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We would like to dedicate this book to Jon Peck, who retired from  
more than 30 years with SPSS and IBM while this book was  
in its final stages. We wish him the best of retirements even  

though he probably won’t be able to resist staying in the  
SPSS community in some form.
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Foreword

In my various roles at SPSS and IBM I met Keith and Jesus many years ago. 
They both have over 20 years of statistical consulting experience, and they both 
have been training people on statistics and how to use SPSS for many years. 
Each has in fact trained thousands of students. They are uniquely qualified to 
bring the message and content of this book to you, and they have done so with 
rigor and grace. SPSS has so many techniques and procedures to perform both 
simple and complex analysis, and Keith and Jesus will introduce you to this 
rich tapestry so that it pays dividends in benefiting your endeavors in driving 
societal change based on data and analytics for years to come. This book goes 
beyond the elementary treatments found in most of the other books on SPSS 
Statistics but is written for users who do not necessarily have an advanced 
statistical background. It can make the reader a better analyst by expanding 
their toolkit to include powerful techniques that he or she might not otherwise 
consider but that can have a big payoff in increased insight.

Keith and Jesus’ outstanding new book on SPSS Statistics has brought back 
so many thoughts about this great product and the influence it has had on so 
many people that I thought I would briefly reminisce.

I first became involved with this software when I went to work for SPSS in 
1995 as Director of Quality Assurance. A year earlier, SPSS had released its first 
Microsoft Windows product—which, while solid, did not really take advantage 
of the amazing possibilities a true graphical interface could provide. This was a 
huge and important time for the company as the SPSS team was hard at work 
revolutionizing both the front-end user interface and the output to create a 
standard that is still in place and considered best of breed today. These innova-
tions enabled sophisticated pivot table output as well as much more customized 
graphical output than had ever been attempted before. Indeed, in the years to 
come it was that spirit of always getting ahead of every technological trend 
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that would keep this software right in the heart of what the data analysis com-
munity demanded.

When I say the heart of the data analysis community I am not in any way 
exaggerating. This software has been used by hundreds of thousands of stu-
dents in college and graduate school and by similar numbers in government 
and commercial environments worldwide. Over the years I have literally had 
hundreds, if not thousands of people say to me “I used SPSS in college” when 
I introduced myself. And of course, I can’t leave out the bootleg copies I have 
seen in innumerable places during my travels and personally purchased on the 
streets of Santiago and Beijing.

Impressive? Absolutely. But of course the real question is … WHY is SPSS so 
heavily used and so well loved? WHY has its community of users stayed vibrant 
and loyal even eight years after the company itself was acquired by IBM?

The answer is the combination of power and simplicity combined with elegance. 
This is a big statement. To back this up—and apropos of the subject matter—I’ll 
contribute a data point as my best evidence. A few years ago, when I was still 
with IBM (which acquired SPSS in 2009), we hired a summer intern who had 
used our software for a semester in college. After about a month on the job, 
we debriefed her on the progress of her user interface design assignment. She 
discussed at length the challenges she was having coming up with a design 
that was up to the standard of the rest of the product in terms of simplicity, 
backed by immense power. This led to a discussion of the first time she used 
the product as a student. Of course, opening a “statistics” product for the first 
time filled this iPhone-using millennial with much trepidation; however, as she 
described to us within just a few minutes she was loading and manipulating 
data, building predictive models, and producing output for her class. In just a 
short time beyond that she was digging into the depths of some of the power 
the product provided. Even a user nearly born and bred with the beautiful user 
designs of the smartphone consumer era was right at home using SPSS. What 
an amazing statement in and of itself. Think about it! This is made even more 
extraordinary because this same student had interactions with professors and 
researchers on her campus who were using—in fact, relying on—that very same 
product to do their cutting-edge work. As I said, the answer is the combination 
of power and simplicity combined with elegance.

This amazing simplicity does not come at the expense of power. As Keith 
and Jesus make clear in this book, SPSS Statistics is an incredibly powerful tool 
for data analysis and visualization. Even today there is no tool that works with 
its users of any level (novice, intermediate, or expert) to uncover meanings and 
relationships in data as powerfully as SPSS does. Further, once the data has 
been prepared, the models built, and the analysis done, there is no software 
available that is better at explaining the results to non-data analysts who have 
to act on it. This increases the value of the tool immeasurably—since it creates 
the understanding and confidence to deploy its insights into the real world to 
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create real value. Having seen this done so many times, by so many people, 
in so many domains, I can say to those starting with this product for the first 
time that I truly envy you—you are about to start on a journey of learning and 
getting results that will amaze you—and the people you work with.

Let’s put this all in perspective. This product is now in its sixth decade of 
existence. That’s right—it first came out in the late 1960s. How many products 
can you name that have survived and prospered for that long? Not many. The 
Leica M camera and the Porsche 911 car with their classic timeless designs 
come to mind, but not much else. How many COMPUTER products? Even less; 
perhaps only the venerable IBM mainframe, in fact. But here we have IBM SPSS 
Statistics—not only surviving but still as relevant and vital as ever—right in 
the midst of the new age of big data and machine learning, heavily used by 
experts who dig deep into data and model building, but usable by novices in 
the iPhone era as well.

Now, let us switch our focus from celebrating the vibrancy and staying power 
of the SPSS journey and into the heart of what Keith and Jesus have addressed 
in this book. This is first and foremost a book for data analysis practitioners at 
intermediate and advanced levels. The question this begs is how this product 
can help that audience create the most value in the modern era.

Unlike the world of the late 1960s when SPSS was created, we now live in an 
age where there are many tools to do quick and fast analysis of datasets. For 
example, Tableau is a fine tool for more business-oriented users with less data 
analysis training to get immediate and useful visual insights from their data. 
So what then is the need for IBM SPSS Statistics in this new world?

To answer that question, let me take you back several years to a conference 
called “MinneAnalytics,” sponsored by a Minnesota-based organization of 
analytic professionals, where I delivered a presentation on Advanced Analytics 
called “What’s Your World View?” In that presentation, I envisioned a rapidly 
approaching new age where “big data” would meet advanced analytic tech-
niques running in real time and that combination would drive every decision- 
making aspect of how our society would work. I compared the importance 
of this movement to previous huge steps that changed the very foundation of  
society—including the invention of the automobile and the invention of assembly-
line production for manufacturing many different types of goods.

Well, a mere three years later that “future” society is here already—right now. 
It is happening all around us. Analytics on big data is driving decision making 
and processes everywhere you look. Hospitals apply real-time analytics to data 
feeds from patient-monitoring instruments in intensive care units to message 
doctors automatically that their patient in the ICU will shortly take a turn for the 
worse. Firms managing trucking use analytics to intervene proactively when the 
system tells them one of their drivers is predicted to have an accident. Airplanes 
and cars apply real-time analytics to engine sensors to predict failure and inform 
the pilots and drivers to take action before such failure occurs. Indeed, big data 
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analytics has become one of the most disruptive forces in business history and 
is unleashing new value creation quite literally wherever you look. All of these 
examples clearly show a fundamental point—quick visual understanding is 
one thing—but deep insight yielding confidence in a predictive model that is 
deployed in real time at critical decision points at vast scale is quite another. It 
is in this realm of confirmation and confidence that SPSS Statistics shines like 
no other.

Mass deployment of advanced analytics will create benefits for society that 
are for all intents and purposes unimaginable. Assuming, of course, that the 
deployed analytics are in fact correct (and with the right tweaking and trade-offs 
between accuracy and stability) and deployed properly. It is the almost unique 
benefit of SPSS that no matter what language in which those analytics are built 
(SPSS, R, Python, supervised or unsupervised, standard or machine learning, 
executed programmatically or through visual interfaces, or any other variant 
you can think of) the product can be used to confirm confidence that the desired 
results will be achieved, and in understanding the risks involved. It can also 
be used to explain the results to others in the enterprise, aligning those who 
need to be in the know on exactly and precisely how analytics drive their new 
business models. There is no better “hub” for data scientists to practice their 
craft and contribute their value to the creation of a new world—a new world of 
staggering rates of change guided or driven by data and analytics.

IBM SPSS Statistics is the perfect tool for this new world when used by well-
trained analysts who can put all the data and all the insights together without 
mistakes to create the most value. People who can take the output of machine 
learning, add traditional data and then other new forms of data (like sensors 
and social media for example), to get insights well beyond those quick insights 
from Tableau and other surface-level tools. People who know how to use the 
advanced capabilities of the tool, such as the ability to do mixed model analysis 
of data at different levels (for example, within a hierarchy to find even deeper 
insights). Such a tool, in the hands of such people—well-trained data scientists—
can drive us into this new remarkable world with both confidence and safety. 
To become one of those who drive this societal transformation using SPSS you 
can benefit from having this book as your guide.

Enjoy the book…and enjoy the next 50 years of IBM SPSS Statistics as well! 
 —  Jason Verlen

Jason Verlen is currently Senior Vice President of Product Management and 
Marketing at CCC Information Services, based in Chicago. Before moving to 
CCC he spent 20 years at SPSS and then IBM (after its acquisition of SPSS) in 
various roles ending with being named Vice President of Big Data Analytics 
at IBM.
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Introduction

This book is a collaboration between me (Keith) and several other career-long 
“SPSSers,” and the editorial decisions about what to cover, and how to cover it, 
are greatly affected by that fact. My own career took a turn down a road that led 
to a life of learning, teaching, and consulting about SPSS almost 20 years ago. I 
was contemplating a PhD in Psychometrics at the University of North Carolina, 
Chapel Hill. My plans didn’t get much further than auditing some prerequisites 
and establishing residency. So, on paper, I hadn’t made much progress, but moving 
1000 miles (from Massachusetts) to relocate and purchasing a house represented 
a milestone in my life and career. I’m still in that same house (more than 22 years 
now), and I’m still using SPSS almost daily. Like many things in life, it seems 
almost accidental. I was doing contract statistics work using SPSS, working from 
home while I planned for a life in graduate school, and I drove up to Arlington, VA 
to take advantage of what SPSS training then called the training “subscription.”

