
www.allitebooks.com

http://www.allitebooks.org


R Graph Essentials

Use R's powerful graphing capabilities to design and 
create professional-level graphics

David Alexander Lillis

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org


[ FM-2 ]

R Graph Essentials

Copyright © 2014 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval 
system, or transmitted in any form or by any means, without the prior written 
permission of the publisher, except in the case of brief quotations embedded in 
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy 
of the information presented. However, the information contained in this book is 
sold without warranty, either express or implied. Neither the author, nor Packt 
Publishing, and its dealers and distributors will be held liable for any damages 
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the 
companies and products mentioned in this book by the appropriate use of capitals. 
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: September 2014

Production reference: 1150914

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78355-455-3

www.packtpub.com

Cover image by Arvind Shetty (arvindshetty86@gmail.com)

www.allitebooks.com

www.packtpub.com
http://www.allitebooks.org


[ FM-3 ]

Credits

Author
David Alexander Lillis

Reviewers
Mzabalazo Z. Ngwenya

Donato Teutonico

Tengfei Yin

Commissioning Editor
Pramila Balan

Acquisition Editor
Reshma Raman

Content Development Editor
Akashdeep Kundu

Technical Editor
Rohit Kumar Singh

Copy Editors
Roshni Banerjee

Adithi Shetty

Project Coordinator
Kartik Vedam

Proofreaders
Simran Bhogal

Maria Gould

Ameesha Green

Indexer
Hemangini Bari

Production Coordinator
Arvindkumar Gupta

Cover Work
Arvindkumar Gupta

www.allitebooks.com

http://www.allitebooks.org


[ FM-4 ]

About the Author

David Alexander Lillis is an experienced researcher and statistician, having 
worked in research evaluation, agricultural and forestry statistics, and education 
research and statistics. Currently, David delivers lectures in mathematics, statistics, 
and research methods at the New Zealand Institute of Sport in New Zealand.  
He is the owner and Director of Sigma Statistics and Research Limited, a New 
Zealand-based consultancy specializing in training, software development, data 
analysis, and statistical modelling using R. David holds an Honor's degree and 
Master's degree in Physics and Mathematics, and a PhD from Curtin University  
in Perth, Australia.

I wish to thank my family—Anna (my wife), David (my eight-year 
old son), and Coral (my mother) for their patience and support 
while I worked on this book. In addition, I wish to thank the three 
reviewers for their helpful feedback.

www.allitebooks.com

http://www.allitebooks.org


[ FM-5 ]

About the Reviewers

Mzabalazo Z. Ngwenya has worked extensively in the field of statistical consulting 
and currently works as a biometrician. He holds an MSc degree in Mathematical 
Statistics from the University of Cape Town, and is currently pursuing a PhD. His 
research interests include statistical computing, machine learning, and spatial statistics. 
Previously, he was involved in reviewing Learning RStudio for R Statistical Computing, 
Mark P.J. van der Loo and Edwin de Jonge, Packt Publishing; R Statistical Application 
Development by Example Beginner's Guide, Prabhanjan Narayanachar Tattar, Packt 
Publishing; and Machine Learning with R, Brett Lantz, Packt Publishing.

Donato Teutonico has several years of experience in the modeling and simulation 
of drug effects and clinical trials in industrial and academic settings. He received his 
Pharm.D. degree from the University of Turin, Italy, specializing in Chemical and 
Pharmaceutical Technology, and his PhD in Pharmaceutical Sciences from Paris-Sud 
University, France.

He is the author of two R packages for Pharmacometrics: CTS template and  
panels-for-pharmacometrics; both are available on Google code. He is also  
the author of Instant R Starter, Packt Publishing.

Tengfei Yin earned his BS degree in Biological Science and Biotechnology from 
Nankai University in China and a PhD in Molecular, Cellular and Developmental 
Biology (MCDB) with a focus on computational biology and bioinformatics from 
Iowa State University. His research interests include information visualization,  
high-throughput biological data analysis, data mining, machine learning, and 
applied statistical genetics. He has developed and maintained several software 
packages in R and Bioconductor.

www.allitebooks.com

http://www.allitebooks.org


[ FM-6 ]

www.PacktPub.com

Support files, eBooks, discount offers, and more
You might want to visit www.PacktPub.com for support files and downloads related 
to your book.

Did you know that Packt offers eBook versions of every book published, with PDF 
and ePub files available? You can upgrade to the eBook version at www.PacktPub.com 
and as a print book customer, you are entitled to a discount on the eBook copy. Get in 
touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign 
up for a range of free newsletters and receive exclusive discounts and offers on Packt 
books and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online  
digital book library. Here, you can access, read and search across Packt's entire 
library of books.

Why subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print and bookmark content
• On demand and accessible via web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access 
PacktLib today and view nine entirely free books. Simply use your login credentials 
for immediate access.

www.allitebooks.com

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
http://PacktLib.PacktPub.com
www.PacktPub.com
http://www.allitebooks.org


Table of Contents
Preface 1
Chapter 1: Base Graphics in R – One Step at a Time 5

Learning basic graphics techniques 6
Creating and joining points 10
Creating scatterplots and line plots 12
Colors in R 14
Passing parameter values to titles and labels 15
Including a regression line 18
Graphing mathematical functions 19
R provides many options 20
Creating graphs with several curves 22
Customizing your axes 23
Creating axis labels 24
Creating multiple graphs on the same page 27
Saving your graphs 28
Including mathematical expressions on your plots 30
Summary 32

Chapter 2: Advanced Functions in Base Graphics 33
Reading datasets into R 34
Including a regression line and residuals 34
A medical dataset to create graphs 41
Creating complex multiple axes 43

Superposing graphs 46
Creating point labels 47

Including a grid on your graph 48
Shading and coloring your graph 50

Using polygon() to shade under a normal curve 55

www.allitebooks.com

http://www.allitebooks.org


Table of Contents

[ ii ]

Creating bar charts 58
Including a legend 62
Creating histograms 66
Creating boxplots 74
Creating pie charts 76
Creating dotcharts 80

R's color palettes 88
Using smoothers on your graph 88
Creating scatterplot matrices 89

Writing functions to create graphs 91
Including error bars on your graph 92

Summary 94
Chapter 3: Mastering the qplot Function 95

About qplot 95
The qplot syntax 96
Producing scatterplots using qplot 96
Subsetting your data before graphing 98
Mapping aesthetics to categorical variables 100
Controlling colors on your graph 102
Setting up graphs as objects 105
Creating facet plots 106
Creating line graphs using qplot 108
Creating multiple curves simultaneously 111
Including smoothed curves 112
Creating histograms with qplot 118
Creating facet plots for histograms 120
Creating kernel density plots 121
Creating bar charts 124
Creating boxplots 127
Creating graphs with dates 130
Summary 138

Chapter 4: Creating Graphs with ggplot 139
Getting started with ggplot 140
Mapping color, shape, and size to a variable 144

Modifying the plotting background 146
Controlling the legend name and legend labels 148
Modifying the x and y axes 149

Creating attractive color schemes 151
Creating curves for each factor level 152
Creating histograms 154

www.allitebooks.com

http://www.allitebooks.org


Table of Contents

[ iii ]

Creating bar charts 156
Creating a stacked bar chart 158
Creating a grouped bar chart 160
Creating a faceted bar chart 161

Creating boxplots 162
Labeling points with text 164

Mapping color to text 166
Including regression lines 168
Summary 171

Index 173

www.allitebooks.com

http://www.allitebooks.org




Preface
Reading this book will enable you to learn very quickly how to create wonderful 
graphics using R. Since R is based on syntax, the time required to master R can be 
considerable. However, creating high quality and attractive graphics is made easy 
through the syntax and step-by-step explanations of this book. By reading this 
book, you will learn how to introduce attractive color schemes, create headings and 
legends, design your own axes and axes labels, create mathematical expressions on 
your graphs, and much more.

What this book covers
Chapter 1, Base Graphics in R – One Step at a Time, introduces the basic components 
of a graph (headings, symbols, lines, colors, axes, labels, legends, and so on) and 
outlines how to use the R syntax to create these components.

Chapter 2, Advanced Functions in Base Graphics, covers the techniques required to 
create professional-level graphs in R, including bar charts, histograms, boxplots,  
pie charts, and dotcharts. It also covers regression lines, smoothers, and error bars.

Chapter 3, Mastering the qplot Function, explains how to use qplot to create a wide 
range of basic but attractive graphs.

Chapter 4, Creating Graphs with ggplot, introduces you to ggplot, which is an even 
more powerful graphics tool than qplot. We focus on the main techniques to modify 
your plotting background, titles, grid lines, legends, axes, labels, and colors. It also 
covers the essential methods to create plots using ggplot. You will learn how to 
create all the graph types that were covered in Chapter 1, Base Graphics in R – One Step 
at a Time, and Chapter 2, Advanced Functions in Base Graphics, but this time using the  
many special and attractive features of ggplot.



Preface

[ 2 ]

What you need for this book
To make the most of this book, you need to install R. Go to http://cran.r-project.
org/ and click on the relevant download link for either Linux, Mac, or Windows. You 
will also need to install a plotting package called ggplot2. You can do so within R by 
entering the following syntax on the command line:

install.packages("ggplot2")

Who this book is for
If you are a senior undergraduate or postgraduate student, professional researcher, 
statistician, or analyst, this is the book for you. It is preferable for you to have some 
prior experience in R. However, even if you are new to R, you can pick up enough 
from this book to create publication-quality graphs.

Conventions
In this book, you will find a number of styles of text that distinguish between 
different kinds of information. Here are some examples of these styles, and an 
explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions, 
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: 
"The legend() command is very powerful and provides many options to create  
and place legends."

Any command-line input or output is written as follows:

qplot(HEIGHT, WEIGHT_1, data = T, main = "HEIGHT vs. WEIGHT", xlab =  
  "HEIGHT (cm)", ylab = "WEIGHT BEFORE TREATMENT (kg)" , geom = "point"  
    , colour = factor(ETH), size = 2, alpha = I(0.7))   

New terms and important words are shown in bold. Words that you see on  
the screen, in menus or dialog boxes for example, appear in the text like this:  
"Note the use of the assigns operator, which consists of the less than sign  
followed by a minus sign."

http://cran.r-project.org/
http://cran.r-project.org/


Preface

[ 3 ]

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about 
this book—what you liked or may have disliked. Reader feedback is important for  
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com, 
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing 
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to 
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased 
from your account at http://www.packtpub.com. If you purchased this book 
elsewhere, you can visit http://www.packtpub.com/support and register to  
have the files e-mailed directly to you.

Downloading the color images of this book
We also provide you a PDF file that has color images of the screenshots/diagrams 
used in this book. The color images will help you better understand the changes in 
the output. You can download this file from: https://www.packtpub.com/sites/
default/files/downloads/4553OS_ColorGraphics.pdf.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com/support
https://www.packtpub.com/sites/default/files/downloads/4553OS_ColorGraphics.pdf
https://www.packtpub.com/sites/default/files/downloads/4553OS_ColorGraphics.pdf


Preface

[ 4 ]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes 
do happen. If you find a mistake in one of our books—maybe a mistake in the text or 
the code—we would be grateful if you would report this to us. By doing so, you can 
save other readers from frustration and help us improve subsequent versions of this 
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form link, 
and entering the details of your errata. Once your errata are verified, your submission 
will be accepted and the errata will be uploaded on our website, or added to any list of 
existing errata, under the Errata section of that title. Any existing errata can be viewed 
by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. 
At Packt, we take the protection of our copyright and licenses very seriously. If you 
come across any illegal copies of our works, in any form, on the Internet, please 
provide us with the location address or website name immediately so that we can 
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected  
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you 
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with 
any aspect of the book, and we will do our best to address it.

http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/support


Base Graphics in R – One 
Step at a Time

The goal of this chapter is to give you a comprehensive introduction to base 
graphics in R. By base graphics, I mean graphics created in R without the use of any 
additional software or contributed packages. In other words, for the time being, we 
are using only the default packages in R. After reading this chapter, you should be 
able to create some nice graphs. Therefore, in this chapter I will introduce you to 
the basic syntax and techniques used to create and save scatterplots and line plots, 
though many of the techniques here will be useful for other kinds of graph. We will 
begin with some basic graphs and then work our way to more complex graphs that 
include several lines and have axes and axis labels of your choice.

In this chapter, we will cover the following topics:

• Basic graphics methods and syntax
• Creating scatterplots and line plots
• Creating special axes
• Adding text—legends, titles, and axis labels
• Adding lines—interpolation lines, regression lines, and curves
• Graphing several variables, multiple plots, and multiple axes
• Saving your graphs as PDF, PostScript, JPG files, and so on
• Including mathematical expressions in your graphs



Base Graphics in R – One Step at a Time

[ 6 ]

Learning basic graphics techniques
In R, we create graphs in steps, where each line of syntax introduces new attributes 
to our graph. In R, we have high-level plotting functions that create a complete graph 
such as a bar chart, pie chart, or histogram. We also have low-level plotting functions 
that add some attributes such as a title, an axis label, or a regression line. We begin 
with the plot() command (a high-level function), which allows us to customize our 
graphs through a series of arguments that you include within the parentheses. In the 
first example, we start by setting up a sequence of x values for the horizontal axis, 
running from -4 to +4, in steps of 0.2. Then, we create a quadratic function (y) which 
we will plot against the sequence of x values.

Enter the following syntax on the R command line by copying and pasting into R. 
Note the use of the assigns operator, which consists of the less than sign followed 
by a minus sign. In R, we tend to use this operator in preference to the equals sign, 
which we tend to reserve for logical equality.

x <- seq(-4, 4, 0.2)

y <- 2*x^2 + 4*x - 7

Downloading the example code
You can download the example code files for all Packt books you 
have purchased from your account at http://www.packtpub.com. 
If you purchased this book elsewhere, you can visit http://www.
packtpub.com/support and register to have the files e-mailed 
directly to you.

You can enter x and y at the command line to see the values that R has created for us.

Now use the plot() command. This command is very powerful and provides a 
range of arguments that we can use to control our plot. Using this command, we  
can control symbol type and size, line type and thickness, color, and other attributes.

Now enter the following command:

plot(x, y)

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support


Chapter 1

[ 7 ]

You will get the following graph:

This is a very basic plot, but we can do much better. Let's start again and build a nice 
plot in steps. Enter the following command, which consists of the plot() command 
and two arguments:

plot(x, y, pch = 16, col = "red")

The argument pch controls symbol type. The symbol type 16 gives solid dots. A 
very wide range of colors is available in R and are discussed later in this chapter. 
The list of available options for symbol type is given in many online sources, but the 
Quick-R website (http://www.statmethods.net/advgraphs/parameters.html) is 
particularly helpful. Using the previous command, you will get the following graph:

http://www.statmethods.net/advgraphs/parameters.html


Base Graphics in R – One Step at a Time

[ 8 ]

Now we use the arguments xlim, ylim, xlab, and ylab. Enter the following plotting 
syntax on the command line:

plot(x, y, pch = 16, col = "red", xlim = c(-8, 8), ylim = c(-20, 50),

main = "MY PLOT", xlab = "X VARIABLE" , ylab = "Y VARIABLE")

This command will produce the following graph:

The arguments xlim and ylim control the axis limits. They are used with the c 
operator to set up the minimum and maximum values for the axes. The arguments 
xlab and ylab let you create labels, but you must include your labels within 
quotation marks.

Now, create line segments between the points using the following command:

lines(x, y)

Note that the lines() command is used after the plot() command. It will run 
provided that the graph produced by the plot() command remains open. Next, we 
will use the abline() command, where abline(a, b) draws a line of intercept a 
and slope b. The commands abline(h = k) and abline(v = k) draw a horizontal 
line at the value k and a vertical line at the value k.



Chapter 1

[ 9 ]

We enter each of these commands on a new line as shown:

abline(h = 0)

abline(v = 0)   

abline(-10, 2)      # Draws a line of intercept -10 and slope 2.

text(4, 20, "TEXT")    

legend(-8,36,"This is my Legend")

Your legend begins at the point (-8, 36) and is now centered on the point (-4, 36). The 
text() command will be discussed in more detail in Chapter 2, Advanced Functions in 
Base Graphics. The legend() command is very powerful and provides many options 
for creating and placing legends; it is also discussed in Chapter 2, Advanced Functions 
in Base Graphics. For now, it is enough to know that you specify the position of your 
legend by entering relevant coordinates as the first two arguments, and then enter 
your text inside quotation marks.

Consider the following command:

rug(x)

The rug() command indicates the location of points on the horizontal axis.  
Here is the resulting graph:



Base Graphics in R – One Step at a Time

[ 10 ]

In just a few lines of syntax, you have learned how to make a fairly complex graph 
and you can now use the same techniques to draw your own graphs.

Creating and joining points
Now, let's look at graphing individual points and creating lines that join them. We 
start off with a simple plot that has four points. We use the plot() command and 
group the x coordinates together and the y coordinates together. To do this job, we 
use the c operator to combine the x values and y values independently. Both groups 
of coordinates are written within parentheses, inside the plot() command. Enter the 
following syntax on the command line to create a graph with four points:

plot(c(1, 2, 3, 6), c(1, 2.5, 3.8, 9.2), pch = 16)

This command gives the following plot:



Chapter 1

[ 11 ]

Note how the elements of the first vector gave the horizontal axis values, while the 
elements of the second vector gave the vertical axis values. Now, we join the four 
points using the lines() command, again grouping the horizontal axis values 
together and the vertical axis values together:

lines(c(1, 2, 3, 6), c(1, 2.5, 3.8, 9.2))

The following is the resulting graph, in which the points are now connected by  
line segments:

When you encounter plotting commands and arguments and want to know more 
about them, on the R command line, enter a question mark followed immediately 
by the command name (for example, ?plot()) and you will be taken directly to 
an online help page. You can also try several online resources. One of the best is 
the Quick-R website (http://statmethods.net/), which I mentioned earlier. Go 
straight to the Basic Graphs and Advanced Graphs pages. These pages give you a very 
helpful summary of the main plotting parameters (symbol types, line types, and 
parameters that control axes, titles, labels, and legends).

Alternatively, you can use a sensible web search (for example, enter R graphs in 
Google) and you will find several options.

http://statmethods.net/


Base Graphics in R – One Step at a Time

[ 12 ]

Creating scatterplots and line plots
We have just created a basic graph, but we need more practice. Let's create another 
plot using the plot() command. First we set up a vector of horizontal axis values 
called X, and then a vector of vertical axis values called Y. Enter the following syntax 
on the command line:

X <- c(1, 2, 3, 4, 5, 6, 7, 8)

Y <- c(2, 6, 7, 10, 17, 19, 23, 29)

Now let's graph Y against X.

plot(X, Y, pch = 16)

You'll get the following graph:

That was simple! However, our graph is very basic. Note that R has decided to 
create axis ticks every five units on the Y axis. Also, note that if you don't provide 
horizontal axis values (an x axis), by default R will plot your values against a 
running index.



Chapter 1

[ 13 ]

Let's start again and enhance the graph. Now, we will plot Y using red points using 
the following command:

plot(X, Y, type = "o", col = "red", xlab = "MY X LABEL", ylab = "MY Y  
  LABEL") 

The argument type="o" produces symbols joined by straight lines. Now, let's create 
a title using the title() command and the arguments font.main and col.main to 
control the title font and colors.

title(main = "PLOT 3", font.main = 2, col.main = "blue")

Let's look at our graph.

