
www.allitebooks.com

http://www.allitebooks.org

Raspberry Pi Robotics Projects
Second Edition

Get the most out of Raspberry Pi to build enthralling
robotics projects

Richard Grimmett

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

[FM-2]

Raspberry Pi Robotics Projects
Second Edition

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the authors, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: February 2014

Second edition: April 2015

Production reference: 1270415

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78528-014-6

www.packtpub.com

www.allitebooks.com

www.packtpub.com
http://www.allitebooks.org

[FM-3]

Credits

Author
Richard Grimmett

Reviewer
Werner Ziegelwanger

Commissioning Editor
Neil Alexander

Acquisition Editor
Tushar Gupta

Content Development Editor
Vaibhav Pawar

Technical Editor
Saurabh Malhotra

Copy Editors
Dipti Kapadia

Tani Kothari

Sonia Mathur

Karuna Narayanan

Kriti Sharma

Alpha Singh

Project Coordinator
Kranti Berde

Proofreaders
Safis Editing

Maria Gould

Indexer
Monica Ajmera Mehta

Production Coordinator
Conidon Miranda

Cover Work
Conidon Miranda

www.allitebooks.com

http://www.allitebooks.org

[FM-4]

About the Author

Richard Grimmett has been fascinated by computers and electronics since his very
first programming project that used Fortran on punched cards. He has a bachelor's
degree and a master's degree in electrical engineering, and a PhD in leadership studies.
He has 26 years of experience in the radar and telecommunications industries and even
has one of the original Brick phones. He now teaches computer science and electrical
engineering at Brigham Young University-Idaho, where his office is filled with his
many robotics projects.

This book is the result of working with many wonderful students
at Brigham Young University-Idaho. Also, it wouldn't have been
possible without the help of my wonderful wife, Jeanne.

www.allitebooks.com

http://www.allitebooks.org

[FM-5]

About the Reviewer

Werner Ziegelwanger, MSc, has studied game engineering and simulation. He
got his master's degree in 2011, and his master's thesis was titled Terrain Rendering
with Geometry Clipmaps, Diplomica Verlag. His hobbies are programming, playing
games, and all kinds of technical gadgets.

Werner has worked as a self-employed programmer for a few years, where he
mainly did web projects. During this time, he started his own blog (http://
developer-blog.net), which is about the Raspberry Pi, Linux, and open source.

Since 2013, Werner has been working as a Magento developer and is the head of
programming at mStage GmbH, an e-commerce company that focuses on Magento.

www.allitebooks.com

http://developer-blog.net
http://developer-blog.net
http://www.allitebooks.org

[FM-6]

www.PacktPub.com

Support files, eBooks, discount offers,
and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print, and bookmark content
•	 On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access PacktLib
today and view 9 entirely free books. Simply use your login credentials for immediate access.

www.allitebooks.com

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com
http://www.allitebooks.org

[i]

Table of Contents
Preface	 v
Chapter 1: Getting Started with Raspberry Pi	 1

Getting started	 1
The unboxing	 3

Powering your board	 5
Hooking up a keyboard, mouse, and display	 6
Installing the operating system	 8
Accessing the board remotely	 18

Establishing Internet access on Raspberry Pi B+	 18
Establishing Internet access on Raspberry Pi A+	 18
Accessing your Raspberry Pi from your host PC	 20

Summary	 34
Chapter 2: Programming Raspberry Pi	 35

Basic Linux commands on Raspberry Pi	 36
Creating, editing, and saving files on Raspberry Pi	 41
Creating and running Python programs	 43
Basic programming constructs on Raspberry Pi	 46

The if statement	 46
The while statement	 48
Working with functions	 49
Libraries/modules in Python	 51
Object-oriented code	 52

Introduction to the C/C++ programming language	 55
Summary	 59

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

Chapter 3: Providing Speech Input and Output	 61
Hooking up the hardware to make and input sound	 63
Using Espeak to allow our projects to respond in a robotic voice	 71
Using PocketSphinx to accept your voice commands	 73
Interpreting commands and initiating actions	 80
Summary	 83

Chapter 4: Adding Vision to Raspberry Pi	 85
Connecting the USB camera to Raspberry Pi and viewing
the images	 86
Connecting the Raspberry Pi camera board and viewing
the images	 89
Downloading and installing OpenCV – a fully featured
vision library	 93
Using the vision library to detect colored objects	 98
Summary	 104

Chapter 5: Creating Mobile Robots on Wheels	 105
Gathering the required hardware	 105
Using the Raspberry Pi GPIO to control a DC motor	 108
Controlling your mobile platform programmatically using
Raspberry Pi	 111
Controlling the speed of your motors with PWM	 114

Adding program arguments to control your platform	 117
Making your platform truly mobile by issuing voice commands	 119
Summary	 122

Chapter 6: Controlling the Movement of a Robot with Legs	 123
Gathering the hardware	 124
Connecting Raspberry Pi to the mobile platform using
a servo controller	 127

Connecting the hardware	 127
Configuring the software	 129

Creating a program in Linux to control the mobile platform	 135
Making your mobile platform truly mobile by issuing
voice commands	 138
Summary	 140

Chapter 7: Avoiding Obstacles Using Sensors	 141
Connecting Raspberry Pi to an infrared sensor using USB	 146

Connecting a sensor using the USB interface	 147
Connecting the IR sensor using the GPIO ADC	 155

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[iii]

Connecting Raspberry Pi to a USB sonar sensor	 162
Connecting the hardware	 164

Using a servo to move a single sensor	 169
Summary	 173

Chapter 8: Going Truly Mobile – The Remote Control
of Your Robot	 175

Gathering the hardware	 176
Connecting Raspberry Pi to a wireless USB keyboard	 183
Using the keyboard to control your project	 183
Working remotely with your Raspberry Pi through a wireless LAN	 189
Working remotely with your Raspberry Pi through ZigBee	 194
Summary	 203

Chapter 9: Using a GPS Receiver to Locate Your Robot	 205
Connecting Raspberry Pi to a USB GPS device	 207
Accessing the USB GPS programmatically	 218
Connecting Raspberry Pi to an RX/TX (UART) GPS device	 224
Communicating with the RX/TX GPS programmatically	 225
Taking a look at the GPS data	 229
Summary	 238

Chapter 10: System Dynamics	 239
Creating a general control structure	 241
Using the structure of the Robot Operating System
to enable complex functionalities	 253
Summary	 256

Chapter 11: By Land, Sea, and Air	 257
Using Raspberry Pi to sail	 258

Getting started	 258
Using Raspberry Pi to fly robots	 265
Using Raspberry Pi to make the robot swim underwater	 275
Summary	 276

Index	 277

www.allitebooks.com

http://www.allitebooks.org

[v]

Preface
Robots seem to be everywhere these days. Not only in movies but also in our
day-to-day lives. They vacuum floors, play with children, and build automobiles.
These new machines are quickly migrating from university and government labs
to our homes, offices, schools, and playgrounds. A similar migration has occurred
in recent years with computers.

A good part of this migration, as in the case of computers, is that the untrained
but interested general population has been able to take part in the development
of these new machines. A big reason for this is the introduction of inexpensive
hardware and free, open source hardware. Initially, it was Arduino, an inexpensive
processor developed for the do-it-yourself crowd, which enabled normal people to
create robotics projects with complex functionality. More recently, Raspberry Pi has
extended this capability by providing an inexpensive, small, but powerful Linux
computer for these projects.

This second edition is designed to allow you to take full advantage of the capabilities
of Raspberry Pi in your robotics projects. It will not only teach you how to use the
USB port to add additional hardware capabilities, but it will also show you how to
connect the hardware to the GPIO as well. It will provide a step-by-step guide to
get you well on your way to building your very own amazing robotics projects.

What this book covers
Chapter 1, Getting Started with Raspberry Pi, helps you to power up your Raspberry Pi,
connect it to a keyboard, mouse, display, and remote computer, and begin to access
all that potential computing power.

Chapter 2, Programming Raspberry Pi, teaches you the basics of how to program the
Raspberry Pi, both in Python and in the C programming languages.

Preface

[vi]

Chapter 3, Providing Speech Input and Output, teaches your Raspberry Pi to both speak
and listen.

Chapter 4, Adding Vision to Raspberry Pi, shows you how to use standard USB and
Raspberry Pi cameras to allow your robotics projects to see.

Chapter 5, Creating Mobile Robots on Wheels, shows you how to connect the Raspberry
Pi to a mobile wheeled platform and control its motors, so your robots can be mobile.

Chapter 6, Controlling the Movement of a Robot with Legs, teaches you how to make your
robot walk.

Chapter 7, Avoiding Obstacles Using Sensors, shows you how to sense the world around
you. Now that your robot is mobile, you'll want to avoid or find objects.

Chapter 8, Going Truly Mobile – The Remote Control of Your Robot, shows you how to
control your robot wirelessly—you'll want your robot to move around untethered
by cables.

Chapter 9, Using a GPS Receiver to Locate Your Robot, shows you how to use a GPS
receiver so that your robot knows where it is—if your robot is mobile, it might
get lost.

Chapter 10, System Dynamics, focuses on how to bring it all together to make complex
robots since you've got lots of capability.

Chapter 11, By Land, Sea, and Air, shows you how to add capabilities to robots that
sail, fly, and even go under the water.

What you need for this book
Here's a partial list of the software you will need for the book:

•	 7-Zip: This is a utility to archive and unarchive software
•	 Image Writer for Windows: This is used to write images to an SD card
•	 WinSCP: This provides the ability to transfer files to/from a PC
•	 PuTTY: This allows the user remote access to the Raspberry Pi
•	 VNC Server/VNC Viewer: This allows the user remote access to the

graphical interface of the Raspberry Pi

Preface

[vii]

Who this book is for
This book is for anyone who is keen on using the Raspberry Pi to create robotics
projects that have previously been the domain of the research labs of major
universities or defense departments. Some programming background is useful,
but if you know how to use a personal computer you can, with the aid of the
step-by-step instructions in this book, construct complex robotics projects that
can move, talk, listen, see, swim, or fly.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"Go to the /home/Raspbian/Desktop directory."

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

a = input("Input value: ")
b = input("Input second value: ")
c = a + b
print c

Any command-line input or output is written as follows:

cd /home/Raspbian/Desktop

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "Go to the
Raspbian section and select the .zip file just to the right of the image identifier."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Preface

[viii]

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things
to help you to get the most from your purchase.

Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/
diagrams used in this book. The color images will help you better understand the
changes in the output. You can download this file from http://www.packtpub.com/
sites/default/files/downloads/0146OS_ColoredImages.pdf.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded on our website, or
added to any list of existing errata, under the Errata section of that title. Any existing
errata can be viewed by selecting your title from http://www.packtpub.com/
support.

www.packtpub.com/authors
http://www.packtpub.com/sites/default/files/downloads/0146OS_ColoredImages.pdf
http://www.packtpub.com/sites/default/files/downloads/0146OS_ColoredImages.pdf
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/support
http://www.packtpub.com/support

Preface

[ix]

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we
can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem
with any aspect of the book, and we will do our best to address it.

[1]

Getting Started with
Raspberry Pi

Raspberry Pi, with its low cost and amazing package of functionality, has taken the
robotic hobbyist community by Storm. Unfortunately, many, especially those new to
embedded systems and programming, can end up so discouraged that the board can
end up on the shelf, gathering dust next to the floppy disks and your old CRT.

Getting started
There is nothing as exciting as ordering, and finally receiving a new piece of hardware.
Yet things can go south quickly, even in the first few minutes. This chapter will,
hopefully, help you avoid the pitfalls that normally accompany unpacking and
configuring your Raspberry Pi. We'll walk through the process, answer many of the
different questions you might have, and help you understand what is going on. If you
don't go through this chapter, you'll not be successful at any of the others, and your
hardware will go unused, which would be a real tragedy. So, let's get started.

Getting Started with Raspberry Pi

[2]

One of the most challenging aspects of writing this guide is to decide the level at
which I should describe each step. Some of you are beginners, some have limited
experience, and others know significantly more in some of these areas. I'll try to be
brief but thorough, trying to detail the steps to take in order to be successful. So,
for this chapter, here are your objectives:

•	 Unbox and connect the board to power
•	 Connect a display, keyboard, and mouse
•	 Load and configure the operating system
•	 Access the board remotely

The Raspberry Pi comes in several flavors: the original A and B models, and the new
and improved A+ and B+ models. The B+ flavor is the most popular. It comes with
additional input/output capability, four USB connections, more memory, and will
be the flavor you'll focus on in this book. That does not mean that many, if not most,
of the projects here require the extra capability of the B+. As we go, I'll try and point
out when you'll need the additional capability of the B+, and when the Raspberry Pi
A+ might be enough. The Raspberry Pi now also comes in a B2 version. We'll not talk
about that specifically here, but there is no reason why the projects shouldn't work
with that version as well.

Here are the items you'll need for this chapter's projects:

•	 A Raspberry Pi, Model B+
•	 The USB cable to provide power to the board
•	 A display with a proper video input
•	 A keyboard, a mouse, and a powered USB hub
•	 A microSD card – at least 4 GB capacity
•	 A microSD card writer
•	 Another computer that is connected to the Internet
•	 An Internet connection for the board
•	 A LAN cable (if you are using the Raspberry Pi A+ you'll need a powered

USB hub, a wireless LAN connection, and a Wireless LAN device; you'll
learn how to configure this later in the chapter)

Chapter 1

[3]

The unboxing
The first step to building any project with Raspberry Pi is to become familiar with
Raspberry Pi itself. The Raspberry Pi comes in a box with a power cable. The
following image shows what the Raspberry Pi B+ board looks like:

And the next image is that of the Raspberry Pi A+ board:

Getting Started with Raspberry Pi

[4]

Before plugging anything in, inspect the board for any issues that might have
occurred during shipping. This is normally not a problem, but it is always good to
do a quick visual inspection. You should also familiarize yourself with the different
connections on the board. Here is the B+ board, labeled for your information:

The labels for the A+ board are shown in the following image:

Chapter 1

[5]

Powering your board
Let's first power the board. To do this, you'll need to go through the USB client
connection. This is done by performing the following steps:

1.	 Connecting the microUSB connector end of the cable to the board.
2.	 Connecting the standard sized USB connector to either a PC, or a compatible

DC power source that has a USB connection. If you are connecting it to a
PC, the USB 2.0 standard requires only 500 mA be available. The USB 3.0
standard requires only 900 mA be available. This means that some computers
may not supply enough current for the Raspberry Pi to work correctly.

If you are going to use a DC power source at the standard USB connector end, make
sure that the unit can supply enough current. You'll need a supply that can provide
at least 1000 mA at 5 volts.

When you plug the board in, the PWR LED should be red. Here is a close up of the
LED locations, just so you're certain which one to look for:

If you've reached this point, congratulations! You're ready for the next step.

Getting Started with Raspberry Pi

[6]

Hooking up a keyboard, mouse, and
display
Now that you know your board works, you're going to add peripherals so that it can
operate as a standalone computer system. This step is optional, as in the future, your
projects will often be in systems where you won't connect directly to the board with
a keyboard, mouse, and display. However, this can be a great learning step, and is
especially useful if you need to do some debugging on the system.

You'll need the following peripherals:

•	 A USB mouse
•	 A USB keyboard (this can be wireless, and can contain a built-in mouse pad)
•	 A display that accepts HDMI or DVI-Video, although using a DVI input will

require an adapter
•	 A powered USB hub (you will need this if you are going to use the Raspberry

Pi A+ version for the projects)

You may have most of this stuff already, but if you don't, there are some things to
consider before buying additional equipment. Let's start with the keyboard and
mouse. Most mice and keyboards have separate USB connectors. This normally
works fine for the Raspberry Pi model B+, as it has four USB ports. If you are going
to use the Raspberry Pi A+ model, you may want to choose a keyboard that has a
mouse pad built-in.

If you are using the Raspberry Pi A+ model, you will want to consider purchasing a
powered USB hub. Before deciding on the hub to connect to your board, you need to
understand the difference between a powered USB hub and one that gets its power
from the USB port itself. Almost all USB hubs are not powered, that is, you don't
plug in the USB hub separately. The reason for this is that almost all of these hubs are
hooked up to computers with very large power supplies and powering USB devices
from the computer is not a problem. This is not the case for your board. The USB
port on your board has very limited power capabilities, so if you are going to hook
up devices that require significant power—a WAN adapter or webcam for
instance—you're going to need a powered USB hub, one that provides power to
the devices through a separate power source. Here is an image of such a device,
available at www.amazon.com and other online retailers:

Chapter 1

[7]

Notice that on this hub, there are two connections. The one to the far right is a power
connection, and it will be plugged into a battery with a USB port. The connection to
the left is the USB connection, which will be plugged into the Raspberry Pi.

Now, you'll also need a display. Fortunately, your Raspberry Pi offers lots of choices
here. There are a number of different video standards; here is an image of some of
the most prevalent ones, for reference:

Getting Started with Raspberry Pi

[8]

There is an HDMI connector on the Raspberry Pi A+ and B+. To use this connector,
simply connect your cable with regular HDMI connections to Raspberry Pi and your
TV or monitor that has an HDMI input connector. HDMI monitors are relatively
new, but if you have a monitor that has a DVI input, you can buy relatively
inexpensive adapters that provide an interface between DVI and HDMI.

Don't be fooled by adapters that claim that they go from HDMI or DVI to VGA, or
HDMI or DVI to S-video. These are two different kinds of signals: HDMI and DVI
are digital standards, and VGA and S-video are analog standards. There are adapters
that can do this, but they must contain circuitry and require power, and are
significantly more expensive than any simple adapter.

You are almost ready to plug in the Raspberry Pi. Make sure you connect all your
devices before you power on the unit. Most operating systems support the hot-swap
of devices, which means you are able to connect a device after the system has been
powered, but this is a bit shaky. You should always cycle power when you connect
new hardware.

Even though your hardware configuration is complete, you'll still need to complete
the next section to power on the device. So, let's figure out how to install an
operating system.

Installing the operating system
Now that your hardware is ready, you need to install an operating system. You
are going to install Linux, an open-source version of Unix, on your Raspberry Pi.
Now Linux, unlike Windows, Android, or iOS, is not tightly controlled by a single
company. It is a group effort, mostly open-source, and while it is available for free,
it grows and develops a bit more chaotically.

Thus, a number of distributions have emerged, each built on a core set of similar
capabilities referred to as the Linux kernel. These core capabilities are all based
on the Linux specification. However, they are packaged slightly differently, and
developed, supported, and packaged by different organizations. Debian, Arch, and
Fedora are the names of some of the versions. There are others as well, but these are
the main choices for the distribution that you might put on your card.

Chapter 1

[9]

I choose to use the Raspbian, a Debian distribution of Linux, on my Raspberry Pi
projects for a couple of reasons. First, the Debian distribution is used as the basis for
another distribution, Ubuntu, and Ubuntu is arguably the most popular distribution
of Linux, which makes it a good choice because of the community support that it
offers. Also, I personally use Ubuntu when I need to run Linux on my personal
computer. It provides a complete set of features, is well organized, and generally
supports the latest sets of hardware and software. Having roughly the same version
on both my personal computer and my Raspberry Pi makes it easier for me to use
both as they operate, at least to a certain degree, the same way. That lets me try
some things on my computer before trying them on the Raspberry Pi. I've also found
that Ubuntu/Debian has excellent support for new hardware, and this can be very
important for your projects.

So, you are going to install and run Raspbian, on your Raspberry Pi.

There are two approaches to getting Raspbian on your board. The board is getting
popular enough for you to buy an SD card that already has Raspbian installed, or
you can download it onto your personal computer and then install it on the card. I'll
assume you don't need any directions if you want to purchase a card—simply do an
Internet search for companies selling such a product.

If you are going to download a distribution, you need to decide if you are going
to use a Windows computer to download and create an SD card, a MAC OS X, or
a Linux machine. I'll give brief directions for the Windows computer and Linux
machines here. For directions on the MAC OS X, go to: http://www.raspberrypi.
org/documentation/installation/installing-images/mac.md.

First, you'll need to download an image. This part of the process is similar for both
Windows and Linux. Open a browser window. Go to Raspberry Pi organization's
website, www.raspberrypi.org and select the Downloads selection at the top of the
page. This will give you a variety of download choices. Go to the Raspbian section,
and select the .zip file just to the right of the image identifier. This will download an
archived file that has the image for your Raspbian operating system. Note the default
user name and password; you'll need that later.

http://www.raspberrypi.org/documentation/installation/installing-images/mac.md
http://www.raspberrypi.org/documentation/installation/installing-images/mac.md

Getting Started with Raspberry Pi

[10]

If you're using Windows, you'll need to unzip the file using an archiving program
like 7-Zip. This will leave you with a file that has the .img extension, a file that can
be imaged on to your card. Next, you'll need a program that can write the image to
the card. I use the Image Writer for Windows program. You can find a link to this
program at the top of the download section on the www.raspberrypi.org website.
Plug your card into the PC, run this program, and you should see this:

Select the correct card and image; it should look something like this:

Then click on the Write button. This will take some time, but when it is complete,
eject the card from the PC.

Chapter 1

[11]

If you are using Linux, you'll need to un-archive the file and then write it to the card.
You can do all of this with one command. However, you do need to find the /dev
device label for your card. You can do this with the ls -la /dev/sd* command.
If you run this before you plug in your card, you might see something like the
following screenshot:

After plugging in your card, you might see something like the following screenshot:

Note that your card is at sdb. Now, go to the directory where you downloaded the
archived image file, and use the following command:

sudo dd if=2014-09-09-wheezy-raspbian.img of=/dev/sdX

Getting Started with Raspberry Pi

[12]

The 2014-09-09-wheezy-raspbian.img command will be replaced by the image
file that you downloaded, and /dev/sdX will be replaced by your card ID in this
example, /dev/sdb. Be careful to specify the correct device as this can overwrite the
data on your hard drive. Also, this may take a few minutes. Once the file is written,
eject the card and you are ready to plug it into the board and apply power.

Make sure your Raspberry Pi is unplugged and install the SD card into the slot. Then
power the device. After the device boots, you should get the following screenshot:

You are going to do two things, and perhaps another, based on your personal
preference. First, you'll want to expand the file system to take up the entire card.
So, hit the Enter key, and you'll see the following screenshot:

Chapter 1

[13]

Hit Enter once again and you'll go back to the main configuration screen. Now select
the Enable Boot to Desktop/Scratch option, as shown in the following screenshot:

www.allitebooks.com

http://www.allitebooks.org

Getting Started with Raspberry Pi

[14]

When you hit Enter you'll see the following screenshot:

I prefer to select the middle option, Desktop Log in as user 'pi' at the graphical
desktop. It normally sets up the system the way I like to have it booted up. You
could also choose Console text console, require login (default). However, you will
need to log in whenever you want to access the graphical environment, for example,
when using the VNC server, which we will cover later.

The final choice you can make is to change the over clocking on the Raspberry Pi.
This is a way for you to get a higher performance from your system. However, there
is a risk that you can end up with a system that has reliability problems.

Chapter 1

[15]

I normally do a bit of over clocking, I'll select the Medium setting, as shown in the
following screenshot:

Once you are done, and are back to the main configuration menu, hit the Tab key
until you are positioned over the <Finish> selection, then hit Enter. Then, hit Enter
again so that you can reboot your Raspberry Pi. Now when you boot, your system
will take you all the way into the Windows screen.

Getting Started with Raspberry Pi

[16]

The Raspberry Pi uses the Lightweight X11 Desktop Environment (LXDE)
Windows system, and should look like the following screenshot:

Now, when the graphical desktop system is up and running, you can bring up a
terminal by double clicking on the LXTerminal icon on the screen. You should end
up with a terminal window that looks like the following screenshot:

Chapter 1

[17]

Now you are ready to start interacting with the system!

Two questions arise: do you need an external computer during the creation of your
projects? and, what sort of a computer do you need? The answer to the first question
is a resounding 'yes'. Most of your projects are going to be self-contained robots with
very limited connections and display space; you will be using an external computer
to issue commands and see what is going on inside your robotic projects. The answer
to the second question is a bit more difficult. Because your Raspberry Pi is working in
Linux, most notably a version of Debian that is very closely related to Ubuntu, there
are some advantages to having an Ubuntu system available as your remote system.
You can then try some things on your computer before trying them in your embedded
system. You'll also be working with similar commands for both, which will help your
learning curve. You can even use a second Raspberry Pi for this purpose.

Getting Started with Raspberry Pi

[18]

However, the bulk of personal computers today run some sort of Windows operating
system, so that is what will normally be available. Even with a Windows machine,
you can issue commands and display information, so either way, it will work. I'll try
to give examples for both, as long as it is practical.

Accessing the board remotely
You now have a very usable Debian computer system. You can use it to access the
Internet, write riveting novels, balance your accounts—just about anything you
could do with a standard personal computer. However, that is not your purpose; you
want to use your embedded system to power your delightfully inventive projects.
In most cases, you will not want to connect a keyboard, mouse, and display to your
projects. However, you still need to communicate with your device, program it, and
have it tell you what is going on, and when things don't work right. You'll spend
some time in this section establishing remote access to your device.

Establishing Internet access on
Raspberry Pi B+
This section depends on an Internet connection with the Raspberry Pi. For the B+,
this is relatively easy. Simply connect the device to the LAN through the Ethernet
connection. If you don't have a wired LAN connection, or would prefer to connect
your device wirelessly, follow the instructions in the next section, Establishing Internet
access on the Raspberry Pi A+.

Establishing Internet access on
Raspberry Pi A+
The Raspberry Pi A+ does not have a LAN connection. To connect the Raspberry Pi
A+ to the Internet, you'll need to establish a wireless LAN connection. First, make
sure you have a wireless access point configured. You'll also need a wireless device.
See http://elinux.org/RPi_USB_Wi-Fi_Adapters to identify wireless devices
that have been verified to work with the Raspberry Pi. Here is one that is available at
many online electronics outlets:

Chapter 1

[19]

You'll also need to connect a powered USB hub for this process so that you can
access the wireless keyboard, as well as the USB wireless LAN device. Now, connect
the hub to the Raspberry Pi, and then connect your keyboard and the device to the
powered hub.

Boot the system, and then edit the network file by typing sudo nano /etc/
network/interfaces. You'll want to change it to look like this:

Getting Started with Raspberry Pi

[20]

The wpa-ssid and wpa-psk values here must, of course, match what your wireless
access point requires. Reboot, and your device should be connected to your
wireless network.

If you are using a US keyboard, you may need to edit the keyboard
file for your keyboard to use nano effectively. To do this, type sudo
nano /etc/default/keyboard and change the XKBLAYOUT="gb"
to XKBLAYOUT="us".

Accessing your Raspberry Pi from your
host PC
Once you have established an Internet network connection with your device, you can
access it from your host computer. There are three ways you can access your system
from your remote computer:

•	 The first is through a terminal interface called SSH.
•	 The second way is by using a program called VNC Server. This allows you

to open a graphical user interface remotely that mirrors the graphical user
interface on the Raspberry Pi.

•	 Finally, you can transfer files through a program called WinSCP, which
is custom made for this purpose. From Linux, you can use a program
called scp.

So, first, make sure your basic system is up and working. Open a terminal window,
and check the IP address of your unit. You're going to need this no matter how you
want to communicate with the system. Do this by using the ifconfig command. It
should look like the following screenshot:

Chapter 1

[21]

You'll need the inet addr shown in the second line of the preceding screenshot to
contact your board through the Ethernet.

If you are using the wireless device to gain access to the Internet, your ifconfig will
look like this:

Getting Started with Raspberry Pi

[22]

The inet addr associated with the wlan0 connection, in this case 10.10.0.31, is the
address you will use to access your Raspberry Pi.

You'll also need an SSH terminal program running on your remote computer. An
SSH terminal is a Secure Shell Hypterminal (SSH) connection, which simply means
you'll be able to access your board and give it commands by typing them into your
remote computer. The response from the Pi will appear in the remote computer
terminal window. If you'd like to know more about SSH, try https://www.
siteground.com/tutorials/ssh/.

If you are running Microsoft Windows, you can download such an application. My
personal favorite is PuTTY. It is free and does a very good job of allowing you to
save your configuration so you don't have to type it in each time. Type putty in a
search window, and you'll soon come to a page that supports a download, or you
can go to www.putty.org.

Download PuTTY to your Microsoft Windows machine. Then, run putty.exe.
You should see a configuration window which looks something like the
following screenshot:

https://www.siteground.com/tutorials/ssh/
https://www.siteground.com/tutorials/ssh/

Chapter 1

[23]

Type the inet addr from the previous page in the Host Name space, and make
sure the SSH selection is selected. You may want to save this configuration under
Raspberry Pi so you can reload it each time.

When you click on Open, the system will try to open a terminal window onto your
Raspberry Pi through the LAN connection. The first time you do this, you will get
a warning about an RSA key as the two computers don't know about each other.
Windows complains that a computer it doesn't know is about to be connected in a
fairly intimate way. Simply click on OK, and you should get a terminal with a login
prompt, like the following screenshot:

Now you can log in and issue commands to your Raspberry Pi. If you'd like to do
this from a Linux machine, the process is even simpler. Bring up a terminal window
and then type ssh pi@xxx.xxx.xxx.xxx where the xxx.xxx.xxx.xxx is the inet
addr of your device. This will then bring you to the login screen of your Raspberry
Pi, which should look similar to the preceding screenshot.

SSH is a really useful tool to communicate with your Raspberry Pi. However,
sometimes you need a graphical look at your system, and you don't necessarily want
to connect a display. You can get this on your remote computer using an application
called vncserver. You'll need to install a version of this on your Raspberry Pi by
typing sudo apt-get install tightvncserver in a terminal window on your
Raspberry Pi. This is a perfect opportunity to use SSH, by the way.

Getting Started with Raspberry Pi

[24]

Tightvncserver is an application that will allow you to remotely view your complete
Windows system. Once you have it installed, you'll need to start the server by typing
vncserver in a terminal window on the Raspberry Pi. You will then be prompted for
a password, to verify the password, and then asked if you'd like to have a view only
password. Remember the password you entered, you'll need it to remotely log in via
a VNC Viewer.

You'll need a VNC Viewer application for your remote computer. On my Windows
system, I use an application called RealVNC. When I start the application, it gives
me the following screenshot:

Enter the VNC Server address, which is the IP address of your Raspberry Pi,
and click on Connect. You will get this pop-up window, as shown in the
following screenshot:

Type in the password you just entered while starting the vncserver, and you
should then get a graphical view of your Raspberry Pi that looks like the
following screenshot:

Chapter 1

[25]

You can now access all the capabilities of your system, although they may be slower
if you are doing graphics-intense data transfer. Just a note: there are ways to make
your vncserver start automatically on boot. I have not used them; I choose to type
the vncserver command from an SSH application when I want the application
running. This keeps your running applications to a minimum and, more importantly,
provides for fewer security risks. If you'd like to start yours each time you boot, there
are several places on the Internet that will show you how to configure this. Try the
following website: http://www.havetheknowhow.com/Configure-the-server/
Run-VNC-on-boot.html.

http://www.havetheknowhow.com/Configure-the-server/Run-VNC-on-boot.html
http://www.havetheknowhow.com/Configure-the-server/Run-VNC-on-boot.html

Getting Started with Raspberry Pi

[26]

To view this Raspberry Pi desktop from a remote Linux computer, running Ubuntu
for example, you can type sudo apt-get install xtightvncviewer and then start
it using xtightvncviewer 10.25.155.110:1 and supplying the chosen password.