The concept was to take as many classes as you can manage in a year. It was 
remarkably cost effective. I was able to convince my primary contract client to 
pay for the subscription under the condition that I covered all other expenses, 
and didn’t let it affect my deadlines. I already had several years of daily SPSS use 
under my belt, so I was hardly a rookie, but it was too good to pass up. I found 
a summer sublet in Washington, DC, took advantage of the training classes 
almost daily for a couple of months, learned all the latest features, learned about 
modules that I had never tried, made some good new friends, and worked late 
into the evening trying to keep my contract research work on schedule. Then 
suddenly I was asked if I wanted to relocate and take on teaching the basic 
classes in that same office. I declined the full-time position (the grad school 
idea was still alive), but I did start making occasional trips. Within a year they 
were frequent trips, and it became effectively full time, including training trips 
all over the United States and Canada.
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A bit of nostalgia, perhaps, but there is a good reason to reflect on that 
time period in SPSS Inc.’s history. As Jason Verlen notes in his foreword to 
this book, the mid to late ’90s was a pivotal time in the development of SPSS. 
With Windows 95 came a whole new world, and SPSS Inc. leaped into the 
fray. Also, in the late ’90s, SPSS Inc. bought ISL, and with it, Clementine. The 
revolutionary software package then became SPSS Clementine, and is now 
called IBM SPSS Modeler. While this book is dedicated to SPSS Statistics 
and not SPSS Modeler, my career certainly was never quite the same since. 
Although that was the acquisition that most influenced my career, it was 
certainly not the only one. There were numerous acquisitions during that 
period, growing the SPSS family to include products like AMOS, SPSS Data 
Collection, and Showcase.

It was also a bit of a golden age in SPSS training. Almost 20 of us offered 
SPSS training frequently. On any given day, there were at least a couple of 
SPSS training events being held in one of several cities that had permanent 
full-time SPSS training facilities. Traveling to public training was common 
then—online training hadn’t yet arrived. It simply was how training was done. 
In light of this very active, live, corporate-managed, instructor-led training 
economy more than 30 distinct classes were offered that represented 50–60+ 
days of training content. It took me three years before I found myself teaching 
80% of them, and even longer before I taught all of them. Classroom training 
was seen as a key way to support the user community, so even classes that 
were infrequent, and therefore not very profitable, were still scheduled to 
support the product. Everything changes over time, and certainly traveling 
cross-country to a corporate training center for 5 continuous days of training, 
with a stack of huge books, along with 16 strangers from other companies 
seems quaint now.

For all of us who experienced it as trainers and participants, however, we are 
forever changed. One of the things that always struck me, and that still knocks 
me off my feet, was that the 32 books we used were not enough! SPSS had so 
many great new features coming out with each new version that it was hard 
to keep up, even though we were in the classroom three-quarters of the time. 
The Arlington office frequently had another trainer teaching in a room next 
door, so we would have lunch together, and admit to each other that we had 
left ourselves with a few too many pages for day three. Day three! And that 
was just the Regression class! We’d sometimes lament that someone had shown 
up for a class, but had skipped one or more of the three prerequisites. Can you 
imagine? Seven days of prerequisites to take a training class! It just wouldn’t 
work to require that many days now, but we worked hard, and covered a lot of 
ground, and we went through all the software output, step by step. Then we 
would make a change to the model, or respond to an audience question, and 
go through the entire output again, step by step. Go ahead and admit it—if you 
are like us it probably sounds great. And it was.
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My friend and coauthor Jesus Salcedo had a similar experience, and in those 
same classrooms. He also had an interest in psychometrics, except that he actu-
ally acted on his interest and earned his PhD. We met in the very busy New York 
City SPSS Training office when I was sent there as a contractor during his tenure. 
He was the full-time trainer in that office. We’d often chat about our favorite 
course guides (and least favorite) and became friends over an occasional shared 
meal in that Empire State Building office, or nearby in New York’s Koreatown 
neighborhood. So, the perspective that we both start with is that SPSS is a big 
topic, a worthy topic, and frankly, a sometimes intimidating topic. We still feel 
this way today. There is so much to learn that we struggle to keep up with 
everything new. At a consultancy where we worked for a time as a team, we 
put together a series of monthly seminars that proved to us again that there 
was always something new to learn. Each and every month, we discovered 
new features when we were preparing for a new topic. So tens of thousands of 
training hours later, we still learn something new all the time.

Of course, we aren’t asked to really show what we can do as often as we used 
to be. The reason, of course, is that training these days is rushed. We are often 
asked to cover two days’ worth of information in just one, or five days’ in just 
two, or ten days’ in just four. It happens all the time. We are pros, and we do as 
we are asked, but we know, we really know, that to do a proper job it takes more 
time. The book market is flooded with rookie SPSS books. The more advanced 
books tend to be more advanced in the theory, but not at all advanced in the 
practice of using SPSS, its efficient use, or the sophisticated use of its features. 
A major motivation in writing this book is the loss of organizational memory 
that has occurred since in-depth specialized SPSS training courses have started 
to disappear over the last ten years.

So, with this book, we get to call the shots, and what we are trying to offer 
all of you is a chance to learn some intermediate to advanced topics thoroughly 
enough that you will be tempted to use them yourself, very possibly for the first 
time. We don’t try to cover every topic—barely two dozen out of a hundred that 
we could have chosen, in fact. This is not at all encyclopedic. It certainly is also not 
a book-length treatment on a single subject. It gives you a taste of what attending 
one of our classes 15 years ago might have been like—a couple hours’ worth on 
each of several interesting, powerful topics that you might not even know existed.

The Audience for This Book

We think that this book fills an important niche. Books on the fundamentals of 
using SPSS Statistics are not in short supply. There are certainly dozens of them. 
Some are better than others. Naturally, we are proud of our own contribution: 
IBM SPSS Statistics For Dummies, 3rd Edition (Wiley, 2011). However, this book 
is certainly not a book about the fundamentals of settings up SPSS properly, 
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or running routine statistics like T-tests or Chi-Square. Nor is this book a good 
choice for reviewing Statistics 101. Knowledge of topics like Ordinary Least 
Squares regression and ANOVA is assumed.

Since beginning the quest to contribute something we felt was new and needed 
for the SPSS Statistics community, Jesus Salcedo and I have consistently thought 
of the same audience. We have imagined the intermediate-level practitioner, 
perhaps relatively new or perhaps even a long-time user of SPSS, who is stuck 
in a rut. We imagine ourselves in a sense. If it wasn’t for our training careers, 
forcing us to learn the new features as soon as they come out, we probably 
wouldn’t be familiar with all of the techniques in this book. We use the shortcuts 
because we are active in the corporate community of SPSS, yet we meet veteran 
users all the time who don’t even know they exist. We have our own personal 
favorite techniques, tips, and tricks, but we know many users who know their 
theory very well, yet haven’t discovered a key feature that could make their 
analysis more effective, even though it’s been in the last 10 versions. I mention 
this specifically because it is a constant, even humorous, but telling exchange:

“Wow, that is amazing. I’m so glad that they added that feature. It must be brand new.”

“Actually, we’ve had that since version X. It’s been around for about 8 years.”

So the phrase “spread their wings a bit” has been used between us since the 
early days of this book. We’ve been writing for the kind of SPSS user that we’ve 
met in class over many years: the kind who might know more about SPSS than 
their colleagues or their boss; the kind who knows all the logistics of SPSS pretty 
well; the kind who knows the logistics of SPSS pretty darn well, but sometimes 
gets frustrated knowing that there is another way to tackle a problem, but there 
is no time to research that right now; and the kind who wants to know that 
there are a few interesting professional development opportunities out there, 
but isn’t quite sure which ones to explore, and there never seems to be much of 
a training budget to pursue them.

We are exploring this “expand your knowledge” theme rather broadly, includ-
ing topics like Hierarchical Linear Modeling, but also techniques like Graphics 
Production Language. This is firmly a software book. We assume that you use 
SPSS, and you are interested in all aspects of it. In short, we assume that you use 
it fairly often, and you want to slowly and surely work toward being a “power 
user” even if you don’t describe yourself that way today.

How This Book Is Organized

The book is organized into 18 chapters in 4 major parts. In addition to this 
organizational overview, there is a short introduction at the start of each part 
that discusses the specific techniques covered in each chapter, and whether the 
techniques are in SPSS Base or require one of the modules. We aren’t shy about 
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showing you a feature in one of the modules when appropriate, and there is a 
thorough discussion of bundles and modules near the end of this introduction.

Each of this book’s four parts has a collection of techniques that fits a particular 
theme, and each part begins with an introduction that summarizes how the 
pieces fit together. It will always be helpful to take a quick look at these intro-
ductions before diving into a chapter within a part of the book because they 
will clarify why the chapters are sequenced the way they are, and anything that 
you should know about prerequisites. Cross referencing within parts will be 
more common than between parts, but you’ll find advice will be given about 
chapters found in other parts as well.

The four major parts are as follows:

 ■ Part I: Advanced Statistics: In this section, we focus on statistical tech-
niques that you can turn to either when more traditional or more common 
techniques might pose problems, or when you face situations where there 
is a more sophisticated option awaiting you if you are willing to try it. So 
we tackle options like Structural Equations modeling, but also options 
like Bootstrapping.

 ■ Part II: Data Visualization: We have not restricted ourselves to how to 
make bar charts and pie charts in this section. Frankly, those topics would 
not deserve a major section of this length, wouldn’t be all that interesting 
to experienced users, and would belong in a different kind of book. In this 
section, we bring the full power of SPSS to bear on data. We believe that Data 
Visualization includes properly analyzing and prepping the data to facilitate 
visualization so techniques like Correspondence Analysis are fair game. Also, 
we cover advanced features that you may not be familiar with, and brand 
new features in the most recent versions like GeoSpatial Association Rules.

 ■ Part III: Predictive Analytics: Predictive analytics and data mining are 
more associated with SPSS Modeler than SPSS Statistics. Can SPSS Statistics 
be an effective option? We answer in the affirmative, walk through the 
differences between statistics and data mining, and introduce some algo-
rithms available in SPSS Statistics.

 ■ Part IV: Syntax, Data Management, and Programmability: Thirty years 
ago, an SPSS user could not escape learning SPSS Syntax, but now you 
can. Why tackle SPSS Syntax? What features have been added both to the 
language and the menus to add in the logistics of SPSS? What is program-
mability, and how can you take advantage of its features without having 
to become a serious programmer? These are the questions we answer in 
this final part of the book.

