runalg("quickosm:queryoverpassapiwithastring"
,\"htt
p://overpass-api.de/api/",good_query,"0,0,0,0","",None)

osm = results["OUTPUT_FILE"]

7. We define the names of the shapefiles we will create from the OSM output:
poly = "/qgis_data/ms/tourism_poly.shp"

multiline = "/qgis_data/ms/tourism_multil.shp"

line = "/qgis_data/ms/tourism_lines.shp"

points = "/qgis_data/ms/tourism_points.shp"

8. Now, we convert the OSM data to shapefiles:
processing.runalg("quickosm:ogrdefault",osm,"","","","",poly,m
ultiline,line,points)

9. We place the points as a layer:
tourism_points = QgsVectorLayer(points, "Points of Interest",
"ogr")

10. Finally, we can add them to a map:
QgsMapLayerRegistry.instance().addMapLayers([tourism_points,
lyr]

How it works...
The Quick OSM plugin manages the Overpass API. What's interesting about this plugin is that
it provides processing algorithms in addition to a GUI interface. The processing algorithm
that creates the query unfortunately formats the bbox-query tag improperly, so we need to
work around this issue with the string replace. The API returns an OSM XML file that we must
convert to shapefiles for use in QGIS.

http:///

Other Tips and Tricks

302

Visualizing data in 3D with WebGL
QGIS displays data in a two-dimensions even if the data is three-dimensional. However, most
modern browsers can display 3D data using the WebGL standard. In this recipe, we'll use the
Qgis2threejs plugin to display QGIS data in 3D in a browser.

Getting ready
You will need to download some raster elevation data in the zipped directory and place it in
your qgis_data directory from the following:

https://geospatialpython.googlecode.com/svn/saveqml.zip

You will also need to install the Qgis2threejs plugin using the QGIS Plugin Manager.

How to do it...
We will set up a color ramp for a DEM draped over a hillshade image and use the plugin
to create a WebGL page in order to display the data. To do this, we need to perform the
following steps:

1. First, we will need to import the relevant libraries and the Qgis2threejs plugin:
from PyQt4.QtCore import *

from PyQt4.QtGui import *

import Qgis2threejs as q23js

2. Next, we'll disable QGIS automatic reprojection to keep the data display in meters:
iface.mapCanvas().setCrsTransformEnabled(False)

iface.mapCanvas().setMapUnits(0)

3. Now, we can load our raster layers:
demPth = "/Users/joellawhead/qgis_data/saveqml/dem.asc"

hillshadePth =
"/Users/joellawhead/qgis_data/saveqml/hillshade.tif"

dem = QgsRasterLayer(demPth, "DEM")

hillshade = QgsRasterLayer(hillshadePth, "Hillshade")

https://geospatialpython.googlecode.com/svn/saveqml.zip
http:///

Chapter 9

303

4. Then, we can create the color ramp renderer for the DEM layer:
algorithm = QgsContrastEnhancement.StretchToMinimumMaximum

limits = QgsRaster.ContrastEnhancementMinMax

dem.setContrastEnhancement(algorithm, limits)

s = QgsRasterShader()

c = QgsColorRampShader()

c.setColorRampType(QgsColorRampShader.INTERPOLATED)

i = []

qri = QgsColorRampShader.ColorRampItem

i.append(qri(356.334, QColor(63,159,152,255), '356.334'))

i.append(qri(649.292, QColor(96,235,155,255), '649.292'))

i.append(qri(942.25, QColor(100,246,174,255), '942.25'))

i.append(qri(1235.21, QColor(248,251,155,255), '1235.21'))

i.append(qri(1528.17, QColor(246,190,39,255), '1528.17'))

i.append(qri(1821.13, QColor(242,155,39,255), '1821.13'))

i.append(qri(2114.08, QColor(165,84,26,255), '2114.08'))

i.append(qri(2300, QColor(236,119,83,255), '2300'))

i.append(qri(2700, QColor(203,203,203,255), '2700'))

c.setColorRampItemList(i)

s.setRasterShaderFunction(c)

ps = QgsSingleBandPseudoColorRenderer(dem.dataProvider(), 1, s)

ps.setOpacity(0.5)

dem.setRenderer(ps)