Linux has viewers with graphical interfaces such as Remmina Remote Desktop
Client (select VNC-Virtual Network Computing protocol), which might be used
instead of xtightvncviewer. Here is a screenshot of the Remote Desktop Viewer:

Make sure vncserver is running on the Raspberry Pi. The easiest way to do this is to
log in using SSH and run vncserver at the prompt. Now, click on Connect on the
Remote Desktop Viewer. Fill in the screen as follows; under the Protocol selection,
choose VNC, and you should see the following screenshot:

Chapter 1

[27]

Now enter the Host inet address, making sure you include a :1 at the end, and then
click on Connect. You'll need to enter the vncserver password you set up, like the
following screenshot:

Getting Started with Raspberry Pi

[28]

Now you should be able to see the graphical screen of the Raspberry Pi, like this:

The final piece of software that I like to use with my Windows system is a free
application called WinSCP. To download and install this piece of software, simply
search the web for WinSCP and follow the instructions. Once installed, run the
program. It will open the following dialog box:

Chapter 1

[29]

Click on New, and you will get the following screenshot:

Getting Started with Raspberry Pi

[30]

Here you fill in the IP address in the host name tab, pi in the user name tab,
and the password (not the vncserver password) in the password space. Click on
Login and you should see the following warning displayed, as shown in the
following screenshot:

The host computer, again, doesn't know the remote computer. Click on Yes, and then
the application will display the following screenshot:

Chapter 1

[31]

Now you can drag and drop files from one system to the other. You can also do
similar things on Linux using the command line. To transfer a file to the remote
Raspberry Pi, you can use the scp file user@host.domain:path command, where
file is the file name, and user@host.domain:path is the location you want to copy
it to. For example, if you wanted to copy robot.py from your Linux system to the
Raspberry Pi, you would type scp robot.py pi@10.25.155.176:/home/pi/.The
system will ask you for the remote password; this is the login for the Raspberry Pi.
Enter the password, and the file will be transferred.

Now that you know how to use SSH, tightvncserver, and scp, you can access your
Raspberry Pi remotely without having a display, keyboard, or mouse connected
to it! Now your system looks like the following image (if you are using the
Raspberry Pi B+):

Getting Started with Raspberry Pi

[32]

Or this (if you are using the Raspberry Pi A+):

You only need to connect the power and the LAN, either with a cable, or through
wireless LAN. If you need to issue simple commands, connect through SSH. If you
need a more complete set of graphical functionality, you can access this through
vncserver. Finally, if you want to transfer files back and forth, you can use WinSCP
from a Windows computer or scp from a Linux computer. Now you have the toolkit
to build your first capabilities.

One of the challenges of accessing the system remotely is that you need to know the
IP address of your board. If you have the board connected to a keyboard and display,
you can always just run ifconfig command to get this info. But you're going to use
the board in applications where you don't have this information. There is a way to
discover this by using an IP scanner application. There are several available for free;
on Windows, I use an application called Advanced IP Scanner. When I start the
program, it looks like the following screenshot:

Chapter 1

[33]

Clicking on the Scan selector, scans for all the devices connected to the network. You
can also do this in Linux; one application for IP scanning in Linux is called Nmap. To
install Nmap, type sudo apt-get install nmap. To run Nmap, type sudo nmap
-sp 10.25.155.1/154 and the scanner will scan the addresses from 10.25.155.1
to 10.25.155.154. For more information on Nmap, see: http://www.linux.com/
learn/tutorials/290879-beginners-guide-to-nmap. These scanners can let
you know which addresses are being used, and this should then let you find your
Raspberry Pi address without typing ipconfig.

Your system has lots of capabilities. Feel free to play with the system—try to get
an understanding of what is already there, and what you'll want to add from a SW
perspective. One advanced possibility is to connect the Raspberry Pi through a wireless
LAN connection, so you don't have to connect a LAN connection when you want to
communicate with it. There are several good tutorials on the Internet. Try http://
learn.adafruit.com/adafruits-raspberry-pi-lesson-3-network-setup/
setting-up-wifi-with-occidentalis or http://www.howtogeek.com/167425/
how-to-setup-wi-fi-on-your-raspberry-pi-via-the-command-line/.

Remember, there is limited power on your USB port, so make sure that you are
familiar with the power needs of accessories plugged into your Raspberry Pi. You
may very well need to use a powered USB hub for many projects.

www.allitebooks.com

http://www.linux.com/learn/tutorials/290879-beginners-guide-to-nmap
http://www.linux.com/learn/tutorials/290879-beginners-guide-to-nmap
http://learn.adafruit.com/adafruits-raspberry-pi-lesson-3-network-setup/setting-up-wifi-with-occidentalis
http://learn.adafruit.com/adafruits-raspberry-pi-lesson-3-network-setup/setting-up-wifi-with-occidentalis
http://learn.adafruit.com/adafruits-raspberry-pi-lesson-3-network-setup/setting-up-wifi-with-occidentalis
http://www.howtogeek.com/167425/how-to-setup-wi-fi-on-your-raspberry-pi-via-the-command-line/
http://www.howtogeek.com/167425/how-to-setup-wi-fi-on-your-raspberry-pi-via-the-command-line/
http://www.allitebooks.org

Getting Started with Raspberry Pi

[34]

Summary
Congratulations! You've completed the first stage of your journey. You have
your Raspberry Pi up and working. No gathering dust in the bin for this piece of
hardware. It is now ready to start connecting to all sorts of interesting devices, in
all sorts of interesting ways. You would have, by now, installed a Debian operating
system, learned how to connect all the appropriate peripherals, and even mastered
how to access the system remotely so that the only connections you need are a
power supply cable and a LAN cable.

Now you are ready to start commanding your Raspberry Pi to do something. The
next chapter will introduce you to the Linux operating system and the Emacs text
editor. It will also show you some basic programming concepts in both the Python
and C programming languages. Then you'll be ready to add open source software
to inexpensive hardware and start building your robotics projects.

[35]

Programming Raspberry Pi
Now that your system is up and running, you'll want Raspberry Pi to start working.
Almost always, this requires you to either create your own programs, or edit
someone else's programs. This chapter will provide a brief introduction to file
editing and programming.

While it is fun to build hardware (and you'll spend a good deal of time designing
and building your robots), your robots won't get very far without programming.
This chapter will help introduce you to editing and programming concepts, so you'll
feel comfortable creating some of the fairly simple programs that we'll discuss in this
book. You'll also learn how to change the existing programs, which will make your
robot do more amazing things.

In this chapter, we will cover the following topics:

•	 Basic Linux commands and navigating the File System on Raspberry Pi
•	 Creating, editing, and saving files on Raspberry Pi
•	 Creating and running Python programs on Raspberry Pi
•	 Some of the basic programming constructs on Raspberry Pi
•	 How the C programming language is both similar and different to Python,

so you can understand when you need to change the C code files

We're going to use the basic configuration that you created in Chapter 1, Getting
Started with Raspberry Pi. You can accomplish the tasks in this chapter by connecting
a keyboard, a mouse, and a monitor to Raspberry Pi, or remotely logging in to
Raspberry Pi using vncserver or SSH. All of these methods will work for executing
the examples in this chapter.

Programming Raspberry Pi

[36]

Basic Linux commands on Raspberry Pi
After completing the tasks in Chapter 1, Getting Started with Raspberry Pi, you'll have
a working Raspberry Pi running a version of Linux called Raspbian. We selected the
Raspbian version because it is the most popular version, and thus has the largest
range of supported hardware and software. The commands reviewed in this chapter
will also work with other versions of Linux, but the examples shown in this chapter
use Raspbian.

So, power up your Raspberry Pi and log in, using a valid username and password.
If you are going to log in remotely through SSH or vncserver, go ahead and establish
the connection now. Next, we will take a quick tour of Linux. This will not be
extensive; we will just walk through some of the basic commands.

Once you have logged in, open up a terminal window. If you are logging in using a
keyboard, mouse, and monitor, or using vncserver, you'll find the terminal selection
by selecting the LXTerminal application on the left-hand side of the screen, as shown
in the following screenshot:

Chapter 2

[37]

If you are using SSH, you will already be at the terminal emulator program. Either
way, the terminal should look, as shown in the following screenshot:

Your cursor is at the Command Prompt. Unlike Microsoft Windows or Apple's OS,
with Linux, most of our work will be done by actually typing commands in the
command line. So, let's try a few commands. First, type ls. The result should be
as shown in the following screenshot:

Programming Raspberry Pi

[38]

In Linux, the ls command lists all the files and directories in our current directory.
You can tell the different file types and directories apart because they are normally in
different colors. You can also use ls –l to see more information about the files.

You can move around the directory structure by issuing the cd (change directory)
command. For example, if you want to see what is in the Desktop directory, type
cd ./Desktop. If you issue the ls command now, what you should see is shown in
the following screenshot:

This directory mostly has definitions for the behavior of the desktop icons. Now I
should point out that we used a shortcut when we typed cd ./Desktop. The dot
(.) character is a shortcut for the current default directory, also called the working
directory. The cd command changes the directory. You could also have typed
cd /home/pi/Desktop and received exactly the same result; this is because you
were in the /home/pi directory, which is the directory in which you always start
when you first log in to the system.

Chapter 2

[39]

If you ever want to see which directory you are in, simply type pwd, which stands
for print working directory. If you do that, you shall get the result as shown in the
following screenshot:

The result of running the pwd command is /home/pi/Desktop. Now, you can use
two different shortcuts to navigate back to the default directory. The first is to type
cd .. on the terminal; this will take you to the directory just above the current
directory in the hierarchy. Then type pwd; you should see the following screenshot
as a result:

Programming Raspberry Pi

[40]

The other way to get back to the home directory is by typing cd ~, and this will
always return you to your home directory. You can also just type cd to return to your
home directory. If you were to do this from the Desktop directory and then type pwd,
you would see the result as shown in the following screenshot:

Another way to go to a specific directory is by using its entire pathname. In this case,
if you want to go to the /home/Raspbian/Desktop directory from anywhere in the
file system, simply type cd /home/Raspbian/Desktop.

There are a number of other Linux commands that you might find useful as you
program your robot. The following is a table with some of the more useful commands:

Linux command What it does
ls This command lists all the files and directories

in the current directory by just their names.
rm filename This command deletes the file specified by

filename.
mv filename1 filename2 This command renames filename1 to

filename2.
cp filename1 filename2 This command copies filename1 to

filename2.
mkdir directoryname This command creates a directory with the

name specified by directoryname; this
will be made in the current directory, unless
specified otherwise.

clear This command clears the current terminal
window.

Chapter 2

[41]

Linux command What it does
sudo If you type the sudo command at the beginning

of any command, it will execute that command
as the super user. This may be required if
the command or program you are trying to
execute needs super user permissions. If, at any
point, you type a command or the name of the
program you want to run and the result seems
to suggest that the command does not exist or
permission is denied, try doing it again with
sudo at the beginning.

Now you can play around with the commands and look at your system and the files
that are available to you. But, be a bit careful! Linux is not like Windows: the default
behavior is to not warn you if you try to delete or replace a file.

Creating, editing, and saving files on
Raspberry Pi
Now that you can log in and move easily between directories and see the files in
them, you'll want to be able to edit those files. To do this, you'll need a program that
allows you to edit the characters in a file. If you are used to working on Microsoft
Windows, you have probably used programs such as Microsoft Notepad, WordPad,
or Word to do this. As you know, these programs are not available in Linux. But,
there are several other choices for editors, all of which are free. In this chapter, we
will use an editor program called Emacs. Other possibilities are programs such as
nano, vi, vim, and gedit. Programmers have strong feelings about which editor to
use, so if you already have a favorite, you can skip this section.

Programming Raspberry Pi

[42]

If you want to use Emacs, download and install it by typing sudo apt-get install
emacs. Once installed, you can run Emacs simply by typing emacs filename, where
filename is the name of the file you want to edit. If the file does not exist, Emacs
will create it. The following screenshot shows what you will see if you type
emacs example.py at the prompt:

Notice that unlike Windows, Linux doesn't automatically assign file extensions; it is
up to us to specify the kind of file we want to create. Notice also that in the lower left
corner of the screen, the Emacs editor indicates that you have opened a new file. Now,
if you are using Emacs in the LXDE Windows interface, either because you have a
monitor, keyboard, and mouse hooked up or because you are running vncserver, you
can use the mouse in much the same way as you do in Microsoft Word.

However, if you are running Emacs from SSH, you won't have the mouse available.
So you'll need to navigate the file by using the cursor keys. You'll also have to use
some keystroke commands to save your file, as well as accomplish a number of other
tasks that you would normally use the mouse for. For example, when you are ready to
save the file, you must press Ctrl + X and Ctrl + S, and that will save the file under the
current filename. When you want to quit Emacs, you must press Ctrl + X and Ctrl + C.
This will stop Emacs and return you to the command prompt. If you are going to use
Emacs, the following are a number of keystroke commands you might find useful:

Chapter 2

[43]

The Emacs command What it does

Ctrl + X and Ctrl + S Save: This command saves the current file.
Ctrl + X and Ctrl + C Quit: This command makes you exit Emacs and return

to the command prompt.
Ctrl + K Kill: This command erases the current line.
Ctrl + _ Undo: This command undoes the last action.
Left-click and text
selection followed by
cursor placement and
right-click

Cut and paste: If you select the text you want to paste by
clicking the mouse, move the cursor to where you want
to paste the code and then right-click on it; the code will
be pasted in that location.

Now that you have the capability to edit files, in the next section, you'll use this
capability to create programs.

Creating and running Python programs
Now that you are ready to begin programming, you'll need to choose a language.
There are many available: C, C++, Java, Python, Perl, and a great deal of other
possibilities. I'm going to initially introduce you to Python for two reasons: it is a
simple language that is intuitive and very easy to use, and it avails a lot of the open
source functionality of the robotics world. We'll also cover a bit of C/C++ in this
chapter, as some functionalities are only available in C/C++. But it makes sense to
start in Python. To work through the examples in this section, you'll need a version
of Python installed. Fortunately, the basic Raspbian system has one already, so you
are ready to begin. Python interpreter is what the Pi in Raspberry Pi stands for.

We are only going to cover some of the very basic concepts here. If you are new to
programming, there are a number of different websites that provide interactive
tutorials. If you'd like to practice some of the basic programming concepts in Python
using these tutorials, visit www.codeacademy.com or http://www.learnpython.org/
or https://docs.python.org and give it a try.

In this section, we'll cover how to create and run a Python file. It turns out that
Python can be used interactively, so you can run it and then type in the commands,
one at a time. Using it interactively is extremely helpful when first getting acquainted
with the language features and modules. But we want to use Python to create
programs, so we are going to type in our commands using Emacs and then run
them in the command line by invoking Python. Let's get started.

Programming Raspberry Pi

[44]

Open an example Python file by typing emacs example.py. Now, let's put some
code in the file. Start with the code, as shown in the following screenshot:

Let's go through the code to see what is happening. The code lines are as follows:

•	 a = input("Input value: "): One of the basic purposes of a program is
to get input from the user. input allows us to do that. The data will be input
by the user and stored in a. The prompt Input value: will be shown to
the user.

•	 b = input("Input second value: "): This data will also be input by the
user and stored in b. The prompt Input second value: will be shown to
the user.

•	 c = a + b: This is an example of something you can do with the data; in this
example, you can add a and b.

•	 print c: Another basic purpose of our program is to print out results. The
print command prints out the value of c.

This code is written using Python 2. If you are using
Python 3, you will need to change your print to print(c).
For other changes that might be required, go to http://
learntocodewith.me/programming/python/
python-2-vs-python-3/.

Once you have created your program, save it (using Ctrl + X Ctrl + S) and quit Emacs
(using Ctrl + X Ctrl + C). Now, from the command line, run your program by typing
python example.py. You should see the result shown in the following screenshot:

http://learntocodewith.me/programming/python/python-2-vs-python-3/
http://learntocodewith.me/programming/python/python-2-vs-python-3/
http://learntocodewith.me/programming/python/python-2-vs-python-3/

Chapter 2

[45]

You can also run the program from the command line without typing python
example.py by adding the line #!/usr/bin/python to the program. Then the
program will look, as shown in the following screenshot:

Adding #!/usr/bin/python as the first line simply makes this file available for us
to execute from the command line. Once you have saved the file and exited Emacs,
type chmod +x example.py. This will change the file's execution permissions, so
the computer will now accept and execute it. You should be able to simply type
./example.py and see the program run, as shown in the following screenshot:

Programming Raspberry Pi

[46]

Notice that if you simply type example.py, the system will not find the executable
file. Here, the file has not been registered with the system, so you have to give the
system a path to it. In this case, ./ is the current directory.

Basic programming constructs on
Raspberry Pi
Now that you know how to enter and run a simple Python program on Raspberry Pi,
let's look at some more complex programming tools. Specifically, we'll cover what to
do when we want to determine the instructions to execute and how to loop our code
to do that more than once. I'll give a brief introduction on how to use libraries in the
Python version 2.7 code and how to organize statements into functions. Finally, we'll
very briefly cover object-oriented code organization.

Indentation in Python is very important; it will specify which group
of statements are associated with a given loop or decision set, so
watch your indentation carefully.

The if statement
As you have seen in previous examples, your programs normally start by executing
the first line of code and then continue with the following lines, until the program
runs out of code. But what if you want to decide between two different courses of
action? We can do this in Python by using an if statement. The following screenshot
shows some example code:

Chapter 2

[47]

The following are the details of the code shown in the previous screenshot, line
by line:

•	 #!/usr/bin/python: This is included so you can make your
program executable.

•	 a = input("Input value: "): One of the basic needs of a program is to get
input from the user. input allows us to do that. The data will be input by the
user and stored in a. The prompt Input value: will be shown to the user.

•	 b = input("Input second value: "): This data will also be input by the
user and stored in b. The prompt Input second value: will be shown to
the user.

•	 if a > b:: This is an if statement. The expression evaluated in this case is
a > b. If it is true, the program will execute the next one or more statements
that is indented; in this case, c = a - b. If not, it will skip that statement.

•	 else::The else statement is an optional part of the command. If the
expression in the if statement is evaluated as false, the indented one or
more statements after the else: statement will be executed; in this case,
c = b - a.

•	 print c: Another basic purpose of our program is to print out results. The
print command prints out the value of c.

You can run the previous program a couple of times, checking both the true and
false possibilities of the if expression, as shown in the following screenshot:

Programming Raspberry Pi

[48]

The while statement
Another useful construct is the while construct; it allows us to execute a set of
statements over and over again, until a specific condition has been met. The
following screenshot shows a set of code that uses this construct:

The following are the details of the code shown in the previous screenshot:

•	 #!/usr/bin/python: This is included so you can make your
program executable.

•	 a = 0: This line sets the value of variable a to 0. We'll need this only to make
sure that we execute the loop at least once.

•	 b = 1: This line sets the value of the variable b to 1. We'll need this only to
make sure that we execute the loop at least once.

•	 while a != b:: The expression a != b (in this case, != means not equal
to) is verified. If it is true, the indented statements is executed. When the
statement is evaluated as false, the program jumps to the statements (none
in this example) after the indented section.

•	 a = input("Input value: "): One of the basic purposes of a program
is to get input from the user. input allows us to do that. The data will be
input by the user and stored in a. The prompt Input value: will be shown
to the user.

•	 b = input("Input second value: "): This data will also be input by the
user and stored in b. The prompt Input second value: will be shown to
the user.

•	 c = a + b: The variable c is loaded with the sum of a and b.
•	 print c: The print command prints out the value of c.

Chapter 2

[49]

Now you can run the program. Notice that when you enter the same value for a and
b, the program stops, as shown in the following screenshot:

Working with functions
The next concept we need to cover is how to put a set of statements into a function.
We use functions to organize code, grouping sets of statements together when it
makes sense that they be organized and be in the same location. For example, if we
have a specific calculation that we might want to perform many times, instead of
copying the set of statements each time we want to perform it, we group them into a
function. I'll use a fairly simple example here, but if the calculation takes a significant
number of programming statements, you can see how that would make our code
significantly more efficient. The following screenshot shows the code:

Programming Raspberry Pi

[50]

The following is the explanation of the code from our previous example:

•	 #!/usr/bin/python: This is included so you can make your
program executable.

•	 def sum(a, b):: This line defines a function named sum. The sum function
takes a and b as arguments.

•	 c = a + b: Whenever this function is called, it will add the values in the
variable a to the values in variable b.

•	 return c: When the function is executed, it will return the variable c to the
calling expression.

•	 if __name__=="__main__":: In this particular case, you don't want your
program to start executing each statement from the top of the file; you would
rather it started at a particular point. This line tells the program to begin its
execution at this particular point.

•	 d = input("Input value: "): This data will also be input by the user
and will be stored in d. The prompt Input second value: will be shown
to the user.

•	 e = input("Input second value: "):This data will also be input by the
user and stored in e. The prompt Input second value: will be shown to
the user.

•	 f = sum(d, e): The function sum is called. In the sum function, the value in
variable d is copied to the variable a and the value in the variable e is copied
to the variable b. The program then goes to the sum function and executes it.
The return value is then stored in the variable f.

•	 print f: The print command prints out the value of f.

The following screenshot is the result received when you run the code:

Chapter 2

[51]

Libraries/modules in Python
The next topic we need to cover is how to add functionality to our programs using
libraries/modules. Libraries, or modules as they are sometimes called in Python,
include a functionality that someone else has created and that you want to add to
your code. As long as the functionality exists and your system knows about it, you
can include the library in the code. So, let's modify our code again by adding the
library, as shown in the following screenshot:

The following is a line-by-line description of the code:

•	 #!/usr/bin/python: This is included so you can make your
program executable.

•	 import time: This includes the time library. The time library includes a
function that allows you to pause for a specified number of seconds.

•	 if __name__=="__main__":: In this particular case, you don't want your
program to start executing each statement from the top of the file; you would
rather it started from a particular line. This line tells the program to begin its
execution at this specified point.

Programming Raspberry Pi

[52]

•	 d = input("Input value: "): This data will also be input by the user
and will be stored in b. The prompt Input second value: will be shown
to the user.

•	 time.sleep(2): This line calls the sleep function in the time library, which
will cause a 2 second delay.

•	 e = input("Input second value: "): This data will also be input by
the user and will be stored in b. The prompt Input second value: will be
shown to the user.

•	 f = d + e: The f variable is loaded with the value d + e.
•	 print f: The print command prints out the value of f.

The following screenshot shows the result after running the previous example code:

Of course, this looks very similar to other results. But you will notice a pause
between your entering the first value and the appearance of the second value.

Object-oriented code
The final topic that we need to cover is object-oriented organization in our code.
In object-oriented code, we organize a set of related functions in an object. If, for
example, we have a set of functions that are all related, we can place them in the
same class and then call them by associating them with the specified class. This
is a complex and difficult topic, but let me just show you a simple example in the
following screenshot:

Chapter 2

[53]

The following is an explanation of the code in the previous screenshot:

•	 #!/usr/bin/python: This is included so you can make your
program executable.

•	 class ExampleClass(object):: This defines a class named ExampleClass.
This class can have any number of functions associated with it.

•	 def add(self, a, b):: This defines the function add as part of
ExampleClass. We can have functions that have the same names as long as
they belong to different classes. This function takes two arguments: a and b.

•	 c = a + b: This statement indicates the simple addition of two values.
•	 return c: This function returns the result of the addition.
•	 if __name__=="__main__":: In this particular case, you don't want your

program to start executing each statement from the top of the file; you would
rather it started from a specific line. This line tells the program to begin its
execution at the specified point.

Programming Raspberry Pi

[54]

•	 example = ExampleClass(): This defines a variable named example, the
type of which is ExampleClass. This variable now has access to all the
functions and variables associated with the ExampleClass class.

•	 d = input("Input value: "): This data will be input by the user and
stored in the variable b. The prompt Input second value: will be shown to
the user.

•	 e = input("Input second value: "): This data will also be input by the
user and stored in b. The prompt Input second value: will be shown to
the user.

•	 f = example.add(d,e): The instance of ExampleClass is called and its
function add is executed by sending d and e to that function. The result is
returned and stored in f.

•	 print f: The print command prints out the value of the variable f.

The result after running the previous example code is shown in the
following screenshot:

The result shown in the preceding screenshot is the same as the other codes
discussed earlier, and there is no functionality difference. However, object-oriented
techniques have been used to keep similar functions organized together to make the
code easier to maintain. This also makes it easy for others to use your code.

Chapter 2

[55]

Introduction to the C/C++ programming
language
Now that you've been introduced to a simple programming language, Python, we
need to spend a bit of time talking about a more complex but powerful language
called C. C is the original language of Linux and has been around for many decades,
but it is still widely used by open source developers. It is similar to Python, but is
also a bit different. Since you may need to understand and make changes to C code,
you should be familiar with it and it's usage. C++ is a greatly expanded version of C
that adds object-oriented programming features. The following code is actually
C++ code.

As with Python, you will need to have access to the language capabilities of C. These
come in the form of a compiler and build system, which turns your text files that
contain programs into machine code that the processor can actually execute. To do
this, type sudo apt-get install build-essential. This will install the programs
you need to turn your code into executables for the system.

Now that the tools required for C/C++ are installed, let's walk through some simple
examples. The following screenshot shows the first C/C++ code example (named
example2.cpp):

Programming Raspberry Pi

[56]

The following is an explanation of the code shown in the previous screenshot:

•	 #include <iostream>: This is a library that is included so your program can
input data using the keyboard and send output information to the screen.

•	 int main(): As with Python, we can place functions and classes in the file,
but you will always want to start a program's execution at a known point; C
defines this known point as the main function.

•	 int a;: This defines a variable named a, which is of the type int. C is what
we call a strongly typed language, which means we need to declare the type
of the variable we are defining. The normal types are as follows:

°° int: This is used for numbers that have no decimal points
°° float: This is used for numbers that require decimal points
°° char: This is used for a character of text
°° bool: This is used for a true or false value

Also note that every line in C ends with the ; character.

•	 int b;: This defines a variable named b, which is of the type int.
•	 int c;: This defines a variable named c, which is of the type int.
•	 std::cout << "Input value: ";: This will display the string "Input

value: " on the screen.
•	 std::cin >> a;: The input that the user types will be stored in the

variable a.
•	 std::cout << "Input second value: ";: This will display the string

Input second value: on the screen.
•	 std::cin >> b;: The input that the user types will go into the variable b.
•	 c = a + b;: The statement is the simple addition of two values.
•	 std::cout << c << std::endl;: The cout command prints out the value

of c. The endl command at the end of this line prints out a carriage return so
that the next character appears on the next line.

•	 return 0;: The main function ends and returns 0.

To run this program, you'll need to run a compile process to turn it into an
executable program. To do this, after you have created the program, type g++
example2.cpp –o example2. This will then process your program, turning it into
a file that the computer can execute. The name of the executable program will be
example2 (specified as the name after the –o option).

Chapter 2

[57]

If you run an ls command on your directory, after you have compiled this
program, you should see the example2 file in your directory, as shown in the
following screenshot:

By the way, if you run into a problem, the compiler will try to help you figure it
out. If, for example, you were to forget to include the int type before the int a;
declaration, you would get the error, as shown in the following screenshot, when
you try to compile the previous code:

Programming Raspberry Pi

[58]

The error message indicates a problem in the int main() function and tells you
that the variable a was not successfully declared. Once you have the file compiled,
to run the executable, type ./example2 and you should be able to obtain the
following result:

We will not provide a tutorial for C in this book; there are several good tutorials on
the Internet that can help, for example, http://www.cprogramming.com/tutorial/
c-tutorial.html and http://thenewboston.org/list.php?cat=14. There is one
more aspect of C you will need to know about. The compile process that you just
encountered seems fairly straightforward. However, if you have your functionality
distributed among a lot of files, or need lots of libraries for your programs, the
command-line approach to executing a compile can get unwieldy.

The C development environment provides a way to automate the compile process;
this is called the make process. When performing this process, you create a text
program named makefile that defines the files you want to include and compile.
Instead of typing a long command or a set of commands, you simply type make and
the system will execute a compile based on the definitions in the makefile program.
There are several good tutorials that discuss this system more; try visiting the these
websites http://www.cs.colby.edu/maxwell/courses/tutorials/maketutor/
or http://mrbook.org/tutorials/make/.

http://www.cprogramming.com/tutorial/c-tutorial.html
http://www.cprogramming.com/tutorial/c-tutorial.html

Chapter 2

[59]

Now you are equipped to edit and create your own programming files. The
forthcoming chapters will provide you with lots of opportunities to practice your
skills as you translate lines of code into cool robotic capabilities.

If you are going to do a significant amount of coding, you'll want to install an
Integrated Development Environment (IDE). These environments make it much
easier to see, edit, compile, and debug your programs. The most popular of these
programs in the Linux world is called Eclipse. If you'd like to know more, start with
a Google search or go to http://www.eclipse.org/.

Summary
In this chapter, you've learned how to interact with the Raspbian operating system
using the command line and also create and edit files using Emacs. You have also
been exposed to both the Python and C programming languages. If this is your first
experience with programming, don't be surprised if you are still very uneasy with
programing in general, and if and while statements in particular. You probably
felt just as uncomfortable during your first introduction to the English language,
although you may not remember it.

It is always a bit difficult to try new things. However, I will try to give you explicit
instructions on what to type so that you can be successful. There is one major
challenge in working with computers. They always do exactly what you tell them to
do and not necessarily what you want them to. So if you encounter problems, check
several times to make sure that your code matches the example exactly. Now, on to
some actual coding!

In the next chapter, you'll start adding additional functionality that will enable you
to create amazing robotics projects. You'll start by providing your system with the
capability to speak and also listen to your commands.

[61]

Providing Speech Input
and Output

Now that your Raspberry Pi is up and operating, let's start giving your projects
some basic functionality. You'll use this functionality in later chapters as you build
wheeled robots, tracked robots, robots that can walk, and even sail or fly. We're
going to start with speech; it is a good basic project and offers several examples of
adding capability terms of both hardware and software. So, buckle up and get ready
to learn the basics of interfacing with your board by facilitating speech.

You'll be adding a microphone and a speaker to your Raspberry Pi. You'll also be
adding functionality so that the robot can recognize voice commands, and respond
through the speaker. Additionally, you'll be able to issue voice commands and make
the robot respond with an action. When you're free from typing in commands, you
can interact with your robotic projects in an impressive way. This project will require
adding both hardware and software.

Interfacing with your projects through speech is more fun than typing in commands,
and it allows interaction with your project without using a keyboard or a mouse.
Besides, what self-respecting robot wants to carry around a keyboard? No, you
want to interact in natural ways with your projects, and this chapter will teach you
how. Interfacing via speech also helps you find your way around the Raspberry Pi,
learn how to use the available free, open source software functionality, and become
familiar with the community of open source developers. This chapter covers the
capabilities needed before you can add vision or motors to your project.

Providing Speech Input and Output

[62]

In this chapter, we'll specifically cover the following points:

•	 Hooking up the hardware to make and input sound
•	 Using Espeak to allow your projects to respond in a robotic voice
•	 Using PocketSphinx to interpret your commands
•	 Providing the capability to interpret your commands, and having your robot

initiate action

Before beginning this project, you'll need a working Raspberry Pi and a LAN
connection (refer to Chapter 1, Getting Started with Raspberry Pi, for instructions).
Additionally, this project requires a USB microphone and a speaker adapter. The
Raspberry Pi itself has an audio output, but does not have an audio input. The HDMI
output does support audio, but most of your robotics projects will not be connected
to HDMI monitors with speaker capability.

You'll need the following three pieces of hardware:

•	 A USB device that supports microphone input and speaker output.

•	 A microphone that can plug into the USB device.

Chapter 3

[63]

•	 A powered speaker that can plug into the USB device.

Fortunately, these devices are very inexpensive and widely available. Make sure
the speaker is powered because your board will generally not be able to drive a
passive speaker with enough power for your applications. The speaker can use either
internal battery power, or can get its power from a USB connection.

Hooking up the hardware to make and
input sound
For this task, you are going to hook up your hardware so that you can record and
play sound. To do this, reassemble your Raspberry Pi. Plug in the LAN cable.
Connect the powered USB hub, and plug in the microphone or speaker USB device.
Also, plug in your speakers and the microphone. The entire system should look like
the following image for the Raspberry Pi B+:

Providing Speech Input and Output

[64]

If you are using Raspberry Pi A+ board, then your entire system will look like the
following image:

Plug in the power. You can execute all of the following instructions in one of the
following ways:

•	 If you are still connected to the display, keyboard, and mouse, log into the
system, and use the Windows system by opening an LXTerminal window.

•	 If you are only connected through LAN, you can do all of this using an
SSH terminal window; so as soon as your board flashes that it has power,
open up an SSH terminal window using PuTTY, or some similar terminal
emulator. Once the terminal window comes up, log in with your username
and password. Now, type in cat /proc/asound/cards. You should see the
response, as shown in the following screenshot:

Chapter 3

[65]

Notice that the system thinks that there are two possible audio devices. The first is
the internal Raspberry Pi audio that is connected to the audio port, and the second
is your USB audio plugin. Although you could use the USB audio plugin to record
sound and the Raspberry Pi audio out to play the sound, it is easier to just use the
USB audio plugin to both create and record sound.

