
T E C H N O L O G Y I N A C T I O N ™

Raspberry Pi
Image Processing
Programming

Develop Real-Life Examples with
Python, Pillow, and SciPy
—
Ashwin Pajankar

www.allitebooks.com

http://www.allitebooks.org

Raspberry Pi
Image Processing

Programming
Develop Real-Life Examples with

Python, Pillow, and SciPy

Ashwin Pajankar

www.allitebooks.com

http://www.allitebooks.org

Raspberry Pi Image Processing Programming: Develop Real-Life Examples with Python,
Pillow, and SciPy

Ashwin Pajankar				
Nashik, Maharashtra, India			

ISBN-13 (pbk): 978-1-4842-2730-5		 ISBN-13 (electronic): 978-1-4842-2731-2
DOI 10.1007/978-1-4842-2731-2

Library of Congress Control Number: 2017936370

Copyright © 2017 by Ashwin Pajankar

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or
dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol
with every occurrence of a trademarked name, logo, or image we use the names, logos, and images only
in an editorial fashion and to the benefit of the trademark owner, with no intention of infringement of
the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject
to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for
any errors or omissions that may be made. The publisher makes no warranty, express or implied, with
respect to the material contained herein.

Managing Director: Welmoed Spahr
Lead Editor: Celestin Suresh John
Technical Reviewer: Lentin Joseph
Editorial Board: Steve Anglin, Pramila Balan, Laura Berendson, Aaron Black,

Louise Corrigan, Jonathan Gennick, Robert Hutchinson, Celestin Suresh John,
Nikhil Karkal, James Markham, Susan McDermott, Matthew Moodie, Natalie Pao,
Gwenan Spearing

Coordinating Editor: Sanchita Mandal
Copy Editor: Kezia Endsley
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional
use. eBook versions and licenses are also available for most titles. For more information, reference
our Special Bulk Sales–eBook Licensing web page at www.apress.com/bulk-sales.

Any source code or other supplementary materials referenced by the author in this text are
available to readers at www.apress.com. For detailed information about how to locate your book’s
source code, go to www.apress.com/source-code/. Readers can also access source code at
SpringerLink in the Supplementary Material section for each chapter.

Printed on acid-free paper

www.allitebooks.com

mailto:orders-ny@springer-sbm.com
www.springeronline.com
mailto:rights@apress.com
www.apress.com
www.apress.com/bulk-sales
www.apress.com
www.apress.com/source-code/
http://www.allitebooks.org

iii

Contents at a Glance

About the Author��� xi

About the Technical Reviewer��� xiii

Acknowledgments�� xv

Introduction�� xvii

■■�Chapter 1: Introduction to Single Board Computers and
Raspberry Pi�� 1

■■�Chapter 2: Introduction to Python and Digital Image
Processing��� 25

■■Chapter 3: Getting Started��� 41

■■Chapter 4: Basic Operations on Images�� 51

■■Chapter 5: Advanced Operations on Images��������������������������������� 65

■■Chapter 6: Introduction to Scientific Python��������������������������������� 81

■■Chapter 7: Transformations and Measurements��������������������������� 93

■■Chapter 8: Filters and Their Application�� 99

■■Chapter 9: Morphology, Thresholding, and Segmentation����������� 111

Index��� 123

www.allitebooks.com

http://www.allitebooks.org

v

Contents

About the Author��� xi

About the Technical Reviewer��� xiii

Acknowledgments�� xv

Introduction�� xvii

■■�Chapter 1: Introduction to Single Board Computers and
Raspberry Pi�� 1

Single Board Computers (SBCs)��� 1

Differences Between SBCs and Regular Computers��� 2

System on Chips (SoCs)��� 2

History of SBCs�� 3

SBC Families�� 3

The Raspberry Pi�� 4

Raspberry Pi Setup��� 5

Required Hardware�� 6

Preparation of the microSD Card for Raspberry Pi�� 9

Download the Required Free Software�� 10

Writing the Raspbian OS Image to the microSD Card�� 10

Altering the Contents of the config.txt File for a VGA Monitor��������������������������������� 12

Booting Up the Pi��� 13

Configuring the Pi�� 15

The Raspbian OS�� 18

The config.txt File��� 18

www.allitebooks.com

http://www.allitebooks.org

■ Contents

vi

Connecting the Raspberry Pi to a Network and to the Internet�������������� 19

WiFi�� 19

Ethernet��� 21

Updating the Pi��� 22

Updating the Firmware�� 22

Updating and Upgrading Raspbian�� 22

Updating raspi-config�� 23

Shutting Down and Restarting Pi��� 24

Conclusion�� 24

■■�Chapter 2: Introduction to Python and Digital Image
Processing��� 25

A History of Python��� 25

Features of Python��� 26

Simple��� 26

Easy to Learn��� 27

Easy to Read�� 27

Easy to Maintain�� 27

Open Source�� 27

High-Level Language��� 27

Portable��� 27

Interpreted��� 28

Object-Oriented��� 28

Extensible�� 28

Extensive Libraries�� 28

Robust��� 28

Rapid Prototyping�� 29

Memory Management��� 29

Powerful�� 29

Community Support��� 29

www.allitebooks.com

http://www.allitebooks.org

■ Contents

vii

Python 3��� 29

The Differences Between Python 2 and Python 3��� 30

Why Use Python 3�� 31

Python 2 and Python 3 on Raspbian��� 31

Running a Python Program and Python Modes�������������������������������������� 31

Interactive Mode�� 32

Normal Mode��� 32

IDEs for Python��� 33

IDLE��� 33

Geany��� 34

Introduction to Digital Image Processing��� 36

Signal Processing�� 36

Image Processing�� 37

Using Raspberry Pi and Python for Digital Image Processing (DIP)������������������������� 38

Conclusion�� 39

■■Chapter 3: Getting Started��� 41

Image Sources��� 41

Using the Webcam��� 42

The Pi Camera Module��� 44

Using Python 3 for Digital Image Processing��� 46

Working with Images��� 47

Conclusion�� 50

■■Chapter 4: Basic Operations on Images�� 51

Image Module��� 51

Splitting and Merging Image Channels�� 51

Image Mode Conversion�� 53

Image Blending�� 53

Resizing an Image��� 55

www.allitebooks.com

http://www.allitebooks.org

■ Contents

viii

Rotating an Image��� 56

Crop and Paste Operations�� 57

Copying and Saving Images to a File��� 58

Knowing the Value of a Particular Pixel��� 58

ImageChops Module��� 59

ImageOps Module�� 61

Conclusion�� 63

■■Chapter 5: Advanced Operations on Images��������������������������������� 65

The ImageFilter Module��� 65

The ImageEnhance Module�� 74

Color Quantization�� 76

Histograms and Equalization�� 77

Histogram Equalization�� 78

Conclusion�� 79

■■Chapter 6: Introduction to Scientific Python��������������������������������� 81

The Scientific Python Stack��� 81

Installing the SciPy Stack�� 82

A Simple Program�� 82

Simple Image Processing�� 83

Introduction to NumPy��� 84

Matplotlib��� 86

Image Channels�� 89

Conversion Between PIL Image Objects
and NumPy ndarrays�� 91

Conclusion�� 92

www.allitebooks.com

http://www.allitebooks.org

■ Contents

ix

■■Chapter 7: Transformations and Measurements��������������������������� 93

Transformations��� 93

Measurements��� 95

Conclusion�� 98

■■Chapter 8: Filters and Their Application�� 99

Filters��� 99

Low-Pass Filters�� 100

High-Pass Filters��� 105

Fourier Filters�� 108

Conclusion�� 110

■■Chapter 9: Morphology, Thresholding, and Segmentation����������� 111

Distance Transforms��� 111

Morphology and Morphological Operations�� 113

Structuring Element��� 113

Various Morphological Operations��� 113

Grayscale Morphological Operations��� 115

Thresholding and Segmentation�� 117

Conclusion�� 121

Book Summary��� 121

What’s Next�� 121

Index��� 123

www.allitebooks.com

http://www.allitebooks.org

xi

About the Author

Ashwin Pajankar is a polymath. He is a Science popularizer, a programmer, a maker, an
author, and a YouTuber. He graduated from IIIT Hyderabad with MTech in Computer
Science and Engineering. He has a keen interest in the promotion of science, technology,
engineering, and mathematics (STEM) education. He has written three books with Packt
Publication, six books with Leanpub, and one book with Apress Media, and he has also
reviewed four books for Packt Publications. He’s currently working on several more books
with Apress Media as well.

His personal web site is found at www.AshwinPajankar.com.
His LinkedIn profile is found at https://in.linkedin.com/in/ashwinpajankar.

www.allitebooks.com

http://www.ashwinpajankar.com/
https://in.linkedin.com/in/ashwinpajankar
http://www.allitebooks.org

xiii

About the Technical
Reviewer

Lentin Joseph is an author, entrepreneur, electronics
engineer, robotics enthusiast, machine vision expert,
embedded programmer, and the founder and the
CEO of Qbotics Labs (http://www.qboticslabs.com)
from India.

He completed his bachelor’s degree in electronics
and communication engineering at the Federal
Institute of Science and Technology (FISAT), Kerala.
For his final year engineering project, he made a social
robot that interacted with people. The project was a
huge success and was mentioned in many forms of

visual and print media. His robot can communicate with people and reply intelligently
and has image-processing capabilities such as face, motion, and color detection. The
entire project was implemented using the Python programming language. His interest in
robotics, image processing, and Python started with that project.

After his graduation, he worked for three years at a startup company focusing on
robotics and image processing. In the meantime, he learned to work with famous robotic
software platforms such as Robot Operating System (ROS), V-REP, and Actin (a robotic
simulation tool), as well as with image-processing libraries such as OpenCV, OpenNI, and
PCL. He also knows about robot 3D designing and embedded programming on Arduino
and Tiva Launchpad.

After three years, he started a new company called Qbotics Labs, which mainly
focuses on research to build great products in domains such as robotics and machine
vision. He maintains a personal web site (at http://www.lentinjoseph.com) and a
technology blog called technolabsz (see http://www.technolabsz.com). He publishes
his works on his tech blog. He was also a speaker at PyCon2013, India, on the topic of
learning about robotics using Python.

Lentin is the author of the books, Learning Robotics Using Python (see http://
learn-robotics.com to find out more) and Mastering ROS for Robotics Programming
(see http://mastering-ros.com to find out more), both by Packt. The first book was
about building an autonomous mobile robot using ROS and OpenCV. This book was
launched at ICRA 2015 and was featured in the ROS blog, Robohub, OpenCV, the Python
web site, and various other such forums. The second book is on mastering the Robot
Operating System, which was also launched at ICRA 2016, and is one of the bestselling
books on ROS. The third book is on ROS robotics projects (see http://rosrobots.com),
and is expected to be published by April 2017.

http://www.qboticslabs.com/
http://www.lentinjoseph.com/
http://www.technolabsz.com/
http://learn-robotics.com/
http://learn-robotics.com/
http://mastering-ros.com/
http://rosrobots.com/

■ About the Technical Reviewer

xiv

He also reviewed one book about the Robot Operating System called Effective
Robotics Programming Using ROS (https://www.packtpub.com/hardware-and-
creative/effective-robotics-programming-ros-third-edition).

Lentin and his team were also winners of the HRATC 2016 challenge conducted
as part of ICRA 2016. He was also a finalist in the ICRA 2015 challenge, HRATC
(see http://www.icra2016.org/conference/challenges/).

https://www.packtpub.com/hardware-and-creative/effective-robotics-programming-ros-third-edition
https://www.packtpub.com/hardware-and-creative/effective-robotics-programming-ros-third-edition
http://www.icra2016.org/conference/challenges/

xv

Acknowledgments

Writing a book is a journey that I am glad I undertook. First, I want to thank my wife
Kavitha, without whose support the journey would never have been possible. The journey
spanned a few months but the experience will last a lifetime. I had my wife Kavitha with
me onboard this journey and I wish to express my deepest gratitude to her. Without her
unwavering support and affection, I couldn’t have pulled it off.

I am grateful to the community of professionals, students, trainers, and teachers
who, with their continual bombardment of queries, impelled me to learn more, simplify
my knowledge and findings, and place it neatly in the book. This book is for all of them.

I want to thank my friends and colleagues—the practitioners from the industry and
experts from academia—for their good counsel and filling me in with the knowledge
on the latest in the fields of single board computers, computer vision, digital image
processing, and Python.

I want to thank the technical reviewer for his vigilant reviews, suggestions,
corrections, and expert opinion.

I consider myself very fortunate for the editorial assistance provided by Apress
Media. This is my second book with Apress and collaborating with them on both the
books has been fabulous. I am thankful to Celestin Suresh John, Senior Manager, Editorial
Acquisition, Apress and Springer Science and Business Media Company, for giving me a
long-desired opportunity to collaborate and write for Apress. I also want to acknowledge
Sanchita Mandal, coordinating editor, Anila Vincent, development editor, and the team
of associates from Apress Media who adeptly guided me through the entire process of
preparation and publication.

xvii

Introduction

Why This Book?
I have been using Python for more than 10 years for a variety of tasks. Initially, I used it
for GUI applications. Then I quickly moved to scientific uses as my academic projects
demanded it. When I entered professional life, I used it for automation first and then
for implementation of alert mechanisms. I have been using Python the last six years
for various fields like scientific computing, the Internet of Things, and single board
computers. I have written plenty of Python code all these years. I prefer Python to Bash
scripting, which offers limited capabilities to users like me. Over the last 10 years, I have
worked as a developer, an R&D engineer, a maker, an author, and a QA specialist. I used
Python in every single role.

This is my third dedicated book on the topic of digital image processing. I have
extensive work experience in the field of digital image processing and computer vision.
Almost all of the digital image processing programming I did was in C++ and Python. For
beginners in image processing programming, I always recommend Python, as it is easy
to learn. Also, if you are working in the research areas like Medical imaging, optics, and
biology, where the core expertise is not computer science but you must use digital image
processing, Python is the best choice, as you won’t get bogged down with its syntax.

To prepare for and write this book, I spent a lot of time writing code examples from
scratch, testing them, and then checking the PEP-8 compatibility. Also, I spent numerous
hours writing and editing the text in order to explain the image processing concepts in very
simple and plain language. I did not keep track of the time I spent posting on various forums
and discussing problems with colleagues from the industry and academia. I have poured my
heart and soul into writing this book. I hope that you readers who want to get started with
digital image processing and single board computers will find this book immensely valuable.

I wrote this book to share my knowledge and experiences while programming in
the field of digital image processing with Python 3 and Raspberry Pi. I explored multiple
techniques, frameworks, and libraries for capturing, processing, and displaying digital
images in this book. I hope you will enjoy reading and following the book as much as I
enjoyed writing it. The book covers the following topics:

•	 Introduction to single board computers, Python 3, and Raspberry Pi

•	 Interfacing Raspberry Pi with the Pi Camera module and a
Webcam

•	 Exploring various image-processing libraries like Pillow and
scipy.ndimage

•	 Introduction to additional libraries such as NumPy, matplotlib,
and Tkinter, which assist us in image processing

■ Introduction

xviii

Who This Book Is For
Raspberry Pi enthusiasts are the main audience of this book. This includes a large and
diverse set of people such as developers, students, researchers, and novice learners.
The book is for those who have some prior knowledge of the Python programming
language. If you are a developer, student, or a researcher with some experience in Python
programming, you can quickly learn the concepts related to digital image processing with
your favorite little British computer, Raspberry Pi.

What This Book Is Not
This is not a book for learning Python 3 programming and syntax from scratch. It is more
of a DIY cookbook for Raspberry Pi and digital image processing. If your understanding
of coding is limited or you are not from computer science background, you will find it
difficult to follow this book.

How This Book Is Organized
This book has nine chapters. Here is a sneak peek into the chapters of the book:

Chapter 1: This chapter introduces the readers to the history and the philosophy of
single board computers. Then it explores Raspberry Pi basics. It teaches readers to set up
the Raspberry Pi and connect it to a network.

Chapter 2: This chapter introduces the readers to the history and the philosophy
of Python. It teaches you how to install Python and how to set up the environment for
Python 3 programming. It also explores new features of Python 3 in brief and introduces
the readers to a few popular Python 3 IDEs. The chapter concludes with a brief
introduction to the concepts related to digital image processing and related areas.

Chapter 3: The aim of this chapter is to quickly get the readers started with digital
image processing in Python 3. The chapter introduces the readers to capture images with
a Webcam and Pi Camera. It introduces the readers to Pillow for image processing and to
Tkinter for GUI.

Chapter 4: This chapter serves to introduce basic arithmetic and logical operations
on Image. Readers also study the image channels in this chapter.

Chapter 5: This chapter explores advanced operations like filtering and effects on
images. Readers are introduced to the concept of the histogram and its computation.

Chapter 6: This chapter introduces you to the world of scientific image processing.
We will install the SciPy stack on Raspberry Pi. We also get started with SciPy, NumPy,
and matplotlib in this chapter.

Chapter 7: This chapter helps readers understand the measurements and
transformations using the scipy.ndimage module of SciPy library.

Chapter 8: This chapter introduces readers to the important concept of filtering. We
will study types of filters (such as low-pass and high-pass filters) and their applications.

Chapter 9: This chapter helps readers understand the concepts related to
morphology. It also covers thresholding. Finally, the chapter uses both concepts to
achieve segmentation in binary images.

http://dx.doi.org/10.1007/978-1-4842-2731-2_1
http://dx.doi.org/10.1007/978-1-4842-2731-2_2
http://dx.doi.org/10.1007/978-1-4842-2731-2_3
http://dx.doi.org/10.1007/978-1-4842-2731-2_4
http://dx.doi.org/10.1007/978-1-4842-2731-2_5
http://dx.doi.org/10.1007/978-1-4842-2731-2_6
http://dx.doi.org/10.1007/978-1-4842-2731-2_7
http://dx.doi.org/10.1007/978-1-4842-2731-2_8
http://dx.doi.org/10.1007/978-1-4842-2731-2_9

■ Introduction

xix

How Do You Get the Most Out of This Book
It is easy to leverage the book to gain the maximum amount of information you can,
simply by abiding to the following:

•	 Read the chapters thoroughly. Perform the examples hands-on by
following the step-by-step instructions stated in the code. Do not
skip any code example. If need be, repeat the examples a second
time or until the concept is firmly etched in your mind.

•	 Join a Python community or discussion forum.

•	 Read the online documentation available for various image-
processing frameworks in Python 3.

•	 Read blogs covering computer vision, signal and image
processing, and Python 3.

Where Next?
I endeavored to unleash the power of digital image processing libraries for Python 3 as an
aid to the Raspberry Pi community. I recommend you read the book from cover to cover
without skipping any of the chapters, text, code examples, or exercises.

I wish you well in exploring Python and Raspberry Pi!

A Quick Word for the Instructor’s Fraternity
Attention has been paid in arriving at the sequence of chapters and also to the flow of
topics within each chapter. This is done particularly to assist my fellow instructors and
academicians in carving out a syllabus for their training from the Table of Contents (ToC).

I ensured that each concept discussed in the book includes adequate hands-on
content to enable you to teach better and provide ample hands-on practice to your
students.

A Quick Word for the Non-Computer Science Readers
If you are reading this book and do not belong to the computer science-related field then
you might face a few hurdles to understanding the concepts and mathematics behind
them. If you are working in allied fields like mathematics, electronics, signal processing,
bio-medical imaging, digital imaging, or bio-informatics, and you are reading this book
for work, I recommend reading a few books on the fundamentals of the topics explained
here. This is essential, as the book focuses more on the practicals.

Happy learning and Pythoning!!!
Author, Ashwin Pajankar

1© Ashwin Pajankar 2017
A. Pajankar, Raspberry Pi Image Processing Programming,
DOI 10.1007/978-1-4842-2731-2_1

CHAPTER 1

Introduction to Single
Board Computers and
Raspberry Pi

We will start this exciting journey exploring the scientific domain of digital image
processing with Raspberry Pi. To begin the journey, you must be comfortable with the
basics of single board computers (SBCs) and with Raspberry Pi. This chapter discusses
the definition, history, and philosophy behind SBCs. It compares SBCs to regular
computers. Then it moves toward the most popular and best selling SBC of all time, the
Raspberry Pi. By the end of this chapter, you will have adequate knowledge to set up your
own Raspberry Pi independently. This chapter aims to make you comfortable with the
basic concepts of SBCs and Raspberry Pi setup.