5. Now, we're ready to add the raster layers to the map:
QgsMapLayerRegistry.instance().addMapLayers([dem, hillshade])

6. To create the WebGL interface, we need to take control of the plugin's GUI dialog,
but we will keep it hidden:
d = q23js.qgis2threejsdialog.Qgis2threejsDialog(iface)

7. Next, we must create a dictionary of the properties required by the plugin. The most
important is the layer ID of the DEM layer:
props = [None,

 None,

 {u'spinBox_Roughening': 4,

http:///

Other Tips and Tricks

304

u'checkBox_Surroundings': False,

u'horizontalSlider_Resolution': 2,

u'lineEdit_Color': u'',

 'visible': False,

 'dem_Height': 163,

u'checkBox_Frame': False,

u'lineEdit_ImageFile': u'',

u'spinBox_Size': 5,

u'spinBox_sidetransp': 0,

u'lineEdit_xmax': u'',

u'radioButton_MapCanvas': True,

 'dem_Width': 173,

u'radioButton_Simple': True,

u'lineEdit_xmin': u'',

u'checkBox_Sides': True,

u'comboBox_DEMLayer': dem.id(),

u'spinBox_demtransp': 0,

u'checkBox_Shading': False,

u'lineEdit_ymax': u'',

u'lineEdit_ymin': u'',

u'spinBox_Height': {5},{},{},{},{}]}

8. Now, we will apply these properties to the plugin:
d.properties = props

9. We must set the output file for the HTML page:
d.ui.lineEdit_OutputFilename.setText('/qgis_data/3D/3d.html')

10. In the next step, we must override the method that saves the properties, otherwise it
overwrites the properties we set:
def sp(a,b):

return

d.saveProperties = sp

11. Now, we are ready to run the plugin:
d.run()

12. On your filesystem, navigate to the HTML output page and open it in a browser.

13. Follow the help instructions to move the 3D elevation display around.

http:///

Chapter 9

305

How it works...
This plugin is absolutely not designed for script-level access. However, Python is so flexible
that we can even script the plugin at the GUI level and avoid displaying the GUI, so it is
seamless to the user. The only glitch in this approach is that the save method overwrites the
properties we set, so we must insert a dummy function that prevents this overwrite.

The following image shows the WebGL viewer in action:

Visualizing data on a globe
Ever since the release of Google Earth, spinning globe applications have become a useful
and popular method of geographic exploration. QGIS has an experimental plugin called QGIS
Globe, which is similar to Google Earth; however, it is extremely unstable. In this recipe, we'll
display a layer in Google Earth.

Getting ready
You will need to use the QGIS Plugin Manager to install the MMQGIS plugin.

Make sure you have Google Earth installed from https://www.google.com/earth/.

https://www.google.com/earth/
http:///

Other Tips and Tricks

306

You will also need the following dataset from a previous recipe. It is a zipped directory called
ufo which you should uncompress to your qgis_data directory:

https://geospatialpython.googlecode.com/svn/ufo.zip

How to do it...
We will load our layer and set up the attribute we want to use for the Google Earth KML
output as the descriptor. We'll use the MMQIGS plugin to output our layer to KML. Finally, we'll
use a cross-platform technique to open the file, which will trigger it to open in Google Earth.
To do this, we need to perform the following steps:

1. First, we will import the relevant Python libraries including the plugin. We will use
the Python webbrowser module to launch Google Earth:
from mmqgis import mmqgis_library as mmqgis

import webbrowser

import os

2. Now, we'll load the layer:
pth = "/Users/joellawhead/qgis_data/continental-us"

lyrName = "continental-us"

lyr = QgsVectorLayer(pth, lyrName, "ogr")

3. Next, we'll set the output path for the KML:
output = "/Users/joellawhead/qgis_data/us.kml"

4. Then, we'll set up the variables needed by the plugin for the KML output which make
up the layer identifier:
nameAttr = "FIPS_CNTRY"

desc = ["CNTRY_NAME",]

sep = "Paragraph"

5. Now, we can use the plugin to create the KML:
mmqgis.mmqgis_kml_export(iface, lyrName, nameAttr, desc, \

sep, output, False)