You may be curious about the authors’ various contributions. Jesus’ pres-
ence was felt in each and every chapter, but he was lead author on Chapters 
3, 4, 7, 10, 12, and 17. Jesus collaborated extensively with Keith on Chapters 2 
and 5. Andrew contributed Chapter 8, and Jon contributed Chapter 18. Jon’s 
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contribution goes far beyond a single chapter in that his knowledge and role of 
technical reviewer had a positive impact on the entire book. In addition to the 
chapters on which he was lead, Keith wrote the front matter and the book and 
part introductions. Keith will serve as primary contact for the authors and can 
be reached at keithmccormick.com.

How to Use This Book

All of the examples in this book come with practice datasets, and when neces-
sary, supporting SPSS Syntax. This is a hands-on book. You can read it on a 
plane or during a commute, but at some point you will want to sit down at the 
computer and try these techniques. All of the chapters are hands-on in this way, 
and chapters are rarely a prerequisite for other chapters.

All practice datasets and supporting SPSS Syntax are available on this book’s 
webpage on Wiley.com. Go to http://www.wiley.com/WileyCDA/ and search 
for “SPSS Statistics.” On the page of results that opens, select this book, then, on 
the book’s main webpage, locate the “Downloads” section and click the “Click 
to Download” link.

There are a couple of notable exceptions. You will always want to read the short 
introduction of each of the four major parts of the book before reading chapters 
in that part. Chapters 5 and 6 are a pair and are best read together, and in order. 
The opening chapter of Part III, “Predictive Analytics,” Chapter 11, should be read 
before the others in Part III, especially if you are new to data mining. The open-
ing chapter of Part IV should be read before the others if you are new to Syntax.

If you don’t have a module, but the chapter looks interesting, think about 
taking advantage of the software trial. Trial versions always have the complete 
complement of modules. AMOS is a little different. It is standalone sibling 
software that belongs to the SPSS family, but is not part of SPSS Statistics, per 
se. You can get a trial of it as well. You may want to read a number of chapters 
in anticipation of using the trial to make the best use of the time period. A 
popular way to learn SPSS, and get more time to have access to it, is to take a 
class. Many classes, both online and local to you, probably would allow you to 
use a student version. The combination of this technique and the trials should 
allow you to try everything that you read about in the book.

The Themes of the Book

Alternate strategies when statistical assumptions are not  
met and the ongoing debates surrounding p values

The debates between the frequentists and the Bayesians, traditionalists and data 
miners, proponents of p values and proponents of effect sizes, can be fascinat-
ing, but can also be frustrating. If you have mastered one approach, but have not 
mastered the alternative, it can be frustrating. If you are exploring other options, 

http://www.wiley.com/WileyCDA/
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but your colleagues are not encouraging, that can also be frustrating. This book 
is not about these debates, but it is about options. The discussions about options 
will sometimes make it seem that we are entering the fray. Mostly, however, we 
want to show you that SPSS may offer alternatives that you have not yet mastered. 
Specifically, when we think that the traditional approach may fail you because 
you don’t meet the assumptions there are at least three other options to explore:

 ■ Use a technique with different assumptions.

 ■ Use a technique that doesn’t have classical assumptions.

 ■ Use additional or alternate reporting criteria.

We won’t review the traditional approaches all that much, and we largely 
assume them (Chapter 1 may be a bit of an exception, so please do read that 
chapter first). We do try to open up completely new avenues. For example, 
while we don’t discuss Bayesian approaches, we do try to open the door to new 
approaches by introducing Bootstrapping and Monte Carlo Simulation. Also, in 
a very real sense the section on Predictive Analytics will force you to reexam-
ine to a degree what we are doing when we do hypothesis testing. There is a  
whole literature around these debates and we will occasionally mention books 
in the text to further pursue these topics.

Expanding the toolkit for data visualization in SPSS Statistics, broadening 
the notion of what effective visualization is

SPSS users are somewhat notorious for performing “analysis” in SPSS, but 
then reporting and charting elsewhere, usually in Excel. Those of us who use 
SPSS every day are frankly somewhat bemused by this. SPSS gets better and 
better with each release, and we gave up this kind of patchwork approach 
in the ’90s. However, we are also trainers. We see lots of end users, and we 
understand why it seems like a good idea—and more rarely we see situa-
tions where something within SPSS truly isn’t working out for a client. It is 
not displaced loyalty on our part to encourage a more comprehensive use of 
SPSS. We’ve seen the horror of wasted effort of constantly moving back and 
forth, often by cutting and pasting.

This was a major motivation for dedicating such a large portion of the book 
to visualization. SPSS has tremendous power that many have not yet discov-
ered. Also, we strongly believe that visualization is not just about colors and 
shapes. Data has to be prepared to support visualization, and that often requires 
 distilling the patterns down to their essence so that they can be visualized. That 
is why we believe that Chapters 8, 9, and 10—which are all powerful examples 
of analysis in support of visualization—belong in this book, and specifically in 
the visualization section. Correspondence Analysis, Multi-Dimensional Scaling, 
Spatio-Temporal Prediction, and Generalized Spatial Association Rules (all 
addressed in these three chapters) produce compelling visualizations but they 
do so by crunching the input data in powerful ways.
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Exploring predictive analytics and performing predictive analytics tasks in 
SPSS Statistics

Data mining, as a phrase, seems a bit out of fashion these days, but the collec-
tion of techniques the phrase represents is on the rise. “Data mining,” however, 
probably is the phrase that makes most salient the potential contrast between 
itself and the techniques of traditional statistics. The similarities are fairly obvi-
ous, and to some, the differences can cause concern. What are we “proving” 
with data mining? they might ask. It is not a small question. We dedicated the 
entire “Predictive Analytics” section of five chapters to this theme. Also, the 
section introduction is very much a part of the discussion. Taken together, these 
chapters come the closest to forming a book within a book.

Increasing sophistication with the mechanics of SPSS Statistics

Power users of SPSS all use SPSS Syntax, at least occasionally. Back in the ’90s 
when the lead authors were really getting started in SPSS there was a bit of ten-
sion between those who used Syntax and those who used only the GUI. As Jason 
Verlen points out in his foreword to this book, 1995 was a critical and exciting 
time of transition for SPSS. The GUI was becoming more feature rich than ever 
before. However, those who already had a great deal of experience recognized 
that the GUI was only catching up, it sometimes seemed to them more trouble 
than it was worth, and it briefly seemed like the SPSS community was going to 
become two communities. This never happened. Everyone uses the GUI, and 
rightly so. It is powerful and elegant. It is hard to imagine not using it. So what 
about Syntax? Well, SPSS doesn’t force competence in this area as much anymore. 
But to the expert user, there are absolutely times when it is the best choice.

Experiencing some newer or under-appreciated techniques of SPSS

The module (and bundle) system of features has tended to create a large collection 
of third-party SPSS training guides that focus solely on SPSS Base. The fear, we 
speculate, is that the authors of those books don’t want to cover anything that some 
readers might not have access to. They are truly numerous, and scores of books 
cover the basics. As career-long members of the SPSS community and as SPSS train-
ers, we’ve seen the resources on more advanced techniques dwindle, and related 
courses are rarely offered. These are truly powerful techniques, and they deserve 
a wider audience. We feel that more advanced users need a support system, too.

We want to reverse that trend to the small degree that one book can accomplish. 
The bundle system makes many of these modules more readily available. So 
much so, that we frequently meet clients that have modules that they don’t know 
they have. Five of the chapters include material that requires nothing more than 
SPSS Base. Most do, however. The alignment of the chapters, modules, bundles, 
and techniques is outlined in the next section. So while the reader should be 
cautioned to investigate what they have access to at home and office, we urge a 
wider audience of users to be familiar with the full spectrum of what SPSS can do.
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Understanding the SPSS Bundles and the SPSS Modules

For decades within the SPSS community, add-on modules have allowed the 
price of SPSS Base to be a lower entry level than the full package. IBM has 
introduced bundles of modules, and as a result, you might hear less and less 
about the individual modules. This could cause confusion if one person who is 
used to the old system is discussing functionality with someone who has just 
bought a bundle. There are numerous places on the IBM website to get further 
clarification, including this URL: http://www-01.ibm.com/software/analytics/
spss/products/statistics/edition-comparison.html.

The following chart shows the relevance of the modules to the topics and 
chapters in this book.

IBM SPSS 
EdItIonS

IBM SPSS 
ModulES

StandalonE 
IntErFacE 
and InStall? chaPtEr

tEchnIquES 
covErEd

Standard

Advanced 
Statistics

4 HLM

Custom Tables

Regression

Professional

Categories 3 Ordinal and 
Categorical 
Regression

9 Correspondence 
Analysis

10 Multidimensional 
Scaling

Data Preparation 12

Decision Trees 14 CHAID & CRT

Forecasting

Missing Values

Premium

Bootstrapping 2

Complex 
Samples

Conjoint

Direct Marketing

Exact Tests

Neural Networks 13

Amos Yes 1

http://www-01.ibm.com/software/analytics/spss/products/statistics/edition-comparison.html
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The New SPSS Subscription Bundles

As this book goes to press in early 2017, IBM has announced an SPSS Statistics 
subscription offering. Paid monthly, among its features is that it is easy to update 
and it is easy to add features like those discussed in this book. The numbered 
versions do not go away and the bundles described in the previous table do not 
go away. This is just a new option. Noteworthy to readers of this book is that 
two modules, Data Preparation and Bootstrapping, which each get a dedicated 
chapter, are included as part of “Base.”

The following chart shows where in this book the subscription and add-ons 
are discussed.

ModulES IncludEd chaPtEr

Subscription “Base” Data Preparation 12

Bootstrapping 2

Custom Tables & Advanced 
Statistics Add-On

Custom Tables

Regression

Advanced Statistics 4

Complex Sampling & Testing 
Add-On

Complex Samples

Exact Test

Conjoint

Categories 3 (Categorical Regression)

9 (Correspondence Analysis)

10 (Multidimensional Scaling)

Missing Values

Forecasting & Decision Trees 
Add-On

Forecasting

Decision Trees 14

Neural Networks 13

Direct Marketing

What’s New in SPSS 23 and 24?

