
Andrew Monkhouse and Terry Camerlengo

SCJD Exam with J2SE 5
Second Edition

www.allitebooks.com

http://www.allitebooks.org

SCJD Exam with J2SE 5, Second Edition

Copyright © 2006 by Andrew Monkhouse and Terry Camerlengo

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN (pbk): 1-59059-516-5

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

Lead Editor: Jason Gilmore
Technical Reviewer: Jim Yingst
Editorial Board: Steve Anglin, Dan Appleman, Ewan Buckingham, Gary Cornell, Tony Davis,

Jason Gilmore, Jonathan Hassell, Chris Mills, Dominic Shakeshaft, Jim Sumser
Project Manager: Beth Christmas
Copy Edit Manager: Nicole LeClerc
Copy Editor: Liz Welch
Assistant Production Director: Kari Brooks-Copony
Production Editor: Lori Bring
Compositor: Dina Quan
Proofreader: Elizabeth Berry
Indexer: John Collin
Artist: Kinetic Publishing Services, LLC
Cover Designer: Kurt Krames
Manufacturing Director: Tom Debolski

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com, or
visit http://www.springeronline.com.

For information on translations, please contact Apress directly at 2560 Ninth Street, Suite 219, Berkeley,
CA 94710. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit http://www.apress.com.

The information in this book is distributed on an “as is” basis, without warranty. Although every precaution
has been taken in the preparation of this work, neither the author(s) nor Apress shall have any liability to
any person or entity with respect to any loss or damage caused or alleged to be caused directly or indi-
rectly by the information contained in this work.

The source code for this book is available to readers at http://www.apress.com in the Source Code section.
You will need to answer questions pertaining to this book in order to successfully download the code.

www.allitebooks.com

http://www.allitebooks.org

Contents at a Glance

About the Authors . xi

About the Technical Reviewer . xiii

Acknowledgments . xv

Introduction . xvii

PART 1 ■ ■ ■ Introduction and General
Development Considerations

■CHAPTER 1 Introduction . 3

■CHAPTER 2 Project Analysis and Design . 11

■CHAPTER 3 Project Overview . 57

PART 2 ■ ■ ■ Implementing a J2SE Project
■CHAPTER 4 Threading . 71

■CHAPTER 5 The DvdDatabase Class . 119

■CHAPTER 6 Networking with RMI . 163

■CHAPTER 7 Networking with Sockets . 199

■CHAPTER 8 The Graphical User Interfaces . 225

PART 3 ■ ■ ■ Wrap-Up
■CHAPTER 9 Project Wrap-Up . 295

■INDEX . 325

iii

www.allitebooks.com

http://www.allitebooks.org

Contents

About the Authors . xi

About the Technical Reviewer . xiii

Acknowledgments . xv

Introduction . xvii

PART 1 ■ ■ ■ Introduction and General
Development Considerations

■CHAPTER 1 Introduction . 3

J2SE 5 . 3
The SCJD Exam . 4

The Certification Process . 4
Downloading the Assignment . 5
Documentation and Questions . 5

Who Should Read This Book . 6
About This Book . 6
Setting Up the J2SE 5 JDK and Environmental Variables 8
Summary . 8
FAQs . 8

■CHAPTER 2 Project Analysis and Design . 11

Implementing a Project . 11
Getting Started . 12
Gathering Requirements . 12
Using Accepted Design Patterns . 14
Documenting Design Decisions . 15
Testing . 15

Organizing a Project . 16
High-Level Documentation . 17

Design Decisions Document . 18

v

www.allitebooks.com

http://www.allitebooks.org

Java Coding Conventions . 19
Naming Conventions . 20
File Layout . 22
Source Code Formatting . 24
Formatting of Comments Within the Code 28
Suggested Coding Conventions for New Features in JDK 5 29

Javadoc . 35
Coding Conventions . 36

Working with Packages . 44
Best Practices . 47

Writing Documentation As You Go . 47
Assertions . 49
Logging . 50

Summary . 54
FAQs . 54

■CHAPTER 3 Project Overview . 57

What Are the Essential Requirements for the Sun
Certification Project? . 57

Introducing the Sample Project . 59
Application Overview . 63

Summary . 66
FAQs . 66

PART 2 ■ ■ ■ Implementing a J2SE Project

■CHAPTER 4 Threading . 71

Threading Fundamentals . 71
A Brief Review of Threads . 72
Multithreading . 73
Java’s Multithreading Concepts . 73
Locks . 87
Locking in JDK 5 . 96
Locking Summary . 98

Understanding Thread Safety . 98
Deadlocks . 98
Race Conditions . 100
Starvation . 102
Understanding Atomic Operations . 104

■CONTENTSvi

www.allitebooks.com

http://www.allitebooks.org

Thread Safety Summary . 106
Using Thread Objects . 106

Stopping, Suspending, Destroying, and Resuming 106
Thread States . 107
More on Blocking . 108
Synchronization . 111
Multithreading with Swing . 113

Threading Best Practices . 114
Summary . 116
FAQs . 116

■CHAPTER 5 The DvdDatabase Class . 119

Creating the Classes Required for
the DvdDatabase Class . 119

The DVD Class: A Value Object . 119
Discussion Point: Handling Exceptions Not Listed in the

Supplied Interface . 126
The DvdDatabase Class: A Façade . 134
Accessing the Data: The DvdFileAccess Class 137

Discussion Point: Caching Records . 148
The ReservationsManager Class . 148

Discussion Point: Identifying the Owner of the Lock 150
Creating Our Logical Reserve Methods 154
The Logical Release Method . 155

Summary . 160
FAQs . 160

■CHAPTER 6 Networking with RMI . 163

What Is Serialization? . 164
Using the serialver Tool . 165
The Serialization Process . 166
Customizing Serialization with the Externalizable Interface 169

Introducing RMI . 171
The Delivery Stack . 173
The Pros and Cons of Using RMI as a Networking Protocol 174
The Classes and Interfaces of RMI . 175
What Is an RMI Factory? . 177

Summary . 196
FAQ . 196

■CONTENTS vii

www.allitebooks.com

http://www.allitebooks.org

■CHAPTER 7 Networking with Sockets . 199

Socket Overview . 199
Why Use Sockets . 200

Socket Basics . 200
Addresses . 200
TCP and UDP Sockets Overview . 201
TCP Socket Clients . 203
The DvdSocketClient . 205

Socket Servers . 212
Multicast and Unicast Servers . 212
Multitasking . 212
The Server Socket Class . 213
The Application Protocol . 218

Summary . 222
FAQs . 222

■CHAPTER 8 The Graphical User Interfaces . 225

GUI Concepts . 226
Layout Concepts . 227
Human Interface Concepts . 228

Model-View-Controller Pattern . 234
Why Use the MVC Pattern? . 234
MVC in Detail . 234
Benefits of MVC . 236
Drawbacks of MVC . 236
Alternatives to MVC . 237

Swing and the Abstract Windows Toolkit . 237
Layout Manager Overview . 237
Look and Feel . 241
The JLabel Component . 244
The JTextField Component . 245
The JButton Component . 248
The JRadioButton Component . 249
The JComboBox Component . 251
The BorderFactory . 251
The JTable Component . 254
The TableModel . 255
Using the TableModel with a JTable . 259
The JScrollPane . 260

■CONTENTSviii

www.allitebooks.com

http://www.allitebooks.org

Bringing Denny’s DVDs Together . 262
Application Startup Class . 262
The Client GUI . 263
Specifying the Database Location . 273
The Server GUI . 286

Swing Changes in J2SE 5 . 289
Improve Default Look and Feel of Swing 289
Skins Look and Feel . 290
Adding Components to Swing Containers Has

Been Simplified . 290
Summary . 291
FAQs . 291

PART 3 ■ ■ ■ Wrap-Up

■CHAPTER 9 Project Wrap-Up . 295

Thread Safety and Locking . 296
The Choice Between RMI and Sockets . 296

Benefits of Using a Serialized Objects Over
Sockets Solution . 297

Benefits of Using an RMI Solution . 299
The MVC Pattern in the GUI . 300
Locating the Code Samples . 301
Compiling and Packaging the Application . 301
Creating a Manifest File . 303
Running rmic on the Remote Package . 304
Packaging the Application . 305
Running the Denny’s DVDs Application . 306

Running the Client Application in Stand-alone Mode 307
Running Denny’s DVDs Server . 307
Running the Client Application in Networked Mode 309

Testing . 309
Packaging Your Submission . 318
Summary . 321
FAQs . 322

■INDEX . 325

■CONTENTS ix

www.allitebooks.com

http://www.allitebooks.org

About the Authors

■ANDREW MONKHOUSE is a moderator on the JavaRanch web site, currently
moderating the SCJD and SCJA forums.

Andrew has passed SCJP 1.2, SCJP 1.4, SCJD, SCWCD, SCBCD, and Part I
of SCEA. He has been working with computers for too long (his first program
was written on mark-sense cards, which are similar to punch cards).

Andrew has worked in a number of positions from programmer,
to architect and IT manager, working on VMS, Unix, Macintosh, and

Microsoft operating systems. He’s built back-end, middleware, and front-end solutions for
a variety of industries. Andrew is an Australian at heart, although he is frequently in other
countries for work purposes.

■TERRY CAMERLENGO has over 9 years of software engineering experience
from numerous corporations, including Fortune 500s and dot-coms. He is
experienced in all phases of the software life cyle, with a focus on object-
oriented technologies such as Java, C#, C++, and .NET. His expertise
includes front-end web design, server-side enterprise development, and
relational database modeling and development. Terry holds both Sun and
Microsoft certifications, and graduated with a degree in computer science

and philosophy from Ohio State University. Currently Terry works for Ohio State University’s
James Cancer Center in the Biomedical Informatics department as a senior developer and
research specialist and is pursuing advanced studies in computational biology.

xi

www.allitebooks.com

http://www.allitebooks.org

About the Technical Reviewer

■JIM YINGST studied engineering physics at the University of Arizona, but after graduating he
got sucked into the IT job market instead because, well, it seemed like a good idea at the time.
He now roams the West helping tech companies find solutions to their IT problems.

Jim is a sheriff (administrator) and longtime contributor at www.javaranch.com, where his
duties include answering Java questions, redirecting off-topic posts, and dealing with trouble-
some Australians.

He seems to spend most of his free time obsessively visiting bookstores. On rare occasions
he actually reads the stuff he buys, mostly science fiction. The rest of the time he’s probably
listening to obscure progressive rock bands or finding new Thai restaurants. Jim lives in
Boulder, Colorado.

xiii

www.allitebooks.com

http://www.allitebooks.org

Acknowledgments

We would like to thank the following people:

• Mehran (Max) Habibi, who did so much work on the first edition and in getting this
edition started, as well as introducing us to each other and to the Apress staff

• Our technical editor Jim Yingst, who not only verified our writing but made so many
wonderful suggestions

• The fantastic staff at Apress for working with us on this project, and taking our raw work
and producing a polished publication

• Each other

Without the help of all these people, this book would not be anywhere near as good as
it is. We would also like to thank family, friends, and colleagues who put up with our bouncing
between being totally unsociable when there were deadlines to meet, and desperately trying
to catch up with everyone in the quiet times.

Andrew Monkhouse and Terry Camerlengo

xv

Introduction

The Sun Certified Developer for the Java 2 Platform assignment offers a unique opportunity
for Java developers to put their Java skills to practical use without requiring any specific devel-
opment or runtime environment. The assignment also provides a great learning environment
as many different APIs can be used, and many alternative solutions can be provided. This
book introduces many of the concepts you will need to know in order to pass the SCJD
assignment.

Many developers are a little daunted by the scope of the assignment, as it covers everything
from a back-end database, a server application, a front-end application, API documentation,
and user documention. This book covers each section in detail, helping you gradually build
up your knowledge of each topic while working toward a sample project. This book will also
introduce you to the new features of JDK 5, providing contextual usage of the new APIs and
features within our sample project.

The Sun assignment deliberately does not specify an operating system platform or devel-
opment environment to be used—all that is needed is a computer capable of running a
current version of the JDK. Throughout this book we have used JDK 5 on Windows 2000. Since
this book introduces JDK 5 features, and uses them throughout our sample project, you will
need JDK 5 to run our sample applications; however, the sample application is not dependent
on Windows 2000.

We hope you enjoy this book, and we look forward to hearing that you passed and any
comments you may have on this book. You can contact both authors at scjd@apress.com.

xvii

Introduction and
General Development
Considerations

P A R T 1

■ ■ ■

Introduction

Welcome to The Sun Certified Java Developer Exam with J2SE 5, Second Edition. By taking
advantage of the new features of J2SE 5, passing the Sun Certified Java Developer (SCJD) exam
is easier than ever before. Features such as generics, the enhanced for loop, autoboxing and
unboxing of primitives, the new concurrency classes, and other new capabilities offer devel-
opers a richer and more robust tool set than ever before. This book and the accompanying
sample project will help you acquire the understanding necessary to pass the SCJD examina-
tion while learning the finer points of the J2SE Development Kit (JDK 5). If you have been
meaning to take the SCJD exam or you are ready to further explore the mysteries of Java, you
have found the right book.

The best way to learn a new skill is to use it. This is true in tennis, pottery, and yes, pro-
gramming. With that principle firmly in mind, this book helps you learn about J2SE 5 while
detailing the strategies, skills, and information needed to pass the SCJD exam. Sun Microsys-
tems designed the SCJD exam to be a realistic example of what a professional Java developer
can expect to encounter in the real world. The SCJD exam covers a large portion of J2SE,
including Remote Method Invocation (RMI), threading, file input/output (I/O), and Swing.

The sample project, Denny’s DVDs (introduced in Chapter 3), is designed to explore the
same concepts that the SCJD exam does. Unlike on the SCJD exam, however, the underlying
concepts are explained in detail. When you have finished this book, you will have learned the
skills necessary to take and pass Sun’s exam.

The two major topics discussed in this chapter are

• Finding out how to download and take the SCJD exam

• Understanding the goals of this book

J2SE 5
J2SE 5 is a major update, designed to improve ease of development, increase scalability, pro-
vide for additional monitoring and manageability, and enhance the Java desktop clients. While
J2SE 5 offers a slew of new and exciting features, this book focuses on bread-and-butter topics
such as threading, RMI, Swing, sockets, exception chaining, logging, and serialization. Once
you understand the foundations, everything else follows naturally.

3

C H A P T E R 1

■ ■ ■

The SCJD Exam
The SCJD certification is a comprehensive test used by Sun to verify the skills of advanced
Java programmers. It is generally considered a strong benchmark of competence. This book
focuses on the features of J2SE 5 that are relevant to this exam. Adequate preparation is essen-
tial to pass the exam. Due to its difficulty, the opportunity to take the SCJD exam is only
available to programmers who have already passed the Sun Certified Java Programmer (SCJP)
exam. Fortunately, this book explains the concepts you need to know to pass the SCJD exam.

■Note Three Sun Certified Java Programmer exams are currently available: one for certification on each
of the J2SE 1.2, J2SE 1.4, or J2SE 5.0 platforms, respectively. While the questions for each of these certifi-
cations differ slightly (for example, the J2SE 1.2 exam has Abstract Windowing Toolkit [AWT] questions),
you only need to be certified in any one of these three certifications in order to be eligible for the SCJD
certification.

The Certification Process
The SCJD certification process consists of two parts. The first part is an assignment consisting
of a custom-designed sample project with a sample data file, an interface to be implemented,
and specific requirements. You complete the assignment and return it for grading. Informa-
tion on how to register for the assignment and download the assignment instructions and
data file are presented in the next section of this chapter.

When you have completed the assignment and returned it for grading, you move on to
the second part of the certification process, which is a written test designed to confirm that
you wrote the assignment you submitted, and to investigate the understanding that led to the
design and implementation decisions made during the first part of the exam. You may take up
to 90 minutes to complete the written exam; however, since there are currently only four ques-
tions on the exam, you should find that you have more than enough time to complete it.

It is not possible to have notes or material with you for that exam. As such, it is best to
take the written exam as soon as possible after you have submitted your assignment, while
all the details are still fresh in your mind. Both sections are graded at once, even though the
coding section is collected first. This means that the second exam will ask generic questions
rather than specific ones about your individual project. You need a holistic understanding to
pass both parts of the SCJD exam.

■Caution The assignment you submit will not be passed to an assessor for grading until after you have
completed the essay exam. If you do not take the essay exam, you will not receive any warning that your
assignment is not being assessed—it will just sit in limbo until you finally do take the essay exam.

CHAPTER 1 ■ INTRODUCTION4

The goal of the SCJD exam is to validate your understanding of the most important Java
skills, including threading, RMI, sockets, serialization, file I/O, and Swing. Each assignment
project can be unique, testing these features to different degrees. For example, while you must
write a server capable of handling concurrent requests, the interface provided might change
which classes you allow multiple threads to run on. Or your requirements could call for strict
search requirements versus more general searching ability. This book gathers together every-
thing you need to know about all the relevant topics and integrates in the relevant changes in
J2SE 5.

Sun also requires you to use a current JDK (one that has not been superseded by a newer
JDK by more than 18 months) for developing your solution, ensuring that candidates stay cur-
rent with the latest features of the JDK. A list of release dates may be found at http://java.
sun.com/j2se/codenames.html.

Downloading the Assignment
You can register for the assignment and examination by visiting http://www.sun.com/
training/certification/java/java_devj2se.html in the United States. Many other countries
also allow online registration—you can view contact details at http://www.sun.com/training/
world_training.html. After paying for the assignment, you will receive an e-mail from Sun
telling you exactly how to download the Java archive (JAR) files that contain the assignment
instructions. Receiving this e-mail may take a few days, or it may happen that same day. As
soon as you receive the JAR files, make a couple of copies and store them safely. It is very
expensive to get a second copy of the assignment to match the subject of this section.

■Tip The Sun Education web site lists the web address where you may download your assignment. You
may be able to download your assignment before you have received an e-mail specifying that your account
has been configured for downloading.

Documentation and Questions
You are probably going to have questions regarding the requirements of the exam. Generally,
Sun will not answer these questions. This may be because they want to see how well you can
choose between different solutions (and describe why you made your decisions). It may be
because they are trying to emulate real-world conditions where the client is not always willing
to communicate. It may even be because answering questions for each test applicant is an
untenable task. In any case, it is very important that you articulate your questions and deal
with them in the documentation you must create as part of your assignment deliverables. If
nothing else, you should document your assumptions and choices. For more help, we suggest
using the excellent resources available at JavaRanch (http://www.javaranch.com) and the vari-
ous helpful Java certification groups on Yahoo.

Chapter 2 provides good suggestions on how to work with Javadoc-style comments and
offers some industry best practices. Don’t use outlandish naming conventions or even Hun-
garian notation. If possible, use whatever style the material itself uses. As far as the SCJD exam
is concerned, Sun really wants you to color inside the lines.

CHAPTER 1 ■ INTRODUCTION 5

Who Should Read This Book
This book is for the working Java professional who needs an introduction to J2SE 5 and has an
eye toward learning the material needed to pass the Sun Certified Java Developer exam. The
SCJD exam gives programmers a slice of what they can expect on a real-world assignment,
and you have to be ready for that challenge. A developer who has passed, or could pass, the
Sun Certified Java Programmer (SCJP) exam will feel at home here. A developer with less than
six months of experience should probably supplement this book with some of the excellent
Java books available from Apress or other publishers.

This book describes in detail many features of the JDK, some of which have been part of
standard Java for many years, and some of which have only been introduced in JDK 5. The
only assumption we have made in this book is that the reader will be familiar enough with
Java to pass the SCJP exam—so we do not need to spend time explaining the basics of the
language (for example, the difference between an int and a long). However, we do go into
details of changes to the language, so candidates who have not yet learned the JDK 5
language enhancements can discover them here.

About This Book
This book addresses the SCJD certification, which is one of several Java certification exams
offered by Sun Microsystems. The SCJD and SCEA (Sun Certified Enterprise Architect) certifi-
cates require candidates to complete projects, whereas the other certifications only require
theory-based exams in which the candidate typically has multichoice questions to answer. As
far as programming goes, the SCJD exam is the most challenging of the exams that Sun offers,
and that is precisely why it is the focus of this book.

This book is divided into three parts. Part 1 focuses on general development considera-
tions and outlines a sample project. Part 2 teaches necessary concepts from the ground up,
while facilitating both understanding and implementation. Part 3 concludes the book with a
discussion of design and implementation decisions made and possible alternative paths.

A sample project is provided that offers challenges similar to those you’ll find on the SCJD
exam while introducing and taking advantage of the relevant new features of J2SE 5. Each
topic related to the exam is explained in detail, and trade-offs are considered. Where appro-
priate, parallel development paths are explored and implemented.

Where applicable, chapters briefly discuss the design patterns being used and offer a brief
explanation of those patterns. We strongly encourage you to purchase or download some pat-
tern resources. Various web sites offer insightful tutorials, including the Sun site (http://www.
sun.com) and TheServerSide.com (http://www.theserverside.com). There are also various
excellent books on the topic, including Head First Design Patterns, by Elisabeth Freeman, Eric
Freeman, Bert Bates, and Kathy Sierra (O'Reilly, 2004).

Throughout this book, we present numerous examples that aid in the development of a
real-world Java application. Each chapter contributes directly to this application by address-
ing a critical topic such as threading, Swing, or networking. The text explores questions that
naturally arise in these topics and explains how the challenges can be met. More important,
the trade-offs and implications of these choices are discussed.

CHAPTER 1 ■ INTRODUCTION6

• Chapter 1, “Introduction.” This chapter is a general introduction provided to help you
decide if this book meets your needs. It lays out the structure of the educational pro-
gram to follow, introduces the goals of the exam, and focuses the technology
discussions to follow.

• Chapter 2, “Project Analysis and Design.” This chapter details basic project considera-
tions such as directory structure, package development, coding conventions, ReadMe
files, and general approaches to starting a project for the SCJD exam.

• Chapter 3, “Project Overview.” This chapter introduces the sample project, Denny’s
DVDs. This application requires that you develop classes to access a file in a database-
like manner, build a Swing user interface, and design a networking layer. It is important
to read this chapter carefully because it helps to define exactly what the project is trying
to accomplish.

• Chapter 4, “Threading.” This chapter starts from scratch and helps guide you to a clear
understanding of threads. You will also learn about the Runnable interface, the Thread
class, locks, synchronization, waiting, sleeping, notification of one or all waiting
threads, the constraints of using threads with Swing, deadlocks, and thread scheduling.
We will then move on to the new scheduling package of J2SE 5, and demonstrate how
this can make threading easier. The focus is on the threading material you need to know
in order to earn your Java developer certification.

• Chapter 5, “The DvdDatabase Class.” This chapter demonstrates how to create a class
that will meet the requirements of our sample project and implement a specified inter-
face. We will use the Façade, Value Object, and Adapter patterns to simplify the code.

• Chapter 6, “Networking with RMI.” This chapter provides an introduction to distributed
computing. You will learn about RMI and how to utilize it when building your clients
and servers.

• Chapter 7, “Networking with Sockets.” This chapter provides an introduction to an
alternative method of developing distributed computing. You will learn about sockets,
and the pros and cons of working with sockets instead of RMI. Chapter 7 also briefly
discusses security, serialization, the Command and Proxy patterns, and the sample
project.

• Chapter 8, “The Graphical User Interfaces.” This chapter provides an introduction to
Swing. It is designed for Java programmers who have little to no Swing experience. The
chapter assumes you are starting from scratch and quickly explains the fundamentals
of how Swing works, what the MVC pattern is, how events are handled, how JTables
work, and how all the pieces fit together.

• Chapter 9, “Project Wrap-Up.” This chapter gives us a chance to examine the project
in hindsight. We apply finishing touches and organize our JAR files. We also review the
decisions made and the trade-offs involved, and prepare the project for submission.

The source code for the project, as well as various helpful diagrams and documents, can
be obtained from the Source Code section of http://www.apress.com.

CHAPTER 1 ■ INTRODUCTION 7

Setting Up the J2SE 5 JDK and
Environmental Variables
Setting up the J2SE 5 JDK is very straightforward. Sun provides extensive documentation on
how to do so for the various platforms, so we will not rehash all of that material.

Information on downloading and configuring the J2SE 5 JDK is available at http://
java.sun.com/j2se.

Summary
In this chapter, we presented a broad overview of the Sun Certified Java Developer (SCJD)
exam, as well as strategies you can use to meet your goal of passing the exam. We identified
the areas that the exam covers, discussed the test itself, and offered some suggestions on
taking it. We also provided a breakdown of the topics discussed in this book, integrated in
the relevant J2SE 5 material.

With this information, you have already begun to prepare for the exam.
Congratulations! With about four weeks spent covering the issues set forth in this book,

you should be able to take and pass the SCJD exam. In general, you should expect to spend a
week on each of the four major topics: threading, Swing, networking, and the user interface.
Of course, this will vary depending on your personal background. You now have a sense
of what to expect. Good luck, study hard, and e-mail us at scjd@apress.com when you pass
the exam.

FAQs
Q Am I ready to take the SCJD exam?

A If you have passed, or could pass, the Sun Certified Java Programmer (SCJP) exam,
you are ready to prepare for the SCJD exam. There is no time limit on completing the
assignment, so you could purchase it and learn as you work through the book and
assignment simultaneously. However, be aware that there is a time limit on the exam
voucher, and some Sun offices require you to purchase both the assignment and the
exam voucher simultaneously.

Q Will this book help me if I am preparing for the Sun Certified Java Programmer
(SCJP) exam?

A Using this book in conjunction with a book covering the SCJP topics may help your
understanding of the topics; however, we do not recommend that this book be used
as reference material for SCJP candidates. Although several of the topics required for
SCJP certification are covered in this book in detail, many required topics are either
not covered or are used without explanation on the assumption that their usage is well
known. In addition, this book covers many topics that are not required for the SCJP.

Q I’m having some difficulty setting up my environment. Where should I turn for help?

A Look to the Sun Microsystems Java web site (http://java.sun.com/j2se) and follow
their documentation exactly. If that doesn’t work, contact Sun directly.

CHAPTER 1 ■ INTRODUCTION8

Q What topics does this book discuss?

A This book discusses and explains RMI, threading, Swing, networking, assertions,
exception chaining, and logging.

Q How much does the SCJD exam cost?

A The exam costs roughly US$400. This price is, of course, subject to change at Sun’s
discretion.

Q I’ve lost my exam—what should I do?

A Try downloading the exam from Sun’s site again. If that doesn’t work, contact Sun
directly.

CHAPTER 1 ■ INTRODUCTION 9

Project Analysis and Design

This chapter introduces project issues that are common to all software projects, discussing
them in relation to this book’s sample project and the Sun assignment that you need to com-
plete to become a Sun Certified Java Developer. In particular, the following topics will be
covered:

• Planning the beginning stages of the SCJD exam

• Organizing the layout of your project

• Documenting projects

• Becoming familiar with industry-standard principles on source code formatting and
Javadoc, and incorporating these principles from the onset of project development

• Using Java packages to group code based on functional similarities

• Learning common development practices, including using assertions and logging

This chapter does not attempt to forge a new road, but rather leads down the well-worn
paths of Java standards, such as coding conventions, Javadoc usage, and packaging concepts.
Some of these tools are necessary in order to pass the SCJD exam, and all should be used every
day by a Java developer.

By using these standards from the beginning, you will be well on your way to reaching
your goal of being a certified Java 2 developer.

Implementing a Project
It is very tempting to start a project by jumping right into code. Doing so is fun and grants an
immediate sense of progress. However, this approach often has significant drawbacks. Begin-
ning a project without proper planning may tie the project to unspoken assumptions, cause
you to overlook critical information, or introduce design flaws that manifest as the project
progresses.

Generally, it is best to start by confirming requirements, designing data flow, and sketch-
ing a prototype of the graphical user interface (GUI) layout. After this step comes the design.

11

C H A P T E R 2

■ ■ ■

■Note Many different development methodologies are used in varying degrees in the software industry.
Some of the commonly used design approaches are the Iterative Process, the Rational Unified Process, the
Boehm Spiral Model, and XP (Extreme Programming). In this book, we are using another common model: the
Waterfall Model. As its name implies, this design model requires that development be an ongoing process,
with one version of software based on a previous version, and so on. In addition, requirements are deter-
mined before project design and development begin in this model. The SCJD exam allows unlimited time to
complete the project, and it requires that you work as a single developer. Both of these special criteria set
forth in the SCJD exam fit perfectly into the Waterfall methodology.

Design is a fluid process that is grounded by coding. The best way to begin a project
design is to explore the technical challenges ahead by coding a little, designing a little, and
coding some more. In this respect, project design becomes an iterative process. Some sug-
gested principles follow.

Getting Started
As a first step, spend a little time verifying your understanding of the requirements. Read the
material several times and scrutinize its contents. Explore the logical breakdown of function-
ality and document your assumptions. Make sure that you note the umbrella activities that
encompass several different variations under a given topic. This often helps with the package
structure design. For example, it might make sense to have a GUI package that is responsible
for visual presentation.

Gathering Requirements
Requirements are functions of a project that the client wants in the system you are creating.
The requirements should detail everything that the system is required to do. Our suggestion is
to ask questions. Better yet, ask a lot of questions. Write down the questions before you formu-
late answers, and ensure that they make sense. For the sake of clarity, phrase them differently
and ask them again. It is probably best to be thought a little slow at the beginning of a project
than to be proven careless at the end.

Confirm all assumptions either in writing or as a GUI layout. Of course, on this project,
you are not going to be able to ask anyone your questions, but that should not prevent you
from articulating potential issues and project risks. As a matter of fact, it should encourage
you to formulate questions to organize your thoughts.

■Note Chapter 3 introduces some example use cases derived from project requirements. Chapter 8 pres-
ents a full example of dealing with use cases and their translation to project functionality.

CHAPTER 2 ■ PROJECT ANALYSIS AND DESIGN12

Prototyping the GUI
When you begin prototyping the GUI portion of the project, draw out simple layouts of the
various command windows with pencil and paper. This activity will help you acquire a sense
of what the user needs to see before you decide how the interface will work internally. This is
often a crucial step in reconciling user expectations with the reality imposed by the system
implementation. Chapter 8 presents examples of GUI prototyping and the interface layout
process.

We recommend that you prototype the GUI using pencil and paper at this stage, rather
than directly on the computer. Coding directly on computer runs the following risks:

• The design that you thought was so good, and that you spent so much time on, might
be rejected by your sample testers (see the sidebar, “Sample Testers”), resulting in
wasted time.

• You will almost certainly require more time to prototype a GUI on the computer
compared with sketching the GUI layout on paper. We recommend you show your pro-
totype to some sample testers (see the sidebar), and if they have recommendations for
change (or, worst case, reject your prototype) there will be less time wasted if your pro-
totype is only a penciled sketch.

• If you have a penciled sketch of your GUI, you can discuss it with your sample testers
anywhere, regardless of whether there is a computer handy. And any changes they
suggest can be incorporated in a few seconds.

• If you have spent a large amount of time coding your prototype, there is a natural resist-
ance to changing it, which might result in you rejecting some otherwise excellent ideas
from your sample users.

• You may get frustrated with implementation details long before a prototype is in place,
and as a result you may sacrifice a good design for something that is easier to develop,
and, accordingly a lower score for your GUI.

• If you code the GUI now, you may end up with something that you believe is very nice,
but which you later find your users don’t like. Once again, you run the risk of having to
start from scratch.

■Note In Chapter 8 we will be developing the GUIs for our sample project, and as part of this we will be
showing some rough sketches of alternate screen layouts we might use for our project.

CHAPTER 2 ■ PROJECT ANALYSIS AND DESIGN 13

SAMPLE TESTERS

It is a truism that programmers write programs for programmers. That is, for any given assignment, we as
programmers will tend to write a program that we believe is very logical but that most nonprogrammers will
find difficult to use. This effect happens in all professions, and some professions employ staff simply to work
on aesthetics—for example, some car manufacturers hire staff whose only job is to ensure that the car will
look good to the final consumer.

We need to do something similar if we want to write GUI applications that the end users (in the case
of the Sun assignment, the assignment assessor) will like and accordingly, approve (in the case of the Sun
assignment, award full marks). Having end-user approval is extremely important—otherwise we end up in a
never-ending cycle of making one change after another to the GUI. We need someone who is (preferably) not
a programmer who can look at our prototype and our final application, and tell us what needs to be changed
to make them feel like it is a great application, and not just a mediocre one.

These are our sample testers. They could be your spouse, your significant other, your mother, or the
office secretary. They are the people who are likely to spot some feature that they consider standard, but that
you have managed to leave out. And they are the ones who are likely to look at your application and tell you
that something is in the wrong place. And when it comes to testing the final application, they are the ones
who are likely to do the things you were not expecting—trying to open two applications at once, or trying to
reduce the size of your application screen below the size you thought anyone would use.

The people to try to avoid are other programmers—they are the people who are most likely to not men-
tion some feature because they don’t like that particular feature themselves. Furthermore, they may ignore a
usability issue because they are used to working around issues in others’ programs.

So see if you can think of some sample testers, take your rough sketches of screens to them, and ask
them what they think. Then listen to their comments, and go back and make any necessary modifications.

If possible, take some samples of totally different screens to your sample testers—give them a choice
of what sort of interface they would like to work with. They will feel that they have more involvement, and
they will often feel that they can suggest more modifications to one of your sample layouts since it has not
yet been finalized.

Using Accepted Design Patterns
Failing to follow conventions is rarely worth the development time. Worse, it may cause you to
fail Sun’s exam. Worst of all, in the real world it will attract the hatred of programmers who will
have to maintain the cryptic code that ensues.

While it is possible, and often clever, to implement custom solutions to general problems,
you should resist the temptation to do so for this project and Sun’s exam. In real life, however,
custom solutions are occasionally faster and cheaper than general solutions. For example, a
custom method that sorts the elements of an array may be faster than the methods that are
built into the Arrays class.

Since this book’s focus is not software design patterns, there are many design patterns
that we cannot cover in this book. We strongly recommend that you read up on these yourself,
as you will use them in your development career. The most widely recognized book on the
subject is Design Patterns by Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides
(Addison-Wesley Professional, 1995). This is commonly referred to as the “Gang of Four,” or
GOF, book. You may find that this is not the easiest book to read, so you may wish to investigate

CHAPTER 2 ■ PROJECT ANALYSIS AND DESIGN14

some of the alternatives such as “Head First Design Patterns” by Elisabeth Freeman, Eric
Freeman, Bert Bates, and Kathy Sierra (O’Reilly, 2004), the Portland Pattern Repository at
http://c2.com/ppr/index.html, or the Wikipedia entries for design patterns starting at
http://en.wikipedia.org/wiki/Design_pattern_(computer_science). Sun’s J2EE design pat-
terns at http://java.sun.com/blueprints/patterns/ are also very useful, but you should be
aware that they are J2EE-centric, and may describe patterns in a form that may not seem to
make sense for this assignment.

Documenting Design Decisions
Document the choices that you make during the development process. Write down the vari-
ous decisions you make and the reasons you make them. For example, if you decide to use an
ArrayList instead of a Vector for an internal data structure, document the fact the ArrayLists
are not synchronized and thus were chosen because they are a more lightweight data struc-
ture. There is no need to go overboard with this type of documentation, so be mindful to use
common sense. This sort of documentation is a crucial tool in debugging and performance
tuning, and it also serves as an excellent source for anyone who needs to understand the code.

Whatever you do, don’t leave documenting your design decisions until the end of the
project. If you wait until after you have completed coding before beginning this document,
not only will you have to remember why you chose a particular option, but you will also have
to remember that you had other options in the first place! For example, if you decided at the
start of the assignment that you were going to use a custom dialog box, at the end of the
assignment you might have forgotten that you had originally also considered having an
editable cell on the main window.

It is quite possible that by the time you get to the end of the assignment, you may find
that your design decisions document is huge—minor decisions can be removed to reduce the
size of the document.

■Tip You might want to use bullet points to describe your design decisions. Not only will this reduce the
amount you write, but also they are easier to remember when it comes time for the exam. This is especially
useful for candidates for whom English is not their first language—you will not have to be so concerned
about how good your spelling is or how well you have formed your sentences.

For instance, we might document a few decisions like so:

• Sockets used instead of RMI—allows complete control over threads

• RandomAccessFile used instead of separate DataInputStream and DataOutputStream
classes—allows for random access to the file

Testing
You should begin testing by writing a unit test client for each class, or you can use a testing
tool such as JUnit (http://www.junit.org/) to automatically generate test clients. When you
design a custom test, it is best to write the test class before implementing the methods to be
tested.

CHAPTER 2 ■ PROJECT ANALYSIS AND DESIGN 15

We recommend that you design tests that cover the conditions set forth in a project’s
written requirements before beginning the development process. Under these conditions, if
a class provides the functionality detailed in the project requirements without failing the
prewritten tests, then the test can be considered a success. Additional functionality beyond
what is required is unnecessary. Writing test cases before coding deliverable classes will pre-
vent the overzealous programmer from dwelling on functionality that is not required.

As your project develops, you may find yourself adding to, or changing, methods within
the class. Be sure to update test clients accordingly as the project classes evolve. It is generally
recommended that test cases should never be deleted—once the test has been written, it pro-
vides valuable confirmation that basic functionality still works if you modify your deliverable
classes.

■Note A unit test simply tests a unit (usually a class) that you have written. If your class has a
setDvdName(String dvdName) method, then your unit test should call it, preferably with the various kinds
of input it can expect. You should do this for every method. Unit testing is not required for the exam, but we
strongly recommend it as a sanity test. Of course, you should not send your unit tests or their results to Sun.

When the application is ready for system testing, recruit some volunteers to help. It is
generally best to avoid system-testing your own code—use an unsympathetic and unbiased
eye to look over the system. When you design the system test, it is a good idea to work with the
client. If this is not possible (as it is not in this project), then use the requirements gathered at
the beginning of the project.

■Note A system test simply tests how the various units (usually classes) fit together. For example, your
client class might need to call your DVD class’s setDvdName(String dvdName) method. Even though you
know the client and the DVD class both work correctly from the unit test, you don’t know if they work well
together. For example, there might be a network problem or the client class might store DVD names as an
array of characters, where the DVD class uses String. System testing enables you to make sure that all of
your classes play nicely together.

Organizing a Project
One of the first tasks in any software project is determining a sound organization for all
related project materials. An organizational paradigm, in this case, is a directory structure
aimed at organizing all files associated with the project. It is extremely difficult to decide such
matters later in the development process and attempt a retrofit. You should decide upon a
directory structure early in the project planning stage. A typical project directory structure fol-
lows. Sun does not dictate a directory structure for the development of the SCJD assignment;
however, on some assignments they do specify some top-level directories to be used in the
submission. The directory structure in Table 2-1 acts as a suggested organizational foundation

CHAPTER 2 ■ PROJECT ANALYSIS AND DESIGN16

for the assignment. We use the structure detailed in Table 2-1 throughout this book’s example
application project.

Table 2-1. Suggested Directory Structure

Subdirectory Recommended Use

src\ Contains all of the .java source files written during the course of the project.

classes\ Contains all compiled class files and any packaged JAR files. The classpath will
point to this directory when we are running our application.

bkp\ A directory to hold any files needed for backup.

tst\ Contains all of the .java source files written for unit-testing the project.

tmp\ A “hold anything” directory for temporary storage.

log\ A directory to store all logged output.

doc\ Holds all documentation, including Javadocs, end-user documentation, and
design decisions documentation.

High-Level Documentation
In addition to completing the code portion of the test, to pass the SCJD exam you must author
and submit several forms of documentation. At the time of writing, the following documenta-
tion is required:

• Javadoc documentation (discussed in depth later in this chapter).

• A plain text file named version.txt.

• User instructions—unless the user instructions are built into your application and
available while the application is running.

• A design decisions document. The design decisions document is discussed in detail in
the following section.

The version.txt file must contain an explanation of the following items:

• The version of the JDK used for development

• The development platform

This book uses JDK version 5 and Microsoft Windows 2000.

■Caution There are currently several different Sun assignments in use, and instructions may vary
between assignments. Sun may also release assignments in the future with other minor differences in the
instructions. While the information in this book will be generally applicable to any current assignment, you
must take care to read the instructions you have received from Sun carefully, and ensure that you follow
them.

CHAPTER 2 ■ PROJECT ANALYSIS AND DESIGN 17

WHAT EXTRA FILES SHOULD YOU INCLUDE IN SUBMISSIONS?

We often see questions from candidates asking whether they should include their test cases and/or their
class diagrams in their submission.

Our general recommendation is not to include anything that you have not been asked for. The latest
instructions from Sun include a comment that you will not be given extra marks for anything you do outside
of the requirements, so you are not going to gain anything by providing the assessor with these extra files.
However, it is unfortunately possible that in providing these files you may inadvertently lower your score sim-
ply by making a mistake that the assessor notices in a file that you didn’t need to provide.

The one time we might consider changing this general recommendation is where the additional files
make it much simpler to understand your submission. A class diagram might be one such example (however,
the assignment is simple enough that if you need a class diagram to understand the submission, then you
have probably overcomplicated your solution).

User directions are essential. After all, if you do not explain to the client how to use the
application, then the application is rendered useless. As a result, you should take great care
when writing these instructions. The only safe assumption you as the developer can make is
that the end user has no experience with this particular application. Every step, no matter how
minute, must be detailed in the instructions. After you list the instructions, test their clarity by
handing them off to unsuspecting friends (preferably nonprogrammers). If they can follow the
instructions, then the instructions are adequate.

■Caution The current assignment instructions specify that the instructions you write may be placed in a
specific directory or may be available online. This directive has caused confusion in the past, as some candi-
dates have felt that this might mean that this requires them to run a web server—but this is not the case. Sun
only requires that the assessor have access to the instructions, which can be achieved if the instructions are
in the required directory, or alternatively can be called up from within your application (for example, pressing
the F1 key in Microsoft Word will bring up “online help” even if you do not have an Internet connection).

Design Decisions Document
Throughout the SCJD exam, certain design and implementation choices are already dictated
by Sun. One example is that the exam requires the use of the JTable Swing component. Other
choices, however, are left up to you, the test taker, to decide. For instance, you may choose to
implement a networking layer that uses RMI, or you may take a different approach that is built
upon sockets. Each implementation has advantages and disadvantages. You must be certain
to document your choices because it is necessary to defend these design decisions to the indi-
vidual who will ultimately decide if your test submission passes or fails.

For the SCJD exam, clearly document your design choices in a design decisions docu-
ment. This document should contain examples of specific decisions, such as your choice of
design pattern or the use of one technology over another. Circumstances may also arise in
which design decisions were made based on unclear functional requirements. If this situation

CHAPTER 2 ■ PROJECT ANALYSIS AND DESIGN18

does occur, raise the issue as a design decision and document all the assumptions you made
to deal with the problem. Be certain to complete the design decisions document, because it is
the only chance the test allows you to defend your submitted project.

■Tip It is worth noting that in the Sun assignment, as with projects in real life, there are sometimes several
solutions to any given problem. It is also possible that for every possible solution there will be reasons why
that particular solution is not optimal. You should not spend too much time trying to find the “one perfect
solution”—it may not exist. Sun has deliberately left enough vagueness in the assignment instructions that
there are very few areas where candidates have limited choices. In all other cases, it does not matter so
much what choice is made, but it does matter how you came to your choice, which should be detailed in
your design decisions document.

Java Coding Conventions
One of the common goals in our industry is the ability to hand over the project to someone
else—let them do any maintenance in the future, as you won’t be available (you will be work-
ing on more exciting projects and going on vacation).

To meet this goal, the code we write needs to be formatted in such a way that you can hand
it over to somebody else, and they will happily accept it. It will not do your reputation any good
if you hand over the code, and the other person throws it all away as being incomprehensible.
In the same way, it would not do us any good if we did not organize this book into chapters,
paragraphs, and sentences—if you can’t read this book, you won’t learn much from it.

The developers of Java, C, and C++ deliberately avoided forcing coders to follow a specific
coding convention—there are syntactical requirements, but as long as you meet them, the code
can appear on a printed page any way you like it to. For instance, consider the following code
snippet:

public class MyTest {
public static void main(String[] args) {

System.out.println("Hello");
}

}

That code is interpreted by the Java compiler in exactly the same way as

public
class
MyTest{public static void main(String
z[]){System.out.println("Hello");}}

You’ll undoubtedly agree that the first format is far more readable than the second.
While it is easy to agree that a code-formatting style should be followed, it is less easy to

agree on the code-formatting style itself. For example, often one person prefers to have the
brace ({) at the end of an existing line; another prefers to have the brace on its own line. Both
coders can have compelling arguments for their particular style, but realistically only one style
should be followed on any given project.

CHAPTER 2 ■ PROJECT ANALYSIS AND DESIGN 19

In the workplace, management will usually specify which particular style must be used.
For this book, and for the SCJD assignment, we recommend you use the Sun Code Conventions
for the Java Programming Language, which you can download at http://java.sun.com/
docs/codeconv/. Sun has specified 11 areas where they believe coding guidelines are needed,
and these can be grouped into the following major categories: naming conventions, file lay-
out, source code format, and comment format. We introduce each of these categories next.

Naming Conventions
The Sun Code Conventions specify different naming conventions for packages, classes and
interfaces, methods, variables, and constants.

For all of the naming conventions, you should try to avoid using abbreviations, except
where the abbreviation is more commonly recognized than the complete word. At the same
time, you should try not to make your names too long, or they will quickly become tedious to
read and write. Consider the variable names shown in Table 2-2.

Table 2-2. Variable Naming Examples

Contents Good Variable Name Poor Variable Name

The balance of an account accountBalance usersCurrentAccountBalance (too long)
ab (not a common abbreviation; doesn’t
mean much)

HTML editor class HtmlEditor HyperTextMarkupLanguageEditor
(“HTML” is a common abbreviation, so
using it will enhance the readability of
this class name)

Package Naming Conventions
Package names start with your fully qualified domain name, written in lowercase and in
reverse. So if you worked for a company with the domain name example.com, then your pack-
age names should start with the same name in reverse (com.example).

From that point on, you would follow your company’s naming conventions. A sample
naming convention might be to use the project name, followed by a conceptual grouping of
classes. For instance, as we are working on the SCJD project, which contains a GUI client, we
could have a combined package name of com.sun.edu.scjd.gui (for simplicity though, we
have used the base package name of sampleproject throughout our project, and the GUI code
is therefore in package sampleproject.gui).

■Tip In the real assignment, Sun will typically specify a package name for at least one class. Therefore,
you do not need to be concerned that you do not have an existing domain name that you can use as your
base package name.

CHAPTER 2 ■ PROJECT ANALYSIS AND DESIGN20

www.allitebooks.com

http://www.allitebooks.org

Class and Interface Naming Conventions
Class and interface names should always start with a capital letter, and should be a noun (they
should describe an object, not an action on the object). For example, “Book” might be used as
the name of the class containing information about a book.

It is common to combine two or more nouns or an adjective and a noun together to form
the class name, in which case CamelCase is used (the first letter of each word is capitalized,
producing the undulating pattern associated with camels). For example, “SocketFactory”
might be used as the name of a class that creates socket connections.

■Tip You should try to have only one responsibility for each class. For instance, a class that is responsible
for creating an RMI connection to a server should not also be responsible for displaying data to the end
user. If you can maintain “one responsibility per class,” you will find it easier to name your classes. This
provides a major benefit later when it is time to modify or maintain your classes—the separation of respon-
sibilities and clear class names makes it much easier to determine which classes need to be modified.

Method Naming Conventions
Method names should always start with a lowercase letter, and should begin with a verb (they
should describe an action on the object). For example, within our DVD class, the method
name getLeadActor indicates that we can call this method to get the name of the lead actor
for the DVD.

It is very common to combine several words to give more information on what the
method does. For instance, using the method name getLeadActor makes it far more explicit
when using this method that we are specifically retrieving the lead actor’s name (and not the
name of some other person associated with this DVD). As can be seen in this example, Camel-
Case is used when combining words.

Variable Naming Conventions
Variable names should always start with a lowercase letter, should be short, and should
describe what data is stored in the variable. For example, within our DVD class, the variable
name leadActor would contain the names of the lead actor of the film on DVD.

Again, it is very common to combine several words to provide more information on what
the variable does. As you can see in this example, CamelCase is used when combining words.

■Note The Sun Coding Conventions specify that you should apply the same naming convention to all
instance, class, and local variables. Be aware that you may see code written by other coders where instance
or class variables are signified by an underscore or some other special mark. Another way to achieve the
same effect is by using the convention variable when referring to a local variable, this.variable when
referring to an instance variable, and Class.variable when referring to a class variable. Doing so makes it
explicit which type of variable you are referring to.

CHAPTER 2 ■ PROJECT ANALYSIS AND DESIGN 21

Constant Naming Conventions
Constants are always written in all capital letters, with individual words separated by under-
scores. An example might be the constant DIRECTOR_LENGTH, which would be set to the
maximum size of the director’s name stored in our database.

File Layout
A Java class or interface always consists of the following standard layout:

1. Beginning comments

2. Package and import statements

3. Class or interface declarations

The Sun Code Conventions state that two blank lines should appear between each of these
major sections. That is, there should be two blank lines between the beginning comments and
the package statement. Similarly, there should be two blank lines between the import state-
ments and the class or interface declarations. In all other cases where a blank line will help
readability (say, between method declarations), you would normally only have a single blank
line. A simple example is shown in the following code snippet:

1 /*
2 * HelloWorld.java version 1.0.0 date 2005-06-20
3 * Copyright © Andrew Monkhouse & Terry Camerlengo 2005
4 *
5 * This is a version of the hello world program
6 * The beginning comment, has two blank lines following it
7 */
8
9
10 package com.example.javaExamples;
11
12 import java.util.Date;
13
14
15 public class HelloWorld {
16 public static void main(String[] args) {
17 sayHello();
18 }
19
20 public static void sayHello() {
21 System.out.println("Hello, world at " + new Date() + "\n");
22 }
23 }

As shown here, there are two blank lines between each of the major sections: lines 8 and 9
separate the beginning comments from the package and import statements, and lines 13 and

CHAPTER 2 ■ PROJECT ANALYSIS AND DESIGN22

14 separate the import statements from the class declaration. In all other cases, only a single
blank line is used to separate minor sections: line 11 separates the package statement from
the first import statement, and line 19 separates the contructor and method declarations.

Beginning Comments
Beginning comments are separate from Javadoc comments and, as such, are often not under-
stood by Java programmers. The beginning comments contain some of the same information
as the Javadoc comment for the class, but there are a couple of major differences: the infor-
mation is provided in one standard place, and very specific information is listed. While the
Javadoc comments might contain a superset of the same information as the beginning com-
ments, there is no specific line number the information will appear on, and the desired
information may be buried among API documentation. Beginning comments contain the
following:

• Class name

• Version information (might be automatically filled in by your revision control system)

• Creation/modification date (might be automatically filled in by your revision control
system)

• Author/last modifier (might be automatically filled in by your revision control system)

The entire comments block is a C type comment, not a Javadoc comment—that is, the com-
ment block starts with /* and not /**.

Package and Import Statements
Following the beginning comments, you put your package statement, a blank line, and then
your import statements, as shown in lines 10–12 of the preceding code example.

Although the Sun Coding Conventions document does not specify whether you should
list every class or include the entire package, one common usage is to list individual classes in
a package until there are three classes listed in a single package. After that, it is common to
import the entire package.

Likewise, the Sun Coding Conventions do not specify whether import statements should
be in any particular order. Worrying about such details is probably going beyond the scope of
the requirements (and may cause your colleagues to look at you in a funny way). Many devel-
opers tend to keep them in alphabetical order, but don’t get too concerned about this.

■Tip Many integrated development environments (IDEs) have some of the following features: automatic
addition of missing import statements; automatic removal of unused import statements; and automatic
refactoring of too many or too few imports in a given package. While these features can help improve your
coding speed in your real job, we recommend you switch these features off while working on the SCJD
assignment. One of the problems with using some of the IDE “features” is that it can become difficult to
determine what has gone wrong if something does go wrong—if you learn to work with import statements
manually for the SCJD assignment, you are more likely to be able to handle any issues later in life.

CHAPTER 2 ■ PROJECT ANALYSIS AND DESIGN 23

It is common practice to include a blank line between an import of standard J2SE pack-
ages, standard J2EE packages, external packages, and internal packages.

Class or Interface Declarations
The Sun Coding Conventions specify that a class or interface declaration should contain some
or all of the following elements in the specified order:

• Class/interface Javadoc comments

• Class/interface statement

• Class variables

• Instance variables

• Constructors

• Methods

Variables should be sorted according to accessibility, from most accessible (public) through to
least accessible (private). For example:

public class VariableOrderExample {
public int aVariableModifiableByAnyOtherClass;
public String anotherPublicVariable;
// protected variables appear after public variables
protected int protectedVariable;
// now list the variables with default access
Character defaultAccessVariable;
// finally list the variables with private access
private int noOtherClassCanSeeMe;

}

■Tip Although the location of constants is not specified by the Sun Coding Conventions, common usage is
to list them prior to the class variables.

Methods, on the other hand, should be grouped by functionality rather than scope. This
means you should put a common private method close to the public methods that call it.

Source Code Formatting
While you write your code, you should maintain a consistent approach to the following style
issues:

• Indentation

• Line lengths/wrapping

CHAPTER 2 ■ PROJECT ANALYSIS AND DESIGN24

• Spacing

• Statement formatting

• Variable declaration formatting

Most of these formatting rules have been designed so that people reading your code can
do so using the IDE, editor, screen resolution, and so forth of their choice. If you were to
choose a nonstandard formatting convention, then others may find your code hard to read.

■Caution Do not ever forget that you will be submitting your source code to an unknown assessor for
review. You really need to write your code so that it is a pleasure for them to assess. This also applies in your
real job—you should always be writing code that your coworkers are happy to use.

Indentation
The Sun Coding Conventions contain the following indentation requirement: “Four spaces
should be used as the unit of indentation. The exact construction of the indentation (spaces
vs. tabs) is unspecified. Tabs must be set exactly every 8 spaces (not 4)” (Sun Coding Conven-
tions, http://java.sun.com/docs/codeconv/html/CodeConventions.doc3.html, 1999).

This description seems to cause a great deal of confusion when first read, so an example
is in order:

1 public class IndentationExample {
2 /* this line is indented once */
3 public IndentationExample() {
4 /* this line is indented twice */
5 }
6 }

Lines 2, 3, and 5 all have one indentation, so you should prefix them with four spaces.
Line 4 has two indentations, so you should prefix them with eight spaces. However, eight
spaces are also equivalent to a tab, so you could use a tab instead of the eight spaces for line 4.
To avoid confusion, we recommend that you use eight spaces instead of a tab.

■Tip Many IDEs and editors give you the option to insert a specified number of spaces whenever you press
the Tab key (and even handle backspacing over the indentation/reformatting entire blocks of code). We rec-
ommend you check whether your IDE/editor provides this functionality and turn it on when available.

Line Lengths/Wrapping
As mentioned earlier, you cannot know what sort of an editor or what screen size your asses-
sor will be using. Limiting line lengths to 80 characters will ensure that your code should be
readable in most cases.

CHAPTER 2 ■ PROJECT ANALYSIS AND DESIGN 25

Lines that are longer than 80 characters should be broken after a comma or before an
operator whenever possible. The second (and subsequent lines) should be indented to the
beginning of the expression on the previous line, or eight spaces. For example:

int i = myMethod(longNamedVariable1, longNamedVariable2,
longNamedVariable3, longNamedVariable4);

Line wrapping for if, for, and while statements generally uses the eight-space indentation
rule rather than the beginning of the expression, since using the beginning of the expression
can cause confusion with the line that follows, which will be indented four characters. The fol-
lowing example shows both the preferred and nonpreferred way of breaking if statements:

// nonpreferred way
if (myMethod(longNamedVariable1, longNamedVariable2,

longNamedVariable3, longNamedVariable4)) {
// code starts here – see how confusing this is ?
doSomething();

}

// preferred way
if (myMethod(longNamedVariable1, longNamedVariable2,

longNamedVariable3, longNamedVariable4)) {
// code starts here – now we can see the difference between
// the condition and the code to be run within the condition
doSomething();

}

In cases where you have multiple levels of code in one line, for example, calling a method and
using the result as a parameter to another method call, it is preferable to break the line at the
higher level—keep the call to the external method on one line where possible. For example:

int i = myMethod(variable1,
callToAnotherMethod(variable1, variable2),
(variable1 + variable2));

In such cases as this last example, you should consider whether your code would be more
readable and understandable if you were to refactor it. For example, you could

• Move the external procedure call to a separate line.

• Move the calculation in parentheses to a separate line.

• Make both modifications.

Consider how much easier the following code might be to read and maintain:

int dbValue = callToAnotherMethod(variable1, variable2);
int calculated = variable1 + variable2;
int i = myMethod(variable1, dbValue, calculated);

Once you get beyond your third or fourth level of indentation, you may find that these
rules are hard to follow. This is often also an indication that your code may be difficult to

CHAPTER 2 ■ PROJECT ANALYSIS AND DESIGN26

follow, and you should think about whether you could move some of the indented code into a
separate method.

Spacing
Spacing is intended to make code easier to read, but too much of it can have the opposite
effect and make the code harder to read and maintain. In general, you should put one space
between a keyword and a parenthesis, after commas, between expressions in for statements,
after casts, and around all binary operators. Examples of these are shown in Table 2-3.

Table 2-3. Spacing Examples

Rule Example

Space between keyword and parenthesis while (true)

Space after commas myMethod(variable1, variable2);

Space between expressions for (expression1; expression2; expression3) {

Space after casts int i = (int) aLongValue;

Space after binary operators a = b + c;

c = 5 * 10;

Statement Formatting
Most of the statement-formatting rules simply follow on from the rules we have already
discussed.

Most programmers have a preferred method of writing compound statements—for
example, where to place braces, and whether braces are optional. Rather than leaving this for
endless debate, Sun has specified that braces must be used to enclose statements as part of a
control structure—even if only one statement is used in the control structure. For instance,
even if there is only one line of code to be executed following an if statement, it must still be
enclosed in braces, as shown here:

if (variable == someValue) {
doSomething();

}

As you can see, the statement between braces should be indented one indentation level
(four spaces), and the closing brace should start on its own line at the original indentation
level.

■Tip Many tools are available that you can use to help you confirm that the code you have written confirms
to the Sun coding standards. One such tool is Checkstyle (http://checkstyle.sourceforge.net/)—it
integrates neatly into many popular IDEs, and supports many different coding styles, not just Sun’s. A good
style checker will provide you with a report on what it believes needs to be changed, after which you can
manually verify each item.

CHAPTER 2 ■ PROJECT ANALYSIS AND DESIGN 27

■Caution Try to avoid using automatic code reformatters for this assignment. Occasionally they will refor-
mat your code in a manner allowed by the coding conventions but contrary to the way you (or the assessor)
would want to see it. Unfortunately, once this has been done, it is hard to undo, and most automatic format-
ting tools do not provide an easy way to review the changes before accepting or denying them.

Variable Declaration Formatting
Variables should be declared one per line, preferably with comments following the declaration
where applicable.

The Sun Coding Conventions state that you may separate variable names from their types
by either a space or by tabs. Unfortunately, using multiple tabs can result in you spending too
much time reformatting code when you add a new variable later, so we recommend you
always conform to a single space between the type and the name of the variable.

Where possible, variables should be initialized when they are first declared. Furthermore,
variables should be declared near the start of the smallest enclosing brace that provides the
necessary scope. You should not wait to declare a variable until just before you use it.

Formatting of Comments Within the Code
Two forms of comments are allowed within Java source code: documentation comments
(Javadoc comments) and implementation comments (all other comments).

Javadoc comments will be covered in more detail in the section on Javadoc later in this
chapter; for now, suffice it to say that Javadoc comments are designed to create API documen-
tation that another programmer can use to learn how to use your class and its associated
constants, methods, (and possibly) variables without looking at your source code. Since
Javadoc comments are designed to be used by external programmers, they should explain
conceptually how your code works as a whole—they should never get into implementation
details.

Implementation comments, on the other hand, are supposed to give hints to program-
mers (or the assessors) who are looking at your code as to what is happening.

■Caution Do not go overboard with adding implementation comments to your code. If you are using
good names for your classes, methods, and variables, your code will be generally self-documenting. In such
cases, adding too many comments is self-defeating—the comments distract from the code and quickly fall
out of date.

Implementation comments come in two flavors: the block comment (enclosed between
/* and */ tags), and comments that start with the tag // and continue until the end of the line.

When adding a single comment line, or adding a comment to the end of a line of code, we
recommend that you use the // comment delimiter, as shown in the following examples:

// this is an example of a comment using a single line of text
doSomething(); // this is an example of a comment at the end of a line

CHAPTER 2 ■ PROJECT ANALYSIS AND DESIGN28

When a comment won’t fit on a single line of text, use block comments, as shown here:

/*
* This comment explains why the following code must be used instead of a more
* "intuitive" way. As it takes more than one line, it is in a block comment.
*/

Try to avoid using block comments to comment out lines of code—you should use //
comments instead. Using block comments to comment out lines of code makes it very hard
for other programmers to determine which code is in use and which has been commented
out. Comments that start on a line by themselves should always be indented to the same level
as the code they apply to.

Suggested Coding Conventions for New Features in JDK 5
The Sun Coding Conventions have not yet been updated to reflect the additions in JDK 5. In
this section, we will give a brief explanation of some of the new features, and demonstrate the
coding convention as typified in the JDK 5 API, Sun sample code, and the Java Specification
Request (JSR) that specified the new feature.

■Note Before starting JDK 5, Sun asked the Java developers what features they would like to see in the
new version. All requests were considered, and users were allowed to vote for those features they consid-
ered most valuable. A JSR number then specified these features, and the top requests were incorporated
into JDK 5. You can find out more about the Java Community Process, and have your own say in future
enhancements, by visiting the JCP website at http://jcp.org/en/home/index.

We will provide a quick overview of the new features in this chapter, and then cover them
in more detail in later chapters where they can be seen in the context of our assignment.

Generics
Generics (supporting generic types at runtime in a type-safe manner) allow us to specify at
compile time what a generic object will contain at runtime. An example will probably make
this easier to understand. The formatting rules used in the example will be summarized at
the end of this section. Consider the following non-type-safe code:

public List getBreed(String breedName) {
List dogs = new ArrayList();
// do some work to find the correct dogs
String dogName = "";
Dog pooch = new Dog(dogName);
dogs.add(pooch);
return dogs;

}

CHAPTER 2 ■ PROJECT ANALYSIS AND DESIGN 29

public void listDogs() {
Collection c = getBreed("labrador");
for (Iterator i = c.iterator(); i.hasNext();)

String name = ((Dog) i.next()).getName();
System.out.println(name);

}
}

This does work; however, although we know that the returned List must contain a list
of Dogs, there is nothing to stop someone else from compiling source code that assumes
that the list contains Cats—it will compile without problems. However, if that happens, a
ClassCast-Exception will be thrown at runtime.

To get around that, you would have to write explicit type checking into your code (using
the instanceof operator) and/or catch ClassCastException.

It is much nicer when we can ensure that a generic class will be handled correctly at run-
time. Consider the following replacement for the getBreed and listDogs methods:

public List<Dog> getBreed(String breedName) {
List<Dog> dogs = new ArrayList<Dog>();
// do some work to find the correct dogs
String dogName = "Labrador";
Dog pooch = new Dog(dogName);
dogs.add(pooch);
return dogs;

}

public void listDogs() {
Collection<Dog> c = getBreed("labrador");
for (Iterator<Dog> i = c.iterator(); i.hasNext();) {

String name = i.next().getName();
System.out.println(name);

}
}

We have now specified that the return type of the getBreed method will be a List of Dogs.
(It may help to read List<Dog> as List of Dog).

Note that the line String name = i.next().getName(); does not cast the class anymore—
the line defining the Iterator specifies its type.

Attempting to cast an item in the collection to a nonrelated class produces the following
error:

GenericExample.java:16: inconvertible types
found : Dog
required: Cat

String name = ((Cat) i.next()).getName();
^

1 error

CHAPTER 2 ■ PROJECT ANALYSIS AND DESIGN30

Note the formatting used in the above examples:

• There are no spaces within the angle brackets (< and >).

• There is no space between the collection name and the angle brackets.

• There is no space between the angle brackets and the curved brackets (when calling a
constructor).

These are the coding conventions used in the JSRs and in several Sun documents describ-
ing the new features of JDK 5; however, currently there are no formal conventions.

Enhanced for Loop
In our example of generics, we used an Iterator to step through the items in the collection.
To reiterate, our code example looked like this:

for (Iterator<Dog> i = c.iterator(); i.hasNext();) {
String name = i.next().getName();

However, this is overly wordy: in most cases you will want to step through all the items in
your iterator one by one. So why spell it out for the compiler in this way?

JDK 5 has made the use of iterators in for loops much easier. Consider the following con-
struct, which does the same work:

for (Dog mutt : c) {
String name = mutt.getName();

It may help to read the colon (:) as “in.” Thus, the statement for (Dog mutt : c) would
read “for each mutt in collection c.”

■Note Many people are curious about why Sun chose to use the colon instead of using the words “in” or
“foreach.” Quite simply, Sun wanted to avoid introducing any new keywords, which might potentially break
existing source code. All your existing code should compile and run without any problems under JDK 5.

The enhanced for loop can also work with standard arrays. The following code gives an
example of iterating over an array of Strings without using the enhanced for loop:

public static void main(String[] args) {
for (int i = 0; i < args.length; i++) {

System.out.println(args[i]);
}

}

CHAPTER 2 ■ PROJECT ANALYSIS AND DESIGN 31

The enhanced for loop allows this to be simplified, as shown here:

public static void main(String[] args) {
for (String arg : args) {

System.out.println(arg);
}

}

Note that the new for loop can’t be used in every scenario. In particular, it hides the itera-
tor, so you can no longer call any methods on the iterator that might change the underlying
collection.

The formatting rule for the new for loops is to have a space before and after the colon.

Autoboxing
JDK 5 allows for automatic type conversions between primitives and their wrapper classes.
For example:

Integer myInteger = 5; // automatically converts 5 (int) into an Integer

No special coding convention is needed for handling this.

VarAgs
Variable argument lists (also commonly referred to as VarArgs) allow the coder to specify that
the number of arguments in a constructor or method signature is variable. Using this facility
can reduce the number of overloaded methods and constructors.

However, VarArgs come at a price: when you specify the exact number and type of para-
meters a given method requires, the Java compiler can perform type checking to ensure that
your usage of the method is correct. When you use VarArgs, only minimal checking is possible.

To give an example, consider creating a class Dog, which has two optional attributes
(fields): age and name. If you wanted to create constructors that can handle all potential ways
that a user could create a Dog class, you would need the following constructors:

Dog();
Dog(int age);
Dog(String name);
Dog(int age, String name);

Unfortunately, it doesn’t end there. The number of constructors you need is 2 to the
power of the number of parameters. So if the Dog class has the following seven attributes—age,
height, weight, name, owner, color, and pedigree—we would potentially need 128 constructors
to allow for every combination!

We would then have additional problems, because Java would be unable to differentiate
between constructors where the method signatures are effectively the same. For example:

Dog(int age, String name);
Dog(int age, String owner);

CHAPTER 2 ■ PROJECT ANALYSIS AND DESIGN32

JDK 5 allows us to specify that there will be a variable number of arguments of the same
type passed to the method or constructor. So you could specify that the exact number of
Strings passed to the constructor is variable by specifying a constructor of

Dog(int age, String... args) {
for (String parameter : args) {

System.out.println("Received parameter " + parameter);
}

}

As you can see in the previous code, the ellipsis (...) immediately follows the type it
refers to. Once it’s inside the body of your method, you can just treat the argument as an array
of the named type.

■Note You can only have one variable argument list in a given method or constructor declaration,
and it must be the last parameter in the method or constructor. For example, you cannot have
Dog(int... ages, String name).

■Caution Be very careful when overloading constructors or methods with versions containing VarArgs.
It is very easy to end up with overridden methods that cannot be differentiated by the compiler (e.g.,
Dog(String name, String... args) and Dog(String... args) are effectively the same), or end up
with a generic method that matches more than you bargained for (e.g., Dog(Object... args) will match
all constructors, due to autoboxing).

You may have realized that a similar effect was possible under earlier versions of the JDK:
namely, you simply passed an array of the named type into your method. However, to use this,
you effectively had to create a new array. For example:

public static void lookupDog(String... searchCriteria) {
for (String criterion : searchCriteria) {

// do work here
}

}

public static void lookupCat(String[] searchCriteria) {
for (String criterion : searchCriteria) {

// do work here – no different than working with Dog method
}

}

public static void main(String[] args) {
// first the easy code: use the Dog method:
lookupDog("Breed", "Terrier", "Color", "Brown");

CHAPTER 2 ■ PROJECT ANALYSIS AND DESIGN 33

// now for the Cat method
lookupCat(new String[] {"Breed", "Burmese", "Coat", "Silky"});

// or
String[] criteria = {" Breed", "Burmese", "Coat", "Silky"};
lookupCat(criteria);

}

The code to use the lookupDog method is much easier to read, write, and maintain than
the equivalent lookupCat method.

Static Imports
Prior to JDK 5 some programmers were defining constants in interfaces, as this allowed them
to implement the interface, giving them a shorthand way of writing the constant name. This is
shown in the following example:

public interface BadInterface {
public static final int FIRST_NAME_POSITION = 1;

}

public class BadClass implements BadInterface {
public static void main(String[] args) {

System.out.println("First name = " + args[FIRST_NAME_POSITION]);
}

}

There are a couple of problems with this:

• A class that implements an interface is said to “be” an instance of that interface. If you
have a reasonable name for your interface, it probably doesn’t make sense to say your
class “is” an instance of it.

• If your class implements an interface, then any subclasses of your class will also imple-
ment the interface. Effectively, the constants will become part of the namespace of the
subclass—even though the subclass may have no need of these constants.

To get around these problems, JDK 5 introduces the idea of static imports—the ability to
import the static members from another class or interface.

For instance, if you were using the logging features (discussed in the section “Logging”
later in this chapter), you would normally have to qualify the logging levels as this code
snippet shows:

myLogger.log(Level.FINE, "This message is at FINE level");

However, static imports allow us to refer to the static object FINE as though it had been
defined within our own class:

import static java.util.logging.Level.*;
// ...

myLogger.log(FINE, "This message is at FINE level");

CHAPTER 2 ■ PROJECT ANALYSIS AND DESIGN34

It should be noted that this “feature” was introduced to work around a bad programming
practice. You might want to use it when you would otherwise be tempted to declare local
copies of the constants, or when you are tempted to abuse the inheritance as mentioned
earlier. But, in general, we recommend that you avoid this where possible, and use qualified
constants.

Javadoc
Javadoc is a very simple, yet powerful, tool that helps programmers provide API documenta-
tion for other programmers.

The default Javadoc tool is very simple. It parses your source code, looking for special
comments. It then generates HTML documentation based on that. To make this easier to
understand, let’s start with some sample Javadoc comments, and describe them:

/**
* The main starting point for this application.
* Instantiates an instance of this class, and runs it.
*
* @param args an array containing the command line arguments.
* @throws IOException if files cannot be created
*/
public static void main(String[] args) throws IOException {

// ...

A Javadoc comment starts with the special comment start indicator of /**, and continues until
the comment closing indicator of */. Tags are noted by the at symbol (@). All text from the
comment start indicator through to the first tag is included directly in the generated output.
Javadoc will ignore unknown tags and plain text after any tag has been found up until the next
known tag, or the end of the doc comment—this bit of magic is how XDoclet can work.

The Javadoc code above produces the following HTML:

<!-- --><H3>
main</H3>
<PRE>
public static void main(java.lang.String[] args)

throws java.io.IOException</PRE>
<DL>
<DD>The main starting point for this application.
Instantiates an instance of this class, and runs it.
<P>
<DD><DL>
<DT>Parameters:<DD><CODE>args</CODE> - an array containing the command
line arguments.
<DT>Throws:
<DD><CODE>java.io.IOException</CODE> - if files cannot be created</DL>
</DD>
</DL>

CHAPTER 2 ■ PROJECT ANALYSIS AND DESIGN 35

When viewed in Microsoft Internet Explorer, this will appear similar to Figure 2-1.

Figure 2-1. Example Javadoc output

■Note Javadoc is more powerful than many programmers realize. It was developed as an extensible tool,
which can behave in different ways depending on which module is plugged in. By default, it will parse the
Java source code, generating API documentation. But if you were to change the plug-in to XDoclet (http://
xdoclet.sourceforge.net/), for instance, the Javadoc engine could generate additional source code
based on comments in the code you wrote (very useful when building J2EE applications—you could have
XDoclet create your interfaces and deployment descriptors for you). Or you could plug in DocCheck
(http://java.sun.com/j2se/javadoc/doccheck), and you could get a report on how well you are
adhering to Sun’s Javadoc conventions.

Coding Conventions
Sun published an article titled “How to Write Doc Comments for the Javadoc Tool,” which is
available online at http://java.sun.com/j2se/javadoc/writingdoccomments/index.html.
A quick overview of the topics covered in this article follows.

What to Write
The names of your classes and methods should be reasonably self-documenting, so there is
no point in writing Javadoc comments that just restate the name of the class or method. Your
Javadoc comments should provide information that will help the user of your class and/or
provide information that would be needed by a third party if they wanted to reimplement your
class from scratch (without looking at your source code).

CHAPTER 2 ■ PROJECT ANALYSIS AND DESIGN36

For example, if you were creating a class to provide a network connection to your server,
you might call the class NetworkConnection. There is no point in having a Javadoc comment
that states that this class provides “a network connection”—the user already knows that.
Instead, you might consider specifying that the class provides “a connection to the database
server over the network through which remote access to the database functions can be used.”

■Caution You should not write any implementation-specific details in your Javadoc comments.