As expected, we have created a title in blue and joined each point with a red  
line segment.

The font number is an integer between 1 and 5, where 1 is plain, 2 is bold, 3 is italic,  
4 is bold italic, and 5 is symbol.



Base Graphics in R – One Step at a Time

[ 14 ]

Notice how to create a title. The following are the main font options for graphs:

• font.axis: This option specifies the font for the axis annotations
• font.lab: This option specifies the font for the axis labels
• font.main: This option specifies the font for the (main) title
• font.sub: This option specifies the font for a subtitle

Colors in R
To see the range of colors that are available in R, enter the following command:

colors()

You will see a set (a vector) of 657 colors arranged in alphabetical order. Let's see 
what we have at various indices in the vector of colors. Enter the following code. It 
contains square brackets, which allow us to identify and include elements of a vector 
that has the desired indices.

colors()[c(443,109,635, 548, 201)]

The output you will get is as follows:

1] "lightyellow" "darkslategray1" "turquoise" "purple1" "gray48"

For more details on the available colors in R, refer to http://research.
stowers-institute.org/efg/R/Color/Chart/.

However, you can control colors very easily using the codes given in the 
Hexadecimal Color Chart (reproduced from http://html-color-codes.com/).

These codes are given as combinations of numerals and alphabetic characters, always 
starting with the hash symbol (for example, #FF9966, which is a light orange color, 
or #669933, which is a light olive color). I recommend that you keep a copy of this 
chart and use the codes to create your own color schemes. You can download it from 
several sources simply by searching for Hexadecimal Color Chart. By referring to 
this chart, you always know the exact color or hue you are going to get.

http://research.stowers-institute.org/efg/R/Color/Chart/
http://research.stowers-institute.org/efg/R/Color/Chart/
http://html-color-codes.com/


Chapter 1

[ 15 ]

Passing parameter values to titles and 
labels
In the next example, we pass parameter values to the title and the axis labels and 
create the labels using the paste() command. This technique can be useful for 
creating titles and labelling automatically from within an R program (usually  
called a script). Let's create a set of values first using the following commands:

k <- 9

min <- 3

max <- 25

name <- "Mary"



Base Graphics in R – One Step at a Time

[ 16 ]

Before we start, try the following code:

paste(name, "'s Mark", sep = "")

You will get the following output:

[1] "Mary's Mark"

The content of the variable name (Mary) was pasted together with the text 's Mark. 
Each element of the text is separated by commas, while the argument sep = "" 
ensures that there are no breaks between the variable and the text. That's the way  
the paste() function works.

Let's start again and enhance the plot. Let's create our plot using colors taken from 
the Hexadecimal Color Chart. The commands to be used are as follows:

plot(X, Y, type="o", col="#669966", xlab = paste(name, "'s Mark",  
  sep = ""), ylab = paste("Marks from ", min, " to ", max,  sep =  
  "")) 

Now let's create a title:

title(main = paste("Plot ", k, " for ", name, sep = ""),  
  font.main = 2, col.main = "#CC6600")

The following is our graph, with the appropriate labels and title:



Chapter 1

[ 17 ]

The title() command is one way of creating a title. However, by using the main 
argument, you can also create a title within the plot() command (as shown in the 
next example). In the following example, we pass the same parameter values to the 
title and the axis labels. Enter the following syntax on the command line:

plot(X, Y, type = "o", col = "red", main = paste("Plot ", k, " for ",  
  name, sep = ""), pch = 16, cex = 1.4, font.main = 2, col.main =  
    "blue", xlab = paste(name, "'s Mark", sep = ""), ylab =  
      paste("Marks from ", min, " to ", max,  sep = "")) 

As in the previous example, the cex parameter controls the symbol size (the default 
value is 1). The resulting graph is as follows:

Indeed, we have the correct axis labels and title. You can check out the parameters 
pch and lty for yourselves.



Base Graphics in R – One Step at a Time

[ 18 ]

Including a regression line
In Chapter 2, Advanced Functions in Base Graphics, we will cover Ordinary Least 
Squares (OLS) regressions and plotting regression lines. However, if you are  
curious as to how to include a regression line, this is how it is done. Use the 
abline() command (which draws lines) in conjunction with the lm() command, 
which performs a regression.

The syntax for performing a regression on the two variables is lm(Y ~ X), where the 
tilde sign instructs R to perform the regression, with Y as the dependent variable and X 
as the independent variable. Now include the following syntax on the command line:

abline(lm(Y ~ X))

The following is your plot with a regression line:

We will cover more about regressions in the next chapter.



Chapter 1

[ 19 ]

Graphing mathematical functions
Sometimes, you may wish to plot a mathematical function. We have already seen 
how to do that, but the curve() command provides a nice alternative. Let's plot 
a cubic curve using the curve() command. To use curve(), you must specify a 
function within the parentheses. Enter the following syntax:

curve(5*x**3 + 6*x**2 - 5, -2, 2 , col = "blue", main = "CUBIC  
  CURVE")

The following is our graph:

We have a smooth cubic curve and the axis limits we specified within the code. 
The curve() command allows you to specify a function as the first argument, the 
range of values over which you wish to create your graph, and add your graph to 
an already existing graph. See the R help function for the curve() command by 
entering ?curve() on the command line.

www.allitebooks.com

http://www.allitebooks.org


Base Graphics in R – One Step at a Time

[ 20 ]

R provides many options
Often, R provides several ways to achieve what you want. Let's set up 50 values 
from -pi to +pi and graph a sine function. We use the seq() command to set up 
this sequence. Note that R understands the constant Pi, whose value can be obtained 
using the following command:

pi

The following output is obtained:

[1] 3.141593

Now, we create horizontal and vertical axis points for plotting:

x <- seq(-pi, pi, length = 50)    

y <- sin(x)  

                     

plot(x, y, pch = 17, cex = 0.7, col = "darkgreen") 

Then, we add a line that connects the points:

lines(x, y, col = "darkgreen")  

Let's take a look at the resulting graph:



Chapter 1

[ 21 ]

Now try the following approach, using 1000 axis values in order to create a  
smooth-looking graph:

x <- seq(-pi, pi, length = 1000)

y <- sin(x)

plot(x, y, type = "l")

The output is as follows:

The argument type = "l" produces connecting lines, but here we have so many 
points that the graph appears smooth. Other options include the argument type 
= "o", which produces symbols joined by straight lines, and type = "p", which 
produces points.



Base Graphics in R – One Step at a Time

[ 22 ]

Creating graphs with several curves
Let's take an example with two dependent variables and create a nice graph.  
Enter the following code:

X  <- c(1, 2, 3, 4, 5, 6, 7)

Y1 <- c(2, 4, 5, 7, 12, 14, 16)

Y2 <- c(3, 6, 7, 8, 9, 11, 12)

Now, we graph Y1 using a vertical axis from 0 to 20 as follows:

plot(X, Y1, type="o", pch = 17, cex=1.2, col="darkgreen", ylim=c(0,  
  20))

Now superpose Y2 using the following command:

lines(Y2, type="o", pch=16, lty=2, col="blue")

Notice how we plotted the first curve and then added the second using the lines() 
command. Let's create a title using the title() command:

title(main="A PLOT OF TWO VARIABLES", col.main="red", font.main=2)

Our graph contains two curves, each with the specified line type and symbols:

Note the default labels for the horizontal and vertical axes.



Chapter 1

[ 23 ]

Customizing your axes
In R, you can create your own designer axes. The following is another example in 
which we create designer axes and calculate the vertical axis limits. Let's define  
three vectors:

Y1 <- c(2, 4, 5, 7, 12, 14, 16)

Y2 <- c(3, 6, 7, 8, 9, 11, 12)

Y3 <- c(1, 7, 3, 2, 2, 7, 9)

Now, we calculate the maximum value of Y1, Y2, and Y3. Performing this calculation 
helps us to set the axis limits before we start. Otherwise, the first vector you plot will 
set the default axis limits, but any other data you read may exceed those limits. The 
syntax to find the maximum value from the three vectors is as follows:

yaxismax <- max(Y1, Y2, Y3)

Let's see what the maximum value really is using the following command:

yaxismax

The output is as follows:

[1] 16

We want to plot on a vertical axis from 0 to yaxismax. First, we disable the default 
axes and their annotations, using the arguments axes = FALSE and ann=FALSE, so 
that we can create our own axes. The approach of disabling the default axes is very 
important when creating graphs in R.

The argument axes=FALSE suppresses both x and y axes. The arguments xaxt="n" 
and yaxt="n" suppress the x and y axes individually. The argument ann = FALSE 
suppresses the axis labels. Now enter the following code:

plot(Y1, pch = 15, type="o", col="blue", ylim=c(0, yaxismax), 

axes=FALSE, ann=FALSE)  

 

axis(1, at=1:7, lab=c("A","B","C","D","E","F","G"))



Base Graphics in R – One Step at a Time

[ 24 ]

What does our graph look like at this stage? It looks like this:

Clearly, we still have work to do to complete the graph by including a vertical axis 
and title. In the following sections, we will learn how to complete our graph.

Creating axis labels
The first argument in the axis() command (the number 1) specifies the horizontal 
axis. The at argument allows you to specify where to place the axis labels. The vector 
called lab stores the actual labels. Now we create a y axis with horizontal labels, and 
ticks every four units, using the syntax at=4*0: yaxismax as shown:

axis(2, las=1, at=4*0: yaxismax)



Chapter 1

[ 25 ]

Now what does our graph look like?

Now we have included a vertical axis. The argument las controls the orientation of 
the axis labels. Your labels can be either parallel (las=0) or perpendicular (las=2) to 
your axis. Using las=1 ensures horizontal labels, while las=3 ensures vertical labels.

Now we create a box around the plot and then we add in the two new curves using 
the lines() command, using two different symbol types.

box()

lines(Y2, pch = 16, type="o", lty=2, col="red")

lines(Y3, pch = 17, type="o", lty=3, col="darkgreen")

Let's create a title using the following command:

title(main="SEVERAL LINE PLOTS", col.main="darkgreen", font.main=2)



Base Graphics in R – One Step at a Time

[ 26 ]

Now we label the x and y axes using title(), along with xlab and ylab.

title(xlab=toupper("Letters"), col.lab="purple")

title(ylab="Values", col.lab="brown")

Note the toupper() command, which always ensures that text within parentheses is 
uppercase. The tolower() command ensures that your text is lowercase.

Finally, we create a legend at the location (1, yaxismax), though the legend() 
command allows us to position the legend anywhere on the graph (see Chapter 2, 
Advanced Functions in Base Graphics, for more detail). We include the legend keys 
using the c operator. We control the colors using col and ensure that the symbol 
types match those of the graph using pch. To do this job, we include the legend 
colors in the same logical order in which we created the curves:

legend(1, yaxismax, c("Y1","Y2", "Y3"), cex=0.7, col=c("blue", "red",  
  "darkgreen"), pch=c(15, 16, 17), lty=1:3)

The following is our final plot:



Chapter 1

[ 27 ]

Creating multiple graphs on the same 
page
You can create multiple plots on the same page (plotting environment) using the 
command par(mfrow=(m, n)), where m is the number of rows and n is the number 
of columns. Enter the following four vectors:

X  <- c(1, 2, 3, 4, 5, 6, 7)

Y1 <- c(2, 4, 5, 7, 12, 14, 16)

Y2 <- c(3, 6, 7, 8, 9, 11, 12)

Y3 <- c(1, 7, 3, 2, 2, 7, 9)

In this example, we set the plotting environment at two rows and two columns in 
order to produce four graphs together:

par(mfrow=c(2,2))

                

plot(X,Y1, pch = 1)

plot(X,Y2, pch = 2)

plot(X,Y2, pch = 15)

plot(X,Y3, pch = 16)

Here is the resulting graph:



Base Graphics in R – One Step at a Time

[ 28 ]

As expected, we have four graphs arranged in two rows and two columns.

Of course, you can vary the number of graphs by setting different numbers of rows 
and columns.

Saving your graphs
Of course, you will need to save many of the graphs that you create. The simplest 
method is to click inside the graph and then copy as a metafile or copy as a bitmap. You 
can then save your graph in a Word document or within a PowerPoint presentation. 
However, you may wish to save your graphs as JPEGS, PDFs, or in other formats.

Now we shall create a PDF of a graph (a histogram that we will create using the 
hist() command, which you will come across later in this book). First we get ready 
to create a PDF (in R, we refer to this procedure as opening the PDF device driver) 
using the command pdf(), and then we plot. Finally, we complete the job (closing 
the device driver) using the command dev.off().

You may wish to save your plot to a particular directory or folder. To do so, navigate 
to File | Change Dir in R and select the directory or folder that you wish to use as 
your R working directory. For example, I selected a directory called BOOK, which is 
located within the following filepath on my computer:

C:\Users\David\Documents\BOOK

To confirm that this folder is now my current working folder, I entered the  
following command:

getwd()

The output obtained is as follows:

[1] "C:/Users/David/Documents/BOOK"

R has confirmed that its working folder is the one that I wanted. Note that R uses 
forward slashes for filepaths. Now, we create a vector of data and create our histogram 
as follows:

  y <- c(7, 18, 5, 13, 6, 17, 7, 18, 28, 7,17,28)

 pdf("My_Histogram.pdf")

 hist(y, col = "darkgreen")

 dev.off()



Chapter 1

[ 29 ]

A PDF of your histogram should be saved in your R working directory. It is called 
My_Histogram.pdf and it looks like the following:

The graphing options available in R include postscript(), pdf(), bitmap(), and 
jpeg(). For a complete list of options, navigate to Help | Search help and enter the 
word devices. The list you need is labelled List of graphical devices.

For example, to create a postscript plot of the histogram, you can use the  
following syntax:

postscript(file="myplot.ps")

hist(y, col = "darkgreen")

dev.off()

To create and save a JPEG image from the current graph, use the dev.copy()command:

dev.copy(device=jpeg,file="picture.jpg")

dev.off()

Your image is saved in the R working directory.



Base Graphics in R – One Step at a Time

[ 30 ]

You can save and recall a plot that is currently displayed on your screen. If you have 
a plot on your screen, then try the following commands:

x = recordPlot()

x

You can delete your plot but get it back again later in your session using the 
following command:

replayPlot(x)

Including mathematical expressions on 
your plots
Mathematical expressions on graphs are made possible through a combination of 
two commands, expression() and paste(), and also through the substitute() 
command.

By itself, the expression() command allows you to include mathematical symbols. 
For example, consider the following syntax:

plot(c(1,2,3), c(2,4,9), xlab = expression(phi))

This will create a small plot with the Greek symbol phi as the horizontal axis label.

The combination of expression() and paste() allows you to include mathematical 
symbols on your graph, along with letters, text, or numerals. Its syntax is 
expression(paste()). Where necessary (that is, where you need mathematical 
expressions as axis labels), you can switch off the default axes and include Greek 
symbols by writing them out in English. You can create fractions through the frac() 
command. Note the plus or minus sign, which is achieved though the syntax %+-%.

The following is an example based on a similar example in the excellent book 
Statistics: An Introduction using R, Michael J. Crawley, Wiley-Blackwell. I recommend 
this book to everyone who uses R—both students and professional researchers alike.

We first create a set of values from –7 to +7 for the horizontal axis. We have 71  
such values.

x <- seq(-7, 7, len = 71)



Chapter 1

[ 31 ]

Now we create interesting x and y axes labels. We will disable the x axis in order to 
create our own axis.

plot(x, cos(x),type="l",xaxt="n", xlab= 
  expression(paste("Angle",theta)), ylab=expression("sin "*beta))

axis(1, at = c(-pi, -pi/2, 0, pi/2, pi),

lab = expression(-alpha, -alpha/2, 0, alpha/2, alpha))

We insert mathematical text at appropriate places on the graph:

text(-pi,0.5,substitute(sigma^2=="37.8"))

text(-pi/16, -0.5, expression(paste(frac(gamma*omega,  
  sigma*phi*sqrt(3*pi)), " ",

    e^{frac(-(3*x-2*mu)^2, 5*sigma^2)})))

text(pi,0,expression(hat(y) %+-% frac(se, alpha)))

The resulting graph is as follows:

By comparing your own code with that used to produce this graph, you should be 
able to work out how to create your own mathematical expressions.



Base Graphics in R – One Step at a Time

[ 32 ]

Summary
In this chapter, we covered the basic syntax and techniques to produce graphs 
in R. We covered the essential details for creating scatterplots and line plots, and 
discussed a range of syntax and techniques that are useful for other kinds of graph.  
I hope that you found this chapter a useful start on graphing in R.

In the next chapter, we will cover a range of topics that you will need if you want to 
create professional-level graphs for your own research and analysis. It contains very 
useful material, so please continue to work through this book by making a start on 
the next chapter as quickly as possible. For example, in this chapter, though we saw 
how to draw a regression line, in the next chapter we will go a little further on the 
topic of graphing regression lines. However, the further chapters have many other 
interesting techniques for you to learn.



Advanced Functions  
in Base Graphics

The goal of this chapter is to enable you to create different types of graphs in R. 
In Chapter 1, Base Graphics in R – One Step at a Time, you created scatterplots and 
line plots. Now in this chapter, you will learn how to create other types of graphs, 
including bar charts, histograms, boxplots, pie charts, and dotcharts. Topics covered 
in this chapter include the following:

• Including a regression line and residuals in your graph
• Creating complex multiple axes
• Including grid lines and point labels
• Shading and coloring your graph
• Creating bar charts, histograms, boxplots, pie charts, and dotcharts
• Adding LOWESS smoothers to your graph
• Creating scatterplot matrices
• Adding error bars

After working through this chapter, you should understand the principles behind 
certain advanced plotting functions and should be able to create a wide range of 
graphs for research and analysis.



Advanced Functions in Base Graphics

[ 34 ]

Reading datasets into R
Several datasets have been created for this book and can be downloaded from the 
website for this book as text files. These text files also provide the R code for each 
chapter. Alternatively, copy the relevant CSV file into a convenient folder, make 
sure that the R working directory matches your folder, and use the read.csv() 
command. For example, to read a CSV file called Patients as the object T, enter  
the following syntax:

T <- read.csv("Patients.csv", h=T)

Further explanations on reading datasets will be given in this chapter.

Including a regression line and residuals
In the Creating scatterplots and line plots section in Chapter 1, Base Graphics in R – One 
Step at a Time, we saw how to use the abline() command and the lm() command 
to include a regression line in your graph. Now, we will take this idea a little further. 
The following regression uses a datafile in which a sample of 10 people rated a film 
by awarding scores out of 100. These people then viewed the film a second time  
1 month later and again awarded scores. We wish to use a regression model to  
see how well the first rating scores predicted the second rating.

In an OLS regression with one predictor, we fit a model of the following form:

Y
i
  =  β

0
  +  β

1
 X

i
  + e

i

In this form, β
0
 is the intercept, β

1
 is the slope, and e

i
 are the errors (or residuals).