SPSS Statistics has a new release just about every year. As of the final stages of 
writing this book, version 24 has been available for several months. The follow-
ing themes represent some of the key features and capabilities that have been 
added in versions 23 and 24.
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Temporal Casual Modeling (TCM), Spatio-Temporal Prediction (STP), and Generalized 
Spatial Association Rule (GSAR) are all quite new, and were a major theme of the 
version 23 release. They all involve using space and time data to make predic-
tions. The Geospatial Analytics material covered in Chapter 8 addresses some 
of these new features. Categorical Principle Components Analysis (CATPCA) also 
was enhanced in version 23.

Reporting features have been enhanced in recent versions. Web reporting has 
been completely redesigned for 23, and the Custom Tables module got a major 
upgrade with the release of 24. The table displayed in Figure I-1 illustrates the 
increased access to inferential statistics and greater flexibility of combing a 
variety of descriptive statistics in a table. Significance test results in the tradi-
tional style can now be shown in the main table. The pivot table TableLooks and 
graph templates offer new options, and a cleaner, more modern look. The figure 
features the new pivot table default template in version 24. The new ChartLooks 
can be downloaded at https://developer.ibm.com/predictiveanalytics/
wp-content/uploads/sites/48/2016/04/Chartlooks.zip.

Figure I-1:  Example of version 24 custom table

There has also been a focus on accessing a diversity of data sources. Version 
23 added bulk data loading which improves performance. Version 24 included 
substantive changes and improvements to the process of bringing in data includ-
ing new interfaces and options. The improvements focus on excel data and .CSV 
files, and improve both importing and exporting. Smarter importing algorithms 
result in faster, more accurate importing of data.

www.allitebooks.com

https://developer.ibm.com/predictiveanalytics/wp-content/uploads/sites/48/2016/04/Chartlooks.zip
http://www.allitebooks.org
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An ongoing theme over the last several years that continues with the recent 
versions is programmability. R and Python have been part of the SPSS Statistics 
toolkit for many years now, but with version 24 it is substantially easier to get 
started. The Custom Dialog Builder has received major enhancements. The SPSS 
team and the SPSS community have made “extensions” readily available on the 
Internet, and with version 24 you can access these materials from the menus, 
as shown in Figure I-2. Chapter 18 provides a great introduction to the whole 
topic of programmability.

Figure I-2: The Exension Hub
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Par t 

I
Advanced Statistics

The theme of Part I is advanced statistical techniques. How advanced? Obviously, 
this is a matter of perspective and is highly individual, but we’ve collected 
four techniques that we feel deserve detailed attention. We are not seeking out 
obscure techniques. Quite the opposite. We have selected techniques that we 
think deserve attention because they apply in myriad situations, yet, somehow, 
they have not found as wide an audience as they deserve. For instance, who 
among us does not routinely fail to meet statistical assumptions, particularly 
distributional assumptions? It happens so often that the temptation among 
some seems to be not to worry about it. In my experience (Keith), this doesn’t 
truly take the form of stopping to worry about assumptions. Rather, we grow 
tired of explaining technical assumptions checking to our colleagues. We sur-
reptitiously check them, but fear that if we use a technique that is perceived as 
advanced that our audience won’t be ready for it.

This part of the book can be seen as an alternate way forward. We truly 
believe that if a more appropriate technique, instead of the standard technique 
when assumptions have not been met, is used it actually makes the narrative 
that we tell about our data easier to analyze, easier to write up, and easier for 
our colleagues to understand. Chapters 2 and 3, in particular, pick up on this 
theme, although it is an important theme of the entire book. Bootstrapping, 
discussed in Chapter 2, is a wonderful way of dealing with data that does not 
meet our normality assumptions. Modern computers do it easily—certainly 
more easily than the computers of just a decade or two in the past. Also, if we 



2 Part I ■ Advanced Statistics

as analysts become familiar with it, it is not that difficult at all to incorporate 
it into our analyses.

Another assumption that is frequently broken concerns the level of measure-
ment of variables used in linear regression. Linear regression will probably 
always be among the most popular and widely used techniques—and for good 
reason. However, its popularity and the fact that our colleagues are generally 
familiar with it often tempts us to bend the rules. Many simply bring ordinal 
variables into standard regression, yet it is not difficult to take a more appropri-
ate approach, one specifically suited for variables that are not scale. Chapter 3 
introduces some of these regression approaches.

Hierarchical Linear Models have been quite popular for many years. In 
this case, perhaps our goal is less to raise awareness and more to provide a 
gentle introduction to a topic where many find they need a bit of coaching. It 
is potentially a big topic with plenty of dedicated texts, but Chapter 4 will be 
quite helpful if the subject has been on your to-do list for some time and you 
want to get started.

Chapter 1 is a bit different than most of the chapters in the book. The emphasis 
on the point-and-click aspect of the methods discussed is reduced. The reason 
is that several methods are included in the chapter and they are compared and 
contrasted with one another. If each of them were discussed in detail, along 
with all menu and output options, the chapter could easily grow very lengthy. 
The goal is to both review some of the multivariate analysis options in SPSS 
Statistics as well as introduce Structural Equation Modeling (SEM) and SPSS 
AMOS. The narrative is built around a single dataset and the many ways of 
testing some hypotheses about the dataset. Previous knowledge of AMOS is 
not required, and the chapter will be insufficient to act as a thorough AMOS 
primer. The focus is on the AMOS output and comparing it to the SPSS Statistics 
output. However, you will leave the chapter with a good introduction to SEM 
and what it brings to the table. If you could use a bit of a review in techniques 
like ANCOVA, MANOVA, and MANCOVA, then you are strongly encouraged 
to read Chapter 1 first.

In This Part

Chapter 1:  Comparing and Contrasting IBM SPSS Amos with Other Multivariate 
Techniques

Chapter 2: Monte Carlo Simulation and IBM SPSS Bootstrapping
Chapter 3: Regression with Categorical Outcome Variables
Chapter 4: Building Hierarchical Linear Models
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Structural Equation Modeling (SEM) truly is a family of techniques, and the 
literature offers many dedicated texts, both introductory and advanced. IBM 
SPSS AMOS, the tool we discuss in this chapter, is both a standalone tool and 
integrated with SPSS Statistics (in that they share .sav data files) with a long 
history as part of the SPSS family. Since IBM acquired SPSS in 2009, it has 
marketed it in a variety of ways, sometimes bundling with add-on modules 
causing potential confusion that it is an add-on module itself. It has its own 
unique graphical user interface (GUI). The chapter spends a substantial amount 
of time analyzing a single case study dataset using several approaches before 
turning our attention to AMOS, so it is a good review of multivariate techniques 
in SPSS Statistics. It should prove valuable on this level as well as an introduc-
tion to SEM, even if you never acquire AMOS. Certainly, you should consider 
downloading an AMOS trial to explore the case study results and to get a richer  
introduction to AMOS, but the chapter should be clear even if you don’t attempt 
using the AMOS interface.

Although AMOS is unique in the book in that it has its own GUI, this chapter 
doesn’t discuss the GUI in detail. The focus is on interpretation of results and 
what makes the AMOS approach special. The standard approach in this book is 
to spend considerable time performing steps in the SPSS Statistics GUI. In this 
chapter, the first two-thirds clarify where various multivariate techniques are 
found in the SPSS GUI. The final third discusses parallel techniques available in 
AMOS. If you opt to give AMOS a try, and I encourage you to, the AMOS User’s 

C h A P t e r 

1
Comparing and Contrasting 
IBM SPSS AMOS with Other 

Multivariate techniques
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Guide does a wonderful job at explaining the GUI. It is one of the best guides 
of its kind that I’ve encountered. Something that the AMOS guide does not do 
is compare and contrast AMOS’s output with SPSS output. That is really the 
whole point of this chapter—by answering the questions What does SEM and 
AMOS add to one’s statistical toolkit, and When is one tool preferable to another?

The motivation in attempting SEM via AMOS instead of ANOVA or Regression 
is not as simple as those methods failing to meet assumptions. It is more subtle 
than that. The case study presented in this chapter shows that it is more about 
telling a richer, more complete story than you could with other techniques. We 
begin by exploring the data with standard techniques, but no single analysis will 
do the job. SEM, in this case, becomes the best way to test our full theory with a 
single model. Don’t let the new interface scare you away. AMOS is powerful, and 
is SPSS dataset friendly, even though the interface is very different. You won’t 
need to create AMOS Graphics diagrams because completed diagrams (in the 
form of .amw files) are provided. These will allow you to explore the completed 
solution. The focus will be on interpreting results and not the point-and-click 
steps required to build the diagrams.

A NOte ON Why We ChOSe tO PlACe thIS ChAPter FIrSt

The choice to place this chapter first—a chapter that requires AMOS—may be sur-
prising. If you do not have AMOS yet, there may even be a temptation to jump ahead 
to a chapter discussing a technique that you have at the ready, but this chapter also 
serves as a good review of material for a number of chapters that follow, especially 
Chapters 2, 3, and 4. For that reason to place it first is to place it in its natural location. 
Conceivably, you could read just the first half of the chapter in preparation for the rest 
of the book via reviewing of the standard techniques, but once you’ve seen the data 
analyzed in these ways, seeing how it all can be examined through a different lens 
should prove interesting even if you are not immediately clicking along.

The chapter unfolds in a way that you might find surprising at first. We begin 
the case study in SPSS Statistics, and we will be using a single .sav data file 
throughout. You can find AMOS PSAT data.sav on the book’s website along with 
the .amw files. We will attempt a number of different techniques on the data 
before we try AMOS, including a section about each of the following:

 ■ T-test

 ■ Analysis of Covariance (ANCOVA)

 ■ Multivariate Analysis of Variance (MANOVA)

 ■ Multivariate Analysis of Covariance (MANCOVA)

Basic familiarity with the family of ANOVA techniques is assumed, and we 
move briskly into the case study exploring the strengths and weaknesses of 
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different possible analyses before we get to AMOS. Because you see several  
iterations before getting to the AMOS version, the chapter is able to compare 
and contrast multivariate techniques in SPSS Statistics and SEM in AMOS. 
Table 1-1 at the end of the “Factor Analysis and Unobserved Variables in  
SPSS” section—where SPSS approaches end and AMOS approaches begin— 
summarizes the multivariate tests made to that point in the chapter. You might 
want to occasionally jump ahead to that table to help “keep score” on our  progress. 
There is a similar table, Table 1-3, at the end of the “AMOS” section.