Single Board Computers (SBCs)
A single board computer (referred to as an SBC from now on) is a fully functional computer
system built around a single printed circuit board. An SBC has a microprocessor(s),
memory, input/output, and other features required of a minimally functioning computer.
Unlike with desktop personal computers (PC), most SBCs do not have expansion slots for
peripheral functions or expansion. As all the components—processor(s), RAM, and GPU,
etc.—are integrated on a single printed circuit board (PCB), you cannot upgrade an SBC.

Few SBCs are made to plug into a backplane for system expansion. SBCs come in
many varieties, sizes, shapes, form factors, and feature sets. Due to the advances in the
electronics and semiconductor technologies, prices of most SBCs are very low. One of the
most important features of SBCs is their inexpensive cost. With a price at around $50 a
piece, you have in your hand a development tool suitable for new applications, hacking,
debugging, testing, hardware development, and automation systems.

Chapter 1 ■ Introduction to Single Board Computers and Raspberry Pi

2

SBCs are usually manufactured with the following form factors:

•	 Pico-ITX

•	 PXI

•	 Qseven

•	 VMEbus

•	 VPX

•	 VXI

•	 AdvancedTCA

•	 CompactPCI

•	 Embedded Compact Extended (ECX)

•	 Mini-ITX

•	 PC/104

•	 PICMG

Differences Between SBCs and Regular Computers
Table 1-1 lists the differences between SBCs and regular computers.

System on Chips (SoCs)
All the SBCs are predominantly SoCs. A system on a chip (SoC) is an integrated circuit
(IC) that has all the components of a computer on a single chip. SoCs are very common
with mobile electronic devices because of their low power consumption and versatility.
SoCs are widely used in mobile phones, SBCs, and embedded hardware. A SoC includes
all the hardware and software needed for its operation.

Table 1-1.  Differences Between SBCs and Regular Computers

Single Board Computer Regular Computer

Not modular Modular

Components cannot be upgraded or
replaced

Components can be upgraded or
replaced

A System On Chip Not a System On Chip

Has a small form factor Has a large form factor

Is portable Is mostly non-portable or semi-portable

Consumes less power Consumes more power

Cheaper than a regular computer Costs more than a SBC

Chapter 1 ■ Introduction to Single Board Computers and Raspberry Pi

3

SoC versus Regular CPU
The biggest advantage of using a SoC is its size. If you use a CPU, it’s very hard to
make a compact computer, only because of the number of individual chips and other
components that you need to arrange on a board. However, when using SoCs, you can
place complete application-specific computing systems in smartphones and tablets,
and still have plenty of space for batteries, the antenna, and other add-ons required for
remote telephony and data communication.

Due to the very high level of integration and the compact size, a SoC uses
considerably less power than a regular CPU. This is a significant advantage of SoCs
when it comes to mobile and portable systems. Also, reducing the number of chips by
eliminating redundant ICs on a computer board results in a compact board size.

History of SBCs
Dyna-Micro was the first true SBC. It was based on the Intel C8080A and used Intel’s first
EPROM, the C1702A. The Dyna-Micro was rebranded and marketed by E&L Instruments
of Derby, CT in 1976 as the MMD-1 (Mini-Micro Designer 1). It became famous as
the leading example of microcomputers. SBCs were very popular in the earlier days of
computing, as many home computers were actually SBCs. However, with the rise of PCs,
the popularity of SBCs declined. Since 2010, there has been a resurgence in the popularity
of SBCs due to their lower production costs.

Apart from the MMD-1, here are a few other popular historical SBCs:

•	 The BBC Micro was built around an MOS technology 6502A
processor running at 2MHz.

•	 The Ferguson Big Board II was a Zilog Z80-based computer
running at 4MHz.

•	 The Nascom was another Zilog Z80-based computer.

SBC Families
Based on the manufacturers and designers, the SBCs are grouped into families, models,
and generations. Here are a few popular SBC families:

•	 Raspberry Pi by the Raspberry Pi Foundation

•	 Banana Pi and Banana Pro

•	 Intel Edison and Galileo

•	 CubieBoard

•	 BeagleBone and BeagleBoard

Chapter 1 ■ Introduction to Single Board Computers and Raspberry Pi

4

The Raspberry Pi
The Raspberry Pi is a family of credit card-sized SBCs developed in the United
Kingdom by the Raspberry Pi Foundation. The Raspberry Pi Foundation formed
in 2009. The aim behind developing Raspberry Pi was to promote the teaching of
basic computer science in schools and developing countries by providing a low-cost
computing platform.

Raspberry Pi Foundation’s Raspberry Pi was released in 2012. It was a massive
hit and sold over two million units in two years. Subsequently, the Raspberry Pi
Foundation revised versions of the Raspberry Pi. They also released other accessories
for the Pi.

You can find more information about the Raspberry Pi foundation on the Raspberry
Pi Foundation’s web site at https://www.raspberrypi.org.

The product page for Raspberry Pi's current production models and other
accessories is at https://www.raspberrypi.org/products.

I have written, executed, and tested all the code examples in this book on Raspberry
Pi Models B+, 2B, and 3B. Raspberry Pi 3 Model B (also known as 3B) is the most recent
model of Raspberry Pi. Table 1-2 lists the specifications of the Raspberry Pi 3, Model B.

Figure 1-1 shows the top view of Raspberry Pi 3 Model B. The components relevant
to this book are labeled in the image.

Table 1-2.  Specifications of the Raspberry Pi 3 Model B

Release Date February 2016

Architecture ARMv8

SoC broadcom BCM2837

CPU 1.2GHz 64-bit quad-core ARM Cortex-A53

GPU Broadcom VideoCore IV (3D part of GPU @ 300MHz, video part
of GPU @ 400MHz)

Memory 1 GB (shared with GPU)

USB 2.0 ports 4

Video output HDMI rev 1.3 and Composite Video RCA jack

On-board storage Micro SDHC slot

On-board network 10/100 Mbps Ethernet, Bluetooth, and WiFi

Power source 5V via MicroUSB

Power ratings 800 mA (4W)

https://www.raspberrypi.org/
https://www.raspberrypi.org/products

Chapter 1 ■ Introduction to Single Board Computers and Raspberry Pi

5

Figure 1-2 shows the bottom view of Raspberry Pi 3 Model B.

You can get more Information on Raspberry Pi 3 Model B by visiting the product
page at https://www.raspberrypi.org/products/raspberry-pi-3-model-b.

Raspberry Pi Setup
You have to set up Raspberry Pi before you can use it for exploration and adventure. This
section explains in detail how to set it up. As mentioned earlier, I am using Raspberry Pi 3
Model B for this setup. The setup process is exactly same for Raspberry Pi 2 Model B and
Raspberry Pi 1 Model B+. Here is the list of hardware materials to be procured for the setup.

Figure 1-1.  Raspberry Pi 3 Model B, top view

Figure 1-2.  Raspberry Pi 3 Model B, bottom view

http://C:\\Users\\Anila Jose\\AppData\\Local\\Temp\\Rar$DIa0.268\\www.raspberrypi.org\\products\\raspberry-pi-3-model-b

Chapter 1 ■ Introduction to Single Board Computers and Raspberry Pi

6

Required Hardware
The following hardware is required to set up the Raspberry Pi.

Raspberry Pi
You need to use Raspberry Pi 3 Model B or Raspberry Pi 2 Model B or Raspberry Pi 1
Model B+ for the setup.

Computer
A Windows computer or laptop with an Internet connection is required. You need to use
a computer to prepare a microSD card with a Raspbian OS image for the Pi.

I/O Devices
A standard USB keyboard and a USB mouse are required.

microSD Card
A microSD card (see Figure 1-3) with at least 8GB of storage is needed. You’ll use the card
for secondary storage for the Pi. A card of Class 10 is recommended as the data transfer
speed with class 10 is great. I recommend using at least an 8GB card to be on the safe side.
Choosing a 16GB card will be adequate for most of the use cases.

■■ Note  Before purchasing a card, visit http://elinux.org/RPi_SD_cards to check the
compatibility of the card with the Raspberry Pi.

Figure 1-3.  Class 10 microSD card

http://elinux.org/RPi_SD_cards

Chapter 1 ■ Introduction to Single Board Computers and Raspberry Pi

7

Power Supply
For all the Raspberry Pi models, a 5V Micro USB power supply unit (PSU) is required. The
recommended current capacity of the PSU for Raspberry Pi 3 Model B is 2.5 amp. For all
the other models, a 2 amp PSU is more than enough.

You can find Raspberry Pi's official power supply (see Figure 1-4) at
https://thepihut.com/products/official-raspberry-pi-universal-power-supply.

Card Reader
You also need a card reader. Many laptops have a built-in SD card reader.

If the laptop or the card reader works with an SD card only, you need a additional
microSD-to-SD card adapter. Figure 1-5 shows a card reader and an adapter.

Figure 1-4.  Raspberry Pi official power supply

https://thepihut.com/products/official-raspberry-pi-universal-power-supply

Chapter 1 ■ Introduction to Single Board Computers and Raspberry Pi

8

Monitor
You need an HDMI or VGA monitor.

For an HDMI monitor, you need an HDMI male-to-male cable (see Figure 1-6). It is
typically packaged with the HDMI monitor.

Figure 1-6.  HDMI male-to-male cable

Figure 1-5.  Card reader and microSD-to-SD adapter

Chapter 1 ■ Introduction to Single Board Computers and Raspberry Pi

9

For the VGA monitor, you need a VGA cable (see Figure 1-7). This too is usually
packaged with the VGA monitor.

If you are using a VGA monitor, you need an HDMI to VGA adapter (see Figure 1-8),
because Raspberry Pi has an HDMI port only for the video output.

Preparation of the microSD Card for Raspberry Pi
Manually preparing the microSD card for Pi is the best way of installing any OS into
a microSD card for SBCs. Many users (including me) prefer it, because it allows the
contents of microSD card to be modified manually (if needed) before it is used for
booting. The other way to prepare the microSD is to use NOOBS (New Out Of the Box
Software), which I have not used in this book.

Figure 1-7.  VGA male-to-male cable (also known as a D-SUB cable)

Figure 1-8.  HDMI to VGA adapter

Chapter 1 ■ Introduction to Single Board Computers and Raspberry Pi

10

This approach allows you to access to the configuration files like /boot/config.txt
before booting. You might have to modify the configuration files in a few cases
(we will discuss that soon) before booting up the Pi. The default Raspbian image has two
partitions, called boot and system. Be sure to use at least a 16GB microSD card for the Pi
considering any possible future upgrades to the OS.

Download the Required Free Software
Let's download the required software.

Download Accelerator Plus
Download the Download Accelerator Plus setup from its download page (http://www.
speedbit.com/dap/download/downloading.asp). This freeware is used to manage
downloads. It is useful for large downloads, as you can pause and resume downloads. If
your computer shuts down suddenly or the Internet is interrupted, it resumes the download
from the last checkpoint. Once you download and install it, use it to manage any further
downloads.

Win32 Disk Imager
Download the Win32 Disk Imager setup from its download page (https://sourceforge.net/
projects/win32diskimager/files/latest/download). Install it.

WinZip or WinRaR
You need a file extraction utility. Download WinZip (http://www.winzip.com/win/
en/index.htm) or WinRaR (http://www.win-rar.com/download.html). Install the one
you chose.

Download and Extract the Raspbian OS Image
You will use the Raspbian OS for the Pi. (We will discuss Raspbian in detail in a later part
of the chapter.) As of now, download the latest ZIP of the image of the Raspbian OS from
https://www.raspberrypi.org/downloads/raspbian. Extract the image ZIP file using
WinZip or WinRaR.

Writing the Raspbian OS Image to the microSD Card
Insert the microSD card into the card reader. If your computer or laptop has a built-in
card reader, insert it there. You might have to use a microSD-to-SD card adapter if the
card reader or your computer has a slot only for the SD card reader.

Open Win32 Disk Imager. Select the location of the image file and click the Write
button (see Figure 1-9).

http://www.speedbit.com/dap/download/downloading.asp
http://www.speedbit.com/dap/download/downloading.asp
https://sourceforge.net/projects/win32diskimager/files/latest/download
https://sourceforge.net/projects/win32diskimager/files/latest/download
http://www.winzip.com/win/en/index.htm
http://www.winzip.com/win/en/index.htm
http://www.win-rar.com/download.html
https://www.raspberrypi.org/downloads/raspbian

Chapter 1 ■ Introduction to Single Board Computers and Raspberry Pi

11

If you see the warning message shown in Figure 1-10, toggle the write protection
notch of the card reader or the SD card adapter (or both). Then click the Write button
again.

Figure 1-11 shows the warning message that will be displayed. Click Yes to continue.

Figure 1-9.  Win32 Disk Imager

Figure 1-10.  Write protection error message

Figure 1-11.  Overwrite warning message

Chapter 1 ■ Introduction to Single Board Computers and Raspberry Pi

12

Once the OS image has been written to the SD card, the message in Figure 1-12 will
be displayed. Click OK.

This means the Raspbian OS has been flashed to the microSD card.

Altering the Contents of the config.txt File for a VGA
Monitor

■■ Note  This step is a must if you are planning to use a VGA monitor. You should skip this
step if you are using an HDMI monitor.

You need to change the contents of the config.txt file to get the Pi working with
VGA monitors. You will learn more about config.txt later in this chapter.

Insert the microSD card into the card reader again and browse it in Windows
Explorer. In Windows Explorer, it will be represented as a removable media drive
called boot.

Open the config.txt file and make the following changes to it:

•	 Change #disable_overscan=1 to disable_overscan=1

•	 Change #hdmi_force_hotplug=1 to hdmi_force_hotplug=1

•	 Change #hdmi_group=1 to hdmi_group=2

•	 Change #hdmi_mode=1 to hdmi_mode=16

•	 Change #hdmi_drive=2 to hdmi_drive=2

•	 Change #config_hdmi_boost=4 to config_hdmi_boost=4

Save the file after making these changes. The microSD card is now ready for the Pi
and for a VGA monitor.

Figure 1-12.  The Write Successful message

Chapter 1 ■ Introduction to Single Board Computers and Raspberry Pi

13

Booting Up the Pi
Let's boot the Pi up with the prepared microSD card. The steps for that are as follows.

	 1.	 If you are using an HDMI monitor, connect the monitor
directly to the Pi’s HDMI port using the HDMI male-to-male
cable. If you are using a VGA monitor, use the HDMI-to-VGA
adapter to convert HDMI signals to VGA.

	 2.	 Insert the microSD card into the microSD card slot of the Pi.

	 3.	 Connect the USB mouse and the USB keyboard.

	 4.	 At this point, make sure that the power is switched off. Then
connect the Pi to the power supply with a micro USB power
cable discussed earlier.

	 5.	 Connect the monitor to the power supply.

	 6.	 Check all the connections. Switch on the power supply of the
Pi and the monitor.

At this point, the Raspberry Pi will boot up.
For all the models of Raspberry Pi with the single core processor, the boot screen will

resemble the screen in Figure 1-13.

Figure 1-13.  Single-core CPU RPi model boot screen

Chapter 1 ■ Introduction to Single Board Computers and Raspberry Pi

14

For all the models of Raspberry Pi with the quad-core processor, the boot screen will
resemble Figure 1-14.

Once the Pi boots up, the monitor displays the desktop, as shown in Figure 1-15.

Figure 1-15.  Raspbian desktop (as of February 2017)

Figure 1-14.  Quad-core CPU RPi model boot screen

www.allitebooks.com

http://www.allitebooks.org

Chapter 1 ■ Introduction to Single Board Computers and Raspberry Pi

15

Configuring the Pi
You need to configure the Pi for further use. Let’s do that.

On the desktop, there is a taskbar. In the taskbar, you’ll see the icon shown in
Figure 1-16.

Click the icon to open the LXTerminal window, as shown in Figure 1-17.

The terminal is a desktop-independent VTE-based terminal emulator for LXDE
without any unnecessary dependencies. Type sudoraspi-config in the prompt and press
Enter. The raspi-config is the configuration tool for Raspberry Pi.

Figure 1-16.  LXTerminal icon

Figure 1-17.  The LXTerminal window

Chapter 1 ■ Introduction to Single Board Computers and Raspberry Pi

16

First expand the filesystem, as shown in Figure 1-18.

Then navigate to the boot options, which are highlighted in Figure 1-19.

Set the Boot Options to Desktop Autologin, as shown in Figure 1-20.

Figure 1-19.  The raspi-config with the Boot Options highlighted

Figure 1-20.  Desktop Autologin is highlighted

Figure 1-18.  The raspi-config utility’s main menu

Chapter 1 ■ Introduction to Single Board Computers and Raspberry Pi

17

In the Internationalization Options section, change the time zone and the WiFi
country (see Figure 1-21). Change the keyboard layout to US.

Once you’re done, go back to the the main screen and click Finish, as shown in
Figure 1-22.

Figure 1-21.  The raspi-config internationalization options

Figure 1-22.  Finish

Chapter 1 ■ Introduction to Single Board Computers and Raspberry Pi

18

It will ask if you want to reboot at this point, as shown in Figure 1-23. Choose Yes.

It will reboot the Pi.
Your job is not done yet. You need to learn how to connect the Pi to the Internet and

how to update it.

The Raspbian OS
An operating system is the set of basic programs and utilities that make a computer work.
It is an interface between the user and the computer. Raspbian is a free operating system
based on the popular Linux distribution, Debian. Raspbian is optimized for the Raspberry
Pi family of SBCs. It is even ported to the other similar SBCs like Banana Pro.

Raspbian has more than 35,000 packages and lots of pre-compiled software
bundled for easy installation and use on the Raspberry Pi. The first build of Raspbian
was completed in June of 2012. Raspbian is still under active development and updated
very frequently. Visit the Raspbian home page at https://www.raspbian.org and the
Raspbian documentation page at https://www.raspbian.org/RaspbianDocumentation
for more information on Raspbian.

The config.txt File
Raspberry Pi does not have a conventional BIOS. The BIOS (basic input/output system)
is the program that a computer’s microprocessor uses to get the computer system started
after it is turned on. It also manages data flow between the computer’s operating system
and attached peripheral devices such as the hard disk, video adapter, keyboard, mouse,
and printer.

Figure 1-23.  Reboot prompt

https://www.raspbian.org/
https://www.raspbian.org/RaspbianDocumentation

Chapter 1 ■ Introduction to Single Board Computers and Raspberry Pi

19

Since the Raspberry Pi does not have a BIOS, the various system configuration
parameters that are normally stored and modified using the BIOS are instead stored in a
text file called config.txt.

The Raspberry Pi config.txt file is on the boot partition of the Raspberry Pi. It is
normally accessible as /boot/config.txt from Linux. However, from Windows and Mac
OS, it is seen as a file in the accessible part of the microSD card. The accessible part of the
card is labeled as boot. As you learned earlier in this chapter, you must edit the /boot/
config.txt file if you want to connect it to a VGA display.

On Raspberry Pi, you can edit this file with the following command in the
LXTerminal:

sudo nano /boot/config.txt

■■ Note  nano is a simple and easy-to-learn text-based text editor for Linux. Visit its home
page at https://www.nano-editor.org to learn more about it. I find it easier to use than
the vi or vim editors.

To learn more about config.txt, visit the page http://elinux.org/RPiconfig.
A sample configuration can also be found at http://elinux.org/R-Pi_configuration_
file.

Connecting the Raspberry Pi to a Network and
to the Internet
To connect the Pi to any network, you have to edit the /etc/network/interfaces file.
If the network the Pi is connected to is connected to the Internet, the Pi can access the
Internet as well.

WiFi
Raspberry Pi 3 Model B has built-in WiFi. For all the other models of Pi, you need to use a
USB WiFi adapter.

Once the USB WiFi adapter is attached to the Pi, take a backup of the /etc/network/
interfaces file using the following command:

sudo mv /etc/network/interfaces /etc/network/interfaces.bkp

The original /etc/network/interfaces file is safe this way, and it can be restored if
something goes wrong.