Let's perform the regression on the data and plot the results. Along the way, we will 
learn some useful R syntax. Go to the code file of this chapter, and copy and paste 
the following syntax into R. It contains the filmrating dataset:

filmrating <- structure(list(View1 = c(68L, 47L, 63L, 38L, 60L, 89L,  
  42L, 77L, 32L, 67L), View2 = c(85L, 44L, 69L, 38L, 83L, 93L, 35L,  
    79L, 91L, 32L)), .Names = c("View1", "View2"), class =  
      "data.frame", row.names = c(NA, -10L))



Chapter 2

[ 35 ]

Alternatively, you can copy the Filmratings CSV file to a folder, match R's working 
directory to that folder, and use the read.csv() function. The argument h=T in the 
following line of code ensures that the column headings are read correctly to the 
filmrating object:

          filmrating <- read.csv(Filmratings.csv, h=T)

Now, we attach an object using the attach() command. Attaching an object is a 
good idea because R can now identify each variable by name.

attach(filmrating)

filmrating

The output is as follows:

filmrating

   View1 View2

1     68    85

2     47    44

3     63    69

4     38    38

5     60    83

6     89    93

7     42    35

8     77    79

9     32    91

10    67    32

Before we perform the regression, we will plot the two sets of scores. We use  
the plot() command in conjunction with the main argument to create headings.  
We also use the cex argument to control the size of data points and axis labels.  
Enter the following syntax, which consists of the plot() command and various 
arguments with which you are now familiar:

plot(View1, View2,pch=16,xlab="First Viewing",ylab="Second Viewing",  
  main="FILM RATINGS", cex = 1.5, cex.lab = 1.5, cex.main = 1.6,  
    xlim=c(0,100), ylim=c(0,100))



Advanced Functions in Base Graphics

[ 36 ]

Let's look at the resulting graph.

We see that the relationship between the two sets of ratings is not very linear, and 
a nonlinear model may fit better. However, let's use the lm() command to perform 
the regression on our data. Since R is object-oriented, we can store the results of the 
regression as an object, as follows. Let's call the object model.

model <- lm(View2 ~ View1)

model

The output you get is as follows:

Call:

lm(formula = View2 ~ View1)

Coefficients:

(Intercept)        View1  

    32.3066       0.5591      



Chapter 2

[ 37 ]

We see that the intercept is approximately 32.31 and the slope (the coefficient of the 
View1 variable) is approximately 0.56.

Now, we plot the regression line using the abline() command as follows:

plot(View1, View2,pch=16,xlab="First Viewing",ylab="Second Viewing",  
  main="FILM RATINGS", cex = 1.5, cex.lab = 1.5, cex.main = 1.6,  
    xlim=c(0,100), ylim=c(0,100))

abline(lm(View2 ~ View1))

Here is your graph:



Advanced Functions in Base Graphics

[ 38 ]

In fact, you could also have used the following syntax:

abline(32.31, 0.56)

This syntax is used to draw the regression line, but the approach involving the  
lm() command that we used is more concise.

As an exercise, let's draw the residuals (the lines connecting the fitted data with the 
observed data). We use the predict() command to set up the predicted values of 
the regression model as a new object called regmodel. Enter the following syntax, 
which consists of the predict() command and the lm() command together:

regmodel <- predict(lm(View2 ~ View1))

regmodel

The output is as follows:

Remember that the predict() command gives us the fitted points from the regression.

Now, we can use the output from the predict() command to draw the residuals in 
order to highlight the differences between the observed data and fitted points. We 
can use a for loop to do this job (many online sources describe for loops in R very 
clearly; for example, http://paleocave.sciencesortof.com/2013/03/writing-
a-for-loop-in-r/). Let's see how it is done.

for(k in 1:10){ lines(c(View1[k], View1[k]), c(View2[k],  
  regmodel[k])) }

http://paleocave.sciencesortof.com/2013/03/writing-a-for-loop-in-r/
http://paleocave.sciencesortof.com/2013/03/writing-a-for-loop-in-r/


Chapter 2

[ 39 ]

Here is the resulting graph with regression line and residuals:

Note the syntax involved in creating the for loop. This syntax involves a running 
index from 1 to the total number of points and the lines() command, which connects 
the observed and fitted data. The observed data consists of points defined by (View1, 
View2), while the fitted model values consist of points defined by (View1, regmodel).

Of course, entering the previous code to draw the residuals is cumbersome, so here 
is a function that I wrote to do this job efficiently. It is called drawresid(). First, you 
must enter the entire function on the R command line:

drawresid <- function(X, Y, col){

  abline(lm(Y ~ X), col = col)

  regressionmodel <- predict(lm(Y ~ X))

  for(k in 1:length(X)){ lines(c(X[k], X[k]), c(Y[k],

    regressionmodel[k]), col = col) } }

www.allitebooks.com

http://www.allitebooks.org


Advanced Functions in Base Graphics

[ 40 ]

This function is given in the code file for this chapter. Let's use it on our film scores 
dataset. Enter the word drawresid on the command line, and then, for the three 
arguments, give the independent variable, the dependent variable, and finally 
the color of the residual lines and the regression line. To illustrate the use of this 
function, we will draw the regression line and the residuals in red. Enter all of the 
following syntax:

plot(View1, View2,pch=16,xlab="First Viewing",ylab="Second Viewing",  
  main="FILM RATINGS", cex = 1.5, cex.lab = 1.5, cex.main = 1.6,  
    xlim=c(0,100), ylim=c(0,100))

drawresid(View1, View2, "red")

The graph with regression line and residuals in red is as follows:

I hope that you find this function useful.



Chapter 2

[ 41 ]

A medical dataset to create graphs
For many of the examples in this book, we will use the following dataset. It gives 
medical data on 45 people: their names; their gender (a two-level categorical 
variable); their ethnicity (a four-level categorical variable, labeled 1, 2, and 3); the 
medical treatment they received (a three-level categorical variable with levels A, B, or 
C); their age band (a three-level categorical variable with levels Y, M, and E, standing 
for young, middle-aged, and elderly); their weight (body mass) before treatment (in 
kg) and weight (body mass) after treatment (in kg), their heights (in cm); whether 
they smoke (a two-level categorical variable with levels Y and N); whether they 
perform regular exercise (a two-level categorical variable with levels TRUE and 
FALSE); and finally, whether or not they recovered after treatment (a two-level 
categorical variable with levels 1 and 0). We read this dataset as an object called T. 
The syntax to read this dataset is given in the code file of this chapter. You can either 
copy and paste it directly from the text file, or save the Patients.csv file in a folder 
and read the data into R using read.csv(). Then, use the following command:

head(T)

We get the following output:

Again, we attach an object using the attach() command:

attach(T)

Let's now create a similar regression plot for the height and weight variables of our 
medical dataset. This job is done using the following syntax:

plot(WEIGHT_1, HEIGHT,pch=16,xlab="WEIGHT BEFORE TREATMENT  
  (kg)",ylab="HEIGHT (cm)", main="HEIGHT VS. WEIGHT", cex = 0.8,  
    cex.lab = 1.5, cex.main = 1.6, xlim=c(0,150), ylim=c(100,200))



Advanced Functions in Base Graphics

[ 42 ]

Here is our graph:

Now, we create the regression model using lm():

mod <- lm(HEIGHT ~ WEIGHT_1)

mod

We get the following output:

Call:

lm(formula = HEIGHT ~ WEIGHT_1)

Coefficients:

(Intercept)     WEIGHT_1  

   119.7836       0.6737  



Chapter 2

[ 43 ]

The intercept is approximately 119.78 and the slope (the coefficient of the weight 
variable) is approximately 0.67. It gives the change in height for a weight change  
of one unit. Now we plot the regression line:

abline(lm(HEIGHT ~ WEIGHT_1))

The following is the graph with the regression line:

We will not draw the residuals this time, as this graph would look very cluttered  
if we did. However, by now you should know how to draw both regression lines  
and residuals.

Creating complex multiple axes
Now we will create a graph with two curves and three axes. First, let's read the 
following vectors of data:

x <- c(-25:25)

y <- 1.5*x + 2

z <- 0.3*(x**2) - 20



Advanced Functions in Base Graphics

[ 44 ]

In the preceding code, we have a linear function and a quadratic function. As you 
will see, we will need some extra room for text on the right-hand margin. This is 
because we wish to add some explanatory text there. By default, graphs in R have 
margins that are as follows:

• 5-lines wide on the bottom axis
• 4-lines wide on the left-hand axis
• 4-lines wide on the top axis
• 2-lines wide on the right-hand axis

We want to create a right-hand margin 8.1-lines wide on the right axis using the  
mar argument, which controls margin widths:

par(mar=c(5, 4, 4, 8) + 0.1)

Note the syntax for changing the default margin width for any axis. You simply 
insert the desired line width value in the appropriate position within the mar 
argument. Now, we disable the default axes and plot as follows:

plot(x, y,type="o", pch=14, col="red", xaxt="n", yaxt="n", lty=3,  
  xlab="", ylab="")

title("MY DESIGNER AXES", xlab=" HORIZONTAL AXIS", ylab="VERTICAL  
  AXIS")

We now include a plot of z (the quadratic function). To do so, let's use line-type b, 
consisting of both points and lines. Let's also use dashes using the argument  
lty = 2. Use the following syntax:

lines(x, z, type="b", pch=16, col="blue", lty=2)

Now, we create a horizontal axis in the usual position using the following syntax:

axis(1, at=seq(-25,25,5),labels= seq(-25,25,5), col.axis="blue",  
  las=2)

Now, we create a vertical axis as follows:

axis(2, at=seq(-25,25,10),labels= seq(-25,25,10), col.axis="red",  
  las=2)

Next, we create an axis to the right using axis (4, . . .) with value labels at each 
point. Also, we will use smaller text and tick marks. If we wanted to create an axis at 
the top of the graph, we would use axis (3, . . . ) with value labels at each point.

axis(4, at=z, labels=round(z,digits=2), col.axis="blue", las=2, 

cex.axis=0.5, tck=-.02)



Chapter 2

[ 45 ]

The tck argument controls the length of the tick marks, setting their length as a 
fraction of the plotting area. The default value for tck is 0.01. Setting tck = 0 gets 
rid of tick marks, while setting tck = 1 creates gridlines. Finally, by including the 
syntax cex.axis = 0.5, we have just set the axis labels to half their default size.

You can add text to your graphs using the text() and mtext() commands. The 
text() command places text within the graph, while mtext() places text in one  
of the four margins.

text(location, "text to include . . . ", pos, ...) 
  mtext("text to place", side, line=n, ...) 

Finally, we include a title for the right-hand axis using mtext():

mtext("An axis for z", side=4, line=3, cex.lab=1.3,las=2, col="blue")

Now, we see that our graph indeed has three axes and that the right-hand axis tick 
marks match the data of the quadratic curve:

You can use the same techniques to create complex axes for your own graphs.



Advanced Functions in Base Graphics

[ 46 ]

Superposing graphs
To superpose graphs, the argument add=T can be very useful, but you can use it 
only when you have an analytic expression for each curve. Here, we plot three 
exponential functions together using curve():

curve(3 * exp(-x/2), from = 0, to = 10, ylim = c(0, 2), ylab = "",  
  col = "red", lwd = 2)

curve(4 * exp(-x), add = T, lty = 4, col = "blue", lwd = 2)

curve(2.5 * exp(-x/3), add = T, lty = 3, col = "darkgreen", lwd = 2)

The syntax ylab = "" ensures that no y axis label is created. Now, add text at the 
right places using expression() and paste(), which we saw at the end of Chapter 1, 
Base Graphics in R – One Step at a Time. You must determine where to place the text by 
examining the graph carefully.

text(3.2, 1.9, expression(paste("My First Exponential: ", 3 * e^(- 
  x/2))), col = "red")

text(2.8, 0, expression(paste("My Second Exponential: ", 4 * e^(- 
  x))), col = "blue" )

text(7, 0.7, expression(paste("My Third Exponential: ", 2.5 * e^(- 
  x/3))), col = "darkgreen" )

You should get the following graph:



Chapter 2

[ 47 ]

Note that in each case the text is centered on the x value that you provided within 
the text() command.

Creating point labels
You can use the text() function to label the points on your graph. To do so, you 
create a set of x and y coordinates and include the text as a vector of labels. Let's 
work through the following example. The dataset for this example gives the heights 
of a group of children of different ages. Again, you can cut and paste this dataset 
from the code file this chapter or save the Children.csv file and read the data using 
read.csv(). We will produce a plot of height against age for each child, labeling 
each point according to the child's name.

cheight <- 

structure(list(Child = structure(c(4L, 3L, 2L, 1L), .Label =  
  c("Anne", "John", "Mary", "Steven"), class = "factor"), Age =  
    c(13L, 11L, 12L, 17L), Height = c(165L, 145L, 154L, 157L)),  
      .Names = c("Child", "Age", "Height"), class = "data.frame",  
        row.names = c(NA, -4L))

As done in previous examples, we attach the object to make the variables visible by 
name using the following command:

attach(cheight)

First, we create a basic graph as follows:

plot(Age, Height, main = "Heights of Four Children at Various Ages",  
  pch = 16, ylab = "Height (cm)", xlab = "Age (yrs)" ,ylim = c(140,  
    180),xlim = c(10, 18))

Then, we add labels to each point. The argument Child (the third argument within 
the text() function) ensures that the children's names provide a label for each point.

text(Age, Height, Child, cex=1.2, pos=3, col="red") 



Advanced Functions in Base Graphics

[ 48 ]

Let's examine our graph:

Note that we used the argument pos = 3 to place the text above each point. You can 
experiment with the other options: pos = 1 (below the points), pos = 2 (to the left), 
and pos = 4 (to the right).

Including a grid on your graph
You can add a grid to your plot using the grid() command. Let's set up a simple 
graph and add a grid:

x <- seq(1:5)

y <- x

plot(x, y, pch = 16)

Let's add a default grid with horizontal and vertical grid lines at major units in both 
the horizontal and vertical directions:

grid()



Chapter 2

[ 49 ]

You get the following graph:

Now, we omit the horizontal grid lines using ny = NA. Of course, you could do the 
same for the vertical grid lines.

plot(x, y, pch = 16)

grid(ny=NA)



Advanced Functions in Base Graphics

[ 50 ]

We get the following graph:

Setting the numbers of grid lines to NULL produces the default option of grid lines at 
every unit, for example:

plot(x, y, pch = 16)

grid(nx = NULL, ny = NULL)

Shading and coloring your graph
You can shade and color your graphs using the polygon() command. To use the 
polygon() command, you must specify the horizontal and vertical axis limits, but 
you must also include the x and y variables as the middle arguments.



Chapter 2

[ 51 ]

Let's create a quadratic curve and shade under it with a light green selected from the 
Hexadecimal Color Chart:

x <- 1:100

y <- 3*x^2 + 2*x + 7

plot(x, y)

lines(x, y)

polygon(cbind(c(min(x), x, max(x)), c(min(y), y, min(y))),  
  col="#00CC66") 

Here is the graph:

Using this approach, the polygon() command shades under the curve, between  
the minimum and maximum values of the x variable and below the y variable.  
The syntax involving cbind() is an elegant way of including the relevant limits.



Advanced Functions in Base Graphics

[ 52 ]

The following example is more complex. It uses the rnorm() command to simulate 
values from a normal distribution, with a given mean and standard deviation. By 
default, random values with a mean of 0 and a standard deviation of 1 are produced. 
For example, to select a sample of 30 values from a normal distribution with a mean 
of 12 and standard deviation of 4, use the following syntax:

sample <- rnorm(30, mean=12, sd=4)

OK. Let's proceed with the example, this time choosing a nice light brown color  
from the Hexadecimal Color Chart. For this example, we will select a random sample 
of 25 from a normal distribution with a mean of two and standard deviation of three 
and shade under those points:

x <- 1:25

y <- rnorm(25, mean=2, sd=3)

plot(x, y, pch = 16, cex=0.8)

lines(x, y)

polygon(cbind(c(min(x), x, max(x)),c(min(y), y, min(y))),  
  col="#FF9933") 

We get the following graph, with light brown coloring below the curve:



Chapter 2

[ 53 ]

Now we shade above the curve with another attractive color from the Hexadecimal 
Color Chart:

plot(x, y, pch = 16, cex = 0.8)

lines(x, y)

polygon(cbind(c(min(x), x, max(x)),c(max(y), y, max(y))),  
  col="#CC66FF")

To shade above the curve, we changed the third argument of the group of y values 
from minimum y to maximum y. Let's see the graph, with coloring above the curve, 
which is as follows:

Now let's see how to shade between the curve and the x axis.

plot(x, y)

lines(x, y)

polygon(cbind(c(min(x), x, max(x)), c(0, y, 0)), col="#339966") 



Advanced Functions in Base Graphics

[ 54 ]

Here is our graph.

To shade between the curve and the x axis, we used zeroes for the first and third 
vertical axis values. Obviously, you could shade both above and below the curve:

plot(x, y, pch = 16, cex = 0.8)

lines(x, y)

polygon(cbind(c(min(x), x, max(x)),c(max(y), y, max(y))),  
  col="#66CCCC")

polygon(cbind(c(min(x), x, max(x)),c(min(y), y, min(y))),  
  col="#339999") 



Chapter 2

[ 55 ]

We get this graph:

Using polygon() to shade under a normal 
curve
We will use the dnorm() command to create a standard normal curve and we will 
use polygon() to shade under the normal curve. The syntax is as follows:

dnorm(x, mean = 0, sd = 1)

This creates a set of probabilities from a normal probability distribution with  
a mean of 0 and a standard deviation of 1. Thus, the following syntax creates  
a normal distribution graph from -5 to 5:

x <- seq(-5, 5, length=1000)

y <- dnorm(x)

plot(x, y, type="l", lwd=2, col="blue", xlab="Z Value",  
  ylab="Probability", main="Testing Polygon with a Normal Curve")  



Advanced Functions in Base Graphics

[ 56 ]

We get the following graph:

We have plotted the curve using 1000 points in order to give a smooth appearance, but 
we must create an appropriate set of x and y values for polygon(). Let's shade under 
the entire curve with a pale lemon yellow color from the Hexadecimal Color Chart:

plot(x, y, type="l", lwd=2, col="blue", xlab="Z Value",  
  ylab="Probability", main="Testing Polygon with a Normal Curve")  

Finally, we invoke polygon() as follows:

polygon(c(-5, x, 5), c(0, y, 0), col="#FFFF66")



Chapter 2

[ 57 ]

This command will produce the following graph:

Let's start again and shade between two Z values.

plot(x, y, type="l", lwd=2, col="blue", xlab="Z Value",  
  ylab="Probability", main="Testing Polygon with a Normal Curve")  

Next, we create the horizontal axis values. Let's suppose that we wish to shade from 
the point -3 to -1.5 on the Z Value axis, again using a large number of points. We 
recalculate the probabilities for this set of x values.

x <- seq(-3, -1.5, length=100)

y <- dnorm (x)

Finally, we invoke polygon():

polygon(c(-5, x, -1.5), c(0, y, 0), col="#669966")



Advanced Functions in Base Graphics

[ 58 ]

The output graph is as follows:

You can use polygon() to create many interesting graphs, not only for shading 
between curves and axes. To develop your skill in using the polygon() command, 
you must read the standard texts and helpful websites and study the worked 
examples carefully. Additionally, you can enter ?polygon() on the command line 
and you will be taken to a web page that explains the polygon() command.