Where to Put your Javadoc Comments
In theory, Javadoc comments can go anywhere in your source code. However, the Javadoc
application will only include comments in specific locations:

• Class comments should appear immediately before the class declaration (Javadoc cur-
rently allows the comments to appear anywhere before the class declaration, even
before the package declaration, but this behavior should not be relied on).

• Class and instance variable comments should appear immediately before the class or
instance variable to which they belong.

• Method comments should appear immediately before the method signature.

The Javadoc tool will ignore Javadoc comments in any other locations entirely. If you want
to put a comment inside a method, for example, there’s no point in making it a Javadoc com-
ment, as it won’t appear in any generated API. Just use an implementation comment.

Formatting Codes and Special Tags
Javadoc comments can contain any HTML markup tags. Commonly used tags are shown in
Table 2-4.

Table 2-4. Commonly Used HTML Tags

Tag End Tag Description

<code> </code> Text between these two tags will appear in monospaced font in the
HTML output. This is usually designed for short words or phrases.

<pre> </pre> Text between these two tags will appear in monospaced font in the
HTML output, maintaining your indentation. This is usually used for
example code.

 Denotes the start and end of an unordered list (not numbered).

 Denotes the start and end of an ordered list (numbered).

 Denotes the start of a list item within either an unordered or an
ordered list.

<p> Denotes the start of a new paragraph.

CHAPTER 2 ■ PROJECT ANALYSIS AND DESIGN 37

■Note Javadoc produces output conforming to HTML standard 3.2, which does not require closing tags for
certain elements (e.g., there is no requirement for the tag to be closed with a tag, nor for the
<p> tag to be closed with a </p> tag); however, you may use them if you wish. In addition, the HTML 3.2
standard does not specify whether tags should appear in upper- or lowercase. Throughout this book we will
use HTML 3.2 tags, but we will format them according to the later HTML 4.0 and XHTML formats (we will
use closing tags, and we will put the tags in lowercase). You may also use tags and HTML constructs that
were only created in HTML version 4 or later if you wish (Javadoc will handle them without problems). How-
ever, if you do so, you may find that some older browsers may not be able to display your generated
documentation.

There are many more HTML codes you may use in your Javadoc comments. You generally
don’t need many of them, though, as you are generating API documentation for other pro-
grammers to read.

■Tip You should use the <code> tag for Java keywords, package names, class and interface names,
method names, field names, and argument names to make them appear in monospaced font when the
browser supports it.

In addition to the HTML tags, Javadoc recognizes special Javadoc tags—and they will be
handled in special ways. The Javadoc tags for classes and interfaces are shown in Table 2-5.
The tags are listed in the order they should appear in your Javadoc comment.

Table 2-5. Class and Interface Tags

Tag Description

@author The name of the person who wrote the class or interface.

@version The current version of the class or interface. You might
choose to have your revision control software set this
automatically as you check your code out of source control.

@see Generates a link to the specified class or method—the link
will appear in a special “See Also” section of the generated
Javadoc. Refer to the comments below regarding the @see and
@link tags for special instructions.

@since Used to indicate the version number of your release in which
this class first appeared.

@deprecated Used to indicate that a class should no longer be used but still
exists for compatibility reasons. The tag should be followed by
text indicating what class the user should use instead of this
class, or “No replacement” if there is no class with
replacement functionality.

CHAPTER 2 ■ PROJECT ANALYSIS AND DESIGN38

Tag Description

@serial Used to specify whether a class or field that would normally
be serializable should be documented as being Serializable.

{@link reference label} Generates an inline link to the specified class or method.
Refer to the comments below regarding the @see and @link
tags for special instructions. The label will appear in
monospaced font.

{@linkplain reference label} Same as the {@link} tag except that the label will appear in
standard font.

{@docRoot} Points to the base directory (where the index.html file
resides) for your generated Javadoc. This will be correct no
matter how many directories deep this tag is used.

The Javadoc tags for fields are shown in Table 2-6.

Table 2-6. Field Tags

Tag Description

@see Generates a link to the specified class or method—the link
will appear in a special “See Also” section of the generated
Javadoc.

@since Used to indicate the version number of your package in which
this field first appeared.

@serial Used to specify whether a class or field that would normally
be serializable should be documented as being Serializable.

@deprecated Used to indicate that a field should no longer be used but still
exists for compatibility reasons. The tag should be followed
by text indicating what field or method the user should use
instead of this field, or “No replacement” if there is no field
with replacement functionality.

{@link reference label} Generates an inline link to the specified class, method, or
field. The label will appear in monospaced font.

{@linkplain reference label} Same as the {@link} tag except that the label will appear in
standard font.

{@docRoot} Points to the base directory (where the index.html file resides)
for your generated Javadoc. This will be correct no matter how
many directories deep this tag is used.

{@value} Displays the value of the constant being specified.

The Javadoc tags for constructors and methods are shown in Table 2-7.

CHAPTER 2 ■ PROJECT ANALYSIS AND DESIGN 39

Table 2-7. Constructor and Method Tags

Tag Description

@param Describes a parameter in the method signature. Each
parameter should be described on its own line, with the list
following the same order as the parameters in the method
signature.

@return Describes the value or object returned from the method.

@exception Describes an exception that may be thrown from this method.
(@throws is a synonym added in Javadoc 1.2.)

@see Generates a link to the specified class, method, or field—the
link will appear in a special “See Also” section of the generated
Javadoc.

@since Used to indicate the version number of your package in which
this constructor or method first appeared.

@deprecated Used to indicate that a constructor or method should no
longer be used but still exists for compatibility reasons. The
tag should be followed by text indicating what constructor
or method the user should use instead of this constructor or
method, or “No replacement” if there is no constructor or
method with replacement functionality.

{@link reference label} Generates an inline link to the specified class, method, or
field. The label will appear in monospaced font.

{@linkplain reference label} Same as the {@link} tag except that the label will appear in
standard font.

{@docRoot} Points to the base directory (where the index.html file
resides) for your generated Javadoc. This will be correct
no matter how many directories deep this tag is used.

The @see and @link tags will create hyperlinks to the first matching class, field, or method.
The class name does not need to be specified when referring to a method or field within the
current class; likewise, the package name does not need to be specified when referring to a
class within the same package. Finally, unless you want to refer to a specific overloaded
method, you do not need to specify the method parameters. Some examples are shown in
Table 2-8.

Table 2-8. Examples of @see Links

Example Comment

@see #field label Creates a link to the specified field with the given label

@see #method label Creates a link to the first matching method and gives the
link the specified label

@see #method (parameters) label Creates a link to the method with the matching signature
and gives the link the specified label

@see class#method label Creates a link to the first matching method in the named
class and gives the link the specified label

@see package.class#method label Creates a link to the first matching method in the named
class in the named packages and gives the link the speci-
fied label

CHAPTER 2 ■ PROJECT ANALYSIS AND DESIGN40

www.allitebooks.com

http://www.allitebooks.org

JDK 1.5 introduced two new tags that can be used anywhere within your document:
{@code text} and {@literal text}. In both cases, the text will be displayed without interpre-
tation. For example, if your text was , normally this would be interpreted as the HTML tag
to start bold text. However, using the tag {@code } will result in the text being displayed
as desired. The {@code text} tag will display the text in monotype font and {@literal text}
will display the text in normal font.

Package-Level Documentation
Javadoc can also incorporate package documentation into the generated output, and create a
summary page for your overall submission. An example of the summary page is shown in
Figure 2-2.

Figure 2-2. Sample summary page

To create package documentation, you will need to create a file named package.html in
each package directory. A simple example might look like this:

CHAPTER 2 ■ PROJECT ANALYSIS AND DESIGN 41

<!doctype HTML PUBLIC "-//W3C//DTD HTML 3.2//EN">
<html>
<head>
<title>com.example.db</title>
</head>
<body>
Provides database functionality.
<h2>Package Specification</h2>
These classes are the base that provide the basic data creation, reading, updating,
and deleting functions required to process data in a database. Basic locking
functionality exists, but this is not an advanced package.

@author Unattributed person from example.com.
@author Andrew Monkhouse
@version 1.0
@since 1.0
</body>
</html>

JDK 5 Changes
The obvious changes to the Javadoc tool from earlier versions include support for the two new
tags ({@code text} and {@literal text}) mentioned earlier, and the obvious support for the
generics, enums, and VarArgs features.

When JDK 1.4 was released, Sun was planning to change the way Javadoc would deter-
mine how much of a comment should appear in the summary (where the break should be
between the summary and the remainder of the comment). Sun incorporated the logic for the
new break iterator in the Javadoc tool, which resulted in large numbers of warnings being gen-
erated when the proposed change would cause different summaries to appear in the future
version. Sun has now reversed their plans, and removed the 1.4 logic.

Running Javadoc from the Command Line
The basic command format for Javadoc is

javadoc [options] [packagenames] [sourcefiles] [@files]

Following from this, you could generate the API documentation for all your source files
that do not belong to any package by typing the following command in the same directory as
the source files:

javadoc *java

If you have your source files organized in packages, you could list the package names on
the command line instead:

javadoc com.example.mypackage com.example.more.packages

CHAPTER 2 ■ PROJECT ANALYSIS AND DESIGN42

Both those command lines will generate the API documentation in the current working
directory, which may not be desirable. You can specify the directory where API documentation
should be stored by using the -d option:

javadoc -d doc/api com.example.mypackage com.example.more.packages

■Tip Javadoc will convert Unix-style pathnames into platform-specific pathnames. This is especially useful
when you are developing scripts that may be run by unknown people on potentially any platform.

You can add many more options, turning features on or off as desired. For example:

1 javadoc \
2 -d doc/api \
3 -version \
4 -author \
5 -use \
6 -source 1.5 \
7 -windowtitle "Denny's DVD application" \
8 -doctitle "<h1>The SCJD Exam with J2SE 1.5 Project</h1>" \
9 -bottom "<i>Developers: Andrew Monkhouse and Terry Camerlengo</i>" \
10 -sourcepath src \
11 -linkoffline http://java.sun.com/j2se/1.5.0/docs/api /jdk_1.5/api \
12 sampleproject.gui sampleproject.db sampleproject.remote

The meaning of the new tags is explained in Table 2-9.

Table 2-9. Meaning of Common Javadoc Command-Line Options

Line Option Meaning

2 -d Used to specify the output directory for generated API.

3 -version Specifies that the version information in your Javadoc comments
will be incorporated into the generated API.

4 -author Specifies that the author information in your Javadoc comments
will be incorporated into the generated API.

5 -use Tells Javadoc to include a “use” page for each class, detailing where
it is used as either a parameter in a method or as a return value.

6 -source Specifies which version of the JDK the Javadoc should maintain
compatibility with.

7 -windowtitle Specifies the title to appear at the top of your browser (where
supported).

8 -doctitle Specifies the title to appear on the package summary page.

9 -bottom Specifies text that appears on the bottom of every generated page.

10 -sourcepath Specifies the base directory containing your packages.

11 -linkoffline Creates links to existing Javadoc entries. See the description in the
paragraph that follows.

CHAPTER 2 ■ PROJECT ANALYSIS AND DESIGN 43

The -link and the -linkoffline options enable you to link to other preexisting APIs. For
example, if you used the String class as a parameter in one of your methods, you might like to
have your API documentation for your method include a hyperlink back to Sun’s API docu-
mentation for the String method.

You would normally use the -link option whenever you do not have a copy of the pre-
existing API local to you, but you can access it over the Web.

The -linkoffline option is preferred when you have a local copy of the preexisting API
documentation, or when you have a local copy of the package-list file from the preexisting
API documentation, or when you cannot access the preexisting API over the Web.

■Tip Whenever possible you should refer to local documentation rather than looking at it over the Web,
simply because it will be faster for you. Likewise, linking “offline” by using your local copy of the documen-
tation will be faster than accessing the required file over the Web.

Obviously, you would not want to type such a complex command line every time you
wanted to regenerate your API documentation. One way of working around this is to put all
the options (one per line) into a plain text file, and then refer to that file on the command line.
For example, if you had put all the options in a file named javadoc.options, you could use the
following command line to generate your API documentation:

javadoc @javadoc.options sampleproject.gui sampleproject.db sampleproject.remote

Working with Packages
If you were to put all the files on your computer into one folder, this one folder would quickly
become unmanageable, and finding any particular file would be a nightmare. To avoid this,
you probably organize folders to store related files—one for accounting information, another
for job hunting, another for music, and so on. Some of these folders may have subfolders to
provide further subcategories.

Developing software has the same potential issue. Fortunately, Sun has provided us with a
platform-independent equivalent of the folders: packages. You can locate classes belonging to
a specific package by the fully qualified package and class name, even if the operating system
has no concept of folders, directories, or a hierarchical file system.

When starting any project, consider what logical modules or functionalities your project
might have, and place the classes related to that functionality into its own package. In the case
of our project, we will have a set of classes that provide the graphical user interface, another
set of classes that provide network functionality, and another set of classes that provide data
access functions. We could therefore start with the following potential packages:

gui
network
database

CHAPTER 2 ■ PROJECT ANALYSIS AND DESIGN44

After further investigation, we may decide to add more packages and/or refactor the
existing packages—Chapter 3 will discuss how to analyze the sample project. For example,
we might decide to subdivide the network package into two separate packages: one for RMI
networking, and one for Sockets networking. We would therefore have the packages

network.rmi
network.sockets

Package names should be qualified to ensure that each class can be uniquely identified.
That is, when you attempt to instantiate the StartGui class, you want to instantiate your class
of that name, not mine. To do this, you create packages for your domain name, written in low-
ercase and in reverse. So if you worked for a company with the domain name example.com,
then your package names should start with the same name in reverse (com.example). So our
fully qualified package name would now become com.example.network.sockets.

On Microsoft Windows and Unix-based systems, each package should be in a separate
directory. So for the com.example.network.sockets package mentioned earlier, we would have
a directory for the first package com, which would contain a directory for the example package,
which in turn would contain the directory for the network package, which finally would con-
tain a directory for the sockets package. This final directory would contain all the Java class
files that belong in that package.

■Note Many operating systems differentiate between case for files and directories. So a file named
numberOfBoxes will be different from a file named NumberOfBoxes. Since Java must request files from
the underlying operating system, and cannot reasonably go through every permutation of upper- and lower-
case, Sun has stipulated that the case of your files and directories must match the case of your classes and
packages.

The Sun Java utilities are all designed to work with packages in the same way, so you can
be sure that if the Java compiler can find and compile your classes, then the Java runtime and
the Java documenter will also be able to work with your classes.

JAR files can also act as a package structure. After you change directory to the classpath
root folder, running the command

C:\devProj\classes\> jar cf db.jar sampleproject.db

will result in a compressed file named db.jar containing the sampleproject.db package tree.
Therefore, this file can now be added to a classpath the same way a directory is specified, and
the compiler or Java Virtual Machine (JVM) will scan the file for referenced packages.

It is important to note the behavior of Java utilities when dealing with shared package def-
initions. For example, a situation could arise under which two directories containing different
portions of a package definition exist on a computer’s file system.

The classes for the first package are stored in c:\devProj\classes, and the second set of
files is stored outside of the project’s directory structure in c:\tempClasses. In the first direc-
tory, the package sampleproject.db is stored, while sampleproject.testclient is stored in

CHAPTER 2 ■ PROJECT ANALYSIS AND DESIGN 45

the second directory (this means that the files will be stored in the directories c:\dev\Proj\
classes\sampleproject\db\ and c:\dev\Proj\classes\sampleproject\testclient\,
respectively).

Next, both directories are compressed into separate JAR files using the JAR utility, as
shown here:

C:\devProj\classes\> jar cf db.jar sampleproject.db
C:\devProj\classes\> jar cf testclient.jar sampleproject.testclient

Finally, both JAR files are specified in a classpath when compiling a Java application, as
shown here:

C:\devProj\tmp\> javac -cp c:\devProj\classes\db.jar;c:\tempClasses\testclient.jar
MyClass.java

The question at this point is, what happens to the classpaths? Does the first JAR file over-
write the package path of the second file? The answer is no. Packages with the same package
tree can be stored in separate JAR files or separate directories, and in this case, the Java com-
piler will combine the contents of these two files at runtime.

■Caution If you have classes with the same name that are in the same package namespace in two JAR
files, the first one found (based on classpath order) will be used—the second will be ignored.

The ability to store package definitions in different locations allows for a very modular
structure. Thus, you should consider certain ideals when planning an application’s package
structure. First and foremost, packages should consist of all classes that are similar in function
or are dependent on each other in design. This allows for the packages to function as com-
plete units of functionality. Thus, a JAR file could conceivably contain an entire functional
package that is “plugged” into a project.

■Note The sample project introduced later in this book uses package structure to isolate the different net-
work implementations. This structure enables the entire networking layer of the sample application to be
changed without impacting the application’s other packages.

Classes in the base node of every package should be the building blocks of that tree’s
functionality, and therefore they should be the most stable portions of the tree. Lower-level
packages designate the stable classes that all others are built upon, and package definitions
should be planned using this principle.

If it is not possible to place only stable, nonchanging classes in the base nodes of a pack-
age, the classes should be replaced by interfaces, and the volatile implementations of these
interfaces moved to a higher level of the package definition or into a whole different package
altogether.

CHAPTER 2 ■ PROJECT ANALYSIS AND DESIGN46

It is also very important to ensure that dependencies between classes are contained
within a single package. Essentially, packages should be autonomous units that can be com-
piled separately. For the most part, if classes in a package have to be compiled in order for
another package to compile, the package structure should be reworked so that all class
dependencies fall within a single package. A proper package design will also ensure that
an application is built on the most stable foundation possible.

In summary, packages act as a mechanism to compartmentalize portions of a project
into functional blocks. Thus, an effective package design allows for portions of a project to be
removed and swapped around without impacting other portions of your code.

Best Practices
In your programming career, you may have noticed practices that you (or others) follow that
do not fit into the categories above, and yet they make the overall delivery of a final solution
much easier. While these practices are not required, you should consider using them in your
assignment.

Writing Documentation As You Go
It seems strange to have to mention this, but you really must write your documentation at the
same time as you are working on your assignment, preferably before you write your code, or
as you write it.

You must provide three major forms of documentation as part of this assignment:

• Design choices

• Javadoc

• User documentation

Design Choices
The design choices document will contain a quick overview of what major choices you made
while developing your solution, and what alternatives you considered—possibly explaining
why you discarded the alternative.

You do not need to write a book on your choices—the assessors are only interested in two
things:

1. Did you consider alternatives?

2. Did you write the code you submitted?

If you go on to become a system architect, you will be expected to know multiple ways of
achieving any software goal—often using multiple architectures and languages. As a devel-
oper, you should also be able to consider and reject alternative solutions within your area of
expertise—J2SE. For example, in a case where you could use a radio button or a check box,
you should be able to recognize that both alternatives are possible, and decide which is the
correct choice (note that the choice between a radio button and check box is probably a minor
decision, and possibly not something you would want to document).

CHAPTER 2 ■ PROJECT ANALYSIS AND DESIGN 47

■Tip Where possible, you should also put your design decisions in an implementation comment close to
the code itself. For example, if you had chosen a radio button instead of a check box, having an implementa-
tion comment near the constructor for that button will save the person maintaining your code from spending
time trying to decide whether this was the “right” choice or not.

Sun has a difficult task—how do they prove that you wrote the assignment that you sub-
mitted? One step in the process is to have multiple assignments (different business domains),
each with multiple versions (different interfaces to be implemented), so it is unlikely that any-
one you know will happen to have the same assignment as you. Another step is to check that
the information you write in the written exam (where you must provide proof of ID) matches
the design choices document, and that the design choices document describes the code.
Combine these, and Sun can be reasonably certain that the person who sits for the exam is
the person who wrote the code.

It is very important that you write down your design decisions as you make them. If you
leave that task until the end of the project, you will have a hard time remembering what
choices you made, let alone why you made them.

Javadoc
It has been shown time and time again that if the documentation is separate from the code,
then it is often not updated at the same time as the code is updated, which renders it useless.

Javadoc, and similar code documenting tools, were designed to solve this problem. By
putting the code documentation with the code itself, it is much easier to update the docu-
mentation at the same time the code is updated.

But this relies on one major premise—that you write and update the comments at the
same time as you write and update the code.

If you wait until the end of a three-month assignment to do the source code commenting,
you may find that you have another three-month job ahead of you just to finish the com-
ments, simply because you have to reread all your code to work out what you were doing in
order to document it.

User Documentation
In the section “Prototyping the GUI,” we recommended drawing rough sketches of your user
interface before starting the project. One of the benefits we mentioned is that you will then
have a definite design to work toward, reducing the risk that you will end up with a less usable
interface simply because it is easier to implement.

When you write the user documentation before coding, you get the same benefit: you
have described up front what your user interface is going to do, so you have a definite target
to achieve.

You also have a definite end point in mind—when your user interface meets your user
documentation, you know that the user interface should be ready for testing.

User documentation is also where users go when they have a problem, or when they want
to determine how they can do something more advanced. Incorrect or badly worded user

CHAPTER 2 ■ PROJECT ANALYSIS AND DESIGN48

documentation will cause frustration for the end user, and in your real employment will cause
your support calls to be more aggravating than they need to be. Writing your documentation
up front means that it is less likely to be rushed, and also means that you are more likely to go
back to it several times during the course of your development and improve it.

Assertions
Assertions were added in JDK 1.4, and provide a useful confirmation and documentation of
assumptions for you as the developer without affecting deployment of your application.

The syntax of assertions is as follows:

assert <expression with a boolean result>;

or

assert <expression with a boolean result> : <any statement>;

If <expression with a boolean result> returns false, and assertion checking is turned on
at deploy time, an AssertionError is thrown.

Programmers sometimes make assumptions about how two parts of their program inter-
act—for example, they might assume that the value of a parameter in a private method will
never exceed a certain value. However, if the assumption is incorrect, the problems it causes
might not become obvious for quite some time. In such a case, it can be worthwhile to include
an assert statement at the start of the method that can be used while testing to confirm your
assumptions but that will not have any effect on the deployed code.

■Caution You should never use assertions to validate the inputs on public methods—these are methods
that other programmers may use, and they may not honor your requirements. You should validate these
inputs regardless of whether or not assertions are turned on at runtime.

Here is some example code to show validating a value:

public class AssertionTest {
public static void main(String[] args) {

new AssertionTest(11);
}

public AssertionTest(int withdrawalAmount) {
int balance = reduceBalance(withdrawalAmount);

// reduceBalance should never return a number less than zero
assert (balance < 0) : "Business rule: balance cannot be < 0";

}
}

CHAPTER 2 ■ PROJECT ANALYSIS AND DESIGN 49

■Note In JDK 1.4 you had to specify the -source 1.4 option to the Java compiler in order to enable the
compilation of assertions. In JDK 5 this is no longer required.

By default, assertions are turned off at runtime. This has two major benefits:

• AssertionError is an Error, and as such you do not want it thrown in production.

• Evaluating the expression in the assertion could be time consuming—having it
switched off by default ensures better performance.

■Caution You should never use assertions to perform actions required for the method to work—
assertions should only validate that the values are correct. Since assertions are normally switched off at
runtime, any actions you perform within the assertion will not normally be performed at runtime.

To enable assertions at runtime, you must specify either the -ea or the -enableassertions
command-line option. For example:

java -ea AssertionTest

Without the -ea option, the AssertionTest program will run without errors. With the -ea
option, it will throw an AssertionError.

Assertions can be enabled for individual classes or packages as well, by specifying the
classes or packages on the command line:

java -ea:<packageName> -ea:<className>

Logging
When debugging, you will find it useful to know when you have reached a certain method,
and what the values of some of your parameters and variables are.

In a debugger you might set breakpoints at certain locations and watches on some vari-
ables. But this can be tedious to do each time you want to debug a program.

The next logical step might be to add System.out.println(...); statements throughout
your code. Watching the output in the command window will then give you an idea of what your
program is doing. However, this is not a good idea for code that someone else (your client or
assessor) is deploying: at best it is distracting for them; at worst they may assume that the
“normal” debug messages are signs of an error. In addition, any application that may be
deployed as a server application may not even have a window in which to watch the messages.
And, if something does go wrong with your program, it can be difficult to get the user of the
program to copy the correct messages and send them to you. Furthermore, some of the mes-
sages you want to appear while debugging the application make no sense at deploy time—you
would want to be able to selectively turn off some of the messages.

CHAPTER 2 ■ PROJECT ANALYSIS AND DESIGN50

Obviously this problem has cropped up many times, and there is a common solution: use
a logging framework. Doing so ensures that we can

• Send logging messages to a desired location (file/screen/printer/nowhere)

• Log messages even if the application is running in “server” mode and does not have a
window for messages to appear in

• Ensure that logging is done in a consistent manner throughout the entire application

• Turn logging on and off selectively throughout the application at deploy time

JDK 1.4 and later provide a standard API for logging. We recommend that you use this API
throughout your application whenever you consider sending something to the standard or
error output.

To use the logger, you must first get an instance of a logger you can use. Loggers are
normally named (although there is an anonymous logger that everyone can use), allowing
you to configure different loggers in different ways. To get a reference to the logger for the
example.com.testApplication context, you would create code similar to this:

Logger myLogger = Logger.getLogger("example.com.testApplication");

All classes that “get” a logger using the same name will get the same instance of the logger.
This ensures that the configuration applied to that logger will apply to all instances of that
logger.

■Note The name of the logger is part of a hierarchical namespace, meaning that example.com.
testApplication is a child of the namespace example.com. We will comment further on this later in
this section.

You can define the level at which your messages will be logged. There are several prede-
fined levels, and we recommend that you use them rather than define your own. The predefined
levels are shown in Table 2-10 in order from the least amount of logging to the most amount of
logging.

Table 2-10. Predefined Logging Levels

Logging Level Recommended Usage

Severe Serious failure

Warning Potential problem

Info Informational messages

Config Configuration messages

Fine Tracing (debugging) messages

Finer Fairly detailed tracing messages

Finest Highly detailed tracing messages

CHAPTER 2 ■ PROJECT ANALYSIS AND DESIGN 51

The logger class has several utility methods for logging information (Logger.info(<msg>)),
warning (Logger.warning(<msg>)), and severe (Logger.severe(<msg>)) messages, allowing you
to log simple messages, for example:

myLogger.severe("Sending message to standard error");

If you have been putting these commands into simple test applications, you may be won-
dering what the fuss is about—after all, so far we have not done anything that we cannot do
with a System.out.println(<msg>) statement. But consider that you could turn off all logging
to your entire application with one statement near the start of your application, such as

myLogger.setLevel(Level.OFF);

That is, all your classes could be logging messages, at different levels, and that one line
could turn them all off—no need to go hunting for all those System.out.println(<msg>)
statements.

You may want to execute a block of logging code only if you know that it is actually going
to be logged. In such a case, you can make a call to the isLoggable(<level>) method first to
determine whether you should call your (potentially performance-reducing) logging code.

One benefit we mentioned earlier was that we could log messages to a file—this is done
through a Handler object. We can add a simple file handler to our logger with one simple
command:

import java.util.logging.*;
import java.io.IOException;

public class TestLogging {
public static void main(String[] args) throws IOException {

Logger myLogger = Logger.getLogger("Test");
myLogger.addHandler(new FileHandler("temp.log"));
myLogger.severe("My program did something bad");

}
}

■Note The FileHandler class can handle storing logs in common locations regardless of operating sys-
tem, and can handle the usual issues such as rotating log files. Refer to the API for FileHandler to see how
such options can be utilized.

Running this example produces the following log message:

C:\TEMP> java TestLogging
11/12/2004 19:22:40 TestLogging main
SEVERE: My program did something bad

■Note Your time and date will obviously differ.

CHAPTER 2 ■ PROJECT ANALYSIS AND DESIGN52

There should also be a temp.log file in the current working directory, which contains the
log message in XML format:

C:\Temp>dir temp.log
Volume in drive C has no label.
Volume Serial Number is E0F1-2766

Directory of C:\Temp

11/12/2004 07:22p 388 temp.log
1 File(s) 388 bytes
0 Dir(s) 2,066,956,288 bytes free

C:\Temp>type temp.log
<?xml version="1.0" encoding="windows-1252" standalone="no"?>
<!DOCTYPE log SYSTEM "logger.dtd">
<log>
<record>
<date>2004-12-11T19:22:40</date>
<millis>1102753360550</millis>
<sequence>0</sequence>
<logger>Test</logger>
<level>SEVERE</level>
<class>TestLogging</class>
<method>main</method>
<thread>10</thread>
<message>My program did something bad</message>

</record>
</log>

When you have a program to analyze your log messages, you may find this useful. How-
ever, when you want to read the log messages yourself, you may find it more beneficial to have
the output in plain text. You can do this by adding a Formatter.

Changing the code to read:

import java.util.logging.*;
import java.io.IOException;

public class TestLogging {
public static void main(String[] args) throws IOException {

FileHandler myFileHandler = new FileHandler("temp.log");
myFileHandler.setFormatter(new SimpleFormatter());
Logger myLogger = Logger.getLogger("Test");
myLogger.addHandler(myFileHandler);

myLogger.severe("My program did something bad");
}

}

CHAPTER 2 ■ PROJECT ANALYSIS AND DESIGN 53

will result in the following output on the screen:

11/12/2004 19:39:27 Test main
SEVERE: My program did something bad

and the following output in the temp.log file:

11/12/2004 19:39:27 Test main
SEVERE: My program did something bad

If you wanted to have some other form of output, consider making your own formatter.
The source code to SimpleFormatter is available in the JDK sources, and is only 80 lines for the
entire formatter—it would be easy to create your own formatter.

You will have noticed that logging has so far been going to the screen, even though we
have not asked for this. This is because by default each logger will use its parent’s log handlers
in combination with its own. The default anonymous logger will, by default, send output to
the screen. That is, if you get a logger for example.com, and another logger for example.com.
test, the logger for example.com.test is a child of example.com. So any message logged to the
example.com.test logger will also be sent to the handler for example.com. You can turn this
behavior off by calling the setUseParentHandlers(boolean useParentHandlers) method on
the child logger.

You should not remove logging code before deploying in production. Doing so runs the
risk that you may remove something you didn’t intend to remove, and if you later need the
logging back again, you will have to add it all again manually. It is a much better idea to use
the logger’s rotating log scheme to ensure that log files never get too large, in combination
with setting the log level so that you are not producing too many log messages—usually
either the Level.WARNING or Level.SEVERE log level. You would normally also turn off any log-
ging to the screen (if you have not already done so).

Summary
Spending a little bit of time up front in planning your project can pay big dividends in reduc-
ing total time spent on this assignment. Ensuring that your code is easy to read and maintain
will win you better marks in this assignment, as well as more respect from your colleagues at
work. And using the tools provided by Sun can make your submission far more professional.

We have introduced some of the features that will help you make a more professional
submission, and assist you in your day-to-day life.

FAQs
Q Is it necessary to follow the methodologies and standards in this chapter?

A There are requirements in your instructions that you must follow, and using Javadoc is
one such requirement. However, the use of methodologies and standards is not always
fully stipulated—if you do not have a specific requirement, you can ignore the stan-
dard, but you do so at your own risk.

CHAPTER 2 ■ PROJECT ANALYSIS AND DESIGN54

Q Should I include unit tests in my submission?

A Current assignments have a warning stating that you will not get extra credit for going
beyond the specifications. That being the case, we recommend that you do not include
the test cases in your submission: at best the assessor will ignore them, and at worst
you may receive a lower score if the assessor finds a fault with additional code. Plus if
you use JUnit, your test code won’t compile without junit.jar—and that’s external
code you’re not allowed to include for the assignment.

Q Should I leave logging code in my submission?

A As mentioned in the section on logging, we recommend that you leave the logging in
your code—this saves you the effort of trying to remove it, and more importantly, saves
you the effort of trying to re-add it if you later need it again. (Yes, we know this seems
to contradict the answer about unit tests, but unit tests are separate from your major
project code, and logging is integrated into your project code. Also, java.util.logging
is part of the standard libraries, whereas JUnit is not. So that’s another reason why it’s
okay to include logging code in your assignment, but not JUnit code.)

Q Can a custom directory structure be used instead of the one presented in the book?

A For your Sun assignment, check the instructions carefully—if they specify a directory
structure, then you must follow it. Outside of any Sun restrictions, any directory struc-
ture may be used. If you intend to follow along with the sample project in this book but
decide to change the directory structure, then the instructions and examples in the
book may need alterations in order to run as explained. You should only use custom
directory structures if you are already comfortable with Javadoc, classpaths, and pack-
age structures.

CHAPTER 2 ■ PROJECT ANALYSIS AND DESIGN 55

Project Overview

In this chapter, we introduce the sample application, which will serve as a wellspring for the
myriad of topics required for developer certification. The sample project, Denny’s DVDs, has
a structure and format similar to the one you will encounter during the Sun Certified Java
Developer (SCJD) exam, and it will demonstrate each of the essential concepts necessary for
successful completion of the certification project. Each chapter adds an integral component
to the project and builds from the preceding chapter, so that by the end of the book you will
have a complete and properly functioning version of Denny’s DVDs version 2.0. As an added
benefit, Denny’s DVDs utilizes Java 2 Platform Standard Edition (J2SE) 5, and some of the
“Tiger” features, such as autoboxing and generics, are elucidated in the following chapters.

■Note “Tiger” is the code name for J2SE 5, and the two terms will be referred to interchangeably through-
out the book. Sometimes we will use the term “Tigerize,” which means to add a J2SE 5 language feature to
code originally composed as a J2SE 1.4 program. We do this quite a bit in the sample project, and even the
DOSClient makes use of generics. For more information on J2SE 5 and the plethora of new features that
have been added (some of which are discussed in this book), go to http://java.sun.com/developer/
technicalArticles/releases/j2se15.

What Are the Essential Requirements for the
Sun Certification Project?
To demonstrate “developer-level” competency for Sun certification, your project submission
must successfully accomplish the following objectives:

• It must implement an application interface provided by Sun.

• It must use either RMI or serialized objects over sockets for networking.

• It must use Swing with a JTable for display.

• It must be entirely contained within one single executable JAR and, consequently,
should not require any command-line options to run.

• Configuration settings must be persisted between application runs. 57

C H A P T E R 3

■ ■ ■

Your project submission must consist of these components:

• An executable JAR file, which will run both the stand-alone client and the network-
connected client

• An executable server-specific JAR file, which will run the networked server

• A common JAR file, which will contain code common to both client and server
applications:

• An src directory containing the source files for the project

• The original data file supplied with the instructions

• A docs directory that will contain

• The API generated by Javadoc

• The end-user documentation

• The file summarizing your design choices

The entire submission should be packaged in a JAR file, as described in Chapter 9.

■Note JARs were initially created to allow applets to be downloaded in a single HTTP request, rather
than multiple round-trips (request-response pairings) to retrieve each applet component, such as class
files, images, and so forth. Executable JAR files have file associations so that clicking on them will run
javaw -jar on Windows and java -jar on Unix.

The Denny’s DVDs sample will eventually be bundled into one JAR file. That JAR file will contain an
executable JAR file named runme.jar, containing the database files, documentation, and source code.
The runme.jar will handle both the server and the client depending on how it is invoked. Running the final
application from the executable JAR file will be explained in Chapter 9.

■Note The previous edition of this book included a chapter on Java’s New I/O, or NIO. At the time, NIO
was a new 1.4 topic, and the extent that NIO could be used for the certification exam was unclear. Subse-
quently, after the publication of the first edition and the release of J2SE 1.4, Sun explicitly disallowed the use
of NIO as a networking solution for the certification project, but permitted its use as a mechanism for file I/O.
Admittedly, the main reason for including NIO in the previous edition was just to demonstrate this cool new
technology. Our primary examples (downloadable from the Apress web site) did not use NIO in the network-
ing layer. Unfortunately, there was some confusion since many believed that the inclusion of NIO indicated
that our proposed solution required NIO. It did not. For this reason, we have decided to drop the discussion
of NIO in the current edition of this book to avoid any further confusion, but would like to make it clear that
sockets or RMI are required for the networking layer but that channels can safely be used for plain old
file I/O.

CHAPTER 3 ■ PROJECT OVERVIEW58

Introducing the Sample Project
Denny’s DVDs is a DVD rental store for a small community. The certification project requires
that the application be built on a provided interface. Sun will include an interface as part of
the assignment, and you will be responsible for implementing that interface and developing a
fully featured application. Our sample project will take the same approach. We will imagine
that the infamous Denny of Denny’s DVDs will define an interface that he expects the devel-
oper (i.e., you the reader) to implement. That interface, DBClient.java, will be our starting
point for development. Figure 3.1 shows a UML use case diagram for the primary operations
the system must support.

■Note The acronym UPC will be bandied around quite a bit, so a little background information may come
in handy. UPC, which stands for Universal Product Code, is an official designation for a product, whether it
be a book, a CD, or a DVD. It is a unique number identifying that product worldwide. For more trivia-related
information on UPC (and related concepts such as European Article Numbering [EAN] and checksums), refer
to such sites as Wikipedia (http://en.wikipedia.org/wiki/Main_Page) and the various online UPC
databases. Of course, such a topic is way outside the scope of this book. For our purposes, UPC is a nice
surrogate for a system-wide identifier or primary key.

Figure 3-1. Denny’s DVDs use case diagram

CHAPTER 3 ■ PROJECT OVERVIEW 59

The operations in Figure 3.1 make up the public interface, DBClient.java, that the
Denny’s DVDs application must implement. Here are descriptions of the interface methods:

addDVD—Requires a DVD object as an input parameter. Will add the DVD to the system if
the UPC is unique; otherwise, will throw an exception.

getDVD—Given a UPC value for a DVD, this method should return the corresponding DVD
object. A null object is returned if the UPC is not found in the database.

modifyDVD—Requires a DVD object with a UPC that exists in the database. Will overwrite
an existing DVD with new DVD values. If the database does not contain a DVD with the
supplied UPC code, then false is returned and the database is not updated.

getDVDs—Should return a collection of all the DVDs in the database. If there are no DVDs
in the database, then an empty collection should be returned.

■Note The Denny’s DVDs system available for download comes with a starter database, which is referred
to throughout the book’s examples.

findDVD—This operation should use a regular expression query as the input parameter.
The supplied input parameter should match on multiple attributes with a regular expres-
sion query. The input parameter is the regular expression query, so the application must
translate the user’s search criteria into a regular expression query prior to invoking this
method. Transforming the user’s search criteria into a regular expression can be done
either in the GUI or via some intermediate class, but not in the findDVD method itself. Of
course, you must not require or expect the user to enter the regular expression syntax as
the search criteria. A collection of DVDs should be returned.

releaseDVD—Will increment the count of available DVDs. This operation is equivalent to a
rental return. The operation should return true, which indicates whether the DVD identi-
fied by the UPC exists in the database and has copies out for rental. Otherwise, the
operation returns false.

reserveDVD—Will decrement the DVD count indicating that someone has rented one of
the available copies. Requires a UPC as an input parameter. If the UPC of the DVD to
reserve does not exist, false is returned; false is also returned if no more copies of the DVD
are available for rental.

removeDVD—Will remove the DVD with the matching UPC and return true. If the UPC is
not found in the database, then no DVD is removed and the method returns false.

The interface must have a GUI to allow the execution of each of the required methods
listed here. Also, the GUI must be capable of connecting to a server on a network, or work in
stand-alone mode and connect to a server on the localhost. You must also consider design
issues related to concurrent user access and record locking. Listing 3.1 contains the code for
the DBClient.java interface.

CHAPTER 3 ■ PROJECT OVERVIEW60

■Tip Before inspecting the Denny’s DVDs DBClient.java source code available for download, try writing
the class yourself and see how close your interface is to the one used in the sample project. Since you will
also be given the interface in the actual assignment, this exercise should be performed just for fun.

Listing 3-1.The DBClient Interface

package sampleproject.db;

import java.io.*;
import java.util.regex.*;
import java.util.*;

/**
* An interface implemented by classes that provide access to the DVD
* data store, including DVDDatabase.
*
* @author Denny's DVDs
* @version 2.0
*/

public interface DBClient {

/**
* Adds a DVD to the database or inventory.

*
* @param dvd The DVD item to add to inventory.
* @return Indicates the success/failure of the add operation.
* @throws IOException Indicates there is a problem accessing the database.
*/
public boolean addDVD(DVD dvd) throws IOException;

/**
* Locates a DVD using the UPC identification number.
*
* @param UPC The UPC of the DVD to locate.
* @return The DVD object which matches the UPC.
* @throws IOException if there is a problem accessing the data.
*/
public DVD getDVD(String UPC)throws IOException;

/**
* Changes existing information of a DVD item.
* Modifications can occur on any of the attributes of DVD except UPC.
* The UPC is used to identify the DVD to be modified.

CHAPTER 3 ■ PROJECT OVERVIEW 61

*
* @param dvd The DVD to modify.
* @return Returns true if the DVD was found and modified.
* @throws IOException Indicates there is a problem accessing the data.
*/
public boolean modifyDVD(DVD dvd) throws IOException;

/**
* Removes DVDs from inventory using the unique UPC.
*
* @param UPC The UPC or key of the DVD to be removed.
* @return Returns true if the UPC was found and the DVD was removed.
* @throws IOException Indicates there is a problem accessing the data.
*/
public boolean removeDVD(String UPC) throws IOException;

/**
* Gets the store's inventory.
* All of the DVDs in the system.
*
* @return A List containing all found DVD's.
* @throws IOException Indicates there is a problem accessing the data.
*/
public List<DVD> getDVDs() throws IOException;

/**
* A properly formatted <code>String</code> expressions returns all
* matching DVD items. The <code>String</code> must be formatted as a
* regular expression.
*
* @param query The formatted regular expression used as the search
* criteria.
* @return The list of DVDs that match the query. Can be an empty
* Collection.
* @throws IOException Indicates there is a problem accessing the data.
* @throws PatternSyntaxException Indicates there is a syntax problem in
* the regular expression.
*/
public Collection<DVD> findDVD(String query)

throws IOException, PatternSyntaxException;

/**
* Lock the requested DVD. This method blocks until the lock succeeds,
* or for a maximum of 5 seconds, whichever comes first.
*
* @param UPC The UPC of the DVD to reserve

CHAPTER 3 ■ PROJECT OVERVIEW62

* @throws InterruptedException Indicates the thread is interrupted.
* @throws IOException on any network problem
*/
boolean reserveDVD(String UPC) throws IOException, InterruptedException;

/**
* Unlock the requested record. Ignored if the caller does not have
* a current lock on the requested record.
*
* @param UPC The UPC of the DVD to release
* @throws IOException on any network problem
*/
void releaseDVD(String UPC) throws IOException;

}

■Note The sample project is not a full-featured e-commerce system. Instead, think of it as a program that
will demonstrate the concepts needed to successfully complete the project portion of the SCJD exam.

Application Overview
So, what’s next? In this section, we present an overview of the new system and describe the
steps necessary to successfully implement the sample project.

Architecturally, the application is a traditional client-server system composed of three key
parts: the server-side database with network server functionality, the client-side GUI, and a
client-side database interface that handles the networking on behalf of the user interface.
Figure 3-2 shows a high-level overview of the new system.

Figure 3-2. Denny’s DVDs system overview

CHAPTER 3 ■ PROJECT OVERVIEW 63

The users, Denny’s employees, must be able to do the following:

• Perform the operations defined in the DbClient.java through a GUI interface.

• Enable multiuser networked access to a centralized DVD database.

• Allow network access via RMI or sockets.

• Make the database implementation thread-safe (implicitly required for multiuser
networked access).

■Tip Included in the source code available for download is a DOSClient.java class. This is a useful
command-line program that was available in the download that accompanied the first edition of this book
but, due to recent changes in the format of the certification project, is not necessary in the second-edition
version of Denny’s DVDs. Even though we do not discuss the DOSClient.java in this book, we include it
anyway as a convenience to those downloading the code. Think of the DOSClient.java as a simplified
command-line version of the GUI tool.

Creating the GUI
The GUI must allow an employee to view DVD information such as the UPC, title, rental sta-
tus, director, actors, actresses, composer, and number of store copies. The GUI must also allow
an employee to conduct a search on any of these DVD attributes. These attributes are listed in
the class diagrams in Figure 3-3. The GUI should provide the user with the option of connect-
ing to the database locally or through a network. It does not need to take into account any
security features such as authentication and logon. Because the SCJD exam currently requires
the use of Swing for the GUI, you will also use Swing for your project’s GUI.

■Note Swing is a Sun technology built on top of the Abstract Windowing Toolkit (AWT). AWT is part of the
Java Foundation Classes (JFC). Knowledge of the AWT is no longer necessary for programmer-level certifica-
tion, and a direct understanding of how Swing utilizes the AWT is not essential for developer certification.

CHAPTER 3 ■ PROJECT OVERVIEW64

Figure 3-3. Class diagrams

Network Server Functionality for the Database System
Version 1.0 of Denny’s rental-tracking system can be run either locally or across a network.
In local mode, the GUI will connect to the database only if it is located on the same machine.
In network mode, the GUI should connect to the data server from any machine accessible
on the network. The network implementation can make use of either sockets or RMI (see
Figure 3-4). We demonstrate both approaches in Chapters 5 and 6.

■Note Even though there isn’t a version 2.0 discussed in this book, we will still refer to the system we are
describing as Denny’s DVDs version 1.0. Perhaps version 2.0 will show up in a third edition.

Figure 3-4. High-level client server functionality

CHAPTER 3 ■ PROJECT OVERVIEW 65

Because it is possible for multiple clients to connect over a network and attempt to mod-
ify the same records simultaneously, the application must be thread-safe. We discuss thread
safety in more detail in Chapter 4. For now, it will suffice to know that thread-safe code pro-
tects an object’s state in situations where multiple clients are accessing and modifying the
same object. It is your responsibility to make sure that your certification submission is thread-
safe, as you’ll learn in Chapter 4 in the section, “Understanding Thread Safety.”

There is no need to notify clients of nonrepeatable reads—that is, it is not a requirement
that all clients viewing a record that has been modified be notified of the modification. How-
ever, if two employees attempt to rent the same DVD simultaneously, then only one customer
will get the DVD. This is referred to as record locking. In Chapter 4, record locking will be
explored in more detail (with an example given in Chapter 5).

The application should be able to work in a non-networked mode. In this mode, the data-
base and user interface run in the same virtual machine (VM), no networking is performed,
and no sockets should be created. Later, in Chapter 5 (which covers networking), separate
implementations for both RMI and sockets are demonstrated.

Summary
In this chapter, we introduced the public interface of Denny’s DVDs rental-tracking program.
We discussed the project requirements and each method of the interface that you will be
responsible for implementing. All of the code for the sample application can be obtained
from the Source Code section of the Apress web site (http://www.apress.com).

The new system should be accessible by multiple clients either across a network or
locally. The GUI should be intuitive and easy-to-use, and the application must be thread-safe.
The remainder of this book examines the requirements covered in this chapter. Denny’s DVDs
rental-tracking program will evolve as each new concept is introduced.

FAQs
Q The Sun assignment instructions tell us that we must include the instructions and data

file in our submission. Why is this needed?

A There are multiple assignments available from Sun, and multiple versions of these
assignments. Some of the changes in the assignment versions include variations in the
data file format, the provided interface, the required class names, or any combination
of these variations. Providing both the instructions you implemented and your data file
ensures that the assessor will be comparing your submission with your instructions,
and not anyone else’s. Likewise, this means that the assessor is guaranteed to receive
the correct instructions at the same time he or she receives your submission.

Q The provided interface does not include an exception I would like to throw. Can I
add it?

A No. As stated in the instructions, other applications are expecting to use this interface,
so if you add exceptions, the other application will need to catch them. This could
prevent the other application from working.

CHAPTER 3 ■ PROJECT OVERVIEW66

Q I think this application will work better if I add another method to the interface. Can I
do this?

A You can; however, we advise against it for the Sun assignment. Adding new interface
methods will break the contract between the data formats and user interface. Addi-
tionally, if you do this on the actual assignment you may end up failing. A better
approach is to add methods to the implemented classes. We encourage you to add
class methods (that is, not interface methods provided by Sun) or to modify imple-
mentations as a way to better understand the project and source code.

Q How similar is this chapter’s example to the one Sun will provide?

A There is no guarantee what future exams will look like from Sun, but this sample
demonstrates the concepts required to achieve the Java developer certification, and
it also introduces new features in J2SE.

Q How should I use the provided code samples?

A The completed version of the Denny’s DVDs system is available for download. Each
chapter will describe the evolution of the project from the required DBClient interface
developed in this chapter to the remainder of the application. As you read the book,
refer to the relevant section of the code base in order to understand the full implemen-
tations. Chapter 9 explains in detail how to compile and execute the entire Denny’s
DVDs system in a manner similar to the way your actual Sun submission will need to
be executed.

An alternative approach is to study the sample project source code first and then read
the book to provide an explanation for the design choices made and how those choices
relate to similar decisions you will encounter while developing the actual Sun certifica-
tion project. We recommend reading the book first and then referring to the code, but
the alternative approach of reading the code and referring to the book should also pro-
duce successful results. It really depends on which approach makes more sense for you
and your natural learning methods.

Q Can I add features not discussed in this book?

A Of course you are free to modify the project and make it more sophisticated. In fact,
inquisitiveness and a sense of experimentation are very important qualities for a soft-
ware engineer. However, the project has been carefully designed with two goals in
mind. The first and more important goal is to cover all of the concepts required for the
SCJD exam. So if you do decide to ad-lib, keep in mind the purpose of the sample proj-
ect. The second goal is to introduce the new features of J2SE 5, such as autoboxing and
generics.

CHAPTER 3 ■ PROJECT OVERVIEW 67

Implementing
a J2SE Project

P A R T 2

■ ■ ■

Threading

Welcome to threading. In this chapter we will demystify this topic by breaking it down into
manageable sections and subsections using real-world examples and metaphors. The purpose
of this chapter is to explain the conceptual and technical details you need to pass the SCJD
exam, including the written part of the exam.

The first sections of this chapter introduce threading and the challenges of multithread-
ing. Waiting is explained in detail, as is locking. Finally, there is a subsection on thread safety
issues, including deadlocks, starvation, race conditions, and monitors.

The sections that follow discuss the various ways that Thread objects can be used directly,
considerations of threading when working with Swing, and the dos and don’ts of threading.
Finally, we’ll conclude with a FAQ section that covers some common threading questions.
Specifically the following topics are covered:

• An introduction to threads and multithreading

• Locking and synchronization

• The new locking capabilities of JDK 5

• Effective thread management through waiting, sleeping, and yielding

• The importance of thread safety

• Record-locking strategies

■Note This chapter is only designed to be an introduction to threading. If you want to gain an in-depth
understanding of threading, we recommend Allen Holub’s excellent book, Taming Java Threads (Apress,
2000).

Threading Fundamentals
Before you start this chapter, there are few things you should already know about threads. You
should know that there are two ways to create a thread of execution in Java: the first by extend-
ing the Thread object, and the second by implementing the Runnable interface. You should
know that to start a thread you must call the start method, and you should know that threads

71

C H A P T E R 4

■ ■ ■

can appear to do their work in parallel with each other. This is the basic understanding
required for the SCJP exam, and it should be material you have mastered if you are thinking
about taking the SCJD exam.

A Brief Review of Threads
A thread is an independent stream of execution for a set of instructions. For example, imagine
a word processor needs to accomplish two activities, as shown in Figure 4-1. It needs to print
and save the document you are currently working on.

Figure 4-1. Word processing program example

If the word processor were single-threaded, it could not start saving the document until it
was finished printing the document, as depicted in Figure 4-1. This approach would certainly
work, but it would be overly inefficient, as those of us who remember the earliest word proces-
sors can attest. We can do better.

Now imagine that the program spawns two independent paths of execution, or threads.
One is printing a document, and the other is quietly backing up the document in the back-
ground. This approach will yield potentially more efficient results, because there is no need
for the two activities to wait on each other. For example, even as the network connection is
being established with the printer, another thread could be saving the file. This concept of
multithreading is illustrated in Figure 4-2 and described in detail in the next section.

Figure 4-2. Word processing program with threads

CHAPTER 4 ■ THREADING72

Multithreading
Multithreading is the coordination of the various threads that run in a system. It is done for
the purpose of improving overall system efficiency. This could mean taking turns with the
resources or sharing them, decreasing overhead, or respecting the boundaries of other
threads.

There are inherent challenges in managing multiple threads. These challenges arise as a
result of the way in which central processing units (CPUs) handle threads. We will be discussing
these challenges throughout this chapter, with explicit details in the section “Understanding
Thread Safety.”

A CPU will execute a number of instructions from a given thread, then switch over to exe-
cuting a set of instructions from another thread, and so on. Because this switching happens
quickly, an illusion of independent and parallel execution is created for all the threads. In
addition, threads that are inactively waiting—say, for a network connection—will not act as
bottlenecks for other threads. This is one of the greatest advantages of multithreading. How-
ever, this increased efficiency comes at a price: It is entirely possible for one thread to corrupt
the data that another thread is using, unless precautions are taken. We will demonstrate these
problems, and show you how to program defensively to counteract these problems in the sec-
tion “Understanding Thread Safety.”

■Note Throughout this chapter we will be discussing threading from the perspective of the JVM operating
on a single CPU computer. On computers with multiple CPUs, it is quite possible for threads to be operating
on different CPUs concurrently. Regardless, the issues that arise will be the same.

Returning to the word processing program example, suppose that another thread is justi-
fying the text, and this thread makes no effort to coordinate with the thread that is printing
the document. The result might be that some of the printed document is justified and some
of it is not.

These are some of the challenges that come with the territory when you start to multi-
thread. The SCJD exam requires that you have a strong understanding of multithreading and
the dangers that lurk therein.

Java’s Multithreading Concepts
Java is one of the few languages that has built-in support for multithreading. Two important
behaviors arise from this support. First, every Java object can be locked down for exclusive use
by a given thread. Synchronizing on an object achieves this. A locked object is inaccessible to
any thread other than the one that explicitly claimed it as long as all the other threads honor
the locking. Second, each Java object can keep track of all the threads that want exclusive
access to it. Think of this as having a sign-up sheet for each object.

The basic challenge of multithreading is similar to one of the challenges of raising young
children: How do you keep the threads (children) from fighting over a limited supply of
resources (toys)?

CHAPTER 4 ■ THREADING 73

The solution, at least in Java, is twofold. First, every method that potentially uses a global
object must adhere to the convention of checking to see if it is currently in use by another
thread. Second, every method that modifies the object needs to put a sign on it noting that
the object is currently in use. (If only it were so easy with children...)

A real-world metaphor for the latter part of the solution is signing up to use the treadmill
at the gym. If you (the thread) want to use the globally available object (the treadmill), then
you have check to see whether other people (other threads) are using it. If somebody is using
it, then you wait. If not, then you sign it out and use it.

The first activity is referred to as waiting. The next section explains waiting in detail.

Waiting
Waiting is the act of getting out of the way when you can’t be productive. As the name implies,
waiting is an inactive process. This means that a waiting thread does not waste CPU time it
cannot use. If a thread is waiting, then other threads are free to use its allotted quota of CPU
time. The waiting thread will certainly not need it.

Imagine a group of children trying to buy ice cream from an ice cream truck. If the boy
who currently has the ice cream vendor’s attention does not have enough money to pay for his
ice cream, he won’t force everyone else to wait while his father brings him the funds he needs.
He will get out the way, probably weep quietly to himself, and wait. Then he’ll step back into
the fray and try to claim the ice cream vendor’s attention. The other children won’t wait for
him, because he can’t order anyway.

■Note The metaphor of children greedily trying to get ice cream is not an arbitrary one. Competing threads
do not behave like polite adults in a grocery store line. There is no sense of order. All compete voraciously,
and based on the underlying operating system, priorities, and other variables, one or another wins.

In general, there are two distinct families of pausing execution while waiting for some-
thing to happen. There is a version of pausing that maintains the lock(s) that your thread has,
as well as a version that releases a lock. Typically the first type of pausing happens when you
need some event to happen before continuing (for example, waiting for data to be sent over a
network socket), and the second usually happens when you call some method that explicitly
states that it will release the lock—for example, calling the Object.wait method will release the
lock on the particular object it is invoked on.

■Note We will explore locking in the “Locks” section of this chapter. For now, think of locking as sticking
an “in use” sign on an object.

If your thread goes into a wait state by calling Thread.yield or Thread.sleep, or needs
something to occur before continuing, such as receiving I/O, then your thread will maintain
all locks it holds. That means that other threads will not be able to use the locked objects. If
they attempt to do so, they will block until those resources are released.

CHAPTER 4 ■ THREADING74

Calling myObject.wait for a given object myObject, however, does release that object’s
lock, assuming you have the lock on that object—if you do not have the lock on that object,
attempting to call the wait method will result in an IllegalStateException being thrown. This
is actually very useful, because it allows other threads to modify myObject. This is illustrated
later in this chapter in the “Ice Cream Man” example.

To understand the wait method, think of the minister of a church passing around a col-
lection plate. He expects people to modify the collection plate’s state—as a matter of fact he’s
waiting for them to do so. If they don’t, he’ll probably continue to wait until they do. In code,
this might look something like Listing 4-1. Don’t be discouraged if the code samples aren’t
100 percent clear to you right now. Read the entire chapter, and it will all fall into place.

Listing 4-1. Waiting Example

1 public class Minister {
2 private CollectionPlate collectionPlate = new CollectionPlate();
3
4 public static void main(String[] args) {
5 Minister minister = new Minister();
6
7 // create a Thread that checks the amount of
8 // money in the collection plate.
9 minister.new CollectionChecker().start();
10
11 //create several threads to accept contributions.
12 for (int i = 0; i < 6; i++) {
13 minister.new CollectionAcceptor(20).start();
14 }
15 }
16
17 /**
18 * the collection plate that get passed around
19 */
20 private class CollectionPlate {
21 int amount = 0;
22 }
23
24 /**
25 * Thread that accepts collections.
26 */
27 private class CollectionAcceptor extends Thread {
28 int contribution = 0;
29
30 public CollectionAcceptor(int contribution) {
31 this.contribution = contribution;
32 }
33
34 public void run() {
35 //Add the contributed amount to the collectionPlate.

CHAPTER 4 ■ THREADING 75

36 synchronized (collectionPlate) {
37 int amount = collectionPlate.amount + contribution;
38 String msg = "Contributing: current amount: " + amount;
39 System.out.println(msg);
40 collectionPlate.amount = amount;
41 collectionPlate.notify();
42 }
43 }
44 }
45
46 /**
47 * Thread that checks the collections made.
48 */
49 private class CollectionChecker extends Thread {
50 public void run() {
51 // check the amount of money in the collection plate. If it's
52 // less than 100, then release the collection plate, so other
53 // Threads can modify it.
54 synchronized (collectionPlate) {
55 while (collectionPlate.amount < 100) {
56 try {
57 System.out.println("Waiting ");
58 collectionPlate.wait();
59 } catch (InterruptedException ie) {
60 ie.printStackTrace();
61 }
62 }
63 // getting past the while statement means that the
64 // contribution goal has been met.
65 System.out.println("Thank you");
66 }
67 }
68 }
69 }

In this case, there is one thread representing the minister waiting for the collection to exceed
$100. There are a further six threads representing attendees adding $20 to the collection plate.
Each of these threads synchronizes on the collectionPlate object. Since the threads adding to
the collection plate need to obtain the lock on the collectionPlate object, the minister thread
must temporarily release it from time to time, which it does by calling the wait method. As each
thread adds to the collection plate, it wakes the minister by calling the notify method.

■Note In Listing 4-1, it does not really matter whether the collection threads call notify or notifyAll in
line 41—either call will wake the minister thread. Since there is only one thread waiting on the condition
(the amount in the collection plate) to change, we have chosen to call notify. If multiple threads were wait-
ing on different conditions to change, then it would make more sense to call notifyAll.

CHAPTER 4 ■ THREADING76

Or imagine a producer/consumer relationship where one thread populates an object and
another consumes that object when it is populated. In this case, the consumer thread wants
the object to be modified; thus, the consumer wants to know when that modification occurs.
Object.wait, Object.notify, and Object.notifyAll support the latter kind of waiting.

Calling the wait method is different than calling sleep or yield, or even pausing for I/O.
The wait method actually allows other threads to acquire the lock on the object in question,
while sleep, yield, and pausing for I/O do not.

■Note The wait and notify/notifyAll methods almost always go together. If one thread waits, there
should be another thread that can call notify or notifyAll. The exception to this would be if you were
doing something with timeouts and needed to release locks—but this would be a very rare situation. If
there’s no call to a wait method, then there’s no reason at all to call notify or notifyAll.

Yielding
Yielding is the act of politely offering up your turn in the queue while maintaining your
resources. For example, suppose you’re trying to use a bank’s automated teller machine
(ATM). You know that this process will take a while because you’re going to transfer funds,
check your balance, make a deposit, and so forth. Yielding would be the act of offering the
person behind you in line an opportunity to use the ATM before you. Of course, you wouldn’t
give that person your resources (money, ATM card, and so on). However, you would offer
to give up your spot at the ATM (analogous to the CPU). The process of making this offer,
even if there’s no one to accept it, is yielding.

It is possible that, even though you yielded, you may still get first access. In our ATM
scenario it is possible that the person behind you is too nice to accept your kindness. In com-
puter terms, though, when you yield, all threads (including your own) then get to compete for
the lock on the object—your thread does not get a lesser or greater chance of getting the lock
on the object. But what decides which thread actually wins that competition and gets access
to the lock on the object? The thread scheduler does.

The thread scheduler is like an office manager. It takes threads into consideration and
decides which thread should be allowed to run based on the underlying operating system,
thread priorities, and other factors.

There are two important points to note. First, you must be aware that your thread of
execution is not guaranteed to be next in line when you yield, even though you originally vol-
unteered to give up the CPU. Once a thread yields and the CPU is taken by another thread, the
original yielding thread does not have any special status in being next in line. It must wait and
hope, like every other thread.

Second, it’s important to realize that your thread didn’t give up resources that you have
exclusive locks on. That is, even though you’re letting someone else use the ATM, you didn’t
give him your ATM card. When a thread yields, it steps out of the CPU, but it retains control
over any resources it had originally marked for exclusive use.

So why yield? Imagine that your thread entails six small bank operations: checking your
balance, moving money from your checking account to your everyday account, checking
your balance, moving money from your savings account to your everyday account,
checking your balance, and finally withdrawing money. The thread you’re yielding to might

CHAPTER 4 ■ THREADING 77

just put the money it owes you into your everyday account, making your financial footwork
unnecessary and thus removing your need to continue. If your thread had not yielded, it
might not have received the money until after it was done with all six bank operations. If your
thread is performing a prolonged or expensive operation, it’s a good idea to yield occasionally.

■Caution You should not rely on thread priorities, and by extension yielding, to resolve your threading
issues. Implementation of thread scheduling, including yielding, is completely up to the JVM manufacturer.
So it is possible that different operating systems, or even two different JVMs on one operating system, may
deal with yielding differently. So go ahead and yield in your programs, but never count on the yielding to
actually occur.

Blocking
Blocking is the act of pausing execution until a lock becomes available. If your thread is
attempting to obtain a lock some other thread already owns, then it will block until the other
thread releases its lock. This simply means that the thread goes into a state of hibernation
until the event comes to pass. In this case, the lock becoming available is the event.

What does this mean for other threads? It means that they are free to use the CPU cycles
that the blocking thread has a right to but is not using. However, the blocking thread keeps
exclusive control over any other resources it had explicitly locked. Also, other threads should
be prepared for the blocking thread to start again at any point, because the event that will trig-
ger it could happen at any time.

■Note The JVM handles changing threads from the Thread.State.BLOCKED state to the Thread.
State.RUNNABLE state for you. You do not have to do anything special in your code to tell any other
threads that you are about to release a lock on an object.

Sleeping
Sleeping is the act of waiting for at least a specified amount of time. Imagine that you are using
the ATM, but get a message on screen telling you that the system is congested. You might
decide that you want to give up for 5 minutes and then wander over to try to use it again after
that time has passed. This act frees up the ATM for at least the next 5 minutes. After that time
period expires, you walk over to the ATM and join the line waiting for its use.

■Note A sleeping thread is guaranteed to wait at least as long as specified. However, it might wait longer,
depending on the whims of the thread scheduler.

CHAPTER 4 ■ THREADING78

The difference between sleeping and yielding is that a yielding thread never knows how
brief or long the wait will be. A sleeping thread, on the other hand, always knows that it will
wait for at least the amount of time specified.

Child.java Example
This example is probably more complicated than anything you’ll have to do on the SCJD
exam, but it provides a good illustration of waiting. Study it carefully and you won’t be over-
whelmed by the threading demands of the SCJD exam.

The first 41 lines in this example are very straightforward. An IceCreamMan object is
created in its own thread and goes into a loop, waiting for clients to hand him IceCreamDish
objects. The IceCreamMan is a static object, which ensures that there will only ever be one
IceCreamMan for all the children in our example.

In line 15 we set the IceCreamMan thread to be a daemon thread. The JVM will exit if the
only threads still running are daemon threads. In this example, we have explicitly created sev-
eral non-daemon threads: the three threads for each of the children. There is also one other
non-daemon thread that was created for us: the main thread. When these four threads have
completed, the only thread we explicitly created that is still running will be the IceCreamMan
daemon thread, so the program will terminate.

■Note You cannot change a thread’s daemon status after the thread has started—if you want your thread
to be a daemon, you must explicitly set it as such before starting the thread. A thread created from non-
daemon threads defaults to being a non-daemon thread. Likewise, a thread created from daemon threads
defaults to being a daemon thread. In either case, if you do not like the default type of thread, you can
change it by calling the setDaemon method on the thread.

The IceCreamMan class extends the Thread class, so we can call the start method directly, as
shown in line 16.

Line 25 shows an example of using the enhanced for loop to iterate over the items in an
array. In this array we create several Child objects, each of which is an independent thread.
Their role is to request a dish of ice cream from the IceCreamMan.

Lines 27 and 28 show how to create a thread based on a Runnable class. In line 27 we cre-
ate a new thread from the Runnable class, and in line 28 we start the thread as we would any
other thread object.

For this example we have decided that getting ice cream for our three children is the most
important task—what happens after that is not important. So we have decided that we can
end the application once all three children have eaten their ice cream. To do this, our main
thread must pause until all three Child threads have completed running. We accomplish this
in lines 32 through 38, where we call the join method on each of the child threads.

■Tip If you are having trouble understanding the terminology of “joining a thread,” it may make more
sense if you refer back to Figure 4-2. In the diagram it appears as if each thread split from the main thread,
then rejoined it after completion.

CHAPTER 4 ■ THREADING 79

Once all the Child threads have completed, the main thread prints a status message, then
exits. As mentioned earlier, at this point there will be no more non-daemon threads running,
and the application itself will exit.

■Note If we did not have the join statements in lines 32 through 38, the application would still work in a
very similar fashion. The major difference would be that the main method would complete before the Child
threads complete. However, since the Child threads are not daemon threads, they would still continue to
run. So all the children would still get their ice cream. Once all the children have their ice cream, the pro-
gram would still exit.

1 /**
2 * a Child object, designed to consume ice cream
3 */
4 public class Child implements Runnable {
5 private static IceCreamMan iceCreamMan = new IceCreamMan();;
6 private IceCreamDish myDish = new IceCreamDish();
7 private String name;
8
9 public Child(String name) {
10 this.name = name;
11 }
12
13 public static void main(String args[]) {
14 // start the ice cream man's thread.
15 iceCreamMan.setDaemon(true);
16 iceCreamMan.start();
17
18 String[] names = {"Ricardo", "Sally", "Maria"};
19 Thread[] children = new Thread[names.length];
20
21 // create some child objects
22 // create a thread for each child
23 // get the Child threads started
24 int counter = -1;
25 for (String name : names) {
26 Child child = new Child(name);
27 children[++counter] = new Thread(child);
28 children[counter].start();
29 }
30
31 // wait until all children have eaten their ice cream
32 for (Thread child : children) {
33 try {
34 child.join();

CHAPTER 4 ■ THREADING80

35 } catch (InterruptedException ie) {
36 ie.printStackTrace();
37 }
38 }
39
40 System.out.println("All children received ice cream");
41 }

Child objects attempt to hand their personal IceCreamDish to the ice cream man, as
shown in line 44. Then they eat the ice cream when it is returned to them—this is handled by
the eatIceCream method.

■Note The Sun Code Conventions for the Java programming language recommend inserting a blank line
between methods; however, there is no value in showing these blank lines when code listings have been
split to allow room for comments within this book. Nevertheless, the blank lines do exist in the downloadable
source, so to ensure the line numbers remain consistent between the book and the downloadable source,
you may see cases where blank lines and Javadoc comments have been removed from the text. Therefore,
while it appears that lines are missing, rest assured that all the relevant code is presented.

43 public void run() {
44 iceCreamMan.requestIceCream(myDish);
45 eatIceCream();
46 }

As we will see when we review the IceCreamMan code in the next section of this chapter,
after receiving an IceCreamDish the IceCreamMan instance fills it and signals that he is done
with that particular IceCreamDish. The Child instances wait until the IceCreamMan modifies
their personal IceCreamDish objects and notifies them of the change. As soon as they receive
that notification, they eat their IceCream.

Notice that in this example the Child instance actually releases its lock on the instance of
the IceCreamDish by calling myDish.wait() in line 60. This then provides the opportunity for
the IceCreamMan to gain the lock on the dish, after which he can fill it.

The next interesting part of the code happens between lines 48 and 69:

■Note You cannot call the wait method on an object unless you are in a block or a method that is
synchronized on that object.

48 public void eatIceCream() {
49 String msg = name + " waiting for the IceCreamMan to fill dish";
50 /*
51 * The IceCreamMan will notify us when the dish is full, so we should
52 * wait until we have received that notification. Otherwise we could

CHAPTER 4 ■ THREADING 81

53 * get a dish that is only half full (or even empty).
54 */
55 synchronized (myDish) {
56 while (myDish.readyToEat == false) {
57 // wait for the ice cream man's attention
58 try {
59 System.out.println(name + msg);
60 myDish.wait();
61 } catch (InterruptedException ie) {
62 ie.printStackTrace();
63 }
64 }
65 myDish.readyToEat = false;
66 }
67 System.out.println(name +": yum");
68 }
69 }
70
71 class IceCreamDish {
72 public boolean readyToEat = false;
73 }

Line 55 synchronizes on the IceCreamDish reference, myDish. This means that the current
Child thread will not move past line 55 until it has exclusive access to the IceCreamDish refer-
ence of this particular Child object.

Remember that each Child and the IceCreamMan share access to that particular child’s
IceCreamDish. The IceCreamMan could be modifying the IceCreamDish at any time; we don’t
want the Child object to use the IceCreamDish until the IceCreamMan is through.

Now assume that the Child has achieved access to the IceCreamDish. This could happen
for two reasons. First, the IceCreamMan is not currently using that Dish (he does, after all, have
other Child objects to attend to). Second, the IceCreamMan is finished with that Dish. Line 56
checks the value of dish.readyToEat. This value tells the Child whether the IceCream is ready
to be eaten. A monitor is used between the Child objects and the IceCreamMan. Monitors will
be defined shortly. For now, think of a monitor as a prearranged signaling device between the
IceCreamMan and the Child objects.

If the dish.readyToEat value is false, then the IceCreamMan has not finished filling the
bowl. The Child can release the lock on the Dish by calling wait on it, as in line 60.

Notice that the Child thread checks the condition of the dish.readyToEat variable in a
while loop, not an if statement. The reason for this is due to a small problem with when the
JVM will return control to the application after a call to the wait method. The Sun Javadoc
comments for the wait method say, in part: “A thread can also wake up without being notified,
interrupted, or timing out, a so-called spurious wakeup. While this will rarely occur in practice,
applications must guard against it by testing for the condition that should have caused the
thread to be awakened, and continuing to wait if the condition is not satisfied. In other words,
waits should always occur in loops.”

CHAPTER 4 ■ THREADING82

IceCreamMan.java Example
The IceCreamMan object starts a loop inside his run method. The method checks to see if any
IceCreamDish objects need to be serviced. This all happens in the run method between lines
15 and 32:

1 import java.util.*;
2
3 public class IceCreamMan extends Thread {
4 /**
5 * a list to hold the IceCreamDish objects
6 */
7 private List<IceCreamDish> dishes = new ArrayList<IceCreamDish> ();
8
9 /**
10 * Start a thread that waits for ice cream bowls to be given to it.
11 */
12 String clientExists = "IceCreamMan: has a client";
13 String clientDoesntExist = "IceCreamMan: does not have a client";
14
15 public void run() {
16 while (true) {
17 if (!dishes.isEmpty()) {
18 System.out.println(clientExists);
19 serveIceCream();
20 } else {
21 try {
22 System.out.println(clientDoesntExist);
23 // sleep, so that children have a chance to add their
24 // dishes. see note in book about why this is not a
25 // yield statement.
26 sleep(1000);
27 } catch(InterruptedException ie) {
28 ie.printStackTrace();
29 }
30 }
31 }
32 }

Line 16 starts an infinite loop for this thread. Remember that the thread for the
IceCreamMan is a daemon thread, so even though this is an infinite loop it will not stop the
application from exiting once all Child threads have eaten their ice cream.

Line 17 checks to see if any IceCreamDish objects have been queued up for processing. If
not, the IceCreamMan thread sleeps for a second and then checks again, per lines 22 through
26. If the queue has an entry, then the IceCreamMan thread calls the serveIceCream method.

At line 26 we had a choice—we could have yielded to other threads, or we could sleep
for some time. Either choice would have provided the Child threads a chance to run. However,
sleeping provides a better chance for the Child threads to run, as the JVM knows that the
IceCreamMan will not be running for at least a second—if we had yielded, any of the Child

CHAPTER 4 ■ THREADING 83

threads or the IceCreamMan thread could have started running immediately afterwards. In
addition, yielding is something you would normally do before you start (or in the middle of)
a lengthy or complex task—it is a way of being nice to other threads. However, this is not the
case here. Finally, if there are no other threads that can run, the JVM will immediately pass
control back to the while loop—this will result in the thread consuming as much CPU cycles
as are available; it can even lead to your computer having the appearance of hanging.