Now create a new /etc/network/interfaces file as follows:

sudo nano /etc/network/interfaces

https://www.nano-editor.org/
http://elinux.org/RPiconfig
http://elinux.org/R-Pi_configuration_file
http://elinux.org/R-Pi_configuration_file

Chapter 1 ■ Introduction to Single Board Computers and Raspberry Pi

20

Type the lines from Listing 1-1 into that new file.

Listing 1-1.  /etc/network/interfaces

source-directory /etc/network/interfaces.d

auto lo
iface lo inet loopback

auto wlan0
allow-hotplug wlan0
iface wlan0 inet dhcp
wpa-ssid "ASHWIN"
wpa-psk "internet"

In Listing 1-1, replace ASHWIN with the SSID of your WiFi network and replace
internet with the password of your WiFi network. Save the file by pressing Ctrl+X and
then y.

Run the following command to restart the networking service:

sudo service networking restart

If you followed the steps correctly, the Pi should be connected to the WiFi network
and to the Internet (provided that the WiFi network is connected to the Internet, of
course).

To verify connectivity with the Internet, use the following command:

ping -c4 www.google.com

It should show output similar to this:

PING www.google.com (216.58.197.68) 56(84) bytes of data.
64 bytes from maa03s21-in-f4.1e100.net (216.58.197.68): icmp_seq=1 ttl=55
time=755 ms
64 bytes from maa03s21-in-f4.1e100.net (216.58.197.68): icmp_seq=2 ttl=55
time=394 ms
64 bytes from maa03s21-in-f4.1e100.net (216.58.197.68): icmp_seq=3 ttl=55
time=391 ms
64 bytes from maa03s21-in-f4.1e100.net (216.58.197.68): icmp_seq=4 ttl=55
time=401 ms

--- www.google.com ping statistics ---
4 packets transmitted, 4 received, 0% packet loss, time 3003ms
rtt min/avg/max/mdev = 391.729/485.695/755.701/155.925 ms

This output indicates that the Pi is connected to the Internet.

Chapter 1 ■ Introduction to Single Board Computers and Raspberry Pi

21

To determine the IP address of Pi, use the ifconfig command. Check the output for
wlan0. It will appear as follows:

wlan0 Link encap:Ethernet HWaddr 7c:dd:90:00:e2:1e
 inet addr:192.168.0.122 Bcast:192.168.0.255 Mask:255.255.255.0
 inet6 addr: fe80::7edd:90ff:fe00:e21e/64 Scope:Link
 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
 RX packets:1974 errors:0 dropped:0 overruns:0 frame:0
 TX packets:1275 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:1000
 RX bytes:195049 (190.4 KiB) TX bytes:1204336 (1.1 MiB)

In this output, 192.168.0.122 is IP address of the Pi. Because the IP address is
allocated using the DHCP protocol, it will be different for you depending on your WiFi
network settings.

Ethernet
You can also connect the Pi to a LAN network. Based on the LAN switch’s settings, you
can allocate an IP address to the Pi statically or dynamically.

Static IP Address
If the LAN network allocates IP addresses statically, configure the /etc/network/
interfaces file as shown in Listing 1-2.

Listing 1-2.  /etc/network/interfaces

source-directory /etc/network/interfaces.d

auto lo
iface lo inet loopback

auto eth0
allow-hotplug eth0
iface eth0 inet static
Your static IP
address 192.168.0.2
Your gateway IP
gateway 192.168.0.1
netmask 255.255.255.0
Your network address family
network 192.168.0.0
broadcast 192.168.0.255

Chapter 1 ■ Introduction to Single Board Computers and Raspberry Pi

22

In the file shown in Listing 1-2, the parameters address, gateway, netmask, network,
and broadcast are based on the LAN’s configuration. Check the manual of the LAN
switch or router. If you are working for an organization, then check with the network
administrator for these parameters.

Dynamic IP Address
This is an easy one. If the LAN has DHCP capability, configure the /etc/network/
interfaces file as shown in Listing 1-3.

Listing 1-3.  /etc/network/interfaces

source-directory /etc/network/interfaces.d

auto lo
iface lo inet loopback

auto eth0
allow-hotplug eth0
iface eth0 inet dhcp

This will configure the Pi to acquire the IP address automatically with DHCP.

■■ Note  All the information needed for network setup on Debian and its derivatives can be
found at https://wiki.debian.org/NetworkConfiguration.

Updating the Pi
Pi must be connected to the Internet in order to update it successfully.

Updating the Firmware
To update the firmware, run sudo rpi-update. It will do the update for you.

Updating and Upgrading Raspbian
You will use APT for this. APT (Advanced Package Too) is a program that handles the
installation and removal of software on the Debian and other Debian derivatives.
APT simplifies the process of managing software on Debian systems by automating the
fetching, configuration, and installation of software packages. You need an Internet
connection for this too.

https://wiki.debian.org/NetworkConfiguration

Chapter 1 ■ Introduction to Single Board Computers and Raspberry Pi

23

First, update the system’s package list by entering the following command in the
LXTerminal:

sudo apt-get update

apt-get update downloads the package lists from the respective remote repositories
and updates them in the local computer so that information on the newest versions of
packages and their dependencies is available for the installation and update. It should be
run before running the install or upgrade command.

Next, upgrade all the installed packages to their latest versions using this command:

sudo apt-get dist-upgrade -y

apt-get dist-upgrade fetches new versions of the packages on the local machine
that are marked for upgrade. It also detects and installs any dependencies. It might also
remove obsolete packages.

Doing this regularly will keep your Raspbian OS up to date. After entering these
commands, it will take a while to update the OS, because these commands fetch the data
and the packages from remote repositories.

■■ Note  sudo apt-get --help will list all the options associated with apt-get.

Updating raspi-config
In raspi-config, go to the advanced options (see Figure 1-24) and choose Update.

Figure 1-24.  Updating raspi-config

Chapter 1 ■ Introduction to Single Board Computers and Raspberry Pi

24

Shutting Down and Restarting Pi
You can shut down Pi safely using the sudo shutdown -h now command. You can restart
Pi using the sudo reboot -h now command.

Conclusion
This chapter introduced the concept and philosophy of SBCs. You also learned about a
popular family of SBCs, Raspberry Pi. Now you can confidently move ahead with further
exploration. In the next chapter, you will learn a few things about Python and digital
image processing.

25© Ashwin Pajankar 2017
A. Pajankar, Raspberry Pi Image Processing Programming,
DOI 10.1007/978-1-4842-2731-2_2

CHAPTER 2

Introduction to Python and
Digital Image Processing

In the last chapter, we explored the amazing world of single board computers and
Raspberry Pi. We booted up the Raspberry Pi, connected it to the Internet, and updated
the Raspbian OS.

In this chapter, we will get started with Python and the concepts of digital image
processing (DIP).

Let’s begin this chapter with an introduction to Python. I personally find Python
amazing and have been enchanted by it. Python is a simple yet powerful programming
language. When programmers use Python, it’s easy to focus on solving a given problem
as they do not have to worry about the syntax. Python perfectly fits the philosophy of
Raspberry Pi, which is programming for everyone. That’s why it’s the most preferred
programming platform for Raspberry Pi and many other SBCs.

A History of Python
Python was designed and conceived in the late 1980s. Its actual implementation was
started in late 1989 by Guido van Rossum in Centrum Wiskunde & Informatica (National
Research Institute for Mathematics and Computer Science) in the Netherlands. Python
is a successor to the ABC Programming Language, which itself was inspired by SETL. In
February of 1991, Van Rossum publically published the Python source code to the alt.
sources newsgroup. The name Python was inspired by the British television show Monty
Python’s Flying Circus. Van Rossum is a big fan of Monty Python.

Van Rossum is the principal author of the Python programming language. He plays
a central role in guiding the direction of the development, enhancement, and further
evolution of Python programming language. He holds the title Benevolent Dictator for Life
for Python. He currently (as of February 2017) works for Dropbox and dedicates almost
half of his time toward further development of the Python programming language.

The central philosophy of the Python programming language (the Zen of Python) is
explained in PEP-20 (PEP stands for Python Enhancement Proposal), which can be found
at https://www.python.org/dev/peps/pep-0020.

https://www.python.org/dev/peps/pep-0020

Chapter 2 ■ Introduction to Python and Digital Image Processing

26

It is a collection of 20 software principles, out of which 19 have been documented.
The principles are as follows:

•	 Beautiful is better than ugly.

•	 Explicit is better than implicit.

•	 Simple is better than complex.

•	 Complex is better than complicated.

•	 Flat is better than nested.

•	 Sparse is better than dense.

•	 Readability counts.

•	 Special cases aren’t special enough to break the rules.

•	 Practicality beats purity.

•	 Errors should never pass silently.

•	 Unless explicitly silenced.

•	 In the face of ambiguity, refuse the temptation to guess.

•	 There should be one—and preferably only one—obvious way
to do it.

•	 Although that way may not be obvious at first unless you’re Dutch.

•	 Now is better than never.

•	 Although never is often better than right now.

•	 If the implementation is hard to explain, it’s a bad idea.

•	 If the implementation is easy to explain, it may be a good idea.

•	 Namespaces are one honking great idea—let’s do more of those!

Features of Python
The following are the features of Python that have made it popular and beloved in the
programming community.

Simple
Python is a simple language with a minimalist approach. Reading a well written and good
Python program makes you think you are reading English text.

Chapter 2 ■ Introduction to Python and Digital Image Processing

27

Easy to Learn
Due to its simple and English-like syntax, Python is extremely easy to learn. That is
the prime reason that it is taught as the first programming language to high school
and university students who take introductory programming courses. An entire new
generation of programmers is learning Python as their first programming language.

Easy to Read
Unlike other high-level programming languages, Python does not obfuscate the code and
make it unreadable. The English-like structure of the Python code makes it easier to read
compared to the code written in other programming languages. This makes it easier to
understand and easier to learn compared to other high-level languages like C and C++.

Easy to Maintain
As Python code is easy to read, easy to understand, and easy to learn, anyone maintaining
the code becomes comfortable with the codebase very quickly. I can vouch for this from
personal experiences of maintaining and enhancing large legacy codebases which were
written in a combination of Bash and Python 2.

Open Source
Python is an open source project, which means its source code is freely available. You
can make changes to it to suit your needs and use the original and modified code in your
applications.

High-Level Language
While writing Python programs, you do not have to manage the low-level details like
memory management, CPU timings, and scheduling processes. All these tasks are
managed by the Python interpreter. You can write the code directly in the easy-to-
understand English-like syntax.

Portable
The Python interpreter has been ported to many OS platforms. Python code is also
portable. All the Python programs will work on the supported platform without requiring
many changes if you are careful enough to avoid system-dependent coding.

You can use Python on GNU/Linux, Windows, Android, FreeBSD, Mac OS, iOS,
Solaris, OS/2, Amiga, Palm OS, QNX, VMS, AROS, AS/400, BeOS, OS/390, z/OS, Psion,
Acorn, PlayStation, Sharp Zaurus, RISC OS, VxWorks, Windows CE, and PocketPC.

Chapter 2 ■ Introduction to Python and Digital Image Processing

28

Interpreted
Python is an interpreted language. Let’s take a look at what that means. Programs written
in high-level programming languages like C, C++, and Java are compiled first. This means
that they are first converted into an intermediate format. When we run the program, this
intermediate format is loaded from secondary storage (i.e., from the hard disk) to the
memory (RAM) by the linker/loader.

So, C, C++, and Java have a separate compiler and linker/loader. This is not the case
with Python. Python runs the program directly from the source code. You do not have to
bother compiling and linking to the proper libraries. This makes Python programs truly
portable, as you can copy the program to one computer from another and the program
runs fine as long as the necessary libraries are installed on the target computer.

Object-Oriented
Python supports procedure-oriented programming as well as object-oriented
programming paradigms.

All the object-oriented programming paradigms are implemented in Python.
In the object-oriented programming languages, the program is built around objects
that combine data and the related functionality. Python is a very simple but powerful
object-oriented programming language.

Extensible
One of the features of Python is that you can call C and C++ routines from the Python
programs. If you want the core functionality of the application to run faster, you can code
that part in C/C++ and call it in the Python program (C/C++ programs generally run faster
than Python).

Extensive Libraries
Python has an extensive standard library that comes pre-installed. The standard library
has all the essential features for a modern day programming language. It has provisions
for databases, unit testing (we will explore this later in this book), regular expressions,
multi-threading, network programming, computer graphics, image processing, GUI, and
other utilities. This is the part of Python’s batteries-included philosophy.

Apart from the standard library, Python has numerous and ever-growing sets of
third-party libraries. The list of these libraries can be found on the Python Package Index.

Robust
Python provides robustness by means of the ability to handle errors. The full stack trace of
the encountered errors is available and makes the life of the programmer more bearable.
The runtime errors are known as exceptions. The feature that handles these errors is
known as an exception handling mechanism.

Chapter 2 ■ Introduction to Python and Digital Image Processing

29

Rapid Prototyping
Python is used as a rapid prototyping tool. As you learned earlier, Python has extensive
libraries and is easy to learn, which has led many software architects to use it as a tool to
rapidly prototype their ideas into working models quickly.

Memory Management
In assembly language and in programming languages like C and C++, memory
management is the responsibility of the programmer. This is in addition to the task at
hand. This creates an unnecessary burden on the programmer. In Python, the Python
interpreter takes care of the memory management. This helps the programmers steer
clear of memory issues and focus on the task at hand.

Powerful
Python has everything in it that a modern programming language needs. It is used in
applications such as computer visioning, supercomputing, drug discovery, scientific
computing, simulation, and bioinformatics. Millions of programmers around the world
use Python. Many big organizations like NASA, Google, SpaceX, and Cisco use Python for
their applications and infrastructure.

Community Support
I find this to be the most appealing feature of Python. Recall that Python is open source.
It also has community of almost a million programmers throughout the world (probably
more, as today high school kids are learning Python too). There are also plenty of forums
on the Internet to support programmers who encounter a roadblock. None of my queries
related to Python have ever gone unanswered.

Python 3
Python 3 was released in 2008. The Python development team decided to do away with
some of the redundant features of Python, simplify some more features, rectify some
design flaws, and add a few much needed features.

It was decided that a major revision number was needed for this and the resultant
release would not be backward compatible. Python 2.x and 3.x were supposed to coexist
in parallel for the programmer community to have enough time to migrate their code and
the third-party libraries from 2.x to 3.x. Python 2.x code cannot be run as-is in most cases,
as there are significant differences between 2.x and 3.x.

Chapter 2 ■ Introduction to Python and Digital Image Processing

30

The Differences Between Python 2 and Python 3
The following are few of the most noticeable differences between Python 2 and Python 3.
We will be using many features of Python 3 related to these differences. Let’s look at them
in brief:

•	 The print() function: This is the most noticeable difference
between Python 2 and Python 3. The print statement of Python 2
is replaced with the print() function in Python 3.

•	 Integer division produces a float value: The nature of integer
division has been changed in Python 3 for the sake of
mathematical correctness. In Python 2, the result of the division
of two integers was an integer. However, in Python 3, it is a float
value, which is mathematically correct and makes more sense to
beginners. In most programming languages, the integer division
is an integer.

•	 Removal of xrange(): In Python 2, the xrange() function
was used to create iterable objects. In Python 3, range() is
implemented like xrange(). So, a separate xrange() is not
required anymore in Python 3. Using xrange() in Python 3 raises
a nameError exception.

•	 Raising exceptions: It is mandatory in Python 3 to enclose
exception arguments, if any, in parentheses, whereas in Python 2
it is optional.

•	 Handling exceptions: In Python 3, while handling the exceptions,
you must use the as keyword before the parameter to handle the
argument. In Python 2, it is not needed.

•	 New style classes: Python 2 supports both the old style classes and
new style classes, whereas Python 3 supports only the new style
classes. All the classes created in Python 3 use the new style by
default.

These exclusive new features of Python 3 have not yet been backported to Python 2:

•	 Strings are Unicode by default

•	 Clean Unicode/byte separation

•	 Exception chaining

•	 Function annotations

•	 Syntax for keyword-only arguments

•	 Extended tuple unpacking

•	 Non-local variable declarations

Chapter 2 ■ Introduction to Python and Digital Image Processing

31

From this list, we will be extensively incorporating the print() method, new-style
classes, exceptions, and exception handling in the code examples in this book.

■■ Note  Check out Python’s Wiki page for differences between Python 2 and Python 3:
https://wiki.python.org/moin/Python2orPython3.

Why Use Python 3
We will be frequently using new style classes and exceptions in the code examples in this
book. Although many Python experts still advocate using Python 2, I disagree with them.
Python’s wiki page (see https://wiki.python.org/moin/Python2orPython3) says:

Python 2.x is legacy, Python 3.x is the present and future of the language.

One of the major arguments in favor of Python 2 is its extensive documentation,
books, and third-party libraries. However, most of the developers are porting their custom
libraries to Python 3. Almost all the major third-party libraries are ported and fully
supported for Python 3. As far as books and documentation is concerned, authors like me
are extensively writing for Python 3. As time passes, more documentation for Python 3
will surely be available.

A new generation of programmers is being introduced to Python 3 as the first
programming language. When they are comfortable with the concept and Philosophy of
Python programming, they are gradually introduced to Python 2.

Many organizations have already started migrating codebases from Python 2 to
Python 3. Almost all new projects in Python are using Python 3.

I personally think that these are pretty good reasons to use Python 3.

Python 2 and Python 3 on Raspbian
Raspbian is a Debian variant. Python 2 and Python 3 interpreters are pre-installed in
Raspbian. The Python 2 interpreter can be invoked by running the python command
in the lxterminal. The Python 3 interpreter can be invoked by running the python3
command in the lxterminal. You can check the Python 3 interpreter version by running
python3 -V or python --version. You can check the location of the Python 3 binary by
running which python3 at the lxterminal.

Running a Python Program and Python Modes
You have set up your environment for Python programming, so let’s get started with a
simple concept of Python. Python has two modes—normal and interactive. Let’s look at
these modes in detail.

https://wiki.python.org/moin/Python2orPython3
https://wiki.python.org/moin/Python2orPython3

Chapter 2 ■ Introduction to Python and Digital Image Processing

32

Interactive Mode
Python’s interactive mode is a command-line shell. It provides immediate output for the
every executed statement. It also stores the output of previously executed statements in
the active memory. As new statements are executed by the Python interpreter, the entire
sequence of previously executed statements is considered while evaluating the current
output. You have to type python3 in the lxterminal to invoke the Python 3 interpreter into
interactive mode as follows:

pi@raspberrypi:~ $
Python 3.4.2 (default, Oct 19 2014, 13:31:11)
[GCC 4.9.1] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>>

You can execute Python statements directly in this interactive mode just like when
you run commands from the OS shell/console as follows:

>>>print ('Hello World!')
Hello World!
>>>

We will not be using interactive mode in this book. However, keep it in mind, as
it’s the quickest way to check small snippets of code (5 to 10 lines). You can quit the
interactive mode using the exit() statement as follows:

>>> exit()
pi@raspberrypi:~ $

Normal Mode
Normal mode is where the Python script files (.py) are executed by the Python
interpreter.

Create a file called test.py and add the print ('Hello World!') statement to the
file. Save the file and run it with the Python 3 interpreter as follows.

pi@raspberrypi:~ $ python3 test.py
HelloWorld!
pi@raspberrypi:~ $

In this example, python3 is the interpreter and test.py is the filename. In case
the Python test.py file is not in the same directory where you’re invoking the python3
interpreter, you have to provide the absolute path of the Python file.

Chapter 2 ■ Introduction to Python and Digital Image Processing

33

IDEs for Python
An Integrated Development Environment (IDE) is a software suite that has all the basic
tools to write and test programs. A typical IDE has a compiler, a debugger, a code editor,
and a build automation tool. Most of the programming languages have various IDEs
to make programmers’ lives better. Python too has many IDEs. Let’s look at a few of
Python’s IDEs.

IDLE
IDLE stands for Integrated DeveLopment Environment. It comes bundled with
Python. IDLE3 is for Python 3. It’s popular with Python beginners. Just run idle3 in the
lxterminal. Figure 2-1 shows the IDLE3 code editor and an interactive prompt.