Creating bar charts
Let's see how to create bar charts in R. We will create a simple bar chart using the 
barplot() command, which is easy to use. First, we set up a vector of numbers. 
Then we count them using the table() command and plot the counts. The table() 
command creates a simple table of counts of the elements in a dataset. Enter the 
following vector into R:

H <- c(2,3,3,3,4,5,5,5,5,6)

Now, we count each element using the table() command as follows:

counts <- table(H)

counts



Chapter 2

[ 59 ]

The output is as follows:

H

2 3 4 5 6 

1 3 1 4 1    

Now we plot the counts.

barplot(counts)

Here is the bar chart:

The horizontal axis records the elements in your dataset, while the vertical axis gives 
the counts of each element. You will see that the barplot() command does not 
perform the count directly, so we used the table() command first.

You can plot your data directly if you omit the table() command. In that case, the 
height of the bars will match the actual values of the dataset. This technique is useful 
if your data are already in the form of counts or if you wish to plot the magnitudes of 
each element.

D <- c(3, 7, 12, 2, 0, 5)

barplot(D, col="blue")



Advanced Functions in Base Graphics

[ 60 ]

The output graph is as follows:

It's that simple! However, this example was not very sophisticated so we will now 
create a more complex bar chart. Either download the measurements CSV file 
or cut and paste from the book's website. The dataset consists of a set of medical 
measurements made on four groups of people over five trials. Next you read the 
dataset using the following syntax:

measurements <- read.csv("Measurements.csv", header=T, sep=",")

Or

measurements <- structure(list(Group1 = c(1L, 3L, 6L, 4L, 9L), Group2  
  = c(2L, 5L, 4L, 5L, 12L), Group3 = c(4L, 4L, 6L, 6L, 16L), Group4 =  
    c(3L, 5L, 6L, 7L, 6L)), .Names = c("Group1", "Group2", "Group3",  
      "Group4"), class = "data.frame", row.names = c(NA, -5L))

attach(measurements)

measurements

The output is as follows:

Group1 Group2 Group3 Group4

1      1      2      4      3

2      3      5      4      5

3      6      4      6      6

4      4      5      6      7

5      9     12     16      6



Chapter 2

[ 61 ]

Let's create a bar chart for Group3 with labels.

barplot(measurements$Group3, main="Group 3 Measurements",  
  xlab="TRIAL", ylab="Measurement",  
    names.arg=c("T1","T2","T3","T4","T5"), border="red",  
      density=c(90, 70, 50, 40, 30)) 

Here is the graph:

In the preceding graph, we have labeled each trial with an uppercase T followed by 
the trial number.

What did the density parameter achieve? Try other values of the density parameter 
and see what you get. The command names.arg enables you to supply your 
preferred horizontal axis labels.

We will now create another bar chart, this time using R's rainbow palette. We 
continue to use the measurements dataset of the previous example, but we now 
wish to graph all of the data. We plot a bar chart with adjacent bars by using the 
as.matrix() command and the argument beside = T:

barplot(as.matrix(measurements), main="ALL MEASUREMENTS", ylab =  
  "Measurements", cex.lab = 1.5, cex.main = 1.4, beside=TRUE,  
    col=heat.colors(5))



Advanced Functions in Base Graphics

[ 62 ]

The output bar chart is as follows:

We created an attractive bar chart using as.matrix() and the heat.colours palette.

Including a legend
In Chapter 1, Base Graphics in R – One Step at a Time, we saw how to create a legend. 
Let's look again at creating legends using the grouped bar chart we discussed in 
the previous section. Now, we will create a legend at the top-left corner. To create 
a legend without a frame, we use bty="n". The bty argument controls borders. We 
pass the same color palette to the legend using the fill argument.

barplot(as.matrix(measurements), main="ALL MEASUREMENTS", ylab =  
  "Measurements", cex.lab = 1.5, cex.main = 1.4, beside=TRUE,  
    col=heat.colors(5))

legend("topleft", c("Measure 1","Measure 2","Measure 3","Measure 4",  
  "Measure 5"), cex=1.3, bty="n", fill=heat.colors(5))



Chapter 2

[ 63 ]

The output is as follows:

We used the topleft argument to position the legend towards the top-left corner of 
the chart. Other options include the following:

"bottomright", "bottom", "bottomleft", "left", "topleft", "top",  
  "topright","right", "center".

For several of the examples from now on, we will use the medical dataset that you 
have already met in this chapter. Let's create a horizontal barplot with labels using 
the table() command. We use the TREATMENT variable of the medical dataset, which 
you must now read again as the object T. Again, either cut and paste the dataset from 
the website or use the read.csv() command on the CSV file.

Now, we will create a table.

treatment <- table(TREATMENT)

treatment 



Advanced Functions in Base Graphics

[ 64 ]

The output is as follows:

 TREATMENT

 A  B  C 

16 17 12

We set up our colors as a vector:

colours <- c("red", "yellow", "blue")

barplot(treatment, main="Treatment", horiz=TRUE, col= colours,

names.arg=c("A", "B", "C"))

We obtained a horizontal barplot. For a vertical bar chart, we omit the argument 
horiz = T:

barplot(treatment, main="Treatment", col= colours,

names.arg=c("A", "B", "C"))



Chapter 2

[ 65 ]

The output is as follows:

Now, we will create a stacked barplot of numbers of smokers, with nice colors and a 
legend. To get the stacked barplot, we omit the argument beside = T:

smoketh <- table(as.numeric(ETH), as.numeric(SMOKE))

smoketh

The output is as follows:

   SMOKE

ETH N Y

  1 9 3

  2 9 9

  3 7 8

Now, we will create the stacked barplot.

barplot(smoketh, main="Numbers of Smokers by Ethnicity",

xlab="Non-Smoker or Smoker", ylab ="Number of Smokers",  
  col=c("blue","red","yellow"), legend = rownames(smoketh))



Advanced Functions in Base Graphics

[ 66 ]

We get the following output:

Creating histograms
Now, we will create a histogram for patients' weight after treatment. The data  
is contained in the WEIGHT_2 variable. Enter the following syntax involving  
the hist() command:

hist(WEIGHT_2)



Chapter 2

[ 67 ]

The graph is as follows:

It is easy to create a basic histogram in R. Now, let's create a histogram from all the 
data in the measurements dataset. First, we transform the four vectors into a single 
vector and make a histogram of all elements:

G <- c(Group1, Group2, Group3, Group4)

Finally, we can create a histogram in a nice purple hue from the Hexadecimal  
Color Chart:

hist(G, col="#FF00CC", ylim=c(0,10), main = "HISTOGRAM OF ALL  
  MEASUREMENTS", xlab ="MEASURE", ylab ="FREQUENCY") 



Advanced Functions in Base Graphics

[ 68 ]

Our histogram is as follows:

Now, we will create a more complex example using the same dataset. We find the 
maximum value in order to set the horizontal axis limits:

max <- max(G)

max

The output is as follows:

[1] 16

The maximum value is 16. We want a histogram bin for every count, so we set the 
breaks argument equal to the maximum value of the dataset. We use a light gray 
from the Hexadecimal Color Chart. In addition, we make the horizontal axis labels 
perpendicular to the axis using las = 2. Use the following syntax:

hist(G, col= "#CCCCCC", breaks=max, xlim=c(0,max), 

main="HISTOGRAM OF MEASUREMENTS", las=2, xlab = "Values", cex.lab =  
  1.3)



Chapter 2

[ 69 ]

The following bar chart is the output:

Note the effect of the argument las=2 and compare it with the effect of las=1.  
Of course, the argument cex.lab allowed us to set the size of the labels.

The hist() command uses algorithms that calculate the number of bins. Let's try 
setting the number of bins to six. We use another color from the Hexadecimal Color 
Chart. Use the following syntax:

hist(G, col =  "#FF3366", breaks=6, xlim=c(0,max), 

main=" HISTOGRAM OF MEASUREMENTS ", las=2, xlab = "Values", cex.lab =  
  1.3)



Advanced Functions in Base Graphics

[ 70 ]

The output is as follows:

Although we wanted six bins, the hist() function has returned eight. However, 
setting up histogram bins as a vector gives you more control over the number of 
bins. Now, we will set up the bins as a vector (four bins in total), each bin four units 
wide. Our vector contains the maximum and minimum values of each bin. Use the 
following syntax:

measurebins <- c(0, 4, 8, 12, 16)

hist(G, col = "#9933CC", breaks=measurebins, xlim=c(0,max), 

main=" HISTOGRAM OF MEASUREMENTS ", las=2, xlab = "Values", cex.lab =  
  1.3)



Chapter 2

[ 71 ]

The output is as follows:

We have produced a histogram with the required number of bins.

Sometimes, it is helpful to fit a normal curve to a histogram. If you want to  
do so, then use dnorm(). To illustrate the approach, we now create a random  
sample of 50 numbers with a mean of 0 and a standard deviation 1 using the  
rnorm() command:

Z <- rnorm(50)

Enter Z on the command line to see your numbers. We must be precise about our 
lower and upper limits for the horizontal axis. Therefore, we eliminate all values 
outside four standard deviations from the mean. We use the following command to 
do this job. We use square brackets to subset Z and we use the less than and greater 
than comparison operators. We also include a vertical line, which is the operator for 
logical OR:

Z[Z < -4 | Z > 4] <- NA



Advanced Functions in Base Graphics

[ 72 ]

Now, set up a sequence of horizontal axis values from –4 to +4 in steps of 0.1  
(for plotting):

x <- seq(-4, 4, 0.1)

hist(Z, breaks=seq(-4, 4), ylim=c(0, 0.5), col="red", main =  
  "HISTOGRAM WITH FITTED NORMAL CURVE", freq=FALSE)

Now the lines() command, along with dnorm(), creates the normal curve:

lines(x, dnorm(x), lwd=2)

Here is the histogram with a fitted normal curve:

Let's use this technique to fit a histogram of patients' heights and fit a standard 
normal curve. We standardize the height data by subtracting the mean and dividing 
by the standard deviation. The sd() command returns the standard deviation. Use 
the following syntax:

HSTD <- (HEIGHT - mean(HEIGHT))/ sd(HEIGHT)



Chapter 2

[ 73 ]

Now, we set up a sequence of horizontal axis values for plotting. To do so, we 
examine the range of the standardized data. We use the range() command to do so:

range(HSTD)

We will get the following output from the range() command:

[1] -2.547588  1.883000

Our horizontal axis must include these minimum and maximum values, so let's set 
up a horizontal axis running from -3 to 3:

x <- seq(-3, 3, 0.1)

Now, we will plot the histogram of the standardized height.

hist(HSTD, breaks=seq(-3, 3), ylim=c(0, 0.5), col="red", main =  
  "HISTOGRAM WITH FITTED NORMAL CURVE", freq=F)

Finally, we create the fitted normal curve using the lines() command,  
along with dnorm().

lines(x, dnorm(x), lwd=2)

The output we get is as follows:

The histogram for height agrees nicely with the standard normal curve.



Advanced Functions in Base Graphics

[ 74 ]

Creating boxplots
You can draw boxplots for individual variables or grouped variables. The syntax 
for boxplots is boxplot(y~group, data=), where the argument data= refers to the 
data object. We use the syntax y~group to create a separate boxplot for each level of 
group. We use the argument horizontal=TRUE to reverse the axis.

The Modified Box Plot is the default in R. The Modified Box Plot highlights outliers 
while the Standard Box Plot does not. Let's start with a simple boxplot without 
specifying any groups. Again we use the medical dataset and create a boxplot 
for change in weight before and after treatment (that is, the difference between 
WEIGHT_2 and WEIGHT_1). Ensure that the dataset is read into R and attached, as 
described earlier.

changewt <- WEIGHT_1 - WEIGHT_2

boxplot(changewt)

We now have a simple boxplot (as shown in the following graph) that gives the 
median and upper and lower quartiles of the data, and also indicates outliers:



Chapter 2

[ 75 ]

The top edge of the box gives the upper quartile (the value pertaining to the top 
quarter of the data). The lower edge of the box gives the lower quartile (the value 
pertaining to the bottom quarter of the data), and the heavy line gives the median. 
We have two outliers.

Note that the boxplot() command includes a range argument. The range argument 
determines how far the plot whiskers extend out from the box. If range is positive, 
the whiskers extend to the point(s) that is (are) no more than range times the 
interquartile range from the box. The argument range = 0 ensures that the whiskers 
extend to the extreme points. In the previous graph, we have identified two outliers.

Now we will consider a grouped boxplot. Again we use the medical dataset and 
create a boxplot for change in weight for each treatment, using a nice ivory color 
from the Hexadecimal Color Chart. We use the formula changewt ~ TREATMENT:

boxplot(changewt ~ TREATMENT, data=T, main=toupper("WEIGHT CHANGE  
  (kg)"), font.main=3, cex.main=1.2, xlab="Treatment ", ylab="Weight  
    Change (kg)", font.lab=3, col="#FFFFCC")

We get the following boxplot for each level of the variable TREATMENT:



Advanced Functions in Base Graphics

[ 76 ]

Now, we will create a notched boxplot of change in weight for each level of 
treatment (with different colors for each box). We use the argument notch = T. 
This time, we include the argument range = 0 in order to ensure that the whiskers 
extend to the extreme points. Copy and paste the following syntax into R:

boxplot(changewt ~ TREATMENT, data=T, main=toupper("WEIGHT CHANGE  
  (kg)"), font.main=3, cex.main=1.2, col=c("red","blue", "yellow"),  
    xlab="Treatment", ylab="Change in Weight (Kg)", font.lab=3,  
      notch=TRUE, range = 0)    

The output is as follows:

If the notches overlap, then there is no evidence for any significant difference in the 
medians across the groups. Here the notches overlap, and we conclude that there is 
no difference in median change in weight across the three treatments.

Creating pie charts
Let's create a simple pie chart from a vector of data:

J <- c(1, 8, 3, 9, 2, 5, 10)

pie(J)



Chapter 2

[ 77 ]

The output is as follows:

That was very easy. Now let's create a pie chart with a heading, using nice colors, 
and define our own labels using R's topo.colours palette. We control the number 
of colors using length(J). Why? Because length() counts the number of distinct 
elements in a vector and we need to count the colors.

We have seven measurements, one for each day of the week. Enter the following 
syntax, which includes the labels we wish to include in the pie chart:

pie(J, main="Daily Values", col=topo.colors(length(J)),

labels=c("Monday","Tuesday","Wednesday","Thursday","Friday","Saturday 
  ","Sunday"))

Here is our pie chart with labels:



Advanced Functions in Base Graphics

[ 78 ]

Let's create a pie chart of the numbers of patients receiving each treatment. First, we 
will create a table of counts of patients receiving each treatment:

table(TREATMENT)

The output is as follows:

TREATMENT

 A  B  C 

16 17 12 

Now, we apply the pie() command on this table of counts:

pie(table(TREATMENT))

Here is our pie chart:

Now, we will create a more complex example, using percentages and a legend. We 
continue to use the data object J. We set up nice colors, again from the Hexadecimal 
Color Chart. Use the following syntax:

cols <- c("#FFFF33","#FF9999","#99CC99","#FF99FF", 
  "#CCCCCC","#33FF00","#3366FF")

First, we calculate the percentage for each day. We round our percentage to one 
decimal place using the round() command. The syntax is as follows:

percentlabels <- round(100*J/sum(J), 1)  



Chapter 2

[ 79 ]

Now, we append a % sign to each percentage value using paste() as follows:

pielabels <- paste(percentlabels, "%", sep="")   

pie(J, main="Daily Values", col=cols, labels=pielabels, cex=0.8)

Let's create a legend to the left using the following command:

legend("topleft", c("Monday","Tuesday","Wednesday", 
  "Thursday","Friday","Saturday","Sunday"), cex=0.8, fill=cols)

Here is our pie chart:

As another example, let's create a pie chart from the medical dataset and include 
numbers of patients receiving each treatment. We use the same table of counts  
as before.

table <- table(TREATMENT)

table

The output is as follows:

TREATMENT

 A  B  C 

16 17 12



Advanced Functions in Base Graphics

[ 80 ]

Now, we will create labels for each treatment, each consisting of the treatment level 
and the numbers of patients:

labs <- paste(names(table), " (",table,")", sep="")

labs

The result is as follows:

[1] ""A (16)"" ""B (17)"" ""C (12)""

Finally, we create the pie chart, along with labels, using the following syntax:

pie(table, labels = labs, col = c("#339999", "#006666", "#0099CC"), 
  main="PIE CHART OF NUMBERS OF PATIENTS \nRECEIVING EACH TREATMENT")

Here is our pie chart with the numbers of patients for each treatment:

Note the use of \n just before the word RECEIVING. This syntax instructed R to write 
any following text on a new line.

Creating dotcharts
Again, let's use the medical dataset and create a dotchart of the heights of female 
patients. Dotcharts record a single measurement for each element in a dataset.  
Let's create the subset first. We will use the subset() command to select only  
female patients:

TF <- subset(T, GENDER =="F")

head(TF)



Chapter 2

[ 81 ]

The output is as follows:

Now, we will use the dotchart() command, include title and axis labels, modify the 
font sizes of the axis labels, and specify the row labels of the chart:

dotchart(TF$HEIGHT[1:6],labels=TF$PATIENT,cex=1.4, pch = 16, 
  main="Female Patient Heights in Centimetres",xlab=toupper("Height 
    (cm)"), xlim = c(130, 200), cex.lab = 0.7)

Our dotchart is as follows:

Notice that we specified the heights and patient names using the TF object and the 
dollar sign. This is because we had already attached the object T, and R has stored 
the variables HEIGHT and PATIENT for that object rather than for the new object TF. 
Specifying the object name avoids confusion between the two datasets.



Advanced Functions in Base Graphics

[ 82 ]

Next, we consider a more complex dataset in which the data is arranged in columns, 
but where we want a dotchart of the entire dataset. We use the measurements dataset 
again and create another dotchart. This time, we take the transpose of the dataset 
using the transpose function t() as follows:

dotchart(t(measurements))

The dotchart obtained is as follows:

Note that R's dotchart() command accepts variables to be arranged in rows rather 
than in columns. That's why we took the transpose of the original data. Of course, 
you can embellish this dotchart using the usual approaches. We will use three 
symbol types and four colors as shown in the following syntax:

dotchart(t(measurements), xlim = c(0,20), pch = c(15:18), col =  
  c("red", "blue", "darkgreen", "brown"), main = "Measurements for  
    Four Groups", font.main = 2, xlab = "Measurements", cex.lab =  
      1.2)



Chapter 2

[ 83 ]

Now, the dotchart looks like this:

Now, we will create a slightly different dotchart with the same data, but using the 
as.matrix() command:

dotchart(as.matrix(measurements), xlim = c(0,20), pch = c(15:18), col  
  = c("red", "blue", "darkgreen", "brown"), main = "Measurements for  
    Four Groups arranged Differently", font.main = 2, xlab =  
      "Measurements", cex.lab = 1.2)



Advanced Functions in Base Graphics

[ 84 ]

Our dotchart now looks like this:

Let's put the two dotcharts together so that you can see the difference. We use par() 
and mfrow = c(1,2) to place them side-by-side. Copy and paste all of the following 
syntax together:

par(mfrow=c(1,2))

dotchart(t(measurements), xlim = c(0,20), pch = c(15:18), col = c("red", 
"blue", "darkgreen", "brown"), main = "Scores for Four Groups", font.main 
= 2, xlab = "Scores", cex.lab = 1.2)

dotchart(as.matrix(measurements), xlim = c(0,20), pch = c(15:18), col  
  = c("red", "blue", "darkgreen", "brown"), main = "Scores for Four  
    Groups arranged Differently", font.main = 2, xlab = "Scores",  
      cex.lab = 1.2)



Chapter 2

[ 85 ]

The dotchart obtained look like this:

Can you see the difference? The first approach groups the data according to the 
measurements, while the second groups the data by the four groups.