The serveIceCream method is the most interesting part of our code. Assuming that there is
currently a Dish in the queue, line 49 synchronizes on that IceCreamDish instance. This has the
effect of forcing any Child objects that want to use the IceCreamDish instance to wait. Specifi-
cally, it causes line 55 in Child to pause until line 53 in IceCreamMan is reached or, if the Child
thread had paused at line 60, it will not be able to resume until line 53 in IceCreamMan is
reached.

Conversely, if a Child instance is executing a method that synchronizes on the
IceCreamDish, then hitting line 49 in IceCreamMan will cause IceCreamMan to wait until lines 50
through 61 in Child finish executing, or until the Child instance releases the lock on the Ice-
CreamDish by calling wait in line 55.

This is an example of the threads respecting each other’s boundaries. By synchronizing on
the same object, the two threads can be assured that they will not be simultaneously modify-
ing or using the same object.

When the IceCreamMan owns the lock on the dish, he can fill it with ice cream, and then
notify the Child that it is available. This happens in line 52. After line 52 is run, the Child
thread that was waiting on that particular plate will no longer be waiting—the JVM scheduler
will now be able to run it. However, until the IceCreamMan releases the lock on the dish at the
completion of line 53, the Child will not be able to regain the lock on the dish, so it will remain
blocked.

■Note You cannot call the notify method on an object unless you are in a block or a method that is
synchronized on that object.

34 /**
35 * Serve Ice Cream to a Child object.
36 */
37 private void serveIceCream() {
38 // get an ice cream dish
39 IceCreamDish currentDish = dishes.get(0);
40
41 // wait sometimes, don't wait sometimes
42 if (Math.random() > .5) {
43 delay();
44 }
45
46 String msg = "notify client that the ice cream is ready";
47 System.out.println("IceCreamMan: " + msg);
48

CHAPTER 4 ■ THREADING84

49 synchronized (currentDish) {
50 currentDish.readyToEat = true;
51 //notify the dish's owner that the dish is ready
52 currentDish.notify();
53 }
54
55 //remove the dish from the queue of dishes that need service
56 dishes.remove(currentDish);
57 }

The synchronized blocks in lines 49–53 in the IceCreamMan’s serveIceCream method here,
and lines 55–66 of the Child’s eatIceCream method, require both threads to synchronize on the
same object. We have to assume that any programmers working on the Child class and the
IceCreamMan class will continue to use the synchronized blocks. However, there is a risk that a
Child may remove their synchronized code, which would mean that they could grab their dish
back before it has been filled with ice cream. This actually gives us a safeguard against the pro-
gram being changed—we can explain to other programmers that removing the synchronized
code could result in the Child thread getting a dish that has not been completely filled (or
could even be empty).

■Tip Whenever code is written that depends on a particular way of implementing it, you should add an
implementation comment to explain the details to other programmers. We have shown this in the comments
in lines 50–54 of the Child class in the previous code listing.

While it is relatively easy to explain to a Child that they should not try to take the plate
before they have been told it is full (because they won’t want to miss out on more ice cream), it
is harder to get them to agree not to try to hand their dishes over all at once—from their per-
spective the sooner they hand the dish over the sooner it will be filled. They don’t particularly
care about fairness to the other children, or how well the IceCreamMan can handle receiving
multiple plates at once.

To guard against this, we have synchronized the IceCreamMan’s requestIceCream method.
By synchronizing the method, we can ensure that only one Child is ever handing a dish to the
IceCreamMan at a time.

59 /**
60 * Allow client objects to add dishes
61 */
62 public synchronized void requestIceCream(IceCreamDish dish) {
63 dishes.add(dish);
64 }
65

CHAPTER 4 ■ THREADING 85

66 /**
67 * build in a delay
68 */
69 private void delay() {
70 try {
71 System.out.println("IceCreamMan: delayed");
72 Thread.sleep((long) (Math.random()*1000));
73 } catch (InterruptedException ie) {
74 ie.printStackTrace();
75 }
76 }
77 }

As Figure 4-3 shows, the IceCreamMan is waiting for clients in his own thread. Each Child
object is also in its own thread. The Child objects interact with the IceCreamMan by giving him
their IceCreamDish, and then they step out of the CPU and wait. The IceCreamMan prepares the
IceCreamDish, which is the signal that the Child associated with that IceCreamDish needs to
wake up and eat their IceCream.

Figure 4-3. IceCreamMan waiting for clients

Waiting Summary
A thread that needs a resource becomes paused without you specifically requesting that it
pause. In contrast, a thread that pauses because of a call to yield, wait, or sleep is paused
specifically at the request of the programmer. Regardless, all cases result in the thread pausing
execution.

In the case of a thread paused until a resource becomes available and a thread that
yielded to other threads, the programmer does not know when the thread will resume pro-
cessing—for the former, it will be whenever the resource becomes available, and for the latter
it will be at the discretion of the JVM thread scheduler. If you call wait without any parame-
ters, you will not know when the thread will resume processing—it is dependent on another
thread notifying it that it can continue operating. However, if you call wait with a time limit,

CHAPTER 4 ■ THREADING86

you will know that the thread will resume processing when it has been notified, or soon after
the time limit has expired. Remember that time limits cannot be strictly enforced; the JVM will
pause the thread at least as long as you requested and make its best attempt to schedule the
thread after the time limit has expired, but the exact time the thread resumes is not guaranteed.
If you call sleep, you will know that the thread will resume processing soon after the time limit
has expired—again, time limits cannot be strictly enforced. Returning to the ice cream exam-
ple, imagine that little Sally has finally gotten the ice cream man’s attention and given him
some money, but she hasn’t yet actually picked her flavor. If Sally yielded, then she would
move out of the way voluntarily to let another child try, but she would be secure in the knowl-
edge that the ice cream man won’t sell the cone that she explicitly locked down. If no children
were in fact interested, then she would jump back in and have her cone filled with ice cream.

If Sally decided to sleep, it might be as if she has put her money down for a cone but is
delaying making her choice for up to 1 minute—say, for her younger brother to arrive. After
the minute has elapsed, then she will try again (whether the younger brother has shown up or
not). When she finally does get the ice cream man’s attention, she will be confident that the ice
cream cone she had locked down will still be there. But just because Sally has decided that the
minute is up does not mean that she will be able to get her cone immediately—another child
may be getting his or her cone filled at the end of Sally’s minute. Sally is blocked whenever she
cannot get the ice cream man’s attention. Having slept for 1 minute in the previous example,
she now finds that the ice cream man is serving another child. Although she still owns the lock
on her cone, she does not own the lock on the ice cream man and is blocked until she can get
that lock (and maybe her brother can turn up in the meantime).

However, if Sally had to wait for her father to bring her money, then she does not have any
cone locked down, and by the time the money arrives, all the cones may be sold.

Locks
Locks are tokens of exclusive use. Each Java object has one. Think of locking as the ability to
stick a note on any object and claim that object for your thread’s exclusive use. By claiming an
object’s lock, your thread tells other methods (those that respect synchronization) not to mod-
ify that object in any way until your thread releases it. A method that respects synchronization
is one that synchronizes on the object in question.

In Java, you can lock an object by synchronizing on it. Consider the following example:

public void addElement(Object item) {
synchronized (myArrayList) {
//do stuff
}

}

This lets the JVM know that other threads should not modify the myArrayList object. Of
course, this only applies to synchronized methods. For instance, in the following example the
method elementExists might have no need to synchronize access, because it is a read-only
operation:

public boolean elementExists(Object item) {

return myArrayList.contains(item);
}

CHAPTER 4 ■ THREADING 87

However, if it were required that elementExists be absolutely accurate (that is, if you
could not afford to receive an incorrect answer while another thread was in the middle of
inserting or removing elements into the ArrayList by another thread), then you would syn-
chronize access here as well.

This section integrates some of the ideas already presented. The concept of locking is fun-
damental to understanding threading, and you will gain a lot by paying careful attention here.

Locking Objects
You lock objects all the time in everyday life. When you go the movies, you might “lock” your
seat by leaving your coat on it. Even if you leave the seat to buy some popcorn, it is under-
stood that no one should sit down in that seat. The act of leaving your coat on the seat
effectively marks the seat for your exclusive use until you choose to release it.

Any Java object can be claimed for exclusive use. This is one of the explicit ways that Java
supports multithreading. Java further supports multithreading by allowing objects to broad-
cast when they are freed and by forcing threads that want a locked resource to become
inactive until those resources are freed.

If an object is not explicitly claimed, it is open for any thread’s use. Similarly, a seat in a
movie theater that is not explicitly claimed can be taken at any time. This means that if you
leave your seat to buy some refreshments and don’t lock the seat by leaving your coat on it,
then you shouldn’t be surprised if someone else has claimed your seat when you get back.
Even if this strategy has worked in the past, it is not thread-safe for future use. The same is
true in Java. Unless your classes are made explicitly thread-safe, the fact that they have been
uncorrupted in the past is no guarantee that they will not be corrupted in the future.

There is a second level of depth to this metaphor. Someone might take your movie theater
seat anyway, even though your coat is on it. The same is true in Java. A locked object can be
violated if the thread that is modifying it does not respect synchronization.

For example, suppose you have a method that synchronizes on a member variable:

public void goodMethod() {
synchronized (myObject) {
//do stuff to myObject

}
}

A second method could modify myObject if it chooses not to synchronize on myObject.
Synchronizing on an object means “I’ll respect other people’s locks on this object, and I hope
they respect mine.” However, it is unenforced. Thus, the following example would refuse to
respect the synchronization established in goodMethod, and would execute without complaint.
This could cause problems if badMethod modifies myObject, as other threads that have synchro-
nized on myObject would be expecting to have exclusive access to myObject.

public void badMethod() {
//do stuff to myObject

}

Of course, these methods’ names don’t really imply that one way is “good” and another is
“bad.” For example, badMethod might just need to read myObject. If so, depending on context,
it may be perfectly okay not to synchronize on myObject. As is often the case, “good” and “bad”
are really just a matter of context.

CHAPTER 4 ■ THREADING88

Locking Class Instances
Java provides a mechanism for locking classes as well as objects. This can be a little confusing,
but the concept is actually very straightforward. A class is just an object, used to create other
objects, just as an axe is an object for creating firewood.

The JVM generates a Class object when your program initially loads for every class the
program uses. Per JVM, there is a single Class object for all of the instance objects of a given
class. You have limited access to the Class object. Because the Class object is itself an object,
you can lock it just as you can lock any other object. What makes the Class object interesting
is its capability to contain static variables and static methods.

Static variables are universal for every object of a class, which means that a single instance
is shared by every object of that class. For example, for objects of the class McBurgerPlace,
chiefExecutiveOfficer is a static member variable, because it is common to all. No matter
which McBurgerPlace you are eating in, it shares the same chiefExecutiveOfficer with every
other McBurgerPlace. If any McBurgerPlace restaurants were to change the chiefExecutive➥

Officer, every other McBurgerPlace would instantly be able to sense that change.
A static method is universal for every object of a class, which means that the single method

is shared by every object of the class, per JVM. For example, objects of the class McBurgerPlace
might have createFranchise as a static member method, assuming that creating a franchise
happens at the corporate level. Any McBurgerPlace object can create a new franchise by calling
corporate headquarters and asking to do so. No matter which McBurgerPlace store you are
talking about, the exact same createFranchise method is called.

Using static methods is different from using instance methods in one very important way:
The method exists on the class, not the objects. The proof of this lies in the fact that you can
create a franchise, even if there is no McBurgerPlace store present, by getting in touch with cor-
porate headquarters directly.

So what does all of this have to do with locking? Assume that you want to lock a given
McBurgerPlace for exclusive use while executing a method. For example, if your McBurgerPlace
(say the one on High Street) has a waxFloor method, then you don’t want to be doing anything
else while waxing the floor—after all, lawsuits abound.

How do you enforce this exclusivity? In the real world, you make sure that nothing else is
happening in that particular store while waxing is in progress: no making burgers, no selling
French fries, no preparing Joyful Meals. Almost every activity waits until you are done waxing
the floor. To achieve the same exclusivity in Java, you synchronize the method in question by
putting the keyword synchronized in the method declaration:

public synchronized void waxFloor()

This means that any other synchronized methods called on the McBurgerPlace on High
Street will wait until the floor has been waxed.

■Note Unsynchronized methods do not respect synchronized methods. Thus, an unsynchronized method
can be executed at any time. It is important to make sure that such methods can do no damage in your
object’s state. For example, countMoney is probably safe to leave unsynchronized because it cannot inter-
fere with the waxing of the floor. The method wipeDownTables should probably be synchronized, however,
because it does interfere with the floor waxing.

CHAPTER 4 ■ THREADING 89

This exclusivity has nothing to do with other objects of the McBurgerPlace class. For exam-
ple, the McBurgerPlace on Fifth Street is free to make burgers, sell French fries, and so forth,
even if the McBurgerPlace on High Street is currently waxing the floor. Why shouldn’t they?

What about dealing with an activity that does affect other objects? For example, what
about receiving the chiefExecutiveOfficer? Obviously, you only want a single McBurgerPlace
to receive the chiefExecutiveOfficer at a given time: She can’t be in two places at once. How
do you represent this exclusivity of access in Java? For that matter, how do you control access
to her? You don’t want one store to interrupt her while she is in the middle of talking to
another store.

There are two steps in the solution to this dilemma. First, make sure that the
chiefExecutiveOfficer variable is static—that is, it exists only at the class level. You can
achieve this by using the keyword static when declaring the chiefExecutiveOfficer
variable at the class level:

private static Object ceo = new Object();

The second step is to synchronize the static method that accesses the chiefExecutive➥

Officer, like this:

public static synchronized Object receiveCeo (){
return ceo;

}

Because the method is static, this synchronization occurs at class level rather than at
instance level.

Locking Objects Directly
There is a second way to lock objects (both instance objects and class objects). You can synchro-
nize on the object you want to lock explicitly. For example, imagine that your McBurgerPlace
class has a getSoda method that requires exclusive control of the sodaFountain member vari-
able. You can lock the entire McBurgerPlace object, or you can lock just the sodaFountain
member variable:

public void getSodaEfficiently() {
synchronized (sodaFountain) {

//do Stuff
}

}

Locking a member variable object is like forcing only those people who want to use the
sodaFountain to wait while you are using the sodaFountain, as opposed to forcing everyone in
the entire store (including those who only want to purchase a burger) to wait.

Synchronizing a method is a form of locking an object—specifically, the this object. Syn-
chronizing a method is really just shorthand for synchronizing on the this reference object.
Thus, this code presented in Listing 4-2 is equivalent to the code presented in Listing 4-3.

CHAPTER 4 ■ THREADING90

Listing 4-2. Synchronizing a Method

public synchronized void myMethod() {
//code

}

Listing 4-3. Synchronizing on the this Reference Object

public void myMethod() {
synchronized (this) {

//code
}

}

Locking some object other than this can provide more concurrency than synchronizing
a method because it allows other blocks of code that are synchronized on different objects to
work concurrently. But efficiency, alas, is in the eye of the beholder. If an individual method
needs to obtain multiple locks, then the steps of locking and unlocking the multiple locks can
lead to more overhead than synchronizing the method.

In Listing 4-4, synchThisObjectExample is more efficient than synchAllLocksExample
because it doesn’t have the overhead of locking and unlocking three times. If your object is
carefully constructed not to allow unsynchronized access to the resources you need to lock,
then synchronizing methods is probably the simpler approach.

Listing 4-4. Synchronization Example

1 public class SynchExample {
2
3 private Resource resourceOne = new Resource();
4 private Resource resourceTwo = new Resource();
5 private Resource resourceThree= new Resource();
6
7 public synchronized void synchThisObjectExample() {
8 resourceOne.value = -3;
9 resourceTwo.value = -2;
10 resourceThree.value = -1;
11 }
12
13 public void synchAllLocksExample() {
14 synchronized (resourceOne) {
15 resourceOne.value = -3;
16 }
17
18 synchronized (resourceTwo) {
19 resourceTwo.value = -2;
20 }
21

CHAPTER 4 ■ THREADING 91

22 synchronized (resourceThree) {
23 resourceThree.value = -1;
24 }
25 }
26
27 private static class Resource {
28 int value;
29 }
30 }

The notify and notifyAll Methods
Every Java object has the capability to broadcast a call, notifying threads that have called the
wait method on that object that some event that they might be interested in has occurred. If
you call the notify method, one of the threads waiting on that object is told to come out of the
waiting state and block until it can regain the lock on the object, after which it can continue
processing. If you call notifyAll, every thread waiting for the object is told to come out of the
waiting state and block until it can regain the lock on the object, after which it can continue
processing.

■Caution It is easy to become confused when talking about threads waiting. Thread.State.WAITING
has a specific meaning in Java, namely that the thread has called the wait or the join methods. When a
thread enters the Thread.State.WAITING state by calling the wait method, it consumes no CPU cycles
until some other thread calls either notify or notifyAll on the same object that wait was called on,
or until the thread is interrupted. When a thread enters the Thread.State.WAITING state by calling the
join method, it consumes no CPU cycles until the thread it is trying to join terminates, or until the thread is
interrupted. In contrast, if several threads attempt to obtain the same lock simultaneously, one will obtain it,
and the remainder will enter the Thread.State.Blocked state until the lock is released, at which time
another thread will obtain the lock—the JVM scheduler handles automatically selecting another thread from
those in the Thread.State.Blocked state.

Listing 4-5 demonstrates the difference between calling notify and notifyAll.

Listing 4-5. NotifyVersusNotifyAll.java

1 public class NotifyVersusNotifyAll extends Thread {
2 private static Object mutex = new Object();
3
4 public static void main(String[] args) throws InterruptedException {
5 for (int i = 0; i < 5; i++) {
6 new NotifyVersusNotifyAll().start();
7 }
8
9 Thread.sleep(2000);

CHAPTER 4 ■ THREADING92

10 synchronized(mutex) {
11 mutex.notifyAll();
12 // mutex.notify();
13 }
14 }
15
16 public void run() {
17 try {
18 synchronized (mutex) {
19 System.out.println(getName() + " waiting");
20 mutex.wait();
21 System.out.println(getName() + " woken up");
22 mutex.wait(2000);
23 System.out.println(getName() + " waking up another thread");
24 mutex.notify();
25 }
26 } catch (InterruptedException ie) {
27 ie.printStackTrace();
28 }
29 }
30 }

Figure 4-4 shows the results of running NotifyVersusNotifyAll, first with line 12 and line
11 commented out (so that notify is called), then with line 11 and line 12 commented out (so
that notifyAll is called).

Figure 4-4. Notify returns one thread to the runnable state whereas notifyAll returns all threads to
the runnable state.

CHAPTER 4 ■ THREADING 93

www.allitebooks.com

http://www.allitebooks.org

■Caution Although Figure 4-4 shows the threads being notified in the same order they called wait, this
should never be relied on. The order in which threads are notified, and the order in which they regain owner-
ship of the lock on the common object, is entirely at the discretion of the JVM’s thread scheduler.

In general, you would use notify only when you are certain that the thread that will be
notified will be able to use the notification. If you have multiple threads that you are certain
will be able to use the notification but you want only one of them to transition to the runnable
state, then you should use notify. However, in this case you must ensure that the remaining
threads do not stay in limbo—some thread will have to notify them at an appropriate time
that they can continue processing. This is complex and requires detailed analysis in order to
get it right. If you have multiple threads waiting on one event but they have different condi-
tions to meet, you are better off calling notifyAll so that all the threads will recheck their
condition. As an example, consider the following code snippets:

Producer Thread:

synchronized (lock) {
value = Math.random();
lock.notifyAll();

}

Consumer Thread 1:

synchronized (lock) {
while (value < 0.5) {

lock.wait();
}

}

Consumer Thread 2:

synchronized (lock) {
while (value >= 0.5) {

lock.wait();
}

}

This code shows one example where calling notifyAll is preferable to calling notify. By
calling notifyAll after setting value, the producer can be sure that both consumers will check
the current contents of the value variable, and one of them will be able to continue process-
ing. If notify had been used instead of notifyAll, it is possible that after setting value, the
wrong thread may have been notified, and upon finding that the value variable did not con-
tain the desired number, would have gone back to the Thread.State.WAITING state, meaning
that neither consumer thread would be working!

CHAPTER 4 ■ THREADING94

Dealing with Nonimplicit Locking
You should be aware of two important issues when you deal with locks. First, locking an
object does not lock member variables of that object. This may seem counterintuitive at first,
but it makes sense from the JVM’s point of view. Specifically, it allows the thread to avoid lock-
ing objects that may be nested n layers deep. Imagine the overhead of locking an object,
locking all of its member variables, locking all of their member variables, and so on. Listing 4-6
shows an example of locking objects but not their member variables. The output is shown in
Figure 4-5.

Listing 4-6. A Locking Objects Example

1 import java.util.*;
2
3 public class LockObjectNotMemberVariables{
4 private List myList = new ArrayList();
5
6 public static void main(String args[]){
7 LockObjectNotMemberVariables lonmv =
8 new LockObjectNotMemberVariables();
9 lonmv.lockTest();
10 }
11
12 public synchronized void lockTest(){
13 System.out.println("Is the THIS object locked? " +
14 Thread.holdsLock(this));
15
16 System.out.println("Is the list object locked? " +
17 Thread.holdsLock(myList));
18 }
19 }

Figure 4-5. Locking an object does not lock member variables of that object.

CHAPTER 4 ■ THREADING 95

The second important point is that locking a class does not lock instance variables of that
class. This is demonstrated in Listing 4-7. Notice that the method lockTest is both static and
synchronized. This means that it achieves a lock on the Class object. Figure 4-6 shows that
locking a class does not lock objects of that class.

Listing 4-7. A Locking Example

1 public class ClassLockNotObjectLock {
2 public static void main(String args[]) {
3 lockTest();
4 }
5
6 public static synchronized void lockTest() {
7 ClassLockNotObjectLock clnoc = new ClassLockNotObjectLock();
8 System.out.println("Is the class object locked? " +
9 Thread. holdsLock(clnoc.getClass()));
10
11 System.out.println("Is the object instance locked? " +
12 Thread. holdsLock(clnoc));
13 }
14 }

Figure 4-6. Locking a class doesn’t lock objects of that class.

Locking in JDK 5
JDK 5 includes several packages that provide the ability to lock and wait on conditions sepa-
rate from the synchronization and locking mechanisms described previously. These have
several benefits, including the ability to specify whether locking should be granted fairly
(remember that the methods described earlier make no guarantees about the order in which
threads will be granted—a thread that has only just started waiting could be notified before a
thread that has been waiting for a long time).

CHAPTER 4 ■ THREADING96

A new package, java.util.concurrent.locks, has been created in JDK 5, which provides
some benefits to SCJD candidates, including the ability to have a ReadWriteLock (where multi-
ple threads could all lock a record for reading, but only one thread could lock the record for
writing—this will improve concurrency). We will examine ReadWriteLocks in the section dis-
cussing the DvdFileAccess class in Chapter 5.

In JDK 1.4, after returning from a call to wait(milliseconds), it was not possible to
know directly whether the thread had been notified, or whether the timeout had elapsed. The
Lock.tryLock(time, unit) method returns a boolean indicating whether it had gained the lock
or whether the time expired. An example of using the similar Lock.await(time, unit) method
is shown in the “Creating Our Logical Reserve Methods” section in Chapter 5. And while this
technique is not required for the SCJD assignment, it is now possible to set multiple condi-
tions upon which a thread might be notified.

Although the new lock code looks different from using synchronized blocks, it is not too
difficult to convert code from one style to another. For example, the following code uses a syn-
chronized block:

Object lock = new Object();
public void doSomething() {

synchronized (lock) {
while (true) {

try {
lock.wait();
// something happens here

} catch (InterruptedException ie) {
// handle exception

}
}

}
}

This code can be changed to the new format like this:

private static Lock lock = new ReentrantLock();
private static Condition lockReleased = lock.newCondition();
public void doSomething() {

lock.lock();
try {

while (true) {
lockReleased.await();
// something happens here

}
} catch (InterruptedException ie) {

// handle exception
} finally {

lock.unlock();
}

}

CHAPTER 4 ■ THREADING 97

An example of using the new locking classes is shown in the “Creating Our Logical
Reserve Methods” section of Chapter 5, and further thoughts are presented in the same
chapter, in the “Discussion Point: Multiple Notification Objects” section.

To ensure that a lock is released, we highly recommend that you place the call to unlock
in a finally block as demonstrated earlier.

Regardless of whether you use synchronized blocks or the new concurrency classes, the
same rules of thread safety apply.

Locking Summary
Object locks and locks on the member variable within the object do not interact in any way.
That is, synchronizing an object does not lock member variables of that object. Nor does syn-
chronizing a member variable lock the object that owns that variable. Threads that own locks
on different objects can run concurrently as long as they do not also share a lock on a com-
mon object. In addition, locking a class does not lock instances of that class. Unsynchronized
access to member variables can violate thread safety.

Understanding Thread Safety
Threading presents unique logical pitfalls, which can often be reached unexpectedly and
seemingly randomly. In this section, we define some of the more common pitfalls and offer
advice on ways to avoid them. The following subsections explain what thread safety is and
the sorts of horrors it helps to prevent.

Deadlocks
Deadlocks occur when threads are blocked forever, waiting for a condition that cannot occur.
Deadlock is like a cartoon where Daffy Duck and Bugs Bunny are stranded on an island. Daffy
has a can of food, and Bugs has a can opener. Daffy won’t give up the food until he gets the can
opener, and Bugs won’t give up the can opener until he gets some food. They are deadlocked.

In Listing 4-8, you can see that thread1 acquires a lock on lock1 but needs lock2. thread2
has acquired a lock on lock2 and needs to acquire lock1. Neither thread will allow the other
thread to progress, nor will it progress itself. This is deadlock. Figure 4-7 shows the output.

Listing 4-8. Deadlock Example

1 public class DeadlockExample {
2 /**
3 * Entry point to the application. Creates 2 threads that will deadlock.
4 */
5 public static void main(String args[]) {
6 DeadlockExample dle = new DeadlockExample();
7
8 Object lock1 = "Lock 1";
9 Object lock2 = "Lock 2";
10

CHAPTER 4 ■ THREADING98

11 Runner thread1 = new Runner(lock1, lock2);
12 Runner thread2 = new Runner(lock2, lock1);
13
14 thread1.start();
15 thread2.start();
16 }
17
18 /**
19 * Lock two objects in the order they were specified in the constructor.
20 */
21 static class Runner extends Thread {
22 private Object lockA;
23 private Object lockB;
24
25 public Runner(Object firstLockToGet, Object secondLockToGet) {
26 this.lockA = firstLockToGet;
27 this.lockB = secondLockToGet;
28 }
29
30 public void run() {
31 String name = Thread.currentThread().getName();
32 synchronized (lock1) {
33 System.out.println(name + ": locked " + lockA);
34 delay(name);
35 System.out.println(name + ": trying to get " + lockB);
36 synchronized (lock2) {
37 System.out.println(name + ": locked " + lockB);
38 }
39 }
40 }
41 }
42
43 /**
44 * build in a delay to allow the other thread time to lock the object
45 * the delaying thread would like to get.
46 */
47 private static void delay(String name) {
48 try {
49 System.out.println(name + ": delaying 1 second");
50 Thread.sleep(1000L);
51 } catch (InterruptedException ie) {
52 ie.printStackTrace();
53 }
54 }
55 }

CHAPTER 4 ■ THREADING 99

Figure 4-7. Output from the deadlock example

This is an example of bad design. There is almost always a better way to handle these
sorts of situations than resorting to nested locks. If you find yourself unable to come up with a
solution, reconsider the larger design of your project. Sun gives difficult problems on the SCJD
exam, but most can be solved elegantly.

Race Conditions
Race conditions occur when two or more threads compete for the same resource, and the
behavior of the program changes depending on who wins. For example, you and Johnson race
to get be the first person to reach the test server in the morning. Depending on who wins, the
server is tied up for a few minutes or for a few hours. Thus, based on somewhat random fac-
tors—say, who got stuck in traffic that morning—your program’s behavior changes. This is
rarely a good thing. Race conditions can be very difficult to track down because they happen
sporadically and thus are difficult to reproduce.

Race conditions can also lead to deadlock because locks could be achieved in an order
other than the one expected. Thus, your application, which had always achieved lock1 fol-
lowed by lock2, could suddenly achieve lock2 first and attempt to release those locks in an
unexpected order.

These sorts of problems are manifested when your application appears to “sponta-
neously” generate new behaviors, as shown in Listing 4-9. They are difficult to debug and
often difficult to reproduce. That’s why it’s so important to make design decisions that will
steer you clear of the general dangerous area of race conditions. Figure 4-8 shows the output
of our example.

Listing 4-9. Race Condition Example

1 public class RaceConditionExample {
2 public static void main(String args[]) {
3 //create an instance of this object
4 RaceConditionExample rce = new RaceConditionExample();
5

CHAPTER 4 ■ THREADING100

6 //create two runners
7 Runner johnson = rce.new Runner("Johnson");
8 Runner smith = rce.new Runner("smith");
9
10 //point both runners to the same resource
11 smith.server = "the common object";
12 johnson.server = smith.server;
13
14 //start the race, based on a random factor, one thread
15 //or the other gets to start first.
16 if (Math.random() > .5) {
17 johnson.start();
18 smith.start();
19 } else {
20 smith.start();
21 johnson.start();
22 }
23 }
24
25 /**
26 * Creates a thread, then races for the resource
27 */
28 class Runner extends Thread {
29 public Object server;
30
31 public Runner(String name) {
32 super(name);
33 }
34
35 public void run() {
36 System.out.println(getName() + ": trying for lock on " + server);
37 synchronized (server) {
38 System.out.println(getName() + ": has lock on " + server);
39 // wait 2 seconds: show the other thread really is blocked
40 try {
41 Thread.sleep(2000);
42 } catch (InterruptedException ie) {
43 ie.printStackTrace();
44 }
45 System.out.println(getName() + ": releasing lock ");
46 }
47 }
48 }
49 }

CHAPTER 4 ■ THREADING 101

Figure 4-8. Output from the race condition example

It is clear here that there is no consistency in terms of who gets access to the server. This
could be perfectly all right, or it could be catastrophic. It all depends on context. While it is not
necessary to resolve every race condition in order to achieve thread safety, it is important to be
aware of them.

Starvation
Starvation occurs when a thread never gets a chance to run. Its most common manifestation
occurs when higher-priority threads keep getting preferential treatment over those with a
lower priority. Imagine that your task requires that you speak to the CTO of your company.
However, every time it seems as if she might be free, a senior executive steps in and takes the
slice of time you were going to use. This could be for very legitimate reasons, but the end
result is that you never get to speak with her (your thread never gets a chance to run).

The example in Listing 4-10 shows a contrived example of three high-priority threads and
one low-priority thread all trying to use the same resource.

Listing 4-10. Starvation Example

1 /**
2 * Demonstrate the concept of a starving thread.
3 */
4 public class StarvationExample {
5 public static void main(String args[]) {
6 // Ensure the main thread competes with the other threads
7 Thread.currentThread().setPriority(Thread.MAX_PRIORITY);
8

CHAPTER 4 ■ THREADING102

9 // Create an instance of this object
10 // Create 4 threads, marking number 1 as a very low priority
11 for(int i = 0; I < 4; i++) {
12 //create a runner
13 Runner r = new Runner();
14 r.setPriority(Thread.MAX_PRIORITY);
15
16 //set the first thread to starve
17 if (i == 0) {
18 r.setPriority(Thread.MIN_PRIORITY);
19 r.setName("Starvation Thread");
20 }
21 //start the thread.
22 r.start();
23 }
24
25 // Exit as soon as we possibly can
26 System.exit(0);
27 }
28
29 /**
30 * Create a thread, then cycle through its command ten times.
31 */
32 static class Runner extends Thread {
33 public void run() {
34 for (int count = 10; count > 0; count--) {
35 System.out.println(getName() + ": is working " + count);
36 }
37 }
38 }
39 }

The starving thread never ran, as you can see in Figure 4-9.

Figure 4-9. Output from the starvation example

CHAPTER 4 ■ THREADING 103

■Note The exact output varies with each running of this application, as thread priorities and scheduling
cannot be guaranteed. However, in the majority of executions of this application, you will note that the
StarvationThread either does not run at all, or runs far fewer times than the other three threads. In the
cases where the StarvationThread does run, it is almost always after the other three threads have
completed.

Understanding Atomic Operations
Atomic operations are indivisible. A thread will not be swapped out while in the middle of an
atomic operation. In practical terms, the only naturally occurring atomic operations in Java
are assignments. For example,

x = 45;

is an atomic operation when x is an int. The only exceptions to this rule are assignments
involving doubles and longs. Those are not atomic.

Operations involving longs and doubles are essentially two operations, because longs and
doubles are so big. The first part of the operation sets the high 32 bits, and the next part sets
the low 32 bits. This means that mid-assignment to a long or double variable, your thread
could be sliced out.

Your thread consists of a number of programmatic statements. These in turn consist of
atomic statements. Your thread of execution could be swapped out anywhere, except while
Java is in the middle of an atomic statement. For example:

1 x = 7;
2 y = x++;

is really

1 x =7;
2a int temp = x + 1;
2b x = temp;
2c y=x;

Assume x, y, and z are class member variables. A thread swap between lines 2a and 2b
could lead to unexpected results, for example, if the thread that has swapped in changes the
value of x to, say, 13. You could end up with the bizarre result of y being 13 (and a headache).
Of course, this problem would not exist if x, y, and z were local method variables, because
then no other method could have access to them.

By wrapping your method in a synchronized block, you are effectively treating the entire
method as a single atomic operation, as far as other threads’ clients of that object are con-
cerned. Even if another thread swaps in before your method is done executing, as long as the
thread calls methods on your object that are synchronized, you are guaranteed that corrup-
tions such as the previous one will not occur, because those methods will not execute until
your method returns.

The example in Listing 4-11 shows a contrived example of 10 threads yielding at an inop-
portune time, causing invalid results.

CHAPTER 4 ■ THREADING104

Listing 4-11. Nonatomic Operation Example

1 public class NonAtomic {
2 static int x;
3
4 public static void main(String[] args) {
5 for (int i = 0; i < 10; i++) {
6 new Runner().start();
7 }
8 }
9
10 static class Runner extends Thread {
11 private int validCounts = 0;
12 private int invalidCounts = 0;
13
14 public void run() {
15 for (int i = 0; i < 10; i++) {
16 // synchronized (NonAtomic.class) {
17 int reference = (int) (Math.random() * 100);
18 x = reference;
19
20 // either yielding or doing something intensive
21 // should cause the problem to manifest.
22 yield();
23 // for (int y = 0; y < 20000; y++) {
24 // Math.tan(200);
25 // }
26
27 if (x == reference) {
28 validCounts++;
29 } else {
30 invalidCounts++;
31 }
32 }
33 // }
34
35 System.out.println(getName()
36 + " valid: " + validCounts
37 + " invalid: " + invalidCounts);
38 }
39 }
40 }

When you run this program, you will see that in the majority of cases, another thread has
changed the value of x between when it is set (in line 18) and when it is checked (in line 28).
An example of this is provided in Figure 4-10.

CHAPTER 4 ■ THREADING 105

Figure 4-10. Output from the nonatomic example

In calling yield we caused this problem to be more obvious than would normally be the
case; however, it is not the call to yield that is the problem—it is the coding itself. You can
prove this by commenting out the call to yield in line 22, and uncommenting the for loop in
lines 23–25. If you change the program in this way, and rerun the program, you will see that
there are still often errors caused by the nonatomic nature of the code, even though there is no
explicit yielding. You will also notice that changing the program in this way will cause it to take
significantly longer to run, and if you watch your computer’s CPU usage, you should find that
these loops require a lot of computational effort.

If you put the code inside a synchronized block by uncommenting lines 16 and 33, you
will find that the code now behaves in an atomic fashion regardless of whether you are using
yield or the for loop.

Thread Safety Summary
You could code around any of the situations presented in this section as they occur, but that is
the wrong approach. The best idea is to avoid the sorts of situations that lead to unsafe thread-
ing. There are exceptions to every rule, but in general don’t nest locks, don’t count on thread
priorities, and watch for race conditions. The section titled “Threading Best Practices” later in
this chapter helps you reduce the chances of creating situations where these sorts of problems
can fester.

Using Thread Objects
This section contains some important general information you should keep in mind when
working with thread objects directly.

Stopping, Suspending, Destroying, and Resuming
You should never use the Thread.stop, Thread.suspend, Thread.resume, or Thread.destroy
methods, as they have been deprecated because they are inherently unsafe.

CHAPTER 4 ■ THREADING106

Instead of using these methods, you should have some variable that can be accessed by
both the thread whose state you wish to change, and by the thread that wishes to change the
state. The thread whose state is being changed should monitor this variable periodically, and
safely change its state if the variable changes (by releasing any resources, closing files, etc.).

For more information, read the description of why these methods have been deprecated
at http://java.sun.com/j2se/1.5.0/docs/guide/misc/threadPrimitiveDeprecation.html.

Thread States
Threads have six states: Thread.State.NEW, Thread.State.RUNNABLE, Thread.State.WAITING,
Thread.State.TIMED_WAITING, Thread.State.BLOCKED, or Thread.State.TERMINATED. Java has
specific rules about the transitions from state to state, and it’s important to know them.

The most important rule is that a Thread.State.TERMINATED thread cannot go into any
other state. Ever. The next most important rule is that a thread can only execute commands
if it is Thread.State.RUNNABLE. When you first call the start method on a thread, the thread
scheduler will transition it to Thread.State.RUNNABLE. At some point after that, depending on
the whims of the thread scheduler, the thread will start to execute the statements in the run
method body.

From the Thread.State.RUNNABLE state, a thread has four paths it can take, as illustrated in
Figure 4-11:

• It can go on to completion, after which it enters the Thread.State.TERMINATED state.

• A thread can enter the Thread.State.WAITING state by calling wait or join.

• If the thread calls sleep or wait with a timeout value, it will enter the
Thread.State.TIMED_WAITING state.

• If a thread cannot access a lock, it enters the Thread.State.BLOCKED state.

Figure 4-11. Thread states

CHAPTER 4 ■ THREADING 107

More on Blocking
Blocking is an important phenomenon in threading and thus deserves a few more words of
explanation. To quickly review, blocking threads do not use CPU cycles and are in a state of
suspended animation. They do not wait for a time period to expire, but rather for an event to
occur; specifically, a lock they were trying to acquire becomes available. Blocking threads
deserve a healthy dose of respect because they do not release locked resources when they slice
out of the CPU. A blocking thread that does not receive its lock can refuse to release resources
that other threads might need, in addition to never coming out of hibernation, as shown in
Listing 4-12. Figure 4-12 shows the output of this example.

Listing 4-12. Blocking Example

1 import java.net.*;
2
3 public class BlockingExample extends Thread {
4 private static Object mylock = new Object();
5
6 public static void main(String args[]) throws Exception {
7 LockOwner lo = new LockOwner();
8 lo.setName("Lock owner");
9 lo.start();
10
11 // Wait for a little while for the lock owner thread to start
12 Thread.sleep(200);
13
14 // Now start the thread that will be blocked
15 BlockingExample be = new BlockingExample();
16 be.setName("Blocked thread");
17 be.start();
18
19 // Wait for a little while for the blocked thread to start
20 Thread.sleep(200);
21
22 // Now print the two threads states
23 printState(lo);
24 printState(be);
25 }
26
27 // start a thread.
28 public void run() {
29 // wait for the mylock object to be freed,
30 // which will never happen
31 synchronized (mylock) {
32 System.out.println(getName() + " owns lock");
33 System.out.println("doing Stuff");
34 }

CHAPTER 4 ■ THREADING108

35 System.out.println(getName() + " released lock");
36 }
37
38 private static void printState(Thread t) {
39 System.out.println();
40 System.out.println("State of thread named: " + t.getName());
41 System.out.println("State: " + t.getState());
42 System.out.println("begin trace");
43 for (StackTraceElement ste : t.getStackTrace()) {
44 System.out.println("\t" + ste);
45 }
46 System.out.println("end trace");
47 }
48
49 static class LockOwner extends Thread {
50 public void run() {
51 synchronized (mylock) {
52 System.out.println(getName() + " owns lock");
53 try {
54 ServerSocket ss = new ServerSocket(8080);
55 ss.accept();
56 } catch (Exception e) {
57 e.printStackTrace();
58 }
59 }
60 System.out.println(getName() + " released lock");
61 }
62 }
63 }

Figure 4-12. Output from the blocking example

CHAPTER 4 ■ THREADING 109

■Note At line 54 we attempt to start listening on port 8080. There is no particular reason for picking this
port, other than the fact that it is not a port that is officially assigned to any other application, and therefore
there is a reasonable chance that this port will be available. However, if you are running another application
that also uses port 8080 (for example, the Tomcat Web Application Server by default uses port 8080), then
an exception (java.net.BindException) will be thrown. If you see that exception, just change the port
number in line 54 from 8080 to some other number, for example 9090.

The myLock object is never released, because the LockOwner thread never finishes. Because
the myLock object is never released, the thread that is waiting for myLock (in this case, the
BlockingExample thread) is blocked and never gets a chance to execute.

The main thread would continue executing, however, if it were not dependent on the
locked resource. Again, this is because blocking threads do not use CPU cycles.

■Caution When talking about an application or thread pausing until it can get some I/O, many publica-
tions use the standard terminology of saying that the thread or application is blocked for I/O. According to
their terminology the LockOwner thread would be blocked until a client connects to the socket. However, as
the previous example shows, the JVM state for a thread waiting for I/O may be Thread.State.RUNNABLE,
or it may be some other state depending on how the code for the I/O class is implemented. When debugging
your code, or when perusing other publications, you need to be aware that Java does not have a separate
state for threads that are paused for I/O.

InterruptedException
InterruptedExceptions typically occur when a thread has been paused (sleeping, or waiting,
or trying to join several threads) for too long, and another thread deliberately calls interrupt
on the thread to be interrupted to bring it out of that state. Think of an InterruptedException
as one thread violently shaking another thread back into consciousness. When a thread is
shaken awake in this manner, the first thing it does is execute whatever code is inside its catch
(InterruptedException) clause if it has one.

As an example, consider if you wrote a Data class that has a lockRecord method that must
wait for a record to become available before locking it, but it does not have a timeout. After the
Data class has been approved, you are asked to create a subclass of the Data class that does
handle timeouts when locking. You could rewrite the entire locking code from scratch, or you
could create a separate thread that interrupts the thread locking of the record if the lock is not
acquired within the timeout period.

■Note It is possible for a thread to be interrupted at any time, even if it has not called sleep, wait, or
join. In such a case the thread will continue to execute normally until it calls sleep, wait, or join, at
which time an InterruptedException will immediately be thrown from the called method.

CHAPTER 4 ■ THREADING110

Synchronization
There are two natural divisions when you talk about synchronization: object synchronization
and client synchronization. This section explains the differences between the two.

Internally Synchronized Classes
A Vector is a synchronized object and an ArrayList is not. What does this mean? It means all
the methods that can access a Vector’s internal data are synchronized. Any changes made to
a Vector object by one thread are guaranteed to be immediately visible to any other thread,
while changes made to an ArrayList are not so guaranteed. It does not mean that you are
using the Vector object in a thread-safe way in your code. If you wanted that guaranteed, you
would have to synchronize on the Vector object directly, just as you would have to synchro-
nize directly on the ArrayList.

■Note Vector is an example of a thread-safe collection; however, it is rare that the thread safety offered
by Vectors is required (see the next paragraph for information on what thread safety is guaranteed). If you
do need this kind of thread safety, you may be better off using Collections.synchronizedCollection or
similar methods to create a thread-safe collection with the characteristics of your preferred base collection.

A synchronized object only promises this: A method called on that object will behave
atomically. For example, imagine that you are running two threads and that myVector and
myArrayList are class member variables. Thread1 has started to run line 1, and Thread2 has
yet to start line A.

Thread1:

1 myVector.add("Hello");
2 myArrayList.add("Hello");

Thread2:

A myVector.add("Cruel");
B myArrayList.add("Cruel");

Now, say that in the middle of line 1, Thread1 slices out. Thread2 will be unable to slice in
because Vectors are synchronized,. You are therefore guaranteed that Thread2 line A will add
"Cruel" after "Hello" for myVector.

This guarantee does not exist for myArrayList. That is, if Thread1 sliced out in the middle
of line 2 and Thread2 sliced in, the order of adding the items to the ArrayList is indeterminate.
Even worse, if one of the adds causes a resize of the internal array, all sorts of strange things
can happen. We might see a NullPointerException or ArrayIndexOutOfBoundsException, or
one of the adds might be “lost.” All sorts of unpredictable nastiness can emerge from unsyn-
chronized access by multiple threads.

CHAPTER 4 ■ THREADING 111

■Note The reason that we’ve specified threads slicing out in the middle of line 1 or 2 is that the add
method for both Vectors and ArrayLists are methods that perform several actions before actually adding
the requested object to the underlying store.

Vectors are not superior to ArrayLists, nor are ArrayLists superior to Vectors. There are
times when you do not need the overhead of synchronization on the Collection, and there are
times when you absolutely must have it. For example, a local method variable might as well be
an ArrayList, because it only exists in the context of that particular method; thus, there is no
opportunity for any other threads to modify it.

However, where possible we recommend against using the Vector class. There is the pos-
sibility that a junior programmer may incorrectly believe that use of a Vector is providing
thread safety other than what synchronized classes actually guarantee. Plus, there is the risk
that a later programmer may change the Vector to some other class, not realizing that a syn-
chronized class was required.

Synchronized objects have their purpose, as do unsynchronized ones. Part of earning
your Java developer certification is knowing what those purposes are.

Client Synchronization
Client synchronization is the process of making sure that no other thread interrupts your
method while it is mid-stride. For example, while myVector.add(Object) is a synchronized
operation, the internal synchronization of the Vector object did not guarantee that another
thread would not empty the myVector before the next step of your method executed. Consider
the following example:

1 public boolean addDVD(DVD dvd){
2 for (int i = 0; i < myVector.length(); i++) {
3 doSomethingWith(myVector.get(i));
4 }
5 }

While you are guaranteed that line 2 will not be hijacked mid-stride, you are not guaran-
teed that some other thread will not set empty the myVector object by the time you get to line 3.
The current thread could slice out between lines 2 and 3, and the thread that picks up could
just happen to be one that corrupts myVector. The chances are probably small, but the possi-
bility for mischief does exist.

Be aware of such risks, even if you decide to accept them: Another thread could always
slice in between two unsynchronized lines of code even if they’re calls to synchronized methods.

To guarantee exclusivity, you could modify the method in one of two ways. The first way is
to synchronize the method:

1 public synchronized boolean addDVD(DVD dvd) {
2 for (int i = 0; i < myVector.length(); i++) {
3 doSomethingWith(myVector.get(i));
4 }
5 }

CHAPTER 4 ■ THREADING112

This denies any other threads the capability to call any synchronized methods on this par-
ticular object until addDVD returns. Depending on your class’s structure, this may be sufficient.

The second way is to synchronize on the myVector member variable:

1 public boolean addDVD(DVD dvd) {
2 synchronized (myVector) {
3 for (int i = 0; i < myVector.length(); i++) {
4 doSomethingWith(myVector.get(i));
5 }
6 }
7 }

This keeps any other method that calls from modifying the myVector object for the dura-
tion of lines 3, 4, 5, and 6. This holds even if your thread slices out during those lines.

As with all exclusivity, this only applies to methods that follow synchronization rules. If
those methods do not internally synchronize on the myVector object, then they won’t obey the
protocol. Thus, the guarantee of thread safety would no longer hold.

Incidentally, this is a great justification for controlling access to your class’s member vari-
ables through encapsulation. If all member variables are private, then you can control access
to sensitive data by synchronizing all the relevant methods. This is exactly what the Vector
object does. Synchronized objects such as Vectors do not synchronize on their internal data
state; they synchronize the methods used to access that data. Sun recommends and encour-
ages encapsulation. For example, it is explicitly evident in JavaBeans.

Multithreading with Swing
Swing components, by and large, are not thread-safe. Swing uses a single thread to deal with
UI events from the underlying operating system. That is, in general Swing components don’t
need to be thread-safe as they’re typically accessed from only one thread. This means that pro-
cessing an event, such as a button click, will cause other events to be ignored until the first
event is finished. Your UI could be very unresponsive if the event handler associated with the
event is long.

The point here is that your Swing client could become slow if you are doing a big opera-
tion for a given event. This may be okay on the SCJD exam, but you need to be aware of it and
document it. If your requirements state that UI responsiveness is very important, then you
need to think about spawning threads to deal with more intensive operations, and that’s when
you have to worry about all the thread safety concerns, synchronizing as appropriate.

General Principles of Threading with Swing
Once a Swing component has called setVisible(true) or pack(), all updates should be done
via the event dispatcher thread. This helps avoid race conditions that can occur as a result of
the various requests from the RepaintManager.

In general, you only need to be concerned about threading in your Swing application
when you are updating your components based on a thread other than the event dispatcher
thread—specifically, in cases where you need a responsive GUI that cannot wait for RMI
and/or socket calls across the network.

You should make sure that you can’t afford to wait for these before you start down this
path: It’s a long and error-prone approach, and it will probably complicate your life unduly as

CHAPTER 4 ■ THREADING 113

far as the SCJD exam is concerned. If you do decide to take this route, execute your lengthier
calls through a separate thread, or worker thread, and then feed your results back into the GUI
using the event dispatcher. For an excellent example of this technique, please visit http://
java.sun.com/products/jfc/tsc/articles/threads/threads2.html.

■Caution You must not use the SwingWorker class directly in your assignment. The assignment specifies
that you are only allowed to submit code you write yourself, so submitting the SwingWorker class could
lead to disqualification. You can, however, use the SwingWorker class to learn the techniques needed, then
make your own class(es).

Remember that calling the various setters on a component is not a thread-safe way to get
that event into the event-dispatching queue. This process does generate events, but the event
dispatcher thread does not always handle these.

Updating Components in the Event Dispatcher Thread
So how do you get your events into the event dispatcher thread? You use the SwingUtilities.
invokeAndWait and SwingUtilities.invokeLater methods. The first method, invokeAndWait,
blocks until the event fires. invokeLater does not block; it simply adds your code to the queue
of events to be fired. The parameter to both of these methods is a Runnable interface. The run
method of the parameter is then called by the event dispatcher.

Threading Best Practices
Here are some general practices that should help you avoid the dark side of threading:

• Don’t nest locks. If you have two synchronized blocks on two different objects in your
execution path, you’re probably heading down the wrong road.

• Avoid multithreading with Swing, if possible. It can be argued that multithreading activ-
ities for distributed calls from a Swing front-end, for example, only offer illusionary
responsiveness. That is, just because the GUI appears to respond quickly doesn’t mean
that it actually does so. Do you really want your client to think an operation is finished
when in fact it isn’t? Does the illusion actually serve a useful purpose in your application?

• For threads that are providing lengthy services, it’s a good idea to yield occasionally. For
example, if your thread is starting a lengthy process but the user wants to cancel, that
canceling event might not get read until your thread stops executing. By yielding occa-
sionally, you give other threads a chance to slice in at a time that is opportune for your
thread’s execution state. It’s best to release any locks before yielding.

CHAPTER 4 ■ THREADING114

• There’s no need to synchronize methods that don’t use state information in the class. If
your method doesn’t use internal member variables, doesn’t modify an external object,
and doesn’t modify an object that was passed in as a parameter, don’t synchronize it.

• Don’t oversynchronize. Make sure you know exactly why your method or data structure
is synchronized. If you can’t articulate the need for synchronization to your own satis-
faction, you probably should reexamine the original need.

• Immutable objects, such as Strings and Integers, never need synchronization. This
applies even to member variables, because immutable objects can’t be modified.
However, a member variable referring to an immutable object may still need synchro-
nization if the member variable itself is mutable.

• Don’t multithread needlessly. Unless your threads are doing a lot of blocking, single
threading is often faster.

• When working with Swing, feel free to create and insert components into any container
that hasn’t been realized yet. To be realized, a component must be able to receive paint
or validation events—this means before show, setVisible(true), or pack has been
called on the component.

• Don’t get confused by internally synchronized classes such as Vector. All an internally
synchronized class promises is to perform its actions atomically. This means that if one
thread code executes myVector.add("test"), and another thread slices in, if that new
thread executes myVector.contains("test") it will return true. This behavior is not
guaranteed with, say, an ArrayList. You will usually need to use synchronized methods
to interact with these variables.

• Try to minimize actions performed within your synchronized blocks, since no other
thread will be able to obtain the lock your code is synchronized on for the duration,
thus reducing concurrency.

• Avoid depending on thread priority as a mechanism of thread control. Different operat-
ing systems use distinct algorithms to deal with thread priority, and different JVMs use
different algorithms still. This could lead to your program acting wildly different from
one platform to the next. You best bet is to avoid the ambiguity of thread priorities,
especially where the SCJD exam is concerned.

• Don’t synchronize your thread’s run method. Synchronizing your thread’s run method
can lead to a lot of complications, and it’s a bad idea.

• If you are checking a condition in a synchronized block of code, use a while loop and
not an if statement. If your thread slices out in the middle of executing your if state-
ment, then the thread will resume exactly where it left off when it slices back in.
Counterintuitively, this is not a good thing, because the condition that was true when
your thread sliced out might no longer be true, because another thread could have
changed it.

CHAPTER 4 ■ THREADING 115

• While loops, on the other hand, are re-checked before your thread exits the block. Thus,
relevant state changes will be detected. The following snippet shows an example of this
technique:

synchronized (lockedRecords) {
while (lockedRecords.contains(upc)) {

lockedRecords.wait();
}
//do stuff
lockedRecords.notifyAll();

}

• Use notifyAll instead of notify. notify only wakes a single waiting thread, while
notifyAll wakes all waiting threads.

Summary
In this chapter, we discussed some of the possibilities available to you when using threads,
and we pointed out some trouble spots to avoid. We discussed safe threading issues, threads
and Swing, blocking, waiting, and a host of other topics.

The best way to understand threading is to design your threading scheme, make predic-
tions about how it will function, and then test those predictions with the handy method in the
Thread class, holdsLock(Object). Thread’s getState() and getStackTrace() methods can be
very handy for checking what another thread is doing. If your threads aren’t behaving the way
you expected them to, explicitly record your assumptions (we suggest writing them down) and
then examine them one by one. Threading is a lot like grammar: There are a lot of rules, but
eventually you develop a sense for what works and what doesn’t. (Or so I’m told.)

As you read the next chapters, please don't hesitate to refer back to this chapter when
needed.

FAQs
Q What happens when a synchronized block/method calls an unsynchronized one?

A The unsynchronized block/method is treated as if it was synchronized.

Q What happens when a synchronized block/method calls a synchronized one within
the same object?

A If both methods are synchronizing on the same object, then nothing unusual happens
as far as you’re concerned—there’s no double synchronization or risk of deadlock. The
thread acquires an extra lock on the object, which in turn dissipates when the lock is
released.

Q Does locking an object lock all of its internal variables?

A No, absolutely not. Doing so would place a tremendous burden on the JVM, because it
would lock all their internal objects, and then the internal object of member variables
in turn, and so on. Java assumes that you understand this, and that you are only lock-
ing what you mean to lock.

CHAPTER 4 ■ THREADING116

Q How much slower is a synchronized method than an unsynchronized one?

A It’s difficult to say, but unscientific tests seem to indicate that a synchronized method
is anywhere from 1.5 to 150 times slower than an unsynchronized method, depending
on contention. Noncontended synchronization may have negligible impact on time.

Q Can you synchronize data?

A No, you can only synchronize access to data.

Q Aren’t vectors synchronized data?

A No, vectors provide synchronized methods that access their data. It’s an important
difference.

Q What’s the difference between synchronizing on a static member variable and a local
one?

A There’s no difference, really. You’re still obtaining a lock on an object. But by synchro-
nizing on a static member variable, the lock can be shared across multiple objects who
share that static object as a class member variable.

Q What does it mean when people say that an object, such as a Vector, is synchronized?

A It means that all public methods of that object are synchronized when they access
shared data. Generally, it means that calling a method on that object is an atomic
action. Any other thread calling a method on that object will block until your thread
completes its operation on that object.

Q What happens when one method synchronizes on a member variable, and another
synchronizes on the this keyword, and the two have to interact?

A Then you are acquiring two locks on two distinct objects—namely this and the mem-
ber variable—and it is very important to be careful. Otherwise, you are opening the
door to deadlock. You should consider carefully whether you really need to do this, or
whether you can synchronize on the one object.

Q How can I restart a thread after it has died?

A You can’t. You will have to create a new thread.

Q Most of the examples provided show the main application implicitly waiting until all
the created threads had finished before exiting. Is there a way of exiting the program
without waiting for a thread to complete?

A Yes—you can explicitly call System.exit, or you can call Thread.setDaemon(true) on
the thread you don’t want to wait for before you start it running. See the creation of the
IceCreamMan thread for an example of how to set a daemon thread.

CHAPTER 4 ■ THREADING 117

The DvdDatabase Class

In this chapter, we will start working on our assignment by developing a DvdDatabase class,
which will implement the DBClient interface described in Chapter 3. Since both the client and
the server need this class, starting the assignment with this class is quite logical.

As you work through this chapter, you will use several important concepts introduced in
Chapters 2 and 3:

• Design patterns

• Generics

As mentioned earlier in this book, there are several areas in our sample project where we
feel we must deviate from the project provided by Sun. Nowhere is this more important than
with the classes presented in this chapter. Either the code used in this section of our sample
assignment will quite often be more detailed than your assignment requirements, or we
will use shortcuts that you cannot use in your assignment. In particular, we specify that
java.io.IOException can be thrown in our interfaces and classes, greatly simplifying our
development; we complicate our assignment by having timeouts on locks; and we use
ReadWriteLocks to improve concurrency. Regardless, all the information you need to develop
a good solution for your requirements is presented in this chapter.

We also discuss issues that you might want to consider for your assignment that are not
required but that may make your submission more professional. This includes the topics of
caching data, handling deadlocks, managing client crashes, and using multiple notification
objects to reduce CPU usage by threads trying to obtain a logical record lock.

Creating the Classes Required for
the DvdDatabase Class
The DvdDatabase class uses a few other classes as inputs, outputs, or exceptions. We need to
build these before we can build the Data class itself.

The DVD Class: A Value Object
The DvdDatabase class uses a class named DVD to contain the data corresponding to a DVD that
can be reserved. This type of object is referred to as a value object. The Value Object design
pattern is also referred to as the Transfer Object pattern. The name value object represents the
type of object it is; it contains all the values relating to a particular object (in our case, all the

119

C H A P T E R 5

■ ■ ■

values we wish to track relating to a DVD). Transfer object is named for one of the more com-
mon uses of this design pattern: creating a single class to transfer data between two separate
systems, usually between a client and a server.

The reason for such an object is fairly simple—it can make your code easier to read, and
improve performance of your system as a whole. Your code will be referencing fields within a
single object, which will make it clearer within your code that the fields are all related. And
since you can send and retrieve the entire value object in one call to another method, your
code will perform much better than if it had to retrieve each of the fields separately. This is
especially useful when retrieving value objects over a network, as only a single network call is
required, in contrast to the multiple network calls required if you were retrieving each field
separately.

Sections of the DVD class are detailed next; however, since much of the code is repetitive,
we won’t display all the code here but only important sections of it. The entire code for this
method can be downloaded from the Apress web site in the Source Code section; more details
on what can be downloaded and how the code can be compiled and packaged are listed in
Chapter 9. The line numbers shown here correspond to the real line numbers in the online
source code—therefore, you’ll note gaps in the numerical sequence because we skip com-
ments and repetitive code.

1 package sampleproject.db;
2
3 import java.io.*;
4 import java.util.*;
5 import java.util.logging.*;
6
..
13 public class DVD implements Serializable {
..
19 private static final long serialVersionUID = 5165L;

We will be using this class to transfer the data that represents a DVD between the client
and the server, potentially on different computers. Doing this, however, relies on the client
and server both agreeing on what a DVD object is. If either system believes that the internal
data structure is different (for instance, if the server believes that the issue date is a Java Date
object, while the client believes that it is a String object), then the whole system of transfer-
ring data is called into question. If you are lucky, you will receive some form of class cast
exception, or a similar problem. If you are unlucky, your client and server will be able to
work with the data, even though it is potentially wrong, and your data will be corrupted.

Java provides a mechanism for classes that use a serialized object to confirm that the seri-
alized object conforms to a known structure: the serialVersionUID. This is done for us by the
JVM itself; if a class tries to deserialize an instance of a class where the serialVersionUID does
not match the known value, an InvalidClassException will be thrown.

■Note Serialization is covered in detail in the first few sections of Chapter 6.

CHAPTER 5 ■ THE DVDDATABASE CLASS120

You can declare a static final long serialVersionUID in your code, as shown in line 19.
Note that the static final and long modifiers are mandatory. Any access modifier may be
used, including the private modifier we used in this code. This enables you to decide whether
a change to your Serializable class requires recompilation of your client classes. For example,
if we added an extra field to our DVD class to contain the number of Emmy nominations the
DVD received, it would not affect those clients that were compiled prior to the addition of the
field; they would still be able to access every field that they were previously able to access. The
same would not be true if you deleted a field, even if it was one your clients were currently not
using—potentially they would be unable to access the field, so the change to the class would
require clients to recompile.

If you do not declare a serialVersionUID in your Serializable class, the Java compiler will
generate one for you, based on various aspects of the class, such as the name of the class, the
names of the methods, the names of the fields, and so on. If any of these change, then your
serialVersionUID will change as well. So even for our example of adding an unimportant field
earlier, an autogenerated serialVersionUID will change. For this reason, it is always recom-
mended that you define your own serialVersionUID. (For those who are curious, the
serialVersionUID we used is just the last four digits of the ISBN number for this book.)

■Tip To learn more about object serialization, refer to the Sun documentation available at http://
java.sun.com/j2se/1.5.0/docs/guide/serialization/.

Our DVD class then specifies all the fields we want to associate with a DVD. Again, com-
ments have been excluded, so the line numbers are not in numerical sequence:

89 private String upc = "" ; // The record UPC identifier
94 private String name = ""; // The movie title
100 private String composer = ""; // The music composer
106 private String director = ""; // The director's name
112 private String leadActor = ""; // The lead actor's name
118 private String supportingActor = ""; // The supporting actor's name
123 private String year = ""; // The movie's release date
129 private int copy = 1; // The number of DVDs in stock

■Note A UPC (Universal Product Code) number is a unique number assigned to retail items in U.S. and
Canadian stores. The equivalent code in Japan is the JAN code, and the next standard will be the European
EAN code, which has been designed to increase the number of potential codes to cater for the entire world.
For the purposes of this book we have stuck with the original UPC code, which we use to ensure that each
record in our data file has a unique index.

CHAPTER 5 ■ THE DVDDATABASE CLASS 121

We then have three constructors: a default constructor (required for any serialized
object), a constructor that assumes we have only one copy of the DVD in stock, and a con-
structor that allows us to specify how many copies of the DVD we have.

140 public DVD() {
141 log.finer("No argument constructor for DVD called");
142 }
...
157 public DVD(String upc, String name, String composer,
158 String director, String lead, String supportActor,
159 String year) {
160 this(upc, name, composer, director, lead, supportActor , year, 1);
161 }
162
163 /**
164 * Creates an instance of this object with a specified list of initial
165 * values.
166 *
167 * @param upc The UPC value of the DVD.
168 * @param name The title of the DVD.
169 * @param composer The name of the movie's composer.
170 * @param director The name of the movie's director.
171 * @param leadActor The name of the movie's leading actor.
172 * @param supportingActor The name of the movie's supporting actor.
173 * @param year The date the of the movie's release (yyyy-mm-dd).
174 * @param copies The number of copies in stock.
175 */
176 public DVD(String upc, String name, String composer, String director,
177 String leadActor, String supportingActor, String year,
178 int copies) {
179 log.entering ("DVD", "DVD",
180 new Object[]{upc, name, composer, director, leadActor,
181 supportingActor, year, copies});
182 this.upc = upc;
183 this.name = name;
184 this.composer = composer;
185 this.director = director;
186 this.leadActor = leadActor;
187 this.supportingActor = supportingActor;
188 this.year = year;
189 this.copy = copies;
190 log.exiting ("DVD", "DVD");
191 }

The comments were left in the final constructor, to show how parameters are declared
in Javadoc comments. As you can see, there is no requirement to specify the type of each
parameter.

CHAPTER 5 ■ THE DVDDATABASE CLASS122

It might also be noted that there are no calls to the logger in the second instantiator. Since
this instantiator immediately calls the third instantiator, we are relying on the logging avail-
able there.

For each variable listed in lines 89–129, we have a getter and a setter. For example, the
composer variable specified in line 100 has a getComposer getter and a setComposer setter as
follows:

199 public String getComposer() {
200 log.entering("DVD", "getComposer");
201 log.exiting("DVD", "getComposer", this.composer);
202 return this.composer;
203 }
...
211 public void setComposer(String composer) {
212 log.entering("DVD", "setComposer", composer);
213 this.composer = composer;
214 log.exiting("DVD", "setComposer", this.composer);
215 }

Using getters and setters (so named because the first verb of the method is either get or
set) enables us to expose only the sections of the method we want to expose, and allow only
certain operations on them. For example, we might decide that the number of copies of a DVD
can never go below zero; if we allow clients to directly modify the field, then they can set it to
any number they like, including negative numbers. But by having a setter for numbers of DVDs,
we can include our business logic to ensure that the client cannot set a negative number.

■Note In line 200 we call log.entering and then call log.exiting immediately afterwards in line 201.
As always, there was a design decision to be made here: Do we create our own log message (probably call-
ing log.finer), or do we use the two calls that really don’t provide much useful information? Once again,
there is no one “right” way to handle this. The disadvantage of our chosen method is that we are providing
unnecessary logging, which does not produce much useful information. However, on the positive side we are
still using the same standard logging format for all “entering” and “exiting” log messages—contrast this
with the probability that if we were to write our own specialized log method for these getters and setters, it
is likely that the log messages would vary from method to method. In addition, if we ever needed to do more
work in this method, the work can be put directly between the two log messages; if we had created our own
specialized log message, we would probably have to remove it and replace it with the standard log messages.

The logging provided for the getters and setters is possibly overkill; however, it does high-
light one valuable debugging tool: It can be very useful to see what parameters are passed into
a method, and what the end result of executing the method is. By logging the composer method
parameter at line 212, we will have a record of what was passed into the method, and by log-
ging the this.composer instance variable at line 214, we will have a record of what the end
result of executing the setComposer method was. If at a later date this method is updated (for
example, adding code to ensure the first letter of each part of the composer’s name is capital-
ized), we will still get logging showing what the input and results are.

CHAPTER 5 ■ THE DVDDATABASE CLASS 123

The remaining getters and setters have not been shown; however, they all follow the same
form as the getComposer and setComposer methods shown earlier.

■Tip Most IDEs have the ability to automatically generate getters and setters for you, including generating
rudimentary Javadoc comments. After using such facilities, you can go to each generated method, add any
required business logic, and modify the Javadoc comments to suit.

One last point worth considering is whether we would ever want to compare two
instances of a DVD to see if they are the same. In a stand-alone application, we might consider
allowing only a single instance of each DVD object to be created, in which case we would be
able to check that they were equal by using the == comparison. However, since we might be
getting multiple copies of the same DVD record over a network, each copy will be deserialized
into a separate instantiation of the DVD class, so we cannot use the == comparator. We should
therefore look at overriding the equals method of the Object class.

416 public boolean equals(Object aDvd) {
417 if (! (aDvd instanceof DVD)) {
418 return false;
419 }
420
421 DVD otherDvd = (DVD) aDvd;
422
423 return (upc == null) ? (otherDvd.getUPC() == null)
424 : upc.equals(otherDvd.getUPC());
425 }

At line 417, we ensure that we have been given an instance of DVD to compare against.
Once we have confirmed this—and only when we have confirmed this—we can convert the
supplied object into an object of type DVD, as shown in line 421. Finally, in lines 423 and 424 we
utilize the fact that UPC numbers are unique for DVDs, and compare the UPC numbers.

■Note Lines 423 and 424 use a ternary operator to determine whether to return true or false. Everyone
has their own opinion as to whether ternary operators increase or decrease readability. This is something
you will have to decide for yourself, possibly on a case-by-case basis. In this particular case, we believe it
improves readability, compared with the alternative:

if (upc == null) {
return otherDVD.getUPC() == null;

} else {
return upc.equals(otherDVD.getUPC());

}

CHAPTER 5 ■ THE DVDDATABASE CLASS124

In that last return statement, we can safely use the String.equals method to compare the contents
of the two UPC fields. We could not use it earlier, as we did not know if the local UPC field contained
null (in which case the last return statement would have generated a NullPointerException);
likewise, we did not know if the other UPC value contained null, so we could not reverse the logic
(otherDVD.getUPC().equals(upc)) as it may also have thrown a NullPointerException. It is only
after we have validated that at least one of the two UPC values is not null that we can use the equals
method.

If the UPC did not uniquely identify the DVD, we might consider having more complex
logic; for example, we might compare the UPC, the title, and the main actor (it is unlikely that
an actor would work in a film with the same title as one they had previously worked in, and
that had the same UPC). However, we would probably not check the number of DVDs avail-
able, as they are not unique to the DVD.

It is strongly recommended that whenever you override the equals method, you should
also override the hashCode method, as the two are often used together. Once again, we have
used the fact that the UPC number uniquely identifies the DVD, and simply reused the UPC’s
hash code as the DVD’s hash code:

462 public int hashCode() {
463 return upc.hashCode();
464 }
465 }

It is important to try to return different hash codes for instances of a class that are not
considered equal where possible, while at the same time the same hash code value must be
returned for instances of a class that are considered equal no matter how many times it is run
on a single JVM (unless some of its internal field data is changed in such a way that it is no
longer considered equal to the old instance). If we had added extra checking to our equals
method (such as checking the actor’s name), then we might want to consider modifying our
hash code generator to take into account the extra uniqueness checking. For example, we
might choose to add the hash codes for both the UPC and the actor’s name, and return the
sum as the new hash code.

■Tip A unique hash code per unique instance of a class may not be possible. Furthermore, even if you
spent considerable time developing an algorithm to generate a hash code that is highly likely to be unique,
there would almost certainly be a loss of efficiency caused by the extra time required to execute the algo-
rithm. If you need to generate your own hashCode methods, we recommend that you don’t spend too much
time in this method unless code profiling shows that a significant amount of time is being spent in methods
that rely on the hash code (such as the HashMap.get method).

CHAPTER 5 ■ THE DVDDATABASE CLASS 125

Discussion Point: Handling Exceptions Not Listed in the
Supplied Interface
You may find that in order to create your Data class, you must call some methods that throw
exceptions that are not listed in the interface supplied by Sun. You will then have to decide
what to do with those exceptions, one by one. There is no single perfect solution for how to
handle this (although there are some bad solutions).

You will have to decide for yourself which approach is right for you. Look at the instruc-
tions you downloaded from Sun (remember, each set of instructions can be different in small
ways), and then decide how best to meet your requirements. Whatever you decide, be sure to
document your decision in your design decisions document, as well as in the source code
itself.

To help illustrate the various possibilities, let’s use the following base code:

1 import java.util.logging.*;
2
3 public class InterruptedExceptionExample extends Thread {
4 static Logger log = Logger.getAnonymousLogger();
5
6 public static void main(String[] args) throws InterruptedException {
7 InterruptedExceptionExample iee = new InterruptedExceptionExample();
8 iee.start();
9
10 while (iee.isAlive()) {
11 log.info("main: waiting 5 seconds for other thread to finish");
12 iee.join(5000);
13
14 if (iee.isAlive()) {
15 log.info("main: interrupting other thread.");
16 iee.interrupt();
17 }
18 }
19 log.info("main: finished");
20 }
21
22 public void run() {
23 try {
24 getLock();
25 } catch (LockAttemptFailedException dle) {
26 log.log(Level.WARNING, "Lock attempt failed", dle);
27 }
28 }
29
30 public void getLock() throws LockAttemptFailedException {
31 // try to get some resource that we will presumably never get.
32 for (;;) {
33 try {

CHAPTER 5 ■ THE DVDDATABASE CLASS126

34 synchronized (InterruptedExceptionExample.class) {
35 log.info(getName() + ": waiting for some resource.");
36 InterruptedExceptionExample.class.wait();
37 }
38 } catch (InterruptedException ie) {
39 // this is the bit we are interested in
40 }
41 }
42 }
43
44 public class LockAttemptFailedException extends Exception {
45 public LockAttemptFailedException(String msg, Throwable t) {
46 super(msg, t);
47 }
48 }
49 }

■Note When we call join in line 12 there is the risk that an InterruptedException may be thrown.
Handling this exception is not relevant to our discussion point, so we have decided to allow the main
method to throw the exception as specified in line 6.

As noted in the comment at line 31, the getLock method needs something to happen
before it will complete—but for the purposes of this example we have not declared what that
will be. If this were a section of code from a real-life application it might be waiting for a lock
to be released, or it might be waiting for a resource to become free. All we care about for this
example is that, regardless of what we were waiting for, it won’t ever happen.

The important point of this example code is that we are calling the wait method in line 36,
and the wait method can throw an InterruptedException; however, the signature for the
getLock method states that only the LockAttemptFailedException (which does not extend
InterruptedException) will be thrown. So we must do something with the InterruptedException
that we are catching at line 38.

■Tip As shown in lines 34 and 36, every class can itself be used as the object to be synchronized on. You
do not even need an instance of the class—you can just use the class literal. In most cases, you will find
that there are specific objects you wish to synchronize on; however, if there are no apparent objects, do not
automatically assume that you are going to have to create an object just so you can use it as a mutual exclu-
sion lock (a lock that mutually excludes access to all other threads as long as one thread owns the lock; also
known as a mutex). Conversely, don’t use this feature where it doesn’t apply—if you want to make explicit
what a particular mutex is being used for, it might be worthwhile creating an Object with a suitably descrip-
tive name just to make the code clear. Making these sorts of decisions is all a part of being a developer.