First, let's play some music to test if the USB sound device is working. You'll need to
configure your system to look for your USB audio plugin, and use it as the default
plugin to play and record sound. To do this, you'll need to add a couple of libraries
to your system. The first of these are some Advanced Linux Sound Architecture
(ALSA) libraries. It will enable your sound system on Raspberry Pi by performing
the following steps:

1.	 Firstly, install two libraries associated with ALSA by typing sudo apt-get
install alsa-base alsa-utils.

2.	 Then, install some files that help provide the sound library by typing
sudo apt-get install libasound2-dev.

If your system already contains these libraries, Linux will simply tell you that they
are already installed, or that they are up to date. After installing both libraries, reboot
your Raspberry Pi. It takes time, but the system needs a reboot after new libraries or
hardware is installed.

Providing Speech Input and Output

[66]

Now we'll use an application named alsamixer to control the volume of both,
the input and the output, of our USB sound card. To do this, perform the
following steps:

1.	 Type alsamixer at the Command Prompt. You should see a screen that will
look like the following screenshot:

2.	 Press F6 and select your USB sound device using the arrow keys. For
example, refer to the following screenshot:

Chapter 3

[67]

3.	 C-Media USB Audio Device is my USB audio device. You should now see a
screen that looks like the following screenshot:

4.	 You can use the arrow keys to set the volume for both, the speakers and the
microphone. Use the M key to unmute the microphone. In the preceding
screenshot, MM is mute and oo is unmute.

5.	 Let's make sure that our system knows about our USB sound device.
At the Command Prompt, type aplay –l. You should now see the
following screenshot:

Providing Speech Input and Output

[68]

If this did not work, try sudo aplay –l. Once you have added the libraries, you'll
need to create a file for your system. You are going to add a file in your home
directory with the name .asoundrc. This will be read by your system and used to set
your default configuration. To do this, perform the following steps:

1.	 Open the file named .asoundrc using your favorite editor.
2.	 Type in pcm.!default sysdefault:Device.
3.	 Save the file.

The file should look as follows:

This will tell the system to use your USB device as default. Once you have completed
this, reboot your system again.

Now, we'll play some music. To do this, you need a sound file and a device to play
it. I used WinSCP from my Windows machine to transfer a simple .wav file to my
Raspberry Pi. If you are using a Linux machine as your host, you can also use scp
from the command line to transfer the file. You could also just download some
music to Raspberry Pi using a web browser if you have a keyboard, mouse, and
display connected.

Chapter 3

[69]

You can use an application named aplay to play your sound. You should see the
music file by simply typing ls, which lists the files in this directory, as shown in the
following screenshot:

Now, type aplay Dance.wav to see if you can play music using the aplay
music player. You will see the result (and hopefully hear it), as shown in the
following screenshot:

Providing Speech Input and Output

[70]

If you don't hear any music, check the volume you set with alsamixer and the
power cable of your speaker. Also, aplay can be a bit finicky about the type of files
it accepts, so you may have to try different .wav files until aplay accepts one. One
more thing to try if the system doesn't seem to know about the program is to type
sudo aplay Dance.wav.

Now that we can play sound, let's record some sound. To do this, we're going to
use the arecord program. At the prompt, type arecord -d 5 -r 48000 test.
wav. This will record the sound at a sample rate of 48000 Hz per 5 seconds. Once
you have typed the command, either speak into the microphone or make some other
recognizable sound. You should see the following output on the terminal:

Once you have created the file, play it with aplay. Type aplay test.wav and you
should hear the recording. If you can't hear your recording, check alsamixer to
make sure your speakers and microphone are both unmuted.

Now you can play music or other sound files using your Raspberry Pi. You can
change the volume of your speaker, and record your voice or other sounds on the
system. You're now ready for the next step.

Chapter 3

[71]

Using Espeak to allow our projects to
respond in a robotic voice
Sound is an important tool in our robotic toolkit, but you will want to do more than
just play music. Let's make our robot speak. You're going to start by enabling Espeak,
an open source application that provides us with a computer voice. Espeak is an
open source voice generation application. To get this free functionality, download
the Espeak library by typing sudo apt-get install espeak at the prompt. The
download may take a while, but the prompt will reappear when it is complete.

Now, let's see if Raspberry Pi has a voice. Type the espeak "hello" command. The
speaker should emit a computer-voiced hello. If it does not, check the speakers and
the volume level.

Now that we have a computer voice, you may want to customize it. Espeak offers a
fairly complete set of customization features, including a large number of languages,
voices, and other options. To access these, you can type in the options at the command-
line prompt. For example, type in espeak -v+f3 "hello" and you should hear a
female voice. You can add a Scottish accent by typing espeak –ven-sc+f3 "hello".
Once you have selected the kind of voice you'd like for your projects, you can make it
the default setting so that you don't always have to include it in the command line.

To create the default settings, go to the default file definition for espeak, which is in
the /usr/lib/arm-linux-gnueabihf/espeak-data/voices directory. You should
see something as shown in the following screenshot:

Providing Speech Input and Output

[72]

The default file is the one that Espeak uses to choose a voice. To get your desired
voice, say one with a female tone, you need to copy a file into the default file. The
file, that is, the female tone, is in the !v directory. Type \!v whenever you want
to specify this directory. We need to type the \ character because the ! character
is a special character in Linux, and if we want to use it as a regular old character,
we need to put a \ character before it. Before starting the process, copy the current
default into a file named default.old, so that it can be retrieved later if needed. The
next step is to copy the f3 voice as your default file. Type the sudo cp ./\!v/f3
default command. If you open this default file, it will look as follows:

This has all the settings for your female voice. Now you can simply type espeak and
the desired text. You will now get your female computer voice.

Now your project can speak. Simply type espeak followed by the text you want to
speak in quotes and out comes your speech. If you want to read an entire text file,
you can do that as well using the –f option and then typing the name of the file. Try
this by using your editor to create a text file called speak; then type the espeak -f
speak.txt command.

There are a lot of choices with respect to the voices you might use with espeak. Feel
free to play around and choose your favorite. Then, edit the default file to set it to
that voice. However, don't expect that you'll get the kind of voices that you hear
from computers in the movies; those are actors and not computers. Although one
day we will hopefully reach a stage where computers will sound a lot more like
real people.

Chapter 3

[73]

Using PocketSphinx to accept your voice
commands
Sound is cool and speech is even cooler, but you'll also want to be able to
communicate with your projects through voice commands. This section will show
you how to add speech recognition to your robotic projects. This isn't nearly as
simple as the speaking part, but thankfully, you have some significant help from
the open source development community. You are going to download a set of
capabilities named PocketSphinx, which will allow our project to listen to
our commands.

The first step is downloading the PocketSphinx capabilities. Unfortunately, this is
not quite as user-friendly as the espeak process, so follow along carefully. There are
two possible ways to do this. If you have a keyboard, mouse, and display connected
or want to connect through vncserver, you can do this graphically by performing the
following steps:

1.	 Go to the Sphinx website hosted by Carnegie Mellon University (CMU)
at http://cmusphinx.sourceforge.net/. This is an open source project
that provides you with the speech recognition software. With our smaller,
embedded system, we will be using the PocketSphinx version of this code.

2.	 You will need to download two pieces of software modules — sphinxbase and
PocketSphinx. Select the Download option at the top of the page and then find
the latest version of both of these packages. Download the .tar.gz version of
these and move them to the /home/pi directory of your Raspberry Pi.

Another way to accomplish this is to use wget directly from the command prompt of
Raspberry Pi. If you want to do it this way, perform the following steps:

1.	 To use wget on your host machine, find the link to the file you wish to
download. In this case, go to the Sphinx website hosted by CMU at http://
cmusphinx.sourceforge.net/. This is an open source project that provides
you with the speech recognition software. With your smaller, embedded
system, you will be using the PocketSphinx version of this code.

2.	 You will need to download two pieces of software modules, namely
sphinxbase and PocketSphinx. Select the Download option at the top of
the page and then find the latest version of both these packages. Right-click
on the sphinxbase-0.8.tar.gz file (if 0.8 is the latest version) and select
Copy Link Location. Now open a PuTTY window in Raspberry Pi, and after
logging in, type wget and paste the link you just copied. This will download
the .tar.gz version of sphinxbase. Now follow the same procedure with
the latest version of PocketSphinx.

http://cmusphinx.sourceforge.net/
http://cmusphinx.sourceforge.net/
http://cmusphinx.sourceforge.net/

Providing Speech Input and Output

[74]

Before you build these, you need two libraries. The first library is libasound2-dev.
If you skipped the first two objectives of this chapter, you'll need to download it
now, using sudo apt-get install libasound2-dev. If you're unsure whether or
not it's installed, try it again. The system will let you know if it's already installed.

The second of these libraries is called Bison. This is a general purpose, open source
parser that will be used by PocketSphinx. To get this package, type sudo apt-get
install bison.

Once everything is installed and downloaded, you can build PocketSphinx. Firstly,
your home directory, with the tar.gz files of both, PocketSphinx and sphinxbase,
should look look like as the following screenshot:

To unpack and build the sphinxbase module, type sudo tar –xzvf sphinx-base-
0.y.tar.gz, where y is the version number; in our example, it is 8. This should
unpack all the files from the archive into a directory named sphinxbase-0.8. Now
type cd sphinxbase-0.8. The listing of the files should look something like the
following screenshot:

Chapter 3

[75]

To build the application, start by issuing the sudo ./configure --enable-fixed
command. This command will check that everything is okay with the system, and
then configure a build.

Now you are ready to actually build the sphinxbase code base. This is a two-step
process, which is as follows:

1.	 Type sudo make, and the system will build all the executable files.
2.	 Type sudo make install, and this will install all the executables onto

the system.

Now we need to make the second part of the system — the PocketSphinx code
itself. Go to the home directory, and decompress and unarchive the code by typing
tar -xzvf pocketsphinx-0.8.tar.gz. The files should now be unarchived, and
we can now build the code. Installing these files is a three-step process as follows:

1.	 Type cd pocketsphinx-0.8 to go to the PocketSphinx directory, and then
type sudo ./configure to see if we are ready to build the files.

2.	 Type sudo make and wait for a while for everything to build.
3.	 Type sudo make install.

Providing Speech Input and Output

[76]

Several possible additions to our library installations will
be useful later if you are going to use your PocketSphinx
capability with Python as a coding language. You can install
Python-Dev using sudo apt-get install python-dev.
Similarly, you can get Cython using sudo apt-get install
cython. You can also choose to install pkg-config, a utility
that can sometimes help deal with complex compiles. Install it
using sudo apt-get install pkg-config.

Once the installation is complete, you'll need to let the system know where our files
are. To do this, you will need to edit the /etc/ld.so.conf path as the root by typing
sudo emacs /etc/ld.so.conf. You will add the last line to the file, so it should
now look like the following screenshot:

Now type sudo /sbin/ldconfig, and the system will now be aware of your
PocketSphinx libraries. You may want to reboot at this point, just to make sure
everything is installed and set up.

Now that everything is installed, you can try our speech recognition. Type cd /
home/pi/pocketsphinx-0.8/src/programs to go to a directory to try a demo
program; then type ./pocketsphinx_continuous. This program takes input from
the microphone and turns it into speech. After running the command, you'll get a lot
of irrelevant information, and then you will see the following screenshot:

Chapter 3

[77]

The INFO and Warning statements come from the C or C++ code and are there for
debugging purposes. Initially, they will warn you that they cannot find your Mic and
Capture elements, but when the Raspberry Pi finds them, it will print out READY.....
If you have set things up as previously described, you should be ready to give your
Raspberry Pi a command. Say hello into the microphone. When it senses that you have
stopped speaking, it will process your speech and give lots of irrelevant information
again, but it should eventually show the commands, as in the following screenshot:

Providing Speech Input and Output

[78]

Notice the 000000000: hello command. It recognized your speech! You can
try other words and phrases too. The system is very sensitive, so it may pick up
background noise. You are also going to find that it is not very accurate. We'll deal
with that in a moment. To stop the program, type cntrl-c.

There are two ways to make your voice recognition more accurate. One is to train the
system to understand your voice more accurately. This is a bit complex yet, if you
want to know more, go to the PocketSphinx website of CMU.

The second way to improve accuracy is to limit the number of words that your
system uses to determine what you are saying. The default has literally thousands
of word possibilities, so if two words are close, PocketSphinx may choose the wrong
word. To avoid this, you can make your own dictionary to restrict the words it has to
choose from.

The first step is to create a file with the words or phrases that you want the system
to recognize. Then, you use a web tool to create two files that the system will use to
define your grammar. I'll do this through the vncserver command because I'll need
to use a web browser on Raspberry Pi to turn a text file into a set of grammar files.
Begin by editing a file; type emacs grammar.txt and insert the text, as shown in the
following screenshot:

Now you must use the CMU web tool to turn this file into two files that the system
can use to define its dictionary. Open a web browser window (the Epiphany web
browser is part of the default debian package) and go to http://www.speech.
cs.cmu.edu/tools/lmtool-new.html. If you hit the Browse button, you can find
and select the file. It should look something like the following screenshot:

http://www.speech.cs.cmu.edu/tools/lmtool-new.html
http://www.speech.cs.cmu.edu/tools/lmtool-new.html

Chapter 3

[79]

Open the grammar.txt file; then, on the web page, select COMPILE KNOWLEDGE
BASE, and a window should pop up, as shown in the following screenshot:

Providing Speech Input and Output

[80]

You need to download the .tgz file created; in this case, the TAR1565.tgz file.
This will download into your /home/pi/ directory. Move it to the /home/pi/
pocketsphinx-0.8/src/programs directory and unarchive it by using tar –xzvf
and the filename.

Now you can invoke the pocketsphinx_continuous program to use this dictionary
by typing ./pocketsphinx_continuous -lm 1565.lm -dict 1565.dic, and it
will look in that directory to find matches to your commands.

You can also do this on your remote computer using Windows or Linux, by creating
the file in a text editor such as WordPad or Emacs. Once you have created the required
grammar files, you can download them to your Raspberry Pi using WinSCP, if you are
using Windows or scp from the command line, if you are using Linux.

Your system can now understand your specific set of commands! In the next section
of this chapter, you'll learn how to use this input to have the project respond.

Interpreting commands and initiating
actions
Now that the system can both hear and speak, you'll want to provide the capability
to respond to your speech and execute some commands based on the speech input.
Next, you're going to configure the system to respond to simple commands.

In order to respond, we're going to edit the continuous.c code in the /home/pi/
pocketsphinx-0.8/src/programs directory. We could create our own C file,
but this file is already set up in the makefile system and is an excellent starting
spot. You can save a copy of the current file in continuous.c.old so that you can
always get back to the starting program, if required. Then, you will need to edit the
continuous.c file. It is very long and a bit complicated, but you are specifically
looking for the section in the code, which is shown in the following screenshot. Look
for the comment line /* Exit if the first word spoken was GOODBYE */:

Chapter 3

[81]

In this section of the code, the word has already been decoded and is held in the hyp
variable. You can add code here to make your system do things, based on the value
associated with the word that we have decoded. First, let's try adding the capability to
respond to hello and goodbye to see if we can get the program to stop. Make changes to
the code in the following manner:

1.	 Find the comment /* Exit if the first word spoken was GOODBYE */.
2.	 In the statement if (strcmp(hyp, "good bye") == 0), change word to

hyp and good bye to GOODBYE.
3.	 Insert brackets around the break; statement and add the system ("espeak"

\"good bye\""); statement just before the break; statement.
4.	 Add the other else if statement to the clause by typing else if

(strcmp(hyp, "HELLO") == 0). Add brackets after the else if statement,
and inside the brackets, type system ("espeak" \"good bye\"");.

Providing Speech Input and Output

[82]

The file should now look as follows:

Now you need to rebuild your code. As the make system already knows how to build
the program pocketsphinx_continuous, it will rebuild the application if you make
a change to the continuous.c file at any point of time. Simply type make, and the file
will compile and create a new version of pocketsphinx_continuous. To run your
new version, type ./pocketsphinx_continuous -lm 1565.lm -dict 1565.dic.
Make sure you type the ./ command at the start.

If you haven't created your own dictionary, or would like to use the default
dictionary, you can still have your robot respond. You'll just need to change the
GOODBYE and HELLO in the if (strcmp(hyp, "GOODBYE") == 0) and else if
(strcmp(hyp, "HELLO") == 0) statements to words that your system currently
recognizes. Simply say your command, see what the system is printing for the
word it is recognizing, and replace "GOODBYE" or "HELLO" with that word.

If everything is set correctly, saying hello should result in a response of hello from
your Raspberry Pi. Saying good bye should elicit a response of good bye and also
shut down the program. Notice that the system command can be used to run any
program that runs with a command line. Now you can use this program to start
and run other programs based on the commands.

Chapter 3

[83]

Your Raspberry Pi will now listen, respond to, and execute the commands that you
give it. By the way, you may be tempted to use Python to do this, but the reason
that we did not use Python is that to get Python to recognize real-time speech for
PocketSphinx, you would need a way to stream the data to the application. There
is an example of this in the pocketsphinx-0.8/src/gst-plug-in directory titled
livedemo.py. If you would like to try this, keep in mind that you will need to install
the gtk using sudo apt-get install libgtk-3-dev and sudo apt-get install
python-gtk2. You will also need to install the gstreamer tools using sudo apt-
get install gstreamer1.0 and sudo apt-get install python-gst0.10 onto
Raspberry Pi. This requires a significant amount of disk space, as it does not come
with the default release.

Summary
Now your project can both hear and speak. You can use these functions later when
you want to interact with your project without typing commands or using a display.
You should also feel more comfortable with installing new hardware and software
into your system. We'll be using this skill throughout the book, as we look at more
complex projects.

In the next chapter, we'll look at adding a capability that will allow your robots to see
and use vision to track objects, motion, or whatever else your robot needs to track.

www.allitebooks.com

http://www.allitebooks.org

[85]

Adding Vision to
Raspberry Pi

In the previous chapter, you learned how to communicate with Raspberry Pi through
voice. In this chapter, you are going to add vision with a webcam; you'll use this
functionality in lots of different applications. Fortunately, adding hardware and
software for vision is both easy and inexpensive.

To do this, you'll have to add a USB webcam to your system. Having the standard USB
interface on your board opens a wide range of amazing possibilities. Furthermore,
there are several amazing open source libraries that offer complex capabilities, which
you can use in your projects without spending months in coding them.

Vision will open a set of possibilities for your project. These can range from
simple motion detection to advanced capabilities, such as facial recognition, object
identification, and even object tracking. The robot can also use vision to detect its
surroundings and avoid obstacles.

In this chapter, we will cover the following topics:

•	 Connecting your USB camera to your Raspberry Pi and viewing the images
•	 Connecting Raspberry Pi Camera board to your Raspberry Pi and viewing

the images
•	 Downloading and installing OpenCV, a full-featured vision library
•	 Using the vision library to detect colored objects

Adding Vision to Raspberry Pi

[86]

To add vision to your projects, you'll need to add a USB webcam; try to find a
recently manufactured one. You may have an older webcam sitting on your project
shelf, but it will probably cause problems as Linux may not have the driver support
for these devices, and the money you save will not be worth the frustration you
might experience later. You should stick to webcams from major players, such as
Logitech or Creative Labs.

If you are using Raspberry Pi B+, you can connect your webcam directly to the
Raspberry Pi. However, if you are using the Raspberry Pi A+, you'll want to connect
this device through your powered USB hub.

Connecting the USB camera to
Raspberry Pi and viewing the images
The first step in enabling computer vision is connecting the USB camera to the USB
port. This example will use a Logitech model HD 720P. To access the USB webcam
directly on Raspberry Pi, you can use a Linux program called guvcview. Install
this by powering up the Raspberry Pi, logging in, and entering the sudo apt-get
install guvcview command.

To try your USB camera, connect it and reboot your Raspberry Pi. To check if
Raspberry Pi has found your USB camera, go to the /dev directory and type ls.
What you should see is shown in the following screenshot:

Chapter 4

[87]

Look for video0, as this is the entry for your webcam. If you see it, the system knows
your camera is there.

Now, let's use guvcview to see the output of the camera. Since it will need to output
some graphics, you either need to use a monitor connected to the board, as well as
a keyboard and mouse, or you can use vncserver, as described in Chapter 1, Getting
Started with Raspberry Pi. If you are going to use vncserver, make sure you start the
server on Raspberry Pi by typing vncserver through SSH. Then, start up VNC
Viewer, as described in Chapter 1, Getting Started with Raspberry Pi. Open a terminal
window and type sudo guvcview. You should see something, as shown in the
following screenshot:

Adding Vision to Raspberry Pi

[88]

The video window displays what the webcam sees, and the GUVCViewer Controls
window controls the different characteristics of the camera. The default settings of the
Logitech 720HD camera work fine. However, if you get a black screen for the camera,
you may need to adjust the settings. Select the GUVCViewer Controls window and
the Video & Files tab. You will see a window where you can adjust the settings for
your camera, as shown in the following screenshot:

Chapter 4

[89]

The most important setting is Resolution. If you see a black screen, lower the
resolution; this will often resolve the issue. This window will also tell you what
resolutions are supported by your camera. Also, you can display the frame rate by
checking the box to the right of the Frame Rate setting. Be aware, however, that if
you are going through vncviewer, the refresh rate (how quickly the video window
will update itself) will be much slower than if you're using Raspberry Pi and a
monitor directly.

Once you have the camera up and running and the desired resolution set, you can go
on to download and install OpenCV.

You can connect more than one webcam to the system. Follow the same
steps, but connect to the cameras through a USB hub. List the devices
in the /dev directory. Use guvcview to see the different images. One
challenge, however, is that connecting too many cameras can overwhelm
the bandwidth of the USB port.

Connecting the Raspberry Pi camera
board and viewing the images
There is another way to input images into the Raspberry Pi. There is a camera
specifically designed to use with the Raspberry Pi, the Raspberry Pi Camera Board.
Here is a image of this product:

Adding Vision to Raspberry Pi

[90]

You may also want to purchase a case for the Raspberry Pi camera; this provides
protection for the camera and makes it easier to mount into your project. Here is a
image of the camera, mounted into its protective casing:

The camera connects to the Raspberry Pi by installing it into the connector marked
camera on the Raspberry Pi. To see how this is to be done, see the video at http://
www.raspberrypi.org/help/camera-module-setup/.

http://www.raspberrypi.org/help/camera-module-setup/
http://www.raspberrypi.org/help/camera-module-setup/

Chapter 4

[91]

Once the device is connected, you can access the device by enabling it through the
configuration utility. To enable the camera, Perform the following steps:

1.	 Run the configuration utility by typing sudo raspi-config.
2.	 Select the Enable Camera, as shown in the following screenshot:

3.	 Select the enable selection, then exit the utility, and choose to reboot
the device.

Adding Vision to Raspberry Pi

[92]

To take a picture with the camera, simply type raspistill -o image.jpg. This
will take a picture with the camera, then store the image in the file image.jpg. Once
you have the picture, you can view it by opening the Raspberry Pi image viewer
by selecting the lower left icon for applications, then accessories, and then image
viewer. Open the file image.jpg, and you should see the result, as shown in the
following screenshot:

If you are developing from a remote computer, you will want to open a vncserver
connection between your computer and the Raspberry Pi. See Chapter 1, Getting
Started with Raspberry Pi for details.

The last step is to add a Python library that will allow you to access the Raspberry Pi
camera from Python. It is called picamera; to get this and the required libraries, type
sudo apt-get install python-picamera python3-picamera python-rpi.gpio.

Chapter 4

[93]

Downloading and installing OpenCV – a
fully featured vision library
Now that you have your camera connected, you can begin to access some amazing
capabilities that have been provided by the open source community. The most
popular of these for computer vision is OpenCV. To do this, you'll need to install
OpenCV. There are several possible ways of doing this; I'm going to suggest the ones
that I follow to install it on my system. Once you have booted the system and opened
a terminal window, type the following commands in the given order:

1.	 sudo apt-get update: If you haven't done this in a while, it is a good idea
to do this now, before you start. You're going to download a number of new
software packages, so it is good to make sure that everything is up-to- date.

2.	 sudo apt-get install build-essential: You should have done this in a
previous chapter. In case you skipped that part, you will have to do it now,
as you need this package.

3.	 sudo apt-get install libavformat-dev: This library provides a way to
code and decode audio and video streams.

4.	 sudo apt-get install ffmpeg: This library provides a way to transcode
audio and video streams.

5.	 sudo apt-get install libcv2.4 libcvaux2.4 libhighgui2.4: This
command shows the basic OpenCV libraries. Note the number in the
command. This will almost certainly change as new versions of OpenCV
become available. If 2.4 does not work, you can either try 3.0, or Google for
the latest version of OpenCV.

6.	 sudo apt-get install python-opencv: This is the Python development
kit needed for OpenCV, as you are going to use Python.

7.	 sudo apt-get install opencv-doc: This command will show the
documentation for OpenCV, just in case you need it.

8.	 sudo apt-get install libcv-dev: This command shows the header file
and static libraries to compile OpenCV.

9.	 sudo apt-get install libcvaux-dev: This command shows more
development tools for compiling OpenCV.

10.	 sudo apt-get install libhighgui-dev: This is another package that
provides header files and static libraries to compile OpenCV.

Now type cp -r /usr/share/doc/opencv-doc/examples /home/pi/. This will
copy all the examples to your home directory.

Adding Vision to Raspberry Pi

[94]

Now you are ready to try out the OpenCV library. I prefer to use Python while
programming simple tasks; hence, I'll show the Python examples. If you prefer the C
examples, feel free to explore. In order to use the Python examples, you'll need one
more library. So type sudo apt-get install python-numpy, as you will need this
to manipulate the matrices that OpenCV uses to hold images.

Now that you have these, you can try one of the Python examples. Switch to the
directory with the Python examples by typing cd /home/pi/examples/python. In
this directory, you will find a number of useful examples; you'll only look at the most
basic, which is called camera.py. If camera.py is not created, you can create it by
typing in the code shown in the next few pages.

You can try running this example; however, to do this, you'll either need to have a
display connected to Raspberry Pi, or you can do this over the vncserver connection.
If you are doing this with a webcam you can run the standard Python example. For
this, bring up the LXTerminal window and type python camera.py. You should see
something, as shown in the following screenshot:

Chapter 4

[95]

The camera window is quite large; you can change the resolution of the image to a
lower one, which will make the update rate faster, and the storage requirement for
the image smaller. To do this, edit the camera.py file and add two lines, as shown in
the following screenshot:

Here is an explanation of the Python code:

•	 import cv2.cv as cv: This line imports the OpenCV library, so you can
access its functionality.

•	 import time: This line imports the time library, so you can access the
time functionality.

•	 cv.NamedWindow("camera", 1): This line creates a window that you will
use to display your image.

•	 capture = cvCaptureFromCAM(0): This line creates a structure that knows
how to capture images from the connected webcam.

•	 cv.SetCaptureProperty(capture, 3, 360): This line sets the image
width to 360 pixels.

•	 cv.SetCaptureProperty(capture, 4, 240): This line sets the image
height to 240 pixels.

•	 while True:: Here, you are creating a loop that will capture and display the
image over and over again, until you press the Esc key.

Adding Vision to Raspberry Pi

[96]

•	 img = cv.QueryFrame(capture): This line captures the image and stores it
in the img data structure.

•	 cv.ShowImage("camera", img): This line maps the img variable to the
camera window, which you created previously.

•	 If cv.WaitKey(10) == 27:: This if statement checks whether a key has
been pressed, and if the pressed key is the Esc key, it executes the break. This
stops the while loop, and the program reaches its end and stops. You need
this statement in your code because it also signals OpenCV to display the
image now.

Now run camera.py, and you should see the following screenshot:

You can use OpenCV to do something similar with the Raspberry Pi camera. The
following screenshot shows an example program that will allow you to open a
window, and display a moving picture of what the camera sees:

Chapter 4

[97]

You can create this program, then run it, and you should see a window on
the console that updates in real time. The picture of the display is given in the
following screenshot:

Adding Vision to Raspberry Pi

[98]

Now that you are up and running, you can use OpenCV, an open source set of
software, to do some amazing things with your images. You may want to play with
the resolution to find the optimum settings for your application. Bigger images
are great—they give you a more detailed view of the world—but they also take up
significantly more processing power. You'll play with this more as you actually ask
your system to do some real image processing. Be careful if you are going to use
vncserver to understand your system performance, as this will significantly slow
down the update rate. An image that is twice the size (width/height) will involve
four times more processing.

Your project can now see! You will use this capability to do a number of impressive
tasks that will use this vision capability.

Using the vision library to detect colored
objects
OpenCV and your webcam can track objects. This might be useful if you are building
a system that needs to track and follow a colored ball. OpenCV makes this amazingly
simple by providing some high-level libraries that can help us with this task. I'm
going to do this in Python, as I find it much easier to work with than C. If you
feel more comfortable with C, these instructions should be fairly easy to translate.
Also, performance will be better if implemented in C, so you can create the initial
capability in Python and then finalize the code in C.

If you'd like, you can create a directory to hold your image-based work. To do this,
perform the following steps:

1.	 From your home directory, create a directory named imageplay by typing
mkdir imageplay while in your home directory. Then, switch from the
home directory to the imageplay directory by typing cd imageplay.

2.	 Once there, let's bring over your camera.py file as a starting point by typing
cp /home/pi/examples/python/camera.py camera.py.

Now you are going to edit the file, until it looks something, as shown in the
following screenshot:

Chapter 4

[99]

Let's look specifically at the following changes that you need to make to camera.py:

•	 cv.Smooth(img,img,cv.CV_BLUR,3): You are going to use the OpenCV
library first to smoothen the image, taking out any large deviations.

•	 hue_img = cv.CreateImage(cv.GetSize(img), 8, 3): This statement
creates a default image that can hold the hue image, which you create in the
next statement.

•	 cv.CvtColor(img,hue_img, cv.CV_BGR2HSV): This line creates a new
image that stores the image as per the values of hue (color), saturation, and
value (HSV) instead of the red, green, and blue (RGB) pixel values of the
original image. Converting to HSV focuses our processing more on the color,
as opposed to the amount of light hitting it.

•	 threshold_img = cv.CreateImage(cv.GetSize(hue_img), 8, 1): You
are going to create yet another image, this time a black and white image,
which is black for any pixel that is not between two certain color values.

Adding Vision to Raspberry Pi

[100]

•	 cv.InRangeS(hue_img, (10,120, 100), (70, 255, 255), threshold_
img): The (10, 120, 100), (75, 255, 255) parameters determine the
color range. In this case, I have an orange ball and I want to detect the color
orange. For a good tutorial on using hue to specify color, try http://www.
tomjewett.com/colors/hsb.html. Also, http://www.shervinemami.
info/colorConversion.html includes a program that you can use to
determine your values by selecting a specific color.

•	 cv.ShowImage("Camera", img): This shows a window with the original
image in it.

•	 cv.ShowImage("Threshold", threshold_img): This shows a window with
just the threshold image.

Now run the program. You'll need to either have a display, keyboard, and mouse
connected to the board, or you can run it remotely using vncserver. Run the program
by typing sudo python ./camera.py. If you see a single black image, move this
window and you will expose the original image window, as well. Now take your
target (I used my orange ball) and move it into the frame. You should see something
as shown in the following screenshot:

http://www.tomjewett.com/colors/hsb.html
http://www.tomjewett.com/colors/hsb.html
http://www.shervinemami.info/colorConversion.html
http://www.shervinemami.info/colorConversion.html

Chapter 4

[101]

Notice the white pixels in our threshold image showing where the ball is located.
You can add more OpenCV code that gives the actual location of the ball. In our
original image file of the ball's location, you can actually draw a rectangle around the
ball as an indicator. Edit the camera.py file to look as follows:

Start by editing just below the cv.InRangeS(hue_img, (10,120, 100), (70,
255, 255), threshold_img) line. The lines used are as follows:

•	 storage = cv.CreateMemStorage(0): This line creates some memory for
you to manipulate the images in.