Figure 2-1.  IDLE3

Chapter 2 ■ Introduction to Python and Digital Image Processing

34

Geany
Geany is a text editor using the GTK+ toolkit with basic features of an integrated
development environment. It supports many file types and has some nice features. Check
out https://www.geany.org for more details. Figure 2-2 shows the Geany text editor.

Geany is pre-installed in the latest versions of Raspbian. If your Raspbian installation
does not have Geany, you can install it by running sudo apt-get install geany in the
lxterminal. Once it’s installed, it can be found using the Raspbian menu by choosing
Programming ➤ Geany Programmer’s Editor, as shown in Figure 2-3.

Figure 2-2.  Geany

www.allitebooks.com

https://www.geany.org/
http://www.allitebooks.org

Chapter 2 ■ Introduction to Python and Digital Image Processing

35

Type print("Hello World!") in the code editor and save the file in the /home/pi
directory as test.py. Click Build in the menu bar and then choose Execute. You can also
use the F5 keyboard shortcut to execute the program. The program will execute in an
lxterminal window. You have to press Enter to close the execution window. The default
Python interpreter for Geany is Python 2. You’ll need to change it to Python 3. To do that,
go to Build ➤ Set Build Commands. The window in Figure 2-4 will appear.

Figure 2-3.  The Raspbian menu

Chapter 2 ■ Introduction to Python and Digital Image Processing

36

In the Set Build Commands window, within the Execute Commands section, change
python "%f" (highlighted in the box in Figure 2-4) to python3"%f" to set the Python 3
interpreter as the default interpreter. After that, run the program again to verify that
everything works correctly.

Introduction to Digital Image Processing
To get started with digital image processing (DIP), we’ll briefly review your understanding
of a few basic concepts about the related topics first.

Signal Processing
Anything that carries any information, when represented mathematically, is called a
signal. The process or technique used to extract useful and relevant information from
a given signal is known as signal processing. The system that does this type of task is
known as a signal processing system. The best example of a signal processing system is
the human brain. It processes various types of signals from various senses. The human
brain is a biological signal processing system. When the system is made up of electronic
components, it is known as an electronic signal processing system. Signal processing is a
discipline that combines mathematics and electrical engineering.

Figure 2-4.  The Set Build Commands window

Chapter 2 ■ Introduction to Python and Digital Image Processing

37

There are two types of electronic signals—analog and digital. The following table lists
the differences between these two types of signals.

Analog Digital

A continuous signal Discrete in nature

Denoted by sinusoidal waves Denoted by square waves

A continuous signal A discrete signal

Deteriorated due to noise Not affected by noise

Not flexible Are flexible and can perform a variety of
operations

Consume less bandwidth Consume a lot of bandwidth

Draw a lot of power Draw less power compared to analog

There are lots of errors in capturing,
storing, and transmitting analog signals

Fewer errors compared to analog signals,
and there are checksum and error correction
algorithms available for digital signals.

Image Processing
An image is a signal. So, image processing is a type of signal processing. Image processing
systems are types of signal processing systems. The combination of the eye and brain is an
example of a biological image processing system. There are two types of image processing
systems—analog and digital.

Analog Image Processing
The days of still and motion film cameras represent the analog era. The sources of analog
images are film cameras (still and motion), older fax machines, and telex machines. Older
television systems, CRT monitors, and film projectors represent analog image processing
systems. Analog image processing involves using analog electronic systems, mechanical
parts, optics, and chemistry (to develop and store films) extensively.

Digital Image Processing
With the advent of digital digital computers, storage systems, image sensors, and digital
cameras, images can be captured, stored, and processed in digital formats. Using digital
computers to process and retrieve information from an image (analog and digital
images both) is known as digital image processing. It involves extensive usage of digital
sensors (digital cameras), digital computers, and digital storage devices. Here are some
applications of digital image processing systems:

•	 Computerized image editing, correction, enhancement,
denoising, etc.

•	 Medical image processing and diagnostics assistance

Chapter 2 ■ Introduction to Python and Digital Image Processing

38

•	 Space image processing (processing images from Hubble and
ground-based telescopes)

•	 Industrial applications like product inspection and sorting

•	 Biometrics (finger, face, and iris recognition)

•	 Film-making and visual effects

•	 Remote sensing (processing images from aerial and satellite
sources)

The following scientific disciplines significantly overlap with digital image
processing:

•	 Signal processing

•	 Digital electronics

•	 Computer/machine vision

•	 Biological vision

•	 Artificial intelligence, pattern recognition, and machine learning

•	 Robotics and robot vision

Using Raspberry Pi and Python for Digital Image
Processing (DIP)
Since DIP requires digital computers, you need to use a computer and an associated
programming platform to implement digital image processing. Raspberry Pi fulfills all the
requirements of a minimal power system required for DIP. The most appealing feature
of Raspberry Pi is its low cost. Also, it can be interfaced with a variety of digital image
sensors like Webcams and the Pi Camera module.

You learned that Python is an easy-to-learn programming language and helps you
focus on the task at hand rather than having to worry about syntax. It is also the most
preferred programming platform for Raspberry Pi. Many third-party image processing
and visualization libraries are available for Python. This makes Raspberry Pi and Python
the most obvious choice for beginners to get started with DIP.

EXERCISE

Complete the following exercise to better understand the Python 3 background.

•	 Visit and explore the Python home page at www.python.org.

•	 Visit and explore the Python documentation page at
https://docs.python.org/3/.

•	 Check for new features of the latest releases of Python at
https://docs.python.org/3/whatsnew/index.html.

http://www.python.org/
https://docs.python.org/3/
https://docs.python.org/3/whatsnew/index.html

Chapter 2 ■ Introduction to Python and Digital Image Processing

39

Conclusion
In this chapter, you learned about the background, history, and features of Python. You
also studied the important differences between Python 2.x and Python 3.x. You learned
to use Python 3 in scripting and interpreter modes. You looked at few popular IDEs for
Python and configured Geany for Python 3 on the Pi. Finally, you learned about the field
of digital image processing. In the next chapter, you will get started with a popular digital
image processing library in Python, called Pillow. You will also learn how to use the
Tkinter library to show images.

41© Ashwin Pajankar 2017
A. Pajankar, Raspberry Pi Image Processing Programming,
DOI 10.1007/978-1-4842-2731-2_3

CHAPTER 3

Getting Started

In the last chapter, you learned the philosophy of Python. You also learned why you
should use Python 3 and learned the concepts related to digital image processing. This
chapter starts image processing programming with Python 3 on the Raspberry Pi. You will
learn how to connect a Raspberry Pi to various camera sensors to acquire images. You
will be introduced to the pillow, Tkinter, and matplotlib libraries in Python 3.

Image Sources
To learn digital image processing, you are going to need digital images. There are
standard image datasets used all around the world and we will use two of them. They are
available in compressed and downloadable formats on the Internet:

http://imageprocessingplace.com/root_files_V3/image_databases.htm

http://sipi.usc.edu/database/

In this chapter, you will start programming. You need to organize all the files in a
single directory, with chapter sub-directories to save the code. Open the Lxterminal and
run the following commands to create a directory structure for the book code and image
datasets:

mkdir DIP
cd DIP
mkdir code
mkdir dataset
cd code
mkdir chapter03

Extract all the images into the Dataset directory. Now the directory structure will
look like Figure 3-1.

http://imageprocessingplace.com/root_files_V3/image_databases.htm
http://sipi.usc.edu/database/

Chapter 3 ■ Getting Started

42

We used the tree command in the DIP directory to view the directory structure.
The images we downloaded and extracted are used as standard images for all the

digital image processing and computer vision research all around the world.

Using the Webcam
Let’s see how to capture images using a standard USB Webcam. Raspberry Pi 3 has four
USB ports. You can use one of those to connect a Webcam to the Raspberry Pi. I am using
a Logitech HD c310 USB Webcam (see Figure 3-2).

Figure 3-1.  Directory structure for the book

Chapter 3 ■ Getting Started

43

■■ Note  Before purchasing a Webcam, check the Webcam’s compatibility with Pi at
http://elinux.org/RPi_USB_Webcams.

Attach the Webcam and run the lsusb command in the terminal. It displays a the
list of all the USB devices connected to the computer. The output will be similar to the
following:

Bus 001 Device 004: ID 046d:081b Logitech, Inc. Webcam C310
Bus 001 Device 003: ID 0424:ec00 Standard Microsystems Corp. SMSC9512/9514
Fast Ethernet Adapter
Bus 001 Device 002: ID 0424:9514 Standard Microsystems Corp.
Bus 001 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub

If you can see the USB Webcam in the output, it means that the Webcam is detected.
There are quite a few Linux utilities to capture images using a Webcam. If you like GUI,
guvcview is one of them. Use the following command to install it if it is not already
installed:

sudo apt-get install guvcview

Once guvcview is installed, it can be accessed from the menu or from the terminal
using the guvcview command.

Figure 3-2.  Logitech HD c310 USB Webcam

http://elinux.org/RPi_USB_Webcams

Chapter 3 ■ Getting Started

44

The other useful utility is fswebcam. It’s a command-line utility. Install it using the
following command:

sudo apt-get install fswebcam

You can invoke the fswebcam utility from the terminal to capture an image with the
Webcam as follows:

fswebcam -r 1280x960 --no-banner test.jpg

This will capture an image with the resolution of 1280x960 pixels. The --no-
banner flag is for disabling the timestamp banner from the image. The image is saved as
test.jpg. The output of the command is as follows:

--- Opening /dev/video0...
Trying source module v4l2...
/dev/video0 opened.
No input was specified, using the first.
--- Capturing frame...
Captured frame in 0.00 seconds.
--- Processing captured image...
Disabling banner.
Writing JPEG image to 'test.jpg'.

Then, check in the current directory for the image file called test.jpg.

The Pi Camera Module
Raspberry Pi foundation has designed dedicated Camera modules for the Raspberry Pi.
There are two versions of them and they both come in normal and NoIR (No Infrared)
varieties. The original versions are 5-megapixel Camera modules. The new versions are
8-megapixel Camera modules. Figure 3-3 shows an image of the new versions of the
Camera modules.

Chapter 3 ■ Getting Started

45

The one on the left is normal camera suitable for normal lighting conditions. The
one on the right is the NoIR version, suitable for low lighting conditions. More details
about them can be found on https://www.raspberrypi.org/products/camera-
module-v2. The camera can be connected to the Pi by a dedicated camera port, as
shown in Figure 3-4.

Figure 3-3.  The Pi Camera and Pi NoIR Camera modules

https://www.raspberrypi.org/products/camera-module-v2
https://www.raspberrypi.org/products/camera-module-v2

Chapter 3 ■ Getting Started

46

The Pi Camera module connects directly to the GPU. As it is attached to the GPU,
there is only a small impact on the CPU, leaving it available for other processing. The
difference between the Pi Camera and USB Webcam is that the Pi Camera module has a
higher performance and higher frame rate with h.264 video encoding.

The command-line utility you use to capture images using the Camera module is
raspistill. You call it as follows:

raspistill -o test.png

raspistill does not write anything to the console or terminal, so you need to check
the directory to see if test.png has been created or updated.

This is how you capture images with various cameras for the Pi for use in exploring
the world of DIP with Pi.

Using Python 3 for Digital Image Processing
Python 3 does not have any pre-installed libraries for image processing. The Python
Imaging Library (PIL) is one of the most popular beginner-friendly image processing
libraries used for image processing in Python.

Figure 3-4.  Attaching the Pi Camera module to the Pi

Chapter 3 ■ Getting Started

47

This library provides extensive file format support and reasonably powerful image
processing capabilities. The core Image library is designed for faster access to data stored
in a few basic image formats. The drawback with PIL is that after its last stable release
1.1.7 in 2009 and the last commit in 2011, there have not been any new releases. Also, PIL
does not support Python 3. Officially, we have not heard that the PIL is dead. However,
there is a friendly fork project that’s an unofficial replacement and enhancement for PIL.
It works well with Python 3 and is called Pillow. It is mostly backward compatible with
PIL. You can get more information about Pillow on its home page at https://python-
pillow.org/. Let’s get started with the basics of Pillow.

You can install Pillow by running the following command at the terminal:

sudo pip3 install pillow

This will install Pillow for Python 3.
To check if it is installed properly, open Python 3 in interpreter mode and run the

following sequence of commands. If Pillow is installed properly, these commands will
display its version number.

pi@raspberrypi:~ $ python3
Python 3.4.2 (default, Oct 19 2014, 13:31:11)
[GCC 4.9.1] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> from PIL import Image
>>> print(Image.VERSION)
1.1.7
>>>

Working with Images
Let’s work with images now. Before you begin, you have to install an image viewing utility
called xv in order for the built-in function show() to work. The problem is that the xv
utility is deprecated. So, you will use another utility, called xli, and point it to xv with a
Linux command. Run the following commands:

sudo apt-get install xli -y
cd /usr/local/bin
sudo ln -s /usr/bin/xli xv

Save the program shown in Listing 3-1 as prog01.py in the /home/pi/DIP/code/
chapter03 directory.

Listing 3-1.  prog01.py

from PIL import Image

im = Image.open("/home/pi/DIP/Dataset/4.2.04.tiff")
im.show()

https://python-pillow.org/
https://python-pillow.org/

Chapter 3 ■ Getting Started

48

Run this code with the following command:

python3 prog01.py

It will show the image in an xli window. This is the simplest Pillow program and it
loads an image in a Python variable with open() and displays it with show(). In the first
line, we’re importing the Image module of Pillow. You will learn more about this module
in the next chapter. The standard version of show() is not very efficient, since it saves the
image to a temporary file and calls the xv utility to display the image. It’s handy for the
purposes of debugging.

Due to the limitation of the show() function, we will use Python’s built-in GUI
module called Tkinter for displaying images whenever needed, as demonstrated in
Listing 3-2. In the later part of the book, you will become familiar with the matplotlib
library for displaying images.

Listing 3-2.  prog02.py

from PIL import Image, ImageTk
import tkinter as tk

im = Image.open("/home/pi/DIP/Dataset/4.2.04.tiff")

root = tk.Tk()
root.title("Test")

photo = ImageTk.PhotoImage(im)

l = tk.Label(root, image=photo)
l.pack()
l.photo = photo

root.mainloop()

This program uses Python’s built-in module for GUI, called Tkinter. We’re importing
it in the second line. The ImageTk module provides the functionality to convert the Pillow
image to an Tk-compatible image with the PhotoImage() function. We’re creating a Tk
window with the statement root = tk.Tk(). The code displays the Pillow image as a
label. The title() method sets the title of the image. In the code, the Label() and pack()
functions are used to create the image label. The line l.photo() = photo is for Python’s
garbage collector. root.mainloop() is the main loop for the Tk GUI.

Run the program using this code:

python3 prog02.py

Chapter 3 ■ Getting Started

49

■■ Note  If you are encountering an error related to importing while executing this
program, run the following command at the console:

sudo apt-get install python3-pil.imagetk

The output is shown in Figure 3-5.

Image Properties
Let’s take a look at the image properties using Listing 3-3.

Listing 3-3.  prog03.py

from PIL import Image

im = Image.open("/home/pi/DIP/Dataset/4.2.04.tiff")
print(im.mode)
print(im.format)
print(im.size)
print(im.info)
print(im.getbands())

Figure 3-5.  Sample Tkinter output

Chapter 3 ■ Getting Started

50

The following is the output of this program:

RGB
TIFF
(512, 512)
{'compression': 'raw', 'resolution': (1.0, 1.0)}
('R', 'G', 'B')

Let’s look at the program line by line.
The mode of an image defines the type and depth of the pixels in an image. Here are

the standard modes available in Pillow:

•	 1 (1-bit pixels, black and white, stored with one pixel per byte)

•	 L (8-bit pixels, black and white)

•	 P (8-bit pixels, mapped to any other mode using a color palette)

•	 RGB (3x8-bit pixels, true color)

•	 RGBA (4x8-bit pixels, true color with transparency mask)

•	 CMYK (4x8-bit pixels, color separation)

•	 YCbCr (3x8-bit pixels, color video format)

The format of the image refers to the file format. size refers to the resolution of the
image in the pixels. info refers to the auxiliary information of the image. The getbands()
function retrieves the bands of the colors in the image.

■■ Note  You can find more information about Pillow at:

pillow.readthedocs.io

Conclusion
In this chapter, you got started with the basics of Pillow. You learned how to load and
display an image. You learned a bit about image properties. You also learned how to
capture images using various sensors. In the next chapter, you’ll explore the Image,
ImageChops, and ImageOps modules in detail.

http://pillow.readthedocs.io

51© Ashwin Pajankar 2017
A. Pajankar, Raspberry Pi Image Processing Programming,
DOI 10.1007/978-1-4842-2731-2_4

CHAPTER 4

Basic Operations on Images

In the last chapter, you started with image processing using Pillow. You also used Tkinter
for displaying images. In this chapter, you will learn various arithmetic and logical
operations on images. You will explore Image, ImageChops, and ImageOps modules in
Pillow for implementing arithmetic and logical operations. You will also learn how to use
the slide bar in Tkinter to dynamically change the input to the Pillow methods.

Image Module
In the last chapter, you used the open() and show() functions in the Image module
of Pillow. In this chapter, you will explore the module in detail. You will study and
implement all the methods of this module that are used for basic operations on images.

Splitting and Merging Image Channels
In the grayscale images, there is only one image channel. This means that the grayscale
image is made of only a single, two-dimensional matrix that lists the grayscale intensity
of the corresponding pixels (values range from 0 to 255). For RGB images, there are three
image channels—Red, Green, and Blue. You can see the channel intensities separately by
splitting the images into constituent channels using the split() method. You can also
merge separate channels into a single image with the merge() method. Python code that
demonstrates the split() and merge() methods is shown in Listing 4-1.

Listing 4-1.  prog01.py

from PIL import Image, ImageTk
import tkinter as tk

im = Image.open("/home/pi/DIP/Dataset/4.1.04.tiff")

root = tk.Tk()
root.title("RED Channel Demo")

r, g, b = im.split()

photo1 = ImageTk.PhotoImage(r)
l1 = tk.Label(root, image=photo1)

Chapter 4 ■ Basic Operations on Images

52

l1.pack()
l1.photo = photo1

photo2 = ImageTk.PhotoImage(Image.merge("RGB", (r, g, b)))
l2 = tk.Label(root, image=photo2)
l2.pack()
l2.photo = photo2

root.mainloop()

The code in Listing 4-1 splits the image into separate channels. Then, it displays
the Red channel of the image. It also displays the original image by merging previously
split channels. The single channel is a matrix of intensity values. So, it is displayed as a
grayscale image on the screen. The colors manifest themselves when the code combines
all the channels into a single image.

The output window is shown in Figure 4-1.

Figure 4-1.  Red channel and the original image

Chapter 4 ■ Basic Operations on Images

53

Image Mode Conversion
You can change the mode of an image using the convert() method, as shown in
Listing 4-2.

Listing 4-2.  prog02.py

from PIL import Image, ImageTk
import tkinter as tk

im1 = Image.open("/home/pi/DIP/Dataset/4.1.05.tiff")
res1 = im1.convert("L")

root = tk.Tk()
root.title("Colorspace Conversion Demo")

photo = ImageTk.PhotoImage(res1)
l = tk.Label(root, image=photo)
l.pack()
l.photo = photo

root.mainloop()

The code in Listing 4-2 changes the mode of the image to L. The convert() method
supports all possible conversions between the RGB, CMYK, and L modes.

Image Blending
You can blend two images using the blend() method. It takes three arguments—the two
images to be blended and value of alpha. The mathematical formula it uses for blending
is as follows:

output = image1 * (1.0 - alpha) + image2 * alpha

Now, you will write a program that can change the value of alpha dynamically so that
you can experience the blending effect. For that, you will use the scale widget in Tkinter.

The program in Listing 4-3 demonstrates this process.