6. Finally, we'll use the webbrowser module to open the KML file, which will
default to opening in Google Earth. We need to add the file protocol
at the beginning of our output for the webbrowser module to work:

webbrowser.open("file://" + output)

https://geospatialpython.googlecode.com/svn/ufo.zip
http:///

Chapter 9

307

How it works...
The MMQGIS plugin does a good job with custom scripts and has easy-to-use functions.
While our method for automatically launching Google Earth may not work in every possible
case, it is almost perfect.

http:///

http:///

309

Index
Symbol
__geo_interface__ protocol

about 288
using 288, 289

A
addresses

geocoding 227-229
alpha values

used, for displaying data density 284-287
application parameter 28
area of polygon

calculating 47, 48
atlas 242
attributes, vector layer

examining 37
feature, modifying 68, 69

autocomplete 12

B
bearing of end points, line

calculating 50, 51
binary large objects (BLOBs) 86
binary packages, for Linux

URL 106
Bing aerial image service

using 155, 156
buffer() method 44

C
categorized vector layer symbol,

dynamic maps
about 142
creating 142-144

cell size, raster
querying 89

changeGeometryValues() method 68
checkboxes

about 214
creating 214, 215

color ramp 135
combobox

about 211
creating 211, 212

common extent
creating, for raster 106-108

complex vector layer symbol, dynamic maps
creating 137-139

Coordinate Reference System (CRS) 5
CSV File

shapefile attribute table, joining to 65-67
custom selection tool, dynamic maps

building 168-170
custom shape

adding, to map 189-192

D
data

loading, from spreadsheet 51-53
visualizing in 3D, with WebGL 302-305
visualizing, on globe 305, 306

http:///

310

data density
displaying, alpha values used 284-287

dataset, raster
sampling, regular grid used 100-103

data value, raster
querying, at specified point 93, 94

Debian package manager
used, for installing PyQGIS 2

delimitedtext 53
different status bar CRS

using 296
distance

measuring, along sample line 45-48
measuring, between two points 44, 45

dot density map
about 253
creating 253-255

downsampling 108
dynamic forms

creating, in QGIS 292, 293
dynamic maps

Bing aerial image service, using 155, 156
canvas, accessing 130, 131
categorized vector layer symbol,

creating 142, 143
complex vector layer symbol,

creating 137-139
creating 130
custom selection tool, building 168-170
graduated vector layer symbol renderer,

creating 141, 142
icons, using as vector layer symbols 139, 140
label features 158, 159
layers, iterating over 132, 133
map bookmark, creating 144-146
map bookmark, navigating to 146, 147
map layer transparency, modifying 159
map tool, used for drawing points on

canvas 163-165
map tool, used for drawing polygons or lines

on canvas 165-167
mouse coordinate tracking tool,

creating 171, 172

OpenStreetMap service, using 154, 155
pie charts, using for symbols 150-153
real-time weather data, adding from

OpenWeatherMap 157
scale-based visibility, setting for

layer 147, 148
single band raster, rendering with color

ramp algorithm 135, 136
standard map tools, adding to

canvas 160-163
SVG, using for layer symbols 148, 149
units, changing 131, 132
vector layer, symbolizing 133, 134

E
editing buffer 59
elevation data

adding, to line vertices with DEM 104, 105
used, for computing road slope 258-262