•	 contour = cv.FindContours(threshold_img, storage, cv.CV_RETR_
CCOMP, cv.CV_CHAIN_APPROX_SIMPLE): This finds all the areas on your
image that are within the threshold. There could be more than one, so you
may want to capture them all.

Adding Vision to Raspberry Pi

[102]

•	 points = []: This creates an array for us to hold all the different possible
color points.

•	 while contour:: Adding a while loop will let you step through all the
possible contours. By the way, it is important to note that if there is another
larger orange binary large object (blob) in the background, you will find
that location. Just to keep this simple, you'll assume that your orange ball
is unique.

•	 rect = cv.BoundingRect(list(contour)): This gets a bounding rectangle
for each area of color. The rectangle is defined by the corners of a rectangle
around the blob of color.

•	 contour = contour.h_next(): This will prepare you for the next contour,
if one exists.

•	 size = (rect[2] * rect[3]): This calculates the diagonal length of the
rectangle that you are evaluating. The data structure rect contains four
integers 0 and 1 for the pixel values of the lower-left corner of the box, and 2
and 3 for the size in pixels of the rectangle.

•	 if size > 100:: Here, you check to see if the area is big enough to be
of concern. 100 tells your program to not worry about any rectangles that
are less than 100 pixels in area. You may want to vary this, based on
the application.

•	 pt1 = (rect[0], rect[1]): Define a pt1 variable and set its two values to
the x and y coordinates of the left side of the blob's rectangular location.

•	 pt2 = (rect[0] + rect[2], rect[1] + rect[3]): Define a pt2 variable
and set its two values to the x and y coordinates of the right side of the blob's
rectangular location.

•	 cv.Rectangle(img, pt1, pt2, (38, 160, 60)): Now you add a
rectangle to your original image by identifying where it is located.

Chapter 4

[103]

Now that the code is ready, you can run it. You should see something, as shown in
the following screenshot:

You can now track your object.

Now that you have the code, you can modify the color or add more colors. You
also have the location of your object, so later you can attempt to follow the object or
manipulate it in some way.

Adding Vision to Raspberry Pi

[104]

OpenCV is an amazing, powerful library of functions. You can do all sorts of
incredible things with just a few lines of code. Another common feature that you
may want to add to your projects is motion detection. If you'd like to try it, there
are several good tutorials; try looking at the following links:

•	 http://derek.simkowiak.net/motion-tracking-with-python/

•	 http://stackoverflow.com/questions/3374828/how-do-i-track-
motion-using-opencv-in-python

•	 https://www.youtube.com/watch?v=8QouvYMfmQo

•	 https://github.com/RobinDavid/Motion-detection-OpenCV

Having a webcam connected to your system provides all kinds of complex vision
capabilities. You can get 3D vision with OpenCV using two cameras. There are
several good places; for example, the code in the samples/cpp directory that comes
with OpenCV has a sample stereo_match.cpp. For more information, refer to
http://code.google.com/p/opencvstereovision/source/checkout.

Summary
As you learned in this chapter, your projects can now speak and see! You can issue
commands, and your projects can respond to changes in the physical environment
sensed by the webcam. In the next chapter, you will add mobility using motors,
servos, and other methods.

http://stackoverflow.com/questions/3374828/how-do-i-track-motion-using-opencv-in-python
http://stackoverflow.com/questions/3374828/how-do-i-track-motion-using-opencv-in-python
https://www.youtube.com/watch?v=8QouvYMfmQo
https://github.com/RobinDavid/Motion-detection-OpenCV
http://code.google.com/p/opencvstereovision/source/checkout

[105]

Creating Mobile Robots
on Wheels

You can now talk to your Raspberry Pi, and it can talk back. It can even see. Now
you will add the capability to move the entire project using wheels. Perhaps the
easiest way to make your projects mobile is to use a wheeled platform. In this
chapter, you will be introduced to some of the basics of controlling DC motors and
using Raspberry Pi to control the speed and direction of your wheeled platform.

In this chapter, you will learn how to perform the following actions:

•	 Using the Raspberry Pi GPIO to control a DC Motor
•	 Controlling your mobile platform programmatically using Raspberry Pi
•	 Making your platform truly mobile by issuing voice commands

Gathering the required hardware
You'll need to add some hardware, specifically a wheeled or tracked platform, to
make your project mobile. You're going to use a platform that uses differential
motion to propel and steer the vehicle. This simply means that instead of turning the
wheels, you're going to vary the speed and direction of the two motors that drive the
wheels or tracks. There are a lot of choices. Some are completely assembled, while
others require some assembly; or you can buy the components and construct your
own custom mobile platform.

Creating Mobile Robots on Wheels

[106]

Throughout this book, I'm going to assume that you don't want to do any soldering
or mechanical machining yourself. So let's look at a couple of the more popular
variants that are available completely assembled or can be assembled with simple
tools (screwdriver and/or pliers). The simplest mobile platform is one that has two
DC motors and each motor controls a single wheel; the platform has a small ball in
the front or at the back. DC motors are very straightforward to control. As you vary
the DC voltage, the speed on the motor varies. The following image is an example of
a simple wheeled platform, sold by SparkFun, found at www.sparkfun.com:

This one does need to be assembled, but it is fairly straightforward. For more
choices in two-wheeled platforms, go to http://www.robotshop.com/2-wheeled-
development-platforms-1.html or dx.com/es/p/diy-disc-type-2-wheel-
smart-car-model-body-black-yellow-184395. You could also choose a tracked
platform instead of a wheeled platform. A tracked platform has more traction, but
is not as nimble as it takes a longer distance to turn. Again, manufacturers make
pre-assembled units. The following image is an example of a pre-assembled tracked
platform, made by Dagu. It's called the Dagu Rover 5 Tracked Chassis.

http://www.robotshop.com/2-wheeled-development-platforms-1.html
http://www.robotshop.com/2-wheeled-development-platforms-1.html
dx.com/es/p/diy-disc-type-2-wheel-smart-car-model-body-black-yellow-184395
dx.com/es/p/diy-disc-type-2-wheel-smart-car-model-body-black-yellow-184395
www.sparkfun.com

Chapter 5

[107]

Since you have a mobile platform, you'll need a mobile power supply for Raspberry
Pi. I personally like the external 5V rechargeable cell phone batteries that are
available from almost any place that sells cell phones. These batteries can be charged
using a USB cable connected either through a DC power supply or directly from a
computer USB port, as shown in the following image:

You'll also need a USB cable to connect your battery to the Raspberry Pi, but you can
just use the cable supplied with the Raspberry Pi.

Creating Mobile Robots on Wheels

[108]

Now that you have the mobile platform, you'll need some bits and pieces to connect
your Raspberry Pi to the DC motors. You'll need a small breadboard and some male-
to-female jumper cables. You'll also need an L293D H-bridge part that will drive
your DC motors with the voltage and current that will allow your platform to move.

In this project, you'll mount the breadboard to your robot. If you'd like a more
permanent solution, consider a prototype shield kit, as such. This kit will not work
with Raspberry Pi A+, see http://www.doctormonk.com/2012/08/review-of-
raspberry-pi-prototyping.html for possible prototyping shields. These shields
are nice because it allows you to solder your components on to a more stable final
configuration. You may want to try the system with the breadboard, and then take
the time to translate that solution to a prototyping shield.

There are also a number of DC motor controllers that can be connected right to the
Raspberry Pi GPIO connector. For example, Pololu at www.pololu.com makes the
DRV8835 Dual Motor Driver Kit for the Raspberry Pi B+. Another possible choice is
the RasPiRobot Board V2 available at www.monkmakes.com. However, since you are
interested in learning the specifics, lets walk through a DC motor control example
using the breadboard and the basic parts.

Using the Raspberry Pi GPIO to control
a DC motor
The first step to make the platform mobile is connecting the Raspberry Pi to your
H-bridge. This allows us to control the speed of each wheel (or track) independently.
Before you get started, let's spend some time understanding the basics of motor
control. Whether you choose the two-wheeled mobile platform or the tracked
platform, the basic movement control is the same. The unit moves by engaging the
motors. If the desired direction is straight, the motors are run at the same speed. If
you want to turn the unit, the motors are run at different speeds. The unit can turn
in a circle if you run one motor forward and the other one backward.

The DC motors are fairly straightforward devices. The speed and direction of the
motor is controlled by the magnitude and polarity of the voltage applied to its
terminals. The higher the voltage, the faster the motor will turn. If you reverse the
polarity of the voltage, you can reverse the direction in which the motor is turning.

The magnitude and polarity of the voltage are not the only important factors when
you think about controlling the motors. The power that your motor can apply to
moving your platform is also determined by the voltage and the current supplied
at its terminals.

http://www.doctormonk.com/2012/08/review-of-raspberry-pi-prototyping.html
http://www.doctormonk.com/2012/08/review-of-raspberry-pi-prototyping.html
www.pololu.com
www.monkmakes.com

Chapter 5

[109]

There are GPIO (shot for general purpose input-output) pins on the Raspberry Pi
that you could use to create the control voltage and drive your motors. These GPIO
pins provide direct access to some of the control lines available from the processor
itself. However, the unit cannot source enough current and your motors would not
be able to generate enough power to move your mobile platform. This can also cause
physical damage to your Raspberry Pi board.

You can, however, connect your Raspberry Pi to the DC motors by using an H-bridge
DC motor controller. An H-bridge is a fairly simple device. It basically consists of
a set of switches and adds the additional functionality of allowing the direction of
the current to be reversed, so that the motor can either be run in the forward or the
reverse direction.

Let's start this example by building the H-bridge circuit and controlling just one
motor. To do this, you'll need to get an H-bridge. One of the most common options is
the L293 dual H-bridge chip. This chip will allow you to control the direction of the
DC motors. These are available at most electronics stores and online. Once you have
your H-bridge, build the circuit, as shown in the following image with the Raspberry
Pi, motor, jumper wires, 4AA battery holder, and breadboard:

Creating Mobile Robots on Wheels

[110]

Also, before you start connecting wires, here is an image of the GPIO pins on the
Raspberry Pi Black board:

Pin 1 on the Raspberry Pi GPIO is the one closest to the power on LED, but if you're
not sure, flip the board over and you will see the pin with the square pattern.
Specifically, you'll want to connect these pins on the Raspberry Pi GPIO to the pins
on the H-bridge, as shown in the following table:

Raspberry Pi GPIO pin H-Bridge pin
4 (5V) 1 (Enable pin)
13 (GPIO 27) 2 (Forward)
15 (GPIO 22) 7 (Backward)
4 (5V) 11 (Enable 2)
38 (GPIO 6) 10 (Forward)
40 (GPIO 13) 15 (Backward)
6 (GND) 4, 5, 12, 13 (GND)
2 (5 Volts) 16 (VCC)
Battery positive terminal 8 (Vc)
Battery negative terminal GND (connect to the same

GND as previous GND pins)

Chapter 5

[111]

Once you have made the connections, you can test the system. To do this, you'll need
to add some code.

Controlling your mobile platform
programmatically using Raspberry Pi
Now that you have your basic motor controller functionality up and running, you
need to connect both motor controllers to the Raspberry Pi. This section will cover
this, and also show you how to control your entire platform programmatically.

You are going to use Python in your initial attempts to control the motor. It is very
straightforward to code, run, and debug your code in Python. The first Python
program you are going to create is shown in the following screenshot:

Creating Mobile Robots on Wheels

[112]

Perform the following steps to create this program:

1.	 Create a directory called dcmotor in your home directory by typing mkdir
dcmotor and then type cd dcmotor.

2.	 Now open the file by typing emacs dcmotor.py (if you are using a different
editor, open a new file with the dcmotor.py name).

3.	 Now enter the program. Let's go through the program step by step:
1.	 #!/usr/bin/python: This line lets you run this program without

having to type python before the filename. You'll learn how to do
this at the end of these instructions.

2.	 import RPi.GPIO as io: This lets you import the RPi library, which
will allow you to control the GPIO pins.

3.	 io.setmode(io.BCM): This sets the specification mode of the GPIO
pins to Broadcom SOC channel number (BCM). This means you will
specify the GPIO numbers of the pins you want to control, instead of
the actual physical pin values.

4.	 in1_pin1 = 27: This assigns the value 27 to the in1_pin1 variable.
5.	 in2_pin1 = 22: This assigns the value 22 to the in1_pin1 variable.
6.	 in1_pin2 = 20: This assigns the value 20 to the in1_pin1 variable.
7.	 in2_pin2 = 21: This assigns the value 21 to the in1_pin1 variable.
8.	 io.setup(in1_pin1, io.OUT): This sets the GPIO pin 27 to an

output control.
9.	 io.setup(in2_pin1, io.OUT): This sets the GPIO pin 22 to an

output control.
10.	 io.setup(in1_pin2, io.OUT): This sets the GPIO pin 20 to an

output control.
11.	 io.setup(in2_pin2, io.OUT): This sets the GPIO pin 21 to an

output control.
12.	 def forward():: This defines the forward function. You'll turn on

GPIO27 and GPIO20, and turn off GPIO22 and GPIO21.
13.	 io.output(in1_pin1, True): Output a 3.3 volt signal out on in1_

pin1 (this is GPIO 27).
14.	 io.output(in2_pin1, False): Output 0 volts out on in2_pin1

(this is GPIO 22).

Chapter 5

[113]

15.	 io.output(in1_pin2, True): Output a high voltage out on in1_
pin2 (this is GPIO 20).

16.	 io.output(in2_pin2, False): Output 0 volts out on in2_pin2
(this is GPIO 21).

17.	 def reverse():: This defines the reverse function . You'll turn on
GPIO22 and GPIO21, and turn off GPIO27 and GPIO20.

18.	 io.output(in1_pin1, False): Output 0 volts out on in1_pin1
(this is GPIO 27).

19.	 io.output(in2_pin1, True): Output a high voltage out on in2_
pin1 (this is GPIO 22).

20.	 io.output(in1_pin2, False): Output 0 volts out on in1_pin2
(this is GPIO 20).

21.	 io.output(in2_pin2, True): Output a high voltage out on in2_
pin2 (this is GPIO 21).

22.	 def stop():: This defines the stop function. You'll set the level to 0
on pins of GPIO22, GPIO21, GPIO27, and GPIO20.

23.	 io.output(in1_pin1, False): Output 0 volts out on in1_pin1
(this is GPIO 27).

24.	 io.output(in2_pin1, False): Output 0 volts out on in2_pin1
(this is GPIO 22).

25.	 io.output(in1_pin2, False): Output 0 volts out on in1_pin2
(this is GPIO 20).

26.	 io.output(in2_pin2, False): Output 0 volts out on in2_pin2
(this is GPIO 21).

27.	 while True:: This performs loop over and over. You can stop the
program by pressing Ctrl + C.

28.	 cmd = raw_input("Enter f (forward) or r (reverse) or s
(stop): "): Enter a character for what you want the robot to do.

29.	 direction = cmd[0]: Take just the first character of the input.
30.	 if direction == "f":: If the direction is "f", then execute the

next statement.
31.	 forward(): Execute the forward function.
32.	 if direction == "r":: If the direction is "f", then execute the

next statement.

Creating Mobile Robots on Wheels

[114]

33.	 reverse(): Execute the reverse function.
34.	 if direction == "s":: If the direction is "f", then execute the

next statement.
35.	 stop(): Execute the stop function.

4.	 You can now run your program. To do this, type sudo python ./dcmotor.
py. When you enter f, the motors should run forward, with r they should
run backward, and with s they should stop. You can now control the motor
through Python. Additionally, you'll want to make this program available
to run from the command line. Type chmod +x dcmotor.py. If you will
now type ls (list programs), then you'll see that your program is now
green, which means you can execute it directly. Now you can type sudo ./
dcmotor.py and the program will run.

Now that you know the basics of commanding your mobile platform, feel free to add
even more functions and their commands to make your mobile platform move in
different ways. Running just one motor will make the platform turn, as will running
both motors in opposite directions.

Controlling the speed of your motors
with PWM
The previous example either turned on the motors to full speed, or turned them off.
You may want to configure your motors to run at different speeds. This can be done
by using Pulse Width Modulation (PWM) to adjust the speed. PWM simply defines
a way of changing the voltage value of the signal by sending a series of pulses of
equal value, and changing the width of each pulse. The wider the pulse, the higher
the average voltage delivered to the receiver. The DC motors that you are using will
respond to this higher average voltage by spinning faster.

The Raspberry Pi GPIO can create PWM signals. The code snippet is shown in the
following screenshot:

Chapter 5

[115]

Following is an explanation of the lines of code you just added:

•	 io.setup(in2_pin1, io.OUT): This sets GPIO27 to an output.
•	 p1 = io.PWM(in1_pin1, 50): Instead of just an on or off setting, this PWM

setting allows the programmer to set the relative width of the pulse. This
initializes this functionality on GPIO27.

•	 p1.start(0): This starts the pulses on p1, GPIO27, with a pulse width of 0
percent, or off.

Creating Mobile Robots on Wheels

[116]

•	 io.setup(in2_pin1, io.OUT): This sets GPIO22 to an output.
•	 p2 = io.PWM(in2_pin1, 50): This initializes this functionality on GPIO22.
•	 p2.start(0): This starts the pulses on p2, GPIO22, with a pulse width of 0

percent, or off.
•	 io.setup(in1_pin2, io.OUT): This sets GPIO20 to an output.
•	 p3 = io.PWM(in1_pin2, 50): This initializes this functionality on GPIO20.
•	 p3.start(0): This starts the pulses on p3, GPIO20, with a pulse width of 0

percent, or off.
•	 io.setup(in2_pin2, io.OUT): This sets GPIO21 to an output.
•	 p4 = io.PWM(in2_pin2, 50): This initializes this functionality on GPIO21.
•	 p4.start(0): This starts the pulses on p3, GPIO21, with a pulse width of 0

percent, or off.
•	 def forward(50):: This function moves the unit forward by setting the

pulse width in the forward direction of 50 percent.
•	 p1.start(50): This sets the value of p1 (GPIO27) to 50 percent on and 50

percent off. This should result in the motor running forward at half speed.
•	 p2.start(0): This sets the value of p2 (GPIO22) to 0 percent. This effectively

turns this pin off.
•	 p3.start(50): This sets the value of p3 (GPIO20) to 50 percent on and 50

percent off. This should result in the motor running forward at half speed.
•	 p4.start(0): This sets the value of p4 (GPIO21) to 0 percent. This effectively

turns this pin off.
•	 def reverse(50):: This function moves the unit in reverse by setting the

pulse width in the reverse direction of 50 percent.
•	 p1.start(0): This sets the value of p1 (GPIO27) to 0 percent. This effectively

turns this pin off.
•	 p2.start(50): This sets the value of p2 (GPIO22) to 50 percent on and 50

percent off. This should result in the motor running in reverse at half speed.
•	 p3.start(0): This sets the value of p3 (GPIO20) to 0 percent. This effectively

turns this pin off.
•	 p4.start(50): This sets the value of p4 (GPIO21) to 50 percent on and 50

percent off. This should result in the motor running in reverse at half speed.
•	 def stop():: This function sets all PWM signals to 0 percent, effectively

stopping the motors.
•	 p1.start(0): This sets the value of p1 (GPIO27) to 0 percent. This effectively

turns this pin off.

Chapter 5

[117]

•	 p2.start(0): This sets the value of p2 (GPIO22) to 0 percent. This effectively
turns this pin off.

•	 p3.start(0): This sets the value of p3 (GPIO20) to 0 percent. This effectively
turns this pin off.

•	 p4.start(0): This sets the value of p4 (GPIO21) to 0 percent. This effectively
turns this pin off.

The rest of the program is the same as the first dcmotor.py file. Running this
program should result in the unit running at half the speed of the first program. You
can easily change this speed by changing the value sent to the various start functions.

Adding program arguments to control your
platform
In the next section, you will add the ability for your platform to respond to voice
commands. To make this work, you will need to call your dcmotor.py program,
using command line arguments. These are additional commands that you can type in
addition to your dcmotor.py program name to specify what you want the program
to do. In this case, you'll add commands to move your platform forward, backward,
or to stop it.

Here is the first part of the code to add this capability:

Creating Mobile Robots on Wheels

[118]

In this part of the code, you will have added the following two lines of code:

•	 import time: This imports the time library. You'll use this to add a delay
command, which waits for a specified length of time.

•	 import sys: This imports the sys library, which allows you to access the
command line arguments.

The second part of the code is shown in the following screenshot:

In the second part of the code, you will have added the following lines of code:

•	 if int(sys.argv[1]) == 1:: sys.argv[1] holds the second string that
the user has typed on the command line. In this case, a command such as
./dcmotor.py 1 1 would result in the 1 string in the sys.argv[1]
argument. int(sys.argv[1]) translates the 1 string to the 1 integer. The
if statement then simply checks if this value is 1, and then runs the next
two lines.

Chapter 5

[119]

•	 forward(): Run the forward function.
•	 time.sleep(float(sys.argv[2])): sys.argv[2] holds the third string

that the user has typed on the command line. In this case, a command such
as ./dcmotor.py 1 1 would result in the 1 string in the sys.argv[2]
argument. float(sys.argv[2]) translates the 1 string to a 1 float. The
results of time.sleep(float(sys.argv[2])) is a delay be the number
of seconds in the parenthesis of the statement.

•	 if int(sys.argv[1]) == 2:: If the second value in the command line
arguments is 2, then execute the next two statements.

•	 reverse(): Call the reverse function.
•	 time.sleep(float(sys.argv[2])): Sleep for the specified number of

seconds.
•	 if int(sys.argv[1]) == 3:: If the second value in the command line

arguments is 3, then execute the next statement.
•	 stop(): Call the stop function.

You can now run your program. To do this, type sudo ./dcmotor.py 1 1.
Your platform should move forward for one second. If you run the program with
sudo ./dcmotor.py 2 1, your platform should move in reverse for one second.
Now you can use the program in conjunction with pocketSphinx to respond to
voice commands.

Making your platform truly mobile by
issuing voice commands
You should now have a mobile platform that you can program to move in any
number of ways. Unfortunately, you still have your LAN cable connected, so the
platform isn't completely mobile. And once you have begun the program, you
can't alter the behavior of your program. In this section, you will use the principles
from Chapter 3, Providing Speech Input and Output, to issue voice commands and
initiate movement.

Creating Mobile Robots on Wheels

[120]

You'll need to modify your voice recognition program so it will run your Python
program when it gets a voice command. If you feel rusty on how this works,
review Chapter 3, Providing Speech Input and Output. You are going to make a simple
modification to the continuous.c program in /home/pipocketsphinx-0.8/src/
programs. To do this, type cd /home/pi/pocketsphinx-0.8/src/programs and
then type emacs continuous.c. The changes will appear in the same section as
your other voice commands, and will look like the following screenshot:

The additions are pretty straightforward. Let's walk through them; they are
as follows:

•	 else if (strcmp(word, "forward") == 0): This line checks the word as
recognized by your voice command program. If it corresponds with the word
forward, you will execute everything inside the if statement. You use { } to
group and tell the system which commands go with this else if clause.

Chapter 5

[121]

•	 system("espeak \"forward\""): This line executes espeak, which should
tell us that you are about to run your robot program. By the way, you need
to type \" because the " character is a special character in Linux, and if you
want the actual " character, you need to precede it with the \ character.

•	 system("/home/pi/track/dcmotor.py 1 1"): This is the program you will
execute. In this case, your mobile platform will do whatever the dcmotor.py
program tells it to do; in this case, move forward one second.

•	 else if (strcmp(word, "reverse") == 0): This line checks the word,
as recognized by your voice command program. If it corresponds with the
reverse word, you will execute everything inside the if statement. You use {
} to group and tell the system which commands go with this else if clause.

•	 system("/home/pi/track/dcmotor.py 2 1"): This is the program you will
execute. In this case, your mobile platform will do whatever the dcmotor.py
program tells it to do; in this case, move in reverse for one second.

After doing this, you will need to recompile the program. So, type sudo make
and the executable pocketsphinx_continuous program will be created. Run the
program by typing sudo ./pocketsphinx_continuous. When the program is
running, speak the command forward or reverse and the mobile platform will now
take the voice command and execute your program.

You should now have a completely mobile platform! When you execute your
program, the mobile platform can now move around, based on what you have
programmed it to do. Now you have your mobile platform up and ready to move
around. You can command it using your voice. In the next chapter, you'll be
introduced to a different kind of mobile platform, that is, one with legs.

You have already covered how to add vision to your Raspberry Pi project. A great
addition to your mobile robot is the ability to follow a colored object attached to a
target. Remember how you used OpenCV to find a colored object, and then found
out where in your field of view (left or right/up or down) it existed? You can use this
to decide whether to move your mobile platform right or left/forward or backward.
Try this, and then move the target to see if your mobile robot can follow it.

Creating Mobile Robots on Wheels

[122]

Summary
This chapter provided you with an opportunity to make your robot mobile. Whether
you choose a wheeled or tracked platform, your robot should now be able to move
around. In the next chapter, you'll learn how to build a robot with legs; an even more
flexible mobile platform.

[123]

Controlling the Movement
of a Robot with Legs

In the previous chapter, we covered wheeled and tracked movement. That's cool
enough, but what if you want your robot to navigate uneven ground? Now, you
will add the ability to move the entire project using legs. In this chapter, you will be
introduced to some of the basics of servo motors and to using Raspberry Pi to control
the speed and direction of your legged platform.

Even though you've learned to make your robot mobile by adding wheels or tracks,
these platforms will only work well on smooth, flat surfaces. Often, you'll want your
robot to work in environments where the path is not smooth or flat; perhaps, you'll
even want your robot to go upstairs or over other barriers. In this chapter, you'll
learn how to attach your board, both mechanically and electrically, to a platform
with legs so that your projects can be mobile in many more environments. Robots
that can walk! What could be more amazing than this?

In this chapter, we will cover the following topics:

•	 Connecting Raspberry Pi to a two-legged mobile platform using a servo
motor controller

•	 Creating a program in Linux so that you can control the movement of the
two-legged mobile platform

•	 Making your robot truly mobile by adding voice control

Controlling the Movement of a Robot with Legs

[124]

Gathering the hardware
In this chapter, you'll need to add a legged platform to make your project mobile.

For a legged robot, there are a lot of choices for hardware. As seen in Chapter 5,
Creating Mobile Robots on Wheels, some are completely assembled and others require
some assembly; you may even choose to buy the components and construct your
own custom mobile platform. Also, I'm going to assume that you don't want to do
any soldering or mechanical machining yourself, so let's look at several choices of
hardware that are available completely assembled or can be assembled using simple
tools (a screwdriver and/or pliers).

One of the simplest legged mobile platforms is one that has two legs and four servo
motors. The following is an image of this type of platform:

You'll use this legged mobile platform in this chapter because it is the simplest
to program and the least expensive, requiring only four servos. To construct this
platform, you must purchase the parts and then assemble them yourself. Find
the instructions and parts list at http://www.lynxmotion.com/images/html/
build112.htm. Another easy way to get all the mechanical parts (except servos) is by
purchasing a biped robot kit with six degrees of freedom (DOFs). This will contain
the parts needed to construct a six-servo biped, but you can use a subset of the parts
for your four-servo biped. These six DOF bipeds can be purchased on eBay or at
http://www.robotshop.com/2-wheeled-development-platforms-1.html.

You'll also need to purchase the servo motors. Servo motors are similar to the DC
motors you may have used in Chapter 5, Creating Mobile Robots on Wheels, except that
servo motors are designed to move at specific angles based on the control signals
that you send. For this type of robot, you can use standard-sized servos. I like Hitec
HS-311 for this robot. They are inexpensive but powerful enough for the operations
you'll use for this robot. You can get them on Amazon or eBay. The following is an
image of an HS-311 servo:

http://www.lynxmotion.com/images/html/build112.htm
http://www.lynxmotion.com/images/html/build112.htm
http://www.robotshop.com/2-wheeled-development-platforms-1.html

Chapter 6

[125]

As in the last chapter, you'll need a mobile power supply for Raspberry Pi. I
personally like the 5-V cellphone rechargeable batteries that are available at almost
any place that supplies cellphones. Choose one that comes with two USB connectors;
you can use the second port to power your servo controller. The mobile power
supply shown in the following image mounts well on the biped hardware platform:

You'll also need a USB cable to connect your battery to Raspberry Pi. You should
already have one of these.

Now that you have the mechanical parts for your legged mobile platform, you'll
need some hardware that will turn the control signals from your Raspberry Pi
into voltage levels that can control the servo motors. Servo motors are controlled
using a signal called PWM. For a good overview of this type of control, see
http://pcbheaven.com/wikipages/How_RC_Servos_Works/ or https://www.
ghielectronics.com/docs/18/pwm.

http://pcbheaven.com/wikipages/How_RC_Servos_Works/
https://www.ghielectronics.com/docs/18/pwm
https://www.ghielectronics.com/docs/18/pwm

Controlling the Movement of a Robot with Legs

[126]

Although the Raspberry Pi's GPIO pins do support some limited square-wave pulse
width modulation (SW PWM) signals, unfortunately these signals are not stable
enough to accurately control servos. In order to control servos reliably, you should
purchase a servo controller that can talk over a USB and control the servo motor.
These controllers protect your board and make controlling many servos easy. My
personal favorite for this application is a simple servo motor controller utilizing a
USB from Pololu that can control six servo motors—Micro Maestro 6-Channel USB
Servo Controller (assembled). This is available at www.pololu.com. The following is
an image of the unit:

Make sure you order the assembled version. This piece of hardware will turn USB
commands into voltage levels that control your servo motors. Pololu makes a
number of different versions of this controller, each able to control a certain number
of servos. Once you've chosen your legged platform, simply count the number of
servos you need to control and choose a controller that can control that many servos.
In this book, you will use a two-legged, four-servo robot, so you'll build the robot
by using the six-servo version. Since you are going to connect this controller to
Raspberry Pi through USB, you'll also need a USB A to mini-B cable.

You'll also need a power cable running from the battery to your servo controller.
You'll want to purchase a USB to FTDI cable adapter that has female connectors,
for example, the PL2303HX USB to TTL to UART RS232 COM cable available at
www.amazon.com. The TTL to UART RS232 cable isn't particularly important; other
than that, the cable itself provides individual connectors to each of the four wires
in a USB cable. The following is an image of the cable:

www.pololu.com
www.amazon.com

Chapter 6

[127]

Now that you have all the hardware, let's walk through a quick tutorial of how a
two-legged system with servos works and then some step-by-step instructions to
make your project walk.

Connecting Raspberry Pi to the mobile
platform using a servo controller
Now that you have a legged platform and a servo motor controller, you are ready
to make your project walk! Before you begin, you'll need some background on
servo motors. Servo motors are somewhat similar to DC motors. However, there
is an important difference; while DC motors are generally designed to move in a
continuous way, rotating 360 degrees at a given speed, servo motors are generally
designed to move at angles within a limited set. In other words, in the DC motor
world, you generally want your motors to spin at a continuous rotation speed that
you control. In the servo world, you want to limit the movement of your motor to
a specific position. For more information on how servos work, visit http://www.
seattlerobotics.org/guide/servos.html or http://www.societyofrobots.
com/actuators_servos.shtml.

Connecting the hardware
To make your project walk, you first need to connect the servo motor controller
to the servos. There are two connections you need to make, the first is to the servo
motors, and the second is to the battery. In this section, before connecting your
controller to your Raspberry Pi, you'll first connect your servo controller to your
PC or Linux machine to check whether or not everything is working. The steps for
doing so are as follows:

1.	 Connect the servos to the controller. The following is an image of your
two-legged robot and the four different servo connections:

http://www.seattlerobotics.org/guide/servos.html
http://www.seattlerobotics.org/guide/servos.html
http://www.societyofrobots.com/actuators_servos.shtml
http://www.societyofrobots.com/actuators_servos.shtml

Controlling the Movement of a Robot with Legs

[128]

2.	 In order to be consistent, let's connect your four servos to the connections
marked from 0 to 3 on the controller by using the following configurations:

°° 0: Left foot
°° 1: Left hip
°° 2: Right foot
°° 3: Right hip

The following is an image of the back of the controller; it will show you
where to connect your servos:

3.	 Connect these servos to the servo motor controller as follows:
°° The left foot to 0 (the top connector) and the black cable to the

outside (-)
°° The left hip to connector 1 and the black cable out
°° The right foot to connector 2 and the black cable out
°° The right hip to connector 3 and the black cable out

See the following image indicating how to connect servos to the controller:

Chapter 6

[129]

4.	 Now, you need to connect the servo motor controller to your battery. You'll
use the USB to the FTDI UART cable; plug the red and black cables into the
power connector on the servo controller, as shown in the following image:

Now, plug the other end of the USB cable into one of the battery outputs.