Now, we will create a dotchart where the groups have different colors. We will 
create a dotchart of weight change by treatment. Let's remind ourselves of the  
levels of TREATMENT. We use the levels() command to do so:

  levels(TREATMENT)

The output is as follows:

[1] ""A"" ""B"" ""C""



Advanced Functions in Base Graphics

[ 86 ]

Of course, we have three different treatments. Now, we wish to graph the change in 
body mass for each patient, sorted in order of change, but grouped by treatment. First, 
we recalculate weight change for each patient, bind this new variable into the array, 
and sort in ascending order of weight change. Use the following syntax to do so:

changewt <- WEIGHT_1 - WEIGHT_2

Next, we bind this variable to the array T. To do so, we use the cbind() function.  
We call the new version TCH:

    TCH <- cbind(T, changewt)

Enter TCH on the R command line to see that the new variable has indeed been 
included in the array.

Now, we sort the entire array in ascending order of the variable changewt. In 
general, if A is an array, you can sort A in ascending order by one of the variables 
(variable1) as follows:

A <- A[order(variable1), ]

To sort in descending order, use the following syntax:

A <- A[order(-variable1), ]

Let's apply this approach to the array TCH and sort in descending order of changewt:

TCH <- TCH[order(TCH$changewt),]  

Enter TCH on the R command line to see that the array has been sorted in ascending 
order of weight change. Now, we will create a factor from the variable TREATMENT:

TCH$TREATMENT <- factor(TREATMENT) 

TCH$TREATMENT

The output is as follows:

[1] A B A B C A A C B B A C A B A A B C A B B A C C A B B B C A A B A 

A B C C B B A C B C C B

Levels: A B C



Chapter 2

[ 87 ]

Let's give a different color to each level of TREATMENT to create our dotchart. We do 
this by subsetting with square brackets and reading in the desired colors to a new 
variable TCH$colour:

TCH$colour[TCH$TREATMENT == "A"]  <- "darkgreen"

TCH$colour[TCH$TREATMENT == "B"]  <- "red"

TCH$colour[TCH$TREATMENT == "C"]  <- "blue" 

Now we create the dotchart as follows:

dotchart(TCH$changewt, labels=TCH$PATIENT, cex=.8, pch = 16, groups =  
  TCH$TREATMENT,main="DOTCHART OF WEIGHT CHANGE BY TREATMENT", 
    xlab="Weight Change (Kg)", cex.lab = 0.8, gcolor="black",  
      color=TCH$colour)

The resulting graph is as follows:

The dotchart has grouped the patients into an easy-to-understand chart, grouped  
by treatment.



Advanced Functions in Base Graphics

[ 88 ]

R's color palettes
R's color palettes include the following: Rainbow, heat.colors, terrain.colors, 
topo.colors, and cm.colors.

You have already seen some of these palettes. For information on palettes in R, insert 
a question mark in front of the palette name, for example, ?terrain.colors.

Using smoothers on your graph
Often it is useful to see a smooth version of your dataset that highlights trends or 
variations in the data that are not evident by examining the data directly. LOWESS 
(locally weighted scatterplot smoothing) is often used for this purpose. Here is an 
example of smoothing using LOWESS. We plot HEIGHT against WEIGHT_2 and add a 
LOWESS smoother using the lines() and lowess() commands:

plot(WEIGHT_2, HEIGHT, main="LOWESS SMOOTHING EXAMPLE", 

xlab="WEIGHT (kg) ", ylab="HEIGHT (cm)", pch=19) 

lines(lowess(WEIGHT_2, HEIGHT), lwd=2, col="red")  

Let's see the data with a smooth curve, as shown in the following graph:



Chapter 2

[ 89 ]

The smoother suggests some curvature to the data, which in this case was already 
evident in the raw data. In other cases, any trends or curvature might not be so 
apparent from the raw data, so a smoother might be very helpful.

Creating scatterplot matrices
Scatterplot matrices of bivariate data are helpful to identify relationships between 
variables in a dataset. We can create scatterplot matrices using pairs() and the tilde 
sign, along with plus signs that instruct R to include the desired variables:

pairs(~WEIGHT_1 + WEIGHT_2 + HEIGHT, data=T, 

main="Scatterplot Matrix of Medical Data")

This syntax gives the following matrix:

www.allitebooks.com

http://www.allitebooks.org


Advanced Functions in Base Graphics

[ 90 ]

If we want a smooth curve (LOWESS) in each bivariate plot, we include the 
argument panel=panel.smooth:

pairs(~WEIGHT_1 + WEIGHT_2 + HEIGHT, data=T, 

main="Scatterplot Matrix of Medical Data", panel = panel.smooth)

The matrix obtained is as follows:

We see a strong linear relationship between WEIGHT_1 and WEIGHT_2, and curved 
relationships between those variables and HEIGHT.



Chapter 2

[ 91 ]

Writing functions to create graphs
Why not create functions to draw graphs? Here's a function for histograms of vectors 
of data with standard titles and labels. It allows you to add numbers to the title 
and axis labels and choose the color. We use the function() command to set up 
a function that provides the attributes of our choice (for example, labels and title 
colors). Enter the following function on the R command line:

 nicehist <- function(x, k, col) {

 hist(x, main = paste("HISTOGRAM_", k, sep = ""),

 xlab = paste("VALUES_", k, sep = ""),

 ylab = paste("COUNTS_", k, sep = ""), col = col) }

 f <- c(3,2,5,4,3,2,7,6,5,7,8,6,4,5,6)   

Let's include 3 in the title and create a red histogram. Enter the following syntax:

 nicehist(f, 3, "red")

The histogram obtained is as follows:



Advanced Functions in Base Graphics

[ 92 ]

Let's include 99 in the title and create a light purple histogram.

nicehist(f, 99, "#FFCCFF")

The histogram now looks like this:

You can see that creating a function is a good idea if you have to create many similar 
plots and need to save time. Of course, you can create more complex function to 
create other types of graph.

Including error bars on your graph
Here is a function that I wrote to plot error bars on your graphs. Copy and paste it 
into R.

ploterrors <- function(w, z, err) {   

zmin       <- z - err

zmax       <- z + err

HATWIDTH   <- 0.012



Chapter 2

[ 93 ]

HAT  <-  HATWIDTH *( max(w) - min(w) )

for( k in 1:length(z) ) {

 

lines( c(w[k], w[k] ), c( z[k], zmin[k] ) , lwd = 0.8 )

lines( c(w[k], w[k] ), c( z[k], zmax[k] ) , lwd = 0.8 )

lines( c(w[k] - HAT, w[k] + HAT ), c( zmin[k], zmin[k] ), lwd = 0.8 )

lines( c(w[k] - HAT, w[k] + HAT ), c( zmax[k], zmax[k] ), lwd = 0.8 )

} }

Note that you can change the width parameter of the hat from my preferred value of 
0.012 to some other number that gives you your preferred width. You can also vary 
the line width by changing lwd from 0.8 to your chosen value. Now, we will set up 
some data and a set of errors, and then we will plot:

X <- c(1,2,3,4,5,6,7,8)

Y <- c(1,2,3.4,5.6,7.8,10.3, 15.7, 18.3)

ERROR <- c(0.5, 1.2, 0.23, 2.21, 1.43, 1.28 , 2.18, 1.41)

plot(X, Y, xlab = "X VALUES", ylab = "Y VALUES", pch = 16)

lines(X, Y) 

Now, we include the error bars using the function by including the horizontal and 
vertical axis variables and including the vector of errors as follows:

ploterrors(X, Y, ERROR)



Advanced Functions in Base Graphics

[ 94 ]

We get the following graph that includes the data and error bars:

Summary
In this chapter, you learned some more of the basic syntax and techniques of 
producing graphs in R. We discussed more on regression lines and residuals—
creating complex multiple axes, superposing graphs, labeling points on your graph, 
creating grid lines, shading and coloring graphs using the polygon() command, and 
so on. I hope this chapter provided a range of useful techniques in addition to those 
that you learned in the previous chapter.

The next chapter will continue from where we left off in this chapter. In the next 
chapter, we will learn how to create graphs using qplot, a very powerful graphics 
command that is available through the ggplot package.



Mastering the qplot Function
This chapter provides a step-by-step introduction to creating graphs using qplot  
(a graphics tool within the ggplot2 package), and gives examples of functioning 
qplot code that can be adapted for many applications. The topics covered in this 
chapter are as follows:

• Loading the ggplot2 package in order to use qplot
• Using basic qplot graphics techniques and syntax
• Creating scatterplots and line graphs
• Mapping symbol size, type, and color to categorical data
• Including regressions and confidence intervals in your graphs
• Creating bar charts, histograms, boxplots, pie charts, and dotcharts
• Creating time series graphs with dates

It is not possible to give a complete account of qplot in this book. However, by the 
end of this chapter, you should be able to use qplot to create a wide range of graphs 
for research and analysis.

About qplot
The qplot (quick plot) system is a subset of the ggplot2 (grammar of graphics) 
package, which you can use to create nice graphs easily. To use qplot, first install 
ggplot2. On the R command line, enter the following command:

install.packages("ggplot2")

Then load ggplot2 using this command:

library(ggplot2)



Mastering the qplot Function

[ 96 ]

The qplot syntax
Let's assume that your data is loaded into R and now you wish to create a graph 
using the qplot() command. The generic qplot syntax is as follows:

qplot(x = X1, y = X2, data = X3, color = X4, shape = X5, size = X6,  
  geom = X7, main = "Title")

Here, X represents the variables you wish to graph and the attributes you choose for 
your graph. You now have either univariate (one variable) or bivariate data (two 
variables), and you must provide instructions through the geom argument in order  
to create your graph. Now, let's explore some of the arguments in the qplot syntax:

• data: This argument refers to the dataset.
• color: This argument maps the color scheme onto a factor or numeric 

variable. Note that qplot selects default colors for each level of the variable. 
However, you can use special syntax to set your own colors.

• shape: This argument maps symbol shapes on to factor variables, and qplot 
uses different shapes for different levels of the factor variable. You can use 
special syntax to set your own shapes.

• geom: This argument allows you to select the type of graph, including: "bar", 
"histogram", "line", and "point".

• main: This argument allows you to provide a title.

In ggplot2 (and therefore in qplot), color, size, and shape are known as aesthetic 
attributes. In qplot, you can set the aesthetics you like using the I() operator. For 
example, if you want symbols or lines in red, use color = I("red"). If you want 
to control the size of the symbols, use size = I(N), where a value of N greater than 
1 increases the size of the symbols. For example, size = I(5) produces very big 
symbols. On the other hand, you may wish to map color, size, and shape to levels of 
a factor variable. Shortly, you will see how this is done.

Producing scatterplots using qplot
Let's start with a simple example where we use the medical dataset that we saw in 
Chapter 2, Advanced Functions in Base Graphics. Again we cut and paste from the code 
file for this chapter. We invoke the ggplot2 library, set up a simple scatterplot using 
red symbols, and save it as a PNG file. The syntax for invoking the library is as follows:

library(ggplot2)



Chapter 3

[ 97 ]

Now let's plot HEIGHT against WEIGHT_1, using I() for color and symbol size.  
We choose red and a symbol size three times the qplot default size. Enter this  
syntax on the R command line:

qplot(HEIGHT, WEIGHT_1, data = T, xlab = "HEIGHT (cm)", ylab =  
  "WEIGHT BEFORE TREATMENT (kg)" , color = I("red"), size = I(3))

After running the preceding command, you will get the following graph:

We get a scatterplot by default (that is, without specifying any geom argument). We 
see a plotting background that is gray in color and includes a grid. This is the default 
plotting background for qplot. Now let's save the graph as a PNG file with filename 
fig_1.png. You probably want to save your graph in a particular directory. To do 
so, you must ensure that this directory becomes your R "working directory".



Mastering the qplot Function

[ 98 ]

You can set your R working directory by navigating to File | Change Dir and 
selecting the directory you wish to use. Now, enter these commands on the R 
command line:

png(filename = "fig_1.png")

qplot(HEIGHT, WEIGHT_1, data = T, xlab = "HEIGHT (cm)", ylab =  
  "WEIGHT BEFORE TREATMENT (kg)" , color = I("red"), size = I(3))

dev.off()

Check your working directory to see whether the graph has been saved there.

Subsetting your data before graphing
Of course, you can subset before creating your graph. Let's subset T to include only 
females over 165 cm and then graph the height against weight. We use the subset() 
command and the logical operator &.

TF <- subset(T, GENDER ==  "F"  &  HEIGHT > 165)

TF

The dataset you get is as follows:

Now let's create a graph of height against weight for this smaller dataset using the 
following syntax:

qplot(HEIGHT, WEIGHT_1, data = TF,  geom = c("point"), xlab =  
  "HEIGHT", ylab = "WEIGHT")



Chapter 3

[ 99 ]

Here is our graph:

As an exercise, you can create another scatterplot that is similar to the preceding 
scatterplot, again using the argument geom = "point". Enter the following syntax 
and create the graph for yourself:

qplot(HEIGHT, WEIGHT_1, data = T, geom = "point", xlab = "HEIGHT  
  (cm)", ylab = "WEIGHT BEFORE TREATMENT (kg)" , color = I("red"),  
    size = I(3))



Mastering the qplot Function

[ 100 ]

Mapping aesthetics to categorical 
variables
Now let's map both symbol size and shape to GENDER. To map symbol size to  
levels of a categorical variable, it is helpful to set the variable as a factor using  
the factor() command.

Then you set up your plot as before, but control your symbol size by adding a new 
layer using the plus sign: + scale_size_manual(values = c(a, b)).

The parameters a and b have a minimum value of 0 and can be as large as you like. 
You must select values of a and b to produce symbols of the desired size. In the 
next example, I have chosen symbol sizes of 5 and 7. You may select different sizes, 
depending on your preferences. You will gain experience very quickly and select the 
symbol sizes that suit your graphs best. In this case, I introduced some transparency 
using the alpha = I() syntax. Transparency assists in the interpretation of graphs 
that involve a large number of points. Enter the following syntax:

qplot(HEIGHT, WEIGHT_1, data = T, xlab = "HEIGHT (cm)", ylab =  
  "WEIGHT BEFORE TREATMENT (kg)" , size = factor(GENDER), color =  
    factor(GENDER), alpha = I(0.7)) + scale_size_manual(values = c(5,  
      7))

You get this graph:



Chapter 3

[ 101 ]

Our graph looks good, but the legend title includes the word factor. We shall see 
how to fix this problem in a later example. For now, enter the following syntax:

qplot(HEIGHT, WEIGHT_1, data = T, xlab = "HEIGHT (cm)", ylab =  
  "WEIGHT BEFORE TREATMENT (kg)" , size = factor(GENDER), color =  
    factor(GENDER), alpha = I(0.7)) 

We mapped the size and color to one variable (in this case GENDER), but we can map 
each of these aesthetics to a different factor variable. Let's map the symbol size to one 
variable (GENDER) and color to another variable (EXERCISE) using the arguments 
size and color.

qplot(HEIGHT, WEIGHT_1, data = T, geom = c("point"), xlab = "HEIGHT  
  (cm)", ylab = "WEIGHT BEFORE TREATMENT (kg)" , size =  
    factor(GENDER), color = factor(EXERCISE)) +  
      scale_size_manual(values = c(5, 7))

Now you get a graph like this one:



Mastering the qplot Function

[ 102 ]

Controlling colors on your graph
Now let's map the symbol size to GENDER and the symbol color to EXERCISE. To 
control your symbol colors, use the layer scale_color_manual() and select your 
desired colors. We choose red and blue and symbol sizes 3 and 7, as shown in the 
following syntax:

qplot(HEIGHT, WEIGHT_1, data = T, geom = c("point"), xlab = "HEIGHT  
  (cm)", ylab = "WEIGHT BEFORE TREATMENT (kg)" , size =  
    factor(GENDER), color = factor(EXERCISE)) +  
      scale_size_manual(values = c(3, 7)) +  
        scale_color_manual(values = c("red","blue"))

Here is our graph with red and blue points:



Chapter 3

[ 103 ]

Now you know how to choose you own color scheme for your qplot graphs. 
Mapping color to categorical data can give us additional insight into the 
relationships that exist between variables.

Now let's see how to control the legend title (the title that sits directly above the 
legend). For this example, we control the legend title through the name argument 
within the two functions scale_size_manual() and scale_color_manual().  
Enter the following syntax:

qplot(HEIGHT, WEIGHT_1, data = T, geom = c("point"), xlab = "HEIGHT  
  (cm)", ylab = "WEIGHT BEFORE TREATMENT (kg)" , size =  
    factor(GENDER), color = factor(EXERCISE)) +  
      scale_size_manual(values = c(3, 7), name="Gender") +  
        scale_color_manual(values = c("red","blue"),name="Exercise")

Our graph now includes a better legend title:



Mastering the qplot Function

[ 104 ]

By including the arguments name="Gender" and name="Exercise" in the relevant 
function, we were able to control the legend title and include the variable names 
without the word factor. In the examples of the remainder of this chapter, we will 
omit this technique in order to simplify the syntax presented with each example.

Now let's create a similar graph, but including transparency using alpha = I().  
We choose a value of 0.3 to illustrate the effect of transparency quite clearly.  
Enter the following syntax:

qplot(HEIGHT, WEIGHT_1, data = T, alpha = I(0.3), geom = c("point"),  
  xlab = "HEIGHT (cm)", ylab = "WEIGHT BEFORE TREATMENT (kg)" , size  
    = factor(GENDER), color = factor(EXERCISE)) +  
      scale_size_manual(values = c(3, 7), name="Gender") +  
        scale_color_manual(values = c("red","blue"),name="Exercise")

The output is as follows:



Chapter 3

[ 105 ]

We can control transparency using either decimals or fractions. Rather than I(0.7), 
we could use I(7/10).

Setting up graphs as objects
We can set up the initial graphing syntax as an object. In the next example, we call 
this object Y. We can use any object name, as long as it starts with an alphabetic 
character. We map the symbol color to ETH, a categorical variable of three levels. 
Then, we impose our own colors by adding the new colors as a layer to the object Y:

Y <- qplot(HEIGHT, WEIGHT_1, data = T, main = "HEIGHT vs. WEIGHT",  
  xlab = "HEIGHT (cm)", ylab = "WEIGHT BEFORE TREATMENT (kg)" , geom  
    = "point" , color = factor(ETH), size = 2, alpha = I(0.7))   

Y + scale_color_manual(values = c("darkgreen","red", "yellow"))

The output is as follows:



Mastering the qplot Function

[ 106 ]

Setting up graphs as objects can be very useful. Using your initial object, you can 
try out different color schemes, symbol types, and other attributes until you get the 
appearance you want.