Listing 4-3.  prog03.py

from PIL import Image, ImageTk
import tkinter as tk

def show_value_1(alpha):
 print('Alpha: ', alpha)

 img = Image.blend(im1, im2, float(alpha))
 photo = ImageTk.PhotoImage(img)

Chapter 4 ■ Basic Operations on Images

54

 l['image'] = photo
 l.photo = photo

root = tk.Tk()
root.title('Blending Demo')

im1 = Image.open("/home/pi/DIP/Dataset/4.1.04.tiff")
im2 = Image.open("/home/pi/DIP/Dataset/4.1.05.tiff")

photo = ImageTk.PhotoImage(im1)

l = tk.Label(root, image=photo)
l.pack()
l.photo = photo

w1 = (tk.Scale(root, label="Alpha", from_=0, to=1,
 resolution=0.01, command=show_value_1, orient=tk.HORIZONTAL))
w1.pack()

root.mainloop()

The code in Listing 4-3 creates a scale widget using the tk.Scale() statement. The
statement has more than 79 characters, so in order to conform to the PEP8 standard, I
wrote it to fit in two lines, each consisting less than 79 characters. The parameters passed
to tk.Scale() are as follows:

•	 The Tkinter window variable name

•	 label: The label to be associated with scale

•	 from_ and to: The range of values

•	 resolution: The resolution of the scale bar

•	 command: The function to execute when the value of the scale
changes

•	 orient: The orientation of the scale

When you change the slider with the mouse pointer, it calls the custom show_
value_1() function. You are printing the current value of the track bar position to the
console for debugging purposes. The img = Image.blend(im1, im2, float(alpha))
statement creates a blended image. This code

photo = ImageTk.PhotoImage(img)
l['image'] = photo
l.photo = photo

updates the image in the Tkinter window. The show_value_1() function updates every
time you change the slider position and the new image is computed. This makes the
program interesting and interactive, as you can change the value of alpha to see the
transition effect.

Chapter 4 ■ Basic Operations on Images

55

The output is shown in Figure 4-2.

You will use the same basic code skeleton to look at many of the methods in Pillow.

Resizing an Image
You can resize an image using the resize() function, as shown in Listing 4-4.

Listing 4-4.  prog04.py

from PIL import Image, ImageTk
import tkinter as tk

def show_value_1(size):
 print('Resize: ', size, ' : ', size)

 img = im.resize((int(size), int(size)))
 photo = ImageTk.PhotoImage(img)
 l['image'] = photo
 l.photo = photo

root = tk.Tk()
root.attributes('-fullscreen', True)
im = Image.open("/home/pi/DIP/Dataset/4.1.05.tiff")

photo = ImageTk.PhotoImage(im)

Figure 4-2.  Image blending tool

Chapter 4 ■ Basic Operations on Images

56

l = tk.Label(root, image=photo)
l.pack()
l.photo = photo

w1 = (tk.Scale(root, label="Resize", from_=128,
 to=512, resolution=1, command=show_value_1, orient=tk.HORIZONTAL))
w1.pack()

root.mainloop()

This example varies the image size from (128, 128) to (512, 512). The resize()
command takes the new size tuple as an argument. The code also invokes the Tkinter
window in full-screen mode with the root.attributes() function call. To close this
window, you have to press Alt+F4 from the keyboard.

Run the code and take a look at the output.

Rotating an Image
You can use rotate() method, which takes the angle of rotation as an argument. The
code in Listing 4-5 demonstrates this idea.

Listing 4-5.  prog05.py

from PIL import Image, ImageTk
import tkinter as tk

def show_value_1(angle):
 print('Angle: ', angle)

 img = im.rotate(float(angle))
 photo = ImageTk.PhotoImage(img)
 l['image'] = photo
 l.photo = photo

root = tk.Tk()
root.title("Rotation Demo")
im = Image.open("/home/pi/DIP/Dataset/4.1.05.tiff")

photo = ImageTk.PhotoImage(im)

l = tk.Label(root, image=photo)
l.pack()
l.photo = photo

w1 = (tk.Scale(root, label="Angle", from_=0, to=90,
 resolution=1, command=show_value_1, orient=tk.HORIZONTAL))
w1.pack()

root.mainloop()

Chapter 4 ■ Basic Operations on Images

57

Run this code to experience the rotation effect on an image.
You can also transpose the images using the transpose() function. It takes one of

PIL.Image.FLIP_LEFT_RIGHT, PIL.Image.FLIP_TOP_BOTTOM, PIL.Image.ROTATE_90, PIL.
Image.ROTATE_180, PIL.Image.ROTATE_270, or PIL.Image.TRANSPOSE as an argument.
The code example in Listing 4-6 shows rotation at 180 degrees.

Listing 4-6.  prog06.py

from PIL import Image, ImageTk
import tkinter as tk

root = tk.Tk()
root.title("Transpose Demo")
im = Image.open("/home/pi/DIP/Dataset/4.1.05.tiff")

out = im.transpose(Image.ROTATE_180)

photo = ImageTk.PhotoImage(out)

l = tk.Label(root, image=photo)
l.pack()
l.photo = photo

root.mainloop()

Also, if you change the argument to transpose() as follows:

out = im.transpose(Image.FLIP_TOP_BOTTOM)

It will flip the image vertically.

Crop and Paste Operations
You can crop a part of an image using the crop() method. It takes an argument of four-tuples
specifying the coordinates of the box to be cropped from the image. Pillow also has a paste()
method to paste a rectangular image to another image. The paste() method takes the image
to be pasted and the coordinates as arguments. The program in Listing 4-7 demonstrates
how you can rotate a face using a clever combination of crop(), rotate(), and paste().

Listing 4-7.  prog08.py

from PIL import Image

im = Image.open("/home/pi/DIP/Dataset/4.1.03.tiff")
face_box = (100, 100, 150, 150)
face = im.crop(face_box)
rotated_face = face.transpose(Image.ROTATE_180)
im.paste(rotated_face, face_box)
im.show()

Chapter 4 ■ Basic Operations on Images

58

The output of the code in Listing 4-7 is shown in Figure 4-3.

Copying and Saving Images to a File
You can use the copy() method to copy an entire pillow image to another Python
variable. You can save a Pillow image to a file using the save() method. A demonstration
is shown in Listing 4-8.

Listing 4-8.  prog09.py

from PIL import Image

im = Image.open("/home/pi/DIP/Dataset/4.1.03.tiff")

im1 = im.copy()
im1.save("test.tiff")

The code in Listing 4-8 opens an image from a given location, copies it into the im1
variable, and saves it to the current location as test.tiff.

Knowing the Value of a Particular Pixel
You can determine the value of a particular pixel using getpixel(). It is usually a tuple
that represents the channel intensities. With RGB images, you get the Red, Green, and
Blue intensities. It is used as follows:

print(im.getpixel((100,100)))

Figure 4-3.  Crop and paste demo

Chapter 4 ■ Basic Operations on Images

59

ImageChops Module
This module contains many basic arithmetic and logical operations that you can use on
your images. Let’s look at them quickly one by one.

You can add two images using the add() method. The following is the sample code
for adding images:

im3 = ImageChops.add(im1, im2)

The add_module() method adds two images without clipping the result:

im3 = ImageChops.add_modulo(im1, im2)

The darker() method compares two images, pixel-by-pixel, and returns the darker
pixels.

im3 = ImageChops.darker(im1, im2)

The difference() method returns the difference of the absolute values of two
images:

im3 = ImageChops.difference(im1, im2)

It uses the following mathematical formula for calculating the difference:

image3 = abs(image1 - image2)

You can invert an image as follows:

im2 = ImageChops.invert(im1)

Just like with darker(), you can use the lighter() method to return the set of lighter
pixels:

im3 = ImageChops.lighter(im1, im2)

logical_and() and logical_or() are the logical operations on images. These are
explained with the help of black-and-white images. The following are example uses:

im1 = Image.open("/home/pi/DIP/Dataset/5.1.13.tiff")
im2 = Image.open("/home/pi/DIP/Dataset/5.1.13.tiff")
im2 = im2.transpose(Image.ROTATE_90)

im3 = ImageChops.logical_and(im1.convert("1"), im2.convert("1"))

im3 = ImageChops.logical_or(im1.convert("1"), im2.convert("1"))

Chapter 4 ■ Basic Operations on Images

60

These examples convert the grayscale images to black-and-white images first and
then perform the logical operations on them. The result is shown in Figure 4-4.

You can superimpose an image on another using the multiply() method:

im3 = ImageChops.multiply(im1, im2)

The screen() method superimposes inverted images on top of each other.

im3 = ImageChops.screen(im1, im2)

You can subtract one image from another using the subtract() method as follows:

im3 = ImageChops.subtract(im1, im2)

You can subtract without clipping the result as follows:

im3 = ImageChops.subtract_modulo(im1, im2)

Figure 4-4.  Logical operations on images

Chapter 4 ■ Basic Operations on Images

61

ImageOps Module
This module has many predefined and useful operations. You can automatically adjust
the contrast of an image as follows:

im2 = ImageOps.autocontrast(im1)

You can crop the borders of an image equally from all sides as follows:

im2 = ImageOps.crop(im1, 50)

The first argument of the ImageOps.crop() method is the image and the second
argument is the width of the cropped border in pixels.

You can also expand the border of an image. Expanded borders will be filled with
black pixels equally on all the sides.

im2 = ImageOps.expand(im1, 50)

You can flip an image vertically as follows:

im2 = ImageOps.flip(im1)

You can also flip it horizontally as follows:

im2 = ImageOps.mirror(im1)

You can reduce the number of bits of all the color channels using the posterize()
method. It takes the image and the number of bits to keep for every channel as
arguments. The following is an example:

im2 = ImageOps.posterize(im1, 3)

This example keeps only three bits per channel. The result is shown in Figure 4-5.

Chapter 4 ■ Basic Operations on Images

62

The solarize() method inverts all the pixels above a particular grayscale threshold.

im2 = ImageOps.solarize(im1, 100)

The result is shown in Figure 4-6.

Figure 4-6.  Solarize operation

Figure 4-5.  Posterizing an image

Chapter 4 ■ Basic Operations on Images

63

EXERCISE

Complete the following coding exercises to gain a better understanding of Pillow.

1.	 Write the code to show the Green and Blue channels of an
image.

2.	 Write the code for image conversion between the CMYK and L
modes.

Conclusion
This chapter explored Image, ImageChops, and ImageOps in detail. In the next chapter,
you will explore a few more Pillow modules for advanced operations on images like
filtering, enhancements, histograms, and quantization.

65© Ashwin Pajankar 2017
A. Pajankar, Raspberry Pi Image Processing Programming,
DOI 10.1007/978-1-4842-2731-2_5

CHAPTER 5

Advanced Operations on
Images

The last chapter explored the arithmetic and logical operations on images with
Pillow. There is more to the world of image processing than that. Pillow has a lot more
functionality to offer. You can enhance and filter images. You can also calculate histogram
of image and its channels. You will learn all these advanced operations with Pillow in this
chapter.

The ImageFilter Module
You can use the ImageFilter module in Pillow to perform a variety of filtering operations
on images. You can use filters to remove noise, to add blur effects, and to sharpen and
smooth your images. Listing 5-1 shows a simple image-filtering program using the
ImageFilter module.

Listing 5-1.  prog01.py

from PIL import Image, ImageFilter

im1 = Image.open("/home/pi/DIP/Dataset/4.1.08.tiff")

im2 = im1.filter(ImageFilter.BLUR)
im2.show()

Chapter 5 ■ Advanced Operations on Images

66

Figure 5-1 shows the output of this program.

Apart from BLUR, Pillow has the following filters. Modify the previous code and try all
the filters.

CONTOUR
DETAIL
EDGE_ENHANCE
EDGE_ENHANCE_MORE
EMBOSS
FIND_EDGES
SMOOTH
SMOOTH_MORE
SHARPEN

You can also define custom filters. Listing 5-2 shows how to define a custom filter.

Listing 5-2.  prog02.py

from PIL import Image, ImageFilter

im1 = Image.open("/home/pi/DIP/Dataset/4.1.08.tiff")

custom_filter = ImageFilter.GaussianBlur(radius=float(5))
im2 = im1.filter(custom_filter)
im2.show()

Figure 5-1.  The blur operation

Chapter 5 ■ Advanced Operations on Images

67

The code in Listing 5-2 uses the GaussianBlur() method for a custom filter. The
radius of the blur is 5. You can change the radius. Let’s use Tkinter to modify the code and
make the blur radius dynamic by using the slider in Tkinter (see Listing 5-3).

Listing 5-3.  prog03.py

from PIL import Image, ImageTk, ImageFilter
import tkinter as tk

def show_value_1(blur_radius):
 print('Gaussian Blur Radius: ', blur_radius)

 custom_filter = ImageFilter.GaussianBlur(radius=float(blur_radius))
 img = im1.filter(custom_filter)
 photo = ImageTk.PhotoImage(img)
 l['image'] = photo
 l.photo = photo

root = tk.Tk()
root.title('Gaussian Blur Filter Demo')

im1 = Image.open("/home/pi/DIP/Dataset/4.1.04.tiff")

photo = ImageTk.PhotoImage(im1)

l = tk.Label(root, image=photo)
l.pack()
l.photo = photo

w1 = (tk.Scale(root, label="Blur Radius", from_=0, to=10,
 resolution=0.2, command=show_value_1, orient=tk.HORIZONTAL))
w1.pack()

root.mainloop()

Chapter 5 ■ Advanced Operations on Images

68

The output of Listing 5-3 is shown in Figure 5-2.

You can see the GaussianBlur() has been applied with 10 as the radius of blur in
the figure.

The next filter you will explore is the convolution filter. You need to understand
the concept of kernels for this example. Kernels are the square matrices used in image
processing operations. You mostly use kernels for filtering. Kernels produce a variety
of effects, including blurs, smoothing, and noise reduction. They are especially used to
remove high-frequency components from an image. This process is also called low-pass
filtering.

Figure 5-3 shows an example kernel.

Figure 5-3.  An example kernel

Figure 5-2.  Gaussian blur demo

Chapter 5 ■ Advanced Operations on Images

69

Listing 5-4 shows a code example of the kernel used for image convolution.

Listing 5-4.  prog04.py

from PIL import Image, ImageTk, ImageFilter
import tkinter as tk

root = tk.Tk()
root.title('Convolution Kernel Demo')

im1 = Image.open("/home/pi/DIP/Dataset/4.1.05.tiff")

custom_filter = ImageFilter.Kernel((3, 3), [1, 1, 1, 1, -4, 1, 1, 1, 1])

img = im1.filter(custom_filter)

photo = ImageTk.PhotoImage(img)

l = tk.Label(root, image=photo)
l.pack()
l.photo = photo

root.mainloop()

Run the program in Listing 5-4 and check out the output. As of now, the
ImageFilter.Kernel() method supports (3,3) and (5,5) kernels only.

You can use the Digital Unsharp Mask filter, as shown in Listing 5-5.

Listing 5-5.  prog05.py

from PIL import Image, ImageTk, ImageFilter
import tkinter as tk

def show_value_1(blur_radius):
 print('Unsharp Blur Radius: ', blur_radius)

 custom_filter = ImageFilter.UnsharpMask(radius=float(blur_radius))
 img = im1.filter(custom_filter)
 photo = ImageTk.PhotoImage(img)
 l['image'] = photo
 l.photo = photo

root = tk.Tk()
root.title('Digital Unsharp Mask Demo')

im1 = Image.open("/home/pi/DIP/Dataset/4.1.04.tiff")

photo = ImageTk.PhotoImage(im1)

Chapter 5 ■ Advanced Operations on Images

70

l = tk.Label(root, image=photo)
l.pack()
l.photo = photo

w1 = (tk.Scale(root, label="Blur Radius", from_=0, to=10,
 resolution=0.2, command=show_value_1, orient=tk.HORIZONTAL))
w1.pack()

root.mainloop()

The digital unsharping mask sharpens the image. Figure 5-4 shows the output with a
mask radius of size 10.

Figure 5-4.  Digital unsharp demo

The radius of size 10 creates a highly sharpened image.
Let’s study the median, min, and max filters in Pillow. All these filters only accept an

odd number as the window size. The code in Listing 5-6 demonstrates a median filter.

Listing 5-6.  prog06.py

from PIL import Image, ImageTk, ImageFilter
import tkinter as tk

def show_value_1(window_size):
 print('Window Size: ', window_size)

 if (int(window_size) % 2 == 0):

Chapter 5 ■ Advanced Operations on Images

71

 �print("Invalid Window Size...\nWindow Size must be an odd number...")
 else:
 custom_filter = ImageFilter.MedianFilter(size=int(window_size))
 img = im1.filter(custom_filter)
 photo = ImageTk.PhotoImage(img)
 l['image'] = photo
 l.photo = photo

root = tk.Tk()
root.title('Median Filter Demo')

im1 = Image.open("/home/pi/DIP/Dataset/4.1.04.tiff")

photo = ImageTk.PhotoImage(im1)

l = tk.Label(root, image=photo)
l.pack()
l.photo = photo

w1 = (tk.Scale(root, label="Window Size", from_=1, to=19,
 resolution=1, command=show_value_1, orient=tk.HORIZONTAL))
w1.pack()

root.mainloop()

The output shown in Figure 5-5 has a window size of 19.

Figure 5-5.  A median filter

Chapter 5 ■ Advanced Operations on Images

72

If you change the filter to a min filter using the following code line:

custom_filter = ImageFilter.MinFilter(size=int(window_size))

You’ll get the output shown in Figure 5-6.

Here’s an example of the max filter:

custom_filter = ImageFilter.MaxFilter(size=int(window_size))

The output for the max filer is shown in Figure 5-7.

Figure 5-6.  A min filter

Chapter 5 ■ Advanced Operations on Images

73

Next, you’ll see an example of a mode filter. The mode filter works with even and odd
window sizes. Listing 5-7 shows a code example of the mode filter.

Listing 5-7.  prog09.py

from PIL import Image, ImageTk, ImageFilter
import tkinter as tk

def show_value_1(window_size):
 print('Window Size: ', window_size)

 custom_filter = ImageFilter.ModeFilter(size=int(window_size))
 img = im1.filter(custom_filter)
 photo = ImageTk.PhotoImage(img)
 l['image'] = photo
 l.photo = photo

root = tk.Tk()
root.title('Mode Filter Demo')

im1 = Image.open("/home/pi/DIP/Dataset/4.1.04.tiff")

photo = ImageTk.PhotoImage(im1)

Figure 5-7.  The max filter

Chapter 5 ■ Advanced Operations on Images

74

l = tk.Label(root, image=photo)
l.pack()
l.photo = photo

w1 = (tk.Scale(root, label="Window Size", from_=1, to=19,
 resolution=1, command=show_value_1, orient=tk.HORIZONTAL))
w1.pack()

root.mainloop()

The output with a window size of 19 is shown in Figure 5-8.

The ImageEnhance Module
You can use the ImageEnhance module in Pillow to adjust the contrast, color, sharpness,
and brightness of an image just like you used to do it in old analog television sets.

Listing 5-8 shows the code for color adjustment.

Listing 5-8.  prog10.py

from PIL import Image, ImageTk, ImageEnhance
import tkinter as tk

def show_value_1(factor):
 print('Color Factor: ', factor)

Figure 5-8.  The mode filter

Chapter 5 ■ Advanced Operations on Images

75

 enhancer = ImageEnhance.Color(im1)
 img = enhancer.enhance(float(factor))
 photo = ImageTk.PhotoImage(img)
 l['image'] = photo
 l.photo = photo

root = tk.Tk()
root.title('Color Adjustment Demo')

im1 = Image.open("/home/pi/DIP/Dataset/4.1.04.tiff")

photo = ImageTk.PhotoImage(im1)

l = tk.Label(root, image=photo)
l.pack()
l.photo = photo

w1 = (tk.Scale(root, label="Color Factor", from_=0, to=2,
 resolution=0.1, command=show_value_1, orient=tk.HORIZONTAL))
w1.pack()
w1.set(1)
root.mainloop()

In Listing 5-8, the image processing code is as follows:

enhancer = ImageEnhance.Color(im1)
img = enhancer.enhance(float(factor))

You can follow the same style of coding for all the other image enhancement
operations. First, you create an enhancer and then you apply the enhancement factor to
that. You also must have observed w1.set(1) in the code. This sets the scale to 1 at the
beginning. Changing the argument to set() changes the default position of the scale
pointer.

Run the program in Listing 5-8 and take a look at the output.
To change the contrast, use the code in Listing 5-9.