CHAPTER 5 ■ THE DVDDATABASE CLASS 127

Swallowing the Exception
In the code shown in the previous section, lines 38 through 40 do absolutely nothing with the
exception. This is commonly referred to as “swallowing the exception.” Once those lines have
completed, it is as though your code has swallowed the exception whole: there is no trace of it
left for anyone to see.

While the Java language will allow you to get away with doing this, it is considered
extremely poor programming, and will almost certainly cost you some marks in your assign-
ment (and cause heated discussions between yourself and whoever has to maintain your code
at work). An exception is, as its name states, something that should not have happened. But
by swallowing the exception, we have not allowed for any handling of this event, nor have we
provided any form of tracking down what went wrong later.

If we were to run this program now, we would find that the main method could never
complete. This is shown in Figure 5-1.

Figure 5-1. Swallowing the exception

Logging the Exception
We might decide that for business reasons the exception should be ignored. For example, a
business rule might state that for audit reasons transactions cannot be canceled—they must
be processed fully, then a new transaction created to undo the first transaction (this is a com-
mon business requirement). In such a case, we might decide to ignore the fact that the client
is trying to interrupt us, and just continue trying to gain the lock.

In such a case, though, we do not want to just swallow the exception—that would leave us
with no evidence that the client is trying to interrupt the thread. So what we should do is some
form of logging. Here are some examples:

38 } catch (InterruptedException ie) {
39 log.info("Ignoring InterruptedException in transaction");
40 }

The output from this change is shown in Figure 5-2.

CHAPTER 5 ■ THE DVDDATABASE CLASS128

Figure 5-2. Extremely simplistic logging

However, this does not tell us much about what has happened but only that we have
decided to ignore the exception. In this particular case, it is fairly easy to see which line caught
that particular exception, and what it did with it. But what if we were running on a server, and
the getLock method could have been called from any one of a number of different methods?
In such a case, a stack trace might be useful to see why our getLock method was called. So we
could use more sophisticated logging, as shown in the following code and in Figure 5-3:

38 } catch (InterruptedException ie) {
39a log.log(Level.WARNING,
39b "Ignoring InterruptedException in transaction",
39c ie);
40 }

Figure 5-3. More detailed logging

CHAPTER 5 ■ THE DVDDATABASE CLASS 129

If you decided that your method will ignore interruptions, then it would be wise to men-
tion this in your Javadoc comments so that users are aware of this—and don’t phone you in
the middle of the night asking why they can’t interrupt a thread they created.

Wrapping the Exception Within an Allowed Exception
In most cases exceptions cannot be as easily ignored as in the last example. If an IOException
occurs while writing to file, you cannot just ignore it or you will end up with corrupted data.
We created a fictitious business rule that allowed us to ignore the InterruptedException in the
last example, but if that business rule did not exist, then clients may have a right to expect that
they can interrupt their own threads.

One way to handle this is to wrap the caught exception within the exception we are
allowed to throw, as shown in the next bit of code. The output from running this is shown
in Figure 5-4.

38 } catch (InterruptedException ie) {
39a throw new LockAttemptFailedException(
39b "InterruptedException in getLock",
39c ie);
40 }

Figure 5-4. Wrapping the exception within an allowed exception

As can be seen in Figure 5-4, we received a warning message, telling us that we had a
LockAttemptFailedException with the expected stack trace. This log message came from
our LockAttemptFailedException handler at line 26. More importantly, though, the log also
contains lines starting with Caused by:. If you look at these lines, you will see that they are the
same lines that were output in Figure 5-3. By wrapping the InterruptedException inside the
LockAttemptFailedException, we ensured that we still have the complete stack trace from the
InterruptedException.

CHAPTER 5 ■ THE DVDDATABASE CLASS130

■Caution You need to consider carefully whether it will make sense to wrap an exception in this way. If
the only exception you are allowed to throw is a RecordNotFoundException, you might consider that it is
reasonable to wrap an EOFException within your RecordNotFoundException—if you got to the end of
the file without finding the record, then it might be a reasonable assumption. However, it might also be an
invalid assumption—if you received an EOFException halfway through reading a record, then your file may
be corrupted, and implying that the record cannot be found might be misleading at best, or cause further
problems and corruption. Similarly, it would probably not make sense to wrap an InterruptedException
within a RecordNotFoundException—if you were waiting on a lock for the record, then presumably the
record does exist.

Wrapping the Exception Within a RuntimeException
There are cases where wrapping the caught exception within a declared exception does not
make sense, as discussed in the previous note. However, we may not be able to add a new
checked exception to the method signature since this may stop other programs from working.
This is especially true when writing a class that implements an interface—another program-
mer could write their program to use your class based on the published interface, and have
their program fail in unexpected ways if you change the interface—or they may find that
recompiling their code no longer works. Either way, you are probably going to become
unpopular very quickly.

RuntimeException, and subclasses of RuntimeException, do not need to be declared in
method signatures, nor do they need to be caught. So it is possible to wrap the caught excep-
tion within a RuntimeException as shown in the following code:

38 } catch (InterruptedException ie) {
39a throw new RuntimeException (
39b "InterruptedException in getLock",
39c ie);
40 }

Unfortunately, if you do this it becomes difficult for the user of your class to catch the
exception and handle it properly. Consider the following code, which demonstrates a poor
way to handle it:

22 public void run() {
23 try {
24 getLock();
25a } catch (RuntimeException re) {
25b log.log(Level.WARNING, "Caught the interrupt", re);
25c } catch (LockAttemptFailedExceptiondle) {
26 log.log(Level.WARNING, "Lock attempt failed", dle);
27 }
28 }

CHAPTER 5 ■ THE DVDDATABASE CLASS 131

If we try and catch RuntimeException, we risk catching a whole lot of subclasses of
RuntimeException that we really probably don’t want to handle in this exception block, where
we’re only trying to handle the “interrupted” exception. For example, let’s assume that some-
where in the getLock method, something throws a NullPointerException. NullPointerException
is a subclass of RuntimeException, so it will be caught in line 25a. However, we do not handle
NullPointerException, so it will not be handled appropriately. To ensure that we only handle
the one RuntimeException that we are really interested in, we have to look at the cause of the
RuntimeException, and if it is not the RuntimeException we are interested in, we should rethrow
the exception.

22 public void run() {
23 try {
24 getLock();
25a } catch (RuntimeException re) {
25b if (re.getCause() instanceof InterruptedException) {
25c log.log(Level.WARNING, "Caught the interrupt", re);
25d } else {
25e throw re;
25f }
25g } catch (LockAttemptFailedException dle) {
26 log.log(Level.WARNING, "Lock attempt failed", dle);
27 }
28 }

If we make this change and run the program, we will see the now familiar output as
shown in Figure 5-5.

Figure 5-5. Wrapping the exception within a RuntimeException

Wrapping the Exception Within a Subclass of RuntimeException
We needed to add five lines of code to handle the RuntimeException, instead of the normal two
lines we would have added for a checked exception, significantly adding to our code complexity.

CHAPTER 5 ■ THE DVDDATABASE CLASS132

However, as stated previously, subclasses of RuntimeException do not need to be declared
or caught. So a better solution is to create a new exception that is a subclass of RuntimeException,
similar to this:

public class UserInterruptionException extends RuntimeException {
public UserInterruptionException(String msg, Throwable t) {

super(msg, t);
}

}

We can then use this in exactly the same way that we had used the RuntimeException in
our previous example, namely

38 } catch (InterruptedException ie) {
39a throw new UserInterruptionException(
39b "InterruptedException in getLock",
39c ie);
40 }

However, our code for catching the exception returns to being nice and simple:

22 public void run() {
23 try {
24 getLock();
25a } catch (UserInterruptionException uie) {
25b log.log(Level.WARNING, "Caught the interrupt", uie);
25c } catch (LockAttemptFailedException dle) {
26 log.log(Level.WARNING, "Lock attempt failed", dle);
27 }
28 }

■Tip If you are creating a subclass of RuntimeException that you do not expect to be caught, then it is
considered standard programming practice not to declare it in the method signature. However, if you are
trying to work around a limitation of a provided interface, then you might want to declare it in your method
signature and in your Javadoc documentation. Many common IDEs will show the exceptions a method will
throw when it is entered, and some will even create standard catch blocks based on method signatures. In
such cases, listing the subclass of RuntimeException will help your users.

If you do list the RuntimeException in the method signature and/or the Javadoc, it would be wise to
add a code comment stating why you did this for the benefit of the person who is maintaining your code. In
the specific case of the Sun assignment, you might also want to consider putting a comment in the Javadoc
itself stating why you did it.

The big downside of using RuntimeExceptions and its subclasses is that they do not need
to be caught. If a programmer left out the additions to lines 25a–c, the program will still run
fine, but a RuntimeException will propagate up the stack to the top of the thread. This is shown
in Figure 5-6.

CHAPTER 5 ■ THE DVDDATABASE CLASS 133

Figure 5-6. RuntimeException propagating to the top of the thread stack

■Caution It is important to realize that the RuntimeException propagates to the top of the stack for the
thread it is running in, not for the entire JVM. As can be seen in Figure 5-6, even after the RuntimeException
has been thrown, and Thread-1 has died, the main thread is still operational. This has important ramifica-
tions when developing your server code—if you throw a RuntimeException and don’t catch it, it is
possible that your server will still be running while being unable to process any requests.

The DvdDatabase Class: A Façade
Before building any class, it is worthwhile considering what it is that the class does. The same
applies to methods—for each method, try to determine just what the method does. If you find
yourself using the word “and” when describing a class or method, there is the possibility that
the class or method is trying to be responsible for more than it should. You might then con-
sider whether it makes sense to break a class or method into two or more classes or methods;
it might make your code a bit more manageable and maintainable.

In the case of our DvdDatabase class, we have been told in our instructions that this is the
public class that all other classes will use if they want to access the data file. However, when
we look at what the DvdDatabase class provides, we find that there are two separate functions:

1. Physically accessing the data

2. Providing logical record locking

If we tried to describe what this class does in a short sentence, we would probably have
to use the word “and”: “This class provides physical access to the data and provides logical
record locking.”

We could provide both these functions in one class, but if we split them out, then the code
will be more maintainable later. If you need to work on a method that physically accesses the
database, you will be able to go to a class that only deals with accessing the database; you will
not have to wade through all the logical locking code.

CHAPTER 5 ■ THE DVDDATABASE CLASS134

There is a design pattern that describes what we are trying to achieve here: the Façade
pattern. The English meaning of the word “façade” is the front face of something, typically a
building. So we might refer to the front of a shop or building as its façade: the view of the
building that the average user gets to see. In the same way, we can think of the DvdDatabase as
the front face, or façade, shown to external users, hiding the classes that external users may
not need to know about.

■Note Although using a façade does not stop us from using the word “and” in our description of what the
class does, it does change the class itself so that the faced class is not providing all the functionality; it is
handing off to the other classes behind the scene.

Our DvdDatabase class is therefore very simple. We start by creating references to the
classes that do the real work:

package sampleproject.db;

import java.io.FileNotFoundException;
import java.io.IOException;
import java.util.Collection;
import java.util.List;
import java.util.regex.PatternSyntaxException;

public class DvdDatabase implements DBClient {
private static ReservationsManager reservationsManager

= new ReservationsManager();

private static DVDFileAccess database = null;

public DvdDatabase() throws FileNotFoundException, IOException {
this(System.getProperty("user.dir"));

}

public DvdDatabase(String dbPath) throws FileNotFoundException, IOException {
database = new DvdFileAccess(dbPath);

}

We now have to define our constructors for DvdDatabase. Since the instructions for our
sample project do not specify how the DvdDatabase constructor should appear, we have some
flexibility. This prompts two primary concerns:

1. What parameters should we use for the constructor?

2. What exceptions, if any, should be thrown from the constructors?

Regarding the parameters, we have to consider how this class will be used. We know that
it might be used in a stand-alone application, and for that purpose it might be handy not to

CHAPTER 5 ■ THE DVDDATABASE CLASS 135

provide any parameters at all, and assume that the data file is in the current working directory.
However, we also know that this class will be used in a server environment, and in such cases,
it is common for the data file to reside in a different directory (and sometimes a different hard
drive) than the application. In this case, we would need to be able to specify the directory
where the data file can be found.

The first constructor is just a special case of the second constructor, and as such we might
be tempted to leave it out. We should make a decision on whether it will be used often. If so,
adding the constructor will make our users happy. If not, we can leave the constructor out,
thereby simplifying our code, and in the rare cases where a user wants to use a database in the
current working directory they can call the constructor that takes a directory as a parameter
with the current working directory (System.getProperties("user.dir")) as the parameter.

We have decided to leave both constructors in the class, primarily to demonstrate the
technique of having one constructor call the other constructor. This is a very common way of
handling overloaded methods and constructors, as it ensures that the same business logic is
executed no matter which version gets called.

Our constructors are going to open the data file, which means we could get a
FileNotFoundException if the file is not in the specified directory, and we could get an
IOException if there is a problem with opening the data file (for example, if we don’t have
adequate permissions). We’re faced with the decision of handling them within our construc-
tor, or passing them back to the calling class.

Another way of thinking about this issue is, what can we realistically do if we get either of
those exceptions? About the only thing we can do within our DvdDatabase class is try the oper-
ation again, but if the file does not exist when we first look for it, is it likely to be there the
second time we look for it? We cannot simply log these exceptions and ignore them; then the
user will think that the DvdDatabase class was instantiated correctly and is ready for use when
it isn’t. So we have chosen to pass these exceptions back to the class that is constructing the
DvdDatabase.

■Tip To keep this project simple, we have elected to rethrow the FileNotFoundException and
IOException, but in doing this we have implicitly declared that we are dealing with a file-based data store.
A future enhancement might be to convert this backing store to a SQL database, in which case these excep-
tions would no longer apply. A better solution might be to create our own DatabaseFailureException, and
wrap FileNotFoundException and IOException in it where necessary. This way, if we later change to a
SQL database, we could similarly wrap the SQL exceptions within the same DatabaseFailureException,
and the client code should still continue to work. Doing this is left as an exercise for the reader.

For each method in our DBClient interface, we create a method that calls the appropriate
method in our worker classes:

CHAPTER 5 ■ THE DVDDATABASE CLASS136

public boolean addDVD(DVD dvd) throws IOException {
return database.addDVD(dvd);

}

public DVD getDVD(String upc) throws IOException {
return database.getDVD(upc);

}

public boolean removeDVD(String upc) throws IOException {
return database.removeDVD(upc);

}

public boolean modifyDVD(DVD dvd) throws IOException {
return database.modifyDVD(dvd);

}

public List<DVD> getDVDs() throws IOException {
return database.getDVDs();

}

public Collection<DVD> find(String query)
throws IOException, PatternSyntaxException {

return database.find(query);
}

public boolean reserveDVD(String upc) throws InterruptedException {
return reservationsManager.reserveDVD(upc, this);

}

public void releaseDVD(String upc) {
reservationsManager.releaseDVD(upc, this);

}
}

Accessing the Data: The DvdFileAccess Class
We will present the DvdFileAccess class section by section, rather than trying to present all
the code at once. Once again, the code is available online at the Apress web site in the Source
Code section.

Since there is only one physical file on disk, it is tempting to consider making the
DvdFileAccess class a singleton—coding the class in such a way that only one instance
of DvdFileAccess can exist at any given time. However, a lot of work can be performed in

CHAPTER 5 ■ THE DVDDATABASE CLASS 137

parallel if multiple clients are working on a multiple-CPU system, for example, converting
between a DVD value object and the bytes on file, or searching through the data file. In
addition, if we were to make the DvdFileAccess class a singleton, any class that uses the
DvdFileAccess class would have to be coded differently than if it is a standard class—if we
were to later decide that this same class can be used to process multiple data files (with some
simple modifications), we would have to modify all the classes that use DvdFileAccess. There-
fore, this class is not a singleton.

As mentioned earlier, DvdDatabase is the façade through which all other classes should
access the data. Therefore, no other classes should call DvdFileAccess directly. To ensure this,
default access is set on the class itself—only classes within the sampleproject.db package can
access this class—as shown in line 31. As mentioned earlier, line numbers are not contiguous,
as source code comments have been removed.

1 package sampleproject.db;
2
3 import java.io.*;
4 import java.util.*;
5 import java.util.concurrent.locks.*;
6 import java.util.logging.*;
7 import java.util.regex.*;
..
31 class DvdFileAccess {
..
35 private static final String DATABASE_NAME = "dvd_db.dvd";
..
41 private Logger log = Logger.getLogger("sampleproject.db");
..
46 private static RandomAccessFile database = null;
..
51 private static Map<String, Long> recordNumbers
52 = new HashMap<String, Long>();

While most of the fields listed use the standard format from all previous versions of the
JDK, the recordNumbers collection uses the new generics declarations so that the compiler can
check that we are using the generic collection in a type-safe manner. This almost removes the
risk of us getting a ClassCastException at runtime. We will discuss the use of this particular
variable in the section following the class constructors.

58 private static ReadWriteLock recordNumbersLock
59 = new ReentrantReadWriteLock();
..
66 private static String emptyRecordString = null;
..
71 private static String dbPath = null;
..
77 static {
78 emptyRecordString = new String(new byte[DVD.RECORD_LENGTH]);
79 }

CHAPTER 5 ■ THE DVDDATABASE CLASS138

When writing a record to file, we could write each field separately, filling with spaces if
required, or we could write the entire record in one operation.

Since a disk drive is constantly spinning when doing operations, writing field by field
would be considerably slower than writing the entire record at once. This is because the
disk would have continued spinning between each call to write the field, and there would be a
small delay while the disk heads return to the correct location for writing (such an operation
would be handled by the drive controller, but it would still slow down this operation).
Although the delays caused by writing individual fields to a file would be small, they do exist,
and they would be a bottleneck in a multiuser environment since only one user can ever be
writing to the disk at any given time. We have, therefore, decided to write the entire record
at once.

In the section describing the persistDvd method, we will show one method of building a
record before writing it to disk. For speed and simplicity, we have decided to build a record by
starting with a StringBuilder of known length, and replacing the bytes within it with the con-
tents of the DVD fields. Since we want the StringBuilder to be a known length and contain all
nulls before we start inserting our field data, we have created an emptyRecordString that can
be used in the constructor of our StringBuilder to quickly create a known starting point.
Since the emptyRecordString is a static field, it is constructed in the static initializer shown
earlier.

90 public DvdFileAccess(String suppliedDbPath)
91 throws FileNotFoundException, IOException {
92 log.entering("DvdFileAccess", "getDvdFileAccess", suppliedDbPath);
93 if (dbPath == null) {
94 database = new RandomAccessFile(
95 suppliedDbPath + File.separator + DATABASE_NAME, "rw");
96 getDvdList(true);
97 dbPath = suppliedDbPath;
98 log.fine("database opened and file location table populated");
99 } else if (dbPath != suppliedDbPath) {
100 log.warning("Only one database location can be specified. "
101 + "Current location: " + dbPath + " "
102 + "Ignoring specified path: " + suppliedDbPath);
103 }
104 log.exiting("DvdFileAccess", "DvdFileAccess");
105 }

Although the DvdFileAccess class is not a singleton, it does not make sense to rerun the
constructor code each time the constructor is called. Setting the database field is one example
of code we do not want run multiple times—the first time the constructor is called, the data-
base field will be set to the RandomAccessFile for our data file, and after that there is no need or
desire to reset it. As shown in line 93, we check whether the database path has already been
configured, and if so, we do not perform initialization logic a second time. However, there is a
risk that somebody may call this constructor multiple times with different paths; if they do
this, a warning message will be logged stating that the newer path is being ignored.

We as developers must always be aware of how well our code performs. While it does not
make sense to agonize over every line of code trying to make it perform better, we should
attempt to spot common areas where code may perform badly.

CHAPTER 5 ■ THE DVDDATABASE CLASS 139

■Caution If it has not already happened, then one day you may be asked to improve the performance of
a class. While it can be useful to read through the code manually, looking for known problem areas, it is
always recommended that you use a profiler—a program that will attach to your program while it is running,
and tell you where your program is spending most of its time. When you know which methods take the most
time to complete, you can look at improving their performance, rather than trying to fix random methods.
The information provided here about improving the performance of our DvdDatabase class is designed to
give us discussion points into several sections of the class and JDK 5. They are not necessarily the only
(or even the best) places for us to concentrate on improving our programs.

Reading and writing from the disk is one of the slowest operations we have to deal with.
We may also have multiple users all trying to access different records; with only one data file,
they must queue up to access the file, effectively creating a bottleneck.

When reading or writing a record, we can speed up the operation if we can go straight to
the location in the file where the record is stored. If our primary key was the record number,
we would be able to calculate the file position on the fly based on the record number multi-
plied by the size of the record. However, our application is based on using the UPC string as
the primary key, so we need a way to map UPCs to the location in the file. The only way to do
this is to read the data file at least once, storing UPCs and file locations in the map as we go.
We could create a method just to do this for us, but the interface we must implement already
has a public method that we must implement that will read the entire file and return a List of
the DVDs in that file, so we can piggyback that logic to populate our map.

However, there is a danger in doing this. Our constructor is relying on this method to pop-
ulate a needed field. But it is possible for the getDVDs method to be overridden, which would
result in our field not being populated. So we should either make this method final (which
will stop any other class from overriding it), or call a private method that does the same func-
tion (private methods are similar to final methods, since they cannot be overridden, because
no other class can even see them).

The getDVDs method is a business method. That is, we only created it because the busi-
ness requirements stated that we must—we could easily write our client application without
it. Likewise, although our implementation of it reads the entire database file from end to end,
it would be possible to implement it differently, such that it does not access the file directly
but rather calls other public methods (such as the getDVD method). Given this, it is possible
that somebody might later decide to override our implementation, so it would not be appro-
priate for us to make this method final.

However, the getDVDs method is one of the methods that we must make public according
to our provided interface.

Fortunately, we have a simple workaround for this dilemma: create a private method that
does the work, and have the getDVDs method call it. That way, if somebody later overrides get-
DVDs, our private method will still exist in the background populating our required map.

This is still not quite a perfect solution, though. In using this method to populate our
map, we will be creating the list for no purpose and discarding it immediately. Normally creat-
ing a collection and then destroying it without using it would be a bad thing, but in this case
it is more than justified. It is only the constructor that wastes this List, and the alternative is
to have a method that is almost identical but exists only to populate our map. Here is our

CHAPTER 5 ■ THE DVDDATABASE CLASS140

method that reads all the records from file, and along the way populates our map of UPC
numbers to file locations, along with the getDVDs method that calls it:

113 public List<DVD> getDvds() throws IOException {
114 return getDvdList(false);
115 }

■Note The getDvds method in the DvdFileAccess class uses a different naming convention from the
getDVDs method specified in the DBClient interface. We are able to do this because DvdFileAccess is the
class behind the façade—it does not implement DBClient. We have made a design decision to use the Sun
code conventions for the method names in our nonpublic classes, even though this means that they do not
match perfectly with the method names in the public classes and interfaces. There is a trade-off here—a
programmer working with the DvdFileAccess class may appreciate working with class and method names
that conform to one convention, but changing the code convention between the public class and the nonpub-
lic class could also be slightly confusing for a junior programmer.

130 private List<DVD> getDvdList(boolean buildRecordNumbers)
131 throws IOException {
132 log.entering("DvdFileAccess", "getDvdList", buildRecordNumbers);
133 List<DVD> returnValue = new ArrayList<DVD>();
134
135 if (buildRecordNumbers) {
136 recordNumbersLock.writeLock().lock();
137 }
138
139 try {
140 for (long locationInFile = 0;
141 locationInFile < database.length();
142 locationInFile += DVD.RECORD_LENGTH) {
143 DVD dvd = retrieveDvd(locationInFile);
144 log.fine("retrieving record at " + locationInFile);
145 if (dvd == null) {
146 log.fine("found deleted record ");
147 } else {
148 log.fine("found record " + dvd.getUPC());
149 if (buildRecordNumbers) {
150 recordNumbers.put(dvd.getUPC(), locationInFile);
151 }
152 returnValue.add(dvd);
153 }
154 }
155 } finally {
156 if (buildRecordNumbers) {
157 recordNumbersLock.writeLock().unlock();

CHAPTER 5 ■ THE DVDDATABASE CLASS 141

158 }
159 }
160
161 log.exiting("DvdFileAccess", "getDvdList");
162 return returnValue;
163 }

As with the file itself, the map of UPC numbers to file locations is a single object used by
many threads. However, in most cases, the threads will only be reading from the recordNumbers
map—it will be much rarer for a method to update this map. Prior to JDK 5, we would have
synchronized all access to the recordNumbers map, which would have meant that only one
thread could ever access it at any given time. With JDK 5 we now have ReadWriteLocks that
allow for greater concurrency. Instead of synchronizing code, we encapsulate the code inside
calls to lock and unlock methods. Multiple threads can own a read lock on a single object at
any given time, but only one thread can own a write lock at any given time.

If we are running this from the constructor, then we will be updating the recordNumbers
map, so we will not want any other thread to be accessing the map in the meantime—a write
lock will ensure this for us. This is set in line 136, and released in the finally block at line 157.
It is important to ensure that the lock is released even if an exception is thrown; hence the call
to unlock is in the finally block to ensure it is always run. This is recommended whenever you
are using the new locking classes.

Line 150 adds our UPC string and the location in the file into the map. Using generics and
autoboxing (introduced in Chapter 2) allows us to keep this code simple, while simultaneously
ensuring that invalid data is not entered into our recordNumbers map. At the very start of the
class we declared that the recordNumbers could only contain a String as the key and a Long as
the value with the following code:

51 private static Map<String, Long> recordNumbers
52 = new HashMap<String, Long>();

The compiler will then use this to validate at compile time that we are storing Strings as
the key and a Long as the value within this Map. Using autoboxing allows us to add a String and
a primitive long to the Map, knowing that Java will automatically convert the primitive long to
the wrapper Long class required for the Map.

Prior to JDK 5, there was no way for the compiler to validate that the type of data we were
adding to a collection was the type of data we actually wanted to allow into the collection. You
will now get an error message if you attempt to add the wrong type of data to our collection.
If you would like to see an example of how this works, try changing line 150 as follows:

recordNumbers.put(dvd.getUPC(), (int) locationInFile);

The JDK 5 Java compiler will now produce an error message, because the type of data we
are potentially adding to the Map no longer matches our declared allowable contents:

sampleproject\db\DvdFileAccess.java:150: put(java.lang.String,java.lang.Long)
in java.util.Map<java.lang.String,java.lang.Long> cannot be applied to
(java.lang.String,int)

recordNumbers.put(dvd.getUPC(), (int) locationInFile);
^

1 error

CHAPTER 5 ■ THE DVDDATABASE CLASS142

It is important to realize that this is a compile-time validation only—it is still possible to
provide invalid data at runtime, resulting in a ClassCastException.

Line 143 calls a private method to read the DVD record based a location in a file. This
method is also used by our public method that will read a DVD based on a UPC number.
We will show the public getDVD method first:

172 public DVD getDvd(String upc) throws IOException {
173 log.entering("DvdFileAccess", "getDvd", upc);
174
175 recordNumbersLock.readLock().lock();
176 try {
177 // Determine where in the file this record should be.
178 // note: if this is null the record does not exist
179 Long locationInFile = recordNumbers.get(upc);
180 return (locationInFile != null) ? retrieveDvd(locationInFile)
181 : null;
182 } finally {
183 recordNumbersLock.readLock().unlock();
184 log.exiting("DvdFileAccess", "getDvd");
185 }
186 }

Line 175 requests a read lock on our mutex for the recordNumbers map. Remember that
many threads can be operating simultaneously, so asking for a read lock allows the other
threads to also gain read locks and work with the recordNumbers map.

If the UPC requested does not exist, null will be returned to the calling method, as
shown in line 181. Otherwise, the retrieveDvd method will be called in line 180 and the
results of that call will be returned to the calling method. If the retrieveDvd method throws
an IOException or a RuntimeException, it is important to ensure that we do not leave the
recordNumbersLock mutex locked, so we have put the call to unlock in the finally block at
line 183. It is important to remember that the finally block is still executed, even though the
return statement is at line 180.

196 private DVD retrieveDvd(long locationInFile) throws IOException {
197 log.entering("DvdFileAccess", "retrieveDvd", locationInFile);
198 final byte[] input = new byte[DVD.RECORD_LENGTH];
...
202 synchronized(database) {
203 database.seek(locationInFile);
204 database.readFully(input);
205 }

Multiple threads work with the recordNumbers map, but the majority of them will only be
reading the map, and multiple reads can occur simultaneously without affecting the other
threads. Therefore, access to the recordNumbers map is a perfect candidate for a ReadWriteLock.

However, in the case of reading from the data file, one thread could affect another thread
if they were allowed to operate simultaneously. When reading from the data file, we need to
perform two steps: move to the correct location in the file, then read the entire record. It is
very important that these two operations behave as a single atomic operation; otherwise, if

CHAPTER 5 ■ THE DVDDATABASE CLASS 143

the position in the file was changed by another thread between lines 203 and 204 we would
end up reading from the wrong location in the file. Using a ReadWriteLock would be counter-
productive in this case, as all operations would need a WriteLock, and the extra overhead of
confirming that there are no outstanding ReadLocks would result in poorer performance. A much
better solution is to use a standard synchronized block, as shown in lines 202 through 205.

Since a synchronized block will block any other thread from accessing the data file, we
want the block to be as small as possible to reduce the blocking time. Therefore, the synchro-
nized block only lasts until the record is read fully. It is important to note that the read method
does not guarantee that an entire record will be read but only that at least one byte will be
read. It is therefore important to ensure that an entire record is read, which we achieved by
calling readFully.

Having read an entire record into an array of bytes, we can extract the various strings for
each field from that array.

211 class RecordFieldReader {
212 int offset = 0;
213 String read(int length) throws UnsupportedEncodingException {
214 String str = new String(input, offset, length, "UTF-8");
215 offset += length;
216 return str.trim();
217 }
218 }
219
220 RecordFieldReader readRecord = new RecordFieldReader();
221 String upc = readRecord.read(DVD.UPC_LENGTH);
222 String name = readRecord.read(DVD.NAME_LENGTH);
223 String composer = readRecord.read(DVD.COMPOSER_LENGTH);
224 String director = readRecord.read(DVD.DIRECTOR_LENGTH);
225 String leadActor = readRecord.read(DVD.LEAD_ACTOR_LENGTH);
226 String supportingActor = readRecord.read(DVD.SUPPORTING_ACTOR_LENGTH);
227 String year = readRecord.read(DVD.YEAR_LENGTH);
228 int copy = Integer.parseInt(readRecord.read(DVD.COPIES_LENGTH));
229
230 DVD returnValue = ("DELETED".equals(upc))
231 ? null
232 : new DVD(upc, name, composer, director, leadActor,
233 supportingActor, year, copy);
234
235 log.exiting("DvdFileAccess", "retrieveDvd", returnValue);
236 return returnValue;
237 }

Finally, if the record is not marked as being deleted, we create a new DVD value object
and return it. While creating the value object, we remove any trailing spaces or nulls from
the field.

Once we have populated the recordNumbers map, it rarely needs to be changed. The only
time we need to modify it is when a record is added or deleted. The addDVD method calls a pri-
vate persistDVD method, which is also used when we modify a DVD record.

CHAPTER 5 ■ THE DVDDATABASE CLASS144

246 public boolean addDvd(DVD dvd) throws IOException {
247 return persistDvd(dvd, true);
248 }

We start the persistDVD method by seeing if the provided UPC is in our map of known
UPCs, and verifying whether we are creating or modifying the DVD record. If we are creating a
record the UPC must not be in our map. If we are modifying the DVD, then the UPC must be
in our map. In any other case we cannot proceed, so we return false to indicate that the opera-
tion failed. Since we may be potentially adding the DVD’s UPC to our map of known UPCs, we
need to obtain a write lock on the recordNumbersLock.

■Note Normally it is a bad idea to use return values to indicate success or failure of a call to a method—
we should be able to throw an exception if we cannot continue. An exception would provide greater detail of
what went wrong, and more importantly what the stack trace was at the time. However, the DBClient inter-
face has specified that the addDVD, modifyDVD, and removeDVD methods must return a Boolean to indicate
success or failure, so we must follow the dictates of the interface or we risk causing other programmer’s
code to fail. As with the assignment you get from Sun, we have simulated an interface where the reasons for
the methods, parameters, return values, and exceptions have not been specified.

Leaving this method without releasing our write lock could be disastrous: no other thread
would ever be able to gain a read or a write lock on recordNumbersLock, effectively rendering
most of our methods inoperable. To guard against this, immediately after gaining the write
lock we enter a try … finally block, and release the lock in the finally clause at line 357.

338 private boolean persistDvd(DVD dvd, boolean create) throws IOException {
339 log.entering("DvdFileAccess", "persistDvd", dvd);
340
341 // Perform as many operations as we can outside of the synchronized
342 // block to improve concurrent operations.
343 Long offset = 0L;
344 recordNumbersLock.writeLock().lock();
345 try {
346 offset = recordNumbers.get(dvd.getUPC());
347 if (create == true && offset == null) {
348 log.info("creating record " + dvd.getUPC());
349 offset = database.length();
350 recordNumbers.put(dvd.getUPC(), offset);
351 } else if (create == false && offset != null) {
352 log.info("updating existing record " + dvd.getUPC());
353 } else {
354 return false;
355 }
356 } finally {
357 recordNumbersLock.writeLock().unlock();
358 }

CHAPTER 5 ■ THE DVDDATABASE CLASS 145

The persistDVD method has a private StringBuilder variable that we will use to create a
representation of a complete record. Prior to JDK 5, we might have used a StringBuffer to
build this; however, the StringBuffer is internally synchronized to make it thread safe. Since
the variable we will be using is a method variable, not a class variable, we do not need the syn-
chronization. The StringBuilder class will therefore provide us with better performance.

Since each record is a fixed length, it is easy to start with a blank record of the correct
length, then replace the blanks with the field data. We have a static empty field that was
declared in line 66 and initialized in lines 77–79 as described earlier in the chapter. This
makes it easy for us to create a StringBuilder of the correct length and contents in line 360:

360 final StringBuilder out = new StringBuilder(emptyRecordString);

Having created our variable, we will use StringBuilder’s replace method to put the field
data in the correct locations within the record field. By making a utility inner class we can save
replicating the code:

362 class RecordFieldWriter {
363 int currentPosition = 0;
364 void write(String data, int length) {
365 out.replace(currentPosition,
366 currentPosition + data.length(),
367 data);
368 currentPosition += length;
369 }
370 }
371 RecordFieldWriter writeRecord = new RecordFieldWriter();

We can then use our utility inner class to convert the DVD record to the StringBuilder
equivalent:

373 writeRecord.write(dvd.getUPC(), DVD.UPC_LENGTH);
374 writeRecord.write(dvd.getName(), DVD.NAME_LENGTH);
375 writeRecord.write(dvd.getComposer(), DVD.COMPOSER_LENGTH);
376 writeRecord.write(dvd.getDirector(), DVD.DIRECTOR_LENGTH);
377 writeRecord.write(dvd.getLeadActor(), DVD.LEAD_ACTOR_LENGTH);
378 writeRecord.write(dvd.getSupportingActor(),
379 DVD.SUPPORTING_ACTOR_LENGTH);
380 writeRecord.write(dvd.getYear(), DVD.YEAR_LENGTH);
381 writeRecord.write("" + dvd.getCopy(), DVD.COPIES_LENGTH);

■Caution When working on your Sun assignment you must make the design decisions that make sense
to you and that you are willing to defend when you go to do the exam portion of the certification. This can
(and in some cases should) mean that you may make design decisions that contradict our design decisions—
we are, after all, working on different assignments with different requirements. Do not be afraid to consider
other options. A good place to discuss one of our design decisions or one of your design decisions is
JavaRanch (http://www.javaranch.com).

CHAPTER 5 ■ THE DVDDATABASE CLASS146

Finally we write the record to file, and return true to show that the record was persisted
to file.

384 // now that we have everything ready to go, we can go into our
385 // synchronized block & perform our operations as quickly as possible
386 // ensuring that we block other users for as little time as possible.
387
388 synchronized(database) {
389 database.seek(offset);
390 database.write(out.toString().getBytes());
391 }
392
393 log.exiting("DvdFileAccess", "persistDvd", persisted);
394 return true;
395 }

Most of the remaining methods do not need explaining. However, we will end with the
find method, which shows the enhanced for loop, as well as using the regular expressions
classes introduced in JDK 1.4.

311 public Collection<DVD> find(String query)
312 throws IOException, PatternSyntaxException {
313 log.entering("DvdFileAccess", "find", query);
314 Collection<DVD> returnValue = new ArrayList<DVD>();
315 Pattern p = Pattern.compile(query);
316
317 for (DVD dvd : getDvds()) {
318 Matcher m = p.matcher(dvd.toString());
319 if (m.find()) {
320 returnValue.add(dvd);
321 }
322 }
323
324 log.exiting("DvdFileAccess", "find", returnValue);
325 return returnValue;
326 }

In line 315 we take the string provided from our GUI application and compile it into a Java
Pattern. We then need another class, the Matcher class, which can attempt to match the pat-
tern against the provided string in various ways; we generate the Matcher for each DVD read in
line 318. Finally, in line 319 we tell the Matcher to find the next occurrence of the pattern in the
current DVD’s string representation; if found we add the DVD to the collection of DVDs to be
returned. While we are only interested in finding the pattern as a subset of the entire DVD, the
Matcher can perform other types of matching as well; for instance, it can compare two strings
in their entirety, or match starting with the beginning of the string.

Line 317 shows the enhanced for loop syntax in action. Using this form saved us the
drudgery of manually creating our own iterator, and using generics saves us from casting
objects. Contrast the simple use of line 308 with the code we would have had to use if the for
loop had not been enhanced:

CHAPTER 5 ■ THE DVDDATABASE CLASS 147

317a List<DVD> dvds = getDVDs();
317b for (Iterator i = dvds.iterator(); i.hasNext();) {
317c DVD dvd = i.next();
318 Matcher m = p.matcher(dvd.toString());
319 if (m.find()) {
320 returnValue.add(dvd);
321 }
322 }

Discussion Point: Caching Records
So far we have made minor concessions to speeding up the data access code, but we still have
the situation where each DVD record is read from the physical file on disk—possibly the slow-
est operation of all. We have deliberately done this so that we have not overcomplicated this
chapter; however, it is worthwhile considering whether or not we can cache the data.

The first question we should address is whether caching the data will save us any disk
operations. If most operations on the data were writing to disk, then caching would not make
much sense, since we would have to update the cache and update the file for the majority of
operations. In fact, we might even end up with poorer performance than if we did not cache
the data at all. However, the application we are developing is likely to have a large number
of searches for matching records, and displaying of records, before one record is chosen for
updating. Therefore, the majority of operations could benefit from having the records cached.

The next issue is whether the memory requirements would preclude caching. Each DVD
record is relatively small, and it is likely that caching 1,000 DVD records would require far less
than 10 MB of RAM. Because most new computers being sold have at least 128 MB of RAM, we
should not have a problem caching our data.

Finally, we should take into account the impact this change will have on our code. If
adding any feature makes the code significantly harder to read, then we should consider
whether it is worth adding—certainly whoever maintains our code will not thank us if they
have to maintain unreadable code. However, adding a cache to the existing code is reasonably
simple; all we need is an extra map to hold the UPC keys and DVD records. Access to this
cache can be handled in the same way as we use the recordNumbersLock mutex for the UPC-to-
file-location map.

You should read the instructions you received from Sun carefully before deciding whether
or not to implement a cache. Check whether there are any performance requirements, or any
requirements for the simplest possible code. If there are no specific requirements, you can
make your own decision as to whether to implement a cache—just remember to document
your decision in your design choices document.

The ReservationsManager Class
The ReservationsManager class provides the ability to logically reserve a record so that a client
can modify it, secure in the knowledge that no other client can modify it until the logical reser-
vation is released.

To help explain the purpose of logical record locking, let’s first consider a scenario where
there is no logical record locking, and two clients try to rent the only copy of a particular DVD:

CHAPTER 5 ■ THE DVDDATABASE CLASS148

• Client A retrieves the DVD record for the movie Office Space.

• Client B retrieves the DVD record for Office Space.

• Client A verifies that there is one copy of the DVD still in stock.

• Client B verifies that there is one copy of the DVD still in stock.

• Client A rents the DVD.

• Client B rents the DVD.

We now have a problem; according to the electronic records, both clients A and B have
rented the same DVD.

One way to solve this problem would be to make the retrieval-verification-rental opera-
tions atomic. However, this could only be done on the server side since two separate clients
working in their own JVMs would be unaware of any synchronized blocks operating in other
JVMs. Having this code operate on the server side makes building a thin client very simple, but
we already know that we have to build a Swing client, so we know that the client computers
can support thick clients. A bigger problem is that having this code within an atomic block will
reduce concurrency.

THIN AND THICK CLIENTS

The term “thin client” is used to denote a client interface that can run on a computer with minimal processing
power. A typical example is a web interface to an application—the computer accessing the web interface can
be a very low-powered computer. It is even possible to set up a computer that has no hard drive or floppy
disk drive that can access powerful software as long as there is a thin client interface for the software. It
would be possible, for example, to set up a web browser on a personal computer with a 386 CPU running at
16 MHz with 4 MB of RAM. If you did this, you would still be able to access your e-mail, read news, and per-
form web searches, among other things.

For those who are not as old as the authors, before the current personal computers with Pentium 4
CPUs running in excess of 2 GHz with a minimum of 128 MB of RAM, there were personal computers with
Pentium III CPUs. Going further back in the timeline were Pentium II CPUs, Pentium CPUs, 486 CPUs—and
before that were 386 CPUs. Before the personal computers with 386 CPUs were 286, 8086, and 8088 CPUs,
but the authors wouldn’t want to set up a web browser on one of them (the first Unix-like system one of the
authors worked on was a Coherent system on a 286).

A “thick client” (or a “fat client”) is one where a large proportion of the processing is done on the client
computer, and therefore a more powerful client computer is required. For example, Microsoft recommends
running Microsoft Office on a PC with at least a Pentium III CPU, and 128 MB of RAM.

There is a trend toward using thin client software where possible within organizations for many rea-
sons, such as the fact that thin clients can typically still run on older computers (the 386 was released in
1985, while the Pentium III was released in 1999; there are 14 years’ worth of computers that would be
obsolete if all software required a thick client running on a Pentium III), plus system administrators have an
easier job if they only have to administer one or two servers running the applications, and all the client
machines only run thin client software.

CHAPTER 5 ■ THE DVDDATABASE CLASS 149

■Caution Before deciding whether to build a thin or a thick client for your submission, carefully read the
instructions you downloaded from the Sun site to determine whether there are any requirements you must
adhere to. There have been many discussions about this on JavaRanch (http://www.javaranch.com)
regarding this topic (one, started by one of the authors, had 133 views put forward), and you are welcome
to join in the discussions there.

But consider the same scenario with logical record locking:

• Client A logically locks the DVD record for Office Space.

• Client B attempts to logically lock the DVD record for Office Space; however, it cannot
do so until client A releases the logical lock. Client B must now wait for client A to finish.

• Client A retrieves the DVD record for Office Space.

• Client A verifies that there is one copy of the DVD still in stock.

• Client A rents the DVD.

• Client A releases the logical lock for the DVD record for Office Space.

• Client B logically locks the DVD record for Office Space.

• Client B retrieves the DVD record for Office Space.

• Client B finds that there are no more copies of the DVD in stock.

• Client B releases the logical lock on Office Space and (hopefully) goes off to find some
other DVD to rent.

One of the major advantages of logical record locking is that it allows a greater
concurrency. It can also work across a network, so we can use the power of our thick clients.

Discussion Point: Identifying the Owner of the Lock
It is rarely good enough to simply have a way of logically reserving a record and releasing the
reservation. You typically need some way of identifying which client has reserved the record,
so that only they can release it.

An example from real life might help explain why we need this. Imagine if you rang
the theater and reserved the last seat for a show. But then some other person turned up at the
theater and claimed that they had reserved the seat. If the theater does not have some way of
identifying who reserved the seat, you could lose your seat.

Likewise, if we don’t identify the owner of a lock, an unscrupulous programmer could
write a program in such a way that if they have not received a lock within a certain amount of
time, they will just unlock the record anyway.

CHAPTER 5 ■ THE DVDDATABASE CLASS150

How you identify your lock owner depends on what your instructions state, and possibly
on how you develop your network server. We will offer some suggestions in the following sec-
tions, but you will have to determine for yourself what will work for your specific instructions.

Using a Token to Identify the Lock Owner
If we can return a token from the lock method to the client requesting the logical lock, then we
can mandate that the client must use that token when performing other operations, including
when they release the logical lock.

The token itself (also referred to as a “cookie” or a “magic cookie”) is something that our
class would use to identify the owner of the logical lock. As such, it does not have to be a
meaningful object, since the client does not need to do anything with this token other than
store it for use when calling other methods. In fact, it is probably better that this token be ran-
dom, since if the token has some meaning then the unscrupulous programmer might be able
to guess it and still unlock our records.

However, our interface requires that our lock method return a Boolean and the
releaseDVD method does not allow us to insert a token either, so this is unfortunately not
an option for us.

Using the Thread to Identify the Lock Owner
If we opt to use sockets for our network interface, we will have total control over the threads
used by each client. We will create a new thread when the client connects to the server, so we
can use the thread identifier as a proxy for the client identifier.

When doing this, we would simply store the thread identification with the record identi-
fier at the time we logically lock the record. Then, whenever the client attempts to do anything
that needs the lock, we can compare the current thread identifier with the stored value; if they
match, then we allow the operation.

This saves the client worrying about storing and reusing a token, but it will only work for
our stand-alone client and for a network solution based on sockets. If our network solution
uses Remote Method Invocation (RMI), this won’t work.

Using a Class Instance to Identify the Lock Owner
The RMI specification states that there are no guarantees about which threads will be used for
any given remote method. This means that the following scenario is possible according to the
specification:

• Client A uses thread 1 to logically lock a record.

• Client B uses thread 1 to attempt to logically lock the same record; it waits for the
logical lock to be released.

• Client A uses thread 2 to logically release the record.

• Client B uses thread 1 to logically release the record.

More complex scenarios are also possible. Listing 5-1 shows an example of this problem.

CHAPTER 5 ■ THE DVDDATABASE CLASS 151

Listing 5-1. An Example of Thread Reuse in RMI

import java.rmi.*;
import java.rmi.registry.*;
import java.rmi.server.*;

interface ServerReference extends Remote {
public void serverThreadNumber(String id) throws RemoteException;

}

class Server extends UnicastRemoteObject implements ServerReference {
public Server() throws RemoteException {

// do nothing constructor
}

public void serverThreadNumber(String id) throws RemoteException {
System.out.println(id + " running in thread "

+ Thread.currentThread().hashCode());
try {

Thread.sleep(2000);
} catch (InterruptedException ie) {

ie.printStackTrace();
System.exit(1);

}
}

}

public class RmiProblem extends Thread {
public RmiProblem(String id) {

super(id);
}

public static void main(String[] args) throws Exception {
LocateRegistry.createRegistry(1099);
Naming.rebind("rmi://localhost:1099/RmiProblem", new Server());

Thread a = new RmiProblem("A");
a.start();

Thread.sleep(1000);

Thread b = new RmiProblem("B");
b.start();

a.join();
b.join();

CHAPTER 5 ■ THE DVDDATABASE CLASS152

System.exit(0);
}

public void run() {
try {

ServerReference remoteCode =
(ServerReference) Naming.lookup("RmiProblem");

for (int i = 0; i < 5; i++) {
remoteCode.serverThreadNumber(getName());
Thread.sleep(2000);

}
} catch (Exception e) {

e.printStackTrace();
System.exit(0);

}
}

}

Don’t worry if you do not understand this code completely. Chapter 6 discusses RMI in
depth, so it may be easier to come back to this code after reading that chapter.

Although the results of running this code will vary from computer to computer (and
indeed from run to run), one example of running the code is shown in Figure 5-7.

Figure 5-7. Example of thread reuse within RMI

As can be seen in Figure 5-7, both client A and client B use threads 15655788 and
16112134.

With this in mind, if we cannot use tokens and we have chosen to use RMI, then we need
to find some other way of uniquely identifying our clients.

One way of handling this is to build our server using the Factory design pattern, where
our factory creates a unique object for each connected client. We can then use the unique
instance of our DvdDatabase class to identify the client.

CHAPTER 5 ■ THE DVDDATABASE CLASS 153

Using a factory works for both a sockets-based solution (although it is generally overkill)
and for an RMI solution. Since we are presenting both solutions in this book, we have decided
to use a factory, and we will describe it in Chapter 6.

Creating Our Logical Reserve Methods
To create the reserveDVD and releaseDVD methods needed for logical locking, we need some
class variables. For a start, we need to track the owners of the locks; a Map containing the UPC
number and the owner is ideal. We also need a common Lock object to ensure that different
threads do not try to lock the record simultaneously. Finally, we need a condition that threads
can monitor to determine when they can attempt to acquire a lock again. These three vari-
ables are as follows:

private static Map<String, DvdDatabase> reservations
= new HashMap<String, DvdDatabase>();

private static Lock lock = new ReentrantLock();
private static Condition lockReleased = lock.newCondition();

Listing 5-2 contains the reserveDVD method.

Listing 5-2. The reserveDVD Method

boolean reserveDVD(String upc, DvdDatabase renter)
throws InterruptedException {

log.entering("ReservationsManager", "reserveDvd",
new Object[]{upc, renter});

lock.lock();
try {

long endTimeMSec = System.currentTimeMillis() + 5000;
while (reservations.containsKey(upc)) {

long timeLeftMSec = endTimeMSec - System.currentTimeMillis();
if (!lockReleased.await(timeLeftMSec, TimeUnit.MILLISECONDS)) {

log.fine(renter + " giving up after 5 seconds: " + upc);
return false;

}
}
reservations.put(upc, renter);
log.fine(renter + " got Lock for " + upc);
log.fine("Locked record count = " + reservations.size());
log.exiting("ReservationsManager", "reserveDvd", true);
return true;

} finally {
// ensure lock is always released, even if an Exception is thrown
lock.unlock();

}
}

CHAPTER 5 ■ THE DVDDATABASE CLASS154

We have decided to allow any UPC to be reserved, even if no such record exists. This
ensures that a DVD can also be reserved when we are first adding it to the system. The alterna-
tive would be to have the reserveDVD method start by verifying that the record does exist,
throwing some exception if the record does not exist. If we had any delete methods, we would
also have to verify that the record existed after we acquired the lock. However, if we did this,
we would also have to change the logic of the addDVD method, and possibly the updateDVD
method (remember, they both defer to the same private persistDVD method, which might also
have to be updated).

Our reserveDVD method acquires a mutual exclusion lock, and then goes into a while
loop, waiting until we either time out or acquire the lock.

Our DBClient interface specifies that we must return false if we were unable to lock the
record within 5 seconds. Under JDK 1.4 there was no guaranteed way of determining whether
a call to wait(timeout) had timed out or whether notification had been received. JDK 5 has a
new Condition.await method, which will return a Boolean true if we were notified by the
unlock method that we can continue processing, and false if we timed out.

If we have acquired the lock, we add a record to the map of lock owners, indicating that
we own the lock.

Finally, we release the mutual exclusion lock.

The Logical Release Method
The releaseDVD method is the counterpoint to the reserveDVD method shown earlier, and the
code is very similar.

void releaseDvd(String upc, DvdDatabase renter) {
log.entering("ReservationsManager", "releaseDvd",

new Object[]{upc, renter});
lock.lock();
if (reservations.get(upc) == renter) {

reservations.remove(upc);
log.fine(renter + " released lock for " + upc);
lockReleased.signal();

} else {
log.warning(renter + " cant release lock for " + upc + ": not owner");

}
lock.unlock();
log.exiting("ReservationsManager", "releaseDvd");

}

First, we ensure we have a lock on the mutual exclusion Lock; then if it is the owner of the
reservation who is releasing it, we remove our lock indication from the map. Then we signal
any waiting threads that they can try to acquire locks. If the wrong renter instance is passed to
this method, a warning message is logged. Finally, we release our mutual exclusion Lock.

CHAPTER 5 ■ THE DVDDATABASE CLASS 155

Discussion Point: Deadlock Handling
Deadlocks occur when a thread is blocked forever, waiting for a condition that cannot occur.
Chapter 4 discusses deadlock handling from a threading perspective, but the same issues
apply at an application logic level as well. Consider what would happen if two clients were
both trying to get logical locks on the same two records, but in different orders, as shown in
the following example:

• Client A gets a logical lock on record 1.

• Client B gets a logical lock on record 2.

• Client A attempts to get a logical lock on record 2.

• Client B attempts to get a logical lock on record 1.

Our reserveDVD method times out after 5 seconds. But if both client A and client B imme-
diately retried to get the lock, the result would be the same as if we didn’t have a timeout: both
threads would effectively be deadlocked.

There are many solutions to prevent deadlocks, among them:

• Don’t allow a client to ever lock more than one record at a time. If they cannot lock
multiple records, then you cannot get a logical deadlock.

• Only allow clients to lock records in numerical order. Under these rules, client B would
not be allowed to attempt to lock record 1 in our previous example, and would have to
give up the lock on record 2 at some point, which would allow client A to continue.

• Have a dedicated mechanism for tracking that locks are owned and which locks are in
contention. Each time that a new lock goes into contention, this mechanism would be
checked to see that a deadlock will not occur, and if it will, the lock is cancelled. This is
the most complex of the possible solutions, but the code required is mostly recursive
and can be written simply with a little thought.

• Ignore the problem. Seriously—is it a requirement of your assignment? Is there a possi-
bility that attempting to handle this problem could result in you making a mistake that
might cost you marks? Do you feel that this is out of scope for the assignment?

Once again, we are going to recommend that you read the instructions you received from
Sun very carefully to determine what you need to do about deadlock handling (if anything).
However, if your instructions do not mention this at all, you will have to decide for yourself
whether you want to handle deadlocks. Some of the questions you might like to ask include
the following: Is it more professional to have deadlock handling? Does deadlock handling add
unnecessary complexity to the code? Can you handle deadlocks with the exceptions you are
allowed to throw?

Whatever you decide, this is a design decision that you might like to document.

Discussion Point: Handling Client Crashes
Earlier in this chapter, we discussed the potential for having thick clients, where the client will
be responsible for obtaining a logical record lock and later releasing it. But what happens if
the client crashes (or is just shut down) sometime after requesting a logical record lock but

CHAPTER 5 ■ THE DVDDATABASE CLASS156

before releasing the logical record lock? In such a case, the record will be locked for all time—
no other client will ever be able to lock the record.

Once again there are many possible solutions, some of which include the following:

• Having a thinner client (where the client just calls a rentDVD method on the server, and
the server calls both the reserveDVD and releaseDVD methods) will bypass the problem
totally. The lock should never become totally unavailable. We recommend you refer
back to the section on fat/thin clients earlier in this chapter to see the ramifications of
this (and possibly join in the discussions on JavaRanch on this topic).

• If we have a socket network solution, then the server thread servicing the client will
receive an exception when the client disconnects. If that thread keeps track of which
locks have been granted, then it could release them if it receives this exception.

• If we have a server factory, with unique DvdDatabase objects as our client identifiers,
we could store the reservation data in a WeakHashMap with the client identifier as the
key. When the client disconnects, the DvdDatabase for that client will (eventually) be
garbage collected and the lock will be automatically removed from the WeakHashMap.
In this case, we would probably want a separate thread monitoring the WeakHashMap
so that it can notify any waiting threads that a reservation has been cleared.

• If we have a server factory with unique workers per RMI client, we could have the
worker implement java.rmi.server.Unreferenced. The unreferenced method from
this interface will be called sometime after the RMI client disconnects. If the worker
instance keeps track of which locks have been granted, then it could release them if
unreferenced is called.

• Ignore the problem. Again, seriously—is it a requirement of your assignment? Is there a
possibility that attempting to handle this problem could result in you making a mistake
that might cost you marks? Do you feel that this is out of scope for the assignment?

Once again, we are going to recommend that you read the instructions you received from
Sun very carefully to determine what you need to do about clients dying (if anything). How-
ever, if your instructions do not mention this at all, you will have to decide for yourself
whether you want to handle the possibility of locks never being released. Some of the questions
you might like to ask include the following: Is it more professional to handle disconnected
clients? Does handling disconnected clients add unnecessary complexity to the code?

Whatever you decide, keep in mind that this is a design decision that you might like to
document.

Discussion Point: Multiple Notification Objects
Consider what will happen if 100 threads are all waiting to reserve different records. When a
thread releases its lock on any one record, it will call lockReleased.signal, and all 100 threads
will be notified that a lock has been released, so all 100 threads will attempt to regain the lock
mutex and check whether it is the record that they are interested in that was released—and
potentially the released record was not of interest to any of them! So there would be a sudden
burst of CPU activity each time a record is released, potentially lowering productivity on the
server each time.

CHAPTER 5 ■ THE DVDDATABASE CLASS 157

A better solution would be to have each thread get notified only when the record it is
interested in becomes free.

Under JDK 1.4 this would have been difficult to achieve; you would have had to synchro-
nize on different objects to be able to ensure that only a specific thread gets notified. Under
JDK 5 you can have all your threads obtain a lock on the same object but use different
Conditions upon which they should be notified.

JDK 1.5’s reentrant locks, with their different syntax to synchronized blocks, provide the
ability to create hand-over-hand locking, where a lock is requested, then a second lock is
requested, then the first lock is released, and so on. No lock in the chain is released until the
next lock is granted.

Conceptually the replacement for the reserveDVD method would look like the code in List-
ing 5-3. Note that the line numbers are specific to this discussion, and have no relationship to
the line numbers for the original reserveDvd method.

Listing 5-3. A Less CPU-Intensive reserveDvd Method

1 private static Map<String, LockInformation> reservations
2 = new HashMap<String, LockInformation>();
3
4 private static Lock masterLock = new ReentrantLock();
5
6 public boolean reserveDvd(String upc, DvdDatabase renter)
7 throws InterruptedException {
8 LockInformation dvdLock = null;
9 masterLock.lock();
10 try {
11 dvdLock = reservations.get(upc);
12 if (dvdLock == null) {
13 dvdLock = new LockInformation();
14 reservations.put(upc, dvdLock);
15 }
16 dvdLock.lock();
17 } finally {
18 masterLock.unlock();
19 }
20
21 try {
22 long endTimeMSec = System.currentTimeMillis() + 5000;
23 Condition dvdCondition = dvdLock.getCondition();
24 while (dvdLock.isReserved()) {
25 long timeLeftMSec = endTimeMSec - System.currentTimeMillis();
26 if (!dvdCondition.await(timeLeftMSec, TimeUnit.MILLISECONDS)) {
27 return false;
28 }
29 }
30 dvdLock.setReserver(renter);
31 } finally {

CHAPTER 5 ■ THE DVDDATABASE CLASS158

32 dvdLock.unlock();
33 }
34 return true;
35 }

We start by getting a lock on the masterLock, which allows us to retrieve the lock for our
specific UPC at line 11 or create a new lock and add it to the map if necessary at lines 13 and
14. Without this master lock, another thread could be modifying the map while we are trying
to get our lock.

In JDK 1.4 we would now have a problem—we no longer want to keep the lock on
masterLock, but if we release the masterLock before we gain a lock on our particular dvdLock,
there is the risk that some other thread could modify the dvdLock before we managed to lock
it. However, because JDK 1.4 locking works in terms of synchronized blocks, it is not possible
to lock dvdLock and then release masterLock.

Hand-over-hand locking solves this problem for us. Before releasing the lock on
masterLock we lock dvdLock in line 16. At this point we own two locks, but we release the
masterLock in line 18, bringing us back to a single lock. At no time did we own zero locks,
and the time that we owned two locks was reduced to a minimum.

When we get to line 26, each client will be waiting for the condition specific to the lock
they are after. They will no longer be woken up when any lock is released.

This relies on a LockInformation class, which is shown in Listing 5-4.

Listing 5-4. The LockInformation Class

1 class LockInformation extends ReentrantLock {
2 private DvdDatabase reserver = null;
3 private Condition notifier = newCondition();
4
5 void setReserver(DvdDatabase reserver) {
6 this.reserver = reserver;
7 }
8
9 void releaseReserver() {
10 this.reserver = null;
11 }
12
13 Condition getCondition() {
14 return notifier;
15 }
16
17 boolean isReserved() {
18 return reserver != null;
19 }
20 }

The releaseDVD method would use the Condition from the instance of the LockInformation
class for the record being unlocked to only notify threads waiting on this particular record.
If there are a large number of threads waiting for records, this could significantly reduce the
CPU usage when a record is released.

CHAPTER 5 ■ THE DVDDATABASE CLASS 159

Again, we recommend that you read the instructions you received from Sun very carefully
to determine what you need to do about multiple threads receiving notification simultane-
ously (if anything).

■Tip We have presented this section on having multiple notification objects as it does appear to meet a
requirement listed in at least some of the Sun instructions. However, at the time of this writing Sun does not
appear to penalize those candidates who ignore this requirement.

Summary
In this chapter we showed how to build classes that can read the data file and provide locking.
We discussed some of the common pitfalls that can occur, and explained how to avoid them.
We also presented several examples of design patterns, and examined how they can be used.

We used many of the techniques that you need to use in your Sun SCJD assignment,
including reading and writing from random locations in files, and locking and releasing
records. We also used many of the new techniques introduced in JDK 1.5, and introduced
some of the new APIs.

One word of caution: As we mentioned in Chapter 3, we have made some parts of our
sample assignment more difficult than the real assignment. You may find far simpler solutions
for your Sun assignment than those presented here (and we strongly recommend you look for
them). Similarly, some portions of the Sun assignment may be more difficult than what we
have presented here. You will also note that there are methods in your Data class you must
implement that we have not even mentioned; we believe we have provided you with the basic
information you need to create these methods on your own.

FAQs
Q Will I have to create my own data file in the Sun SCJD assignment?

A No; at the time of this writing, Sun provides a sample data file for you, along with the
details of the file format necessary for you to read and write the file.

Q Should I provide my test classes and build scripts in my submission?

A We recommend against providing anything outside of the requirements. At the time of
writing, the instructions from Sun include a statement that going beyond the require-
ments will not gain you extra marks. So providing the test classes and build scripts
cannot gain you anything.

Q Should I build the Data class in stages?

A We strongly recommend you do build each of your classes in stages, ensuring that each
part is correct before moving on to the next part.

CHAPTER 5 ■ THE DVDDATABASE CLASS160

Q Is it necessary/possible for my Data class to use a value object?

A You will have to check your instructions to see whether or not this is possible. All the
instructions to date have been very explicit about the required method signatures for
the Data class. However, even if you cannot use them in the Data class, your instruc-
tions might allow value objects to be used elsewhere in your solution.

Q Is it necessary for my Data class to use the Façade pattern?

A There are no specific patterns that must be used within your submission; you are free
to use any that you feel fit your requirements. Similarly, there are no requirements for
you to acknowledge which patterns you are using, but it is considered good program-
ming practice to mention the patterns in your design decisions documentation and/or
your Javadoc APIs as doing so will assist other programmers in understanding your
code.

Q Should I use a cache in my Sun SCJD assignment?

A Usually the Sun instructions tell you that a clear design is preferred over a higher per-
formance design. So you should decide for yourself whether the addition of a cache
makes your code easier to read, and whether the gains are worth your while.

Q What happens if using a cache causes the JVM/computer to run out of memory?

A You could use lazy loading of records (only loading them when required) in conjunc-
tion with SoftReferences to ensure that the JVM can clear the records if it is running
out of memory. If the JVM does clear the record from memory, using a lazy loading
scheme will result in you reloading it next time you need it (and presumably some
other low-usage object being cleared). That said, you might want to calculate just how
many records it will take to use all the memory on your computer—and whether you
could even access that many records with the provided APIs.

Q Am I allowed to use the java.nio (NIO) packages or the java.util.concurrent pack-
ages in my application?

A In the past Sun has displayed information on its web site indicating that use of the
NIO packages was not allowed for the SCJD assignment. However, Sun has also stated
that the instructions you download from its site are authoritative; if your official
instructions state that you must not use a particular package, then you must not use
it. However, if your instructions do not ban a particular package, then you are free to
use it.

CHAPTER 5 ■ THE DVDDATABASE CLASS 161

Networking with RMI

In this chapter, you will develop the background needed to implement a complete network-
ing solution using Remote Method Invocation (RMI). To that end, this chapter will cover RMI
and, to a lesser extent, serialization. Figure 6-1 illustrates where the networking solution fits in
the overall architecture of the system, which is nestled between the GUI and the data layer.

Figure 6-1. The networking tier of Denny’s DVDs version 2.0

Before you can fully understand RMI, it is important to familiarize yourself with some of
the ins and outs of serialization, since RMI relies on this feature. Serialization is a topic that
you may already be familiar with from the Sun Certified Java Programmer (SCJP) exam, but we
will still cover the topic briefly. These topics are some of the big-picture points developed in
this chapter:

• Understanding object serialization in Denny’s DVDs

• Evaluating the pros and cons of using RMI as a network protocol

163

C H A P T E R 6

■ ■ ■

• Implementing a remote object and defining a remote interface

• Examining the Factory pattern and learning why we are using it for our RMI
implementation

• Marshaling and demarshaling in RMI

• Registering your remote objects

■Caution The next chapter describes Java sockets, which is the other networking protocol the examinee
may opt to use for the certification project. However, be advised that for the certification project, you must
send serialized objects if opting for a sockets solution as a networking protocol. Java RMI requires serializa-
tion, but it is not absolutely necessary to use serialization in a Java socket implementation. You could, for
instance, implement your own wire format in a socket implementation so that any client-side technology
could submit requests to a Java socket server. In the next chapter, we explain the technique of using sockets
with serialization objects. If you decide to implement your solution using sockets as the networking protocol,
the next section, “What Is Serialization?”, will still be useful.

What Is Serialization?
So what is serialization, and why would you need it in your program? Let’s consider an example.
Suppose there are two machines on the same network. Machine A sends a message to a Java
program on machine B; how does machine B receive and understand the message? What’s
required is a transfer protocol. A transfer protocol will flatten the data that needs to be trans-
ferred by putting it into a format that can be sent across a network.

Part of the process of sending data across a network involves serialization. Serialization
is the process of deconstructing an object into its components of type information and state,
and then reconstructing a copy of the original object on the receiving end by reading in the
type information and then the field values. The term often used to describe the process of
transferring serialized objects across a network is marshaling. Sometimes the reverse process,
restoring the serialized object on the other end, is referred to as demarshaling, or unmarshaling.
Serialized objects can be persisted to a local file system, courtesy of Java file I/O, or sent across a
network via a socket. This is accomplished by converting the object into a serial stream of bytes,
transmitting that stream across a network or to a file system, and then reading the persisted
byte stream back into memory in order to re-create the object graph (see Figure 6-2), which is
Java vernacular for reconstructing the original object and its state as if nothing ever happened.
When a byte stream is loaded into memory in the form of an object, it is said to be in an active
state. When that same byte stream is located in a file, rather than in a Java Virtual Machine
(JVM) memory bank, it is said to be in a passive state. Keep in mind the notion of an object
being in an active or passive state, as it will come in handy when we introduce the Activatable
interface later in this chapter. Let’s discuss the process in a little more detail.

CHAPTER 6 ■ NETWORKING WITH RMI164

The first of three steps is converting the object to a serial stream of bytes. First, type
information gets written as header information to the stream, and then state information is
written. The state information consists of the values of the class members, except for the
static and transient members (assuming the default serialization mechanism, which does not
implement readObject and writeObject; this is discussed a bit later in more detail). On the
deserialization end, the receiving remote object first reads the type information in from the
header and creates an instance of the class. If the class cannot be located (either locally or
remotely), then a ClassNotFoundException is raised. Once the class is instantiated, the field
values are read in from the stream and the values set in the marshaled object.

■Note Serialized objects are a copy of the original, not a reference to them. Parameters and return values
in RMI are passed by values or copies. An object can be referenced on another machine only if the object
is a remote object—that is, the object is exported via the UnicastRemoteObject.export() method or
UnicastRemoteObject is extended.

Figure 6-2. Creating the byte stream from an object graph

Using the serialver Tool
Serialization involves implementing the java.io.Serializable interface. This interface is of
interest because it does not have any methods that require implementing. In fact, the main
purpose of implementing Serializable is to inform the JVM that the object can be serialized.
Serializable is often referred to as a marker interface. Formally a marker interface is an
interface, which does not define any methods that a class or subclass would be required to
implement but rather identifies the object as being of a certain type. To determine if a class is
serializable, use the tool serialver. To start the serialver tool, from the project root enter the
following at a command prompt:

serialver -classpath classes/. -show

Let’s run the serialver tool on two of our classes, one that is serializable and one that is
not serializable. We will use the DVD class as our serializable class and DvdFileAccess as the
class that is not serializable. Figures 6-3 and 6-4 demonstrate the use of serialver on our DVD
and DvdFileAccess classes, respectively.

CHAPTER 6 ■ NETWORKING WITH RMI 165

Figure 6-3. Running the serialver tool on the DVD class

Figure 6-4. Running the serialver tool on the DvdFileAccess class

Since we started serialver from the DennyDVD classes directory, we can inspect our proj-
ect’s classes for the Serializable interface. If we had started from another directory, we would
have had to make sure that our project was listed in our system classpath. Inspecting our
classes for the Serializable interface is not very interesting since we have the source
code and are well aware which classes are Serializable and which are not (i.e., we can simply
inspect the file visually to see if Serializable is implemented). But using serialver on classes
in which we do not have source code is much more useful—for instance, classes in a JAR file
or classes that are part of the JDK.

For fun, try inspecting other classes in your classpath, such as those in the Java JDK
(i.e., java.util.Date or java.lang.String).

If you inspect the source code for both the DVD and DVDFileAccess classes (downloadable
from http://www.apress.com), you will note that DVD does indeed implement Serializable,
while DVDFileAccess does not.

The Serialization Process
To actually persist an object’s state, there are two classes in the java.io package that perform
the bulk of work required for reading and writing serializable objects: ObjectOutputStream
and ObjectInputStream. ObjectOutputStream has a method called writeObject, while
ObjectInputStream has a method called readObject. In the Denny’s DVDs project, serialization
is used to send method parameters across the network between the GUI and the server using
the default serialization mechanism (e.g., whether the server is an RMI or a socket server). We
do not actually serialize our method parameters explicitly for RMI to work. In fact, our only
concern is that the object sent across the network be serializable. Let’s assume that we want
to persist the state of our DVD objects explicitly to the file system. In that case, we could do
so by implementing the persistDVD and retrieveDVD methods. When the client wants to save
the state of a database record or DVD object, such as after a setRecordNumber call, the client
invokes the DVDFileAccess method persistDVD. persistDVD serializes the DVD object using the
ObjectOutputStream class and its writeObject method. The persistDVD method is shown in
Listing 6-1. Keep in mind that the actual member we are serializing is a DVD. Our DVD class
must be Serializable. The retrieveDVD method reads the serialized object and re-creates the
object, as demonstrated in Listing 6-2.

CHAPTER 6 ■ NETWORKING WITH RMI166

Listing 6-1. persistDVD Method Demonstrating FileOutputStream to Serialize a DVD Object

private boolean persistDVD(DVD dvd) throws IOException{
boolean retVal=false;
//open a FileIOutputStream associated with the data
//notice that if the DVD does not already exist,
//it will be created.
String filePath = dbName+"/"+ dvd.getUPC() + fileExtension;
FileOutputStream fos = new FileOutputStream(filePath);
try {

ObjectOutputStream oos = new ObjectOutputStream(fos);
//Read in the data from the object
oos.writeObject(dvd);

}
finally {

//close all references
oos.close();

fos.close();
}

}

Listing 6-2. retrieveDVD Method Demonstrating FileInputStream to Deserialize a DVD Object

private DVD retrieveDVD(String upc, String fileExtension) throws IOException,
ClassNotFoundException {

DVD retVal = null;
//get the path to the object's serialized state.
try {

String filePath = dbName+"/"+ upc + fileExtension;
FileInputStream fis = new FileInputStream(filePath);
//Read in the data from the object
ObjectInputStream ois = new ObjectInputStream(fis);
retVal = (DVD)ois.readObject();

}
finally {

ois.close();
fis.close();

}
return retVal;

}

■Caution The code shown in these listings is not contained in the actual project since Denny’s DVDs
relies on the JVM and the default serialization mechanism. The code is used as a pedagogical device to
illustrate how to explicitly serialize an object.

CHAPTER 6 ■ NETWORKING WITH RMI 167

As mentioned previously, information pertaining to the object’s state is persisted to a file
via a stream of bytes. But that is not all of the information that is saved. Information regarding
the class type and its version number is also persisted. This is important because the class
loader needs to properly deserialize the class from its persisted state. If the serialVersionUID
is not declared, then the ObjectOutputStream will generate a unique version number for the
class. Any subsequent changes to the class’s members will generate a new version number at
the next compilation. In the sampleproject.db.DVD class, the version ID is defined as a private
member defined as follows:

private static final long serialVersionUID = 5165L;

■Note Often, serialization compatibility between versions needs to be maintained even though minor
changes that will not break serialization compatibility have occurred. In these situations you need to declare
the serialVersionID. You can use serialver to do this initially. This will allow you to define your own
numbering schemes for the versionID for the class. Interestingly, even though this is a private field, the
JVM knows it is there and uses it when defining a class.