Creating facet plots
If you have a large dataset that includes a categorical variable, you can use the 
facets command to produce multiple graphs: one for each level of the categorical 
variable. In the following example, we will create a graph for each level of ETH (1, 2, 
and 3) using facets = ETH ~ . Note the tilde sign followed by the period. Enter 
this syntax:

qplot(HEIGHT, WEIGHT_1, data = T,  geom = "point",  main = "HEIGHT  
  VS. WEIGHT BY ETHNICITY", xlab = "WEIGHT BEFORE TREATMENT (Kg)",  
    ylab = "HEIGHT (cm)", facets = ETH ~ .)

Our facet plot is as follows:



Chapter 3

[ 107 ]

Indeed, we have three scatterplots arranged vertically: one for each level of 
ETHNICITY. We can also create facet plots across the levels of two factor variables. In 
the following code, we will create a scatterplot of HEIGHT against WEIGHT_1 for each 
combination of SMOKE and EXERCISE in each facet, where the two levels of gender 
are represented by shape and color. Here is the required command:

qplot(HEIGHT, WEIGHT_1, data=T, shape=factor(GENDER),  
  color=factor(GENDER),facets=SMOKE ~ EXERCISE, size=I(3),  
    xlab="HEIGHT", ylab="WEIGHT BEFORE TREATMENT", main = "HEIGHT vs.  
      WEIGHT")

You will get the following output:



Mastering the qplot Function

[ 108 ]

Since SMOKE and EXERCISE are both categorical variables of two levels, we ended 
up with four graphs—one for each combination of the two levels. Note the syntax 
facets=SMOKE ~ EXERCISE.

Creating line graphs using qplot
You can create line graphs using geom = "line". The methods for mapping size and 
color that you have just seen still apply when you include both lines and symbols on 
the same graph. In the following code, we will map line color to the three levels of 
the variable ETH to produce three curves on the same graph:

qplot(HEIGHT, WEIGHT_1, data = T, geom = "line", color =  
  factor(ETH), main = "Height vs. Weight before Treatment") 

Here is the resulting graph:



Chapter 3

[ 109 ]

Use the linetype = argument to vary your line types. Try the following 
examples:
qplot(HEIGHT, WEIGHT_1, data=T, geom="line",  
  group=TREATMENT) 

qplot(HEIGHT, WEIGHT_1, data=T, geom="line",  
  linetype=as.factor(TREATMENT)) 

qplot(HEIGHT, WEIGHT_1, data=T,  geom="line", linetype=  
  as.factor(TREATMENT), color= as.factor(TREATMENT)) 

Let's take a look at the last of the graphs obtained using the above syntax:

 



Mastering the qplot Function

[ 110 ]

We see a different line type and color for each level of treatment. Now let's create a 
graph similar to the previous one, but include both points and lines using geom = 
c("point", "line").

qplot(HEIGHT, WEIGHT_1, data = T, geom = c("line", "point"), color =  
  factor(ETH), main = "Height vs. Weight before Treatment") 

Here is the resulting graph:

The graph now includes both points and lines.



Chapter 3

[ 111 ]

Creating multiple curves simultaneously
Now let's learn how to create several curves in one graph, provided that the data is 
arranged correctly. Read the Children dataset from the code file of this chapter.  
It gives the heights and ages of four children. We want to produce a graph of  
Height against Age for each child, including both points and lines. Enter the 
following command:

attach(cheight)

Let's see the first eight rows of this dataset:

head(cheight, 8)

We get the following output:

  Child  Age Height

1  John  13    165

2  John  14    172

3  John  15    174

4  John  16    177

5  John  17    179

6  John  18    181

7  Mary  13    145

8  Mary  14    153

Note that the data is arranged in columns so that several measurements for each 
child appear in a single column. This format is ideal for creating multiple curves 
simultaneously. Before we start, let's remind ourselves of the names of each child. Since 
Child is a categorical variable, we can see each name using the levels() command:

levels(Child)

Their names are:

[1] "Anne" "Joe" "John" "Mary"

Let's plot all curves together in the same graph, mapping color to Child with the 
following command:

qplot(Age, Height, data = cheight, geom = c("line","point"),

color = Child, main = "Growth Patterns of Four Children")



Mastering the qplot Function

[ 112 ]

We get the following graph:

We now have a colored curve and colored points for each child.

Including smoothed curves
Let's create a scatterplot relating height and weight before treatment, along with 
both points and a smooth curve using geom = c("point","smooth"). In qplot, 
the default smoother is LOWESS, and the gray band represents a standard error 
confidence interval. LOWESS fits models to local subsets of the variables to produce 
a smoothed version of the data.



Chapter 3

[ 113 ]

You can read further about LOWESS in various texts and online sources. For this 
example, we set up the graph as an object (Y) and plot it by entering the object name 
on the command line:

Y <- qplot(HEIGHT, WEIGHT_1, data = T, xlab = "HEIGHT (cm)", ylab =  
  "WEIGHT BEFORE TREATMENT (kg)", geom = c( "point","smooth"))   

 

Y

Our graph now looks like this:



Mastering the qplot Function

[ 114 ]

We have the smoothed curve and the confidence interval. Let's graph the same data, 
but map color to ethnicity. We add transparency in order to make the curves easy to 
interpret. The syntax is as follows:

Y <- qplot(HEIGHT, WEIGHT_1, data = T, xlab = "HEIGHT (cm)", ylab = 
"WEIGHT BEFORE TREATMENT (kg)" , geom = c("point","smooth"), color = 
factor(ETH), alpha = I(0.2))   

Y

Here is the resulting graph:



Chapter 3

[ 115 ]

As before, to select your own colors for the smoothed curves, add the scale_color_
manual() layer, for example:

Y + scale_color_manual(values = c("darkgreen", "red", "yellow"))

The graph now looks like this:

As we saw in the previous example, qplot often provides several ways of achieving 
the same graph. Here we set up the graph first, and then specify geom later using the 
plus sign. Here, we plot weight before treatment against weight after treatment using 
the following syntax:

qplot(WEIGHT_1, WEIGHT_2, data = T, xlab = "BEFORE", ylab = "AFTER")  
  + geom_smooth() 



Mastering the qplot Function

[ 116 ]

The graph looks like this:

Another approach is to set up the graph as an object. The syntax is as follows:

p <- qplot(WEIGHT_1, WEIGHT_2, data = T,  geom = c("point","smooth"), 
xlab = "BEFORE", ylab = "AFTER")

p

Notice that these approaches produced the same graph. Now let's use a linear 
regression model to obtain the smooth curve (in this case, a straight line). To fit  
a linear regression model, use the argument method = "lm", as follows:

qplot(WEIGHT_1, WEIGHT_2, data = T,  geom = c("point","smooth"),   
  xlab = "BEFORE", ylab = "AFTER", method = "lm")



Chapter 3

[ 117 ]

Here is the graph:

The regression shows a highly linear relationship between the two measurements,  
so that the standard error confidence band is very narrow.

In fact, qplot provides various smoothers, of which LOWESS is the default. Other 
options include OLS regression and generalized additive models. You can control the 
width of the smoother using the span argument. For example, span = 0.2 gives a 
wider band and span = 1 (the maximum value of span) gives a narrower band. You 
can modify the smoothed curve by varying the span value between 0 (not smooth) 
and 1 (smooth).



Mastering the qplot Function

[ 118 ]

Creating histograms with qplot
Now, let's learn how to create a histogram using geom = "histogram" and control the 
bin width using the argument binwidth. In this example, we will create a histogram of 
the heights of the patients and select a bin width of 10 cm. The syntax is as follows:

qplot(HEIGHT, geom = "histogram",  ylab = "COUNT", xlab = "HEIGHT",  
  binwidth = 10)

Here is our histogram:



Chapter 3

[ 119 ]

Our histogram has a rather chunky appearance, and we may wish to change  
the color and other attributes of the default histogram. By the way, note what 
happens if we use the syntax color = I("blue"):

qplot(HEIGHT, geom = "histogram",  ylab = "COUNT", xlab = "HEIGHT",  
  binwidth = 10, color = I("blue"), fill = I("wheat"))

Now the histogram looks like this:

We get blue outlines for the bars and the axes. Remember that, for histograms, the 
color argument controls the color of the histogram outlines, while the argument 
fill controls the color of the bars.



Mastering the qplot Function

[ 120 ]

Creating facet plots for histograms
As with scatterplots, we can create facet plots for histograms. This technique is useful 
when we have one or more categorical variables and wish to obtain histograms for 
each level or combination of levels. Let's create a histogram facet plot of weight 
before treatment for each level of treatment. First, we turn TREATMENT into a factor. 
To create facet plots across the levels of a categorical variable, first turn the variable 
into a factor using the following syntax:

TRC <- factor(TREATMENT) 

Now, let's create the facet plot using the syntax facets = TREATMENT ~ .

qplot(WEIGHT_1, data = T,   geom = "histogram",  binwidth = 5, xlab =  
  "WEIGHT", ylab = "FREQUENCY", fill = I("red"), facets = TREATMENT ~  
  .) 

The facet plot is shown as follows:



Chapter 3

[ 121 ]

We now have a histogram for each level of TREATMENT. Facet plots provide additional 
detail about the variability of the critical variables.

Creating kernel density plots
Let's create a kernel density plot for patient height. The kernel density plot is 
essentially a smoothed version of a histogram. A full discussion of kernel density 
plots is beyond the scope of this book, but for many applications they provide a 
viable alternative to the histogram. We use a bin width of 5 cm, though we could  
try other bin widths. Enter the following syntax:

qplot( HEIGHT, data = T,   geom = "density",  binwidth = 5, xlab =  
  "HEIGHT (cm)", ylab = "DENSITY")  

The kernel density plot looks like this:



Mastering the qplot Function

[ 122 ]

In a kernel density plot, the height of the curve gives an estimate of the probability 
density at the given value along the horizontal axis.

To shade underneath a density plot, you can use the polygon() command. In the 
following example, we will illustrate how this is done in base graphics. Here, we 
select a light green color and use the default smoothing (that is, we do not specify  
a bin width). Enter the following syntax:

plot(density(HEIGHT), xlab = "HEIGHT (cm)", ylab = "DENSITY", main =  
  "HEIGHT DENSITY PLOT") 

 

polygon(density(HEIGHT), col="#66FF99", border="darkgreen")

We get this graph:

The polygon() command has shaded under the curve exactly as we wished.



Chapter 3

[ 123 ]

Now let's see how shading is done in qplot. We create a kernel density plot 
for height, grouped by gender and mapped to our own choice of color. We add 
transparency in order to make the plot easy to interpret. The fill argument gives  
a second method of shading under a density plot. Enter the following syntax:

Y <- qplot(HEIGHT, data=T, geom="density", fill=factor(GENDER),  
  alpha=I(0.5), main="Height by Gender", xlab="Height (cm)",  
    ylab="Density ")

Y + scale_fill_manual(values = c("red", "yellow"))

Now the graph looks like this:

Note that the overlapping area of the two plots has its own color. In this case, the 
overlapping area is colored orange.



Mastering the qplot Function

[ 124 ]

Creating bar charts
Now, let's use qplot to produce a frequency bar chart; in this case, for the categorical 
variable TREATMENT. The heights of the bars give the counts of patients receiving each 
treatment. We choose a nice hue of brown from the Hexadecimal Color Chart. To 
create a bar chart, we use geom = "bar". Enter the following syntax:

qplot(TREATMENT, data = T, geom = "bar",  binwidth = 5, xlab =  
  "HEIGHT (cm)", ylab = "FREQUENCY", fill = I("#CC6600"), color =  
    I("blue"))

Here is our bar chart:

The following is a more complex example involving bar charts. We set up a new 
dataset relating to dinners purchased by two people at fast food outlets during  
one week. Enter the following syntax into R:

dinners = data.frame(person=c("Thomas", "Thomas", "Thomas", "James",  
  "James"), meal = c("curry", "stew", "salad", "fish", "stir-fry"),  
    price = c(15, 18, 12, 25, 13))

dinners



Chapter 3

[ 125 ]

The output is as follows:

  person     meal  price

1 Thomas    curry    15

2 Thomas     stew    18

3 Thomas    salad    12

4  James     fish    25

5  James stir-fry    13

Let's plot the number of dinners each person purchased that week. We choose a nice 
hue of purple from the Hexadecimal Color Chart. Enter the following syntax:

qplot(person, data = dinners, geom = "bar", ylab = "Meals", fill =  
  I("#9999CC"))

Here is our bar chart of the number of dinners:



Mastering the qplot Function

[ 126 ]

By default, the height of each bar gives a count of the number of dinners purchased 
by each person. However, if we want to graph the total cost of each person's dinners, 
we must provide a different weight; in this case, the price variable. The weight is 
simply the variable that we wish to evaluate and plot on our bar graph. We choose a 
nice hue of green. Enter the following syntax:

qplot(person, weight = price, data = dinners, fill = I("#009933"),  
  geom = "bar", ylab = "Total Cost ($)")

The bar chart now looks like the following:

Now the height of each bar represents the total cost of each person's dinners.



Chapter 3

[ 127 ]

Creating boxplots
In this section, we will learn how to create boxplots. Using the medical dataset, let's 
produce a simple boxplot of patient weight before treatment, grouped by the three 
levels of treatment. We use the syntax geom = "boxplot" and again we choose a 
nice color from the Hexadecimal Color Chart. Enter the following syntax:

qplot(TREATMENT, WEIGHT_2, data = T,   geom = "boxplot",   xlab = "  
  TREATMENT", ylab = "WEIGHT (kg)", fill = I("#99CCFF"))

Here is the boxplot:



Mastering the qplot Function

[ 128 ]

If we do not wish to create a grouped boxplot and want a boxplot of all of the data 
taken together, we simply omit the categorical variable from the qplot() command. 
Anyway, within any boxplot, we can include the data as points—positioned according 
to the levels of the factor variable. Simply include "point" within geom as follows:

qplot(TREATMENT, WEIGHT_2, data = T, geom = c("boxplot","point"), 
  xlab = "TREATMENT", ylab = "WEIGHT (kg)", fill = 
    I("#669900"))

The boxplot, along with the raw data, looks like this:



Chapter 3

[ 129 ]

Including the data gives us additional insight into the variation of weight across the 
three levels. Now, let's create a box for each level of ethnicity using as.factor(), or 
simply factor(cyl). Again, we use the Hexadecimal Color Chart to give a different 
color to each box. To do this, we use the c() operator to include three colors within 
fill = I(). Enter the following syntax into R:

qplot(as.factor(ETH), WEIGHT_2, data = T,   geom = "boxplot", xlab =  
  "ETHNICITY", ylab = "WEIGHT (kg)", fill = I(c("#66CC99", "#9999CC",  
    "#CC6666"))) 

Now the boxplot looks like this:

We have produced an attractive boxplot with different colors for each box. 
Remember that if the categorical variable is not initially a factor, then you  
can turn it into a factor using either as.factor() or factor(). Then, you  
can proceed to create your grouped boxplot.



Mastering the qplot Function

[ 130 ]

Creating graphs with dates
Sometimes, you may wish to create a time series graph that involves dates along 
the horizontal axis. We can create such graphs using qplot. Let's try plotting a time 
series graph. We use the built-in economics dataset (see http://docs.ggplot2.
org/current/economics.html) and plot the population against the date. Let's see 
the first six rows using head():

head(economics)

Here are the first six rows of the data:

      date    pce   pop    psavert  uempmed unemploy

1 1967-06-30 507.8 198712     9.8     4.5     2944

2 1967-07-31 510.9 198911     9.8     4.7     2945

3 1967-08-31 516.7 199113     9.0     4.6     2958

4 1967-09-30 513.3 199311     9.8     4.9     3143

5 1967-10-31 518.5 199498     9.7     4.7     3066

6 1967-11-30 526.2 199657     9.4     4.8     3018

Now we look at the last six rows using the following command:

tail(economics)

The output is as follows:

http://docs.ggplot2.org/current/economics.html
http://docs.ggplot2.org/current/economics.html


Chapter 3

[ 131 ]

We can see that the economics dataset runs from the year 1967 to 2007 and  
contains dates in a particular format (hyphens separate the year, month, and day). 
We wish to plot certain variables by date. However, before we plot, note that R likes 
dates in the format year-month-day. For example, let's extract the first date in the 
economics dataset:

economics$date[1]

The output is as follows:

[1] "1967-06-30"

You can use the as.Date() function to ensure that R understands a particular 
format. For example, November 3, 2011 may be expressed as 03/11/2011.  
However, R does not yet understand this format. Let's read this format into R.

date1 <- "03/11/2011" 

date1

The output obtained is as follows:

[1] "03/11/2011"

We cannot use this format directly, but we can express the date in the format in 
which R likes dates. Enter the following syntax:

date1B <- as.Date(date1, "%d/%m/%Y")

date1B

Now the output is:

[1] "2011-11-03" 

Note the percentage signs. The lowercase m stands for the month, the lowercase d 
stands for the day of the month, and finally the uppercase Y stands for the year. 
Other examples may involve the lowercase b (an abbreviation of the name of the 
month; for example, Mar) or the uppercase B, which refers to the full name of the 
month. You can convert other formats to the necessary format using as.Date()  
and percentage signs. For example, you can use the following syntax:

as.Date('12MAR89',format='%d%b%y')

 [1] "1989-03-12"

Now use the following syntax:

as.Date('August 11, 1987',format='%B %d, %Y')

 [1] "1987-08-11"



Mastering the qplot Function

[ 132 ]

In these examples, you can see that we recast the given date to the preferred format 
for R by instructing R how to interpret each component of the given date.

Let's create our graph, placing date as the first argument inside the qplot() 
command. Enter the following syntax:

qplot(date, pop, data=economics, geom="line", col = I("red"), size =  
  I(2))

You will get this graph:



Chapter 3

[ 133 ]

The graph has horizontal axis labels for every decade. For datasets spanning  
shorter periods of time, qplot may produce default axis labels for each year  
or even for each month.