We don’t focus on learning all that AMOS can do (it is feature rich) nor 
on the full theory or complexity behind SEM. We simply use a single case 
study to show that we can analyze the data in SPSS Statistics, but the analysis 
doesn’t fully reflect the theory behind the case study until we reach the final 
model in AMOS. No prior knowledge of AMOS or SEM is assumed. The case 
study is interesting enough, I think, to make the chapter enjoyable even if 
you know a bit about either (or both) topics, but these two topics are too broad 
to offer much more than a taste in this chapter. One aspect of the case study 
that warrants attention, but won’t be discussed thoroughly until the AMOS 
section, is the direction of causality. As we are frequently warned in Stats 101, 
establishing a correlation between A and B does not establish that A is causing 
B, nor that B is causing A. In fact, we are cautioned, it might even be neither 
of those. We will stick with the hypothesized relationships that inspired the 
data collection in the first half of the chapter, but in the final section we will 
spend some time specifically on the direction of causality and how AMOS 
can shed light on it.

The case study dataset AMOS PSAT data.sav contains the PSAT test results for 
222 sophomores in five high schools in the same greater metropolitan area. The 
Preliminary SAT/National Merit Scholarship Qualifying Test (PSAT/NMSQT) 
is the test that students take that helps them qualify for the National Merit 
Scholarships as juniors in high school, but many students also take it as practice 
for the SAT. This group was part of a study and was explicitly encouraged to take 
it a year early, so no particular assumptions about their college intentions can be 
made. They are likely fairly close to the general population, and not necessarily 
college bound. The data was collected in the mid-1990s. The Myers-Briggs Type 
Indicator (MBTI) was also administered to the same students during the study, 
which was used as a learning style indicator.

The purpose of the unpublished research was to determine if one learning 
style might have an advantage over others. Uncovering the mechanism of the 
advantage was a different challenge. One explanation proposed by the research-
ers was one group was better at guessing at questions that were a bit beyond 
their classroom training. The mechanism won’t be explored in detail here. We 
will focus on trying to quantify the possible gap given control variables. The 
“A Bit about Learning Styles” sidebar elaborates on the thought behind the 
working hypothesis.
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Classes were examined in the school transcript and categorized as honors or 
non-honors in each of four categories: English, math, science, and social studies. 
An overall level variable was created using these four variables by calculating 
the percentage of honors. Possible additional control variables in the dataset 
include sex and class rank.

We hypothesize that honors will outperform non-honors on both subscales, 
and an additional advantage will go to those with an intuitive learning style. 
Obviously, other hypotheses are completely plausible. Notably, the causality 
could flow in the opposite direction. Especially bright students might be invited 
to take honors classes and might naturally get higher scores, but not because of 
their course selection. Some schools require evidence of high scores on similar 
tests to earn the right to take honors classes. Excellent grades (reflected in class 
rank) might be driving the taking of honors classes. For now, we will adopt the 
study’s hypotheses as our own, but in the final section will explore the direc-
tion of causality in AMOS and see if we can’t shed some light on some of these 
alternative theories.

A BIt ABOut leArNINg StyleS

The two styles were the sensing (S) learning style and the intuitive (N) learning style. 
The differences between the two were described originally by Jung, but not explicitly 
as learning styles, and in a rather different context. Some relevant differences are 
that sensors (S) prefer using established methods of problem solving that they have 
rehearsed. They like extrapolating from past experience. intuitives (N) are sometimes 
bored by repetition so their problem solving can involve creatively exploring new 
methods and finding new relationships. They like extrapolating from theory and test-
ing their new hypotheses.

The hypothesis of the researchers (who included Keith), and which will act as our 
working hypothesis in this chapter, is that honors classes are taught in such a way that 
they better prepare students to perform well under conditions of uncertainty and will 
produce higher test scores. Honors classes, more than non-honors classes, require and 
reward going a bit beyond one’s training. Naturally, honors students might find also 
fewer questions that are beyond their training than non-honors students. Comfort in 
the intuitive style is hypothesized to come in handy when particular PSAT questions 
(particularly as a sophomore) are beyond one’s training. Finally, intuitives (N) might 
be hypothesized to be somewhat more comfortable when struggling with a question 
they haven’t encountered before and have to guess.

At the risk of stating the obvious, some learning and academic tasks simply align 
better with either using established methods or finding new patterns. Students 
will be expected (and most would agree should be expected) to flex and use both 
approaches. What theory would predict is at times of stress (long hours of work, learn-
ing something for the first time, pressure to perform, and so on) working in the oppo-
site style becomes especially difficult.
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T-Test

First, we will establish that there is a difference between the two learning style groups, 
and then explore a number of ways that we can do a formal test of the hypothesis. 
This chapter is essentially an exploration of how to measure this gap while handling 
these potential control variables in a way that is accurate, defensible, persuasive, 
clear, and hopefully even elegant. Generally, the more you pile on control variables 
and interaction terms, the more you might persuade certain members of your 
audience, but it complicates the narrative, endangering clarity. Worse, to a critical 
eye, too many variables along with too many hypothesis tests and coefficients puts 
persuasion at risk for another reason—because parsimony is valued in analysis.

So let’s begin with the most basic statement of the hypothesis. Students who 
prefer two learning styles, intuition (N) and sensing (S), get different overall 
scores. Phrased that way, a straightforward T-test seems to be in order. PSAT 
scores in this dataset range from 40 (low) to 160 (high). Throughout the chapter 
we will use the AMOS PSAT data.sav dataset and our dependent variable (Test 
Variable) will be PSAT, which is the combined test score. Our independent 
variable (Grouping Variable) will be SN as shown in Figure 1-1. Note that SPSS 
requires you to declare the two groups, which are S and N. When defining using 
the Define Groups subdialog (not shown) remember that it is case sensitive.

Figure 1-1:  T-test dialog

The results, shown in Figure 1-2, confirm our hypothesis, in a sense. It is 
significant. We know this because we’ve passed the Levene’s Test (it is above 
0.5 at .866) if we accept the normality assumption, and we can use the standard 
significance test in the top row of the Independent Samples Test. It is well below 
.05 with a value of .000. Of course, p values like this are not exactly zero, and 
SPSS will allow you to show many more decimal places if you choose. No need 
to do that in this case. In Chapter 2 we will explore bootstrapping which would 
be an option if we actually had difficulty with the normality assumption.
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More importantly at present, there is about a 10-point difference between 
the two groups. The S mean is 79.70 and the N mean is 90.53. (Note that if you 
are more familiar with SAT scores, the equivalent would be 100 points. You 
can simply multiply any PSAT score by 10.) This is not a trivial difference, and 
reflects a Cohen’s d of .58, which would be considered “moderate.” SPSS Statistics 
does not support Cohen’s d in the T-test menu, but there is a way to request it 
in SPSS, which is discussed in Chapter 18.

Figure 1-2:  T-test results

I don’t think that many researchers or readers of research would be completely 
satisfied by our T-test. It is consistent with our hypothesis, and we have estab-
lished a difference, but we have unfinished business. One of the two groups 
could be college bound, taking appropriate courses to support that; the other 
group might not be. One of the groups could have parents that help them with 
their homework, and the other does not. (Note that we can’t randomly assign 
them to the two groups because they aren’t treatment groups. They belong to 
the groups because of their answers on a paper and pencil questionnaire.) Of 
course, we don’t have any reason to believe that the two learning styles are tied 
to these effects, but each reader will have his or her favorite explanation and will 
wonder why we haven’t tried to account for them. In short, we have no control 
variables. We will address the issue of control variables soon enough when we 
attempt an ANCOVA in the very next section. A second problem is that we are 
using combined scores and not verbal and math separately. I will explain why 
this is an issue, and make in attempt to address it when we try MANOVA.

ANCOVA
Analysis of Covariance (ANCOVA) will let us deal with the first of our issues. We 
will add a variable measuring the percentage of honors of the classes that they are  
taking. One could have all kinds of debates about the direction of the causality 
and the nature of relationship between this variable and test performance. In 
particular, in the “The Direction of Causality” section later in this chapter, we 
will revisit this issue using AMOS. For now, the working hypothesis is that one 
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would expect honors students to go into a PSAT testing situation with a prepa-
ration that is more suited to the test than a non-honors student both in terms 
of the amount of material that will be familiar and even the style of teaching 
found in honors classes. Then we proceed to compare Ns and Ss, but with that 
expected advantage taken into account. If we succeed we will claim that we have 
established a difference between the two groups even after having controlled 
for the influence of another variable, level of class difficulty.

Before we can proceed we have to deal with an assumption of this approach—
the homogeneity of slopes assumption. While we won’t be going into a lot of 
technical detail, checking this assumption visually will also allow us to get a 
nice look at what we are trying to do. We will be using a colored scatter plot 
in Chart Builder. (If you are new to Chart Builder, it is discussed in Chapters 5 
and 6.) As shown in Figure 1-3, we will use PSAT as the y-axis, Percent Honors 
as the x-axis, and SN as the color.

Figure 1-3:  Chart Builder dialog
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I’ve edited the results a bit, shown in Figure 1-4, to make the pattern clearer. 
I’ve added “fit lines” for the two subgroups. The two parallel lines represent the 
performance of Ns and Ss. The higher of the two lines represents Ns. Moving 
from left to right, as Percent Honors gets larger, associated with lower difficulty, 
the PSAT scores tend to go down. The gap between the performance of Ns and Ss 
seems quite uniform. SPSS has added two regression equations, and R2 results, 
along with our fit lines. Note that the slope of the two lines is very similar, but 
the Y intercepts show a more than 4-point gap. Consistent with those equations, 
the lines appear nearly parallel. That is the meaning of the homogeneity of 
slopes assumption, which we appear to have met. Put that another way, SN and  
Percent Honors do not interact. Interactions will be discussed again, especially 
in Chapter 13. Figure 13-4 shows a similar graphic but using a dataset where 
an interaction is present.

