
www.allitebooks.com

http://www.allitebooks.org


QlikView Essentials

Want to solve your Business Intelligence headaches? 
Learn how QlikView can help, and discover a powerful 
yet accessible BI solution that lets you harness your data

Chandraish Sinha

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org


QlikView Essentials

Copyright © 2016 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval 
system, or transmitted in any form or by any means, without the prior written 
permission of the publisher, except in the case of brief quotations embedded in 
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy 
of the information presented. However, the information contained in this book is 
sold without warranty, either express or implied. Neither the author, nor Packt 
Publishing, and its dealers and distributors will be held liable for any damages 
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the 
companies and products mentioned in this book by the appropriate use of capitals. 
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: January 2016

Production reference: 1120116

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78439-728-9

www.packtpub.com

www.allitebooks.com

www.packtpub.com
http://www.allitebooks.org


Credits

Author
Chandraish Sinha

Reviewer
Julián Villafuerte

Commissioning Editor
Akram Hussain

Acquisition Editors
Purav Motiwalla

Larissa Pinto

Content Development Editor
Samantha Gonsalves

Technical Editor
Pramod Kumavat

Copy Editor
Joanna McMahon

Project Coordinator
Kinjal Bari

Proofreader
Safis Editing

Indexer
Rekha Nair

Graphics
Kirk D'Penha

Production Coordinator
Manu Joseph

Cover Work
Manu Joseph

www.allitebooks.com

http://www.allitebooks.org


About the Author

Chandraish Sinha is a Business Intelligence enthusiast from Ohio. He brings  
17 years of experience in providing cost-effective BI solutions.

He is responsible for many QlikView implementations in various industries, namely 
financial, insurance, pharmaceuticals, and event management. He currently holds 
QlikView Designer and QlikView Developer certifications.

He shares his knowledge and passion through his QlikView blog  
(http://www.learnallbi.com/).

He currently works as an independent BI consultant and helps organizations in 
implementing BI solutions.

I would like to thank my family and friends to provide me time and 
encouragement in the process of writing this book.

www.allitebooks.com

http://www.learnallbi.com/
http://www.allitebooks.org


About the Reviewer

Julián Villafuerte is a founding member of Evolution Consulting, a Mexican  
firm, which provides QlikView consulting services throughout America. Since 2010, 
he has helped several companies to define effective strategies for data management 
and business analysis. As a consultant, he has worked in application development, 
project management, presales, and training divisions for many industries, including 
retail, manufacturing, and insurance.

In October, 2015, he published Creating Stunning Dashboards with QlikView, Packt 
Publishing, a practical handbook focused on developing useful and engaging 
analytical applications. He has a Master's degree in Information Technology 
Management and teaches at the Tecnológico de Monterrey in Mexico City. Recently, 
he started a blog named QlikFreak (https://qlikfreak.wordpress.com/), where 
he shares tips and tricks about data visualization, scripting, and best practices.

www.allitebooks.com

https://qlikfreak.wordpress.com/
http://www.allitebooks.org


www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub 
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print 
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at 
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a 
range of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book 
library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print, and bookmark content
•	 On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access PacktLib 
today and view 9 entirely free books. Simply use your login credentials for immediate access.

Instant updates on new Packt books
Get notified! Find out when new books are published by following @PacktEnterprise on 
Twitter or the Packt Enterprise Facebook page.

www.allitebooks.com

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com
http://www.allitebooks.org


[ i ]

Table of Contents
Preface	 v
Chapter 1: QlikView Fundamentals	 1

QlikView components	 2
QlikView installation	 2
Getting started	 4
The development life cycle of QlikView implementations	 5

About Adventure Works	 5
User requirements	 5
Analyze data model/data sources	 6

Star schema and snow flake schema	 7
QlikView development setup	 8
Summary	 9

Chapter 2: Extract, Transform, and Load	 11
Configuring settings	 12
Scripting essentials	 12
Connecting to the database	 14

Loading the OrderHeader Table	 15
Loading the OrderDetail table	 18
Creating fields in the Order table	 19
Loading the Customer table	 21
Loading the Product table	 21
Resolving the synthetic keys	 22

How to resolve synthetic keys	 23
Removing synthetic keys between the Product and Order Detail tables	 23
Loading the ProductSubcategory table	 24
Loading data from text and Excel files	 24
Loading the Product Category table	 24
Loading Employee.xlsx	 26

www.allitebooks.com

http://www.allitebooks.org


Table of Contents

[ ii ]

Circular reference and loosely coupled tables	 28
Circular reference	 28
Loosely coupled tables	 28
Resolving circular reference	 29

Loading the SalesTerritory and Shipment tables	 30
Loading an Inline table	 31
The Qualify statement	 32
Loading the Shippers table	 33
A word about resident load and Exists	 34
Finding the sales person	 34
Using If statements in the script	 35
Including files using the Include statement	 36
More on Table Viewer	 36
Time to review your data model so far	 38

Summary	 38
Chapter 3: Optimizing Your Data Model	 39

Mapping table essentials	 40
Mapping load – Territory table	 41

Mapping load – Product Category and ProductSubcategory tables	 43
Mapping load – ProductSubcategory table	 44
Mapping load – CountryRegion_Inline	 45

Concatenation	 46
Concatenation example	 47

Automatic Concatenation	 47
NoConcatenate	 48
Forced concatenation	 48

Joins	 49
Join Orders and Order Detail	 49
Left join SalesPerson	 50
Aggregating data	 51
Concatenating the new Employees table	 51

Reviewing the final data model	 53
Summary	 53

Chapter 4: Data Modeling Challenges	 55
Crosstable essentials	 56
Loading EmployeeSalesTarget.xlsx	 57
Link table	 59

Link table essentials	 59
Creating a link table	 60

Variables in QlikView	 63
Using variables to set the file path	 64

www.allitebooks.com

http://www.allitebooks.org


Table of Contents

[ iii ]

Master calendar	 64
The IntervalMatch function	 67
QlikView Data Files (QVD)	 70

Creating QVD files for our data model	 70
Optimized load – reading QVD	 72

Reading QVD files	 73
Best practices of data modeling	 74
Summary	 76

Chapter 5: Creating Dashboards	 77
Dashboarding essentials	 77
Getting started	 79

Associative experience	 79
Binary load	 80

Exploring menu items	 80
Sheet objects	 82
Creating a multi-tab application	 84

The dashboard sheet	 86
Creating list boxes for other fields	 88

Options to copy and paste objects	 90
Placing a logo on the dashboard sheet	 91

Creating a bar chart	 92
Expression Overview	 95

Creating a text object	 95
Creating a scatter chart	 97
The story of two tables	 101

Creating a straight table	 101
Enhancing your tables	 102

Groups	 104
Creating a drill-down group	 104
Creating a cyclic group	 105
Creating a pivot table	 105

Dimension limits	 107
Interactivity using text objects	 110
Some more charts	 111

Line charts	 111
Combo charts	 111
Pie charts	 112

Some important functions	 113
The Aggr function	 113
Nested aggregation	 113
Other functions	 115

Summary	 116

www.allitebooks.com

http://www.allitebooks.org


Table of Contents

[ iv ]

Chapter 6: Comparative Analysis	 117
Set Analysis essentials	 117
Using Set Analysis	 119
Alternate States	 120
What-If Analysis	 122

Using input box	 124
The last step	 125
Summary	 126

Chapter 7: Securing Your Application	 127
Section Access essentials	 127
Implementing Section Access	 130

Using OMIT	 131
Using reduction	 132

Summary	 133
Chapter 8: Application Deployment	 135

QlikView architecture essentials	 136
Client Access Licenses (CALs)	 137
QlikView application deployment	 138
QlikView server structure	 139
Summary	 139

Index	 141



[ v ]

Preface
The data is growing at a higher pace so does the need to understand data. There 
are many applications that perform data analysis and design, but QlikView takes 
Business Intelligence to the next level. The ability of QlikView to extract and present 
the data in a way that the human mind thinks, has made QlikView hugely popular. 
The associative nature of the QlikView data model has made business discovery 
fairly simple.

This book is being designed in a way that provides equal value to a novice BI 
developer and a seasoned practitioner. This book starts with the basics of QlikView,  
data warehousing and works through creating data models and visualizations. This 
book covers all the topics for the QlikView designer and developer and can be used  
as a reference guide in new or ongoing implementations.

Each chapter in the book follows a structure:

•	 Each chapter will cover the essentials of the topic in the chapter.
•	 This book covers both QlikView developer/Data model and QlikView 

designer/visualization topics.
•	 Each topic is explained first and then followed by a step–by-step exercise. 

Readers can follow these exercises to create their own data model and  
dash boarding application.

•	 This book uses the Adventure Works database; most readers will have 
familiarity with this database. There is tons of information available online 
on this database, so users will easily understand.

•	 This book also comes with data in MS Access, Excel, and text files. It is also 
accompanied with QlikView solutions/qvw's that the reader can download  
and follow.



Preface

[ vi ]

What this book covers
Chapter 1, QlikView Essentials, provides the basics of QlikView. It gives an overview 
of the QlikView architecture. It also provides instructions on how to download 
QlikView. You get to know about the star schema and learn about the underlining 
data model used in the book.

Chapter 2, Extract, Transform, and Load, as the name suggests, dives into building 
a data model in QlikView by extracting, transforming, and loading data. In this 
chapter, readers will learn about using scripts to load data from different sources  
and data transformation.

Chapter 3, Optimizing Your Data Model, deals with techniques to optimize a data model. 
This involves different ways to join data and data aggregation.

Chapter 4, Data Modeling Challenges, helps you in understanding and resolving 
different data modeling challenges. You learn about loading some special table 
types. You will also learn about the best practices of data modeling.

Chapter 5, Creating Dashboards, gives you the opportunity to learn about different 
dash boarding practices and create different visualization objects.

Chapter 6, Comparative Analysis, enforces the importance of data comparison in 
the dashboards using Set Analysis and Alternate State. You also learn about 
implementing what-if analysis.

Chapter 7, Securing Your Application, teaches how to secure your dashboard application.

Chapter 8, Application Deployment, provides an overview of servers and how 
applications can be deployed on the server.

What you need for this book
To follow this book, QlikView Desktop is required. QlikView desktop can be 
downloaded for free from Qlik.com by following the steps in Chapter 1, QlikView 
Essentials. To run QlikView desktop, you will need a minimum of 2 GB RAM and 2 
GB of hard disk. Windows 7 or higher is recommended. Though not compulsory, 
knowledge of Business Intelligence terms and SQL knowledge will be helpful.



Preface

[ vii ]

Who this book is for
This book covers all the essentials of QlikView application building. The book is 
written for novice developers who want to learn building dashboard applications 
using QlikView. This book will also help developers who are working on other 
applications but want to adopt QlikView as a next step in their career. This book 
covers all the aspects of QlikView from developers and designers to deployment.

Conventions
In this book, you will find a number of text styles that distinguish between different 
kinds of information. Here are some examples of these styles and an explanation of 
their meaning.

Code words in text, database table names, folder names, filenames, file extensions, 
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: 
"After loading this statement drop %TempKeyField as it was required only for 
comparison."

A block of code is set as follows:



Preface

[ viii ]

New terms and important words are shown in bold. Words that you see on  
the screen, for example, in menus or dialog boxes, appear in the text like this:  
"Use Debug option from File menu to debug your script."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about 
this book—what you liked or disliked. Reader feedback is important for us as it helps 
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention 
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing 
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to 
help you to get the most from your purchase.

Downloading the example code
You can download the example code files from your account at http://www.
packtpub.com for all the Packt Publishing books you have purchased. If you 
purchased this book elsewhere, you can visit http://www.packtpub.com/support 
and register to have the files e-mailed directly to you.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support


Preface

[ ix ]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes 
do happen. If you find a mistake in one of our books—maybe a mistake in the text or 
the code—we would be grateful if you could report this to us. By doing so, you can 
save other readers from frustration and help us improve subsequent versions of this 
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form 
link, and entering the details of your errata. Once your errata are verified, your 
submission will be accepted and the errata will be uploaded to our website or added 
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required 
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all 
media. At Packt, we take the protection of our copyright and licenses very seriously. 
If you come across any illegal copies of our works in any form on the Internet, please 
provide us with the location address or website name immediately so that we can 
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected  
pirated material.

We appreciate your help in protecting our authors and our ability to bring you 
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at 
questions@packtpub.com, and we will do our best to address the problem.

http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support




[ 1 ]

QlikView Fundamentals
If you are reading this book, then you are already familiar with the power of 
QlikView. You are on your way to utilize the in-memory and associative power 
of QlikView to build better insights for your organization. Business intelligence 
applications developed in QlikView are helping organizations worldwide in 
transforming their raw data into useful information.

Before jumping into creating data transformations and visualization in  
QlikView, we will cover the basics of this book. This book will cover all the 
essentials of QlikView designer and developer concepts. It will start with  
basics of QlikView, and then dive into loading data, performing transformations, 
creating visualizations, and deployment of the application. In each chapter, you 
will understand the key concepts and follow step-by-step exercises.

The first chapter will cover the development life cycle of QlikView, an introduction 
to a fictitious company Adventure works Inc., and an introduction to the adventure 
works data model.

In this chapter, we will learn about:

•	 QlikView components and installation
•	 QlikView basics
•	 Problem definition of a fictitious company
•	 Understanding existing data model and tables
•	 Development environment setup



QlikView Fundamentals

[ 2 ]

QlikView components
QlikView has three main components: QlikView Desktop, QlikView Server (QVS),  
and QlikView Publisher.

In this book, we will use QlikView desktop to create data model and visualizations.

QlikView installation
To explore the power of QlikView, you need to install QlikView desktop. A personal 
edition of QlikView desktop can be downloaded from http://www.qlik.com/us/
explore/products/free-download?ga-link=navbtn.

You will be asked to register, or login if you are already a registered user.

The installation file comes in 32-bit and 64-bit editions. Install the version based on 
your computer's specification. Installation is very straightforward. You need to just 
follow the default options. The personal edition has the full capability of QlikView 
desktop. The Personal edition works with local files only; you cannot share your 
application design file (qvw) with another unregistered user, or load a design file 
from another user.

http://www.qlik.com/us/explore/products/free-download?ga-link=navbtn
http://www.qlik.com/us/explore/products/free-download?ga-link=navbtn


Chapter 1

[ 3 ]

Installation comes with an Examples folder that contains QlikView documents.  
You can review this folder to learn more about QlikView. This folder is located  
in your installation path under C:\Program Files\QlikView.

Before moving further, we will learn the basics of QlikView:

•	 Technology: QlikView uses an in-memory data model. It stores all the data  
in RAM instead of disk. RAM storage results in faster response time.

•	 Associative experience: In QlikView, data is always associated. Association 
is automatically created between two tables having common field names. 
The associative technology results in an enhanced data discovery experience. 
Traditional BI solutions follow a predefined path to navigate and explore  
the data. QlikView allows users to take any data path of their choice.

Region

TRADITIONAL ASSOCIATIVE

State

Product

Sales
person

IT driven
Linear, pre-defined thinking
Insights missed in hidden data
Months to change
Data-centric

Region

State
Sales
person

Product

User driven
Follows the user
All data, always visible
Minutes to change
insight driven



QlikView Fundamentals

[ 4 ]

•	 Power of green, white, and grey: In a QlikView application, selected data 
elements are displayed in green, associated data is displayed in white, and 
non-associated data is shown in grey.
All the data is always present.

•	 A QlikView application development utilizes QlikView desktop. It involves, 
connecting to any format of data, extracting and transforming data by 
writing scripts, designing interactive dashboards by creating different 
visualization objects, and deploying applications on the server. Users  
access this application via access point.

•	 A QlikView design file has the extension .qvw. Qvw is also used to create  
QVD (QlikView data file). QVD stores the data extracted from the data 
source. You will learn about the power of QVDs in the subsequent chapters. 
A QlikView design file is referred to as qvw, document, or application, but  
they all mean the same.

Getting started
This book uses a data model based on Adventure works 2012 database.

Joe Smith is being hired as a QlikView consultant by Adventure Works Inc.. 
Adventure works has recently purchased QlikView. Their employees got  
an overview of QlikView, but they need help in enhancing their QlikView 
knowledge and implementing the QlikView dashboarding application.



Chapter 1

[ 5 ]

This book will take you on a wonderful journey with Joe Smith and will provide you  
with QlikView essentials, which you will require as a successful QlikView consultant.

The development life cycle of QlikView 
implementations
Joe Smith, being a seasoned QlikView consultant, knows that for successful 
implementation he needs to follow the development life cycle of QlikView.  
At a high level, he will do the following:

•	 Gain an understanding of Adventure works' business
•	 Gather user requirements
•	 Analyze data model/data sources
•	 Follow data modeling best practices
•	 Load data
•	 Follow visualization/dashboarding best practices
•	 Create dashboard
•	 Deployment

About Adventure Works
Adventure Works Cycles, is a large, multinational manufacturing company.  
The company manufactures and sells metal and composite bicycles to North 
American, European, and Asian commercial markets.

Coming off a successful fiscal year, Adventure Works Cycles is looking to broaden 
its market share by targeting their sales to their best customers, extending their 
product availability through an external website, and reducing their cost of sales 
through lower production costs.

User requirements
At Adventure works, executive management wants to utilize QlikView to address 
the following:

•	 Create an enterprise wide, scalable Business Analytics platform where the 
information is easily available, shared, and collaborated

•	 Integrate data from different data sources
•	 Gain visibility into the company's key performance indicators
•	 Comparative analysis of data by different time periods



QlikView Fundamentals

[ 6 ]

•	 Access relevant information quickly and efficiently
•	 Gain business insights to make better business decisions

Analyze data model/data sources
After understanding the business and business requirements, it's time to analyze the 
underlying data.

Adventure works is a relational database.

Management is interested in utilizing the data elements stored in the following 
tables. Tables are sourced from relational database, Excel files, and text files.

•	 Product
•	 ProductSubcategory
•	 Product Category
•	 Order Header
•	 Order Detail
•	 Customers
•	 Territory
•	 Employees
•	 Shippers

At high level, the tables from the source system have the following relationships:



Chapter 1

[ 7 ]

Star schema and snow flake schema
QlikView can handle Star schema and Snow flake schemas effectively. Star schema is 
simple to understand. It is good for reporting as number of joins are reduced.

Star schema consists of dimensions and facts. It has a fact in the middle and 
dimensions surrounding the fact. The schema shapes like a star and hence the name 
star schema.

•	 Facts: A fact table contains numeric value. It contains a quantitative value 
such as sales, revenue, or profit.

•	 Dimensions: A dimension table contains textual description. Dimensions 
provide context to the facts, for example, sales by product.

Fact tables contain foreign keys of dimension tables. The following schematic 
represents the relationship between the fact and dimension tables:

Star Schema

DimensionDimension

Dimension

Dimension Dimension Dimension

Dimension

Fact table

In a snow flake schema, a dimension is not connected directly to the fact. It is 
connected to another dimension.

Snow flake Schema

DimensionDimension

Dimension

Dimension Dimension Dimension Dimension

Dimension

Fact table



QlikView Fundamentals

[ 8 ]

In Adventure works source data model, the dimension tables are:

•	 Customers
•	 Product
•	 ProductSubcategory
•	 Product Category
•	 Territory
•	 Employees

The fact tables are:

•	 Order Header
•	 Order Detail

QlikView development setup
To set up the QlikView development environment, download the code bundle for this 
book from Packt Publishing's website (http://www.packtpub.com/support) and 
then unzip the downloaded file in your C drive within a folder with the same name as 
the ZIP file (QlikViewEssentials). The unzipped folder (C:\QlikViewEssentials) 
should now contain the following folder structure in it:

•	 Apps: This folder contains the .qvw files. Any design file created in QlikView 
has .qvw extension. These files are referred as document, app, or qvw.