Now, let's plot against a particular set of dates that are labeled appropriately. 
We will select only data pertaining to 2006-6-1 and after. We use the subset() 
command and the comparison operator > to select our set of dates:

econdata <- subset(economics, date > as.Date("2006-6-1"))

econdata

We get the following output:

      date     pce     pop    psavert uempmed unemploy

469 2006-06-30 9338.9 299801    -1.7     8.2     7228

470 2006-07-31 9352.7 300065    -1.5     8.4     7116

471 2006-08-31 9348.5 300326    -1.0     8.1     6912

472 2006-09-30 9376.0 300592    -0.8     8.0     6715

473 2006-10-31 9410.8 300836    -0.9     8.2     6826

474 2006-11-30 9478.5 301070    -1.1     7.3     6849

475 2006-12-31 9540.3 301296    -0.9     8.1     7017

476 2007-01-31 9610.6 301481    -1.0     8.1     6865

477 2007-02-28 9653.0 301684    -0.7     8.5     6724

478 2007-03-31 9705.0 301913    -1.3     8.7     6801

Now let's create our graph, a line graph in red and twice the default line width, using 
the following syntax:

qplot(date, pop, data=econdata, geom="line", col = I("red"), size =  
  I(2))



Mastering the qplot Function

[ 134 ]

Here is the output graph:

So far, we have plotted one variable (pop). However, the variables are configured 
in separate columns (one variable to each column), whereas qplot needs all of the 
variables we wish to plot in a single column. So, how do we plot two or more of 
the variables on the same graph? To create graphs of one or more variables in our 
dataset (pce, pop, psavert, and so on), we use the melt() function (provided within 
the reshape package) in order to configure the data into a format that qplot can use. 
The reshape package provides functions that enable you to recast data into formats 
that are suitable for qplot and ggplot. The melt() function creates a new column 
that stores the variables. To use the functions provided within reshape, first install 
the reshape package by entering install.packages("reshape") on the command 
line. Then, load the reshape library using the library() command:

library(reshape)



Chapter 3

[ 135 ]

Now we use the melt() command:

dat <- melt(econdata, id = "date")

head(dat)

The output is as follows:

      date      variable value

1  2006-06-30      pce   9338.9

2  2006-07-31      pce   9352.7

3  2006-08-31      pce   9348.5

4  2006-09-30      pce   9376.0

5  2006-10-31      pce   9410.8

6  2006-11-30      pce   9478.5

Note that all of the variables are now arranged column-wise and given the column 
name variable. It makes sense to plot both population and unemployment together, 
because they are related variables and because the other variables exist on completely 
different scales. Therefore, we subset for these two variables only. We use the logical 
operator for OR (the vertical line) to include data for pop and unemploy together:

datsub <- subset(dat, variable == "pop" |  variable == "unemploy") 

datsub

You will get the following output:

      date      variable  value

11 2006-06-30      pop   299801

12 2006-07-31      pop   300065

13 2006-08-31      pop   300326

14 2006-09-30      pop   300592

15 2006-10-31      pop   300836

16 2006-11-30      pop   301070

17 2006-12-31      pop 301296

18 2007-01-31      pop 301481

19 2007-02-28      pop 301684

20 2007-03-31      pop 301913

41 2006-06-30 unemploy   7228

42 2006-07-31 unemploy   7116

43 2006-08-31 unemploy   6912



Mastering the qplot Function

[ 136 ]

44 2006-09-30 unemploy   6715

45 2006-10-31 unemploy   6826

46 2006-11-30 unemploy   6849

47 2006-12-31 unemploy   7017

48 2007-01-31 unemploy   6865

49 2007-02-28 unemploy   6724

50 2007-03-31 unemploy   6801

Now we make the variables of this object visible to R by name using attach():

attach(datsub)

Now let's use qplot to plot the two series, mapping a color to each variable:

qplot(date, value, data = datsub, type = "point", size = I(3), id =  
  variable, color = variable)

Here is our graph:



Chapter 3

[ 137 ]

These two series are of different magnitudes, but at least we have included them on 
the same graph. Note that the date axis includes labels (giving the month) in quarters 
(that is, where the calendar year is divided into four quarters).

Navigate to http://docs.ggplot2.org/current/, and refer to scale_x_date for 
examples of plotting multiple times series on a single graph.

One last example will suffice to illustrate the formatting options available through 
qplot. We load the scales library in order to access various date formatting 
functions. The scales library enables us to choose the format we want for labels 
on our time series graphs. For example, we may wish to provide axis labels in the 
format month/day. We use scale_x_date() to do this job:

library(scales)

W <-  qplot(date, value, data = datsub, type = "point", size = I(3),  
  id = variable, color = variable)

W + scale_x_date(labels = date_format("%m/%d"))

The graph looks like this:

http://docs.ggplot2.org/current/


Mastering the qplot Function

[ 138 ]

Our graph includes dates (quarterly) according to the required format: month/day.

Summary
In this chapter, you learned a variety of useful techniques to produce high-quality 
graphs using qplot. You also learned how to create scatterplots, line graphs, and 
many other types of graph. You also saw how useful qplot can be when you want to 
map symbol size, shape, and color (or linetype) to levels of a categorical variable. In 
a book of this scope, it is impossible to cover all of the possibilities available through 
qplot, but I hope you found that this chapter provided helpful approaches that you 
can use to create your own graphs. Many books and online sources on qplot are 
available for you to develop your qplot skills even further.

In the next chapter, you will learn how to create graphs using the ggplot function, 
an even more powerful graphics command.



Creating Graphs with ggplot
In the previous chapter, you learned a variety of useful techniques to produce  
high-quality graphs using qplot. In this chapter, you will learn how to create graphs 
using ggplot, an even more powerful graphics tool than qplot. In a book of this 
scope, it is impossible to cover all that ggplot has to offer. Thus, here we learn only 
the basic methods of ggplot. After reading this chapter, you should be able to create 
interesting graphics using ggplot. If you wish to read further about ggplot, links to 
other literature are given in this chapter. The topics covered in this chapter include 
the following:

• Setting up variables for plotting
• Adding color, symbol type, size, and shape as layers
• Controlling plotting backgrounds and margins
• Creating line graphs, histograms, bar chats, and boxplots
• Using attractive color schemes

By the end of this chapter, you should understand the basic principles behind  
the creation of graphics in ggplot, and will be able to create professional graphs 
with ggplot.

To assist you in mastering ggplot, I recommend the website 
http://docs.ggplot2.org/current/.
This website provides links that assist you in a wide range of 
ggplot techniques.

http://docs.ggplot2.org/current/


Creating Graphs with ggplot

[ 140 ]

Getting started with ggplot
You may find that qplot is sufficient to create most of the graphics you want. 
However, you may need even more options than are provided within qplot, and 
ggplot may provide those options. Mastering ggplot is somewhat more difficult 
than qplot, but ggplot does provide more options to control plotting backgrounds, 
axes and axis labels, legends, grids, and color schemes.

In ggplot, we set up an initial graphing object and then add attributes in steps 
(which we call layers). Let's start by creating a scatterplot of patient height versus 
weight before treatment using the medical dataset, which you can copy and paste 
from the code file for this chapter (available in the code bundle of this book). First 
note the aes() function (aes is short for the word aesthetics) in which we identify 
the variables that we wish to include in our graph and in which we set up mappings 
for color, size, and shape. Also, note the geom_point() function that creates points. 
Thus, we now set up HEIGHT and WEIGHT_1 as the variables we wish to graph using 
aes() and then we add the layer geom_point() to create a scatterplot. Later, we 
can add symbol types (colors, shapes, and sizes, and so on) as new layers. Enter the 
following syntax, which creates a graphics object:

library(ggplot2)

P <- ggplot(T, aes(x = HEIGHT, y = WEIGHT_1)) + geom_point()

P

Here is the scatterplot of patients' height versus weight:



Chapter 4

[ 141 ]

The two variables you wished to plot were included within the aes() function  
and the instruction to plot points (rather than a line) was provided though the  
geom_point() function. We can include axis labels that record the units of 
measurement using xlab() and ylab(). We can use this syntax:

P + xlab("HEIGHT (cm)") + ylab("WEIGHT_1 (Kg)")

However, we will use the labs() function instead and we now include a title using 
labs(title...):

P + labs(x = "HEIGHT (cm)", y = "WEIGHT_1 (Kg)") + labs(title =  
  "WEIGHT vs. HEIGHT_1")

Here is our scatterplot:

Again, the horizontal and vertical axis labels and the title were added as layers. Let's 
update the graphics object P so that from now on our graph has a title and axis labels 
that give the units of measurement. Enter the following syntax:

P <- P + labs(x = "HEIGHT (cm)", y = "WEIGHT_1 (Kg)") + labs(title =  
  "WEIGHT vs. HEIGHT")



Creating Graphs with ggplot

[ 142 ]

At this stage, we may wish to modify the title. Let's set the title to twice the default 
size and set its color to blue. To do so, we make use of plot.title within the 
theme() function, which allows you to modify theme settings. We also make use 
of the function element_text(), which allows you to modify color, size, font, and 
other attributes of your text. In the following syntax, we increase the font size using 
size = rel():

P + theme(plot.title = element_text(size = rel(2), color = "blue"))

This syntax gives us the following scatterplot:

You can see that some complex syntax was required. However, now that you know 
the syntax, you can use it to modify titles in your own graphs. Further information 
on the themes available in ggplot is given in various texts and online sources. A very 
good resource is available at http://docs.ggplot2.org/current/theme.html.

http://docs.ggplot2.org/current/theme.html


Chapter 4

[ 143 ]

In the Producing scatterplots using qplot section in Chapter 3, Mastering the qplot Function, 
we saw how to set aesthetics in qplot. In ggplot, the aesthetics are set within a 
function that also controls the graph type. For example, we have geom_point() for 
scatterplots, geom_bar() for bar graphs, and geom_histogram() for histograms.  
In the following syntax, we use points, and then set the symbol color to dark green  
and the symbol size to the value 5:

P + geom_point(color = "darkgreen", size = 5) 

Here is the resulting scatterplot:



Creating Graphs with ggplot

[ 144 ]

Mapping color, shape, and size to a 
variable
We saw how to map a color to a categorical variable using qplot. Now we map 
symbol color to the three levels of ETH using ggplot. In ggplot, we map color, size, 
and shape within aes(); also, as we did in qplot, we select our own color scheme 
using scale_color_manual(), as follows:

P + geom_point(aes(color = factor(ETH)), size=I(5)) +  
  scale_color_manual(values = c("red", "yellow", "blue"))

Now the scatterplot looks like this:



Chapter 4

[ 145 ]

Each level of ETH now has a different color. In ggplot, we can also map symbol size 
and shape to factor levels, again using aes(). Try the following code yourself:

P + geom_point(aes(size = factor(ETH))) 

You will get this scatterplot:

Another way of mapping symbol size is through scale_size_area(). Try the 
following code yourself:

P + geom_point(aes(size = WEIGHT_2)) + scale_size_area()



Creating Graphs with ggplot

[ 146 ]

The scale_size_area() layer maps symbol area onto continuous variables by 
dividing the continuous variable into levels. Try the following syntax yourself.  
It uses another function called scale_shape(). In this example, we create a nice 
effect by including two sets of symbols:

P + geom_point(aes(shape = factor(TREATMENT)), size = 3) +  
  scale_shape(solid = FALSE)

Modifying the plotting background
You can change the appearance of the plotting background using various themes. 
The default theme is theme_grey(), which gives a gray background with white grid 
lines. Let's create a white background using theme_bw(), which by default produces 
black grid lines:

P + theme_bw()

Here is the resulting scatterplot:

You can change both your panel and plot attributes using theme(). For example, 
if you want the ivory color for the background, you can get it using theme(panel.
background = element_rect(fill = "ivory")), as shown:

P + theme(panel.background = element_rect(fill = "ivory"))



Chapter 4

[ 147 ]

This syntax gives us the following scatterplot:

Again, you require some complex syntax, but you can use this syntax to provide any 
color you like for your plotting background. Of course, ggplot allows you to control 
almost every aspect of a graph. For example, you can perform the following actions:

• Color the plotting margin using plot.background.
• Modify gridlines using panel.grid.major and panel.grid.minor.
• Introduce transparency using the alpha argument within the geom function.
• Control the legend position using theme(legend.position...).
• Change your legend keys using theme(legend.key...). For example, you 

can change the legend labels, create a nice box around your legend, color the 
legend space, or write the legend title in italics.

• Modify tick marks and tick labels using theme(axis.text...).
• Create horizontal and vertical lines using geom_hline() and geom_vline().

The website given in the introduction to this chapter (http://docs.ggplot2.org/
current/) provides links that assist you with all of the previous techniques and 
many others.

http://docs.ggplot2.org/current/
http://docs.ggplot2.org/current/


Creating Graphs with ggplot

[ 148 ]

Controlling the legend name and legend 
labels
As we saw with qplot, mapping an aesthetic to a factor variable can change the 
legend name by introducing the word factor. To fix this problem, use the name 
argument in one or other of the many scale options. We can also modify the legend 
labels using labels. In the next example, we create our own legend name and assign 
particular ethnicities to the levels of ETH. At the same time, we encounter a very 
useful function, scale_color_brewer(). This function allows you to select from a 
wide range of color palettes (the default option is a range of blue hues). The syntax is 
as follows:

P + geom_point(aes(color = factor(ETH)), size= I(4)) +  
  scale_color_brewer(name = "Ethnicity",  
    labels=c("European","Asian","Other")) 

The scatterplot looks as follows:



Chapter 4

[ 149 ]

We have succeeded in naming our legend as we wished, and we have met a new 
function that allows you to choose attractive color schemes. Note that we used 
scale_color_brewer() only after mapping color to ETH within aes.

Modifying the x and y axes
Both scale_x_continuous() and scale_y_continuous() are very useful functions. 
They provide many options for modifying axes. For example, you can use these 
functions to control axis limits, reverse the axes, and introduce logarithmic or other 
axis scales. In addition, they provide yet another way of creating axis labels. Try the 
following syntax yourself:

P + scale_x_continuous("Centimetres") +  
  scale_y_continuous("Kilograms")   

However, these two functions can do a lot more. For example, let's use scale_x_
continuous and scale_y_continuous to modify our axis limits.

P + scale_y_continuous(limits=c(60, 100)) +  
  scale_x_continuous(limits=c(140, 180)) 

We get this graph:



Creating Graphs with ggplot

[ 150 ]

Within these two functions, you can select locations for tick marks using breaks.  
Try this syntax yourself:

P + scale_x_continuous(breaks=c(150, 160, 180)) +  
  scale_y_continuous(breaks=c(70, 90, 120))

You can label the ticks as you wish using labels:

P + scale_x_continuous(breaks=c(150, 160, 180), labels=c("SMALL",  
  "MEDIUM", "LARGE")) 

Here is the resulting graph:



Chapter 4

[ 151 ]

Creating attractive color schemes
You saw how to use scale_color_brewer to create various color schemes, starting 
with a range of blues (the default color scheme). While using this function, you must 
select the palette you wish to use. The scale_color_brewer() function uses syntax 
like this:

scale_color_brewer(..., type =  , palette = )

You can select either seq (sequential), div (diverging), or qual (qualitative). Within 
those options, you can then select a particular palette, where the available palettes 
control color schemes. Further information on scale_color_brewer() can be found 
at http://docs.ggplot2.org/current/scale_brewer.html.

Try all of the following lines of syntax yourself:

 P + geom_point(aes(color = factor(ETH)), size=I(4)) +  
  scale_color_brewer(type="div") 

 P + geom_point(aes(color = factor(ETH)), size=I(4)) +  
  scale_color_brewer(palette="Greens") 

 P + geom_point(aes(color = factor(ETH)), size=I(4)) +  
  scale_color_brewer(type="seq", palette=3) 

 P + geom_point(aes(color = factor(ETH)), size=I(4)) +  
  scale_color_brewer(type="seq", palette=4) 

 P + geom_point(aes(color = factor(ETH)), size=I(4)) +   
  scale_color_brewer(type="seq", palette=6) 

 

 P + geom_point(aes(color = factor(ETH)), size=I(4)) +  
  scale_color_brewer(type="seq", palette=7) 

 P + geom_point(aes(color = factor(ETH)), size=I(4)) +  
  scale_color_brewer(palette="Reds") 

 P + geom_point(aes(color = factor(ETH)), size=I(4)) +  
  scale_color_brewer(palette="Set1")

http://docs.ggplot2.org/current/scale_brewer.html


Creating Graphs with ggplot

[ 152 ]

You can devise many other combinations of type and palette. Let's see the graph of 
the last command:

We have mapped attractive colors to each level of ethnicity.

Creating curves for each factor level
Let's see how to produce multiple curves in ggplot. We use the Children dataset 
(refer to the Creating multiple curves simultaneously section in Chapter 3, Mastering 
the qplot Function) to produce a line graph of height against age for each child. We 
created this particular graph in qplot and now we create it in ggplot, but we amend 
it a little. You can cut and paste the data directly from the code file for this chapter. 
Remember that the data for each child is arranged in a single column that holds six 
measurements of height for each child. We will include large points (size = 3) 
and slightly heavier lines (lwd = 1.2) using geom_point() and geom_line(), 
respectively. We will also map a color to the variable Child, so that both points  
and lines have a unique color for each child.



Chapter 4

[ 153 ]

Finally, we impose our own color scheme using scale_color_manual():

ggplot(cheight, aes(x=Age, y=Height, color = factor(Child))) +  
  geom_point(size = 3) +  geom_line(lwd = 0.7) + labs(title =  
    "Childrens' Growth Patterns") + labs(x = "Age (years)", y =  
      "HEIGHT (cm)") + scale_color_manual(values = c("red",  
        "yellow", "blue", "darkgreen"))

Now we get this graph:

The arrangement of the data within a single column made it easy to create a graph 
with all four curves at once.



Creating Graphs with ggplot

[ 154 ]

Creating histograms
In ggplot, we can create histograms using geom_histogram(). Histograms record 
frequencies for a continuous variable by dividing it into bins of a particular width. 
Using the medical dataset, use the following syntax to create a basic histogram 
of patient height, setting the bin width to 10 cm. Again, you can read the data by 
copying and pasting it from the code file for this chapter. The syntax is as follows:

ggplot(T, aes(x=HEIGHT)) + geom_histogram(binwidth=10)  

Within a histogram, we may wish to identify subgroups of the population using 
different colors. In our example, we can include a different color for each gender 
using a color scheme from scale_fill_brewer(). Again, we use a bin width  
of 10 cm:

ggplot(T, aes(x=HEIGHT, fill=GENDER)) + geom_histogram(binwidth=10) +  
  scale_fill_brewer(type = "div", palette = 4) 

Here is what the histogram looks like:



Chapter 4

[ 155 ]

Essentially, we have two histograms together. This information is very useful, but 
perhaps a better alternative is to produce a grouped histogram using the argument 
position = "dodge":

ggplot(T, aes(x=HEIGHT, fill=GENDER)) +  
  geom_histogram(position="dodge", binwidth=10) +  
    scale_fill_brewer(type = "qual", palette = 2) 

This syntax gives the following histogram:

This grouped histogram has an attractive appearance and presents the information 
effectively. However, the bins look as though they represent 5 cm each. In fact, each 
bin represents 10 cm, but the histogram includes bars for both genders within each 
bin. Let's try a similar example, this time partitioning by ETH (a three-level categorical 
variable) and using a different color palette from scale_fill_brewer(). To achieve 
this graph, we include factor(ETH) to force a grouped histogram for three levels:

ggplot(T, aes(x=HEIGHT, fill=factor(ETH))) +  
  geom_histogram(position="dodge", binwidth=10) +  
    scale_fill_brewer(type = "qual", palette = 6) 



Creating Graphs with ggplot

[ 156 ]

Our histogram looks like this:

Again, the bin width remains at 10 cm, but now we have three bars within each bin. 
The use of scale_color_brewer() has allowed us to make effective and attractive 
histograms in which subgroups are identified by color.

Creating bar charts
Bar charts are useful for comparing the numbers of elements within subgroups of a 
population. However, they can be used for other purposes, such as comparing the 
means of a continuous variable across the levels of a categorical variable. You can 
create bar charts in ggplot using geom_bar(). As an exercise, create a bar chart of 
numbers of patients by ethnicity by turning the variable ETH into a factor by using 
factor(). The syntax is as follows:

 W <- ggplot(T, aes(factor(ETH))) +  geom_bar() 

 W



Chapter 4

[ 157 ]

The height of each bar gives the number of patients within each ethnicity. As an 
exercise, you can create a horizontal bar chart by adding the layer coord_flip(). 
The coord_flip() layer also works for other types of graph, including scatterplots 
and bar charts.