Figure 1-4:  Chart results with regression lines added

Let’s proceed with the ANOVA itself, found in the General Linear Model 
dialog. Select Univariate in the dialog, as shown in Figure 1-5.
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Figure 1-5:  General Linear Model menu options

PSAT will be our Dependent Variable, SN will be a Fixed Factor, and PercHonors 
will be a Covariate, as in Figure 1-6. We will request Parameter Estimates in the 
Options submenu, but make no additional changes, as in Figure 1-7.

Figure 1-6:  Univariate dialog

Figure 1-7:  Univariate options subdialog
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The results, shown in Figure 1-8, are consistent with the visualization and so 
far our hypotheses have been correct:

 ■ Percent Honors is significant (Sig. column of the Between-Subjects Effects).

 ■ SN continues to be significant even when PercHonors is acting as a covariate.

But what is the magnitude of the impact of SN in the ANCOVA? That ques-
tion is better answered with the Parameter Estimates table that we requested, 
also shown in Figure 1-8. The impact of SN is somewhat smaller with the 
addition of the covariate, at 6.317 points, but it is not trivial in size. Remember 
in the more familiar scale of the SAT this would be 63 points. The magnitude 
of the effect of honors/non-honors levels, however, is quite large. The differ-
ence between a student with all honors versus no honors would be estimated 
to be a gap of almost 28 points on the PSAT scale, which would be 280 points 
on the SAT scale.

tACklINg OrdINAl dAtA:  the OrIgINAl FOrM OF the  
trANSCrIPt VArIABleS

When the transcripts were originally analyzed for both sophomores and juniors, the 
classes were described in four categories not two:  Advanced Placement (1), honors (2), 
non-honors (3), non-college prep (4). The fourth category would include examples like 
taking accounting as a math as opposed to non-honors pre-calculus. It was dichoto-
mized for this example because the sophomores didn’t have AP options, and only a 
handful of classes were labeled four.

It doesn’t have a direct bearing on the chapter, but it is interesting to reflect on how 
to handle a four-category ordinal variable like this. One option would be categorical 
regression, which we will cover in Chapter 2. Another option would be Latent Class 
analysis. SPSS does not offer it in the menus but it is available as an “extension.” While 
Latent Class is not one of the examples shown, the book offers a chapter-length intro-
duction to extensions in Chapter 18.

As we’ve already mentioned, there is another problem. We have two sub-
scores: math and verbal. We aren’t taking advantage of them. We would have 
greater statistical power if we didn’t discard the variance contained in the two 
subscores. In other words, the ANOVA is ignoring the fact that a 60 Verbal/40 
Math is not the same as a 40 Verbal/60 Math. Better if we take advantage of 
two subscores, and not simply add them together, but that will require two 
dependent variables. So now it is time to try Multivariate Analysis of Variance 
(MANOVA).
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Figure 1-8:  ANCOVA results

MANOVA
Multivariate Analysis of Variance (MANOVA) allows us to have two (or more) 
dependent variables. There is a lot of confusion around MANOVA, and even folks 
that are really quite sophisticated statistically can fall prey to the confusion. In 
a very real sense, MANOVA has only one dependent variable but a dependent 
variable that requires more than one variable to measure it effectively. For this 
reason the dependent variables should be related conceptually. For instance, a 
concept like anxiety might be measured by a variety of “manifest” variables like 
sleeplessness, change in appetite, and so on. Even though the manifest variables 
would be dropped into the MANOVA dialog and there would be no anxiety 
variable physically present in the dataset, the anxiety concept is a critical part of 
the story. If a pair (or group) of dependent variables in a MANOVA were com-
pletely unrelated it would beg the question of why they were part of the same 
test. One can think of the dependent variable as a latent variable (from the Latin 
for “lie hidden”). The latent variable is not directly observed or measured. AMOS 
makes this more explicit than MANOVA as we will see when we discuss AMOS. 
Another way of referring to such variables is to call them unobserved variables.

In our example, we use VPSAT and MPSAT together, as dependent variables, 
to measure readiness for college, each picking up on different aspects of the 
readiness concept. Years ago, these tests were referred to as “aptitude” tests. 
More recently the terms “reasoning” or “assessment” have been used. We won’t 
debate that here, but since the goal is to predict the readiness for college, we 
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will simply refer to the unobserved variable as “readiness.” There will be test 
results that will attempt to measure differences between that readiness and the 
SN variable, which will be a Fixed Factor. MANOVA is also found in the General 
Linear Model menu, but this time we will access the necessary dialog using the 
Multivariate submenu (not shown). The Multivariate dialog, set up with our 
variables, is shown in Figure 1-9. Just as we did with ANCOVA we will request 
Parameter Estimates in the Options subdialog (not shown).

Figure 1-9:  Multivariate dialog

We will also be interested in the verbal and math variables as individual vari-
ables, but they now share the spotlight with the latent, unobserved dependent 
variable. Combined score, however, is not used, because our subscales, working 
as a pair, give us a better way of measuring an overall difference.

This produces an intimidating amount of output (Figures 1-10, 1-11, and 1-12), 
but it reveals much that we have not seen thus far. The four Multivariate Tests, 
despite their varying ranges of being conservative and liberal, and with their 
varying assumptions, all agree that the combination of subscales, when analyzed 
as a pair, show a significant difference between our learning style dichotomy 
categories (Figure 1-10).

SPSS provides four multivariate tests in part because they differ in various 
ways, and are favored by different groups of researchers and under different 
circumstances. One could dedicate a substantial discussion to the four tests,  
but since they all agree in this case, we will focus on the fact that S and N have 
now been established to have a different mean on the unobserved variable 
“readiness” as measured by our pair of dependent variables.
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Figure 1-10:  MANOVA Multivariate Tests

The next portion of the output is shown in Figure 1-11. The most impor-
tant part of the Tests of Between-Subjects Effects is the significance of the 
SN difference on the two subscales. On both, SPSS reports a p value of .000. 
Once we have established a significant difference, the magnitude of the 
difference is what is more interesting. The Parameter Estimates show that 
the SN gap is 6.1 points on the verbal subscale and 4.7 points on the math 
subscale.

Figure 1-11:  Additional MANOVA results
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So, what do we conclude?

 ■ S and N differ on “readiness.”

 ■ S and N also differ on both subscales.

 ■ The S/N difference is a bit larger on verbal than math, but both differences 
are significant and substantial in size.

What is missing from our analysis? With our ANCOVA we had a control vari-
able, but it is lacking from this most recent attempt. It is time to add a covariate 
back, which we will do in the next section by attempting Multivariate Analytics 
of Covariance (MANCOVA).

MANCOVA with a Single Covariate

Having done the analysis step by step it won’t be difficult to describe what we 
are attempting to do with our Multivariate Analysis of Covariance (MANCOVA). 
We will continue to assess differences between S and N on readiness, but with 
a covariate. We will use the same covariate we used in our ANCOVA example, 
PercHonors. We will set up our dialog just like Figure 1-9 except that we are 
adding in our covariate (Figure 1-12).

Figure 1-12:  T-test dialog

Everything else will remain the same including our request for parameter 
estimates in the Options dialog (not shown).
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I’ve edited the results to simplify the Multivariate Tests for two reasons: All 
four of the tests agree (even producing the same p values) and because Pillai’s 
Trace is generally favored. The edited results appear in Figure 1-13. (For the 
curious, the pivoting trays feature was used to do the editing.) The addition of 
the covariate has changed the significance of the SN gap very slightly. It is now 
reported to be .008, but is still well below .05.

Figure 1-13:  MANCOVA Multivariate Tests results

When analyzed individually, the VPSAT and MPSAT subscales show a signifi-
cant difference between our learning style dichotomy categories (Figure 1-14). 
The key results among the tests are the significance of .003 for SN difference 
on the verbal subscale, and .024 for the SN difference on the math subscale.

Figure 1-14:  MANCOVA Tests of Between-Subjects Effects results

The effect is shown in the Parameter Estimates (Figure 1-15)—an advan-
tage for Ns of 3.7 points on the verbal, and 2.5 points on the math. Of course, 
we’ve consistently seen a difference. Now with the addition of the covariate, 
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the differences are a bit smaller, but the differences are non-trivial. Combined 
and translated into the SAT scale, that would represent 62 points.

Figure 1-15:  MANCOVA Parameter Estimates

MANCOVA with Four Covariates

We’ve managed to perform a test that is pretty close to our original hypoth-
eses and also fairly close to what we will attempt in AMOS. There is a 
temptation to quit while we are ahead, but to get a full appreciation of the 
difference between our multivariate menu options and AMOS we should 
allow our model to get a little bit more complex. We certainly don’t want 
to just throw variables into our model, but we are using PercHonors as if it 
is a direct measurement of the difficulty of classes taken. It is just a sum-
mary calculation of four different levels of difficulty. Should we be using 
the original variables and measuring the impact of each one? We will try 
exactly this kind of thing in AMOS, but for the first time there is nothing 
that is quite analogous to it in SPSS Statistics. There is an option that may 
seem a stronger analogy than it is. We can drop all four level variables into 
the covariates area in the MANCOVA dialog as shown in Figure 1-16. We’re 
going to attempt MANCOVA using all four level variables, coded 0 for non-
honors or 1 for honors, as covariates: English Honors (EngHon), Math Honors 
(MathHon), Science Honors (SciHon), and Social Studies Honors (SSHon). 
(Figure 1-16). It will serve our purpose for now, but there will be no sense 
in which the four covariates are components of an unobserved variable. As 
we will see later in the chapter, when we get to AMOS we will also have an 
unobserved variable “level.”