•	 Data: This folder contains data files required by the application. It includes 
the access database .mdb file. Also, it contains excel and text files. This folder 
also contains a subfolder Qvds to store QVDs.

•	 Images: This folder contains the images required by the application.
•	 Includes: This folder contains any files to be included in the application,  

for example, data connection.

http://www.packtpub.com/support


Chapter 1

[ 9 ]

Summary
This chapter familiarizes us with QlikView. You learned about the different 
components of QlikView and QlikView installation. You are now equipped to  
learn subsequent chapters by gaining knowledge about the fictitious data model  
of Adventure Works Inc. and learning about data modeling best practices.

In the next chapter, you will dive more into data modeling by loading data from 
disparate datasources. You will also learn about resolving synthetic keys. You will 
learn about various data transformation techniques. It will help you in becoming  
an expert QlikView developer.





[ 11 ]

Extract, Transform, and Load
The power of any application lies in its data structure. QlikView can design very 
useful and functional data models. QlikView can extract data from disparate data 
sources and associate them to present a single version of the truth. The power of 
QlikView's ETL (extract, transform, and load) functionality can help organizations  
in transforming data.

In this chapter, you will learn how to extract data from different sources and transform 
them to design a data model. This data model will be used in later chapters to create 
dashboards. This chapter will help you in mastering ETL scripting in QlikView.

In this chapter, we shall learn about:

•	 Scripting essentials
•	 Building data models by loading data from relational data sources, Excel, 

and text files
•	 Creating calculated fields in the tables
•	 Different techniques to resolve synthetic keys
•	 Resolving circular references
•	 Loading Inline tables
•	 Resident load
•	 Including files
•	 Using If statements



Extract, Transform, and Load

[ 12 ]

Configuring settings
Before loading data in QlikView, we need to set up the user preferences and 
document properties:

1.	 Open the QlikView desktop. From the File menu, select New.
2.	 Save this new file as QlikViewEssentials.qvw into your 

QlikViewEssentials\Apps folder.
3.	 From the Settings menu, select User Preferences. Under the Save tab, make 

sure the After Reload option is checked.
4.	 From the Settings menu, select Document Properties. Under the General 

tab, check Generate Logfile. This will generate a log file and will help in 
debugging.

Scripting essentials
Scripting is a set of statements or commands that are written using a specific syntax. 
Script statements are executed to accomplish the desired results. In QlikView, scripts 
are written in the script editor. A script is written to load/extract data from data 
source tables and to transform data. Script uses QlikView specific and data source-
specific functions. Script editor is invoked by pressing Ctrl + E or using the script 
editor icon  from the toolbar. Script editor will look like the following:



Chapter 2

[ 13 ]

Here are some of the highlights of the script editor:

•	 Script statements can be organized by using tabs.
•	 The first tab is Main and it is created by default. This tab has certain variables 

already declared. These variables are set using your operating system 
settings.

•	 At the bottom of the script editor is a set of tabs used for loading data and 
script generation. Data is loaded from the Data tab and data from the files.

•	 The script is executed from left to right and top to bottom, with the exception 
being within specific load statements. Specific load statements are executed 
from bottom to top, as shown in the following image:

•	 Comments are given by using // or enclosing multiple lines  
between /*   */.

www.allitebooks.com

http://www.allitebooks.org


Extract, Transform, and Load

[ 14 ]

•	 Name should be given to a loaded table. This name will be used by QlikView 
when referencing the table. The table name should be suffixed by a colon ":".

•	 Field names can be aliased by using AS. If there is a space between the field 
name or table name then it should be enclosed by square brackets "[ ]".

•	 Table names and field names are case sensitive. "CostLastYear" is not the 
same as "costlastyear".

•	 All statements end with a semicolon ";".
•	 Execute script by clicking on the Reload icon  on the toolbar.
•	 Use Table Viewer by pressing Ctrl + T to view the created data table and data 

model.
•	 Use the Debug option from the File menu to debug your script.
•	 View the log file for all the script execution steps. The log file is located in the 

same location as your QlikView document. The name of the log is the same 
as your QlikView document. So, in the case of QlikViewEssentials.qvw, it 
will be QlikViewEssentials.qvw.log.

One of the user requirements as discussed in Chapter 1, QlikView Essentials, is 
to integrate data from different sources. To accomplish this we will load data 
from different sources such as database tables, Excel, and text files. For database 
tables, you can see the structure of the table and data by using MS-Access. Your 
QlikViewEssentials/Data folder contains QlikViewEssentials.mdb, double click 
on this file and the database will open in MS-Access. MS-Access should be present on 
your machine to open this database. You can also open and view Excel and text files 
located in the QlikViewEssentials/Data folder and get familiarized with the data.

Connecting to the database
To load data from the database, we need to create a connection to the database:

1.	 Use the same QlikView file QlikViewEssentials.qvw that you created in 
the previous section.

2.	 Go to the Main tab. Data connections should be created in the Main tab, so 
that they can be available to all the tabs after the Main tab.

3.	 Open script editor as shown previously. On the Data tab, select OLE DB 
from the database drop-down list.

4.	 If you are working with a Windows 64-bit system, be sure to check Force  
32 Bit.

5.	 Click the Connect button. In Data Link Properties, select Microsoft Jet 4.0 
OLE DB Provider as you will be using the Access database, and click Next.



Chapter 2

[ 15 ]

6.	 Browse to QlikViewEssentials.mdb, which is in the downloaded folder 
QlikViewEssentials/Data. Click on Test Connection to make sure the 
connection is correct.

7.	 Connection to the database is successfully created.

Loading the OrderHeader Table
The OrderHeader table is a database table. It stores details regarding the order such 
as order ID, order date, shipment details, and order amount. This table will help 
users in performing analysis at the order level such as orders related to customers, 
biggest sale by category, and so on:

1.	 From the File menu, open QlikView QlikViewEssentials.qvw, which you 
created in the earlier session.

2.	 Invoke script editor by clicking on the script editor icon  or by pressing 
Ctrl + E.

3.	 Create a new tab and name it Orders.

Add a new tab



Extract, Transform, and Load

[ 16 ]

4.	 From the Data tab, make sure the Force 32 Bit checkbox is checked and click 
on the Select button .

5.	 From Database Tables, select OrderHeader. Select all the fields or specific 
fields in the Fields section.

6.	 Make sure to check the Preceding Load at the bottom of the dialog box. 
Preceding load allows the use of QlikView functions within the Load 
statement.

You can load the table by unchecking Preceding Load. Without 
Preceding Load, you can only use vendor-specific functions. For 
example, if you use the Oracle database, you can use Oracle functions. 
Use of Preceding Load allows you to use QlikView functions. 
Preceding Load is also used for data transformations.

7.	 Click OK.
8.	 Provide a comment on your script to show that this is the Orders table  

load script.
9.	 Give the name of the table as Orders.



Chapter 2

[ 17 ]

10.	 The load script will appear as follows:

11.	 To execute the script, click on the reload icon  from the toolbar or press  
Ctrl + R.

12.	 After script execution, the Sheet Properties dialog box appears. This shows 
the fields loaded in the QlikView document. It also displays the system fields 
generated. System fields are the fields that are prefixed by "$", for example, 
$Field.



Extract, Transform, and Load

[ 18 ]

With the help of system fields you can understand the complete 
structure of the application. You can display these fields in list boxes 
or table boxes for ease of analysis.

Loading the OrderDetail table
In this exercise we will load the OrderDetail table. OrderDetail is a database table.

The OrderDetail table contains the details of the orders stored in the OrderHeader 
table. It stores information regarding the products ordered by the customer. One 
order may contain multiple products:

1.	 Invoke script editor by clicking on the script editor icon  or by pressing 
Ctrl + E.

2.	 Go to the Orders tab. Place the cursor on an empty row after the previously 
loaded Order table.

3.	 From the Data tab, click on the Select button .
4.	 From the database tables, select the OrderDetail table.
5.	 Provide a comment to show that this is an OrderDetail load script and give 

the name of the table as [Order Detail].
6.	 Your script for OrderDetail will appear as follows:

7.	 Save your script.
8.	 To execute script, click on the reload icon  from the toolbar or press 

Ctrl + R.



Chapter 2

[ 19 ]

9.	 From the File menu, click on the Table Viewer icon  or press Ctrl + T. In 
table viewer you can see how loaded tables are connected.

10.	 Observe that the Orders and Order Detail tables are connected based on 
the OrderID field. QlikView associates two tables based on common fields 
between the two tables.

Creating fields in the Order table
It is sometimes necessary to create fields in the loaded tables as these fields may not 
be present in your source table. It is easy to create fields in QlikView tables. We will 
create fields for year and month as these fields are not present in the source tables. 
Year and month fields will be important to perform year-by-year comparisons or to 
see the data by year and month:

1.	 Open the script editor by pressing Ctrl + E.
2.	 Go to the Orders tab.
3.	 Locate OrderDate and add the following lines anywhere in the load 

statement for Order using OrderDate. Remember field names are case 
sensitive:
    Year (OrderDate) As Year,
    Month (OrderDate) As Month,



Extract, Transform, and Load

[ 20 ]

4.	 Similarly, add a calculation in the Order Detail table for LineTotal.             
Locate Order Detail load script in the Orders tab and add the following 
code:
    UnitPrice * OrderQty As LineTotal

5.	 Add the calculation for LinesSalesAmount in the Order Detail table 
using Preceding Load. Preceding Load takes input from the previous load 
statement. It allows you to define multiple transformations and calculations 
within one load script.

6.	 Add the following code on top of the Order Detail load script:
LOAD *,
LineTotal  *  (1-Discount) As LineSalesAmount;

7.	 This load statement takes LineTotal from the previous load statement  
and uses it to calculate LineSalesAmount.

8.	 Alias OrderQty to make it a more business-friendly name:
    OrderQty As Quantity, 

9.	 After performing the above transformation, your load script will appear  
as follows:



Chapter 2

[ 21 ]

Loading the Customer table
In this exercise we will load Customer table. Customer is a database table. Customer 
tables store the details about the customers. These are the customers who have 
ordered the products:

1.	 Invoke script editor by clicking on the script editor icon  or by pressing 
Ctrl + E.

2.	 Create a new tab by clicking on  and name it Dimensions.
Organizing script statements using tabs is helpful in understanding and 
debugging the code. As Customer table is a Dimension table, the load script 
of Customer is written in a new tab.

3.	 Click on Select and choose Customer in Database Tables. Click on OK.
4.	 Provide a comment and give the table name as Customers.
5.	 Reload the script.
6.	 From the file menu, click on the Table Viewer icon  or press Ctrl + T to 

examine the data model.

Loading the Product table
In this exercise we will load the Product table. Product is a database table. The 
Product table contains the information about the product. The Order Details table 
refers to this table. The products ordered by the customers are stored in this table.

1.	 Invoke script editor by clicking on the script editor icon  or by pressing 
Ctrl + E.



Extract, Transform, and Load

[ 22 ]

2.	 Go to the Dimensions tab and place your cursor in the empty space below 
the Customer load script.

3.	 Click on the Select button and select Product table from the Database  
Tables list.

4.	 Provide a comment and name the table as Product.
5.	 Reload.
6.	 Press Ctrl + T to view the Table Viewer.

Resolving the synthetic keys
Observe the previous screenshot of the Table Viewer, which shows the creation of 
synthetic keys. Synthetic keys are created due to the presence of multiple common 
columns across multiple tables. This may cause QlikView to use complex keys to 
create connections in the data model.

Synthetic keys are generally resource intensive, and make the data model complex 
and hard to understand. In QlikView, the association between two tables should be 
made based on a single common column between the two tables. Synthetic keys should 
always be eliminated.



Chapter 2

[ 23 ]

How to resolve synthetic keys
Synthetic keys can be removed by:

•	 Removing the fields that do not provide context to the data model
•	 Renaming the fields
•	 By using the Qualify statement

Removing synthetic keys between the 
Product and Order Detail tables

1.	 In the previous data model, you can see the connection between the tables is 
made on two columns: ProductID and UnitPrice.

2.	 UnitPrice in the Product table is different from the UnitPrice in the 
OrderDetail table. UnitPrice in the Product table is the "list price of  
the product" whereas the UnitPrice in the OrderDetail table is the 
"product-unit price for the specific order". Therefore, we can rename  
the UnitPrice in the Product table.

3.	 Open Script Editor. Navigate to the Product table in the Dimensions tab.
4.	 Rename UnitPrice in Product table to ListPrice by using the following:

UnitPrice As ListPrice

5.	 Save and reload your script and open the Table Viewer.



Extract, Transform, and Load

[ 24 ]

Loading the ProductSubcategory table
1.	 Invoke script editor by clicking on the script editor icon  or by pressing 

Ctrl + E.
2.	 Go to the Dimensions tab and place your cursor in the empty space below 

the Product load script.
3.	 Click on the Select button and select ProductSubcategory table from the 

Database Tables list.
4.	 Provide a comment and table name.
5.	 Reload.

Loading data from text and Excel files
QlikView can load delimited text files, fixed record files, DIF files, Excel files, HTML 
files, and XML files. These file types are referred as "table files" in QlikView.

In our source data, we have some data stored in text and Excel files.

Loading the Product Category table
In this exercise, we will load the Product Category table. The data for Product 
Category is present in a text file:

1.	 Use the same QlikView file QlikViewEssentials.qvw, which you created in 
the previous section.

2.	 Invoke the script editor.
3.	 Navigate to the Dimensions tab and go to the empty space below the 

previously loaded table.
4.	 At the bottom of script editor, in Data from Files group, make sure Relative 

Paths is checked.



Chapter 2

[ 25 ]

The path to a file can be an absolute or a relative path. The absolute 
path for the ProductCategory file is C:\QlikViewEssentials\
Data\ProductCategory.txt. If you move your application to a 
different machine, and the location of the ProductCategory file is on 
a different drive other than C:, then your load statement will fail as it 
will not find the file.
A relative path, on the other hand, specifies the location of a directory 
relative to the current directory. A relative path will be useful when 
you move your application to a different machine. The relative path of 
ProductCategory.txt is ..\Data\ProductCategory.txt and it 
will still remain valid as long as the file resides in this path, irrespective 
of which drive is used.

5.	 In the Data from Files group, click on the Table Files button .
6.	 Browse and open ProductCategory.txt. This file is in the downloaded 

folder, under QlikViewEssentials\Data.
7.	 Verify the settings in the file wizard.

8.	 Using table files, you can load various file types as listed on the left, 
under File Type. A text file is a delimited file. It can be delimited by a tab, 
semicolon, or comma. Select the delimiter based on your file. For Labels, if 
the column headers in your file are stored in the first line of the file, specify 
Embedded Labels. Column headers can be explicitly specified. In such 
scenarios, specify Explicit under Labels.



Extract, Transform, and Load

[ 26 ]

9.	 The load script for Product Category should look like the following:

Loading Employee.xlsx
Employee data is in Microsoft Excel format. We will follow the steps to load Excel 
files using the Table Files option. Employee.xlsx contains the details about the 
Adventure Works employees. Some of these employees are also sales persons. Here, 
our objective is to load employee details and, later in the exercise, we will use this 
table to identify sales persons.

1.	 Invoke script editor if it is not already open.
2.	 Create a new tab and name it Employees.

Add a new tab

3.	 At the bottom of script editor, in Data from Files group, make sure Relative 
Paths is checked.

4.	 Click on the Table Files button .
5.	 Browse and open Employee.xlsx. This file is in the downloaded folder, 

under QlikViewEssentials\Data.
6.	 Verify the selections in the File Type wizard:

°° File Type: Excel (xlsx).
°° Tables: Employee. If you have multiple worksheets in your Excel, 

you will see those worksheets in the drop-down menu.
°° Header Size: None. This is used when Excel has a different header 

size.
°° Labels: Embedded Labels. This is used to configure the headers in 

your Excel.



Chapter 2

[ 27 ]

7.	 Click Finish to return to the Employees tab and load the script.
8.	 Observe the generated load statement.
9.	 Provide a comment to the script as Employees table.
10.	 Remove the directory; give a name to your table as Employees.
11.	 Load the data by clicking on the reload icon  from the toolbar.  

As you load the data, you will get a warning, as follows:



Extract, Transform, and Load

[ 28 ]

12.	 Invoke Table Viewer by clicking on  or by pressing Ctrl + T. You will see 
the following picture in the data model:

Circular reference in data model

Circular reference and loosely coupled tables
The previous warning and data model brings us to the discussion of circular 
reference and loosely coupled tables.

Circular reference
Circular reference, or loop, occurs when more than one path exists between the 
tables. In the previous example, there are two paths to the Orders table. One through 
Customer table, and the other through Employees table. This loop may occur in 
ambiguous results.

Loosely coupled tables
QlikView handles this scenario automatically by setting one or more tables as loosely 
coupled. This is often a transaction table.



Chapter 2

[ 29 ]

If you navigate to Settings | Document Properties, under the Tables tab, you will 
see the Orders table as a Loosely Coupled table. If you want to change the default 
behavior of QlikView, you can either change the Loosely Coupled table in the 
document properties or use loosely coupled statement in the script. Loosely coupled 
tables will show dotted lines in the Table Viewer.

This circular reference is occurring due to connections from Orders to Customers to 
Syn table to Employees and back to Orders.

Resolving circular reference
Resolving circular reference removes the ambiguity in the data model:

1.	 If we go back to the Table Viewer model, we see that there is a synthetic key 
due to the presence of more than one common column between Customers 
and Employees.

2.	 Note that FirstName, LastName, CountryRegionName, City, and other fields 
in the Customers and Employees column will be different.

3.	 Rename the common columns in Employees table. The load script of 
Employees table should appear as follows:

Alternatively, all the columns in a table can be renamed using the 
Qualify statement. The Qualify statement qualifies the column 
name with the table name. The Qualify statement is explained in 
detail later in the chapter.



Extract, Transform, and Load

[ 30 ]

4.	 This should eliminate the circular loop. You can see the model in the Table 
Viewer.

Loading the SalesTerritory and Shipment 
tables
The SalesTerritory table contains the territory details. This table connects with 
OrderHeader table. The Shipment table stores details about the shipper responsible 
for shipping the ordered product:

1.	 From the File menu, open QlikViewEssentials.qvw, which you created in 
the earlier session.

2.	 Invoke script editor by clicking on the script editor icon  or by pressing 
Ctrl + E.

3.	 Navigate to the Dimensions tab and go to empty space after the last loaded 
table.

4.	 Click on the Select button and select SalesTerritory table from the Database 
Tables list.

5.	 Provide a comment and name the table Territory.



Chapter 2

[ 31 ]

Loading an Inline table
Inline load is used if data is to be typed within the script and not loaded from a file. 
The Inline data wizard is also used to create inline load.

Inline load is used when the source database does not contain the columns you need 
for your application.

We will create an Inline table to load the country and region. Since we want these 
regions to be associated with a customer's country, we will use CountryRegionName:

1.	 Use the same QlikView file QlikViewEssentials.qvw that you created in 
the previous section.

2.	 Invoke script editor and create a new tab Inline.
3.	 From the menu, use Insert | Load Statement and select Load Inline.
4.	 The Inline Data wizard will appear, which is similar to Excel but you cannot 

perform calculations here as in Excel.
5.	 Double click on F1 in the wizard to type the first column name as 

CountyRegionName. Double click on the second column to enter the second 
column name as Region. These are the two column names of your table.