Tweaking the Default Serialization Mechanism
There may be times when you want more control over how an object’s state is serialized. For
instance, perhaps you are only concerned with persisting part of the object’s state, but not all
of it. This is useful if the class contains a private member for holding a reference to a database
connection, and you do not want to persist that information because the connections are only
meaningful during a single session and are assigned on an as-needed basis. It wouldn’t make
sense to try to persist a database connection for the next time the application is run. The next
time you load the object with the connection reference, you can simply assign that member a
new connection. Another situation where you would not want to persist object information is
when an object member is of a type that is not serializable. For instance, in our sample project
the J2SE 1.5 Logger instance in the DVD class is not serializable.

But how do we indicate to the JVM that we don’t want to persist a specific class member
but would like to persist the other class members? Java provides for this functionality through
the use of the keyword transient. The byte stream that gets persisted will not include any
members that are declared using the keyword transient.

We use the keyword transient in our serialization implementation since the Logger
instance cannot be serialized. (Hint: Try running serialver on the logger.) Conceptually this
works out well since a logger member does not really add anything essential to the notion of a
DVD. In general, a logger is the sort of thing that does not need to be persisted, and we can re-
create a complete DVD record by reinitializing the logger. The following is an example of how
you can use the keyword transient in the Logger instance in DVD.java:

private transient Logger log = Logger.getLogger("sampleproject.db");

There is another approach to serialization that we should mention. Rather than imple-
ment Serializable, an alternative approach is to implement a subinterface of Serializable:

CHAPTER 6 ■ NETWORKING WITH RMI168

the Externalizable interface. The big advantage of the Externalizable interface is perform-
ance. The algorithm for serialization uses reflection for marshaling and demarshaling. The
serialization algorithm will systematically determine the nontransient and nonstatic class
members through the use of reflection.

However, this can be quite expensive because the reflection algorithm costs in terms of
CPU cycles and memory. The costs result from the JVM having to dynamically discover class
properties during runtime. In situations where performance is more important than flexibility,
consider using a reflectionless approach to serialization, such as Externalizable. For more
information on reflection, refer to the following Sun tutorial: http://java.sun.com/docs/
books/tutorial/reflect/.

Customizing Serialization with the Externalizable Interface
If performance is a must, then you can serialize using the java.io.Externalizable interface
instead of the Serializable interface. So just how does Externalizable improve on the
default serialization mechanism? Externalizable requires that you write the details of
reading and writing the object’s state to the byte stream. This is much more tedious than rely-
ing on reflection, but ultimately it provides more of a speed burst to your application. The
ObjectOutputStream class no longer simplifies this process. You must use the methods
readExternal and writeExternal and be aware of the member’s type—whether it is a primitive
type, a String (i.e., UTF), or some other type of object, other than String, that is serializable.
Since you are involved in the low-level handling, you must read your object’s members in the
same order in which they were written to the stream.

Listing 6-3 presents an example of how our DVD class might look if it were Externalizable.
For illustration purposes, the nuts and bolts of the class are not shown—just the code that
relates to writeExternal and readExternal. Both methods can be private since the serializa-
tion mechanism can circumvent the normally applicable accessibility rules for classes (i.e.,
the JVM can invoke an object’s private serialization methods).

■Note If the readObject and writeObject methods are implemented in the Serializable object, the
heavy reliance on reflection is not required and there is actually a performance edge over the default seriali-
zation mechanism (i.e., implementing Serializable without overriding the readObject and writeObject

methods).
This approach is similar to externalization, with some minor differences with regard to inheritance and

the handling of class metadata. The signatures of the methods to override appear in Listing 6-3. When you
override these methods, it is crucial that the order in which the class attributes are written to the stream is
the same as the order they are read back. As long as the serializable objects are not part of a class hierar-
chy, readObject and writeObject are implemented exactly as readExternal and writeExternal, as
discussed later in this section. Here are the method signatures for readObject and writeObject:

private void writeObject(java.io.ObjectOutputStream out) throws IOException
private Object readObject(java.io.ObjectInputStream in) throws IOException, ➥

ClassNotFoundException

CHAPTER 6 ■ NETWORKING WITH RMI 169

Listing 6-3. An Externalizable Version of DVD.java: Implementing the readExternal and
writeExternal Methods of DVD.java

/**
* Required method for Externalizable interface.
* Specifies how the object graph gets converted to a byte stream.
*/
private void writeExternal(ObjectOutput out) throws IOException{

out.writeUTF(upc);
out.writeUTF(name);
out.writeUTF(composer);
out.writeUTF(director);
out.writeUTF(leadActor);
out.writeUTF(supportingActor);
out.writeUTF(year);

out.writeInt(copy);
}
/**
* Required method for Externalizable interface.
* Specifies how to recreate the object graph from
* a byte stream. The order members are read must
* match the order in which the object members were
* written to the stream.
*/
private void readExternal(ObjectInput in) throws IOException{

out.readUTF(upc);
out.readUTF(name);
out.readUTF(composer);
out.readUTF(director);
out.readUTF(leadActor);
out.readUTF(supportingActor);
out.readUTF(year);
out.readInt(copy);

}

■Caution As was the case with persistDVD and retrieveDVD, the readExternal and writeExternal

methods are not included in the actual project code base, but are used merely as a pedagogical device for
demonstrating externalization.

Since Externalizable is considered a more advanced serialization approach, we will
not cover Externalizable any further in this book. Rather, we have chosen to implement
Serializable for simplicity, but Externalizable is mentioned so that you understand the
alternative. Serializable is simpler to implement but sacrifices performance and flexibility.

CHAPTER 6 ■ NETWORKING WITH RMI170

Using Externalizable results in code that is more difficult to maintain. For instance, if we
were to add a new class member to the DVD class—say, a serializable type such as boolean—
our preceding read and write code would not change. However, if DVD implemented
Externalizable instead of Serializable, then we would have to update the readExternal and
writeExternal methods to incorporate the change. In addition, the externalization methods
should include logic to check for specific versions of serial version IDs to determine if they
were dealing with older versions of the class. In a production system, this can be an annoy-
ance if you have a lot of classes that tend to change over time. Table 6-1 presents a comparison
of serialization to externalization.

■Tip The use of transient in a class that implements Externalizable is not required. Since the
Externalizable interface requires that the details of reading and writing the object’s state be defined,
the transient keyword is not necessary. In fact, it is completely ignored in an Externalizable object.

■Note Since application performance is not a consideration in our design; we have opted for plain seriali-
zation over externalization in our implementation of Denny’s DVDs version 2.0.

Table 6-1. Comparing Serialization and Externalization

Serialization Externalization Advantage Goes To . . .

Easier to use. Just implement More complex. Must implement Serializable
Serializable and use the Externalizable interface
writeObject and readObject methods readExternal and
to persist state. writeExternal.

Less efficient algorithm. Uses Better performance. No need to Externalizable
reflection to determine object’s use reflection since you write
makeup. the code.

More data gets serialized due to More control over what gets Externalizable
larger class description and serialized.
versioning information.

Introducing RMI
An important objective of the SCJD exam is for the examinee to develop a solution that will
allow machines on a network to exchange messages. Such communication, known as distrib-
uted computing, can be a challenging task, but RMI is one of the helpful tools at your disposal.
However, RMI is not the only game in town. There are other technologies, such as RPC, Com-
mon Object Request Broker Architecture (CORBA), and Microsoft’s .NET technology. In fact,
RMI can be thought of as object-oriented RPC.

CHAPTER 6 ■ NETWORKING WITH RMI 171

■Note .NET has a similar and competing technology called .NET remoting.

This is a good time to define some terms. When we use the term server in RMI program-
ming scenarios, we are referring to a remote object that has methods that can be invoked from
another JVM. A client is the object that invokes the remotely accessible methods of the server.
An RMI distributed object system provides remote objects that can be invoked by clients. Com-
munication between a client and a remote object is two-way. A client must be able to locate
and communicate with remote objects, invoke their methods, and receive their return values.

RMI specifically enables Java objects on different machines to communicate with each
other. One of the motivations behind RMI is for developers to interact with remote Java
objects as if they were local objects. The actual location of the object is transparent to the
developer. Network transparency is a very appealing feature, because it abstracts the complex-
ities involved in distributed object systems so that they behave as if they were local object
systems. So in an RMI system, the client runs locally, while the rest of the system runs on a dif-
ferent machine. These types of systems are often referred to as distributed object systems.
Figure 6-5 illustrates this type of system.

■Note An alternative to sockets and RMI is Remote Procedure Call (RPC). RPC is language- and processor-
independent, assumes that parameters are network representations of simple data types such as ints and
chars, and can be run on almost any platform. RMI is only processor-independent, assumes an object-
oriented framework, and requires the use of Java.

In addition to RPC, CORBA and Simple Object Access Protocol (SOAP) are other technologies that allow
processor and language independence between different platforms. But because RMI assumes the use of
Java, many of the tedious protocol-level tasks have been built into RMI, leaving the developer with more
time to worry about application logic. Java’s RMI is very good for Java systems, since it can assume that a
JVM will be present on both sides of the network connection. For these reasons, RMI is preferable to RPC
and CORBA in distributed object systems built entirely with Java. However, as a scandalous side note,
CORBA systems tend to perform better than RMI systems, mainly because they can be written in C or C++.
Closely related to RMI is RMI-IIOP, which stands for Java Remote Method Invocation Run Over Internet Inter-
Orb Protocol. RMI-IIOP was coproduced by Sun and IBM in order to achieve interoperability between
CORBA-compliant applications and Java. Using the Java development language, you can create the Interface
Definition Language (IDL) that will work with CORBA applications written in languages such as C++. The
rmic compiler supports the option -iiop, which will produce the IDL files.

CHAPTER 6 ■ NETWORKING WITH RMI172

Figure 6-5. Distributed object system

The Delivery Stack
A transport protocol is a protocol built directly above the network layer; the two most com-
mon examples are TCP/IP and UDP. Above the transport layer is the transfer layer, which is
responsible for the transparent transfer of data between hosts, flow control, and end-to-end
error recovery and data transfer. The transport layer issues requests to the network layer.
Figure 6-6 shows the technology stack complete with the network layer that RMI applications
are built upon.

Figure 6-6. The delivery stack

CHAPTER 6 ■ NETWORKING WITH RMI 173

A transfer protocol resides above a transport protocol and establishes how information is
trasnferred between hosts. A very common example of a transfer protocol is Hypertext Trans-
fer Protocol (HTTP). HTTP is the protocol for the World Wide Web. Java RMI does not use
HTTP as a transfer protocol but instead uses the Java Remote Method Protocol (JRMP). One
shortcoming to JRMP is that Java must be understood on both ends, the sending and receiving
end, tying the solution to a Java RMI framework. To alleviate the dependency on Java, CORBA-
related clients can be used by specifying -iiop for stub generation with the rmic tool. IIOP
ensures the CORBA clients can be used with Java remote object implementations, thus reduc-
ing the dependency on a strictly Java solution.

Table 6-2 summarizes the three choices developers have for choosing a transfer protocol
when using RMI.

Table 6-2. RMI Transfer Protocols

Protocol Description

RMI-JRMP The default transfer protocol for RMI. For client-server applications relying
entirely on Java as the programming language. A Java-to-Java solution.

Java-IDL For CORBA developers wanting to use Java in conjunction with interfaces
defined in CORBA-compliant applications. Essentially this is a CORBA-to-
Java solution.

Java RMI-IIOP For Java developers needing to maintain compatibility with legacy applica-
tions. A Java-to-non-Java solution.

Return values and parameters are copies. Objects that are exported, or that implement a
remote interface, are referenced via their stub, or client-side proxy. To export an object, extend
UnicastRemoteObject or explicitly call UnicastRemoteObject.export(<remote object>).

The Pros and Cons of Using RMI as a Networking Protocol
For the developer exam, the examinee can choose between RMI or serialized objects over sock-
ets for the networking protocol. Here are some of the reasons for selecting RMI over sockets:

Object-based semantics—Remote objects look and feel just like local objects. The com-
plexities of network-aware objects can be hidden from the programs using RMI remote
objects.

No protocol burden—Unlike sockets, when working with RMI there is no need to worry
about designing a protocol between the client and server, a process that is error-prone.

Method calls are type-safe in RMI—RMI is more strongly typed than sockets. Errors can
be caught at compile time.

It’s easy to add new objects with RMI or extend the protocol—You can more easily add
new remote object interfaces or add methods to an existing remote object.

IIOP can be used for non-Java end points—You are not explicitly tied to a Java-to-Java
solution.

Generating stubs just got easier with J2SE 5.0—If JRMP is used, there is no need to generate
stubs explicitly with rmic any longer. But we will still be required to do so for our project.

CHAPTER 6 ■ NETWORKING WITH RMI174

■Caution Even though Java 5.0 has added dynamic stub generation to alleviate RMI developers from
explicitly invoking rmic on their remote classes prior to runtime, you must still do so for the certification
project. This is important: The use of rmic is still required as of this writing for the Java developer certifi-
cation project.

However, the relatively intuitive object semantics of RMI come at the expense of the net-
work. There is communication overhead involved when using RMI, and that is due to lookups
in the RMI registry and client stubs or proxies that make remote invocations transparent. For
each RMI remote object, there is a need for a proxy, which slows the performance down.

Also it is important to be aware that thread management can sometimes cause issues if
working with classes that are not designed around thread safety. Control and management of
threads in RMI is delegated to the JVM and not the program.

The Classes and Interfaces of RMI
Figure 6-7 presents an overview of the classes and interfaces of RMI.

Figure 6-7. The RMI classes and interfaces

CHAPTER 6 ■ NETWORKING WITH RMI 175

The Interfaces
The Remote interface is another marker interface, similar to the Serializable interface dis-
cussed earlier. The term remote indicates that the methods defined may be accessed from a
different virtual machine than the one containing the remote object. For an object to be con-
sidered a remote object, the Remote interface must be implemented. Implementing this
interface is accomplished by extending java.rmi.Remote.

Any public method defined in the Remote interface must throw a java.rmi.RemoteException
or a super interface of java.rmi.RemoteException such as an IOException, Throwable, or
Exception. This is the super class for all communication exceptions that occur during the
invocation of a remote method. RemoteException is a checked exception and must therefore
be enclosed in the try/catch block or specified in the method signature of any object that
uses a remote object. A RemoteException may occur for either of the following reasons:

• The server is down, unreachable, or has terminated communication with the client.

• Errors were encountered during marshaling of params and return values.

One more interface is needed to create a remote object. The abstract class java.rmi.
RemoteObject, which is displayed in Figure 6-7, must also be extended. You can think of
RemoteObject as a remote object analog to java.lang.Object. RemoteObject provides the
network implementations for the java.lang.Object methods toString(), hashCode(), and
equals() that are appropriate for remote objects. Figure 6-8 shows the RMI layers.

Figure 6-8. RMI layers

CHAPTER 6 ■ NETWORKING WITH RMI176

Another abstract class required for writing RMI programs is java.rmi.RemoteServer. The
RemoteServer class is the common super class for server implementations and provides the
framework to support a wide range of remote reference semantics. Specifically, the functions
needed to create and export remote objects (i.e., to make them remotely available) are pro-
vided abstractly by RemoteServer and concretely by its subclasses. RemoteServer has two
important subclasses: java.rmi.server.UnicastRemoteObject and java.rmi.Activatable.

Exporting remote objects is the responsibility of Activatable or UnicastRemoteObject. An
Activatable object executes when requested and can turn itself off when necessary, whereas
UnicastRemoteObject runs only when the server is up and running. An active object is one that
has been instantiated and exported to a JVM. A passive object is one that has not been instan-
tiated. Activation is the process of transforming a passive object into an active one. Lazy
activation is the process of deferring activation until its first use. The Activatable interface
provides RMI with the option of delaying access to persistent objects until needed. It is unde-
sirable to permit an RMI server to use extensive system resources by loading a lot of remote
objects that are infrequently used or not needed. Ideally, distributed systems should have
access to thousands of persistent objects over very long, even indefinite, periods of time.

An RMI server that makes use of UnicastRemoteObject requires that remote objects be
instantiated prior to a remote client invoking one of the remote methods. But in the case
where we have many remote objects and the cost of instantiating all of them is prohibitive, an
Activatable RMI server is an excellent alternative. With the Activatable interface used in con-
junction with rmid, the RMI daemon, the server will instantiate the remote object when it is
needed.

Luckily, we do not need to worry about this facet of resource management when imple-
menting our RMI server, since we have only one remote object, BookDatabaseImpl, that acts as
our RMI server and gateway to the database. We do not demonstrate an Activatable imple-
mentation in this book. Instead, we extend the UnicastRemoteObject class.

What Is an RMI Factory?
An RMI factory is just what the name would imply: an RMI version of the software design
pattern aptly named the Factory pattern. As explained in Chapter 5 (which discussed data
locking), we make use of an RMI factory to have a proper identifier mechanism for lock own-
ership. By ensuring that each RMI client has its own version of the DvdDatabase class, we
avoid the issue of thread reuse, which is common in RMI and cannot be controlled explicitly
through a JVM or RMI property. Since we cannot be sure how threads are being used and we
are not allowed to use cookies or tokens to identify the requester, we exploit the Factory pat-
tern to produce discrete instances of the DvdDatabase. The sequence-like diagram in Figure 6-9
depicts the typical actions and actors in a Factory pattern.

CHAPTER 6 ■ NETWORKING WITH RMI 177

Figure 6-9. The RMI Factory pattern applied to Denny’s DVDs

The Factory Pattern—What Is a Factory?
A factory is a software entity that creates other types of software entities. The client makes a
request to a factory for a certain type of object, and out that object comes. Request a different
type, and the factory will create and return the type requested. Of course, the factory needs to
know how to create the requested object; otherwise the factory will complain that it doesn’t
understand the request. For instance, you wouldn’t request a personal computer from a fac-
tory specializing in producing cars. Likewise, our factory will understand how to create remote
objects. In particular, our factory will make a special type of remote object, a DvdDatabase.

Our factory is not a very robust factory in the sense that we only mass-produce one object
type, a DvdDatabase. One of the most common motivations for implementing an RMI factory is
to reduce the number of remote objects that need to be registered. This allows us to register
the factory only once and gradually evolve and add new remote classes without having to reg-
ister the new classes or even restart the registry. This is a nice by-product of an RMI factory
even though it doesn’t apply in our situation.

The RMI factory we implement in Denny’s DVDs is an example of a parameterized Fac-
tory pattern, which is a type of creational pattern (i.e., patterns that involve the creation of
objects and/or types; a singleton is another common example of a creational pattern). It is a
variant of the parameterized pattern because we do not actually supply a name or parameter
to the getClient method. It could be written getClient(String class_name_to_create). How-
ever, since our application only has one remote interface, DvdDatabaseRemote, the type of class
is implied. We do not need to specify. But we could easily modify this method or the factory to
return multiple remote objects.

CHAPTER 6 ■ NETWORKING WITH RMI178

The RMI Implementation
To create a version of our server that acts as a factory, we first define the factory and its only
method, getClient(), which allows us to obtain a unique instance of the DvdDatabase class
(see Listing 6-4).

■Note In this section we are talking about using the Factory pattern with our RMI solution, but it would
work equally well with a sockets solution. However, the socket server already works essentially as a factory,
creating a unique thread for each connected client, so we don’t really need to explicitly create a unique
object for each connected client. The very nature of a multithreaded socket server addresses the issue of
thread reuse in an RMI thread pool.

Listing 6-4. DvdDatabaseFactory.java

interface DvdDatabaseFactory extends Remote {
public DvdDatabaseRemote getClient() throws RemoteException;

}

class DvdDatabaseFactoryImpl extends UnicastRemoteObject
implements DvdDatabaseFactory {
/**
* A version number for this class so that serialization can occur
* without worrying about the underlying class changing between
* serialization and deserialization.
*/
private static final long serialVersionUID = 5165L;

public DvdDatabaseFactoryImpl() throws RemoteException {
//do nothing constructor

}

public DvdDatabaseRemote getClient() throws RemoteException {
return new DvdDatabaseImpl();

}
}

Now we define the DvdDatabase remote class, which like any other Remote object, extends
java.rmi.Remote in the interface and extends UnicastRemoteObject in the Implementation
class:

public interface DvdDatabaseRemote extends Remote, DBClient {
}
public class DvdDatabaseImpl extends UnicastRemoteObject implements
DvdDatabaseRemote {
... refer to code base for the rest of implementation...
}

CHAPTER 6 ■ NETWORKING WITH RMI 179

Finally, we can export the factory instance to the RMI registry found in the register()
method in the RegDvdDatabase class. The createRegistry() method starts the Java RMI registry
programmatically:

public static void register(int port) throws java.rmi.RemoteException, ➥

java.net.MalformedURLException{

//the default rmi port is 1099.
java.rmi.registry.LocateRegistry.createRegistry(port);

DvdDatabaseFactoryImpl dvdFactoryImplementation
= new DvdDatabaseFactoryImpl();

//register
Naming.rebind("DvdMediator", dvdFactoryImplementation);

}

■Note Starting the registry programmatically is a new project requirement. Sun no longer allows starting
the RMI Registry in a separate step.

Our RegDvdDatabase class binds the name DvdMediator to our remote object instance.
When the client (soon to be a Swing GUI in the next chapter) requests a remote reference to our
database application, it will require the services of the DVDConnector class. The DVDConnector
either returns a remote object or a DvdDatabase, which is the database wrapper for the
DvdFileAccess class; both are DBClients.

It is important to realize that we are only exporting the factory—we do not ever need to
export the DvdDatabase remote object. In the DvdDatabaseFactory class we return the remote
object DvdDatabase:

public DvdDatabaseRemote getClient() throws RemoteException {
return new DvdDatabaseImpl();

}

And the reason for the factory in the first place is the new instance of the database itself,
which can be found in the constructor of our DvdDatabase remote implementation:

public DvdDatabaseImpl() throws RemoteException {
try {

db = new DvdDatabase();
} catch (FileNotFoundException e) {

throw new RemoteException(e.getMessage());
} catch (IOException e) {

throw new RemoteException(e.getMessage());
}

}

CHAPTER 6 ■ NETWORKING WITH RMI180

We now have a unique instance of the DvdDatabaseImpl class for each connected client. If
each DvdDatabaseImpl has its own instance of DvdDatabase, then the instance of DvdDatabase
can be used to identify the client to the ReservationManager.

Since using a factory will work for both a socket solution and an RMI solution, and since
we are building both socket connectivity and RMI connectivity in this book, we will present
the ReservationManager code as though a factory solution is being used.

Let’s demonstrate the use of a factory and compare it to a nonfactory scenario. Included
in the downloaded code are two classes, RmiFactoryExample.java and RmiNoFactoryExample.
java. As you can probably surmise from the names, one class serves as a factory implementa-
tion test case, while the other serves as a test case for a nonfactory implementation. The
RmiFactoryExample class demonstrates how multiple instances of the DvdDatabase is instanti-
ated, and the RmiNoFactoryExample class demonstrates how multiple requests result in reuse
of our DvdDatabase instance.

Both sample programs extend Thread and implement the run method. The main in each
sample test program also spawns two threads to simulate a multiuser environment. The only
difference between the two test programs involves which remote object gets registered. The
RmiNoFactoryExample registers a DvdDatabase remote object, while the RmiFactoryExample reg-
isters the DvdDatabaseFactory remote object. Correspondingly, the run methods must cast the
appropriate remote interface returned from the lookup method. Refer to Listings 6-5 and 6-6.

Listing 6-5. The Main Method in the RmiNoFactoryExample Class

public static void main(String[] args) throws Exception {
LocateRegistry.createRegistry(1099);
Naming.rebind("RmiNoFactoryExample", new DvdDatabaseImpl());
Thread a = new RmiNoFactoryExample("A");
a.start();
Thread.sleep(1000);
Thread b = new RmiNoFactoryExample("B");
b.start();
a.join();
b.join();
System.exit(0);

}

public void run() {
try {

System.out.println("getting a remote handle to a DvdDatabase."
+ this.hashCode());

DvdDatabaseRemote remote
= (DvdDatabaseRemote)Naming.lookup("RmiNoFactoryExample");

}
catch (Exception e) {

System.err.println(e);
e.printStackTrace();

}
}

CHAPTER 6 ■ NETWORKING WITH RMI 181

The code for RmiFactoryExample is very similar, with the following differences in the main
method:

Naming.rebind("RmiFactoryExample", new DvdDatabaseFactoryImpl());

Listing 6-6 shows the run method for RmiFactoryExample.

Listing 6-6. The Main Method in the RmiNoFactoryExample Class

public void run() {
try {

System.out.println("Getting a remote handle to a factory. " ➥

+ this.hashCode());
DvdDatabaseFactory factory

= (DvdDatabaseFactory)Naming.lookup("RmiFactoryExample");
DvdDatabaseRemote worker = factory.getClient();

}
catch (Exception e) {

System.err.println(e);
e.printStackTrace();

}
}

To run the RmiNoFactoryExample test program, type the following command in the classes
directory of the sampleproject:

java sampleproject.remote.RmiNoFactoryExample

And to run the RmiFactoryExample, type:

java sampleproject.remote.RmiFactoryExample

Figure 6-10 shows the output of running the two test programs.
In the DvdDatabase class, an output line was added to indicate that the constructor was

called. The following println statement has been inserted into the DvdDatabase constructor:

System.out.println(" constructing a DvdDatabase object " + this.hashCode());

Examining the output of the two test programs indicates a critical difference: the
number of DvdDatabase objects constructed. The RmiFactoryExample constructs two separate
instances of the object. The RmiNoFactoryExample constructs only one. This demonstrates
how RMI reuses threads. Each thread has a separate DvdDatabase object, but since the
RmiNoFactoryExample reuses one of the threads, the DvdDatabase instance is shared between
the two remote invocations. Thus we cannot ensure thread safety and our locking strategy
fails. (Refer to the section in Chapter 5 on locking to review why the locking strategy requires
a unique DvdDatabase object.)

CHAPTER 6 ■ NETWORKING WITH RMI182

Figure 6-10. RMI factory examples

However, the RmiFactoryExample creates two separate instances of the DvdDatabase object,
as evidenced by the two constructor output messages, for each remote invocation.

We would like to expose the public methods as remote methods so our Swing GUI can
invoke them. Figure 6-11 shows a class diagram of our remote class.

Figure 6-11. DvdDatabaseRemote class diagram

CHAPTER 6 ■ NETWORKING WITH RMI 183

■Note Since the advantages that Activatable bestows are beyond the requirements of our project, we
have opted to extend the simpler, more straightforward UnicastRemoteObject class.

The code for the remote interface is rather concise, as shown in Listing 6-7.

Listing 6-7. The DvdDatabaseRemote.java

package sampleproject.remote;

import java.rmi.Remote;
import sampleproject.db.*;

/**
* The remote interface for the GUI-Client.
* Exactly matches the DBClient interface in the db package.
*
* @author Denny DVD
* @version 2.0
*/
public interface DvdDatabaseRemote extends Remote, DBClient {
}

To understand what behavior this interface is actually defining, it’s useful to examine the
DBClient class. That class diagram is shown in Figure 6-12, and the code file is shown in
Listing 6-8.

CHAPTER 6 ■ NETWORKING WITH RMI184

Figure 6-12. The DBClient class diagram

CHAPTER 6 ■ NETWORKING WITH RMI 185

Listing 6-8. DBClient.java

public interface DBClient {
/**
* Adds a DVD to the database or inventory.
*
* @param dvd The DVD item to add to inventory.
* @return Indicates the success/failure of the add operation.
* @throws IOException Indicates there is a problem accessing the database.
*/
public boolean addDVD(DVD dvd) throws IOException;

/**
* Locates a DVD using the UPC identification number.
*
* @param UPC The UPC of the DVD to locate.
* @return The DVD object which matches the UPC.
* @throws IOException if there is a problem accessing the data.
*/
public DVD getDVD(String UPC)throws IOException;

/**
* Changes existing information of a DVD item.
* Modifications can occur on any of the attributes of DVD except UPC.
* The UPC is used to identify the DVD to be modified.
*
* @param dvd The Dvd to modify.
* @return Returns true if the DVD was found and modified.
* @throws IOException Indicates there is a problem accessing the data.
*/
public boolean modifyDVD(DVD dvd) throws IOException;

/**
* Removes DVDs from inventory using the unique UPC.
*
* @param UPC The UPC or key of the DVD to be removed.
* @return Returns true if the UPC was found and the DVD was removed.
* @throws IOException Indicates there is a problem accessing the data.
*/
public boolean removeDVD(String UPC) throws IOException;

/**
* Gets the store's inventory.
* All of the DVDs in the system.
*
* @return A List containing all found DVDs.

CHAPTER 6 ■ NETWORKING WITH RMI186

* @throws IOException Indicates there is a problem accessing the data.
*/
public List<DVD> getDVDs() throws IOException;

/**
* A properly formatted <code>String</code> expressions returns all
* matching DVD items. The <code>String</code> must be formatted as a
* regular expression.
*
* @param query The formatted regular expression used as the search
* criteria.
* @return The list of DVDs that match the query. Can be an empty
* Collection.
* @throws IOException Indicates there is a problem accessing the data.
* @throws PatternSyntaxException Indicates there is a syntax problem in
* the regular expression.
*/
public Collection<DVD> findDVD(String query)

throws IOException, PatternSyntaxException;

/**
* Lock the requested DVD. This method blocks until the lock succeeds,
* or for a maximum of 5 seconds, whichever comes first.
*
* @param UPC The UPC of the DVD to reserve
* @throws InterruptedException Indicates the thread is interrupted.
* @throws IOException on any network problem
*/
boolean reserveDVD(String UPC) throws IOException, InterruptedException;

/**
* Unlock the requested record. Ignored if the caller does not have
* a current lock on the requested record.
*
* @param UPC The UPC of the DVD to release
* @throws IOException on any network problem
*/
void releaseDVD(String UPC) throws IOException;

}

To complete an RMI implementation we need one more class. The class that actually
implements the remote interface is displayed in Listing 6-9. Most of the code has been omit-
ted for brevity, but the unexpurgated version can be viewed in the project download from the
Source Code section of the Apress website. One of the important things to note is that we
extend UnicastRemoteObject rather than Activatable. We also implement DVDDatabaseRemote.
This will ensure that the proper methods are implemented.

CHAPTER 6 ■ NETWORKING WITH RMI 187

Listing 6-9. DvdDatabaseImpl.java

public class DvdDatabaseImpl extends UnicastRemoteObject
implements DvdDatabaseRemote {

/**
* A version number for this class so that serialization can occur
* without worrying about the underlying class changing between
* serialization and deserialization.
*/
private static final long serialVersionUID = 5165L;

/**
* The Logger instance. All log messages from this class are routed through
* this member. The Logger namespace is <code>sampleproject.remote</code>.
*/
private static Logger log = Logger.getLogger("sampleproject.remote");

/**
* The database handle.
*/
private DBClient db = null;

/**
* DvdDatabaseImpl default constructor
* @throws RemoteException Thrown if a <code>DvdDatabaseImpl</code>
* instance cannot be created.
*/
public DvdDatabaseImpl() throws RemoteException {

try {
db = new DvdDatabase();

} catch (FileNotFoundException e) {
throw new RemoteException(e.getMessage());

} catch (IOException e) {
throw new RemoteException(e.getMessage());

}
}

/**
* Returns the sampleproject.db.Dvd object matching the UPC.
*
* @param upc The upc code of the DVD to retrieve.
* @return The matching DVD object.
* @throws RemoteException Thrown if an exception occurs in the
* <code>DvdDatabaseImpl</code> class.
* @throws IOException Thrown if an <code>IOException</code> is
* encountered in the <code>db</code> class.
*

* For more information, see {@link DvdDatabase}.

CHAPTER 6 ■ NETWORKING WITH RMI188

* @throws ClassNotFoundException Thrown if a
* <code>ClassNotFoundException</code> is
* encountered in the <code>db</code> class.
*

* For more information, see {@link DvdDatabase}.
*/
public DVD getDVD(String upc) throws RemoteException, IOException {

return db.getDVD(upc);
}

/**
* Gets the store's inventory.
* All of the DVDs in the system.
*
* @return A collection of all found DVDs.
* @throws IOException Indicates there is a problem accessing the data.
* @throws ClassNotFoundException Indicates the Dvd class definition cannot
* be found.
*/
public List<DVD> getDVDs() throws IOException {

return db.getDVDs();
}

/**
* A properly formatted <code>String</code> expressions returns all matching
* DVD items. The <code>String</code> must be formatted as a regular
* expression.
*
* @param query A regular expression search string.
* @return A Collection of DVD objects that match
* the search criteria.
* @throws IOException Thrown if an IOException is
* encountered in the db class.
* @throws ClassNotFoundException Thrown if an
* ClassNotFoundException is encountered in the
* db class.
* @throws PatternSyntaxException Thrown if a
* PatternSyntaxException is encountered in the
* db class.
*/
public Collection<DVD> findDVD(String query)

throws IOException, PatternSyntaxException {
return db.findDVD(query);

}

/**
* Modifies a DVD database entry specified by a DVD object.

CHAPTER 6 ■ NETWORKING WITH RMI 189

*
* @param item The DVD to modify.
* @return A boolean indicating the success or failure of the modify
* operation.
* @throws RemoteException Thrown if an exception occurs in the
* <code>DvdDatabaseImpl</code> class.
* @throws IOException Thrown if an <code>IOException</code> is
* encountered in the <code>db</code> class.
*

* For more information, see {@link DvdDatabase}.
*/
public boolean modifyDVD(DVD item) throws

RemoteException,
IOException {

return db.modifyDVD(item);
}

/**
* Removes a DVD database entry specified by a UPC.
*
* @param upc The UPC number of the DVD to remove.
* @return A boolean indicating the success or failure of the removal
* operation.
* @throws RemoteException Thrown if an exception occurs in the
* DvdDatabaseImpl class.
* @throws IOException Thrown if an IOException is
* encountered in the db class.
*

* For more information, see {@link DvdDatabase}.
*/
public boolean removeDVD(String upc) throws

RemoteException,
IOException {

return db.removeDVD(upc);
}

/**
* Lock the requested DVD. This method blocks until the lock succeeds,
* or for a maximum of 5 seconds, whichever comes first.
*
* @param upc The UPC of the DVD to reserve
* @throws InterruptedException Indicates the thread is interrupted.
*/
public boolean reserveDVD(String upc)

throws InterruptedException, IOException {
return db.reserveDVD(upc);

}

CHAPTER 6 ■ NETWORKING WITH RMI190

/**
* Unlock the requested record. Ignored if the caller does not have
* a current lock on the requested record.
*
* @param upc The UPC of the DVD to release
*/
public void releaseDVD(String upc) throws IOException {

db.releaseDVD(upc);
}

/**
* Adds a DVD to the database or inventory.
*
* @param dvd The DVD item to add to inventory.
* @return Indicates the success/failure of the add operation.
* @throws IOException Indicates there is a problem accessing the database.
*/
public boolean addDVD(DVD dvd) throws IOException, RemoteException {

return db.addDVD(dvd);
}

}

This DVDDatabaseImpl source code is interesting since it accesses the database via a
wrapper, or an adapter, called the DvdDatabase. We could have easily placed the actual data-
base method implementations, found in the class DvdFileAccess, directly in the remote object
DvdDatabaseImpl. Or we could have extended UnicastRemoteObject on DVDFileAccess and
made that object the remote object. We chose to do it this way for the following reasons:

• Adding a level of abstraction between the RMI implementation and the actual data-
base-level code makes it a clearer object-oriented design and helps to separate the RMI
details from the application logic details. We wanted to create a level of separation
from the application logic and the two networking approaches: RMI and sockets. With
the preceding design, we will be able to easily use either the socket or the RMI code
depending on our preferences. We have eliminated any dependencies between the
networking packages and the database packages. This will be clarified in the project
wrap-up in Chapter 8.

• In order for our locking strategy to work properly, it is important that all database modi-
fication requests first achieve a lock prior to the modification identified with a unique
DvdDatabase object. We require a unique instance of DvdDatabase in order to have a
unique identifier for the lock method; otherwise we cannot ensure that the client who
locked a record is the same one who is modifying, deleting, or even unlocking that
same record. Once the lock is granted, the modification may safely occur. Finally we
unlock the record. Because these operations must not occur in a synchronized method
(see the “Locks” section in Chapter 4), and all of the modification methods in the data-
base must be synchronized, we must access the database by way of our adapter.

CHAPTER 6 ■ NETWORKING WITH RMI 191

All RMI implementations must be thread-safe because invocations on a particular object
could occur concurrently if the RMI runtime spawns multiple threads. There is no guarantee
regarding RMI thread management. Thus, it is your responsibility to make sure that remote
object implementations are thread-safe. In our case, using an RMI factory pattern in collabo-
ration with the reserveDVD and releaseDVD methods in the DvdDatabase class ensures that our
implementation is thread-safe.

If you choose not to extend UnicastRemoteObject but rather call the class method
UnicastRemoteObject.export in the constructor, then the object methods such as hashcode,
toString, and equals must be implemented. Listing 6-10 shows how the class constructor
and declaration would accommodate that approach (the rest of the code has been omitted
for conciseness).

Listing 6-10. Exporting UnicastRemoteObject

public class DvdDatabaseImpl implements DvdDatabaseRemote
{

public DvdDatabaseImpl() throws RemoteException {
UnicastRemoteObject.exportObject(this);

this.dvdDatabase = new DvdDatabase();
}

}

Stubs and Skeletons
Only clients actually invoke methods on a stub, which is a local representation, or proxy,
of the remote object. While it appears that the client is calling the remote object directly,
unbeknownst to the client it is actually calling a proxy method in the stub that initiates com-
munication with the destination VM. The stub is responsible for packaging the parameters of
the remote method call prior to sending them across the network. The process of packaging
the parameters prior to shipping them across a network is called marshaling.

On the other side of the wire, or server side of the network, the incoming invocation is
eventually received by the remote reference layer, which demarshals the arguments and dis-
patches the call to the actual server object. The server then marshals the return value back to
the caller on the client side.

J2SE 1.5 introduces a new feature that alleviates the need to separately generate stub
classes for the client using the tool rmic. Now stub classes can be dynamically generated at
runtime by the JVM. (However, we are still required to use rmic for stub generation in our
submission.) To unconditionally generate stubs dynamically, set the JVM parameter
java.rmi.server.ignoreStubClasses to true. This can be done using the -D option (i.e.,
java -Djava.rmi.server.ignoreStubClasses=true).

■Note You must still generate stub classes with rmic for backward compatibility with pre-J2SE 1.5
clients.

CHAPTER 6 ■ NETWORKING WITH RMI192

The tool rmic can be used in a number of ways depending on context. rmic allows for
compatibility with previous versions of Java such as Java 1.1 (stubs and skeletons) and Java 1.2
(stubs only). J2SE 1.5 does not require the use of skeletons, but as we mentioned earlier, you
must still use rmic with your project submission.

■Note The skeleton interface has been deprecated in the Java 2 platform (i.e., JDK version 1.2 and
greater). To create stubs for version 1.2 only in our RMI implementation, we use the following syntax
with rmic:

rmic -v1.2 sampleproject.remote.DVDDatabaseImpl

■Note RMI makes use of the Proxy design pattern. The Proxy pattern designates a surrogate object that
controls access to the real object. There are three key players in this design pattern: a Subject, a Proxy,
and a Real-Subject. The Proxy object has a reference to the Real-Subject and is responsible for com-
munication to and from the Real-Subject. The Subject displays the same interface for both the Proxy
and the Real-Subject. The Real-Subject is the actual implementation of the object the Proxy repre-
sents and that the Subject has defined. In RMI, the Subject corresponds to the remote implementation.
The stub is the Proxy and the remote object implementation is the Real-Subject. Figure 6-13 illustrates
the various elements in the Proxy design pattern.

Figure 6-13. The Proxy design pattern

For backward stub//skeleton compatibility with previous versions of Java, you can read more about
rmic at http://java.sun.com/j2se/1.5.0/docs/tooldocs/windows/rmic.html for Windows. For
Unix, visit http://java.sun.com/j2se/1.5.0/docs/tooldocs/solaris/rmic.html.

Parameter Passing
RMI method invocations require communication between objects on different machines and
in different JVMs, even though the call behaves as if it is a local call within the same JVM.
This section describes how RMI transfers parameters and return values between different

CHAPTER 6 ■ NETWORKING WITH RMI 193

JVMs. There are three classes of parameters and return values to consider: primitive types,
Serializable objects, and remote objects.

■Note Arrays of primitives and arrays of Serializable objects can also be safely passed as a remote
method parameter.

Primitive Types
RMI makes a copy of the primitive type for both method arguments and return values. When a
copy of the primitive is sent across the wire, we say that the parameter or return value is pass-
by-value.

Serializable Objects

When an object is marshaled across the wire as a method parameter or a return value, RMI
makes a copy of the object and all of the objects it references as one large object graph. Object
parameters are sent across the wire as pass-by-value, just like primitive types.

The object being passed must be Serializable or a NotSerializableException will be
thrown. In addition, all of the class members of the object being marshaled must also be
Serializable, unless the member is declared as a transient member or the Externalizable
interface is implemented instead of Serializable.

Remote Objects

This is the most complex scenario of the three. When the item being returned is a remote
object (i.e., one that implements java.rmi.Remote), the proxy for that object, or the stub, is
returned in place of the Real-Object. In this way, remote objects are pass-by-reference and
the stub is marshaled back and forth.

Remote objects, by default, implement Serializable. Table 6-3 summarizes how RMI
handles various parameters and return values. RMI uses one of two mechanisms to obtain
remote object references. The RMI registry is one way, and another is simply passing the
proxy or stub, which was discussed previously. The RMI registry uses java.lang.Naming to
store references to remote objects. java.rmi.Naming provides URL-based methods to associate
name-object pairs located on a particular host and port. RMI can also load bytecodes with a
valid URL naming protocol such as FTP or HTTP. When a client interacts with a remote object,
it also interacts with the remote object interface, not with the actual remote implementation.

Table 6-3. RMI Parameter Passing

Object/Type Parameter/Return Value

Remote objects Pass-by-reference: A stub is passed instead of a copy.

Nonremote/serialized objects Pass-by-value: An actual copy of an object is passed as a
serialized object.

Primitive types Pass-by-value: A copy is made.

CHAPTER 6 ■ NETWORKING WITH RMI194

Security and Dynamic Loading
Running an RMI application over a network requires that certain files be accessible to the
server and client class loaders. Table 6-4 summarizes which files are required.

Table 6-4. Class Loader Requirements

Client Class Loader Requires Server Class Loader Requires

Remote interfaces Remote interfaces, remote implementations

Stubs for remote objects Stubs for remote objects

Server classes used as return Skeletons for remote objects (JDK version 1.1 only)
values

Miscellaneous client classes Miscellaneous server classes

When a client has the remote object stubs and class files locally, the task is much simpler
and there are no special runtime considerations. However, if a client only has the remote
interface, Java provides the capability to load the classes and stubs dynamically. Dynamic
loading is the feature in RMI that allows for an object not available locally to be retrieved. Two
important classes make dynamic loading possible: RMIClassLoader and SecurityManager.
Besides these two important classes, you need to know the location of the classes to be
loaded.

This is referred to as a code base. Think of a code base as similar to a classpath, except on
a different machine accessible with a URL. A classpath would be analogous to a local code
base. The codebase property is java.rmi.server.codebase. It would be specified on the com-
mand line as follows:

java -Djava.rmi.server.codebase <URL>

The java.rmi.server.RMIClasssLoader class is required for dynamic class loading when
using RMI.

The RMIClassLoader class makes use of the codebase property. The RMIClassLoader class
can load classes from either an applet or an RMI application. For our purposes, and the pur-
poses of the certification exam, our discussion on security will be brief. We do not need to
worry about security or policy files in our implementation, since our application does not use
a security manager. Java 2 makes use of a security manager option due to compatibility with
pre–Java 2 applications. However, in a professional RMI application, a security manager is a
given. In addition, if your network application uses dynamic class loading, a security manager
is required.

Firewall Issues
When the client and server are separated by a firewall, the RMI transport layer is forbidden
from creating socket connections. In situations where a socket connection is prohibited, RMI
makes use of a technique called HTTP tunneling. Tunneling is the process of wrapping RMI
calls in an HTTP POST request, which firewalls typically allow.

Tunneling is done automatically. When a socket connection is denied by the transport
layer, a last-ditch effort is made to service the request via HTTP tunneling.

CHAPTER 6 ■ NETWORKING WITH RMI 195

■Note Java programs have permissions that are governed by policy files. The Java 2 security model
requires that programs and the RMI registry have permission to create sockets. After all, RMI is based
on sockets. The client also needs to specify a policy file on start-up. Here is how we would start the
RMI registry to load a policy file other than the default: rmiregistry -J-Djava.security.
policy=ourSecurityFile.policy.

Port 80 is used as the default port unless one is specified in the server property http.
proxyHost. However, HTTP tunneling comes with a number of costs. Performance is sacrificed
and security can be compromised. Tunneling can be disabled by setting the server property
java.rmi.server.disableHttp to true.

Summary
This chapter covered a great deal of information. First, we reviewed serialization.

Any object that can potentially be sent across a network must be serialized prior to its trip
across the wire. Both sockets (which will be discussed in the next chapter) and RMI require
serialization. In RMI, both the return values and the method parameters must be serializable
for the application to work.

Finally, we explored RMI in depth and implemented an RMI solution for Denny’s DVDs.
Considering the amount of effort that went into building the socket implementation, we were
able to appreciate the amount of work RMI does under the hood. We did not have to worry
about writing a multithreaded server, since RMI handles that aspect for us. We also did not
have to worry about creating command and result objects in order to implement an applica-
tion protocol.

However, RMI did require us to define a remote interface and make sure that all of our
method parameters were serializable. Additionally, we had to concern ourselves with register-
ing our remote object with the RMI naming service and starting the RMI registry so that our
object is accessible to a remote client. We hope you have learned enough about serialization,
sockets, and RMI so that you can design and implement a complete networking solution for
the SCJD exam. Using this project networking package as a guide, along with the chapter, you
should be adequately prepared.

FAQ
Q Is RMI thread-safe?

A No. The J2SE 1.4 RMI specification makes no guarantee regarding the number of
threads that will have access to your remote object. For this reason, your design has
to take into account issues of thread safety. See Chapter 4 for details on locking and
thread safety. The approach we used in this chapter was to create an RMI factory
ensuring a distinct instance of the DvdDatabase wrapper class and using that as our
unique identifier for record locking.

CHAPTER 6 ■ NETWORKING WITH RMI196

Q Which method is better, RMI or sockets?

A Each approach has its strengths. Sockets are useful for sending large amounts of data
(with or without a protocol) without a lot of overhead. With RMI it is much easier to
implement a multithreaded server, since RMI handles the threading aspect for you.
The remote object also behaves as if it is a local object complete with a protocol or set
of public methods, whereas sockets require that you implement a protocol. It is really
up to you, but both approaches should work fine as long as you understand the key
technical issues pertaining to the protocol.

Q Is a security manager, or some sort of authentication, required?

A This depends largely on the details of your exam. Read the instructions very carefully!
Each test is different. In this chapter, we briefly discussed a number of security issues
such as policy files, dynamic class loading, HTTP tunneling, firewalls, and security
managers. However, in our implementation, we do include a security manager and do
not make use of policy files.

Q Do I need to include the skeletons in my J2SE 5.0 implementation of RMI?

A Yes. Skeletons are only required for those Java versions prior to 1.2 (i.e., version 1.1). By
default, skeletons are generated when rmic is run on your remote object implementa-
tions, but you can control this feature by using the -keep v1.2 option of rmic. However,
at the time of this writing, the certification project still requires that stubs be included
with your submission and that you do not rely on the dynamic stub generation tech-
nique in the Tiger version (i.e., J2SE 5.0).

Q Am I required to start the RMI registry manually?

A No. The registry must be started programmatically. Again, read the instructions on
your exam. But most likely, you will be required to start the registry as we did in the
RegDVDDatabase class. The class has a register method that binds the remote object
implementation class in the RMI naming service and uses the LocateRegistry.
register method. When running this across a network, as we will in Chapter 8, you
should call the getRemote method in Connector from a main method.

CHAPTER 6 ■ NETWORKING WITH RMI 197

Networking with Sockets

This chapter describes how to build the Denny’s DVDs networking layer by using sockets.
Sockets are a software abstraction that allows applications to communicate with each

other across a network. Any connection between two machines over IP (Internet Protocol)
requires the use of sockets. Java provides programmers with the ability to connect application
sockets, but as we will see in this chapter, much work needs to be done to ensure that clients
and servers can communicate effectively using standard sockets. To alleviate some of that
effort, Java also provides the Remote Method Invocation (RMI) framework, which is built on
top of sockets. As you learned in the previous chapter, however, using RMI introduces its own
problems. Either networking solution has its pros and cons, and it is up to you as a developer
to determine which one you feel is better for a given situation. In this chapter, we will detail a
simple sockets solution for our sample project, providing you with what you need to make an
informed decision regarding which solution to use in your Sun assignment.

Our major areas to cover include

• An overview of sockets

• Why you would want to use sockets

• The basic information required for connecting sockets

• How to build a TCP socket client

• How to build a TCP socket server

• Serialized objects with sockets

• Socket lifecycles

Socket Overview
A socket is one of the endpoints in a communication link between two programs and is always
bound to a port. A socket connection is useful for connecting to remote machines, and send-
ing and receiving data. To create a socket connection, you will need the host address to which
you want to connect and the port number. Sockets are not specific to Java. However, all ver-
sions of Java since JDK 1.0 have provided facilities for creating sockets. As with RMI, the
discussion is demarcated by client and server considerations.

The server is a listening service that receives connection requests from socket clients.
When a request is granted, the server establishes a socket-to-socket connection. The client 199

C H A P T E R 7

■ ■ ■

will use the server’s hostname (or IP address) and port to request a connection. On the server
side of the network, java.net.ServerSocket is the class that listens for connection requests
from socket clients. The class java.net.Socket is one of the endpoints of a socket connection.
Both the server and the client will have an instance of java.net.Socket per socket connection.

Why Use Sockets
Choosing between sockets and RMI is one of the biggest decisions you will have to make for
the certification project. But each choice comes with its own advantages and trade-offs. If the
JavaRanch web forum on the certification exam is any indication, it seems that most develop-
ers opt for the RMI solution. In fact, in the first edition of this book we recommended using
RMI instead of sockets just because we believed at the time that the approach seemed more
intuitive from a Java programmer’s perspective. However, since then we have backed off from
this assertion. Either RMI or sockets will work fine and both are reasonably straightforward to
implement. But for the adventurous at heart, let’s discuss some of the reasons you might opt
for a socket solution.

Socket servers are more scalable and faster than RMI servers. Acquiring a remote object
handle requires a network call in the form of a Registry lookup. In addition, each remote
object has a client-side proxy, or stubs, which effectively adds an object layer between the
client and the actual remote object implementation class. This communication overhead is
paid for in terms of performance.

Typically one of the reasons mentioned for not using sockets is the implicit contract, or
application protocol, that needs to be in place between the socket clients and the socket
server. We discuss this in more detail later in this chapter in the section “The Application Pro-
tocol.” However, what if the protocol is very simple? In cases where the socket interface is
simple, sockets are an excellent choice.

One final reason worth considering a socket implementation involves threading. Each
socket client request in our socket solution spawns a new thread, which we can use to main-
tain a lock on the DvdDatabase. This means we do not have to worry about implementing a
factory as we did with RMI. The very nature of our socket solution avoids this potentially
complicating issue. Of course, you now have to deal with the problem of developing a multi-
threaded socket server, but help is on the way! Denny’s DVDs is a multithreaded socket server,
and we describe our server implementation later in this chapter.

Socket Basics
In this section, we will explore the types of sockets available to the Java programmer as well as
some of the fundamental concepts related to socket development.

Addresses
An address is a unique number used to identify a device connected to a network, much like a
postal address identifies the location of a building in a city. An IP address is a unique number,
usually consisting of 12 digits or more, that is technically a 32-bit or 128-bit unsigned number
used by the Internet protocol (i.e., IP) and for sending messages between socket addresses on
TCP- or UDP-based networks. The java.net.InetAddress class is the Java class that encapsu-
lates an IP address for use with Java sockets.

CHAPTER 7 ■ NETWORKING WITH SOCKETS200

■Note The 32-bit addressing scheme used by TCP/IP has been around since the 1970s. With more and
more devices requiring Internet addresses, it is estimated that all currently available addresses will be used
somewhere between 2016 and 2023 (however, previous estimates on Internet growth have been far below
reality, so this figure is not to be relied on). To alleviate this problem, a new addressing scheme has been
recommended and is slowly being implemented. The 32-bit addressing scheme is known as IPv4, and the
new addressing scheme is known as IPv6. Java supports both schemes with the Inet4Address class and
Inet6Address classes, respectively. In this chapter we will be using IPv4 as this is the most common
addressing scheme currently in use.

TCP and UDP Sockets Overview
Over the years programming has evolved from manually setting binary instructions (1GL or
first-generation languages), through assembly language (2GL), human-readable languages
(Java, C++), and specification languages like SQL (4GL). The later languages do not eliminate
the need for the lower-level languages—they just do the hard work of translating the program-
mer’s code into lower-level code. For example, when programming in Java your code will be
translated into bytecode by the Java compiler (corresponding roughly to the output from an
assembly language program), which is later translated into the binary instructions for the
computer by the JVM. While you can still find work as a machine language programmer, many
programmers find that such work is slow and error prone—working in a higher-level language
such as Java can greatly improve productivity and quality of work.

Similarly, network protocols have evolved over the years, so that we no longer need to
worry ourselves with the lowest-level network details. When you are programming your Java
program, you typically do not care how to physically send signals over a piece of wire (or other
medium), nor do you care whether your computers are communicating over an Ethernet or a
Token Ring network; all you care about is how to make the connection. Finally, in order to use
sockets, we will be using IP rather than one of the other network layers (X.25, ICMP, IPX). But
even having chosen to use sockets, leaving all the low-level communication to the IP layer and
layers beneath it, we still have a choice between TCP and UDP sockets.

UDP Sockets
User Datagram Protocol (UDP) enables machines on a network to send datagram packets to
each other. UDP sockets work in much the same way as the U.S. postal system. Messages, or
letters, are sent to a particular address and an immediate response by the server, or addressee,
endpoint is not necessary. UDP sockets do not require a two-way connection. Similarly, the
postal system does not require that the recipient be present when a letter is delivered.

Let’s consider the mail analogy a little more. A letter is dropped off at a mailbox and deliv-
ered to the stated address. The mail carrier then places the letter in the destination mailbox.
The mail system does not require that someone be there to accept the letter (of course, I real-
ize that sometimes packages require signatures, but for the sake of convenience let’s ignore
those kinds of packages for now). Once the individual to whom the letter is addressed returns
home, he or she can then collect the mail.

UDP discards corrupted messages (datagrams) so there is no guarantee that messages
sent via UDP will make it to their final destination, just as there is no guarantee that a letter

CHAPTER 7 ■ NETWORKING WITH SOCKETS 201

sent through the postal system will make it to the intended recipient. The main classes used
are DatagramSocket and DatagramPacket in the Java API. A packet is information in the form of
byte sequences that are sent across a network. Since messages are not guaranteed to be deliv-
ered and can be received out of order, UDP socket applications have to deal with reordering
and data loss.

Efficiency and flexibility are the main reasons you would choose a UDP socket approach.
We do not use UDP for a few reasons. First, efficiency is not something that is an overriding
concern. Second, and most important, the exam does not permit a UDP approach. So that
sort of makes our decision rather clear-cut. But if we were to use a UDP approach, then
both the client and the server would use a DataGramSocket class for sending and receiving
DataGramPacket objects. The remainder of this chapter and the sample project use TCP
sockets instead of UDP sockets, so our discussion of UDP will end here.

■Caution The exam requirements tend to be vague regarding this point. Most likely the instructions read
“You must use either serialized objects over a simple socket connection, or RMI.” It is not precisely clear as
to what a simple socket is and whether this precludes a UDP solution. We take it to mean that you should
use the java.net.Socket class and not the java.net.DatagramSocket class. While it would be techni-
cally feasible to create a UDP solution for this assignment, doing so would require a lot of work in developing
packet-handling code, and would go against the standard expected usage of UDP (simple, short [often less
than 100 bytes] messages). We therefore recommend that, if you’re using sockets as the networking proto-
col, you use the simpler TCP approach. However, that being said, you should always refer to your specific
exam for instructions.

UDP is designed for minimal messaging applications—the very small messages that you
might use if you were trying to monitor network applications, such as SNMP (Simple Network
Management Protocol)—or for very simple query/responses, such as DNS (Domain Name
System) queries. It is better to use TCP for larger messages, such as the large messages that are
possible in response to a database query in our sample application. The next section describes
how to develop a socket solution using TCP.

TCP Sockets
TCP stands for Transmission Control Protocol—a protocol that controls the transmission of
packets so that messages are guaranteed to be received and that packets are received in the
same order as they were sent. To meet these guarantees, the TCP protocol uses slightly more
network traffic than UDP (and since RMI provides more features and guarantees than a plain
TCP socket, it uses even more network traffic than TCP). However, since the protocol provides
these features for us, we do not have to verify the order in which packets are received in our
application. This makes it a much better choice for Denny’s DVDs.

A TCP socket is a socket connection that utilizes a TCP/IP connection as its underlying
transfer protocol. Each end of the connection is identified with an IP address and a port num-
ber. TCP socket clients send requests, and TCP socket servers listen for requests.

CHAPTER 7 ■ NETWORKING WITH SOCKETS202

The following are the basic steps involved in TCP socket communication:

1. Create an instance of a socket class.

2. Send serialized messages using the socket I/O streams.

3. Close the socket connection.

■Note For the initial connection there are two requirements: a socket client that sends the initial connec-
tion request and a socket server that is listening for incoming connection requests. But once the connection
has been set up, you have a connection between two sockets, and either one can send or receive data. It is
up to the communication protocol to determine which socket is sending data and which socket is receiving
data at any given time. We will cover application protocols in the section “The Application Protocol” later in
this chapter. As you might imagine, if either client or server does not follow the application protocol, the
point-to-point communication will break down.

TCP Socket Clients
The class java.net.Socket is responsible for implementing a socket-to-socket connection.

The constructor for this class, which actually attempts to connect to the destination
machine, requires both the hostname as a URL (as a string) and the port of the destination
machine. Table 7-1 lists the various public constructors for java.net.Socket.

Table 7-1. Public Constructors for java.net.Socket

Socket Class Socket Class Constructors

public Socket() Creates an unconnected socket.

public Socket(InetAddress address, The most commonly used. Creates a connected
int port) socket to the supplied address and port.

public Socket(InetAddress address, Creates a socket that connects to the remote
int port, InetAddress localAddr, address and port and also binds to the local
int localPort) address and port.

public Socket(String host, Creates a stream socket and connects it to the
int port) specified host and port.

public Socket(String host, Connects to a remote host and port and binds to
int port, InetAddress localAddr, the local address and port.
int localPort)

Once a socket connection is made, you can obtain information about the connection
through a variety of getter methods. The client-side socket is not bound to the port number
the server is residing on. Rather, the client-side socket is assigned a local port it uses to com-
municate with the server.

CHAPTER 7 ■ NETWORKING WITH SOCKETS 203

A number of constants are defined in the interface SocketOptions. These constants are
used as settings to customize a client socket. We do not implement the SocketOptions inter-
face directly, but we have access to its constants through getter and setter methods in the
Socket class. In the sections that follow, we discuss a few of the more useful options.

Using SO_TIMEOUT
When reading data from a socket through the use of the input stream’s read method, the call
blocks other requests as determined by this setting. The SO_TIMEOUT option determines the
amount of time in milliseconds that blocking operations can block until they time out. If the
operation does not complete in the allotted time, then a java.net.SocketTimeoutException is
thrown, as shown in Figure 7-1. If this option has not been set or is set to 0, then the call blocks
requests until complete and will not time out.

Figure 7-1. A SocketTimeoutException

The Socket methods used for setting and getting this option are as follows:

public void setSoTimeout(int timeout) throws SocketException
public int getSoTimeout() throws SocketException

We use this option in DVDSocketServer.java, although we could just as easily have used
this option in our socket client, DVDSocketClient.java. The following line will shut down the
socket server after 1 minute, or 60,0000 milliseconds, of inactivity:

serverSocket.setSoTimeout(60000);

After the specified time elapses, a java.net.SocketTimeoutException is thrown. Figure 7.1
illustrates the DVDSocketServer console when the exception occurs.

Using SO_SNDBUF
This option sets the buffer size for data transmissions from this socket. When setting this
option, it is merely a suggestion, or a hint, to the platform about the size of buffer the applica-
tion requires for output operations over the socket. The getter indicates the actual size of the
output buffer. These two methods can be used together to determine whether the platform

CHAPTER 7 ■ NETWORKING WITH SOCKETS204

was able to make use of the hint in the set method by a call to the get method after the output
operation. The Socket methods used for setting and getting this option are as follows:

public int getSendBufferSize() throws SocketException
public void setSendBufferSize(int size) throws SocketException

The send buffer size value determines how many packets will be sent before waiting
for an acknowledgment that the packets have been received at the other application. On a
reliable network, you can set this to a high value to get the best throughput of data. In a worst-
case scenario, you could set the send buffer to the same size as the packet size. In this case,
for every packet sent, an acknowledgment would have to be received—if you needed to send
100 packets, you would need to receive 100 packets. Contrast this with a send buffer that is 100
times larger than the packet size—when sending the 100 packets you would have to receive
only one packet; it would complete in nearly half the time.

Using SO_RCVBUF
This option is similar to SO_SNDBUF, which is used for setting the send buffers. The difference
here is that this option deals with the receive buffers. As with the send buffer option, setting
the receive buffer size value is actually a hint to the platform. To verify the size the buffer was
set to, use the getReceiveBufferSize method. To improve the performance of a high-volume
socket connection, increase the size of the receive buffer. Decreasing this value can reduce
incoming backlog.

public void setReceiveBufferSize(int size) throws SocketException
public int getReceiveBufferSize() throws SocketException

Using SO_BINDADDR
This option indicates the local address that a socket is bound to. This option is read-only. A
socket address cannot be changed after it is created and must be specified in the constructor.
The method signature is as follows:

public InetAddress getLocalAddress()

One of the possible uses for this method is determining what IP address you are bound to
when running on a computer with multiple IP addresses (e.g., a server with multiple network
cards, a PC with both a local IP address and a networked address, or a computer with both a
network address and a virtual private network address).

The DvdSocketClient
There are a few important points to note about the DVDSocketClient. The socket implementa-
tion in our sample project uses port 3000 by default. Also by default, we use localhost as the
hostname. This is useful when we want to run our application in networking mode on one
machine (i.e., when we do not have access to a network). If we run our application on different
machines, we will have to specify the IP address of the machine that is running the socket
server.

CHAPTER 7 ■ NETWORKING WITH SOCKETS 205

Another key point regarding the socket client is that it implements DBClient. This ensures
that our rent and return methods are available to any client using DVDSocketServer. The
DvdSocketClient.java is displayed in Listing 7-1. The entire source code for the sockets pack-
age can be downloaded from the Apress web site (http://www.apress.com) in the Source Code
section—more details on what can be downloaded and how the code can be compiled and
packaged are listed in Chapter 9.

■Tip On Linux and most Unix computers, you can also specify localhost.localdomain as the host-
name. You can also use the loopback addresses (127.0.0.0–127.0.0.254) instead of the hostname.
Accepted practice is to use 127.0.0.1 as the standard loopback address, leaving the other potential
loopback addresses for specialist purposes (e.g., for testing multiple identical applications on different
addresses simultaneously).

Listing 7-1. DVDSocketClient.java

public class DvdSocketClient implements DBClient {
/**
* The socket client that gets instaniated for the socket connection.
*/
private Socket socket = null;
/**
* The outputstream used to write a serialized object to a socket server.
*/
private ObjectOutputStream oos = null;
/**
* The inputstream used to read a serialized object (a response)
* from the socket server.
*/
private ObjectInputStream ois = null;
/**
* The IP address of the machine the client is going to attempt a
* connection.
*/
private String ip = null;
/**
* The port number we will be connecting on.
*/
private int port = 3000;
/**
* Default constructor.
*/
public DvdSocketClient () throws UnknownHostException, IOException {

this("localhost", "3000");
}

CHAPTER 7 ■ NETWORKING WITH SOCKETS206

/**
* Constructor takes in a hostname of the server to connect.
*
* @param hostname The hostname to connect to.
* @throws NumberFormatException if portNumber is not valid.
*/
public DvdSocketClient(String hostname, String portNumber)

throws UnknownHostException, IOException {
ip = hostname;
this.port = Integer.parseInt(portNumber);
this.initialize();

}

/**
* Adds a DVD to the database or inventory.
*
* @param dvd The DVD item to add to inventory.
* @return A boolean value that indicates the success/failure of the
* add operation.
* @throws IOException Indicates there is a problem accessing the data.
*/
public boolean addDVD(DVD dvd) throws IOException {

DvdCommand cmdObj = new DvdCommand(SocketCommand.ADD, dvd);
return getResultFor(cmdObj).getBoolean();

}

/**
* Gets a <code>DVD</code> from the system using a UPC.
*
* @param upc The UPC of the DVD you want to view.
* @return A DVD that matches the supplied UPC.
*
* @throws IOException Indicates there is a problem accessing the data.
*/
public DVD getDVD(String upc) throws IOException {

DVD dvd = new DVD();
dvd.setUPC(upc);

DvdCommand cmdObj = new DvdCommand(SocketCommand.GET_DVD, dvd);
return getResultFor(cmdObj).getDVD();

}

/**
* Attempts to rent the DVD matching the provided UPC.
*
* @param upc is the UPC of the DVD you want to rent.
* @return true if the DVD was rented. false if it cannot be rented.

CHAPTER 7 ■ NETWORKING WITH SOCKETS 207

*
* @throws IOException Thrown if an <code>IOException</code> is
* encountered in the <code>db</code> class.
*

* For more information, see {@link DVDDatabase}.
* @throws InterruptedIOException Thrown if an
* <code>interrupted Threading exception</code> is
* encountered in the <code>db</code> class.
*

* For more information, see {@link DVDDatabase}.
*/
public boolean rent(String upc) throws IOException {

DVD dvd = new DVD();
dvd.setUPC(upc);

DvdCommand cmdObj = new DvdCommand(SocketCommand.RENT, dvd);
return getResultFor(cmdObj).getBoolean();

}

/**
* Attempts to return the DVD matching the provided UPC.
*
* @param upc The UPC of the DVD you want to rent.
* @return true if the DVD was rented. false if it cannot be rented.
*
* @throws IOException Thrown if an <code>IOException</code> is
* encountered in the <code>db</code> class.
*

* For more information, see {@link DVDDatabase}.
*

* For more information, see {@link DVDDatabase}.
*/
public boolean returnRental(String upc) throws IOException {

DVD dvd = new DVD();
dvd.setUPC(upc);

DvdCommand cmdObj = new DvdCommand(SocketCommand.RETURN, dvd);
return getResultFor(cmdObj).getBoolean();

}

/**
* Gets the store's inventory.
* All of the DVDs in the system.
*
* @return A collection of all found DVD's.
* @throws IOException Indicates there is a problem accessing the data.
*/

CHAPTER 7 ■ NETWORKING WITH SOCKETS208

public List<DVD> getDVDs() throws IOException {
DvdCommand cmdObj = new DvdCommand(SocketCommand.GET_DVDS);
return getResultFor(cmdObj).getList();

}

/**
* A properly formatted <code>String</code> expressions returns all matching
* DVD items. The <code>String</code> must be formatted as a regular
* expression.
*
* @param query A regular expression search string.
* @return A <code>Collection</code> of <code>DVD</code> objects that match
* the search criteria.
* @throws IOException Thrown if an <code>IOException</code> is
* encountered in the <code>db</code> class.
*/
public Collection<DVD> findDVD(String query)

throws IOException, PatternSyntaxException {
DvdCommand cmdObj = new DvdCommand(SocketCommand.FIND);
cmdObj.setRegex(query);

DvdResult serialReturn = getResultFor(cmdObj);

if (serialReturn.isException()
&& serialReturn.getException() instanceof PatternSyntaxException) {

throw (PatternSyntaxException) serialReturn.getException();
} else {

return serialReturn.getCollection();
}

}

/**
* Removes a <code>DVD</code> from the system using a UPC.
*
* @param upc The UPC of the DVD you want to remove from the database.
* @return true if the item was removed, false if it was not removed.
* @throws IOException Indicates there is a problem accessing the data.
*/
public boolean removeDVD(String upc) throws IOException {

DVD dvd = new DVD();
dvd.setUPC(upc);

DvdCommand cmdObj = new DvdCommand(SocketCommand.REMOVE, dvd);
return getResultFor(cmdObj).getBoolean();

}

CHAPTER 7 ■ NETWORKING WITH SOCKETS 209

/**
* Modifies a DVD database entry specified by a DVD object.
*
* @param dvd The DVD to modify.
* @return A boolean indicating the success or failure of the modify
* operation.
* @throws IOException Thrown if an <code>IOException</code> is
* encountered in the <code>db</code> class.
*

* For more information, see {@link DVDDatabase}.
*/
public boolean modifyDVD(DVD dvd) throws IOException {

DvdCommand cmdObj = new DvdCommand(SocketCommand.MODIFY, dvd);
return getResultFor(cmdObj).getBoolean();

}

/**
* Lock the requested DVD. This method blocks until the lock succeeds,
* or for a maximum of 5 seconds, whichever comes first.
*
* @param UPC The UPC of the DVD to reserve
* @throws InterruptedException Indicates the thread is interrupted.
* @throws IOException on any network problem
*/
public boolean reserveDVD(String upc) throws IOException,

InterruptedException {
DVD dvd = new DVD();
dvd.setUPC(upc);
DvdCommand cmdObj = new DvdCommand(SocketCommand.RESERVE, dvd);
return getResultFor(cmdObj).getBoolean();

}

/**
* Unlock the requested record. Ignored if the caller does not have
* a current lock on the requested record.
*
* @param UPC The UPC of the DVD to release
* @throws IOException on any network problem
*/
public void releaseDVD(String upc) throws IOException {

DVD dvd = new DVD();
dvd.setUPC(upc);
DvdCommand cmdObj = new DvdCommand(SocketCommand.RELEASE, dvd);
getResultFor(cmdObj).getBoolean();

}

CHAPTER 7 ■ NETWORKING WITH SOCKETS210

private DvdResult getResultFor(DvdCommand command) throws IOException {
// this.initialize();

try {
oos.writeObject(command);
DvdResult result = (DvdResult) ois.readObject();
Exception e = result.getException();

if (! result.isException()) {
return result;

} else if (e instanceof ClassNotFoundException) {
IOException ioe = new IOException(

"problem with demarshaling DvdCommand)");
ioe.setStackTrace(e.getStackTrace());
throw ioe;

} else if (e instanceof IOException) {
throw (IOException) e;

} else {
// well, we still have an exception, but it is up to the
// calling method to handle it
return result;

}
} catch (ClassNotFoundException cnfe) {

IOException ioe = new IOException(
"problem with demarshaling DvdResult)");

ioe.setStackTrace(cnfe.getStackTrace());
throw ioe;

// } finally {
// closeConnections();

}
}

public void finalize() throws java.io.IOException {
closeConnections();

}

/**
* A helper method which initializes a socket connection on specified port
*
* @throws UnknownHostException if the IP address of the host could not be
* determined.
* @throws IOException Thrown if the socket channel cannot be opened.
*/
private void initialize() throws UnknownHostException, IOException {

socket = new Socket(ip, port);

CHAPTER 7 ■ NETWORKING WITH SOCKETS 211

oos = new ObjectOutputStream(socket.getOutputStream());
ois = new ObjectInputStream(socket.getInputStream());

}

/**
* A helper method which closes the socket connection.
* Needs to be called from within a try-catch
*
* @throws IOException Thrown if the close operation fails.
*/
private void closeConnections() throws IOException {

oos.close();
ois.close();
socket.close();

}
}

Socket Servers
In this section, we discuss the various types of socket servers and the techniques often used to
build them. We also introduce the concept of an application protocol and how we imple-
mented the protocol in the Denny’s DVDs socket server.

Multicast and Unicast Servers
A unicast server involves one-to-one communication between a client and a server. The sock-
ets developed in Denny’s DVDs are unicast. However, in addition to unicast sockets, there are
multicast sockets.

Multicast sockets are connections between groups of machines. Multicasting, or broad-
casting, is used when data is sent from one host to multiple clients. The class
java.net.MulticastSocket is used when writing applications that broadcast messages to
many clients. We will not discuss multicast sockets any further, but you should at least be
familiar with the concept. Figure 7-2 highlights the differences between multicast and unicast
sockets.

Multitasking
An iterative, or single-threaded, server is one that handles client requests sequentially. As one
request comes in, the server responds and begins listening again once the request is com-
pleted. Client requests that come in while the server is processing a prior request are placed
on a queue and serviced as prior requests are completed. In addition, as long as one client
maintains the port connection to a single-threaded server, no other client can connect—if
the connection is held for too long, some of the waiting clients may time out. (Refer to the
SO_TIMEOUT setting earlier.) Figure 7-2 shows the lifecycle of an iterative, or sequential, socket
server.

CHAPTER 7 ■ NETWORKING WITH SOCKETS212

Figure 7-2. Iterative socket server lifecycle

Socket servers that can multitask can process multiple client requests simultaneously.
This is accomplished with a multithreaded socket server. If you are anticipating a lot of
requests, or requests take a long time to process, then multitasking is a very useful feature for
a socket server to have. The Denny’s DVDs socket version is a multithreaded socket server.

Each client gets serviced with its own thread, which makes the socket solution operate
much like our RMI factory solution. We can thus be assured that each client has its own
DvdDatabase object. (See our discussion on the RMI factory in Chapter 6.) The next section
describes the details of our multitasking socket solution.