The Multivariate Tests produce a similar result as the previous MANCOVA. It 
has again been edited to show only Pillai’s Trace. The other three tests showed the 
same pattern. Pillai’s Trace now has a p value of .006 indicating that “readiness” 
has an SN gap even when controlling for all four level variables (Figure 1-17). 
Some fascinating additional information is now available. We can now see that 
math honors and science honors are significant at .000 and .001, but English 
honors and social studies honors are not significant. Notably, they aren’t par-
ticularly close.
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Figure 1-16:  MANCOVA dialog with four covariates

Figure 1-17:  Pillai’s Trace results

Also noteworthy is that the same findings apply to both subscales 
(Figure 1-18). The SN gap has a p value of .002 on verbal, and .016 on math. 
The finding of significant differences for math honors and science honors, 
but not for English honors and social studies honors is quite consistent on 
both math and verbal. We don’t want to overanalyze the slightly lower p 
value on verbal. The Parameter Estimates will be a better way to look at the 
magnitude of the difference.
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Figure 1-18:  MANCOVA Between-Subjects Effects

Let’s briefly ponder the lack of significance for English and social studies. 
One criticism of the PSAT in the ‘90s (the controversy prompted a revision) was 
that the verbal questions weren’t particularly like classroom work in English. 
Question types like analogies struck some critics as being more like logic than 
English class. We won’t explore that argument here, but it is worth mentioning 
it if the result seems strange. The reading comprehension passages in the verbal 
section are often science passages. So comfort with that style of reading is helpful, 
and on occasion familiarity with the actual content of the passage can be help-
ful. This explanation would raise another question however: Why doesn’t social 
studies help when there are also reading comprehension passages that use that 
subject matter? Since our hypothesis is primarily focused around establishing 
an SN gap even when covariates are applied, the evidence continues to support 
our primary claim while producing a couple of mysteries yet unexplained.

The Parameter Estimates are interesting (Figure 1-19). All four of the honors 
coefficients for verbal show an advantage for taking honors. The significance 
values and the confidence interval, of course, reveal that we can’t be certain that 
these coefficients are positive for English and social studies as the confidence 
intervals include zero. The safest conclusion is simply that there is no evidence 
that they help. The SN gap for verbal is almost 4 points (it would be nearly  
40 points on the SAT scale).

Math is a little different. There is even a suggestion that taking social stud-
ies honors might hurt. It is not significant, so perhaps we should not speculate, 
but the negative coefficient does get one’s attention. Since it sometimes hard to 
resist the temptation to wonder, perhaps students that focus on science and math 
 by taking honors in those classes, but take non-honors in social studies actually 
have the ideal profile. Perhaps there is only so much time in the day to study, and 
that combination is ideal for the kind of aptitude that the PSAT is measuring?
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Figure 1-19:  MANCOVA Parameter Estimates

Let’s take stock. The 2nd MANCOVA is fairly close to proving our hypothesis. 
There are two shortcomings. The four level variables are not being treated as a 
set of variables—they are simply being used as an unrelated set of covariates. It 
would be better if they were collectively representing a latent variable. We’re near-
ing the end of the options we will pursue in SPSS Statistics, but we will be able to 
revisit that in AMOS. The second shortcoming is that the output is getting rather 
complex. Depending on our audience, we might have some work to do walking 
them through the logic. Before we move on to AMOS we have two loose ends:

 ■ We have covariates that we haven’t tried, specifically sex and class rank.

 ■ We want to try to pursue this notion of unobserved variable further in SPSS.

A lIttle hIStOry

The SAT was developed in the early 20th century to give working class male students 
(female university students were rare) a chance to go to university. It was felt that the 
Greek and Latin exams that were used one hundred years ago for college admission 
favored the very wealthy who could afford elite prep schools. In fact, each Ivy League 
school was essentially paired with a prep school. One can imagine that the profile and 
styles of the students who did the best on those exams might be quite different. Maybe 
there is something about what they were trying to accomplish—tapping into “native 
ability” and not highly structured formal training—that causes these patterns to arise.

Other Factors and Covariates

Before we summarize our progress thus far, let’s take a quick look at an alternate  
MANCOVA shown in Figure 1-20. It is best to satisfy our curiosity about sex and 
class rank since we won’t be able to try every combination in AMOS. The results 
shown in Figure 1-20 show that SN, Class_Rank, and Sex are all significant, 
below .05. We continue to see a similar pattern with our set of level variables. 
Once again, the table has been edited to show only Pillai’s Trace.
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Figure 1-20:  Alternate MANCOVA Multivariate Tests

The overall SN effect is still significant. This is important because it doesn’t 
appear that the SN gap was really some kind of grade effect in disguise. The 
model is getting more complex yet the p value for SN has remained fairly con-
stant. So our working hypothesis is still intact, but where do we go from here? 
Is it best that we keep all of these variables in? What additional light do they 
shed on our model except to further reinforce that none of them has made the 
SN variable non-significant?

The Parameter Estimates (Figure 1-21) provide additional detail. The SN gaps are 
smaller than when we started, but even with all of these control variables they are 
non-trivial: 3.7 points on the verbal and 2.3 points on the math, which would be 
about 60 points combined on the SAT scale. There are a couple of surprises. There 
is a gender gap favoring men, slightly larger than the SN gap, on math, but there 
is no significant gender gap on verbal. Social studies, although non-significant, 
looks like it might have a gap of about the same magnitude as sex and SN on the 
math but in the opposite direction. The confidence interval ranges from a 6-point 
penalty to a 1-point advantage. It could very well be a fluke, but it makes one 
wonder if the pattern would clear up (in either direction) with a larger dataset.

Figure 1-21:  Alternate MANCOVA Parameter Estimates
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The only possible theory, and it is not terribly convincing, would be the “only 
so much time in the day” type speculation that we made earlier. We could easily 
assemble a half dozen significant MANCOVA variants. How would we best choose 
among them? Certainly we could try to make the choice within SPSS itself, but this 
is truly where we turn our attention to AMOS. We will have ways that will bring 
a more satisfying sense of closure to which model is the best marriage of theory 
and data. As I mentioned at the end of the last section, we have one remaining item 
of unfinished business. We are going to generate some factor analysis results in 
SPSS in order to be able to compare those results to our very first AMOS example.

Factor Analysis and Unobserved Variables in SPSS

This section will be an unsatisfying introduction to factor analysis if you are 
new to the topic. I have a very modest goal, and it is based on the assumption 
that many readers of this book will be more familiar with the factor analysis 
menus in SPSS than they are with AMOS. The goal is simply to generate some 
values in SPSS that will exactly match the values that we will generate in AMOS 
in our first AMOS example. For those readers with some familiarity with the 
factor analysis output, this may help you make the leap to AMOS. If you are not 
familiar with factor analysis, this short section will have less value, but you can 
certainly continue on with the AMOS example. It will simply be that matching 
the numbers won’t be as revealing for you.

Our example is straightforward enough. We take the four level variables and 
force them onto one factor and very briefly examine the results. We want to see 
if all four variables contribute to the factor, and how well the factor incorporates 
their variance. Factor Analysis is found in the Analyze menu (Figure 1-22). We 
will choose all four level variables as shown in Figure 1-23.

Figure 1-22:   Factor Analysis menu
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Figure 1-23:  Factor Analysis dialog

In order to get results that match both the output in this section and what we 
find in the AMOS output, you have to change the default extraction method. In 
the extraction subdialog (Figure 1-24) choose Maximum likelihood and choose 
a fixed number of factors. We want and hypothesize a single factor. Notably, the 
default setting, “Based on Eigenvalue” (shown), also produces a single factor.

Figure 1-24:  Extraction subdialog

The factor analysis results (Figure 1-25) show both the communalities and 
the factor loadings. The communalities, specifically the values in the extraction 
column tell us the fraction of the variance in the variables explained in the fac-
tor. Once we are in AMOS that factor will be our unobserved (latent) variable. 
If one of the variables was not contributing to our factor we might question its 
inclusion. The column in the factor matrix shows the correlation of each variable 
with the factor. We will see these same values in AMOS in Revisiting Factor 
Analysis and general orientation to AMOS.
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Figure 1-25:  Factor Analysis results

Table 1-1 summarizes multivariate tests performed in this chapter.

table 1-1:  A Summary of the Multivariate Tests Performed in SPSS

QueStION CONCluSION leFt uNreSOlVed

t-test Do S and N scores 
differ on the PSAT 
combined score?

There is a significant 
difference between 
S and N scores.

No control variables

“ANCOVA 
graphic”

Do we meet the 
homogeneity of 
slopes assumption?

Yes. The lines are 
parallel.

ANCOVA with 
SN and Percent 
honors

Do S and N scores 
differ even when 
level is a control 
variable?

Both SN and Level 
are significant.

PercHonors is not the 
ideal covariate.

Formal check 
of ANCOVA 
assumption

Do we meet the 
homogeneity of 
slopes assumption?

The interaction 
term is not 
significant, but now 
SN is not significant.

Fitting non-significant 
coefficients reduces 
our statistical power.

MANOVA Do S and N 
scores differ on 
“readiness” using 
the math and 
verbal subscores?

SN scores differ 
overall as well as 
on verbal and math 
individually.

We are back to 
having no control 
variables.

MANCOVA with 
Percent honors

Do S and N scores 
differ on the 
PSAT even when 
controlling for 
average level of 
difficulty?

SN scores differ 
even when adding 
the control variable.

We are still using an 
average of our set of 
variables.

Continues
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AMOS

At the risk of ruining the suspense, an AMOS model is shown in Figure 1-26 
that is not unlike the 2nd MANOVA (the one in the “MANCOVA with Four 
Covariates section and with the Parameter Estimates as shown in Figure 1-19). 
We spend the balance of this chapter discussing this model and other AMOS 
models using our case study dataset. We will have a lot to say about interpreta-
tion, but much less to say about the mechanics of drawing the diagram. Unlike 
Figure 1-26, statistical results are shown in most AMOS diagrams, which will 
be discussed in some detail later in the chapter. The one sentence description 
of this diagram is: The unobserved variable Level and the observed variable 
SN01 predicts the unobserved variable Readiness.

Revisiting Factor Analysis and a General Orientation to AMOS
In all of our AMOS examples, the AMOS Graphics diagrams will already 
be built and available on this book’s website on Wiley.com. AMOS Graphics 
diagrams end in the file extension .amw . Our first diagram is named  
Chapter 1 amos level only.amw. Launch AMOS Graphics and open the file. 
Once opened your screen should look like Figure 1-27.

QueStION CONCluSION leFt uNreSOlVed

MANCOVA 
with four level 
variables

Do S and N scores 
differ on the 
PSAT even when 
controlling for level 
of difficulty in four 
categories?

SN scores differ 
even when adding 
the set of four 
control variables.

We are fairly close to 
addressing our real 
research question, 
but the output 
is getting quite 
complex.