Now we insert our choice of color and border color using fill and color. Let's have 
an ivory color for the bars, along with dark green borders. The syntax is as follows:

W + geom_bar(fill="ivory", color="darkgreen") 

This syntax gives the following bar chart:



Creating Graphs with ggplot

[ 158 ]

Creating a stacked bar chart
Now we will see how to create a stacked bar chart of a categorical variable, 
partitioned by the levels of another categorical variable. Let's plot the numbers of 
patients receiving each treatment, partitioned by the two levels of RECOVER. Simply 
insert both variables within aes(), mapping a color to one of them using fill and 
choosing our own colors using scale_fill_manual(). This time, we choose colors 
by entering colors(distinct = FALSE) on the command line and selecting from 
the list returned by R:

ggplot(T, aes(TREATMENT, fill=factor(RECOVER))) + geom_bar() +  
  scale_fill_manual(values = c("springgreen3", " lightsalmon1"))

Here is the resulting bar chart:



Chapter 4

[ 159 ]

The label 0 represents patients who did not recover and the label 1 represents those 
who did recover. Thus, the stacked bar chart suggests that treatment A was the most 
effective, while treatment B was the least effective.

We can try faceting this bar chart to create separate charts for those who recover  
and those who do not. We use the syntax facet_wrap(~ RECOVER) in order to  
create separate graphs for each level of RECOVER. The facet_wrap() function is 
covered in more detail in the section entitled Creating a faceted bar chart. We choose 
our colors from the Hexadecimal Color Chart using scale_fill_manual(). Here, 
we subset for smokers only. The syntax is as follows

ggplot(subset(T, SMOKE == "Y"), aes(TREATMENT, fill=  
  factor(RECOVER))) + geom_bar()+ facet_wrap(~ RECOVER) +  
    scale_fill_manual(values = c("#669933", "#FFCC33"))

Now the bar chart looks like this:



Creating Graphs with ggplot

[ 160 ]

This bar chart gives us the required information, partitioned into two separate 
charts—one for each level of RECOVER.

Creating a grouped bar chart
We can present the same information using grouped bar chart. To do so, we use the 
argument position = "dodge" argument, again within geom_bar(). Again, we 
choose our colors from the Hexadecimal Color Chart using scale_fill_manual(). 
We subset for those who exercise. The syntax is as follows:

ggplot(subset(T, EXERCISE == "TRUE"), aes(TREATMENT, fill=  
  factor(RECOVER))) + geom_bar(position="dodge") +  
    scale_fill_manual(values = c("#6666FF", "#669900"))

You will get this bar chart:



Chapter 4

[ 161 ]

All patients who exercised and received treatment A eventually recovered. You can 
verify this result by examining this particular subset, as follows:

subset(T, EXERCISE == "TRUE" & TREATMENT == "A")

The output is as follows:

Creating a faceted bar chart
As a more complex example in which we include even more information, let's try a 
faceted bar chart of the numbers of patients receiving each treatment. However, the 
bar chart is now partitioned by both gender and stacked according to whether or not 
the patient recovered.

In fact, ggplot provides two functions to create facet plots. We use facet_grid() to 
split a variable by the levels of one or more categorical variables so that the graphs 
for each level are placed together, arranged either horizontally or vertically. We use 
facet_wrap() to position the facet plots together in your chosen number of rows and 
columns. For further information on these two functions, visit the following websites:

• To find helpful material on creating wrapped facet plots, refer to  
http://docs.ggplot2.org/0.9.3.1/facet_wrap.html

• To find out more about creating grid plots, refer to http://docs.ggplot2.
org/0.9.3.1/facet_grid.html

Let's use facet_grid() on TREATMENT, faceted by the two levels of RECOVER:

ggplot(T, aes(TREATMENT, fill=factor(RECOVER))) + geom_bar() +  
  facet_grid(. ~ GENDER) + scale_fill_manual(values =  
    c("#339999","#CC9900"))

http://docs.ggplot2.org/0.9.3.1/facet_wrap.html
http://docs.ggplot2.org/0.9.3.1/facet_grid.html
http://docs.ggplot2.org/0.9.3.1/facet_grid.html


Creating Graphs with ggplot

[ 162 ]

This syntax produces the following faceted bar chart:

This graph presents a lot of useful information at once. Partitioning by gender allows 
us to compare patient recovery within and across the two genders and also within 
and across treatment levels.

Creating boxplots
In ggplot, we create boxplots using geom_boxplot(). Here, you will create a 
boxplot of the heights of female patients, partitioned by ethnicity. As in previous 
examples, we use the subset() command to include only females. We can create  
the subset either before we use ggplot, or within ggplot, as follows:

 H <- ggplot(subset(T, GENDER == "F"), aes(factor(ETH), HEIGHT)) 



Chapter 4

[ 163 ]

You can create a basic boxplot yourself by entering the following syntax:

H + geom_boxplot() 

You should have got a basic boxplot of height, partitioned by ethnicity. For the 
remainder of this section, we will embellish our basic boxplot.

Try the following boxplots for yourself:
H + geom_boxplot() + geom_jitter() 

H + geom_boxplot() + coord_flip() 

H + geom_boxplot(outlier.color = "red", outlier.size =  
  5) 

H + geom_boxplot(aes(fill = SMOKE))

H + geom_boxplot(fill= "#99CCFF" , color="#990000")  

Next we set our choice of fill color and outline color from the Hexadecimal Color 
Chart, using the following syntax:

 H + geom_boxplot(aes(fill = factor(ETH))) + scale_fill_manual(values  
  = c("#CCCC99","#FFCCCC","#99CCFF"))

You will get this boxplot:



Creating Graphs with ggplot

[ 164 ]

Labeling points with text
Now we will see how to label points with text. Suppose that we want a graph of 
the heights of treatment A female patients against their weight before treatment, in 
which each point is labeled by the patient's name and where the text is in red. First 
we subset using the subset() command, but we include two criteria (gender and 
treatment). We include the text using the function geom_text(). Remember that the 
variable PATIENT gave the names of each patient. Enter the following syntax:

F <- subset(T, GENDER == "F" & TREATMENT == "A")

S <- ggplot(F, aes(x=HEIGHT, y=WEIGHT_1, label=PATIENT)) 

Finally, we add the required text, but we do not include the points as yet:

S + geom_text(size = 6, col = "red")  

The following graph shows the names of the patients:



Chapter 4

[ 165 ]

In the preceding graph, the patients' names appeared without any points. Of course, 
we can set text aesthetics to our chosen values. As an exercise, use the following 
syntax to create a graph with point labels. You use blue text and position the text 
underneath and to the left of the points using hjust= 1 and vjust= 1:

 S + geom_point() + geom_text(hjust=1, vjust=1, size = 6, col =  
  "blue")  

Note that one name was cut off (Ann). We will learn how to fix that problem in the 
next example. The arguments hjust and vjust vary the position of the text relative 
to the points; hjust allows you to control horizontal justification, while vjust allows 
you to control vertical justification. Both hjust and vjust range between 0 and 
1, where 0 gives left-justified text and 1 produces right-justified text. Try different 
values of hjust and vjust yourself. For example, using the value zero places the text 
above and to the right.

You can also experiment with the text size and angle. In the following example, you 
set hjust and vjust to zero:

S + geom_point() + geom_text(angle = 45, hjust=0, vjust=0, size = 6,  
  col = "darkgreen")  

If you created this graph, you will have noticed that two names were cut off (Mary 
and Sue). To fix this problem, we can reset the axis limits to include both names 
using scale_x_continuous() and scale_y_continuous(). We choose axis limits 
that ensure the inclusion of both names. For the vertical axis, we can choose 50 Kg to 
100 Kg, and for the horizontal axis we can choose 140 cm to 200 cm.

S + geom_point() + geom_text(angle = 45, hjust=0, vjust=0, size = 6,  
  col = "darkgreen") +  scale_y_continuous(limits=c(50, 100)) +  
    scale_x_continuous(limits=c(140, 200)) 



Creating Graphs with ggplot

[ 166 ]

Here is our graph:

Now each name appears in full. Of course, we could have chosen other axis limits 
that included all of the patients' names.

Mapping color to text
Next, we will learn how to map color to text for categorical variables. In this 
example, you map text color to the variable ETH. Again, you do so within aes()  
by turning ETH into a factor:

S + geom_text(aes(color=factor(ETH))) 



Chapter 4

[ 167 ]

You will see that the patient's names now appear in a different color for each 
ethnicity. For the next example, we put the text at an angle of 35 degrees and justify 
the text. We retain suitable axis limits to include all names in full. We also choose 
a color scheme using scale_color_brewer(). Finally, we rename and relabel the 
legend entries appropriately using name and labels. The syntax is as follows:

S + geom_point() + geom_text(aes(color=factor(ETH), angle = 35,  
  hjust=1, vjust=1)) +  scale_y_continuous(limits=c(50, 90)) +  
    scale_x_continuous(limits=c(140, 190)) +  
      scale_color_brewer(palette= "Set1" , name =  
        "Ethnicity",labels=c("European","Asian","Other")) 

This syntax will give the following graph:

Mapping text color to the categorical variable ETH has conveyed additional 
information about these patients.



Creating Graphs with ggplot

[ 168 ]

Including regression lines
In ggplot, you can include regression lines using geom_abline(). For the next 
example, we set up the same graph of patient height against weight that we have 
used several times before:

P <- ggplot(T, aes(x = HEIGHT, y = WEIGHT_1)) + geom_point()

As a start, let's calculate the slope and intercept of the line of best fit (regression line) 
for height against weight before treatment. In Chapter 1, Base Graphics in R – One Step 
at a Time, in the section entitled Including a regression line, we saw how to include 
a linear regression line on a graph. Now, we use the lm() command again to fit a 
linear regression model by using the following syntax:

lm(WEIGHT_1 ~ HEIGHT, data = T)

Here is the output that you will see on your screen:

Call:

lm(formula = WEIGHT_1 ~ HEIGHT, data = T)

Coefficients:

(Intercept)       HEIGHT  

   -123.611        1.166  

So, the intercept is approximately -123.61 and the slope is approximately 1.17. You 
can now include the regression line in the ggplot graph, as follows:

P + geom_abline(intercept = -123.61, slope = 1.17)

Now we will recreate the graph with regression line, but we also add some 
descriptive text about the regression using geom_text(). We will center the text on 
the point (170, 110).

P + geom_abline(intercept = -123.61, slope = 1.17, col = "red") +

geom_text(data = T, aes(170, 110, label = "Slope = 1.17"))



Chapter 4

[ 169 ]

The graph with regression line looks like the following one:

Your text is indeed centered on the point (170, 110). The approach we used to create 
the regression line was quite straightforward, but it is easier to use stat_smooth(). 
This function allows you to use smoothers on your graph, including OLS regressions, 
generalized linear models, and LOWESS smoothers. You can read further about this 
function on http://docs.ggplot2.org/0.9.3.1/stat_smooth.html.

http://docs.ggplot2.org/0.9.3.1/stat_smooth.html


Creating Graphs with ggplot

[ 170 ]

In the final examples of this book, we try an OLS regression using the argument 
method="lm". This approach is more efficient than the previous approach, because 
we can implement it in a single step. First, let's try switching off the standard error 
using the following command:

P + stat_smooth(method="lm", se=FALSE)

This syntax will give you the following graph:

Next, we switch on the standard error:

P + stat_smooth(method="lm", se=TRUE) 



Chapter 4

[ 171 ]

We get the following graph:

Our graph now includes a confidence band whose width is determined by the 
standard error. The stat_smooth() function provides a range of smoothers that  
can be implemented easily using the method argument.

Summary
In this chapter, you encountered ggplot for the first time. You learned how to set 
up your variables for plotting and how to control symbol type, color, size, and 
shape. You learned how to create bar charts, histograms, and boxplots using ggplot. 
You also learned about a range of methods for customizing lines, point labels and 
smoothers. These methods should enable you to create a wide range of graphs that 
are suitable for publication. Perhaps you found that ggplot is more difficult to 
master than qplot. However, you should also have found that ggplot offers great 
scope for creating high-quality graphs.





Index
A
abline() command  8, 37
aes() function  140
aesthetics

about  140
mapping, to categorical variables  100, 101

arguments, qplot syntax
color  96
data  96
geom  96
main  96
shape  96

as.Date() function  131
as.matrix() command  83
assigns operator  6
at argument  24
attach() command  35, 41
axes

customizing  23, 24
axis() command  24
axis labels

creating  24-26

B
bar charts

boxplots, creating  74-76
creating  58-61
creating, qplot used  124-126
dotcharts, creating  80-87
histograms, creating  66-73
legend, including  62-65
pie charts, creating  76-80

bar charts, graphs with ggplot
creating  156, 157

faceted bar chart, creating  161, 162
grouped bar chart, creating  160, 161
stacked bar chart, creating  158, 159

barplot() command  58
basic graphics techniques  6-9
boxplot() command  75
boxplots, bar charts

creating  74-76
boxplots, qplot

creating  127-129
boxplots, graphs with ggplot

creating  162, 163

C
categorical variables

aesthetics, mapping to  100, 101
cbind() function  86
color, graphs with ggplot

mapping to text  166
color palettes  88
colors

controlling, on graph  102-105
color schemes, graphs with ggplot

creating  151, 152
colors, of R  14
complex multiple axes

creating  43-45
graphs, superposing  46
point labels, creating  47, 48

curve() command  19
curves

graphs, creating with  22
curves, graphs with ggplot

creating  152



[ 174 ]

D
data

subsetting, before graphing  98, 99
dev.copy()command  29
dev.off() command  28
dnorm() command  55, 71
dotchart() command  81
dotcharts

creating  80-87
drawresid() function  39

E
element_text() function  142
error bars

including, on graph  92, 93
expression() command  30

F
facet_grid() function  161
facet plots

creating  106-108
creating, for histograms  120, 121

facet_wrap() function  161
factor() command  100
font options, for graphs

font.axis  14
font.main  14
font.sub  14
font.tab  14

function() command  91

G
geom_abline()  168
geom_histogram()  154
geom_point() function  140
ggplot  140
ggplot2

installing  95
graph

coloring  51-53
colors, controlling  102-105
creating, with curves  22

creating, with dates  130-138
grid, adding  48-50
medical dataset  41, 43
saving  28-30
setting up, as object  105
shading  50, 54
smoothers, using  88, 89
superposing  46, 47

graphing options
bitmap()  29
jpeg()  29
pdf()  29
postscript()  29

graphs, with ggplot
attractive color schemes, creating  152
bar charts, creating  156
boxplots, creating  162, 163
color, mapping  144-146
color, mapping to text  167
color schemes, creating  151
creating  140-143
curves, creating  152, 153
histograms, creating  154-156
legend labels, controlling  148, 149
legend name, controlling  148, 149
plotting background, modifying  146, 147
points, labeling with text  164, 165
regression lines, including  168-171
shape, mapping  144-146
size, mapping  144-146
x and y axes, modifying  149, 150

grid
adding, on graph  48-50

H
Height against Age graph  111
Hexadecimal Color Chart

URL  14
hist() command  28, 66
histograms

creating  66-73
creating, qplot used  118, 119
facet plots, creating for  120, 121

histograms, graphs with ggplot
creating  154-156



[ 175 ]

K
kernel density plots

creating  121-123

L
labs() function

using  141
las argument  25
legend

creating  62
levels() command  85
line graphs

creating, qplot used  108-110
line plots

creating  12, 13
lines() command  8, 72
lm() command  38
LOWESS (locally weighted scatterplot 

smoothing)  88

M
mathematical expressions

including, on plots  30, 31
mathematical functions

graphing  19
medical dataset

for creating graphs  41-43
melt() function  134
mtext() command  45
multiple curves

creating simultaneously  111, 112
multiple graphs

creating, on same page  27, 28

O
objects

graphs, setting up as  105, 106
Ordinary Least Squares (OLS)  

regressions  18

P
parameter values

passing, to labels  15-17

passing, to titles  15-17
paste() command  15, 30
pdf() command  28
pie charts

creating  76-80
pie() command  78
plot() command  6, 35
point labels

creating  47, 48
points

creating  10, 11
joining  10, 11

points, graphs with ggplot
labeling with text  164, 165

polygon() command
about  51, 122
used, for shading normal curve  55-58

predict() command  38

Q
qplot

about  95
used, for creating histograms  118, 119
used, for creating line graphs  108-110
used, for producing scatterplots  96-98

qplot syntax
about  96
arguments  96

Quick-R
URL  7

R
R

bar charts, creating  58-61
basic graphics techniques  6-9
color palettes  88
colors  14
datasets, reading  34
options  20, 21

range() command  73
read.csv() command  63
regression line

including  18, 34-40
regression lines, graphs with ggplot

including  168-171



[ 176 ]

reshape package  134
residuals

including  34-40
rnorm() command  71
round() command  78
rug() command  9

S
scale_color_brewer() function  151
scale_color_manual() function  153
scale_size_area() layer  146
scatterplot matrices

about  89
creating  89, 90
error bars, including on graph  92, 93
functions, writing  91, 92

scatterplots
creating  12, 13
producing, qplot used  96-98

sd() command  72

seq() command  20
smoothed curves

including  112-117
smoothers

using, on graph  88, 89
stat_smooth()  169, 171
subset() command  80, 98, 164
substitute() command  30

T
table() command  58
text() command  45
theme() function  142
title() command

about  17
using  22

tolower() command  26
toupper() command  26
t() transpose function  82


	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Base Graphics in R – One Step at a Time
	Learning basic graphics techniques
	Creating and joining points
	Creating scatterplots and line plots
	Colors in R
	Passing parameter values to titles and labels
	Including a regression line
	Graphing mathematical functions
	R provides many options
	Creating graphs with several curves
	Customizing your axes
	Creating axis labels
	Creating multiple graphs on the same page
	Saving your graphs
	Including mathematical expressions on your plots
	Summary

	Chapter 2: Advanced Functions 
in Base Graphics
	Reading datasets into R
	Including a regression line and residuals
	A medical dataset to create graphs
	Creating complex multiple axes
	Superposing graphs
	Creating point labels

	Including a grid on your graph
	Shading and coloring your graph
	Using polygon() to shade under a normal curve

	Creating bar charts
	Including a legend
	Creating histograms
	Creating boxplots
	Creating pie charts
	Creating dotcharts

	R's color palettes
	Using smoothers on your graph
	Creating scatterplot matrices
	Writing functions to create graphs
	Including error bars on your graph

	Summary

	Chapter 3: Mastering the qplot Function
	About qplot
	The qplot syntax
	Producing scatterplots using qplot
	Subsetting your data before graphing
	Mapping aesthetics to categorical variables
	Controlling colors on your graph
	Setting up graphs as objects
	Creating facet plots
	Creating line graphs using qplot
	Creating multiple curves simultaneously
	Including smoothed curves
	Creating histograms with qplot
	Creating facet plots for histograms
	Creating kernel density plots
	Creating bar charts
	Creating boxplots
	Creating graphs with dates
	Summary

	Chapter 4: Creating Graphs with ggplot
	Getting started with ggplot
	Mapping color, shape, and size to a variable
	Modifying the plotting background
	Controlling the legend name and legend labels
	Modifying the x and y axes

	Creating attractive color schemes
	Creating curves for each factor level
	Creating histograms
	Creating bar charts
	Creating a stacked bar chart
	Creating a grouped bar chart
	Creating a faceted bar chart

	Creating boxplots
	Labeling points with text
	Mapping color to text

	Including regression lines
	Summary

	Index