6.	 Now insert values for these columns.

7.	 Click OK. Your inline load script will be generated. Give it a table name.



Extract, Transform, and Load

[ 32 ]

8.	 Your inline load will appear as follows:

9.	 Since the first column is CountryRegionName, it will get associated with 
Customers table.

The Qualify statement
The Qualify statement is another way to resolve synthetic keys. It is a method to 
rename a column. It qualifies a column with a table name. It is similar to Tablename 
and Fieldname used in SQL. It is a faster method of aliasing a column, if multiple 
columns need to be renamed to avoid synthetic keys or loops. Qualify continues till it 
hits an Unqualify statement:

Syntax : 
Qualify * ;
…
…
…
UnQualify * ;



Chapter 2

[ 33 ]

Loading the Shippers table
We will use Qualify while loading the Shippers table because it contains fields 
that are common with other tables. If these fields are not renamed then it will create 
synthetic keys. Qualify will rename all the fields in the table. In this exercise, we will 
see why Qualify is used:

1.	 Invoke the script editor by pressing Ctrl + E.
2.	 Navigate to the Dimensions tab and go to the empty space below the 

previously loaded table.
3.	 Click on the Select button and select the Shippers table.

Your load script will appear as follows:

4.	 Reload the script. You will get a warning for loop, and synthetic keys will 
be created. This happened since the Shippers and Customers tables have 
more than one common field, for example, FirstName, LastName, and 
MiddleName.

5.	 You can resolve this loop and synthetic key by renaming columns in the 
Shippers table. Rename columns using the Qualify statement. Since 
ShipperID is used to join with Orders table, make sure to unqualify 
ShipperID.

6.	 Make sure to have the last statement as Unqualify otherwise it will qualify 
all the load scripts after this load statement.

www.allitebooks.com

http://www.allitebooks.org


Extract, Transform, and Load

[ 34 ]

7.	 Your modified script will appear as follows:

A word about resident load and Exists
Resident load is used to load a table that is already loaded in the QlikView document. 
Resident load can be used to create a new table or additional transformation.

Exists (field, expression) is used to determine whether the specific field value exists 
in the loaded fields so far.

•	 Field is a name or a string expression evaluating to a field name.
•	 Expression is a valid expression that results in the value to be compared in 

the specified field. If omitted, the current record's value in the specified field 
will be assumed. For example, Exists (Country, 'England') returns -1 
(true) if the field value 'England' is found in the current content of the field 
Country.

Finding the sales person
Now, we will work on the problem of identifying the Sales Person who sold the 
Orders. This will be done using the Resident load and Exists clause.



Chapter 2

[ 35 ]

We can assume that the sales person will be an employee of the company. The sales 
person is an employee but not all employees are sales persons. The objective here is 
to identify sales persons among the list of employees in the Employee table:

1.	 Open the QlikView document QlikViewEssentials.qvw that has been used 
so far.

2.	 From the File menu, select Edit Script or press Ctrl + E.
3.	 Go to the Orders Tab. Navigate to Orders' load script. Use EmployeeID to 

create a new field for SalesEmployeeID. This field will be used to identify 
the sales person in the Orders table:
            EmployeeID As SalesEmployeeID,

4.	 Navigate to the Employees tab. Go to the empty space after the Employees 
data load. We will create the SalesPerson table by using the fields of the 
Employees table.

5.	 The SalesPerson table load script will appear like the following:

Using If statements in the script
If-then-else is used to control the execution path of the script based on one or 
multiple conditions.

The If statement in QlikView uses the following syntax:

If (condition, then, else)

If the condition is true, the then part is processed. If the condition is false, the else 
portion is processed.

We will use If statements to group ProductLine:

1.	 Invoke script editor.
2.	 Navigate to the Dimensions tab and go to load script of Product table.



Extract, Transform, and Load

[ 36 ]

3.	 Write the following line of code anywhere in the Product table:
  if(ProductLine = 'M','Mountain',
    if(ProductLine = 'R','Road', 
    if(ProductLine = 'S', 'Accessory', 'Components')) ) 
    As ProductLineDesc, 

4.	 Reload your script and make sure ProductLineDesc has the correct values.

Including files using the Include statement
In order to share a snippet of code or data, use the Include statement. A file can be 
shared across applications using Include.

A good use case is a database connection string. You can store a database connection 
string in the text file and it can be included in any number of QlikView applications. 
In case the connection string changes, you need to just change one text file.

In this exercise we will keep the database connection string in the text file and use the 
Include statement to include it in the script:

1.	 Invoke the script editor and go to the Main tab.
2.	 Copy the OLEDB32 connection string and comment on the connection string.
3.	 Paste this connect string into a text file and name this file as  

DBConnection.txt.
4.	 Save DBConnection.txt in your Includes folder under the following  

C:\QlikViewEssentials\Includes.
5.	 Go to script editor and navigate to the Main tab. From the menu, choose 

Insert | Include Statement.
6.	 Browse to your Includes folder and open DBConnection.txt.
7.	 Your include statement will look like the following:

          $(Include=..\includes\dbconnection.txt);

8.	 Save and reload your file. Now your connection string is coming from  
this file.

More on Table Viewer
Table Viewer is used to view tables loaded in the QlikView document. On the top  
of the Table Viewer you can see two options: Internal Table View and Source  
Table View.



Chapter 2

[ 37 ]

Internal Table View shows the data tables as QlikView stores them. Source Table 
View shows data tables as QlikView reads them.

If you hover the cursor over a table header, it will display the table name, number of 
rows loaded, and number of keys in the table:

If you place your cursor on one of the key fields, some more information is 
displayed:

As seen in the preceding screenshot, the following information is displayed:

•	 Information density displays the number of records that are not null.
•	 Subset ratio is the number of distinct values of this field found in this table 

as compared to the total number of distinct values of this field (for example, 
other tables also).

•	 Tags display the tags added in the script or the system tags.

Use this information to perform a high-level check of your data model.



Extract, Transform, and Load

[ 38 ]

Time to review your data model so far
In the previous exercises, we have loaded the data source tables. These tables will 
be used in creating visualizations. It is important that tables are connected correctly, 
and synthetic keys and loops are resolved. Review the following tables we have 
loaded so far.

Summary
This chapter covered the basics of QlikView scripting and data loads. You were able 
to load data from a relational database and flat files to get started on creating a data 
model. This chapter also covered the data transformations required to find a sales 
person, ProductLine grouping, and calculated fields in the tables. As more tables are 
loaded, synthetic and circular loops are produced. By learning to resolve synthetic 
keys and loops, you are on your way to producing an optimized data model.

In the next chapter, you will learn how to reduce the number of tables and joins in 
your data model by using mapping load and applymap functions. You will also 
learn about different kind of joins in QlikView.



[ 39 ]

Optimizing Your Data Model
Your data model should always be simple and easy to understand. An expert data 
modeler will always clean up the data model to remove any unnecessary tables.

QlikView provides different techniques for data model cleanup. In this chapter we 
will learn ways to clean up the data model and create a star schema.

In this chapter we shall:

•	 Learn about mapping tables and mapping load
•	 Clean up the data model using "mapping load" and "apply map"
•	 Learn about different kinds of joins
•	 Aggregate data
•	 Learn to use "concatenate"

Let's review the data model that we created in the last chapter:



Optimizing Your Data Model

[ 40 ]

One of our requirements is to create a robust data model that is clean, easy to 
understand, and helps in data analysis. This chapter describes techniques to achieve 
this requirement. By understanding and applying the concepts of mapping load, 
concatenate, and joins, we can create a more useful data model.

Mapping table essentials
Mapping tables are very useful in QlikView data modeling. Some of the uses of 
mapping tables include data cleansing, renaming the data source-specific column 
names with business-friendly names, and providing comments in the script. The 
following points discuss some of the components and properties of mapping tables:

•	 Mapping load is used to reduce the number of tables in a data model. 
Mapping prefix is used to create a mapping table. Mapping tables are  
used only for field mapping and are automatically dropped after script 
execution.

•	 These are usually the look-up tables.
•	 Mapping tables must have two columns. Even if the table has more columns,  

you can use only two columns at a time to achieve mapping table functionality.  
The same table can be used multiple times in case other columns need to be 
mapped.

•	 The first column is always a key (ID) column. The second column contains 
the desired mapping value. The first column field name can differ between 
the mapping table and the mapped table.

•	 Use the ApplyMap function in the table to compare the key/ID field to get  
the desired mapping value.

•	 It provides a third optional parameter when no comparison is found.

Looking at the previous data model, you can identify the tables that are good 
candidates for mapping load. These tables will be:

•	 Territory

•	 ProductSubcategory

•	 Product Category

•	 CountryRegion_Inline



Chapter 3

[ 41 ]

Mapping load – Territory table
The objective here is to add TerritoryDesc to the Orders table and remove the 
Territory table from the data model. This will help in data model cleanup as one 
table will be reduced:

1.	 As a best practice, all mapping loads should be in one tab. This tab should be 
the very first tab in the script after the Main tab.

2.	 Open the QlikView file QlikViewEssentials.qvw that you have been using 
so far. Save as QlikViewEssentials_Chap3.qvw.

3.	 Invoke the script editor by pressing Ctrl + E.
4.	 Create a new tab and name it Mapping. Move this tab all the way to the left 

by using the Promote Tab icon as highlighted in the following screenshot. It 
should be your tab after the Main tab.

5.	 Navigate to the Dimensions tab and cut the load script of SalesTerritory 
and paste it in the Mapping tab.

6.	 Navigate to the Mapping tab, change the comment, and name the table as 
Territory_Map.

7.	 Prefix the load statement with the Mapping keyword. This will treat the 
SalesTerritory table as a mapping table. This table will not be present in 
the memory and will get dropped after the script execution.

8.	 Make the first column as the ID column and name it TerriID, and name the 
second column as TerriDesc. Names are optional.

9.	 The mapping table load script should look like the following:



Optimizing Your Data Model

[ 42 ]

10.	 Navigate to the Orders tab, and go to the last line in the Orders table load 
statement after TotalDue. Add "," after TotalDue. Use the ApplyMap function 
to add a TerritoryDesc column in the Orders table. Name this column as 
[Order Territory].
ApplyMap('Territory_Map',TerritoryID,'Territory Not Found') As 
[Order Territory]

This is the ApplyMap syntax. Here, Territory_Map is the name of the 
mapping table. TerritoryID is the lookup column. 'Territory Not 
Found' is an optional parameter in case the match is not found.

11.	 Your Orders table script should look like the following:

12.	 Reload your script.
13.	 Navigate to Table Viewer (Ctrl + T) .You will notice that the Territory  

table has gone and the Order Territory column has been added to the 
Orders table.

14.	 Create a list box for Order Territory.
15.	 To create a list box, close the script editor by clicking OK. Anywhere in  

the empty space on the sheet, right click and choose New Sheet Object  
and select List Box. In the properties of the list box, select Order Territory 
under the Field section.



Chapter 3

[ 43 ]

You will see a new field is being created. Notice Territory Not Found 
because in some cases no match is found between the two tables.

Mapping load – Product Category and 
ProductSubcategory tables
Here the objective is to add the [Category Desc] to the ProductSubcategory 
table and then we will add Category desc and subcategory name from the 
ProductSubcategory table to the Product table:

1.	 Open QlikViewEssentials_Chap3.qvw.
2.	 Invoke the script editor by pressing Ctrl + E.
3.	 Navigate to the Dimensions tab and cut the Product Category load script 

and paste it in the Mapping tab.
4.	 The mapping load of Product Category will appear as follows:



Optimizing Your Data Model

[ 44 ]

5.	 Navigate to the Dimensions tab. Go to the last line of the 
ProductSubCategory load script and use ApplyMap to add  
[Category Desc] to the ProductSubcategory.

6.	 Save and execute your script. Review your data model in Table Viewer to see 
that the Product Category table is removed and Category Desc is added to 
the ProductSubcategory table.

Mapping load – ProductSubcategory table
Use mapping load with the ProductSubcategory table to get the subcategory name:

1.	 Navigate to the Dimensions tab and cut the ProductSubcategory load 
script and paste it in the Mapping tab.

2.	 The mapping load of ProductSubcategory for SubCategoryName and 
[Category Desc] will appear as follows:



Chapter 3

[ 45 ]

3.	 Navigate to the Dimensions tab and go to the last line of the Product  
load script. Use ApplyMap to add SubCategoryName and CategoryName  
to the Product table. ApplyMap statements in the Product table will appear 
as follows:

4.	 Save and load the script. View your data model in Table Viewer.  
The ProductSubcategory table is removed and SubCategoryName  
and CategoryName is added to the Product table.

Mapping load – CountryRegion_Inline
Use mapping load to get the CountryRegion_Desc from CountryRegion_Inline 
and include it in the Customers table:

1.	 The CountryRegion_Inline table can also be converted to the mapping table.
2.	 Navigate to the Inline tab and cut the CountryRegion_Inline load script 

and paste it in the Mapping tab.
3.	 The mapping load script for CountryRegion will appear as follows:

4.	 Navigate to the Dimensions tab. Go to the load script of the Customers table 
and, in the last line, use ApplyMap as follows:

5.	 Save and load the script.



Optimizing Your Data Model

[ 46 ]

6.	 Review the data model in Table Viewer. The data model so far will appear as 
follows. It is much cleaner with fewer tables.

Concatenation
Another way to optimize your data model in QlikView is through concatenation.

Concatenation is a way to combine or merge tables. It is similar to Union All in SQL. 
It appends rows from one table to another. The result of concatenation between two 
tables (Table1 and Table2, for example) is that a new table contains the sum of the 
numbers of records in Table1 and Table2. Concatenate is used when you have two 
fact tables in your data model. Two fact tables are not good for your data model. You 
can combine them using concatenate or link tables. Link tables are explained in the 
next chapter.

Concatenate is also useful when you have to combine two tables with similar 
structures. Say, for example, your organization has an Employee table that stores 
employee data. Your organization buys another company and now wants to merge 
the details of the employees of this new company with the existing Employee table.



Chapter 3

[ 47 ]

Let's explore different concatenation options:

•	 Automatic concatenation: If the field names and the number of fields in two 
or more tables are exactly the same, QlikView will automatically concatenate 
the output of the different load statements into one table.

•	 Forced concatenation: If the field names and the number of fields in two 
or more tables are NOT exactly the same, QlikView will allow you to force 
concatenation by the use of Concatenate keyword.

•	 No concatenate: If the field names and the number of fields in two or 
more tables are exactly the same, QlikView will automatically concatenate 
them but you can avoid such automatic concatenation by using the 
NoConcatenate keyword.

Concatenation example
Create an Inline table in QlikView to understand the concept of concatenation:

Automatic Concatenation
1.	 Navigate to the Inline tab.
2.	 Create two Inline tables as shown in the following:

3.	 Save and reload the script.
4.	 View the data model in Table Viewer. You will see only one table with six  

rows. This is because Table2 automatically concatenated with Table1.



Optimizing Your Data Model

[ 48 ]

NoConcatenate
Use the same script and add NoConcatenate between the two load scripts:

In Table View you will see two tables, Table1 and Table2. You will see that the 
synthetic key between them, as column names in the tables, are the same.

Forced concatenation
To test force concatenation, comment the previous Table1 and Table2 load scripts.

1.	 Now create two tables with different columns and use the Concatenate 
keyword to force concatenation.

2.	 After executing the script, notice that Table Viewer shows one single table, 
Table1. Even though the column names in the two tables are different, 
QlikView merged them.



Chapter 3

[ 49 ]

Joins
Joins in QlikView are similar to joins in SQL. Joins between two tables always result 
in one table. With joins, the columns of the two tables are affected. Joins are explicitly 
made by using inner join, left join, right join, and outer join.

In QlikView, joins work in the following ways:

•	 Inner join: Only the matching records in the two tables are stored.
•	 Left join: All the records from the first/left table are kept, and only those 

records from the second table that match a record in the first table are kept.
•	 Right join: All the records from the second/right table are kept, and only 

those records from the first table that match a record in the second table are 
kept.

•	 Outer join or join: Records from both the tables will be stored and, where 
possible, records will be matched.

Use Joins.qvw to practice different kinds of joins and 
concatenate options. It is located in your Apps folder.

Join Orders and Order Detail
The Orders and Order Detail tables will be joined because an optimized data 
model should have only one fact table.

We will use left join between the tables:

1.	 Use the QlikViewEssentials_Chap3.qvw. Navigate to the Orders tab in 
your script editor.

2.	 After the load scripts of the Orders table, type left join (Orders).
3.	 Comment the [Order Detail] table name as this table name will be 

irrelevant now.



Optimizing Your Data Model

[ 50 ]

4.	 Your updated script will appear as follows:

5.	 Observe the data model in Table Viewer and you will see the Orders and 
Order Detail tables have combined into one table, Orders.

Left join SalesPerson
To further optimize your data model, left join SalesPerson with the Orders table:

1.	 Navigate to the Employees Tab. Go to the SalesPerson load script.
2.	 In the empty space before the load statement, type left join (Orders).
3.	 This will left join Orders and SalesPerson. It is good practice to type the 

table name with left join otherwise it will left join with the previously loaded 
table script.



Chapter 3

[ 51 ]

4.	 Save and reload.
5.	 Observe the Orders table in the Table Viewer. SalesPerson Name and 

SalesPersonTitle have been added.

Aggregating data
We have combined the Orders and Order Detail tables; now it is time to find the 
sales amount for each of these orders by aggregating the data by OrderID:

1.	 Use QlikViewEssentials_Chap3.qvw. Navigate to the Orders tab in your 
script editor.

2.	 Navigate to the empty space after the Order Detail load statement.
3.	 Perform "resident load" from the Orders table and aggregate using the Group 

By function. Resident load is used here as the Orders table is already loaded 
in the script and we can reuse the same table using resident load.

4.	 It will be better to keep [Order Sales Amt] in the Orders table as it is at the 
Order level. To achieve this, go to the empty space above the load statement 
and type left join(Orders).

5.	 Your script should appear as the following:

Concatenating the new Employees table
As the QlikView development was progressing, Adventure Works Inc. acquired 
a new company. Now they want to merge the new company's employees into the 
Adventure Works' Employees table.

This can be best achieved by using Concatenate, since we know that two tables 
with the same structure get automatically concatenated. Even if the structure of 
NewEmployees is not the same, we should make it the same so that it concatenates 
with Employees.



Optimizing Your Data Model

[ 52 ]

The new employee file structure is similar to the Employees table loaded in QlikView.

This new employee file NewEmployees.xlsx is also located in the same location:

1.	 Navigate to the Employees tab in QlikViewEssentials_Chap3.qvw.
2.	 Go to the empty space after the SalesPerson load script.
3.	 Click on Table Files and browse to NewEmployees.xlsx, which is located 

under C:\QlikViewEssentials\Data. Make sure to select Embedded labels 
under Labels while selecting the file.

4.	 Remove the directory. Save and reload your script. You will observe just 
one table, Employees, in the data model and it will have records of both 
Employees and NewEmployees.

5.	 The script of the NewEmployees table will appear as the following:



Chapter 3

[ 53 ]

Reviewing the final data model
By applying the previous techniques, the data model is being converted into a  
star schema.

Summary
QlikView always desires a star schema as it is simple to understand and efficient for 
reporting. In this chapter, we learned different techniques of creating a star schema 
and converted our previously created data model into a star schema by using 
mapping loads, joins, and concatenation.

In the next chapter, we will learn about data modeling challenges, which are 
resolved by using cross tables, link tables, and the master calendar. You will also 
learn about handling slowly changing dimensions using the Interval Match 
function. Finally we will use QVDs to read and write our data model tables.





[ 55 ]

Data Modeling Challenges
In creating a data model, you will come across challenges in terms of different 
formats of data, loading multiple fact tables, and performance issues. There are 
techniques to resolve these challenges.