elevation hillshade
creating 96, 97

EmittingPoint 167
environment variables

setting, on Linux 3
setting, on Windows 3

error dialog
creating 205, 206

expression-based labels
using 291, 292

F
false color image

URL 92
features, vector layer

examining 36, 37
field

adding, to vector layer 63, 64
field data

collecting 255-258
file input dialog

creating 209, 210

http:///

311

G
gdaldem documentation

URL 97
generators

using, for layer queries 283, 284
geocoding

about 227
addresses 228

geojson.io
layer, adding to 274, 275

Geospatial Data Abstraction
Library (GDAL) 154

github.io web directory
URL 273

global preferences
reading 27, 28
storing 27

GoogleEarth 117
GPS

tracking 238-241
graduated vector layer symbol renderer,

dynamic maps
about 141
creating 141, 142

Graphical Modeler tool 232
grid

adding, to static map 193-195
ground control points (GCP) 124

H
hancock

URL 174
heat map

about 249
creating 249-251

HelloWorld plugin 16, 17
hillshade 96
HTML labels

creating, in QGIS 297-300

I
icons, dynamic maps

using, as vector layer symbols 139, 140

image change detection
about 266
performing 266-268

Integrated Development Environment (IDE) 1

J
JPEG image

TIFF image, converting to 112

K
kernel density estimation algorithm 252
K-means clustering 121
KML

about 120
shapefile, converting to 73

KML image overlay, for raster
creating 117-120

L
labels

adding, to static map 179-181
labeling features, dynamic maps

exploring 158, 159
layer

filtering, by attributes 40, 41
filtering, by geometry 38-40

layer style file
creating 280, 281

least cost path (LCP)
about 245
searching 245-247

legend
adding, to static map 188, 189

length, for selected lines
calculating 295

line feature
adding, to vector layer 59, 60

Linux
environment variables, setting 3

log files
about 202
using 202, 203

logo
adding, to static map 186, 187

http:///

312

M
map

photos, geolocating on 262-266
mapbook

about 242
creating 242-245

map bookmark, dynamic maps
about 144
creating 145, 146
navigating to 146, 147

map canvas, dynamic maps
accessing 130, 131

map composer
using 176-179

map coordinates, raster
converting, to pixel location 116, 117

map layers
iterating over 132, 133
rendering, based on rules 276-279
transparency, modifying 159, 160
URL 132

map tool, dynamic maps
used, for drawing points on canvas 163-165
used, for drawing polygons or lines on

canvas 165-167
map units, dynamic maps

changing 131, 132
mbtiles format 273
memory

vector layer, creating in 56, 57
merge processing algorithm 112
message dialog

creating 203, 204
creating, hint used 221, 222

mouse coordinate tracking tool,
dynamic maps

creating 171

N
nearest neighbor analysis

about 247
performing 247, 248

network analysis
about 233
performing 233-236

network analysis tool
URL 236

Normalized Difference Vegetation
Index (NDVI)

creating 224-226
north arrow

about 183
adding, to static map 183-186

NULL values
using, in PyQGIS 282, 283

O
Open Geospatial Consortium (OGC) 73, 117
Open GIS Consortium 157
OpenStreetMap service

points of interest, using in QGIS 300, 301
using 154, 155

Orfeo Toolbox 120
organization parameter 28
overlapping images

URL 107

P
Photo2Shape 266
photos

geolocating, on map 262-265
pie charts, dynamic maps

using, for symbols 150-153
pixel locations, raster

converting, to map coordinates 114-116
Plugin Reloader 13
point feature

adding, to vector layer 57-59
point in point feature

buffering 42-44
point layer

URL 38
points

generating, along time 289, 290
polygon feature

adding, to vector layer 60, 61
polygonize 122
PostGIS layer

loading, into QGIS map 34

http:///

313

Processing Toolbox
about 56
using 230

progress bar
about 206
displaying 207, 208

project
static map, loading from 200
static map, saving 199

project preferences
reading 28, 29
storing 28, 29

py2exe
URL 27

PyInstaller
URL 27

PyQGIS
about 59
NULL values, using 282

PyQGIS 2.6 API
URL 18

PyQGIS API
adding, to QGIS IDE 12
categories 18
Core module 18
navigating 17-19
URL 18

PyQGIS path
searching, on Windows 3

pyramids, raster
creating 113, 114

Python Imaging Library (PIL) 263
Python-ordered dictionary

used, for building string 57

Q
QGIS

debugging, URL 17
environment variables, setting up 3
installing, for system development 2, 3
installing, with Debian package manager 2
installing, with RPM package manager 2

QGIS Cloud 34

QGIS Globe
about 305
data, visualizing on 305, 306

QGIS IDE
environment variables, adding 13
PyQGIS API, adding 12
PyQGIS module paths, adding 10, 11
QGIS Python interpreter, adding

on Windows 8, 9
setting up 8
URL 8
working 13

QGIS map
tiles, creating from 270-273

QGIS Map Composer 176
QGIS Markup Language (QML) 280
qgis:mergevectorlayers module 75
QGIS plugin

creating 19-22
distributing 22-24
URL 22

QGIS Python
location, searching on other platforms 4

QGIS Python console
using, for interactive control 5

QGIS Python interpreter
adding, on Windows 8-10
PyQGIS module paths, adding to 10, 11