The Server Socket Class
The class java.net.ServerSocket allows you to create servers that listen to incoming connec-
tions on a specified port. A ServerSocket can send and receive data as well as act upon that
data. Figure 7-3 illustrates the lifecycle of a multithreaded server. The public constructors
for ServerSocket let you specify the port, queue length, and binding address. The server is
responsible for implementing the protocol, or the rules that both the client and server must

CHAPTER 7 ■ NETWORKING WITH SOCKETS 213

conform to in order to communicate. If the port you try to open is being used when you try to
instantiate your ServerSocket, then an IOException is thrown. If the socket is successfully cre-
ated, the server listens on that port for incoming connections by using the accept method.
The ServerSocket.accept method returns the client socket that is connected to the client.

Figure 7-3. Lifecycle of a multithreaded socket server

■Note More accurately, if the port you try to open is already being used when you try to instantiate your
ServerSocket connection, a BindException will be thrown. However, the constructor for ServerSocket
only specifies the superclass of BindException (IOException) will be thrown, as other exceptions may
also be thrown during construction.

Next, the server opens readers and writers on the socket and communicates with the
client by writing and reading to the socket. The ServerSocket.accept method blocks the port
until a client connects, and then it returns a Socket object. The socket connection is then used
to execute the client request, and the connection can be closed for that client.

CHAPTER 7 ■ NETWORKING WITH SOCKETS214

SocketServer has many of the same socket options available as the Socket class. One
important option that they share is the SO_TIMEOUT option. With the ServerSocket class, the
SO_TIMEOUT option specifies how long the server should wait for an incoming socket connec-
tion with the accept method.

When the accept method times out, a java.net.SocketTimeoutException is raised. Let’s
look at a sample socket implementation in Listing 7-2 for our networking version of Denny’s
DVDs. Figure 7-4 shows a high-level view of how we must implement our socket solution.

Figure 7-4. Socket classes

Listing 7-2. DVDSocketServer.java

package sampleproject.sockets;
import java.io.*;
import java.net.*;
import java.util.*;
import java.util.logging.*;
import sampleproject.db.*;

CHAPTER 7 ■ NETWORKING WITH SOCKETS 215

/**
* DVDSocketServer is the class that handles socket client requests and
* passes the request to the database. The class recieves parameters in
* <code>DVDCommand</code> objects and returns results in
* <code>DVDResult</code> objects.
* @version 2.0
*/
public class DvdSocketServer extends Thread {

private String dbLocation = null;
private int port = 3000;

/**
* Starts the socket server
*
* @param argv Command line arguments.
* @throws IOException Thrown if the socket server fails to start.
*/
public static void main(String argv[]) {

register(".", 3000);
}

public static void register(String dbLocation, int port) {
new DvdSocketServer(dbLocation, port).start();

}

public DvdSocketServer(String dbLocation, int port) {
this.dbLocation = dbLocation;
this.port = port;

}

public void run() {
try {

listenForConnections();
} catch (IOException ioe) {

ioe.printStackTrace();
System.exit(-1);

}
}

public void listenForConnections() throws IOException {
ServerSocket aServerSocket = new ServerSocket(port);
//block for 60,000 msecs or 1 minute
aServerSocket.setSoTimeout(60000);

(Logger.getLogger("sampleproject.sockets")).log(Level.INFO,
"a server socket created on port " +
aServerSocket.getLocalPort());

CHAPTER 7 ■ NETWORKING WITH SOCKETS216

while (true) {
Socket aSocket = aServerSocket.accept();
DbSocketRequest request = new DbSocketRequest(dbLocation, aSocket);
request.start();

}
}

}

The main method creates a ServerSocket object on port 3000. There is a loop that listens
for requests from any Java or non-Java clients on port 3000. Once a request is received, the
connection is accepted, meaning that the accept method stops blocking and the Socket object
is returned. The resulting socket is passed in as a parameter to the DBSocketRequest. The
server socket then spawns a new thread for the client request. This design enables multiple
clients to connect to the socket server since each request is serviced in a separate thread.

The DBSocketRequest class extends Thread. You will recall that one of the requirements is
that multiple clients need to be able to use the DVDDatabase services.

Now our socket server can create multiple threads as needed. Once an object is accepted
on the port (port 3000 in our case), which happens in the run method, the execCmdObject
method is called. This method is a big switch statement. It inspects the command object for the
action to be performed and then calls the matching method in DVDDatabase. Refer to the proj-
ect download for the entire DBSocketRequest class. For brevity, Listing 7-3 only shows the run
method.

Listing 7-3. DBSocketRequest.java

/**
* Required for a class that extends thread, this is the main path
* of execution for this thread.
public void run() {

try {
ObjectOutputStream out =
new ObjectOutputStream(client.getOutputStream());
ObjectInputStream in =

new ObjectInputStream(client.getInputStream());
DVDCommand cmdObj = (DVDCommand) in.readObject();
out.writeObject(execCmdObject(cmdObj));
if (client != null) {

client.close();
}
out.flush();

}
catch (SocketException e) {

logger.log(Level.SEVERE,
"SocketException in Socket Server: " + e.getMessage());

}
catch (Exception e) {

logger.log(Level.SEVERE,
"General Exception in Socket Server: "
+ e.getMessage()

);
}

CHAPTER 7 ■ NETWORKING WITH SOCKETS 217

A final point about DBSocketRequest is that DBSocketRequest is where we implemented
our application protocol. We have separated the protocol from the actual socket,
DVDSocketServer.

The Application Protocol
The socket client transmits a serialized object to the socket server. But how does the server
know how to respond to the object? A serialized object is technically just data in the form of a
byte stream; on the surface it does not communicate action. This is where we need a protocol,
or set of rules, that defines how our client is to interact with our server.

At a high level, here is how our protocol will work:

1. The client will make a request, such as rent or return rental, of the server.

2. The server will execute the request.

3. The result status or return value will be sent to the client.

Deliberating on the preceding list should lead to the following two questions: “How will
the server interpret the request?” and “How will the result be sent back to the client?”

The Denny’s DVDs application adopts an approach of encapsulation. The request is
encapsulated in a command object and the result is encapsulated in a result object. Let’s take
a closer look at the command and result objects.

The Command Enum
The DvdCommand class encapsulates the client request by storing it as a SocketCommand member,
commandId. When a GUI client calls one of the DBClient methods on DVDSocketClient, the
socket client sets the commandId property and sends it off to the socket server, DVDSocketServer.
Since DVDCommand is sent, or marshaled, across the wire, it must be serializable. When the
server receives the DVDCommand object, it uses the commandId to call the corresponding method
on the DVDDatabase, which is a local call to our server. Any parameters (for instance, the UPC
value) that are required for the request are passed in the DVD class member. The regex attribute
is used exclusively for the find method.

Listing 7-4 shows the constructors that take a SocketCommand enum ID (see the sidebar
“Using Enum Constants”) and a dvd object as a parameter. The dvd object is useful for storing
the UPC for rent and return. For the modify method, a dvd parameter can be used to set the
other dvd attributes for a particular DVD. We do not actually use the modify method publicly in
our implementation, but the class has been designed with this enhancement in mind.

■Note The DVDCommand object is an example of the Command pattern. A command object encapsulates
a request as an object. You can find more information about the Command pattern in the book Design
Patterns: Elements of Reusable Object-Oriented Software, by Erich Gamma, Richard Helm, Ralph Johnson,
and John M. Vlissides (Addison-Wesley, 1995). The Proxy and Adapter patterns are also described in this
literary software masterpiece.

CHAPTER 7 ■ NETWORKING WITH SOCKETS218

Listing 7-4. The Public Methods of DVDCommand.java

/**
* Default constructor
*/
public DvdCommand() {

this(SocketCommand.UNSPECIFIED);
}

/**
* Constructor that requires the type of command to execute as a parameter.
*
* @param command The id of the command the server is to perform.
*/
public DvdCommand(SocketCommand command) {

this (command, new DVD());
}

/**
* Constructor that requires the type of command and the DVD object.
*
* @param command The id of the command the server is to perform.
* @param aDvd
*/
public DvdCommand(SocketCommand command, DVD dvd) {

setCommandId(command);
this.dvd = dvd;

}

/**
* Gets the query that was used for searching.
*
* @return The string representing the regualr expression to use in find().
*/
public String getRegex() {

return regex;
}

/**
* Sets the regular expression
*
* @param re The regular expression to use in find().
*/
public void setRegex(String re) {

regex = re;
}

CHAPTER 7 ■ NETWORKING WITH SOCKETS 219

DVDSocketClient makes use of the DVDCommand object in each of its DBClient methods. For
example, in the find method, the command object is constructed with the FIND enum value of
SocketCommand. Next, the regex attribute is set using the query parameter of the find method.
These two steps are shown again here:

DvdCommand cmdObj = new DvdCommand(SocketCommand.FIND);
cmdObj.setRegex(query);

The Result Object
The DVDResult object is used to encapsulate the result of the request. When the DVDDatabase
has completed a request, the result is sent back to DVDSocketServer, which in turn wraps
the result in a DVDResult object and sends it back to the socket client. As in the case of the
command object, DVDResult must be serializable since it is sent across the network. Even
exceptions are wrapped in DVDResult and sent back to the client.

The result object is similar to the DVDCommand object in its operation. There are a number
of constructors that take the varying types of return values from the DBClient methods. You
can find the code in the project download, but the following is an example of its usage in the
find method of DVDSocketClient:

DVDResult serialReturn = (DVDResult)ois.readObject();
if (!serialReturn.isException()) {
retVal = serialReturn.getCollection();
}

The DVDResult is received from the socket server. The result object is checked for excep-
tions, and if no exceptions are detected, the Collection is extracted from DVDResult. We
know it must be a Collection since our protocol ensures that for DBClient’s find method,
a Collection is always returned.

■Note Our application protocol was separated from our socket server, based on good design principles.
Thus, changes in our protocol, or even additional protocols, can now be handled without affecting the socket
server directly.

USING ENUM CONSTANTS

The Application protocol is implemented by specifying the command type. This was performed with the fol-
lowing code taken from the constructor of the DvdCommand class:

public DvdCommand(SocketCommand command, DVD dvd) {
setCommandId(command);
this.dvd = dvd;

}

CHAPTER 7 ■ NETWORKING WITH SOCKETS220

Prior to JDK 5, the commandId variable in the DvdCommand class would probably have been constants,
of the form:

public final static int FIND = 0;
public final static int RENT = 1;
public final static int RETURN = 2;

There are many problems with doing this, though, including the possibility that someone might directly
set the commandId variable to an integer value that is not supported, or they might do something illogical
with the constants (such as try to add them). Furthermore, we cannot enumerate over the number of modes,
and if we tried to print the value of the commandId variable, a number would be returned—we would have
to look up this number in the documentation or in the source code to determine what the number really
means.

JDK 5 provides us with a simpler way of defining these constants: using an enum. The SocketCommand
enum is defined as

package sampleproject.gui;

public enum SocketCommand {
UNSPECIFIED, /* indicate that the command object has not been set */
FIND, /* request will be performing a Find action */
RENT, /* renting a DVD */
RETURN, /* returning a DVD */
MODIFY, /* updating status of a DVD */
ADD, /* creating a new DVD record */
REMOVE, /* delete a DVD record */
GET_DVD, /* retrieve a single DVD from database */
GET_DVDS, /* retrieve multiple DVDs from database */
RESERVE,
RELEASE

}

Now any variable of type SocketCommand can only contain one of these listed options—no other
options are possible.

We also have the benefit that anytime we print (or log) the contents of the commandSocket variable,
the string UNSPECIFIED, FIND, RENT, RETURN, MODIFY, ADD, REMOVE, GET_DVD, GET_DVDS, RESERVE, or
RELEASE will be printed (or logged)—it will be instantly clear from looking at the output what the variable
was set to.

There are many more benefits of using enums. We recommend you read the release notes related to
enums available at http://java.sun.com/j2se/1.5.0/docs/guide/language/enums.html for
more information.

CHAPTER 7 ■ NETWORKING WITH SOCKETS 221

Summary
In this chapter, we discussed the Denny’s DVDs socket implementation. We also provided a
brief overview of the different types of sockets, and the various types of TCP socket develop-
ment strategies. We laid out the application protocol for our socket implementation and
demonstrated the Command pattern with the help of Java enums. The choice of sockets as the
network protocol in your exam solution should not be perceived as something esoteric and
frightening that is to be avoided at all costs. Even though most students opt to not develop a
socket solution, we believe that the choice isn’t any more challenging than an RMI solution
and should be fairly straightforward, given the sample code base that accompanies this text.
Sockets are a technology that underlies most networking protocols. Most of the cool new tech-
nologies, such as web services and EJBs, ultimately rely on sockets. As we have discussed, even
RMI is built on top of sockets. So you would be well served to become acquainted with sock-
ets, if only to help deepen your understanding of these other networking technologies. The
next chapter covers the graphical user interface (GUI) for the Denny’s DVDs application.

FAQs
Q Do I need to implement a multithreaded socket server?

A Yes. The certification exam requires that the server allow multiuser access. If you use a
single-threaded solution, then there will never be a way to demonstrate concurrent
access. Your application will block serially until each request is resolved one at a time.
This may be an interesting solution and will circumvent the need to figure out a lock-
ing strategy, but one that Sun will not permit.

Q Should I utilize a thread pool for the socket server implementation?

A This is completely up to you. You could do so and it would be a good practice. Every
time a new connection is accepted, our server spawns a new thread to handle the
request. However, creating and destroying threads is not a free lunch. On a really busy,
highly trafficked server, it might be better to control the creation of threads. A thread
pool will instantiate a set number of threads, a number that can be calibrated based on
your application performance requirements, upon startup. When the server receives a
new request, it is serviced with one of the threads from the pool. When the request is
completed, the thread is returned to the pool for later use. A thread pool will eliminate
the overhead associated with creating and destroying new threads. We do not make
use of a thread pool in Denny’s DVDs and you will not have to implement a thread pool
for your certification project since the exam does not require that your server perform
well under a heavy load.

Q What is meant by TCP sockets being a connection-oriented protocol?

A Sometimes in the literature, the term “connection-oriented” will be used when refer-
ring to TCP sockets. What this means is that before communication can occur between
the endpoints, a connection must exist. Contrast this with UDP sockets, a connection-
less protocol.

CHAPTER 7 ■ NETWORKING WITH SOCKETS222

Q Was it necessary to use the SocketCommand object to indicate which command to per-
form on the database?

A No. We chose this implementation for clarity: it was a nice way to enumerate over the
possible commands and demonstrate the command pattern. The drawback is that if
new commands were added to the database, the client would have to receive an
updated SocketCommand class in order to submit future requests since we would no
longer be able to deserialize older command objects on the server. (Of course, we
could check the serialversionID so that we could be backward compatible, but you
get the idea.) A different approach would be to embed the command as a string in the
DvdCommand. This way, as new commands are added, there would be no need to add
them to the SocketCommand class, but the server would be able to recognize the new
command.

Q Should I allow the user to change the port to be used in this application?

A While not strictly necessary, doing so is generally considered a good idea. Otherwise, if
another server application is using your desired port, your server application will be
unable to start.

Q When choosing a port number to use in my application (whether hard-coded or a
default value), are there any numbers I should avoid?

A The Internet Assigned Numbers Authority (IANA) specifies a list of well-known ports
(from port number 0 through 1023), registered ports (from 1024 through 49151), and
dynamic and/or private ports (from 49152 through 65535). It is recommended that you
choose a port number from the private port range to avoid conflict with any other
service. You should avoid using a well-known port since, depending on your operating
system, you may also find that you cannot run your server using a well-known port
without administrator privileges.

Q How can I perform system cleanup when a client disconnects?

A If the thread that is dedicated to that client is listening for a new command from the
client, then it will receive an exception when the client disconnects. Alternatively, if the
client disconnects before your server has an opportunity to respond to a previous
request, then the thread dedicated to that client will receive an exception when you
attempt to send the response to the client. In either of these cases, you can add
cleanup code to your catch block.

Alternatively, if you are only interested in cleaning up any outstanding locks, you can
use the thread dedicated to the client as a key within a WeakHashMap containing the
locks. When the client disconnects (and the thread dies), then eventually the lock
will be automatically removed from the WeakHashMap. Refer to Chapter 5 for more
information.

Q How can I automatically update all clients whenever a booking is made by any other
client on the server?

A This is not required for the Sun assignment; however, you would have to open an addi-
tional socket between the server and the client so that the server can send messages
to the client. You could combine this with the Observer design pattern (described in
Chapter 8) so that clients can register their desire to be notified of bookings.

CHAPTER 7 ■ NETWORKING WITH SOCKETS 223

The Graphical User Interfaces

In the preceding chapters, the implementation of the data and network tiers for the Denny’s
DVD application were discussed in detail. Now it is time to deal with the final development
tier: the graphical user interface (GUI).

In this chapter we will cover the following topics:

• Designing simple yet usable GUIs

• Reviewing Swing components and the event model

• Implementing a JTable

• Implementing the Model-View-Controller (MVC) design pattern

• Implementing the Observer design pattern

It is not necessary to have read the networking chapters prior to reading this chapter. The
majority of this chapter details how to design your GUI, and as such, the networking sections
are not required. The sections of this chapter that deal with connecting to the database use the
Factory design pattern, which will provide an instance of a class that implements our connec-
tion interface. Naturally, though, you will not be able to connect the GUI to the database using
the networking options described in this chapter until after you have completed the network-
ing chapters.

■Tip The way we are using the connection interfaces shows one of the benefits of using an interface: the
interface provides a contract that we can assume will be implemented—we don’t need the actual imple-
mentation to develop our factory and use it.

While developing the Sun assignment, you might choose to start development of the GUI
prior to developing the networking classes. This is also a reasonable approach, and might even
be the preferred approach in real life—developing the GUI before the networking code means
that the customer could start working with the stand-alone application before the final code is
written.

225

C H A P T E R 8

■ ■ ■

For the purposes of this book, it made sense for us to develop the networking code first,
as we will be connecting to the database via direct connection and via the various networking
options from within our GUI.

■Caution A common misconception made by end users is that when they have seen the user interface,
then the entire project is close to completion. It can save a lot of confusion if you spend extra time with the
client to make sure that they understand how much additional work is required at the time you show them
the user interface. One attempt to get around this misconception is the Napkin Look & Feel for Swing appli-
cations. See http://napkinlaf.sourceforge.net for further details.

Of all components in an application, none affects the user quite as much as the GUI. This
is true by an interface’s nature: It is the method by which an end user interacts with a system.
Unfortunately, the GUI is often the most de-emphasized part of the application development
process. This is truly a fallacy, since a user interface can sometimes make or break an entire
system. If a GUI is convoluted and difficult to navigate, users will quickly become frustrated
and the result will be a poor overall user experience. In the end, a system is only successful if
people can successfully use it.

This chapter aims to introduce concepts of GUI layout, design, and implementation to
those who may not have given it much thought in the past. An interface is a required portion
of the SCJD exam, and this chapter provides novices with all the information they need to get
one up and running.

GUI Concepts
The SCJD exam requires that one individual complete all development work. This includes
development of all three tiers of the application: the server tier, the middle tier, and the
presentation tier. This is different from the more common working environment, where devel-
opers often specialize in a certain tier. It is common practice in the workforce to have a group
of back-end developers and a separate group of front-end developers working on a three-
tiered project. In the case of the SCJD exam, one developer must create all three tiers.

■Tip The fact that you are doing the work that might normally be split into three teams can cause confu-
sion when reading Sun’s instructions. Often candidates feel that requirements in the GUI section of the
instructions contradict instructions in the Data section. But when considered from the perspective of individ-
ual teams, you should find that the instructions do not contradict each other; the team building the Data
class has clear instructions to carry out. The team building the GUI has been told what the Data class will
provide, and can then add their own restrictions to meet the requirements of the GUI.

CHAPTER 8 ■ THE GRAPHICAL USER INTERFACES226

Creating the front-end can be a daunting task, especially for those who are primarily not
front-end developers. There are many Java developers who never write a line of interface code
but who are still extremely fluent programmers in general. This is further exacerbated by the
fact that only a limited textual description of the interface is provided; we have not been given
any examples of what the end user would like to see. The crux of the next two sections is to
ease the burden of developing the GUI.

Layout concepts are discussed at a high level, in addition to some basic human interface
concepts that can be incorporated into the interface for the SCJD exam.

■Note Layout concepts and human interface concepts are courses of study unto themselves. The next two
sections only introduce ideas of relevance to the SCJD exam.

Layout Concepts
It is a common misconception that GUI layout is more an art than a science. This is a slight
misrepresentation of the process of layout design and information architecture. In the early
days of computing, computer programming was considered more of an art than a science.
This fact seems almost ludicrous by today’s standards. It was only after an engineering process
was applied to the art of programming that it quickly became more of a science or an engi-
neering practice. The same can be said for interface design concepts.

Layout design revolves around the presentation of information in a clear and concise
manner. The user should be able to process the information a user interface presents with
little or no effort. This last statement is vague, but for a reason. No matter how standards ori-
ented a process may become, there is always a level of intuition in decision making. Not all
roads can be anticipated and laid out in a standard process. Intuition is where the art of layout
design comes into play, in deciding how to deal with those gray areas of development where
no one has treaded before.

Fortunately for us, many have treaded into the design considerations presented in the
SCJD exam. In fact, the layout of data has become so standardized that Sun actually includes
a Swing component, the JTable, to deal specifically with this “database”-style data. Sun even
goes so far as to require the use of the JTable component for the SCJD exam. The JTable
component, which is discussed in detail later in this chapter, is the main method of data
presentation in this book’s example application.

On a high level, let’s take a look at how the JTable efficiently displays data. The JTable
uses the spreadsheet paradigm of presenting items divided into rows and columns. This
spreadsheet-style layout is illustrated in Figure 8-1. Notice that when users need to locate
data under this paradigm, they only need to cross-reference a column value with a row value.
Where the two values intersect is the location of the data. The paradigm also is the ultimate
reconciliation of data versus display space. If another row of data is added to the table, the
size will increase by approximately the height of the font used. Adding an additional column
impacts the size of more than a row, but the layout is extremely flexible, so updates to the
underlying system data are easily represented in the presentation. In addition to all of these
features, the table schema presents a great quantity of data in a very small area.

CHAPTER 8 ■ THE GRAPHICAL USER INTERFACES 227

Figure 8-1. A high-level table schema

While the preceding analysis may appear to be stating the obvious, it does emphasize the
layout principles the table schema does very well. The analysis performed on the JTable can
and should be done for the overall layout of any GUI interface. You should look for these crite-
ria in a user interface:

• All data is presented in the minimum amount of space, without being cluttered or
disorganized.

• The user should be able to locate necessary information quickly.

• In most cases, the interface must scale to fit more or less data.

Human Interface Concepts
Human interface concepts go beyond simple data layout organizational techniques. Human
interface design schemas organize the user’s flow of events when attempting to complete a
task. For instance, deciding how to lay out data in order to maximize its readability is a layout
decision. Deciding how to lay out the entire act of selecting a data item and modifying it is a
human interface decision. In short, human interface decisions determine how users interact
with the system.

The point of a GUI is to create an easy method of interaction between a user and a system.
The GUI, in a certain sense, acts as a layer of shielding, abstracting the actual functions of the
system away from the user. When the user clicks a button to save a document, the system may
have to go through a number of steps to save the file:

1. The application validates the file integrity.

2. The system calculates the physical size of the file.

3. The system checks the hard disk to see if there is enough available space to save
the file.

4. The application writes the file to the file system.

CHAPTER 8 ■ THE GRAPHICAL USER INTERFACES228

These are steps almost every application takes in order to save a file. But most applica-
tions require only one item of input from the user to initiate these actions: selecting the Save
option from the File menu.

Imagine if an application required the user to select a Validate File menu item, followed
by a Calculate File Size option, followed by a Check Hard Drive Space option; to then enter the
calculated file size obtained from the previous step; and finally, after confirming that there is
enough hard drive space, to select a Write File to File System option. This application would
make saving a document more trouble than it is worth.

The previous example is extreme, but it still demonstrates the notion of abstracting the
operations of the system away from the user as much as possible. The system should be able
to complete many of the tasks listed previously without any input from the user. The only time
the user needs to be notified of the system’s activities is if an error should occur. For instance,
if there is not enough space on the file system to save the file, the user should be prompted
and notified that the system can no longer complete this step on its own. Beyond these cir-
cumstances, the user should be allowed to simply select Save and have the system abstract
away all necessary substeps.

This is one of the primary focuses of interface design: reconciling system instructions
with the actions a user must take to actually interface with the system. This may seem like an
obvious and simple task, but quite frankly, it is not simple. It requires an individual to view a
system from the standpoint of the average person who has never used the application. Being
objective is challenging for many application designers and developers. Their intimate knowl-
edge of the entire system may make it difficult to judge what actions are necessary for the user
versus what actions are necessary for the system.

This is where the time taken to get a fresh reading of the requirements can be extremely
valuable. To detach yourself from the system design and approach the application from the
point of view of the user, step back and reread the requirements for the application and look
for certain interaction information:

• Who are the primary users of the system?

• What do users employ the system for? What tasks must it allow them to complete?

• What actions are required by the system in order to complete these tasks?

Write down the answers to these questions. To give an example, if you were considering
creating software that allows the user to add footnotes to a document, you should get a list
that looks something like Table 8-1.

Table 8-1. Sample Use Case Skeleton

User Interactions with Footnote Facilities

Writer Add a Footnote

Writer View a footnote

Writer Edit a footnote

Writer Delete a footnote

Those who are experienced in project requirements by now have noticed that what we are
doing is creating a set of simple use cases. Use cases spell out items such as how all of the

CHAPTER 8 ■ THE GRAPHICAL USER INTERFACES 229

actors interact with the system and what tasks the system will allow them to complete. A set of
use cases will usually go into further detail and spell out the additional steps required for the
completion of a task. A simple use-case diagram for Table 8-1 would look similar to that
shown in Figure 8-2.

Figure 8-2. Use case diagram for user interactions with footnote facilities

■Note User interfaces should attempt to bridge the gap between the use cases and the functionality of the
system. The system should, by design, allow for all the actions detailed in the use cases. The interface’s job
is to make these tasks as easy as possible for the user. If the system architecture does not allow for all of
the actions detailed in the use cases, it indicates a serious flaw in the application’s design.

Next, fill in the details of each action, like this: “The user may add a footnote to text by
first selecting the text to attach a footnote to. Next, the user may optionally specify a name for
the footnote, and then add some body text for the footnote. The user then saves the footnote.”

Now there should be enough detail to begin the interface design. First and foremost, con-
sider how to reconcile the actions the system requires versus the actions required by the user.
Plan an interface that requires the minimum number of steps from the user in order to com-
plete a task. This should be the guiding principle in your interface design.

■Tip Usually, user interfaces allow for multiple ways to complete a task. For example, an application may
allow a user to save a document via a menu item, or a designated keystroke, or an onscreen button. This is
considered good interface design, and users will memorize and use the method that works best for them.
While not explicitly listed as a requirement for the SCJD assignment, developers are expected to follow stan-
dard practices, and you would do well to consider adding common features such as keystroke shortcuts to
button operations and menu operations.

CHAPTER 8 ■ THE GRAPHICAL USER INTERFACES230

Another simple principle to consider is how users actually traverse and interpret the user
interface. In most Western societies, users generally begin analyzing an interface at the upper-
left corner. The tendency from that point is to continue down and to the right. This is due to
the nature of the written word in Western nations: Words on a page flow from left to right, so
most Western users tend to perceive the left portion of the screen as a beginning point and the
right portion as the end. Anything in between these two points represents the necessary steps
to travel from the beginning to the end. This concept is illustrated in Figure 8-3.

Figure 8-3. Path of a Western user’s eye when interpreting a GUI

■Tip Even if you’re an Asian developer working in Asia, for the purpose of the Sun assignment you should
probably assume that the assignment is being evaluated with Western expectations.

When you plan the workflow of an interface, it is advantageous to the user to arrange
items in order of importance along this path. The elements we want the user to be aware of
first should, of course, be closest to the upper-left corner. The order in which the interface
items are placed descending from the starting corner also suggests an order to the actions.
For example, consider Figure 8-4.

The path illustrated in Figure 8-4 suggests that users should perform operations on the
table and then click the Enter button when they have completed the operations. If the Enter
button was placed before the table, the user would likely still figure out and interpret the order
of operations, but the interface would seem nonintuitive and clearly not as well organized.

Grouping items also suggests similar functionality. This is why document-storage buttons,
such as Open, Save, and New Document, are located in close proximity to each other in most
word processing programs.

CHAPTER 8 ■ THE GRAPHICAL USER INTERFACES 231

■Tip If you have a question about how to design an action that is intuitive for the end user, the answer is
sometimes very easy to find: Look for another popular program with similar functionality. Designing an inter-
face that is similar to other application interfaces to which the user may be accustomed is a helpful way to
ensure your application is intuitive as well.

Figure 8-4. An applied path

Also, placing a button next to a text field suggests that the button performs some type
of action associated with the text field. This principle dictates a significant design error you
should be cautious of committing. Because the user interprets grouped items as grouped
functionally, placing a Quit button directly next to a Save button is a very bad idea. The Quit
item is considered a destructive action because it terminates program execution, whereas the
Save button is a nondestructive and frequently used action. This particular interface design
error could result in users quitting the program when they really intended to save their work.

It is important to always remember that the average user is accident-prone. Developers
must assume that users will make mistakes and click a wrong button every now and then. A
good interface design with proper button groupings and placements will minimize this possi-
bility. In many real-world applications, the user interface might even go a step further and
implement an “undo” mechanism using the facilities available in the javax.swing.undo pack-
age. This enhanced functionality allows the user to revert the application state to a preceding
point in time and erase the ramification of an action that may have been a mistake. Although
this functionality is useful, it is far beyond what is required for the SCJD exam.

Another consideration to keep in mind when designing a user interface is that you as the
developer may have assumptions about an application’s operating environment, but these
assumptions can never be considered fact. For example, just because your development com-
puter has a mouse attached to it does not mean you can assume that every computer your
application runs on will have a mouse. This is especially true for Java applications because
they aim to target almost every platform in existence. To ensure the functionality of your user
interface, each functional widget on the screen should have a keystroke mnemonic mapping,

CHAPTER 8 ■ THE GRAPHICAL USER INTERFACES232

an equivalent function key, or even a hotkey. That way, if your application is run on a platform
that does not have a mouse, the end user will still be able to navigate the application via the
keyboard.

An excellent final interface principle is to place items in stationary, predictable locations.
Following this principle helps the user develop what is known as muscle memory. The phe-
nomenon occurs when the user becomes so accustomed to the location of an item on the
screen that his or her mind subconsciously knows where it is located. Thus, working with the
interface becomes less thought-intensive and more like second nature to the user. For example,
think about the web browser you have used for the past three years. Even if you have switched
browsers numerous times, the Back and Forward buttons are almost always located in the
same place. Therefore, locating these buttons with the eye and targeting them with the mouse
has become quicker for you, basically because you always know where they are. It is like riding
a bicycle: You may stop riding for a few years, but you never forget how to keep your balance.

■Note Users adapt to new UI standards, and therefore what is intuitive is always in flux. Over the years,
popular new UI concepts have been introduced. For example, when the tabbed panel metaphor was intro-
duced, it became an instant hit with developers since it offers a highly efficient method to display multiple
panels of data in a single window. Due to its efficient nature, the tabbed panel was, and still is, used quite
liberally by developers. Because the metaphor has been used so often, users have become accustomed to
using it. Some other examples of new UI paradigms that have entered the average user’s interface vocabu-
lary include the icon button bar and the web browser-style “back and forward” navigational interface.

As you design and develop an interface for your application, it’s always a good idea to test
it. Testing an interface isn’t as cut and dried as testing application code, however. The best way
to test the GUI is to have someone who has never seen or used the application sit down and
use it.

First, create an interface prototype. The prototype can be a simple, nonfunctional version
of the proposed interface. At this stage, even an interface mock-up sketched out on paper is
sufficient. The point is, don’t put too much work into a prototype before you’re certain of its
usability value.

Next, present the test subject with a written list of tasks and ask the user to complete
those tasks. Observe the user while they attempt to complete the list using your interface pro-
totype. While you observe the tester, do not instruct them on how to get past areas they may
misinterpret or get hung up on. During this process, expect the user to get hung up on your
interface prototype and fail at some tasks. This is very common, so be careful not to become
aggravated with the testing process. When hang-ups occur, simply ask the test user what they
are trying to accomplish and the location where the user expects their next action. Take note
of these comments—they are actually suggestions on how to adjust the interface for the next
user. Continue this process as many times as you see fit or until the supreme moment when
all your testers can use the interface with few or no problems. For more extensive information
on usability testing and usability design issues in general, please refer to the FAQs section of
this chapter for some valuable URLs.

CHAPTER 8 ■ THE GRAPHICAL USER INTERFACES 233

Model-View-Controller Pattern
The previous section demonstrated the necessity of reconciling system functionality with a
user’s interaction with the application through the GUI layout. The Model-View-Controller
(MVC) pattern limits the dependencies between a system’s interface and implementation, and
buffers the data and middle tiers from design decisions that may affect the presentation tier.

Why Use the MVC Pattern?
The main purpose of the MVC pattern is the separation of responsibility for the various tasks
involved in the user interface (UI). A typical UI can be split into the following areas of respon-
sibility:

1. The interface to the system

2. The displaying of the data to the end user

3. Accepting input from the user, then parsing and processing it

These three areas of responsibility correspond to the Model, the View, and the Controller,
respectively.

It is possible, using the MVC design pattern, to keep these three areas of responsibility
logically separate. On large teams it might be possible to assign these areas of responsibility to
teams who have the best skills to perform the work—for example, those who have good layout
skills might be assigned to work on the View, while those who are better at parsing inputs from
various sources might work on the Controller.

Using the MVC design pattern allows us to change the UI rapidly. For this book’s sample
assignment and for the Sun SCJD assignment we will be creating a GUI that will run as a
stand-alone application. However, by changing the View and the Controller, we can easily
create a web-based application. Another View and Controller can be used to provide a web
services interface to the application.

■Tip It is often recommended that when learning any new subject you should try to put the concepts into
practice. If you are planning to study for the Sun Certified Web Component Developer certification, you could
try creating a web interface to your assignment. This can be easier than trying to implement a brand-new
project as part of your studies, as you will have already created the business logic and will therefore only be
concentrating on the information pertinent to your new certification studies.

MVC in Detail
As its name suggests, the MVC pattern consists of three primary players, as shown in Table 8-2.

The MVC pattern may seem complex, but it’s actually an incredibly simple concept. The
concept is very easy to follow when it’s boiled down to a real-world example. Let’s consider it
from the perspective of ordering from your local fast-food restaurant.

CHAPTER 8 ■ THE GRAPHICAL USER INTERFACES234

Table 8-2. Components of an MVC Architecture

Component Role

Model The Model is the interface to the remainder of the application. It provides a
consistent way for the Controller(s) to access and/or modify data, and returns
data in a specified format. It is not uncommon for the Model to incorporate
other design patterns—for example, the Façade pattern to hide low-level
application details; the observable side of the Observer pattern to provide
automatic updates to view(s); the Singleton pattern to ensure that only one
instance of the model can exist; and so on.

View The View is the actual visual representation of the data. The underlying system
may store data in a number of ways, but it is the function of the View to interpret
and transform the system data into an appropriate format. Some appropriate
presentation formats may include an HTML page, a PostScript document, or the
GUI of a Java application. No matter what type of data display is chosen, the fact
remains that the View is solely responsible for transforming the system’s internal
data format into the presentation format. The View must also allow for human
interaction. The user may click a button in the GUI interface, and the View must
handle and dispatch that action. This translates into a call to the Controller. It is
important to realize that a View does not necessarily have to correspond to a
screen layout—it is also possible in a business-to-business (B2B) scenario that
the View may be an XML document that is being sent to a remote application.

Controller The Controller is the mediator between the data and presentation portions of
an application. The View calls the Controller and instructs it to execute a certain
action. The action may require data passed from the View, or it may pass data
back to the View. In any case, one thing is certain: All interaction between the
data tiers and the presentation tiers must occur through the Controller. To pre-
serve the high level of abstraction the MVC allows, the View must never bypass
the Controller and communicate directly with components below it. For
instance, the View should never call the database directly and tell it to execute
a query. Instead, the View should call the Controller and instruct it to call the
database component.

When you get to the restaurant you look at the menu and decide the salad looks really
nice. So you ask the counter person for a salad and a milk shake. That individual goes to the
kitchen, collects your food, and returns it to you.

This is a pretty common scenario, but it is a perfect representation of the MVC pattern.
Let’s break down the main actors in this scenario and map them to their equivalents in the
MVC pattern.

The View in this example is the menu being presented to you. The type of View may
vary—you may be inside the restaurant looking at a menu in your hands, or you may be in
the drive-through looking at a menu on the wall. The same information is presented in either
View, but it might be presented in different formats—a paper menu for patrons inside the
restaurant or a painted menu for those in the drive-through.

The Controller in this scenario is the counter person who takes your order. That person
acts as the buffer between you and the actual operations of the fast-food restaurant. The
counter person takes note of the meal you request, and arranges for it to be provided to you.

CHAPTER 8 ■ THE GRAPHICAL USER INTERFACES 235

■Note It is possible to consider the counter person as part of the View, since they are asking the customer
questions and possibly requesting payment for the meal. However, for the purposes of simplicity, we are
ignoring the multiple roles the counter person may play.

It is the Controller’s job to handle the actual details of getting the meal for you, and you do
not need to see or understand how they get your meal. The Controller may go to the kitchen
and ask the chef to prepare your salad and milk shake, or the Controller may have to ask two
separate people to do these two tasks. The fact is, when you order your food, you never go in
and tell the individual employees to go off and make your meal, and you certainly do not pre-
pare the meal yourself. Organizing the supply of food is the job of the Controller, and all you
care about is getting the next View (the meal itself).

The next component of the MVC is the Model. In the fast-food example, the Model is the
kitchen. The kitchen will provide the various Views—the standard menu, any “specials of the
day” menus (which might be listed on a separate page on the menus used inside the restau-
rant, or on a blackboard for the drive-through customers)—then take the order and present
the data (the food) for the next View.

Benefits of MVC
The main benefit of the MVC pattern is the abstraction of the data presentation from the sys-
tem operations. The implications of this fact are many. For example, if a system must display
data to many different output methods, this pattern is the ideal solution. Under the MVC pat-
tern, the data model remains the same, but the method of display can very easily change.
Thus, the same system could have a GUI front-end and a web-based HTML front-end, all
without any changes to the rest of the system.

The MVC pattern also helps limit the scope of changes to a system. The majority of the
time, a client will get preoccupied with the functionality of the presentation tier. This is quite
understandable, considering that this is the portion of the application the end user will actu-
ally use. Many times, clients will request numerous changes to the front-end design. The MVC
pattern limits the scope of these changes and often precludes them from impacting other por-
tions of the system. This is not to say that the MVC pattern makes system updates a snap, but
it certainly does make the front-end of the system much more flexible.

Drawbacks of MVC
Everything has a good side and a bad side, and the MVC pattern is no exception. MVC is not
the best option for every system. For instance, a system that does not need the capability to
display data through multiple sources may not be a good candidate for this pattern. MVC does
employ a large amount of data abstraction, and sometimes the associated overhead is not
worth the cost, both in development time and performance.

The MVC pattern is generally a good idea, and it is one of the more lightweight design
patterns. It is also widely used, and is supported by most development platforms. Its useful-
ness almost directly correlates with the size of a project. If the development task requires

CHAPTER 8 ■ THE GRAPHICAL USER INTERFACES236

several programmers and substantial expandability, the MVC pattern is a sure win. If the
project is very small in scope and will probably never be updated, the MVC pattern is probably
unnecessary.

Alternatives to MVC
The most obvious alternative to the MVC pattern is not to use it at all. A system can be
designed and implemented that tightly integrates the actual system functions with the user
interface. This will, of course, limit the flexibly of the GUI. All changes will directly impact all
areas of the system, since the system is basically one unit.

On some programming platforms, tight integration of the presentation and data tiers is
possible. Due to the event-driven nature of the Java platform, some aspects of the MVC pat-
tern are inherent in any user interface. All interface components produce actions, and there
are always classes that are created to deal with these actions. In this sense, the MVC pattern
is built in, but the programmer can choose to limit its effect and not use the full MVC archi-
tecture.

Swing and the Abstract Windows Toolkit
The previous sections emphasized some high-level methodologies of interface design. Most
of the ideas, such as the MVC pattern, are platform agnostic and apply to the architecture of
development projects, which can then be developed in almost any language. The next sec-
tions shift to a platform-specific approach using the Abstract Window Toolkit (AWT) and
Swing to explain methods of interface implementation on the Java platform.

Entire books have been written on how to program with AWT and Swing. This section
offers only an overview of some of the basic concepts. For more complete coverage of these
topics, we recommend you read the tutorials available online at http://java.sun.com/docs/
books/tutorial/uiswing.

Layout Manager Overview
Components (buttons, text areas, graphics, etc.) are added to Containers such as a JFrame,
JPanel, or a JWindow. Containers use layout managers to specify how components should be
laid out within the container. Window and Frame containers use BorderLayout as their default
layout manager. This particular layout schema has some peculiar functionality you may want
to review.

First, the BorderLayout divides the container into five areas, as shown in Figure 8-5.

Figure 8-5. The areas of BorderLayout

CHAPTER 8 ■ THE GRAPHICAL USER INTERFACES 237

A Component can be placed into a specified region of the BorderLayout by calling the
Container’s add method, with the first parameter being the object to add, and the second
parameter being the constraint, which for BorderLayout will be one of the five regions of the
BorderLayout, as represented by the following String constants:

• BorderLayout.NORTH

• BorderLayout.SOUTH

• BorderLayout.EAST

• BorderLayout.WEST

• BorderLayout.CENTER

When a component is placed into one of these five regions, it will immediately expand to
fill that area, observing any constraints for that area. For instance, in Listing 8-1 a button is
added to each of the regions. Figure 8-6 shows the result.

Listing 8-1. BorderLayoutExample

import java.awt.*;
import javax.swing.*;

public class BorderLayoutExample extends JFrame {
public static void main(String[] args) {

new BorderLayoutExample().setVisible(true);
}

public BorderLayoutExample() {
setDefaultCloseOperation(EXIT_ON_CLOSE);
add(new JButton("North"), BorderLayout.NORTH);
add(new JButton("South"), BorderLayout.SOUTH);
add(new JButton("East"), BorderLayout.EAST);
add(new JButton("West"), BorderLayout.WEST);
add(new JButton("Center"), BorderLayout.CENTER);
pack();

}
}

■Note Prior to JDK 1.5, it was necessary to get the content pane for a JFrame, and then add components
to the content pane. JDK 1.5 provides overridden add methods for JFrame that allow the code shown earlier
to make it appear that we are adding components directly to the JFrame—in fact we are not; the compo-
nents are being added to the component pane in the overridden add method.

CHAPTER 8 ■ THE GRAPHICAL USER INTERFACES238

Figure 8-6. An example of the BorderLayout in action

As can be seen, the buttons that were added to the “North” and “South” regions have
expanded to fill the region from the far left to the far right of the JFrame; however, they have
not expanded to fill space above or below the button. The buttons added to the “East” and
“West” have expanded to fill the space above and below the button, but they have not expanded
to fill to the left or right. The button added to the “Center” can expand in all directions.

■Caution If more than one component is added to a region, the newest component placed inside the
region is drawn on top of all other previously added components. This often causes confusion when pro-
grammers are first adding components, as it appears that some of their components have been lost. There
is probably no reason why you would ever want to intentionally add two components in the same region.

There are multiple strategies you can use to lay out components in a container and pre-
vent the preceding anomalies. The best, and perhaps easiest, way to control component flow
is to first place all components into a JPanel container and then place the JPanel container
into one of the five BorderLayout areas. Unlike the BorderLayout, the JPanel’s default layout
manager is the FlowLayout. The properties of this particular type of layout are much easier to
deal with than that of the GridBagLayout or even the GridLayout. Every component placed in
the FlowLayout will maintain its suggested size and will flow from left to right.

The FlowLayout also accepts some justification parameters. The constructor FlowLayout
(int index) may be used with one of the following constants in the FlowLayout class:

• FlowLayout.CENTER

• FlowLayout.RIGHT

• FlowLayout.LEFT

Listing 8-2 uses a JPanel combined with a JFrame container to display three buttons. You
should also try resizing the JFrame to see the effect this has on FlowLayout. Some examples are
shown in Figures 8-7, 8-8, and 8-9.

CHAPTER 8 ■ THE GRAPHICAL USER INTERFACES 239

Listing 8-2. A FlowLayout with Three Centered Buttons

import java.awt.*;
import javax.swing.*;

public class ExampleFlowLayout extends JFrame {
public static void main(String[] args) {

new ExampleFlowLayout().setVisible(true);
}

public ExampleFlowLayout () {
setDefaultCloseOperation(EXIT_ON_CLOSE);
JPanel thePanel = new JPanel();
thePanel.add(new JButton("One"));
thePanel.add(new JButton("Two"));
thePanel.add(new JButton("Three"));
add(thePanel, BorderLayout.CENTER);
pack();

}
}

Figure 8-7. FlowLayout showing the default operation—all components laid out at their
preferred size next to each other

Figure 8-8. An example of FlowLayout when the container has been expanded

Figure 8-9. An example of FlowLayout when the container has been reduced in size

Notice that the button sizes are calculated by the FlowLayout and displayed at just the
right size to show their text labels. Also note that the default justification for the FlowLayout is
CENTER. Listing 8-3 demonstrates an alteration to the code segment in Listing 8-2 that changes
the justification of the buttons. An example of how this might appear is shown in Figure 8-10.

CHAPTER 8 ■ THE GRAPHICAL USER INTERFACES240

Listing 8-3. A FlowLayout with Three Buttons Aligned to the Right

import java.awt.*;
import javax.swing.*;

public class MyFrame extends JFrame {
public static void main(String[] args) {

new MyFrame().setVisible(true);
}

public MyFrame() {
setDefaultCloseOperation(EXIT_ON_CLOSE);
JPanel thePanel = new JPanel(new FlowLayout(FlowLayout.RIGHT));
thePanel.add(new JButton("One"));
thePanel.add(new JButton("Two"));
thePanel.add(new JButton("Three"));
add(thePanel, BorderLayout.CENTER);
pack();
setSize(300, 70);

}
}

Figure 8-10. An example of FlowLayout with components aligned to the right

■Tip The combination of the JFrame and JPanel containers is a powerful yet simple way to lay out
graphical components. There are certainly more complex ways to handle interface layout, but the combi-
nation of these two containers will probably be more than enough to lay out the client interface for the
SCJD exam.

Look and Feel
Swing supports a pluggable look and feel. This feature is a welcome side effect of Swing’s
lightweight components that can be overwritten with programmer-defined design and func-
tionality. A prime example of this feature is the Ocean look and feel. This interface style can be
used on any platform that supports Java and graphical user interfaces, and it can be used as a
standard interface across all platforms. If an interface absolutely must look and behave the
same on every platform, then the Ocean look and feel is the right choice.

The look and feel of any Swing-based GUI can be changed on the fly programmatically
within the application.

CHAPTER 8 ■ THE GRAPHICAL USER INTERFACES 241

Here are some common LookAndFeel subclasses:

• javax.swing.plaf.metal.MetalLookAndFeel

• com.sun.java.swing.plaf.windows.WindowsLookAndFeel

• com.sun.java.swing.plaf.motif.MotifLookAndFeel

• com.sun.java.swing.plaf.gtk.GTKLookAndFeel

• com.apple.mrj.swing.MacLookAndFeel

■Caution The only look and feel that is guaranteed to exist on all platforms is the one that is in the stan-
dard Java packages: javax.swing.plaf.metal.MetalLookAndFeel. All other look-and-feel packages are
in nonstandard packages—the com.sun or com.apple (or other vendor) packages. The vendor packages
probably won’t exist in JVMs produced by other vendors, and may not even exist in all JVMs produced by a
particular vendor. For example, the WindowsLookAndFeel is only available on Microsoft Windows platforms,
and the GTKLookAndFeel is only available on platforms supporting GTK (typically Unix and Unix-like systems).

Since we have been using the Ocean theme from the Metal look and feel for the previous
examples, Listing 8-4 will show an example of setting the look and feel to the Microsoft Win-
dows look and feel, or to a look and feel specified on the command line. An example of how
this will look is shown in Figure 8-11. Other look-and-feel examples are shown in Figures 8-12
through 8-15.

Listing 8-4. Setting the Microsoft Windows Look and Feel

import java.awt.*;
import javax.swing.*;

public class MyFrame extends JFrame {
public static void main(String[] args) throws Exception {

new MyFrame(args).setVisible(true);
}

public MyFrame(String[] args) throws Exception {
String lookAndFeelName = (args.length > 0)

? args[0]
: "com.sun.java.swing.plaf.windows.WindowsLookAndFeel";

UIManager.setLookAndFeel(lookAndFeelName);

setDefaultCloseOperation(EXIT_ON_CLOSE);
Panel topPanel = new Panel(new FlowLayout(FlowLayout.LEFT));
topPanel.add(new JTextField(15));
add(topPanel, BorderLayout.NORTH);

CHAPTER 8 ■ THE GRAPHICAL USER INTERFACES242

Panel centerPanel = new Panel(new FlowLayout(FlowLayout.RIGHT));
centerPanel.add(new JButton("One"));
centerPanel.add(new JButton("Two"));
centerPanel.add(new JButton("Three"));
add(centerPanel, BorderLayout.CENTER);
pack();
setSize(210, 100);

}
}

Figure 8-11. An example of using the Microsoft Windows look and feel

Figure 8-12. An example of using the Motif look and feel

Figure 8-13. An example of using the Metal look and feel with the Ocean theme

Figure 8-14. An example of using the Metal look and feel with the Steel theme

Figure 8-15. An example of using the GTK look and feel (Unix platforms)

CHAPTER 8 ■ THE GRAPHICAL USER INTERFACES 243

You may have noticed that Figures 8-13 and 8-14 both use the Metal look and feel but dif-
ferent themes. Prior to JDK 1.5, the Metal look and feel looked like Figure 8-14; however, with
JDK 1.5 Sun has improved the standard look and feel, making the Ocean theme shown in
Figure 8-13. To revert to the old theme, the following command line was used:

java -Dswing.metalTheme=steel MyFrame javax.swing.plaf.metal.MetalLookAndFeel

■Caution The layout managers have been designed to perform the hard work of determining where com-
ponents should be placed relative to one another, as well as determining the size of containers. It is possible
to explicitly place components with the setLocation method, and set their size with the setSize method
(which we used in Listing 8-4); however, as shown in Figures 8-11 through 8-15, the size of components
varies depending on the look and feel used, so deliberately setting the size or location of a component or a
container can result in strange-looking GUIs. We strongly recommend that you leave the work of component
placement and container sizing to the layout managers.

When a different look-and-feel package is used, the interface adopts not only the look of
that particular platform but also the functionality of its interface widgets. For example, a drop-
down menu in the Motif look and feel is vastly different from the menu functionality under
the Windows or Metal look and feel. This is because Motif represents the interface look and
also the functionality of an X Window system.

The JLabel Component
Standard user interfaces have labels near any component that accepts input, providing the
user with a brief explanation of what the user input is for. An example of this might be having
the label “Surname” next to the text field that accepts the surname data—the label serves to
remind the user what sort of data is to be entered in the text field.

The Swing component that holds a label is the JLabel. A simple constructor for this
could be

JLabel zipCodeLabel = new JLabel("Zip code");

While this on its own is not very exciting, you can also specify which character will be
displayed as the mnemonic (which character will be underlined). Since it does not make sense
for a label to have focus, you normally set the displayed mnemonic, and at the same time set
which field will get focus if the mnemonic is pressed. This could look similar to

zipCodeLabel.setDisplayedMnemonic('Z');
zipCodeLabel.setLabelFor(zipCode);

In this case, if a user presses the mnemonic key (by pressing the Alt and Z keys simultane-
ously), then focus will be transferred to the zipCode field.

This technique will be demonstrated in Listing 8-5 in the next section, with a sample GUI
displayed in Figure 8-16.

CHAPTER 8 ■ THE GRAPHICAL USER INTERFACES244

The JTextField Component
The JTextField is the basic data entry field. It allows the user to enter plain text up to a speci-
fied length. Here’s a simple constructor for the JTextField with a size of 15 columns:

JTextField zipCode = new JTextField(15);

Other constructors for the JTextField allow you to specify a default value to be displayed
in the text field, and a Document to validate data entry (data validation will be covered in the
next subsection).

A very simple application to demonstrate the use of JLabels and JTextFields is shown in
Listing 8-5, and the GUI that this creates is shown in Figure 8-16. A JButton has been included
in the GUI to allow you to experiment with transferring focus away from the JTextField and
then use the mnemonic to transfer focus back again.

Listing 8-5. Demonstration of JLabel and JtextField Components

import java.awt.*;
import javax.swing.*;
import javax.swing.text.*;

public class MyFrame extends JFrame {
public static void main(String[] args) throws Exception {

new MyFrame().setVisible(true);
}

public MyFrame() throws Exception {
setDefaultCloseOperation(EXIT_ON_CLOSE);
setLayout(new FlowLayout());

JLabel zipCodeLabel = new JLabel("Zip code");
JTextField zipCode = new JTextField(15);

zipCodeLabel.setDisplayedMnemonic('Z');
zipCodeLabel.setLabelFor(zipCode);

this.add(zipCodeLabel);
this.add(zipCode);
this.add(new JButton("A button for focus"));
pack();

}
}

Figure 8-16. Demonstration of JLabel and JtextField components

CHAPTER 8 ■ THE GRAPHICAL USER INTERFACES 245

Validating the Contents of a JTextField
In a perfect world, users would only ever enter valid data into our applications. However, in
the real world, people make mistakes, and unfortunately, if not caught in time, major prob-
lems can occur if invalid data is entered. So we should make a reasonable effort to prevent
invalid data from being entered, and possibly validate data once it has been entered.

Listing 8-5 contained a field named zipCode. In the United States, zip codes are five digits
long, and are used to identify the area where a letter or parcel is to be delivered. Unfortunately,
our sample program will allow any data to be entered, regardless of length or content.

If we want to limit the zip code field to accept only five-digit zip codes, we can use a sub-
class of the JTextField: the JFormattedTextField in combination with a MaskFormatter. A
JFormattedTextField will only allow characters to be entered that match a specified mask. The
MaskFormatter provides a simple method of specifying a text formatter based on a mask—any
characters that do not match the mask will be discarded. The mask for a number is the # char-
acter. So we could change our definition of the zipCode variable from Listing 8-5 as follows:

MaskFormatter fiveDigits = new MaskFormatter("#####");
JTextField zipCode = new JFormattedTextField(fiveDigits);
zipCode.setColumns(5);

If you make these changes, you will find that you can no longer enter any character other
than a number, and you cannot add more than five digits.

Taking validation a step further, let’s consider the case where users want to enter the zip+4
code, where the original five-digit code is followed by a dash and an additional four digits to
further narrow down the delivery address—for example, the first five digits specify the delivery
office (post office), the next two digits identify a set of blocks on a major street, and the final
two digits identify the particular block on the street.

However, zip+4 is not used everywhere, nor is it mandatory to use this format even where
it’s available (for that matter, it does not appear to be mandatory to use zip codes for anything
going through the US Postal Service, but it is probably advisable if you want your letter to
arrive in a timely fashion).

One method of handling this is by creating our own text field, with its own document
model, in which we override the insertString method. So once again, our definition of the
zipCode variable is changing:

JTextField zipCode = new ZipTextField(9);

The ZipTextField extends JTextField, but all it overrides are the constructors and the
createDefaultModel method:

private class ZipTextField extends JTextField {
ZipTextField() {

super();
}

ZipTextField(int columns) {
super(columns);

}

CHAPTER 8 ■ THE GRAPHICAL USER INTERFACES246

protected Document createDefaultModel() {
return new ZipDocument();

}
}

You could override more constructors if you wish, or you could even leave out the con-
structors (just use default constructors, and call the inherited setColumns method).

The hard work is all done in the model for our ZipTextField. For JTextField (which we
are subclassing), the default model is a PlainDocument. We will subclass that to form our
ZipDocument, in which we will validate text entered.

■Note JTextField, like many Swing components, uses the Model-View-Controller design pattern inter-
nally. This gives us two potential areas where we can control data entry—in the Model that contains the
data entered, and in the Controller before data is passed to the Model.

private class ZipDocument extends PlainDocument {
public void insertString(int offs, String str, AttributeSet a)

throws BadLocationException {
if (str == null) {

return;
}

for (char c : str.toCharArray()) {
if (! ((Character.isDigit(c) && offs < 10 && offs != 5)

|| (b == '-' && offs == 5))) {
return;

}
}

super.insertString(offs, str, a);
}

}

To keep this example simple, we have only overriden the insertString method, and only
checked that the character being entered is valid in the location it is being entered. If it is
valid, we call the insertString method of the super class to perform the work of actually
inserting the string.

Because we have chosen to keep this simple, we have not shown code for validating the
deletion of entered data for which we would have to override the remove method. A more com-
plete example is provided in the downloadable source code for this book in the port number
validation.

CHAPTER 8 ■ THE GRAPHICAL USER INTERFACES 247

■Caution Nothing shown so far prevents the user from entering something like 12345-67 and then mov-
ing to the next field or clicking elsewhere in the document. Therefore, some additional validation is in order
somewhere, an example of which is shown in the full code.

The JButton Component
The JButton is a “click to do something” type of button. What it does when the user clicks it is
up to you. An example of a constructor for this is

JButton exitButton = new JButton("Exit");

Other constructors allow for an icon to be used instead of or as well as the text, and set-
ting an Action for the button.

The constructor on its own is not very useful—we have not specified what should happen
when the button is clicked. For that, we need to add an ActionListener:

exitButton.addActionListener(anActionListener);

The ActionListener interface allows you to listen for actions: button clicked on, button
clicked on while a modifier (the Ctrl, Alt, Shift, or Meta key) was pressed, and so on. When such
an action occurs, your actionPerformed method will be called by the event dispatcher thread.

The ActionListener can be an anonymous inner class, a private class, or an external class,
or (since ActionListener is an interface) your View can implement the ActionListener.

Here is an example of creating an anonymous inner class for your ActionListener:

JButton exitButton = new JButton("Exit");
exitButton.addActionListener(new ActionListener() {

public void actionPerformed(ActionEvent ae) {
System.out.println("Somebody clicked the Exit button");
System.exit(1);

}
});

■Note The last line of the code snippet above may look confusing, but if you count backwards, you will
find that the closing brace (}) matches the opening brace for the new ActionListener() {, and the
closing bracket ()) matches the opening bracket for the addActionListener(.

As with all choices, there are good points and bad points for using an anonymous inner
class. Some of the good points are as follows:

• There is no need to create a separate class to handle user events.

• There is no need to check which component triggered the action event.

• The code to handle the event is right with the component that triggered the event.

CHAPTER 8 ■ THE GRAPHICAL USER INTERFACES248

The first point can be worth consideration, but if you are using the MVC pattern, you
might prefer to have the Controller handle the user events. Alternatively, a simple anonymous
class can call a method in the Controller class, making the Controller class less dependent on
the GUI architecture.

The last point can be both good and bad as well—you might not want the code handling
the event with the code that is configuring the View. It might make more sense to keep event-
handling code separate.

If you do decide to have a separate class or method handling events, you might want to
consider using the setActionCommand method to set a string by which your component can be
easily identified. The string you set can then be retrieved from the ActionEvent handed to the
actionPerformed method. This is demonstrated in Listing 8-6 in the next section.

The JRadioButton Component
Radio buttons are small buttons that are logically grouped together, but only one of the group
can be active at any given time. This is similar to the way a radio with buttons for several pre-
set stations should only have one button pressed at any given time—you can only listen to one
station at a time.

A simple constructor for a JRadioButton could be

JRadioButton serverButton = new JRadioButton("Server");

Other constructors allow for an icon to be used instead of or as well as the text, setting the
initial state of the radio button, and setting an Action for the radio button.

As with the JButton, an ActionListener can be added to each JRadioButton. You might
use this if you needed to enable or disable fields dependent on which button a user clicked.
However, it is not always necessary to have an ActionListener—if you don’t care about which
button is clicked until after the user performs some other action, then you can use the
isSelected method to check the user’s choice.

For JRadioButtons to be effective, several of them should be logically grouped together, so
that only one of the logical group can be selected at any given time. You do this by creating a
ButtonGroup, and adding the radio buttons to it:

ButtonGroup applicationMode = new ButtonGroup();
applicationMode.add(serverButton);

A complete example of JButtons and JRadioButtons is demonstrated in Listing 8-6, and
the window it would create is shown in Figure 8-17.

Listing 8-6. Demonstration of JButton and JRadioButton Components

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

public class MyFrame extends JFrame {
private static final String EXIT_COMMAND = "EXIT";
private static final String CLIENT_COMMAND = "CLIENT";
private static final String SERVER_COMMAND = "SERVER";

CHAPTER 8 ■ THE GRAPHICAL USER INTERFACES 249

public static void main(String[] args) throws Exception {
new MyFrame().setVisible(true);

}

public MyFrame() throws Exception {
setDefaultCloseOperation(EXIT_ON_CLOSE);

ActionListener buttonHandler = new MyFrameActionListener();

JButton exitButton = new JButton("Exit");
exitButton.setActionCommand(EXIT_COMMAND);
exitButton.addActionListener(buttonHandler);

JRadioButton serverButton = new JRadioButton("Server");
serverButton.setActionCommand(SERVER_COMMAND);
serverButton.addActionListener(buttonHandler);
JRadioButton clientButton = new JRadioButton("Client");
clientButton.setActionCommand(CLIENT_COMMAND);
clientButton.addActionListener(buttonHandler);

ButtonGroup clientServerGroup = new ButtonGroup();
clientServerGroup.add(serverButton);
clientServerGroup.add(clientButton);

JPanel clientServerPanel = new JPanel();
clientServerPanel.add(serverButton, BorderLayout.NORTH);
clientServerPanel.add(clientButton, BorderLayout.SOUTH);

this.add(clientServerPanel, BorderLayout.CENTER);
this.add(exitButton, BorderLayout.SOUTH);

pack();
}

private class MyFrameActionListener implements ActionListener {
public void actionPerformed(ActionEvent ae) {

if (EXIT_COMMAND.equals(ae.getActionCommand())) {
System.exit(0);

} else if (SERVER_COMMAND.equals(ae.getActionCommand())) {
System.out.println("Server selected");

} else if (CLIENT_COMMAND.equals(ae.getActionCommand())) {
System.out.println("Client selected");

}
}

}
}

CHAPTER 8 ■ THE GRAPHICAL USER INTERFACES250

Figure 8-17 shows the result from Listing 8-6.

Figure 8-17. Demonstration of JButton and JRadioButton components

The JComboBox Component
Sometimes it makes sense to give users a clear choice of options, rather than requiring them
to type in a choice (which is an error-prone approach). The JComboBox provides us with a sim-
ple box that, when clicked, pops down a list of options from which the user can choose.

If you know the items that are to be used in the list, then there are constructors that allow
you to specify the initial items. Alternatively, you can dynamically add or remove items from
the list using the addItems and removeItems methods, respectively.

As with the JButton and JRadioButton, an ActionListener can be added to each JComboBox.
You might use this if you needed to take action immediately after the user selects an option.
However, it is not always necessary to have an ActionListener—if you don’t care about which
button is clicked until after the user performs some other action, then you can use the
getSelectedIndex method to determine the index of the item chosen, or the getSelectedItem
method to find out the object selected.

JComboBox usage is demonstrated in Listing 8-7 shown in the next section, with the
window created displayed in Figure 8-18.

The BorderFactory
So far all the components demonstrated have appeared to the end user to be in the same-
JFrame—there is nothing to logically separate one component (or set of components) from
another.

However, there are times when it makes sense to logically group components together by
drawing a border around them. One of the most common uses of borders is to create a per-
ceived link around several radio buttons or check boxes. We did not put a border around our
radio buttons in the previous section because we want to emphasize that the border only cre-
ates a user perception that the buttons are logically linked—it is possible to have a border
drawn around buttons that are not logically linked, and just creating a border around buttons
does not logically link them.

Unlike with most Swing components, we do not create a border directly. Instead we call
one of the static methods of the BorderFactory class to create a border for us, which we can
then use in a JPanel or JFrame.

CHAPTER 8 ■ THE GRAPHICAL USER INTERFACES 251

■Note The Factory design pattern, used by the BorderFactory, is often used when many similar objects
need to be created, but the user of the objects does not need to know the implementation details—all the
user of the object needs to know about is how to use it. Each of the BorderFactory’s create methods will
create a Border, where Border is an interface. Since we have an interface for all potential borders, we can
use the created border in any JFrame or JPanel without concerning ourselves with what type of border was
created. Furthermore, we don’t have to worry about how a particular border will be created on different
operating systems—the factory handles all that for us.

Which particular border to create and use is up to you. Frequently status bars use a low-
ered bevel border (which you can create using the createLoweredBevelBorder method),
groupings of radio buttons use a titled border (createTitledBorder), and groupings of buttons
might be enclosed in a beveled border without a title (createBevelBorder).

An example of creating a titled border around a JComboBox is shown in Listing 8-7, with the
window created shown in Figure 8-18. For this example we included some spacing labels to
make the border more obvious.

Listing 8-7. Demonstration of the JComboBox Component and the BorderFactory

import java.awt.*;

import javax.swing.*;

public class MyFrame extends JFrame {
private final static String TITLE = "Title goes here";

public static void main(String[] args) throws Exception {
new MyFrame().setVisible(true);

}

public MyFrame() throws Exception {
setDefaultCloseOperation(EXIT_ON_CLOSE);

String[] items = {"One", "Two", "Three", "Four", "Five"};
JComboBox choosableItems = new JComboBox(items);

JPanel clientServerPanel = new JPanel();

clientServerPanel.setBorder(BorderFactory.createTitledBorder(TITLE));
clientServerPanel.add(new JLabel("Pick a number:"), BorderLayout.EAST);
clientServerPanel.add(choosableItems, BorderLayout.CENTER);

this.add(new JLabel(" "), BorderLayout.NORTH);
this.add(new JLabel(" "), BorderLayout.SOUTH);
this.add(new JLabel(" "), BorderLayout.EAST);

CHAPTER 8 ■ THE GRAPHICAL USER INTERFACES252

this.add(new JLabel(" "), BorderLayout.WEST);
this.add(clientServerPanel, BorderLayout.CENTER);

pack();
}

}

Figure 8-18. Demonstration of the JComboBox component and the BorderFactory

Listing 8-7 was designed to show how to make a simple border without introducing too
many new features at once. To that end, we put empty labels around the border just to make it
stand out—normally you would not do this in practice. Instead, you might consider using a
compound border, as shown in Listing 8-8. This will produce an almost identical result to that
shown in Figure 8-18.

Listing 8-8. Demonstration of a Compound Border

import java.awt.*;
import javax.swing.*;

public class MyFrame extends JFrame {
private final static String TITLE = "Title goes here";

public static void main(String[] args) throws Exception {
new MyFrame().setVisible(true);

}

public MyFrame() throws Exception {
setDefaultCloseOperation(EXIT_ON_CLOSE);

String[] items = {"One", "Two", "Three", "Four", "Five"};
JComboBox choosableItems = new JComboBox(items);

JPanel clientServerPanel = new JPanel();
clientServerPanel.setBorder(

BorderFactory.createCompoundBorder(
BorderFactory.createEmptyBorder(10, 10, 10, 10),
BorderFactory.createTitledBorder(TITLE)));

CHAPTER 8 ■ THE GRAPHICAL USER INTERFACES 253

clientServerPanel.add(new JLabel("Pick a number:"), BorderLayout.EAST);
clientServerPanel.add(choosableItems, BorderLayout.CENTER);
this.add(clientServerPanel, BorderLayout.CENTER);

pack();
}

}

The JTable Component
As discussed earlier in this chapter, the table paradigm has developed into a de facto data dis-
play mechanism. As you may recall, the table schema is a great way to display data because it
offers ease of interpretation for the user and efficiently displays large amounts of data in a
small area.

The JTable renders data in the familiar “data table” style. For the developer, it is the per-
fect combination of ease of use and extensibility. You can create a JTable for casual use by
simply calling the JTable constructor method JTable (Object rowData [][], Object
columnNames[]) and defining two arrays containing header names and the data rows, as
demonstrated in Listing 8-9.

Listing 8-9. A Simple JTable Constructor

Object [][] rows = {{"Data 1", "Data 2"}, {"Data 3", "Data 4"},
{"Data 6", "Data 6"} };

Object [] colNames = {"Header 1", "Header 2"};

JTable table = new JTable (rows, colNames);

Listing 8-9 creates a table composed of three rows. This table is shown in Figure 8-19.

Figure 8-19. A sample table

Note that each row is labeled with a header. If an array of table headers is not specified,
the table will only display the rows and columns without any headers. Also notice that the
table columns are automatically sized, but they may be resized and even rearranged. The fol-
lowing methods can be called on a JTable instance to enable and disable these capabilities:

• setSelectionMode(ListSelectionModel.SINGLE_SELECTION)

• setAutoResizeMode(JTable.AUTO_RESIZE_ALL_COLUMNS)

The preceding table example is perfect if the data in the table only needs to be displayed
once, but the example is not a very malleable method with which to display data. To become a

CHAPTER 8 ■ THE GRAPHICAL USER INTERFACES254

more flexible data display, a good table class would need additional methods and constructors
to fit within the paradigm of the MVC pattern. It so happens that the JTable fits incredibly well
into this pattern—so much so that the JTable actually defines its own model: the TableModel
interface.

■Note Many Swing components, such as the JTable and the JTree, implement their own MVC
architecture.

The TableModel
The TableModel is one of the easiest and most flexible ways to display a data set in a JTable.
Earlier in this chapter, the interaction between the Model and the View in the MVC pattern
was discussed in detail. As you may recall, the View is solely responsible for taking the data
contained in a Model object and converting it into a visual representation. The JTable
actually incorporates this part of the MVC pattern into its standard API. An implemented
TableModel interface acts as the Model in this case, and the JTable instance acts as the View.
The TableModel is essentially handed off to a JTable instance, and the table widget renders
the data model into the visual representation. The Model may be specified in the JTable
constructor:

JTable table = new JTable (TableModel model);

or set via the void setTableModel (TableModel model) instance method. Once the TableModel
is passed to the table instance, the JTable class literally takes care of the rest.

At this point, the JTable may seem like a snap to use. While the JTable is quite easy to
use, the bulk of the work for the developer comes in the task of implementing the TableModel
interface.

As with event listener interfaces, not all of the methods specified in the TableModel
interface are always necessary for a given data set. For instance, if a developer wanted to
implement a simple TableModel, it would be inefficient to have to provide implementations
for all the interface methods, such as removeTableModelListener(TableModelListener
modListener). Thus, an adapter class is provided that functions in a manner similar to
event adapter classes. The AbstractTableModel class implements the TableModel interface
such that each method already has a default implementation. Therefore, extending the
AbstractTableModel class is usually the best starting point when creating a custom
TableModel.

In version 2.0 of the Denny’s DVDs application, the DVDTableModel class is an extension
of the AbstractTableModel class. The DVDTableModel does not need to implement the
getColumnClass, removeTableModelListener, and addTableModelListener methods, so their
default implementations provided by the abstract implementation will suffice. All other
methods in the TableModel interface will be implemented.

First, notice the addition of the two member variables in the DVDTableModel class in
Listing 8-10.

CHAPTER 8 ■ THE GRAPHICAL USER INTERFACES 255

Listing 8-10. The DVDTableModel’s Internal Members That Hold the Table Rows

private String [] headerNames = {"UPC", "Movie Title", "Director",
"Lead Actor", "Supporting Actor", "Composer",
"Copies in Stock"};

private List<String[]> dvdRecords = new ArrayList<String[]>(5);

Remember that Model objects act as data containers. The View object that transforms a
Model into a display format does not require knowledge of how they internally represent data.
On a very abstract level, tables encapsulate two things:

• The names of the columns

• The data contained in each row

These two items require a TableModel to internally represent two types of collections: one
that contains a list of header names and one that contains a list of row values. The only deci-
sion that remains is what type of collection is appropriate to represent these two types of data.

In the case of the JTable contained in our client application, the header names will
remain the same throughout the life of the application. Therefore, an array of String objects
will be the perfect data structure to hold the column names. Next, the row column values for
each row are immutable in the sense that once a row is created, the number of values in a row
does not need to change. Thus, an array of String values can also represent a row of DVD data.

The actual collection that holds the rows is entirely different from the table headers and
column data in that the number of rows changes—and changes quite often. If a user searches
for a list of DVD records, there is no way to ensure how many rows will result, and therefore it
will be impossible to anticipate the size of the data structure required to hold the values. The
best option to hold rows of data is a dynamic collection that can have values easily appended,
removed, and iterated through. The order of the results also matters, so a set collection is
obviously a poor choice. The best choice is some type of dynamic list. The list can now be
narrowed to a Vector, a LinkedList, or an ArrayList. As mentioned in the “Internally Synchro-
nized Classes” section of Chapter 4, Vectors provide little benefit in most cases, but can provide
a false sense of thread safety—we therefore generally recommend against their use. In this par-
ticular case, the values in our TableModel do not have to be thread-safe because only one thread
is manipulating their values in a single instance. Thus, a Vector provides unneeded overhead in
this application without providing any benefits. A LinkedList provides us with some additional
methods over an ArrayList—specifically the ability to add and remove the first and last objects
in the collection; however, we do not need this additional functionality. The best choice for the
representation of DVD data rows in our TableModel is clearly an ArrayList.

Next, our TableModel must implement some of the required methods that the JTable
uses to render the Model into a View. For instance, the TableModel must have a way to inform
the JTable of how many columns it encapsulates. The method getColumnCount shown in
Listing 8-11 provides this functionality.