In this chapter we shall:

•	 Learn about loading a Crosstable
•	 Learn about the Autonumber function
•	 Learn about creating a link table to load multiple fact tables
•	 Learn about variable overview
•	 Learn about creating a master calendar
•	 Handle SCD using IntervalMatch
•	 Store and read data from QVDs (QlikView data files)
•	 Learn about optimized load
•	 Discuss best practices for data modeling



Data Modeling Challenges

[ 56 ]

Crosstable essentials
In your downloaded folder, look at EmployeeSalesTarget.xls. This file is located 
in C:\QlikViewEssentials\Data.

Some of the properties of this file are as follows:

1.	 A file of this format is called a Crosstable. A Crosstable is a special format of 
data in which some of the fields are displayed in rows and some in columns.

2.	 If this table is loaded in QlikView using a regular load statement, it will load 
each of the fields separately.

3.	 The problem with this kind of structure is that the table can grow very large, 
if each of the fields is stored separately. Performing aggregation on such a 
table will be difficult. You have do to Sum(2005) + Sum(2006) … to get the 
total sales.



Chapter 4

[ 57 ]

4.	 It would be better for QlikView applications to load a table in the  
following format:

In this format, the aggregation of data will be much easier.

5.	 Use the cross table prefix to load a cross table in QlikView.

Loading EmployeeSalesTarget.xlsx
We will load EmployeeSalesTarget.xlsx using Crosstable because it is in the 
Crosstable format:

1.	 Open QlikViewEssentials_Chap3.qvw and save it as 
QlikViewEssentials_Chap4_Crosstable.qvw.

2.	 Go to the script editor and create a new tab and call it Crosstable.
3.	 Click on Table Files and browse to EmployeeSalesTarget.xlsx. Check all 

the default settings and click on Next.
4.	 Click Next.
5.	 Under File Wizard: Options, click on Crosstable under Prefixes.



Data Modeling Challenges

[ 58 ]

6.	 Select the Qualifier Fields, Attribute Field, and Data Field. Qualifier fields 
are columns on the left. You can specify any number of qualifiers. Attribute 
and data fields can have any names. The number of qualifier fields are the 
fields that do not get transformed by Crosstable syntax. Attribute fields are 
the fields that get transformed. In this case it is Year. Attribute Field will 
transform Year under one column. Data Field will contain the data of the 
attribute field.

7.	 Give the name of the table as SalesTarget. The load script will appear  
as follows:



Chapter 4

[ 59 ]

8.	 Save and reload. Notice the formation of the synthetic table key and  
synthetic key due to multiple common fields between the Orders and 
SalesTarget tables.

Link table
The previous data model scenario is a typical scenario that occurs due to the 
presence of multiple fact tables. In this case, Orders and SalesTarget are two fact 
tables and they share common dimensions. Star schema prefers one single fact table 
in the schema. This scenario can be resolved with the help of a link table.

A link table is a central table that will contain common fields from the two tables  
and therefore it creates one table and avoids synthetic keys.

Link table essentials
The following steps are followed in the creation of any link table:

1.	 Create a composite key in all the concerned fact tables. Use the Autonumber 
function to make this key unique and numeric. This composite key will act as 
a key field to connect the link table with fact tables.

2.	 Load all the common fields from all the fact tables in one table called the link 
table. Use concatenate for this purpose.

3.	 Drop these common fields in the original fact table.



Data Modeling Challenges

[ 60 ]

Creating a link table
In our data model we have two fact tables: Orders and SalesTarget. To resolve this, 
we will create a link table by following the next steps:

1.	 Use QlikViewEssentials_Chap4_Crosstable.qvw and save as 
QlikViewEssentials_Chap4_LinkTable.qvw.

2.	 Invoke the script editor and create a new tab Link Table after the last tab.
3.	 Identify the common fields in the Orders and SalesTarget tables. These 

common fields are Year, CustomerID, EmployeeID, and ProductID.
4.	 Create a new table EmpSalesTarget. This table will be created from the 

SalesTarget table. The SalesTarget table was created when we loaded 
the Crosstable in the previous section. We will load all the fields from the 
SalesTarget table using resident load. The SalesTarget table contains the 
common fields. We will create a composite key using the common fields and 
name it KeyField. Use the Autonumber function to create unique integer 
values for %KeyField:

Autonumber is a very important function in QlikView. It is used to 
convert strings into unique numbers. In the absence of the Autonumber 
function, the previous composite field will be a string field and will not be 
better suited for joining the two tables. It will also take more memory as 
compared to a numeric field.

5.	 Drop the SalesTarget table as this table is no longer needed. The contents  
of this table are loaded into the EmpSalesTarget table. Your script will look 
as follows:



Chapter 4

[ 61 ]

6.	 Create another table, Facts. This table is created to have a clean table that 
contains the fields from Orders, OrderDetails, and Order Aggregate 
tables. Resident load will be used to achieve this because the Orders table  
is already present in the memory. Create a composite key in the Orders  
table, similar to the EmpSalesTarget table. Drop the table Orders as it is  
no longer needed.

7.	 In the next two steps, create a new table and name it LinkTable, which will 
hold common fields from both the previous tables. Make sure that you load 
distinct fields only in order to avoid duplicates.

8.	 Perform resident load from the Facts table and store the distinct combinations 
in the link table. Create a duplicate %KeyField and name it %TempKeyField. 
This field will be used while loading data from EmpSalesTarget.

9.	 Concatenate distinct common fields from the EmpSalesTarget table. Use 
%TempKeyField to make sure that %KeyField from the EmpSalesTarget 
table does not exist in the fields from Facts. After loading this statement, 
drop %TempKeyField as it was required only for comparison.



Data Modeling Challenges

[ 62 ]

10.	 Once the link table is created and loaded, drop the fields that are no longer 
required. Drop the common fields from Facts and EmpSalesTarget as these 
fields are now stored in the link table.

11.	 Your overall link table script will appear as follows:



Chapter 4

[ 63 ]

A link table should be used with caution. As the size of the link table grows, 
performance degrades.

Concatenating two fact tables is also an efficient way to merge two fact tables.

Link tables and concatenate are both ways to merge the fact 
tables. Use concatenate when granularity of the tables and 
dimensions they connect to are the same. Use link tables when 
granularity of the tables and connected dimensions are different.

After creating a link table, the resulting data model will appear as follows:

Variables in QlikView
Variables are used to store static values or expressions. Variables make it easy  
to reuse expressions.

In QlikView, variables can be declared in the script or by invoking Variable 
Overview by pressing Ctrl + Alt +V. It can also be declared by navigating to  
Settings from menu and clicking on Variable Overview. Variables declared  
in the script can be seen in Variable Overview too.



Data Modeling Challenges

[ 64 ]

In the script, variables are declared using Set and Let statements.

The Set statement assign literal strings to the variable, and the Let statement first 
evaluates the string and then assigns it to a variable:

Set vVariable1 =  1 +  3;  //Value of vVariable1 is 1  + 3
Let vVariable2 =   1  + 3;  //Value of vVariable2 is 4

It is important to discuss "dollar sign expansion" while discussing variables.  
Dollar sign expansions are definitions of text replacement. $(text) syntax expands  
the text that is between the $ sign and the parenthesis, and then it is evaluated.  
So an expression such as $(=1+3) will evaluate as 4 instead of 1 + 3.

Using variables to set the file path
Variables can also be used in setting the path of a file, for example, while loading an 
xlsx file from the location [..\Data\Employees.xlsx], you can use a variable and 
set this path for all the Excel files, for example:

Set vExcelpath =..\Data\;

And use the variable to load the xlsx file from this location:

$(vExcelpath)Employees.xlsx

Using variables to set the path of a file is useful for ease of maintenance. In case the 
path of the file changes, you just need to change the value of the variable.

Variable definitions can be checked and defined by going into Variable Overview. 
Use Ctrl + Alt + V to invoke Variable Overview.

Master calendar
As a best practice, it is always better to keep time-related fields in a separate table 
outside of the fact table. This is particularly helpful when you want to see all the 
dates, and not just the dates when specific events occurred. In our case, we should 
be able to see all the dates, and not just the dates when an order was made, because 
in real-life scenarios there may be days or months in which no order was made. It is 
also important to remember that QlikView stores dates as numbers:

1.	 Use the same QVW file QlikViewEssentials_Chap4_LinkTable.qvw.
2.	 Invoke the script editor. Navigate to the Orders Tab. Go to the load script of 

Orders and comment the Month field by using //. We will be creating this 
field in the master calendar.



Chapter 4

[ 65 ]

3.	 Create a new tab after the LinkTable tab and name it Master Calendar.
4.	 Get min and max dates. Create a new table GetDateRange and load min and 

max dates from the Facts table. QlikView stores dates as numbers. You can 
subtract the dates by converting numbers to dates, and vice versa. This will 
create the lower range and upper range of the calendar.

5.	 Store min and max dates in variables. Create two variables to store the min 
and max dates from the table GetDateRange. Notice the use of Peek:

A word about Peek:
The syntax for Peek is as follows:

Peek (fieldname [ , row [ , tablename ] ] )

This function returns the contents of the fieldname in the 
record specified by row in the table tablename. The field name 
and table name should be in quotes.
Note that row number starts with 0. So the first row is 0, the 
second row is 1, and so on. If no number is specified, -1 is 
assumed, which denotes the last row.

In the previous statement, 0 is specified with Peek because the GetDateRange 
table has only one row.

6.	 Create TempCalendar to store list of dates. Create a table TempCalendar  
by using the recently created variables. Here, two new functions are used: 
RowNo and Autogenerate:

°° RowNo returns an integer for the position of the current row in the 
table. It has values such as 1, 2, 3, and so on.



Data Modeling Challenges

[ 66 ]

°° Autogenerate is used to automatically generate data by QlikView. 
Its parameter is size, which is an integer for the number of rows  
to be generated.

In this statement, RowNo 1 is used because we want to include the MinDate 
in the list of dates. AutoGenerate uses AutoGenerate $(vMaxDate) - 
$(vMinDate) + 1; because we want to include the maximum date in the  
list of dates.

7.	 Finally, create the MasterCalendar table by performing a resident load 
from the TempCalendar table. Create all the required date fields such as 
Day, Week, Month, Year, and Quarter. Make sure to rename TempDate to 
OrderDate so that it can link with the Facts table. Drop the GetDateRange 
and TempCalendar tables as they are not required now.
The MasterCalendar script will look like the following:

8.	 Review the MasterCalendar table in the Table Viewer.



Chapter 4

[ 67 ]

The IntervalMatch function
The IntervalMatch function is used to match a single value in a table to an interval 
or range of values in another table. This scenario occurs in real time when you are 
trying to match a date in one table, which falls between two dates in another table. 
Another example will be matching the number of shifts falling in a time period of, 
say, eight hours.

The IntervalMatch function is also useful in handling slowly changing dimensions 
(SCD), specifically Type 2.

Slowly changing dimension Type 2 is used to track the historical information of the 
data. For example, see the following employee records:

Employees with IDs 275 and 278 have held two positions respectively. This table is 
an SCD Type 2 because it stores the information for both the positions using a start 
date and an end date. The end date of 9/99/9999 represents that the position is still 
open and not end-dated.

The data modeling challenge is to find out which position or job titles they held 
during a specific time period.

In our Adventure Works data model, we want to know when a certain order was 
made, and which job titles were held by these employees. The Orders table contains 
OrderDate, StartDate, and EndDate in the Employees table.

In SQL, you can link the two tables using a Between clause. In QlikView, this is 
achieved by using IntervalMatch's extended syntax:

1.	 Use QlikViewEssentials_Chap4_LinkTable.qvw and save it as 
QlikViewEssentials_Chap4_IntervalMatch.qvw.

2.	 We will use Employees.xlsx as our slowly changing dimensions. Notice  
the previous records in the Employees.xlsx for employee ID 275 and 278. 
They have changed job titles over time. Using IntervalMatch, we will find 
out which job titles were held by these employees when a specific order  
was made.



Data Modeling Challenges

[ 68 ]

3.	 Navigate to the Dimensions tab and go to the load script of Employees. 
Create a dummy field for SalesEmployeeID using the EmployeeID field.  
Go to the bottom of the sheet and make a similar change in the load script  
for NewEmployees too.
EmployeeID As SalesEmployeeID,

4.	 Use Preceding Load to create a composite key using StartDate, EndDate, 
and SalesEmployeeID. To create a Preceding Load, go to the empty 
space above the Employees' Load and type the following statement. Go 
to the bottom of the sheet and make a similar change in the load script for 
NewEmployees too.

5.	 Create a new tab and name it IntervalMatch. Make sure that this tab is the 
last tab in your script editor.

6.	 Create a table IntervalMatch. Here we will use the IntervalMatch 
function's extended syntax:
intervalmatch (matchfield,keyfield1 [ , keyfield2, ... keyfield5 ] 
)
 (loadstatement | selectstatement )

7.	 The extended IntervalMatch is used to create a table matching a single 
numeric value to numeric intervals of range, while matching the values  
of one or several keys.

8.	 In this example, matchfield is OrderDate and SalesEmployeeID is  
the Keyfield.

9.	 This means that OrderDate will be matched against the StartDate and 
EndDate of an employee to get the JobTitle of the employee using 
SalesEmployeeID as the key field.

10.	 The IntervalMatch syntax will appear as follows:



Chapter 4

[ 69 ]

11.	 Resident load from the IntervalMatch table and left join with Facts to 
avoid a synthetic key. Drop the table IntervalMatch as it is not required 
now. Drop the field SalesEmployeeID from the Facts and Employees  
table. Drop EmployeeID from the Employees table. These fields are not 
required now.

12.	 The script for the IntervalMatch tab will appear like the one shown as 
follows. Save and reload.

13.	 Check your data model in Table Viewer. Now the Facts and Employees 
tables will link based on the IntervalComposite field.

14.	 To test your application, close the script editor. Go to the empty space in 
your sheet and create the following list boxes. You can see that OrderDate 
7/1/2005 falls between StartDate and EndDate of 2/12/20013 and 
12/1/2007 respectively. During that time, Michael Blythe's job title  
was Sales Representative.



Data Modeling Challenges

[ 70 ]

QlikView Data Files (QVD)
A QVD file is a very important feature in QlikView. It is a file containing a table of 
data exported from QlikView:

•	 QVD is a native QlikView format, meaning it can be read/write only from 
QlikView.

•	 Reading data from a QVD file is typically 10-100 times faster than reading 
from other data sources. It reduces the load on the database as QVDs can be 
loaded once and used multiple times without connecting to the database.

•	 QVD files can be shared easily among different applications.
•	 QVD files can combine data from multiple QlikView documents.
•	 An incremental load is implemented using QVD files.
•	 A QVD file consists of:

°° A well-formed XML header
°° Symbol tables in a byte stuffed format
°° Actual tables of data in a bit stuffed format

•	 QVD is created by using a STORE command.

Creating QVD files for our data model
We will store all the tables in the QVD files so that data read and write is faster:

1.	 Open QlikViewEssentials_Chap4_IntervalMatch.qvw and save as 
QlikViewEssentials_Chap4_QVDCreator.qvw.

2.	 Go to the Main tab and set the variable for the QVD path, the path where 
the QVD will be stored. You already have a QVD folder in your downloaded 
folder. You can either create a relative path or use the absolute path C:\
QlikViewEssentials\Data\Qvds.

3.	 Create a variable vQVDpath as follows:
SET vQVDpath = ..\Data\Qvds;

4.	 Skip the Mapping tab as these tables are temporary tables, and drop after 
script execution. Skip the Orders tab as the Orders table gets dropped in  
the LinkTable tab.



Chapter 4

[ 71 ]

5.	 Navigate to the Dimensions tab. Go to the empty space below the 
Customers' Load statement and use the STORE command to store this table 
into QVD. Make sure you use the correct table name next to STORE. Type  
the following statement:
STORE Customers into $(vQVDpath)Customers.qvd;

6.	 You can always use a hard absolute path if you don't want to use the 
variable. Save and reload the script.

7.	 Go to your Windows Explorer and notice that Customers.qvd is created in 
the path specified.

8.	 Follow similar steps to store all the other tables in the QVDs.
9.	 Go to the empty space below the Load script of the Product table and type:

STORE Product into $(vQVDpath)Product.qvd;

Save and reload the script.

10.	 Go to the empty space below the Load script of Shippers and use:
STORE Shippers into $(vQVDpath)Shippers.qvd;

Save and reload the script.

11.	 Skip the Employees tab as we do a lot of transformation to this table in the 
IntervalMatch tab.

12.	 Skip the CrossTable tab as this table is later dropped in the LinkTable tab.
13.	 Navigate to the LinkTable tab. Go to the empty space all the way at the 

bottom, after all the script statements. We want to store the tables in QVD 
after all the transformation is done:
STORE LinkTable into $(vQVDpath)LinkTable.qvd;
STORE EmpSalesTarget into $(vQVDpath)EmpSalesTarget.qvd;

Save and reload the script.

14.	 Navigate to the MasterCalendar tab. Go all the way down to the empty 
space after all the script space and type:
STORE MasterCalendar into $(vQVDpath)MasterCalendar.qvd;

Save and reload the script.



Data Modeling Challenges

[ 72 ]

15.	 Navigate to the IntervalMatch tab and go to the empty space all the way at 
the bottom and type:
STORE Employees into $(vQVDpath)Employees.qvd;
STORE Facts into $(vQVDpath)Facts.qvd;

Save and reload the script.

16.	 Go your Windows Explorer and check whether all the QVDs have been 
created in the path specified. Count the number of QVDs. It should be the 
same as the number of tables in the data model.

Optimized load – reading QVD
In the previous section, we have stored data into QVDs. Now it is time to read or 
load from a QVD. QVDs can be read as a regular load or as an optimized load.

An optimized load is a super-fast load that occurs if no transformations occur or 
certain conditions are applied. An optimized load is indicated by the message in  
the script progress window.



Chapter 4

[ 73 ]

The following conditions apply to an optimized load:

1.	 Renaming a field is allowed.
2.	 Data transformation is not allowed.
3.	 You cannot add new fields.
4.	 "where exists" on a single field is allowed. However, Where 

Exists(EmpID,SalesID) is not allowed.
5.	 "where exists" is not allowed to rename the fields.

Reading QVD files
Reading data from QVD is faster than reading from a database. Once data is stored 
in the QVD, follow the next steps to read from the QVDs:

1.	 If not open already, open the QlikView desktop. Create a new QVD by using 
File | New. Save this file as QlikViewEssentials_DataModel.qvw.

2.	 Invoke the script editor by pressing Ctrl + E or by clicking on the script  
editor icon.

3.	 Create a new tab and call it Dimensions.
4.	 Click on Table Files as QVD is also loaded like any other file. Browse to your 

QVD folder where all the QVDs are loaded. Select Customers.qvd.
5.	 Click on Finish.
6.	 Remove the directory and name this table as Customers. Save and reload  

the script.
7.	 The QVD load script looks like the one shown as follows:



Data Modeling Challenges

[ 74 ]

8.	 Load all the QVDs for the Dimensions tab in a similar fashion. These QVDs 
will be for Products, Employees, EmpSalesTarget, and Shippers.

9.	 Create a new tab and name it Facts. Load Facts.qvd in this tab.
10.	 Create a new tab for the LinkTable and load LinkTable.qvd in this tab.
11.	 Create a new tab for MasterCalendar and load MasterCalendar.qvd in  

this tab.
12.	 Save and reload the script. All the tables are loaded with optimized load.