QGIS Python ScriptRunner plugin
using 6
working 7

QGIS Python scripts
debugger, testing 16
debugging 13, 14
Eclipse, configuring 15
working 17

QGIS raster calculator
controlling 224
working 227

QGIS tutorial
URL, for map projections 72

QgsComposition object 179
QgsDistanceArea.convertMeasurement()

method 45
QgsMultiBandColorRenderer 93
QgsRasterLayer object 88

http:///

314

QgsVectorLayer object
about 56
arguments 57

Qt
about 202
URL, for documentation 202

Qt Creator
about 22
URL 22

R
radio buttons

about 212
creating 212, 213

raster
classifying 121, 122
clipping, shapefile used 126, 127
common extent, creating 106-108
converting, to vector 122-124
dataset, sampling with regular grid 100-103
data value, querying at specified point 93, 94
georeferencing, from control points 124, 125
KML image overlay, creating 117-120
mosaicing 111
pyramids, creating 113, 114
reprojecting 94, 95
resolution, resampling 108, 109
unique values, counting 110, 111

raster bands
counting 91
swapping 92

raster footprints
creating 229-232

raster layer
cell size, querying 89
loading 87, 88
width and height, obtaining 90

real-time weather data, dynamic maps
adding, from OpenWeatherMap 157

Red Hat Package Manager (RPM) 2
Remote Debug plugin 13
road slope

computing, elevation data used 258-262
RPM package manager

used, for installing PyQGIS 2

S
SatImage raster

URL 89
Scalable Vector Graphics (SVG)

about 148
using, for dynamic map layer

symbols 148, 149
scale bar

about 181
adding, to static map 181, 182

scale-based visibility, dynamic maps
setting, for layer 147, 148

script path
accessing, from within QGIS script 30

semi-automatic classification
URL 122

set of attributes
adding, to vector layer 62, 63

shapefile
converting, to KML 73
merging 74, 75
splitting 75, 76
used, for clipping raster 126, 127

shapefile attribute table
joining, to CSV File 65-67

simplest map renderer
creating 174, 175

single band raster, dynamic maps
rendering, with color ramp

algorithm 135, 136
spatial database

vector layer, loading from 34, 35
spatial index

creating 48, 49
splash plugin 29
spreadsheet

data, loading from 51-53
standalone application

creating 25-27
standard map tools, dynamic maps

adding, to canvas 160-163
static map

custom shape, adding 189-192
grid, adding 193, 194
labels, adding 179-181

http:///

315

legend, adding 188, 189
loading, from project 200
logo, adding 186, 187
north arrow, adding 183-186
saving, to project 199
scale bar, adding 181, 182
table, adding 195, 196
world file, adding 197, 198

street routing
about 236
performing 237, 238

string
building, Python-ordered dictionary used 57

T
table

adding, to map 195-197
tabs

about 216
creating 217, 218

textboxes 216
text input dialog

creating 208, 209
three-page wizard

creating 218-221
TIFF image

converting, to JPEG image 112
tiles

creating, from QGIS map 270-273
traditional log file 203

U
union

performing, on vector shapes 80, 81
unique values, raster

counting 110, 111

V
vector

raster, converting to 122-124
vector contours

creating, from elevation data 98, 99
vector layer

attribute, deleting 71
attribute of feature, modifying 68, 69

attributes, examining 37, 38
creating, in memory 56, 57
feature, deleting 70
features, examining 36
field, adding to 63, 64
generalizing 76-78
geometry, moving 67, 68
line feature, adding to 59, 60
loading, from file sample 32, 33
loading, from spatial database 34, 35
point feature, adding to 57, 59
polygon feature, adding to 60, 61
rasterizing 82
reprojecting 72
set of attributes, adding to 62, 63
symbolizing 133, 134

vector shapes
dissolving 78-80
union, performing on 80, 81

virtualenv tool 13

W
warning dialog

creating 204, 205
WebGL

used, for visualizing data in 3D 302-304
Web Map Service (WMS) 154
Well-Known Text (WKT) 27
Windows