Configuring the software
Now, you can connect the motor controller to your PC or Linux machine to see
whether or not you can talk to it. Once the hardware is connected, you will use some of
the software provided by Polulu to control the servos. The steps to do so are as follows:

1.	 Download the Polulu software from http://www.pololu.com/
docs/0J40/3.a and install it using the instructions on the website. Once
it is installed, run the software; you should see the window shown in the
following screenshot:

http://www.pololu.com/docs/0J40/3.a
http://www.pololu.com/docs/0J40/3.a

Controlling the Movement of a Robot with Legs

[130]

2.	 You will first need to change the Serial mode configuration in Serial
Settings, so select the Serial Settings tab; you should see the window
shown in the following screenshot:

3.	 Make sure that USB Chained is selected; this will allow you to connect to
and control the motor controller over the USB. Now, go back to the main
screen by selecting the Status tab; you can now turn on the four servos.
The screen should look as shown in the following screenshot:

Chapter 6

[131]

4.	 Now, you can use the sliders to control the servos. Enable the four servos and
make sure that servo 0 moves the left foot; 1, the left hip; 2, the right foot; and
3, the right hip.

5.	 You've checked the motor controllers and the servos and you'll now connect
the motor controller to Raspberry Pi to control the servos from there. Remove
the USB cable from the PC and connect it to Raspberry Pi. The entire system
will look as shown in the following image:

Controlling the Movement of a Robot with Legs

[132]

Let's now talk to the motor controller from your Raspberry Pi by downloading the
Linux code from Pololu at http://www.pololu.com/docs/0J40/3.b. Perhaps the
best way to do this is by logging on to Raspberry Pi using vncserver and opening a
VNC Viewer window on your PC. To do this, log in to your Raspberry Pi by using
PuTTY, and then, type vncserver at the prompt to make sure vncserver is running.
Then, perform the following steps:

1.	 On your PC, open the VNC Viewer application, enter your IP address, and
then click on Connect. Then, enter the password that you created for the
vncserver; you should see the Raspberry Pi viewer screen, which should look
as shown in the following screenshot:

2.	 Open a browser window and go to http://www.pololu.com/
docs/0J40/3.b. Click on the Maestro Servo Controller Linux Software link.
You will need to download the maestro_linux_100507.tar.gz file to the
Download folder. You can also use wget to get this software by typing wget
http://www.pololu.com/file/download/maestro-linux-100507.tar.
gz?file_id=0J315 in a terminal window.

http://www.pololu.com/docs/0J40/3.b
http://www.pololu.com/docs/0J40/3.b
http://www.pololu.com/docs/0J40/3.b

Chapter 6

[133]

3.	 Go to your Download folder, move it to your home folder by typing mv
maestro_linux_100507.tar.gz .., and then go back to your home folder.

4.	 Unpack the file by typing tar –xzfv maestro_linux_011507.tar.gz. This
will create a folder called maestro_linux. Go to this folder by typing cd
maestro_linux and then, type ls. You should see the output as shown in
the following screenshot:

5.	 The document README.txt will give you explicit instructions on how to
install the software. Unfortunately, you can't run Maestro Control Center
on your Raspberry Pi. The standard version of Maestro Control Center
doesn't support the Raspberry Pi graphical system, but you can control
your servos by using the UscCmd command-line application. First, type
./UscCmd --list; you should see the following screenshot:

Controlling the Movement of a Robot with Legs

[134]

6.	 The software now recognizes that you have a servo controller. If you just
type ./UscCmd, you can see all the commands you could send to your
controller. When you run this command, you can see the result as shown
in the following screenshot:

Notice that you can send a servo a specific target angle, although if the target angle
is not within range, it makes it a bit difficult to know where you are sending your
servo. Try typing ./UscCmd --servo 0, 10. The servo will most likely move to its
full angle position. Type ./UscCmd – servo 0, 0 and it will prevent the servo from
trying to move. In the next section, you'll write some software that will translate your
angles to the electronic signals that will move the servos.

If you haven't run the Maestro Controller tool and set the Serial Settings setting to
USB Chained, your motor controller may not respond.

Chapter 6

[135]

Creating a program in Linux to control
the mobile platform
Now that you can control your servos by using a basic command-line program, let's
control them by programming some movement in Python. In this section, you'll
create a Python program that will let you talk to your servos a bit more intuitively.
You'll issue commands that tell a servo to go to a specific angle and it will go to that
angle. You can then add a set of such commands to allow your legged mobile robot
to lean left or right and even take a step forward.

Let's start with a simple program that will make your legged mobile robot's servos
turn at 90-degrees; this should be somewhere close to the middle of the 180-degree
range you can work within. However, the center, maximum, and minimum values
can vary from one servo to another, so you may need to calibrate them. To keep
things simple, we will not cover that here. The following screenshot shows the code
required for turning the servos:

Controlling the Movement of a Robot with Legs

[136]

The following is an explanation of the code:

•	 The #!/user/bin/python line allows you to make this Python file available
for execution from the command line. It will allow you to call this program
from your voice command program. We'll talk about this in the next section.

•	 The import serial and import time lines include the serial and time
libraries. You need the serial library to talk to your unit via USB. If you
have not installed this library, type sudo apt-get install python-
serial. You will use the time library later to wait between servo commands.

•	 The PololuMicroMaestro class holds the methods that will allow you to
communicate with your motor controller.

•	 The __init__ method, opens the USB port associated with your servo
motor controller.

•	 The setAngle, method converts your desired settings for the servo and angle
to the serial command that the servo motor controller needs. The values, such
as minTarget and maxTarget, and the structure of the communications—
channelByte, commandByte, lowTargetByte, and highTargetByte—comes
from the manufacturer.

•	 The close, method closes the serial port.
•	 Now that you have the class, the __main__ statement of the program

instantiates an instance of your servo motor controller class so that you
can call it.

•	 Now, you can set each servo to the desired position. The default would be
to set each servo to 90-degrees. However, the servos weren't exactly centered,
so I found that I needed to set the angle of each servo so that my robot has
both feet on the ground and both hips centered.

Once you have the basic home position set, you can ask your robot to do different
things; the following screenshot shows some examples in simple Python code:

Chapter 6

[137]

In this case, you are using your setAngle command to set your servos to manipulate
your robot. This set of commands first sets your robot to the home position. Then,
you can use the feet to lean to the right and then to the left and then you can use a
combination of commands to make your robot step forward with the left and then
the right foot. Once you have the program working, you'll want to package all your
hardware onto the mobile robot.

By following these principles, you can make your robot do many amazing things,
such as walk forward and backward, dance, and turn around—any number of
movements are possible. The best way to learn these movements is to try positioning
the servos in new and different ways.

Controlling the Movement of a Robot with Legs

[138]

Making your mobile platform truly mobile
by issuing voice commands
Now that your robot can move, wouldn't it be neat to have it obey your commands?

You should now have a mobile platform that you can program to move in any
number of ways. Unfortunately, you still have your LAN cable connected, so the
platform isn't completely mobile. Once you have started executing the program,
you can't alter its behavior. In this section, you will use the principles from Chapter 3,
Providing Speech Input and Output, to issue voice commands to initiate movement.

You'll need to modify your voice recognition program so that it will run your Python
program when it gets a voice command. If you feel your knowledge of how this works
is rusty, review Chapter 3, Providing Speech Input and Output. You are going to make a
simple modification to the continuous.c program in /home/pi/pocketsphinx-0.8/
src/. To do this, type cd /home/pi/pocketsphinx-0.8/src/programs and then type
emacs continuous.c. The changes will appear in the same section as your other voice
commands and will look as shown in the following screenshot:

Chapter 6

[139]

The additions are pretty straightforward. Let's walk through them:

•	 else if (strcmp(hyp, "FORWARD") == 0): This checks the input word as
recognized by your voice command program. If it corresponds with the word
FORWARD, you will execute everything within the if statement. You use { and
} to tell the system which commands go with this else if clause.

•	 system("espeak \"moving robot\""): This executes Espeak, which should
tell you that you are about to run your robot program.

•	 system("/home/pi/maestro_linux/robot.py"): This indicates the name
of the program you will execute. In this case, your mobile platform will do
whatever the robot.py program tells it to.

After doing this, you will need to recompile the program, so type make and the
pocketsphinx_continuous executable will be created. Run the program by typing
./pocketsphinx_continuous. Disconnect the LAN cable and the mobile platform
will now take the forward voice command and execute your program. You should
now have a complete mobile platform! When you execute your program, the mobile
platform can now move around based on what you have programmed it to do.

You can use the command-line arguments that you learned about in Chapter 5,
Creating Mobile Robots on Wheels, to make your robot do many different actions.
Perhaps one voice command can move your robot forward, a different one can
move it backwards, and another can turn it right or left.

Congratulations! Your robot should now be able to move around in any way you
program it to move. You can even have the robot dance. You have now built a
two-legged robot and you can easily expand on this knowledge to create robots
with even more legs. The following is an image of the mechanical structure of a
four-legged robot that has eight DOFs and is fairly easy to create by using many of
the parts that you have used to create your two-legged robot; this is my personal
favorite because it doesn't fall over and break the electronics:

Controlling the Movement of a Robot with Legs

[140]

You'll need eight servos and lots of batteries. If you search eBay, you can often find
kits for sale for four-legged robots with 12 DOFs, but remember that the battery
will need to be much bigger. For this application, you can use an RC (which stands
for remote control) battery. RC batteries are nice as they are rechargeable and can
provide lots of power, but make sure you either purchase one that is 5 V to 6 V or
include a way to regulate the voltage. The following is an image of such a battery,
available at most hobby stores:

If you use this type of battery, don't forget its charger. The hobby store can help
with choosing an appropriate match.

Summary
Now, you have the ability to build not only wheeled robots but also robots with legs.
It is also easy to expand this ability to robots with arms; controlling the servos for an
arm is the same as controlling them for legs. In later chapters, you can even use this
ability to control the position of your sonar sensors or webcams. In the next chapter,
you'll learn how to connect a sonar sensor and avoid or find obstacles.

[141]

Avoiding Obstacles
Using Sensors

In the previous two chapters, we covered wheeled, tracked, and legged movement.
Now your robot can move around. But what if you want the robot to sense the
outside world, so it doesn't run into things? In this chapter, you'll discover how to
add some sensors to help avoid barriers.

Your robot will take quite a beating if it continually runs into walls, or off the edge
of a surface. Let's help your robot avoid these so that it looks intelligent.

In this chapter, you will cover the following:

•	 Gathering the hardware
•	 Connecting Raspberry Pi to an infrared (IR) sensor to detect the world
•	 Connecting Raspberry Pi to a USB sonar sensor to detect the world
•	 Using a servo to change the position of your sensor so that a single sensor

can view a large field, eliminating the need for additional sensors

To find obstacles, you'll need some sensors. There are two choices and in this chapter
I am going to show you how to interface with an infrared sensor and a sonar sensor.
It is not an easy choice; both will do an adequate job. If you're not sure which one to
use, I suggest you read through this chapter first and then choose which you think
will work in your specific application.

Avoiding Obstacles Using Sensors

[142]

If you are going to choose the infrared sensor, you'll need to add an analog-to-digital
converter to your Raspberry Pi, as it does not have one. One way to do this is to
use a set of parts that includes not only the sensor, but also an A/D converter that
communicates with the Raspberry Pi. This is offered by www.phidgets.com. This
board is really quite amazing; it takes the analog signals, turns them into digital
numbers using an analog to digital converter, and then makes them available
so that they can be read from the USB port. The model number of this part is
1011_0-PhidgetInterfaceKit 2/2/2 and the following is an image of it:

If you want to use the Phidget ADC USB interface, the second item you'll need is
an IR distance adapter that can provide the signals to the sensor and condition the
signals coming back from the sensor. The model number is 1101_0-IR Distance
Adapter, which is shown in the following image:

Chapter 7

[143]

However, there is also an A/D that can be added to the Raspberry Pi that can
use its GPIO pins to communicate with an infrared sensor. The ADC-DAC Pi from
www.abelectronics.co.uk, is shown in the following image:

Whether you use an ADC that interfaces through USB or through the GPIO, you'll
need the sensor itself. This sensor is made by Sharp and they come in several
different distance specifications. The following image is the GP2Y0A02YK, the 20-150
centimeters version:

Avoiding Obstacles Using Sensors

[144]

If you purchase this sensor from www.phidgets.com, you can get the black interface
cable as shown in the preceding image, which will be useful if you are going to use
their USB ADC. If not, the sensor is available at a number of different electronics
online merchants; www.amazon.com and www.adafruit.com, for example.

If you are going to go with the sonar sensor, the following is an image of the USB
sonar sensor I like to use on my projects:

It is the USB-ProxSonar-EZ sensor, and can be purchased directly from MaxBotix
or Amazon. There are several models, each with a different distance specification;
however, they all work in the same way.

Whether you choose an infrared sensor or a sonar sensor, you may want to detect
distance in more than just one direction. You have two choices. The first is simply to
use a number of these sensors, one in each direction. The second option is to use a
single sensor that can be turned into different directions. But in the Connecting the IR
sensor using the GPIO ADC section of this chapter, you will learn how to use a servo
to rotate the sensor. To complete this section, you'll need a servo and a way to mount
it on your project. I like the Hitec series of servos, and this is ready-made for an
HS-311 servo, which should look as shown in the following image:

Chapter 7

[145]

Here is a way to mount the sensor on a 90-degree angle bracket. I used one from
a robot kit I purchased on eBay. It can connect to the servo as shown in the
following screenshot:

However, if you want to get really fancy, you can purchase a Pan and Tilt assembly.
These contain two servos and they allow you to rotate your sensor in both the vertical
and horizontal axes. They are available from online stores, such as www.robotshop.
com. You can also construct a Pan and Tilt assembly out of components that you may
have, if you purchased a legged robot kit.

www.robotshop.com
www.robotshop.com

Avoiding Obstacles Using Sensors

[146]

The finished product with servos looks as shown in the following image:

Connecting Raspberry Pi to an infrared
sensor using USB
The ability of the robot to move around is impressive, but it won't be if your robot
keeps running into barriers. To avoid this, you'll want to be able to sense a barrier
or a target. One of the ways to do this is with an IR sensor. Now for a little tutorial
on IR sensors. The sensor you are using has both a transmitter and a sensor. The
transmitter sends out a narrow beam of light, and the sensor receives this beam of
light. The difference in transit ends up as an angle measurement at the sensor, as
shown in the following figure:

Chapter 7

[147]

The different angles give you an indication of the distance from the object.
Unfortunately, the relationship between the output of the sensor and the distance is
not linear, so you'll need to do some calibration to predict the actual distance and its
relationship to the output of the sensor.

Connecting a sensor using the USB interface
If you have chosen the Phidget USB interface, here are the steps to connect
the sensor:

1.	 The first step is to connect the Sharp IR sensor to the IR Distance Adapter.
Simply take the output of the sensor and insert it into the white connector
on the adapter board, as shown in the following image:

2.	 Now you need to connect the IR Distance Adapter to the USB interface
board. Connect the board using the two cables, as shown in the following
image (fortunately, there is only one way to connect them):

Avoiding Obstacles Using Sensors

[148]

Now that everything is connected, you can begin to access the data from Raspberry
Pi. To do this, perform the following steps:

1.	 The first step is to look at the data from a PC. For this, you'll first need to
download some software from http://www.phidgets.com/docs/OS_-_
Windows#Quick_Downloads. Go to this website and go to the Getting Started
with Windows section.

2.	 After you have downloaded the software, run the downloaded installation
software and it will install the Phidgets Control Panel application in the
Phidgets folder.

3.	 You can then run the software from the Start menu by selecting the
Phidgets folder and then the Phidgets Control Panel application.

When you run the software with your Phidget USB device plugged in, you should
see the following screenshot:

http://www.phidgets.com/docs/OS_-_Windows#Quick_Downloads
http://www.phidgets.com/docs/OS_-_Windows#Quick_Downloads

Chapter 7

[149]

Note that your Phidget device is being recognized by the system. Now you can move
the device to Raspberry Pi. Plug the Phidget device into Raspberry Pi. Then follow
the directions given at http://www.phidgets.com/docs/OS_-_Linux#Installing.

1.	 Download the Phidgets Libraries from the website. You can either install
them directly to your Raspberry Pi, use WinSCP to first download them
to your PC and then transfer them to Raspberry Pi, or use wget to transfer
them by typing wget http://www.phidgets.com/downloads/libraries/
libphidget.tar.gz. In any case, you'll then need to unzip them, so they are
in your Raspberry Pi's home directory. You can use the tar -xzvf command
to accomplish this.

2.	 Once you have unzipped the files, go to the directory created by the tar
–xzfv command. Type ./configure, then make, and then sudo make
install.

3.	 The next step is to install the Python modules. Install them from http://
www.phidgets.com/docs/Language_-_Python#Linux by selecting the
Phidget Python Module option. You will then need to unzip this file
using the unzip command. Go to the directory created by this unzipping
process, by typing cd PhidgetsPython. Then type sudo python setup.py
install.

4.	 Now install the Python examples by downloading the code from http://
www.phidgets.com/docs/Language_-_Python#Use_Our_Examples_5. This
will be a ZIP file, so unzip this using the unzip command, and the directory
Python will be created with a number of examples. Go to the directory by
typing cd Python. You should see the following screenshot:

http://www.phidgets.com/docs/Language_-_Python#Linux
http://www.phidgets.com/docs/Language_-_Python#Linux
http://www.phidgets.com/docs/Language_-_Python#Use_Our_Examples_5
http://www.phidgets.com/docs/Language_-_Python#Use_Our_Examples_5

Avoiding Obstacles Using Sensors

[150]

5.	 Let's see if the system can sense your Phidget device. Type sudo python
HelloWorld.py. You should see the following screenshot:

6.	 Now you can run the InterfaceKit-simple.py example by typing sudo
python InterfaceKit-simple.py. This will allow you to sense a target on
your sensor. You should see the following screenshot if no targets are in front
of the sensor:

Chapter 7

[151]

7.	 Place a target in front of the sensor and then remove it; you will see the
following screenshot:

Note that the value increases as the target gets closer and then
decreases when the target is removed.

You can calibrate your sensor by noting the value returned for a corresponding
distance from the target. This can allow your project to know how far the target is.
The code for this capability is a bit complicated to detail in this text, but basically it
goes out, senses the presence of the Phidget device, sets the device to sense the IR
sensor changes, and returns them to the user.

Avoiding Obstacles Using Sensors

[152]

To create your own code, follow the tutorial at http://www.phidgets.com/docs/
Language_-_Python#Follow_the_Examples. The following screenshot shows a
simpler example of the code that may help you implement your IR capability:

http://www.phidgets.com/docs/Language_-_Python#Follow_the_Examples
http://www.phidgets.com/docs/Language_-_Python#Follow_the_Examples

Chapter 7

[153]

The following is a description of the code used in the preceding screenshot:

•	 #!/usr/bin/env python: This sets up the code so that you can run it from
the command line without the Python directory.

•	 from ctypes import *: This imports the ctypes library, a library that
allows Python to specify C data types.

•	 import sys: This imports the sys library.
•	 import random: This imports the random library and allows you access to

random variables.
•	 from Phidgets.PhidgetException import PhidgetErrorCodes,

PhidgetException: This imports libraries for Phidgets capabilities.
•	 from Phidgets.Events.Events import AttachEventArgs,

DetachEventArgs, ErrorEventArgs, InputChangeEventArgs,
OutputChangeEventArgs, SensorChangeEventArgs: This imports even
more capabilities of Phidgets as a library.

•	 from Phidgets.Devices.InterfaceKit import InterfaceKit: This is
one last import for the interface functionality from the Phidgets library.

•	 interfaceKit = InterfaceKit(): This creates an instance of an interface
to your Phidgets device.

•	 def interfaceKitAttached(e):: The following lines will create callback
functions. These are the functions that are called by the device when a certain
event occurs. This is the callback function for an attach event.

•	 attached = e.device: This simply attaches a device when asked.
•	 def interfaceKitDetached(e):: This is the callback function for an

attach event.
•	 detached = e.device: This detaches the device when asked.
•	 def interfaceKitInputChanged(e):: This is the callback function for an

input changed event.
•	 source = e.device: This defines the device that is communicating

with you.
•	 print("InterfaceKit %i: Input %i: %s" % (source.getSerialNum(),

e.index, e.state)): This prints out the result of the event.

Avoiding Obstacles Using Sensors

[154]

•	 def interfaceKitSensorChanged(e):: This is the callback function for
a sensor changed event. This is the function that is called when the value
changes and will get the value from the sensor. It is here that you put
additional code to do other things with the sensor reading.

•	 source = e.device: This defines the device that is communicating
with you.

•	 print("InterfaceKit %i: Sensor %i: %i" % (source.
getSerialNum(), e.index, e.value)): This prints out the result of
the event.

•	 def interfaceKitOutputChanged(e):: This is the callback function for an
output changed event.

•	 source = e.device: This defines the device that is communicating
with you.

•	 print("InterfaceKit %i: Output %i: %s" % (source.
getSerialNum(), e.index, e.state)): This prints out the result of
the event.

•	 #Main Program Code: The following lines attach the callback functions to
the device:
interfaceKit.setOnAttachHandler(interfaceKitAttached)
interfaceKit.setOnDetachHandler(interfaceKitDetached)
interfaceKit.setOnInputChangeHandler(
 interfaceKitInputChanged)
interfaceKit.setOnOutputChangeHandler(
 interfaceKitOutputChanged)
interfaceKit.setOnSensorChangeHandler(
 interfaceKitSensorChanged)

•	 interfaceKit.openPhidget(): This opens the device and attaches all the
callbacks.

•	 interfaceKit.waitForAttach(10000): This tells the program to wait to
make sure the device attaches.

•	 for i in range(interfaceKit.getSensorCount()):: This creates a loop
for all the sensors available.

•	 interfaceKit.setDataRate(i, 4): This sets the update rate to 4
milliseconds.

•	 print("Press Enter to quit...."): This tells the user to hit Enter to quit
the program.

Chapter 7

[155]

•	 chr = sys.stdin.read(1): This tells the program to get ready to read in a
character. When the character comes, this will close the program.

•	 interfaceKit.closePhidget(): This closes the interface to the object.
•	 exit(0): This exits the program.

Now your project can sense objects!

Connecting the IR sensor using the
GPIO ADC
If you have chosen the ADC-DAC GPIO interface, here are the steps to connect the
IR sensor:

1.	 Plug the ADC-DAC board into the Raspberry Pi. The following is a picture of
the combination:

Avoiding Obstacles Using Sensors

[156]

2.	 Now you'll connect the IR sensor to the ADC. To connect this unit, you'll
connect the three pins that are available at the bottom of the sensor. The
following is the connection list:

ADC-DAC board Sensor pin
3.3V Vcc
GND Gnd
In1 Vo

Unfortunately, there are no labels on the unit, but the following is the screenshot of
the pins you'll connect:

One of the challenges in making this connection is, that the female to male
connection jumpers are too big to connect directly to the sensor. You'll have to
arrange the three wire cable with connectors along with the sensor, and then
you can make the connections between this cable and the Raspberry Pi using
the male to male jumper wires.

Chapter 7

[157]

Once the pins are connected, you are ready to access the data from the sensor,
via a python program on the Raspberry Pi. The entire system looks as shown in
the next image:

Avoiding Obstacles Using Sensors

[158]

Now you are ready to add some code to read the IR sensor. But you'll need to follow
these steps to make the sensor talk to the ADC:

1.	 The first step is to enable the SPI interface, which you will use to talk to
the ADC board. To do this, type sudo emacs /etc/modprobe.d/raspi-
blacklist.conf and comment out the line blacklist spi-bcm2708 by
adding a # at the start of the line. Following is a screenshot depicting this:

2.	 Now reboot the Raspberry Pi.
3.	 Log on, and at the command prompt, type sudo apt-get update. This will

update all the repositories from which you may want to download the code.
4.	 Now type mkdir python-spi, and then cd python-spi. This will create a

directory to download and create the python spi library.
5.	 Type wget https://raw.github.com/doceme/py-spidev/master/setup.

py, and then wget https://raw.github.com/doceme/py-spidev/master/
spidev_module.c. This will bring in two sets of code that will provide the
capability to install the python spi library.

Chapter 7

[159]

6.	 The next step is to install the library by typing sudo python setup.py
install.

7.	 Now you'll need to get one more set of library capabilities. Go back to your
home directory by typing cd ~, and then type git clone https://github.
com/abelectronicsuk/ABElectronics_Python_Libraries.git.

8.	 Finally, you'll need to update your path variable, so the system will
know where this new capability is, by typing export PYTHONPATH=$:~/
ABElectronics_Python_Libraries/ADCDACPi/

Now that all this is installed, you can create a program in Python to read the ADC.
Following is the screenshot of the program:

This program is very short, but here are the details:

•	 #!/usr/bin/python: This lines allow you to run the program without
invoking Python at the command prompt

•	 from ABE_ADCDACPi import ADCDACPi: This imports the ADC and DAC Pi
Python libraries

Avoiding Obstacles Using Sensors

[160]

•	 import time: This imports the time library. This will allow you to invoke a
time delay in your program

•	 adcdac = ADCDACPi(): This creates an instance of the ADC so you can
interact with it

•	 adcdac.set_adc_refvoltage(3.3): This sets the reference voltage for your
ADC to 3.3 volts

•	 while True:: This makes the program continue, until you interrupt it with
CTRL + C

•	 print adcdac.read_adc_voltage(1): This prints the voltage at Port 1 of
the ADC

•	 time.sleep(0.5): This makes the program sleep for half a second

To run the program, type python irSensor.py. You should see something like the
following screenshot:

These raw readings are great, but you'll want to translate these to distance. To do
this, you'll need a graph of the voltage to know the distance readings for your sensor.
The following is the graph for the IR sensor in this example:

Chapter 7

[161]

There are really two parts to the curve; the first is the distance up to about 15
centimeters, then the distance from 15 centimeters out to 150 centimeters. It is the
easiest way to build a simple mathematical model that ignores distances closer
than 15 centimeters and accurately translates the voltage to the distance from 15
centimeters out.

For more information on how to build this model, see http://davstott.me.uk/
index.php/2013/06/02/raspberry-pi-sharp-infrared/. The following
screenshot shows the program using this model:

http://davstott.me.uk/index.php/2013/06/02/raspberry-pi-sharp-infrared/
http://davstott.me.uk/index.php/2013/06/02/raspberry-pi-sharp-infrared/

Avoiding Obstacles Using Sensors

[162]

The only new line of code is the distance = (1.0 / (adcdac.read_adc_
voltage(1) / 13.15)) - 0.35 line, which converts your voltage to distance. You
can now run your program and you'll see the results in centimeters, as seen in the
following screenshot:

Now, you can measure the distance to the objects!

Connecting Raspberry Pi to a USB sonar
sensor
There is yet another way to sense the presence of objects; by using a sonar sensor. But
before you add this capability to your system, here's a little tutorial on sonar sensors.
This type of sensor uses ultrasonic sound to calculate the distance from an object.
The sound wave travels out from the sensor, as illustrated in the following figure:

Chapter 7

[163]

The device sends out a sound wave 10 times per second. If an object is in the path of
these waves, then the waves reflect off the object, sending waves that return to the
sensor, as shown in the following figure:

The sensor then measures any return. It uses the time difference between when
the sound wave was sent out and when it returned, to measure the distance from
the object.

Avoiding Obstacles Using Sensors

[164]

Connecting the hardware
The first thing you'll want to do is connect the USB sonar sensor to your PC, just to
make sure everything works well. Perform the following steps to do so:

1.	 First, download the terminal emulator software from http://www.maxbotix.
com/articles/059.htm and click on the Windows Download button.

2.	 Unzip this file. Then, plug the sensor into a USB port on your PC and open
the terminal emulator file by selecting this file from the directory.

http://www.maxbotix.com/articles/059.htm
http://www.maxbotix.com/articles/059.htm

Chapter 7

[165]

3.	 The following application window should pop up:

4.	 We'll need to change the setting to find the sensor, so click on the Settings
button, and you should see the following screenshot:

Avoiding Obstacles Using Sensors

[166]

5.	 Select the Port menu and select the port that is connected to your sensor. In
my case, I selected COM3, clicked on OK, and the following screenshot is
what I saw on the main screen:

6.	 Note the sensor readings. Now place an object in front of the sensor. You
should now see something as shown in the following screenshot:

Chapter 7

[167]

The readings have changed, specifically the value after R and the value P1, indicating
an object in front of the sensor. You'll need to read these values into your program
and then you can avoid the object.

Now that you know how the unit works, you'll want to mount the USB sensor on
your mobile platform. In this case, I am going to mount the USB sonar sensor on my
quadruped robot.

Make sure you plug one end of the USB cable into the sensor and the other end into
the USB hub connected to Raspberry Pi.

With all the hardware constructed and the sensor working, you can start talking
to your USB sensor using Raspberry Pi. You are going to create a simple Python
program that will read the value from the sensor. To do this, using emacs as an
editor, type emacs sonar.py. A new file called sonar.py will be created. Then
type the code, as shown in the following screenshot:

Let's go through the code to see what is happening:

•	 #!/usr/bin/python: As explained earlier, the first line simply makes this file
available for us to execute from the command line

•	 import serial: We again import the serial library. This will allow us to
interface with the USB sonar sensor

Avoiding Obstacles Using Sensors

[168]

•	 ser=serial.Serial('/dev/ttyUSB0', 57600, timeout = 1): This
command sets up the serial port to use the /dev/ttyUSB0 device, which is
the sonar sensor using a baud rate of 57600 and a timeout of 1

•	 x = ser.read(100): This command then reads the next 100 values from the
USB port

•	 print(x): This final command then prints out the value

Once you have created this file, you can run the program and talk to the device. Do
this by typing ./sonar.py, and the program will run. I have found that sometimes
the device returns no data the first time, so don't be surprised if you print out no
values the first time you run your program. The second time, you should receive a
valid return string. The following screenshot is my result after running the program:

The sensor returns 110, which indicates a relative distance to a barrier in millimeters.
If you place a good reflector just a few inches in front of the sensor and run the
program, you will get the following result:

Chapter 7

[169]

Now the robot can sense its environment, so you can avoid bumping into walls and
other barriers!

Using a servo to move a single sensor
You now have your sensors and if you want to sense more than just one direction,
you can use several sensors, each mounted to a different side of the robot. However,
there is a way to use servos to move your sensor, that allows you to use a single
sensor to sense in several directions.

The simplest way to avoid having to purchase and configure several sensors is to
mount the sensor on a single servo and then use a servo bracket to connect this
assembly to the platform. Using the sonar sensor, the assembly will look, as shown
in the following image:

Avoiding Obstacles Using Sensors

[170]

Make sure you connect your servo to the servo controller; it can fit into any open
connection. I am connecting mine to my quadruped robot that has eight servos to
control, so I have connected mine to the eighth connection on the servo controller
board, as follows:

I'll assume you already have your sensor up and working, and know how to read the
data. In this section, you will add the ability to move the sensor by communicating
with the servo, through the servo controller we configured in the previous chapter.

For the program, you will begin with the robot.py program you created in
Chapter 6, Controlling the Movement of a Robot with Legs, as you are going to need to
access the servo controller. However, you may want to keep a copy of this program,
just in case you want to use it later. First, go to the directory that contains the robot.
py program; in my case I placed it in the maestro_linux directory, so I would type
cd ./maestro_linux from my log in or home directory. Now, let's create a copy of
this program by typing cp robot.py sense.py.

Chapter 7

[171]

You'll want to edit this program. If you are using the emacs editor, type
emacs sense.py. The program you want to create will look as shown in the
following screenshot:

Avoiding Obstacles Using Sensors

[172]

Let's walk through the code to see what it does. I will begin with the section that
begins with if __name__=="__main__":, as everything above this comes to us from
the robot.py code and was covered in the previous chapter.