13.	 Review your data model in the Table Viewer.

Best practices of data modeling
In the previous chapters, we learned how to create a data model in QlikView. While 
creating a data model, it is always recommended to follow the best practices so that 
the data model is reusable and performs better.

The following best practices of data modeling will ensure a robust data model. It will 
also recap what we learned so far:

•	 Associations: In QlikView, associations are created based on common field 
names between the two tables. Associations should be created based on the 
business context between the tables. To create or break associations, table 
columns can be renamed. Wrong associations will result in wrong outputs.

•	 Organize your script. Data load scripts should be organized by creating tabs 
in the script editor. Related subject matter should be on the same tab.



Chapter 4

[ 75 ]

•	 The first tab of the script should contain author and versioning information.
•	 Author information and versioning is important for change control purposes.
•	 Comment your code for better understanding. A well-commented code helps 

in understanding the code. It also helps in future enhancements.
•	 Use Include files. All the information that can be shared across applications 

should be kept in files, which can be included in the QlikView document.
•	 Use variables for ease of maintenance and portability.
•	 Load only the required fields and tables. Since every field is loaded in the 

memory, only the tables and fields required for creating visualizations 
should be loaded for better performance.

•	 Provide business names to the table columns. Source data field names may 
be database-specific and will be difficult to provide information to the users. 
Alias your field names to business-specific names.

•	 QVDs should be used wherever possible. Reading data from QVDs is much 
faster than reading from the database tables. QVDs also provide a good way 
of sharing information between the organizational units.

•	 Use multi-level QVD architecture to create a robust data model. Data models 
should be created by designing multi-level QVD architecture.

°° The first layer should be an extract layer in which raw data from the 
tables is extracted and loaded in the QVDs.

°° The second layer should be a transformation layer. All data 
transformation should be done in this layer and should be  
stored in QVDs.

°° The third layer should be a presentation layer. For better performance, 
optimized load from the QVDs should be performed in this layer.

Extract Layer

Transform Layer

Presentation Layer

Table1 Table2 Table3 Table4

QVD1 QVD2 QVD3 QVD4

QVD QVD

Dashboard/Visualizations



Data Modeling Challenges

[ 76 ]

•	 Remove synthetic keys. When multiple tables are loaded, there may be 
occurrences of multiple common columns between multiple tables. This will 
create complex keys or synthetic keys. Synthetic keys are resource heavy and 
will slow down the application. It may also make the data model complex 
and hard to understand. In extreme cases, it may result in incorrect data. 
Synthetic keys should be eliminated from the data model.

•	 Remove circular references. Circular references or loops occur in the data 
model when there is more than one path to a table. Such occurrences should 
be avoided because it may lead to ambiguous representation of data.

•	 Have a simple data model design. QlikView recommends that the data 
model design should be simple. The number of tables and joins should be 
reduced and the data model should be clean. This can be achieved by the  
use of mapping load and apply map functionality in QlikView.

•	 Create a master calendar. A master calendar should be created to maintain 
all the time dimension values. This table helps if the fact table does not have 
continuous dates.

Summary
In this chapter, we learned about resolving data modeling challenges by loading a 
Crosstable and a link table. We also learned about the importance and creation of  
a master calendar. 

Slowly changing dimensions are also handled using the IntervalMatch function.

Once done with all the data transformations, we loaded tables in QVDs, as 
reading data from QVDs is faster than reading from a database. We learned about 
optimized load to improve data load performance. This finished the scripting and 
data modeling in QlikView. This chapter also provided the best practices of data 
modeling that should be followed in order to create a better performing data model.

In upcoming chapters, we will learn about creating visualizations in QlikView  
using the data model we created so far. In the next chapter, we will learn about  
data visualization best practices and will create different charts and tables.



[ 77 ]

Creating Dashboards
Previous chapters dealt with creating data models in QlikView. They laid the 
foundation for creating interactive visualizations or dashboards. A dashboard is a 
pictorial representation of data using charts and tables.

In this chapter, we shall:

•	 Learn the best practices of visualization
•	 Learn about binary load
•	 Learn about different visualization objects in QlikView
•	 Learn how to create different kinds of charts
•	 Learn about a few important functions

Dashboarding essentials
Dashboard or visualization applications are a pictorial representation of data.

•	 They provide executives and analysts with insight into an organization's key 
performance indicators (KPIs) to make business decisions. They give users a 
snapshot of the KPIs and the ability to see the details of the data.

•	 Dashboards involve creating various visualization objects and placing them 
on screen in a way that provides users with ease of both understanding and 
accessing the information.

•	 As dashboard helps in understanding data, care should be given to engage 
users with the data. Overuse of colors should be avoided. Attempts should 
be made to avoid any object that does not represent data.



Creating Dashboards

[ 78 ]

•	 Edward Tufte, the author of The Visual Display of Quantitative Information, 
Graphics Press USA, provides principles for visualizing large quantities of 
data. His book states that data graphics should draw the viewer's attention 
to the sense and substance of data, not to something else. Non-data pixels 
should be minimized. Non-data pixels are represented by 3D objects, 
borders, grid lines, shadows, and glossy colors. Such objects should have a 
minimal presence on the dashboard.

•	 Visualizations designed in QlikView are referred to as a dashboard, document, 
or application. They display data in multiple sheets or tabs and show data 
regarding one business area. In QlikView, .qvw is referred to as a document.

•	 For a better user experience, the look and feel of the entire application and 
all the other applications in the organization should be the same. Create a 
template with layout standards and create standards for object size, color, 
font size, and so on. Use this template to create all the dashboards for an 
organization.

•	 The dashboard should always be created for the target user group screen 
resolution. The resolution should be set according to the most commonly 
used resolution on a user's laptop.

•	 Document properties from the File menu can be used to get details on a 
document. Documents contain sheets and sheets contain objects.

•	 As a general practice, the following screen layout is practiced when creating 
a visualization application in QlikView:



Chapter 5

[ 79 ]

Note the following observations in the preceding screen layout:
°° Time-related list boxes are situated in the top center
°° Company logo, current selection box, and list boxes to filter the data 

are positioned on the left
°° Charts are in the middle, and any other objects on the right side

Getting started
Let's start by understanding different concepts in building a dashboard application 
using QlikView.

Associative experience
In QlikView, data is always associated. As we learned in previous chapters, two 
tables can be associated based on common field names. All the data is present,  
all the time. Users can click on any list box; the selected data element in the list  
box turns green, the associated data elements in the other list boxes appear in white, 
and the data not associated appears in gray.

This can be best depicted in the following screenshot. This is taken from the 
QlikView Movies Database.qvw file located in the QlikView installation folder 
under \Program Files\QlikView\Examples\Documents.

Green shows the selection made in a list box. Associated data elements appear in 
white and data elements not associated appear in gray. In this example, the user  
clicks on Apple, so Apple appears in green. Apple can be green or red, so these  
appear in white. Apple cannot be yellow, and thus appears in gray.

To clear selections, users can click on the Clear button on the toolbar and make  
other selections.



Creating Dashboards

[ 80 ]

Binary load
Binary load can be used to hide the complexity of scripting from the QlikView 
designer. Binary statement or binary load is used to load data from another QlikView 
document. It does not load layout information or variables. Only one binary statement 
is allowed in the script and it should be the first statement of a script:

1.	 Open the QlikView desktop. Create a new file and save this file as 
QlikViewEssentials_Presentation.qvw.

2.	 Invoke script editor by pressing Ctrl + E. On the Main tab, go to the  
empty space all the way up before the default variable declarations.

3.	 From the bottom Data from the files section, click on the QlikView  
File button which appears like this: .

4.	 Browse to QlikViewEssentials_datamodel.qvw, which you created in  
the previous chapter, and click on OK.

5.	 Save and reload your script. Use table viewer to view your data model.  
All the tables are created and the data is being loaded.

6.	 Your binary load script will appear like the following:

Exploring menu items
You have explored different options in the menu in the previous chapters. Here we 
will explore some important options with respect to creating visualizations. We will 
also make changes as required:

1.	 Use QlikViewEssentials_Presentation.qvw.
2.	 From the menu, click on View. View can be used to add or remove Toolbars. 

Use resize to select the screen resolution.



Chapter 5

[ 81 ]

3.	 For this application, select a resolution of 1280 * 1024 from the Resize  
Window option.

4.	 Design Grid is used for sizing and placing objects on the sheet. Turn on/
off WebView uses the internal web browser in QlikView to display the 
document in AJAX mode.

5.	 From the menu, click on Layout. This option is used to add sheets to the 
layout. The New Sheet Object option is used to add sheet objects such as  
list boxes, textboxes, charts, and so on.



Creating Dashboards

[ 82 ]

6.	 From the File menu, click on Settings. This option is used to configure user 
preferences and document properties. Some of these configurations you have 
done in Chapter 2, Extract, Transform, and Load, under the Configuring settings 
section. Variable Overview is used to create and define variables. Expression 
Overview shows all the expressions in the document. You can edit/find or 
replace any single or multiple expressions.

7.	 Bookmarks and Reports menu items are used for creating bookmarks  
and reports.

Sheet objects
Before embarking on our journey of designing visualizations, let's get familiar with 
different sheet objects. A QlikView document can have one or more sheets. These 
sheets will contain many objects. They are called objects or sheet objects because they 
reside on a sheet. In QlikView, every component has an ID. Sheets have a sheet ID 
and all other components have object IDs. Throughout the application, sheets and 
objects can be referred by these IDs. You can modify the properties of all the objects 
according to your requirements.

Right-click on an empty space on a sheet. Hover over New Sheet Object to get the 
list of sheet objects available to you. From the following screenshot, you can also see 
that you can copy and paste sheets. You can copy and paste sheet objects too.



Chapter 5

[ 83 ]

The list of sheet objects available to you are:

•	 List Box is used to filter the data. 
•	 Statistics Box is a compact way to display a numeric field with default 

functions such as sum, min, max, average.
•	 Multi Box, as opposed to List Box, can display multiple fields in one object.
•	 Table Box is used to display fields from one or more tables. Table Box does 

not have dimensions or expressions.
•	 Chart is a graphical representation of data. There are different types of chart 

in QlikView: Bar, Line, Combo, Radar, Scatter, Grid, Pie, Funnel, Block, and 
Gauge charts. Pivot table and straight table also come under charts.

•	 Input Box is used for entering data in QlikView variables and displaying 
their values.

•	 Current Selections Box displays selected fields on the application. It lists the 
selections by field name and field value.

•	 Button is used to perform commands or actions.
•	 Text Object is used for adding information to the document, such as labels, 

and so on. Text objects can also be used for calculations.

www.allitebooks.com

http://www.allitebooks.org


Creating Dashboards

[ 84 ]

•	 Line/Arrow Object is used to add lines or arrows in the layout.
•	 Slider/Calendar Object provides an alternative means for selecting field 

values. They can also be used for entering values in the QlikView variable.
•	 Bookmark Object is used for displaying bookmarks for selections.
•	 Search Object is used for searching for information anywhere in the 

document. All the fields or lists of fields can be searched using a search object.
•	 Container can contain all other sheet objects. The objects are grouped 

together and have common settings for font, layout, and caption. 
•	 Custom Object is specifically intended to carry custom-defined OCX 

replacement controls.
•	 System Table is a special type of pivot table, showing the data structure of 

the document. The system table uses system fields. Fields are prefixed with $.

Creating a multi-tab application
When a new QVW is created, a sheet with the title Main is created by default. This is 
the first sheet and it can be used to give details about the dashboard. We will create 
this tab to give the details about our dashboard application:

1.	 Right-click on the empty space on the sheet and go to Properties.... Change 
the Title of the sheet from Main to About and click on OK.



Chapter 5

[ 85 ]

2.	 Right-click on the empty space on the sheet and hover over New Sheet 
Object and select Text Object.

3.	 On the General tab, under Text, type the following:
"Adventure Works Cycles, is a large, multinational 
manufacturing company. The company manufactures and sells metal 
and composite bicycles.

This dashboard is built to provide data insights into their 
customers, sales and products."

4.	 Under Layout, change Horizontal Alignment to Left and Vertical 
Alignment to Top.



Creating Dashboards

[ 86 ]

5.	 Click on the Font tab, change the font to Calibri and font size to 16.
6.	 Click on Ok. To see the whole text, hover over the textbox edges until you 

see the drag icon. Drag the textbox corners to expand the textbox.

7.	 Right-click on the textbox to go to Properties. On the General tab, change 
Transparency to 100%.

8.	 A text object can also contain an image. Create another text object. On the 
General tab, under Background, click on Image. Browse to logo.png in  
your image folder and click Ok.

9.	 Save your application. Your About sheet should appear like the one shown  
in the following screenshot:

The dashboard sheet
We will create a new sheet called Dashboard. This sheet will display charts and 
tables, which users will use for their analysis. The business requirement of this sheet 
is that the business executives will be able to get a snapshot of the company with 
respect to sales and orders:

1.	 From the Layout menu, click on Add Sheet... or use the Add Sheet button.



Chapter 5

[ 87 ]

2.	 From the General tab, change the Title of the sheet to Dashboard by going 
into sheet properties.

3.	 To create Year and Month list boxes, right-click in the empty space and click 
on Select fields. Using this option you can select multiple fields. Select Year 
and Month from the Available fields and use Add > to add fields to Field 
Displayed in List Boxes.

4.	 List boxes for Year and Month appear jumbled. You can either drag them 
separately or, from the Layout menu, select Rearrange Sheet Objects.

5.	 Move the list boxes so that they are centered. To move one space at a time, 
select the list boxes and use the Ctrl + arrow keys on your keyboard.

6.	 Right-click on Year list box and go to properties. Explore different property 
options under different tabs.

7.	 Go to the Presentation tab and uncheck the Single column checkbox. Go to 
the Font tab and change the font to Calibri and the font size to 11.

8.	 Go to the next Layout tab and change Border Width to 0 pt. Go to the Caption 
tab and uncheck the show caption checkbox. Click Ok to finish.

9.	 Drag the Year list box so that it appears in one row and multiple columns.

10.	 Follow the same steps to format the Month list box. Year and month list 
boxes should appear as follows:



Creating Dashboards

[ 88 ]

Creating list boxes for other fields
List boxes are used in filtering data. We will create list boxes so that users can use 
them to see specific data in the charts and tables.

Create a Customer list box with the following steps:

1.	 Right-click on the empty space on the Dashboard tab. Hover over New Sheet 
Object and select List Box.

2.	 A list box can be created using a field from the list or an expression.  
An expression is used to define the calculated field. It can involve one  
or more fields and can use functions.

3.	 From the Field dropdown, go all the way to the bottom and select 
Expression. List boxes can have expressions. In the expression editor,  
write the following expression to perform a string concatenation of a 
customer's first name and last name:
=FirstName &'-'&LastName

4.	 Change the Title of the list box to Customer. From the Font tab, change the 
font type to Calibri and font size to 11.

5.	 From Layout, change Border Width to 0 pt. On the Layout tab, the option 
Show is used for displaying the object Always or Conditional. Use a 
conditional expression to render an object on condition.

6.	 Use the Caption tab to display a caption for a list box or any other object. 
Captions can have a background and text colors. These colors are for the 
Inactive or Active state.

7.	 To change the background color, click on the Color button. Color can be fixed 
or calculated. The calculated option is used to display the color conditionally. 
Click on the Fixed Color button. It will display a color palette. You can either 
select the color from the color band or specify RGB values. Select the default 
background color in the Inactive Caption. You can copy and paste colors 
from the Inactive Caption to the Active Caption.



Chapter 5

[ 89 ]

8.	 Caption also has options for X-pos and Y-pos, which shows where the object 
is placed on the sheet.

9.	 Use the Width and Height options to specify the width and height of the 
object. For the list boxes, we will choose a width of 200 and height of 100.  
The Special Icons options are used to display icons on top of the object  
to perform certain operations, such as send to Excel, print, and so on.  
Help text is used to display a help bubble for the object.

10.	 Sorting of the sheet object can be changed from the Sort tab. The following 
options of Sort exist:

°° State: Sorts values according to different states of the field, for 
example, selected, optional, or excluded. The Auto Ascending  
option sorts and displays all values at the top of the list box, only  
if the list box is small and displays few values at a time and the user 
has to use a scroll bar to see the rest of the values. If the list box is 
large enough to show all the values, no sorting is applied.

°° Expression: Expression can also be used to sort values as long as it 
results in a numeric value.

°° Frequency: Sorts field values based on the number of occurrences in 
the dataset.

°° Load Order: Sorts the fields based on the order in which they were 
loaded into the QlikView.

11.	 To make sure all the objects in the application follow the same Caption and 
Border properties as this list box, go to Properties and navigate to the Layout 
tab and click on the Apply To button on the upper-right corner and make the 
following selections:



Creating Dashboards

[ 90 ]

Theme can be used to create dashboards with the same look 
and feel. To create Theme, go to the Settings menu, and go to 
document properties. Create Theme under the Layout property 
by clicking on the Theme Maker button.

12.	 Create a new list box by selecting ProductName from the field list.  
Change the title to Product.

13.	 Create a list box by selecting ProductLine Desc. Change the title to  
Product Line.

14.	 Create a list box by selecting Sales Person. Change the title to Sales Person. 
Navigate to the Expression tab and click on Add on the bottom-left corner. 
Add the following expression:
num(sum(LineSalesAmount), '$#,##0.0')

15.	 This will give the sales done by each sales person. The num function is used to 
format the number. 

16.	 Set Width and Height of the list boxes as 200 and 100 respectively.
17.	 Right-click on the empty space on the sheet. Choose New Sheet Object 

and select Current Selections Box. Set Width and Height as 200 and 100 
respectively.

18.	 Position all the list boxes so that they line up one after the other under the 
current selection box on the left side of the sheet.

19.	 Finally, drop a Search object to the right. It will help in searching for any 
data element in the dashboard.

Options to copy and paste objects
Objects can be copied to the clipboard and pasted in the desired location. Right-click 
on the object and copy it to the clipboard as an Object.

To paste the object, right-click on a desired position. There are two options for 
pasting. Paste Sheet Object means that the copied object will be pasted as a copy of 
the object and will be an independent object. Go to Properties and, in the General 
tab, see the Object ID. The Object ID of a pasted object will be different from the 
original one. Changes made to one object will not have any affect on the other.



Chapter 5

[ 91 ]

Another option is Paste Sheet Object as Link, which creates an instance or link to 
the source object. When this option is used, notice the Object ID is the same as that 
of the source object. Any changes made to one object will affect the other object.

If you try to remove the linked object, you will get a warning, as follows:

Link objects are very helpful when copying and pasting a large number of objects. 
They are helpful in maintaining the consistency of the design.

Practice both the options by copying and pasting any object.

Placing a logo on the dashboard sheet
A logo can be added to the dashboard sheet to display the company information. 
A logo should be displayed based on a discussion with the users. It should be 
displayed based on the corporate policy of the organization:

1.	 Navigate to the About sheet by clicking on the Tabrow About.  
Right-click on the textbox with the image of the logo AWC Inc.  
Select Copy to Clipboard as object.

2.	 Navigate to the Dashboard sheet, right-click on the empty space and  
select Paste Sheet Object as Link.

3.	 Move the logo to the left-hand corner above Current Selections.



Creating Dashboards

[ 92 ]

4.	 Your changes so far should appear as follows:

Creating a bar chart
A bar chart is used to compare measures. The objective of this chart is to compare 
Sales and Freight by ProductLine. This visualization will help them make decisions 
on freight. If they are spending more on freight for a specific ProductLine, they can 
focus on reducing it. To create a bar chart, follow these steps:

1.	 Right-click anywhere on the empty space on the sheet. Hover over New 
Sheet Object and select Chart.

2.	 On the General tab, Bar Chart is highlighted by default. At the top,  
check Show Title in Chart and type Sales vs Freight in the edit box.  
Click on Next.