Listing 5-9.  prog11.py

from PIL import Image, ImageTk, ImageEnhance
import tkinter as tk

def show_value_1(factor):
 print('Contrast Factor: ', factor)

 enhancer = ImageEnhance.Contrast(im1)
 img = enhancer.enhance(float(factor))
 photo = ImageTk.PhotoImage(img)
 l['image'] = photo
 l.photo = photo

Chapter 5 ■ Advanced Operations on Images

76

root = tk.Tk()
root.title('Contrast Adjustment Demo')

im1 = Image.open("/home/pi/DIP/Dataset/4.1.04.tiff")

photo = ImageTk.PhotoImage(im1)

l = tk.Label(root, image=photo)
l.pack()
l.photo = photo

w1 = (tk.Scale(root, label="Contrast Factor", from_=0, to=2,
 resolution=0.1, command=show_value_1, orient=tk.HORIZONTAL))
w1.pack()
w1.set(1)
root.mainloop()

Run the program in Listing 5-9 and take a look at the output.
The following enhancer is used to change the brightness:

enhancer = ImageEnhance.Brightness(im1)

The following enhancer is used to change the sharpness:

enhancer = ImageEnhance.Sharpness(im1)

For finer control of the sharpness, use the following code for the scale:

w1 = (tk.Scale(root, label="Sharpness Factor", from_=0, to=2,
 resolution=0.1, command=show_value_1, orient=tk.HORIZONTAL))

These were all image enhancement operations. The next section looks at more
advanced image operations.

Color Quantization
Color quantization is the process of reducing the number of distinct colors in an image.
The new image should be similar to the original image in appearance. Color quantization
is done for a variety of purposes, including when you want to store an image in a digital
medium. Real-life images have millions of colors. However, encoding them in the digital
format and retaining all the color related information would result in a huge image size.
If you limit the number of colors in the image, you’ll need less space to store the color-
related information. This is the practical application of quantization. The Image module
has a method called quantize() that’s used for image quantization.

Chapter 5 ■ Advanced Operations on Images

77

The code in Listing 5-10 demonstrates image quantization in Pillow.

Listing 5-10.  prog14.py

from PIL import Image, ImageTk
import tkinter as tk

def show_value_1(num_of_col):
 print('Number of colors: ', num_of_col)

 img = im1.quantize(int(num_of_col))
 photo = ImageTk.PhotoImage(img)
 l['image'] = photo
 l.photo = photo

root = tk.Tk()
root.title('Color Quantization Demo')

im1 = Image.open("/home/pi/DIP/Dataset/4.1.06.tiff")

photo = ImageTk.PhotoImage(im1)

l = tk.Label(root, image=photo)
l.pack()
l.photo = photo

w1 = (tk.Scale(root, label="Number of colors", from_=4, to=16,
 resolution=1, command=show_value_1, orient=tk.HORIZONTAL))
w1.pack()
w1.set(256)
root.mainloop()

Run the program in Listing 5-10 and take a look at the results of quantization by
changing the slider.

Histograms and Equalization
You likely studied frequency tables in statistics in school. Well, the histogram is nothing
but a frequency table visualized. You can calculate a histogram of any dataset represented
in the form of numbers.

The Image module has a method called histogram() that’s used to calculate the
histogram of an image. An RGB image has three 8-bit channels. This means that it
can have a staggering 256x256x256 number of colors. Drawing a histogram of such a
dataset would be very difficult. So, the histogram() method calculates the histogram of
individual channels in an image. Each channel has 256 distinct intensities. The histogram
is a list of values for each intensity level of a channel.

Chapter 5 ■ Advanced Operations on Images

78

The histogram for each channel has 256 numbers in the list. Suppose the histogram
for the Red channel has the values (4, 8, 0, 19, …, 90). This means that four pixels have the
red intensity of 0, eight pixels have the red intensity of 1, no pixel has red intensity of 2, 19
pixels have the red intensity of three, and so on, until the last value, which indicates that
90 pixels have the red intensity of 255.

When you combine the histogram of all three channels, you get a list of 768 numbers.
In this chapter, we will just compute the histogram. We will not show it visually. When
you learn about the advanced image processing library scipy.ndimage, you will then learn
how to represent histograms for each channel individually.

The code in Listing 5-11 calculates and stores the histograms of an image and its
individual channels.

Listing 5-11.  prog15.py

from PIL import Image

im1 = Image.open("/home/pi/DIP/Dataset/4.2.07.tiff")

print(len(im1.histogram()))

r, g, b = im1.split()

print(len(r.histogram()))
print(len(g.histogram()))
print(len(b.histogram()))

Modify this program to directly print the histograms of the image and channels.
A grayscale image (L mode image) will have a histogram of only 256 values because it

has only a single channel.

Histogram Equalization
You can adjust the histogram to enhance the image contrast. This technique is known as
histogram equalization. The ImageOps.equalize() method equalizes the histogram of
the image. Listing 5-12 shows an example of this process.

Listing 5-12.  prog16.py

from PIL import Image, ImageOps

im1 = Image.open("/home/pi/DIP/Dataset/4.2.07.tiff")

print(im1.histogram())

im2 = ImageOps.equalize(im1)

print(im2.histogram())

im2.show()

Chapter 5 ■ Advanced Operations on Images

79

The program in Listing 5-12 prints the histogram of the original image after the
equalization. Add the im1.show() statement to the program and then run it to see the
difference between the images.

EXERCISE

Complete the following exercises to gain a better understanding of advanced image
processing methods in Pillow.

1.	 Write the code to demonstrate all the predefined filters defined
at the beginning of the chapter.

2.	 Calculate and equalize the histogram for a grayscale (L mode)
image.

3.	 Modify the code for convolution using the following kernel:

custom_filter = ImageFilter.Kernel((5, 5), [1,1,1,1,1,
1,1,1,1,1, 1,1,-10,1,1, 1,1,1,1,1, 1,1,1,1,1])

Conclusion
In this chapter, you explored the Pillow library for advanced image processing. Pillow
is good for the beginners who want to get started with an easy-to-program and less
mathematical image-processing library. However, if you want a more mathematical and
scientific approach, then Pillow might not be your best choice. In the following chapters,
you will learn about a more powerful library for image processing, scipy.ndimage. It’s
widely used by scientific community all over the world for image processing. You will
also learn the basics of the NumPy and matplotlib libraries, which come in handy when
processing and displaying images.

81© Ashwin Pajankar 2017
A. Pajankar, Raspberry Pi Image Processing Programming,
DOI 10.1007/978-1-4842-2731-2_6

CHAPTER 6

Introduction to Scientific
Python

In the last chapter, you studied advanced image processing with Pillow. Pillow is a nice
starting point for image processing operations. However, it has its own limitations. When
it comes to implementing elaborate image processing operations like segmentation,
morphological operations, advanced filters, and measurements, Pillow is inadequate.
You really need to use advanced libraries for image processing. The SciPy toolkit serves
as a foundation for all the scientific usage of Python. It is extensively used for a variety of
scientific operations.

SciPy stands for Scientific Python. It extensively uses NumPy (Numerical Python) and
matplotlib for numeric operations and data visualization. This chapter explains SciPy,
NumPy, and matplotlib. It also explores introductory level programming examples of
NumPy, scipy.misc, and matplotlib.

The Scientific Python Stack
SciPy is an open source library for scientific and technical computing in Python.

SciPy has modules for ordinary differential equations solvers, fast Fourier
transforms, optimization, linear algebra, integration, interpolation, signal processing, and
image processing. SciPy is used extensively by scientific, mathematical, and engineering
communities around the world. There are many other libraries that use core modules of
SciPy and NumPy. OpenCV and SciKit are good examples of this.

The SciPy stack has the following components:

•	 NumPy

•	 SciPy library

•	 matplotlib

•	 IPython

•	 Pandas

•	 Sympy

•	 Nose

Chapter 6 ■ Introduction to Scientific Python

82

Figure 6-1 aptly summarizes the role of the Python SciPy stack in the world of
scientific computing.

Installing the SciPy Stack
The best way to install the SciPy stack on Raspberry Pi is to use pip.

First, upgrade pip with the following command:

sudo python3 -m pip install --upgrade pip

Then install the SciPy stack with the following command:

pip3 install numpy scipy matplotlib ipython jupyter pandas sympy nose

This installs the entire SciPy stack.

A Simple Program
The scipy.misc module is used for basic image processing operations. Listing 6-1 shows a
basic example of reading and displaying an image.

Listing 6-1.  prog01.py

from scipy import misc

img = misc.imread('/home/pi/DIP/Dataset/4.2.01.tiff')

misc.imshow(img)

Figure 6-1.  The SciPy stack

Chapter 6 ■ Introduction to Scientific Python

83

The code in Listing 6-1 reads an image from the path provided in the imread()
method and then the imshow() method will display it using xlib.

The scipy.misc module has three built-in images, which can be used as shown in
Listing 6-2.

Listing 6-2.  prog02.py

from scipy import misc

img1 = misc.face()
img2 = misc.lena()
img3 = misc.ascent()

misc.imshow(img1)
misc.imshow(img2)
misc.imshow(img3)

face() is a face of a raccoon. lena() is standard test image and ascent() is a
grayscale image.

Simple Image Processing
scipy.misc has three methods for simple operations. scipy.imfilter() applies various
filters to images. Listing 6-3 shows an example.

Listing 6-3.  prog03.py

from scipy import misc

misc.imshow(misc.imfilter(misc.face(), 'edge_enhance_more'))

The code in Listing 6-3, doesn’t use an intermediate variable to store the image. It
displays it directly by passing the imshow() method. The imfilter() method accepts two
arguments. The first is the image to be filtered. The second is the type of pre-defined filter
to be applied. Allowed values for the filter-type are 'blur', 'contour', 'detail',
'edge_enhance', 'edge_enhance_more', 'emboss', 'find_edges', 'smooth',
'smooth_more', and 'sharpen'.

You can resize the image to 50 percent, as shown in Listing 6-4.

Listing 6-4.  prog04.py

from scipy import misc

misc.imshow(misc.imresize(misc.face(), 50))

Chapter 6 ■ Introduction to Scientific Python

84

You can also rotate the image at a certain angle, as shown in Listing 6-5.

Listing 6-5.  prog05.py

from scipy import misc

misc.imshow(misc.imrotate(misc.face(), 45))

Introduction to NumPy
Let’s get started with the basics of the NumPy library in Python. Consider the code in
Listing 6-6.

Listing 6-6.  prog06.py

from scipy import misc

img = misc.face()

print(type(img))

The output of this program is as follows:

<class 'numpy.ndarray'>

This means that the data type of the image is ndarray in NumPy. In order to get
started with the scientific image processing and any type of scientific programming in
general, you need to know what NumPy is.

The NumPy homepage at www.numpy.org says this:

NumPy is the fundamental package for scientific computing with Python.

It offers the following features:

•	 A powerful multi-dimensional array object

•	 Useful methods for mathematical computations

•	 Wrappers and tools for integration with faster C/C++ and
FORTRAN code

In order to get started with the image processing with SciPy and NumPy, you need to
learn basics of N-dimensional (or multi-dimensional) array objects in NumPy. Let’s get
started with that.

http://www.numpy.org/

Chapter 6 ■ Introduction to Scientific Python

85

NumPy’s N-dimensional array is a homogeneous (contains all the elements of the
same data type) multidimensional array. It has multiple dimensions. Each dimension
is known as an axis. The class corresponding to the N-dimensional array in NumPy is
numpy.ndarray. This is what you saw in Listing 6-6. All the major image processing and
computer vision libraries, like Mahotas, OpenCV, scikit-image, and scipy.ndimage
(you will extensively study this last one in this book) use numpy.ndarray to represent
images. All these libraries have read(), open(), and imread() methods for loading
images from disk to a numpy.ndarray object.

NumPy and N-dimensional arrays in NumPy are such vast topics themselves that it
would require volumes of books to explain them fully. Hence, you will learn the relevant
and important features of these as and when they’re needed. For now, you need to
understand a few important ndarray properties that will help you understand important
attributes of the images that ndarray represents.

Consider the code in Listing 6-7.

Listing 6-7.  prog07.py

from scipy import misc

img = misc.face()

print(img.dtype)
print(img.shape)
print(img.ndim)
print(img.size)

The output is as follows:

uint8
(768, 1024, 3)
3
2359296

Let’s look at what each of these means. The dtype attribute is for the data type of
the elements that represent the image. In this case, it is uint8, which means an unsigned
8-bit integer. This means it can have 256 distinct values. shape means the dimension/
size of the images. In this case, it is a color image. Its resolution is 1024x768 and it has
three color channels corresponding to the colors Red, Green, and Blue. Each channel for
each pixel can have one of the 256 possible values. So a combination of this can produce
256*256*256 distinct colors for each pixel.

You can visualize a color image as an arrangement of three two-dimensional planes.
A grayscale image is a single plane of grayscale values. ndim represents the dimensions.
A color image has three dimensions and a grayscale image has two dimensions.
size represents for the total number of elements in the array. It can be calculated by
multiplying the values of the dimensions. In this case, it is 768*1024*3=2359296.

Chapter 6 ■ Introduction to Scientific Python

86

You can see the RGB value corresponding to each individual pixel, as shown in
Listing 6-8.

Listing 6-8.  prog08.py

from scipy import misc

img = misc.face()

print(img[10, 10]))

The code in Listing 6-8 accesses the value of the pixel located at (10, 10). The output
is [172 169 188].

This concludes the basics about NumPy and image processing. You will learn more
about NumPy as and when needed throughout the chapters.

Matplotlib
You have used the misc.imshow() method for displaying an image. While this method
is useful for simple applications, it is primitive. You need to use a more advanced
framework for scientific applications. Matplotlib serves this purpose. It is a Matlab-style
plotting and data visualization library for Python. You installed it when you installed the
SciPy stack. It is an integral part of the SciPy stack. Just like NumPy, matplotlib is too a
vast topic and warrants another book. The examples in this book use the pyplot module
in matplotlib for the image processing requirements. Listing 6-9 shows a simple program
for the image processing.

Listing 6-9.  prog09.py

import scipy.misc as misc
import matplotlib.pyplot as plt

img = misc.face()

plt.imshow(img)
plt.show()

The code in Listing 6-9 imports the pyplot module. The imshow() method adds the
image to the plot window. The show() method shows the plot window. The output is
shown in Figure 6-2.

Chapter 6 ■ Introduction to Scientific Python

87

You can also turn off the axes (or the ruler) and add a title to the image, as shown in
Listing 6-10.

Listing 6-10.  prog10.py

import scipy.misc as misc
import matplotlib.pyplot as plt

img = misc.lena()

plt.imshow(img, cmap='gray')
plt.axis('off')
plt.title('face')
plt.show()

Figure 6-2.  The pyplot demo

www.allitebooks.com

http://www.allitebooks.org

Chapter 6 ■ Introduction to Scientific Python

88

As the image is grayscale, you have to choose a gray color map in the imshow()
method so the image color space is properly displayed in the plot window. axis('off') is
used to turn the axes off. The title() method is used to specify the title of the image. The
output is shown in Figure 6-3.

You can use imshow() to push multiple images to an image grid in the plot window,
as shown in Listing 6-11.

Listing 6-11.  prog11.py

import scipy.misc as misc
import matplotlib.pyplot as plt

img1 = misc.face()
img2 = misc.ascent()
img3 = misc.lena()

titles = ['face', 'ascent', 'lena']
images = [img1, img2, img3]

plt.subplot(1, 3, 1)
plt.imshow(images[0])
plt.axis('off')
plt.title(titles[0])

plt.subplot(1, 3, 2)

Figure 6-3.  Lena image with title and axes off

Chapter 6 ■ Introduction to Scientific Python

89

plt.imshow(images[1], cmap='gray')
plt.axis('off')
plt.title(titles[1])

plt.subplot(1, 3, 3)
plt.imshow(images[2], cmap='gray')
plt.axis('off')
plt.title(titles[2])

plt.show()

You have used the subplot() method before, with imshow(). The first two arguments
in the subplot() method specify the dimensions of the grid and the third argument
specifies the position of the image in the grid. The numbering of the images in the grid
starts from the top-left edge. The top-left position is the first position, the next position is
the second one, and so on. The result is shown in Figure 6-4.

Image Channels
You can separate image channels of a multi-channel image. The code for that process is
shown in Listing 6-12.

Listing 6-12.  Prog12.py

import scipy.misc as misc
import matplotlib.pyplot as plt

img = misc.face()

r = img[:, :, 0]
g = img[:, :, 1]
b = img[:, :, 2]

titles = ['face', 'Red', 'Green', 'Blue']
images = [img, r, g, b]

Figure 6-4.  Multiple image grid

Chapter 6 ■ Introduction to Scientific Python

90

plt.subplot(2, 2, 1)
plt.imshow(images[0])
plt.axis('off')
plt.title(titles[0])

plt.subplot(2, 2, 2)
plt.imshow(images[1], cmap='gray')
plt.axis('off')
plt.title(titles[1])

plt.subplot(2, 2, 3)
plt.imshow(images[2], cmap='gray')
plt.axis('off')
plt.title(titles[2])

plt.subplot(2, 2, 4)
plt.imshow(images[3], cmap='gray')
plt.axis('off')
plt.title(titles[3])

plt.show()

The result of the code in Listing 6-12 is shown in Figure 6-5.

Figure 6-5.  Separate image channels

Chapter 6 ■ Introduction to Scientific Python

91

You can use the np.dstack() method, which merges all the channels, to create the
original image, as shown in Listing 6-13.

Listing 6-13.  prog13.py

import scipy.misc as misc
import matplotlib.pyplot as plt
import numpy as np

img = misc.face()

r = img[:, :, 0]
g = img[:, :, 1]
b = img[:, :, 2]

output = np.dstack((r, g, b))

plt.imshow(output)
plt.axis('off')
plt.title('Combined')
plt.show()

Run the code in Listing 6-13 to see the workings of the np.dstack() for yourself.

Conversion Between PIL Image Objects and
NumPy ndarrays
You can use the np.asarray() and Image.fromarray() methods to convert between PIL
images and NumPyndarrays, as shown in Listing 6-14.

Listing 6-14.  prog14.py

from PIL import Image
import numpy as np
import matplotlib.pyplot as plt

img = Image.open('/home/pi/DIP/Dataset/4.2.01.tiff')

print(type(img))
img.show()

num_img = np.asarray(img)
plt.imshow(num_img)
plt.show()
print(type(num_img))

Chapter 6 ■ Introduction to Scientific Python

92

img = Image.fromarray(np.uint8(num_img))

print(type(img))
img.show()

The console output is as follows:

<class 'PIL.TiffImagePlugin.TiffImageFile'>
<class 'numpy.ndarray'>
<class 'PIL.Image.Image'>

You can use the misc.fromimage() and misc.toimage() methods to achieve the
same conversion, as shown in Listing 6-15.

Listing 6-15.  prog15.py

from PIL import Image
import scipy.misc as misc
import matplotlib.pyplot as plt

img = Image.open('/home/pi/DIP/Dataset/4.2.01.tiff')

print(type(img))
img.show()

num_img = misc.fromimage(img)

print(type(num_img))
plt.imshow(num_img)
plt.show()

img = misc.toimage(num_img)

print(type(img))
img.show()

The console output of Listing 6-15 is the same as the earlier example shown in
Listing 6-14.

Conclusion
In this chapter, you were introduced to SciPy stack, NumPy, and matplotlib. You also
explored the scipy.misc module for basic image processing and conversion. In the next
chapter, you will start exploring the scipy.ndimage module for more image processing
operations.

93© Ashwin Pajankar 2017
A. Pajankar, Raspberry Pi Image Processing Programming,
DOI 10.1007/978-1-4842-2731-2_7

CHAPTER 7

Transformations and
Measurements

In the last chapter, you were introduced to the scientific Python stack. You learned the
basics of NumPy and matplotlib. You learned about the useful modules called ndarray and
pyplot from NumPy and matplotlib respectively. You also learned about the scipy.misc
module and basic image processing with it. In this chapter, you will further explore SciPy.
You will learn to use the scipy.ndimage library for processing images. You will explore the
methods for transformations and measurements. This is a short and simple chapter.

Transformations
You studied a few basic transformations with scipy.misc in the last chapter. Here, you
will look at few more.

