
www.allitebooks.com

http://www.allitebooks.org

Raspberry Pi Sensors

Integrate sensors into your Raspberry Pi projects
and let your powerful microcomputer interact with
the physical world

Rushi Gajjar

BIRMINGHAM - MUMBAI

[FM-1]

www.allitebooks.com

http://www.allitebooks.org

[FM-2]

Raspberry Pi Sensors

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: April 2015

Production reference: 1240415

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78439-361-8

www.packtpub.com

Cover image by Rushi Gajjar

www.allitebooks.com

www.packtpub.com
http://www.allitebooks.org

[FM-3]

Credits

Author
Rushi Gajjar

Reviewers
David Alcoba

Siddharth Bhave

Cédric Verstraeten

Commissioning Editor
Amarabha Banerjee

Acquisition Editor
Owen Roberts

Content Development Editor
Natasha Dsouza

Technical Editors
Tanmayee Patil

Shiny Poojary

Sebastian Rodrigues

Copy Editors
Karuna Narayanan

Vikrant Phadke

Project Coordinator
Rashi Khivansara

Proofreaders
Simran Bhogal

Safis Editing

Clyde Jenkins

Indexer
Rekha Nair

Graphics
Sheetal Aute

Disha Haria

Production Coordinator
Shantanu N. Zagade

Cover Work
Shantanu N. Zagade

www.allitebooks.com

http://www.allitebooks.org

[FM-4]

About the Author

Rushi Gajjar is an embedded systems hardware developer and a lifetime
electronics enthusiast. He works in the field of research and development of
high-speed single-board embedded computers and wireless sensor nodes for the
Internet of Things. Apart from that, he studied MTech in embedded systems by
being involved in research at VIT University, Vellore.

Prior to this, his extensive work as a freelancer in the domain of electronics hardware
design introduced him to rapid prototyping development boards such as the
Raspberry Pi. In his spare time, he loves to develop projects on Raspberry Pi that
include vision, data logging, web servers, and machine learning automation systems.
He loves to teach Raspberry Pi projects to school students.

His vision encompasses connecting every entity in the world to the Internet to
enhance the human living experience. His hobbies include playing the tabla,
photography, and travelling.

www.allitebooks.com

http://www.allitebooks.org

[FM-5]

Acknowledgements

First of all, I must say thanks to my acquisition editor Richard Harvey. I never knew
that I could write a book on such an amazing topic as Raspberry Pi Sensors. He gave
me the opportunity and tremendous support and motivation before I wrote the
initial chapters. So thanks for selecting me out of millions as the author of this book
and inspiring me to do this.

Thanks goes also to my content editors Natasha Dsouza and Owen Roberts.
You were always ready to lend me a hand wherever I was stuck. Thanks for the
understanding and cooperation when I lost my pace of writing in the intermediate
chapters due to tremendous work pressure. Special thanks to Natasha, who has
poured hours of her time to edit the content and make it better, and supported me
throughout the time I spent writing this book.

Then, thanks to my technical content developers David Alcoba, Siddharth Bhave,
and Cédric Verstraeten. I sincerely thank you for investing your precious time
technically reviewing this book, and providing very useful additions and valuable
comments over the content, to make it more interesting for readers. By incorporating
your valuable suggestions, this book has achieved a really good shape.

How can I forget Shiny Poojary and team who edited the book technically and
filtered out errors in the content of the book. They totally changed the presentation
of the book. I thank her for her continuous support, working untiringly to edit the
book on time, and taking it to the final stage. I also thank all the employees of Packt
Publishing who were directly or indirectly involved in this project, for managing
everything and delivering it to the readers' hands.

www.allitebooks.com

http://www.allitebooks.org

[FM-6]

Thanks to my friends, professors, and colleagues. I would like to thank all my
friends, who have been part of my life, given me happiness, supported me to do
this, and wished me the best before I started working on this book. Thanks to the
professors at VIT University, and special thanks to Dr. Arun Manoharan for giving
me a small but very helpful insight into being an author. My colleagues at Leaf
Technologies always took updates from me about the progress of this book and
encouraged me to include strong content.

Above all, I would sincerely like to thank my parents for asking me every day about
this book's progress and showing keen interest in seeing it take shape, in spite of all
the time for which it kept me away from them.

www.allitebooks.com

http://www.allitebooks.org

[FM-7]

About the Reviewers

David Alcoba, for many years, considered himself a software engineer who liked
to play with electronics in his spare time. While being responsible for designing and
building highly secure distributed applications for the industry, he also decided to
start gaining more and more knowledge of digital fabrication tools every day. And
it was then that he realized he had just discovered a world where all of his different
interests could be merged into a single project.

Based on this idea, he helped create Vailets Hacklab in 2014, a local community in
Barcelona that aims to hack the current educational system so that kids might be
co-creators of their future through technology, instead of being just its consumers.

Following the spirit of this initiative, David decided to cofound Makerkids Barcelona,
 a small start-up focused on providing professional services for schools and
organizations to engage kids with the new maker movement and follow the STEAM
(science, technology, engineering, art, and mathematics) educative principles.

Nowadays, David feels that he is not an engineer anymore but a maker.

Siddharth Bhave is a big data researcher at the Center for Data Science at the
University of Washington. With a background in electronics and embedded systems,
he is interested in the distributed systems aspect of recent big data technologies
such as Hadoop and Spark. Siddharth implements and analyzes various machine
learning algorithms on Xeon servers. Characterizing their behavior and studying
the scalability of algorithms is something that he picked up during his internship at
Intel. During his MS degree in computer science, he worked on developing a piece
of middleware to work with real-time sensor data fed to a cluster of Raspberry Pi
nodes. He wants to translate his work to scale and expand the concept of Internet
of Things.

I would like to thank my family and friends, who always believe in
me, and all my teachers and professors, who always inspire me.

www.allitebooks.com

http://www.allitebooks.org

[FM-8]

Cédric Verstraeten holds an MSc in engineering and is primarily active in the
C++ community. He works as a software engineer and is a huge open source
enthusiast. He spends most of his time on side projects that can automate and
simplify people's lives. He's the organizer of the Raspberry Pi Belgium meet-up.

I would like to thank Packt Publishing for allowing me to be a
reviewer for this book. I really think their books can give people an
in-depth overview of a particular topic.

www.allitebooks.com

http://www.allitebooks.org

[FM-9]

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit
www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.com
and as a print book customer, you are entitled to a discount on the eBook copy. Get in
touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles,
sign up for a range of free newsletters and receive exclusive discounts and offers
on Packt books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print, and bookmark content
• On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

www.allitebooks.com

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com
http://www.allitebooks.org

[i]

Table of Contents
Preface v
Chapter 1: Meeting Your Buddy – the Raspberry Pi 1

A glance at the Raspberry Pi board 2
Setting up for the first time 8

Installing the operating system 8
Purchasing your SD card 8
Downloading the required software 9
Expanding the root filesystem 10
Logging in to the RasPi 10
Opening the desktop 11

Connecting the Raspberry Pi to the Internet 11
Internet connection through Wi-Fi dongle 11
Internet connection through Ethernet from a PC 12

Editing the command-line file of the RasPi 13
Turning on the RasPi 14
Changing cmdline.txt again to add the PC's Ethernet port IP address 15
Sharing the Internet connection between your PC and an Ethernet connection 15
Installing and opening the free SSH client on your PC 16

A crash course on Linux 18
The terminal and shell 18
Useful and frequently used Linux commands 19

Installing useful libraries 21
git-core 22
wiringPi 22

python-gpio 23
Be ready with Python and C 24

Writing and executing the Python program 24
Writing and executing the C program 25

Practice makes you perfect 26
Summary 27

Table of Contents

[ii]

Chapter 2: Meeting the World of Electronics 29
Basic terminologies of electronics 30

Voltage 30
Current 31
Resistor 31
Capacitor 31
Open circuit and short circuit 32
Series and parallel connections 32
Pull-up and pull-down resistors 34

Communication protocols 35
UART 36
Serial Peripheral Interface 38
Inter-Integrated Circuit 39

Useful tips and precautions 41
Understanding the GPIO port 42
It's time to glow LEDs! 45

Shell script and GPIO 46
LED blink and Python 47
Let's blink the LED with C code 48

Summary 49
Chapter 3: Measuring Distance Using Ultrasonic Sensors 51

The mysterious ultrasonic sensor 52
Distance calculation 53

Building the project! 54
Hardware setup 56
Software setup 59

Initial configuration 59
Setting the GPIO pins on the default mode 59
Sending and receiving the pulses 60

Calculation of distance 61
Fixing common problems 63

Is it showing the distance incorrectly? 63
Is the module not responding? 64
Are you measuring the distance less than 2 cm? 64

A wearable device for the visually impaired 64
Building the hardware 64
Software setup 65

Summary 69
Chapter 4: Monitoring the Atmosphere Using Sensors 71

Sensor selection process 72
Criticality of an application 73

Table of Contents

[iii]

Selecting a sensor package 73
Sensor properties 73
Purchasing the sensor 74
Available sensors 74

InsideDHT – temperature and humidity sensors 75
Introducing the photoresistor (photocell) 76
Building the project 77

Hardware setup 78
Breadboard setup 80

Preparing the code 81
Code the DHT sensor and measure relative humidity and temperature 81
Code the LDR sensor and measure light variations 85

Putting all the parts together 86
Troubleshooting common problems 90

Received DHT data is not valid 90
The LDR sensor gives a zero value 91
Is the voltage correct? 91

Summary 92
Chapter 5: Using an ADC to Interface any Analog Sensor
with the Raspberry Pi 93

Analog-to-digital convertors 94
Data reception and signal conditioning 95
Amplification 95
Sampling and quantization 96
Types of ADC 96
Resolution of the ADC 96
The math behind ADC 97
Data output 98

MCP3008 for analog-to-digital conversion 98
Channels 99
Ground 99
SPI 100
Reference voltage 100
Supply voltage 101

Making your own sensor station 101
Generic software preparation 105
Using your sensor station – make a temperature logger 109

Know the LM36 temperature sensor 109
Write the application 110

Summary 112

Table of Contents

[iv]

Chapter 6: Uploading Data Online – Spreadsheets, Mobile,
and E-mails 113

Internet of Things 114
Sensor nodes 115
Communication 116
The cloud 117
Data analytics 118
Security concerns 118

Hardware setup 119
Synchronizing the clock with the Internet 119
Uploading data on Google spreadsheets 121

Live feed on mobile phones 126
Getting notified by e-mails 126
Integrating everything 131
Common problems faced 131
Summary 133

Chapter 7: Creating an Image Sensor Using a Camera
and OpenCV 135

Image processing 136
OpenCV 138
Camera interfacing with the RasPi 138

The RasPi camera modules 139
USB webcam 140

Live streaming using a network camera 140
Porting OpenCV 142

Testing 147
Create a motion detector 149

Preparing shell to compile OpenCV and wiringPi 154
Amazing projects for you 156
Summary 157

Appendix: Shopping List 159
Basic requirements 159
Sensors 159
Integrated chips 160
Components 160
Others 160

Index 161

[v]

Preface
Raspberry Pi is a single-board, credit-card-sized, computer packed with many
opportunities to explore and invent. It is really amazing to see kids start coding
Python from scratch, and build a bird box that streams live video on the Internet to
check whether a bird has got its meal. I remember that when I was a kid, I used to
play with Lego toys attached to DC motors and batteries, which was engaging. At
that time, I could not imagine the logic that went into coding, and did not get any
chance to code my projects and control the movement of those Lego blocks using
a mobile phone. But I am lucky enough now to get an opportunity to explain such
projects and provide a launchpad for young creators who really have a passion to
create something and change the world around us.

The world is moving towards a new era. Technology is revolutionizing daily
needs and habits and making them available on a simple interface, which gave me
motivation to write a book on Raspberry Pi sensors. It's a world of creativity, and
the I believe that creativity comes when you start understanding and appreciating
the fundamentals and start applying logic to it. A lot of information and projects
on Raspberry Pi are floating on various webpages, and one wishes to achieve as
much as he/she can. I feel that the information on webpages is often observed as
incomplete. It gives us a quick start to build projects but does not explain what is
behind them.

It is known that without actually diving too deep into electronic devices and
communication protocols, you can start coding on Raspberry Pi and craft amazing
projects. I have colleagues around me who often need to code and wire the sensors
on the Raspberry Pi platform for their experiments. They can develop Python code
on artificial neural networks in a short span of time, but when it comes to wiring
something, they look around. I believe that a basic understanding of electronics is a
plus for such prodigies out there, who want to develop code on such platforms. In
the opposite scenario, hardware developers can wire sensors, ensures proper voltage
levels on device pins, but when it is time to code, they need help.

Preface

[vi]

The most interesting thing that I find with the Raspberry Pi is that I can still play
with the hardware components and soldering iron, and code my hardware to make it
live. This book provides a kick start for such creators, who really want to know how
things work together, and want a direction for starting projects on sensor interfacing
and the Internet of Things with Raspberry Pi. There is tremendous growth in
technology when we look towards the connected array of everything around us.

Internet of Things opens up a new world for collecting data and analyzing it for
better user experience. A lot of data from the array of sensors has been generated
from several different sensor nodes. In this context, the Raspberry Pi provides
us with the opportunity to start with simple projects, such as uploading data to
the Internet from a developed sensor station, as described in the chapters of this
book. This will be your first step to building an Internet of Things project. Another
interesting thing is that with the rise of Raspberry Pi 2 model B, developers have
got enough processing power to perform computation-intensive algorithms on the
Raspberry Pi. Therefore, image processing has been included in one of the chapters.
It would have been very difficult to try to explain image processing to beginners,
but I have at least tried to offer a simple start for readers so that they begin image
processing on their own.

This book explores five different projects, any of which can be a startup for different
ways of building electronics projects. The approach I have followed while preparing
the projects is quite interesting. This is the methodology I often follow to develop
complex hardware designs. Although I do not rely on breadboards (as I am more
into high-speed circuit designs), small project prototypes, some of which are covered
in this book, can easily be wired on breadboards. The first approach should be to
purchase the best hardware components (preferably through hole for breadboard
testing), on which you can rely when the code is not working or not giving the
proper results. Prepare a block diagram and consider each issue that may occur
during hardware and firmware design. Second, read datasheets of components used
and ensure every single entity meets the design requirements. Thirdly, wire the
components to the breadboard and check it thoroughly. Finally, when the hardware
is built robustly, write the code (or firmware), and rewrite it to make it more perfect.
Remove the unnecessary variables and unreachable code or loops, handle interrupts,
define the sleep time and watchdogs of a processor, and manage proper memory
segments to avoid crashes. However, this book has followed mostly simple code
that does not go that deep into managing embedded programming. Installing
useful coding libraries on the Raspberry Pi takes care of the faults often created
by a programmer. Just call a function and it does all the embedded calls in the
background. Thanks to the developers of the Raspberry Pi libraries, with which we
build more robust code (whether knowingly or unknowingly). When you prepare a
sample of code, I advise you to break it down into pieces.

Preface

[vii]

You may face some difficulty when building the project for getting data from
temperature, humidity and light sensors. First, get it done for temperature and
humidity, and then code for the light sensor. Whenever both pieces of code give
you the desired values, recode them. Then you can combine them by managing the
function calls.

When writing the chapters, I have followed a common theme across the book: first
the setup, then the purpose of the project, and finally describing the hardware
with complete details. In some of the chapters, the software has been divided into
components, and then they have been merged so as to avoid monotony for you. I
apologize to you for being lengthy in the theory portion in some parts of this book,
but I am sure that you will love to read and learn a lot from it, and you can get the
most out of it.

Any questions, improvements, and suggestions are welcome, and should probably
take place in the GitHub issues for the book at https://github.com/rushigajjar/
raspberrypisensors so that everybody can take part. Besides that, anybody can
contact me on LinkedIn at https://in.linkedin.com/in/rushigajjar, and send
messages regarding their interesting projects and startups. I would really love to
hear about it. Or you can send tweets by sharing temperature and luminance values
at @rushigajjar once you get your air conditioner and lights automated!

What this book covers
Chapter 1, Meeting Your Buddy – the Raspberry Pi, gives an introduction to all the
models of Raspberry Pi available in the market, including the recent Raspberry Pi 2
model B. A method of installing the operating system and interesting ways to share
the Internet with the Raspberry Pi are discussed. Then we perform some hands-on
coding in Linux terminal, Linux shell scripting, Python, and C on the Raspberry Pi.

Chapter 2, Meeting the World of Electronics, explains the fundamentals of electronics and
communication protocols by which electronic devices communicate. Experiments with
GPIO are more interesting to perform with the shell, Python, and C languages.

Chapter 3, Measuring Distance Using Ultrasonic Sensors, shows you how to set up
an ultrasonic sensor with the Raspberry Pi and learn to take care of different
voltage levels across the devices. We prepare a code to get our ultrasonic sensor
running, and develop an aid for a visually impaired person with an obstacle
avoidance system.

https://github.com/rushigajjar/raspberrypisensors
https://github.com/rushigajjar/raspberrypisensors
https://in.linkedin.com/in/rushigajjar

Preface

[viii]

Chapter 4, Monitoring the Atmosphere Using Sensors, develops your skills in choosing a
sensor from many that are available in the market. We then implement the hardware
and software required for temperature, humidity, and light sensors to automate our
home appliances.

Chapter 5, Using an ADC to Interface any Analog Sensor with the Raspberry Pi, explains
interfacing of analog-to-digital convertors with an array of sensors. We build a
sensor station for the Raspberry Pi using serial protocols to use the generic software
function built, to get data from any sensor interfaced with it. Finally, the data can be
stored in a log file for analysis.

Chapter 6, Uploading Data Online – Spreadsheets, Mobile, and E-mails, takes a dive
into the Internet of Things and sensor nodes. With the help of the sensor station
developed in the previous chapter, we upload the data to online spreadsheets and
observe a real-time graph. We also get emergency e-mails on our e-mail platforms.
Once you get your project done, you can send your sensor values to rushi.
raspberrypisensors@gmail.com.

Chapter 7, Creating an Image Sensor Using a Camera and OpenCV, covers the basics of
image processing and how an installation of the OpenCV library can be performed
successfully. Using a camera, we will develop an IP camera to install in your
backyard to observe live streaming of activities. Further, we will build a piece of
motion detection code in OpenCV to detect human movement in a particular area
and capture an image for an immediate alert.

Appendix, Shopping List, includes the list of the hardware components that need to
be purchased in order to perform the hands-on tasks described in the book. From
chapter 2 onwards, these components will be required to test our codes. You can
directly take this list to the electronics distributors near you and come home with a
filled shopping bag!

What you need for this book
There are no special demands for implementing the projects of this book on the
Raspberry Pi, except the essential hardware components! You can use a personal
computer with Linux, Windows, or Mac OS X to connect the Raspberry Pi to it. Any
of the Raspberry Pi models available in the market (Raspberry Pi 1 models A+, B, or
B+, or Raspberry Pi 2 model B) should be okay for performing experiments on the
code. You can refer to the Appendix, Shopping List, for the requirement of hardware
before getting into Chapter 3, Measuring Distance Using Ultrasonic Sensors, and the
later chapters.

Preface

[ix]

Who this book is for
This book is perfect for hardware enthusiasts who want to create a variety of projects
using the Raspberry Pi. It is for people who have prior programming experience,
especially in Linux, C, and Python, but it's not limited to them. Those who do
not have programing knowledge can get the essentials from the book and start
developing the projects instantly. In any case, this book will get you ready with all
the latest electronics concepts that are required for hardware programing with the
Raspberry Pi.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"There are two functions in the spi-dev library for sending the data to SPI
slave devices."

A block of code is set as follows:

import RPi.GPIO as GPIO
from time import sleep
GPIO.setmode(GPIO.BCM)
GPIO.setup(17, GPIO.OUT)
Print "All Set in Python! Let's Blink"

Any command-line input or output is written as follows:

sudo nano /etc/modprobe.d/raspi-blacklist.conf

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "Select
the Enable Camera option in the configuration settings using the keyboard."

Preface

[x]

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list of
existing errata, under the Errata section of that title. Any existing errata can be viewed
by selecting your title from http://www.packtpub.com/support.

www.packtpub.com/authors
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/support

Preface

[xi]

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem
with any aspect of the book, and we will do our best to address it.

[1]

Meeting Your Buddy – the
Raspberry Pi

The world is being automated, with huge chunks of data being produced and
processed for the analytics, controlling, and connecting purposes. The Raspberry
Pi board can provide a vast range of automation and data processing if used
vigorously. This tiny board provides ample functionalities and opportunities to
change the world around us. This chapter is the first step towards doing that.

If you are first-time Linux user or are new to programming, it may seem difficult to
understand many commands and codes, but the motivation to change the world is
likely to be enough to start building the projects. This chapter provides an easy guide
to start using the Raspberry Pi board and the total build-up for the users to interface
the sensors. It will make the Raspberry Pi your best buddy. It is important to know
the steps included in this chapter to rapidly build the projects. This chapter covers:

• A basic understanding of the Raspberry Pi board and its useful connectors
• Steps to install the operating system for the first time
• Unique methods to share the Internet connection with the Raspberry Pi
• Linux basics and useful shell commands
• Installing important libraries
• Introduction to compiling and executing C and Python programs
• Practice problem statements for Shell, C, and Python

Meeting Your Buddy – the Raspberry Pi

[2]

A glance at the Raspberry Pi board
Before we get started, it's time to reintroduce our good friend, the Raspberry
Pi. Kudos to the designers of the board, who have packed everything we need
to accomplish our projects in a credit-card-sized printed circuit, also called a
credit-card-sized single-board computer. There are two versions of Raspberry Pi:
Raspberry Pi 1 and Raspberry Pi 2. Due to earlier developments, the Raspberry
Pi 1 family consists of model A, model A+, model B, and model B+. The recently
launched model is Raspberry Pi 2, the new addition to the model B category.
Nowadays, the most widely used Raspberry Pi is model B+, which is also called
the original Raspberry Pi board in the Raspberry Pi 1 family. The predecessor of
the Raspberry Pi models B and B+ was model A, which is not widely used in the
hobbyist space compared to other models such as A+ and B+. If you are not aware
of the specifications of these boards, take a look at the complete comparison in the
following table, which contains the comparable parameters of the current models of
Raspberry Pi 1 and 2. Then you can choose a board that you want.

Features Raspberry Pi 1 Raspberry Pi 2
Models B A+ B+ B
Processor BCM2835 BCM2836
Processor cores Single Quad
Speed 700 MHz 900 MHz
RAM 512 MB 256 MB 512 MB 1024 MB
GPU VideoCore IV
Pin header 26 pin 40 pin 40 pin 40 pin
Audio and video
ports

RCA,
HDMI port

3.5 mm jack, merged audio-composite video and
HDMI port

Ethernet port Yes No Yes Yes
USB ports 2 1 4 4
Power Micro USB port
Digital interfaces CSI (camera), DSI (display) ribbon cable connectors
Memory card SD MicroSD

Chapter 1

[3]

Raspberry Pi 1 has a Broadcom BCM2835 processor with a 256 MB or 512 MB RAM
on top of it. The processors and RAM are integrated as Package on Package (POP).
On the other hand, Raspberry Pi 2 has a Broadcom BCM2836 processor, which comes
with a 1024 MB RAM interfaced beneath the board. Raspberry Pi 1 model A+ is
still loved by minimal RasPi users who need low-powered performance when they
are running on batteries. There's lots of good stuff here: RAM states the temporary
memory available to run the current processes and applications. Multimedia
processing ensures smooth graphical processing to run high-resolution videos
through HDMI and video-extensive applications on Raspberry Pi.

We have already decided to make the Raspberry Pi our friend, and
like all our friends, it requires a unique and cool name so that we
can call it easily when we need it. I would like to call it a RasPi, so
throughout the book, whenever you are referring to the name RasPi,
it's your buddy, Raspberry Pi.

Your new friend has all the capabilities that your computer has. The RasPi can
be used to understand how a computer works, to learn programming, for word
processing, and for gaming. Here are the small and shiny hacks that we can do
with RasPi:

• Do you want to watch your favorite high-definition movie just by connecting
a display to it? You can do this.

• Do you want to use RasPi as a web server, where you can run your websites?
Not a problem with RasPi.

• Do you have a vacation and want to play video games, such as Minecraft?
You can try using RasPi.

• Do you want to use it as your point-and-shoot digital camera while you are
going to visit a zoo this weekend? Easy!

• You can even make your own robot or quadcopter using the RasPi. Wow!

Meeting Your Buddy – the Raspberry Pi

[4]

All of these features come in such a small piece of board.

Does this make you excited? Obviously, yes! There are such
numerous applications that we can build with the RasPi, but they
are out of the scope of this book.

Because of its ability to interact with the outside world, the major applications
developed using RasPi include recognizing the surrounding parameters using
sensors and converting them into useful data to analyze and control the appliances
that we are going to experiment in the upcoming chapters.

I assume that you have the RasPi (model B or B+) in your hand, and you might be
wondering what are the different connectors and electronic elements on the board.
Rather than introducing the jargon of specifications, I will introduce what we need to
make our projects. Take a look at the different connectors in the following diagrams.
The nomenclature presented here will be used throughout the book.

The Raspberry Pi 1 model B connectors

The Raspberry Pi 1 model B+ and Raspberry Pi 2 model B look identical to each
other, and the difference is only in performance.

Chapter 1

[5]

The Raspberry Pi 1 model B+ and Raspberry Pi 2 model B connectors

Due to a more powerful processor and an upgraded RAM, Raspberry Pi 2 Model B
improves on performance by six times. In a clockwise direction in the diagram of the
RasPi 1 model B, the short description of the important connectors is as follows:

• GPIO header: GPIO stands for General Purpose Input Output, which has
been brought out to pin connectors present on the board. The processor on
board (BCM283x, which is the brain of a RasPi) has a facility to provide a
specific functionality during the runtime of your own program. We are going
to use them a lot in the upcoming chapters. The great thing with this is that
you can assign a specific task to the specific GPIO in your program, and
while your program executes, it goes to logic low or high (triggers to off state
and on state) accordingly. We can read values from any other peripherals,
such as sensors, and compute the received values in your own programs.
Apart from reading the values, we can show the result of the program by
connecting LEDs or embedded LCD displays to the board. Depending on
the decision taken in the code, we can drive a motor connected on GPIO
through a motor driver circuit. This feature on RasPi makes a huge difference
compared to the normal computing board by giving developers the freedom
of crafting the creation.

Meeting Your Buddy – the Raspberry Pi

[6]

For example, in one of your applications, if the temperature falls below
20 degree Celsius then the thermostat connected to your RasPi gets the
signal through the specific GPIO assigned and it starts heating. GPIOs
typically work in logic high (1, ON) and logic low (0, OFF), and this
will work the way you program it!

• RCA video out: This is the most widely used and one of the oldest
connectors that both old and new televisions or displays use. It carries the
video signal, which is the type output on the RasPi. The RCA connector or
composite video signal is merged with a 3.5 mm audio jack on RasPi 1 model
A+ and model B+ and RasPi 2 model B.

• 3.5 mm audio out jack: If you are not using the HDMI connection (which will
be described soon), the audio can be played through speakers or headphones
using a standard 3.5 mm jack. In RasPi 1 model B+ or RasPi 2 model B, audio
jack being the combination of composite and audio has all the functionalities
of composite video and audio out.

• USB: This is the most common connector, widely used in the modern
computers, and hence called the Universal Serial Bus. You can connect your
flash drives, keyboard, Wi-Fi dongles, and mouse to play around with the
RasPi. You can also connect the externally powered USB hub with RasPi to
connect more USB-based peripherals on it.

• Ethernet: This is one of the most important connections to have a remote
login on RasPi and to provide wired internet connection. In the next sections
of this chapter, we will be using it widely. We cannot always connect RasPi
to the dedicated display, so we use the remote login, and we see the entire
desktop or Command-line Interface (CLI) of RasPi on our computer screen.

• CSI camera connector: The RasPi board does not come with camera module
integrated, but a separately bought camera module can be interfaced using
the CSI connector via a 15 cm flex cable. A longer flex cable will lead to
bad quality of images. The 5-megapixel Raspberry Pi camera module can
be used to record high-definition videos as well as still photographs. It's
easy to use for beginners, but has plenty to offer advanced users if you're
looking to expand your knowledge. This camera module provides improved
performance over a USB-connected camera.

• HDMI connector: The High-definition Multimedia Interface (HDMI) is a
compact audio/video interface used to transfer uncompressed media data.
You can connect your modern HDTV to watch full high definition (FHD/
HD) videos through the RasPi. If you plug in the HDMI connector, there
is no need to connect the speakers to the audio jack, and if you want to get
sounds on both HDMI and the 3.5 mm jack, then you'll have to play with and
edit the internal files of Linux.

Chapter 1

[7]

• Micro USB power: You survive on food, don't you? Well, so does the RasPi
(kind of). It needs power supply to operate. The device can be powered by
a 5V input voltage, and the current ratings solely depend upon what you
have hooked up with RasPi. Have you seen any power button on RasPi? In
fact, the RasPi module does not have the power on button. Therefore, just
plugging the micro USB power adapter will boot the RasPi.

The maximum current the Raspberry Pi models A and B can use is 1
ampere, so if you need to connect a USB device that will take the power
requirements of the Raspberry Pi above 1 ampere, then you must
connect it to an externally powered USB hub. For example, a USB hard
disk will need an ample amount of current to operate, which RasPi
cannot deliver through the USB port. Alternatively, the maximum
power model B+ can use is 2 amperes before needing to connect
devices to an externally powered USB hub. There are power banks and
batteries available for connecting to the RasPi if you are designing a
remotely operated car or a quadcopter. If you are not sure how much
power the USB device is going to take, buy an externally powered USB
hub. Do not go above 2.4 amperes in any case, because this will destroy
your RasPi if peripheral current demand is high—it'll be dead!

• SD card slot: The SD card is important because it is where the RasPi keeps its
operating system. It is also where you will store your documents, programs,
and pictures. It is the secondary and a necessary memory part for the RasPi,
the on-board RAM being the primary. Model B requires the standard-sized
SD card (the big one!), whereas model B+ requires the microSD card.

It is suggested to purchase the microSD card with the SD card adaptor
so that if you switch over from RasPi 1 model B to B+ or RasPi 2 model
B, you can retain the same operating systems and your programs.
Additionally, after installing the libraries and setups, the OS crash can
be painful. To avoid this, the periodical backup of the entire OS should
be taken, and this can be used to install the OS on a new SD card again.
The microSD card can easily be contained in an SD adaptor to convert
it into a normal SD card, with no performance losses.

• Display connector: Last but not least, the display connector is used to
connect a 7-inch finger-touch LCD display to the board for your embedded
product development. But usually, the RCA and HDMI are enough. If your
application requires this, then you will need to use it.

www.allitebooks.com

http://www.allitebooks.org

Meeting Your Buddy – the Raspberry Pi

[8]

Setting up for the first time
Following your recent purchase of the RasPi, you now have to make it ready to
work for you. In this section, we are going to install an operating system on which
our RasPi will run. The most popular, stable, and widely used operating system for
RasPi is the Wheezy-Raspbian.

The Raspbian runs on an open platform, Debian Linux. Why are we going to use
Raspbian instead of directly using Linux and other flavors of Linux? Simply because
Raspbian has all device drivers written for the RasPi. In brief, the device driver is
a program that gives the details of the hardware to the running operating system
and supports the user interface to take/give commands from/to the hardware. As
our RasPi has different hardware than a personal computer or general-purpose
computer, the modified operating system is needed to completely use all resources
on the hardware. It is best for those who want to follow the default standards.

You can download the Wheezy-Raspbian install file (known as an image file) from
the Raspberry Pi foundation's website at http://downloads.raspberrypi.org/
raspbian_latest. If you want to install the GUI-free flavor of Linux (Direct CLI),
you can try Arch Linux. It can be downloaded from the ArchLinuxArm web page at
http://archlinuxarm.org/os/ArchLinuxARM-rpi-latest.tar.gz.

Installing the operating system
We need some essential components to successfully start up the RasPi. Note that this
subsection is for those users who are using the RasPi for the first time and have not
purchased the preloaded SD card. If you have installed the operating system on your
SD card, then you can skip this section, or just look at the procedure to help your
friend who has just brought a new RasPi.

Purchasing your SD card
When you buy a RasPi module, it may or may not be sold with an SD card. If your
RasPi did not come with an SD card, then the minimum size you should get is 4 GB.
RasPi doesn't have any on-board memory, so purchasing an SD card is the only way
to get data storage as well as an operating system. I have an 8 GB SD card for my
RasPi, and it works well and is sufficient for doing almost all projects.

For server applications, if you require more space, then an SD card
with higher space will be useful.

http://downloads.raspberrypi.org/raspbian_latest
http://downloads.raspberrypi.org/raspbian_latest
http://archlinuxarm.org/os/ArchLinuxARM-rpi-latest.tar.gz

Chapter 1

[9]

Downloading the required software
Once you have an SD card, you are ready for this step. These steps are broadly
explained in my personal blog too, which you can visit at http://rushigajjar.
blogspot.in/2014/03/setting-up-raspberry-pi-for-first-time.html.

Let's see the procedure for different operating systems.

Windows
These things need to be kept in mind while working on Windows:

• Format the SD card: Use the SD Card Association's tool (www.sdcard.org/
downloads) to format/wipe your old data from the SD card. Use of the SD
formatter provides optimal performance for your memory cards compared
to the generic formatting facilities provided by your computer's operating
system.

• Write the image of the OS on an SD card: The downloaded Raspbian OS
will be written from a raw disk image to a removable device using the
popular and free tool, Win 32 Disk Imager (sourceforge.net/projects/
win32diskimager/). Follow the steps on the screen, and you can easily write
an image of Raspbian on your SD card. Once you are done with this process,
jump to the next section.

Mac OS X
The following things need to be kept in mind while working on Mac OS X:

• Download software to write the image of the OS on an SD card: There are
multiple tools available for Mac OS X users such as ApplePi-Baker, PiWriter,
and Pi Filler. PiWriter is a CLI-based tool, whereas ApplePi-Baker and Pi
Filler are GUI-based tools. Pi Filler is recommended to be used because it
is simpler and faster than other tools. It can be downloaded from http://
ivanx.com/raspberrypi/files/PiFiller.zip.

• Write the image on the SD card: Insert an SD card, locate or choose the
downloaded image in the tool, and erase the SD card in the automatically
popped-up menu. Select the continue button to write the image on the
SD card.

Linux
These things need to be kept in mind while working on Linux:

• Unzip the downloaded image: If you are using a GUI-based Linux OS on
your desktop computer, open the download folder and unzip the OS by
right-clicking on Extract Here.

http://rushigajjar.blogspot.in/2014/03/setting-up-raspberry-pi-for-first-time.html
http://rushigajjar.blogspot.in/2014/03/setting-up-raspberry-pi-for-first-time.html
www.sdcard.org/downloads
www.sdcard.org/downloads
sourceforge.net/projects/win32diskimager/
sourceforge.net/projects/win32diskimager/
http://ivanx.com/raspberrypi/files/PiFiller.zip
http://ivanx.com/raspberrypi/files/PiFiller.zip

Meeting Your Buddy – the Raspberry Pi

[10]

• Download the software to write the image of the OS on an SD card: You
can install image writer from the Ubuntu Software Center. Open Software
Center and search for ImageWriter. Insert the SD card in your desktop and
follow the GUI (click on the Write to Device button) to locate and write the
image on your SD card.