Chapter 5

[ 93 ]

3.	 On the next screen, select ProductLineDesc from the Available Fields/Groups 
list. Use the Add > button in the center to add ProductLineDesc to the Used 
Dimensions list. On the bottom right, uncheck Label. Unchecking Label will 
make sure that field name text does not appear in the x-axis of the chart.

.

4.	 Click on Next. Explore the Edit Expression window. Expression should 
always use an aggregation function.
The bottom half of the screen shows aggregation functions, table, and fields 
to be selected. The Function tab gives access to all the available functions. 
The Variables tab shows all the variables defined in the Variable Overview. 
Images shows the images available for use. These images can be used in the 
expression.

5.	 In the Edit Expression window, enter the expression as:
Sum(LineSalesAmount)



Creating Dashboards

[ 94 ]

6.	 Click on OK. Give a label to this expression as Sales. Expressions can be 
displayed conditionally by specifying a condition in the Conditional edit 
box. At the bottom of the screen, check Values on Data Points.

7.	 Add another expression for freight and label it Freight:
     Sum(Freight)

8.	 Click on Next. Specify sorting on this tab. Check Y-Value Descending.
9.	 Click on Next. The Style screen shows the look and orientation of the chart. 

As a best practice, don't select 3D view or a glossy plot color style. Set 
Horizontal orientation and Subtype as grouped.

10.	 Click on Next. Review the Presentation properties. No changes required.
11.	 Click on Next. In the Axes properties, set the Width of the axis as 1 pt at the 

top and bottom. These are for x-axis and y-axis lines.
12.	 Click on Next. On the Colors properties, copy the gray color from the palette 

and paste it on the first color on the left. The checkboxes on the right are used 
for different color options. Multicolored is used if you want different colors 
for the bar. Persistent color locks the color map so that each value has a color 
permanently assigned to it.

13.	 Click on Next. Provide a Number format to the expressions. Select Fixed 
to and specify two decimal places. Prefix the format pattern with $. At the 
bottom of the screen, in the Thousand Symbol, specify the $K Million 
Symbol, specify $M and, in the Billion Symbol, specific $B.

14.	 The font is already set to Calibri 11. Click on Next. No changes are required 
in the Layout properties.

15.	 On the Caption tab, uncheck Show Caption.
16.	 Click on Finish. Finally, move the legends on the right-most corner to  

any other place on the chart by selecting the chart and pressing Ctrl + Shift. 
All highlighted components can be moved. Move the legends to the top of 
the chart.



Chapter 5

[ 95 ]

17.	 Your bar chart will look like the following chart:

Use Fast Type Change under the General tab to display an icon at 
the top of the graph to display different chart types. Users can change 
chart type by clicking on this icon. This icon is displayed only when 
the Show Caption checkbox is checked under the Caption tab.

Expression Overview
As stated earlier, Expression Overview manages all the expressions centrally. Invoke 
the expression editor by pressing Ctrl + Alt + E or by going into the Settings menu. 
All the expressions created so far are stored in Expression Overview.

Creating a text object
Text objects are a good way of displaying labels and expressions. Text objects can be 
made interactive by specifying Actions in the properties. Since we are working on a 
Dashboard sheet, we will create text objects to display summarized information. We 
will create text objects for number of Orders, number of Customers, and Total Sales:

1.	 Use QlikViewEssentials_Presentation.qvw.
2.	 Right-click on the empty space on the Dashboard sheet. Select New Sheet 

Object and then the text object.



Creating Dashboards

[ 96 ]

3.	 On the General tab, in the Text edit box, type the following expression 
for # of Orders. Remember to put = in front of the expression. If you are 
displaying labels then you don't need =:
='# Orders ' & chr(10) & Num(count(distinct  
OrderID),'#,##0')
Distinct is used to avoid duplicate OrderID's in the count

Notice chr(10) will give a line break and a calculation 
will appear after # Orders label. You have to format 
the number in the textbox using the Num function.

4.	 On the General tab, under Layout properties, set the horizontal and vertical 
alignment as Center. Set Transparency at the bottom left to 100%.

5.	 Textboxes can have Actions but, for now, skip this text. Under Font, set the 
font size to 16.

6.	 Create other textboxes for # of Customers and Total Sales by copying and 
pasting this text object and changing the calculation. You can also create a 
new text object.

7.	 For # of Customers, use the following calculation:
='# Customers ' & chr(10) & Num(count(distinct  
CustomerID),'#,##0')

8.	 For Total Sales, use the following calculation:
='Total Sales ' & chr(10) &  
num(Sum(LineSalesAmount)/1000000000, '$#,##0.00B')

To copy and paste any object, click on the object, 
press Ctrl and drag the object.

The previous text will appear like the following screenshot:



Chapter 5

[ 97 ]

Creating a scatter chart
Scatter charts are a good way to show relationships between measures.

When creating a scatter chart you need to specify measures for the x-axis and y-axis, 
and a third measure Z to display the bubble size. In this chart, we will visualize the 
relationship between Freight and Sales for ProductLines:

1.	 Use QlikViewEssentials_Presentation.qvw.
2.	 Right-click on the empty space on the Dashboard sheet. Select New Sheet 

Object and then Chart. Select the Scatter Chart, which is the first chart in  
the second row of chart types.

3.	 On the General tab, unselect Show Title in Chart.
4.	 Click on Next. Select ProductLineDesc as Dimensions. Click on Next.
5.	 In the next window for expressions, specify x-axis, y-axis, and bubble size.
6.	 Under X, pick Freight from the drop-down list. Specify Label as Freight %.



Creating Dashboards

[ 98 ]

7.	 Under Y, pick LineSalesAmount from the drop-down list. Specify Label  
as Sales.

8.	 Under Z, check the bubble chart and in the bubble size expression specify 
Sum(Quantity).

The complete expressions window should appear like the following:

9.	 Check Advanced Mode at the bottom of this dialog box. It will display an 
expression in the normal expression window.



Chapter 5

[ 99 ]

10.	 In the Freight %, expression should appear as:
Sum(Freight)/ Sum(LineSalesAmount)

11.	 Check the Relative checkbox. This will display Freight % in the  
percent format.

12.	 The Sales expression should be Sum(LineSalesAmount) and Quantity 
should be Sum(Quantity).

13.	 Click on Next and select the default for Sort. Click on Next.
14.	 In the Style pane, pick the one with the regular bubble and click on Next.



Creating Dashboards

[ 100 ]

15.	 Select the default settings in presentation. On the Axes tab, on the x-axis, check 
Show Grid, and on Axis color, increase the width to 1 point. Make similar 
changes for the y-axis. At the bottom, from the Grid Style dropdown, pick 
Thin Dashed Line. Click on Next.

16.	 Select the default Colors and click on Next.
17.	 In the Number tab, provide the following number formatting:

°° For Freight %, select the Integer radio button and check Show in 
percent(%).

°° For Sales, select Fixed to and specify two decimals. Under symbols, 
specify K for thousand.

°° For Quantity, select Integer.

18.	 Select default fonts and layout properties. Click on Next to go to Caption. 
Uncheck Show Caption.

19.	 Your scatter chart will appear as follows. Hovering over the bubble will give 
you the Freight % of Sales and Sales for a specific ProductLine.



Chapter 5

[ 101 ]

The story of two tables
In QlikView, tables are also a part of charts. There are two types of tables, straight 
table and pivot table.

Straight and pivot tables are used to display data in tabular format. In a pivot table, 
data is grouped by dimensions. Pivot tables show partial sums or sub-totals. Straight 
tables cannot show sub-totals. Straight tables have the dimension limits property. 
Pivot tables do not have dimension limits. Straight tables have the option for 
interactive sort.

Creating a straight table
To create a straight table, perform the following steps:

1.	 Right-click on any empty space on the sheet and choose New Sheet 
Object and select Chart. You can either create a straight table on the same 
Dashboard sheet or create a new sheet by navigating to the Layout menu  
and select Add Sheet.

2.	 On the General tab, specify the Windows Title as Orders by ProductLine. 
From the Chart Type, select Straight Table on the bottom right. Click on Next.

3.	 Set ProductLineDesc as Dimension and click on Next to create an expression. 
Label this expression as Total Orders.
Count(Distinct OrderID)

4.	 Click on Add on the expressions window to add a new expression.  
Here we will create an expression to get the # of Orders placed  
Online. This expression uses Set Analysis syntax:
Count({$<OnlineOrderFlag = {'-1'}>}OnlineOrderFlag)

5.	 Add another expression to get the # of Orders placed by Sales Person. 
This expression also uses Set Analysis syntax:
Count({$<OnlineOrderFlag = {0}>}OnlineOrderFlag)

Set Analysis is explained in detail in the next chapter. Set Analysis 
is used to create a "set of data". In the absence of Set Analysis, you 
have to create complex if-then-else statements. In the previous 
syntax, $ represents the current selection. Within a user's selection, 
it is counting the OnlineOrderFlag where OnlineOrderFlag 
= -1 and 0 respectively.



Creating Dashboards

[ 102 ]

6.	 Change the text color conditionally by specifying an expression in the text 
color. Collapse the expression Order placed by SalesPerson. Click on the 
text color and write the following expression:
if([Online Orders] > [Order placed by SalesPerson] ,red(),Green())

7.	 Select default for Sort.
8.	 In Presentation, make sure Totals on First Row is selected. Check on Use label 

and put Totals on Multiline Settings, check Wrap Header Text and specify 
Header Text as two lines. This will make sure that headers come in two lines.

9.	 Check defaults on other tabs and go to Number. For % of Online Orders, 
specify Fixed to 2 decimals.

10.	 Select defaults for next and go to Caption. Check Show Caption.

Enhancing your tables
Straight table expressions can have image, link, and different kinds of charts.

In the previous table:

1.	 Add a new expression. Label it as Online vs Total Orders. In the 
expression definition, specify:
Column(2)/Count(OrderID)

Column(2) in this table is Online Orders. Column numbers and labels  
can also be used in the expression.

2.	 From the representation, select Traffic Light Gauge and click on  
Gauge Settings.



Chapter 5

[ 103 ]

3.	 Specify the Gauge Properties.
4.	 At the bottom left, uncheck AutowidthSegments.
5.	 Under Gauge Settings, specify the Min and Max fields. These can also  

have expressions.
Min =0 
Max = Count({<OnlineOrderFlag = {'0'}>}OnlineOrderFlag)
Segment 1 Lower Bound = 0.0, Color Green

6.	 Similarly, specify the settings for other segments:

Segment 2 Lower Bound = .4, Color Yellow
Segment 3 Lower Bound = .75,Color Red
Mode is Single light, Style Lowered



Creating Dashboards

[ 104 ]

Your straight table will appear like the following:

Groups
In QlikView, you can group dimensions and expressions. There are two kinds of 
group: Drill-Down and Cyclic:

•	 A Drill-Down group is created when several fields form a natural hierarchy, 
for example, year, month, and quarter.

•	 Cyclic groups are created to group fields that do not form a natural hierarchy. 
This will enable users to make quick changes to the displayed data.

Creating a drill-down group
We will create a drill-down group for time. This group will help users drill-down 
from year to month and quarter, and to perform detailed analysis:

1.	 To create groups, go to Settings/Document properties. In the Document 
Properties, go to the Groups tab.

2.	 Click on New. Set the Group Name as Time Drill. The Drill-Down group 
radio button is checked by default. Select Year, Month, and Quarter from the 
available fields and add to the used fields. The Time Drill drill-down group 
has been created.

3.	 You can either make a copy of the previously created straight table or 
work on the same table.

4.	 Right-click and go to properties. By clicking on Edit Groups at the bottom 
left, the Time Drill group is displayed in the Available Fields/Groups.  
Add it to the used Dimensions.

Groups can be created within the chart also. On the Dimension tab, 
on the bottom left, click on Edit Groups and select New.



Chapter 5

[ 105 ]

5.	 Click on Apply and Ok. Notice that the Year column is being added as the 
first column of the table. Also see a drill icon at the top of Year.

6.	 Now click on any Year column to drill down all the way to Quarter. You can 
also drill up.

Creating a cyclic group
Here we will create a Cyclic group. It will enhance the user experience by changing 
the dimensions between City, ProductName, and Order Territory with a single click:

1.	 To create a Cyclic group, go to Settings/Document properties. In the 
Document properties, go to the Groups tab.

2.	 Click on New. Set Group Name as Dimension Group. Make sure to check 
the radio button of Cyclic group on the right.

3.	 From Available Fields, select City, ProductName, and Order 
Territory, and add them as Used Fields. Click on Ok to close the dialog box.

4.	 On the previously created straight table, Dimension Group is 
available in the field list. Add this to Used Dimensions. Move it up next to 
the time period drill by using the Promote button in the center.

5.	 Notice the second column in the table as the Cyclic group. Click on it to 
change the dimensions and change the data in the table.

Creating a pivot table
Pivot tables show dimensions and expressions in rows and columns. The data in 
pivot tables may be grouped. Pivot tables can have partial sums:

1.	 Copy and paste the straight table you created previously. Right-click and go 
to Properties.

2.	 Under the General tab, change the Windows Title to Orders By 
SubCategory.

3.	 From the chart types, click on Pivot Table. This will change the table 
from Straight to Pivot. You can change any chart type in this way.

4.	 Under Dimensions, remove the previous dimensions and add 
SubCategroyDesc and ProductName as dimensions. Check Suppress When 
Values is Null. Change the labels of these dimensions to SubCategory and 
Product respectively.



Creating Dashboards

[ 106 ]

Check that Suppress When Values is Null is checked so that the 
dimensions value will not be displayed if it contains null values.

5.	 In the Expressions pane, remove the Online vs Total Orders gauge  
chart expression.

6.	 Under Presentation, click on SubCategory and check the Show Partial Sums 
checkbox. Do the same for Products. Leave the rest as defaults.

7.	 Click on Finish and check your newly created pivot table.
8.	 You will see + in front of the SubCategory columns. Click on it to see the 

Product column. The table is grouped by these dimensions.
9.	 In the Presentation tab, you can check Always fully expanded to keep 

SubCategory and Product always displayed.

Container
With a little formatting, your dashboard will look like the following:

This looks a little cluttered. This can be cleaned up by using the Container object. 
Container can contain all the other sheet objects. The objects are grouped together.  
In the following exercise, we will put a previously created straight table and pivot 
table in the container:

1.	 On any empty space on the sheet, create a Container object.



Chapter 5

[ 107 ]

2.	 Go to Properties. On the General tab from the list of existing objects, select 
the straight table Orders By ProductLine, and the pivot table Orders by 
SubCategory. The names of the tables will be prefixed with the object ID. 
Make sure to pick the right tables.

3.	 On the Presentation tab, set Single Container Type as Single Object and 
Appearance as Tabs at the top.

4.	 Click on Ok.
5.	 Once the charts are added to the container, you can remove these charts  

from outside.
The Dashboard page will now appear as follows:

Dimension limits
Dimension limits can be set for chart types, except for gauge charts and pivot tables. 
It controls the number of dimension values you can see in a given chart.

Using dimension limits, you can see the first, largest, and smallest dimensions:

1.	 Create a new sheet. On the Dashboard sheet, right-click and select Copy 
Sheet. This will create a copy of the sheet. The look and feel of all the objects 
will be the same. You can change the title of the sheet and delete the objects 
you don't need.

2.	 You can also create a new sheet from the Layout menu.



Creating Dashboards

[ 108 ]

3.	 Copy the sheet and change the title of the sheet to Top Sales. Right-click 
and remove all the charts and containers as you don't need them in this sheet. 
Keep the list boxes on the left.

4.	 We will create a bar chart to get the top five sales by subcategory. Create 
a new bar chart. On the General tab, change the title to Top 5 Sales by 
SubCategory.

5.	 Under Dimensions, select SubCategory Desc.
6.	 Under Expressions, specify the following expression and label it 

Sales:
Sum(LineSalesAmount)

7.	 At the bottom, check Values on Data Points.
8.	 Sort by Y-Value descending.
9.	 Under Style, pick Horizontal.
10.	 Under Axes, set the Axis width as 1 pt.
11.	 Under Number, set Fixed to 2 decimals and provide symbols K, M, and B.
12.	 Under Caption, uncheck Show Caption. Click on Finish.
13.	 Since there are so many subcategories, this chart is not clear. We will limit 

this chart to show just the top five subcategories.
14.	 Go to the Dimension Limits tab in Properties. Under Limits, check 

Restrict which values are displayed using the first expression.
15.	 Under Show Only, select the largest with a value of 5.
16.	 Under Options, uncheck Show Others.

Your chart will appear as follows:



Chapter 5

[ 109 ]

Similarly create charts for the Top 5 SalesPerson, Top 5 Sales by Order Territory, 
and Top 5 Sales by Cities. The resulting charts should look like the following:



Creating Dashboards

[ 110 ]

Interactivity using text objects
As mentioned in earlier sessions, Text objects can provide interactivity by  
using Actions:

1.	 Navigate to the Dashboard sheet. Go to the properties of the first text object, 
for example, for # of Orders.

2.	 Go to the Actions tab and click on Add. Under Action Type, highlight 
Layout. On the Action tab, select Activate Sheet and click Ok.

3.	 On the next screen, specify the sheet ID of the sheet that you want to activate. 
Provide the sheet ID of the Top Sales sheet. The sheet ID is SH03.

Get the sheet ID by going into Objects Properties, 
under the General tab.

4.	 Now if the user clicks on the text object of # Orders, he will go directly to 
the Top Sales sheet where he can see the details of the Orders.
Your Top Sales sheet will appear like the one shown in the  
following screenshot:



Chapter 5

[ 111 ]

Some more charts
QlikView provides charts for all types of requirements. Here we will explore a few 
more charts.

Line charts
Line charts are used to display expressions in the form of lines.

1.	 Copy the Top Sales sheet and name it More charts. Remove the  
existing charts.

2.	 Create a new chart. Name it Yearly Trend. Select Line Chart from the  
chart types. A line chart is used to show the yearly trend of a measure.

3.	 Set Year as Dimension and expression as Sum(LineSalesAmount). On the 
Expression tab, from the Display Options, check Symbol and select Dots.

4.	 Under the Presentation tab, increase the symbol size to 4 pt. This will make 
the size of the dots bigger.

5.	 Specify the number format as Fixed to 2 decimals. Specify symbols as K, M 
and B. Uncheck the Show Caption.

Combo charts
A combo chart is a combination of a bar and line chart. It can display one expression 
as a bar and another expression as a line:

1.	 Create a copy of the previously created line chart. Name it Sales vs Freight.
2.	 Select Combo Chart from the chart types. Set the Year as Dimension. Go to the 

Expression tab. You already have an expression for Sum(LineSalesAmount). 
Create a new expression, Sum(Freight). From the Display Options, check 
Symbol and Line. Previous expressions of sales will display as a bar.



Creating Dashboards

[ 112 ]

3.	 Specify the Number format. The combo chart will display as follows:

Pie charts
A pie chart is best suited when you have to display the total share by certain 
categories. It is best suited for a small number of categories. For meaningful results, 
the expression in the pie should be displayed in percentages. A pie chart will display 
at a glance the percentage of Sales by ProductLine. It will be better suited for 
higher management as they will interested in a high-level picture of the sales:

1.	 Create a new chart and select Pie from the chart types.
2.	 Select Product Line Desc as Dimension.
3.	 In the Expression field, use Sum(LineSalesAmount). Make sure to check 

Relative as it will display the expression as a percentage.
4.	 Under the Style tab, select the second style on the left.
5.	 Click on Finish and adjust the size of the chart.
6.	 Your pie chart will look like the following one. It shows that the product line 

Road is contributing the most to the sales.