■■ Note  Just like with scipy.misc, scipy.ndimage has an imread() method that
serves the same purpose as scipy.misc.imread(). You will be using face(), lena(), and
ascent() throughout the rest of the book. However, if you want to use other images in the
Dataset directory, you can use imread() from the misc or ndimage module in SciPy.

Let’s get started with the simple transformation of shifting. The shift() method
accepts the image and the values to be applied to the coordinates for shifting as
arguments. The example is shown in Listing 7-1.

Listing 7-1.  prog01.py

import scipy.misc as misc
import scipy.ndimage as ndi
import matplotlib.pyplot as plt

Chapter 7 ■ Transformations and Measurements

94

img = misc.lena()

output = ndi.shift(img, [20, -20])

plt.imshow(output, cmap='gray')
plt.title('Shift Demo')
plt.axis('off')
plt.show()

Figure 7-1 shows the output.

You can also zoom in on the image using the zoom() method. You have to pass the
image and the scale of zooming for each of the axes as arguments to the method. Listing 7-2
shows an example of doing this.

Listing 7-2.  prog02.py

import scipy.misc as misc
import scipy.ndimage as ndi
import matplotlib.pyplot as plt

img = misc.lena()

Figure 7-1.  Shift demo

Chapter 7 ■ Transformations and Measurements

95

plt.imshow(ndi.zoom(img, [5, 3]), cmap='gray')
plt.title('Zoom Demo')
plt.axis('off')

plt.show()

The output of Listing 7-2 is shown in Figure 7-2.

Measurements
In Chapter 5, you learned how to create a histogram. SciPy also has a histogram()
method that computes a histogram of image channels. You can use matplotlib to display
the histogram. Listing 7-3 shows an example of a histogram computation with SciPy; it’s
been plotted using matplotlib.

Listing 7-3.  prog03.py

import scipy.misc as misc
import scipy.ndimage as ndi
import matplotlib.pyplot as plt

img = misc.lena()

Figure 7-2.  Zoom demo

http://dx.doi.org/10.1007/978-1-4842-2731-2_5

Chapter 7 ■ Transformations and Measurements

96

hist = ndi.histogram(img, 0, 255, 256)

plt.plot(hist, 'k')
plt.title('Lena Histogram')
plt.grid(True)

plt.show()

This program passes the image, the minimum pixel value, the maximum pixel value,
and the number of bins as arguments to the histogram() method. It passes the histogram
array returned by the histogram() method and the color of the histogram graph ('k') as
arguments to the plot() method. The resultant histogram is shown in Figure 7-3.

The minimum() and maximum() methods return the minimum and maximum values
of the pixels, respectively. The minimum_position() and maximum_position()methods
return the values of the positions of pixels with the minimum and maximum intensities,
respectively. The extrema() method combines the functionalities of the four methods.
The demonstration is shown in Listing 7-4.

Figure 7-3.  Histogram of the Lena image

Chapter 7 ■ Transformations and Measurements

97

Listing 7-4.  prog04.py

import scipy.misc as misc
import scipy.ndimage as ndi

img = misc.ascent()

print(ndi.minimum(img))
print(ndi.minimum_position(img))
print(ndi.maximum(img))
print(ndi.maximum_position(img))

print(ndi.extrema(img))

The output is as follows:

0
(201, 268)
255
(190, 265)
(0, 255, (201, 268), (190, 265))

The first line is the value of the lowest intensity pixel. The second line is its position.
The next two lines refer to the value of the highest intensity pixel and its position. The
next line is the output of the extrema() method, which combines all the previous output.

The program shown in Listing 7-5 demonstrates the statistical information about
the image pixels. The methods work on the intensity values of the pixel; the names of
methods are fairly self-explanatory.

Listing 7-5.  prog05.py

import scipy.misc as misc
import scipy.ndimage as ndi

img = misc.ascent()

print(ndi.sum(img))
print(ndi.mean(img))
print(ndi.median(img))
print(ndi.variance(img))
print(ndi.standard_deviation(img))

The output is as follows:

22932324
87.4798736572
80.0
2378.9479363
48.7744598771

Chapter 7 ■ Transformations and Measurements

98

You can also calculate the center of mass based on the intensity values of the pixels,
as shown in Listing 7-6.

Listing 7-6.  prog06.py

import scipy.misc as misc
import scipy.ndimage as ndi

img = misc.ascent()

print(ndi.center_of_mass(img))

This will produce the following output:

(259.99734235396289, 254.60907272197969)

EXERCISE

Complete the following exercises to gain an in-depth understanding of
transformations and measurements.

•	 Explore the ndimage.rotate() method. Write the code for using it.

•	 We calculated the histogram for a grayscale image. Calculate
the histogram for a color image by computing it separately for
each channel. Use the relevant color for the histogram graph for
displaying using pyplot.

•	 We calculated the measurements for grayscale images. Do the
same for color images.

Conclusion
In this chapter, you explored the methods for transformations and measurements. You
studied the shift and zoom transformations. You calculated the histogram of a grayscale
image. You also calculated statistical information about the images.

In the next chapter, you will study the image kernels and filters, their types, and their
applications in the image enhancement in detail.

99© Ashwin Pajankar 2017
A. Pajankar, Raspberry Pi Image Processing Programming,
DOI 10.1007/978-1-4842-2731-2_8

CHAPTER 8

Filters and Their Application

In the last chapter, you learned about the scipy.ndimage module of the SciPy library. You
learned how to apply transformations like shift() and zoom() on an image. You also
learned how to obtain statistical information about an image. You saw how to compute
and plot the histogram for an image.

In Chapter 5, you studied image filters using the Pillow library. In this chapter, you
will study the theory behind the filters in detail. You will also see the types of filters,
kernels, and the applications of the filters in image processing.

Filters
Image filters are used to modify and/or enhance an image. All the image-filtering
techniques you will study in this chapter are frequently used in image processing software
programs like GIMP and Photoshop. Filtering is mostly a neighborhood operation. It is
also called local filtering. For this, you need a matrix known as a kernel. A kernel is a two-
dimensional matrix used to perform image processing. It is also known as a filter.

Let’s look at a simple local filtering operation, the convolution. In the convolution
operation, the filter (or the kernel) is applied to each pixel of the image in such a way that
the center of the kernel is multiplied with the pixel. All the neighboring pixels of the pixel
being processed are also multiplied by the corresponding element of the matrix. All the
values are then added together to give an intensity value of the output pixel.

■■ Note  A kernel is always an odd matrix. For example, a size of a kernel could be (3, 3) or
(5, 5). Bigger kernels need more time to process the image due to the number of computations
involved.

Take a look at the simple example in Listing 8-1 for the convolution.

Listing 8-1.  prog01.py

import scipy.misc as misc
import scipy.ndimage as ndi
import numpy as np

http://dx.doi.org/10.1007/978-1-4842-2731-2_5

Chapter 8 ■ Filters and Their Application

100

import matplotlib.pyplot as plt

img = misc.lena()

k = np.array([[1, 1, 1, 1, 1],
 [1, 1, 1, 1, 1],
 [1, 1, 1, 1, 1],
 [1, 1, 1, 1, 1],
 [1, 1, 1, 1, 1]])

output = ndi.convolve(img, k)

plt.imshow(output, cmap='gray')
plt.title('Convolution')
plt.axis('off')
plt.show()

Run the program for yourself and take a look at the output. You will find that the
output image is blurry. Convolution kernels can produce a variety of outputs and it is a
vast topic in and of itself. Try to modify the values in the kernel and see the results for
yourself.

■■ Note  Visit http://setosa.io/ev/image-kernels/ and https://docs.gimp.org/en/
plug-in-convmatrix.html for more and detailed information on kernels.

Low-Pass Filters
Low-pass filters filter out high-frequency information. In other words, they allow
information with a frequency lower than the cutoff frequency to pass through. They are
usually called smoothing, blurring, or averaging filters in the image processing domain,
as they are used to blur images or remove noise. A convolution filter is a basic low-pass
filter. In this section, you will study low-pass filters and their applications.

Low-Pass Filters for Blurring
This section discusses how to use the low-pass filters for blurring images. You will
use Gaussian and uniform filters for this purpose. The example in Listing 8-2 shows a
Gaussian low-pass filter used to blur an image.

Listing 8-2.  prog02.py

import scipy.misc as misc
import scipy.ndimage as ndi
import matplotlib.pyplot as plt

http://setosa.io/ev/image-kernels/
https://docs.gimp.org/en/plug-in-convmatrix.html
https://docs.gimp.org/en/plug-in-convmatrix.html

Chapter 8 ■ Filters and Their Application

101

img = misc.lena()

output1 = ndi.gaussian_filter(img, sigma=3)
output2 = ndi.gaussian_filter(img, sigma=5)
output3 = ndi.gaussian_filter(img, sigma=7)

output = [output1, output2, output3]
titles = ['Sigma = 3', 'Sigma = 5', 'Sigma = 7']

for i in range(3):
 plt.subplot(1, 3, i+1)
 plt.imshow(output[i], cmap='gray')
 plt.title(titles[i])
 plt.axis('off')
plt.show()

In the code in Listing 8-2, you are applying a Gaussian filter with standard deviation
(sigma) values of 3, 5, and 7, respectively. You’ll see a progressively blurred image, as
shown in Figure 8-1.

You can also use the uniform filter to get this blurring/smoothing effect. Listing 8-3
shows an example of this effect.

Listing 8-3.  prog03.py

import scipy.misc as misc
import scipy.ndimage as ndi
import matplotlib.pyplot as plt

img = misc.face()

output1 = ndi.uniform_filter(img, size=19)
output2 = ndi.uniform_filter(img, size=25)

Figure 8-1.  Gaussian filter

Chapter 8 ■ Filters and Their Application

102

output3 = ndi.uniform_filter(img, size=31)

output = [output1, output2, output3]
titles = ['Size = 19', 'Size = 25', 'Size = 31']

for i in range(3):
 plt.subplot(1, 3, i+1)
 plt.imshow(output[i], cmap='gray')
 plt.title(titles[i])
 plt.axis('off')
plt.show()

In the code in Listing 8-3, you are applying the uniform filter of various sizes to the
test image. The result is shown in Figure 8-2.

Using Low-Pass Filters for Noise Removal
Another application of a low-pass filter is to remove noise from an image. You can define
noise as any unwanted interference in a signal. All electronic devices are prone to noise.
A small amount of noise is always present in all electronic signals, including electronically
captured images. Noise is usually in the form of sharp and high-frequency data, which
can be reduced by using low-pass filters like Gaussian and median filters. The example in
Listing 8-4 demonstrates a Gaussian filter used to remove noise.

Listing 8-4.  prog04.py

import scipy.misc as misc
import scipy.ndimage as ndi
import numpy as np
import matplotlib.pyplot as plt

img = misc.lena()

noisy = img + 0.8 * img.std() * np.random.random(img.shape)

output1 = ndi.gaussian_filter(noisy, sigma=1)

Figure 8-2.  Uniform filter

Chapter 8 ■ Filters and Their Application

103

output2 = ndi.gaussian_filter(noisy, sigma=3)
output3 = ndi.gaussian_filter(noisy, sigma=5)

output = [noisy, output1, output2, output3]
titles = ['Noisy', 'Sigma = 1', 'Sigma = 3', 'Sigma = 5']

for i in range(4):
 plt.subplot(2, 2, i+1)
 plt.imshow(output[i], cmap='gray')
 plt.title(titles[i])
 plt.axis('off')
plt.show()

In the code in Listing 8-4, the following line:

noisy = img + 0.8 * img.std() * np.random.random(img.shape)

is used to create the noisy image for the sample. As you are using the random() method
to generate noise, the output image will be different every time the code is executed.
The result is shown in Figure 8-3.

Figure 8-3.  Gaussian filter for noise removal

Chapter 8 ■ Filters and Their Application

104

Listing 8-5 shows an example of a median filter used to remove noise.

Listing 8-5.  prog05.py

import scipy.misc as misc
import scipy.ndimage as ndi
import numpy as np
import matplotlib.pyplot as plt

img = misc.lena()

noisy = img + 0.8 * img.std() * np.random.random(img.shape)

output1 = ndi.median_filter(noisy, 3)
output2 = ndi.median_filter(noisy, 7)
output3 = ndi.median_filter(noisy, 9)

output = [noisy, output1, output2, output3]
titles = ['Noisy', 'Size = 1', 'Size = 3', 'Size = 5']

for i in range(4):
 plt.subplot(2, 2, i+1)
 plt.imshow(output[i], cmap='gray')
 plt.title(titles[i])
 plt.axis('off')
plt.show()

This example uses the median filters of the size 1, 3, and 5, respectively. The result
shown in Figure 8-4 demonstrates that the median filter is better at noise removal than
the Gaussian filter.

Chapter 8 ■ Filters and Their Application

105

High-Pass Filters
High-pass filters allow higher frequency information to pass through. In terms of image
processing, the high-frequency components include edges and boundaries in an image. Thus,
applying high-pass filters results in the edge highlighting and detection in an image. Let’s look
at a simple high-pass filter, the prewitt filter. A code example is shown in Listing 8-6.

Listing 8-6.  prog06.py

import scipy.misc as misc
import scipy.ndimage as ndi
import matplotlib.pyplot as plt

img = misc.ascent()

filtered = ndi.prewitt(img)

output = [img, filtered]
titles = ['Original', 'Filtered']

Figure 8-4.  Median filter for noise removal

Chapter 8 ■ Filters and Their Application

106

for i in range(2):
 plt.subplot(1, 2, i+1)
 plt.imshow(output[i], cmap='gray')
 plt.title(titles[i])
 plt.axis('off')
plt.show()

The application of this filter results in highlighted edges, as shown in Figure 8-5.

There is a better high-pass filter, called the Sobel filter. As shown in Listing 8-7, it
provides the horizontal and vertical edges separately.

Listing 8-7.  prog07.py

import numpy as np
import scipy.ndimage as ndi
import matplotlib.pyplot as plt

img = np.zeros((516, 516))

img[128:-128, 128:-128] = 1

img = ndi.gaussian_filter(img, 8)

rotated = ndi.rotate(img, -20)

noisy = rotated + 0.09 * np.random.random(rotated.shape)

sx = ndi.sobel(noisy, axis=0)
sy = ndi.sobel(noisy, axis=1)
sob = np.hypot(sx, sy)

Figure 8-5.  Prewitt filter output

Chapter 8 ■ Filters and Their Application

107

titles = ['Original', 'Rotated', 'Noisy',
 'Sobel (X-axis)', 'Sobel (Y-axis)', 'Sobel']

output = [img, rotated, noisy, sx, sy, sob]

for i in range(6):
 plt.subplot(2, 3, i+1)
 plt.imshow(output[i])
 plt.title(titles[i])
 plt.axis('off')
plt.show()

The code in Listing 8-7 generates a black square of dimensions 516x516 using the
np.zeros() method. Then, the next line sets the intensity values of a 256x256 square within
the generated square to white. Then it blurs and rotates the generated image. You then
use this image as the source for applying the Sobel filters. First, you calculate the Sobel
filter for the x axis, and then you calculate it for the y axis. np.hypot() is for calculation
of the hypotenuse of a triangle. Passing the Sobel for the x and y axes to it gives you the
combined results. When you calculate the Sobel for the x axis, it highlights the horizontal
edges. When you calculate the Sobel for the y axis, it highlights the vertical edges.
Combining the results returns the highlighted edges, as shown in Figure 8-6.

Figure 8-6.  Sobel filter demo

Chapter 8 ■ Filters and Their Application

108

Fourier Filters
The Fourier filter works on the frequency component of the signal. Fourier filters apply
transformations in the frequency domain of the images. A Fourier filter first computes the
Fourier transform of the image signals and then applies the required filtering function
on the calculated Fourier transform of the image. Finally, it takes the inverse Fourier
transform of the resultant output. Thus, it gives you the output on the frequency domain.
It is used for a wide variety of image and signal processing tasks, including image filtering
and reconstruction. Listing 8-8 shows an example of various Fourier transforms applied
to an image.

Listing 8-8.  prog08.py

import scipy.ndimage as ndi
import scipy.misc as misc
import matplotlib.pyplot as plt
import numpy as np

img = misc.ascent()

noisy = img + 0.09 * img.std() * np.random.random(img.shape)

fe = ndi.fourier_ellipsoid(img, 1)
fg = ndi.fourier_gaussian(img, 1)
fs = ndi.fourier_shift(img, 1)
fu = ndi.fourier_uniform(img, 1)

titles = ['Original', 'Noisy',
 'Fourier Ellipsoid', 'Fourier Gaussian',
 'Fourier Shift', 'Fourier Uniform']

output = [img, noisy, fe, fg, fs, fu]

for i in range(6):
 plt.subplot(2, 3, i+1)
 plt.imshow(np.float64(output[i]), cmap='gray')
 plt.title(titles[i])
 plt.axis('off')
plt.show()

Chapter 8 ■ Filters and Their Application

109

The result of the example in Listing 8-8 is shown in Figure 8-7.

■■ Note  Fourier filters are a vast area and it’s difficult to cover them in a single chapter
or section. You can find more information on Fourier filters at https://terpconnect.umd.
edu/~toh/spectrum/FourierFilter.html and http://homepages.inf.ed.ac.uk/rbf/
HIPR2/fourier.htm.

Figure 8-7.  Fourier filter demo

https://terpconnect.umd.edu/~toh/spectrum/FourierFilter.html
https://terpconnect.umd.edu/~toh/spectrum/FourierFilter.html
http://homepages.inf.ed.ac.uk/rbf/HIPR2/fourier.htm
http://homepages.inf.ed.ac.uk/rbf/HIPR2/fourier.htm

Chapter 8 ■ Filters and Their Application

110

EXERCISE

This chapter introduced you to the concepts very briefly. However, image filtering
and its applications are very complicated areas. Complete the following exercises to
gain a better understanding of filters and their implementation in SciPy.

•	 Explore more filters in ndimage. You can find the documentation
on https://docs.scipy.org/doc/scipy-0.18.1/reference/
ndimage.html.

•	 Try different kernels on the convolution operation.

•	 Visit all the reference URLs mentioned in the chapter and explore
more about the kernels and Fourier filters.

•	 Change the Sobel filter code example to show the results in
grayscale using cmap='gray'.

Conclusion
In this chapter, you were introduced to the filters. You saw their types and looked at their
applications according to the types. The image filtering area is too vast to be completely
explored in a single chapter. Follow-up exercises will help you understand filtering better.

In the next chapter, we conclude the book with morphological operators, image
thresholding, and basic segmentation.

https://docs.scipy.org/doc/scipy-0.18.1/reference/ndimage.html
https://docs.scipy.org/doc/scipy-0.18.1/reference/ndimage.html

111© Ashwin Pajankar 2017
A. Pajankar, Raspberry Pi Image Processing Programming,
DOI 10.1007/978-1-4842-2731-2_9

CHAPTER 9

Morphology, Thresholding,
and Segmentation

In the previous chapter, you studied the theory behind image filters, along with the types
and practical applications of filters in enhancing images.

This is the last chapter in the book and a bit detailed one. In this chapter, you are
going to study important concepts in image processing like morphology, morphological
operations on images, thresholding, and segmentation. The chapter starts with
the distance transform operation and then moves to the basics of morphology and
structuring elements. You will see plenty of examples of morphological operations. We
will then wrap up the chapter with thresholding and segmentation.

Distance Transforms
A distance transform is an operation on binary images. Binary images have background
elements (zero value - black color) and foreground elements (white color). Distance
transform replaces each foreground element with the value of the shortest distance to the
background. scipy.ndimage has three methods for calculating the distance transform of
a binary image. The code in Listing 9-1 illustrates how a distance transform can be used
practically to generate test images.

Listing 9-1.  prog01.py

import matplotlib.pyplot as plt
import scipy.ndimage as ndi
import numpy as np

img = np.zeros((32, 32))
img[8:-8, 8:-8] = 1

print(img)

dist1 = ndi.distance_transform_bf(img)
dist2 = ndi.distance_transform_cdt(img)
dist3 = ndi.distance_transform_edt(img)

Chapter 9 ■ Morphology, Thresholding, and Segmentation

112

output = [img, dist1, dist2, dist3]
titles = ['Original', 'Brute Force', 'Chamfer', 'Euclidean']

for i in range(4):
 print(output[i])
 plt.subplot(2, 2, i+1)
 plt.imshow(output[i], interpolation='nearest', cmap='spectral')
 plt.title(titles[i])
 plt.axis('off')
plt.show()

The code shown in Listing 9-1 calculates the distance transform by the brute force
algorithm, Chamfer type algorithm, and Euclidean methods, respectively. You are going
to use distance transforms in generating the test images in this chapter. The output is
shown in Figure 9-1.