environment variables, setting 3
PyQGIS path, searching 3
QGIS Python interpreter, adding 8-10

wizard 218
world file

about 197, 198
adding, to map image 197, 198

Z
zip tool

URL 23

http:///

http:///

Thank you for buying
QGIS Python Programming Cookbook

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective MySQL
Management, in April 2004, and subsequently continued to specialize in publishing highly focused
books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and
customizing today's systems, applications, and frameworks. Our solution-based books give you the
knowledge and power to customize the software and technologies you're using to get the job done.
Packt books are more specific and less general than the IT books you have seen in the past. Our
unique business model allows us to bring you more focused information, giving you more of what
you need to know, and less of what you don't.

Packt is a modern yet unique publishing company that focuses on producing quality, cutting-edge
books for communities of developers, administrators, and newbies alike. For more information,
please visit our website at www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt open source brand, home
to books published on software built around open source licenses, and offering information to
anybody from advanced developers to budding web designers. The Open Source brand also runs
Packt's open source Royalty Scheme, by which Packt gives a royalty to each open source project
about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

http:///

Learning QGIS
Second Edition

ISBN: 978-1-78439-203-1 Paperback: 150 pages

Use QGIS to create great maps and perform all the
geoprocessing tasks you need

1. Load, visualize, and edit vector and raster data.

2. Create professional maps and applications to
present geospatial data.

3. A concise guide, packed with detailed real-world
examples to get you started with QGIS.

Building Mapping Applications
with QGIS
ISBN: 978-1-78398-466-4 Paperback: 264 pages

Create your own sophisticated applications to
analyze and display geospatial information using
QGIS and Python

1. Make use of the geospatial capabilities of QGIS
within your Python programs.

2. Build complete standalone mapping applications
based on QGIS and Python.

3. Use QGIS as a Python geospatial development
environment.

Please check www.PacktPub.com for information on our titles

http:///

Python Geospatial
Development
Second Edition

ISBN: 978-1-78216-152-3 Paperback: 508 pages

Learn to build sophisticated mapping applications from
scratch using Python tools for geospatial development

1. Build your own complete and sophisticated
mapping applications in Python.

2. Walks you through the process of building
your own online system for viewing and editing
geospatial data

3. Practical, hands-on tutorial that teaches you all
about geospatial development in Python

Learning Geospatial Analysis
with Python
ISBN: 978-1-78328-113-8 Paperback: 364 pages

Master GIS and Remote Sensing analysis using Python
with these easy to follow tutorials

1. Construct applications for GIS development
by exploiting Python

2. Focuses on built-in Python modules and
libraries compatible with the Python Packaging
Index distribution system – no compiling of C
libraries necessary

3. This is a practical, hands-on tutorial that teaches
you all about Geospatial analysis in Python

Please check www.PacktPub.com for information on our titles

http:///

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Automating QGIS
	Introduction
	Installing QGIS for development
	Using the QGIS Python console for interactive control
	Using the Python ScriptRunner plugin
	Setting up your QGIS IDE
	Debugging QGIS Python scripts
	Navigating the PyQGIS API
	Creating a QGIS plugin
	Distributing a plugin
	Creating a standalone application
	Storing and reading global preferences
	Storing and reading project preferences
	Accessing the script path from within
your script

	Chapter 2: Querying Vector Data
	Introduction
	Loading a vector layer from a file sample
	Loading a vector layer from a spatial database
	Examining vector layer features
	Examining vector layer attributes
	Filtering a Layer by geometry
	Filtering a layer by attributes
	Buffering a feature intermediate
	Measuring the distance between two points
	Measuring the distance along a line sample
	Calculating the area of a polygon
	Creating a spatial index
	Calculating the bearing of a line
	Loading data from a spreadsheet