Chapter 5

[ 113 ]

Some important functions
A variety of powerful functions are available in QlikView to be used in expressions.

The Aggr function
Aggr is a powerful function that aggregates data over the dimensions. It is similar 
to the Group By clause in SQL. It kind of creates a temporary table of results from 
which you can select and perform more aggregations. The Aggr function is used 
when multiple aggregation functions are required in an expression. It is similar to  
a chart expression based on different dimensions. Aggr can be used in expressions 
and dimensions:

1.	 Navigate to the Top Sales sheet. Go to any empty space on the sheet,  
right-click, and click on Copy Sheet. This will create a copy of the Top  
Sales sheet. Change the sheet name to Using Functions. Remove all  
the charts. Leave the list boxes of Year, Month, and others.

2.	 Create a new pivot table. Add Year, SalesPerson Name, Product Line Desc 
as Dimensions. Check Suppress When Value is Null.

3.	 Add Sum(LineSalesAmount) as an expression. Label it as Sales. Specify the 
Number format as Fixed To 2 decimals.

4.	 Click on Finish and observe your chart.
5.	 Now go to properties of the table. Add one more expression as follows.  

This uses Aggr syntax. Label this expression as Using Aggr. Leave the 
Number format fixed to 2 decimals.
Aggr(Sum(LineSalesAmount),Year,[SalesPerson Name],ProductLineDesc)

Notice that the result of using the Aggr and Sales calculation 
is the same. This is to show you how Aggr works. It is similar 
to chart expression over dimensions.

Nested aggregation
In QlikView, nested aggregation functions can only be used using Aggr. Now 
consider the requirement; there are two parts in the requirement:

•	 In each Year, find the total sale by ProductLine for each SalesPerson.
•	 Find the maximum sales for Year and ProductLine. In the second part of  

the requirement we have to ignore the SalesPerson as we only have to get  
the maximum sales by Year and ProductLine.



Creating Dashboards

[ 114 ]

Perform the following steps to meet these requirements:

1.	 Use the same pivot table that we created in an earlier exercise.
2.	 We already have an expression in place for first part of the requirement:

Aggr(Sum(LineSalesAmount),Year,[SalesPerson Name],  
ProductLineDesc)

3.	 Now to calculate maximum sales for each Year and ProductLine, we have 
to use the Max function over Sum(LineSalesAmount). We know that a nested 
aggregation function can only be used using Aggr, so we will make use of the 
previous expression.

4.	 Go to the previous expression of Aggr and comment it. Use the following 
syntax, using Max. Your expression window should look as follows:
Max(Aggr(Sum(LineSalesAmount) ,Year,[SalesPerson Name],  
ProductLineDesc))

//Aggr(Sum(LineSalesAmount),Year,[SalesPerson Name],  
ProductLineDesc)

5.	 You will notice that using this calculation did not change the result. This 
is because Max is calculating within the dimension of the chart, namely for 
Year, SalesPerson Name, and ProductLine, but for our requirement we 
need to calculate maximum sales per Year and ProductLine. We need to 
omit the SalesPerson Name dimension from the calculation.

6.	 Total Qualifier is used to ignore the dimension in a chart. Using Total Qualifier 
in the expression, you can explicitly state which dimensions to be considered 
in the calculation. Change the previous calculation to the following:
Max(Total <Year, ProductLineDesc>  
Aggr(Sum(LineSalesAmount), Year,  
[SalesPerson Name],ProductLineDesc))



Chapter 5

[ 115 ]

The total function used previously is an important function.  
It is used to disregard the dimension in the chart calculation.  
In the previous expression, the Year and ProductLineDesc 
fields are included in the expression, and SalesPerson Name 
is excluded because our requirement is to find maximum sales 
by Year and ProductLine, ignoring the SalesPerson in this 
calculation.
To further understand Total Qualifier, create a straight table and 
use Year and ProductLine as dimensions, and use the three 
expressions, shown as follows, and see the difference in the 
output. Use the expressions as shown in the column headers.
The first expression shows the sum by Year and ProductLine.
The second expression shows the sum by ignoring Year and 
ProductLine.
The third expression shows the sum by including Year and 
ignoring ProductLine.

7.	 To test your chart and expression, click on any Year and ProductLine desc 
from the list boxes.

Other functions
You can display dynamic titles in your chart using the GetSelectedCount and 
GetFieldSelections functions:

1.	 Make a copy of the previous chart.
2.	 Go to Properties and in the Window Title type the following command. 

Remember to put = in front of the statement:
= if(GetSelectedCount(Year) =  
1,GetFieldSelections(Year),'All')



Creating Dashboards

[ 116 ]

3.	 GetSelectedCount will check whether the selection is being made in the 
Year list box.

4.	 If the selection is being made then it will display the selected field by 
using GetFieldSelections.

5.	 This will display the selections made in Year and ProductLine list 
boxes as the title of the chart.

6.	 Use GetCurrentSelections to display all the selections made by the  
user in any of the list boxes. Comment the previous command and type  
the following:
=GetCurrentSelections('|','=')

7.	 Sometimes, you may want to force users to select a value before rendering 
a chart. This can be achieved by specifying a condition in the Calculation 
Condition box in the General tab of the chart.
=GetSelectedCount(ProductLineDesc) = 1

8.	 Also click on the Error Messages… button and specify a Custom Message.
9.	  Select ProductLine to display the chart.
10.	 The chart will only be rendered if a selection is made in the ProductLine list 

box, otherwise it will show a message prompting users to make a selection.

Summary
In this chapter, we learned techniques for building an interactive QlikView 
visualization application. It started with the importance of binary load and  
we learned about different objects available to you for creating dashboards.  
We also learned about important functions required to create your application.

In the next chapter, we will learn about a very important feature of QlikView called 
Set Analysis. We will also learn about comparative analysis using alternate states,  
and techniques to accept inputs from users to perform what-if analysis.



[ 117 ]

Comparative Analysis
In the previous chapter we learned about creating dashboards. Dashboard applications 
can be made powerful by the use of comparative analysis. Comparative analysis can be 
best applied with the use of Set Analysis and Alternate States.

In this chapter we shall:

•	 Learn about comparative analysis using Set Analysis
•	 Learn about Alternate States
•	 Learn about What-If analysis using the slider and input box

Set Analysis essentials
A QlikView document is always in the current state. It shows data and aggregation on 
the current selections made by the user. In most dashboard applications, you have to 
perform aggregations or perform comparisons between the current selection/state and 
alternative selections or states in the chart. Set Analysis is powerful in such scenarios:

•	 Set Analysis is very useful for comparisons such as comparing  
"current year" with "previous year"

•	 Set Analysis can be only be used with the Aggregation function.  
Here we should always begin and end with curly brackets { }



Comparative Analysis

[ 118 ]

Set Analysis consists of three components: Identifiers, Operators, and Modifiers:

•	 An Identifier defines a set. As seen in the following function declarations,  
$ represents the records in the current selection and 1 represents the set of  
all the records in the entire document. Bookmark and Alternate States can 
also be used as identifiers.

°° Sum({$}LineSalesAmount): This function returns sales for the 
current selection

°° Sum({$1}LineSalesAmount): This function returns sales for the 
previous selection

°° Sum({1}LineSalesAmount): This function returns total sales within 
the application, disregarding the selection but not the dimension

°° Sum({BkMrk1}LineSalesAmount): This function returns sales for  
the bookmark BkMrk1

°° Sum({State 1}LineSalesAmount): This function returns sales for 
the alternate state 1

•	 Set Operators can also be used in set expressions.
°° + (Union): This operator returns the set of all records in the union  

of sets
°° - (Exclusion): This operator returns records that belong to the first  

but not the other of the two sets of identifiers
°° * (Intersection): This operator returns records that belong to both  

of the set identifiers
°° / (Symmetric): This operator returns a set that belongs to either,  

but not both of the difference set identifiers

•	 Modifiers are used to modify a set. A modifier consists of one or several field 
names. They are followed by the selections that can be made in the field. 
Modifiers begin and end with angle brackets < >.

Sum ({$<Year = {'2006'}>} LineSalesAmount)

This function returns the sales for the current selection where Year = 2006.

Set Analysis expressions can use variables. In the absence of Set Analysis you have to 
use complex If-then statements.



Chapter 6

[ 119 ]

Using Set Analysis
We will perform a few Set Analysis expressions to understand the power of  
Set Analysis. It is important for the Adventure Works company to perform a  
year-by-year comparison of sales. It will help them in asking questions about  
the years when sales went down and look for the reasons.

Use QlikEssentials_Presentation.qvw for this example. Navigate to the  
Using Functions tab, right click on any empty space, and select Copy Sheet.  
This will create a copy of the sheet:

1.	 Modify the title of the sheet as Comparative Analysis and remove the  
two tables from the sheet.

2.	 Create a straight table. Select ProductLineDesc as a dimension and label  
it as Product Line. Check Suppress When Value is Null.

3.	 Create an expression for sales for the year 2006. This will use the Set  
Analysis syntax:
Sum({<Year = {'2006'}>}LineSalesAmount) 

Add an expression for sales for the current year and label it as =Max(Year):

Sum({<Year = {$(=Max(Year))}>}LineSalesAmount)

Add an expression for sales for the previous year and label it as =Max(Year) 
- 1:

Sum({<Year = {$(=Max(Year)-1)}>}LineSalesAmount)

4.	 Usually, selecting data elements in the list box will change the values in the 
table. We can ignore such selections using the following syntax:
Add another expression, which will ignore the selections made in the 
Product list box:

Sum({<Year = {'2006'}, ProductName = >}LineSalesAmount)

5.	 Set Analysis modifiers can also use search strings. Add another expression to 
calculate sales where SubCategory Desc like C*.
Sum({<[SubCategory Desc] = {'C*'} >}LineSalesAmount)

6.	 Variables can also be used in set expressions. Go to variable overview by 
pressing Ctrl + Alt + V. Create a variable vPrevYear. Set the definition of  
the variable as:
   =Max(Year) - 1



Comparative Analysis

[ 120 ]

In the straight table, add an expression and label it as Prev Year:

Sum({<Year = {$(vPrevYear)}>}LineSalesAmount)

7.	 Operators can also be used in set expressions. We will create an expression to 
get the sales for all the records excluding the current selection. Label this as 
All – Current.

Sum({ 1- $} LineSalesAmount)

Alternate States
Alternate States will help Adventure Works users to compare freight of different 
products. This was not possible until now as whenever you'd select Product from  
the list box, it'd change the data in all the charts. Alternate States provides a way  
to do such comparisons.

In your dashboard, you can detach any chart. Right click and choose Detach.  
Once detached, the chart will not respond to the user's selections.

Alternate States is an extension of this concept where the developer can create 
multiple states and apply these states to specific objects. All objects in a given state 
will respond to user selections made in that state. Alternate States are not available  
in the load script. They are a feature of a user interface.

Two states are always available in the document: the default state and the inherited 
state. The QlikView document is always in the default state and it is represented by 
$. Objects can inherit states from higher-level objects. Sheet objects inherit states from 
the sheet, and the sheet in turn inherits from the document.

Alternate States' functionality is invoked from document settings. Once the Alternate 
States functionality is invoked, the developer can create any number of states from 
the sheet objects:

1.	 Copy the Comparative Analysis sheet. Change the title to Alternate State. 
Remove all the charts from this sheet. Remove all the list boxes from the left 
except Product.

2.	 Go to the properties of any object and notice that Alternate State is not 
present under the General tab.

3.	 Now navigate to Document Properties from the menu. Click on the Alternate 
State button and click on Add. Name the New State as State 1.



Chapter 6

[ 121 ]

4.	 Now go to the properties of any object and notice under the General tab the 
Alternate State drop-down. This can be used to assign State 1 to the object or 
create new states.

5.	 Create a new Straight table. Change the title of this chart to State  
1 - Freight. For Dimensions, select Year, and for Expressions,  
use Sum(Freight).

6.	 From the General tab, use the Alternate States drop-down to select State 1. 
This table is now in state 1.

7.	 Now selections made to any object will not have any effect on the table.
8.	 Now, right click on the Product list box. From the General tab, change the 

title to Product-State1 and use the Alternate State drop-down to change 
its state to State 1. Now the Product-State1 list box and the State 1 - 
Freight table are in the same state. They will respond only to selections 
made in these objects. Click on product and you can see that only the values 
in the table State 1 - Freight change.

9.	 Go to the properties of the Product Line list box. On the General tab, change 
the title to Product-State2. From the field drop-down, select ProductName. 
This will create a list box for Product.

10.	 On the General tab, from the Alternate State drop-down, select <new state>. 
Give the new state the name State 2. This list box is now in state 2.

11.	 Make a copy of the previously created chart. From the General tab, change 
the title to State 2 - Freight. From the Alternate State drop-down, select 
State 2. Now Product-State2 and this chart are in the same state.

12.	 Now remove the Month list box from the top. Create a copy of the Year list 
box. Assign State 1 and State 2 Alternate States to these charts respectively.

13.	 Now you can perform comparative analysis using these states. Select 2006 
and 2007 in both the list boxes. Select Cable Lock in the Product-State1 list 
box and AWC Logo Cap in the Product-State2 list box.

14.	 Now you can compare the values in both the tables. For further analysis  
you can select different products in one state and compare it against the  
other state. For example, you can keep Cable Lock selected and compare  
it to all the other products in state 2. This is possible only because making 
selections in state 2 is not changing the values in state 1.



Comparative Analysis

[ 122 ]

15.	 Your sheet will appear as follows. Notice the Current Selections box does 
not show the selections. That is because the Current Selections box is in an 
inherited state and not in state 1 or state 2. If you want to see your selections 
then change the state of the current selections box.

What-If Analysis
In QlikView, What-If Analysis is implemented using sliders and input box.  
In What-if Analysis, users can adjust the value of variables and see the effect  
on the data set in the chart.

Using sliders, the user wants to see how their sales amount changes if they make 
changes to the discount:

1.	 Go to the Variable Overview and create a variable vChangeAmount and set 
the value as .5.

2.	 Copy the Comparative Analysis sheet and name it What-If Analysis. 
Remove the table from the sheet.

3.	 Create a pivot table. Change the title to What-If Discount. Use 
ProductLineDesc and OrderID as dimensions.



Chapter 6

[ 123 ]

4.	 For creating an expression, use the following and provide a Number format:
Sum(LineSalesAmount)   -   Label as Sales Amount
Sum(Discount)          -   Label it as Discount
Sum(LineSalesAmount) * (1 – Discount)  -   Label as  
  Original Sale Amount

5.	 Create a new object by selecting Slider/Calendar from the list of new  
sheet objects.

6.	 On the General tab, the input style options are Slider and Calendar. Select 
Slider. Under Data, select Variable(s). Select the variable as vChangeAmount.

7.	 Under Mode, select Single Value. Under Value Mode, select Continuous/
Numeric.
Specify Min Value as .1, Max Value as 1 and Static step of .1

8.	 Now add a new expression in the table you created in step 3. Label this 
expression as Target Sales Amount and use the following code:
Sum(LineSalesAmount) * (1 - Discount* vChangeAmount)

9.	 Now use the slider to change the discount, which will change the value of the 
variable vChangeAmount and will thus change the Target Sales Amount.



Comparative Analysis

[ 124 ]

10.	 For quick testing, drop a list box of Discount and select $0.10. Select Road from 
the ProductLine list box. Use sliders to change the value of vChangeAmount.

Using input box
Input box is also used to modify the value of a variable. We will use input box to 
change the value of freight and see how it affects the sales amount:

1.	 Navigate to Variable Overview by pressing Ctrl + Alt + V and create a 
variable vChangeFreight and set its value to 10.

2.	 Create a new object by selecting Input box from the list of new objects. On 
the General tab, change the title to Change Freight. From the available 
variables, select vChangeFreight and add to Displayed Variables.

3.	 Create a copy of the table previously created.



Chapter 6

[ 125 ]

4.	 Change the calculation of the last expression, Target Sales Amount to:
(Sum(LineSalesAmount) * (1 - Discount*vChangeAmount)) +  Freight* 
vChangeFreight

5.	 Now change the value of the freight from the input box and discount from 
the slider to see the changes in your target sales amount.

In the previous section, two tables are created one after the other. It may 
happen that if you clear all the selections in your dashboard, the table at 
the bottom may get hidden since it will get overlaid by the chart at the 
top. To avoid this, either make selections in the list boxes as shown in the 
previous screenshot or minimize one chart, if you are not viewing it.

The last step
As the last step in your visualization application, follow these steps:

1.	 Navigate to the About sheet and create a text object.
2.	 On the General tab in the Text edit box, type Get Started. Change 

transparency to 100%.



Comparative Analysis

[ 126 ]

3.	 Under Actions, click Add and select Action Type as Layout. From the Action 
list, select Activate Sheet. In the Sheet ID box, specify the object ID of the 
first dashboard sheet, which is SH02.

4.	 Under Font, select Calibri Bold and size 16.
5.	 Under Layout, set Shadow intensity as Medium, and a Border width of 2 pt.
6.	 Now clicking on this button will take you to the dashboard sheet.

Summary
This chapter covered Set Analysis, which is one of the most important concepts of 
QlikView. We also learned about Alternate States and performed What-If analysis 
using sliders and input boxes. We also learned about a few more chart types.

As we completed the visualization application, it is now important to secure  
your application.

In the next chapter, you will learn about securing your application using  
Section Access.



[ 127 ]

Securing Your Application
In the previous chapters you have loaded data and created a visualization 
application. Now it's time to secure your application so that only authorized  
users can view the application and data.

In this chapter, we shall:

•	 Learn about the overview of security in QlikView
•	 Learn about the different ways of securing an application
•	 Learn about implementing security using Section Access

In QlikView, security can be implemented in two ways. One is protecting your 
dashboard from unauthorized access and the other is protecting your data within  
your application from unauthorized access.

Application-level security is implemented at the server level where access to 
the dashboard application is provided based on user roles and groups. This is 
accomplished using the QlikView management console.

Data-level security in QlikView is implemented using Section Access. Section Access 
is implemented in the Qvw script. This chapter deals with implementing data-level 
security using Section Access.

Section Access essentials
Section Access is implemented to protect your data from unauthorized access and to 
ensure that users can view only authorized data.

Section Access is implemented at the document level in the Qvw script. Since the 
Section Access script contains information regarding user and access level, it should 
be written in the hidden script. The hidden script is invoked from the script editor, 
File | Create Hidden Script.



Securing Your Application

[ 128 ]

The hidden script requires a password so that it cannot be accessed by an 
unauthorized developer.

All access-related information can be stored and loaded from text files, database 
tables, or inline tables in the same way as any other data is loaded in the script.

It is important to backup your application before implementing Section Access 
because in case you miss the Section Access user ID and password, you cannot  
enter your application.

All data other than from inline tables should be loaded in upper case. Inline data  
is always treated as uppercase.

Section Access implements access rights based on the combination of the  
various criteria:

•	 Access: This defines the access level of the user and is a required field.  
There are two types of access levels, ADMIN and USER. The ADMIN 
controls USER privileges in the QlikView document. An ADMIN can  
have full authorization in the document.

•	 UserID: This field stores a valid user ID. QlikView will request for a user ID 
and compare the value in this field. User ID is not case sensitive. All fields in 
the Section Access definition are interpreted as uppercase.

•	 Password: This field contains a password. QlikView will request a password 
and compare with the value in this field.

•	 Serial This field contains a number corresponding to the QlikView serial 
number. QlikView will compare a user's serial number with the value in 
this field. This is applicable only when you are using a licensed version 
of QlikView. The serial can be located under the menu Settings | User 
Preferences, under the License tab.