Expanding the root filesystem
Now, it's time to start the RasPi for the first time. After the process of writing an OS
on the SD card, insert the SD card into the slot available on the RasPi. Connect the
display (or TV) through an RCA or HDMI connection, and power up the RasPi by
connecting a power supply to the micro USB connector. You will be able to see the
configuration screen. Directly select the expand_rootfs option (from the keyboard
connected through the USB of the RasPi) and wait for some time to complete the
background process. When you write the image on the SD card, everything is in a
compact bundle, where it needs to be expanded for the RasPi's complete operation.
Expanding the root filesystem (expand_rootfs) resizes the partitions in the SD card
and allows us to utilize the memory space in it. By this point, you should restart your
RasPi.

Before powering up the RasPi using the micro USB cable, the SD card
must be inserted and the HDMI cable must be attached. RasPi reads
the signals coming through HDMI to check the display connection. If
the display is not available at the first point of startup, it disables the
HDMI interface and streaming to optimize performance.

Logging in to the RasPi
When the RasPi restarts, you will be able to see many pieces of code running on the
screen. Don't panic! It's a normal process that goes on in the RasPi. When it becomes
stable, it will prompt you to enter the username and password. By default, the
username and password are pi and raspberry respectively.

Note that while you are writing your password, you will not be able
to see anything coming on the screen; don't worry. Welcome to the
Linux world!

Once you've entered the correct password, you will be able to see the CLI with
pi@raspberrypi~$on your screen, monitor, or TV, which is now ready to take
commands from you. Aye, aye, captain!

Chapter 1

[11]

Opening the desktop
Enter the startx command as pi@raspberrypi~$startx and press Enter. Now you
have a white screen with the Raspberry Pi logo and a GUI that looks similar to our
personal desktop computers. Take a bite!

So, we saw an easy and compact guide for setting up the RasPi for the first time.
We'll now add more functionality to our RasPi by providing an Internet connection
for it. A computer is incomplete without an Internet connection, and so is our RasPi.
This is something we need to solve, especially as we can directly download useful
libraries and applications on the RasPi through the internet.

Connecting the Raspberry Pi to the
Internet
Once you have finished setting up the RasPi, it's time to connect it to the Internet.
Basically, there are two very common ways of connecting the RasPi to Internet: the
first (and easiest way) is via Wi-Fi connection using a Wi-Fi dongle, or transceiver;
the second is somewhat tricky but it's the most economical and practical way to
utilize everything you have and without an additional Wi-Fi dongle. This will
require a laptop/desktop computer (a PC) and an Ethernet cable. We will see how
to follow each of the ways.

Internet connection through Wi-Fi dongle
You can purchase the dongle for the RasPi from any leading online store or an
electronics store near you. It ranges from 10 to 20 USD at the time of writing this
book. While in the process of purchasing, read about the power requirements of
the dongle. You can purchase the miniature Wi-Fi dongle available on Adafruit, or
a dongle from brand names: PiFi or Edimax. If you are thinking of giving a try to
Ethernet Internet connection sharing, then this section can be skipped. The basic
steps for enabling the Wi-Fi network connection are introduced here.

It is advisable to use either of the methods at once. If you choose to use
the Wi-Fi dongle, then you can skip the section of Ethernet sharing and
vice versa.

In the CLI of the RasPi, enter the following command to note down the
gateway and netmask of the Ethernet connection so that you can add a
static IP defined in the interface file in the upcoming steps:
netstat -nr

Meeting Your Buddy – the Raspberry Pi

[12]

We have to perform the following steps to enable the Wi-Fi network connection:

1. Go to the network interfaces file of the RasPi by entering the sudo nano /
etc/network/interfaces command in the CLI. Note that you will get
acquainted with these commands in the upcoming sections. Once you enter
the command, the text you need to change is this:
auto lo
iface lo inet loopback
iface eth0 inet static
address 169.254.0.2
netmask 255.255.0.0
broadcast 169.254.0.255
gateway 0.0.0.0

allow-hotplug wlan0
iface default inet dhcp
 wpa-ssid "ssid_name"
 wpa-psk "password"

Do not forget to put ssid (your network name) and your password
(you know it!) in the quotes.

2. After editing the file, press Ctrl + X and press Y to confirm the edit made
by you.

Shut down the RasPi by entering the sudo poweroff command. You then need to
connect the Wi-Fi dongle and turn it on again. While it is booting up, it finds the
Wi-Fi adaptor connected to it. Pretty simple, isn't it!

Internet connection through Ethernet from
a PC
All of the preceding steps require a dedicated display, mouse, keyboard, and all
other cables to get the view of the working RasPi. For regular uses, this is somewhat
bulky to carry all of these along with your RasPi. At this stage, I assume that you
have already installed Raspbian OS.

Chapter 1

[13]

For this method, you just need your laptop/desktop (it already
has an inbuilt Wi-Fi module, which is why we don't purchase
an additional Wi-Fi dongle for RasPi until we have a special
requirement), the Windows operating system, and an Internet
connection. You do not need any add-on displays, keyboard,
mouse, or Wi-Fi dongles connected with the RasPi.

So all we need is an Ethernet cable, a power supply to RasPi, the SD card with
Raspbian, a Windows-based PC with an Ethernet port, an SD card reader for the PC
(just required for the first time, either inbuilt or as an add-on SD card reader), and
the RasPi (obviously!).

Assemble all of these on a neat table and just start your laptop without starting up
the RasPi. I will run you through the step-by-step process. If you follow it, you'll
have a working Internet connection provided from your PC to your RasPi with no
added costs of Wi-Fi dongles.

Editing the command-line file of the RasPi
The first step is to edit the file that RasPi checks when it starts booting. Try inserting
the SD card of the RasPi into your PC's SD card reader. Open Explorer (where all the
drives are listed); there, you can find the removable media. You will be amazed to
see that the partition is about 15 MB to 20 MB, but your card is actually 8 GB or 16
GB! Don't panic; it's just the boot space of RasPi. You will be able to see the multiple
files on this media. We are interested in editing the cmdline.txt file. Just double-
click on the file (or open it in standard Notepad), and you will be able to see the
following startup commands:

dwc_otg.lpm_enable=0 console=ttyAMA0,115200 kgdboc=ttyAMA0,115200
console=tty1 root=/dev/mmcblk0p2 rootfstype=ext4 elevator=deadline
rootwait

You can change some settings by adding the static IP address of your RasPi at the
end of the line (take a look at the following code). There is no need to understand the
meaning of all of these parameters at this stage; I will introduce them when they will
be useful.

dwc_otg.lpm_enable=0 console=ttyAMA0,115200 kgdboc=ttyAMA0,115200
console=tty1 root=/dev/mmcblk0p2 rootfstype=ext4 elevator=deadline
rootwait ip=169.254.0.2

In bold, you will see the static IP we have provided for the RasPi.

Meeting Your Buddy – the Raspberry Pi

[14]

From now onwards, you'll always have to access your Pi using this IP
address, when you access it from your PC.

If you are a Linux or Mac OS X user, insert the SD card into the
SD card reader. There will be two partitions visible. Open the boot
partition and follow the same process explained to add the IP address
to the cmdline.txt file.

Save the file, safely remove the SD card from the PC, and move on to the next step.

Turning on the RasPi
Now it's time to start and boot the RasPi by inserting the SD back into the RasPi.
Establish an Ethernet connection between the RasPi and your PC before powering
up the RasPi. You will see now multiple LEDs blinking on RasPi, stating that the
Ethernet connection is being established and there is a transfer of data occurring
between the PC and the RasPi. Check the working connection of PC and RasPi by
entering ping 169.254.0.2 in Command Prompt (Start Menu | Run | cmd.exe).
Note that we are using the same IP address as entered in the cmdline.txt file. It
should give a response like this:

The ping command allows us to send the predefined size of packets to the host
systems and expects them to be reflected back. The Lost = 0 section in the response
shows that all the packets sent from the PC to the RasPi are reflected back and the
connection is working.

Chapter 1

[15]

For Linux and Mac OS X users, the connection can be verified by entering the ping
169.254.0.2 command in the terminal. Enter the ping command in the same
Command Prompt to get the Ethernet port IP address of your PC. Following this,
enter ipconfig (ifconfig in the case of Mac OS X and Linux users) and note down
the IP address of the LAN connection (Ethernet), which is 169.254.121.232 in the
following screenshot:

You will be able to see these Ethernet IP addresses only if the RasPi is
in the "powered on" state. Otherwise, you will see no IP address.

Changing cmdline.txt again to add the PC's
Ethernet port IP address
Shut down the RasPi (sudo poweroff), remove the SD card, insert it back into your
PC, and follow the Editing the command-line file of RasPi section. Add the noted IP
address (in this case, it's 169.254.121.232) at the end of the cmdline.txt file, as
shown in the following code:

dwc_otg.lpm_enable=0 console=ttyAMA0,115200 kgdboc=ttyAMA0,115200
console=tty1 root=/dev/mmcblk0p2 rootfstype=ext4 elevator=deadline
rootwait ip=169.254.0.2 ::169.254.121.232

Here, the double colon (::) is the most important part to be put between the RasPi's
IP address and your PC's IP address. Then, save the cmdline.txt file.

Sharing the Internet connection between your PC
and an Ethernet connection
Turn on the RasPi after safely inserting the SD card back into RasPi and plugging in
the micro USB adapter. On a Windows PC, you need to open Network and Sharing
Center by navigating to Control Panel | Change adapter settings, right-clicking on
the adapter where you are getting Internet connection, and going to its properties.

Meeting Your Buddy – the Raspberry Pi

[16]

Look out for possible Internet connectivity on your PC through
a wireless Internet connection.

Click on the Sharing tab. Keep the Allow other network users to connect through
this computer's Internet connection option checked and click on OK. This setting
changes the IP address of the Ethernet port of the PC; we need to reset it.

In the same window of the adapter settings, go to the properties of the Local
Area Network connection (Ethernet), double-click on the IPv4 settings, and click
on Obtain an IP Address Automatically as well as Obtain DNS server address
automatically.

The IP address we provide for the RasPi may have a subnet class different
from the network in your home. The interesting point is that this subnet
class remains between the RasPi and PC. Don't panic if the Wi-Fi adapter
of your PC is getting IPs in range of 192.x.x.x. This method still works,
as Windows allows the Internet sharing between cross subnets. This is
because we have enabled the Internet sharing and Ethernet settings as
automatic. Therefore, it is clear that the Wi-Fi-to-PC (192.x.x.x) and
PC-to-RasPi (169.254.x.x) scenarios work successfully.

Mac OS X user can follow the same steps by navigating to Preferences | Sharing and
it would be very easy to follow the GUI.

Linux users can click on network menu in the top panel and navigate to Edit
Connections... and then double click your wired connection and keep the wireless
connection untouched. Navigate to the IPv4 Settings tab and select method: Shared
to other computers.

Installing and opening the free SSH client on
your PC
Secure Shell (SSH) is a cryptographic network protocol for secure data
communication. It means remote command-line login and remote command
execution between two networked computers. Here, we use it for the command-line
login and remote command execution between the PC and the RasPi. A one-of-a-
kind and free SSH client is PuTTY (www.putty.org) for Windows, and since it is an
open source, you can download it for free. Run PuTTY on your Windows PC and
change the settings as follows:

www.putty.org

Chapter 1

[17]

For Linux and Mac OS X users, there is no need to install the PuTTY
client, as they can directly perform this task from their terminal
window by the ssh pi@169.254.0.2 command.

1. In the Host Name textbox of PuTTY, provide the same IP address that you
entered in cmdline.txt (which is 169.254.0.2, as per the example given in
the previous section).

2. Following this, navigate to Category | Connection | SSH | X11 and check
the Enable X11 forwarding option.

3. In the left-side Category menu, click on Session, enter the session name
in the Saved Sessions field, and save it so that you don't have to save the
settings every time you connect the RasPi with the PC.

4. Double-click on the saved connection and enter the ID and password; you
will get the CLI on the screen of your laptop. Now how do we check the
working Internet connection on the RasPi?

5. The answer to the preceding question is simple; enter the following
command to check the Internet connection:
ping -c 4 www.google.com

You should get the same response with 0 percent packet loss, and now you have a
working Internet connection on your RasPi. All of this is one-time hard work; later
on, if you just have to keep your settings unchanged, log in to PuTTY, and enjoy the
Internet on the RasPi. For the first time, setting up is somewhat a long process, but
you know you've saved almost 10 USD for a Wi-Fi dongle. Isn't that a great thing?

Here is a beautiful tip: you can install Xming from http://www.
straightrunning.com/XmingNotes/, which is an X Windows
System Server. Once it is installed, run it and you should see that there
is no window. Worry not because as soon as you magically input the
command lxsession in PuTTY, you will see the entire desktop of the
RasPi on your PC's screen. A program similar to Xming is VNC Viewer,
which directly opens the desktop of the RasPi by entering the IP address
of the RasPi without logging in from PuTTY. Amazing, right?

http://www.straightrunning.com/XmingNotes/
http://www.straightrunning.com/XmingNotes/

Meeting Your Buddy – the Raspberry Pi

[18]

A crash course on Linux
Many authors and books will teach you the concepts of the Linux operating
system, so I will just quickly introduce Linux here. You can refer to Beginning Linux
Programming 4th Edition, Wrox Publishing, written by Neil Matthew and Richard
Stones. For shell scripting, you can refer to Linux Shell Scripting Cookbook Second
Edition, Packt Publishing, written by Shantanu Tushar and Sarath Lakshman. This
operating system is mostly known for its non-user-friendliness to beginners! When
users start using Linux, they often wonder, "Why is this operating system widely
used and famous?" Linux is the biggest open source platform for hobbyists like us,
and it allows us to modify the kernel of the operating system the way we want.
Some advantages of using Linux include (and are certainly not restricted to) being
free, stable, quick, and dependable under the General Public License (GPL).

You can build your own personalized operating system using Linux kernel
distributions, for example, a Raspbian developed on the Debian flavor of Linux.
We need our customized operating systems because if we develop our personalized
hardware, we know how it should be programmed and we develop the drivers
according to our needs on top of the Linux kernel. We will now go through the
most powerful tool in any Linux operating system—the terminal.

The terminal and shell
The most important tool of the Linux operating system is the terminal—the CLI of
Linux. Windows users may have already come across Command Prompt (as we used
in the previous section) and Mac OS X users may be familiar with the terminal. Once
you learn the commands of the terminal, the Linux world opens up to you. Using
the terminal, you can easily interact with the operating system and its kernel, which
indirectly connects you and enables you to access the hardware resources. Shell is
a command language translator (or interpreter) that executes command input from
user. Shell uses the Linux kernel to execute commands.

In the terminal, you can use many shells. One of the most common shells is called
Bourne-Again Shell (Bash). Unless you get into the complicated programming of
shell, which is also known as shell scripting, you may not feel the strengths and
weaknesses of a particular shell. Most of the simple commands remain the same
for different shells. Shell scripting is useful when you want to do postprocessing on
your files in the same or different directories, modify the usual commands of Linux
by your own way, or just print or execute a program. Shell scripts allow several
commands that would otherwise be entered manually in a command-line interface
to be executed automatically, without waiting for a user to trigger each stage of the
sequence. This allows us to create the preconfigured file to execute the C programs
for our sensors in the upcoming projects, which can really save our time while
creating the projects.

Chapter 1

[19]

In the RasPi, LXTerminal is the tool that is ultimately the terminal for
RasPi. If you are using PuTTY instead of the desktop, PuTTY CLI is the
terminal, ultimately!

Useful and frequently used Linux commands
Well, this can be a very long list if we introduce and explain all the commands of
Linux. Even a separate book twice this size is not enough to completely illustrate all
the functionalities of the commands. We will see the commands that are essential
and will be used throughout this book. This list can be used as a reference, and it's
necessary to understand these commands:

• pi@raspberrypi~$: It's now time to introduce the most commonly seen
command. It welcomes you on the first login and every subsequent login to
your RasPi. This shows your username and the hostname of the RasPi. Here,
the username is pi and the hostname is raspberrypi.

• sudo: This is an abbreviation of Superuser DO. This command gives you all
privileges of the superuser (root, the most powerful user) of Linux. It is used
in concatenation with other commands such as nano, su, chmod, and so on.
By writing the sudo su command, you can enter superuser mode, in which
you can execute, delete, and create any kind of files in any folders. This really
gives you superpowers in Linux!

The sudo command can be dangerous if not used properly. It can be
used to hack into the Linux systems, or this superpower can allow
you to delete the entire kernel of Linux; keep in mind that next time,
the PC won't boot!

• man: This is the command that shows the manual of the Linux commands
and different other function definitions. Type man sudo and you will get all
the details related to the sudo command.

• pwd: This is an abbreviation of the present working directory. This shows you
the current directory you are working in. Type pwd and press the Enter key.
This should display something like /home/pi.

• ls: This is a command used to list the files or search for some files contained
in a particular directory. Just typing ls and pressing the Enter key will give
you a list of all files contained in the system. The options with ls are -a, -l,
and so on. Just type man ls followed by the Enter key to see the different
options available with it.

Meeting Your Buddy – the Raspberry Pi

[20]

• cd: This command stands for change directory. Just give a path followed by
the cd command and you will be taken to that directory. For example, cd /
home/pi/python_games moves you directly to the python_games folder,
while cd .. takes one step out of a particular directory.

• apt-get: This is the package manager for any Debian-based Linux
distribution. It allows you to install and manage new software packages on
your RasPi. Once you have an Internet connection on the RasPi, type sudo
apt-get install <package-name>. It will first download the package and
then install the same package. To remove a package, just use sudo apt-get
remove <package-name>. To update and upgrade the operating system, you
can use sudo apt-get update and sudo apt-get upgrade respectively.

• cp: This is used to copy the file from one directory to another, for example,
cp /home/pi/python_games/gem1.png /home/pi/gem1.png will copy the
gem1.png file to the /home/pi folder from /home/pi/python_games. You
can use the mv command instead of cp to move the file from one folder
to another.

• rm: This removes the specified file (or directory when rmdir is used).
For example, rm gem1.png.

Here's an important warning: files deleted in this way are generally
not restorable.

• cat: This lists the content of the file; for example, cat example.sh will
display the content of the example.sh file.

• mkdir: This creates the new directory in the present working directory; for
example, mkdir packt will create a directory named packt in the present
working directory. Just use the ls command to check whether it has been
created or not by checking the list.

• startx: This command provides RasPi users with the user interface for
running a window session.

• sudo shutdown -h: This leads to terminate all the processes on the RasPi,
whereas sudo halt stops the CPU from running mode and halts the OS.
The sudo poweroff command safely turns off the RasPi module.

These are the most frequently used commands for the RasPi. If more are needed in
your projects, you will be introduced to them where relevant.

Chapter 1

[21]

Let's create our first shell file:

1. Type sudo nano example.sh in the CLI of your RasPi (you can use PuTTY or
the terminal on your PC and connect the RasPi through Ethernet connection
with your PC). Just type the following code in the nano text editor:
echo hello world
echo this is my first shell program

2. Press Ctrl + X to exit and press Y to confirm the exit while also saving the file.
The echo command simply displays the text on the screen of the terminal
when executed; this is similar to the printf command in C, but is really
simple compared to it, right?

3. Now enter the sudo chmod +x example.sh command in the terminal to
provide execution permissions on the example.sh file.

4. Execute the shell program by just typing ./example.sh (./ means a dot
followed by a forward slash, which makes the shell execute the filename that
is after the forward slash).

Notice that this is very short introduction to shell, and now you will learn the useful
commands that will be used throughout the book to create the projects.

Installing useful libraries
I compare this section to an ice cream with chocolate sauce (yummy! ssrupp!). If
you have a vanilla ice cream in your hand, you can enjoy the ice cream, but once
you pour chocolate sauce on that, it becomes more delicious, doesn't it? Adding and
installing libraries in the RasPi is the same scenario. The RasPi is amazing with the
added libraries, which can give you the functionalities you want, whether it is on the
GPIO or on the camera port. A library is a particular set of functions that gives you
easiness while writing the programs.

Step by step, we will install the useful libraries. To install the libraries, all you need is
an Internet connection on the RasPi via PuTTY, as explained in previous sections.

Meeting Your Buddy – the Raspberry Pi

[22]

Before installing any libraries, verify that your operating system has
the latest update. Always check for upgrades and updates by entering
these commands:
sudo apt-get update

sudo apt-get upgrade

Here, we update the RasPi to provide information on the latest package
versions and dependencies. All the repositories will get information
about their latest packages and to resynchronize. In the next step,
upgrade will fetch new versions of packages according to the list
provided in the update list. This process will take time, depending on
the size of the update and the quality of the Internet connection.

git-core
git is a code management system used for collaborative work among programmers
across the world, and it makes tracing change in the code easy. You will find many
libraries and projects on git. If you know the source repository, you can directly get
the library using git-core. Install git-core using this command:

sudo apt-get install git-core

wiringPi
The wiringPi library is created by Gordon, written in C, and provides you with
support to extend your C programs to control the GPIOs. You can easily download
(which will need the Internet connection shared on the RasPi) this library from
Gordon's git core profile by typing the following command:

git clone git://git.drogon.net/wiringPi

The RasPi then downloads the library and creates a folder in the root directory.
Use the cd wiringPi command to change the directory and go to the wiringPi
directory. The next command to be entered is git pull origin, which fetches the
latest version, and then we are ready to build the script using the ./build command.

Now, once the build process is done, we are ready to use the wiringPi library in any
C program we write in the future. To check whether this particular library is working
perfectly, enter these commands: gpio -v and gpio readall. This will convince
you that you have installed it correctly. In Chapter 2, Meeting the World of Electronics,
you will learn how to use wiringPi in shell script and the C language.

Chapter 1

[23]

python-gpio
The latest distribution of the RasPi comes with python-gpio installed, but this
library will be necessary for those who have an old distribution installed.
The python-gpio library allows you to easily access and control the GPIO pins
while running the Python script. This library can be downloaded from the Python
organization's website, but we will install it using the LXTerminal or PuTTY.
Let's proceed by downloading the .tar file:

wget https://pypi.python.org/packages/source/R/RPi.GPIO/RPi.GPIO-
0.5.7.tar.gz

If you aren't aware, let me tell you that a TAR file is a kind of bundled file used to
make the download compact and easy. We need to extract the downloaded file in
a directory:

tar -xf RPi.GPIO-0.5.7.tar.gz

Let's rename this folder for ease of use; use this command:

mv RPi.GPIO-0.5.7 python_gpio

Move to the python-gpio directory to install the library using this command:

cd python_gpio

While writing a command, you can use the Tab key, which provides
an autocompletion feature. For example, while writing the cd pyth
command, press Tab. This will autocomplete the command, which will
save the time spent on long filenames. Pressing the Tab key twice will
give you a list of the available commands or filenames.

Now, we will install this library:

sudo python setup.py install

There is a possibility that it gives you a response that the library is already installed
with the latest version. After this process, if you want to remove the downloaded
file, you can use the rm command and remove it. Finally, one more library that
provides support for the Python Serial Peripheral Interface (SPI) protocol on
GPIO is spidev. You can install it using the following command. You can refer to the
Serial Peripheral Interface section of Chapter 2, Meeting the World of Electronics, to learn
more on SPI protocol. We will be using the SPI protocol in Chapter 6, Uploading Data
Online – Spreadsheets, Mobile, and E-mails, when we build the sensor station project to
send sensor data on web pages.

sudo pip install spidev

Meeting Your Buddy – the Raspberry Pi

[24]

There are many libraries available, but we will install them later in
the upcoming chapters, when the need arises. It is simple to install the
libraries, why wouldn't it be? Linux rocks!

Be ready with Python and C
We'll use Python because it is a very simple, yet powerful, language and is easy to
write and read because of its indentation and standard English keywords.

There are two major versions available and there is a current debate on
Python 2 versus Python 3. You can read it at https://wiki.python.
org/moin/Python2orPython3.
This book will mostly use Python 2.7.x. If you are beginner and want
to learn Python, I advise you to go with Python 3; there is not much
difference between the two, but there are noticeable differences and
you will observe them.

The C programming language offers ample benefits when developing the projects
using already available libraries, such as wiringPi, which can give you full control
of GPIO pins. If you have previously developed a project on C, you can integrate the
wiringPi functions and get the same functionalities as your previous project. Also,
you can simultaneously use GPIO.

Let's play around with both the languages; this will not give you the whole idea of
the programming, but it will give you a good start and will create interest. We will
see both the languages one by one.

Writing and executing the Python program
When you use the RasPi, the Python is already an installed component. In the Linux
CLI, you can just type python and the Python CLI will wait for you to enter the
commands. Just type print "this is my first program in Python" and press
Enter. Voilà! You have executed a command of Python. This will not allow you to
write full-length code directly now, so what to do if you want to write a long code?
There is a better way than this, and we will use that throughout the book.

https://wiki.python.org/moin/Python2orPython3
https://wiki.python.org/moin/Python2orPython3

Chapter 1

[25]

Type sudo nano example1.py and you will observe the nano text editor on the
screen. Then type the following code:

name = "World"

name = "Hello " + name

print name

for i in range(3):

 print "Whoa"

import this

Now press Ctrl + X and then press Y to save the changes. You will be back to the
Linux CLI. Now type python example1.py. The Python program will be compiled
and the output will be displayed in the same window. One thing you should notice
is that indentation is very necessary in Python. Remove the indentation before
the print "whoa" script and then execute the program; you will find an error of
indentation. In the loops, special care for inserting indentation should be taken
while writing the code. This makes the programs easy to read for people other
than programmers.

Writing and executing the C program
You should know that the most powerful language existing today is C, and it allows
us to fulfil all our coding needs. The C language is very common and is an essential
language. Let's go through the procedure of executing a C program, which is almost
similar to executing Python programs.

Type sudo nano example2.c in the LXTerminal or PuTTY. Then you can type any
C code you know, or on a beginner basis, you can try this code:

#include<stdio.h>
int i;
int main()
{
for(i=0;i<3;i++)
printf("Harder you work, Luckier you get");
return 0;
}

Press Ctrl + X and press Y to save the changes. Now it's our turn to compile and
execute the program. The compiler for C programs is always included in the Linux
distribution, which can be cc or gcc. Type this command to compile the C program:

gcc -o example2 example2.c

Meeting Your Buddy – the Raspberry Pi

[26]

In -o example2, the example2 part will be the name of the output file and the
example2.c part is the file we saved after writing the C program. Press Enter and
check the errors. Correct it by typing sudo nano example2.c and solve it (if any
error occurs). Once it is successfully compiled, type the ls command to check
whether the output file has been created. The output filename will be example2.
You can now type ./example2 to execute the compiled code.

These processes are really helpful in creating sensor projects, and once you practice
more codes, it will be easy for you to understand the process.

Practice makes you perfect
This section includes some practice problems, which should be exercised with shell,
C, and Python. The reason behind this practice is that it will make you stronger in
understanding the problems and logic of programs, which can really help you to
easily make the sensor project. This practice will not cover or give you the idea of
entire language or script, but will make you comfortable enough to understand the
codes used in the next chapters.

I advise you to connect the Raspberry Pi through an Ethernet cable with your PC,
and use the methods stated in the preceding sections to execute the programs. You
can take help of the Internet (www.cprogramming.com/quiz/) to understand the
logic and the syntax. The problem statements shown here should be attempted in
all three languages/scripts, which will give you enough idea to work with scripts
and languages:

• Write a program to get all Armstrong numbers below 1000. Note that
among three digit numbers, an Armstrong number is equal to the sum
of the cubes of its digits. For example, 153 is an Armstrong number
because 153 = 13+ 53+33.

• Convert the temperature value from degrees Celsius to degrees Fahrenheit
and vice versa. Ask user to get the value and decide whether they are
entering it in Celsius or Fahrenheit. Show a warning message if the
temperature is above 38 degrees Celsius or 100 degrees Fahrenheit.

• Create a calculator that has all the basic functionalities, such as addition,
subtraction, division, and multiplication. Ask the user to select the function
they want. Show an error if they divide anything by zero.

• Get a time value from the clock, attach to a Time is string, and display the
current time, for example, Time is 17-Oct-14 10:18:22AM.

www.cprogramming.com/quiz/

Chapter 1

[27]

The skills acquired by performing these exercises will allow you to better understand
the projects in the upcoming chapters. You can expect an easy programming level
in upcoming chapters. These chapters will focus more on Python and C programs.
Hence, more practice on programs will help you gain a better understanding of the
language and increase logical thinking.

Summary
In this chapter, you learned about the different connectors and functionalities
available on the Raspberry Pi board. We successfully installed the operating system
on the RasPi and shared an Internet connection with it. After these processes, you
learned the basic Linux commands and a glance of the Linux terminal and shell
scripting, which will be used frequently while developing applications and projects.
Then we installed the useful libraries (in the same way as we add a chocolate topping
on top of a vanilla ice cream). A brief introduction to compiling and executing C and
Python programs was given to kick-start work on the Raspberry Pi.

I am sure that you will solve the problems stated at the end of this
chapter to get an idea of how code works. This will help a lot in the
upcoming chapters.

In the next chapter, you will be learning the basics of electronics so that you can
easily develop the projects. These basics are essential for interfacing the sensors.
You will also learn how sensors communicate with the Raspberry Pi. We will run
simple codes to drive LEDs on GPIO pins.

www.allitebooks.com

http://www.allitebooks.org

[29]

Meeting the World of
Electronics

You can't spend even a day without electronics, can you? Electronics is everywhere,
from your toothbrush to cars and in aircrafts and spaceships too. In this chapter, we
will go through the fundamental concepts of electronics that will be useful while
building our projects so that one day we can make our own products and amaze the
world. This chapter will help you understand the concepts of electronics that can be
very useful while working with the RasPi.

You might have read many electronics-related books, and they might have bored
you with concepts when you really wanted to create or build projects. I believe
that there must be a reason for explanations being given about electronics and its
applications. Hence this chapter provides basic explanations of various terminologies
in electronics and their usefulness in the projects.

Once you know about the electronics, we will walk through the communication
protocols and their uses with respect to communication among electronic
components and different techniques to do it. Useful tips and precautions are listed
before starting to work with GPIOs on the RasPi. Then, you will understand the
functionalities of GPIO and blink the LED using shell, Python, and C code.

In this chapter, you will learn the following topics:

• Basic electronics terminologies and some fundamentals
• How electronic components communicate with each other using the UART,

SPI, and I2C protocols
• GPIO essentials
• GPIO port functionality and glowing LED using shell scripting, Python,

and C language

First let's cover some of the fundamentals of electronics.

Meeting the World of Electronics

[30]

Basic terminologies of electronics
There are numerous terminologies used in the world of electronics. From the
hardware to the software, there are millions of concepts that are used to create
astonishing products and projects. You already know that the RasPi is a single-board
computer that contains plentiful electronic components built in, which makes us
very comfortable to control and interface the different electronic devices connected
through its GPIO port. In general, when we talk about electronics, it is just the
hardware or a circuit made up of several Integrated Circuits (ICs) with different
resistors, capacitors, inductors, and many more components. But that is not always
the case; when we build our hardware with programmable ICs, we also need to take
care of internal programming (the software). For example, in a microcontroller or
microprocessor, or even in the RasPi's case, we can feed the program (technically,
permanently burn/dump the programs) into the ICs so that when the IC is powered
up, it follows the steps written in the program and behaves the way we want. This is
how robots, your washing machines, and other home appliances work. All of these
appliances have different design complexities, which depends on their application.
There are some functions, which can be performed by both software and hardware.
The designer has to analyze the trade-off by experimenting on both; for example,
the decoder function can be written in the software and can also be implemented on
the hardware by connecting logical ICs. The developer has to analyze the speed, size
(in both the hardware and the software), complexity, and many more parameters to
design these kinds of functions. The point of discussing these theories is to get an
idea on how complex electronics can be. We need not look deeper into electronics
now, but let's start with the important entities listed in the following sections. It is
very important for you to know these terminologies because you will need them
frequently while building the RasPi projects.

Voltage
Who discovered voltage? Okay, that's not important now, let's understand it first.
The basic concept follows the physics behind the flow of water. Water can flow in
two ways; one is a waterfall (for example, from a mountain top to the ground) and
the second is forceful flow using a water pump. The concept behind understanding
voltage is similar. Voltage is the potential difference between two points, which
means that a voltage difference allows the flow of charges (electrons) from the higher
potential to the lower potential. To understand the preceding example, consider
lightning, which can be compared to a waterfall, and batteries, which can be compared
to a water pump. When batteries are connected to a circuit, chemical reactions within
them pump the flow of charges from the positive terminal to the negative terminal.
Voltage is always mentioned in volts (V). The AA battery cell usually supplies 3V. By
the way, the term voltage was named after the great scientist Alessandro Volta, who
invented the voltaic cell, which was then known as a battery cell.

Chapter 2

[31]

Current
Current is the flow of charges (electrons). Whenever a voltage difference is created,
it causes current to flow in a fixed direction from the positive (higher) terminal to the
negative (lower) terminal (known as conventional current). Current is measured in
amperes (A). The electron current flows from the negative terminal of the battery
to the positive terminal. To prevent confusion, we will follow the conventional
current, which is from the positive terminal to the negative terminal of the battery
or the source.

Resistor
The meaning of the word "resist" in the Oxford dictionary is "to try to stop or to
prevent." As the definition says, a resistor simply prevents the flow of current.
When current flows through a resistor, there is a voltage drop in it. This drop
directly depends on the amount of current flowing through resistor and value of the
resistance. There is a formula used to calculate the amount of voltage drop across the
resistor (or in the circuit), which is also called as the Ohm's law (V = I * R). Resistance
is measured in ohms (Ω). Let's see how resistance is calculated with this example: if
the resistance is 10Ω and the current flowing from the resistor is 1A, then the voltage
drop across the resistor is 10V. Here is another example: when we connect LEDs on
a 5V supply, we connect a 330Ω resistor in series with the LEDs to prevent blow-
off of the LEDs due to excessive current. The resistor drops some voltage in it and
safeguards the LEDs. We will extensively use resistors to develop our projects.

Capacitor
A resistor dissipates energy in the form of heat. In contrast to that, a capacitor stores
energy between its two conductive plates. Often, capacitors are used to filter voltage
supplied in filter circuits and to generate clear voice in amplifier circuits. Explaining
the concept of capacitance will be too hefty for this book, so let me come to the main
point: when we have batteries to store energy, why do we need to use capacitors in
our circuits? There are several benefits of using a capacitor in a circuit. Many books
will tell you that it acts as a filter or a surge suppressor, and they will use terms such
as power smoothing, decoupling, DC blocking, and so on. In our applications, when
we use capacitors with sensors, they hold the voltage level for some time so that the
microprocessor has enough time to read that voltage value. The sensor's data varies
a lot. It needs to be stable as long as a microprocessor is reading that value to avoid
erroneous calculations. The holding time of a capacitor depends on an RC time
constant, which will be explained when we will actually use it.

Meeting the World of Electronics

[32]

Open circuit and short circuit
Now, there is an interesting point to note: when there is voltage available on the
terminal but no components are connected across the terminals, there is no current
flow, which is often called an open circuit. In contrast, when two terminals are
connected, with or without a component, and charge is allowed to flow, it's called a
short circuit, connected circuit, or closed circuit.