•	 The robot=PololuMicroMaestro() line initializes the servo motor controller
and connects it to the proper USB port.

•	 The next line opens a serial port, which we will call sensor, that connects you
to the USB Sonar sensor at the /dev/ttyUSB0 port and sets its parameters.

•	 You can now ask the servo to go to a specific position and then take a
reading. In this case, I am doing this for the servo positions at 65 degrees,
90 degrees, and 115 degrees. At each of these locations, you ask for a range
reading. Note that, based on the specifications of the manufacturer, you need
to wait 2.5 seconds for the sensor to respond, and for the device to deliver a
stable reading.

That's it! Now you can sense in front of you and on either side. The following
screenshot is an example of what might be displayed as a result of running
the program:

If you are adding the sensor/servo combination to your wheeled vehicle, you'll
need to add the servo motor controller as well. The motor controllers, the servo
controllers, and the USB sonar or IR sensor can all coexist on the same Raspberry Pi.
You'll need to merge the dcmotor.py and sense.py programs, so that you can access
each individual capability.

Chapter 7

[173]

You can also use sensors to find an object by having two sensors determine the
distance of each sensor from the object and then triangulate its position. This
can help your robot actually find the position of specific obstacles. How this is
accomplished is detailed on the MaxBotix website at http://www.maxbotix.com/
documents/MaxBotix_Ultrasonic_Sensors_Find_Direction_and_Distance.pdf.
You have all the knowledge you need to add this type of capability to your robot.

For more details on using IR and sonar sensors for obstacle avoidance, there
are several good places on the web. Try http://www.intorobotics.com/
interfacing-programming-ultrasonic-sensors-tutorials-resources/,
http://www.geology.smu.edu/~dpa-www/robo/challenge/obstacles.html, and
http://www.societyofrobots.com/member_tutorials/book/export/html/71.

Summary
Congratulations! Your robot can now detect and avoid walls and other barriers.
You can also use these sensors to detect objects that you might want to find. In the
next chapter, you'll learn how to disconnect your robot from all its wires and control
it wirelessly.

http://www.maxbotix.com/documents/MaxBotix_Ultrasonic_Sensors_Find_Direction_and_Distance.pdf
http://www.maxbotix.com/documents/MaxBotix_Ultrasonic_Sensors_Find_Direction_and_Distance.pdf
http://www.intorobotics.com/interfacing-programming-ultrasonic-sensors-tutorials-resources/
http://www.intorobotics.com/interfacing-programming-ultrasonic-sensors-tutorials-resources/

[175]

Going Truly Mobile – The
Remote Control of

Your Robot
Based on the previous chapters, you now have mobile robots that can move around,
accept commands, see, and even avoid obstacles. This chapter will teach you how to
electronically communicate with your robot without using any wires.

As you send your device out into the world, you may still want to communicate
with it electronically without connecting a cable. If you add this capability, you
can change what your mobile robot is doing without any physical contact, but still
remain in complete control of your project.

In this chapter, we will cover the following points:

•	 Connecting Raspberry Pi to a wireless USB input device
•	 Using the wireless USB input device in order to issue commands to

your project
•	 Connecting to your robot over wireless LAN
•	 Connecting to your robot over ZigBee

Going Truly Mobile – The Remote Control of Your Robot

[176]

Gathering the hardware
In this chapter, you'll learn how to connect to your device wirelessly. There are
several ways to accomplish this. The first way that we'll cover in this chapter is to
do this with a standard USB wireless input device. This is perhaps the easiest way
to control your robot but only provides basic functionality with a limited range.
The second way to connect to your robot that you will learn is via a wireless LAN
device; this provides an excellent bandwidth and good range but requires bit more
hardware. This will provide you with the opportunity to both control your robot
and see what it is seeing.

Finally, in this chapter, we will cover communicating with your robot wirelessly via
a dedicated wireless link called ZigBee. It will provide the same sort of control as
with the wireless USB device but with a much greater range.

No matter what you choose, you may want to purchase a small LCD display for your
Raspberry Pi. This will allow you to monitor what is going on with your project.
In the previous chapters, you used a separate computer monitor for this. However,
the monitor is just too big and not really designed for mobile use. For the original
Raspberry Pi with S-Video output, there are several inexpensive choices for small
LCDs. Here is one possible choice:

This type of LCD is available on Amazon and other online electronics stores, so you
should be able to get it at almost any place. One of the challenges, however, is that
most of these are designed for auto applications and may require 12 V to operate. I
have been lucky; each one of the devices that I have ordered has worked just fine at
5 V. However, if you want to make sure that you get one that is compatible, you can
order it from www.adafruit.com; they have a set of devices that are all compatible
with Raspberry Pi.

www.adafruit.com

Chapter 8

[177]

If you are working with the Raspberry Pi A or B+, these don't have an S-Video
output. There are two choices here. First, there are several versions of LCDs that
are made for Raspberry Pi as a plugin cape. Here is an image of just such a unit,
available at www.amazon.com:

The unit simply plugs into the GPIO connector on the Raspberry Pi. Simply
download the image from the page shown on Amazon, unzip the file, burn a card,
and plug in the display, and you can get a simple display on your Raspberry Pi,
as follows:

www.amazon.com

Going Truly Mobile – The Remote Control of Your Robot

[178]

You can also purchase a display unit with HDMI input; here is one that is available
from www.adafruit.com, connected to Raspberry Pi B+:

When you start making your projects mobile, you will also need a battery. One
excellent choice is a dual-output USB battery. The following is an image of such
a battery:

www.adafruit.com

Chapter 8

[179]

Just a quick note on battery selection. You'll need to keep in mind two key
characteristics when you buy your battery. The first is the size of the battery,
normally noted in mAh or milliAmpHours. This is a measure of the capacity of the
battery, which will tell you how long a battery might last while drawing a certain
current. For example, if you purchased a 2000-mAh battery and drew an average
of 100 mA, this battery would theoretically last for 20 h. However, it won't last that
long; as the battery discharges, the voltage will start to drop as well, and eventually
you won't be able to power your system. The voltage drop depends on the quality
of the battery.

The second key characteristic is the amount of current you can draw at any given
time. Most batteries give a C rating and if you divide the mAh rating by this value,
you will get the amount of instantaneous current that you can draw. This value is
important because this will be required to estimate the amount of power you need to
draw from your electronics. For example, Raspberry Pi can draw as much as 500 mA,
so you'll need to make sure you get a battery that can supply this kind of current.

Now that you have a screen, you can display the results on the robotic platform
itself. No extra programming is needed; the Raspbian release will automatically send
signals to the LCD screen and boot with the screen acting as a display.

Now that you can display what is going on inside Raspberry Pi directly, you need
to choose the wireless connection that you'd like to use. If you just need to send
basic control signals to your device and you are always going to be close, a 2.4-GHz
wireless keyboard is the best choice.

Going Truly Mobile – The Remote Control of Your Robot

[180]

The following image is of a standard 2.4-GHz wireless keyboard:

This is a Logitech keyboard. Logitech generally makes very reliable keyboards and
these connect well to Raspberry Pi. This keyboard is available online on Amazon and
at most electronics or computer stores. You'll notice that this version has a built-in
mouse pad.

Another option is a small keyboard that looks more like a game controller. It will
make your projects look amazing and will make them easier to control. The
following is an image of such a keyboard:

This 2.4-GHz wireless keyboard by HausBell is small, about the size of a game
controller, is relatively inexpensive, and is sold online, again by Amazon.

Chapter 8

[181]

For this application, there are several choices that you could make for the wireless
technology to communicate with Raspberry Pi. Bluetooth is quite popular and works
well. However, it comes with the added complexity of having to pair the device with
the Bluetooth USB dongle and the system. The 2.4-GHz wireless technology comes
with the keyboard and the wireless USB receiver already paired. So, the device
only works with the USB dongle that is shipped with the device and the system
automatically recognizes the device as long as the USB receiver is plugged into the
USB port of Raspberry Pi.

The 2.4-GHz wireless devices work with the same frequency range as many 2.4-GHz
wireless LAN devices, although they do not use the same modulation or protocol
that is used by the standard 2.4-GHz wireless LAN. Rather, they use a proprietary
modulation and protocol that is specific to the device and company that manufactures
the device. There are more details on the 2.4-GHz wireless keyboards at http://www.
logitech.com/images/pdf/emea_business/2.4ghz_white_paper.pdf.

While each device is different, most devices use the same overall approach where
they define a number of different channels or small frequency ranges inside the
overall range of 2.4 GHz. The keyboard communicates with the USB receiver on
one of these frequencies. However, if either the keyboard or the USB receiver senses
that some other device is transmitting on that frequency, the device will move to a
different channel to try and avoid the interference.

The transmissions between the wireless keyboard and the USB receiver are
encrypted, so no device except the paired keyboard and USB receiver can understand
the messages that are being sent between the two devices. The range of the keyboard
and receiver pair is dependent upon the amount of power both use for transmission;
the higher the power, the longer is the range. Unfortunately, the higher the power,
the less time the batteries in the wireless device last for. Most wireless keyboards are
designed to work for up to 10 m, or around 30 ft.

Sometimes, you may want to have a physical connection with your Raspberry Pi and
want to not only control your robot but also connect via VNC Viewer, so you can
access the display of Raspberry Pi; in such a case, wireless LAN is the best choice.
For this, you'll need to purchase a supported wireless LAN device. The following is
an image of such a device:

http://www.logitech.com/images/pdf/emea_business/2.4ghz_white_paper.pdf
http://www.logitech.com/images/pdf/emea_business/2.4ghz_white_paper.pdf

Going Truly Mobile – The Remote Control of Your Robot

[182]

It is best to choose a device that is known to be supported by your Raspbian release.
Check the http://elinux.org/RPi_USB_Wi-Fi_Adapters link for a list of these
devices. Note that you'll need access to a wireless LAN signal, so you'll need to
supply this by connecting to your own wireless LAN. This can come from a wireless
LAN router that you have already set up, a spare wireless LAN router that can set
up an ad hoc network, or many of today's smart cellphones, which also allow you to
turn your device into a hotspot that can provide this signal.

If you'd like to have basic communication with your device, but want to do it at
a significant distance, ZigBee provides a possible solution. There are a number of
different types of devices; one is a USB stick-type ZigBee device at www.zigbee.org.
The following is an image of such a device:

Also, there are devices made to connect with Linux systems such as Raspberry Pi.
The following is an image of one of these devices:

http://elinux.org/RPi_USB_Wi-Fi_Adapters
www.zigbee.org

Chapter 8

[183]

This is the device we will use in this chapter. Make sure you purchase an XBee Series
1 device as it is the easiest device to configure and use, and there is a great open
source community support for the device too. If you choose a different device, you'll
need to follow the directions for this device from the manufacturer. Also, if you want
to use this type of point-to-point communication, you'll need two units, one for
Raspberry Pi and the other for the host computer.

Connecting Raspberry Pi to a wireless
USB keyboard
You've been able to control your projects by using a LAN connection, but you don't
always want to have your projects tethered in this manner. In this section, I'll show
you how to connect via a wireless keyboard.

Find your USB keyboard. It should come with a USB dongle. Plug the USB dongle
into the Raspberry Pi USB port. After some time, the unit should power on to the
windowing system. Now, if you move your finger around on the mouse pad, you
should see the mouse moving on the screen. You can also select a terminal and type
some text into the terminal. You now have keyboard and mouse inputs. Next, you
will learn how to accept the key strokes into a program in order to control the robot.

Using the keyboard to control your
project
Now that the keyboard is connected, let's figure out how to accept commands on
Raspberry Pi. Now that you can enter commands wirelessly, the next step is to
create a program that can take these commands and then have your project execute
them. There are a couple of options here; you'll see examples of both. The first is to
simply include the command interface in your program. Let's take an example of the
dcmotor.py program you wrote to move your wheeled robot. If you want, you can
copy that program by using the cp dcmotor.py remote.py command.

Going Truly Mobile – The Remote Control of Your Robot

[184]

In order to add user control, you need two new programming constructs, the while
loop and the if statement. Let's add them to the program, and then, we will learn
what they do. The following is a listing of the area of code you are going to change:

Chapter 8

[185]

You will edit your program by making some changes. Add the code in the preceding
screenshot just below the ser = serial.Serial('/dev/ttyUBS0', 19200,
timeout = 1) statement. The code can be explained as follows:

•	 The var = 'n' statement will define a variable named var and it will be of
the type character, which you will use in your program to get the input
from the user.

•	 The while var != 'q': statement will place your program in a loop.
This loop will keep repeating until you or the user enters the letter q.

•	 The var = raw_input(">") statement will get the character value from
the user. The ">" text is simply the character that will be displayed for the
user to enter something.

•	 The if var == '<': statement checks the value that you get from the user.
If it is a < character, the robot will turn left by running the right DC motor
for half a second. You will need to determine how much time is required to
run the right DC motor for a left turn. The actual time value, 0.5 in this case,
may need to be higher or lower.

•	 The next few lines send a Speed command to the motor, wait for 0.5 s, and
then send a command for the motor to stop.

•	 The if var == '>': statement checks the value that you get from the user.
If it is a > character, the robot will turn left by running the left DC motor for
half a second. You will need to determine how much time is required to run
the left DC motor for a right turn. The actual time value, 0.5 in this case,
may need to be higher or lower.

•	 The next few lines send a Speed command to the motor, wait for 0.5 s, and
then send a command for the motor to stop.

•	 The if var == 'f': statement checks the value that you get from the user.
If it is an f character, the robot will run forward by running the right and
left DC motors for half a second. You will need to determine the speed to
set each motor to follow a forward path.

•	 The next few lines send a Speed command to both motors, wait for 0.5 s,
and then send a command for both motors to stop.

•	 The if var == 'r': statement checks the value that you get from the user.
If it is an r character, the robot will run backward by running the right and
left DC motors for half a second. You will need to determine the speed to
set each motor to follow a backward path.

•	 The next few lines send a Speed command to both motors, wait for 0.5 s,
and then send a command for both motors to stop.

Going Truly Mobile – The Remote Control of Your Robot

[186]

Once you have edited the program, save it and make it executable by typing chmod
+x remote.py. Now, you can run the program, but you must run it by typing
the command using the wireless keyboard. If you are not yet directly logged into
Raspberry Pi, make sure you can see the LCD screen and access it via the wireless
keyboard. You can now disconnect the LAN cable; you will be able to communicate
with Raspberry Pi through the wireless keyboard. The system should look like the
following image:

To use this system, type cd to go to the folder that holds the remote.py program.
In my case, this file was in the /home/pi/track folder, so I did a cd track from my
home folder. Now, you can run the program by typing ./remote.py. The screen will
display a prompt and each time you type the appropriate command (<, >, f, and r)
and press Enter, your robot will move. You need to be aware that the range of this
technology is at best around 30 ft, so don't let your robot get too far away.

Chapter 8

[187]

Now, you can move your robot around by using the wireless keyboard! You can
even take your robot outside. You don't need the LAN cable to run your programs
because you can run them by using the LCD display and keyboard.

There is one more change you can make so that you don't have to hit the Enter key
after each input character is typed. In order to make this work, you'll need to add
some inclusions to your program and then add one function that can get a single
character without the Enter key. The following screenshot shows the first set of
changes you'll need to make:

The specifics of the preceding part of the file are listed as follows:

•	 You'll need to add import tty, import sys, and import termios. All these
are the libraries you'll need for your function to work. The termios library is
the general I/O library used in order to get characters from the keyboard.

•	 The setSpeed(ser, motor, direction, speed): function is unchanged
from the dcmotor.py code.

Going Truly Mobile – The Remote Control of Your Robot

[188]

•	 The def getch(): function gets a single character without requiring the
Enter key after each key stroke. The print statement in the function is
optional; you can use it to map the different keys of the keyboard.

•	 The next set of changes are shown in the following screenshot:

Chapter 8

[189]

•	 The var = getch() statement calls the function that returns the character,
without having to type the Enter key. Now, it is important to note that the
program changes the terminal settings. So, when you run your program, you
can no longer stop the program by typing Ctrl + C. You'll have to type q to
restore your terminal settings.

Many users are comfortable using gaming keypads. There are several that come
with a wireless connection. You could try connecting one of these to your robot if
you want it to seem more like a real video game. In my system, I used the wireless
keypad by HausBell and mapped the arrow keys at the top of the keyboard to tell my
robot to go forward, backward, left, and right. I figured out which key strokes these
translated to by simply running my program and looking at the print statement in
the program. You can also add additional functionality to the program to stop the
robot if the program senses if it has been a long time since a key stroke has come in,
in case you've lost connection to the keyboard.

Working remotely with your Raspberry Pi
through a wireless LAN
The last section showed you how to control your robot projects through a wireless
USB keyboard. But, what if you want more flexibility? You may not only want to
control your robot but also monitor it, see what it is picturing, and so on. The easiest
way to do this is using a wireless LAN connection.

To configure a wireless LAN connection, start by inserting the wireless LAN card
into Raspberry Pi. Here is where it gets a bit tricky as you'll need a wireless LAN
USB connection, a USB connection to your motor controller, and you'll also want to
connect your USB webcam or perhaps, a distance sensor. You'll need to use a USB
hub in order to connect all of these. So, connect the hub to Raspberry Pi and then
connect the devices to the hub. You may want to choose a powered USB hub as it
will give better power supply to the USB wireless LAN device.

Going Truly Mobile – The Remote Control of Your Robot

[190]

The following is an image of the platform with the hub and the devices connected:

Make sure you use a powered USB hub as you'll be talking to a USB camera and
a wireless LAN device that can take a bit of power. Additionally, you'll need to
provide a network so that your robot can connect. You can use an available network
if there is one in the area you are working in and you have access to any passwords.
I like to create a dedicated wireless LAN by connecting a wireless router to my
laptop, as I can take this configuration anywhere. The following is an image of
this configuration:

Chapter 8

[191]

We are not going to walk through the configuration. It will be heavily dependent on
your router, but we can just set up a simple, unsecured network since we don't use it
all the time. Once you have connected all the devices, turn on the power to the robot.
You'll need your screen and wireless keyboard to set up the wireless LAN network.
Once the system has been booted, you can select the WiFi Configuration icon of
Raspberry Pi. Now, you should see the WiFi Config tool.

At this moment you are close to establishing a connection to the network. Your
wlan0 adapter should appear in the Adapter: option. Click on the Scan button as
shown in the following screenshot of the pane:

Going Truly Mobile – The Remote Control of Your Robot

[192]

As you can see in the preceding screenshot, the Linksys network is available, as are
a number of secure networks. Now, if you select linksys, it will ask you to enter the
specific network configuration parameters. I use the defaults for my open network,
as follows:

If you go back and click on Connect, it will connect to the network and give you an
IP address as follows:

Chapter 8

[193]

You can also configure the system using terminal commands. There are several
tutorials that show you how to configure the system; try pingbin.com/2012/12/
setup-wifi-raspberry-pi/ or http://learn.adafruit.com/adafruits-
raspberry-pi-lesson-3-network-setup/setting-up-wifi-with-occidentalis.

Now, you can use this tool from your laptop by using PuTTY or the VNC server. The
following is an image showing a VNC Viewer image of the webcam on Raspberry Pi
communicating through the wireless LAN connection:

You can also do a similar sort of configuration by using your smartphone in hotspot
mode. In this case, the cell phone provides the wireless LAN connection. Connect
both the laptop and Raspberry Pi to the hotspot by using the information given to
you on your cell phone. Now, you can communicate through the SSH and VNC
servers wirelessly.

pingbin.com/2012/12/setup-wifi-raspberry-pi/
pingbin.com/2012/12/setup-wifi-raspberry-pi/
http://learn.adafruit.com/adafruits-raspberry-pi-lesson-3-network-setup/setting-up-wifi-with-occidentalis
http://learn.adafruit.com/adafruits-raspberry-pi-lesson-3-network-setup/setting-up-wifi-with-occidentalis

Going Truly Mobile – The Remote Control of Your Robot

[194]

Working remotely with your Raspberry Pi
through ZigBee
Now, you can remote to your device and control it through a wireless USB device as
well as a wireless LAN connection. Now, let's look at a technology that can extend
the wireless connection much further. The technology is ZigBee and it is made for
longer-range wireless communications.

The ZigBee standard is built upon the IEEE 802.15.4 standard, a standard that was
created to allow a set of devices to communicate with each other in order to enable
a low data rate coordination of multiple devices. The ZigBee part of the standard
ensures interoperability between the vendors of these low-rate devices. The IEEE
802.15.4 part of the standard specifies the physical interface and the ZigBee part of
the standard defines the network and applications interface. To find out more about
ZigBee, visit www.zigbee.org. Since we are only interested in the physical interface
working together, you can buy IEEE 802.15.4 devices. However, ZigBee devices are a
bit more prevalent, are supersets of IEEE 802.15.4, and are also quite inexpensive.

The other standard that you might hear as you try to purchase or use devices like
these is XBee. This is a specific company's implementation (Digi) of several different
wireless standards with standard hardware modules that can connect in many
different ways to different embedded systems. They make some devices that support
ZigBee; the following is an image of this type of device, which supports ZigBee,
attached to a shield that provides a USB port:

As noted at the beginning of this chapter, you will be learning how to use this
specific device. The advantage of using this device is that it is configured to make
it very easy to create and manage a simple link between two XBee Series 1 devices.
Make sure you have an XBee device that supports ZigBee Series 1. You'll also need
to purchase a shield that provides a USB port connection for the device.

www.zigbee.org

Chapter 8

[195]

Now, let's get started with configuring your two devices to make them talk. I'll
give an example here by using Windows and a PC. A Linux user can do something
similar by using a Linux terminal program. An excellent tutorial is available at
http://web.univ-pau.fr/~cpham/WSN/XBee.html.

If you are using Windows, plug one of the devices into your personal computer. Your
computer should find the latest drivers for the device. You should see your device
when you click on the Devices and Printers option from the Start menu as follows:

The device is now available to communicate with through the IEEE 802.15.4 wireless
interface. We could set up a full ZigBee compliant network, but we're just going to
communicate from one device to another directly, so we'll just use the device as a
serial port connection. Double-click on the device icon, and then select the Hardware
tab; you should see the following screenshot:

http://web.univ-pau.fr/~cpham/WSN/XBee.html

Going Truly Mobile – The Remote Control of Your Robot

[196]

Note that the device is connected to the COM20 serial port. We'll use this to
communicate with the device and configure it. You can use any terminal emulator
program; I like to use PuTTY, which is already on my computer.

Perform the following steps to configure the device:

1.	 Open PuTTY and select the Serial option and (in this case) the COM20
port. The following screenshot shows how to fill in the PuTTY window to
configure the device:

Chapter 8

[197]

2.	 Configure the following parameters in the terminal window (the Serial
option in the Category: selection set): Baudrate, 9600; the Data bits option, 8;
Parity, None, and the Stop bits option, 1 as follows:

Going Truly Mobile – The Remote Control of Your Robot

[198]

3.	 Make sure you also select Force on for the Local echo option and check
the Implicit CR in every LF and Implicit LF in every CR options available
under the Terminal tab of the Category: selection set as follows:

4.	 Connect to the device by clicking on Open.
5.	 Enter the commands to the device through the terminal window,

as shown in the following screenshot:

Chapter 8

[199]

6.	 The OK response comes from the device as you enter each command. Now,
plug the other device into the PC. Note that it might choose a different COM
port; click on the Devices and Printers option, double-click on the device's
icon, and select the Hardware tab to find the COM port. Follow the same steps
to configure the second device, except there are just a few changes. The
following is a screenshot of the terminal window for these commands:

Going Truly Mobile – The Remote Control of Your Robot

[200]

The devices are now ready to talk to one another. Plug one of the devices into
the Raspberry Pi USB port. Using a terminal window, show the devices that are
connected by typing ls /dev/tty*. It will look something like what is shown in
the following screenshot:

Note that the device appears at /dev/ttyUSB1. Now, you'll need to create a Python
program that will read the preceding input. The following screenshot depicts the
listing for such a program:

Chapter 8

[201]

The following points explain the functionality of the code:

•	 The #!/usr/bin/python statement allows your program to run without
invoking Python on the command line

•	 The import serial statement imports the Serial port library
•	 The ser = serial.Serial('/dev/ttyUSB1', 9600, timeout = 1)

statement opens a serial port pointing to the /dev/ttyUSB1 port with a baud
rate of 9600 and a timeout of 1

•	 The x = 'n' statement defines a character variable and initializes it to 'n',
so we go through the loop at least once

•	 You will enter the while loop, while x != 'q':, until the user enters the
character q

•	 The x = ser.read(1) statement reads 1 byte from the serial port
•	 The print x statement prints out the value

Now, if you run readData.py in a terminal window and you have the PuTTY
program on your personal computer connected to the other XBee module, you
should see the characters that you type on the personal computer terminal windows,
come out on the terminal windows running on Raspberry Pi. The following are the
two screenshots given side by side:

Going Truly Mobile – The Remote Control of Your Robot

[202]

Connecting this functionality to your robot is very easy. Start with the remote.py
program that you created earlier in the chapter. Copy this into a new program by
typing cp remote.py xbee.py. Now, let's remove some of the code, parts that you
don't need, and add a bit that will accept the character input from the XBee module.
The following screenshot shows a listing of the code:

Chapter 8

[203]

There are only two meaningful changes as follows:

•	 serInput = serial.Serial('/dev/ttyUSB0', 9600, timeout = 1):
This statement sets up a serial port, getting an input from the XBee device.
It is important to note that the USB0 and USB1 settings might be different in
your specific configuration based on whether the XBee serial device or the
motor controller serial device configures first.

•	 var = serInput.read(1): With this statement, instead of getting the input
from the user via the keyboard, you will be reading the characters from the
XBee device.

That's it! Now, your robot should respond to commands sent from your terminal
window on your personal computer. You could also create an application on your
personal computer that could turn mouse movements or other inputs into proper
commands for your robot.

Summary
Congratulations! Now, you can take your robot out into the big wide world. You can
even use the LCD and the keyboard to make changes to your program, although the
smaller screen size makes this a bit difficult. However, now that your robot is truly
mobile, you may want to give it a sense of position and direction. The next chapter
will show you how to add GPS to your robotic project.

[205]

Using a GPS Receiver to
Locate Your Robot

Assuming that you have completed the tasks from the previous chapters, you should
now have mobile robots that can move around, accept commands, see, and even
avoid obstacles. This chapter will help you locate your robot if it moves, which can
be useful for a robot that is fully autonomous. Your robot is mobile, but let's not let
it get lost. You're going to add a GPS receiver, so that you can always—well, almost
always—know where your robot is.

As you let your device loose, you may want it to not only know where it is, but also
have a way of finding out if it has made it to the desired location. One of the coolest
things to connect to your robot is a GPS location device. In this chapter, I'll show
you how to connect a GPS receiver to your project and then use it to move in the
correct direction.

In this chapter, we will cover the following topics:

•	 Connecting Raspberry Pi to a USB GPS device so that it can locate itself in
relation to the world, at least wherever you can receive a GPS signal

•	 Connecting Raspberry Pi to a GPS device that can connect to the GPIO of
Raspberry Pi

•	 Accessing the GPS programmatically and using its position information to
move the robot to a specific location

Using a GPS Receiver to Locate Your Robot

[206]

To complete the tasks in this chapter, you'll need a USB GPS device, one that
connects through an interface supported by the GPIO of Raspberry Pi. The following
image is an example of a device that uses the USB interface:

The model number of the device in the preceding image is ND-100S from GlobalSat.
It is small, inexpensive, and supports Windows, Mac OS X, and Linux, so our
system should be able to interface with it. It is available on Amazon and other online
electronics stores, so you should be able to get it almost anywhere. However, it does
not have the sensitivity of some other GPS devices. So, if you will be using your
robot in buildings or other locations that might stifle GPS signals, you should look
for devices that are more sensitive to the signals from GPS satellites.

If you wish to choose a device with an interface that can be connected to the GPIO of
Raspberry Pi, one that is quite easy to use is the VPN1513 GPS Receiver w/ Antenna,
marketed by Parallax and available on their online store. It uses a simple RX/TX
interface to talk with Raspberry Pi. The following is an image of the device:

Now that you have your device, let's look at how to connect it to Raspberry Pi so that
you can start collecting data.

Chapter 9

[207]

Connecting Raspberry Pi to a USB GPS
device
Before you get started, let me first give you a brief tutorial on GPS. GPS, which
stands for Global Positioning System, is a system of satellites that transmit signals.
GPS devices use these signals to calculate a position of an object. There are a total of
24 satellites transmitting signals all around the earth at any given moment, but your
device can only see the signal from a much smaller set of satellites.

Each of these satellites transmits a very accurate time signal that your device can
receive and interpret. It receives the time signal from each of these satellites, and
then based on the delay—the time it takes the signal to reach the device—it calculates
the receiver's position, based on a procedure called triangulation. The next two
diagrams illustrate how a device uses the difference between the delay data from
three satellites to calculate its position. The following is the first diagram, depicting
the device at its initial position:

Using a GPS Receiver to Locate Your Robot

[208]

The GPS device is able to detect the three signals and the time delays associated with
receiving them. In the following diagram, the device is at a different location, and
the time delays associated with the three signals have changed from those in the
preceding diagram:

The time delays of the signals T1, T2, and T3 can provide the GPS with an absolute
position using triangulation. Since the positions of the satellites are known, the
amount of time that the signal takes to reach the GPS device is also a measure of the
distance between that satellite and the GPS device. To simplify this concept, let's
see an example in two dimensions. If the GPS device knows its distance from one
satellite, based on the amount of time delay, you could draw a circle around the
satellite at that distance and know that your GPS device is on the boundary of that
sphere, as shown in the following diagram:

Chapter 9

[209]

If you have two satellites' signals and know the distance between them, you can
draw two circles, as shown in the following diagram:

Using a GPS Receiver to Locate Your Robot

[210]

However, you know that since you can only be at points on the boundary of the
circle, you must be at one of the two points that are on the boundary of both the
circles. Adding an additional satellite would eliminate one of these two points,
providing your exact location. You need more satellites if you are going to do this in
all three dimensions.

Now it's time to connect the device. While this is optional, I suggest that you connect
a dongle to your PC. This will let you know whether or not the unit works, and help
you understand the device a little better. Then you'll connect it to Raspberry Pi.

In order to install the GPS system on your PC, perform the following steps:

1.	 Insert the CD and run the setup program. You should see a window as
shown in the following screenshot:

2.	 Click on both the Install Driver and ND-100S Application buttons and
follow the default instruction procedures. If you have installed both the
drivers and the application, you should be able to plug the GPS device into
the USB port on your PC. A blue light at the end of the device should indicate
that the device has been plugged in. The system will recognize the device,
install the appropriate drivers, and give you access to it (this may take a few
minutes). To ensure that the device has been installed, check your Devices
and Printers start menu selection (if you're running Windows 7). You should
see the following screenshot:

Chapter 9

[211]

3.	 Once the device is installed, you can also run the application that is
available on the CD-ROM. At startup, it should look as shown in the
following screenshot:

Using a GPS Receiver to Locate Your Robot

[212]

4.	 Now click on the Connect button on the top-left of the screen. It should now
look as shown in the following screenshot:

5.	 Unfortunately, if you are in a building or a place where receiving information
from the GPS satellites is difficult, the device may struggle to find its
position. If you want to find out whether or not the system is working, even
though it may struggle to find the signals, select the Terminal tab selection
in the lower-left corner of the screen. You should see what is shown in the
following screenshot:

Chapter 9

[213]

6.	 Note that the lower-left window indicates that the device is trying to find
its location. Initially, the unit in my office was unable to locate the satellites,
which is not surprising when you're in a building designed to restrict the in
and out transmission of signals. Following the procedure described in the
preceding steps on my laptop shows this screenshot as a result:

Using a GPS Receiver to Locate Your Robot

[214]

7.	 You'll notice that the blue LED at the end of the GPS device is flashing. Now
you have your position. When I select the Terminal tab, it shows the raw
data returned by the GPS device:

You'll use the raw data from the preceding screenshot in the next section, to plan
your path to other positions. So, in an environment where GPS data is available, the
unit is able to sync with it and show your position. The next step will be to hook it to
your Raspberry Pi robot.