•	 NTName: This contains a Windows NT domain username or group name. 
QlikView will get the log on information from the OS and compare it to  
the value in this field.

•	 NTDOMAINSID: This field contains a string corresponding to a Windows NT 
Domain SID.



Chapter 7

[ 129 ]

•	 NTSID: This field contains a Windows NT SID.
•	 OMIT: This contains a field that should be omitted/removed for a specific user.
•	 REDUCTION: This field is used to control access to data for a specific user. 

The  reduction field is used to compare against another field in the QlikView 
application with the same name. If a comparison is found, the data will be 
reduced for the field and will be displayed to the user.

Initial data reduction should be configured in the Document Properties. Using initial 
data reduction, QlikView removes all the data the user does not have access to, based 
on authorizations specified in the Section Access script. Initial data reduction is an 
important step in securing your document. In its absence, Section Access will be 
implemented without data reduction. Users having access to the document will have 
full access to the data.

To configure initial data reduction, navigate to Document Properties and then the 
Opening tab. Make sure the following settings are configured:

In Document Properties, navigate to the Security tab to define actions a user with 
user privileges can perform.



Securing Your Application

[ 130 ]

Implementing Section Access
Save QlikViewEssentials_Presentation.qvw as QlikViewEssentials_
Presentation_Secured.qvw. It is important to back up your original file just in case 
you forget the user ID and password:

1.	 Open script editor and go to File | Create Hidden Script. Create a password 
for your hidden script. I used user123.

2.	 Type the following script and load the script:
Section Access;
Load * Inline [
ACCESS, USERID, PASSWORD
ADMIN, ADMIN, ADMIN
USER  U1,  U1
USER  U2,  U2
USER  U3,  U3
];
Section Application;

This will create a Section Access script using a Section Access keyword.  
This script is loading an Inline table with three columns ACCESS, USERID, 
and PASSWORD. You can use a database table or Excel file to load this info. 
This script creates four users. One user with Admin-level access and three 
with User-level access.

3.	 To test your script, close your application and open it again. It will ask for a 
user ID and password. Give the user ID and password as mentioned in the 
previous script.



Chapter 7

[ 131 ]

4.	 If you log in as one of the users, go to script editor, file menu, and see that 
Edit Hidden Script is greyed out.

5.	 Now close your application. You may have to quit QlikView desktop  
and open your script again. This time log in as Admin. In the script editor, 
you should be able to see Edit hidden script. It will ask for a password to 
open the hidden script. I specified user123 earlier as the password for the 
hidden script. Once the hidden script is opened we will add more options  
to the script.

Using OMIT
Now we will modify the script to include the OMIT keyword in the script. After this 
script, make sure to navigate to the Document Properties | Opening tab and check 
Initial Data Reduction Based on Section Access.

Section Access;
LOAD * INLINE [
    ACCESS, USERID, PASSWORD,OMIT
    ADMIN, ADMIN, ADMIN,
    USER, U1, U1, ProductName
    USER, U2, U2, Year
    USER, U3, U3, Month
    USER, U4,U4,  *
];
Section Application;

Using this application, user U1 will not be able to see the Product list box, user U2 will 
not be able to see the Year list box and user U3 will not be able to see the Month list 
box. U4 has * in the OMIT, which means that he will not be able to see ProductName, 
Year, and Month list boxes. * doesn't mean that he will NOT be able to see everything 
but it means that he will NOT be able to see all fields listed under OMIT:



Securing Your Application

[ 132 ]

Log in as different users and test your script. Login as user U1 and see the Product 
list box without any data.

Using reduction
Now we will use a reduction field to restrict users to seeing their own data:

Open the dashboard with an Admin user ID and password, and change the hidden 
script as follows. In this example, ProductLine desc is being used as the reduction 
field. Now user U1 will be restricted to see only data for ProductLine Road. User U2 
will be restricted to seeing only the data for components.

Section Access;
LOAD * INLINE [
    ACCESS, USERID, PASSWORD, PRODUCTLINEDESC
    ADMIN, ADMIN, ADMIN,
    USER, U1, U1, Road



Chapter 7

[ 133 ]

    USER, U2, U2, Components
    USER, U3, U3, Mountain
    USER, U4, U4,   *
];
Section Application;

Summary
In this chapter we learned about securing a QlikView application. A QlikView 
application can be secured at the server level and at the document level. We learned 
about implementing data-level security using Section Access. Now we have created 
a robust, secure, QlikView visualization application, it's time to deploy your 
application on the server so that users can view it.

In the next chapter you will learn about deploying a QlikView application on  
the server.





[ 135 ]

Application Deployment
In previous chapters, we created a data model in QlikView, we created an interactive 
dashboard, and applied security. Now it is time to deploy your application on the 
server so that users can view it through an access point/QlikView's web portal.

In this chapter we shall:

•	 Learn about the overview of QlikView architecture
•	 Learn about different components of QlikView such as server, publisher,  

and access point
•	 Have an overview of Client Access Licenses (CALs)
•	 Learn about how to deploy a dashboard on the server
•	 Learn about creating tasks, triggers, and publishing applications for the users



Application Deployment

[ 136 ]

QlikView architecture essentials
QlikView follows a multi-tier architecture. Developers use the QlikView desktop to 
connect to various data sources and create data load scripts and dashboards. These 
qvw files are called source documents and are stored in the Source Documents 
folder on the server.

The following are the important components of the QlikView architecture:

•	 QlikView Server (QVS): It provides a platform for hosting and sharing 
QlikView documents over the web portal. QVS is responsible for user 
management, security, and data reload functionality.

•	 Publisher: It is a component of the server and it helps in publishing the 
documents, securing the application, and data reduction according to the 
requirements. Once published, documents go into the User Documents 
folder. Users view these documents using an access point. This access  
point is QlikView's web portal.



Chapter 8

[ 137 ]

•	 QlikView Management Console (QMC): It is used to access the server and 
control all aspects of server deployment.

•	 Access Point: It is a web portal and is the entry point for users to view the 
documents hosted on the server. It presents a list of documents according to 
users' access rights. User access to the document is controlled by QlikView 
Client Access Licenses (CALs).
Access point URLs have the following structure:
http://<serverName>/qlikview/index.htm

•	 QlikView clients: QlikView documents can be utilized by QlikView clients 
through QlikView server and the QlikView webserver. QlikView client is 
required for user interaction and presenting the document on the access 
point. QlikView has three different client types: AJAX, IE Plugin, and 
QlikView.exe.

Client Access Licenses (CALs)
QlikView is a licensed application, which means that to perform any operation on 
QlikView, users need a license. QlikView has the following types of licenses:

•	 Named User CAL: It is specific to the user or the machine. Users with this 
type of license can access any number of documents and for unlimited 
duration. This type of license is best suited for developers and designers  
for creating the dashboard, or dedicated users who need 24 x 7 access to  
the dashboard application.



Application Deployment

[ 138 ]

•	 Document CAL: It associates users to the document instead of the QlikView 
server. It allows users to only access one QlikView document. This type of 
license is good for users who are only interested in one specific document.

•	 Session CAL: It is not tied to a specific user or a machine. Session CALs 
allow a single user to access multiple documents. Session CALs are used  
in a setup where there is a large number of non-frequent users. Users can  
use the license as long as it is available.

•	 Usage CAL: It gives users the ability to initiate one session, for example, 
accessing one document per running 28-day period. This license is also 
not tied to a specific user. Usage CAL and Session CAL can be used in 
combination.

QlikView application deployment
Once the QlikView visualization application is developed, it is deployed on the 
QlikView server. Users access dashboards from the server through the access point:

•	 QlikView applications/Qvw are developed using the QlikView Desktop. 
These applications contain data load scripts that generate QVDs and 
QlikView dashboards with visualization objects. A developer can use  
their desktop or laptop to develop these applications.

•	 Once Qvws are developed, they are placed in the Source Documents folder. 
A Source Documents folder is a Windows folder located on the QlikView 
server. A folder structure may be created and maintained to host multiple 
applications catering to different business units of an organization.

•	 The Source Documents folder and other server management operations are 
performed from the QlikView Management Console (QMC).

•	 Admin or authorized developers use the QMC to create tasks. These tasks  
are scheduled to run data load scripts and dashboard applications.

•	 These dashboard applications, once run, are distributed to the User 
Documents folder. The User Documents folder is a Windows folder on  
the QlikView server. The User Documents folder is accessed from the 
QlikView Management Console.

•	 Users can access QlikView documents from the User Documents folder via 
the access point.



Chapter 8

[ 139 ]

QlikView server structure
A typical server environment in QMC has different tabs:

•	 System: It gives you all the information regarding the QlikView Server and 
different services. Licenses within System give you information about the 
system licenses. Depending on the implementation, you may have just a 
Server license or a Server and publisher license.

•	 Documents: It provides information on the Source Documents and User 
Documents folder. Source Documents gives you the list of documents you 
have stored in the Source Documents folder. User Documents gives the  
list of documents published to the users.

•	 Status: It is used to check the status of the tasks executed. These tasks are 
for data load, that is, QVD generation and visualization generation. Using 
the Status tab you can monitor whether the tasks are successful. Status 
also contains a tab for services that provide information about the various 
services running on the server.

Tasks are created to execute the data load and to publish the qvw. 
Tasks can be scheduled to run on a specific day and at a specific time.

•	 Users: It is used configure all the settings related to the users. Administrators 
can control Client Access Licenses, recipients, server objects, groups, and 
documents.

Summary
In this chapter we have learned about deploying your application on the QlikView 
server. We learned about different components of the server and different options 
available to the administrator to manage the application. This chapter also gives an 
understanding of different Client Access Licenses, which are important when setting 
up the QlikView environment. Finally, we learned about creating tasks and triggers.

With this chapter, we have reached the end of this book. In this book we have 
learned the full life cycle of a typical QlikView implementation.



Application Deployment

[ 140 ]

Over the course of this book we have learned essentials pertaining to different 
aspects of QlikView. We have learned the complete ETL (Extract, Transform, and 
Load) cycle by writing scripts in script editor. We also learned how to create an 
interactive visualization application and learned about the use of different functions 
and comparative analysis. Finally, we learned about securing the application and 
deploying it on the server.

QlikView development is a journey and I hope by reading this book and performing 
all the exercises, you will be equipped to plunge into the awesomeness of QlikView.

I wish you good luck and consider you as my partner in developing applications to 
help the business community.



[ 141 ]

Index
A
access point

URL, structure  137
Adventure Works Cycles  5
Aggr function  113
Alternate States  120, 121
application deployment

about  138
steps  138

architecture
about  136
Access Point  137
publisher  136
QlikView clients  137
QlikView Management Console  

(QMC)  137
QlikView Server (QVS)  136

automatic concatenation option  47

B
bar chart

creating  92-95
Expression Overview  95

best practices, data modeling
associations  74-76

binary load
about  80
menu items, exploring  80-82

C
charts

about  111
combo charts  111

line charts  111
pie chart  112

circular reference
about  28
resolving  29, 30

Client Access Licenses (CALs)
about  137
document CAL  138
Named User CAL  137
session CAL  138
usage CAL  138

combo charts  111
concatenation

about  46
automatic concatenation  47
example  47
forced concatenation  47
no concatenate option  47

Crosstable  56, 57
Customer table

loading  21

D
dashboard

binary load  80
creating  79
data association  79
essentials  77, 78

dashboard sheet
about  86, 87
logo, placing  91

data
loading, from Excel files  24
loading, from text  24



[ 142 ]

database
circular reference   28
Customer table, loading  21
data, loading from  14
data, loading from Excel files  24
data, loading from text  24
data model, reviewing  38
Employee.xlsx, loading  26, 27
Exists  34
fields, creating in Order table  19, 20
If statements, using in script  35, 36
Include statement, used for including  

files  36
Inline table, loading  31
loosely coupled tables  28
OrderDetail table, loading  18, 19
OrderHeader table, loading  15-18
Productcategory table, loading  24, 25
ProductSubCategory table, loading  24
Product table, loading  21
Qualify statement  32
resident load  34
sales person, searching  34, 35
SalesTerritory table, loading  30
Shipment table, loading  30
Shippers table, loading  33
synthetic keys between Product and  

Order Detail tables, removing  23
synthetic keys, resolving  22
Table Viewer  36, 37

data model
analyzing  6
best practices  74
final model, reviewing  53
reviewing, time  38
snow flake schema  7, 8
star schema   7, 8
QlikView Data (QVD) files, adding  70, 71

development life cycle
about  5
Adventure Works Cycles  5
data model/data sources, analyzing  6
user requirements  5

development setup
about  8
Apps folder  8

Data folder  8
Images folder  8
Includes folder  8

dimension limits
about  107
interactivity, text objects used  110
using  107, 108

document CAL  138

E
EmployeeSalesTarget.xlsx

loading  57-59
Employee.xlsx

loading  26-28
Excel files

data, loading  24
Exists  34

F
fields

creating, in Order table  19, 20
files

including, with Include statement  36
path setting, with variables  64

forced concatenation option  47, 48
functions

about  113
Aggr function  113
nested aggregation functions  113-115

G
GetFieldSelections function  115, 116
GetSelectedCount function  115, 116

I
If statements

using, in script  35, 36
Include statement

used, for including files  36
Inline table

loading  31



[ 143 ]

installation
QlikView  2-4

IntervalMatch function
using  67-69

J
joins

about  49
data, aggregating  51
inner join  49
left join  49
new Employees table, concatenating  51, 52
Order  49, 50
Order Detail  49, 50
outer join  49
right join  49
working  49

K
key performance indicators (KPIs)  77

L
line charts  111
link table

about  59
creating  60-63
creating, steps  59

list boxes
creating  88-90
logo, placing on dashboard sheet  91
objects, copying  90, 91
objects, pasting  90, 91

loosely coupled tables  28

M
mapping load

CountryRegion_Inline table  45
Product Category table  43, 44
ProductSubcategory table  43-45
Territory table  41-43

mapping table
about  40

components  40
properties  40

master calendar  64-66
multi-tab application

creating  84-86
dashboard sheet  86, 87
list boxes, creating for other fields  88-90
logo, placing on dashboard sheet  91
objects, copying  90, 91
objects, pasting  90, 91

N
Named User CAL  137
no concatenate option  47, 48

O
OMIT

used, for implementing Section Access  131
optimized load

about  72
conditions  73

OrderDetail table
loading  18, 19

OrderHeader table
loading  15-18

Order table
fields, creating  19, 20

P
pie charts  112
pivot table

about  101
container  106
creating  105

Product Category table
about  43, 44
loading  24-26

ProductSubcategory table
about  43-45
loading  24

Product table
loading  21



[ 144 ]

Q
QlikView

about  1, 4
application deployment  138
architecture  136
components  2
configuring settings  12
development life cycle  5
development setup  8
installation  2-4
installation, URL  2
security, implementing  127
server structure  139
settings, configuring  12
variables  63, 64
variables, used for setting file path  64

QlikView Data (QVD) files
about  70-74
creating, for data model  70, 71
reading  72, 73

QlikView Management Console  
(QMC)  138

Qualify statement  32

R
reduction field

used, for implementing Section Access  132
resident load  34

S
sales person

searching  35
SalesTerritory table

loading  30
scatter chart

creating  97-100
script editor

highlights  13
scripting  12-14
Section Access

about  127
access rights implementation, criteria  128
implementing  127-130

implementing, OMIT used  131
implementing, reduction field used  132

server structure
tabs  139

session CAL  138
Set Analysis

about  101, 117
identifiers  118
modifiers  118
scenarios  117
set operators  118
using  119, 120

sheet objects  82-84
Shipment table

loading  30
Shippers table

loading  33
snow flake schema  7, 8
star schema

dimensions  7
facts  7

straight table
about  101
creating  101
cyclic group, creating  105
drill-down group, creating  104
enhancing  102, 103
groups  104
pivot table, creating  105

synthetic keys
between Product and Order Detail tables, 

removing  23
resolving  22

T
tables

pivot table  101
straight table  101

Table Viewer  36, 37
Territory table  41-43
text object

creating  95, 96

U
usage CAL  138



[ 145 ]

V
variables

about  63, 64
used, for setting file path  64

visualization application
last step  125, 126

W
What-If Analysis

about  122, 123
input box, using  124, 125


	Cover
	Copyright
	Credits
	About the Author
	About the Reviewer
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: QlikView Essentials
	QlikView components
	QlikView installation
	Getting started
	The development life cycle of QlikView implementations
	About Adventure Works
	User requirements
	Analyze data model/data sources
	Star schema and snow flake schema


	QlikView development setup
	Summary

	Chapter 2: Extract, Transform, and Load
	Configuring settings
	Scripting essentials
	Connecting to the database
	Loading the OrderHeader Table
	Loading the OrderDetail table
	Creating fields in the Order table
	Loading the Customer table
	Loading the Product table
	Resolving the synthetic keys
	How to resolve synthetic keys

	Removing synthetic keys between the Product and Order Detail tables
	Loading the ProductSubCategory table
	Loading data from text and Excel files
	Loading the ProductCategory table
	Loading Employee.xlsx
	Circular reference and loosely coupled tables
	Circular reference
	Loosely coupled tables
	Resolving circular reference

	Loading the SalesTerritory and Shipment tables
	Loading an Inline table
	The Qualify statement
	Loading the Shippers table
	A word about resident load and Exists
	Finding the sales person
	Using If statements in the script
	Including files using the Include statement
	More on Table Viewer
	Time to review your data model so far

	Summary

	Chapter 3: Optimizing Your Data Model
	Mapping table essentials
	Mapping load – Territory table
	Mapping load – Product Category and ProductSubcategory tables
	Mapping load – ProductSubcategory table
	Mapping load – CountryRegion_Inline

	Concatenation
	Concatenation example
	Automatic Concatenation
	NoConcatenate
	Forced concatenation


	Joins
	Join Orders and Order Detail
	Left join SalesPerson
	Aggregating data
	Concatenating the new Employees table

	Reviewing the final data model
	Summary

	Chapter 4: Data Modeling Challenges
	Crosstable essentials
	Loading EmployeeSalesTarget.xlsx
	Link table
	Link table essentials
	Creating a link table

	Variables in QlikView
	Using variables to set the file path

	Master calendar
	The IntervalMatch function
	QlikView Data Files (QVD)
	Creating QVD files for our data model

	Optimized load – reading QVD
	Reading QVD files

	Best practices of data modeling
	Summary

	Chapter 5: Creating Dashboards
	Dashboarding essentials
	Getting started
	Associative experience
	Binary load
	Exploring menu items


	Sheet objects
	Creating a multi-tab application
	The dashboard sheet
	Creating list boxes for other fields
	Options to copy and paste objects
	Placing a logo on the dashboard sheet


	Creating a bar chart
	Expression Overview

	Creating a text object
	Creating a scatter chart
	The story of two tables
	Creating a straight table
	Enhancing your tables
	Groups
	Creating a drill-down group
	Creating a cyclic group
	Creating a pivot table


	Dimension limits
	Interactivity using text objects
	Some more charts
	Line charts
	Combo charts
	Pie charts


	Some important functions
	The Aggr function
	Nested aggregation
	Other functions

	Summary

	Chapter 6: Comparative Analysis
	Set Analysis essentials
	Using Set Analysis
	Alternate States
	What-If Analysis
	Using input box

	The last step
	Summary

	Chapter 7: Securing Your Application
	Section Access essentials
	Implementing Section Access
	Using OMIT
	Using reduction

	Summary

	Chapter 8: Application Deployment
	QlikView architecture essentials
	Client User Licenses (CALs)
	QlikView application deployment
	QlikView server structure
	Summary

	Index