Listing 8-11. Our TableModel’s getColumnCount Method

public int getColumnCount() {
return this.headerNames.length;

}

CHAPTER 8 ■ THE GRAPHICAL USER INTERFACES256

In this case, the number of columns is always equal to the number of header titles, so this
method can simply return the length of the headerNames member. Our TableModel must also
return the name of each column. Listing 8-12 returns the String value from the headerNames
member at a specified index.

Listing 8-12. The TableModel’s getColumnName Method

public String getColumnName (int column) {
return headerNames[column];

}

Next, the TableModel returns and sets a cell value at a given row and column index. The
methods shown in Listing 8-13 allow the assignment and retrieval of values at specific row and
column indexes.

Listing 8-13. The TableModel’s set and get valueAt Methods

public Object getValueAt(int row, int column) {
String[] rowValues = this.dvdRecords.get(row);
return rowValues[column];

}

public void setValueAt(Object obj, int row, int column) {
Object[] rowValues = this.dvdRecords.get(row);
rowValues[column] = obj;

}

Note, it would have been possible for the getValueAt method to have been written as

public Object getValueAt(int row, int column) {
return this.dvdRecords.get(row)[column];

}

Whenever you are tempted to take a shortcut like this, though, you should consider what
benefit it gives you. Is the creation or destruction of the rowValues reference to the array so
expensive that this will gain much efficiency? Alternatively, will this code be harder to read
and therefore harder to maintain?

Next, the method getRowCount shown in Listing 8-14 returns the number of data rows
encapsulated in the TableModel. In our TableModel, the number of rows is the size of the DVD
ArrayList.

Listing 8-14. The DVDTableModel’s getRowCount Method

public int getRowCount() {
return this.dvdRecords.size();

}

The isCellEditable method in our TableModel class (see Listing 8-15) indicates whether
or not a cell is editable. No cells in our particular TableModel implementation are editable, so
the method returns false by default. If particular cells in the TableModel were editable, this

CHAPTER 8 ■ THE GRAPHICAL USER INTERFACES 257

method would take the column and row indexes into account and evaluate whether or not a
cell was editable.

Listing 8-15. The TableModel’s isCellEditable Method

public boolean isCellEditable (int row, int column) {
return false;

}

■Note Unlike the other methods shown so far, isCellEditable is already implemented in
AbstractTableModel. As it happens, the AbstractTableModel implementation provides the same func-
tionality as our overridden method. We therefore did not need to override this method; however, doing so
makes it easier for you to experiment with this method.

Finally, our DVDTableModel class contains two methods beyond those required by the
TableModel interface. These extra methods are included as a matter of convenience. As men-
tioned earlier in this chapter, the DVD object, which is used by the rest of the system, is not the
same Model that is used by the View. In this case, the View object is a JTable and the Model
object is the DVDTableModel. The GUIController class must go through the process of convert-
ing a DVD object (or a collection of DVD objects) to a DVDTableModel object. To make this task
easier, the DVDTableModel implements the two methods in Listing 8-16.

Listing 8-16. Convenience Methods Within the DVDTableModel Class

public void addDVDRecord (String upc, String name, String director,
String leadActor, String supportingActor,
String composer, int numberOfCopies) {

String [] temp = {upc, name, director, leadActor, supportingActor,
composer, Integer.toString(numberOfCopies)};

this.dvdRecords.add(temp);
}

public void addDVDRecord (DVD dvd) {
addDVDRecord(dvd.getUPC(), dvd.getName(), dvd.getDirector(),

dvd.getLeadActor(), dvd.getSupportingActor(),
dvd.getComposer(), dvd.getCopy());

}

The methods in Listing 8-16 take in a DVD object (or the equivalent data) and append the
new row to the data set encapsulated within the DVDTableModel. The first method receives the
data contained in a DVD object as parts, whereas the second method simply requires a DVD
object. In order to add a DVD to the DVDTableModel, the GUIController will simply call one of
these two methods, thus avoiding a conversion process from within the GUIController each
time an alteration to the data view occurs.

CHAPTER 8 ■ THE GRAPHICAL USER INTERFACES258

■Tip The preceding DVDTableModel has the capability to convert DVD model objects one at a time, but
sometimes it is more convenient to provide a method that will convert entire collections of model objects.
That way, a search method could use a single call to convert its entire set of search results.

Using the TableModel with a JTable
Once a TableModel has been implemented, using it with a JTable is a simple task. A TableModel
may be specified in the constructor of a JTable object. For example, the following snippet will
create a new JTable using the DVDTableModel that was described in the previous section:

JTable table = new JTable (new DVDTableModel ());

The preceding statement will create a JTable using a DVDTableModel, but the table display
will be empty, since no data is contained in the specified DVDTableModel instance.

■Note A JTable instance can have its internal table model modified after it is instantiated. The setModel
method updates a JTable’s internal TableModel member and therefore updates the data the JTable
displays. Data can also be added to a JTable’s TableModel reference by calling the method getModel
method on a JTable instance. In our case, this method can be called to get a reference to the JTable’s
internal DVDTableModel reference. Then the method addRecord can be called to add a row to a JTable.

Because alterations to a JTable’s TableModel translates into an updated View, the client
must be set up to take advantage of this schema. The MainWindow class contains the private
member

private DVDTableModel tableData;

This data member will always hold the main JTable’s TableModel. Because all data trans-
fer between the View and the Controller is done via a DVDTableModel object, this member is
always updated to reflect changes to the database’s state.

Once the database has been updated or queried, the resulting table model is placed into
the tableData member. After calling the Controller, the MainWindow class calls its internal pri-
vate method setupTable. This method contains the statements in Listing 8-17.

Listing 8-17. The setupTable Method

private void setupTable() {
// Preserve the previous selection
int index = mainTable.getSelectedRow();
String prevSelected = (index >= 0)

? (String) mainTable.getValueAt(index, 0)
: "";

CHAPTER 8 ■ THE GRAPHICAL USER INTERFACES 259

// Reset the table data
this.mainTable.setModel(this.tableData);

// Reselect the previous item if it still exists
for (int i = 0; i < this.mainTable.getRowCount(); i++) {

String selectedUpc = (String) mainTable.getValueAt(i, 0);
if (selectedUpc.equals(prevSelected)) {

this.mainTable.setRowSelectionInterval(i,i);
break;

}
}

}

Notice that the setupTable method refreshes the MainWindow’s JTable instance by calling
the setTableModel method. As soon as the table’s internal TableModel is replaced, the View
will refresh and display the updated data set. If the JTable does not update its contents, the
updateUI method can be called, effectively forcing the table to redisplay its contents.

Also notice that the setupTable method stores the last selected row before refreshing
the table model. After the table model is reset, the method loops through the new data
set and locates the previously selected row by the UPC number. After that, the table’s
setRowSelectionInterval method is called to reselect the previous row.

The JScrollPane
Occasionally we get a situation where we need to display more on the screen than will fit. For
the Denny’s DVDs application, it is possible that there could be so many DVDs in the database
that displaying them all on screen simultaneously is impossible.

In these cases, we can add the component that is too large for the screen to a JScrollPane,
which will put scrollbars around the component, where necessary, to allow scrolling to a differ-
ent region and viewing the contents there. Note that, by default, the scrollbars are only shown
when needed—if they are not needed, they will not appear.

Listing 8-18 shows an example of an application where there is too much data to appear
in the desired text area, and the way this would appear on screen is shown in Figure 8-20.

Listing 8-18. An Application That Has Too Much Data to Appear in the Window

import javax.swing.*;

public class MyFrame {
public static void main(String[] args) throws Exception {

JFrame theFrame = new JFrame();
theFrame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

CHAPTER 8 ■ THE GRAPHICAL USER INTERFACES260

String outputString = "";
for (int i = 0; i < 100; i++) {

outputString += "The quick brown fox jumped over the lazy dog. ";
}

JTextArea textDisplay = new JTextArea(20, 60);
textDisplay.setLineWrap(true);
theFrame.add(textDisplay);
theFrame.pack();
textDisplay.setText(outputString);
theFrame.setVisible(true);

}
}

Figure 8-20. Display when attempting to show too much text

In most cases, the simplest solution to this problem is changing the line

theFrame.add(textDisplay);

to read

theFrame.add(new JScrollPane(textDisplay));

The results of this change are shown in Figure 8-21.

CHAPTER 8 ■ THE GRAPHICAL USER INTERFACES 261

Figure 8-21. Making a GUI object scrollable using a JScrollPane

Bringing Denny’s DVDs Together
Now it is time to bring the Denny’s DVDs application together. The best way to launch the
Denny’s DVDs client is through the use of a shell class. The entire responsibility of this class is
to initiate the launch of the application. Usually, an application shell will initialize some global
settings, such as the application’s look and feel, and resolve any preconditions that must exist
for the application.

For the DVD client application, the main precondition is setting up the look and feel. In
order to provide users with a look and feel they are familiar with, we have chosen to set the
look and feel based on the system look and feel.

We also check the command-line options provided, as the command-line options set the
mode for the application.

Application Startup Class
The ApplicationRunner class is essentially an application loader. The only thing the main
method creates is an object of type ApplicationRunner. The ApplicationRunner class’s con-
structor sets up the application’s look and feel and instantiates either the MainWindow or the
ServerWindow class, as shown in Listing 8-19.

Listing 8-19. Denny’s DVDs Main Application Loader

public ApplicationRunner(String[] args) {

if (args.length == 0 || "alone".equalsIgnoreCase(args[0])) {
// Create an instance of the main application window
new MainWindow(args);

} else if ("server".equalsIgnoreCase(args[0])) {
new ServerWindow();

} else {

CHAPTER 8 ■ THE GRAPHICAL USER INTERFACES262

log.info("Invalid parameter passed in startup: " + args[0]);
// Logging may be turned off, or may be going to a file, so
// send usage information to the error output (usually the screen).
System.err.println("Command line options may be one of:");
System.err.println("\"server\" - the server application will start");
System.err.println("\"alone\" - client start in non networked mode");
System.err.println("\"\" - (no command line option): " +

"networked client will start");
}

}

The ApplicationRunner class also contains the static method handleException. The
method takes in a String argument and prompts the user with an error message box contain-
ing the string message. This method exists for the sole purpose of presenting application error
feedback to the user. All exceptions that occur in the MainWindow class will be caught, and dur-
ing the try/catch process a call to the handleException method will be made that will display
error information for the user.

The Client GUI
The bulk of the GUI logic is contained within the MainWindow class, which we will present here.

GUI Design and Layout
As mentioned in Chapter 2 and at the start of this chapter, we recommend you start by hand-
sketching your GUI. To give an example of what we mean, consider the sketch of the GUI we
will be developing for our client application that is shown in Figure 8-22.

Figure 8-22. A hand-drawn sketch of the client GUI interface

CHAPTER 8 ■ THE GRAPHICAL USER INTERFACES 263

Sketching a prototype in this way gives us the following advantages over coding the GUI
directly:

• We can sketch a sample GUI quicker than we can write code to create a mock-up of the
application.

• Following that point, if the end user would like a change made to the interface, you
won’t have to throw out code.

• The sketch can be shown to your sample audience/testers anywhere—you do not need
a computer handy.

• When you show it to potential users, they will know that it is a sketch, and not a com-
plete application, whereas if you show potential users a mocked-up GUI, there is the
tendency for the users to believe that a large proportion of the work is complete.

• Having made an up-front decision about what looks good, we are more likely to stick to
it. When coding without the up-front sketch, there is the temptation to change parts of
the design whenever it appears to difficult to do.

• Having made an up-front decision about what will appear in the GUI, there is less
temptation to add more as we go along.

Just like assembling a puzzle, there are many ways to solve a single problem. The preced-
ing layout structure is, of course, merely the way we have chosen to lay out Denny’s DVD
application—you might choose a totally different layout for your application. The Denny’s
DVDs application interface takes a simple approach that incorporates very few additional
bells and whistles. A basic Swing implementation is all that Sun requires for the SCJD exam,
but you can choose to go above and beyond what is required and add more features than
required. A JToolBar, for example, could be provided for additional ease of use, even though
it is not specifically required to pass the exam. Whether to add such features is up to you. On
the one hand, there are many features that you can add that will make your GUI more user
friendly, and hence improve your score. On the other hand, your instructions may warn
against going beyond specifications. Where to draw the line is up to you.

When we look at the sketch in Figure 8-22, we can see that there are three major areas
(excluding the title bar and menu bar), as shown in Figure 8-23.

Figure 8-23. The three main areas of the client GUI application

CHAPTER 8 ■ THE GRAPHICAL USER INTERFACES264

We might be tempted to try to add our components directly into a BorderLayout; however,
if the user should resize the screen, the object to the north and south will only stretch horizon-
tally—it is the object in the center that will stretch vertically. This could lead to an
awkward-looking screen, as demonstrated in Figure 8-24.

Figure 8-24. Resizing the GUI application if the table is in the north, the search panel is in the
center, and the booking panel is in the south

■Note This is an example of where creating a sketch of our application before coding helps ensure we end
up with a GUI that the users want, not what is easiest for us. Without that sketch, we might be tempted to
change the user-approved design just to make our life easier.

So what we need to do is to change how we break up the GUI. The major amount of infor-
mation is going to be displayed in the table, so that is the component we want in the center.
This means that we are going to need to create another panel that will contain both search
options and booking options to go in the south of the main panel, as shown in Figure 8-25.

Figure 8-25. The new panels for the main window

CHAPTER 8 ■ THE GRAPHICAL USER INTERFACES 265

We will create a JPanel that contains the search panel and the booking panel. Since these
two panels do not need to change size when the user resizes the window, we will place the
search panel in the north, and the booking panel in the south, as shown in Figure 8-26.

Figure 8-26. The new panel for searching and for booking

We can then take the panel shown in Figure 8-26 and add it to the south of the panel
shown in Figure 8-25, which results in a GUI that will resize the table pane where needed,
while leaving the search and booking panes the desired size. The code shown in Listing 8-20
demonstrates this techinique. Note, however, that labels are used in place of the real compo-
nents—this is done so that the code may be easier to understand.

Listing 8-20. Combining Several Panels to Form One Overall GUI

import java.awt.*;
import javax.swing.*;
import javax.swing.border.*;

public class MyFrame {
public static void main(String[] args) throws Exception {

Border border = BorderFactory.createLineBorder(Color.BLACK);
JFrame theFrame = new JFrame();
theFrame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

// This is the panel for the table – that is all it contains
JPanel tablePanel = new JPanel();
tablePanel.setBorder(border);
JLabel table = new JLabel("Table display area",SwingConstants.CENTER);
table.setPreferredSize(new Dimension(650,225));
tablePanel.add(table);

// The search options panel
JPanel searchPanel = new JPanel();
searchPanel.setBorder(border);
JLabel search = new JLabel("Search area",SwingConstants.CENTER);
search.setPreferredSize(new Dimension(650,15));
searchPanel.add(search);

// the booking options panel
JPanel bookPanel = new JPanel();
bookPanel.setBorder(border);
JLabel book = new JLabel("Booking area",SwingConstants.CENTER);
book.setPreferredSize(new Dimension(650,15));
bookPanel.add(book);

CHAPTER 8 ■ THE GRAPHICAL USER INTERFACES266

// The search & booking options panels are both added to an extra panel
JPanel optionsPanel = new JPanel(new BorderLayout());
optionsPanel.add(searchPanel, BorderLayout.NORTH);
optionsPanel.add(bookPanel, BorderLayout.SOUTH);

// The the tablePanel and optionsPanel are added to the JFrame
theFrame.add(tablePanel, BorderLayout.CENTER);
theFrame.add(optionsPanel, BorderLayout.SOUTH);

theFrame.pack();
theFrame.setVisible(true);

}
}

Listing 8-20 shows roughly how we will be laying out the MainWindow for our client appli-
cation. We will be providing the complete code for the MainWindow class next; however, it is
worthwhile reading through the code presented in Listing 8-20 to ensure that you are comfort-
able with the layout concepts before continuing.

The contents of the screen generated by Listing 8-20 are shown in Figure 8-27.

Figure 8-27. The result of combining several frames

The search area and the booking area each contain multiple items laid out in a row. We can
use the FlowLayout for these two panes, as will be shown in Listing 8-21 in the next section.

CHAPTER 8 ■ THE GRAPHICAL USER INTERFACES 267

■Tip This technique of developing small sections of code to show a concept is very useful in developing
and debugging code. It is often the case when attempting to incorporate some feature that does not appear
to work correctly, or trying to debug some existing code, that a large portion of the code is not relevant to
your problem. When you create a simple application just for testing the issue, you do not have irrelevant
code to distract you. It also means that you have a small bit of code with which to ask a friend or colleague
for help if necessary—asking a friend or colleague to help debug a thousand-line application is really push-
ing friendship.

The MainWindow
The MainWindow class extends JFrame and is the actual implementation of the Denny’s DVDs
main window. The constructor of the MainWindow goes through the process of setting up the
application menu bar, the main data table, adding the DVDScreen (described after Listing 8-22),
and setting the main window in the center of the operating system screen.

First, the DVDMainWindow constructor creates an instance of its super class, JFrame, setting
the title of the application. Following this, a dialog box is created where the user can enter the
location of the database (described in the upcoming section, “Specifying the Database Loca-
tion”). The initialization procedure then continues to create the menu bar and all menu items.

As shown in Listing 8-21, there is one JMenuBar for the frame. The menu bar may have sev-
eral JMenus attached (for example, one for the File menu, one for the Help menu, and so on).
Each menu may have several JMenuItems attached—one for each action your user is likely to
perform via a menu.

Each menu and menu item may have an optional mnemonic key and an optional icon
attached. We have shown attaching the mnemonic key F to the File menu, and the mnemonic
key Q to the Quit menu item. If the user presses the Alt and F keys, the File menu will pop
down, and if they then press the Q key, the application will quit.

Normally each menu item has an actionListener attached to respond to events. We
have shown attaching an instance of the QuitApplication class to the quitMenuItem (the
QuitApplication class will be shown in Listing 8-22).

After the menus have been configured, and the data loaded from the database, an
instance of the DVDScreen class is added to the MainWindow frame. DVDScreen is a JPanel that
contains the elements described in the “GUI Design and Layout” section earlier. It will be
shown in Listing 8-23.

Finally, an initial size for the application window is set, and the application window is
centered on the screen.

Listing 8-21. The MainWindow Constructor: Setting Up the Menu

public MainWindow(String[] args) {
super("Denny's DVDs");
this.setDefaultCloseOperation(this.EXIT_ON_CLOSE);

ApplicationMode connectionType = (args.length == 0)
? ApplicationMode.NETWORK_CLIENT
: ApplicationMode.STANDALONE_CLIENT;

CHAPTER 8 ■ THE GRAPHICAL USER INTERFACES268

// find out where our database is
DatabaseLocationDialog dbLocation =

new DatabaseLocationDialog(this, connectionType);

try {
controller = new GuiController(dbLocation.getNetworkType(),

dbLocation.getLocation(),
dbLocation.getPort());

} catch (GUIControllerException gce) {
ApplicationRunner.handleException(

"Failed to connect to the database");
}

// Add the menu bar
JMenuBar menuBar = new JMenuBar ();
JMenu fileMenu = new JMenu ("File");
JMenuItem quitMenuItem = new JMenuItem ("Quit");
quitMenuItem.addActionListener(new QuitApplication ());
quitMenuItem.setMnemonic(KeyEvent.VK_Q);
fileMenu.add(quitMenuItem);
fileMenu.setMnemonic(KeyEvent.VK_F);
menuBar.add(fileMenu);

this.setJMenuBar(menuBar);

// A full data set is returned from an empty search
try {

tableData = controller.getDVDs();
setupTable();

} catch (GUIControllerException gce) {
ApplicationRunner.handleException(

"Failed to acquire an initial DVD list." +
"\nPlease check the DB connection.");

}

this.add(new DvdScreen());

this.pack();
this.setSize(650, 300);

// Center on screen
Dimension d = Toolkit.getDefaultToolkit().getScreenSize();
int x = (int) ((d.getWidth() - this.getWidth())/ 2);
int y = (int) ((d.getHeight() - this.getHeight())/ 2);
this.setLocation(x, y);
this.setVisible(true);

}

CHAPTER 8 ■ THE GRAPHICAL USER INTERFACES 269

If the user chooses to quit the application using the Quit menu item, the event handler
will call the QuitApplication class. This is one of the simplest event handlers we could write—
all it does is call System.exit(0). It is shown in Listing 8-22.

Listing 8-22. The QuitApplication ActionListener

private class QuitApplication implements ActionListener {
public void actionPerformed (ActionEvent ae) {

System.exit(0);
}

}

Listing 8-23 contains the DVDScreen constructor. The major components of this have all
been introduced in the earlier sections.

DVDScreen starts by adding a scroll pane for the table holding the DVDs—this is added to
the center of the JPanel.

Following this, the panel for the search options is created, along the way creating the text
field for entering the search parameters, and the button to begin a search. An action listener
is added to the search button, and will be described after Listing 8-23 since it is a little more
involved than our application listener for the Quit menu item.

Then the buttons and panel for the Rent and Return options are created, along with their
action listeners.

A bottom panel is created to hold both the search options and the hiring options, with the
search options panel added to the north, and the hiring options panel added to the south. The
bottom panel is then added to the south of the master JPanel.

Finally the table is configured and some tooltips are added.

Listing 8-23. The DVDScreen

public DvdScreen() {
this.setLayout(new BorderLayout());
JScrollPane tableScroll = new JScrollPane (mainTable);
tableScroll.setSize(500, 250);

this.add(tableScroll, BorderLayout.CENTER);

// Set up the search pane
JButton searchButton = new JButton ("Search");
searchButton.addActionListener(new SearchDVD ());
searchButton.setMnemonic(KeyEvent.VK_S);
// Search panel
JPanel searchPanel = new JPanel(new FlowLayout(FlowLayout.CENTER));
searchPanel.add(searchField);
searchPanel.add(searchButton);

CHAPTER 8 ■ THE GRAPHICAL USER INTERFACES270

// Setup rent and return buttons
JButton rentButton = new JButton ("Rent DVD");
JButton returnButton = new JButton ("Return DVD");

// Add the action listenters to rent and return buttons
rentButton.addActionListener(new RentDVD ());
returnButton.addActionListener(new ReturnDVD ());
// Set the rent and return buttons to refuse focus
rentButton.setRequestFocusEnabled(false);
returnButton.setRequestFocusEnabled(false);
// Add the keystroke mnemonics
rentButton.setMnemonic(KeyEvent.VK_R);
returnButton.setMnemonic(KeyEvent.VK_U);
// Create a panel to add the rental a remove buttons
JPanel hiringPanel = new JPanel(new FlowLayout(FlowLayout.RIGHT));
hiringPanel.add(rentButton);
hiringPanel.add(returnButton);

// bottom panel
JPanel bottomPanel = new JPanel (new BorderLayout ());
bottomPanel.add(searchPanel, BorderLayout.NORTH);
bottomPanel.add(hiringPanel, BorderLayout.SOUTH);

// Add the bottom panel to the main window
this.add(bottomPanel, BorderLayout.SOUTH);

// Set table properties
mainTable.setSelectionMode(ListSelectionModel.SINGLE_SELECTION);
mainTable.setAutoResizeMode(JTable.AUTO_RESIZE_ALL_COLUMNS);
mainTable.setToolTipText("Select a DVD record to rent or return.");

// Add Tool Tips
returnButton.setToolTipText(

"Return the DVD item selected in the above table.");
rentButton.setToolTipText(

"Rent the DVD item selected in the above table.");
searchField.setToolTipText(

"Enter infromation about a DVD you want to locate.");
searchButton.setToolTipText("Submit the DVD search.");

}
}

The GUI created by the MainWindow class and the DVDScreen class can be seen in
Figure 8-28.

CHAPTER 8 ■ THE GRAPHICAL USER INTERFACES 271

Figure 8-28. The GUI created by the MainWindow class and the DVDScreen class

Just like all other action handlers in the Denny’s DVDs application that communicate
with the GUIController, the search action shown in Listing 8-24 must be ready to receive a
GUIControllerException from the GUIController. This particular method, however, handles
the exception a little differently. The GUIControllerException that is thrown from the find
(String query) method may contain a PatternSyntaxException as its cause. This particular
exception is thrown if the user enters a search string that is not a properly formatted regular
expression. In this case, the exception message may contain important information for the
user pertaining to the incorrect syntax of the search. In order to present this information to
the user, J2SE’s exception chaining facility is put to use. When the actionPerformed() method
in Listing 8-24 catches an exception, it checks the exception’s cause to see if it is of type
PatternSyntaxException. If it is this type, the exception message is added to the message that
is passed to the handleException method. The end result is a very useful error dialog box that
looks like the one shown in Figure 8-29.

Listing 8-24. The SearchDVD Event Handler

private class SearchDVD implements ActionListener {
public void actionPerformed (ActionEvent ae) {

previousSearchString = searchField.getText();
try {

tableData = controller.find(previousSearchString);
setupTable();

} catch (GUIControllerException gce) {
// Inspect the exception chain
Throwable rootException = gce.getCause();
String msg = "Search operation failed.";
// If a syntax error occurred, get the message
if (rootException instanceof PatternSyntaxException) {

msg += ("\n" + rootException.getMessage());
}
ApplicationRunner.handleException(msg);

CHAPTER 8 ■ THE GRAPHICAL USER INTERFACES272

previousSearchString = "";
}
searchField.setText("");

}
}

Figure 8-29. The error message from a regular expression compilation failure

Specifying the Database Location
When users start the client or server applications, they need to be able to specify where the
database is located.

For the Denny’s DVDs application, we have determined that this entails the following:

• In stand-alone client mode, the user must specify where the physical file is located.

• In networked client mode, the user must be able to specify the URL or IP address of the
server computer, the type of server running (RMI or sockets), and the port number
the server is using.

• In server mode, the user must be able to specify where the physical file is located, the
type of server (RMI or sockets), and the port number the server will use.

■Note You should not need anything so complex for your solution. Some of the options we are allowing for
are specifically to allow for all the options of this book.

To allow these options to be entered in client mode, we are going to develop a dialog box,
as shown in Figure 8-30. The major part of this dialog box is the reusable panel shown in
Figure 8-31.

CHAPTER 8 ■ THE GRAPHICAL USER INTERFACES 273

Figure 8-30. The client application’s dialog box for entering the database location

Figure 8-31. The JPanel for getting common parameters in both the client and the server
application

In Listing 8-28 we will see that the constructor for the common frame will change which
options are displayed, and what tooltip text is displayed, depending on a parameter in the
constructor. This allows us to use the same frame for stand-alone client, networked client,
and server applications.

For the main client GUI, we used the simple graphical layout managers: BorderLayout and
FlowLayout. These layout managers will serve in most cases. However, in some circumstances
you may find that you want to lay out a panel in some form that cannot be readily achieved
using these simple layout managers. The common frame is one such case—we want to have
up to four rows of components, but each component has a label that we want to align verti-
cally on its right edge.

In this section we introduce one of the most powerful layout managers—the
GridBagLayout. We deliberately delayed introducing this layout manager until now, as it is
more complicated to use than the other layout managers.

■Tip Although this layout manager is very powerful, and works well in the Denny’s DVD example applica-
tion, you may find that you do not need to use this layout manager in your application. We recommend that
you use the simplest solution that works for you—you will not get extra marks for proving that you can use
all the layout managers.

The GridBagLayout
Java has two grid-based layout managers: the GridLayout and the GridBagLayout manager.

The GridLayout is the simpler of the two; however, it forces all cells in the grid to be the
same size, as shown in Figure 8-32. The program that produced this is shown in Listing 8-25.

CHAPTER 8 ■ THE GRAPHICAL USER INTERFACES274

Listing 8-25. A Simple GridLayout Application

import java.awt.*;
import javax.swing.*;

public class MyFrame {
public static void main(String[] args) throws Exception {

JFrame theFrame = new JFrame();
theFrame.setLayout(new GridLayout(2,2));
theFrame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
theFrame.add(new JButton("One"));
theFrame.add(new JLabel("A very long component"));
theFrame.add(new JTextField("Three"));
theFrame.add(new JTextArea("Four\nFive\nSix"));

theFrame.pack();
theFrame.setVisible(true);

}
}

Figure 8-32. Example of GridLayout demonstrating consistent cell sizes

As you can see in Figure 8-32, the width of all components is the same as the width of the
longest component—the JLabel with the contents “A very long component”—and the height
of all components is the same as the height of the tallest component—the JTextArea that con-
tains multiple lines of text.

While this layout can be very useful if most of the components are the same size, it is not
very useful when you have considerable differences in component sizes, as we do in our com-
mon frame. If we were to use the GridLayout, then the space allocated to the labels would be
the same as the space allocated to the largest component—the Database location field.

The GridBagLayout also works on a grid of cells; however, components are allowed to
occupy more than one cell, the width of a column is calculated based on the width of the
widest column that does not span multiple columns, and the height of a row is calculated
based on the height of the tallest component in that row that does not span multiple rows.

We will start off with a simple example that contains the same components as used in
Figure 8-32, but this time we will use the GridBagLayout. Listing 8-26 shows the program that
creates the GUI shown in Figure 8-33.

CHAPTER 8 ■ THE GRAPHICAL USER INTERFACES 275

Listing 8-26. A Simple GridBagLayout Application Similar to Listing 8-25

import java.awt.*;
import javax.swing.*;

public class MyFrame {
static GridBagLayout grid = new GridBagLayout();
static GridBagConstraints constraints = new GridBagConstraints();

public static void main(String[] args) throws Exception {
JFrame theFrame = new JFrame();
theFrame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
theFrame.setLayout(grid);

constraints.anchor = GridBagConstraints.WEST;

JButton one = new JButton("One");
grid.setConstraints(one, constraints);
theFrame.add(one);

constraints.gridwidth = GridBagConstraints.REMAINDER;
theFrame.add(constrain(new JLabel("A very long component")));

constraints.weightx = 0.0;
constraints.gridwidth = 1;
theFrame.add(constrain(new JTextField("Three")));
theFrame.add(constrain(new JTextArea("Four\nFive\nSix")));

theFrame.pack();
theFrame.setVisible(true);

}

private static Component constrain(Component c) {
grid.setConstraints(c, constraints);
return c;

}
}

Figure 8-33. Example of GridBagLayout demonstrating inconsistent cell sizes

CHAPTER 8 ■ THE GRAPHICAL USER INTERFACES276

As can be seen in Figure 8-33, the components are no longer forced to the same height
and width as the highest and widest components. The first row’s height has no relationship to
the second row’s height, and the first column’s width has no relationship to the second col-
umn’s width.

The basic concept when using GridBagLayout is to configure the constraints to be used
for the component, notify the GridBagLayout manager of these constraints, and then add the
component to the pane. This is best exemplified in the following code snippet from Listing 8-26:

constraints.anchor = GridBagConstraints.WEST;

JButton one = new JButton("One");
grid.setConstraints(one, constraints);
theFrame.add(one);

Prior to this code snippet, the constraints were set to default values (starting in row 1,
column 1, centered in the grid, occupying one grid position, etc.). The first line changes the
location of each component so that they will now be left-justified. We then created our com-
ponent and notified the GridBagLayout that the specified constraints were to be used with
that particular component. Finally, we added the component to the panel.

■Note Only one set of constraints is used throughout the application—when the setConstraints
method is called, the layout manager clones the constraints provided. This makes it easier for developing,
as you can set common constraint configuration at the start of your layout code and use those constraints
throughout the program.

Since components can span multiple rows and multiple columns, the GridBagLayout can-
not determine whether or not a component is the last component. Therefore, before adding
the last item to row 1, we must specify via the constraints that this will be the last component
in the row. The following line does this:

constraints.gridwidth = GridBagConstraints.REMAINDER;

As noted, we use the same set of constraints for all components. We set the constraints
to specify that the component will be the last component in the row, and then used that
constraint when adding the component to the container. However, if we do not reset the con-
straint, all future components will also appear as the last component in the row. The following
line does this:

constraints.gridwidth = 1;

To close this section, we will demonstrate how to specify that components span multiple
rows or columns. The program to do this is shown in Listing 8-27, and the output is shown in
Figure 8-34.

CHAPTER 8 ■ THE GRAPHICAL USER INTERFACES 277

Listing 8-27. A GridBagLayout Application Demonstrating Components Spanning Multiple Cells

import java.awt.*;
import javax.swing.*;

public class MyFrame {
static GridBagLayout grid = new GridBagLayout();
static GridBagConstraints constraints = new GridBagConstraints();

public static void main(String[] args) throws Exception {
JFrame theFrame = new JFrame();
theFrame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
theFrame.setLayout(grid);

constraints.fill = GridBagConstraints.BOTH;

constraints.gridheight = 2;
theFrame.add(constrain(new JButton("Deep")));

constraints.gridheight = 1;
constraints.gridwidth = GridBagConstraints.REMAINDER;
theFrame.add(constrain(new JButton("Wide")));

constraints.gridwidth = 1;
theFrame.add(constrain(new JButton("One")));
theFrame.add(constrain(new JButton("Two")));

theFrame.pack();
theFrame.setVisible(true);

}

private static Component constrain(Component c) {
grid.setConstraints(c, constraints);
return c;

}
}

Figure 8-34. Example of GridBagLayout demonstrating components spanning multiple cells

CHAPTER 8 ■ THE GRAPHICAL USER INTERFACES278

■Note GridBagLayout is one of the most useful layout managers available, and it is capable of far more
than we can show in one section of one chapter. Unfortunately, going into all its capabilities is beyond the
scope of this book.

The Common Database Location Frame
Now that the basics of the GridBagLayout have been explained, we can show the code that cre-
ates the common frame for displaying the database location.

The ConfigOptions constructor stores a local variable to show what mode it was config-
ured with, and then constructs a GridBagLayout with a gap between components of 2 pixels in
every direction.

Regardless of which mode we are in, we will be displaying the label for the Database loca-
tion field, so we add that next.

The remaining options are configured depending on the mode we are in. If a component
or option does not make sense in the mode we are in, then it is not added to the panel. If it
does make sense to add it, then it is added, and the tooltip text is set relevant to the mode.
Listing 8-28 demonstrates how the components used within a particular mode are laid out
using the GridBagLayout.

Listing 8-28. The ConfigOptions Constructor

public ConfigOptions(ApplicationMode applicationMode) {
super();
this.applicationMode = applicationMode;

GridBagLayout gridbag = new GridBagLayout();
GridBagConstraints constraints = new GridBagConstraints();
this.setLayout(gridbag);

// Standard options
// ensure there is always a gap between components
constraints.insets = new Insets(2,2,2,2);

// Build the Data file location row
JLabel dbLocationLabel = new JLabel(DB_LOCATION_LABEL);
gridbag.setConstraints(dbLocationLabel, constraints);
this.add(dbLocationLabel);

if (applicationMode == ApplicationMode.NETWORK_CLIENT) {
locationField.setToolTipText(DB_IP_LOCATION_TOOL_TIP);
constraints.gridwidth = GridBagConstraints.REMAINDER; //end row

} else {
locationField.setToolTipText(DB_HD_LOCATION_TOOL_TIP);
// next-to-last location in row
constraints.gridwidth = GridBagConstraints.RELATIVE;

}

CHAPTER 8 ■ THE GRAPHICAL USER INTERFACES 279

locationField.addFocusListener(new ActionHandler());
locationField.setName(DB_LOCATION_LABEL);
gridbag.setConstraints(locationField, constraints);
this.add(locationField);

if ((applicationMode == ApplicationMode.SERVER)
|| (applicationMode == ApplicationMode.STANDALONE_CLIENT)) {

browseButton.addActionListener(new BrowseForDatabase());
constraints.gridwidth = GridBagConstraints.REMAINDER; //end row
gridbag.setConstraints(browseButton, constraints);
this.add(browseButton);

}

if ((applicationMode == ApplicationMode.SERVER)
|| (applicationMode == ApplicationMode.STANDALONE_CLIENT)) {

// Build the Server port row if applicable
constraints.weightx = 0.0;

JLabel serverPortLabel = new JLabel(SERVER_PORT_LABEL);
constraints.gridwidth = 1;
constraints.anchor = GridBagConstraints.EAST;
gridbag.setConstraints(serverPortLabel, constraints);
this.add(serverPortLabel);

portNumber.addFocusListener(new ActionHandler());
portNumber.setToolTipText(SERVER_PORT_TOOL_TIP);
portNumber.setName(SERVER_PORT_LABEL);
constraints.gridwidth = GridBagConstraints.REMAINDER; //end row
constraints.anchor = GridBagConstraints.WEST;
gridbag.setConstraints(portNumber, constraints);
this.add(portNumber);

// Build the Server type option row 1 if applicable
constraints.weightx = 0.0;

JLabel serverTypeLabel = new JLabel("Server Type: ");
constraints.gridwidth = 1;
constraints.anchor = GridBagConstraints.EAST;
gridbag.setConstraints(serverTypeLabel, constraints);
this.add(serverTypeLabel);

constraints.gridwidth = GridBagConstraints.REMAINDER; //end row
constraints.anchor = GridBagConstraints.WEST;
gridbag.setConstraints(socketOption, constraints);
socketOption.setActionCommand(SOCKET_SERVER_TEXT);
socketOption.addActionListener(new ActionHandler());
this.add(socketOption);

CHAPTER 8 ■ THE GRAPHICAL USER INTERFACES280

// Build the Server type option row 2 if applicable
constraints.weightx = 0.0;

constraints.gridwidth = GridBagConstraints.REMAINDER; //end row
constraints.anchor = GridBagConstraints.WEST;
constraints.gridx = 1;
gridbag.setConstraints(rmiOption, constraints);
rmiOption.addActionListener(new ActionHandler());
rmiOption.setActionCommand(RMI_SERVER_TEXT);
this.add(rmiOption);

ButtonGroup serverTypesGroup = new ButtonGroup();
serverTypesGroup.add(socketOption);
serverTypesGroup.add(rmiOption);

}
}

If the choice between RMI and sockets is displayed, we want to display two radio buttons
under each other, with only one label on the left.

There are several ways we could have approached this. We could have set the label to be
two columns deep, or we could have created another frame to hold the radio buttons. How-
ever, both these techniques have been shown before, so we opted instead to set the absolute
grid position for the rmiOption radio button, with the instruction:

constraints.gridx = 1;

This tells the GridBagLayout to add the specified component in position 1, where cells
start at column 0.

If you would like to see how this common frame would look in the server application, you
can skip forward to Figure 8-35. We recommend that you return to this section to find out how
we have handled passing information from the common frame to the enclosing frame or dia-
log box.

The Observer Design Pattern

There are many options to be configured, but the client and server applications cannot start
unless all the correct options are configured. However, in the client application, our common
frame will be used in a dialog box, while in the server application it will form part of the server
GUI. So we need some common way for either of these applications to create an instance of
the common frame and receive notifications whenever a field changes. In effect, we want the
dialog box and the server application to observe any changes in the common frame.

This is one occasion where we can use the Observer design pattern. In this pattern, you
set up one class as the Observable class, and any classes that want to be notified of changes
implement the Observer interface. The Observer classes then register themselves to the
Observable class, and the Observable class notifies registered Observer classes of any changes.

CHAPTER 8 ■ THE GRAPHICAL USER INTERFACES 281

■Note The Observer design pattern is not normally used for one part of a GUI to receive notifications of
changes to another part of the GUI. It is more common to have an Observable model in an MVC pattern
with one or more Observer views. Or you might have an Observable server that notifies all the Observer
clients whenever something changes on the server.

Normally you would have the class you wish to observe extend the Observable class, but
our ConfigOptions panel already extends JPanel, so we cannot do this. Instead, we have cre-
ated an inner class that extends Observable, and provided a convenient getObservable
method that the client and server applications can use in order to register themselves as
observers.

When using Java’s inbuilt implementations of the observer pattern, you can specify an
object that should be passed to the observers. We have created a value object class that can be
used to pass the field that was changed along with the field contents. This class is presented in
Listing 8-29. For more information on the Value Object design pattern, refer to Chapter 5.

Listing 8-29. The OptionUpdate Value Object

package sampleproject.gui;

public class OptionUpdate {
public enum Updates {

NETWORK_CHOICE_MADE,
DB_LOCATION_CHANGED,
PORT_CHANGED;

}

private Updates updateType = null;
private Object payload = null;

public OptionUpdate(Updates updateType, Object payload) {
this.updateType = updateType;
this.payload = payload;

}

public Updates getUpdateType() {
return this.updateType;

}

public Object getPayload() {
return payload;

}
}

When the user changes something in the common dialog box (which is the class that
might have some Observers), one of the event handlers will be called. If this is an event we

CHAPTER 8 ■ THE GRAPHICAL USER INTERFACES282

want to notify our Observer classes of, an OptionUpdate value update is constructed and sent
to all the observers.

For example, when the user leaves the locationField or the portNumber field, then the fol-
lowing code is executed:

public void focusLost(FocusEvent e) {
if (DB_LOCATION_LABEL.equals(e.getComponent().getName())

&& (! locationField.getText().equals(location))) {
location = locationField.getText();
updateObservers(OptionUpdate.Updates.DB_LOCATION_CHANGED,

location.trim());
}

if (SERVER_PORT_LABEL.equals(e.getComponent().getName())
&& (! portNumber.getText().equals(port))) {

port = portNumber.getText();
updateObservers(OptionUpdate.Updates.PORT_CHANGED, port.trim());

}
}

Assuming that the user has changed one of these fields, the following method is called:

private void updateObservers(OptionUpdate.Updates updateType, Object payLoad) {
OptionUpdate update = new OptionUpdate(updateType, payLoad);
observerConfigOptions.setChanged();
observerConfigOptions.notifyObservers(update);

}

■Note We called the setChanged method on the Observable object before calling the notifyObservers
method. If you call notifyObservers without first calling setChanged, no Observers will be notified.

That is all we need to do to notify however many observers we may have. While it may
appear that we have gone to a lot of work to pass some information back to either the Client
Database Location dialog box or to the server GUI, the advantage is that we have decoupled
the panel from the users of the panel—any class can use this panel, and simply by registering
themselves as an Observer of the panel they can get notification whenever anything changes
on the panel.

The next two sections—“The Client Database Location Dialog Box” and “The Server
GUI”—show the other half of the Observer-Observable pair. Both will be Observers of the
panel described here.

The Client Database Location Dialog Box
Having created a common frame for the various modes, we can add it to a dialog box, as
shown in Listing 8-30.

CHAPTER 8 ■ THE GRAPHICAL USER INTERFACES 283

Our dialog box will not allow users to start the client application until they have entered
the required details; however, the required details change depending on the client application
mode—in stand-alone mode, we only need to know the URI of the data file. But in networked
mode we need to know the URL of the server, its port number, and the type of server we are
connecting to. The constructor starts by assuming that if we are building a dialog box for
stand-alone mode, then we don’t need a port number or connection type. It then goes on to
create an instance of the ConfigOptions pane and add itself as an observer of the pane.

A simple OK/Cancel question JOptionPane is then created, with the common pane as its
main object. We then override the buttons that will be displayed so that we can enable the
connect button when the user has entered the required data.

If the user closes the dialog box rather than clicking the Connect or Exit button, we want
to treat it as though they had clicked the Exit button. So we set the dialog box to do nothing on
close, and then we add a window listener to the dialog box.

Listing 8-30. The DatabaseLocationDialog

public DatabaseLocationDialog (Frame parent, int connectionMode) {
// the port and connection type are irrelevant in standalone mode
if (connectionMode == ApplicationMode.STANDALONE_CLIENT)

validPort = true;
validCnx = true;

}

configOptions = (new ConfigOptions(connectionMode));
configOptions.getObservable().addObserver(this);

options = new JOptionPane(configOptions,
JOptionPane.QUESTION_MESSAGE,
JOptionPane.OK_CANCEL_OPTION);

connectButton.setActionCommand(CONNECT);
connectButton.addActionListener(this);
connectButton.setEnabled(false);

exitButton.setActionCommand(EXIT);
exitButton.addActionListener(this);

options.setOptions(new Object[] {connectButton, exitButton});

dialog = options.createDialog(parent, TITLE);
dialog.setDefaultCloseOperation(JDialog.DO_NOTHING_ON_CLOSE);
dialog.addWindowListener(this);
dialog.setVisible(true);

}

CHAPTER 8 ■ THE GRAPHICAL USER INTERFACES284

When the user makes a change in the common frame, all the observers are notified. The
notification is sent to the method with the signature public void update(Observable o, Object
arg). In that method, we first confirm that we did receive an instance of the OptionUpdate
value object, and if not we ignore the entire message. If it is an OptionUpdate, then we recast it
so that we can easily get access to information about what has changed, as shown in the fol-
lowing code snippet:

if (! (arg instanceof OptionUpdate)) {
log.log(Level.WARNING,

"DatabaseLocationDialog received update type: " + arg,
new IllegalArgumentException());

return;
}

OptionUpdate optionUpdate = (OptionUpdate) arg;

■Caution You should always check for nulls or for the type of an object before recasting it. However, if you
check the type of the object, you may not need to explicitly check for null since instanceof will return false
if passed a null reference. You should also check for nulls being passed into any API you have made public.
Even though we know that the class we are currently observing should only send us instances of the
OptionUpdate class, we cannot guarantee that this will never change in the future. Should this change,
we will get a warning log message giving as much information on what has been received and where it
came from as possible.

■Tip Even though we created an IllegalArgumentException for the purposes of creating a stack trace
in the log message, we never threw it, so the application will continue to run. Creating an exception simply
for the information available from the exception can be a useful tool if you ever need to debug your code.

■Note It may not be desirable to log all updates received that your particular code is not interested in.
When AWT was first released, all events would be sent to any class that was interested in any event. This
could mean that a class that was only interested in learning when the mouse moved over a particular field
might get millions of updates as the mouse moved over other areas of the screen—in such a case you
would not want to log all the unwanted events. However, in this particular case where we know all the
events that can be generated at this time, it makes sense to log a warning if we receive an event we were
not expecting.

CHAPTER 8 ■ THE GRAPHICAL USER INTERFACES 285

We then perform validation on the field the user has entered, setting the Boolean flag if
the user has entered valid data, as shown in the following code snippet for validating a field
name:

location = (String) optionUpdate.getPayload();
if (configOptions.getApplicationMode()

== ApplicationMode.STANDALONE_CLIENT) {
File f = new File(location);
if (f.exists() && f.canRead() && f.canWrite()) {

validDb = true;
log.info("File chosen " + location);

} else {
log.warning("Invalid file " + location);

}
}

Finally we check whether we have all the required fields, and if so, we enable the Connect
button as shown in the following code snippet:

boolean allValid = validDb && validPort && validCnx;
connectButton.setEnabled(allValid);

The Server GUI
The server GUI is shown in Figure 8-35. As can be seen, the majority of this GUI is the com-
mon panel developed earlier.

Figure 8-35. The server GUI

The constructor used to create the server GUI is shown in Listing 8-31. We start by setting
the title of the GUI, configuring the application to exit if the close button is clicked, and ensur-
ing the GUI cannot be resized.

We then create our menu bar the same way we did for the client application, and add our
ConfigOptions panel to the main window. We then add the buttons to start the server (disabled
until configuration options are set), and load any stored configuration options. Finally, we
center the server window on the screen, and set it to be visible.

CHAPTER 8 ■ THE GRAPHICAL USER INTERFACES286

Listing 8-31. The ServerWindow Constructor

public ServerWindow() {
super("Denny's DVDs Server Application");
this.setDefaultCloseOperation(this.EXIT_ON_CLOSE);
this.setResizable(false);
Runtime.getRuntime().addShutdownHook(new CleanExit());

// Add the menu bar
JMenuBar menuBar = new JMenuBar ();
JMenu fileMenu = new JMenu ("File");
JMenuItem quitMenuItem = new JMenuItem ("Quit");
quitMenuItem.addActionListener(new ActionListener() {

public void actionPerformed (ActionEvent ae) {
System.exit(0);

}
});
quitMenuItem.setMnemonic(KeyEvent.VK_Q);
fileMenu.add(quitMenuItem);

fileMenu.setMnemonic(KeyEvent.VK_F);
menuBar.add(fileMenu);

this.setJMenuBar(menuBar);

configOptionsPanel.getObservable().addObserver(this);
this.add(configOptionsPanel, BorderLayout.NORTH);
this.add(commandOptionsPanel(), BorderLayout.CENTER);

status.setBorder(BorderFactory.createBevelBorder(BevelBorder.LOWERED));
JPanel statusPanel = new JPanel(new BorderLayout());
statusPanel.add(status, BorderLayout.CENTER);
this.add(statusPanel, BorderLayout.SOUTH);

// load saved configuration
SavedConfiguration config = SavedConfiguration.getSavedConfiguration();

// there may not be a default database location, so we had better
// validate before using the returned value.
String databaseLocation =

config.getParameter(SavedConfiguration.DATABASE_LOCATION);
configOptionsPanel.setLocationFieldText(

(databaseLocation == null) ? "" : databaseLocation);

// there is always at least a default port number, so we don't have to
// validate this.
configOptionsPanel.setPortNumberText(

config.getParameter(SavedConfiguration.SERVER_PORT));

CHAPTER 8 ■ THE GRAPHICAL USER INTERFACES 287

status.setText(INITIAL_STATUS);

this.pack();
// Center on screen
Dimension d = Toolkit.getDefaultToolkit().getScreenSize();
int x = (int) ((d.getWidth() - this.getWidth())/ 2);
int y = (int) ((d.getHeight() - this.getHeight())/ 2);
this.setLocation(x, y); this.setVisible(true);

}

When the user has entered all the valid information and clicked the Start Server button,
all the user fields and buttons with the exception of the Exit button are disabled, as shown in
Figure 8-36.

Figure 8-36. The running server GUI

This is achieved with the following code in the action listener for the Start Server button:

configOptionsPanel.setLocationFieldEnabled(false);
configOptionsPanel.setPortNumberEnabled(false);
configOptionsPanel.setBrowseButtonEnabled(false);
configOptionsPanel.setSocketOptionEnabled(false);
configOptionsPanel.setRmiOptionEnabled(false);

startServerButton.setEnabled(false);

We then add a shutdown hook to handle any exit events:

Runtime.getRuntime().addShutdownHook(new CleanExit());

Finally we start the appropriate server depending on what type of server the user has
chosen.

The shutdown hook code is very simple—it is simply an initialized thread that gets called
when the application is shutting down. It locks the database so that no other thread can
attempt to write to the file while we are shutting down, and then exits. The complete code for
the shutdown hook is shown in Listing 8-32.

CHAPTER 8 ■ THE GRAPHICAL USER INTERFACES288

■Tip Adding a shutdown hook is a good way of handling shutdowns within an application that will be run-
ning on a server. No matter whether your code calls System.exit, or the user clicks the close button, or the
application is told by the operating system that it must shut down, the same hook will be run. Handling the
cases where the operating system tells the application to shut down is especially valuable—consider the
case where the server is running on an uninterruptible power supply (UPS) and the power goes out. Normally
the UPS runs for a while on battery power, but that can only last so long. So before the battery is likely to run
out, the UPS sends a message to the operating system telling it to shut down. The operating system then
sends a message to all running applications telling them to shut down. The shutdown hook allows your
application to receive this message and perform a clean shutdown.

Listing 8-32. The Shutdown Hook Code

package sampleproject.gui;

import java.io.IOException;
import java.util.logging.*;
import sampleproject.db.*;

public class CleanExit extends Thread {
private Logger log = Logger.getLogger("sampleproject.gui");

public void run() {
log.info("Ensuring a clean shutdown");
try {

DVDDatabase database = new DVDDatabase();
database.setDatabaseLocked(true);

} catch (IOException fne) {
log.log(Level.SEVERE, "Failed to lock database before exiting", fne);

}
}

}

Swing Changes in J2SE 5
Sun has introduced several changes to Swing for the latest release of J2SE. Several of these
improvements can be used to provide a more polished submission. We will briefly discuss
them in this section.

Improve Default Look and Feel of Swing
Prior to JDK 5, if you wanted to provide a common look and feel for your application on multi-
ple platforms, you had to use the Metal look and feel, which by default used to look like
Figure 8-37.

CHAPTER 8 ■ THE GRAPHICAL USER INTERFACES 289

Figure 8-37. An example of using the Metal look and feel with the Steel theme

With JDK 5, Sun has modified this look and feel, as shown in Figure 8-38.

Figure 8-38. An example of using the Metal look and feel with the Ocean theme

To help reduce confusion, Sun has named these two versions of the same look and feel
“Steel” and “Ocean,” respectively.

If you wish to use the old theme, you can set the following system property:

-Dswing.metalTheme=steel

Skins Look and Feel
A “skin” (also called a “theme”) is a way of changing the look and feel of an application or web-
site, without changing any code. This is usually achieved by modifying a configuration file.

Sun has created javax.swing.plaf.synth.SynthLookAndFeel as a skinnable look and feel,
allowing the look and feel to be specified in a file. This means that your users could modify
this file to make your application meet their preferred look and feel without needing any
coding changes.

Adding Components to Swing Containers Has Been Simplified
Prior to JDK 5, it was not possible to directly add components to any class that implemented
RootPaneContainer, namely JApplet, JDialog, JFrame, JInternalFrame, and JWindow. Instead,
you had to get the content pane, then add the components to it. This resulted in code that
looks like this:

JFrame theFrame = new JFrame();
theFrame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

Container thePane = theFrame.getContentPane();

thePane.add(new JButton("Exit"));
theFrame.pack();
theFrame.setVisible(true);

CHAPTER 8 ■ THE GRAPHICAL USER INTERFACES290

A large number of users of classes that implement JRootPane do not need to use the vari-
ous panes that exist—they only need to add content to the content pane. So in JDK 5 Sun has
rewritten the add methods of these classes so that they perform in the way most users would
expect. This allows us to rewrite the previous code as shown here:

JFrame theFrame = new JFrame();
theFrame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

theFrame.add(new JButton("Exit"));
theFrame.pack();
theFrame.setVisible(true);

This reduces confusion as to when we should be dealing with the frame itself or the panel,
and makes the code a little more readable.

Summary
A sound interface design will bridge the gap between the user and the system. By using solid
design patterns, such as the Model-View-Controller (MVC) architectural paradigm, you can
ensure that changes to the data display have minimal impact on the rest of the system. On a
superficial level, the end user will most likely judge the quality of an application based on
the functionally of its interface, so it is important to plan and design a quality front-end to a
system.

In this chapter we introduced GUI design, and provided some examples of how you can
combine various layout managers and components to achieve your desired design. It is
important to realize that there is no “one right way” to develop a GUI, so you can use the tech-
niques introduced here to develop GUIs that you believe will be usable for your instructions.

FAQs
Q The instructions state that I may only use Swing components, but none of the layout

managers are part of the javax.swing package—will this cause me to fail?

A You will be fine using any of the layout managers. However, you must not use an AWT
component where there is a Swing replacement. For example you should not use a
Button since there is a Swing replacement: the JButton.

Q Does Swing replace AWT?

A Swing is not a replacement for AWT. Swing is built on the patterns and groundwork
set forth in AWT. Both Swing and AWT components can be mixed and matched in any
interface, to an extent (however, only Swing components may be used in the Sun
assignment).

Swing does offer some large improvements over AWT both in performance and func-
tionality. Therefore, Sun now emphasizes Swing over AWT. As a result, Swing is a
required part of the SCJD exam.

CHAPTER 8 ■ THE GRAPHICAL USER INTERFACES 291

Q How do I center a window on screen?

A To center a window on screen, get the window dimensions from the
java.awt.Toolkit.getDefaultToolkit().getScreenSize() method. Use the returned
Dimension to calculate the vertical and horizontal center of the screen while taking into
account the dimensions of the window you want to center. Finally, place the window at
that location, as in the following code snippet used for centering our connectionDialog
object:

// Center on screen
Dimension d = Toolkit.getDefaultToolkit().getScreenSize();
int x = (int) ((d.getWidth() - connectionDialog.getWidth())/ 2);
int y = (int) ((d.getHeight() - connectionDialog.getHeight())/ 2);
dialog.setLocation(x, y);

Q How do I create keystroke mnemonics for my GUI components?

A You can add keystroke mnemonics to virtually any component via the setMnemonic(int
keyValue) method. Lists of predefined key values are located in the KeyEvent class.

Q Can I use the Macintosh look and feel on a Windows operating system, or vice versa?

A Sun provides several cross-platform interface look and feel packages. Metal and Motif
were the only guaranteed look-and-feel libraries prior to JDK 1.5. With the release of
JDK 1.5 Sun has included Ocean (a custom Metal theme), and Synth (a skinnable look
and feel). Most other libraries are operating system–specific. Although it might be
technically possible to use the Windows look and feel on a Mac, or vice versa, it is usu-
ally not legal to distribute an application that uses one operating system’s look and feel
on another platform.

Part of the power of Swing is its capability to be extended and make custom look-and-
feel libraries. Some custom libraries are available that are cross-platform, but they are
not part of the standard Java distributions and are difficult to rely on for interface
design.

Q I found a look and feel on the Web that I prefer to any of Sun’s look and feels. Can I use
it instead?

A Check your instructions carefully—most instructions state that all code submitted
must be your own. If you use a look and feel that you did not write and that is not part
of the JDK, then you will be violating this rule.

Q Where can I find out more about Java look-and-feel guidelines?

A You can find extensive information pertaining to Java interface design and standard
practices at http://java.sun.com/products/jlf/.

Q Where can I find out more information on interface design and usability testing?

A The following URLs are great places to begin research into usability engineering and
testing:

http://www.useit.com

http://www.asktog.com

CHAPTER 8 ■ THE GRAPHICAL USER INTERFACES292

Wrap-Up

P A R T 3

■ ■ ■

Project Wrap-Up

Congratulations! You’ve made it through a myriad of complex topics and intricate details.
We’ve covered a lot of information that will help you pass the Sun Certified Java Developer
(SCJD) exam, and we’ve exposed you to some of the new features of JDK 5. This chapter sum-
marizes some of the architectural decisions we confronted during the completion of our
sample project, and it wraps up some of the loose ends regarding packaging and running the
application. In this chapter we will cover

• Understanding the design decisions

• Finding out where to get the code samples

• Compiling and packaging the application

• Creating a manifest file

• Running the application in local mode

• Running the application in network mode

• Running a multithreaded test client

• Packaging the submission

Figure 9-1 presents an overview of the Denny’s DVDs 2.0 application.

■Note Normally you would expect to see an overall diagram of an application drawn from left to right, or
top-down—in other words, the client would normally be in the far left of the diagram or in the top location.
There is a reason we have drawn the diagram bottom-up, though: it matches the way we have developed
the project through this book. We started with the DvdDatabase class in Chapter 5, proceeded with the RMI
and sockets classes in Chapters 6 and 7, and built the GUI classes in Chapter 8.

295

C H A P T E R 9

■ ■ ■

Figure 9-1. Denny’s DVDs 2.0 overview

The design decisions we made centered around the three tiers of the application, which
are central to the SCJD exam. The areas of interest are locking in the db package, choosing
between RMI and sockets for the network layer, and using the MVC pattern in the GUI package.

We also need to cover how to package, install, run, and test the application.
You can find all of the sample code in the Source Code section of the Apress web site

(http://www.apress.com). This chapter explains how to compile and package the final version,
Denny’s DVDs 2.0.

Let’s get started!

Thread Safety and Locking
Thread safety was covered in depth in Chapter 4. The main thrust of Chapter 4 was to explain
threading and related topics such as synchronization, locking, and concurrency and the new
concurrent package of JDK 5. Waiting was also explained in detail, as were other issues relating
to sharing a single resource across multiple client threads.

Chapter 5 also implemented a locking strategy that demonstrated these concepts. For
example, the networking code base creates separate instances of the DvdDatabase class for
each client so that we can identify the owner of the lock as described in the discussion points.

The Choice Between RMI and Sockets
It can be difficult to choose whether to develop an RMI solution or a serialized object over
sockets solution to the Sun SCJD assignment. Sun will accept either solution, with no extra
marks awarded or deducted for the choice alone. Many candidates simply choose the technol-
ogy they are least familiar with as that gives them greatest scope for learning. But if you do not
know either technology, or if you are equally comfortable with both technologies, it is benefi-
cial to be able to look at the benefits of each.

CHAPTER 9 ■ PROJECT WRAP-UP296

■Note When reading these benefits you should be aware that the benefit might be a disadvantage of the
other choice. Also, many of the perceived benefits can be easily countered in an argument—where possible
we provide counterarguments in our discussions in the same place we discuss the benefit.

Benefits of Using a Serialized Objects Over Sockets Solution
In real-world applications, the choice between RMI and sockets often comes down to the
scalability and performance requirements of your application.

Sockets are ideal if performance is a must since you can limit the degree of overhead and
sockets are well suited for sending data, often in compressed form that does not require a
heavy protocol. As you may recall, the larger and more complex your protocol becomes, the
more you may want to use RMI. A well-designed, simple socket interface can outperform an
RMI-based server. If you must handle a large number of requests efficiently, sockets may be
for you.

This does not mean that you cannot compress or encrypt your data using RMI—if you
want to, you can use custom socket factories with RMI to provide specialist functionality (for
more information, refer to http://java.sun.com/j2se/1.5.0/docs/guide/rmi/socketfactory/).
However, when you implement a straightforward sockets solution, you can easily incorporate
only the functionality you need, and leave out the functionality you do not need. For example,
you might decide to drop the “heartbeat” functionality that is incorporated into every RMI
solution. The heartbeat functionality simply ensures that at regular intervals the server sends
a signal—a heartbeat—to the RMI registry to let the registry know that the server is still alive;
similarly the RMI clients send a signal—a heartbeat—to the server to let it know that they are
still alive.

Another advantage to sockets is that most system administrators are already familiar with
what needs to be done to implement a server that listens on a particular socket, even if they
need to go through a firewall. Few are familiar with setting up an RMI registry, and even fewer
know how to configure RMI to work through a firewall. RMI can work through a firewall, but it
is not quite as simple as setting up a simple sockets solution through the firewall.

■Note Sockets have been a standard method of performing network connectivity for many years, whereas
RMI is a relatively new standard. However, this alone does not justify using sockets over RMI; using serial-
ized objects over the sockets connection almost ensures that only another Java class can connect to your
server (only “almost” because the Java specifications make it explicitly clear how a serialized class will
appear, which means it is possible for somebody to develop a client in a different language—just very diffi-
cult). Conversely, using RMI over IIOP (the Internet Inter-Orb Protocol used by CORBA) would allow any
CORBA-compliant client to connect to your server (although using RMI over IIOP is not allowed in the
current assignments). For more information on IIOP and CORBA, refer to the Wikipedia pages http://
en.wikipedia.org/wiki/IIOP and http://en.wikipedia.org/wiki/CORBA, respectively.

CHAPTER 9 ■ PROJECT WRAP-UP 297

It may be easier to propagate changes to remotely accessible methods over a sockets
solution than an RMI solution. Unless you do something major like remove a method that is
being used, or change the port it is running on, you can usually change a sockets-based
server without the clients even being aware of it—they just won’t get the new functionality.
In comparison, an RMI solution that has pre-JDK 5 clients or that doesn’t allow stubs to be
dynamically generated will require recompilation of the client stubs, and redistribution to
clients if you do not use dynamic downloading. If you do use dynamic downloading, you
may also have associated issues with security and setting the codebase option.

A sockets solution should also require less sockets and network traffic between client and
server. A sockets solution for this assignment might need only one socket per client, and the
network traffic can be minimal depending on how minimal you make your solution. An RMI
solution, on the other hand, will always open a listening port for your RMI registry, a listening
port for your RMI server, a connected port between the server and the registry, and one socket
per client between the clients and the server. The RMI solution will also require more network
traffic while connecting (doing the lookup on the registry) and also while idling (performing
distributed garbage collection and sending heartbeat messages).

This brings up another point: with RMI you always have an extra process running (the
RMI server). While most computers are not going to be taxed by this extra process, if you were
using most of the CPU and memory resources of your server, this could become an issue.

A well-written sockets solution can be easier for a junior programmer to understand and
maintain than an RMI solution. This contradicts the commonly accepted view that RMI is
simpler. But there are several items to consider here. If you write your sockets code well, the
networking code will be hidden from the client and server applications—they will just be call-
ing your sockets API, in the same way that in an RMI solution the clients and servers are just
calling the RMI API. But in this case, the junior programmer does not need to learn about reg-
istries, or how to use rmic, or how to deal with the RMI stubs. So there is less of a learning
curve for them. However, there is little doubt that once that learning curve has been passed,
an RMI solution is easier to develop, understand, and maintain. And most likely, the only way
a sockets solution can be clearer than an RMI solution is if the sockets solution is really well
written (and possibly also if the RMI solution is not well written).

General client identification is easier in a sockets solution—you can use the connection’s
thread to identify the client. However, if your assignment requires you to use cookies for lock-
ing, unlocking, and modification calls, then you can use the cookie as the client identification.
Likewise, if you decide to use thread pooling for scaling reasons, then you will no longer be
able to use the thread identifier. Regardless, for either RMI or sockets, using a connection fac-
tory will provide a simple client identifier.

There is less chance that somebody will accidentally disable your server. With RMI, if
another server happened to do use the Registry class’s rebind method with the same remote
reference name, they will replace your code. With sockets, once you have bound to a particular
port, no other server can bind to that port. However, this can also work to your disadvantage—
if somebody deployed another server that happened to use the port number, then restarted
the computer, it may not be possible to predict which server will bind to the port first, so you
may not know which server will be accepting connections. This is called a race condition; a
race condition in relation to threads is discussed in Chapter 4.

CHAPTER 9 ■ PROJECT WRAP-UP298

Benefits of Using an RMI Solution
However, let’s be blunt. For the SCJD exam, scalability and performance are not design con-
siderations, and as shown in the “Benefits of Using a Serialized Objects Over Sockets Solution”
section earlier, neither solution provides a method of allowing non-Java clients to connect.

We mentioned that a well-written sockets solution might be easier for a junior program-
mer to understand and maintain. However, as a developer you would be expected to know
both of these technologies anyway so that you can make a valid choice between them (and to
help you, we have devoted Chapter 6 to RMI and Chapter 7 to sockets). Once you know the
two technologies, you may find that your job could actually be a lot less tedious using RMI.
And the assessor is expected to understand RMI, so there is no problem with submitting an
RMI solution. Let’s quickly list a few of the advantages of RMI.

Implementing socket servers and socket clients involves creating a custom protocol. A
sockets implementation must send serialized objects across the network that the receiving
socket point must know how to handle at runtime. Thus, a sockets-based application can be a
little more tedious and awkward to write than an RMI program. This can be negated slightly if
you write well-factored code, such that each class has only one responsibility, and the methods
are likewise well factored. However, using the Command pattern for the client-server commu-
nication protocol trivializes building the new protocol.

The details of object serialization and network communication are hidden by RMI,
whereas using sockets you have to implement it all yourself. In other words you will be rein-
venting a basic technology that already exists.

No matter how well you write your code, there is no doubt that you will write more code
for a socket-based solution than an RMI one. And the more code you write, the more chance
of making mistakes—it can be safer to leverage off the code written by the RMI developers,
which has been tried and tested for many years; much of the RMI code base has been around
since JDK 1.1, which was released in September 1997.

RMI provides network transparency, which means that to the client a remote object
seems to behave as if it is a local object. Thus there is no need to implement a handshake pro-
tocol or worry about low-level details such as opening and closing socket connections.

Due to the use of interfaces and remote methods behaving as though they were local,
developing code to call a remote method is usually type safe. The same can apply to a sockets
solution, but unlike RMI there is no requirement to use interfaces. Consequently, it is easy to
end up with a solution that does not provide any form of compile-time (or even runtime) type
safety.

RMI also relieves you of the responsibility of having to write multithreaded servers, which
can be tricky. You are still required to write thread-safe code in either protocol, but the actual
server does not have to spawn threads or manage thread pools.

Thread pooling can provide a significant performance improvement when systems are
scaled to large numbers of simultaneous users, and RMI provides it for free. Yet this comes at
a cost: client identification is slightly more complex if you cannot use cookies.

RMI is also extensively used in Enterprise JavaBean (EJB) technology, so learning and
using RMI for the SCJD assignment will assist you in EJB projects.

CHAPTER 9 ■ PROJECT WRAP-UP 299

The RMI registry helps you deploy your server side code dynamically—using the Registry
class’s rebind method allows you to load the new server functionality with a minimum of
downtime. With a sockets solution you would either have to stop the old server and then start
the new server (with a longer downtime than RMI’s rebind), or use a different socket port
(which would require reconfiguring or replacing clients).

Using RMI frees you from the requirements of specifying which port a particular service
will be available on. With a sockets solution you must specify which port your server will be
listening on, and the clients must make a connection to that port. If you do not make this con-
figurable and some other application is developed in such a way that it uses the same port
(and is also not configurable), then one or the other will have to be recompiled. Even if the
port number is reconfigurable you would have to reconfigure all the clients to use the new
port number, which may not be easy or practical. RMI solutions, by default, use random port
numbers for the servers, where the port number is specified by the RMI registry. The clients
need only know the port number of the registry, which they then query to determine how to
contact the server they are interested in.

Although not permitted within the SCJD assignment, RMI allows you to download exe-
cutable classes. You could use it, for instance, to download some security algorithm that will
encrypt all the data between clients and server—since the code is downloaded dynamically,
the programmer for the client side never gets to see how you implemented it (indeed, you
could even hide the fact that it is being used at all), thus reducing the chances of someone
trying to hack your encryption algorithms if they never get to see them.

Choosing Between the Two Solutions
Probably by now you have seen that there are good arguments for both solutions, and no
absolute differentiator between either. We believe that Sun has deliberately done this to see
your decision-making logic.

You must decide which of the arguments we’ve listed (or others that you determine for
yourself) make the most sense to you, and which of them you are willing to defend if you are
asked to explain your decision.

The MVC Pattern in the GUI
Chapter 8 covered GUI-related design decisions ranging from general information on inter-
face layout principles all the way to the discussion of specific Swing components, such as the
JTable. Unlike the choice between an RMI and a sockets-based network implementation (dis-
cussed in Chapters 6 and 7 as well as earlier in this chapter), Sun literally requires the use of
the JTable in order to pass the SCJD exam, so the decision to use it is a no-brainer if you want
to pass the exam.

CHAPTER 9 ■ PROJECT WRAP-UP300

The design decision therefore shifts from what GUI widget is appropriate for use in the
Denny’s DVDs application to how to properly incorporate the JTable into a Swing user inter-
face. The solution we suggest in Chapter 8 is the application-level use of the MVC design
pattern. As you learned in Chapter 8, Swing components, such as the JTree and the JTable,
implement the MVC pattern internally, but the choice to use the MVC pattern beyond these
components is entirely up to the developer. The main benefit gained through the use of an
application-wide MVC architecture is increased abstraction between the data display and the
actual data implementation. The JTable and its own MVC implementation in turn becomes a
smaller player in the overall application display layer and works in cooperation with the appli-
cation’s MVC implementation.

Locating the Code Samples
You can find the code samples for this book in the Source Code section of the Apress web site
(http://www.apress.com). There you will a zip file with the final code base (i.e., Denny’s DVDs
version 2.0). In this chapter you will be concerned with the version 2.0 zip file.

Unzip the final code base in the location of your choice on your machine. There should be
one directory, sampleproject, which contains four directories: db, remote, sockets, and gui.
These directories correspond to four packages:

• sampleproject.db

• sampleproject.remote

• sampleproject.sockets

• sampleproject.gui

Unless you’ve skipped around quite a bit and started out with Chapter 9, you should be
very familiar with each of these packages. Once you’ve unzipped all of the Java source files
into something resembling the preceding directory structure, you’re ready to compile the
application.

Compiling and Packaging the Application
Bring up a command prompt and type java -version. Make sure that you are using J2SE 5 or
later (see Figure 9-2). If you aren’t, please download it and install it from the Sun J2SE down-
load site (http://java.sun.com/j2se/1.5.0/download.jsp).

■Note The “b05” shown in the version number in Figure 9-2 indicates that this is build number 05; it does
not imply a beta version of the software.

CHAPTER 9 ■ PROJECT WRAP-UP 301

Figure 9-2. Verify that J2SE 5 is properly installed.

Navigate to the root directory of Denny’s DVDs. This is the directory where you unzipped
the project’s .java files. For demonstration purposes, we created a directory called
dennysDVDs2.0 and chose that as the root directory.

■Tip Zip files can usually be decompressed with the jar executable, as shown in Figure 9-3. Both zip files
and JAR files use the same compression algorithms.

Next, you’ll want to compile the .java files into a destination directory. By default, Java
will place the .class files in the same directory as the source files. Using the Java compiler’s -d
option allows you to separate the source and compiled files. Separating the source and com-
piled files helps you organize your project.

You need to decide where to direct your .class files. For simplicity, we decided to place
the compiled files in a directory below the root called classes. Using the command mkdir
classes from the command prompt will create the necessary directory. Or you can add the
directory using Windows Explorer.

Next, compile each package separately using javac with the -d option set to your destina-
tion directory. Figure 9-3 illustrates the battery of commands needed to successfully compile
the sample project. Make sure that you compile the packages in this order: db, remote, sockets,
and finally gui. This order highlights the project dependencies. Recall from Chapter 5 that
we only had the db package. We added the other packages as topics were introduced in
Chapters 6, 7, and 8, respectively.

CHAPTER 9 ■ PROJECT WRAP-UP302

Figure 9-3. Compiling the source into the classes directory

Creating a Manifest File
Now you’ll want to create a manifest file. This file will be packaged in your project’s JAR file
and used by the JVM to load the correct class and run the application. The key entry in the
manifest file is the class name of the main method you want to execute when running the
application. In our case, this is the ApplicationRunner class in the gui package.

The contents of the manifest file are minimal. Insert the following two lines of code and
save them in a new file called Manifest.mf. We have placed the manifest file in the root direc-
tory, dennysDVDs2.0.

Manifest-Version: 1.0
Main-Class: sampleproject.gui.ApplicationRunner

■Note The name of the manifest file can be anything you like if you are using Sun’s jar tool to create the
JAR file. We will go into this in more detail when we describe using the jar tool in the section “Packaging
the Application” later in this chapter. If you are not using Sun’s jar tool (there is really no reason not to use
it, though), then the final manifest file must be named MANIFEST.MF and must be placed in the META.INF
directory, which must be in the root directory of the JAR file.