Here's a warning for you: do not short (directly connect) the two
terminals of a power supply such as batteries, adaptors, and chargers.
This may cause serious damages, which include fire damage
and component failure. If we connect a conducting wire with no
resistance, let's see what Ohm's law results in: R = 0Ω then I = V/0, so
I = ∞A. In theory, this is called infinite (uncountable), and practically,
it means a fire or a blast!

Series and parallel connections
In electrical theory, when the current flowing through a component does not
divide into paths, it's a series connection. Also, if the current flowing through each
component is the same then those components are said to be in series. If the voltage
across all the components is the same, then the connection is said to be in parallel.
In a circuit, there can be combination of series and parallel connections. Therefore, a
circuit may not be purely a series or a parallel circuit. Let's study the circuits shown
in the following diagram:

Series and parallel connections

Chapter 2

[33]

At the first glance, this figure looks complex with many notations, but let's look
at each component separately. The figure on the left is a series connection of
components. The battery supplies voltage (V) and current (I). The direction of the
current flow is shown as clockwise. As explained, in a series connection, the current
flowing through every component is the same, but the voltage values across all
the components are different. Hence, V = V1 + V2 + V3. For example, if the battery
supplies 12V, then the voltage across each resistor is 4V. The current flowing through
each resistor is 4 mA (because V = IR and R = R1 + R2 + R3 = 3K).

The figure on the right represents a parallel connection. Here, each of the
components gets the same voltage but the current is divided into different paths.
The current flowing from the positive terminal of the battery is I, which is divided
into I1 and I2. When I1 flows to the next node, it is again divided into two parts and
flown through R5 and R6. Therefore, in a parallel circuit, I = I1 + I2. The voltage
remains the same across all the resistors. For example, if the battery supplies 12V, the
voltage across all the resistors is 12V but the current through all the resistors will be
different. In the parallel connection example, the current flown through each circuit
can be calculated by applying the equations of current division. Give it a try
to calculate!

When there is a combination of series and parallel circuits, it needs more calculations
and analysis. Kirchhoff's laws, nodes, and mesh equations can be used to solve such
kinds of circuits. All of that is too complex to explain in this book; you can refer any
standard circuits-theory-related books and gain expertise in it.

Kirchhoff's current law: At any node (junction) in an electrical circuit,
the sum of currents flowing into that node is equal to the sum of
currents flowing out of that node.
Kirchhoff's voltage law: The directed sum of the electrical potential
differences (voltage) around any closed network is zero.

Meeting the World of Electronics

[34]

Pull-up and pull-down resistors
Pull-up and pull-down resistors are one of the important terminologies in electronic
systems design. As the title of this section says, there are two types of pulling
resistors: pull-up and pull-down. Both have the same functionality, but the difference
is that pull-up resistor pulls the terminal to the voltage supplied and the pull-down
resistor pulls the terminal to the ground or the common line. The significance of
connecting a pulling resistor to a node or terminal is to bring back the logic level to
the default value when no input is present on that particular terminal. The benefit of
including a pull-up or pull-down resistor is that it makes the circuitry susceptible to
noise, and the logic level (1 or 0) cannot be changed from a small variation in terms
of voltages (due to noise) on the terminal. Let's take a look at the example shown in
the following figure. It shows a pull-up example with a NOT gate (a NOT gate gives
inverted output in its OUT terminal; therefore, if logic one is the input, the output is
logic zero). We will consider the effects with and without the pull-up resistor. The
same is true for the pull-down resistor.

Connection with and without pull-up resistors

In general, logic gates have high impedance at their input terminal, so when there is
no connection on the input terminal, it is termed as floating. Now, in the preceding
figure, the leftmost connection is not recommended because when the switch is
open (OFF state), it leaves the input terminal floating and any noise can change
the input state of the NOT gate. The reason of the noise can be any. Even the open
terminals can act as an antenna and can create noise on the pin of the NOT gate. The
circuit shown in the middle is a pull-up circuit without a resistor and it is highly
recommended not to use it. This kind of connection can be called a pull-up but
should never be used. When the switch is closed (ON state), the VCC gets a direct
path to the ground, which is the same as a short circuit. A large amount of current
will flow from VCC to ground, and this can damage your circuit.

Chapter 2

[35]

The rightmost figure shows the best way to pull up because there is a resistor in
which some voltage drop will occur. When the switch is open, the terminal of the
NOT gate will be floated to the VCC (pulled up), which is the default. When the
switch is closed, the input terminal of the NOT gate will be connected to the ground
and it will experience the logic zero state. The current flowing through the resistor
will be nominal this time. For example, if VCC = 5V, R7 = 1K, and I = V/R, then I =
5mA, which is in the safe region. For the pull-down circuit example, there can be
an interchange between the switch and a resistor. The resistor will be connected
between the ground and the input terminal of the NOT gate. When using sensors
and ICs, keep in mind that if there is a notation of using pull-ups or pull-downs
in datasheets or technical manuals, it is recommended to use them wherever
needed. In the next section, we will use the pull-up resistor in one of the
communication protocols.

Communication protocols
It has been a lot theory so far. The previous section was meant to give you an
understanding of some useful concepts of electronics. There can be numerous
components, including ICs and digital sensors, as peripherals of a microprocessor.
There can be a large amount of data with the peripheral devices, and there might
be a need to send it to the processor. How do they communicate? How does the
processor understand that the data is coming into it and that it is being sent by
the sensor? There is a serial, or parallel, data-line connection between ICs and
a microprocessor. Parallel connections are faster than the serial one but are less
preferred because they require more lines, for example, 8, 16, or more than that. A
PCI bus can be an example of a parallel communication. Usually in a complex or
high-density circuit, the processor is connected to many peripherals, and in that case,
we cannot have that many free pins/lines to connect an additional single IC. Serial
communication requires up to four lines, depending on the protocol used. Still, it
cannot be said that serial communication is better than parallel, but serial is preferred
when low pin counts come into the picture. In serial communication, data is sent
over frames or packets. Large data is broken into chunks and sent over the lines by
a frame or a packet. Now, what is a protocol? A protocol is a set of rules that need
to be followed while interfacing the ICs to the microprocessor, and it's not limited to
the connection. The protocol also defines the data frame structures, frame lengths,
voltage levels, data types, data rates, and so on. There are many standard serial
protocols such as UART, FireWire, Ethernet, SPI, I2C, and more. The RasPi 1 models
B, A+, B+, and the RasPi 2 model B have one SPI pin, one I2C pin, and one UART pin
available on the expansion port. We will see these protocols one by one.

Meeting the World of Electronics

[36]

UART
UART is a very common interface, or protocol, that is found in almost every PC
or microprocessor. UART is the abbreviated form of Universal Asynchronous
Receiver and Transmitter. This is also known as the RS-232 standard. This protocol
is full-duplex and a complete standard, including electrical, mechanical, and physical
characteristics for a particular instance of communication. When data is sent over
a bus, the data levels need to be changed to suit the RS-232 bus levels. Varying
voltages are sent by a transmitter on a bus. A voltage value greater than 3V is logic
zero, while a voltage value less than -3V is logic one. Values between -3V to 3V
are called as undefined states. The microprocessor sends the data to the transistor-
transistor logic (TTL) level; when we send them to the bus, the voltage levels should
be increased to the RS-232 standard. This means that to convert voltage from logic
levels of a microprocessor (0V and 5V) to these levels and back, we need a level
shifter IC such as MAX232. The data is sent through a DB9 connector and an RS-232
cable. Level shifting is useful when we communicate over a long distance.

What happens when we need to connect without these additional level shifter ICs?
This connection is called a NULL connection, as shown in the following figure. It can
be observed that the transmit and receive pins of a transmitter are cross-connected,
and the ground pins are shared. This can be useful in short-distance communication.
In UART, it is very important that the baud rates (symbols transferred per second)
should match between the transmitter and the receiver. Most of the time, we will be
using 9600 or 115200 as the baud rates. The typical frame of UART communication
consists of a start bit (usually 0, which tells receiver that the data stream is about to
start), data (generally 8 bit), and a stop bit (usually 1, which tells receiver that the
transmission is over).

Null UART connection

Chapter 2

[37]

The following figure represents the UART pins on the GPIO header of the
RasPi board. Pin 8 and 10 on the RasPi GPIO pin header are transmit and
receive pins respectively.

Many sensors do have the UART communication protocol enabled on their
output pins. Sensors such as gas sensors (MQ-2) use UART communication
to communicate with the RasPi. Another sensor that works on UART is the
nine-axis motion sensor from LP Research (LPMS-UARTL), which allows you to
make quadcopters on your own by providing a three-axis gyroscope, three-axis
magnetometer, and three-axis accelerometer. The TMP104 sensor from Texas
instruments comes with UART interface digital temperature sensors. Here, the
UART allows daisy-chain topology (in which you connect one's transmit to the
receive of the second, the second's transmit to the third's receive, and so on up to
eight sensors). In a RasPi, there should be a written application program with the
UART driver in the Python or C language to obtain the data coming from a sensor.

Meeting the World of Electronics

[38]

Serial Peripheral Interface
The Serial Peripheral Interface (SPI) is a full-duplex, short-distance, and
single-master protocol. Unlike UART, it is a synchronous communication
protocol. One of the simple connections can be the single master-slave connection,
which is shown in the next figure. There are usually four wires in total, which are
clock, Master In Slave Out (MISO), Master Out Slave In (MOSI), and chip select
(CS). Have a look at the following image:

Simple master-slave SPI connections

The master always initiates the data frame and clock. The clock frequencies can be
varied from the master according to the slave's performance and capabilities. The
clock frequency varies from 1 MHz to 40 MHz, and higher too. Some slave devices
trigger on active low input, which means that whenever the logic zero signal is
given by the master to slave on the CS pin, the slave chip is turned ON. Then it
accepts the clock and data from master. There can be multiple slaves connected
to a master device. To connect multiple slaves, we need additional CS lines from
the master to be connected with the slaves. This can be one of the disadvantages
of the SPI communication protocol, when slaves are increased. There is no slave
acknowledgement sent to the master, so the master sends data without knowing
whether the slave has received it or not. If both the master and the slave are
programmable, then during runtime (while executing the program), the master
and slave actions can be interchanged. For the RasPi, we can easily write the SPI
communication code in either Python or C. Chapter 5, Using an ADC to Interface
any Analog Sensor with the Raspberry Pi, comes with the use of the SPI protocol, in
which we are going to interface a sensor station made by ourselves to log data. This
logged data will be uploaded to the Internet and also sent to your own e-mail IDs.
Interesting isn't it? The location of the SPI pins on RasPi 1 models A+ and B+ and
RasPi 2 model B can be seen in the following diagram. This diagram is still valid for
RasPi 1 model B:

Chapter 2

[39]

Inter-Integrated Circuit
Inter-Integrated Circuit (I2C) is a protocol that works with two wires and it is
a half-duplex (a type of communication where whenever the sender sends the
command, the receiver just listens and cannot transmit anything; and vice versa),
multimaster protocol that requires only two wires, known as data (SDA) and clock
(SCL). The I2C protocol is patented by Philips, and whenever an IC manufacturer
wants to include I2C in their chip, they need a license. Many of the ICs and
peripherals around us are integrated with the I2C communication protocol.
The lines of I2C (SDA and SCL) are always pulled up via resistors to the input
voltage. The I2C bus works in three speeds: high speed (3.4 MBps), fast (400 KBps),
and slow (less than 100 KBps). It is heard that the I2C communication is done up to
45 feet, but it's better to keep it under 10 feet.

Meeting the World of Electronics

[40]

Each I2C device has an address of 7 to 10 bits; using this address, the master can
always connect and send data meant for that particular slave. The slave device
manufacturer provides you with the address to use when you are interfacing the
device with the master. Data is received at every slave, but only that slave can take
the data for which it is made. Using the address, the master reads the data available
in the predefined data registers in the sensors, and processes it on its own.
The general setup of an I2C bus configuration can be done as shown in the
following diagram:

I2C bus interface

There are 16 x 2 character LCD modules available with the I2C interface in stores;
you can just use them and program the RasPi accordingly. Usually, the LCD requires
8/4 wire parallel data bits, reset, read/write, and enable pins. The I2C pins are
represented in the following image, and they can be located in the same place
on all the RasPi models:

Chapter 2

[41]

The I2C protocol is the most widely used protocol among all when we talk about
sensor interfacing. Silicon Labs' Si1141 is a proximity and brightness sensor that
is nowadays used in mobile phones to provide the auto-brightness and near
proximity features. You can purchase it and easily interface it with the RasPi. SHT20
from Sensirion also comes with the I2C protocol, and it can be used to measure
temperature and humidity data. Stepper motor control can be done using I2C-based
controllers, which can be interfaced with the RasPi. The most amazing thing is that
if you have all of these sensors, then you can tie them to a single I2C, but with RasPi
you can get the data! You will get to know in the next section that we cannot use that
many GPIOs on RasPi 1 model B or B+ and RasPi 2 model B. Therefore, the modules
with the I2C interface are available for low-pin-count devices. This is why serial
communication is useful.

These protocols are mostly used with the RasPi. The information given here about
them is not that detailed, as numerous pages can be written on these protocols,
but while programming the RasPi, this much information can help you build
the projects.

Useful tips and precautions
Before we discuss the practicality side of the RasPi, let's look at the precautions
and tips when working with RasPi. You need to read this, as you are now going to
work with the GPIOs of the RasPi. This section will give you generalized tips and
warnings to keep in mind when working with the RasPi:

• Avoid touching the electronic components on the RasPi, as even a small
amount of sweat or a static charge from your body can spoil the board. The
components on the board are so small that it can be affected by a very small
amount of sweat in your hand, and by water too. Touch it from the corners,
or always use a casing to cover it. There are a plenty of these available in
e-stores.

• Take care when putting the RasPi on the table. If there is a small metal part
(cut pieces of wires) or the table itself is made of a metal, it can short the
connections on the RasPi.

• Never connect any device that provides voltage higher than 3.3V to the
RasPi's GPIO pins. In Chapter 3, Measuring Distance Using Ultrasonic Sensors,
we will face this scenario and you will learn how it can be overcome.
Whenever you think of connecting any device to the RasPi, get all the details
of the power ratings of that device. Please avoid connecting the 5V supply
line of the RasPi by connecting the jumper wire to the GPIOs.

Meeting the World of Electronics

[42]

• When using low-power LEDs, it is good practice to include the resistor (270
to 330Ω will be good) in series with the positive wire of the LED. Please do
not randomly plug the power sources and wires into your RasPi. It is advised
that you should not short the two pins on the board directly.

• Do not try to connect components that require much power to your RasPi;
LEDs are okay, DC motors are not. If you want to interface the motors, you
need an additional motor driver add-on circuit with RasPi. Take a look at the
Pibrella board for it.

Let's look into something more practical now.

Understanding the GPIO port
You will find working with GPIO very interesting! You already know from the first
chapter that the GPIO pins are the configurable pins of a processor and if you will
closely see the RasPi board, the GPIO functionality is brought out on board pin-out
header from the processor in such a way that the GPIO status can be changed and
also be read during the runtime. That is what we are going to do in this section.
While programming, you will notice that the RasPi's GPIO has two modes: board
mode and BCM mode. Board mode can be seen as the pin numbers physically seen
on the board, which are internally connected to the processor. As the processor has
numerous pins and GPIOs available, the processor pin number and the board header
pin number will always be different. For example, the processor has internally
assigned the GPIO 17 designation on its own pin, while on the RasPi board, a
connector will have number 11 of the pin. Let's see the available GPIO pins and their
functionality on RasPi 1 models B, A+, and B+ and RasPi 2 model B in the following
tables. The first table shows the GPIO out designations for RasPi 1 model B. For
RasPi 2 model B and RasPi 1 models A+ and B+, there are 40 pins on the header.
Therefore, it can be said that the RasPi has two types of connectors, one with 26 pins
and the latest models with 40-pin headers. All of these RasPi models have the same
number of SPI, UART, and I2C interfaces available as pin-outs on the board.

Chapter 2

[43]

Physical/RasPi names (Board) Broadcom names (BCM)
Left Right Left Right
Pin Function Pin

No.
Pin
No.

Pin
Function

Pin
Function

Pin
No.

Pin
No.

Pin
Function

3.3V 1 2 5V 3.3V 1 2 5V
I2C0 SDA 3 4 DNC I2C0 SDA 3 4 DNC
I2C0 SCL 5 6 GND I2C0 SCL 5 6 GND
GPIO 7 7 8 UART TX GPIO 4 7 8 UART TX
DNC 9 10 UART RX DNC 9 10 UART RX
GPIO 11 11 12 GPIO 12 GPIO 17 11 12 GPIO 18
GPIO 13 13 14 DNC GPIO 21 13 14 DNC
GPIO 15 15 16 GPIO 16 GPIO 22 15 16 GPIO 23
DNC 17 18 GPIO 18 DNC 17 18 GPIO 24
SPI MOSI 19 20 DNC SPI MOSI 19 20 DNC
SPI MISO 21 22 GPIO 22 SPI MISO 21 22 GPIO 25
SPI SCLK 23 24 SPI CEO SPI SCLK 23 24 SPI CEO
DNC 25 26 SPI CE1 DNC 25 26 SPI CE1

If we compare this pin-out with RasPi 1 model B+, we can see that every pin up to
number 26 is the same. Every pin on this port acts as an access point to communicate
with the RasPi. Let's see the pins one by one. Pins 1 and 2 are the power supply, if
you need low-power sensors or some peripheral needs to be powered by these pins.

Be careful when using the 3.3V and 5V pins. Never connect
both the voltage supply pins with each other directly or the 5V
line to any of the GPIOs directly. You may think that you are
giving logic high for project purposes, but the RasPi is made
to take only 3.3V and not 5V, so choose the peripherals that
can work on 3.3V levels. With the peripherals working on 5V,
you need some protection circuit in between (such as diode
circuitry), and then you can connect to the GPIO line.

Now, pins 3 and 5 are the pins for the I2C communication protocol. You might think
that you will need pull-up resistors as discussed in the previous sections with I2C,
but luckily, these pins are already pulled up with the resistors (1.8 kΩ) on board with
3.3V. You need not worry about the pulling up for interfacing of the sensors.

Meeting the World of Electronics

[44]

When not using these pins for I2C, we can use them for a GPIO, and internal pull-up
resistors can help us interface switches very gracefully. So, the switch directly shorts
this pin to the ground, and you can read the switch value in a piece of code written
in the RasPi. Voilà! The following table shows the features of the RasPi model B and
the RasPi 1 A+ and B+ GPIO pins:

Physical / RasPi name(Board) Broadcom names (BCM)
Left Right Left Right
Pin
Function

Pin
No.

Pin
No.

Pin
Function

Pin
Function

Pin
No.

Pin
No.

Pin
Function

3.3V 1 2 5V 3.3V 1 2 5V
I2C0 SDA 3 4 5V I2C0 SDA 3 4 5V
I2C0 SCL 5 6 GND I2C0 SCL 5 6 GND
GPIO 7 7 8 UART TXD GPIO 4 7 8 UART TXD
GND 9 10 UART RXD GND 9 10 UART RXD
GPIO 11 11 12 GPIO 12 GPIO 17 11 12 GPIO 18
GPIO 13 13 14 GND GPIO 21 13 14 GND
GPIO 15 15 16 GPIO 16 GPIO 22 15 16 GPIO 23
3.3V 17 18 GPIO 18 3.3V 17 18 GPIO 24
SPI MOSI 19 20 GND SPI MOSI 19 20 GND
SPI MISO 21 22 GPIO 22 SPI MISO 21 22 GPIO 25
SPI SCLK 23 24 SPI CE0 SPI SCLK 23 24 SPI CE0
GND 25 26 SPI CE1 GND 25 26 SPI CE1
ID_SD 27 28 ID_SC ID_SD 27 28 ID_SC
GPIO 29 29 30 GND GPIO 5 29 30 GND
GPIO 31 31 32 GPIO 32 GPIO 6 31 32 GPIO 12
GPIO 33 33 34 GND GPIO 13 33 34 GND
GPIO 35 35 36 GPIO 36 GPIO 19 35 36 GPIO 16
GPIO 37 37 38 GPIO 38 GPIO 26 37 38 GPIO 20
GND 39 40 GPIO 40 GND 39 40 GPIO 21

Pins such as 7, 11, 13, 15, and so on act as GPIO pins. RasPi 1 model B has eight
dedicated GPIO pins available for connecting the peripherals. Compared to that,
RasPi 1 model B+ comes with a total of 17 dedicated GPIO pins. As described earlier,
GPIO works on 3.3V logic levels. 0V to the GPIO means logic zero, and 3.3V to the
GPIO means logic one.

Chapter 2

[45]

Pin number 8 and 10 work for UART communication ports. While connecting these
pins to a UART-enabled peripheral device along with UART connection, a ground
connection also needs to be shared, as advised in the previous section of UART.
To use UART (also called a serial), there is a need to configure the boot file
(cmdline.txt) located in the RasPi boot partition. We will do it when needed.

Pins 19, 21, 23, 24, and 26 are provided to connect the SPI-enabled peripheral. While
24 and 26 are the CS pins for SPI, the rest of the pins are understandable, as you have
read the previous section on SPI communication. If you feel that you don't need SPI
communication at a particular moment, you can use it as a GPIO, and unlike I2C,
these pins are not internally pulled up. Obviously, why would they be?

Pins 27 and 28 are used to interface the I2C ID EEPROM interface using an I2C
connection. Do not use these pins to the peripheral other than I2C ID EEPROM. The
preprogrammed EEPROM connected to this port can be looked up while booting
time and automatic setup of GPIOs can be done. As it not going to be used in our
projects, we need not concentrate on this.

Whether you have the RasPi 2 model B or RasPi 1 model B+, you know all the GPIOs
now—really! Let's have some practice on the GPIOs and glow some LEDs to see
these GPIOs work. This is the point where you are moving from technical theory to
hands-on applications. Kudos!

It's time to glow LEDs!
Let's gather some components and wires first. You need a standard LED (one piece,
forward voltage, and 3.3V), wires (one red and one black, with a 2.54 mm female-to-
female jumper wire connector), an Ethernet cable, your PC, and the RasPi+.

The standard setup that we had all the time and we will follow is PC (Windows/
Mac/Linux) with PuTTY or the terminal installed. There is also the Ethernet
connection of the PC with the RasPi, with the entire configuration and setup
explained in Chapter 1, Meeting Your Buddy – the Raspberry Pi. What I assume now
is that your PC is running a live session with the RasPi. Take the LED in your hand
and carefully observe that among the two terminals, one terminal is longer than the
other; this is the positive (anode) terminal of the LED. The shorter terminal on LED is
negative (ground) and it should be connected to pin 6 (GND) of the RasPi. Carefully
connect the positive terminal to pin 11 (BCM GPIO 17, refer to GPIO table). Using the
wire, you can place the series resistor (330 Ω) between positive terminal of the LED
and the pin of the RasPi.

Meeting the World of Electronics

[46]

The following diagram is a representation of the circuitry to be made. The dark dots
in it represent the connections between the components, wires, and the RasPi:

It's time to test now. Insert the SD card and power adapter to start working on the
RasPi. You have already installed the wiringPi library in Chapter 1, Meeting Your
Buddy – the Raspberry Pi. This library comes with a function called gpio that gives
you the functionality to access the GPIO directly from the terminal, without even
writing any code. Well, codes are better, but for testing the LED, we need not write
5 to 10 lines code when we can do it in a single line. Type gpio -g write 17 1 to
glow the LED, or write gpio -g write 17 0 to turn off the LED. Simple, isn't it?
These commands can be directly written in PuTTY or in the terminals of Linux and
Mac OS X systems. By performing SSH, we can use shell scripting, Python, or C
to automate these commands in a single file. We will see all of these in the
following sections.

Shell script and GPIO
We already know that shell scripting is a way to execute the commands of a Linux
terminal through a single script file. Let's create a script to toggle the LED and
generate a pattern on it. What I like is that my LED turns on for a second, then turns
off for half a second, and repeats this indefinitely until I press Ctrl + C. Open a nano
editor using the sudo nano ledblink.sh command, and type the following code:

#!/bin/sh
echo "Hi, This is how I glow using Shell!"

Chapter 2

[47]

echo "Press ctrl C to exit"
while : ; do
 sudo gpio -g write 17 1
 sleep 1
 sudo gpio -g write 17 0
 sleep 0.5
done

The echo command does the displaying job, while : is used to create an infinite loop.
The semicolon (;) is the notation used in shell scripting to write two commands
in a single line. The do command starts the while loop, and we can start writing
our script to toggle the LEDs inside it. The number that follows a sleep command
provides you with a delay in seconds. Press Ctrl + X and then Y to save the changes
in your script. In the command line, give execution access to our code, which can
be done using the chmod +x ledblink.sh command. This command changes the
mode and gives the permission to the user to execute the program. You might be
remembering that shell script doesn't require compilation, so just type ./ledblink.
sh, and congratulations! You've toggled the LED with the RasPi. Great!

LED blink and Python
Python's script is somewhat lengthy, but it is still easy to implement the GPIO
toggling. We will create the same functionality that we created in a shell script, but
this time, just for 10 iterations instead of an infinite loop. Open a nano text editor,
type sudo nano ledblink.py, and then begin writing the following code. Just
observe the code and enjoy the blinking:

import RPi.GPIO as GPIO
from time import sleep
GPIO.setmode(GPIO.BCM)
GPIO.setup(17, GPIO.OUT)
Print "All Set in Python! Let's Blink"
for i in range(1,10):
 GPIO.output(17,GPIO.HIGH)
 sleep(1)
 GPIO.output(17,GPIO.LOW)
 sleep(0.5)
GPIO.cleanup()

Meeting the World of Electronics

[48]

Compile and execute the code by typing python ledblink.py in the command line.
Use sudo python ledblink.py if it needs the superuser privileges. Importing the
RPi.GPIO library is very essential, as it imports the GPIO functionality to the Python
scripts and tells Python that the GPIO functions used are for controlling the pins of
the RasPi. There is a library named time in Python that provides delay, clock, and
other time-related functions; thus we only import the sleep() function from time
library as per the needs. We need to set the mode in which we are working. We are
following BCM names, so we need to tell the code that whatever the pin number
we mention in the functions is in the BCM mode. Then the next function is used to
set the direction of the pin, whether it will be used to take the input or output. It
sets pin 11 (BCM GPIO 17, refer to GPIO table) to the output pin where our LED is
connected. The for loop sets the range from 1 to 10. Unlike an infinite loop, it will
run 10 times and then the control will come out of the loop. Inside a for loop, the
code is self-explanatory; it toggles the LED connected to pin 11 of the RasPi port.
In the end, the GPIO.cleanup() function will reset the state of the GPIO on exit
from the code. It is important to take care of indentation in Python; you can see that
there can be a big difference if you change the indentation. For example, change the
indentation of sleep(0.5) in line with GPIO.cleanup() by shifting it to left. You
will see a significant change in blinking of the LED; that's what Python is! Takes care
a lot on user readability.

Let's blink the LED with C code
Finally we will write the same code in the C language. It's pretty impressive
that the libraries available for the RasPi and C are really simple to use. We have
already installed the wiringPi library to access the GPIO of the RasPi. Let's try the
C code now. Edit the ledblink.c file in a nano text editor by typing sudo nano
ledblink.c:

#include<stdio.h>
#include<wiringPi.h>
#include <time.h>
void main()
{
wiringPiSetup();
pinMode (17,OUTPUT);
printf("\n Hi, I am using wiringPi, Blink Blink!\n");
printf("\n Press ctrl C to exit");
for(;;)
{

Chapter 2

[49]

 digitalWrite(17,1);
 delay(1000);
 digitalWrite(17,0);
 delay(500);
}
}

The wiringPi library should be included with the function call of wiringpisetup().
This brings all of the functionality of the GPIO in your C code. Almost every function
is self-explanatory, as you have seen in the codes of shell and Python.

You can compile the C code by typing gcc -o ledblink ledblink.c -lwiringPi,
and execute it by typing the ./ledblink command.

Press Ctrl + C to halt the application code. You can give your LED a breather now;
it's been blinking for a long time!

Summary
In this chapter, you understood the electronics fundamentals that are really going to
help you go ahead with a bit more complex projects. It was not all about electronics,
but about all the essential concepts that are needed to build the projects that we will
go through in the next chapters. After covering the concepts of electronics, we took a
dive into the communication protocols; it was interesting to know how the electronic
devices work together. You learned that just as humans talk to each other in a
common language, they also talk to each other using a common protocol.

After covering pin assignments on the RasPi expansion connector, we made an LED
blink by programming a GPIO port in the shell, Python, and C languages, which can
be useful for showing any kind of indication and decisions made by the RasPi while
using the sensors. It was exciting to learn electronics, the communication protocols,
and the blinking of the LEDs in your own way. You are now ready with almost all of
the information and the skills required to build the sensor-based projects.

In the next chapter, we will do a hack with ultrasonic sensors to measure distance
electronically. You will get to know the distance of the ceiling right from your
table. We will also build a project as an aid for a visually impaired person to
show warnings if obstacles are near. This is really going to be the fun, so let's
enjoy together!

[51]

Measuring Distance Using
Ultrasonic Sensors

We, humans have five senses. They are touch, smell, sight, hearing, and taste.
However, computers and robots can have as many senses as we want. We can
sense different things around us; for example, changes in the temperature can be
felt by our skin, but we cannot precisely say what the actual temperature value that
we are feeling is. Computers such as RasPi can be used to sense and monitor the
surrounding entities. It does the job well, precisely, and untiringly. The computing
and interfacing capability of RasPi allows us to interface sensors with it.

Measuring distance using meter tapes and odometers is impractical or inconvenient
for some of the applications. If you want to measure the depth of the ocean, how can
you use meter tapes? The best option is to use technology such as Sonar or satellites.
However, in our homes, labs, and even in our daily life, we often use different
ultrasonic sensors for various applications. These applications include overhead tank
water-level observation and automated path-finding robots. They also act as an aid
to the visually impaired person, as a vehicle parking assistant, and so on.

In this chapter, you will learn the basics of a widely used distance meter, the
ultrasonic sensor. You will understand how to use the distance calculation formulas
on the RasPi. Further on you will also learn about the hardware setup of the board
and also the fundamental requirements to make certain connections. Software level
understanding is essential while using the ultrasonic sensor to run the codes and
measure the distance precisely.

By the end of this chapter, we will have a project ready. This project will assist the
visually impaired to avoid obstacles

Measuring Distance Using Ultrasonic Sensors

[52]

We will cover the following topics in this chapter:

• The ultrasonic sensor
• Distance calculation methods
• Hardware setup of the board
• Software understanding
• Installing and running the codes
• Schedule your code while booting up
• Troubleshooting
• Obstacle avoidance system for the visually impaired and blind people

Let's understand the chapter to develop a project for a good cause!

The mysterious ultrasonic sensor
When you go on an expedition to mountains, you must have experienced the
echo phenomenon while shouting loudly towards high mountains. You can even
experience this phenomenon in a hall that doesn't have interiors such as curtains
and furniture (in a new house). The ultrasonic sensor works on a similar principal.
Ultrasonic sensors generate ultrasound waves that are targeted towards an obstacle
after which they wait for the echo to be heard. However, why don't you hear any
sound when you use an ultrasonic sensor? The answer is pretty simple: this sensor
works at an ultrasonic frequency, which is higher than the audible frequency range
of humans. The human's average theoretical audible frequency range is 20 Hz to
20 KHz. The ultrasonic sensor transmits the sound waves (also called as a sonic
burst) higher than 20 KHz frequency. Ultrasonic waves are mainly used because
they are not audible to the human ear and also because they provide precise
distance measurement over short distances. You can definitely use acoustic sound
for this purpose, but it's not nice to have a noisy robot shouting every few seconds.
Elaborately, ultrasonic sensors produce sonic bursts and calculate the echo. This
echo is received back by the same sensor, calculating the time interval between the
transition of the signal and reception of the echo to decide the distance to a target.
The concept behind this sensor is almost the same concept used in Radar. This is
even more precise than an ultrasonic sensor and works on a very high frequency
range (VHF). We can see its overall construction in the following image. This is the
representation of the HC-SR04 sensor, which will be used for this project. You can
purchase this sensor from any leading e-store or a hobby electronics store near you.
The sensor has two cylinders on the board, and these cylinders have metallic nets on
top of them. Usually, these cylinders are made up of steel or any equivalent material.

Chapter 3

[53]

Typical ultrasonic sensor

The sensor shown here has one transmitter and one receiver. For more accuracy,
there can be multiple transmitters and receivers. However, this sensor can provide
accuracy near ±3 cm within the range of 400 cm. For example, if the measured
distance is 270 cm, the actual distance can be 273 cm or 267 cm. Under the cylinders,
the sensor has a control circuit that takes care of everything, including the
communication with RasPi. There are four pins that come out of the sensor: ground,
echo, trigger, and supply. The ground and 5 V supply can be connected to RasPi
pins directly. When we give an input from RasPi to the trigger pin of the sensor, the
transmitter emits the sound pulses. These sound pulses bounce back from the solid
object or surface, and we get the pulse from the echo pin. Then, we calculate the
time of arrival of the echo, and we can calculate the distance. There is some physics
behind this calculation, which you will learn in the next subsection. This will help
us build the code to interface this sensor with RasPi easily. Let's take a peep into the
physics behind the sensor.

Distance calculation
Do you know what the speed of sound is? Well, this really depends on which
medium the sound wave is travelling in and the ambient temperature as well as
elevation from sea level. Brilliant physicists have calculated the speed of sound
at the sea level and have found it to be 34,300 cm/s. If you measure the distance
under water then the speed of sound is 1,48,200 cm/s. See, it changed drastically
when the medium changed; isn't this interesting? This again depends on the water's
temperature and so many other entities. While making a project, make sure that you
use the correct speed of sound. Here, we are using air as the medium.

Measuring Distance Using Ultrasonic Sensors

[54]

We know that,

DistanceSpeed
Time

=

When we measure the time (the duration of sending a sound pulse and receiving
it back), it is measured based on the time taken in going towards the target and
returning to the source of the sound waves. However, we want to calculate the time
just for the one-way journey in order to measure the distance. For example, we are
measuring the distance from point A to B. The sensor will generate the sound from
point A. Let's suppose that this sound reaches point B in time T1. At point B, the
sound is reflected and reaches back to the sensor at point A in time T2. So, the actual
time we measure at the ultrasonic sensor is T = T1 + T2. That is why we need to
divide the measured time by the factor of 2.

So now, our equation is as follows:

/ 2
DistanceSpeed
Time

=

We know that the speed of sound is 34,300 cm/s:

234300 Distance
Time

∗
=

Let's simplify it further to use in the code:

17150Distance Time= ∗

That's all! We know the equation for the distance, and we also know the working
principal for the ultrasonic sensor. We will use this exact equation directly in the
Python script. So what are we waiting for? Let's start building the project.

Building the project!
It's now time to connect the ultrasonic sensor with the RasPi board. The ultrasonic
sensor works on a 5V power supply. Fortunately, we have the 5V supply pin on
the RasPi board. We can provide the 5V supply from RasPi to the ultrasonic sensor.
However, in reply, the ultrasonic sensor generates a 5V echo signal as an output
to RasPi.

Chapter 3

[55]

It is always recommended that you connect the ground terminals of
the devices first and then the voltage supply terminals. This should
be followed with almost all the electronic devices we connect with
development boards such as RasPi.