First, connect the GPS unit by plugging it into one of the free USB ports on the USB
hub. Once it is plugged in and the unit is rebooted, type lsusb and you should see
the output, as shown in the following screenshot:

Chapter 9

[215]

The device is shown as Prolific Technology, Inc. PL2303 Serial Port. Your
device is now connected to your Raspberry Pi.

Now create a simple Python program that will read the value from the GPS device. If
you are using Emacs as an editor, type emacs measgps.py. A new file will be created
called measgps.py. Then type the code as shown in the following screenshot:

Let's go through the code to see what is happening:

•	 #!/usr/bin/python: As discussed earlier, this line simply makes this file
available for you to execute from the command line.

•	 import serial: This imports the serial library. This will allow you to
interface the USB GPS sensor with the GPS system.

•	 ser = serial.Serial('/dev/ttyUSB0', 4800, timeout = 1): This
command sets up the serial port to use the /dev/ttyUSB0 device, which is
your GPS sensor using a baud rate of 4800 and a timeout value of one second.

•	 x = ser.read(1200): This command then reads a set of values from the
USB port. In this case, you read 1200 bytes; this includes a fairly complete set
of your GPS data.

•	 print x: This command then prints out the value obtained from the
preceding command.

Using a GPS Receiver to Locate Your Robot

[216]

Once you have created this file, you can run the program and talk to the device. Do
this by typing python measgps.py and the program will run. You should see the
output as shown in the following screenshot:

The device returns raw readings to you, which is a good sign. Unfortunately, there
isn't much good data here, as the robot is again indoors. How do you know this?
Look at one of the lines that starts with $GPRMC; this line should tell you your current
latitude and longitude values. The GPRS reports the following code:

$GPRMC,001714.037,V,,,,,,,150209,,,N*45

The preceding line of data should take the form shown in the following table, with
each field separated by a comma:

0 1 2 3 4 5 6 7 8 9 10 11 12

$GPRMC 220516 A 5133.82 N 00042.24 W 173.8 231.8 130694 004.2 W *7

Chapter 9

[217]

The following table offers an explanation of each of the fields shown in the
preceding table:

Field Value Explanation
1 220516 Timestamp
2 A Validity: A (OK), V (invalid)
3 5133.82 Current latitude
4 N North or south
5 00042.24 Current longitude
6 W East or west
7 173.8 Speed in knots at which you are moving
8 3 Course: The angular direction in which you

are moving
9 130694 Date stamp
10 0004.2 Magnetic variation: The variation between

magnetic and true north
11 W East or west
12 *70 Checksum

In this case, the field second value in the string is either reports V or that the unit
cannot find enough satellites to get a position. Take the unit outdoors and you may
get the resul,t as shown in the following screenshot from your measgps.py program:

Using a GPS Receiver to Locate Your Robot

[218]

Note that the $GPRMC line now reads as follows:

$GPRMC,194827.000,A,4349.1418,N,11146.1046,W,0.00,,111213,,,A*64

Now the values will be as shown in the following table:

Field Value Explanation
1 020740.000 Timestamp
2 A Validity: A (OK), V (invalid)
3 4349.1426 Current latitude
4 N North or south
5 11146.1064 Current longitude
6 W East or west
7 1.82 Speed in knots at which you are moving
8 214.11 Course: The angular direction in which you

are moving
9 021013 Date stamp
10 Magnetic variation: The variation between

magnetic and true north
11 East or west
12 *7B Checksum

Now you have some indication of where you are; however, the GPS data is in a raw
form that may not mean much. In the next section, you will figure out how to do
something with these readings.

Accessing the USB GPS
programmatically
Now that you can access the GPS device, let's work on accessing the data
programmatically. Your project should now have the GPS device connected and
have access to query the data via the serial port. In this section, you will create a
program to use this data to discover where you are, and then you can determine
what to do with that information.

If you've completed the previous section, you should be able to receive the raw
data from the GPS unit. Now you want to be able to do something with this data;
for example, find your current location and altitude, and then decide whether
your target location is to the west, east, north, or south.

Chapter 9

[219]

First, get the information from the raw data. As noted previously, the position and
speed is in the $GPMRC output of the GPS device. You will first write a program to
simply parse out a couple of pieces of information from that data. So open a new file
(you can name it location.py) and edit it, as shown in the following screenshot:

The code lines are explained as follows:

•	 #!/usr/bin/Python: As always, this line simply makes this file available for
you to execute from the command line.

•	 import serial: You again import the serial library. This will allow you to
interface the USB GPS sensor with the GPS system.

•	 if __name__=="__main__":: The main part of your program is then defined
using this line.

•	 ser = serial.Serial('/dev/ttyUSB0', 4800, timeout = 1): This
command sets up the serial port to use the /dev/ttyUSB0 device, which is
your GPS sensor using a baud rate of 4800 and a timeout value of
one second.

•	 x = ser.read(500): This command then reads a set of values from the USB
port. In this case, you read 500 values, which includes a fairly complete set of
your GPS data.

Using a GPS Receiver to Locate Your Robot

[220]

•	 pos1 = x.find("$GPRMC"): This will find the first occurrence of $GPRMC
and set the value pos1 to that position. In this case, you want to isolate the
$GPRMC response line.

•	 pos2 = x.find("\n", pos1): This will find the end of this string of text.
•	 loc = x[pos1:pos2]: The loc variable will now hold the path, including all

the information you are interested in.
•	 data = loc.split(','): This will break your comma-separated line into an

array of values.
•	 if data[2] == 'V':: You now check to see whether or not the data is valid.

If not, the next line simply prints out that you did not find a valid location.
•	 else:: If the data is valid, the next few lines print out the various pieces

of data.

The following screenshot is an example showing the result that appeared when my
device was able to find its location:

Chapter 9

[221]

Once you have the data, you can do some interesting things with it. For example,
you might want to figure out the distance from and direction to another waypoint.
There is a piece of code at http://code.activestate.com/recipes/577594-GPS-
distance-and-bearing-between-two-GPS-points/ that you can use to find the
distances from and bearings to other waypoints, based on your current location. You
can easily add this code to your location.py program to update your robot on the
distances and bearings to other waypoints.

Now your robot knows where it is and the direction it needs to get to other locations!
There is another way to configure your GPS device, that may make it a bit easier to
access the data from other programs; it is using a functionality set held in the gpsd
library. To install this capability, type sudo apt-get install gpsd gpsd-clients
and this will install the gpsd software. For a tutorial on this software, go to http://
wiki.ros.org/gpsd_client/Tutorials/Getting%20Started%20with%20gpsd_
client. This software works by starting a background program (called a daemon)
that communicates with your GPS device. You can then just query that program to
get the GPS data. To start the process, type sudo gpsd /dev/ttyUSB0 -F /var/
run/gpsd.sock. You can run the program by typing cgps. A sample result is shown
in the following screenshot:

http://code.activestate.com/recipes/577594-GPS-distance-and-bearing-between-two-GPS-points/
http://code.activestate.com/recipes/577594-GPS-distance-and-bearing-between-two-GPS-points/
http://wiki.ros.org/gpsd_client/Tutorials/Getting%20Started%20with%20gpsd_client
http://wiki.ros.org/gpsd_client/Tutorials/Getting%20Started%20with%20gpsd_client
http://wiki.ros.org/gpsd_client/Tutorials/Getting%20Started%20with%20gpsd_client

Using a GPS Receiver to Locate Your Robot

[222]

The preceding screenshot displays both the formatted and some of the raw data that
is being received from the GPS sensor. If you get a timeout error when attempting
to run this program, type sudo killall gpsd to kill all running instances of the
daemon and then type sudo gpsd /dev/ttyUSB0 -F /var/run/gpsd.sock again.
You can also access this information from a program. To do this, edit a new file
called gpstry1.py. The code will look as shown in the following screenshot:

The following are the details of your code:

•	 #!/usr/bin/Python: As always, this line simply makes this file available for
you to execute from the command line.

•	 import gps: In this case, you import the gps library. This will allow you to
access the gpsd functionality.

•	 session = gps.gps("localhost", "2947"): This opens a communication
path between the gpsd functionality and your program. It also opens port
2947, which is assigned to the gpsd functionality, on the localhost.

•	 session.stream(GPS.WATCH_ENABLE | GPS.WATCH_NEWSTYLE): This tells
the system to look for new GPS data as it becomes available.

•	 while True:: This simply loops and processes information until you ask the
system to stop (it can be stopped by pressing Ctrl + C).

•	 report = session.next(): When a report is ready, it is saved in the
report variable.

•	 if report['class'] == 'TPV':: This line checks to see if the report will
give you the type of data that you need.

•	 if hasattr(report, 'time'):: This line makes sure that the report holds
time data.

Chapter 9

[223]

•	 print report.time: This prints the time data. I use this in my example
because the time data is always returned, even if the GPS is not able to see
enough satellites to return position data. To see other possible attributes, visit
www.catb.org/gpsd/gpsd_json.html for details.

Once you have created the program, you can run it by typing python gpstry1.py. The
following screenshot shows how the output should look after running the program:

One cool way to display positional information is using a graphical display including
a map of your current position. There are several map applications that can interface
with your GPS to indicate your location on a map.

One map application that works well is GpsPrune. To get this application, type sudo
apt-get install gpsprune. To run this command, you'll need to be in a graphical
environment, so you'll need to run it either with a display and keyboard attached,
or by using vncserver. You'll also need to store your data, so that the program can
import it. To do this, let's amend the location.py program to save the data to a
file. First, copy the program by typing cp location.py gpsdata.py. Now edit the
program to make it look, as shown in the following screenshot:

www.catb.org/gpsd/gpsd_json.html

Using a GPS Receiver to Locate Your Robot

[224]

The following are the two changes that you need to make:

•	 f = open('data.txt','w'): This line opens the file data.txt for writing
the data in it

•	 f.write(loc): This will write the line loc in the file which will hold the
entire data set

Now run the program by typing python gspdata.py. After the program is run,
you should see a new data file called data.txt. You can view the contents of the
file by typing emacs data.txt. You should see the result, as shown in the
following screenshot:

Once you have the data, you can look at it in various ways. Looking at your location
on a map will be covered in the Looking at the GPS data section of this chapter.

Connecting Raspberry Pi to an RX/TX
(UART) GPS device
If you have chosen the GPS device that uses a standard RX/TX (UART) interface,
you'll need to connect to the pins on the board. The following is an image of these pins:

You'll connect your Raspberry Pi using the male-to-female solderless jumper cables.
The following are the connections on the BeagleBone Black:

Chapter 9

[225]

BeagleBone Black pin GPS Cable pin
P2 Vcc
P6 GND
P8 TX
P10 RX

The following is an image of the cables connected between the device and the
GPS unit:

Now that the two devices are connected, you can access the device through
Raspberry Pi.

Communicating with the RX/TX GPS
programmatically
The GPS device will be talking over the RX/TX interface, so you'll need to edit two
files to connect the device through the RX/TX connections on the GPIO pins for
Raspberry Pi. Perform the following steps to connect the GPS for communicating:

Using a GPS Receiver to Locate Your Robot

[226]

1.	 First, type sudo nano /boot/cmdline.txt. Now edit the file to look as
shown in the following screenshot:

2.	 The second file you'll edit is sudo nano /etc/inittab. Edit this file by
commenting out the last line, as shown in the following screenshot:

Chapter 9

[227]

3.	 Now restart your Raspberry Pi. You'll now create a program to communicate
with the GPS unit. To do this, if you are using Emacs as an editor, type emacs
measgps.py. A new file will be created called measgps.py. Then type the
code as shown in the following screenshot:

4.	 Let's go through the code to see what is happening:
°° #!/usr/bin/python: As before, the first line simply makes this file

available for you to execute from the command line.
°° import serial: You also import the serial library. This will allow

you to interface with the RX/TX port.
°° ser = serial.Serial(port = "/dev/ttyO1", baudrate=9600):

This command sets up the serial port to use the /dev/ttyO1 device,
which is our GPS sensor, using a baud rate of 9600.

°° x = ser.read(1200): This command then reads in a set of values
from the RX/TX port. In this case, you read 1200 values, which will
include a full set of GPS data.

°° print x: This command then prints out the value.
°° ser.close(): This closes the serial port.

Using a GPS Receiver to Locate Your Robot

[228]

5.	 Once you have this file created, you can run the program and talk to the
device. Do this by typing python measgps.py and the program will run.
You should see something like the following screenshot:

6.	 The device is providing raw readings back to you. You can now also use
GPSD, as detailed in the Looking at the GPS data section. To do this, first type
sudo gpsd /dev/ttyAMA0 -F /var/run/gpsd.sock and then cgps –s.
You should then see the following screenshot:

Now you have access to GPS data via Raspberry Pi GPIO.

Chapter 9

[229]

Taking a look at the GPS data
You can now look at the data in the GpsPrune application. First, you need to convert
your National Marine Electronics Association (NMEA)-formatted data to a data
format that GpsPrune can understand. To do this, type gpsbabel -i NMEA -f
data.txt -o GPX -F data.gpx. Type a ls data.* command and you should see
the files, as shown in the following screenshot:

Now run the program by typing gpsprune in a terminal window. The application
will open, as shown in the following screenshot:

Using a GPS Receiver to Locate Your Robot

[230]

Turn on the map function by navigating to View | Show map, as shown in the
following screenshot:

Now open your file by navigating to File | Open and then selecting your
filename with the .gpx file extension. The window should open, as shown in the
following screenshot:

Chapter 9

[231]

You may need to zoom out to see your location, but it should be there on the map.
You could also capture multiple locations and then display them as routes. But you
might want something a bit simpler, such as a program that allows you to enter
a waypoint and display a map that shows both the waypoint and your current
location. You can do this with the skills you learned in Chapter 4, Adding Vision to
Raspberry Pi.

Let's start with the code in location.py. Make a copy by typing cp location.py
viewlocation.py. Now make the changes, as shown in the following screenshot:

Using a GPS Receiver to Locate Your Robot

[232]

The following are the details of the changes:

•	 import cv2 as cv: You'll be using the OpenCV library to draw the images,
so you need to import it using this command.

•	 rx = 1: This variable will hold the x pixel value of your location.
•	 ry = 1: This variable will hold the y pixel value of your location.
•	 xmax = 460: This is the maximum x pixel value in the map you created.
•	 ymax = 360: This is the maximum y pixel value in the map you created.
•	 xlongmin = 11145.67532: This is the minimum longitude value in the map

you created.
•	 xlongmax = 11147.18679: This is the maximum longitude value in the map

you created.
•	 ylatmin = 4348.84551: This is the minimum latitude value in the map

you created.
•	 ylatmax = 4349.68896: This is the maximum latitude value in the map

you created.
•	 while True:: This loops through the program, drawing the map and the

position each time you get a new position from the GPS system.
•	 image = cv.LoadImage("map.jpg", cv.CV_LOAD_IMAGE_COLOR): This

creates a new data structure called image, and initializes it with the
map image.

•	 latact = float(data[3]): This command turns the string that is the
latitude into a float value.

•	 longact = float(data[5]): This command turns the string that is the
longitude into a float value.

•	 rx = xmax - int((longact - xlongmin)/(xlongmax - xlongmin) *
xmax): This calculates the x value in pixels, by taking the ratio of the range
from the actual longitude value to the minimum longitude value, divided by
the total longitude range.

•	 ry = ymax - int((latact - ylatmin)/(ylatmax - ylatmin) * ymax):
This calculates the y value in pixels, by taking the ratio of the range from
the actual latitude value to the minimum latitude value, divided by the total
latitude range.

Chapter 9

[233]

•	 t1 = rx,ry: This creates a point value that holds the x and y values of
your position.

•	 br = rx + 5, ry + 5: You'll want to draw a rectangle so you can see the
created point; this draws a rectangle value that is 5x5 in size.

•	 cv.Rectangle(image, t1, br, (0, 255, 0), 3): This adds the drawn
rectangle to the map image.

•	 cv.ShowImage("Map", image): This shows the map with the rectangle in
a window.

•	 if cv.WaitKey(2) == 27:: The WaitKey object displays the image, and
also checks to see whether or not the Esc key has been pressed. If it has been
pressed, it will execute the next statement.

•	 break: This closes the loop and the program.

You'll also need to build a map to be displayed. You'll need to know the coordinates
of the corners of your map. I used GpsPrune to build a map. I first removed the point
that was plotted by opening the file. Then, I selected a point in the bottom-right
corner. The following is a screenshot of the application:

Using a GPS Receiver to Locate Your Robot

[234]

Make sure the Coordinate format dropdown is set to Deg-min. Note the Latitude
and Longitude values in the upper-right corner, which in this case are 43°48.84551'
and 111°45.67532' respectively. Now add another point in the upper-left corner, as
shown in the following screenshot:

Chapter 9

[235]

In this case, the Latitude value is 43°49.68896' and the Longitude value is
111°47.18679'. These are the corners of your map. Now take a screenshot of the
map and use a program to crop the map at these two corners, as shown in the
following screenshot:

Using a GPS Receiver to Locate Your Robot

[236]

For this example, I was using the VNC Viewer application on my PC to run
GpsPrune on Raspberry Pi. This made it easy to take a screenshot by pressing
Ctrl + PrtScr and then import the image to the Paint application. I then cropped
the image and saved it as map.png. The following screenshot shows the view
of the image as seen in the Paint application:

Chapter 9

[237]

Note the resolution of the picture shown at the bottom of the page in the preceding
screenshot; this is important for your program. I then moved the resolution of the
picture to Raspberry Pi using WinSCP, which was detailed in Chapter 1, Getting
Started with Raspberry Pi.

Now that I have my file and Python code ready, I can run the program using
python viewlocation.py. The output of this operation appears, as shown in the
following screenshot:

Now you can view your location via a map; it is marked by the green dot. As you
move around, so the green dot will move on the screen.

Using a GPS Receiver to Locate Your Robot

[238]

Summary
Congratulations! Your robot can now move around without getting lost. This
capability is more useful for robots that can go far from home. You can use the
information to identify routes to different waypoints and track where your
robot has been.

In the next chapter, we'll cover how to bring all the various functionalities you have
been working on together in a single, integrated system.

[239]

System Dynamics
In the previous chapters, you've spent time learning a lot about individual
functionalities that you can add to your robotic projects. In this chapter, you'll learn
how to integrate these different parts into a single system.

You've spent a large amount of time on individual functionalities and your robotic
projects now have many different capabilities that you can add to them. This chapter
will bring all these parts together into a framework that allows the different parts
to work together. You don't want the robot to just walk, talk, or see. You want it to
perform all of these actions in a coordinated package. In this chapter, you'll learn
how to programmatically connect all these individual capabilities and make your
projects seem intelligent.

In this chapter, we will:

•	 Create a general control structure so that different capabilities can work
together through system calls

•	 Introduce the Robot Operating System (ROS) as a supported framework for
robotic capabilities

System Dynamics

[240]

You're finally done with purchasing hardware! In this chapter, you'll add
functionality through software. You'll need ample storage space for an array of the
new software. First, let's check how much space you have in your memory card. You
can also use the df –h command to see this information. You should see something
like the following screenshot when you type the df –h command:

In this case, I have 1.1 GB, which should be enough to add the capability I need.
You'll want at least 1 GB to make sure you don't run out of space when dealing
with images.

Chapter 10

[241]

Creating a general control structure
Now that you have a mobile robot, you will want to coordinate all of its different
abilities. Let's start with the simplest approach. We will use a single control program
that can call other programs and enable all the capabilities.

You've already done this once in Chapter 3, Providing Speech Input and Output.
Here, you edit the continuous.c code to allow it to call other programs to execute
functionality you'll want your project to execute, for example movement, or speech
response. Here is a screenshot of the code that we used from the /home/pi/
pocketsphinx-0.8/programs/src/ directory:

The functionality that is important to us is the system("espeak \"good bye"\"");
line of code. When you use the system function call, the program actually calls a
different program, in this case the espeak program. The functionality passes the
"good bye" parameter to the program so that the words good and bye come out of
the speaker.

System Dynamics

[242]

The following screenshot is another example from Chapter 5, Creating Mobile Robots on
Wheels, where you wanted to command your robot to move:

In this case, if you say forward to your robot, it will execute two programs. The first
program you call is the espeak program with the "moving robot" parameter. These
words should then come out of the speaker on the robot. The second program is the
dcmotor.py 1 1 program. The, espeak program will interpret this program through
the system arguments so that the robot moves forward for one second.

Chapter 10

[243]

I will now include an example in Python; it is my preferred language. I will use my
tracked robot, which is shown in the following image:

This robot has a camera and is also able to communicate through a speaker. You can
also control it via a wireless keyboard. You will now add the functionality to follow
a colored ball. The functionality should also turn as the ball goes right or left and tell
you when it is turning.

System Dynamics

[244]

You also need to make sure that all of your devices are available to your programs.
For this, you need to make sure that your USB camera as well as the two DC motor
controllers are connected. To connect the camera, follow the steps mentioned in
Chapter 4, Adding Vision to Raspberry Pi, in the Connecting the USB camera to Raspberry
Pi and viewing the images section. It works best to connect the USB camera first, before
connecting any other USB devices.

When the camera is up and running, you'll want to connect and check the DC motor
controllers, as described in Chapter 5, Creating Mobile Robots on Wheels. You may want
to run the dcmotor.py program just to make sure you are connected and both the
motors work.

In this project, you will involve three different programs. First, you will create a
program that will find out whether the ball is on the right-hand side or the left-hand
side. This will be your main control program. You are will also create a program that
moves your robot approximately 45-degrees to the right and another program that
moves it 45-degrees to the left. You will keep these programs very simple and you
may just want to put them all in the same source file. However, as the complexity of
each of these programs grows, it will make more sense for them to be separate. So,
this is a good starting point for your robotic code. Also, if you want to use the code
in another project or want to share it, this sort of separation helps.

You will create three programs for this project. In order to keep this organized, I
created a new directory in my home directory by typing mkdir robot in my home
directory. I will now put all my files in this directory.

The next step is to create two files that can move your robot, one file to move it to the
left and the other to move it to the right. For this, you will have to create two copies
of the dcmotor.py code, as you did in Chapter 5, Creating Mobile Robots on Wheels, in
your robot directory. If you have created that file in your home directory, type
cp dcmotor.py ./robot/move_left.py cp dcmotor.py ./robot/move_right.py.
Now, you'll edit the files, changing two numbers in the program. Edit the code shown
in the following screenshot in the move_left.py file:

Chapter 10

[245]

The following are the details for this code:

•	 #!/usr/bin/python: This statement sets the program so that it can be run
directly from the program line.

•	 import serial: This statement imports the serial library so that you can
talk to the motor controller.

•	 import time: This statement imports the time library so that you can use the
time.sleep() function to add a fixed delay.

•	 def setSpeed(ser, motor, direction, speed):: This statement has
the setSpeed function you will call in your program. This function sets the
speed and direction for a given motor.

•	 if motor == 0 and direction == 0:: This statement sets motor 1 in the
forward direction.

System Dynamics

[246]

•	 sendByte = chr(0xC2): This statement is the actual byte command to the
motor controller.

•	 if motor == 1 and direction == 0:: This statement sets motor 2 to go in
a backward direction.

•	 sendByte = chr(0xCA): This statement is the actual byte command to the
motor controller.

•	 if motor == 0 and direction == 1:: This statement sets motor 1 to go in
a backward direction.

•	 sendByte = chr(0xC1): This statement is the actual byte command for the
motor controller.

•	 if motor == 1 and direction == 1:: This statement sets motor 2 to go in
a forward direction.

•	 sendByte = chr(0xC9): This statement is the actual byte command for the
motor controller.

•	 ser.write(sendByte): This statement sends the byte command out of the
serial port.

•	 ser.write(chr(speed)): This statement sends the speed byte out of the
serial port.

•	 ser = serial.Serial('/dev/ttyUSB0', 19200, timeout = 1): This
statement initializes and opens the serial port.

•	 setSpeed(ser, 0, 0, 100): This statement sends the forward command to
motor 1 at a speed of 100 units.

•	 setSpeed(ser, 1, 0, 100): This statement sends the reverse command to
motor 2 at a speed of 100 units.

•	 time.sleep(.5): This statement causes the motor to wait for 0.5 seconds.
•	 setSpeed(ser, 0, 0, 0): This statement sets the speed of motor 1 to 0 units.
•	 setSpeed(ser, 1, 0, 0): This statement sets the speed of motor 2 to 0 units.
•	 ser.close(): This statement closes the serial port.

Chapter 10

[247]

Similarly, you will also need to edit moveright.py, as shown in the
following screenshot:

This time, the setSpeed numbers are changed to run the motors in the opposite
direction, turning the robot to the right.

System Dynamics

[248]

The final step is to create the main control program. You will start with the camera.py
program you edited in Chapter 4, Adding Vision to Raspberry Pi. Execute this by typing
cp /home/pi/example/python/camera.py ./follow.py while you are in your
robot directory. Open this file with your editor. If you are using emacs, type
emacs follow.py and then edit the code, as shown in the following screenshot:

Chapter 10

[249]

Let's look at the following code statements along with their functions:

•	 import cv2.cv as cv: This statement imports the CV library.
•	 import time: This statement imports the time library.
•	 import subprocess: This statement imports the subprocess library. This

will allow you to call other programs within your Python program.
•	 capture = cv.CaptureFromCAM(0): This statement sets up the program to

capture your images from the webcam.
•	 cv.SetCaptureProperty(capture, 3, 360): This statement sets the x

resolution of the image to 360.
•	 cv.SetCaptureProperty(capture, 4, 240): This statement sets the y

resolution of the image to 240.
•	 while True:: This statement executes the loop over and over until the Esc

key is pressed.
•	 img = cv.QueryFrame(capture): This statement brings in the image.
•	 cv.Smooth(img,img,cv.CV_BLUR,3): This statement smoothes the image.
•	 hue_img = cv.CreateImage(cv.GetSize(img), 8, 3): This statement

creates a new image that will hold the hue-based image.
•	 cv.CvtColor(img,hue_img, cv.CV_BGR2HSV): This statement moves a

copy of the image using the hue values in hue_img.
•	 threshold_img = cv.CreateImage(cv.GetSize(hue_img), 8, 1): This

statement creates a new image that will hold all the blobs of colors.
•	 cv.InRangeS(hue_img, (38,120, 60), (75, 255, 255), threshold_

img): This statement now fills in hue_img from threshold_img.
•	 storage = cv.CreateMemStorage(0): This line creates some memory for

you to manipulate the images.
•	 contour = cv.FindContours(threshold_img, storage, cv.CV_RETR_

CCOMP, cv.CV_CHAIN_APPROX_SIMPLE): This statement finds all the areas
on your image that are within the threshold. There may be more than one, so
you want to capture them all.

•	 points = []: This statement creates an array to hold all the different
possible points of color.

•	 cx = 0: This statement gives a variable to hold the x location of color.
•	 cy = 0: This statement gives a variable to hold the y location of color.

System Dynamics

[250]

•	 while contour:: This statement now adds a while loop that will let you
step through all the possible contours. By the way, it is important to note that
if there is another larger green blob in the background, you would find that
x and y location. Just to keep this simple, we'll assume that your green ball
is unique.

•	 rect = cv.BoundingRect(list(contour)): This statement creates a
bounding rectangle for each area of color. The rectangle is defined by its
corners around the blob of color.

•	 contour = contour.h_next(): This statement will prepare you for the next
contour statement (if one exists).

•	 size = (rect[2] * rect[3]): This statement calculates the diagonal
length of the rectangle you are evaluating.

•	 if size > 100:: This checks to see whether the area is big enough for
our purpose.

•	 pt1 = (rect[0], rect[1]): This statement defines a pt variable at the x
and y coordinates on the left-hand side of the blob's rectangular location.

•	 pt2 = (rect[0] + rect[2], rect[1] + rect[3]): This statement defines
a pt variable at the x and y coordinates on the right-hand side of the blob's
rectangular location.

•	 cx = rect[0]: This statement sets the value of cx to the x location of color.
•	 cy = rect[1]: This statement sets the value of cy to the y location of

the color.
•	 cv.Rectangle(img, pt1, pt2, (38, 160, 60)): Here, you add a

rectangle to your original image, identifying where you think it is located.
•	 cv.ShowImage("Colour Tracking", img): This statement displays the

image on the screen.
•	 if cx > 280:: This statement checks to see whether the object is too far to

the right.
•	 text = '"moving right"': This statement gets you ready to call the user.
•	 subprocess.call('espeak '+text, shell = True): This statement calls

espeak with a message.
•	 subprocess.call('./move_right.py'): This statement calls the Python

program, which will move the unit to the right-hand side.
•	 if cx < 20 and cx > 0:: This statement checks to see whether the object is

too far to the left. Make sure you exclude 0, which would be the case initially
if there is no object.

Chapter 10

[251]

•	 text = '"moving left"': This statement gets you ready to call the user.
•	 subprocess.call('espeak '+text, shell = True): This statement calls

espeak with a message.
•	 subprocess.call('./move_left.py'): This statement calls the Python

program, which will move the unit to the left.
•	 if cv.WaitKey(10) == 27:: This statement kills the program if you press

the Esc key.
•	 break: This statement stops the program.

Now, you can run the program by typing python ./follow.py. You can also type
chmod +x follow.py and then run the program by typing ./follow.py. The
window should be displayed as shown in the following screenshot:

System Dynamics

[252]

The green rectangle indicates that the program is following the color green. As the
green color is moved towards the edge on the left-hand side, the robot should rotate
slightly to the left. As the green color is moved towards the edge on the right-hand
side, the robot should rotate slightly towards the right.

With OpenCV, it is also possible to perform motion detection. There are a couple
of good tutorials on how to do this with OpenCV. One simple example is at
http://www.steinm.com/blog/motion-detection-webcam-python-opencv-
differential-images/. Another example, a bit more complex but more elegant,
can be found at http://stackoverflow.com/questions/3374828/how-do-i-
track-motion-using-opencv-in-python.

While using motion detection, if you put your wind-up walker toy in front of the
camera, you would see the output on the webcam (using the code from the second
tutorial) as follows:

You can then use the x and y location data to move the robot by following
the motion.

http://www.steinm.com/blog/motion-detection-webcam-python-opencv-differential-images/
http://www.steinm.com/blog/motion-detection-webcam-python-opencv-differential-images/
http://stackoverflow.com/questions/3374828/how-do-i-track-motion-using-opencv-in-python
http://stackoverflow.com/questions/3374828/how-do-i-track-motion-using-opencv-in-python

Chapter 10

[253]

Using the structure of the Robot
Operating System to enable complex
functionalities
As you can see, communicating between different aspects of our project can be
challenging. In this section, I will introduce you to a special operating system
that is designed specifically for use with robotic projects, the Robot Operating
System (ROS). This operating system works on top of Linux and provides some
interesting functionality.

The operating system is available at www.ros.org. However, the most useful link to
the Wiki for the ROS is wiki.ros.org. If you visit this link, you will find a complete
set of documentation and downloads. There are also a number of resources that
could be useful if you'd like to learn more about the ROS in depth. One of the better
resources is the book Learning ROS for Robotics Programming, Martinez and Fernandez,
Packt Publishing.

This section will not cover the ROS in detail but will introduce you to some of the
basics. Start by going to the www.ros.org website. If you select Install, you'll note
that there is a wide range of Linux operating systems and hardware support. You'll
also note that there are several different versions or releases of the ROS. Some of
the later releases are Hydro, Fuerte, and Groovy. One of the challenges of using an
operating system like this is to decide which release to use. The most recent release
will have the largest number of features. It may also have a significant number of
issues that may cause problems.

I often prefer using a past release that has been used by a larger number of people;
this way, I run into fewer problems. I also don't like to build large packages like
this myself. It can take a great deal of time, and you'll often run into cryptic error
messages that can take days to resolve. So, for this tutorial, I will use an older version
that I have been successful with in the past. It is called Groovy, and while it is not the
latest version, it is very stable and easy to use.

The ROS brings with it quite a bit of code. If you are going to work
with the ROS, I would recommend that you have at least an 8 GB
card installed on Raspberry Pi.