Figure 9-1.  Distance transforms demo

Chapter 9 ■ Morphology, Thresholding, and Segmentation

113

Morphology and Morphological Operations
Morphology is the study of shapes and forms. The morphological study of images
deals with shapes rather than the values of the pixels. Morphological operations are
usually performed on binary images. Let’s take a look at a few concepts related to the
morphological operations.

Structuring Element
A structuring element is a matrix that’s used to interact with a given binary image. It
comes in various shapes, like a ball or a ring or a line. It can come in many shapes, like a
3x3 or 7x7 matrix. Bigger size structuring elements take more time for computation.
A simple structuring element can be defined as a unity matrix of odd sizes. np.ones((3,3))
is an example of this.

Various Morphological Operations
Let’s briefly look at various morphological operations. Dilation causes the expansion
of the shapes in an input image. Erosion causes the shrinkage in the shape in an input
image. Opening is dilation of erosion. Closing is erosion of dilation.

It is difficult to understand these concepts just by reading about them. Take a look at
the example in Listing 9-2, which demonstrates these concepts.

Listing 9-2.  prog02.py

import matplotlib.pyplot as plt
import scipy.ndimage as ndi
import numpy as np

img = np.zeros((16, 16))
img[4:-4, 4:-4] = 1

print(img)

erosion = ndi.binary_erosion(img).astype(img.dtype)
dilation = ndi.binary_dilation(img).astype(img.dtype)
opening = ndi.binary_opening(img).astype(img.dtype)
closing = ndi.binary_closing(img).astype(img.dtype)

output = [img, erosion, dilation, opening, closing]
titles = ['Original', 'Erosion', 'Dilation', 'Opening', 'Closing']

Chapter 9 ■ Morphology, Thresholding, and Segmentation

114

for i in range(5):
 print(output[i])
 plt.subplot(1, 5, i+1)
 plt.imshow(output[i], interpolation='nearest', cmap='spectral')
 plt.title(titles[i])
 plt.axis('off')
plt.show()

The code example in Listing 9-2 generates a binary image and applies all the binary
morphological operations to it. The output is shown in Figure 9-2.

Another important operation is binary_fill_holes(). It is used to fill the gaps in the
binary image, as shown in Listing 9-3.

Listing 9-3.  prog03.py

import matplotlib.pyplot as plt
import scipy.ndimage as ndi
import numpy as np

img = np.ones((32, 32))
x, y = (32*np.random.random((2, 20))).astype(np.int)
img[x, y] = 0

noise_removed = ndi.binary_fill_holes(img).astype(int)

output = [img, noise_removed]
titles = ['Original', 'Noise Removed']

for i in range(2):
 print(output[i])
 plt.subplot(1, 2, i+1)
 plt.imshow(output[i], interpolation='nearest', cmap='spectral')
 plt.title(titles[i])
 plt.axis('off')
plt.show()

Figure 9-2.  Morphological operations demo

Chapter 9 ■ Morphology, Thresholding, and Segmentation

115

The code in Listing 9-3 generates a 32x32 square matrix image with all the values as
1 (white value). Then it randomly sets a few pixels to 0 (the dark value). The dark pixels
can be considered holes in the image, which can then be removed using binary_fill_
holes().

The output is shown in Figure 9-3.

Grayscale Morphological Operations
There is a set of grayscale morphological operations. The code shown in Listing 9-4
generates eight random values and assigns them to pixels on a completely dark
(zero value) background. Then it uses the grey_dilation() method to dilate them.

Listing 9-4.  prog04.py

import matplotlib.pyplot as plt
import scipy.ndimage as ndi
import numpy as np

img = np.zeros((64, 64))
x, y = (63*np.random.random((2, 8))).astype(np.int)
img[x, y] = np.arange(8)

dilation = ndi.grey_dilation(img, size=(5, 5),
 structure=np.ones((5, 5)))

output = [img, dilation]
titles = ['Original', 'Dilation']

Figure 9-3.  The binary_fill_holes() demo

Chapter 9 ■ Morphology, Thresholding, and Segmentation

116

for i in range(2):
 print(output[i])
 plt.subplot(1, 2, i+1)
 plt.imshow(output[i], interpolation='nearest', cmap='spectral')
 plt.title(titles[i])
 plt.axis('off')
plt.show()

The output is shown in Figure 9-4.

You are using a structuring element that’s 5x5 here.

■■ Note  This example uses the random() method. When you execute the code in the
bundle, the output won’t be exactly the same.

The code shown in Listing 9-5 applies gray dilation and gray erosion operations to a
distance transform.

Listing 9-5.  prog05.py

import matplotlib.pyplot as plt
import scipy.ndimage as ndi
import numpy as np

img = np.zeros((16, 16))
img[4:-4, 4:-4] = 1

Figure 9-4.  Gray dilation demo

Chapter 9 ■ Morphology, Thresholding, and Segmentation

117

img = ndi.distance_transform_bf(img)

dilation = ndi.grey_dilation(img, size=(3, 3),
 structure=np.ones((3, 3)))

erosion = ndi.grey_erosion(img, size=(3, 3),
 structure=np.ones((3, 3)))

output = [img, dilation, erosion]
titles = ['Original', 'Dilation', 'Erosion']

for i in range(3):
 print(output[i])
 plt.subplot(1, 3, i+1)
 plt.imshow(output[i], interpolation='nearest', cmap='spectral')
 plt.title(titles[i])
 plt.axis('off')
plt.show()

The code in Listing 9-5 uses a structuring element that’s 3x3 for both operations.
The output is shown in Figure 9-5.

Thresholding and Segmentation
This is the final part of the book and it deals with one of the most important applications
of image processing, segmentation. In thresholding operations, you convert grayscale
images to binary (black-and-white) images based on the threshold value. The pixels
with intensity values greater than the threshold are assigned white and the pixels with
an intensity value lower than the threshold are assigned a dark value. This is known as
binary thresholding and it’s the most basic form of thresholding and segmentation. An
example is shown in Listing 9-6.

Figure 9-5.  Dilation and erosion on a distance transform

Chapter 9 ■ Morphology, Thresholding, and Segmentation

118

Listing 9-6.  prog06.py

import matplotlib.pyplot as plt
import scipy.misc as misc

img = misc.ascent()

thresh = img > 127

output = [img, thresh]
titles = ['Original', 'Thresholding']

for i in range(2):
 plt.subplot(1, 2, i+1)
 plt.imshow(output[i], cmap='gray')
 plt.title(titles[i])
 plt.axis('off')

plt.show()

The code in Listing 9-6 sets the threshold to 127. At the grayscale, a pixel value of 127
corresponds to the gray color. The resultant thresholded image is shown in Figure 9-6.

Thresholding is the most basic type of image segmentation. Image segmentation
refers to dividing an image into many regions based on some property, like colors of
pixels, connectivity of the region, etc. You can get the better segments of an image by
applying the morphological operations on a thresholded image (see Listing 9-7).

Figure 9-6.  Binary thresholding

Chapter 9 ■ Morphology, Thresholding, and Segmentation

119

Listing 9-7.  prog07.py

import matplotlib.pyplot as plt
import scipy.misc as misc
import scipy.ndimage as ndi
import numpy as np

img = misc.ascent()

thresh = img > 127

dilated = ndi.binary_dilation(thresh, structure=np.ones((9, 9))).astype(int)

eroded = ndi.binary_erosion(dilated, structure=np.ones((9, 9))).astype(int)

output = [img, thresh, dilated, eroded]
titles = ['Original', 'Thresholding', 'Dilated', 'Eroded and Segmented']

for i in range(4):
 plt.subplot(2, 2, i+1)
 plt.imshow(output[i], cmap='gray')
 plt.title(titles[i])
 plt.axis('off')

plt.show()

The output is shown in Figure 9-7.

Figure 9-7.  Thresholded and segmented image

Chapter 9 ■ Morphology, Thresholding, and Segmentation

120

Finally, here is yet another real-world application of segmentation, the processing
of printed documents. The example in Listing 9-8 shows processed images of printed
documents.

Listing 9-8.  prog08.py

import matplotlib.pyplot as plt
import scipy.ndimage as ndi
import numpy as np

img = ndi.imread('/home/pi/DIP/Dataset/5.1.13.tiff')

thresh = img > 127

output = [img, thresh]
titles = ['Original', 'Thresholding']

for i in range(2):
 plt.subplot(1, 2, i+1)
 plt.imshow(output[i], cmap='gray')
 plt.title(titles[i])
 plt.axis('off')
plt.show()

The output is shown in Figure 9-8.

Figure 9-8.  Thresholding a printed document

Chapter 9 ■ Morphology, Thresholding, and Segmentation

121

Conclusion
In this chapter, you studied distance transforms for generating test images. You then
learned morphology and morphological operations on images. Morphological operations
come in two varieties—binary and grayscale. You also studied thresholding, which is the
simplest form of image segmentation. Finally, you studied how you can use thresholding
on images in a document.

Book Summary
This is the final chapter of the book. You started with single board computers and
Raspberry Pi. Then you learned how to set up the Pi and acquire images with various
types of camera sensors. You took your first steps in the world of image processing with
the help of Pillow. You also learned to create an interactive GUI for the image processing
demos using Tkinter. Then you got started with scientific computing and the SciPy toolkit.
You learned the basics of NumPy ndarrays and matplotlib for visualization. Finally, you
learned to use scipy.misc and scipy.ndimage to process images.

I hope you enjoyed reading this book and following the examples as much as I
enjoyed writing it and programming the examples.

What’s Next
This is not an end but the mere beginning into the amazing world of image processing
and computer vision. From here, you can follow various libraries for the image processing
and data visualization. More advanced libraries for image processing include scikit-
image, OpenCV, and Mahotas. You can explore these libraries. Consider also exploring
NumPy and other aspects of scientific computing like signal processing and data
visualization. The SciPy stack has suitable modules for all these applications. Happy
exploring and Pythoning!

123© Ashwin Pajankar 2017
A. Pajankar, Raspberry Pi Image Processing Programming,
DOI 10.1007/978-1-4842-2731-2

�       � A
add() method, 59
Analog image processing system, 37

�       � B
Binary thresholding, 117–118
blend() method, 53

�       � C
Channel images

conversion, 91
np.dstack() method, 91
process, 89
separate, 90

Color quantization, 76–77
config.txt file, 12, 18
convert() method, 53
copy() method, 58
crop() method, 57

�       � D
darker() method, 59
difference() method, 59
Digital image processing (DIP), 36–37

image processing systems, 37–38
Raspberry Pi and Python, 38
signal processing, 36

Distance transforms, 111–112

�       � E
Ethernet

dynamic IP address, 22
static IP address, 21

�       � F
Filtering operation

convolution operation, 99
local filtering, 99
low-pass (see Low-pass filters)

Fourier filters, 108

�       � G
getpixel() method, 58
grey_dilation() method, 115

�       � H
High-pass filters, 105–107
histogram() method, 96
Histograms and

equalization, 77–79

�       � I, J, K
ImageChops module, 59
ImageEnhance module, 74–76
ImageFilter module, 65

blur operation, 66
custom filter, 66
Digital Unsharp Mask, 69–70
GaussianBlur() method, 67
GaussianBlur() blur demo, 68
kernel, 68–69
low-pass filtering, 68
max filter, 72
median filter, 72
min filter, 72
mode filter, 73–74
output, 68, 71
Tkinter, 67

Index

■ INDEX

124

ImageOps.equalize() method, 78
ImageOps module, 60
Image processing system

advanced, 79
analog, 37
color quantization, 76–77
digital devices, 37
histograms and equalization, 77–79
ImageEnhance module, 74–76
ImageFilter module, 65–74

Image sources
book code and image datasets, 41
directory structure, 42
guvcview command, 43
Internet, 41
lsusb command, 43
Pi camera module, 44
test.jpg file, 44
Webcam, 42

imfilter() method, 83
imread() method, 93
imshow() method, 88
Integrated Development Environment

(IDE), 33
Geany

Raspbian menu, 35
set build commands window, 36
text editor, 34

IDLE, 33

�       � L
Low-pass filters, 68

blurring, 100
Gaussian filter, 101
median filter, 105
remove noise, 102
uniform filter, 102

�       � M
Matplotlib, 86

image grid, 89
Lena image, 88
pyplot demo, 87

Measurements
extrema() method, 96–97
histogram() method, 95–96
intensity values, 98
minimum() and maximum()

methods, 96

merge() method, 51
misc.imshow() method, 86
Modules, 51

blending, 53
copying and saving images, 58
crop and paste operations, 57
ImageChops, 59
ImageOps, 60
mode conversion, 53
particular pixel, 58
resize, 55
rotate() method, 56
Solarize operation, 62
split() and merge() methods, 51

Morphological operations
binary_fill_holes(), 115
binary image, 114
concepts, 113
demo, 114
dilation and erosion, 117
erosion operations, 116
gray dilation demo, 116
grayscale, 115
structuring element, 113

�       � N, O
NumPy modules

features, 84
homepage, 84
library, 84
N-dimensional array, 85
RGB value, 86

�       � P
paste() method, 57
Pi camera module, 44
PIL image objects and NumPyndarrays, 91
Power supply unit (PSU), 7
Prewitt filter, 106
Printed circuit board (PCB), 1
Python

community support, 29
easy to learn, 27
easy to maintain, 27
easy to read, 27
extensible, 28
extensive libraries, 28
features of, 26
high-level language, 27

■ INDEX

125

history of, 25
IDEs (see Integrated Development

Environment (IDE))
interactive mode, 32
interpreted language, 28
memory management, 29
normal mode, 32
object-oriented

programming, 28
open source project, 27
portable, 27
powerful, 29
principles, 26
Python 3

differences, 30
overview, 29
Raspbian, 31
use of, 31

rapid prototyping tool, 29
Robust, 28
simple language, 26

Python Imaging Library (PIL)
digital image processing, 46
images

Linux command, 47
properties, 49
show() function, 48
Tkinter output, 49

version number, 47

�       � Q
quantize() method, 76

�       � R
random() method, 103
Rapid prototyping tool, 29
Raspberry Pi, 4

booting up
desktop, 14
quad-core processor, 14
single core processor, 13
steps, 13

bottom view, 5
components, 4
config.txt file, 12, 18
Ethernet

dynamic IP address, 22
static IP address, 21

foundation of, 4
free software

accelerator plus, 10
Raspbian OS image, 10
Win32 Disk Imager setup, 10
WinZip/WinRaR, 10

hardware requirement
card reader, 7
computer/laptop, 6
I/O devices, 6
microSD card, 6
monitor, 8
power supply unit, 7
setup, 6

LXTerminal configuration
boot options, 16
desktop autologin, 16
icon, 15
internationalization options, 17
main screen, 17
raspi-config utilities, 16
reboot prompt, 18
window, 15

microSD card, 9
operating system, 18
Raspbian OS image

message, 12
microSD card, 10
overwrite warning message, 11
protection error message, 11
Win32 Disk Imager, 11

shut down Pi, 24
specifications, 4
update

Firmware, 22
raspi-config, 23
upgrade Raspbian, 22

VGA monitor, 12
WiFi, 19

resize() function, 55
Robust, 28
rotate() method, 56

�       � S
save() method, 58
Scientific Python (SciPy), 81

channel image, 89
components, 81
installation, 82

■ INDEX

126

Matplotlib, 86
image grid, 89
Lena image, 88
pyplot demo, 87

NumPy (see NumPy modules)
simple image

processing, 83
scipy.misc module, 82
stack, 81

screen() method, 60
Segmentation, 118
shift() method, 93
Signal processing system, 36
Single board computers (SBCs)

differences, 2
families, 3
form factors, 2
history of, 3
overview, 1
regular computers, 2
vs. regular CPU, 3
system on a chip, 2

Sobel filter, 107
solarize() method, 62
split() method, 51

subplot() method, 89
subtract() method, 60
System on Chips (SoCs), 2

vs. regular CPU, 3

�       � T, U, V
Thresholding and segmentation

operations
binary thresholding, 117–118
printed document, 120
real-world application, 120
segmentation, 118

title() method, 88
Transformations, 93

shift() method, 93
zoom() method, 94

�       � W, X, Y
Webcam, 42
WiFi, 19

�       � Z
zoom() method, 94

Scientific Python (SciPy) (cont.)

	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: Introduction to Single Board Computers and Raspberry Pi
	Single Board Computers (SBCs)
	Differences Between SBCs and Regular Computers
	System on Chips (SoCs)
	SoC versus Regular CPU

	History of SBCs
	SBC Families

	The Raspberry Pi
	Raspberry Pi Setup
	Required Hardware
	Raspberry Pi
	Computer
	I/O Devices
	microSD Card
	Power Supply
	Card Reader
	Monitor

	Preparation of the microSD Card for Raspberry Pi
	Download the Required Free Software
	Download Accelerator Plus
	Win32 Disk Imager
	WinZip or WinRaR
	Download and Extract the Raspbian OS Image

	Writing the Raspbian OS Image to the microSD Card
	Altering the Contents of the config.txt File for a VGA Monitor
	Booting Up the Pi
	Configuring the Pi

	The Raspbian OS
	The config.txt File
	Connecting the Raspberry Pi to a Network and to the Internet
	WiFi
	Ethernet
	Static IP Address
	Dynamic IP Address

	Updating the Pi
	Updating the Firmware
	Updating and Upgrading Raspbian
	Updating raspi-config

	Shutting Down and Restarting Pi
	Conclusion

	Chapter 2: Introduction to Python and Digital Image Processing
	A History of Python
	Features of Python
	Simple
	Easy to Learn
	Easy to Read
	Easy to Maintain
	Open Source
	High-Level Language
	Portable
	Interpreted
	Object-Oriented
	Extensible
	Extensive Libraries
	Robust
	Rapid Prototyping
	Memory Management
	Powerful
	Community Support

	Python 3
	The Differences Between Python 2 and Python 3
	Why Use Python 3

	Python 2 and Python 3 on Raspbian
	Running a Python Program and Python Modes
	Interactive Mode
	Normal Mode

	IDEs for Python
	IDLE
	Geany

	Introduction to Digital Image Processing
	Signal Processing
	Image Processing
	Analog Image Processing
	Digital Image Processing

	Using Raspberry Pi and Python for Digital Image Processing (DIP)

	Conclusion

	Chapter 3: Getting Started
	Image Sources
	Using the Webcam
	The Pi Camera Module

	Using Python 3 for Digital Image Processing
	Working with Images
	Image Properties

	Conclusion

	Chapter 4: Basic Operations on Images
	Image Module
	Splitting and Merging Image Channels
	Image Mode Conversion
	Image Blending
	Resizing an Image
	Rotating an Image
	Crop and Paste Operations
	Copying and Saving Images to a File
	Knowing the Value of a Particular Pixel

	ImageChops Module
	ImageOps Module
	Conclusion

	Chapter 5: Advanced Operations on Images
	The ImageFilter Module
	The ImageEnhance Module
	Color Quantization
	Histograms and Equalization
	Histogram Equalization

	Conclusion

	Chapter 6: Introduction to Scientific Python
	The Scientific Python Stack
	Installing the SciPy Stack
	A Simple Program
	Simple Image Processing
	Introduction to NumPy
	Matplotlib

	Image Channels
	Conversion Between PIL Image Objects and NumPy ndarrays
	Conclusion

	Chapter 7: Transformations and Measurements
	Transformations
	Measurements
	Conclusion

	Chapter 8: Filters and Their Application
	Filters
	Low-Pass Filters
	Low-Pass Filters for Blurring
	Using Low-Pass Filters for Noise Removal

	High-Pass Filters
	Fourier Filters

	Conclusion

	Chapter 9: Morphology, Thresholding, and Segmentation
	Distance Transforms
	Morphology and Morphological Operations
	Structuring Element
	Various Morphological Operations
	Grayscale Morphological Operations

	Thresholding and Segmentation
	Conclusion
	Book Summary
	What’s Next

	Index