As you have read in Chapter 2, Meeting the World of Electronics, we know that our
RasPi needs the 3.3V level on the GPIO pins to operate safely. So, how do we connect
them? It is a serious matter. In this regard, Kirchhoff will help us. With the help of
Kirchhoff's current and voltage laws, we can divide the voltage into two parts. If we
divide the 5V supply into 3.3V and 1.7V, we can use the echo pulse coming out of the
ultrasonic sensor to connect it to RasPi board's GPIO. To divide the voltage, we will
simply follow the most common voltage divider circuits used in electronics.

Avoid connecting the echo pulse pin directly to the RasPi board.
This can spoil the board permanently. Always use voltage divider.

Voltage divider is nothing but a combination of resistors with the right values
connected in such a style that it divides the voltage. The standard value resistors
should be used while creating the voltage dividers so that we can easily get them
from the market.

There is a simple theory that we will follow. As shown in the following figure, a
voltage divider consists of two resistors (sometimes, only one variable resistor).
Usually, the resistor near the input voltage supply (Vin) is called R1 and the one
near to the ground is called R2.

Voltage divider connections

Measuring Distance Using Ultrasonic Sensors

[56]

With this configuration, the voltage drop across the resistor R2 should be calculated
using this formula:

2
1 2
RVout Vin

R R
= ∗

+

Similarly, if you use the variable resistor, also called as a potentiometer (POT), there
is a slider in the center. This slider needs to be changed, and we have to look for the
desired voltage on a digital voltmeter (multimeter).

I have a 1KΩ resistor with me, and it is one of the standard resistor values available.
We already know that we need to convert 5V to 3.3V. So here, Vin will be 5V, and
Vout will be 3.3V. Let's calculate the R2 value required to create this voltage divider.

Let's put values into the equation:

23.3 5
1 2
R
K R

= ∗
+

Then, let's solve the equation:

3.3 (3.3 2) (5 2)K R R+ ∗ = ∗

We get R2 = 1941.1Ω, and this value of resistor is not available in the market.
However, fortunately, we have a resistor of 2KΩ that has a value very near to 1941Ω.
The resistors we get from the market have tolerances of 5 percent to 10 percent.
This means that resistance with these tolerance values are never exactly same as the
tagged value. It always has some variance. As per the calculations, we need two
resistors to build the voltage divider from 5V to 3.3V, which are 1KΩ and 2KΩ.

Hardware setup
Connect the devices as per the guidelines given here and enjoy the coding in the
next section. You will need these things on a neat wooden table or a table with an
insulation sheet:

• An HC-SR04 ultrasonic range finder
• 1KΩ and 2KΩ resistors (if these seller asks about the wattage of a resistor,

ask for 1/4 watts, also termed as quarter watts)

Chapter 3

[57]

If you do not have 1KΩ or 2KΩ resistor, you can use 330Ω and
470Ω resistors, respectively. You can cross-check the calculations
done previously. The wattage of resistor states the maximum
amount of power dissipated through a resistor. Higher the
wattage, higher is the current that can pass through at a certain
amount of voltage. P = V * I. So, 0.25W = 5V * I yields, I = 500 mA.
Therefore, 1/4 watts can be sufficient on boards such as RasPi.

• One multimeter (if you are a geek and want to measure everything!)
• Female-to-male jumper wires and female-to-female jumper wires
• Breadboard (not compulsory if you can build this by just twisting the wires,

but I recommend that you use it for proper connections without shorting
each other)

• The RasPi with power adaptor
• An Ethernet cable
• A personal computer

Now, we are ready to build the circuit. The circuit will look like the following
diagram if you build it correctly. This diagram is also called as schematics,
which represents every terminal of the components and their symbols.

For RasPi, we used the connector in the center with all its 26 pins (for RasPi 1 model
B). We already know that RasPi 1 Model B, Model B+, and RasPi 2 Model B have
the same functionality on the first 26 pins on header. Let's connect it step by step.
It's more enjoyable if you understand the connections and connect it by yourself
on the breadboard.

Measuring Distance Using Ultrasonic Sensors

[58]

Keep the RasPi powered off while making the connections. You will
need the computer after connecting the sensor with the RasPi. Be
careful while making all the connections.

However, I have shown the connections on the breadboard in the following figure,
which makes the connections easy to understand. The connections are also described
here in a step by step. Black dots on the breadboard in the figure show the physical
connections of the wire onto the breadboard. We will perform the following steps:

1. Take the breadboard.
2. Connect the sensor on the breadboard. Keep in mind that if you connect it

flipped, the connections suggested here would not work. Cross-check the
connections, and make sure that you make a correct circuit.

3. Connect pin 6 of RasPi to the ground rail of the breadboard.
4. Connect RasPi's pin 2 to the sensor's 5V pin.
5. The trigger pin can be connected directly with the sensor. In fact, the RasPi

sends 3.3V signal to this trigger pin, which is acceptable by the sensor.
6. Take out a connection from RasPi pin 18 to the breadboard, and connect it

to the terminal rails of breadboard. From the same row, you can connect one
terminal of 2KΩ resistor. The second terminal goes to the same ground strip
where RasPi's ground and sensor's ground are connected, as shown in the
following image:

Chapter 3

[59]

So far, the connections we have done are good to go. Cross-check the connection
twice before you power up the RasPi. We have done the procedure on the hardware.
We need to write the software (code) to tell the RasPi that we have connected this
sensor to these pins and to calculate the distance based on the formulas we derived.

Software setup
Let's start writing the code in Python. This code can be separated into the modules.
These modules can then be integrated as a single code to get the distance. Let's
summarize the steps here:

• Initial configuration
• Setting the GPIO pins on the default mode
• Sending the trigger signal and listening to the echo
• Calculation of time and distance

Let's see each of them in detail.

Initial configuration
In the initial setup, we need to include or call the GPIO and time libraries, which
we installed while reading Chapter 1, Meeting Your Buddy – the Raspberry Pi, into the
Python environment, as shown in the following code:

import RPi.GPIO as GPIO
import time
GPIO.setmode(GPIO.BCM)
print "Measuring Distance"

As described earlier, the time library brings the timing and delay functionalities to
the Python code. We will use the BCM mode to call the GPIOs of RasPi, as we did in
Chapter 2, Meeting the World of Electronics.

Setting the GPIO pins on the default mode
We have connected the sensor's trigger and echo pins to pins 16 and 18 of RasPi,
which are GPIO 23 and GPIO 24 in the BCM mode, respectively. We know that the
trigger pin is the output pin for RasPi and input pin for sensor. The echo pin is the
input pin for the RasPi. Here, it gets the response from the sensor after sending the
trigger pulse. The following code depicts this:

GPIO.setup(23,GPIO.OUT)
GPIO.setup(24,GPIO.IN)

Measuring Distance Using Ultrasonic Sensors

[60]

GPIO.output(23, False)
print "Setting Trigger pin to zero by default"
time.sleep(1)

Sending and receiving the pulses
If we analyze the timing diagram of the ultrasonic sensor to measure the distance, we
can easily understand how the sequence should be. The following timing diagram
shows the sequence. In the previous step, we made the trigger pin zero by default.
Then, we provided a 10µs pulse to the trigger pin of the sensor from the RasPi. Once
the sensor receives the trigger signal, it sends the 40 KHz pulse / ultrasonic burst
from the built-in transmitter (contains eight pulses).

We should expect the echo signal after the ultrasonic burst signal. The length of the
echo signal provides us with the timings for the distance calculations. How do we
write in a code? The simple way to create a trigger pulse is by turning the pin high
for 10µs, as shown in the following code:

GPIO.output(23, True)
time.sleep(0.00001)
GPIO.output(23, False)

Using this piece of code, we sent a pulse, and the ultrasonic sound burst is generated
internally and transmitted into the air. It will reflect and come back to generate the
echo pulse. We have to check it continuously until we get the echo pulse. As we saw
in the previous figure, the echo pin remains high for a certain period of time. So, we
need to calculate the amount of time while the echo signal received stays on. We can
use the while() loop to continuously monitor the echo pin. We can use the time
function to capture the time duration of echo while it remains high:

Chapter 3

[61]

while GPIO.input(24) == 0:
 start_time = time.time()

This piece of code creates a kind of forever running loop until the echo pin changes
its state from 0 (low) to 1 (high). While the echo pin is 0 (or low), we keep updating
the timing value (timestamp) in the start_time variable. Once the echo pin goes
high, the while() loop breaks, and we get the value of time when the echo pulse
went from low to high low state. Next, we need to use the same logic to get the
timestamp for the time it remains high. At this instance, we used another variable to
store the timestamp so that later on, we can use both the variables to determine the
time duration:

while GPIO.input(24) == 1:
 end_time = time.time()

The while() loop here keeps updating the variable with the latest time while the
condition is true.

Calculation of distance
We have the start time and the end time of the echo pulse. So, we have to subtract
both the values to get the pulse duration. Once we get the pulse duration, we can
then use it for the distance calculation:

time = end_time - start_time

Initially, in the chapter, we derived a formula for distance calculation, which will be
useful here. Let's recall it:

17150Distance Time= ∗

We considered the two-way journey of sound and then divided the time by the factor
of 2.

Converting this formula into the Python script, we get the following code:

distance = 17150 * time
print "Measured Distance is :", distance, "cms"

We have understood the operation in parts. Let's join them together to get a
completely working sensor with the RasPi. Write sudo nano distance.py
in the PuTTY command line and start typing the following code:

import RPi.GPIO as GPIO
import time

Measuring Distance Using Ultrasonic Sensors

[62]

GPIO.setmode(GPIO.BCM)
GPIO.setwarnings(False)
print "Measuring Distance"
print "Press ctrl+c to stop me"
GPIO.setup(23,GPIO.OUT)
GPIO.setup(24,GPIO.IN)
time.sleep(0.02)
GPIO.output(23, False)
print "Setting Trigger pin to zero by default"
time.sleep(1)
while True:
 GPIO.output(23, True)
 time.sleep(0.00001)
 GPIO.output(23, False)
 while GPIO.input(24) == 0:
 start_time = time.time()
 while GPIO.input(24) == 1:
 end_time = time.time()
 time = end_time – start_time
 distance = 17150 * time
 print "Measured Distance is:", distance, "cms."

You can make use of the inbuilt rounding function in Python to get
the rounded values up to three decimal places: print "Measured
distance is: %.1f" %distance, "cms."

Press Ctrl + X followed by Y and then press Enter to exit and save the code.

Compared to the steps to set up software, there are some minor changes in the
compiled code. You will find that we used GPIO.setwarnings(False). This
command turns off the warnings generated while compiling the code. When the
program is started and the GPIOs are configured, give the RasPi module some time
to get ready to take the readings. There is a need to use the while() loop. Using
this forever-running loop, we can see the live distance variation by pointing the
sensor towards different targets. Before we start to compile the project, check the
connections again. Just ensure that the ultrasonic sensor is positioned well and
pointed towards the target. Alternatively, just put the sensor perpendicular to the
table so that the cylinders remain parallel to the table surface.

Chapter 3

[63]

And here we go! Type sudo python distance.py and press Enter. Wonderful,
isn't it? As we programmed and executed it, it now shows the output as Measured
Distance is: 9.1321cms. We have created the ultrasonic distance meter. You
can point it at various objects to measure the distance. I have tried to measure the
distance from my table to the kitchen to know how much distance I walk every time
I go to drink some water. You can stop the code by pressing Ctrl + C. This kills any
script currently running in the Linux shell. You can use this command if the program
is stuck in an infinite loop. This may mean that there is a software or a hardware bug.

If you are unable to execute the code and the RasPi is having issues with
the user privileges, try chmod +x distance.py before executing the
sudo python distance.py command.

Fixing common problems
While building the project, many of us will not get the output the first time. Let's
solve the common problems collaboratively. There are some frequently occurring
problems while building the projects with the RasPi and the ultrasonic sensors.

Is it showing the distance incorrectly?
You are so enthusiastic to write the code by yourselves, and you might have been
mistaken. Check the timings of turning the trigger pin for the perfect amount of time,
and check whether you have read the echo pin correctly.

Some of the device response may be slow. I recommend that you add a delay of 60
ms after making the trigger pin low, as shown in the following code:

GPIO.output(23, False)
time.sleep(0.06)

If you are still not getting the result, try playing around with these values of delay.
Also, check for the correct indentation of the code, which might be the major reason
that you are facing the problem.

There is a high chance that you may be having so many things on your table that the
reflections are very high, as this sensor has a wide angle of sensitivity. If the sensor is
touching any object or metallic surface, then in this case also there is a chance to get a
false reading.

Measuring Distance Using Ultrasonic Sensors

[64]

Is the module not responding?
There can be many reasons when the module doesn't respond. Either you are not
powering the RasPi with the adequate amount of current, or the connections are
not proper on the breadboard. The sensor can take quite a high amount of current.
You might be in need to connect the 5V, 1A charger or adaptor to your RasPi. Check
whether the resistors connected are of correct values either using the resistor color-
coding method or using the multimeter. Take the multimeter and change the delay
value in program to 5 seconds after turning on the trigger pulse. Check whether pin
16 is getting high or not. RasPi's pin 16 should show 3.3V reading on the multimeter.

Are you measuring the distance less
than 2 cm?
The sensor will not respond if any obstacle is very close to it. It is very hard for the
sensor to measure a very small distance.

A wearable device for the visually impaired
The ultrasonic sensor can provide an added sense to a visually impaired or blind
person. You can contribute to the society by making this kind of a wearable device,
which can either play a warning sound in the person's ear or a vibration alert on the
stick. There are such sticks available in the market, and you can build your own, too.

Your aim is to build a wearable device based on the RasPi and ultrasonic sensor.
Also, you will play the warning sound on the headphones that are connected with
the RasPi when the visually impaired person is approaching an obstacle that is about
100 cms away. Sounds cool, doesn't it? This project will work for both RasPi 2 Model
B and RasPi 1 Model B and B+ users. We will learn this step-by-step process to
assemble this project on the hardware and also understand how to code it. Let's dig
deeper and understand how this can be done.

Building the hardware
When you run the RasPi, you must have noticed that your project will require the
electrical plug socket where we connect the adaptor to power up the RasPi. Our
project needs to be wearable. So, as you have rightly guessed, we need a battery.
The battery specifications can be quite variable, but you need to stick to 4000mAH–
10000mAH and 1A–1.5A USB battery pack. You will easily get the USB battery pack
for the RasPi in the online stores. The power banks for mobile phones are also OK,
but stick with the current ratings. We also need headphones that have a standard 3.5
mm connector to play the warning tones. Here is a list of the hardware we need:

Chapter 3

[65]

• A HC-SR04 ultrasonic range finder
• 1KΩ, 2KΩ, and 270Ω resistors
• A 2 mm or 3 mm LED
• Female-to-male jumper wires and female-to-female jumper wires
• Breadboard
• The RasPi
• USB Power Bank 4000mAH–10000mAH with 1A–1.5A current rating
• Headphones with a 3.5 mm connector
• Small wire strips to keep the wires folded
• An Ethernet cable
• A personal computer

Once you have made your testing project in the previous section, additionally, you
would need to buy a battery bank and an LED. Any mobile phone's headphones
would work fine with the RasPi. Building this device is easy. Connect the ultrasonic
sensor with the same breadboard configuration, as we did in the previous section.
Additionally, we also connect an LED to the RasPi pin number 11 (BCM mode
GPIO 17), with the same method that we followed in Chapter 2, Meeting the World
of Electronics. The power bank will be connected through the micro-USB jack of
the RasPi, where we usually connect our power adapter. Headphones need to be
connected to the 3.5 mm jack of the RasPi. The USB cable and headphone wires
will be lengthy, so I would like to suggest that you use small wire strips. Small
wire strips will help you tie wires and allow you to make your project look neat
with tangle-free wires.

This wearable device can be worn at the level of the chest or at the level of the head.
You can make use of a cap to attach this device. Pack it beautifully once you finish
the programming and testing. Let's have a look at the programming side of it.

Software setup
The device should play a buzz or a beep sound on the headphones. You can get
amazing sounds from the www.freesound.org/browse/tags/beep/ web page
and download them to the RasPi. I suggest that you download the file that has
the shortest duration, for example, 1 second or 2 seconds. Otherwise, it would be
annoying to hear the beep sound on headphones for 5 seconds. Either you can
download it using the Xming server and inbuilt browser (from PuTTY, using the
lxsession command) or transfer it from your PC to the RasPi. But wait, how will
you transfer a file on the RasPi?

www.freesound.org/browse/tags/beep/

Measuring Distance Using Ultrasonic Sensors

[66]

There is a wonderful program available to copy the files from Windows
to the RasPi. This program is known as WinSCP (you can download it
from www.winscp.net). Give the IP address, login ID, and password
of the RasPi in the FTP mode. You can copy the files from Windows to
the RasPi by dragging and dropping them. If you find difficulty using
WinSCP, the operating tutorials could be found at https://www.
siteground.com/tutorials/ssh/ssh_winscp.htm.

We will make a directory called project using the mkdir project command. We
will perform every operation inside this folder. I am assuming that we are currently
at /home/pi/project address. You can check it once using the pwd command.

As we have already downloaded the essential libraries in Chapter 1, Meeting Your
Buddy – the Raspberry Pi, for the support of wiringPi in C, we will now download a
library and drivers to play music files on our RasPi. Enter the following commands
to configure the drivers in your RasPi. These commands hold good for both RasPi 2
B and B+ users. I assume that you have shared an Internet connection to the RasPi as
per the guidelines of Chapter 1, Meeting Your Buddy – the Raspberry Pi. We are running
a PuTTY session on RasPi through an Ethernet cable:

sudo apt-get update

sudo apt-get upgrade

sudo apt-get install alsa-utils

sudo apt-get install mpg321

It will take some time to download, unpack, and install. Once it is installed, just
reboot the RasPi and start the session of PuTTY again on your PC. We can now
load the drivers for sound, which we just installed by entering these commands:

sudo modprobe snd_bcm2835
sudo amixer cset numid=3 1

Now, it's time to write the code that measures the distance as well as notifies the
person with an LED indication and a short-duration beep sound. Write sudo nano
project1.py and start typing the following code:

import RPi.GPIO as GPIO
import time
GPIO.setmode(GPIO.BCM)
GPIO.setwarnings(FALSE)
print "Measuring Distance"
print "Press ctrl+c to stop me"
GPIO.setup(23,GPIO.OUT)
GPIO.setup(17,GPIO.OUT)
GPIO.setup(24,GPIO.IN)

www.winscp.net
https://www.siteground.com/tutorials/ssh/ssh_winscp.htm
https://www.siteground.com/tutorials/ssh/ssh_winscp.htm

Chapter 3

[67]

time.sleep(0.02)
GPIO.output(23, False)
time.sleep(1)
while True:
 GPIO.output(17, False)
 GPIO.output(23, True)
 time.sleep(0.00001)
 GPIO.output(23, False)
 while GPIO.input(24) == 0:
 start_time = time.time()
 while GPIO.input(24) == 1:
 end_time = time.time()
 time = end_time – start_time
 distance = 17150 * time
 print "Measured Distance is:", distance, "cms."
 if distance < 100 and x > 30:
 print "Obstacle Detected"
 os.system('mpg321 buzz.mp3 &')
 GPIO.output(17, True)
GPIO.cleanup()

Press Ctrl + X, followed by Y, and then press Enter to save and exit the nano editor.
We need to take execution permission from Linux to run the code. So, we will enter
the following command and then execute it:

chmod +x project1.py

sudo python project1.py

Try with different distances and check whether the warnings are set properly or
not. You can put some text lines to easily debug the code. So far, we had connected
Windows PC and the RasPi with an Ethernet cable. However, it is hard when you
install it on your head as a wearable and connect the Ethernet cable or keyboard
and display it to run the program when the RasPi powers up. Is there any function
that whenever the RasPi is booted, the code we just created executes automatically?
Fortunately, yes! There is a facility in the Linux kernel called as crontab. Crontab
allows us to run the desired program whenever the RasPi is booted. Shell scripting
will help us here. We will write a small script in the same directory with the /
home/pi/project address. Now, we can write the following shell script to execute
the project1.py file we created. Open a nano editor by typing the sudo nano
project1_startup.sh command:

#!/bin/sh
cd /
cd home/pi/project

Measuring Distance Using Ultrasonic Sensors

[68]

sudo python project1.py
cd /
#end of script

This file will be executed by the crontab, so we should give execution access to the
file using the chmod +x project1_startup.sh command. Now, we just need to
check whether the code executes perfectly or not. Type the ./project1_startup.
sh command to execute the shell script file and test whether the sound or LED blinks
for less than 100 cm distance. Once this is done, we will edit the crontab file with the
following code to enter our shell file to be executed:

mkdir chronlogs
sudo crontab -e

A file with lot of text will be opened. At the end of the file, just enter the following
script and press Ctrl + X and Y and then press Enter to save the file:

@reboot sh /home/pi/project/project1_startup.sh
>/home/pi/project/cronlogs/cronlog 2>&1

Note that it is a single line, and hence, it should be inserted without
pressing Enter.

These commands will also log the errors and execution status to the chronlogs
folder in the project directory. We are now ready to test the project execution during
boot-up. Test it using the sudo reboot command.

With this, we do not need the keyboard, mouse, Ethernet cable, or PC to configure
and run the desired code when the RasPi is started up. Just wear the RasPi and
connect the battery supply. Your RasPi is ready to measure the distance and give
the indications and warning sound whenever the obstacle is less than 100 cms away.
If you want to remove the project from the startup, just re-edit the crontab file and
remove the last line we added.

Chapter 3

[69]

Summary
This chapter gave us lot of knowledge about the RasPi and ultrasonic sensor
interfacing, and we enjoyed a lot while building the project. You got to understand
how ultrasonic sensors work. You understood that the voltage levels must be the
same between the RasPi and the sensors. We used a voltage divider to convert 5V
to 3.3V for the RasPi. We set up the hardware and software to start executing the
project. We got the distance measurement of any target devices in our lab. At least
now, we know how far our ceiling is!

We thought to make a project for a good cause, and we created wearable devices
using the RasPi and a USB battery pack. Playing a sound on RasPi device to indicate
the alerts was a real fun. It was then interesting to know about crontab to start the
file execution at the boot-up of the RasPi module without any need of configuration.

In the next chapter, we will play with the temperature-humidity sensor along with
the light sensor. The RasPi does not have any analog-to-digital convertors, but
we will do some hardware hacks to interface the light sensors. Let's measure the
surrounding environmental properties in the next chapter!

[71]

Monitoring the Atmosphere
Using Sensors

It is highly unlikely to find an equipment without sensors nowadays. Most
appliances, such as air conditioners, smoke detectors, fire detectors, gas/CO2
sensors, LCD displays, refrigerators, toasters, thermostats, microwave ovens, and
geysers installed in our house have sensors integrated in their circuits to measure
surrounding atmospheric entities. When we take a look at our surrounding
atmosphere, there are so many entities that can be measured, for example,
temperature, humidity, vapor, dust, air quality, various gas levels, wind speed,
rain, water quality, light (natural and artificial), presence, motion, moisture, and
so on. On a broader level, technologies such as sensor networks and the Internet
of Things uses "sensor nodes" that measure one or multiple of these entities and
send data to the intended computer or user. The best example of this is the "nest"
thermostat (www.nest.com/thermostat/). This device is an example of artificial
intelligence that controls and maintains the temperature of your room as per your
daily habits and then keeps learning from various scenarios that may arise.

Two types of sensors widely used for such applications are temperature and
humidity sensors. In this chapter, we will measure ambient temperature, humidity,
and light variations. We will create a kind of a sensor node that takes the decision
to turn on or off the tube light and fan. Starting the journey from selecting a proper
sensor, you will learn about the DHT sensor and LDR sensors. These sensors play a
role in measuring the entities that we will see in this chapter. In this chapter, we will:

• Understand the sensor selection process
• Know about temperature and humidity measurement sensor
• Know about the LDR sensor to measure light variations
• Learn codes for both DHT and LDR sensors

www.nest.com/thermostat/

Monitoring the Atmosphere Using Sensors

[72]

• Build the project to control home appliances
• Learn how to interface multiple sensors that have the similar specifications

and properties
• Troubleshoot some of the common problems faced

Let's begin the journey by understanding how to select a sensor and enjoy the
amazing world of the RasPi.

Sensor selection process
The process of sensor selection, especially when building an environmental
monitoring system, is very confusing in the development phase of a product. We
may be unsure about which sensor can be used and which cannot. In the industries,
the design and development engineers face this problem every time they start
building a project. Sensors are always difficult to control while we interface them
with the processor or a controller, because they are sluggish compared to processors.
Additionally, we need to take care of a lot of incoming values of sensors that come
into the processors. For example, in safety critical systems, such as life support
systems or baby incubators, signal conditioning circuitry and signal processing units
are used to measure the sensor values precisely and take actions (such as controlling
the temperature and oxygen levels for newborn babies or patients) accordingly.
Therefore, the first step in selecting the sensor is to find out the exact application.
Depending on the application, the sensor selection process should be initiated. In the
previous chapter, when we interfaced the ultrasonic sensor, you must have observed
that there was a complex circuitry and microchips available on the bottom layer of
the ultrasonic sensor. That was a conditioning circuitry that made our job easy. Not
all the sensors have conditioning circuitry inbuilt. Some of the sensors come in the
form of a single chip. These kind of sensors are tricky to interface. Sensor interfacing
is always tricky but not impossible to get working right at the first time. Observation
says that whenever the sensor manufacturer's price is costly, it is easier to use and
precise in measurement. This is because these sensors are packaged in such a way
that they work on most common protocols. This is mostly true, but should not be
taken as a statement though.

Chapter 4

[73]

Criticality of an application
The next thing we notice while analyzing an application is its criticality and the
environmental conditions where it is going to be used. Would the application be
used in an accident-avoidance system or braking system of an aircraft, in households,
or just for a hobby project? Our project is inclined towards a hobby project; we
would prefer a user-friendly, inexpensive, and effective sensor for our project.
Therefore, we can make a trade-off between accuracy and interfacing leniency.
In addition to this, the criticality of the application is not severe or hazardous
compared to other sensor systems, such as weather sensors in aircrafts.

Selecting a sensor package
The next step in selecting a sensor should be choosing a package. Some of the
applications have a tight space to fit a sensor, and some have a huge space.
Compare a mobile phone and a washing machine. Both have a large number
of sensors, but the application and room to integrate the sensor inside these
applications is incomparable. Package should be selected in terms of the space
available on the printed circuit board, final integration of device, packaging, and
handling of the device. Basically, electronic components or devices are available
in two types of packages (mountings): through-hole devices (THDs) and Surface
Mount Devices (SMDs). We have used THDs such as resistors and LEDs in the
previous chapters. If you see carefully, the ultrasonic sensor had SMD devices on
the bottom layer. SMD component pins are very near to each other. Therefore, it is
difficult and impractical to use SMD devices on a breadboard, and these chips are
hard to solder. For hobby projects, whenever we want to use a sensor in the form of a
surface mount chip, we need breakout boards. A breakout board simply expands the
pins of the SMD component and gives access to the sensor on a usable pin header.
THD components or breakout boards should be the priority for a hobby project.

Sensor properties
After selecting an application and package type, we will move to the properties of
various sensors available to measure the same entity. If we want to measure the
temperature, we would look at the preciseness of the sensor and electrical ratings.
This process is lengthy, as there are many ratings and parameters available for
different sensors. List down all the qualities of the various sensors in a spreadsheet.

Monitoring the Atmosphere Using Sensors

[74]

After listing down the qualities of various sensors, we need to shortlist the best
sensors among them. There is always a trade-off between the price and quality of
the sensor. Choose a sensor that is inexpensive but also meets the threshold of the
quality level required. In sophisticated systems, this compromise of quality over
price is never done. However, as we are developing a hobby or household project,
this is an effective step to be followed.

Purchasing the sensor
To purchase a sensor, there are many options. You can either choose the nearest
hobby shop or you can go for online stores. Asian online stores, such as AliExpress,
will provide you cheaper options, and special sensors are easily available there.
For the quality products, you need to look towards e-markets such as Digi-Key,
SparkFun, Adafruit, element14, and so on. Digi-Key has smart filters to sort the
components easily out of thousands available. There is always complete technical
information about the product, along with its datasheet. Digi-Key provides you
with the facility to purchase the components in numbers from 1 to 10,000 plus.
To purchase a single or less number of components, you need to choose the Digi-
Reel option. Here, Digi-Key provides the customized reel to selecting the number
of components we want to purchase. However, at the time of writing this book, it
charges around 7$ extra to pack a customized reel. Adafruit is worth visiting as it
provides you with lot information related to the product and competitive prices
compared to other e-stores. To purchase a single component, it is beneficial to go
for Adafruit.

Available sensors
Some sensors are costly but easy to use; some are cheap but tricky to use. To measure
the temperature and humidity, there are multiple options available. Widely used
sensors are DHT11, DHT22, RHT03, Si7005, and SHT20. DHT22, DHT11, and RHT03
are available in the THD package, whereas Si7005 and SHT20 are available in SMT
packages. We can purchase the DHT11 sensor from Adafruit to start building the
temperature and humidity measurement project. The basic difference between DHT11
and DHT22 is that DHT22 provides accuracy, better temperature, and humidity
ranges. Therefore, DHT22 is costlier than its predecessor, DHT11. These sensors are a
little sluggish while getting data into the RasPi. The advantages of the DHT11 sensor
are that they are cheap, and an easy-to-use guide is provided by manufacturer. Other
sensors listed here can also be considered. Some of these sensors work on I2C or ADC
pins, while others work on a proprietary one-wire protocol.

Chapter 4

[75]

To measure the ambient light variance (luminance) in your room, we will use a CdS
cell (photoresistor). We can purchase PDV-P8001 from Advanced Photonix Inc. and
350-00009 from Parallax. We can easily get the CdS photoresistor from Adafruit; this
photoresistor is similar to PDV-P8001. It is also available on SparkFun termed as
mini photocell. If there are multiple options, choose the photoresistor that has larger
dark resistance values (in ranges of several KΩ - MΩ).

Let's plunge into each of the sensors and understand how they work.

InsideDHT – temperature and humidity
sensors
DHT is a combined pack of temperature and humidity sensors. These sensors are
ideal for hobbyists who just want to do some data logging. DHT11 sensors are slow
in terms of retrieving data. As it is a combined pack, it contains a resistive thermal
sensor (a thermistor) and capacitive humidity sensor. A thermistor changes its
resistance value depending on the changes in temperature. Technically, all resistors
act as thermistors because they dissipate heat when the current is passed through
them and are responsible for power losses. However, a resistor's characteristic is that
when they are heated up from the external source, the resistance values changes a
little bit, which is not so effective to be measured. But this is not the case with the
thermistor; its resistance values change in terms of several hundred ohms when there
is a slight change in the ambient temperature. A DHT11 temperature sensor provides
accuracy near to 2 degree Celsius in the range of 0 degree Celsius to 55 degree
Celsius and compared to these values. On the other hand, a DHT22 temperature
sensor performs well by providing accuracy near to 0.5 degree Celsius in the
temperature range of approximately -38 degree Celsius to 120 degree Celsius.

Let's now understand the humidity sensor. The DHT has an integrated humidity
sensor that is not so effective for critical-safety applications. There are polymers
or metal oxides arranged in such a way that they create capacitive plates inside
a sensor. Due to the effect of humidity, the dielectric constant of the capacitor is
changed, and this gives us a variance in the values of humidity. These humidity
sensors do not guarantee accuracy, but they are suitable for some applications. The
accuracy of a DHT11 temperature sensor is 5 percent in the range of 20–80 percent
humidity, while a DHT22 temperature sensor provides accuracy of about 3 percent
in the range of 5–100 percent humidity.

Monitoring the Atmosphere Using Sensors

[76]

Look wise, DHT sensors are generally present in a white or blue colored plastic
container with a grid or net on the front. They have four terminals on the bottom
layer. Inside DHT, there is a small analog-to-digital conversion IC that provides us
with the digital values in two parts: temperature and humidity. Initially, it looks
difficult when we try to understand DHT's one-wire (or a single-wire) protocol. With
some tweaks, it is simple to use, and the timing must be precise in order to achieve
the perfect values from the sensor. Once the timing diagram is understood, we can
retrieve data from the sensor easily.

DHT works on single-wire bidirectional bus communication. This means that
the data transfer between the RasPi and the sensor works on a single wire with
particular timing or delay instructions sent by the RasPi and receives it as a bit
stream. Whenever the protocol is not defined, we retrieve the data from the sensor
using the bit banging technique. In this technique, the master device sends the exact
duration of the pulse (as long as it is recommended by the sensor reference manuals
or datasheets) as a request from the master (in our case, the RasPi), and the sensor
then responds to be ready. After the predefined amount of time, it starts sending
the data, bit by bit, to the master. It is the master's task to receive it at a single bus
sequence when the slave has sent it. Any kind of acceptance of chaotic sequence
will turn into corrupted data. This means that the sensor (slave) has sent the data
perfectly, but the master did not receive it correctly, just because there is no timing
synchronization between the master and slave.

Introducing the photoresistor (photocell)
Did you know that the RasPi does not have an analog-to-digital (A2D) convertor
integrated inside? This is the biggest drawback while using microprocessor-based
development boards such as the RasPi. But do not worry; we have a technique to
hack it. A photocell or light-dependent resistor (LDR) is a light-controlled variable
resistor. The resistance of an LDR decreases with increasing incident light intensity.
More the light, lesser the resistance, and vice versa. The variations in the values
vary by about 45 percent, and they shouldn't be used to try to determine precise
luminance levels in candela or lux.

Appearance wise, the sensor has a clear shiny, thin surface of glassy material on
the top and has two terminals. On the top, there is a photosensitive semiconductor
material that is sensitive to light, and we can see the tracks routed in a zigzag pattern.

Chapter 4

[77]

It's time to introduce you to some mathematics of resistors and capacitors.
Understanding the math of resistors is easy, but how are capacitors coming into the
picture? Well, there is a phenomenon in the electronics called as a RC timing and RC
time constant. Already, the sensor is resistive. We will use the capacitor to utilize this
electronics timing constant formula T = R*C.

Yes, that's it. The capacitor can be charged through a resistor in T time, where R and
C are the values of the resistance and capacitance. We will observe the capacitor to be
charged at 50 percent voltage, that is, near to 3.3/2 = 1.6V, using the 1µF capacitor.
The RasPi can only read the values near to 1.6V and greater than that. Lesser the
light, higher the resistance; lower the charging rate, higher the time to charge the
capacitor. For example, if the resistor value is 1KΩ, then the time constant will
become 1 millisecond to charge the capacitor.

Due to the series resistance (photocell), the charging of the capacitor becomes slow
enough to be read by the RasPi. The sensor values change drastically. The capacitor
will make it significantly slow by holding the value for some milliseconds so that we
can read the values easily from the RasPi.

Simplifying the scenario, let's take a look at a real-world application to help us better
understand the working of the circuit diagram. Imagine a valve (photoresistor) on
a pipe (wire) controlled by a lever (light or luminance). This lever helps control an
amount of water (voltage) to be stored in a tank (capacitor). The amount of water
stored in a tank is immediately taken out by the consumer (the RasPi). The tank here
acts as a temporary storage (buffer) to store the water, while the consumer is busy
drinking (calculating). This is a good example to understand the working of this
hack, isn't it?