System Dynamics

[254]

I normally follow the installation instructions at http://wiki.ros.org/groovy/
Installation/Raspbian. The following are the instructions in a step-by-step form:

1.	 Add the repository to your apt sources. This is the place where your
apt-get command appears when it is trying to find packages to install.
Here is the command:
sudo sh -c 'echo "deb http://64.91.227.57/repos/rospbian
 wheezy main" > /etc/apt/sources.list.d/rospbian.list'

2.	 Next, add the following apt key:
wget http://64.91.227.57/repos/rospbian.key -O - | sudo apt-
 key add -

3.	 Now, reload the apt sources so that your Raspberry Pi will know where the
files are, by typing sudo apt-get update.

4.	 Now, install the ROS packages. Installing ros_comm will install all the
significant packages you'll need. You need to type sudo apt-get install
ros-groovy-ros-comm. The package is quite large and will take some time.

5.	 Before you can use the ROS, you need to install and initialize rosdep to let
you track dependencies and run some core features. Type sudo rosdep
init and then rosdep update.

6.	 You also need to set up the ROS environment variables so that they are
automatically added to your session every time you launch a terminal
window. To perform this, type echo "source /opt/ros/groovy/setup.
bash" >> ~/.bashrc and then source ~/.bashrc.

7.	 The, add one more tool, python-rosinstall. This tool can help in installing
the ROS packages. To add this tool, type sudo apt-get install python-
rosinstall.

8.	 To make sure the ROS is set up correctly, type export | grep ROS. You
should see the following screenshot:

http://wiki.ros.org/groovy/Installation/Raspbian
http://wiki.ros.org/groovy/Installation/Raspbian

Chapter 10

[255]

9.	 Once installed, you should go through the tutorials at wiki.ros.org/ROS/
Tutorials. They will introduce you to the features of the ROS and how to
use it in your robotic projects. You will learn how it can provide a systematic
way of configuring and communicating between multiple features that run
in different programs. It even comes with some programs that implement
some interesting vision and motor control capabilities. The following is the
TurtleSim tutorial running on Raspberry Pi:

wiki.ros.org/ROS/Tutorials
wiki.ros.org/ROS/Tutorials

System Dynamics

[256]

One of the really powerful features of the ROS is its ability to show you how your
information is flowing between applications. As you follow the tutorial, you will end
up with two running applications, teleop_turtle and turtlesim. In this example,
you can use an application called rqt_graph to record the flow of information
between the two applications, as shown in the output in the following screenshot:

It will be very difficult to illustrate all of the functionalities of the ROS here. It may take
a bit of time, but you can learn to use the ROS to give your robot more functionality.

Summary
Now you can coordinate complex functionalities for your robot. Your robot can walk,
talk, see, hear, and even sense its environment, all at the same time. In the next chapter,
you'll learn how to construct robots that can fly, sail, and even go under water.

Fortunately, the ROS is free and open source. It has a very complex set of
functionalities. However, if you spend some time learning it, you could start
using some of the most comprehensive functionalities being developed in
robotics research today.

[257]

By Land, Sea, and Air
You've built robots that can navigate on land. Now, let's look at some possibilities to
utilize the tools you have used so far to build some robots that dazzle the imagination.
By now, I hope you are comfortable accessing the USB control channels and talking to
servo controllers and other devices that can communicate over USB. Instead of leading
you through each step, in this chapter, I will point you in the right direction and then
allow you to explore a bit. I'll try to give you some examples using some of the projects
that are popular on the Internet.

You don't want to limit your robotic possibilities to just walking or rolling. You'll
want your robot to fly, sail, or swim. In this chapter, you'll see how you can use the
capabilities you have already mastered in projects that defy gravity, explore the
open sea, or navigate below the sea.

In this chapter, we will:

•	 Use Raspberry Pi in robots that can sail
•	 Use Raspberry Pi in robots that can fly
•	 Use Raspberry Pi in robots that can go underwater

We need to add hardware to our robotics in order to complete these projects. Since
the hardware is different for each of these projects, I'll introduce them in each
individual section.

By Land, Sea, and Air

[258]

Using Raspberry Pi to sail
Now that you've created platforms that can move on land, let's turn to a completely
different type of mobile platform, one that can sail. In this section, you'll discover
how to use Raspberry Pi to control your sailboat.

Getting started
Fortunately, making a robot sail on water is as simple as making it walk on land.
First, however, you need a sailing platform. The following is an image of an Radio
Controlled (RC) sailing platform that can be modified to accept control from
Raspberry Pi:

Chapter 11

[259]

In fact, many RC-controlled boats can be modified to use Raspberry Pi. All you
need is space to put the processor, the battery, and any additional control circuitry.
In this case, the sailing platform has two controls, a rudder, which is controlled by
a servo, and a second servo, which controls the position of the sail, as shown in the
following image:

To automate control of the sailboat, you'll need Raspberry Pi, a battery, and a servo
controller. The servo controller I would advise for this project is the one that you
used in Chapter 6, Controlling the Movement of a Robot with Legs. It is a six-servo
controller made by Pololu. It is available at www.pololu.com, and it looks as like the
following image:

www.pololu.com

By Land, Sea, and Air

[260]

The advantage is that this servo controller is very small and fits in a limited space.
The only challenge is getting a power connection for the device. Fortunately, there is
a cable that you can purchase. This cable makes these power connections available
from a standard cable. The cable you want is a USB-to-TTL serial/RS232 adapter
cable. Make sure that the TTL end of the cable has individual female connectors. You
can get this cable at www.amazon.com and also at www.adafruit.com. The following
is an image of the cable:

The red and black wires are for connection to the power. These can be connected to
the servo controller, as shown in the following image:

Once you have assembled your sailboat, you will first need to hook up the servo
controller to the servos on the boat. You should try to control the servos before
installing all the electronics inside the boat, as shown in the following image:

Chapter 11

[261]

Just as in Chapter 6, Controlling the Movement of a Robot with Legs, you can use the
Maestro Servo Controller software to control the servo controller from your PC.
When you are ready to hook it up to Raspberry Pi, you can start with the same
Python program you used in Chapter 6, Controlling the Movement of a Robot with Legs.
You will probably want to control the system without a wired connection. So, you
can use the principles that you learned in Chapter 8, Going Truly Mobile – The Remote
Control of Your Robot.

It may be a bit challenging if you are using the standard 2.4 GHz keyboard or a
smaller 2.4 GHz controller. One possible solution is a wireless LAN, where you can
set up your own ad hoc wireless network using a router connected to a laptop. Also,
as noted in Chapter 8, Going Truly Mobile –The Remote Control of Your Robot, many
cell phones have the ability to set up a wireless hot spot. This hot spot can create a
wireless network so that you can communicate remotely with your sailboat.

Another possible solution is to use ZigBee wireless devices to connect your sailboat
to a computer. We already covered the details in Chapter 8, Going Truly Mobile – The
Remote Control of Your Robot. You'll need two of these devices and a USB shield for
each. You can get these at a number of places, including www.adafruit.com. If you
can connect your computer and Raspberry Pi through this wireless network, the
advantage is that it carries communications to and from your sailboat. It can also
have a range of up to a mile using the right devices.

By Land, Sea, and Air

[262]

Now, you can sail your boat, controlling it through an external keyboard or a ZigBee
wireless network from your computer. If you want to fully automate your system,
you could add your GPS and then have your sailboat sail to each of the programmed
positions. One additional item you may want to add to make the system fully
automated is a wind sensor. The following is an image of a wind sensor that is be
fairly inexpensive if you buy it from www.moderndevices.com:

You can mount it to the mast if you'd like. I used a small piece of heavy-duty tape
and mounted it to the top of the mast, as shown in the following image:

Chapter 11

[263]

To add this to your system, you'll also need a way to take the analog input from
the sensor and send it to Raspberry Pi. There are two ways to do this. One way is
to add a USB device that samples the analog signal and reports the measurements
over the USB bus. The device I like to use is the PhidgetInterfaceKit 2/2/2 from
www.phidgets.com. The following is an image of this device:

The following is an image of the wind sensor connected to the converter:

By Land, Sea, and Air

[264]

The following wiring diagram shows how the wind sensor interfaces with the
Phidgets USB device:

The Phidgets website will lead you through the download process. I chose Python
as my language and downloaded the appropriate libraries and sample code. When I
run this sample code, I get the following output while blowing on the sensor:

Chapter 11

[265]

Another way to get the analog signal into your Raspberry Pi is to use the ADC board,
covered in Chapter 7, Avoiding Obstacles Using Sensors. Here, you can use this board to
process the infrared sensor data. Here is the wiring diagram for this solution:

Now, you can access the wind speed from the USB connection in the same way that
you received data from the other USB devices that you have already used. Now that
you have a way to measure your location and the wind, you can use your Raspberry
Pi to sail your boat. I am not a sailor myself, but you'll want to use the wind sensor to
get a sense of the direction of the wind and then use classic sailing techniques such
as tacking (moving back and forth to use the wind effectively) to sail.

While constructing this, you'll need to be careful with waterproofing, especially
while sailing in heavy wind. Think about attaching a hatch that covers the electronics
securely. I added small screws and tabs and also some waterproof sealant to hold
the hatch.

Using Raspberry Pi to fly robots
You've now built robots that can move around on a wheeled structure, robots that
have legs, and robots that can sail. You can also build robots that can fly by relying
on Raspberry Pi to control their flight. There are several possible ways to incorporate
Raspberry Pi into a flying robotic project, but the most straightforward way is to add
it to a quadcopter project.

By Land, Sea, and Air

[266]

Quadcopters are a unique subset of flying platforms that have become very popular
in the last few years. They are flying platforms that utilize the same vertical lift
concept as helicopters. However, they employ not one, but four motor/propeller
combinations to provide an enhanced level of stability. If you'd like to know
more about how quadcopters work, see http://quadcopter101.blogspot.
com/2013/10/chapter-1-introduction-to-quadcopters.html.The following is
an image of such a platform:

The quadcopter has two sets of counter-rotating propellers. This simply means that
two of the propellers rotate one way, while the other two rotate the other way, to
provide thrust in the same direction. This provides a platform that is inherently
stable. Controlling the thrust on all four motors allows you to change the pitch,
roll, and yaw of the device. The following figure may be helpful to understand
this concept:

http://quadcopter101.blogspot.com/2013/10/chapter-1-introduction-to-quadcopters.html
http://quadcopter101.blogspot.com/2013/10/chapter-1-introduction-to-quadcopters.html

Chapter 11

[267]

As you can see, controlling the relative speed of the four motors allows you to
control the various ways in which the device can change position. To move forward,
or in any direction really, we can combine a change in the roll/pitch with a change in
the thrust. We do this so that instead of going up, the device will move forward, as
shown in the following figure:

By Land, Sea, and Air

[268]

In a perfect world, knowing the components you used to build your quadcopter,
you might know exactly how much control signal to apply to get a certain change
in the roll/pitch/yaw or altitude of your quadcopter. You cannot rely on a fixed
set of signals, as there are simply too many aspects of your device that can vary.
Instead, this platform uses a series of measurements for its position, pitch/roll/yaw,
and altitude. Then, it adjusts the control signals to the motors to achieve the desired
result. We call this feedback control. The following figure denotes a feedback system:

As you can see, if your quadcopter is too low, the difference between the desired
altitude and the actual altitude will be positive. The motor control will increase the
voltage supplied to the motors, increasing the altitude. If the quadcopter is too high,
the difference between the desired altitude and the actual altitude will be negative.
The motor control will decrease the voltage supplied to the motors, decreasing the
altitude. If the desired altitude and the actual altitude are equal, then the difference
between the two will be zero, and the motor control will be held at its current value.
Thus, the system stabilizes even if the components aren't perfect or if a wind comes
along and blows the quadcopter up or down.

One function of Raspberry Pi in this type of robotic project is to actually coordinate
the measurement and control of the quadcopter's pitch, roll, yaw, and altitude.
This can be done. However, it is a very complex task, and the details of its
implementation are beyond the scope of this book. It is unclear whether Raspberry Pi
has the horsepower to execute and keep up with this type of application.

However, Raspberry Pi can still be utilized in this type of robotic project by
introducing another embedded processor to carry out the low-level control and
using Raspberry Pi to manage high-level tasks, such as using the vision system of
Raspberry Pi to identify a colored ball and then guiding the platform toward it.
Alternatively, as in the sailboat example, you can use Raspberry Pi to coordinate
GPS tracking and long-range communications through ZigBee or a wireless LAN.
I'll cover an example of this in this section.

Chapter 11

[269]

The first thing you'll need is a quadcopter. There are three approaches to this, which
are as follows:

•	 Purchase an already assembled quadcopter
•	 Purchase a kit and construct it yourself
•	 Buy the parts separately and construct the quadcopter

In any case, one of the easiest ways to add Raspberry Pi to your quadcopter is to
choose one that uses ArduPilot as its flight-control system. This system uses a flight
version of Arduino to do the low-level feedback control we talked about earlier. The
advantage of this system is that you can talk to the flight control system through USB.

There are a number of assembled quadcopters available that use this flight
controller. One place to start is at www.ardupilot.com. This website will give you
some information on the flight controller and the store has several preassembled
quadcopters. If you are thinking of assembling your own quadcopter, a kit would
be the right approach. Try www.unmannedtechshop.co.uk/multi-rotor.html or
www.buildyourowndrone.co.uk/ArduCopter-Kits-s/33.htm, as these websites
sell not only assembled quadcopters, but assembling kits as well.

If you'd like to assemble your own kit, there are several good tutorials on choosing
all the right parts and assembling your quadcopter. Try one of the following links:

•	 blog.tkjelectronics.dk/2012/03/quadcopters-how-to-get-started

•	 blog.oscarliang.net/build-a-quadcopter-beginners-tutorial-1/

•	 http://www.arducopter.co.uk/what-do-i-need.html

All of these links have excellent instructions.

You may be tempted to purchase one of the very inexpensive quadcopters that are
being offered on the market. For this project, you will need the following two key
characteristics of the quadcopter:

•	 The quadcopter flight control will need a USB port so that you can connect
Raspberry Pi to it

•	 It will need to be large enough and have enough thrust to carry the
extra weight of Raspberry Pi, a battery, and perhaps a webcam or other
sensing devices

www.buildyourowndrone.co.uk/ArduCopter-Kits-s/33.htm

By Land, Sea, and Air

[270]

No matter which path you choose, another excellent source of information is
http://code.google.com/p/arducopter. This gives you some information on
how ArduPilot works and also talks about Mission Planner, an open source control
software that will be used to control ArduPilot on your quadcopter. This software
runs on PC and communicates to the quadcopter in one of two ways, either through
a USB connection directly or through a radio connection. It is the USB connection
that you will use to communicate between Raspberry Pi and ArduPilot.

The first step to work in this space is to build your quadcopter and get it to work
with an RC radio. When you allow Raspberry Pi to control it later, you may still want
to have the RC radio handy, if things don't go quite as planned.

If the quadcopter is flying well, based on your ability to control it using the RC radio,
you should begin to use ArduPilot in the autopilot mode. To do this, download the
software from www.ardupilot.com/downloads. You can then run the software. You
should see something like the following screenshot:

Chapter 11

[271]

You can then connect ArduPilot to the software and click on the CONNECT button in
the upper-right corner. You should then see something like the following screenshot:

We will not walk through how to use the software to plan an automated flight path.
There is plenty of documentation for that on the www.ardupilot.com website. Note
that in this configuration, you have not connected the GPS on ArduPilot.

You want to hook up Raspberry Pi to ArduPilot on your quadcopter so that it
can control the flight of your quadcopter just as Mission Planner does, but at a
much lower and more specific level. You will use the USB interface just as
Mission Planner does.

To connect the two devices, you'll need to modify the Arduino code, create some
Raspberry Pi code, and then simply connect the USB interface of Raspberry Pi to
ArduPilot. You can issue the yaw, pitch, and roll commands to the Arduino to guide
your quadcopter wherever you want it to go. The Arduino will take care of keeping
the quadcopter stable. An excellent tutorial on how to accomplish this can be found
at http://oweng.myweb.port.ac.uk/build-your-own-quadcopter-autopilot/.

By Land, Sea, and Air

[272]

The following is an image of my configuration. I put Raspberry Pi in a plastic case
and mounted the battery and Raspberry Pi below the quadcopter's main chassis:

Now that you can fly your quadcopter using Raspberry Pi, you can use the same GPS
and ZigBee or wireless LAN capabilities mentioned in the previous section to make
your quadcopter semiautonomous.

Your quadcopter can act completely autonomously as well. Adding a 3G modem to
the project allows you to track your quadcopter, no matter where it might go, as long
as it can receive a cell signal. The following is an image of such a modem:

Chapter 11

[273]

This can be purchased on Amazon or from any cellular service provider. Once you
have purchased your modem, simply use Google and look for instructions on how
to configure it in Linux. A sample project that puts it all together can be found at
http://www.skydrone.aero. This project is based on BeagleBone Black, a small
Linux processor with capabilities similar to Raspberry Pi.

Another possibility for an aerial project is a plane based on ArduPilot and controlled
by Raspberry Pi. Look at http://plane.ardupilot.com/ for information on
controlling a fixed-wing aircraft with ArduPilot. It would be fairly straightforward to
add Raspberry Pi to this configuration.

If you are a bit more confident in your aeronautic capabilities, you can also build a
quadcopter using Raspberry Pi and a simpler, less-expensive flight-control board.
The one I like to use is the Hobby King KK2.0 flight-control board, shown in the
following image:

This flight-control board takes its flight inputs through a set of input signals and then
sends out control signals to the four motor controllers. The good thing about this
controller is that it has built-in flight sensors, so it can handle the feedback control for
the motors. The inputs will come in as electric commands to turn, bank, go forward,
or increase the altitude. Normally, these would come from the RC radio receiver.
For this project, you can insert Raspberry Pi and the Maestro Servo Controller we
covered in Chapter 6, Controlling the Movement of a Robot with Legs.

By Land, Sea, and Air

[274]

A close-up of the connections between the servo controller and the flight controller
board is shown in the following image. Make sure you do not connect power to the
servo controller; it does not need a power supply. Just send the appropriate signals
through the servo lines to the receiver input.

You can follow the standard instructions to calibrate and control your quadcopter,
with Raspberry Pi creating the commands using the servo controller. It is perhaps
best to first use the Pololu Maestro Control Center software to do the calibration.
You can then write a program based on the control program you wrote in Chapter 8,
Going Truly Mobile – The Remote Control of Your Robot. Using this program, you can
use the keyboard to control the quadcopter to make it go up, down, right or left,
bank, or turn. An example of this type of system, albeit using an even less expensive
controller, is shown at http://www.instructables.com/id/Autonomous-
Cardboard-Rasberry-Pi-Controlled-Quad/. Another example, this time with
a tricopter, can be found at http://bitoniau.blogspot.com/2013/05/using-
raspberry-pi-wifi-as-transmission.html.

http://www.instructables.com/id/Autonomous-Cardboard-Rasberry-Pi-Controlled-Quad/
http://www.instructables.com/id/Autonomous-Cardboard-Rasberry-Pi-Controlled-Quad/
http://bitoniau.blogspot.com/2013/05/using-raspberry-pi-wifi-as-transmission.html
http://bitoniau.blogspot.com/2013/05/using-raspberry-pi-wifi-as-transmission.html

Chapter 11

[275]

Using Raspberry Pi to make the robot
swim underwater
You've explored the possibilities of walking robots, flying robots, and sailing robots.
The final frontier is robots that can actually maneuver under the water. It makes
sense to use the same techniques that you've mastered to explore the undersea
world. In this section, I'll explain how to use the capabilities that you have already
developed in a Remote Operated Vehicle (ROV) robot. There are, of course, some
interesting challenges that come with this type of project, so get ready to get wet!

As with the other projects in this chapter, there is the possibility of either buying an
assembled robot or assembling one yourself. If you'd like to buy an assembled ROV,
try http://openrov.com. This project, funded by Kickstarter, provides a complete
package, albeit with electronics based on the BeagleBone Black. If you are looking to
build your own robot, there are several websites that document possible instructions
for you to follow, such as http://dzlsevilgeniuslair.blogspot.dk/search/
label/ROV. Additionally, http://www.mbari.org/education/rov/ and http://
www.engadget.com/2007/09/04/build-your-own-underwater-rov-for-250/
show platforms to which you can add your Raspberry Pi.

Whether you have purchased a platform or designed your own, the first step is to
engage Raspberry Pi to control the motors. Fortunately, you should have a good idea
of how to do this. Chapter 5, Creating Mobile Robots on Wheels, covers how to use a set
of DC motor controllers to control DC motors. In this case, you will need to control
three or four motors based on which kind of platform you build. Interestingly, the
problem of control is quite similar to the quadcopter control problem. If you use four
motors, the problem is almost exactly the same, except instead of focusing on moving
the ROV up and down, you are focusing on moving the ROV forward.

There is one significant difference, the ROV is inherently more stable. In the
quadcopter, your platform needed to hover in the air. This is a challenging control
problem because the resistance of air is very small and the platform responds very
quickly to changes. As the system is so dynamic, a microprocessor is needed to
respond to the real-time measurements and individually control the four motors
to achieve a stable flight.

This is not the case underwater, where our platform does not want to move
suddenly. In fact, it takes a good bit of power to make the platform move through
water. You, as the operator, can control the motors with enough precision to get
the ROV moving in the direction you want.

http://dzlsevilgeniuslair.blogspot.dk/search/label/ROV
http://dzlsevilgeniuslair.blogspot.dk/search/label/ROV
http://www.engadget.com/2007/09/04/build-your-own-underwater-rov-for-250/
http://www.engadget.com/2007/09/04/build-your-own-underwater-rov-for-250/

By Land, Sea, and Air

[276]

Another difference is that wireless communication is not available to you underwater.
So, you'll be tethering your device and running controls from the surface to the ROV
through wires. You'll need to send control signals and video so you can control the
ROV in real time.

You already have all the tools at your disposal for this project. As noted in Chapter 5,
Creating Mobile Robots on Wheels, you know how to hook up DC motor controllers.
You'll need one for each motor on your platform. Chapter 4, Adding Vision to
Raspberry Pi, shows you how to set up a webcam so that you can see what is around
you. All of this can be controlled from a laptop at the surface. This laptop should be
connected through a LAN cable and should run vncserver.

Creating the basic ROV platform should open the possibility of exploring the undersea
world. An ROV platform has some significant advantages. It is very difficult to lose
(you have a cable attached). As the device tends to move quite slowly, the potential
for catastrophic collisions is significantly less than many other projects. The biggest
problem, however, is keeping everything dry!

Summary
Now, you have access to a wide array of different robotics projects that can take
you over land, on the sea, or in the air. Be prepared for some challenges and always
plan on a bit of rework. Well, we've reached the end of the book, which, hopefully,
is only the beginning of your robotic adventures. We've covered how to construct
robots that can see, talk, listen, and move in a wonderful variety of ways. Feel free to
experiment; there are so many additional capabilities that can be added to make your
robot even more amazing.

Adding infrastructure such as the Robot Operating System opens even more
opportunities for complex robotic systems. Perhaps one day, you'll even build a
robot that passes the Turing test; that would be a robot that may be mistaken
for a human being!

[277]

Index
A
A+ board 3, 4
actions

initiating 80-83
ADC-DAC pi

URL 143
Advanced IP Scanner 32
Advanced Linux Sound Architecture

(ALSA) libraries 65
alsamixer 66
arducopter

URL 270
ArduPilot

URL 273

B
B+ board 3
board

accessing, remotely 18
powering 5

C
camera board

connecting 89-92
connecting, to view images 89-92
URL 90

Carnegie Mellon University (CMU)
URL 73

C/C++ programming language 55-58
CMU web tool

URL 78
color

tutorial, URL 100

commands
interpreting 80-83

control structure
general control structure, creating 241-252

C tutorial
URL 58

D
daemon 221
data

URL 221
degrees of freedom (DOFs)

URL 124
display

hooking up 6-8

E
Eclipse

URL 59
Emacs

about 41
commands 43

Espeak
used for allowing robotic voice response,

by projects 71, 72

G
Global Positioning System (GPS)

about 207
data 229-237

GPIO ADC
URL 161
used, for connecting IR sensor 155-162

[278]

H
hardware

about 62
hooking up 63-70

I
if statement 46, 47
infrared sensor

Raspberry Pi connecting to, USB used 146
Integrated Development Environment (IDE)

URL 59
Internet access

establishing, on Raspberry Pi A+ 18, 19
establishing, on Raspberry Pi B+ 18

IR sensor
connecting, GPIO ADC used 155

K
keyboard

hooking up 6-8

L
legged robot

hardware, gathering 124-127
Lightweight X11 Desktop Environment

(LXDE) 16
Linux commands

on Raspberry Pi 36-41
Linux program

creating, to control mobile
platform 135-137

Linux terminal program
URL 195

M
MaxBotix

URL 173
mobile platform

controlling, by creating Linux
program 135-137

controlling programmatically,
Raspberry Pi used 111-114

hardware, gathering 176-183

making truly mobile, by issuing
voice commands 138-140

Raspberry Pi connecting to,
servo controller used 127

mobile robots
creating, on wheels 105
hardware, gathering 105-108

motion detection
tutorials, URL 104

motor speed
controlling, PWM used 114-117

mouse
hooking up 6-8

N
Nmap

URL 33

O
OpenCV

downloading 93-98
installing 93-98
URL 104, 252

operating system
installing 8-17

P
Phidget

URL 149, 152
picamera 92
platform

controlling, by adding program arguments
117-119

making truly mobile, by issuing
voice commands 119-121

speed controlling, Raspberry
Pi GPIO used 108-111

PocketSphinx
used, for accepting voice commands 73, 74

Polulu software
URL 129, 132

program
creating in Linux, to control mobile

platform 135-137

[279]

programming tools, Raspberry Pi
functions, working with 49, 50
if statement 46, 47
object-oriented code 52-54
Python, libraries 51, 52
Python, modules 51, 52
while statement 48, 49

Pulse Width Modulation (PWM)
used, for controlling motors speed 114-117

PuTTY
URL 22

Python
modules, URL 149
tutorials, URL 43

Python 2
URL 44

Python programs
creating 43-46
running 43-46

Q
quadcopter

controlling, URL 274
URL 266, 269, 272

R
Radio Controlled (RC) 258
Raspberry Pi

A+ board 3, 4
about 1
accessing, from host PC 20-33
B+ board 3
camera board connecting, to view

images 89-92
connecting to infrared sensor,

USB used 146, 147
connecting to mobile platform,

servo controller used 127
connecting, to RX/TX (UART) GPS

device 224, 225
connecting, to USB GPS device 207-218
connecting, to USB sonar sensor 162, 163
connecting to, wireless USB keyboard

used 183
files, creating 41-43

files, editing 41-43
files, saving 41, 42
functions, working with 49
if statement 46, 47
Linux commands 36-41
programming constructs 46
sensor connecting, USB interface

used 147-154
URL 9
used, for controlling mobile platform

programmatically 111-114
used, for making robot swim

underwater 275, 276
used, for sailing 258-265
used, to fly robots 265-274
while statement 48, 49
working remotely, through wireless

LAN 189-193
working remotely, through

ZigBee 194-203
Raspberry Pi A+

Internet access, establishing 18, 19
Raspberry Pi B+

Internet access, establishing 18
Raspberry Pi GPIO

used, for controlling speed on
platform 108-111

Raspbian
about 36
URL 254

RealVNC 24
Remote Operated Vehicle (ROV) robot

about 275
URL 275

Robot Operating System (ROS) structure
used, for enabling complex

functionalities 253-256
robots

flying, Raspberry Pi used 265-274
legged robot 124
making to swim underwater,

Raspberry Pi used 275, 276
sailing, Raspberry Pi used 258-265

RX/TX GPS 225-228
RX/TX (UART) GPS device

Raspberry Pi, connecting to 224, 225

[280]

S
Secure Shell Hypterminal (SSH)

connection 22
servo controller

hardware, connecting 127-129
software, configuring 129-134
URL 125, 127
used, for connecting Raspberry Pi

to mobile platform 127
used, for moving single sensor 169-173

single sensor
moving, sensor used 169-173

sonar sensors
URL 173

Sphinx
URL 73

square-wave pulse width modulation
(SW PWM) signals 126

system
configuring, URL 193

T
terminal emulator software

URL 164
triangulation 207
tricopter

URL 274
two-wheeled platforms

URL 106

U
USB camera

connecting to, Raspberry Pi 86-89
connecting, to view images 86-89

USB GPS
accessing, programmatically 218-224

USB GPS device
Raspberry Pi, connecting 207-218

USB interface
used, for connecting sensor 147-155
using 206

USB sonar sensor
hardware, connecting 164-168
Raspberry Pi, connecting to 162, 163

V
vision library

used, for detecting colored objects 98-104
voice commands

accepting, PocketSphinx used 73-80
issued, for making platform truly

mobile 119-121

W
while statement 48, 49
wireless device

URL 18
wireless keyboards 2.4-GHz

URL 181
wireless LAN

URL 181
used, for Raspberry Pi remote

connection 189-193
wireless USB keyboard

used, for controlling project 183-189
used, for Raspberry Pi connection 183

Z
ZigBee

about 176
used, for Raspberry Pi remote

connection 194-203

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewer
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Getting Started with Raspberry Pi
	Getting started
	The unboxing

	Powering your board
	Hooking up a keyboard, mouse, and display
	Installing the operating system
	Accessing the board remotely
	Establishing Internet access on the Raspberry Pi B+
	Establishing Internet access on the Raspberry Pi A+
	Accessing your Raspberry Pi from your host PC

	Summary

	Chapter 2: Programming Raspberry Pi
	Basic Linux commands on Raspberry Pi
	Creating, editing, and saving files on Raspberry Pi
	Creating and running Python programs
	Basic programming constructs on Raspberry Pi
	The if statement
	The while statement
	Working with functions
	Libraries/modules in Python
	Object-oriented code

	Introduction to the C/C++ programming language
	Summary

	Chapter 3: Providing Speech Input
and Output
	Hooking up the hardware to make and input sound
	Using Espeak to allow our projects to respond in a robotic voice
	Using PocketSphinx to accept your voice commands
	Interpreting commands and initiating actions
	Summary

	Chapter 4: Adding Vision to
Raspberry Pi
	Connecting the USB camera to Raspberry Pi and viewing the images
	Connecting the Raspberry Pi camera board and viewing the images
	Downloading and installing OpenCV – a fully featured vision library
	Using the vision library to detect colored objects
	Summary

	Chapter 5: Creating Mobile Robots
on Wheels
	Gathering the required hardware
	Using the Raspberry Pi GPIO to control
a DC motor
	Controlling your mobile platform programmatically using the Raspberry Pi
	Controlling the speed of your motors with PWM
	Adding program arguments to control your platform

	Making your platform truly mobile by issuing voice commands
	Summary

	Chapter 6: Controlling the Movement
of a Robot with Legs
	Gathering the hardware
	Connecting Raspberry Pi to the mobile platform using a servo controller
	Connecting the hardware
	Configuring the software

	Creating a program in Linux to control the mobile platform
	Making your mobile platform truly mobile by issuing voice commands
	Summary

	Chapter 7: Avoiding Obstacles
Using Sensors
	Connecting Raspberry Pi to an infrared sensor using USB
	Connecting sensor using the USB interface

	Connecting the IR sensor using the
GPIO ADC
	Connecting Raspberry Pi to a USB sonar sensor
	Connecting the hardware

	Using a servo to move a single sensor
	Summary

	Chapter 8: Going Truly Mobile – The Remote Control of
Your Robot
	Gathering the hardware
	Connecting Raspberry Pi to a wireless USB keyboard
	Using the keyboard to control your project
	Working remotely with your Raspberry Pi through a wireless LAN
	Working remotely with your Raspberry Pi through ZigBee
	Summary

	Chapter 9: Using a GPS Receiver to Locate Your Robot
	Connecting Raspberry Pi to a USB GPS device
	Accessing the USB GPS programmatically
	Connecting Raspberry Pi to an RX/TX (UART) GPS device
	Communicating with the RX/TX GPS programmatically
	Looking at the GPS data
	Summary

	Chapter 10: System Dynamics
	Creating a general control structure
	Using the structure of the Robot Operating System to enable complex functionalities
	Summary

	Chapter 11: By Land, Sea, and Air
	Using Raspberry Pi to sail
	Getting started

	Using Raspberry Pi to fly robots
	Using Raspberry Pi to make the robot swim underwater
	Summary

	Index