	Chapter 3: Editing Vector Data
	Introduction
	Creating a vector layer in memory
	Adding a point feature to a vector layer
	Adding a line feature to a vector layer
	Adding a polygon feature to a vector layer
	Adding a set of attributes to a vector layer
	Adding a field to a vector layer
	Join ing a shapefile attribute table to
a CSV File
	Moving vector layer geometry
	Changing a vector layer feature's attribute
	Deleting a vector layer feature
	Deleting a vector layer attribute
	Reprojecting a vector layer
	Converting a shapefile to KML
	Merging shapefiles
	Splitting a shapefile
	Generalizing a vector layer
	Dissolving vector shapes
	Performing a union on vector shapes
	Rasterizing a vector layer

	Chapter 4: Using Raster Data
	Introduction
	Loading a raster layer
	Getting the cell size of a raster layer
	Obtaining the width and height of a raster
	Counting raster bands
	Swapping raster bands
	Querying the value of a raster at a
specified point
	Reprojecting a raster
	Creating an elevation hillshade
	Creating vector contours from elevation data
	Sampling a raster dataset using a regular grid
	Adding elevation data to line vertices using a digital elevation model
	Creating a common extent for rasters
	Resampling raster resolution
	Counting the unique values in a raster
	Mosaicing rasters
	Converting a TIFF image to a JPEG image
	Creating pyramids for a raster
	Converting a pixel location to a map coordinate
	Converting a map coordinate to a pixel location
	Creating a KML image overlay for a raster
	Classifying a raster
	Converting a raster to a vector
	Georeferencing a raster from control points
	Clipping a raster using a shapefile

	Chapter 5: Creating Dynamic Maps
	Introduction
	Accessing the map canvas
	Changing the map units
	Iterating over layers
	Symbolizing a vector layer
	Rendering a single band raster using a
color ramp algorithm
	Creating a complex vector layer symbol
	Using icons as vector layer symbols
	Creating a graduated vector layer symbol renderer
	Creating a categorized vector layer symbol
	Creating a map bookmark
	Navigating to a map bookmark
	Setting scale-based visibility for a layer
	Using SVG for layer symbols
	Using pie charts for symbols
	Using the OpenStreetMap service
	Using the Bing aerial image service
	Adding real-time weather data from OpenWeatherMap
	Labeling features
	Changing map layer transparency
	Adding standard map tools to the canvas
	Using a map tool to draw points on
the canvas
	Using a map tool to draw polygons or lines on the canvas
	Building a custom selection tool
	Creating a mouse coordinate tracking tool

	Chapter 6: Composing Static Maps
	Introduction
	Creating the simplest map renderer
	Using the map composer
	Adding labels to a map for printing
	Adding a scale bar to the map
	Adding a north arrow to the map
	Adding a logo to the map
	Adding a legend to the map
	Adding a custom shape to the map
	Adding a grid to the map
	Adding a table to the map
	Adding a world file to a map image
	Saving a map to a project
	Loading a map from a project

	Chapter 7: Interacting with the User
	Introduction
	Using log files
	Creating a simple message dialog
	Creating a warning dialog
	Creating an error dialog
	Displaying a progress bar
	Creating a simple text input dialog
	Creating file input dialog
	Creating a combobox
	Creating radio buttons
	Creating checkboxes
	Creating tabs
	Stepping the user through a wizard
	Keeping dialogs on top

	Chapter 8: QGIS Workflows
	Introduction
	Creating an NDVI
	Geocoding addresses
	Creating raster footprints
	Performing network analysis
	Routing along streets
	Tracking a GPS
	Creating a mapbook
	Finding the least cost path
	Performing nearest neighbor analysis
	Creating a heat map
	Creating a dot density map
	Collecting field data
	Computing road slope using elevation data
	Geolocating photos on the map
	Image change detection

	Chapter 9: Other Tips and Tricks
	Introduction
	Creating tiles from a QGIS map
	Adding a layer to geojson.io
	Rendering map layers based on rules
	Creating a layer style file
	Using NULL values in PyQGIS
	Using generators for layer queries
	Using alpha values to show data density
	Using the __geo_interface__ protocol
	Generating points along a line
	Using expression-based labels
	Creating dynamic forms in QGIS
	Calculating length for all selected lines
	Using a different status bar CRS than the map
	Creating HTML labels in QGIS
	Using OpenStreetMap's points of interest
in QGIS
	Visualizing data in 3D with WebGL
	Visualizing data on a globe

	Index