This hack can be applied to any resistive sensors, such as thermistor, flex sensors,
and pressure and force-sensitive resistors. We can use the same code and hardware
explained here to interface these sensors.

Building the project
Whether you have the RasPi 2 model B, RasPi 1 Model B, or Model B+, the hardware
setup will remain same and therefore the code too. Once you start coding, you will
gradually learn how the RasPi board and DHT11 sensor communicates. In parallel,
you will also understand how to interface it to the LDR sensor. You will get to know
how multiple sensors can be integrated to get the data. However, first, let's take a
look at the circuitry we need to build.

www.allitebooks.com

http://www.allitebooks.org

Monitoring the Atmosphere Using Sensors

[78]

Hardware setup
This project has minimal requirements. It is easy to make the connections on the
breadboard, unlike the voltage divider on the previous project. To make this setup,
we will require the following devices on our table:

• DHT11 temperature and humidity sensor
• LDR / photoresistor / CdS cellsensor
• 4.7KΩ, 270 Ω, and 10KΩ resistors (if the seller asks about the wattage of the

resistor, ask for 1/4 watts; it is also termed as quarter watts)
• 1µF-16V through-hole electrolytic capacitor
• One LED
• One multimeter
• Female-to-male jumper wires and female-to-female jumper wires
• Breadboard
• The RasPi with power adaptor
• An Ethernet cable
• A personal computer

Take a look at the following figure. It represents the connections of our project.
The LDR sensor is not a directional electrical component (it operates the same as
the resistor). Therefore, it can be connected either way, unlike the LED. One of
the terminals of LDR goes to the +5V line of the RasPi pin header, and the second
terminal connects to pin 7 on the RasPi pin header (BCM mode GPIO 4). The same
terminal that is connected to pin 7 connects to the positive terminal of the 1µF-16V
electrolytic capacitor.

To determine the polarity of the capacitor, you need to check the
capacitor closely. There will be a strip marked by - on the body of
the capacitor. The strip will have a color in contrast to the color of
the capacitor.

The negative terminal of the capacitor connects to the ground (common) pin of the
RasPi. The LED can be connected in the same way we usually connect on pin 11 of
the RasPi pin header (BCM mode 17):

Chapter 4

[79]

Take the DHT11 sensor in your hand and look at it from the grid side. The following
pins from the left-hand side are assigned as VCC (+5V), data, No Connection (NC),
and ground (common). Connect the VCC pin of the DHT sensor to the same +5V line
where we connected the LDR sensor. The data line of the DHT needs to be pulled
up to the +5V line with a 4.7 K or 10 K resistor (R1). Otherwise, there is a chance of
getting random data on the RasPi header pin 16 (BCM mode GPIO 23). The ground
line will be common for all. Pin number 25 of the RasPi comes under the Do Not
Connect (DNC) category, but we can use it as a GND pin. All the grounds should be
made common either using the ground rail of breadboard or by connecting them to a
single ground pin of the RasPi.

Both sensors work well at the +3.3V limit, too. You can experiment it
by changing from the +5V wire to the +3.3V pin (header pin 1) of the
RasPi GPIO header. Be careful while switching from the +5V to +the
3.3V line. These lines are very near to each other on GPIO header, do
not make any short between these two lines. As a result of shorting, the
RasPi would be switched off/reset automatically.

Monitoring the Atmosphere Using Sensors

[80]

Breadboard setup
Once the circuit is understood, it will be very easy to connect components on
the breadboard. The DHT sensor's orientation is very important to connect. Follow
the image shown here and insert the DHT sensor directly into the breadboard. In
the image, the LED connections are not shown as you are smart enough to connect
them by yourselves or by taking help of Chapter 2, Meeting the World of Electronics.
The black dots on the breadboard are the connections to be made either using the
male-to-male jumper wires or female-to-male jumper wires:

While making the connections, ensure that the RasPi is switched off and carefully
verify the connections made. It is good to double-check everything while working
with very sensitive hardware such as RasPi, because we do not want to lose our
friend and shed tears.

Chapter 4

[81]

Preparing the code
Working with the DHT11 sensor is quite complicated but not difficult. In parallel
with this sensor, we have interfaced the LDR sensor. We have to manage the timings
for both the sensors. The problem can be easily solved when we break it down into
several instances. We will split the project into smaller steps as follows:

1. Understand the bit banging technique for DHT and prepare the code as per
the timing sequence.

2. Write the code for the DHT sensor and test it.
3. Test the code for the LDR sensor.
4. Combine both codes and test it.
5. Add the comparison loop, and make the LED glow to show some indications.

Code the DHT sensor and measure relative
humidity and temperature
As we know, the DHT sensor works on single-wire bidirectional protocol.
Thus, the synchronization between the sensor and the RasPi is very important.
We have to read the sensor at timed intervals. Once the RasPi sends a request, the
DHT sensor sends the recently read temperature and humidity data simultaneously.
As the sensor is slow and from the timing diagram shown in the next figure, it is
recommended that you read the sensor or send the request to the sensor every 5
seconds or more to get accurate data.

If you have already set up the hardware, you need not remove the
connections of the LDR sensor while working with the DHT sensor.

Let's first see the timing diagram to be followed, and then, we will go through the
responses received from the sensor. If you observe the upcoming timing diagram
image from the left-hand side, the data line is pulled up (high) by a resistor of value
4.7KΩ. Therefore, whenever there is no forceful action, such as pulling down, or
no data transmission, the line status is pulled high by default. Understanding the
diagram in the sequential manner, we will move from left to right.

Monitoring the Atmosphere Using Sensors

[82]

The signal has two logic levels: VCC(5V) and GND. Pulling the line high
(pull-up) is necessary because logic 1 is the default state to be maintained at
the sensor's data line. Therefore, we will have a high state of the line when we
initiate the communication between the DHT and the RasPi. The following timing
diagram is for our understanding purpose only. The frequency and timing are not
populated in this figure.

Once the RasPi is ready to receive the data from the DHT, it pulls the line down
for more than 19 ms and makes it high again. After some delay, the DHT will
sense that the line has been brought down to zero by the RasPi. It then sends
the acknowledgement of high pulse of duration 80µS to the RasPi and again
brings the line to the low state. Therefore, the RasPi will wait for the 80µS pulse,
and then, it will now know that the sensor will send the data. After sending the
acknowledgement pulse, DHT11 starts sending 40 bits of data to the RasPi. The data
0 format in the bit stream is nothing but a combination of low level for 50µs and
26–28µs of high logic. Similarly, logic 1 is low level for 50µs followed by high logic
level for 70µs.

Eight bits make one byte. Four bits make one nibble.

The received 40 bits contains 8-bit integer RH data, 8-bit decimal RH data, 8-bit
integer T data, 8-bit decimal T data, and 8-bit checksum. The checksum is the total
value of all the received data so that we can verify that the received data is correct.

If the data received is 0011 1101 0000 0000 0001 1010 0000 0010 1010 0110,
then 0011 1101+0000 0000+0001 1010+0000 0010= 1010 0110 is the calculation.

Adding the first four bytes to verify with the last eight bits, it should be observed
that the summation of the first four bytes is equal to the final byte received. In the
given example, the received data looks correct. Convert the binary into hex and then
into decimal form to get the exact value. We get Humidity= 0011 1101= 3D (Hex) =
61%RH and Temperature= 0001 1010=1A=26 degree Celsius.

Chapter 4

[83]

After receiving the data of 40 bits, it's our wish to resend the request to DHT and
start the whole process again. DHT keeps sensing the temperature and humidity and
keeps the data ready for the RasPi. Whenever it senses a pull down from the RasPi, it
initiates the acknowledgement pulse followed by data bits.

Let's get an understanding of the code for DHT11 alone. We will follow the timing
diagram and the description given earlier to prepare a code. We will follow the C
coding (the wiringPi library) for this method. Initially, the data is sent to the DHT11
sensor as a request to send the data. Therefore, the RasPi pin will be made output for
a while. Following the next step, the same pin will be made low for the 18ms first.
Then again, make the pin high for 40µs and wait for a response from the sensor. To
wait for a sensor, we need to observe the data coming from the sensor. Therefore,
convert the same pin to the input pin.

Let's take a look at the following code snippet:

pinMode(DHT, OUTPUT);
digitalWrite(DHT, LOW);
delay(18);
digitalWrite(DHT, HIGH);
delayMicroseconds(40);
pinMode(DHT, INPUT);

The response from the sensor should come within 80µs duration from wherever it is.
We need to continuously check for the data now. Now, we can just roughly calculate
how many bits would be coming from the sensor and in which duration. Assume
that we get all 1s from the sensor. We have considered 1 because it has the longest
duration of pulse, that is, 50µs+70µs=120µs. If we consider sequentially reading the
method twice (mentioned in datasheet), the total time will be 2*(40bits*120µS) =
96µS. We will wait for the acknowledgement pulse approximately for 100µS.
We will run the for loop to obtain data from the sensor almost 100 times.

for (pulse = 0; pulse<100; pulse++)
{

Every operation that follows will be done inside this for() loop. We will initialize
one value to zero and break the for() loop if it reaches the 255 value (setting
a timeout).Wait for every bit incoming from a sensor using the digitalRead()
function in a while() loop condition, and whenever the bit state is changed, we will
break the while loop and save the last state into a variable. This is how it's done:

value = 0;
while(digitalRead(DHT) == prev_state)
{
 value++;

Monitoring the Atmosphere Using Sensors

[84]

 delayMicroseconds(1);
 if (value == 255)
 break;
}
prev_state = digitalRead(16);
if (value == 255)
break;

After studying the timing diagram, we know that the initial pulses are sent to ensure
that the RasPi is in the ready state. Therefore, we will wait till the data starts coming
in. The first three pulses will be ignored, and we will start reading from the fourth
pulse (here, the pulse means a change of state). In addition to this, the change of
state should be an even number. Therefore, we will take modulo 2 of the pulse
value. Now, here comes some tricky part. The data is coming in a bit-by-bit format.
How are we going to store this? We will break the integer format of C into 8 bits.
For your knowledge, every integer has a capability to store 8 bits. An array element
can be used to store every byte (8 bit). Therefore, each of our bits will be taken as 8
bits, and while storing the data, we will shift to the left (<<) every single bit by one
position. We are storing every element of the received data (8-bit integer RH data
+8-bit decimal RH data +8-bit integer T data +8-bit decimal T data +8-bit checksum).
Therefore, we will place an if loop inside another if loop to change the index of an
array, as shown in the following code:

 if ((pulse>= 4) && (pulse % 2 == 0))
 {
 data[j / 8] <<= 1;
 if (value> 16)
 data[j / 8] |= 1;
 j++;
 }
} //FOR LOOP ENDS HERE

We also get the checksum in the last eight bits of the data to verify whether the data
received is correct. There may be a probability that there might be more data than the
actual length. Therefore, to make yourself assured, when we compare the 8-bit value
with the checksum, we perform the AND operation with the 11111111 value. The
condition to satisfy here is that the sum of all values (initial four bytes) matches with
the fifth byte received. If this condition is satisfied, we would print the final humidity
and temperature value. Otherwise, we would just discard the data and begin the
whole process again after waiting for around 1 second to make sure that the sensor
prepares the data to be sent to the RasPi during that time interval.

Chapter 4

[85]

Each communication process takes about 4 seconds. It is recommended
that you send the request for data in average 5 seconds, which means,
making the data line low from the RasPi. Adjust the delay accordingly
if the data is continuously received as incorrect.

Bit by bit, after storing the data into the array, the data will be printed on the
screen, and we should be able to see the relative humidity and temperature values.
Following code snippet does the same job:

if ((j >= 40) &&(data[4] == ((data[0] + data[1] + data[2] + data[3])
&0b11111111)))
{
printf("Relative Humidity is %d.%d %%and Temperature is %d.%d
'C \n",data[0], data[1], data[2], data[3]);
}
delay(500);

We can use an infinite loop, such as while(1) or for(;;), to continuously get the
values. However, before that, we have one task pending, which is preparing a code
for the LDR sensor.

Code the LDR sensor and measure light variations
The most difficult part of the project has already been discussed. We will now use the
LDR sensor to detect light changes using the hack we introduced while studying the
RC time constant in an overview of the LDR sensor. Whenever we want to measure
or take response from the LDR sensor, we will make the GPIO pin of the RasPi 0
(low) for a moment. Directly, the GPIO low pin makes the capacitor fully discharge
to take the readings. Then, after a small duration, we will make it as input pin to
check up to what time it charges and reaches up to the voltage level. This should be
enough to recognize the RasPi pin as a 1 (high). More technically, when we make
the RasPi input pin (GPIO header) as input state, it goes to a high impedance state.
Therefore, whenever the voltage reaches 1.6V or above, the RasPi can recognize
it as high. Framing the whole sequence of LDR sensor: lesser the light, higher the
resistance of LDR. Higher the resistance, higher the voltage drop across the LDR and
slower charging of the capacitor. Slower charging of the capacitor, longer the time to
reach the voltage level up to 1.6V. The C codes are very fast. Therefore, if we do not
limit the readings from the sensor, the RasPi would be flooded with the data. We will
use the index (variable index) of 50 to get the data 50 times, and then, we will take
the average of the data received:

for (index=0;index<50;index++)
{
 pinMode (LDR, OUTPUT);

Monitoring the Atmosphere Using Sensors

[86]

 digitalWrite (LDR, LOW);
 delay(16);
 count=0;
 pinMode (LDR, INPUT);
 while (digitalRead(LDR)==LOW)
 count++;
 val[ind]=count;
}
sum=0;
for (index=0;index<50;index++)
sum+=val[index];
printf("LDR Value is %d\n",sum/250);

The values received by the RasPi are so large that we need to divide it by five
times more than the index. According to the hardware configuration, define a pin
to the LDR value and make it low for 16ms, as the LDR sensor's resistance values
and the RC time constant are changing drastically. After that, set the pin as input
(high impedance state) and increment the count value until the pin becomes high.
Therefore, whenever there is ample amount of light on the sensor (use mobile phone
flash to test), the count value is small and vice versa. Add all the values to the sum
variable and take the average of the value. Wasn't this so simple?

Putting all the parts together
We can build a project that understands that the temperature and light are high,
and hence, would turn off the home tube lights while automatically turning the fan
on! We can integrate the whole project and make an LED glow to show the decision
made by the RasPi. Does this sound good?

Whenever we want to control home appliances, we need to be extremely
cautious that they work on 110/230V AC and up to 15A of current. It is
not recommended to connect the RasPi to any of the AC mains-operated
home appliances directly. Relays (which provide good isolation) should
be used to control the appliances. However, it is highly recommended
that you perform any task related to relays and controlling appliances
under the observation of an experienced electrician.

We can order the relay boards from any e-store. The relay boards are separately
powered through an adapter or direct mains supply. The +5V or +3.3V pins of the
RasPi should not be shared with these boards. Nevertheless, we can connect the GPIO
and ground pins directly to the relay board input/trigger pins. For demonstration/
testing purpose, we should connect LEDs on the GPIO port, and once the LEDs are
tested successfully, we can interface the relay board. The working will remain the
same. For testing, this project we will not require any electrician, as we will make the
LEDs glow.

Chapter 4

[87]

If you decide to use a relay board, do not forget to common the ground
pins of both the RasPi and the relay board.

First of all, we will merge the codes of the DHT11 and LDR sensors. To match the
timings, some parts of the code will be a new addition to the previous two codes we
wrote for DHT and LDR. We will define some include libraries, such as standard
input/output (stdio), standard integer library (stdlib) (because we will break the
8-bit integer into binary bits), and wiringPi to get support of the RasPi GPIO. We
have defined some of the integers as uint8_t to define them as 8-bit data.

In code, the LDR, DHT, and LED devices are defined as 7, 4, and 0,
respectively. As we are using the wiringPi library, they are GPIO
numbers that would be same for model B and B+ (previously, it was
BCM and Board modes). To know the exact wiringPi pin numbers
mapped to the RasPi GPIO pin header, type gpio readall
command in the terminal. This command will give you a table of all
the naming conventions followed in the RasPi as output. This is very
useful when we code with different libraries.

Open PuTTY on your PC by connecting it to the RasPi through an Ethernet cable
and type the sudo nano dhtldr9.c command to enter the code to get this project
up and running:

#include <wiringPi.h>
#include <stdio.h>
#include <stdlib.h>//Library for integer arithmetic and conversion
#include <stdint.h>//Standard Integer Library
#define DHT 4 //RasPi GPIOHeader Pin 16
#define LDR 7 //RasPi GPIOHeader Pin 7
#define LED 0 //RasPi GPIOHeader Pin 11
int data[5], count, index, k, val[1000],sum=0;
int main(void)
{
 if (wiringPiSetup() == -1) //Check and call wiringPi library
 {exit(1);}
 pinMode(LED,OUTPUT); //Set LED pin to Output
 digitalWrite(LED,LOW); //Make LED OFF by default
while (1)
{
 uint8_t prev_state= HIGH;
 uint8_t value= 0;
 uint8_t j= 0, pulse;

Monitoring the Atmosphere Using Sensors

[88]

 for(k=0;k<5;k++)
 { data[k] = 0;} //Clear the data in array

 pinMode(DHT, OUTPUT);
 digitalWrite(DHT, LOW);
 delay(18);
 digitalWrite(DHT, HIGH);
 delayMicroseconds(40);
 pinMode(DHT, INPUT); //Initial Handshake between Sensor
and RasPi

 for (pulse = 0; pulse < 100; pulse++)
 {
 value = 0;
 while (digitalRead(DHT) == prev_state)
 {
 value++;
 delayMicroseconds(1);
 if (value == 255)
 {break;}
 } //while loop ends here
 prev_state = digitalRead(DHT);
 //Catching the data into the data Array

 if (value == 255)
 break;
 if ((pulse >= 4) && (pulse % 2 == 0))
 {
 data[j / 8] <<= 1;
 if (value > 16)
 data[j / 8] |= 1;
 j++;
 }
 } //for loop ends here

 if ((j >= 40) &&
(data[4] == ((data[0] + data[1] + data[2] + data[3]) &
0b11111111))) //Verifying the Checksum, Validate and Print the data
 {
 printf("Humidity = %d.%d %% Temperature = %d.%d 'C \n",
 data[0], data[1], data[2], data[3]);
 }
 else
 {

Chapter 4

[89]

 printf("Data received is corrupted, what did you do?\n");
 }
 pinMode(DHT, OUTPUT);
 digitalWrite(DHT, HIGH);

 //LDR code initialization
 for (index=0;index<50;index++) //Setting Code to get 50 values
and store into array
 {
 pinMode (LDR, OUTPUT);
 digitalWrite (LDR, LOW);
 delay(16);
 count=0;
 pinMode (LDR, INPUT);
 while (digitalRead(LDR)==LOW)
 count++;
 val[index]=count;
 }
 sum=0;
 for (index=0;index<50;index++)
 sum+=val[index]; //Take sum of all values in Array
 printf("LDR Value is %d\n",sum/250); //Take average of sum and
 scale by 5 and print the data
 if(data[2]>25 && sum>4000) //Check the Temperature and Light
Condition
 {
 digitalWrite(LED,HIGH);
 printf("TEMPERATURE IS HIGH >> FAN ON, LIGHT IS LOW >>
TUBELIGHT ON\n");
 }

 delay(500); //Adjusting the Delay to match DHT11's minimum
request time

Now, after typing the code into your RasPi, just press Ctrl + X followed by Y. Then,
press Enter to save the changes. Enter the gcc dhtldr9.c -o dhtldr9 -lwiringPi
command to compile the code. Then, enter the sudo ./dhtldr9 command to execute
the code.

It is very important to execute the code with root privileges in order to
change the state of GPIO pins of the RasPi. Therefore, we need to use
sudo to execute the code.

Monitoring the Atmosphere Using Sensors

[90]

The following screenshot shows the output of the sudo ./dhtldr9 command:

Troubleshooting common problems
We have covered almost everything on interfacing both of these sensors together.
If you are still facing the problem in getting/reading the data, you could go through
some of the common problems faced in the following sections. In most of the
problems, it is advised that you check the connections made on the breadboard
and correct the RasPi GPIO pin.

Received DHT data is not valid
The following points need to be kept in mind when the received DHT data is
not valid:

• First and foremost, as mentioned earlier, the received data directly depends
on the connections you have made. Carefully check the connections of the
pull-up resistor between data line and +5V line.

• There can be a wrong value for the resistor. If you have connected 4.7KΩ, try
to change it to 5KΩ, or you can use a maximum 10K resistor. A high value of
the resistor can turn data into false or corrupted values.

• Check the DHT orientation. The pin on the left-hand side, seen from front, is
the VCC pin.

Chapter 4

[91]

The LDR sensor gives a zero value
The following points need to be kept in mind when the LDR sensor gives a zero value:

• Check the capacitor value connected between the LDR sensor and the
ground. A small value of the capacitor voltage cannot build up much charge.
It is highly unlikely that the 1µF capacitor comes less than 16V, but check that
it is not lesser than 6.3V rated.

• Try running the Python code for the LDR sensor. If it shows the correct
values, then there is no problem with the connection. As mentioned earlier,
the Python code is simpler than the C code. Just check it in the following code:

import RPi.GPIO as GPIO
import time
GPIO.setmode(GPIO.BCM)
value = 0
GPIO.setup(4, GPIO.OUT)
GPIO.output(4, GPIO.LOW)
time.sleep(0.2)
GPIO.setup(4, GPIO.IN)
while (GPIO.input(4) == GPIO.LOW):
 value = value + 1
print value

Is the voltage correct?
The following points need to be kept in mind when checking whether the voltage
provided is correct:

• As mentioned earlier, both the sensors can work on either +5V or +3.3V.
As we have connected a resistor on the data pin of the DHT sensor, it
impressively drops the voltage to a sufficient level to maintain the level of
the line. On the other side, the LDR sensor itself is a resistor to drop enough
voltage and charge the capacitor. Insufficient voltage cannot be the problem
with the LDR sensor, as it can work from 1.8V to 100V.

• Some of the breadboards have discontinued lines of +5V and ground on the
side. Check the connectivity of supply lines using the multimeter, and be
assured that the ground is properly connected and shared with the RasPi.

Monitoring the Atmosphere Using Sensors

[92]

Summary
In this chapter, we started with the process of selecting a sensor, in which we got to
know that the sensor selection process is not as easy as it looks. There can be so many
parameters, and none of them should be neglected while selecting a sensor. This
affects the system according to the criticality of the application.

Following the explanation to introduction of the DHT and LDR sensors, you
continued to learn with the tricky DHT sensors. The timing diagram was somewhat
complex to implement. Due to lack of onboard analog-to-digital convertor, you
learned about the RC time constant and use of the capacitor to integrate any resistive
sensor with the RasPi and the LDR sensor in particular. Finally, we integrated
everything and made a project that can be called a small project of home automation.
We were able to integrate the LDR and DHT sensors and make a sensor node using
the RasPi. Using the data of temperature and light captured from sensors, we
controlled the appliances such as tube, light, and fan.

In the next chapter, you will learn to integrate the analog-to-digital convertor chips
that are useful to integrate any sensor with the RasPi. We will understand why it
is important to use the ADC chips. ADC chips can enable the RasPi to be a sensor
station, and we can log as much data as we want.

[93]

Using an ADC to Interface
any Analog Sensor with the

Raspberry Pi
It is known in the RasPi community that the analog-to-digital convertor (ADC) is
not integrated into the RasPi because the onboard processor (BCM2835) does not
have any functionality to perform the conversion. Had the Raspberry Pi integrated
ADC module, it would have been very easy to interface the sensors, since ADC
modules are used to convert analog values into discrete and digital values. Most
sensors provide us with the analog signal on their output pins. These analog signals
are not understood by the processor as they are varying in nature. Interfacing the
ADC module ensures that the correct data will be read by the processor to make
appropriate decisions. In a simple manner, the ADC module creates a bridge
between the analog sensor and the RasPi core processor. More specifically, ADC
modules convert analog signals into digital data and provide the converted data
to the RasPi through certain protocols such as I2C, SPI, or UART. Compared to the
RasPi, the AVR, Arduino, and PIC18 boards have up to eight analog inputs and
internal ADCs. However, the RasPi has a lot of other functionalities to compensate
for the absence of an ADC module, such as handling an operating system, full-HD
video streaming, camera support, and much more. We can always provide the ADC
conversion functionality externally.

Earlier, ADCs were made using discrete electronic components, using BJTs or
operational amplifiers and resistors. All the credit goes to integrated circuit
developers for integrating all such things and giving them to us in the form of a
single chip. ADC modules are used in almost all kinds of smart equipment, and
whenever there is a requirement of interfacing a sensor, ADC modules are used
in one way or the other—either inside the microcontroller or as a dedicated signal
conditioning network to take care of incoming signal from ADC.

Using an ADC to Interface any Analog Sensor with the Raspberry Pi

[94]

In this chapter, you will learn how to use and interface the ADC module. You will
initiate your learning from the basics of ADCs and the simple mathematics behind it.
Once you've learned the calculations to be done to acquire the analog value, we will
take a look at a specific ADC IC, known as MCP3008, manufactured by Microchip
Technology. You will then gain the essential knowledge on MCP3008 required
to prepare generic hardware and a form of a sensor station that will allow you to
connect any sensors with it. Similarly, we can then write the generic software to
scan any channel of the ADC convertor chip through the RasPi. Using this software,
we will then be able to convert the sensor station into the data logger. This data can
finally be saved in the .csv file for post-processing.

Let's cover the ADCs first.

Analog-to-digital convertors
In this section, we are going to take a look at the types of ADC modules and the
conversion process of the signal. We will get insights into answering these questions:
How the ADC module takes care of the incoming data? Do all the ADC modules
need external signal conditioning circuitry and amplification? How does the ADC
module provide the data output? How is the quality of the ADC measured? What
are the calculations required while processing the data?

ADC modules are a part of the signal conditioning circuitry in a microprocessor or
a microcontroller. Unlike the RasPi, most microcontroller and microprocessor-based
boards have ADC modules embedded, and the signal conditioning circuitry too.
Most sensors can be directly integrated with these kinds of processors. Practically,
in sophisticated systems, these conditioning networks have many stages for taking
care of the incoming data. Some processors have dedicated signal processing cores
or units to handle the data. ADC and digital-to-analog conversion (DAC) topics
are so vast that one could write a whole book on explaining the functionality and
projects on it. Without going into the depths of ADC, we will cover the basic terms
and functionalities.

Chapter 5

[95]

Data reception and signal conditioning
When data enters the processor, the ADC module's first task is to filter the unwanted
noise from the received sensor signal. This filter is known as the anti-aliasing filter,
which is used to avoid the aliasing effect observed during sampling. To meet the
requirement of the Nyquist's sampling theorem, the sampling rate should be double
(or greater) the signal frequency. Anti-aliasing is an effect in which the signal's
frequency band stretches and gets overlapped while sampling the signals, which
creates an unwanted noise and crosstalk issues. To overcome this phenomenon,
anti-aliasing filters are used to ensure that the signals received are in the desired
frequency bands. Sometimes an additional filter, such as a band-pass filter, is
designed to filter out undesired frequencies.

The amplitude of the signals coming from the sensors is usually weak and varies a
lot. Nowadays, advanced sensors have the capability to provide a signal powerful
enough to be fed directly to the microprocessor. However, this is not always the
case. In some analog data acquisition systems, we require the amplified signal to the
filter input. For that operation, we need the amplification stage prior to or after the
filtering stage.

Amplification
Sometimes the signals received may appear similar to noise signals. Some smart
ADC modules discard the incoming data due to lack of enough voltage or current
(basically low power) of the signal. In this case, we use current or voltage or power
amplifiers to boost the current or voltage or power level of a signal respectively.
For example, a temperature sensor or motion sensor provides very weak signal
voltages (in mV), and this range of voltages is too low for the ADC module to start
the conversion process. In this case, it is required to boost the voltage to the required
voltage range. In most circuits, Operational Amplifiers (Op-Amp) are used for
amplification of voltage and currents. The amplifiers designed to implement in signal
conditioning are log amplifiers, instrumentation amplifiers, peak detectors, and
many more.

Using an ADC to Interface any Analog Sensor with the Raspberry Pi

[96]

Sampling and quantization
Sampling and quantization are the terms that are widely used in electronics and
communication theories. These theories are too complex to understand for a
beginner in electronics. By definition, sampling refers to the process of acquiring
voltage levels (at a predefined frequency) from the continuously incoming data at
an analog input pin or at the output of an amplifier. Quantization is the process of
mapping or shortening down a large amount of input values of the sampler into a
countable set of numbers (in this case, the combination of digital bits). Quantization
always produces a quantization error because it rounds off continuous input values
and makes approximations to its nearest values.

Types of ADC
With respect to electronic design, there are multiple design structures available
for different kind of ADCs. Widely used ADCs include Flash Convertor ADCs,
successive approximation ADCs, sigma-delta ADCs, and many more. A flash
Convertor ADC uses clock pulses and comparators and operates in parallel
mode. It is the fastest way to convert analog data into digital bits. A successive
approximation ADC also uses a comparator to shrink the range of input voltages.
It makes approximations by comparing the input voltage with the internal DAC
and stores the result in a successive approximation register. A sigma-delta ADC
samples the signal and filters the desired signal frequency. It converts the signal into
analog frequency pulses and counts these pulses at regular intervals, so the pulse
count divided by the interval gives an accurate digital representation. ADC types
and descriptions are endless and cannot be described in this section. Let's cover
something more important now.

Resolution of the ADC
Resolution of the ADC is one of the most important terms when you describe or
learn about the ADC. Resolution of the ADC refers to the number of values that can
be produced over the range of analog input voltage levels. For example, an 8-bit
resolution of an ADC can have 256 different combinations of the values because
28 = 256. In general, the number of voltage intervals can be defined by 2N levels,
where N is the resolution of ADC in bits. When we talk about resolution, we always
take reference voltage into account. Reference voltage is another input to be given
through the dedicated input pin of the ADC. It reflects the maximum value that the
ADC can measure at the analog input pin. Therefore, most ADCs have two types of
input: the reference voltage (mentioned as V

ref
) and the analog input. Let's take the

reference voltage as 5 volts and the resolution of the ADC as 8 bits; then 5V/256 =
19.5mV. Therefore, the ADC convertor cannot understand voltage changes on the
analog pin under 19.5mV.

Chapter 5

[97]

In other words, the ADC module is no more sensitive than 19.5mV. Compare this
situation with 12-bit ADC, which can be calculated as 5V/4096 = 1.2mV, pretty fair,
isn't it? Now we can detect changes in the analog input signal with the sensitivity
of 1.2mV.

There are two ways to improve the resolution of an ADC. One simple
way to do this is to decrease the reference voltage, and the second way is
to choose an ADC module with higher bits of resolution.

Reducing the reference voltage is not recommended in most cases because it
will narrow down the window of maximum voltage that can be detected by the
ADC. For example, if the reference voltage is 3V, then the ADC cannot detect the
changes happening over 3V because it saturates at the reference voltage. It is always
recommended to use a higher-bit ADC module instead of reducing the reference
voltage. The processors, which have an integrated ADC, do have a programmable
reference voltage, which can be set during runtime.

The math behind ADC
As you learned, you know that the principle behind the ADC convertor is to convert
the sensing parameter into voltage levels. For example, let's take a temperature
sensor and its working parameters into account. A good temperature sensor works
on a 5V input supply with 10-bit resolution, 5V reference voltage, and temperature-
to-voltage conversion equal to 1mV per degree Celsius. It senses temperature in the
range of 0 degree Celsius to 50 degree Celsius. Therefore, at 50 degree Celsius, it will
provide the maximum 5V output at the analog pin. The digital conversion equation
goes this way:

Digital number = (2resolution / Vref) * Vin

Let's calculate the value of the digital number converted from the input voltage read
at the analog pin:

10 bits; therefore, 2resolution = 1024

Vref = 5V

Suppose ADC has read 2.9V at the ADC input pin. Then Vin = 2.9V yields Digital
number = 594 by rounding off.

Now the resolution of the ADC is Vref / 1024 = 5/1024 = 0.00488 V/count, and the
temperature-to-voltage conversion scale factor is 1mV per degree Celsius.

Using an ADC to Interface any Analog Sensor with the Raspberry Pi

[98]

Therefore, to convert the obtained digital value in the temperature value, we use
this formula:

Temperature = (594*0.004882)/0.001 = 28.9990

To avoid floating value calculations, use the following generic formula:
Temperature = digital read value * 4882. This will give you six- to seven-
digit integer. Put the decimal point after first two numbers, for example,
594*4882 = 2899908. After putting the decimal point after the first two
numbers, 28.9908 is the value of temperature.

If you carefully see, you'll notice that the final temperature value is just multiplied
by 10 of the sensed input voltage provided by the temperature sensor. This
happened because we had 10-bit resolution, which made the mapping count range
from 0 to 1023. Try it yourself with the 12-bit ADC values and check the precision
and the value change.

Data output
Once the conversion is over, the ADC module provides data on its output port.
When choosing an ADC module for boards like RasPi, there can be two options: we
have to choose an ADC module that provides either parallel digital output or data on
a known standard protocol bus such as UART, SPI, or I2C; or a proprietary protocol.

MCP3008 for analog-to-digital conversion
The MCP3008 ADC is based on successive approximation ADC architecture with
a resolution of 10 bits. The MCP3008 has eight input channels for interfacing the
sensors on the pins. If so many channels are not required, we can select a four-
channel input ADC chip known as MCP3004. These chips are the best way to
interface sensors because they support the SPI slave mode to be interfaced with the
GPIO pins of the RasPi models A+, B, and B+ and RasPi 2 model B. This MCP3008
chip should be purchased in a dual-in-line (DIP) package so that we can easily insert
it on a breadboard while preparing for the project:

Chapter 5

[99]

Channels
In the preceding figure, the pin out of MCP3008 is represented. Pins 1 to 8 to the left
are CH0 to CH7, which are used for analog input channels 0 to 7 respectively.

If you have had an enough exposure to electronics in the past, you
might have heard about differential pair signals. These differential
pair signals are used to eliminate the common-mode noise present in
incoming analog lines.

Among these eight channels present in MCP3008, we can use pairs and make it
as a four-input ADC with pseudo-differential inputs. The difference between
pseudo-differential and fully differential modes is that in the pseudo-differential
mode, the ground is separated by a low-value resistor from the common ground for
better performance.

The example of a sensor that works on differential modes is ACS726 for current
sensing applications in industries for over-current detection and load detection.
To avoid complexity in the hardware, we will use single-ended operation, where
one channel will be used to take the input from the sensor to one of the channels of
MCP3008.

Ground
In MCP3008, there are two grounds available, AGND and DGND. It is best practice
in hardware design that the analog ground and digital ground should not be made
common or tied together. There should be a filter or ferrite bead to improve the
noise immunity of the digital system. In precision devices, this must be followed, but
again, our project doesn't need precision or sophisticated filtering. We are happy to
tie the analog and digital grounds together, and it is all okay to do that in this project.