The location of the manifest file comes into play when we actually create a JAR file con-
taining our project’s class files. All JAR files contain manifests, and the manifest can be used to
specify many attributes for the JAR file. Some of the more common attributes are shown in
Table 9-1.

CHAPTER 9 ■ PROJECT WRAP-UP 303

Table 9-1. Manifest Attributes

Attribute Use

Manifest-Version Specifies which version of the Manifest.mf definition you are
conforming to. At present only version 1.0 has been defined.

Created-By Specifies the jar tool’s creator and version number. This is
automatically added by the jar tool itself, so you should not set it.

Class-Path You may optionally use this to specify libraries needed at runtime.
These must be specified relative to the current JAR file (so you can
specify lib/another.jar but you cannot specify an absolute path like
d:\libs\another.jar). If you have multiple JAR files, separate them
by spaces.

Main-Class Tells the JVM which class to execute if the JVM is started with the -jar
parameter.

There are many other attributes that can be set as well, but delving into them is beyond
the scope of this book. If you are interested in reviewing these options, we recommend you
look at the Sun documentation for JAR files available online at http://java.sun.com/j2se/
1.5.0/docs/guide/jar/jar.html#JAR Manifest.

The jar tool needs to know where to load the manifest file so that it can be included in the
JAR file. Otherwise, the jar tool will create one by default. The manifest file that is created by
default when you do not specify one will not include a main class label.

Running rmic on the Remote Package
One of the benefits of using JDK 5 is that using rmic to create stubs is not strictly necessary;
the stubs can be generated dynamically. However, as explained in Chapter 6, stubs are still
required if you have pre-JDK 5 clients or if you are not allowed to dynamically generate stubs.
This section has been provided for the benefit of those who may require stubs.

■Caution At the time of this writing, all current assignments have a prohibition against requiring the
dynamic downloading of stubs—you must provide all stubs precompiled in your executable JAR file. Since
dynamically generating stubs would result in the stubs being dynamically downloaded, you cannot use the
JDK 5 dynamic stub generation feature. However, you should still check the assignment instructions you
downloaded from Sun; future assignments may remove this prohibition.

Using RMI involves creating stubs with the Java tool rmic. The stubs need to be packaged
up with the JAR file in order to run the program using RMI via the remote package.

The rmic command only needs to be run on the remote object implementation class
file. In our case, that class is DvdDatabaseImpl of the remote package. Make sure you run the
rmic command from the destination directory because the class files are required by rmic.
Figure 9-4 shows rmic being run against the DvdDatabaseImpl class. In addition, rmic also
needs to be run against the DvdDatabaseFactoryImpl class.

CHAPTER 9 ■ PROJECT WRAP-UP304

Figure 9-4. Running rmic on the remote object DvdDatabaseImpl

If you would like more detailed information than what is shown in Figure 9-4, run rmic
with the -verbose flag. The -help option will display all of the other options that are available.
The file displayed in the remote directory, DvdDatabaseImpl_Stub.class, is the result of the
rmic command.

Packaging the Application
You are ready to create your JAR file. The jar command allows you to create archives of files of
various types into a single compressed file based on the zip format. To run the jar command,
make sure you comply with the following syntax:

jar [options] [manifest] destination input-file [input-files]

To create your JAR file, use the c, v, f, and m options, which are described in Table 9-2. You
will also need to specify the location of your manifest file, which is in the dennysDVDs2.0 root
directory.

Table 9-2. jar Tool Options Used to Create sampleproject.jar

Option Description

c Creates a new archive; unless the f parameter is provided, the archive will be created
on standard output.

v Generates verbose output.

f Indicates that the name of the JAR file to be created (not on stdout) will be specified
as the next argument in order.

m Includes a manifest file that will be specified as the next argument in order. The jar
tool will read the contents of the file you specified and store them in the file named
MANIFEST.MF in the META.INF directory.

CHAPTER 9 ■ PROJECT WRAP-UP 305

■Note When more than one jar command-line option requires a parameter, the parameters must appear
in the same order as the command-line options. That is, if the command-line options are -cvfm, then the
output filename must appear before the manifest file name (since the f appeared before the m). However, if
the command-line options provided were -cvmf, then the manifest file name must appear before the output
filename (since the m appeared before the f).

There are other options you can use with the jar tool. Running jar -help will give a
brief synopsis of the various arguments and usage options. Figure 9-5 captures the
sampleproject.jar file creation in the root directory using the command:

jar -cfm sampleproject.jar Manifest.mf -C classes .

■Caution There is one period in the command line following the directory named classes. It is easy to
miss that period in a book, particularly when it occurs at the end of a sentence. If you are unsure of the
command line we used, compare it with Figure 9-5.

Using the -v option will display verbose output detailing which files are being added to
the JAR and information related to file compression. To display verbose information, replace
-cfm with -cvfm in the jar command.

Figure 9-5. Creating the sampleproject.jar file

Running the Denny’s DVDs Application
The Denny’s DVDs application runs in multiple modes, depending on the command-line
options provided. These modes are presented in the following sections.

CHAPTER 9 ■ PROJECT WRAP-UP306

Running the Client Application in Stand-alone Mode
Running in local mode is easy. Navigate to the directory where the sampleproject.jar file is
located.

The java and javaw executables allow you to specify a JAR that you want to execute using
the -jar option. At the command prompt, type the following:

javaw -jar sampleproject.jar alone

The sampleproject.jar file can be anywhere on your machine since the entire project
classes are packaged in the JAR. This should bring up the database location dialog box shown
in Figure 9-6. Select the location of the database (it should be in the root directory) and click
Connect. The main window will then load as shown in Figure 9-7.

Figure 9-6. Starting the application in local mode

Figure 9-7.The application running in local mode

Running Denny’s DVDs Server
Running Denny’s DVD server requires you to specify the location of the database file, which
port you want to use, and the type of server (RMI or sockets). To start the server, at the com-
mand prompt, type the following:

javaw -jar sampleproject.jar server

This should bring up the server configuration window shown in Figure 9-8. Select the
location of the database (it should be in the root directory), change the port number if desired,
select the network type, and click the Start Server button. The server window will then display
information that it is running and will disable most controls, as shown in Figure 9-9.

CHAPTER 9 ■ PROJECT WRAP-UP 307

Figure 9-8. Configuring the network server

Figure 9-9. Running the network server

We specified that the server should use port 1099 in Figure 9-8. With our RMI solution,
this means that the RMI registry will be listening on port 1099 (if we had chosen the socket
server, it would have meant that our server itself would have been listening on port 1099).
We can confirm this by running the netstat -a command to show all connected or listening
ports, as shown in Figure 9-10.

Figure 9-10. Checking which ports are in use

CHAPTER 9 ■ PROJECT WRAP-UP308

In Figure 9-10 we can see that the fifth Local Address is listening on port 1099. The port
that the server itself is running on is unknown—it will be dynamically configured by the RMI
registry.

Running the Client Application in Networked Mode
Running the application in network mode requires specifying the IP address or host name of
the machine that the server and database files are located on, the port number the RMI reg-
istry or the server is listening on, and the server type. To start the networked client, at the
command prompt type the following:

javaw -jar sampleproject.jar server

This should bring up the connection configuration dialog box shown in Figure 9-11.

Figure 9-11. Starting the networked client

Enter the location of the database (either by the name of the computer hosting the data-
base, e.g., localhost, or by the IP address of the computer host, e.g., 127.0.0.1), change the
port number if necessary to match the port number specified when starting the server, and
select the same network type as specified when starting the server. Then click Connect, and the
main window will load as shown in Figure 9-7 earlier.

Testing
In version 2.0 of Denny’s DVDs is a package called test, which is in a different directory struc-
ture than the standard source. The standard source is in the directory named src, while the
test package is in a subdirectory called test. The different directory structures will assist us to
ensure that we do not submit any classes we do not want to submit—this will be explained in
the “Packaging Your Submission” section later in this chapter.

This may be a little confusing, so we recommend you look at the directory tree structure
displayed in Figure 9-12. If you have been following along with this chapter, you will have a
root directory similar to D:\dennysDVDs2.0 (the actual drive and directory can be different). In
that root directory so far are the directories classes (where javac has been storing our com-
piled classes), src (which is the root directory for our sample assignment source), and test
(which is the root directory for our test source). Our package structure appears within each of
those directories, starting with the top-level package named sampleproject.

CHAPTER 9 ■ PROJECT WRAP-UP 309

■Note There should also be a bonus directory in the root directory named src – examples. This has not
previously been described anywhere in the book, but it contains sample code for many of the topics dis-
cussed in the book that are not part of the project itself.

Figure 9-12. Tree structure for the development project so far

The test package contains our multithreaded test harness. Testing your application with
multiple clients is a must. We will use our test harness to simulate a group of users all vying
voraciously for database access.

In the test package are two classes. One called DBTester, which extends Thread and simu-
lates the client that attempts to rent and return DVDs. The other, called DBTestRunner, it
spawns multiple DBTester test threads, waits for them to finish running, and then reports on
their success (or failure).

Since the test package is in a different directory structure from our standard source, we
must compile it separately. To do this, we can change into the test directory and run the fol-
lowing command:

javac -cp ..\classes -d ..\classes sampleproject\test*.java

Listing 9-1 shows the test client code. Unlike the real application, we have chosen to
directly connect to the RMI DvdConnector or the sockets DvdConnector just to show how this
could be done. To simplify the connection code, we have commented out one of the two net-
work connector import statements.

Listing 9-1. DBTester.java

package sampleproject.test;

import sampleproject.db.*;
import java.util.Date;

CHAPTER 9 ■ PROJECT WRAP-UP310

// rather than going through a factory, we are directly calling the connector
// Uncomment the DVDConnector of the protocol you want to use.
import sampleproject.remote.DvdConnector;
//import sampleproject.sockets.DvdConnector;

/**
* A DBTester is the test equivalent of a client who is trying to book one or
* more DVDs. However we know exactly how the DBTester is going to behave,
* therefore we can predict the results of this testing.
*/
public class DBTester extends Thread {

// various status for what can happen when we try to book over the network
public enum Status {

SUCCESS, OUT_OF_STOCK, TIMEOUT
}

private String dvdUpc; // the DVD we are supposed to rent
private int numberOfRentals; // number of times to rent it
private DBClient db; // connection to the remote database

private int successfulRentals = 0; // number of times we rented the DVD
private int outOfStock = 0; // number of times we failed due to no copies left
private int timeouts = 0; // number of times timed out trying to reserve DVD

// To make the screen output easier to read, we are using a pretend logger
// If we chose to convert to the real JDK logger, we could just change this
private PretendLogger log = new PretendLogger();

public DBTester(String title, int numberOfRentals, String dvdUpc)
throws Exception {

super (title);
this.numberOfRentals = numberOfRentals;
this.dvdUpc = dvdUpc;

db = DvdConnector.getRemote();
}

Most of the work is performed in the run method—the client goes into a loop based on
the number of times they are supposed to rent the DVD. Within that loop, they try to rent the
DVD. If they are successful, they watch it for two seconds, then return it. If they are not suc-
cessful because the store is out of stock, they complain to management for a second. If they
are not successful because trying to obtain the lock took longer than five seconds, they just
take note of the fact. No matter which of those events happened, they will then wait for
another two seconds before trying to obtain another lock.

CHAPTER 9 ■ PROJECT WRAP-UP 311

■Note We have used specific times for each of these events, providing us with some degree of certainty
that we can duplicate our tests. We cannot be absolutely guaranteed that we can get exactly the same result
every time since minor changes in how long network traffic takes over multiple bookings could have an
effect. But for a small number of bookings on a local area network with low traffic (or on a single machine),
we should be able to predict with confidence what the outcome will be.

public void run() {
int secondsForWatchingDvd = 2;
int secondsForComplaining = 1;
int secondsForBrowsingStore = 2;

try {
for (int i = 0; i < this.numberOfRentals; i++) {

switch (rentDvd(dvdUpc)) {
case RENTAL_SUCCESS:

successfulRentals++;
// watch the DVD
Thread.sleep(secondsForWatchingDvd * 1000);
// then return it so somebody else can rent it
returnDvd(dvdUpc);
break;

case RENTAL_OUT_OF_STOCK:
outOfStock++;
// complain that it is not in stock
Thread.sleep(secondsForComplaining * 1000);
break;

case RENTAL_TIMEOUT:
// just track that we had the problem, and continue
timeouts++;
break;

}
// wander around the DVD store looking at DVDs.
Thread.sleep(secondsForBrowsingStore * 1000);

}
} catch (Exception e) {

// This should never ever go into production code, but for testing
// we are simply catching *every* exception and displaying it
System.err.println("Exception thrown by " + getName());
e.printStackTrace(System.err);
System.err.println();

}
}

The rentDvd method duplicates the business logic required by our application. It reserves
the DVD so that no other client can modify it (assuming, of course, that the other client also

CHAPTER 9 ■ PROJECT WRAP-UP312

follows the protocol of reserving a DVD before modifying it), retrieves the DVD (to ensure we
have the latest copy), checks that there are enough DVDs available (and if so it removes one),
and saves the modified DVD back to the database.

private int rentDvd(String upc) throws Exception {
if (db.reserveDVD(upc)) {

try {
DVD dvd = db.getDVD(upc);
int copiesInStock = dvd.getCopy();
if (copiesInStock > 0) {

copiesInStock--;
log.info(getName() +

" -> (Rent) " +
"Copies in stock = " + copiesInStock);

dvd.setCopy(copiesInStock);
db.modifyDVD(dvd);
return RENTAL_SUCCESS;

} else {
log.info(getName() + " 00 (No stock)");
return RENTAL_OUT_OF_STOCK;

}
} finally {

db.releaseDVD(upc);
}

} else {
log.info(getName() + " XX (Timeout)");
return RENTAL_TIMEOUT;

}
}

Similarly the returnDvd method reserves the DVD so no other client can modify it,
retrieves the DVD (to ensure we have the latest copy), increases the number of copies, and
then saves the modified DVD.

private void returnDvd(String upc) throws Exception {
if (db.reserveDVD(upc)) {

try {
DVD dvd = db.getDVD(upc);
int copiesInStock = dvd.getCopy() + 1;
dvd.setCopy(copiesInStock);
log.info(getName() +

" <- (Return) Copies in stock = " +
copiesInStock);

db.modifyDVD(dvd);
} finally {

db.releaseDVD(upc);
}

}
}

CHAPTER 9 ■ PROJECT WRAP-UP 313

When the client has finished running, the test harness will want to know how many suc-
cessful and unsuccessful bookings were made. So we have a number of getters to provide that
information.

public int getSuccessfulRentals() {
return successfulRentals;

}

public int getOutOfStock() {
return outOfStock;

}

public int getTimeouts() {
return timeouts;

}

Finally, we want to display information on what is happening while the test is running;
however, we do not want to use the standard logger as it can make the resultant screen output
hard to decipher. In a larger test environment we would probably consider creating our own
log Formatter, but this is overkill for this chapter, so we have opted to create a pretend logger
instead. This provides a very simple logging facility, and if we later decided to change to using
the JDK’s logger, we would only need to change the definition of our log variable.

private class PretendLogger {
void info(String logInformation) {

System.out.format("%tT %s%n", new Date(), logInformation);
}

}
}

The test harness code is very simple—all it needs to do is to create multiple clients, run
them, wait until they have finished, and then display some statistics. The code for this is dis-
played in Listing 9-2.

Listing 9-2. DBTestRunner

package sampleproject.test;

import java.util.Calendar;

public class DBTestRunner {
private int numberOfClients = 4; // how many test clients we will start
private int rentalsPerClient = 2; // number of rentals each client will make
private String dvdUpc = "32725349302"; // the DVD they will rent

private DBTester[] clients = null; // an array of the test clients

CHAPTER 9 ■ PROJECT WRAP-UP314

public static void main(String[] args) throws Exception {
new DBTestRunner();

}

DBTestRunner() throws Exception {
clients = new DBTester[numberOfClients];

startClients();
waitForClientsToDie();
displayStatistics();

}

private void startClients() throws Exception {
for (int i = 0; i < numberOfClients; i++) {

String clientName = "Client " + i;
clients[i] = new DBTester(clientName, rentalsPerClient, dvdUpc);
clients[i].start();

}
}

private void waitForClientsToDie() throws Exception {
// wait for them all to finish
for (DBTester client : clients) {

client.join();
}

}

It is important to realize that even though the client threads are all in TERMINATED state by
the time the statistics are being generated, the DBTester objects still exist, and we can still call
the public methods on that object to get the information needed for our statistics.

private void displayStatistics() {
// display some statistics
System.out.println();
formatLine("========", "========", "========", "========", "========");
formatLine("Client #", "Rented", "No stock", "Timeout", "Total");
formatLine("--------", "--------", "--------", "--------", "--------");
for (DBTester client : clients) {

formatLine(client.getName(),
client.getSuccessfulRentals(),
client.getOutOfStock(),
client.getTimeouts());

}
formatLine("========", "========", "========", "========", "========");

}

CHAPTER 9 ■ PROJECT WRAP-UP 315

private void formatLine(String name, int rentals, int noStock, int timeout) {
formatLine(name,

"" + rentals,
"" + noStock,
"" + timeout,
"" + (rentals + noStock + timeout));

}

private void formatLine(String name, String rentals, String noStock,
String timeout, String total) {

System.out.format("%tT %8s %8s %8s %8s %8s%n",
Calendar.getInstance(),
name,
rentals,
noStock,
timeout,
total);

}
}

When printing statistics (and in our PretendLogger), we use the PrintStream.format
method that was introduced in JDK 5. Remember that the System out static variable is an
instance of PrintStream, so we get to use this new method in defining our output.

The format method takes a String argument that describes the formatting of the output,
and then takes a variable number of arguments (VarArgs in action). This means that no matter
how many arguments you provide, one definition of the format method can handle them all.

The String argument that describes the formatting of the output has many options—far
too many to mention here. Table 9-3 describes the options we have used in our test harness.
For more information, we recommend you look at the documentation for PrintStream’s
format method, and the Format class available online at http://java.sun.com/j2se/1.5.0/
docs/api/index.html.

Table 9-3. String Format Options Used in the Test Harness

Option What It Does

%tT Declares that the corresponding argument after the format string should be
displayed as time (the lowercase t), and that the time format should be 24-hour
format (the uppercase T)

%8s Declares that the corresponding argument after the format string should be
displayed right justified in a minimum of 8 characters, and it should be a String
(the lowercase s)

%n Outputs the correct characters to start a new line for your operating system

As shown in Figure 9-13, the DVD database as supplied contains three copies of the movie
Night of the Ghouls. In our test harness, we have specified that there should be four clients try-
ing to rent this movie—therefore we know that at least one will miss out. Furthermore, we

CHAPTER 9 ■ PROJECT WRAP-UP316

have declared that each client should try to rent this movie twice, and because of our explicit
timings, we know that the client who missed out first time should get the movie the second
time, and one of the other clients should miss out.

Figure 9-13. The database contents prior to, and after, running our test

Figure 9-14 shows a sample run of the test harness. As expected, one of the clients (client
2 in this particular run) missed out on their first attempt to rent the movie, and a different
client (client 3) missed out on their second attempt to rent the movie.

Figure 9-14. Test harness output

■Caution Although we have made a reasonable attempt to make a multithreaded networked test harness
that will produce repeatable results, you should be aware that the JVM thread scheduler and network
latency may result in slightly different results.

CHAPTER 9 ■ PROJECT WRAP-UP 317

Packaging Your Submission
We now have to check our instructions to determine what needs to be packaged up and sent
to the assessor. Since we don’t have any instructions in our assignment, we are going to follow
something that will be similar to your instructions—namely we are going to create a JAR file
that contains the executable runtime, the database, the source code in a directory called src,
and the API documentation for our project in a subdirectory of the docs directory. What we
will end up with is a JAR file containing a JAR file, several directories, and our database file, as
shown in Figure 9-15.

■Caution The Sun assignment instructions are likely to have a few other requirements as well (such as
requiring a design decisions document), and may require slightly different directory structures. You must
read the instructions you received from Sun carefully, and follow them to the letter. If you get one part of the
packaging incorrect, the assessor could fail you on the spot.

Figure 9-15. Submission contents

We have already created our executable JAR file, and since we created it prior to compiling
the test classes, we know it does not contain anything we do not want to submit. If we were
unsure, or if there’s a chance we might go through this sequence more than once, we could
just delete the contents of the classes directory, then recompile the source in the src direc-
tory, and we could be certain we have a clean code base. This is where having separate
directories for the main project source and the test programs source comes in handy.

CHAPTER 9 ■ PROJECT WRAP-UP318

Naturally we have all the source code sitting in the src directory, so that can easily be
incorporated into our submission. Likewise we already have the database file sitting in the
root directory, so the only thing remaining is the Javadoc API documentation.

First up we need to create a directory to hold the documentation. We can do that with the
following command:

mkdir doc\api

The command to build the Javadoc API would be

javadoc -quiet -link http://java.sun.com/j2se/1.5.0/docs/api/
-d doc\api -sourcepath src -public
sampleproject.db sampleproject.gui sampleproject.remote sampleproject.sockets

■Note Note That Javadoc command line is all one line—we have just spread it over three lines in this
book to make it easier to read.

An example of running that command line is shown in Figure 9-16.

Figure 9-16. Building the Javadoc API on the command line

A full explanation of the options we used in our command line, plus many more options
we have not used (but you may want to), are listed in the “Running Javadoc from the Com-
mand Line” section of Chapter 2.

A simpler option, especially if you are likely to be re-creating the API documentation on a
regular basis, is to store all the options in one or more option files. These can be any plain-text
file, and each option can be space delimited or newline delimited. An example of using such a
file is shown in Figure 9-17.

CHAPTER 9 ■ PROJECT WRAP-UP 319

Figure 9-17. Building the Javadoc API using a file to contain the Javadoc options

Once we have done this, we can create a single JAR file, holding all the necessary parts.
The following command line will perform this for us:

jar -cf submission.jar sampleproject.jar dvd_db.dvd src doc

■Note We did not specify a manifest for this JAR file, as this JAR is only meant to be a container to get
your submission to the assessors—it is not meant to be an executable JAR file. So the default manifest file
that the jar tool creates for us will suit us perfectly.

An example of building the submission JAR file is shown in Figure 9-18.

Figure 9-18. Building the Javadoc API using a file to contain the Javadoc options

We are now ready to submit. Remember to refer to the information you received from
Sun for your specific submission instructions. If your instructions differ from the ones in this
chapter, then you must follow your instructions.

CHAPTER 9 ■ PROJECT WRAP-UP320

At the time of this writing, you upload your Sun submission JAR file to the same site
that you downloaded the initial JAR file that contained your Sun instructions and database.
When you go to upload the JAR file, you will be given explicit instructions on the naming con-
vention for the submission JAR file (the one that contains everything, including the executable
JAR file).

■Tip Currently you have to request upload permission before you can upload your submission. Unfortu-
nately, we cannot guarantee that this will always hold true, though, and the only way to find out is to try to
submit the assignment—which might not be a good idea if your assignment is not complete (although you
could always close your browser window at the point where it asks you to select your submission JAR file).
Since you are supposed to submit your assignment before you sit for the exam, you should allow a couple of
working days between when you plan to submit the assignment and when you sit the exam, just in case you
find you must ask permission first.

Summary
We hope that you have enjoyed this book. More important, we hope that you are now pre-
pared to complete the SCJD exam. You have been exposed to a lot of material, and putting
everything that you have learned into context is a large task. Undoubtedly, you have some
lingering questions, such as “Have I tested my application properly?” and “How will my appli-
cation behave in this scenario?”

There always seems to be some change or enhancement that can make your application
better, and at some point you need to feel confident that your project will pass Sun’s scrutiny.
After all, your goal is to pass the exam, not develop a commercial project. Sun estimates that
about 100 hours of development time is needed to develop a working solution.

To ensure that you pass your exam, here is a list of to-dos:

• Read the SCJD exam instructions very carefully. Even though many of the tests have the
same name, their details differ.

• Read this book. At the very least, look at the sample project to see how we solved some
of the basic problems such as locking, networking, and the GUI implementation, espe-
cially the JTable. We believe that if you understand the code, you should have all of the
tools you need to pass your exam.

• Refer to this book throughout your development process.

• Join the JavaRanch SCJD forum (see the FAQs section).

• Test your application. Write a test harness similar to the one we discussed in this
chapter. If possible, test it across an actual network. Test all of the use cases. Test your
application in a multithreaded environment with a test class such as DBTestRunner.

• Package up all of your ReadMe and design documents along with your application and
submit the project to Sun as your exam directions stipulate.

Good luck!

CHAPTER 9 ■ PROJECT WRAP-UP 321

FAQs
Q Where do I get the database files to run the sample project?

A It is included in the zip file you can download from the Apress web site
(http://www.apress.com).

Q Do I have to package my application as a JAR file?

A The answer to this question depends on the specifics of your exam. However, our expe-
rience has been that most exams require that the examinees use JAR files for their
submission. It is recommended that separate JAR files be included in a master JAR file
for submission.

Q What do I need to include with my exam submission?

A The basic elements are typically as follows:

• Source files

• An executable JAR file

• Database file(s)

• A design document explaining some of the key design decisions

• A file that explains the development environment you used

• Javadocs

• User documentation

However, you must carefully read the instructions provided to you by Sun to ensure
that you meet the submission requirements. If there is a discrepancy between what
we have described and what is in the Sun instructions, you must follow the Sun
instructions.

Q What platform should I test my submission on?

A Since Java is platform independent, your submission should run on either Unix or
Windows. We strongly recommend that you test your exam on Windows, Unix, Linux,
and Mac OS X (i.e., Macintosh), since there can be subtle platform differences that
could cause problems with your submission. For consistency and simplicity, the exam-
ples in this book have been demonstrated on Windows 2000. Even though there is no
guarantee what platform your application will be tested on once it is submitted, make
sure you document the platform you worked on in your ReadMe.

Q What should I do after I have passed the exam?

A Celebrate. Then send us an e-mail at scjd@apress.com.

Q If I have comments or questions regarding this book, whom should I contact?

A You can contact the authors at scjd@apress.com.

CHAPTER 9 ■ PROJECT WRAP-UP322

Q Are there any online resources useful for passing the SCJD exam?

A There are many excellent online resources. Here are just a few that we found particu-
larly helpful:

• The JavaRanch web site at http://www.javaranch.com

• The SCJD discussion groups on Yahoo! (http://groups.yahoo.com)

• Java 2 Development Kit, Standard Edition Documentation page
(http://java.sun.com/j2se/1.5.0/docs/)

• The Java Tutorial: RMI (http://java.sun.com/docs/books/tutorial/rmi/)

• The JFC Swing Tutorial (http://java.sun.com/docs/books/tutorial/books/swing/)

• JavaWorld article: “Sockets programming in Java: A tutorial” at (http://www.
javaworld.com/javaworld/jw-12-1996/jw-12-sockets.html)

• Portland Pattern Repository (http://c2.com/ppr/)

• Java Coding Conventions (http://java.sun.com/docs/codeconv/html/
CodeConvTOC.doc.html)

• Sun’s Javadoc Style Guidelines (http://java.sun.com/j2se/javadoc/
writingdoccomments/index.html)

• Java Look and Feel Guidelines (http://java.sun.com/products/jlf/)

• User interface design and testing information (http://www.useit.com and
http://www.asktog.com)

CHAPTER 9 ■ PROJECT WRAP-UP 323

A
about this book, 6
Abstract Window Toolkit

see AWT
abstraction

RMI implementation, 191
AbstractTableModel class

TableModel interface, 255
accept method, ServerSocket class, 214, 215, 217
ActionListener interface

JButton component, 248
JComboBox component, 251
JRadioButton component, 249

Activatable class, java.rmi, 177
activation

lazy activation, 177
active object, 177
addDVD method

calling persistDVD method, 144
DBClient interface, 60, 137
indicating success/failure, 145

addDVDRecord method
DVDTableModel class, 258

addresses
getting SO_BINDADDR, 205
loopback addresses, 206
socket addresses, 200

addTableModelListener method
TableModel interface, 255

anonymous inner classes, 248
API documentation

Javadoc, 35–44
application protocol

socket servers, 218–221
TCP sockets, 203
using sockets, 200

application tiers, 226
ApplicationRunner class

creating manifest file, 303
Denny’s DVDs, 262–263
handleException method, 263

architecture
Denny’s DVDs project, 63

ArrayList objects
object synchronization, 111

assertions
best practice, 49
caution: not performing actions for methods, 50

caution: validating inputs on public methods, 49
enabling at runtime, 50

assignments
caution: grading after exam taken, 4
caution: online instructions, 18
caution: variation in instructions, 17
downloading, 5
SCJD exam, 4

assumptions
clarifying requirements, 12

atomic operations, 104–106
logical record locking, 149
synchronized object definition, 111

authentication
requirements for, 197

author (-author) option
Javadoc command line options, 43

author (@author) Javadoc tag, 38
autoboxing

accessing data, 142
coding conventions for JDK 5, 32

automatic code reformatters
caution: avoiding automatic code reformatters,

28
automatic type conversions

coding conventions for JDK 5, 32
await method, Lock class

locking in JDK 5, 97
AWT (Abstract Window Toolkit), 64

Swing and, 237, 261, 291

B
beginning comments

Java coding conventions, 23
binary operators

spacing, 27
BindException, 214
bkp subdirectory

organizing projects, 17
block comments, 28
BLOCKED state, threads, 92

Thread objects, 107
blocking, 78

caution: state of threads paused for I/O, 110
example, 108
Thread objects, 108–110
threads refusing to release resources, 108

Index

325

BorderFactory class
example using, 252
Factory design pattern, 252
Swing, 251–254

BorderLayout manager, 237
bottom (-bottom) option

Javadoc command line options, 43
build scripts

providing in submission, 160
buttons

JButton component, 248
JRadioButton component, 249

C
caching records

data access, 148
running out of memory, 161
using cache in Sun SCJD assignment, 161

CamelCase, 21
case sensitivity

operating system files, 45
casts

spacing, 27
catching exceptions

wrapping exceptions in RuntimeException, 131
wrapping within allowed exception, 130

centering a window, 292
certification process

SCJD exam, 4–5
Sun Certification project requirements, 57–66

character
displaying as mnemonic in label, 244

Checkstyle, 27
Child.java example

multithreading, 79–82
class comments, Javadoc, 37
class declarations

Java coding conventions, 24
class dependencies

working with packages, 47
class diagrams

Denny’s DVDs overview, 64
class instance

identifying lock owner using, 151
class naming conventions

Java coding conventions, 21
Class objects

locking class instances, 89–90
class variable comments, Javadoc, 37
Class-Path attribute, 304
ClassCastException, 138

validating data, 143
classes

considering what a class does, 134
internally synchronized classes, 115
Javadoc coding conventions, 36
Javadoc tags, 38

one responsibility per class, 21
providing locking, 148
reading data file, 137
RMI, 175
working with packages, 44, 47

caution: classes with same name, 46
classes subdirectory

organizing projects, 17
ClassLockNotObjectLock class, 96
classpaths

code base and, 195
working with packages, 46

cleanup
system cleanup when client disconnects, 223

client identification
choosing between RMI and sockets, 298

client synchronization, 112–113
clients

class loader requirements, 195
definition in RMI scenarios, 172
handling client crashes, 156–157
locking records, 156
preventing deadlocks, 156
thick (fat) client, 149
thin client, 149
transferring data with server, 120

code
see also source code
caution: avoiding automatic code reformatters,

28
using code samples provided, 67

code base
dynamic loading, RMI, 195

code samples
locating, 301

code tags
Javadoc comments, 37, 38
JDK 1.5, 41

coding conventions
see also Java coding conventions
Java standards, 19–35
Javadoc, 36–44
JDK 5 new features, 29–35
Sun Code Conventions for Java, 20

combo boxes
JComboBox component, 251

Command enum
socket servers, 218–220

command line
running Javadoc from, 42–44

Command pattern
DvdCommand class, 218

commas
spacing, 27

comments
beginning comments, 23

■INDEX326

implementation comments, 28, 85
caution: adding, 28

Javadoc, 28, 35–44
source code formatting, 28–29

compilation
Denny’s DVDs, 301

components
see also Swing components
adding components to JFrame, 238
caution: lost components, 239
specifying last component, 277
Swing changes in J2SE 5, 290

concurrency
atomic operations, 149
logical record locking, 150
ReadWriteLocks, 142

Condition
LockInformation class, 159

config logging level, 51
ConfigOptions constructor, 279
connectivity

choosing between RMI and sockets, 297
constant naming conventions

Java coding conventions, 22
constants

Sun Coding Conventions, 24
constructors

caution: overloading with versions containing
VarArgs, 33

Javadoc tags, 40
containers

JPanel container, 239
layout managers, 237

Controller component
MVC pattern, 235

anonymous inner classes, 249
cookies

identifying lock owner using tokens, 151
CORBA

choosing between RMI and sockets, 297
RMI and, 172

CPU usage
multithreading, 73

CreatedBy attribute, 304
createRegistry method, 180

D
d (-d) option

Javadoc command line options, 43
daemon threads

changing daemon status of threads, 79
example using, 79
IceCreamMan.java example, 83
join statements, 80

data
transferring between client and server, 120
validating, 142

data access
caching records, 148

Data class
building in stages, 160
handling unlisted exceptions, 126
using a value object, 161
using Façade pattern, 161

data entry
JTextField component, 245
validating, 245
validating contents of JTextField, 246

data files
class reading data file, 137
creating for Sun SCJD assignment, 160
showing record persisted to file, 147
synchronized blocks, 144
why include in submission, 66

data presentation
benefits of MVC pattern, 236
JTable component, 227

data tables
JTable component, 254

data types
generic data types, 29

databases
database files, 322
specifying location for Denny’s DVDs, 273–286

DatagramPacket class, java.net, 202
DatagramSocket class, java.net, 202
DBClient class

RMI implementation, 185
DBClient interface

coding for, 61
DvdDatabase class, 136
methods, 60
methods indicating success/failure, 145
timeouts on locks, 155

DBSocketRequest class, 217
execCmdObject method, 217

DBTester package
testing Denny’s DVDs application, 310–314

DBTestRunner package
testing Denny’s DVDs application, 310, 314–316

deadlocks, 98–100
blocked threads, 156
deadlock handling, 156
preventing, 156
race conditions leading to, 100

debugging DVD class
constructor logging, 123

delivery stack, RMI, 173–174
demarshaling

serialization, 164
Denny’s DVDs project, 262–289

application overview, 63–66
ApplicationRunner class, 262–263
architecture, 63

■INDEX 327

building network layer using sockets, 206–212,
215–217, 219

compiling and packaging, 301
creating GUI overview, 64
DBClient.java interface, 60
GridBagLayout manager, 275–279
GridLayout manager, 274–275
GUI design and layout, 263–267
introduction to, 59–63
JAR files, 58
launching the application, 262
MainWindow class, 263, 268–273
network or local database system, 65
networking tier, 163
overview diagram, 295
packaging application, 305
project overview, 57–66
RMI Factory pattern applied to, 178
running application, 306–309

client application in networked mode, 309
client application in stand-alone mode, 307
Denny’s DVD server, 307

server GUI, 286
socket servers, 212, 213
specifying database location for, 273–286
testing application, 309–317

deprecated (@deprecated) Javadoc tag, 38, 39, 40
design

documenting, 15
prototyping GUI, 13

design decisions document, 15, 18–19, 296
best practice, 47
considering other options, 146
documentation required, 17
JTable component, 300
packaging submission, 318, 319

design patterns
implementing projects, 14
Observer design pattern, 281–283
Proxy pattern, 193
purchasing/downloading pattern resources, 6

destroy method, Thread class, 106
development methodologies, 12
directories

working with packages, 45
directory structure

organizing projects, 16
using custom directory structure, 55

distributed object system
definition in RMI scenarios, 172
illustration of, 173

doc subdirectory
organizing projects, 17

DocCheck, Javadoc plug in, 36
docRoot (@docRoot) Javadoc tag, 39, 40
docs directory

Sun Certification project requirements, 58

doctitle (-doctitle) option
Javadoc command line options, 43

documentation
best practice, 47
documenting design decisions, 15
high level project documentation required,

17–19
Javadoc, 35–44
local documentation, 44
SCJD exam, 5

DOSClient class, 64
downloads

assignment, 5
DVD class, 119–125

comparing instances for equality, 124
constructors, 122

getters and setters, 123
logging, 123

transferring data between client and server, 120
using serialver tool on, 165, 166

DvdCommand class, 218–220
Command pattern, 218
methods, 219
using enum constants, 220

DVDConnector class
RMI implementation, 180

DvdDatabase class, 134–137
after request completed, 220
caching records, 148
constructors, 135
creating classes required for, 119–133

DVD class, 119–125
DBClient interface, 136
DvdFileAccess class, 137–148
Façade pattern, 134
Factory pattern producing, 177, 178
handling exceptions, 136
referencing other classes, 135
ReservationsManager class, 148–160
RMI implementation, 179, 182

DvdDatabaseFactory class
RMI implementation, 179, 180

DvdDatabaseImpl class
RMI implementation, 181, 188, 191
running rmic on remote package, 304

DvdDatabaseRemote class
RMI implementation, 183

DvdFileAccess class, 137–148
getDVDs method, 141
RandomAccessFile, 138, 139
recordNumbers collection, 138
restricting classes calling, 138
RMI implementation, 180
singleton classes, 137
using serialver tool on, 165, 166

DVDMainWindow constructor, 268
DVDResult class, 220–221

■INDEX328

DVDScreen class, 270
DVDSocketClient class, 205–212

using DVDCommand object, 220
DVDSocketServer class, 215
DVDTableModel class

AbstractTableModel class, 255
addDVDRecord method, 258
additional methods, 258
using TableModel with JTable, 259

dynamic loading, RMI, 195

E
emptyRecordString

DvdFileAccess class, 139
enum constants, 220

SocketCommand enum, 221
environment variables, 8
EOFException

wrapping within allowed exception, 131
equals method

overriding, 125
event dispatcher thread

multithreading with Swing, 114
event handling

anonymous inner classes, 249
exams

see SCJD exam
see also submissions

exception (@exception) Javadoc tag, 40
exceptions

DvdDatabase class handling, 136
handling unlisted exceptions, 126–133
including more exceptions in interface, 66
logging an exception, 128
NotSerializableException, 194
RemoteException, 176
RuntimeException, 131, 132
swallowing an exception, 128
wrapping within allowed exception, 130, 131,

132
execCmdObject method

DBSocketRequest class, 217
expressions

spacing, 27
Externalizable interface, 169

comparing Serializable interface, 171
customizing serialization with, 169–171
use of transient in class implementing, 171

F
Façade pattern, 134

Data class using, 161
factories

RMI factory, 177
Factory design pattern, 178

BorderFactory class, 252
RMI factory, 177

RMI implementation, 179
uniquely identifying clients, 153

fat client, 149
fields

Javadoc tags, 39
file layout

Java coding conventions, 22–24
FileHandler class, 52
FileNotFoundException

DvdDatabase class constructor, 136
files

creating manifest file, 303
database files, 322
including extra files in submissions, 18

final keyword
making methods final, 140

finally block
releasing locks in, 142, 145

find method, 147
DBClient interface, 137

findDVD method
DBClient interface, 60

fine logging level, 51
finer/finest logging levels, 51
firewalls

choosing between RMI and sockets, 195, 297
FlowLayout manager, 239

buttons aligned right, 240
illustrations of, 240

for loop, enhanced
coding conventions for JDK 5, 31–32

for statements
source code indentation, 26
spacing, 27

format method
testing Denny’s DVDs application, 316

formatters
MaskFormatter, 246
outputting log messages, 54

Frame containers
layout managers, 237

G
generic types

coding conventions for JDK 5, 29–31
getColumnCount method

TableModel interface, 256
getColumnName method

TableModel interface, 257
getComposer getter

DVD class constructor, 123
getDVD method, 143

DBClient interface, 60, 137
getDvdList method, 141
getDVDs method

DBClient interface, 60, 137
DvdFileAccess class, 141

■INDEX 329

naming conventions, 141
overriding methods, 140

getLocalAddress method, Socket class, 205
getLock method

handling unlisted exceptions, 127
logging an exception, 129

getReceiveBufferSize method, Socket class, 205
getRowCount method

TableModel interface, 257
getSelectedIndex method, 251
getSelectedItem method, 251
getSendBufferSize method, Socket class, 205
getSoTimeout method, Socket class, 204
getStackTrace method, Thread class, 116
getState method, Thread class, 116
getters

automatic generation, 124
DVD class constructor, 123
naming getters, 123

getValueAt method
TableModel interface, 257

Graphical User Interface
see GUI

GridBagLayout manager
components spanning multiple cells, 278
ConfigOptions constructor, 279
Denny’s DVDs, 275–279
specifying last component, 277

GridLayout manager
Denny’s DVDs, 274–275

GTKLookAndFeel
illustration of, 243
LookAndFeel subclasses, 242
platforms for, 242

GUI (Graphical User Interface)
application tiers, 226
arranging workflow items in, 231
BorderLayout layout manager, 237
client GUI, 263
Denny’s DVDs design and layout, 263–267
Denny’s DVDs overview, 64
grouping functionality, 231
how users view information in, 231
human interface concepts, 233
keystroke mnemonics, 292
keystroke shortcuts, 230
layout concepts, 227–228
MVC pattern, 234–237
notifications of changes in, 282
online resources, 323
prototyping, 13, 264
server GUI, 286
testing usability, 233
user interface concepts, 228

GUIControllerException
Denny’s DVDs, 272

H
handleException method

ApplicationRunner class, 263
Handler object

logging messages to a file, 52
hashCode methods

generating, 125
overriding equals method, 125

heartbeat functionality, RMI, 297
hibernation

threads, 78
holdsLock method, Thread class, 116
hooks

shutdown hook, 288
HTML markup tags

Javadoc comments, 37
HTTP (Hypertext Transfer Protocol)

Java RMI and, 174
HTTP tunneling, 195

I
IceCreamMan example

multithreading, 83–86
IDL (Interface Definition Language), 172

Java-IDL transfer protocol, 174
if statements

best practices for threading, 115
source code indentation, 26

IIOP (Internet Inter-Orb Protocol)
choosing between RMI and sockets, 174, 297
Java RMI-IIOP transfer protocol, 174
RMI-IIOP, 172
using CORBA-related clients, 174

implementation comments, 28, 85
import statements

Java coding conventions, 23
indentation

source code formatting, 25
if, for, and while statements, 26
third or fourth level of indentation, 26

Inet4Address class, java.net, 201
Inet6Address class, java.net, 201
InetAddress class, java.net, 200
info logging level, 51
instance methods

static methods compared, 89
instance variable comments

Javadoc comments, 37
instructions

caution: online instructions, 18
including in submission, 66

integers
synchronization, 115

interface declarations
Java coding conventions, 24

■INDEX330

interface naming conventions
Java coding conventions, 21

interfaces
see also DBClient interface
adding another method to interface, 67
including more exceptions in interface, 66
Javadoc tags, 38
RMI, 175–177

internally synchronized classes, 111
best practices for threading, 115

InterruptedException
handling unlisted exceptions, 127
threads, 110
wrapping within allowed exception, 130

InterruptedExceptionExample, 126
InvalidClassException

deserialization of class instance, 120
invokeAndWait method, SwingUtilities class

multithreading with Swing, 114
invokeLater method, SwingUtilities class

multithreading with Swing, 114
IOException

DvdDatabase class constructor, 136
wrapping within allowed exception, 130

IP (Internet Protocol)
networking with sockets, 199

IP addresses, 200
IPv4/IPv6, 201
isCellEditable method

TableModel interface, 257
isSelected method, 249
iterative server

lifecycle, 213

J
J2SE 5

code name Tiger, 57
purpose of, 3
setting up J2SE 5 JDK, 8
Swing changes in, 289–291

JAR files
creating, 305
creating manifest file, 303
Denny’s DVDs project, 58
jar tool options, 305
manifest files and, 303
original purpose of, 58
packaging application as, 322
packaging Denny’s DVDs application, 305
packaging submission, 318
Sun Certification project requirements, 58
working with packages, 45, 46

Java
evolution of programming, 201
multithreading, 73
online resources, 323

Java coding conventions, 19–35
file layout, 22–24

beginning comments, 23
class declarations, 24
import statements, 23
interface declarations, 24
package statements, 23

JDK 5 new features, 29–35
autoboxing, 32
enhanced for loop, 31–32
generic types, 29–31
static imports, 34–35
VarArgs, 32–34

naming conventions, 20–22
source code formatting, 24–28

comments, 28–29
indentation, 25
line lengths/wrapping, 25–27
spacing, 27
statement formatting, 27
variable declaration formatting, 28

variable naming, 20
Java-IDL transfer protocol

RMI transfer protocols, 174
Java look and feel

see look and feel
Java objects

locks, 87
Java RMI-IIOP transfer protocol, 174
Java sockets

caution: using serialized objects, 164
Java standards

coding conventions, 19–35
Javadoc usage, 35–44
packaging concepts, 44–47

Java utilities
working with packages, 45

java.nio (NIO) packages, 161
java.util.concurrent package, 161
java.util.logging

leaving logging code in submission, 55
Javadoc, 35–44

best practice, 48
coding conventions, 36–44

classes and methods, 36
command line options, 43
converting Unix-style into platform-specific

pathnames, 43
Javadoc comments, 28, 35

caution: implementation specific details, 37
class and interface tags, 38
constructor and method tags, 40
DVD class constructor, 122
field tags, 39
HTML markup tags, 37
see (@see) link tags, 40
where to place in source code, 37

■INDEX 331

Javadoc tags, 38
JDK 5, changes in, 42
local documentation, 44
online resources, 323
package documentation, 41–42
plug ins, 36
running from command line, 42–44

Javadoc API
building on command line, 319
building using file to contain Javadoc options,

320
JavaRanch, 5

online resources, 323
JButton component

ActionListener interface, 248
example using, 249
illustration of, 251
Swing components, 248

JComboBox component
ActionListener interface, 251
example using, 252
illustration of, 253
Swing components, 251

JDK
setting up J2SE 5 JDK, 8
using current for SCJD exam, 5

JDK 5
coding conventions for new features, 29–35

autoboxing, 32
automatic type conversions, 32
enhanced for loop, 31–32
generic types, 29–31
static imports, 34–35
VarArgs, 32–34

Javadoc changes in, 42
locking in JDK 5, 96–98
new tags, 41
validating data, 142

JFormattedTextField subclass
MaskFormatter, 246

JFrame component
adding components, 238
combined with JPanel, 239, 241

JLabel component
example using, 245
illustration of, 245
Swing components, 244

join statements
daemon threads, 80
WAITING state, threads, 92

JPanel container, 239
combined with JFrame, 239, 241

JRadioButton component
ActionListener interface, 249
example using, 249
illustration of, 251
Swing components, 249

JRMP (Java Remote Method Protocol)
Java RMI and, 174
RMI-JRMP transfer protocol, 174

JScrollPane component
illustration of, 261
Swing components, 260

JTable component
GUI layout concepts, 227
methods, 259
sizing columns, 254
Swing components, 254
TableModel interface, 255–260
using in exam, 300

JTextArea component
Swing components, 275

JTextField component
example using, 245
illustration of, 245
JFormattedTextField subclass, 246
MVC pattern, 247
Swing components, 245, 247
validating contents of, 246

JUnit
testing project implementations, 15

JUnit code
including unit tests in submission, 55

JVM thread scheduler
testing, 317
threads resuming execution, 86

K
keystroke mnemonics

creating for GUI components, 292
keystroke shortcuts

GUI design, 230
keywords

spacing, 27

L
labels

JLabel component, 244
layout concepts, 227
layout managers

BorderLayout, 237
caution: placing components explicitly, 244
FlowLayout, 239
GridBagLayout, 275
GridLayout, 274
overview, 237
setConstraints method, 277
using, 291

lazy activation, 177
lazy loading of records, 161
li tag

Javadoc comments, 37
line lengths

source code formatting, 25–27

■INDEX332

link (-link) option
Javadoc command line options, 44

link (@link) Javadoc tag, 39, 40
linkoffline (-linkoffline) option, Javadoc, 43, 44
linkplain (@linkplain) Javadoc tag, 39, 40
listeners

ActionListener interface, 248
literal tag, JDK 1.5, 41
local mode

running client application in local mode, 307
LockAttemptFailedException

handling unlisted exceptions, 127
wrapping within allowed exception, 130

LockInformation class, 159
locking

coverage summarized, 296
RMI implementation, 191

LockObjectNotMemberVariables class, 95
locks, 87–98

best practices for threading, 114
class providing locking, 148
clients locking records, 156
deadlocks, 98–100
handling client crashes, 157
identifying owner, 150–154

using class instance/thread/token, 151
Java objects, 87
locking class instances, 89–90
locking in JDK 5, 96–98
locking objects, 88
locking objects directly, 90–92
logical record locking, 150
member variables of locked objects, 95, 116
multiple notifications on lock release, 157
multithreading, 73
mutex, 127
nonimplicit locking, 95–96
notify method, 92–94
notifyAll method, 92–94
ReadWriteLocks, 142
releasing in finally block, 142
releasing locks in finally clause, 145
synchronization, 87
timeouts on locks, 155
violating locking objects, 88

log subdirectory
organizing projects, 17

logger class
utility methods for, 52

logging
best practice, 50
DVD class constructor, 123
leaving logging code in submission, 55
logging an exception, 128
logging messages to a file, 52
outputting log messages, 54
predefined logging levels, 51

reading log messages, 53
temp.log file, 53
testing Denny’s DVDs application, 314

logical record locking, 150
identifying lock owner using threads/tokens,

151
look and feel

Java look and feel guidelines, 292
Napkin Look & Feel for Swing applications, 226
online resources, 323
Swing, 241
Swing changes in J2SE 5, 289
using a different look and feel, 292
using Macintosh look and feel, 292

LookAndFeel subclasses, 242
caution: platform support, 242
illustrations of, 243

loopback addresses, 206

M
MacLookAndFeel subclass, 242

using Macintosh look and feel, 292
Main-Class attribute, 304
MainWindow class

Denny’s DVDs, 263, 268–273
using TableModel with JTable, 259

manifest files, 303
Manifest-Version attribute, 304
marshaling

serialization, 164
MaskFormatter

JFormattedTextField subclass, 246
Matcher class, 147
member variables

locking objects directly, 90
MetalLookAndFeel

illustration of Ocean theme, 243
illustration of Steel theme, 243
LookAndFeel subclasses, 242
platforms for, 242

method comments, Javadoc, 37
method naming conventions, 21
methodologies

considering what a method does, 134
following methodologies and standards, 54

methods
adding another method to interface, 67
caution: overloading with versions containing

VarArgs, 33
Javadoc coding conventions, 36
Javadoc tags, 40
respecting synchronization, 87
static methods and instance methods, 89

Model component
MVC pattern, 235

Model-View-Controller pattern
see MVC pattern

■INDEX 333

modifyDVD method
DBClient interface, 60, 137
indicating success/failure, 145

MotifLookAndFeel
drop down menu, 244
illustration of, 243
LookAndFeel subclasses, 242

multicast servers, 212
MulticastSocket class, java.net, 212
multitasking

socket servers, 212
multithreading, 72–87

best practices for threading, 114, 115
blocking, 78
Child.java example, 79–82
competing thread’s behavior, 74
distinct types of pausing execution, 74
IceCreamMan.java example, 83–86
implementing multithreaded socket servers,

222
locking objects, 73, 88
multithreaded socket server lifecycle, 214
multithreading with Swing, 113–114
real life analogies, 73
sleeping, 78
synchronization, 73
testing Denny’s DVDs application, 310
waiting, 74–77
yielding, 77–78

mutex, 127
requesting read lock on, 143

MVC (Model-View-Controller) pattern, 234–237
alternatives to, 237
anonymous inner classes, 249
benefits of, 236
Controller component, 235
design decisions, 301
drawbacks of, 236
JTextField component, 247
Model component, 235
reasons for using, 234
restaurant analogy, 235
TableModel interface, 255
View component, 235

N
Naming (java.rmi.Naming)

storing remote object references, 194
naming conventions

class naming, 21
constant naming, 22
getDVDs method, 141
interface naming, 21
Java coding conventions, 20–22
method naming, 21
package naming, 20

Sun Coding Conventions, 21
variable naming, 21

Napkin Look & Feel for Swing applications, 226
nesting locks

best practices for threading, 114
network latency

testing, 317
network protocols

evolution of, 201
network transparency

RMI (Remote Method Invocation), 172
networking

benefits of RMI solution, 299
choosing between RMI and sockets, 297
configuring network server, 307
Denny’s DVDs system overview, 64, 65
RMI, 171–195
running client application in networked mode,

309
running network server, 308
sockets, 199–223
transport protocol, 173
working with packages, 46

NIO packages
using, 161
using in certification exam, 58

nonimplicit locking, 95–96
nonrepeatable reads

Denny’s DVDs overview, 66
notify method

best practices for threading, 116
calling, 84
waiting threads, 76

notify method, Thread class, 92–94
notifyAll method compared, 92
wait method and, 77

notifyAll method, Thread class, 92–94
best practices for threading, 116
caution: order in which threads are notified, 94
notify method compared, 92
wait method and, 77
waiting threads, 76

notifyObservers method
notifications of changes in GUI, 283

NotifyVersusNotifyAll class, 92
NotSerializableException, 194
NullPointerException

comparing DVD class instances, 125
wrapping exceptions within RuntimeException,

132
nulls

checking for nulls before recasting objects, 285

O
object synchronization, 111–112
ObjectInputStream class, 166
ObjectOutputStream class, 166, 169

■INDEX334

objects
multiple notifications on lock release, 157
Value Object design pattern, 119

Observable class, 281
notifyObservers method, 283

Observer classes, 281
Observer design pattern, 281–283
ol tag

Javadoc comments, 37
online instructions

caution: online instructions, 18
OptionUpdate value object, 285

Value Object design pattern, 282
overriding

making methods final, 140

P
p tag

Javadoc comments, 37
package documentation, Javadoc, 41–42
package naming conventions

Java coding conventions, 20
package statements

Java coding conventions, 23
packages

caution: classes with same name, 46
working with, 44–47

packaging
application as JAR file, 322

packaging submission, 318–321
packets, 202
param (@param) Javadoc tag, 40
parameter passing

RMI method invocations, 193
parenthesis

spacing, 27
pass by value, 194
passive object, 177
pathnames

converting Unix-style into platform-specific, 43
paths of execution

see threads
patterns

see design pattern
PatternSyntaxException

Denny’s DVDs, 272
pausing, threads, 86
performance

choosing between RMI and sockets, 297
sockets, 297
using a profiler, 140
using cache in Sun SCJD assignment, 161
Value Object design pattern, 120

permissions
RMI, 196
submissions, 321

persistDVD method
addDVD method calling, 144
demonstrating FileOutputStream, 167
releasing locks in finally clause, 145
serialization process, 166
StringBuilder, 146

platforms
testing submission, 322

Portland Pattern Repository
online resources, 323

ports
allowing user to change, 223
port numbers to avoid, 223
running network server, 308

pre tag
Javadoc comments, 37

primitive types, RMI, 194
private methods

overriding methods, 140
profilers

using to improve performance, 140
programming

evolution of (1GL to, 4GL), 201
projects

see also Denny’s DVDs project
documentation required, 17–19
gathering requirements, 12–13
getting started, 11, 12
implementing, 11–16
implementing projects

design patterns, 14
documenting design decisions, 15
testing, 15

organizing, 16–17
Sun Certification project requirements, 57–66
working with packages, 44–47

protocols
choosing between RMI and sockets, 174
client/server interaction, 218
transfer protocol, 174
transport protocol, 173

Proxy design pattern, 193

Q
QuitApplication class

Denny’s DVDs, 270

R
race conditions

thread safety and, 100–102
radio buttons

JRadioButton component, 249
RandomAccessFile

DvdFileAccess class, 138, 139
readExternal method, 169, 170
readFully method, 144

■INDEX 335

readObject method
ObjectInputStream class, 166, 169

method signature for, 169
ReadWriteLocks, 142

performance using, 144
rebind method, Registry class

benefits of RMI solution, 300
RecordFieldReader class, 144
RecordFieldWriter class, 146
RecordNotFoundException

wrapping within allowed exception, 131
recordNumbers collection

DvdFileAccess class, 138
recordNumbers map, 142

threads, 143
reentrant locks

multiple notifications on lock release, 158
RegDvdDatabase class

register method, 180
RMI implementation, 180

register method
RegDvdDatabase class, 180

registration
SCJD assignment and examination, 5

registry
createRegistry method, 180
starting registry programmatically, 180

releaseDVD method, ReservationsManager class
creating logical release method, 155–160
DBClient interface, 60, 137
using Condition from LockInformation class,

159
Remote interface, RMI, 176

RemoteException, 176
RMI implementation, 179

Remote Method Invocation
see RMI

remote objects
access to, 177
choosing between RMI and sockets, 174
exporting, 177
RMI, 194

Remote Procedure Call (RPC), 172
RemoteException

Remote interface, RMI, 176
RemoteObject class, java.rmi, 176
RemoteServer class, java.rmi, 177
removeDVD method

DBClient interface, 60, 137
indicating success/failure, 145

removeTableModelListener method
TableModel interface, 255

rentDVD method
testing Denny’s DVDs application, 312

replace method, StringBuilder, 146

requirements
gathering requirements, 12–13
prototyping GUI, 13

ReservationsManager class, 148–160
creating logical release method, 155–160
creating logical reserve methods, 154–155

reserveDVD method, ReservationsManager class
creating logical reserve methods, 154, 155
DBClient interface, 60, 137
deadlock handling, 156
less CPU intensive version, 158

Result object
socket servers, 220–221

resume method, Thread class, 106
retrieveDVD method, 143

demonstrating FileInputStream, 167
serialization process, 166

return (@return) Javadoc tag, 40
returnDVD method

testing Denny’s DVDs application, 313
RMI (Remote Method Invocation), 171–196

Activatable class, 177
choosing between RMI and sockets, 174–175,

197, 200, 296–300
benefits of RMI solution, 299

class loader requirements, 195
classes, 175
client definition in RMI scenarios, 172
delivery stack, 173–174
distributed object system definition in, 172
exporting remote objects, 177
firewall issues, 195
heartbeat functionality, 297
interfaces, 175–177
introduction, 171
network transparency, 172
online resources, 323
passing parameters, 194
permissions, 196
primitive types, 194
Remote interface, 176
remote objects, 194
RemoteObject class, 176
RemoteServer class, 177
requirement for skeletons, 197
RMI layers, 176
RMI method invocations, 193
RMI transfer protocols, 174
RPC/CORBA/SOAP and, 172
running rmic on remote package, 304
security and dynamic loading, 195
Serializable objects, 194
server definition in RMI scenarios, 172
stubs and skeletons, 192–193
thread reuse in RMI, 151
thread safety, 196

■INDEX336

transferring parameters, 193
UnicastRemoteObject class, 177

RMI factory, 177–196
Factory pattern, 178
test program examples, 183

RMI implementation, 179–192
abstraction, 191
DvdDatabaseFactory.java, 179
Factory pattern, 179
locking strategy, 191

RMI registry
benefits of RMI solution, 300
manual starting of, 197
obtaining remote object references, 194

RMI-IIOP, 172
Java RMI-IIOP transfer protocol, 174

RMI-JRMP
RMI transfer protocols, 174

rmic tool
running rmic on remote package, 304

RMIClassLoader class
dynamic loading, 195

RmiFactoryExample class
main method, 182
RMI implementation, 181, 183
running test program, 182

RmiNoFactoryExample class
main method, 181
RMI implementation, 181, 182
running test program, 182

RPC (Remote Procedure Call), 172
run method

best practices for threading, 115
RmiFactoryExample class, 182
RmiNoFactoryExample class, 181
testing Denny’s DVDs application, 311

Runnable interface
creating threads, 71, 79

RUNNABLE state
Thread objects, 107

RuntimeException
caution: throwing but not catching, 134
wrapping an exception within, 131
wrapping an exception within subclass of, 132

S
scalability

choosing between RMI and sockets, 297
SCJD (Sun Certified Java Developer) exam, 4–5

see also submissions
assignment, 4
caution: grading of assignment, 4
cost of, 9
creating data file, 160
discussion groups, 323
documentation and questions, 5
downloading assignment, 5

loss of exam, 9
online resources, 323
packages allowed, 161
purpose, 5
registering for assignment and examination, 5
resources, 5
SCJD certification process, 4–5
submitting test classes and build scripts, 160
Sun’s expectations, 5
using caching, 161
using current JDK 5
written test, 4

SCJP (Sun Certified Java Programmer) exam, 8
scrolling

JScrollPane component, 260
SearchDVD class

Denny’s DVDs, 272
security

requirements for, 197
RMI, 195

SecurityManager class
dynamic loading, RMI, 195

see (@see) Javadoc tag, 38, 39, 40
examples of, 40

serial (@serial) Javadoc tag, 39
Serializable class/interface, java.io

declaring serialVersionUID, 121
Externalizable subinterface, 169

comparing interfaces, 171
inspecting classes for, 166
purpose of implementing, 165
Serializable objects, 194
using serialver tool, 165

serialization, 164–171
creating byte stream from object graph, 165
customizing with Externalizable interface,

169–171
deserialization of class instance, 120
interface required, 165
marshaling, 164
NotSerializableException, 194
object copy not reference, 165
reading and writing serializable objects, 166
serialization mechanism, 166–169

serializing object state, 168
transient keyword, 168
using serialver tool, 165–166

serialized objects
choosing between RMI and sockets, 297

benefits of RMI solution, 299
serialver tool, 165–166
serialVersionUID

deserialization of class instance, 120
mandatory modifiers, 121
not declared in Serializable class, 121
serialization process, 168

■INDEX 337

server factory
handling client crashes, 157

server GUI
Denny’s DVDs, 286

servers
class loader requirements, 195
configuring network server, 307
definition in RMI scenarios, 172
iterative server, 212
running Denny’s DVD server, 307
running network server, 308
single-threaded server, 212
socket servers, 212–221

utilizing thread pool, 222
transferring data with client, 120

ServerSocket class, java.net, 213–218
accept method, 214, 215, 217
description, 200

ServerWindow constructor
server GUI, 286

setActionCommand method, 249
setComposer setter

DVD class constructor, 123
setConstraints method

layout managers, 277
setLocation method

caution: placing components explicitly, 244
setMnemonic method

creating keystroke mnemonics, 292
setReceiveBufferSize method, Socket class, 205
setSendBufferSize method, Socket class, 205
setSize method

caution: placing components explicitly, 244
setSoTimeout method, Socket class, 204
setters, 123

automatic generation, 124
setupTable method

using TableModel with JTable, 259
setValueAt method

TableModel interface, 257
severe logging level, 51
shutdown hook

server GUI, 288
since (@since) Javadoc tag, 38, 39, 40
single line comments, 28
singleton classes, 137
skeletons

requirement for, 197
skeleton interface, 193

skins
Swing changes in J2SE 5, 290

sleep method, Thread class
going into wait state, 74
monitoring for objects queued for processing, 83
threads resuming execution, 87

sleeping, 78
yielding compared, 79

SOAP (Simple Object Access Protocol)
RMI and, 172

Socket class, java.net
constructors, 203
description, 200
getting SO_BINDADDR, 205
setting and getting SO_RCVBUF, 205
setting and getting SO_SNDBUF, 205
setting and getting SO_TIMEOUT, 204
SocketOptions interface, 204

socket network solution
handling client crashes, 157

SocketCommand class
indicating command to perform, 223

SocketCommand enum, 221
SocketOptions interface

accessing via Socket class, 204
SO_BINDADDR option, 205
SO_RCVBUF option, 205
SO_SNDBUF option, 204
SO_TIMEOUT option, 204

sockets
automatically updating clients, 223
benefits of RMI solution, 299
benefits of Serialized Objects, 297
choosing between RMI and sockets, 197, 200,

296–300
choosing for exam, 222
description, 199
DVDSocketClient class, 205–212
exam restrictions, 202
IP addresses, 200
networking with, 199–223
overview, 199–200
performance, 297
reasons for using, 200
socket addresses, 200
socket servers, 212–221

application protocol, 200, 218–221
Command enum, 218–220
description, 199
iterative socket server lifecycle, 213
listening to incoming connections, 213
multicast servers, 212
multitasking, 212
multithreaded required or not, 222
multithreaded socket server lifecycle, 214
Result object, 220–221
ServerSocket class, 213–218
unicast servers, 212
using enum constants, 220

TCP socket clients, 203–205
TCP sockets, 202–203
technologies requiring, 222
UDP sockets, 201–202

SocketTimeoutException, 204, 215
source (-source) option, Javadoc, 43, 50

■INDEX338

source code
caution: making it clear, 25
placing Javadoc comments, 37

source code formatting
comments, 28–29
indentation, 25

if, for, and while statements, 26
third or fourth level of indentation, 26

Java coding conventions, 24–28
line lengths, 25–27
spacing, 27
statements, 27
variable declaration, 28
wrapping, 25–27

sourcepath (-sourcepath) option, Javadoc, 43
SO_BINDADDR option, 205
SO_RCVBUF option, 205
SO_SNDBUF option, 204
SO_TIMEOUT option, 204
spacing

source code formatting, 27
src directory

organizing projects, 17
Sun Certification project requirements, 58

standards
following methodologies and, 54

starvation
thread safety and, 102–104

state
Thread objects, 107

statements
source code formatting, 27

static imports
coding conventions for JDK 5, 34–35

static keyword, 90
static methods, 89
static objects, 79
static variables

locking class instances, 89
stop method, Thread class, 106
string format options

testing Denny’s DVDs application, 316
StringBuffer, 146
StringBuilder

DvdFileAccess class, 139
persistDVD method, 146
replace method, 146

strings
synchronization, 115

strong typing
choosing between RMI and sockets, 174

stubs, 192
caution: dynamic downloading of stubs, 304
choosing between RMI and sockets, 174
dynamic stub generation, 175
dynamically generated stub classes, 192
running rmic on remote package, 304

submissions
including extra files in, 18
packaging, 318–321
permissions, 321
platform for testing, 322
what to include with, 322

Sun assignments
caution: variation in instructions, 17

Sun Certification project
requirements, 57–66

Sun Certified Java Developer exam
see SCJD exam

Sun Code Conventions for Java, 20
Sun Coding Conventions

class or interface declarations, 24
constants, 24
file layout, 22
import statements, 23
indentation, 25
inserting blank lines between methods, 81
JDK 5 updates to, 29
naming conventions, 21
packages, 23
tools confirming code conforms to, 27
variable declaration, 28

Sun Java utilities, 45
suspend method, Thread class, 106
swallowing an exception, 128
Swing

AWT and Swing, 237–261, 291
best practices for threading, 115
BorderFactory class, 251–254
changes in J2SE 5, 289–291

components, 290
look and feel, 289
skins, 290

described, 64
layout managers, 237
look and feel, 241
multithreading with Swing, 113–114

best practices for threading, 114
online resources, 323
online tutorials, 237

Swing components
JButton, 248
JComboBox, 251
JLabel, 244
JRadioButton, 249
JScrollPane, 260
JTable, 227, 254
JTextArea, 275
JTextField, 245–247
layout managers available, 291

SwingWorker class
caution: not using directly in assignment, 114

■INDEX 339

synchronization
best practices for threading, 115
client synchronization, 112–113
description, 87
IceCreamMan.java example, 84, 85
integers and strings, 115
internally synchronized classes, 111, 115
locking member variables of locked objects, 98
locking objects directly, 90, 91
meaning of synchronized object, 117
multithreading, 73
object synchronization, 111–112
performance, 117
synchronization on class itself, 127
synchronized and unsynchronized methods, 89
synchronized object definition, 111
synchronizing data, 117
synchronizing methods, 90
violating locking objects, 88

synchronized blocks
accessing data files, 144
best practices for threading, 115
calling unsynchronized block, 116
thread safety, 104

synchronized keyword
locking class instances, 89

SynthLookAndFeel
changes in J2SE 5, 290

system tests, 16

T
TableModel interface, 255–260

AbstractTableModel class, 255
getColumnName method, 257
getRowCount method, 257
getValueAt method, 257
isCellEditable method, 257
setValueAt method, 257
using with JTable component, 259–260

tables
JTable component, 254

TCP (Transmission Control Protocol), 202
TCP sockets, 202–203

connection-oriented protocol, 222
DVDSocketClient class, 205–212
TCP socket clients, 203–205

temp.log file
logging messages, 53

TERMINATED state
Thread objects, 107

ternary operators
readability of, 124

testing
Denny’s DVDs application, 309–317
GUI usability, 233
implementing projects, 15
JVM thread scheduler, 317

network latency, 317
providing test classes in submission, 160
selecting testers, 14, 16
system tests, 16
unit tests, 16

text fields
JTextField component, 245

thick client, 149
thin client, 149

handling client crashes, 157
this object

synchronizing methods, 90
Thread class/objects

BLOCKED state, 107
blocking, 108–110
creating a thread of execution, 71
deprecated methods, 106
RMI implementation, 181
RUNNABLE state, 107
states, 107
TERMINATED state, 107
TIMED_WAITING state, 107
WAITING state, 107

thread safety, 98–106
atomic operations, 104–106
benefits of RMI solution, 299
coverage summarized, 296
deadlocks, 98–100
race conditions affecting, 100–102
RMI, 192, 196
starvation, 102–104
synchronized blocks, 104
Vector objects, 111

threads/threading, 71–117
best practices for threading, 114–116
BLOCKED and RUNNABLE states, 78
blocking, 78
caution: not relying on thread priorities, 78
caution: order in which threads are notified, 94
caution: state of threads paused for I/O, 110
changing daemon status of threads, 79
creating a thread of execution, 71
daemon threads, 79
deadlock handling, 156
Denny’s DVDs system overview, 66
exiting before thread complete, 117
hibernation, 78
identifying lock owner using, 151
InterruptedException, 110
joining threads, 72, 79
locking member variables of locked objects, 95
locks, 87–98
multiple notifications on lock release, 157
multithreaded socket server lifecycle, 214
multithreading, 72–87

see also multithreading
pausing, 86

■INDEX340

reading from a data file, 143
ReadWriteLocks, 142
recordNumbers map, 142
restarting, 117
simple example illustrating concept, 72
single-threaded server, 212
sleeping, 78
testing Denny’s DVDs application, 310
thread priorities, 102, 104

best practices for threading, 115
thread reuse in RMI, 151
thread scheduler, 77
threads resuming execution, 86
using sockets, 200
utilizing thread pool, 222
violating locking objects, 88
waiting, 74
WAITING state, 92
yielding, 77

Tiger, J2SE 5, 57
TIMED_WAITING state

Thread objects, 107
tmp subdirectory

organizing projects, 17
tokens

identifying lock owner using, 151
Transfer Object pattern, 119
transfer protocols, 164, 174

RMI transfer protocols, 174
transient keyword

serialization, 168
transport protocol, 173
tryLock method, Lock class

locking in JDK 5, 97
tst subdirectory

organizing projects, 17
tunneling

HTTP tunneling, 195

U
UDP (User Datagram Protocol), 201
UDP sockets, 201–202

advantages/disadvantages, 202
exam restrictions, 202

ul tag
Javadoc comments, 37

UML use case diagram
Denny’s DVDs, 59

unicast servers, 212
UnicastRemoteObject class, java.rmi.server, 177

export method, 192
RMI implementation, 179

unit tests, 16
including unit tests in submission, 55

Universal Product Code
see UPC

unmarshaling
serialization, 164

unreferenced method
handling client crashes, 157

UPC (Universal Product Code) number, 59, 121
comparing DVD class instances, 124, 125
reading or writing records, 140
recordNumbers map, 142

updating
automatically updating clients, 223

use (-use) option
Javadoc command line options, 43

use cases, 229
user documentation

best practice, 48
user instructions

caution: online instructions, 18
documentation required, 17, 18

User Interface
see GUI

V
validation

validating contents of JTextField, 246
zip codes, 246

value (@value) Javadoc field tag, 39
value object

Data class using, 161
Value Object design pattern, 119

OptionUpdate value object, 282
VarArgs (variable argument lists)

caution: overloading with versions containing,
33

coding conventions for JDK 5, 32–34
variable declaration

source code formatting, 28
variable naming conventions, Java, 20, 21
Vector objects

object synchronization, 111
thread safety, 111

vectors
synchronized data, 117

version (-version) option, Javadoc, 43
version (@version) Javadoc tag, 38
version.txt file

documentation required, 17
View component

MVC pattern, 235

W
wait method, Thread class

calling wait method on an object, 81
going into wait state, 75
notify and notifyAll methods and, 77
sleep or yield compared, 77
threads resuming execution, 86

■INDEX 341

WAITING state, threads, 92
waits occurring in loops, 82

waiting, 74–77
children buying ice cream analogy, 74
code example, 75
distinct types of pausing execution, 74

WAITING state, threads, 92, 107
warning logging level, 51
Waterfall Model, 12
WeakHashMap

handling client crashes, 157
while statements

best practices for threading, 115, 116
source code indentation, 26

Window containers
layout managers, 237

windows
centering a window, 292

WindowsLookAndFeel
code setting, 242
illustration of, 243
LookAndFeel subclasses, 242
platforms for, 242

windowtitle (-windowtitle) option, Javadoc, 43
wrapping

source code formatting, 25–27
writeExternal method

customizing serialization, 169, 170
writeObject method

ObjectOutputStream class, 166, 169
written test

SCJD exam, 4

X
XDoclet, Javadoc plug in, 36

Y
yield method, Thread class

going into wait state, 74
yielding, 77–78

best practices for threading, 114
reasons for, 77
sleeping compared, 79
when to yield, 84

Z
zip codes

validation, 246
zip files, 302
ZipTextField class

validating zip codes, 246

■INDEX342

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