Using an ADC to Interface any Analog Sensor with the Raspberry Pi

[100]

SPI
MCP3008 employs four-wire SPI communication. The device is capable of a 200 ksps
(kilo-samples per second) conversion rate. It is important to maintain the minimum
clock speed while working with SPI-based modules. In the case of MCP3008, the
timing between the sampling and data output should be at least 1.2 ms to effectively
get the data at the RasPi's SPI port. The pins present on MCP3008 for SPI are CSN,
DIN, DOUT, and CLOCK, which are the same as CS, MOSI, MISO, and CLOCK
respectively on the RasPi's GPIO port—or similar for any other SPI devices. CSN is
used to initiate communication with the peripheral slave device.

CSN is an active low pin. Remember that you have to pull down the
signal to zero to start the communication. When it is pulled to high,
MCP3008 will end the conversion and the device will go into the low-
power standby mode. Between two ADC conversion requests, CSN must
be pulled to high.

Reference voltage
As described earlier in the Resolution of the ADC section, you learned the importance
of the reference voltage. It is the same pin where we need to give desired reference
voltage. One interesting thing to know is that there are dedicated chips available for
creating precision reference voltage for ADC convertors. For example, our ADC chip
is of 10-bit resolution and works on 3.3V. There are some chips available that provide
you with precise 3.072V reference voltage. You will definitely think, "why 3.072V?" If
you don't remember the formula mentioned in the Math behind ADC section, here it
is again:

Digital Number = (2resolution / Vref) * Vin

Putting our values in the formula, we get this: 210 = 1024; Vref = 3.072; Digital Number
= Vin / 3.

It gets so easy to calculate the digital number from the incoming Vin voltage read at
the input pin. For our application, we will simply tie the reference pin to the 3.3V so
that we can have simplicity at the hardware side.

Chapter 5

[101]

Supply voltage
It is mandatory to provide stable input voltage for the ADC modules, because if
the input supply is noisy or unfiltered, it can directly affect the reference voltage of
the ADC. This creates a long chain of errors, as the digital number depends directly
on reference voltage. We will provide power supply of 3.3V through the RasPi's
expansion port. This voltage is near to stable as it comes from the internal low-
dropout voltage regulator.

Making your own sensor station
It is essential to gain knowledge of the ADC modules that we have gone through,
and it is good to go with the hardware setup. We know that MCP3008 has eight
channels to interface eight different single-ended output analog sensors. What if
we build a project that has as many sensors as eight? Do you want to create generic
hardware that has the capability of connecting any sensor with your RasPi? This
section will contain the development of generic hardware that can seamlessly work
with RasPi to interface whichever sensors you want. We can call that hardware by
giving a name as a sensor station.

Not all sensors can be directly interfaced through MCP3008 with the
RasPi. As described in the introduction to the ADC convertor, some
sensors' output is so noisy or weak that it needs external filters and
amplification for those respective sensors. It is recommended to read
the datasheets of that particular sensor to know the required additional
circuitry to be interfaced.

Until Chapter 4, Monitoring the Atmosphere Using Sensors, we used breadboards to
create rapid prototyping hardware. We can prepare a circuit on a clean and reusable
general-purpose circuit board (GPCB) by soldering the components. A GPCB can
be useful for fulfilling our requirement for making the generic hardware. Still, if
you don't want to buy the GPCB, this section will give you the idea of making the
circuit on a breadboard. This is because preparing a circuit on a GPCB requires some
soldering instruments, materials, and skills of soldering; it would rather be easy to
use a breadboard. But there is much more fun in building a hand-soldered project.
If you don't have soldering skills, you can build up your skills in an hour or two by
practicing on junk hardware. Give it a try!

Using an ADC to Interface any Analog Sensor with the Raspberry Pi

[102]

Here's the list of the hardware we need to purchase in order to start the
hardware development:

• A general-purpose circuit board, dual-sided and solderable (2.54 mm pitch)
• Soldering iron (pencil type, 30 W to 50 W) and soldering core with flux
• MCP3008 (eight-channel) or MCP3004 (four-channel and DIP package)
• A single-stranded wire (20-30 AWG)
• A wire stripper
• One dual bergstik connector (male, 2 x 13 pins, 2.54 mm pitch); one single

bergstik connector (male, 1 x 8 pins, 2.54 mm pitch); and three single bergstik
connectors (male, 1 x 5 pins, 2.54 mm pitch)

• A GPIO ribbon cable for the RasPi 1 model B (26-pin) or B+ (40-pin) and the
RasPi 2 model B (40-pin and female to female)

• LM35 or LM36; also known as TMP36 or temperature sensor (TO-92 package)
• Male-to-female and female-to-female jumper wires
• The Raspberry Pi, a power adapter, an Ethernet cable, and a

personal computer

Place these components on your workbench and start building the circuitry,
as shown in the following schematic diagram:

Chapter 5

[103]

This hardware can now be used to create a generic interface to retrieve data from
up to eight different sensors. This hardware setup will be done apart from the
RasPi board connections. Once this circuit has been built, we will interface it using
the ribbon wire. Let's cover the connectors in the schematic diagram. The second
connector from the rightmost area of circuit, labelled as P1, is the 2 x 13 bergstik pin
male header of the RasPi 1 model B.

If you have the RasPi 2 model B or the RasPi 1 model B+, then you'll have to use the
2 x 20 bergstik pin male header in place of the P1 connector. The rest of the circuit
remains the same.

With the P1 connector, we join the P6 connector in the right to get the
functionality of GPIO and UART communication. If needed, we can use it to
toggle LEDs or to communicate with some other board or hardware. Pins 19, 21,
23, and 24 are the standard four-wire SPI interface connections net, labelled as
MOSI, MISO, CLK, and CSN respectively. On MCP3008, we have provided +3.3V
to VREF and VDD of the chip. In our new calculations, we will use 3.3 as Vref while
developing the software. The analog and digital ground should be tied together
while soldering the circuitry on the GPCB. The P2 connector in the leftmost area of
the schematics will be used to connect the analog output pins of different sensors.
Connectors P3, P4, and P5 can be used to connect +3.3V, Ground, and +5V to the
sensor as per the requirement.

Using an ADC to Interface any Analog Sensor with the Raspberry Pi

[104]

Hold the general-purpose board in your hand and you will notice that it has
copper-plated holes. These copper-plated holes can be used to solder the
components. Take a look at the top view of the representational circuitry built
on the GPCB, as shown in the following diagram:

The circuit looks straightforward and same as the schematics. By keeping some space
on the left side, insert the connectors into the suggested positions. Here, the 2 x 13
bergstik pin male header can be used to connect the RasPi GPIO using the standard
GPIO ribbon cable. If you have model B+ or the RasPi 2 model B, then you can also
use the same hardware with the 2 x 20 pin bergstik header. Instead of wiring, you
can pour the solder to connect the chip and the connectors. The black lines shown
in the preceding diagram are the soldered pads on the GPCB. Just use the iron and
solder along the entire path as shown in the figure. One thing that needs to be taken
care of is that the MISO, MOSI and CLOCK signals have to be connected using
the wires, as they are crossing each other. Therefore, they are represented in grey.
Without wiring, it is not possible to solder the whole line from the RasPi connector to
MCP3008 without shorting each other.

Chapter 5

[105]

Soldering irons are too hot when they are at their peak
temperature. Be extremely cautious while using them. There
could be the chance that you put the iron on wires, your own
table, or your own hands! Use a soldering iron stand to place the
hot soldering iron when not in use.
While soldering the MCP3008 chip, do not keep the soldering
iron near the leads of the IC for a long time. The soldering irons
are typically hot, from 250 degree Celsius to 400 degree Celsius.
Long exposure to higher temperatures can damage the IC.

After preparing the hardware, we are ready to prepare the code by powering up the
RasPi and connecting it with the PC over SSHing through PuTTY using an Ethernet
cable. At this moment, there is no need to connect the hardware module that we
created just now. Once we write the software as described in the next section, we
then will connect hardware module to the RasPi using the ribbon/bus connector.

Generic software preparation
In future, there will be lot more sensors introduced than those you are working with.
It will be great if you develop software that is built to use in any of your analog
data acquisition projects. Preparing generic software without any errors will reduce
developing time in future, and you can rapidly build projects just by adding the
working generic software and calling the functions whenever needed.

We know that the MCP3008 is interfaced through the SPI protocol. To use the SPI
protocol, we have to install some additional packages on our RasPi. First of all, we
need to make our RasPi up to date. Enter these commands to update and upgrade
the OS to the latest kernel package. If you haven't performed any update after the
fresh installation, then this may take a long time. Once the process is done, restart
the RasPi module to perform the normal operations:

sudo apt-get update

sudo apt-get upgrade

sudo reboot

After this process, we have to make the RasPi board ready with the Python
development packages that will bring the default static library packages and
header files of the standard Python library:

sudo apt-get install python-dev

Using an ADC to Interface any Analog Sensor with the Raspberry Pi

[106]

Once this installation is done, we have to enable the SPI functionality for the RasPi
board. Because of its rare use, the SPI port is disabled by default. Therefore, it is
listed under the blacklist configuration file under the /etc directory:

sudo nano /etc/modprobe.d/raspi-blacklist.conf

This command will open the configuration file in a nano editor. Find out the spi-
bcm2708 line by scrolling down with keyboard. Put the # sign before this line to
avoid blacklisting of the SPI port during the startup process. Press Ctrl + X and then
press Y, followed by Enter to save the configuration file. After this process, we have
to reboot the RasPi again:

sudo reboot

Now, check whether the RasPi Linux kernel has loaded the SPI drivers while booting
or not. Enter the following command and check for the SPI drivers in the list:

lsmod

It is always tricky to work with protocols such as SPI unless some handy library
helps us. Thanks to doceme for sharing the python-spidev library on GitHub, which
provides us with the functionalities to pull and push the data from the SPI port.
Create a new folder for your project and download the spidev library:

mkdir mcpgeneric

cd mcpgeneric

wget https://raw.github.com/doceme/py-spidev/master/spidev_module.c

wget https://raw.github.com/doceme/py-spidev/master/setup.py

sudo python setup.py install

Once the installation is done, we are good to go for writing the code for our sensor
station. To understand the code, you first need to understand the data to be sent to
the MCP3008 in order to get the right data. As mentioned earlier in the introduction
of MCP3008, we know that in MCP3008, there are two modes available: the single-
ended mode and the differential mode.

Setting up the chip select and clock is taken care of by the spi-dev library, but
we need to understand the data transfer operations of MCP3008. How can the IC
understand that it has to perform a single-ended or differential-ended function? For
that, we need to send a control command from the master, which is our RasPi itself.
We need to send a nibble (4-bit) of data to MCP3008 as a command that has to work
on a single-ended mode and has to provide data from the x channel. Take a look at
the following table and understand that most significant bit of a nibble has to set 1 to
work in a single-ended operation:

Chapter 5

[107]

Single-ended mode (D3) D2 D1 D0 Channel to read
1 0 0 0 1
1 0 0 1 2
1 0 1 1 3
1 0 1 0 4
1 1 0 1 5
1 1 0 0 6
1 1 1 1 7
1 1 1 0 8

Before initiating the data transfer from the RasPi to MCP3008, we need to set the CS
pin low, and it should be kept low throughout the conversion process. Between two
conversions, the CS pin must be pulled high for optimum performance. Fortunately,
the spi-dev library takes care of this, and we have to focus more on our logic than
writing our own library.

There are two functions in the spi-dev library for sending the data to SPI slave
devices. One is spi.xfer(), which works on active high chip select. The other
function keeps the chip select (CS) low during operation, and makes the CS high
between two blocks of transfers. We will use the spi.xfer2() function, since our
device works on active low chip selects and requires the CS pin to be made high after
each conversion.

The data flow should be like this:

• Start bit, (1-bit length, State: High)
• Control bit, (4-bit length: D0 D1 D2 D3)
• Wait for the data

This is how our data will look once we send the request to read channel 1 over the
SPI line:

Using an ADC to Interface any Analog Sensor with the Raspberry Pi

[108]

Now, the spi.xfer2([value1, value2, value3]) function sends 3 bytes over an
SPI MOSI line and returns the 3 bytes back in an array. Therefore, we have to send
the first byte as (00000001)b or (1)d to the SPI slave over the MOSI line. The second
byte should be the nibble data of the command to the slave for selecting the channel,
which is (1 D3 D2 D1)b or (8+x)d, where x is the channel number. To make this
nibble a byte, we will shift the value of (8+x)d by 4 bits. As per the the timing
diagram shown earlier, the third byte is not required to be sent. Therefore, we will
send the third byte as (00000000)b or (0)d.

Once the command is sent by spi.xfer2(), all we have to wait for is the response
from the slave, which is taken care by the spi.xfer2() function itself. It starts
sensing the MISO line after sending the commands over the MOSI line. MCP3008
starts sending the 10-bit data through the MISO line and the data is stored in an
array of three elements, each of length 8 bits (1 byte). We prepare a function that
can be called by passing the value of channel, and get the read data back from the
function as a return value. We can write that function in Python as follows:

def readadc(channel):
value = spi.xfer2([1,(8+channel)<<4,0])

read = ((value[1]&3) << 8) + value[2]

return read

The least significant 8 bit is stored in the value[2] element of array and the
remaining two bits are stored in the value[1] element. To make all other bits zero,
we will perform the AND operation with (00000011)b or (3)d. Let's take an example
to better understand the received data:

Received data = 00000000 01000010 01100010

The array stores the data like this: value [0] = 00000000, value [1] = 01000010,
value [2] = 01100010.

We are interested in the last two bits of the value [1] element, as the ADC sends 10
bits of data. We perform the AND operation with 3 bits:

01000010 & 00000011 = 00000010

The sixth bit was already a glitch or unwanted data, which is removed by this
operation. We have to shift the values left by 8 digits, as it will finally affect the
decimal number.

00000010 << 00001000 = (10000000)b = (127)d

Add this shifted value to the value[2] element.

127 + 98 = 225 is the data received from the ADC convertor.

Chapter 5

[109]

Using your sensor station – make a
temperature logger
Now that you know the trick of reading the ADC value from MCP3008 through an
SPI, line we are ready to interface one of the sensors with MCP3008's channel 0. You
can now use your sensor station to interface with up to eight sensors in parallel. To
simplify the experiment, we are going to interface the temperature sensor with the
sensor station board. Imagine that the RasPi has been connected at a remote place
to log temperature data. Depending on our application, once in a month or after a
certain time, we need the data to be recorded manually. To log this, we will make
use of Python to store data in a text file, and read these values later on for analysis.

Know the LM36 temperature sensor
LM35 and LM36 (also known as TMP36) provide the linear response of temperature
changes reflected on voltage. The change in output voltage of the sensor is directly
proportional to the temperature change experienced by the temperature sensor.
LM35 and LM36 are centigrade temperature sensors. Because of its wide availability,
these sensors can be bought online or from any retail shop near you. We will build
our project with the LM36 sensor; if you have got the LM35 sensor, don't panic! The
difference between these two sensors is as follows: to measure subzero temperatures
using LM35, we have to provide negative voltage at the output pin of the sensor,
which needs special power supply requirements. If you provide only positive
voltage supply to the LM35 temperature sensor, it will sense only the positive
temperature range. This is not the case with the LM36. When provided with positive
voltage, it gives us the full range from -50 ˚C to +150 ˚C. It can be said that LM36 is
an improved version of the LM35 temperature sensor. Let's take a look at the pin out
functions and the package of the sensor. The following figure is a representation of
the LM36 temperature sensor from the bottom:

Using an ADC to Interface any Analog Sensor with the Raspberry Pi

[110]

There are three pins protruding from this sensor. Consider the semicircular shape to
be on top. Now the left-most pin is the GND pin, which needs the common ground.
The pin in the center is the analog output pin, which should be connected to the
ADC module input channel. To the rightmost pin, we can supply +2.7V to +20V. For
our application, we will be sharing the +3.3V output of the RasPi expansion header
(P3) to the GPCB.

Take three female-to-female jumper wires and connect them with the sensor station.
Take 3.3V from header P3 and connect it to the supply pin of LM35 or TMP36.
Connect the output pin to the channel 0 pin of header P2. Connect the ground wire
pin to the ground pin header P4. Other sensors can be interfaced in the same manner.
Longer wires can be used to put the temperature sensor in an application area to
keep the sensor station away from the application.

Write the application
Now we are ready to write the code for the interfaced temperature sensor on our
sensor station. We will use the same function to read the channels of MCP3008 one
by one. If you have interfaced many sensors at a time, you can use the same code in
your application. Along with that, we will log the data into the text file using another
function, which will be introduced while explaining the code. While staying in the
same folder, mcpgeneric, open nano editor using the sudo nano sensorstation.
py command and start typing the following code:

import spidev
import time
import os
import csv
#start the SPI bus by opening the spi port
spi = spidev.SpiDev()
spi.open(0,0)
#SPI port 0 opened and Device Chip Select set to 0
#function to read the channels of MCP3008
def readadc(channel):
 value = spi.xfer2([1,(8+channel)<<4,0])
 read = ((value[1]&3) << 8) + value[2]
 return read
#writer is an object or file reference to .csv file
writer = csv.writer(file('Datalog.csv','ab+'))

Chapter 5

[111]

while True:
 #creating the list for the different values of each channels
 datalist = []
 for i in range(0,8):
 #read channel one by one using range of 0 to 8
 data = readadc(i)
 #append data into the datalist created
 datalist.append(data)
 #convert temperature value from data received
 temperature = ((data * 330)/float(1023))-50
 print temperature
 time.sleep(3)
 print (datalist)
 #write data into the file 'Datalog.csv'
 writer.writerow(datalist)

If you still haven't connected the sensor station with the RasPi, connect the sensor
station board using the ribbon cable. Here is how the code is structured: at first, we
have to import the useful libraries and APIs to call when the program runs. The
spare imported libraries are spidev, which provides SPI functionalities to transfer
the data, and CSV (comma separated values), which provides functionalities to
import and export the data into databases and spreadsheets. Values (0, 0) in the
spi.open() function define the processor's SPI port number and chip enable value,
which is set by default when the code begins to execute. After the calling of libraries,
we used our generic function to get data from MCP3008 through the SPI port. Then
we created the object reference to the file we are creating. The file will be created in
the same folder where the program is kept and saved. The ab+ parameter is used to
append the new data and is abbreviated as append in binary mode.

Inside the while loop, the datalist[] array is created to temporarily save the data
into, and then the last line of the program is used to update this datalist[] array
in the .csv file. By passing the values to the function in range of 0 to 7 (8 will be
excluded when the loop will run) using the for loop, we will scan each channel
of MCP3008. As stated earlier in this chapter in the Math behind ADC section, the
formula of conversion for temperature sensor is created, and we have converted the
data value into temperature values.

If an LM35 sensor is being used, remove -50 from the formula because
LM35 cannot measure subzero temperatures unless provided with a
negative voltage at the output voltage line.

Using an ADC to Interface any Analog Sensor with the Raspberry Pi

[112]

Currently, it is unknown what types of sensors we are going to interface. Once the
sensor is interfaced, the conversion formula should be created and imported to the
same code. To append the converted data, simply use datalist.append(variable),
and the value will be stored in the data file separated by a comma in a single row.
Every sequence of the for loop will generate one row. You can play around with
different values and conversions by interfacing some sensors on your sensor station.
Have fun; it is so simple!

You can use crontab the same way as you used in Chapter 3, Measuring
Distance Using Ultrasonic Sensors, to put this Python code in startup.

Summary
Starting from the basics of analog-to-digital convertors, you gained knowledge of
a process to be followed while working with ADC modules. You understood how
critical it is to handle the analog data and why processors need separate cores to
process this incoming data. We got a glimpse of a MCP3008 IC and its functionality.
We made our own sensor station, which can be seamlessly integrated with any RasPi
model. Then, you understood how the SPI functionalities can be ported to Python
code and managed to get the data into the digital form. Data logging can now be
done on .csv files to post-process the data. With this chapter, sensor interfacing and
logging has become simpler than ever. Interface as many sensors you want, try with
different sensors, and deploy sensor stations everywhere to retrieve the data.

In this chapter, we collected offline data, which can be post-processed after the data
is logged. In the next chapter, we will upload the data online to see real-time graphs
from remote places. Also, we will enable our RasPi to send e-mails to desired e-mail
IDs with, with sensor data appended. This will be your first step to creating your
own Internet of Things product. Get ready for this exciting project!

[113]

Uploading Data
Online – Spreadsheets,

Mobile, and E-mails
So far, we have observed the data calculated by the RasPi, but we did not take care
of the data. It has been generated, observed, and discarded after making some
decisions. In the previous chapter, we logged some of the data in .csv files, which
looked like an old school way to record the data. This data is very useful when it is
logged to the Internet. How would it be if we set up the RasPi to send data every
second from our home and to see the graph of the parameters from any corner of the
world? How would it be if you were notified by an e-mail if there were any critical
conditions? Wouldn't it be nice if the analysis of the data were sent to you by an
e-mail at the end of the day?

I know that we are always worried about our home when we are on holiday or even
in the office. There could be a lot of data to take care of when you are away from
your place, for example, temperature, humidity, motion, fire alerts, unauthorized
intrusion, energy consumption, device states, and so on. There are infinite
possibilities to turn your home into a smart home using the amazing RasPi.

In this chapter, you are going to learn how all these things can happen at one go.
You will understand that why the Internet of Things (IoT) is the discussion
around the breakfast table for every technology geek. You will also learn how
communication usually takes place and the way the sensor nodes and devices
attached to the IoT work. You will get to know why data analytics, cloud storage,
and cloud access technologies are in boom. On one hand, we get the facilities, but
on the other hand, there are some security concerns that should be addressed while
deploying this technology. You will get some knowledge on how severe these
security concerns are.

Uploading Data Online – Spreadsheets, Mobile, and E-mails

[114]

We developed a sensor station in the previous chapter. We will use this sensor
station to collect the data from different sensors while doing the hardware setup. In
the next step, we will upload the data to the Google spreadsheet by pushing it online,
and see the real time graph of the sensor data on desktops and even on Android and
iOS mobile phones. Then we will set up the RasPi to send us an e-mail of the data
collected in an entire day, and also the minimum and maximum values reached by
the sensor. It will also be able to send an e-mail when there is a critical situation
at home.

This chapter sounds so much fun—learning by giving intelligence to the RasPi to
observe the sensor data online. Let's start the journey by understanding the IoT.

Internet of Things
IoT has started attracting all scientists, innovators, technologists, engineers, and
investors to start development and take part in one of the fastest growing markets
in the world. It can fulfill the vision of all of these people to make the world better
to live in. Once implemented on a large basis, it will make our lives easier, more
comfortable, and safer. This revolution began by redesigning and replacing the
smallest and basic things we use in our day-to-day lives. It is said that there will
be about 30 billion devices as a part of IoT by 2020, excluding mobile phones and
tablets. From toothbrushes to shoes, wallets, washing machines, switches, vehicles,
and much more, they all will be part of IoT.

Some of the IoT devices learn our everyday habits, adopt them, and then respond
by taking the decision by themselves. It can be really amazing to see the revolution
in every physical entity by adding communication capabilities to it. There are no
particular definitions of IoT. Technically, we can understand IoT as adding Internet
connectivity (basically a unique Internet address), and also the capability to sense
everyday physical objects or entities that can communicate with each other and
with mobile devices, such as phones and wearables. Some people in communities
believe that the IoT space is overloaded as it has a lot of expectations and adds a lot
of redundant devices, which are really not required to add comfort to our lives but
are forcibly added.

One of the interesting projects on artificial intelligence and IoT is Jibo, a
family robot. Take a look at http://www.jibo.com.

http://www.jibo.com

Chapter 6

[115]

IoT can be represented as an integrated fabric of devices, networks, data,
calculations, analytics, and people as essential elements. We can imagine an IoT
network as a big web mapped in a home to connect all devices, such as lights, fans,
toasters, thermostats, geysers, switches, refrigerators, ACs, and media devices.
Imagine a situation where you arrive at the airport after a long summer holiday
and the temperature at home is intolerable due to no presence at home. Once your
mobile phone connects to the Internet, the AC in your home will get to know that
you have arrived back in the city. It will estimate the time of your arrival according
to the traffic in the way and set the rate of cooling your home. In addition to that, it
will know what temperature to set according to your daily habits. In the reversed
situation, when you are leaving for your holiday, the device in your home knows
the location of your mobile phone, and it will disable all the unnecessary devices as
set in the mobile phone's application. This can also be controlled manually through
mobile applications. IoT technology is applicable not only in homes but also in
hotels, hospitals, industries, offices, and transportation—in short, everywhere.
Really, it will be the Internet of everything.

Sensor nodes
As we know, there are many parameters to sense at a single place. We have already
built a sensor station, which can ultimately be called a sensor node once installed in a
corner of our home or office. Then it will be silently observing the surroundings and
storing all the data. Imagine connecting that node to the Internet, and many other
nodes as such. A sensor node can be of any size, for example, starting from the size
of a table top projector down to the size of a dust particle! So, can we call it smart
dust? Yes! Researchers have already implemented smart dust particles (also called
motes) that get energy from light, temperature, or a thin film battery. Widely used
sensor nodes range in size from a fingertip to a palm. These sensors can create a wide
network over a targeted area, and can number from hundreds to thousands.

Uploading Data Online – Spreadsheets, Mobile, and E-mails

[116]

Implementing such sensors may face several challenges. These challenges start from
the hardware end. Most of the devices in the network will be using low-cost MCUs
to process the sensor data locally and transmit it to nearby devices or to an Internet
gateway. These low-cost MCUs will require enough RAM to run security protocols
and the user application. In addition, the energy consumption of such MCUs must
be as low as possible to run the node on a 3V button cell for 4-5 years. This can be
achieved by putting the processor in sleep modes between periodic transmissions
of data. The duty cycle of such processors can be near 1 percent or at the required
periodic rate, according to the calculations of data. Putting the processor in sleep
mode and resuming should take no more time than a fraction of the set duty cycle.
There are PLLs and clocks, which take time to become stable, and the stability of
a processor core is solely dependent on these clocks. This stability time (can be
called settlement delay) can go up to milliseconds, which can ruin the dreams of
the hardware designer to run the device for a longer time on a single cell. There are
many other hardware issues to be addressed by a hardware developer.

Due to many hardware constraints, there are many challenges faced in the software
end too—utilizing the proper RAM space, clearing it periodically, and writing
efficient algorithms with the communication protocol stacks in such a limited
amount of RAM. The next thing can be the remote firmware upgrade over the
air (FUOTA). It may be the case that the node needs an immediate firmware fix
after deployment in the field to fix the cracks in the received data. A firmware
upgrade can also fix the performance of the hardware by readjusting the handling
of interrupts and sleep timings, and optimizing the code size and efficient usage of
RAM. FUOTA ensures that the deployed sensor node works properly and responds
well to other nodes. These firmware upgrades are maintained under the version
control. Special handling is required on the exceptions, and all possible failures are
considered while making the device remotely upgradable over the air. For example,
suppose the node is being upgraded, and the power level in the device is so critical
that it leads to shutdown of the device. When it resumes on arrival of power, it
should revert to the previous stable version of the firmware and ask for the latest
firmware upgrade. Download time, download size, and timings of the day are
other factors that affect the success rate of FUOTA.

Communication
Communication between sensor nodes should take place through a lossless medium.
Packet losses play a major role in failure of data transmission. Communication is
the most essential part of the IoT infrastructure. It is a duplex medium to collect and
send data as well as commands. After a connection has been established, it has to be
maintained and managed all the time.

Chapter 6

[117]

Communication of all of these devices follows a protocol to establish a link between
each other. A protocol defines a set of rules to be followed by such nodes so that
all the critical conditions that may disrupt the communication can be avoided. A
protocol also provides a well-defined format for sending the commands over the
network. In previous chapters, we used wired protocols such as SPI. Along with
the rules that the wired protocol has, wireless communication needs set of rules to
be applied on parameters such as frequency, addresses, timings, sequences, frame
types, and many more parameters structured in a way to utilize the resources.

Implementation of IoT will require millions of unique identification addresses. This
would require IPv6 to be implemented on these devices. Providing an address for
a device and making an interactive network are not the only challenges. The real
challenge is to handle the data in an efficient and secure way. Several communication
protocols used in IoT space these days can be enumerated as Wi-Fi (2.45 GHz, 802.11
a/b/g/n), Zigbee (2.45 GHz, 802.15.4), Bluetooth 4.1 LE (2.45 GHz bluetooth low
energy, iBeacon), Z-Wave (900 MHz, sub-1 GHz RF), 6LOWPAN (IPv6 over Low-
power Wireless Personal Area Networks), and many more. There is rapid progress
being made in developing and improving these protocols to be more energy efficient
and robust. There are daughter boards available for the RasPi for adding these
functionalities by interfacing these add-on boards. There are many start-ups that
are now involved in developing products based on these protocols.

The cloud
One of the greatest advancements in technology experienced over the past few
years is the cloud computing technology. Embedded systems and IoT, being low
in cost and small in size, can take maximum advantage of this technology. These
embedded devices have memory in the order of a few KBs. Sensor data collected
by such a system can be stored, but this data can cause an overflow in the memory
after a particular amount of time. It can be very difficult to store long sensor data.
Other constraints with these devices can be low processing power while being in
low-power operation to run batteries for years. We can get rid of these constraints
by deploying cloud services on our sensor networks. The entire data, uploaded
by several sensors, can be calculated and interpreted on the cloud instead of local
computation to save power and increase the sleep time of the processor. In the sensor
network, a gateway can be set up, which can always be connected to the cloud to act
as a gateway transceiver. All computation-intensive algorithms can be deployed on
the cloud rather than putting a hefty processor to act as a hub and collect as well as
send data from the cloud.

Uploading Data Online – Spreadsheets, Mobile, and E-mails

[118]

Data analytics
IoT is expected to produce a huge amount of data from diverse places that is
aggregated and high-speed, thereby increasing the need to better sort, store, clean,
transform, and process such data. There will be a mine of data, and we need to
gather much more information from this pool of data. Disaggregation of the data and
extracting meanings from it are a part of data analytics. Using data analytics, one
can make their algorithms better to improve the user experience of a product. For
example, a home automation system collects a large amount of data. By collecting
the data, it knows when you turn on your TV or AC, what temperatures you set,
and when you come home. By collecting all of this information, mining in this
data, and applying machine-learning algorithms, a system can learn your habits,
which can further be useful for saving energy. The best example of a connected and
learning device is the Nest thermostat. Data analytics and mining will be the key
areas of development in IoT. Not only functionalities but also user experience is very
important in automation systems. Data analytics is nowadays used to disprove the
probability theories and models derived from user habits.

Security concerns
Security is the major concern when IoT is deployed everywhere. Engineers building
IoT devices leave some loose ends at the security, and that only starts creating
problems. It's a noisy, nosy world! Neighbors are always interested to know your
daily habits and activity. By enabling the communication functionality in all devices
in your home, you are indirectly attracting a hacker to access, control, and analyze
your devices. Motion sensors deployed at the door, the water heater in bathrooms,
thermostats, air conditioners, and water motors could be within direct access of a
hacker, by which he can know that the back door is left open while you are in the
drawing room watching your favorite TV show. He can directly access and control
all devices by sitting near your home or from the Internet. Now imagine a hacker
intrusion in a fully automated, IoT-enabled operation theatre or in the vehicles you
drive! There are multiple security protocols that are being developed and researched,
with smaller footprints on RAM and ROM for low-power embedded devices.
They are secure enough to protect the devices from such attacks. There is a need
to develop algorithms to bridge the gap between the Internet and the IoT space.

Chapter 6

[119]

Hardware setup
With a lot of information on IoT provided in the previous section, we are going to
make a small IoT project of our own this time. This hardware setup will be a very
easy setup compared to the previous chapters. The hard work we did in Chapter 5,
Using an ADC to Interface any Analog Sensor with the Raspberry Pi, will be very helpful
to us. We will be using the sensor station to get the data of the temperature sensor.
Listing down the needs for this chapter, we will require the following:

• A sensor station
• A temperature sensor (LM35/TMP36)
• A GPIO ribbon cable for Raspberry Pi model B (26 pin), A+ (40 Pin) or B+

(40 pin), or RasPi 2 model B (40 Pin); female-to-female
• Male-to-female and female-to-female jumper wires
• A Raspberry Pi, a power adapter, an Ethernet cable, a personal computer

Connect the sensor station using the ribbon cable. Power up the RasPi with the
power adapter, and start the session in PuTTY using your personal computer.
Cross-verify that your computer is sharing the Internet connection with the
RasPi. Use the following command to check:

ping -c 4 www.google.com

If it is not sharing the Internet connection, go through the guide provided in
Chapter 1, Meeting Your Buddy – the Raspberry Pi. Obviously, connecting the RasPi
to the Internet is very important. Remember the Internet of Things! Let's dig into
the software side. There's much more to look in the software now.

Synchronizing the clock with the Internet
It is really difficult when the date and time of the RasPi are not synced with the local
time zone while logging the data. It is much more difficult once you set up your
logging device or sensor node in a remote place that doesn't have uninterrupted
power supply. You might have noticed that whenever the RasPi boots up, the clock
shows the incorrect time. Check it yourself by entering the date command in the
command-line interface of the RasPi. Also, in the previous chapter, you might have
noticed that the time logged in the .csv log file is not showing the refreshed date.
No, the RasPi doesn't time-travel when it's sleeping! It's just because it doesn't have a
dedicated button cell to power its real-time clock (RTC). To make the RasPi cheaper,
the designers removed a lot of functionalities that normal desktops or laptops have.

Uploading Data Online – Spreadsheets, Mobile, and E-mails

[120]

A desktop computer has an inbuilt button cell to power the internal RTC. To achieve
this with the RasPi, you can interface an IC called DS1307, which communicates
over the I2C protocol. Then you can fetch the time from the RTC whenever you
want. You can power this IC with the CR2032 button cell. Illustrating the interface of
this hardware may require another section, and it is beyond the scope of this book.
We can use a simpler way of synchronizing the clock since we have an Internet
connection on the RasPi. We will use the Network Time Protocol (NTP) service
to provide the date and time for the RasPi. For a long time, this protocol has been
used to keep time synchronization between two computers or servers. On Wheezy
Raspbian, the NTP client is already installed. All you need to set is the daemon at
startup, which runs in the background, to fetch the timings from the Internet servers.
Type the following code to set up the daemon:

sudo nano /etc/rc.conf

You may see the blank configuration file, in which you can write this:

DAEMONS=(!hwclock ntpd ntpdate)

In the preceding command, the ! mark means that the hardware clock will remain as
it is, but we will update the software clock in the background. Press Ctrl + X, then Y,
and then the Enter key to save and exit the configuration file. Then reboot the RasPi
by entering the sudo reboot command. This daemon will be silently running in the
background.

Upon reboot, just check the system time by entering the date command, and tally it
with the current time and date.

If you did not set the time zone of the RasPi, then you might see the
wrong date and time displayed by the Date command. To set the
time zone, you can enter one of the following commands:
Enter sudo dpkg-reconfigure tzdata and follow the user
interface with the keyboard.
Alternatively, you can set the same configuration you did at the
first setup by commanding sudo raspi-config to open a RasPi
configuration menu, and then navigate into the international locale
settings. Reboot the RasPi once you configure this.

Chapter 6

[121]

Uploading data on Google spreadsheets
We are all set with the synced time to the local time zone. We can create an
application that does the same data logging as we did in the previous chapter, but
this time it is different and cool. We will upload the data on Google spreadsheets,
and the data can then be accessed from any corner of the world. You can monitor
home temperature and humidity by sitting in your office. Either you can grab the
project you did in Chapter 4, Monitoring the Atmosphere Using Sensors, and observe
the temperature and humidity with the DHT11 sensor, or you can just bring the
sensor station built in the previous chapter using MCP3008.

Before we get into the code, we need to prepare the things listed here. Use your
personal computer's Internet browser to perform these steps:

1. Log in to your Gmail account or create a new one.
2. Open or link Google Drive by logging onto http://www.drive.google.com

with your Gmail ID.
3. In the user interface of Google Drive, on the left-side panel, click on the

New button and select Spreadsheet from the drop-down menu. You will
be redirected to a new tab.

4. In the new tab, name the spreadsheet Logging. Avoid blank spaces in the
name to reduce errors, as we are going to use this name in our code.

5. Click on the Add-ons drop-down menu from one of the spreadsheet menus,
and then check out Get Add-ons…. In the search bar, type Remove Blank
Rows. Click on the free button and install it.

6. In the first row of the spreadsheet, enter the column titles as Time and
Temperature.

http://www.drive.google.com

Uploading Data Online – Spreadsheets, Mobile, and E-mails

[122]

7. Click on the Add-ons menu again and then on the Remove Blank Rows add-
on. Check out the Delete or hide blank rows option. You will be able to see
the sidebar with some options. Click on the top-left corner of the spreadsheet
to select all rows and columns. Then, in the sidebar, select the All row cells
must be blank option and delete all blank rows. It should look like what is
shown in the following screenshot.

The reason for doing this is that the code will start entering the
data from the last blank row of the sheet by creating a new row.
If you have a thousand rows, it could be difficult to manage the
data as it will start entering data from 1001st row.

8. Close the tab, and we are ready to code in the RasPi.

Now, on the RasPi, install the library that provides support to push the data to the
Google spreadsheets. Open a PuTTY session to enter these commands to install the
gspread library:

git clone https://github.com/burnash/gspread.git

cd gspread

python setup.py install

It is really important to install the gspread library, as it gives us the handy functions
to upload the data on the desired spreadsheet document on the selected sheets, cells,
and much more.

Chapter 6

[123]

Here, we are going to use MCP3008, as it can be useful to interface as many sensors as
we can. We will recall the functions used to get data from the SPI port:

#start the SPI bus by opening the spi port

spi = spidev.SpiDev()

spi.open(0,0)

#function to read the channels of MCP3008

def readadc(channel):

 value = spi.xfer2([1,(8+channel)<<4,0])

 read = ((value[1]&3) << 8) + value[2]

 return read

The explanation of fetching data using the readadc() function has already been
given in the previous chapter. We will use the same generic function to fetch the
data from the sensor and send it over the Internet.

Observe the following Python code and get an understanding from the description
given just beneath it:

import os
import spidev
import glob
import time
import sys
import datetime
import gspread

#start the SPI bus by opening the spi port
spi = spidev.SpiDev()
spi.open(0,0)

Enter your account details (Your Gmail ID and Password) as shown
here
email = 'gajjar.rushi@gmail.com'
password = 'raspberrypi'

#Name of Spreadsheet created in Google Drive
spreadsheet = 'Logging'

#Putting the exception call in python to attempt for logging in Gmail

Uploading Data Online – Spreadsheets, Mobile, and E-mails

[124]

try:
 ret = gspread.login(email,password)
except:
 print('Oops! Check Internet Connection or Login Credentials')
 sys.exit()

#open the spreadsheet by either of these two options
worksheet = ret.open(spreadsheet).sheet1
#or with the spreadsheet key
#worksheet = ret.open_by_key('1eQth-TY4FXFKChB5RFPhelQ6zn47NWDESh13Wk
XGQAk')
#prefer First Option

def readadc(channel):
 value = spi.xfer2([1,(8+channel)<<4,0])
 read = ((value[1]&3) << 8) + value[2]
 return read

while True:
 #Get data from Channel 0, TMP36 Temperature Sensor
 val = readadc(0)
 temperature = ((val * 330)/float(1023))-50
 values = [datetime.datetime.now(), temperature]
 worksheet.append_row(values)
 time.sleep(5)

At the top of the code, you can see that some libraries are imported for basic OS
functionalities and to fetch the date and time. After importing these libraries, the SPI
port is opened to fetch the data from MCP3008. Next to the SPI port, we will assign
variables to store the Gmail ID and password. These values must be the same as your
Gmail login credentials. Then the Python code tries to log in to your Gmail account
using the e-mail ID and password variables. Exceptions are best handled by the try-
except functions. The code should not hang somewhere if there is no Internet access
or login access to the RasPi. Rather, it should show that something is wrong. You will
understand the try-except function in detail when we discuss e-mail notification
in upcoming sections.

After successful login, it searches for the spreadsheet named Logging and selects
sheet1 in the Logging spreadsheet. If you will observe the link to the spreadsheet
in the web browser in your desktop computer, you will see a long, random number
stated as 1eQth-TY4FXFKChB5RFPhelQ6zn47NWDESh13WkXGQAk. This is the key to
your spreadsheet. However, you should preferably select the sheet by the ret.
open() function as it is a direct and clean way to access the Google spreadsheet.

On calling the function of the SPI, the temperature value will be stored in a variable,
which will be then passed to the worksheet.append_row() function to be pushed to
the Google spreadsheet.

Chapter 6

[125]

By running the code, you will be able to see that a new blank row is automatically
created and then the temperature value is added, with the latest date and time.
Add a graph in the Temperature column and see the live feed updated in the
Temperature column.

To add a graph, click on Insert, select the Chart option, and type
Sheet1!B:B in the data range textbox. Give titles to the horizontal and
vertical axes and select the type of chart.

I took some ice cubes and a matchbox to simulate the results, and the data feed looks
amazing, as shown in the following screenshot:

This experiment will give you a kickstart to interface more sensors. Interface two
or more sensors now and you can append the data in the third and fourth columns
using the following function:

values = [datetime.datetime.now(), value1, value2, value3]
worksheet.append_row(values)

Uploading Data Online – Spreadsheets, Mobile, and E-mails

[126]

That's all! You can share this sheet (by clicking on the Share button located at the
right corner in the Google spreadsheet and adding the Gmail IDs) with your friends
and cousins living far away from you so that they can just check out this cool new
featured product developed by you.

Live feed on mobile phones
You can install the Google sheets application in your Android- or iOS-based phone
and just see the feed coming from the RasPi on your mobile phone. Just download
it from the Play Store or an iStore (the App Store) and enjoy the live feed right from
your office. My Android phone's screenshot is as follows:

Getting notified by e-mails
Even after accomplishing the previous project, it still feels as if something is missing.
Why should we continuously look at the data and check whether there is a critical
condition or not? We will therefore add the following functionality: every night
at 12:00 a.m., the RasPi will send an e-mail stating the minimum and maximum
temperatures of the day. We will get the warning e-mail by setting a threshold
value of temperature whenever the critical condition arises. Suppose 30 degrees
Celsius is the limit, and increasing the temperature beyond that may be the sign
of a critical condition at your home.

Chapter 6

[127]

Here, we are going to use an inbuilt Python library called smtplib to get the
functionalities of sending e-mails from the RasPi. The smtplib module outlines
the Simple Mail Transfer Protocol (SMTP) client, which can be imported to send
an e-mail from a client to any Internet machine using the SMTP daemon. The
mimetypes module provides us with the functionality to convert a URL or file type
to Multipurpose Internet Mail Extensions (MIME). It is a functionality that lets
people use the protocol to exchange data over the Internet. Now import e-mail and
the mime.application modules, which can give us the e-mail functionality, such
as sender e-mail ID, receiver e-mail ID, subject of the e-mail, attaching a body to
an e-mail, and much more. The sys library provides system-related functions and
parameters, such as exiting the attempt of the try exception and continuing the code.
The difference between the datetime and time libraries is that datetime provides
the software clock with date and time data strings, while time provides us with the
sleep function to halt the code for some time.

The outline of the algorithm is pretty simple. It is useful for getting an understanding
of the code written in Python:

1. Import the essential libraries.
2. Open the SPI port.
3. Define the SPI data fetching function.
4. Define the e-mail functions and pass all the important variables (such as

sender_email, sender_password, receiver_email, subject, min, and max)
by calling this function with the right parameters. The e-mail will be sent.

5. Start a forever-running loop.
6. Create a .csv file with a name appended with today's date and time.
7. Store the current date in a variable called prev_date.
8. Set the temperature threshold limit.
9. Under the forever-running while loop created in the fifth step, put an indent

and create one more while loop to check the current date change.
10. Call the sensor-reading function to get the value from MCP3008.
11. Get the minimum and maximum values of temperature from the .csv file.
12. Define two sets of conditions in which the RasPi will send an e-mail,

as follows:
 ° When the current temperature goes beyond the Temperature limit
 ° When the date is changed

Uploading Data Online – Spreadsheets, Mobile, and E-mails

[128]

13. Keep updating the .csv file locally and change the file when the
date changes.

14. Start again from step 10.

This algorithm gives us an overview of how the code will flow and the elements to
be inserted. Check out the following code:

import smtplib
import mimetypes
import spidev
import email
import email.mime.application
import sys
import csv
import datetime,time

#start the SPI bus by opening the spi port
spi = spidev.SpiDev()
spi.open(0,0)

#Defining the ADC Reading function on SPI port
def readadc(channel):
 value = spi.xfer2([1,(8+channel)<<4,0])
 read = ((value[1]&3) << 8) + value[2]
 return read

#Email Function to send the email by passing the correct parameters
def email_data(sender_email,sender_password,
receiver_email,subject,min,max):
 mail = email.mime.Multipart.MIMEMultipart()
 mail['Subject'] = subject
 mail['From'] = sender_email
 mail['To'] = receiver_email
 content = email.mime.Text.MIMEText(""" Min temperarute
temperature is %d, Max temperature temperarute is %d"""%(min,max))
 mail.attach(content)
 s = smtplib.SMTP('smtp.gmail.com:587')
 s.starttls()
 s.login(sender_email,sender_password)
 s.sendmail(receiver ,[receiver], mail.as_string())

Chapter 6

[129]

 s.quit()

while(1):
 #create a new csv file
 #create a new csv file
 filename = 'Sensor_data_' + str(datetime.datetime.now()).split('
')[0]
 writer = csv.writer(file(filename+'.csv','wb'))
 prev_date = str(datetime.datetime.now()).split('.')[0].split(' ')
[0]
 max_sensor_data = -9999
 min_sensor_data = 9999
 #setting the temperature threshold limit to 30 C
 temp_limit = 30

 while(1):
 cur_datetime =str(datetime.datetime.now()).split('.')[0]
 cur_date = cur_datetime.split(' ')[0]
 sensor_data = readadc(0)
 min_sensor_data = min(sensor_data,min_sensor_data)
 max_sensor_data = max(sensor_data,max_sensor_data)

 #check if the threshold value is crossed
 if(sensor_data > temp_limit):
 try:
 email_data('gajjar.rushi@gmail.com',
'raspberrypi','gajjar.rushi@gmail.com','Warning !!!',
min_sensor_data,sensor_data)
 except:
 pass
 #check if the date is changed, if changed: send email
and start from creating new csv file
 if(cur_date != prev_date):
 try:
 email_data('gajjar.rushi@gmail.com',
'raspberrypi','gajjar.rushi@gmail.com',filename,
min_sensor_data,max_sensor_data)
 except:
 pass
 break

 #update the csv file
 writer = csv.writer(file(filename+'.csv','ab'))
 writer.writerow([cur_datetime,sensor_data])
 time.sleep(1)

Uploading Data Online – Spreadsheets, Mobile, and E-mails

[130]

Let's understand the e-mail function first. In the e-mail function, we are passing
variables (sender_email, sender_password, receiver_email, subject, min, and
max) that come when an if() loop's condition is satisfied. In the content variable,
we are storing the body of an e-mail containing the minimum and maximum
temperature values. Then it tries to log in using the e-mail ID and password
provided in the functions.

The code flow starts from the first while loop, which will start running forever. This
outer while loop will complete one cycle every day because we are putting an inner
while loop to run forever and break when the date changes. If you look closely at the
filename variable, you will see that it sets the filename as Sensor_Data_ appended
with the current date. The datetime.datetime.now() function provides the time
and date with precision in milliseconds. Millisecond precision is not required for
our project and application. The Splitsplit() function removes the milliseconds
from the raw data. Once we get the filename, we save it as a .csv file using the csv.
writer() function.

A few examples of the split functions run in Python Shell returned these values:

>>> str(datetime.datetime.now())

2015-01-26 17:12:49.998000

>>>str(datetime.datetime.now()).split('.')[0]

2015-01-26 17:13:17

>>> str(datetime.datetime.now()).split('.')[0].split(' ')[0]

2015-01-26

To detect the date change, we will use the split() function two times to extract the
date from string returned by the datetime.datetime.now() function, and it will be
stored in the prev_date variable.

We are using max_sensor_data = -9999 and min_sensor_data = 9999 to prevent false
data segregation in the min() and max() functions, which are used to find minimum
and maximum values from the .csv file. The temp_limit variable can have your
desired value—the value at which you want to send an e-mail from the RasPi.

It would be good to add try, which handles the selected exceptions. As explained in
the previous sections while experimenting with Google spreadsheets, it works on a
simple principle:

1. Execute the try clause. If no exception occurs, the except clause is skipped
and execution of the try statement completes.

2. If an exception occurs during execution of the try clause, the next part of the
clause is skipped. Then it goes to the except clause and it gets executed.

Chapter 6

[131]

The rest of the code is self-explanatory and can be understood from the comments
provided in the code itself. You can set the same sender and receiver e-mail while
you are testing your code. Every day, data is stored in a .csv file with date as a
name, so whenever you open your RasPi you can just take out an entire folder
of information packed with the .csv files.

Once you code, you can properly fit the sensor station in an airtight container along
with the RasPi, and fix it near to the router of your home. Connect an Ethernet
cable directly from your router to get an Internet connection for your RasPi. Your
computer being in the same network, you can ping the IP address of RasPi to check
whether it has successfully connected to the router and your network.

Integrating everything
Now it's your turn to integrate the Google spreadsheet project with the e-mail
notifier project. All you have to do is better arrange the events of sending data to
Google spreadsheets, logging data locally, and sending the e-mail. You can even
try to attach the .csv files when you send a day's summary. The application of this
project is so vast that you can do much more with this code by adding functionalities.
By adding multiple sensors with multiple RasPi boards in different corners of your
home, you can really get much more data and many more alerts from your home.

If you are installing a RasPi in a remote place, do not forget to add the Python script
in crontab as described in Chapter 3, Measuring Distance Using Ultrasonic Sensors,
to start logging the data again when the RasPi boots back.

Common problems faced
While building a project, there may not be many problems faced as it is mostly a
development in software. Still, mistakes can happen in the ways described here.

In your code, do not declare a variable name or function name same as Python
data type or Python prebuild function; for example, naming a function email().
This is not valid and can create a runtime error in the code. The same problem can
occur when you set the Python script filename as a predefined Python function, for
example, email.py.

Uploading Data Online – Spreadsheets, Mobile, and E-mails

[132]

While experimenting with gspread, try to write the script in the install library
folder of gspread itself. Alternatively, you can play with Linux to make the function
and the file available as an external location of the files. For example, we installed
gspread using these commands:

git clone https://github.com/burnash/gspread.git

cd gspread

python setup.py install

In the same gspread folder, write the Google spreadsheet data logging program.
One of the most common issues with Python is the indentation of the code. Most
errors happen while writing the loops. To understand the e-mail notification code
better, just take a look at the snapshot of the code in the following screenshot.
Ignore the . sign in the text. Closely look at the long hyphens before the lines.
These hyphens show the number of tabs required to write the line.

Other general errors include the Internet connection sharing your RasPi or login
access to your Gmail. Sometimes, it may happen that you have added an extra
layer of security to log in to your Gmail ID, which can prevent a second party from
logging in to your e-mail. It is recommended to remove that security layer or make
a cool and separate e-mail ID for your RasPi.

Chapter 6

[133]

Summary
We started this chapter with the essentials of IoT. The information provided in the
sections did not encompass the entire concept of IoT. IoT is big space, including
sensor nodes, sensor networks, communication, cloud computing, data analytics,
and security. There can be many more facets of IoT that require a lot more attention
from developers. You came to know that IoT could be the future of Internet and
data, starting from the smart dust all the way up to smart cities. Security is a major
concern, which needs immediate attention and research to meet the requirements of
the embedded world.

This chapter gave you knowledge on observing the data inserted into Google
spreadsheets from the sensor interfaced with your RasPi. You learned how a RasPi
can log in to a Gmail server on behalf of you and send an e-mail when there is a real
need. We prepared a project that purposefully sent an e-mail at the end of the day,
sending the analysis of a data. Minimum and maximum values of the data can be a
very small example of data analysis. It was a good challenge to integrate gspread
and e-mail notification codes to make the code even more practical.

In the next chapter, we are going to interface an image sensor (camera) with the
RasPi and test its operability. A complete illustration on installing the OpenCV
library will be provided to get you started with image processing on the RasPi.
You will make a project with live video streaming to use the RasPi as a CCTV camera
and capture an instance of motion in your house. It will be an amazing experience
and a great kickstart for you to develop a project using an awesome library known
as OpenCV.

[135]

Creating an Image Sensor
Using a Camera and

OpenCV
There has been an enormous amount of research behind a small name—image
sensor. From developing CMOS sensors, which can take crystal-clear images, to
employing enhancement of images using image processing, there are so many
efforts involved. Making different types of cameras suitable for different
applications and processing algorithms is not easy at all.

Image sensors are used in cameras, and they are very difficult to use in unpackaged
conditions, as they are fragile and sensitive to electrostatic discharge. We will be
using a camera (basically a lens with the protective case and an interface cable) to
demonstrate image capturing using a RasPi. Performance of a camera with a RasPi
is always rated low in discussions because of its poor performance with image
processing and video processing, with comments that image processing and video
capturing is not the RasPi's strong point. Somehow, these comments are true when
we run computation-intensive algorithms with a huge amount of processing, and the
RasPi gives a delayed response. But it all really depends on the hardware hookups
at the time of camera interfacing. There are many factors that could affect the
performance of the RasPi when you are using the camera. This was the issue with
the older models of the RasPi, such as Raspberry Pi 1 model B, B+, and A+. But now,
with Raspberry Pi 2 model B, this will not be the case. RasPi 2 model B is six times
more powerful in performance than the older RasPi models.

Creating an Image Sensor Using a Camera and OpenCV

[136]

In this chapter, we will start off by giving a brief introduction to image processing
and OpenCV. Then we will go through the camera interfacing ports and look at the
different kinds of cameras that can be interfaced with the RasPi. Next, we will do a
long and tiring (but well-worth the time) installation of the OpenCV library on our
RasPi. Once the libraries are installed, we will write a C program to capture an image
from a camera. Moving one step ahead, we will experiment with the live streaming
of a video over the same network as the one in your house. In a further step, a project
will be prepared to detect human motion or movement in a particular area, capture
the image, and alert you immediately.

Image processing
Have you ever tried to look at an image by zooming it to a maximum level? It just
looks like a floor with organized tiles and colorful patterns on it. These square tiles
in the image are known as pixels. Basically, an image is a group of such pixels,
with each pixel containing a particular value of color, which forms the recognizable
patterns by providing information to the human eye. It all depends on how humans
perceive the image by observing shapes and colors. Each pixel in an image contains
information that can be generated from a byte (8 bits) or a couple of bytes, which
defines the depth of an image. Depth of an image is nothing but the number of bits
present in a single pixel. Current display monitors and graphics engines support up
to 64-bit depth of images. Basic types of images are binary, grayscale, and RGB, and
many more such as HSV, HLS, and YCC are known types. A grayscale image does
have the range of values from 0 to 255 in the 8-bit mode, while a binary image has
them in the range of 0 to 1. As the name itself suggests, a binary image has only
black and white colors possible on the image plane. The difference between a
grayscale and a binary image can be observed in the following images:

Chapter 7

[137]

An RGB image has a total of three planes to access, as it has R (red) values varying
from 0 to 255; and the same applies for G (green) and B (blue) colors for 8-bit depth.
A grayscale image has shades from white to black, with a total of 256 discrete values
(0 to 255) for an 8-bit deep image.

Image processing is performed to enhance an image to a certain levels, to extract
maximum information. Just as we perform computations in signal processing,
we do them in almost the same way in image processing. Here, the plane is a
two-dimensional array of information in the form of pixels, whereas in signal
processing, it is a one-dimensional array of signal streams. In complex image
processing applications, there can be more than 20 or 30 algorithms and functions to
be applied to an image to retrieve the distorted image or enhance the quality of it. In
image processing algorithms, images are used as two-dimensional arrays. The number
of X and Y columns of the image represents the image resolution. When algorithms are
applied to an image, they individually process every pixel of it. Changes in the pixels
occur according to the algorithm applied. Image processing can also be performed on a
video, which is nothing but a group of images shown at a particular rate to create
an illusion to the human eye, to perceive it as motion.

In a motion picture, there are multiple images (frames) showed at a time. There
should be at least 22 to 25 frames per second (FPS) to create an illusion of motion
for the eyes. These frame rates have been in practice since long. Mostly, cartoons and
silent films in the 1920s started using a picture frame rolled in front of a concentric
light to project it on a screen. Visual perception of every human is different. It is
observed that less than 16 frames per second doesn't give better visual experience,
as there will be a brief disruption of darkness. These days, the latest technologies,
such as full HD (1080p), use frame rates of 50 to 72 FPS. Some applications require
higher frame rates—up to 20,000 FPS—compared to our digital camera (30 FPS) or 3
FPS CCTV cameras. High-speed cameras for ultra-slow-motion videography require
20,000 FPS. All of these applications require a huge amount of computational power.
Image processing on live video is mostly performed using individual frames.

Digital image processing is a vast field. Learning image processing can help you
get employed in space agencies such as ISRO, NASA, or JAXA. Image processing
is extensively used by space agencies to filter distorted images received from space
telescopes and satellites. Image processing is used not only in space agencies but
also in medical treatments, robotics, agriculture, automation, and stitching of Google
maps images. Google sphere is also one of the best examples of image processing.

Understanding image processing requires a lot more studies of spatial domains and
filtering algorithms. Currently, several algorithms have been developed to enhance
the image quality. Fields such as artificial neural networks and pattern recognition
are trending topics in research.

Creating an Image Sensor Using a Camera and OpenCV

[138]

OpenCV
One of the most powerful and widely used cross-platform libraries for image
processing is OpenCV, which can run on any hardware or software platform. It can
be installed on the RasPi to get functionality such as face detection, finding contours,
gesture recognition, motion tracking, 3D depth perception using two cameras, and
many more complex algorithms for machine learning. OpenCV stands for Open
Source Computer Vision. It was developed by Intel. It is basically written in the C++
language and can have full interfacing with Python, Java, or MATLAB. Check out
http://opensource.org for the list of available open source libraries. With aiming
for computational efficiency in mind, OpenCV is designed to work with multicore
architectures. Writing OpenCV in C and C++ is common across the globe among
image processing experts. OpenCV can also be written in the Python language,
as the library has full development and supports functions in the Python script.

Computer vision is a quickly growing field because of cheaper and advanced
cameras and inexpensive processing-capable hardware. OpenCV provides
productivity for professionals in achieving the best results in the field of vision
processing. Initially, image processing was only possible in research labs due to
its rare availability on open source platforms and dedicated hardware. Nowadays,
students, researchers and professionals can easily use the fully developed and
growing library known as OpenCV. OpenCV, at the time of writing this book, is
of version 3.0 Beta, with approximately 9 million downloads.

Camera interfacing with the RasPi
The RasPi has the Broadcom multimedia processor BCM2835, which has an
integrated Videocore-IV graphics engine. There are multiple ways to interface the
camera with the RasPi connectors. As described in Chapter 1, Meeting Your Buddy
– the Raspberry Pi, (refer to the diagram showing the RasPi's port description), the
RasPi has a dedicated CSI port for connecting the camera module. This port can
be located near the Ethernet controller (in the case of model B) or near the 4-pole
audio connector (in the case of model B+). The Camera Serial Interface (CSI) port
is dedicated to camera interfacing in mobile devices and advanced peripheral
controllers. We have two options to interface the cameras with our RasPi. We
can either interface the webcam via USB, or choose the camera module from the
Raspberry Pi organization known as the Raspberry Pi camera module.

http://opensource.org

Chapter 7

[139]

The RasPi camera modules
There are two options when buying the dedicated camera modules to be interfaced
with RasPi. The camera comes with the half-foot long flex cable to connect it with
the RasPi CSI connector. The RasPi camera modules are available in two options:

• Raspberry Pi camera module: This camera module employs a 5-megapixel
camera with the capability of full HD video recording at 30 FPS. It does the
job well during the daytime with better light.

• Raspberry Pi camera module black NoIR: NoIR stands for No Infrared.
This camera module doesn't have an internal infrared filter, which gives the
camera the ability to see in the dark. You can deploy this camera as a CCTV
in your garden house to keep a watch on your pet at night. These camera
modules perform even better for wildlife photographers by triggering and
capturing the image or video whenever motion is detected. This camera has
the ability to capture images at night because it deploys infrared LEDs.

These cameras have a price tag of $25 in online stores. To enable the RasPi camera
module, enter this command and enable the camera from the configuration window:

sudo raspi-config

Select the Enable Camera option in the configuration settings using the keyboard.
Test the camera by capturing the images using the following command:

Sudo raspistill -o FirstimageThroughRasPi.jpg

Use the man raspistill command to know about more options available with the
raspistill command. You can even record videos (in H264 format) using
the following command:

raspivid -o FirstVideoThroughRasPi.h264 -t 5000

This command will record a video for 5 seconds, and will automatically save the
file when the recording finishes.

The RasPi camera modules are very sensitive to electrostatic charges
transferred by our body. RasPi camera module failures are very
common in the Raspberry Pi community. Wear electrostatic straps or
taps on your hand before touching the camera. The ribbon supplied
with the RasPi camera module is very delicate. Therefore, special care
should be taken while using this camera module.

Creating an Image Sensor Using a Camera and OpenCV

[140]

USB webcam
It can be cheaper if you interface your desktop computer's webcam by compromising
performance. Not all webcams are supported on the RasPi. You can check out the list
of webcams and cameras supported by Linux at http://www.ideasonboard.org/
uvc/#devices.

There is a trade-off between speed, cost, and versatility by using a USB webcam
compared to the Raspberry Pi camera module. If you choose a USB camera, you
will get degraded performance, but you will be able to interface a USB webcam with
any of your single-board embedded computers in future. USB cameras are definitely
cost-effective. Added to that, a strong USB cable and static-proof casings provide a
longer life compared to the Raspberry Pi camera module.

The upcoming project in this chapter is verified using the Logitech C270 USB
web camera.

Live streaming using a network camera
Have you ever wondered whether the RasPi can be used for live streaming
purposes? We are going to stream videos on the RasPi on the localhost network
using RasPi as a network camera. There are multiple ways to make use of the RasPi
for live streaming:

• By fixing a camera interfaced with the RasPi being in the same network,
you can SSH through the connection and open the camera port through
the command-line interface

• Use open source software motion to enable live streaming at the local
web browser

We will be using motion to get access to the RasPi camera. Motion has a built-in
HTTP server that enables the camera view from the web browser. Motion can record
videos in MPEG format and capture images in JPEG format. These images and
videos can be stored wherever you want, and it does support databases such
as MySQL. Enter these commands to install motion on the RasPi:

sudo apt-get update

sudo apt-get upgrade

sudo apt-get -y install bison

sudo apt-get -y install motion

sudo apt-get -y install v4l-utils

http://www.ideasonboard.org/uvc/#devices
http://www.ideasonboard.org/uvc/#devices

Chapter 7

[141]

It is required to set the configuration file before starting the project, which can be
called IP-camera (network camera):

sudonano /etc/motion/motion.conf

Setting the configuration file could be a tedious job, as the file is too long and there
are many parameters to set. You can search parameters in the file using Ctrl + W in
nano editor. Set the parameters represented as follows:

netcam_url value http://169.254.0.2:8081

webcam_localhost off

control_localhost off

control_port 8080

framerate 2

control_html_output on

post_capture 5

daemon on

The RasPi's IP address can be found using the ifconfig eth0
command. In response message, it must have been noted in the
second line as inet addr:169.254.0.2.

We have informed the IP address of the RasPi module and provided a port address
for motion, where the stream will be diverted. By setting the webcam and control
localhost as off, the RasPi will be able to give access to other computers in the
network on ports 8080 and 8081. Setting the frame rate at more than 6 or 7 FPS will
be computationally heavy for RasPi to handle, and it may crash during runtime.
Setting the frame rate at 2 FPS will provide stable performance. Setting the control
HTML output will provide the functionality of that HTML server's built-in motion
API. Whenever motion is detected, the post_capture setting will let the RasPi know
the number of frames to be captured. To start the motion service when the RasPi
boots, start the daemon by setting it as on.

After making these changes in the configuration file, press Ctrl + X, then Y, and then
the Enter key to save and exit the configuration file. There is a need to change the
daemon file of the motion to keep the motion service running. Enter this command
to set the daemon for motion:

sudo nano /etc/default/motion

Creating an Image Sensor Using a Camera and OpenCV

[142]

Edit start_motion_daemon=yes. Save and exit the file. After all of these settings
are completed, create a folder and run the following command to start the
motion service:

mkdir motion-camera

cd motion-camera

sudo service motion start

Now, on the PC desktop, open a web browser and type the IP address and port
number as saved in the motion configuration (motion.conf) file:

http://169.254.0.2:8081

You will be able to see live streaming from the RasPi camera. Congratulations!
We have made our own network camera. This camera can be accessed from any
computer in the network. All you have to do is connect the camera in your backyard
through an Ethernet cable. You can directly access it from your living room. You
can even try it from VLC media player. In VLC, go to Media and then go to Open
Network Stream. Enter the same IP address, followed by the port address.

Porting OpenCV
Porting OpenCV on RasPi is the lengthiest task compared to installing other libraries.
Installing the suitable and companion libraries is necessary for effective running of the
image processing algorithms. It has been observed in the community that not many
have succeeded in porting the OpenCV properly. We will go through a step-by-step
guide that will give you an up-and-running OpenCV at the first time. While installing
some of the library, the order of the installation doesn't matter, but it is suggested that
the flow given here will give you the exact results you are looking for.

A quick checklist is as follows:

• An Internet connection shared with RasPi through a Wi-Fi adapter or a PC.
• Use PuTTY to log in to the RasPi using an Ethernet connection from a PC.
• Enough space (up to 4 GB) on the RasPi SD card. Use the df -h command to

check out the free space on the SD Card.
• Interface the camera when needed. A USB camera needs enough current to

operate. Connect a 2A adapter to the RasPi if needed.

Let's start! Log in to your RasPi on the SSH connection over the Ethernet. From
now on, we will be using PuTTY to enter all of these commands in the RasPi unless
otherwise specified.

Chapter 7

[143]

This installation may take up to 12 hours to build the OpenCV on
Raspbian. At any stage, resumption of installation after interruption
can be done without reinstalling the previous libraries.

Ensure that you have enabled SSH communication on the RasPi. You can enable it
using this command, stating the IP address of your RasPi:

ssh -X pi@169.254.0.2

Type Yes and then press Enter, and SSH will be enabled on your Pi. You can
continue in the same session. You can use this command to enable SSH
communication over the Ethernet:

sudo raspi-config

Then enter Advanced Options and find the option mentioned as SSH. Press Enter
and enable the option. In the same menu, there is an option called Camera; this
should be enabled as well. Press Esc to exit the configuration menu.

Now it is time to update the RasPi to provide information on the latest packages,
versions, and dependencies. All the repositories will get information about their
latest packages and information for resynchronizing:

sudo apt-get update

Next, upgrade will fetch new versions of packages according to the list provided
in the update list:

sudo apt-get upgrade

To get the packages, you can install the synaptic package manager. It allows you
to install packages using the GUI upfront instead of entering the sudo apt-get
command. It will be handy to install the missing packages once OpenCV is installed:

sudo apt-get –y install synaptic

Note that we will still be using the command-line interface to install the packages,
as it is the better way to install entire libraries. You can use synaptic but prefer
installing small packages and managing repositories. It will be better to manage
the installation in the command-line interface.

Creating an Image Sensor Using a Camera and OpenCV

[144]

We have to install the scientific and mathematical libraries of Python to process
the images and to get the additional functionalities. Numpy and Scipy are the
mathematical and scientific libraries used to calculate n-dimensional arrays,
Fourier transforms, random numbers, and linear algebra calculations. Nose is
the library used to test Python code in an easier and faster way. Next, Pandas is
a high-performance data analysis tool for Python. A role of IPython is to provide
functionalities in an interactive way to see the results of the code and commands,
with interactive visualization on the GUI. Matplotlib is used to plot two-dimensional
graphs, which provides good-quality graph images. These can be used in studies and
publications. All the libraries can be added in a single line and can be installed in one
go. Finally, SymPy provides the functionality of symbolic mathematics. Its purpose is
to provide functions in the computer algebra system, while keeping the Python code
as simple as possible, and extensible. All of these libraries can be used while coding
with OpenCV using the Python library. Enter this text in a single line
to execute in the command-line interface:

sudo apt-get -y install python-numpy python-scipy python-nose python-
pandas python-matplotlib ipython-notebook python-sympy

GtkGLExt needs to be installed to provide support for OpenGL rendering. OpenGL
is an API that is typically used by GPUs to achieve 3D and 2D graphics. We will be
enabling it while building OpenCV. Use the following command to install GtkGLExt:

sudo apt-get -y install libgtkglext1-dev

To build the development environment in the RasPi and make all the essential
libraries up to date and compliable in the Linux OS, use CMake to configure the
packages and to manage the build process. Enter the following command:

sudo apt-get -y install build-essential cmake pkg-config

Qt is widely used as a cross-platform application framework to develop applications,
which can be developed and run on various hardware and software platforms with
minimal or no changes in the code base, keeping the native application as it is. Enter
this text in a single line to execute and install the necessary packages of Qt in the
command-line interface:

sudo apt-get -y install qtcreator qt4-dev-tools libqt4-dev libqt4-core
libqt4-gui v4l-utils

If you are enthusiastic enough to code in Java, you should install the Ant library.
OpenCV has inbuilt Java support. To enable the functionalities of compiling,
building the .jar files, and utilizing it efficiently, type the following command:

sudo apt-get -y install default-jdk ant

Chapter 7

[145]

We are now ready with all the necessary packages to start downloading the OpenCV
library. You can download the latest OpenCV library 3.0.0, which is in beta version
at the time of writing this book. I prefer to install the latest stable version (2.4.10).
Later on, we can upgrade OpenCV. Enter this command to download the library:

wget http://sourceforge.net/projects/opencvlibrary/files/opencv-
unix/2.4.10/opencv-2.4.10.zip

It may take a while to download a file from the official source. Once it is downloaded
successfully, you can unzip the file using the following command:

unzip opencv-2.4.10.zip

Alternatively, if the file downloaded is the tarball, then execute this command:

tar xzvf opencv-2.4.10.tar.gz

Executing this command will show you the entire list of files transferred to the
folder. After unzipping the files, they are extracted to the opencv-2.4.10 folder.
Create a build folder at the same location. Enter these commands sequentially:

cd opencv-2.4.10

mkdir build

cd build

Next, we are going to use the CMake command to build the configuration type for
release. Look for the output of CMake and check which packages are installed and
which are not. You can install those packages manually. By looking at the CMake
output, you fill find YES and TRUE in front of all the libraries and packages. If not,
do not panic! Just list down those names and install these dependencies using the
synaptic package manager. It is very important to put .. at the end of the command
to successfully create a make file:

cmake -D CMAKE_BUILD_TYPE=RELEASE -D WITH_OPENGL=ON -D INSTALL_C_
EXAMPLES=ON -D INSTALL_PYTHON_EXAMPLES=ON -D WITH_QT=ON -D CMAKE_INSTALL_
PREFIX=/usr/local -D WITH_TBB=ON -D WITH_V4L=ON -D BUILD_NEW_PYTHON_
SUPPORT=ON -D BUILD_EXAMPLES=ON ..

To use the synaptic package manager, use Xming, open the desktop by
typing lxsession in PuTTY, and select synaptic from the menu in GUI.
Then type the library name in the search bar and install the additional
libraries or dependencies.

Creating an Image Sensor Using a Camera and OpenCV

[146]

The next step is to compile the entire library. As we have seen, the OpenCV library
has many components.

Before executing the make command, open the case of the RasPi and
put it in a place where it gets enough air to cool down. It is normal
that the RasPi gets heated during this operation.

Using the previous command, cmake, we generated an intrinsic make file, which
will be used in the environment of our choice. Due to dependencies between the
components in the library, the make command will be useful for execution:

make

Now, if it is evening when you are working on this installation, grab some popcorn,
watch your favorite TV show, and take a beautiful sleep. You will be able to see
the results by the next morning! As mentioned earlier, this compilation on the
RasPi takes almost 10 to 14 hours to complete . Do not disturb the RasPi while it is
compiling the libraries. Do not worry if the compilation halts or sticks somewhere
in the middle, or even if your RasPi shuts down accidently. Start the session again,
go to the same build folder, and enter the make command again. It will resume
from where it was stuck. RasPi 2 model B performs exceptionally well here. This
compilation takes 3 to 4 hours to finish the make process on RasPi 2 platform.

Once this lengthiest task is done, we are ready to install the compiled library on
the RasPi. This task will not take as much time as it took in the previous step:

sudo make install

It's time to set the configuration file for OpenCV to ldconfig in /etc. The ldconfig
creates the essential links to the latest shared libraries found in the directories stated
in the command line, in the /etc/ld.so.conf file and in the /lib and /usr/lib
paths. Basically, it tells your RasPi's OS that we have installed the library. Therefore,
we will create a separate file for the OpenCV configuration:

sudo nano /etc/ld.so.conf.d/opencv.conf

Enter the following lines in the configuration file we just opened:

/usr/local/lib

Then exit the file using Ctrl + X and then pressing Y followed by Enter.

Chapter 7

[147]

Enter the sudo ldconfig command to effect the changes made in the file. In the
interactive shell source (which brings the terminal emulator) file, we will paste the
code at the end of the file. The file is quite long, so use the keyboard to scroll down:

sudo nano /etc/bash.bashrc

Enter these lines at the end of file, save, and exit. Note that the export command
should be entered in a new line:

PKG_CONFIG_PATH=$PKG_CONFIG_PATH:/usr/lo cal/lib/pkgconfig

export PKG_CONFIG_PATH

Editing this file gives us the freedom to compile the OpenCV code in any directory.
It is similar to putting the environment variable for your library in the Linux
operating system.

Let's check whether this entire setup works or not.

Testing
It was so tiring to install the OpenCV, but the next experiment will fill you with joy,
and you will experience that the RasPi is finally able to see you and detect your face!
It will be difficult to explain OpenCV in this section. You will directly execute the
sample program written in Python to detect your face. But before we start executing,
we will test our camera to check whether it is working or not. If you have interfaced
your camera on one of the USB ports, type this command to check the camera name
in the USB list:

lsusb

This will list all the USB devices connected on the port. Now install the software to
open the camera port and take the images:

sudo apt-get –y install guvcview

To capture the images, you have to enter the desktop mode of RasPi, as guvcview
is a GUI-based tool. Open the Xming server in your PC and enter the following
command in PuTTY that will open the real-time desktop of the RasPi in your PC:

lxsession

Creating an Image Sensor Using a Camera and OpenCV

[148]

When coding OpenCV, it is recommended to open all the sessions in
Xming using PuTTY. Xming allows you to open the windows to show
the images captured during the execution of the OpenCV code.

This command will open the RasPi desktop environment and then the
LxTerminal from the desktop. Now open the installed guvcview GUI by
typing the following command:

guvcview

This open source software lets you capture images and record videos, along with
sounds (well, we don't have microphone on the RasPi, but USB webcams do have
integrated microphones). After testing the camera interfaced with the RasPi, move
to the OpenCV installation folder using the following command:

cd /home/pi/opencv-2.4.10/samples/python

ls

You will see a number of programs listed in the folder, as follows:

camera.py dft.py houghlines.py morphology.py

camshift.py distrans.py inpaint.py motempl.py

chessboard.py dmtx.py kalman.py numpy_array.py

contours.py drawing.py kmeans.py numpy_warhol.py

convexhull.py edge.py laplace.py peopledetect.py

cv20squares.py facedetect.py lkdemo.py pyramid_segmentation.py

cvutils.py fback.py logpolar.py squares.py

delaunay.py ffilldemo.py minarea.py watershed.py

demhist.py fitellipse.py minidemo.py

Play around with any of these programs, and do not forget to test facedetect.
py and camera.py. It is also interesting to play with contours.py, which brings an
interactive GUI with sliding scrollbars for setting the contours.

Adjust the camera facing it towards you. Execute the face detection program by
simply writing this command:

python facedetect.py

Chapter 7

[149]

Yes, it is slow! The detection time is about 5 to 7 seconds in RasPi 1 models. You can
try the same experiment with the Raspberry Pi camera module, and a drastic change
in the performance of RasPi will be observed, as the detection time falls to 2 seconds
or less. With RasPi 2 model B, it's even lesser. Anyway, you can edit and reduce the
frame size to make it real-time after editing the program.

Create a motion detector
We have already set up a piece of software called motion. It detects and captures
motion, but that's not fun at all compared to building our own code to capture motion.
We will create code that will detect motion and take a decision according to the extent
of motion. We will trigger an LED to indicate the decision taken by the RasPi. This
code is going to be a bit long, so the explanation is given in comments within the
code. However, important information is provided just after the end of the code:

#include <iostream>
#include <cv.h>
#include <highgui.h>
#include <stdio.h>
#include <cctype>
#include <iterator>
#include <unistd.h>
#include <wiringPi.h>
#include "opencv2/highgui/highgui.hpp"
#include <time.h>

using namespace cv;
using namespace std;

int main()
{
/*----Section 1 -----------------Declarations------------------*/
wiringPiSetup(); //To toggle LED, Essential
pinMode(0, OUTPUT); //BCM_GPIO pin 17
CvMemStorage* g_storage = NULL; //clearing the memory
int i,count=0; //Declaring the functions
CvCapture* imagecapture = cvCaptureFromCAM(CV_CAP_ANY);

Creating an Image Sensor Using a Camera and OpenCV

[150]

while(1)
 {
/*----Section 2------current frame capture started--------------*/
 IplImage* current = cvQueryFrame(imagecapture);
 cvSaveImage("/home/pi/project/current.jpg",current);
 //cvNamedWindow("LIVE VIDEO TRACKING", 1);
 //For debugging only
 //cvShowImage("LIVE VIDEO TRACKING", current);
 cvWaitKey(150);
 IplImage* img1= cvLoadImage("/home/pi/current.jpg");

/*----Section 3------Reference frame capture started-------------*/
 IplImage* reference=cvQueryFrame(imagecapture);
 cvSaveImage("/home/pi/Reference.jpg",reference);
 IplImage* img2=cvLoadImage("/home/pi/Reference.jpg");
 IplImage* img3=cvLoadImage("/home/pi/Reference.jpg");
 //to give the same size as img1 and img2
 cvAbsDiff(img1,img2,img3);

/*----Section 4----------THRESHOLD, ERODE, DILATE--------------*/
 IplImage* result = cvCreateImage(cvGetSize(img3),IPL_DEPTH_8U,1);
 //Creating new image as the same size of img3
 cvCvtColor(img3,result,CV_BGR2GRAY); //Convert to Grayscale
 cvThreshold(result,result,10,255,CV_THRESH_BINARY); //Convert to
binary image and update in same variable
 //cvShowImage("THRESDOLEDE IMAGE",result); //For Debugging
 cvErode(result,result,0,2); //Erosion of Image
 cvDilate(result,result,0,2); //Dilation of Image

/*----Section 4------------AVERAGE AND AREA---------------------*/
 CvScalar avg = cvAvg(result); //Counting and taking average of
pixels
 int area;
 area = (int)avg.val[0];
 printf("Area of object is : %d \n", area);
 char *date;
 char buffer[1000];

/*----Section 5-----------MAKE DECISION-------------------------*/
 if (area >= 25 && area<=150) //Typical Human Area within 3 meters
 {
 digitalWrite (0, 1);
 printf("Intruder Detected");
 cvNamedWindow("Intruder",0);
 cvResizeWindow("Intruder",320,240);

Chapter 7

[151]

 cvShowImage("Intruder",img1);

/*----Section 6----Saving Files, Releasing Memory-------------*/
 time_t timer;
 timer=time(NULL);
 date = asctime(localtime(&timer));
 sprintf(buffer,"/home/pi/intruder_%s.jpg",date);
 //Appending Image Name with Date
 cvSaveImage(buffer,current);//Saving Image with Name-Date
 delay (150);
 }
 else
 {
 digitalWrite (0, 0);
 cvDestroyWindow("Intruder"); //Closing the Window
 delay (150);
 }
 cvReleaseImage(&img1); //Releasing the memory used
 cvReleaseImage(&img2);
 cvReleaseImage(&img3);
 cvReleaseImage(&result);
 if (cvWaitKey(100)== 27)
 break;
 }
return 0;
}
/*----End of the Code--*/

To detect motion, we will use the simple method of image subtraction. We will
capture a reference image at a particular interval, and subtract the instantaneous
frames coming from the camera. The difference between these images will be sent
to a threshold function to observe the change. This change will then be input to the
function to calculate the absolute area of observed motion. If the area is in the range
of 25 to 150 units (neither too large nor too small; this is experimented using different
values), then the suitable action will be taken. These values are optimum for use in
detecting human motion. So, if there is any movement in the area of interest, you can
detect it as well as capture the image of the intruder. Let's understand the code to get
an idea of the entire methodology. We will be using the wiringPi library to trigger
the LED whenever motion is detected.

OpenCV functions are case-sensitive; for example, the cvSaveImage()
function will work only when the capitalization of characters in the word
is proper.

Creating an Image Sensor Using a Camera and OpenCV

[152]

The code can now be saved as motion.cpp in the home folder or a place of your
choice. The names of the functions used in this code are self-explanatory enough,
though some of the functions and variables are listed here with their explanations.
Take a look at the description of following commands used in the code:

IplImage*

Whenever the cvLoadImage or cvQueryFrame function is called, the pointer to an
allocated image data structure is returned. This pointer will be used as a reference to
an image. Basically, this shows the memory location of the first pixel of an image.

cvCreateImage(cvGetSize(img3),IPL_DEPTH_8U,1)

This creates an image pointer and allocates the image data from the pointing address
to that image. There are a total of three fields, in which the first is the size of an image.
In the first field, we have called a function that gets the size of an already declared or
saved image. The second field in the function defines the bit depth of an image, just as
IPL_DEPTH_8U defines the unsigned 8-bit integer depth for a single pixel. For higher
quality images, you can use IPL_DEPTH_64F, which defines the double-precision
floating point. Consider an 8-bit unsigned integer while working on the RasPi, as
processing can be done smoothly. The third field defines the number of channels in
the image.

cvCaptureFromCAM(CV_CAP_ANY)

This function opens the camera ports and takes images from the interfaced camera
modules. Entering CV_CAP_ANY allows OpenCV to choose the cameras interfaced. The
RasPi will choose the camera according to the priority of the interfaces. This function
works in the same way as CvCapture* image = cvCreateCameraCapture(CV_CAP_
ANY). If multiple camera modules are interfaced and you want to choose the camera
before capturing, you can use cvCreateCameraCapture(-1) to open a window that
will allow you to select the camera modules interfaced.

cvAbsDiff(img1,img2,img3)

This function calculates the absolute difference between two image arrays and stores
it in the destination image. Here, the result will be stored in img3 by performing the
img3 = img1 – img2 operation. This will be helpful to us for detecting the change
in the current image by subtracting it from the reference image.

cvCvtColor(img3,result,CV_BGR2GRAY)

Chapter 7

[153]

The function can be useful for converting the color space of the img3 image and
to store the resulting image. The third field in the function is the color space
conversion code. This code will convert the RGB (red, green, and blue) image
into a grayscale image.

Note that the default color format in OpenCV is often mentioned
as RGB, but it is actually BGR (the bytes are swapped).

cvThreshold(result,result,10,255,CV_THRESH_BINARY)

Mostly, the threshold function is used to convert a grayscale image into a binary
image. If the pixel value is less than the threshold value, then replace that pixel with
0 (black); otherwise, use 1 (white). There are a total of five fields in the function. The
source and the destination are the first two fields. The third is the threshold value,
which can be tweaked with different experiments. If CV_THRESH_BINARY is used,
then the maximum value to be used is 255 (white), which is defined by the fourth
field. There are multiple options available in this, but this function helps us convert
it into a binary image. The function for the binary image threshold can be defined as
result(x, y) = 255 if img(x, y) > 10 otherwise result(x, y) = 0.

cvErode(result,result,0,2)

In many applications, an erosion function is performed to remove salt noise from
the image. Due to the threshold operation on the image, there could be noise in the
image pixels, which can create a false result while taking the average value of an
image. In our application, the erosion function deletes the boundaries of the white
object. Therefore, the small white dots will be completely removed from the image
after performing two iterations. There are four fields, with source and destination
as the first two fields. The third field defines the structuring element, which will be
zero in our case. The fourth element states the number of erosion iterations to be
performed on an image, like this:

Creating an Image Sensor Using a Camera and OpenCV

[154]

The preceding image has three sections. Image (a) is the result after the execution of
the cvAbsDiff and cvThreshold functions. The movement of the intruder can be
seen in the image. The white salt noise is clearly visible after the threshold function.
Image (b) is the result after performing the cvErode function. This removes the salt
noise by erasing the boundaries of white objects or pixels in the image. Finally, image
(c) is the result after the cvDilate function, which is described next:

cvDilate(result,result,0,2)

A dilation function is the reverse of an erosion function. After removing the salt noise,
the dilation function improves the group of white pixels at the edges of an image.

The code flow can be understood in this way: section 1 in the code defines the
variables and captures an image called imagecapture, which will be used as the
current image captured by a camera in section 2. Next, section 2 starts with an infinite
loop, and we are saving the current image and then loading it back into a variable
called img1. The commented code can be uncommented when debugging to track
the correctly captured images by triggering the window-opening function. In section
3, the reference image is saved and loaded back into the img2 variable. The absolute
difference between the reference and the current image will be taken, and will be
stored in img3. This can create some confusion; before taking the absolute difference,
why is the reference image being loaded into img3? The reason behind this is that
img3 needs the same resolution as img1 and img2. Otherwise, OpenCV will show
an error of mismatch and that the subtraction could not be performed. Section 4 is
dedicated for image processing functions, such as converting an image to grayscale
and performing a threshold operation on an image to make the image binary. Section 5
takes the decision as to whether to trigger the GPIO or not. Section 6 is all about saving
the files and releasing the memory. Keeping the delay between the operations is very
important because the RasPi and OpenCV take their own time to perform operations
and save the files. That's all! We are ready to compile the code now.

Preparing shell to compile OpenCV and
wiringPi
After preparing the code, it could be difficult for us to debug and compile it unless
we prepare a generic shell script. The use case of this shell file is to compile all the
available C and C++ files in the same folder. Whether the code is in C or C++, if the
code contains the OpenCV and wiringPi libraries, it can be compiled to generate an
output file with the same name as the code filename.

Chapter 7

[155]

For example, suppose you are working in a folder that contains the code files named
project0.cpp and project1.c. If you execute the shell file being in the same folder,
it will start compiling all of the available C code by generating the executable files as
project0 and project1, which can be later run by ./project0. Let's experiment
with the shell code. Go to the folder where you wrote the motion detection code
(motion.cpp), open nano editor with the build.sh filename, and type this code:

#!/bin/sh
if [$# -gt 0] ; then
 base=`basename $1 .c`
 echo "compiling $base"
 gcc -ggdb `pkg-configopencv --cflags --libs` $base.c -o $base
else
 for i in *.c; do
 echo "compiling $i"
 gcc -ggdb `pkg-config --cflags opencv` -o `basename $i .c`
$i -lwiringPi `pkg-config --libs opencv`;
 done
 for i in *.cpp; do
 echo "compiling $i"
 g++ -ggdb `pkg-config -–cflags opencv` -o `basename $i .cpp`
$i -lwiringPi `pkg-config --libs opencv`;
 done
fi

Save this shell file by exiting nano editor. The shell code written here is derived from
the OpenCV samples folder and edited according to our needs. The wiringPi library
is mentioned in bold characters. The if-else loop is classified as a one-file and
multiple-files compilation. This code will take each C and C++ file one by one and
will save the executable. Now give access to execute this file:

chmod +x build.sh

Execute the shell code by typing ./build.sh. It will start compiling all the .cpp and
.c files in the folder. Other files in the folder will remain unaffected. The executable
output file will be saved as motion. Execute the file by typing ./motion to see the
output. Remember to execute this file by opening LxTerminal in the Xming server to
see the window.

Creating an Image Sensor Using a Camera and OpenCV

[156]

Amazing projects for you
With some knowledge on OpenCV, you can go ahead and read the manuals of
OpenCV to gain more knowledge on how functions and arguments are passed.
Initially, it can be somewhat difficult for you to start OpenCV using image pointers.
There is an immense amount of help available at http://www.opencv.org. While
taking help from the Internet and the code available from the official website, check
for the OpenCV language (platform) first. It has been observed that when C code
merges with C++ code, it doesn't work even after banging your head for hours. It
is advised to keep The OpenCV Reference Manual (Current Release 2.4.9.0) with you
while coding OpenCV.

It would be quite a good challenge for you to develop a project that fulfils the
following requirements:

• Capture live images using the interfaced camera, split the image into
segments of the same size (say, four vertical segments), and compare it
with the reference image. There will be a clear difference in one of the
segments where most of the motion is observed. Detect that area in the
image and trigger the GPIO accordingly.

• Further, control a servomotor or stepper motor to rotate the camera
according to the movement in front of it. Finally, you will be able to
develop a camera that follows you wherever you move.

• Another application of this is to save energy. Split the image into
coordinative segments and detect where people are sitting in the room
by setting the camera at the heighted position. Turn off the light where
zero motion is detected. Interesting, isn't it?

• You can develop OpenCV code to track a particular colored object. The
code can draw the lines on the screen while this colored object is moved in
front of a camera. For example, when we show and move a red ball in front
of the camera lens, it starts drawing lines as per the red color's movements
detected by camera.

• Create a gesture/pattern-recognizable computer module that takes
commands as per the color rings worn on your fingers.

• Build a ball-following robot that can follow a ball of a particular color
and detect the near and far effects of the ball.

http://www.opencv.org

Chapter 7

[157]

Use a separate motor and relay driver boards to control the
motors and electrical appliances, instead of directly driving
them from GPIO. Be aware of electrical shocks while working
with relay-based appliance control.

After building these projects, you can show them to your friends and be the coolest
person among them. It can be really very interesting to build these projects, can't it?
Then build it!

Summary
This chapter was totally dedicated to development in image processing using the
most advanced OpenCV library. We started with an overview of image processing
and its applications, followed by an introduction to OpenCV. By now, you already
know that the OpenCV library is so vast that even four books like this would not be
enough to provide a detailed description of the entire library. You then understood
the camera interface on the RasPi module, and we chose the USB camera to go with.
Next, you experimented live streaming using the RasPi as a network camera module
(IP camera) to keep track of your backyard directly from the lounge.

We started porting the OpenCV library, which took almost half a day to be up and
running. Then, we verified the library using the camera interface. Next, we started
building the project in the C language to detect human motion by calculating a
motion-affected area. A useful shell file was prepared to compile the OpenCV code
along with the wiringPi interface. A task was given to you to build the project,
prepare it, and send it for the suggestions on the code.

With the end of this chapter, this book is pretty much complete. Looking at the
current trends, the Raspberry Pi world will keep growing. With support from
thousands of people in community, the RasPi has achieved the highest position in
the market of single-board embedded computers.

With the launch of RasPi 2 model B, a new era in computing has begun. OpenCV
libraries and image processing now have a better performance on Raspberry Pi
module 2. RasPi users will be able to enjoy totally free Windows 10 on this module.
You can give it a try once Windows 10 is available. Kudos to the Raspberry Pi
organization and their engineers for pouring hours into the development of
these modules!

Creating an Image Sensor Using a Camera and OpenCV

[158]

As you have experienced, the RasPi has infinite use cases. You have to explore
different possibilities with it. You can hook up a camera with the simplest LED to
display indications. You can interface a 7-inch touch LCD to make it a personalized
Android tablet or a full-HD LED TV to watch videos. With the freedom of Linux,
starting from wiringPi and Python, you can use the awesome libraries such as Node.
js, Apache, C++ REST, Qt, Mathematica (or the Wolfram Language), OpenCV, and
many more. The RasPi can be used to make a project such as toggling the LED, or
a more complex project such as making your own quadcopter with stability
control algorithms.

I hope that you will make most out of it. Be curious and keep learning.

Shine on! All the best!

[159]

Shopping List

Basic requirements
• A Raspberry Pi (Raspberry Pi 1 model B, Raspberry Pi 1 model B+, Raspberry

Pi 1 model A+, or Raspberry Pi 2 model B (Purchase any one))
• Micro SD card with an SD adapter with storage capacity of 8 GB or more
• Personal computer with a Windows, Mac OS X, or Linux environment
• Ethernet cable (RJ45)
• A 5V 1A or 5V 2A power adapter with micro-USB connector
• HDMI or RCA cable
• Breadboard
• Multimeter
• Wire stripper

Sensors
• HC-SR04 ultrasonic sensor (Quantity: 1)
• DHT11 temperature-humidity sensor (Quantity: 1)
• LDR or CdS photocell or photoresistor (Quantity: 1)
• TMP35, LM35, or TMP36 temperature sensor (Quantity: 1)

Shopping List

[160]

Integrated chips
• Analog-to-digital convertor (Quantity: 1): MCP3008 dual-in-line package or

MCP3004 dual-in-line package

Components
• 1/4 Watts through hole resistors (Quantity: 5 each): 1KΩ, 2KΩ, 270Ω, 330Ω,

470Ω, 4.7KΩ, and 10KΩ
• Through-hole electrolytic capacitor (Quantity: 5 each): 1µF-16V
• LEDs (Quantity: 5 each): 2 mm, 3mm, or 5mm Red/Green/White/

Yellow LED

Others
• Single stranded wire (Quantity: 1 meter)
• Female-to-male jumper wires (Quantity: 15) and female-to-female jumper

wires (Quantity: 15)
• Bergstik connectors (Quantity: 2 each): Dual-row male, 2.54 mm pitch

single-row male, 2.54mm pitch
• Female-to-female GPIO ribbon cable for RasPi 1 model B (26 pin),

B+ (40 pin), or RasPi 2 model B (40 pin) (Quantity: 1)
• General purpose circuit board: dual sided and solderable
• Pencil type soldering iron (30-50 Watts)
• Soldering wire with flux (Quantity: 50 gms)
• Camera (Quantity: 1): Logitech C270 USB webcam or Raspberry Pi camera

[161]

Index
A
ADC (analog-to-digital convertor)

about 93, 94
amplification 95
data output 98
data reception 95
Flash convertor ADC 96
MCP3008 98
principle 97, 98
quantization 96
resolution 96
sampling 96
sigma-delta ADC 96
signal conditioning 95
types 96

B
Bourne-Again Shell (Bash) 18

C
C

using 24
camera interfacing

RasPi, using 138
Camera Serial Interface (CSI) 138
capacitor 31
C code

used, for blinking LED 48
chip select (CS) 38, 107
Command-line Interface (CLI) 6
common issues 132
common problems, distance calculation

fixing 63

incorrect distance, displaying 63
module response 64
small distance, measuring 64

common problems, home appliance control
system

invalid received DHT data 90
provided voltage, checking 91
troubleshooting 90
zero value, provided by LDR sensor 91

communication protocols
about 35
I2C 39-41
SPI 38
UART 36, 37

C program
executing 25, 26
exercises, URL 26
writing 25, 26

current 31

D
data

uploading, on Google spreadsheets 121-126
DHT

about 75, 76
humidity sensor 75, 76
temperature sensor 75, 76

digital-to-analog conversion (DAC) 94
dilation function 154
distance calculation

about 53, 54
common problems, fixing 63
project, building 54-56

Do Not Connect (DNC) 79
dual-in-line (DIP) package 98

[162]

E
electronics

about 29, 30
capacitor 31
current 31
open circuit 32
parallel connection 32, 33
pull-down resistors 34, 35
pull-up resistors 34
resistor 31
series connection 32, 33
short circuit 32
voltage 30

e-mail notifications
obtaining 126-130

F
firmware upgrade over the air (FUOTA) 116
frames per second (FPS) 137

G
General Public License (GPL) 18
general-purpose circuit board (GPCB) 101
General Purpose Input Output. See GPIO
generic software

preparing 105-108
git-core library 22
Google Drive

URL 121
Google spreadsheets

data, uploading 121-125
integrating 131
live feed, on mobile phones 126

GPIO
about 5
port 42-45

H
hardware setup, IoT

requisites 119
High-definition Multimedia Interface

(HDMI) connector 6
home appliance control system

breadboard, setting up 80

building 77
coding 81
common problems, troubleshooting 90
DHT sensor, coding 81-84
hardware, setting up 78, 79
implementing 86-89
LDR sensor, coding 85, 86
light variations, measuring 85, 86
relative humidity and temperature,

measuring 81-84

I
I2C 39-41
image processing 136, 137
image sensor 135
Integrated Circuits (ICs) 30
Inter-Integrated Circuit. See I2C
Internet

clock, synchronizing with 119, 120
RasPi, connecting to 11

IoT (Internet of Things)
about 114, 115
cloud computing 117
communication 116, 117
data analytics 118
hardware setup 119
security concerns 118
sensor nodes 116

J
Jibo

URL 114

K
Kirchhoff's current law 33
Kirchhoff's voltage law 33

L
LED

blinking, with C code 48
blinking, with Python 47
glowing 45, 46
GPIO 46
shell scripts 46

[163]

libraries
git-core 22
installing 21
python-gpio 23
wiringPi 22

Linux
about 18
commands 19
shell 18
shell file, creating 21
terminal 18
working with 9

Linux commands
about 19
apt-get 20
cat 20
cd 20
cp 20
ls 19
man 19
mkdir 20
pi@raspberrypi~$ 19
pwd 19
rm 20
startx 20
sudo 19
sudo shutdown -h 20

live streaming
network camera, using 140-142
RasPi, using 140

LM36 temperature sensor 109, 110

M
Mac OS X

working with 9
Master In Slave Out (MISO) 38
Master Out Slave In (MOSI) 38
MCP3008, for ADC

about 98
channels 99
ground 99
reference voltage 100
SPI 100
supply voltage 101

motion detector
creating 149-154

shell, preparing for OpenCV
compilation 154, 155

shell, preparing for wiringPi
compilation 155

Multipurpose Internet Mail Extensions
(MIME) 127

N
network camera

used, for live streaming 140-142
Network Time Protocol (NTP) 120
No Connection (NC) 79
No Infrared (NoIR) 139

O
open circuit 32
OpenCV

about 138
porting 142-147
testing 147, 148
URL 156

Open Source Initiative (OSI)
URL 138

operating system
desktop, opening 11
installing 8
logging into 10
required software, downloading 9
root filesystem, expanding 10
SD card, purchasing 8

Operational Amplifiers (Op-Amp) 95

P
Package on Package (POP) 3
parallel connection 32, 33
photocell 76, 77
photoresistor 76, 77
Pi Filler

URL 9
prerequisites, for downloading operating

software
about 9
Linux 9, 10
Mac OS X 9
Windows 9

[164]

project
developing 156, 157

project, building
distance, calculating 61, 62
hardware, setting up 56-59
software, setting up 59

pull-down resistors 34, 35
pull-up resistors 34, 35
PuTTY

URL 16
Python

used, for blinking LED 47
using 24

Python 2
URL 24

Python 3
URL 24

python-gpio library 23
Python program

executing 24, 25
writing 24, 25

R
Raspberry Pi. See RasPi
Raspberry Pi board

about 1
features 2
hacks 3
overview 2-4
RasPi 1 model B 5

Raspberry Pi camera module 138
RasPi

cmdline.txt, modifying 15
command-line file, editing 13, 14
connecting, to Internet 11
Internet connection between PC and

Ethernet, sharing 15
Internet connection, through Ethernet from

Window PC 12
Internet connection, through

Wi-Fi dongle 11, 12
operating system, installing 8
precautions 41, 42
requisites 159
Secure Shell (SSH) client, installing 16, 17
Secure Shell (SSH) client, opening 16, 17

setting up 8
turning on 14, 15
URL 8
URL, for download 8
used, for camera interfacing 138

RasPi 1 model connectors
3.5 mm audio out jack 6
CSI camera connector 6
display connector 7
Ethernet 6
GPIO headers 5
HDMI connector 6
Micro USB power 7
RCA video out 6
SD card slot 7
USB 6

RasPi camera modules
about 139
options 139

real-time clock (RTC) 119
requisites, RasPi

about 159, 160
components 160
integrated chips 160
sensors 159

resistor 31

S
SaveImage() function 151
Secure Shell (SSH) 16
sensor selection process

about 72
application criticality, analyzing 73
available sensors 74
sensor package, selecting 73
sensor properties, listing 73
sensor, purchasing 74

sensor station
creating 101-104
hardware requisites 102
using 109

Serial Peripheral Interface. See SPI
series connection 32, 33
short circuit 32
Simple Mail Transfer Protocol (SMTP) 127

[165]

software setup, distance calculation
GPIO pins, setting 59
initial configuration 59
pulses, receiving 60
pulses, sending 60

SPI 23, 38
Surface Mount Devices (SMDs) 73

T
temperature logger

application, writing 110-112
creating 109
LM36 temperature sensor 109, 110

through-hole devices (THDs) 73
transistor-transistor logic (TTL) 36

U
UART (Universal Asynchronous Receiver

and Transmitter) 36, 37
ultrasonic sensor

about 52, 53
distance calculation 53, 54

Universal Serial Bus (USB) 6
USB webcam

about 140
URL 140

V
voltage 30

W
wearable device

building 64
hardware, building 64, 65
software, setting up 65-68

Wi-Fi dongle
used, for connecting to Internet 11, 12

Win 32 Disk Imager
URL 9

Windows
working with 9

WinSCP
about 66
URL 66

wiringPi library 22

X
Xming

URL 17

	Cover
	Copyright
	Credits
	About the Author
	Acknowledgements
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Meeting Your Buddy – the Raspberry Pi
	A glance at the Raspberry Pi board
	Setting up for the first time
	Installing the operating system
	Purchasing your SD card
	Downloading the required software
	Expanding the root filesystem
	Logging in to the RasPi
	Opening the desktop

	Connecting the Raspberry Pi to the Internet
	Internet connection through Wi-Fi dongle
	Internet connection through Ethernet from
a PC
	Editing the command-line file of the RasPi
	Turning on the RasPi
	Changing cmdline.txt again to add the PC's Ethernet port IP address
	Sharing the Internet connection between your PC and an Ethernet connection
	Installing and opening the free SSH client on
your PC

	A crash course on Linux
	The terminal and shell
	Useful and frequently used Linux commands

	Installing useful libraries
	git-core
	wiringPi

	python-gpio
	Be ready with Python and C
	Writing and executing the Python program
	Writing and executing the C program

	Practice makes you perfect
	Summary

	Chapter 2: Meeting the World of Electronics
	Basic terminologies of electronics
	Voltage
	Current
	Resistor
	Capacitor
	Open circuit and short circuit
	Series and parallel connections
	Pull-up and pull-down resistors

	Communication protocols
	UART
	Serial Peripheral Interface
	Inter-Integrated Circuit

	Useful tips and precautions
	Understanding the GPIO port
	It's time to glow LEDs!
	Shell script and GPIO
	LED blink and Python
	Let's blink the LED with C code

	Summary

	Chapter 3: Measuring Distance Using Ultrasonic Sensors
	The mysterious ultrasonic sensor
	Distance calculation

	Building the project!
	Hardware setup
	Software setup
	Initial configuration
	Setting the GPIO pins on the default mode
	Sending and receiving the pulses

	Calculation of distance

	Fixing common problems
	Is it showing the distance incorrectly?
	Is the module not responding?
	Are you measuring the distance less
than 2 cm?

	A wearable device for the visually impaired
	Building the hardware
	Software setup

	Summary

	Chapter 4: Monitoring the Atmosphere Using Sensors
	Sensor selection process
	Criticality of an application
	Selecting a sensor package
	Sensor properties
	Purchasing the sensor
	Available sensors

	InsideDHT – temperature and humidity sensors
	Introducing the photoresistor (photocell)
	Building the project
	Hardware setup
	Breadboard setup

	Preparing the code
	Code the DHT sensor and measure relative humidity and temperature
	Code the LDR sensor and measure light variations

	Putting all the parts together
	Troubleshooting common problems
	Received DHT data is not valid
	The LDR sensor gives a zero value
	Is the voltage correct?

	Summary

	Chapter 5: Using an ADC to Interface any Analog Sensor with the Raspberry Pi
	Analog-to-digital convertors
	Data reception and signal conditioning
	Amplification
	Sampling and quantization
	Types of ADC
	Resolution of the ADC
	The math behind ADC
	Data output

	MCP3008 for analog-to-digital conversion
	Channels
	Ground
	SPI
	Reference voltage
	Supply voltage

	Making your own sensor station
	Generic software preparation
	Using your sensor station – make a temperature logger
	Know the LM36 temperature sensor
	Write the application

	Summary

	Chapter 6: Uploading Data Online – Spreadsheets, Mobile, and E-mails
	Internet of Things
	Sensor nodes
	Communication
	The cloud
	Data analytics
	Security concerns

	Hardware setup
	Synchronizing the clock with the Internet
	Uploading data on Google spreadsheets
	Live feed on mobile phones

	Getting notified by e-mails
	Integrating everything
	Common problems faced
	Summary

	Chapter 7: Creating an Image Sensor Using a Camera and OpenCV
	Image processing
	OpenCV
	Camera interfacing with the RasPi
	The RasPi camera modules
	USB webcam

	Live streaming using a network camera
	Porting OpenCV
	Testing

	Create a motion detector
	Preparing shell to compile OpenCV and wiringPi

	Amazing projects for you
	Summary

	Appendix: Shopping List
	Basic requirements
	Sensors
	Integrated chips
	Components
	Others

	Index