Alternate 
MANCOVA with 
more variables

Are the other 
variables 
significant?

SN is still significant 
when combined 
with Sex, Level, and 
Rank.

The issue of which 
variables to keep 
and/or drop to 
finalize our model 
is getting more 
complex.

Factor Analysis 
of the level 
variables

Can the four 
honors/non-
honors variables be 
used to estimate 
an unobserved 
variable “level”?

All four variables 
contribute to 
the variance of 
the unobserved 
variable.

Can this unobserved 
variable be used to 
predict another one 
(readiness)?

table 1-1 (continued)
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Figure 1-26:  An AMOS model similar to our MANCOVA

Figure 1-27:  The AMOS interface



28 Part I ■ Advanced Statistics

Notice the large collection of icons on the left including trucks, magic wands, 
and binoculars. AMOS has a very different interface than SPSS Statistics. The 
basic idea is if we can successfully draw a diagram that represents our model, 
AMOS will take care of most of the details. You can probably guess the use of 
the tools, for example that the truck involves moving and the copier involves 
copying. We will be extremely light on details regarding the mechanics of draw-
ing. We will focus instead on revisiting our narrative from earlier in the chapter 
interpreting increasingly sophisticated models and comparing them to the mod-
els we build in SPSS Statistics. The idea is that if you become intrigued—and 
I hope you do—you will seek out ways to learn to draw diagrams including 
using the AMOS User’s Guide.

Let’s take a closer look at the diagram and add in some of the calculations 
performed by AMOS as shown in Figure 1-28. In AMOS the variables shown as 
rectangles are observed variables. You will recognize our four level variables. 
Ovals (or circles) are unobserved variables. Level is our unobserved, or latent, 
variable as measured by four observed variables. Notice that the arrows are 
drawn pointing away from the unobserved variable. The four other variables are 
error terms. The values at the upper right-hand corner of our four rectangular 
observed variables are our communalities that we saw in the factor analysis 
output in Figure 1-25. The values adjacent to the arrows are the factor loadings, 
also in Figure 1-25, which were the correlations of the four variables with the 
factor. In this case, just as before, the factor is our latent variable Level.

Figure 1-28:  An AMOS version of our factor analysis

Goodness of fit statistics is an important topic in AMOS. The text below the 
diagram includes two of these statistics, which we will discuss now; later in 
this chapter you see more goodness of fit statistics. The Chi square tests the 
null hypothesis that the model fits the data, so we do not want to reject the 
null hypothesis. The fact that the p value is greater than 0.05 is welcome news. 
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The Chi square is one of the most widely reported tests even though it has issues. 
The most important concern is that when one has a few hundred cases or more, 
virtually all models will fall below 0.05. Our sample size of 222 is about right 
to avoid this particular problem, so the result is meaningful.

The RMSEA (Root Mean Square Error of Approximation) is among the more 
widely reported measures of fit. Experts differ on acceptable values, but most 
consider values below 0.05 to represent good to excellent fit. We are well below 
that threshold. As we will see later we can build confidence intervals around 
RMSEA and further extend our use of this test. This aspect of RMSEA will be 
discussed, along with other measures of fit, in the “Adding S/N to the General 
Model and Revisiting Fit” section later in this chapter.

In all of these examples, the AMOS graphics .amw files are provided. You will 
not have to draw the diagrams. Table 1-3 at the end of the chapter recaps all 
of the AMOS diagrams and the .amw file names. In order to navigate the .amw 
files, you will need to know about three key features of the interface: switching 
between input and output diagrams, recalculating estimates, and viewing text. 
All three are shown in Table 1-2.

table 1-2:  Some important icons

ICON NAMe FuNCtION

View input/output 
path diagram

Toggles between drawing mode and 
results. Choose the icon on the right 
of the pair to see the results. Below 
these two icons in the center of the 
screen you can choose standardized or 
unstandardized estimates.

The “abacus”: 
Calculate Estimates

If any changes are made to the input 
diagram, results will have to be 
recalculated.

View Text The measures of fit are found in the text 
output.

The General Model
Now let’s move closer to the research hypothesis. Recall that for now we will 
follow the lead of the researchers who collected the data. Our hypothesis is 
that both “level” and S/N predict “readiness” as measured by the PSAT. At 
the beginning of this chapter, we started with S/N and a simple T-test. With 
AMOS, it makes more sense to show an example of the “general model” before 
adding S/N. The general model is essentially like a regression, but with latent 
variables as both the dependent and the independent. Consider Figure 1-29. 
Shown is Chapter 1 amos general model 1.amw.
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Figure 1-29:  Our “General Model”

Below the menu options Tools and Plugins (Figure 1-27) are two rectangular 
buttons (see also Table 1-2). The one on the left is the “input path diagram” and 
the one on the right is the “output path diagram.” For the remainder of the chap-
ter we will be looking only at the output. In the output mode, one can choose 
either unstandardized or standardized estimates. The standardized estimates 
are shown in Figure 1-29, which is otherwise similar in many ways to Figure 1-26.

The idea is that “Level” (as predicted by our four observed honors variables) 
is predictive of “Readiness” (as predicted by our two observed PSAT subscales). 
The goodness of fit tests are mediocre at best. The Chi square is significant at 
0.01, which means the model doesn’t fit well. The RMSEA would be considered 
mediocre or borderline. We won’t worry too much about this since our hypoth-
esis includes S/N. Also, the 0.54 shown above Readiness is the R Squared of 
Level predicting Readiness.

Before moving on to a model with S/N, let’s tie up a couple of loose ends. 
Chapter 1 amos general model 2.amw (not shown) is provided with the book’s 
downloads for your reference. It has the directionality in the opposite direction 
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compared to our model in Figure 1-29. Note that the goodness of fit statistics are 
the same. A better way to test the directionality will be to build a model with 
both directions, and we will do just that in the “The Direction of Causality” 
section later in this chapter.

Second, let’s briefly discuss the magnitude of the coefficient. To see that, we 
would request the unstandardized estimates (not shown), which reveals that 
the coefficient of Level on Readiness is 17.17. This means that the presence of 
honors is worth about 17 points on the PSAT scale (or 170 on the SAT scale). If 
one isn’t careful, it is easy to get a bit mixed up. Because we are predicting a 
latent trait composed of two subscales, the coefficient is in the metric of a single 
subscale, not the combined score. So, the impact on combined score would 
be about twice that. Consider two figures showing regression results in SPSS 
Statistics to clarify this.

I’ve modified the PercHonors variable by dividing by 100 to give it a range of 
0 to 1 instead of 0 to 100. This is consistent with how the data in AMOS is being 
handled because it is using the four observed variables (which are coded 0/1). 
Note that the weight for VPSAT is 15.210 (Figure 1-30), and the weight for PSAT 
is 28.998 (Figure 1-31).

Figure 1-30:  Estimating a verbal effect using regression

Figure 1-31:  Estimating a combined score effect using regression

Adding S/N to the General Model and Revisiting Fit

We have a few more experiments to make using AMOS, but we’ve reached an 
important milestone. We are about to add S/N to the general model, which 
will test the original hypothesis. In a sense we’ve come full circle since the 
results we explored in Figure 1-19. The results with S/N added are shown in 
Figure 1-32. I’ve chosen the unstandardized estimates this time so that we can 
compare the impact of our two predictors, Level and S/N. Remember that we 
have to double the coefficients to get a rough idea of the impact on combined 
score, and multiply that by 10 to translate into the SAT scale. In short, while 
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16.5 is much larger than 3.03, the impact of S/N is non-trivial. If we switch to 
standardized (not shown) we discovered the R2 has climbed only a little to .57. 
It is a small but non-trivial increase. The goodness of fit tests are better, but not 
great. The Chi square is borderline, but on the wrong side of 0.05. The RMSEA 
is low enough to be a borderline fit.

Figure 1-32:  General Model with S/N

This model represents our original hypothesis: Honors classes help prepare 
students for the kinds of “tricky” questions (that force skills to be applied in 
unexpected ways) that they will encounter on the PSAT and that the intuitive 
learning style offers an added advantage on those kinds of questions. This 
is a good time to dig deeper and examine more measures of fit. The subject 
could easily fill a chapter, and a large chapter at that. The sheer wealth of 
options can make this one of the more intimidating topics to those new to 
SEM and AMOS. We will limit ourselves to just a few more options, and in 
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Table 1-4, at the very end of the chapter, there will be a summary of some 
of the fit measures for the more important AMOS models that are explored 
in this chapter. In order to see more fit measures we will switch to the Text 
Output as shown in Figure 1-33.

Figure 1-33:  The View menu

Figure 1-34:  Outline pane of the AMOS Text Output

Once in the text output, expand the Model Fit section as shown in Figure 1-34.

The options are extensive, sometimes to the point of being intimidating. 
Figure 1-35 shows only the top portion including the CMIN measures that we 
will discuss, and the TLI (Tucker Lewis Index), which is found under Baseline 
Comparisons.
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Further down are two pieces of output that we will include in our discussion. 
RMSEA, a particularly important one, is shown in Figure 1-36, and the Hoelter 
is shown in Figure 1-37.

Figure 1-35:  Top portion of Model Fit Summary

Figure 1-36:  RMSEA results

Figure 1-37:  Hoelter results

All of the fit statistics results for the measures of fit that we discuss are sum-
marized for four of our AMOS models to prevent you from having to look up 
all of them with a scratch pad in hand. That information is shown in Table 1-4 
at the very end of the chapter.
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We’ve already discussed the significance of the Chi-square and its sen-
sitivity to sample size. CMIN/DF, which is simply the Chi-square divided 
by the degrees of freedom, is among the oldest measures of fit in SEM. It is 
worth mentioning primarily because it is an ingredient in other more elabo-
rate measures of fit. CMIN/DF ratios that approach 1 are desirable as that 
would assure a non-significant p-value. Our value of 1.8 is not too bad, but 
notice that it is not quite low enough to grant us a non-significant p-value. 
The Tucker Lewis Index (TLI) is one of several that include Chi-square and 
DF as ingredients, but with an adjustment favoring parsimony. A good TLI 
value will approach 1.0, but from the other direction. A score of .9 is con-
sidered acceptable, and a score above .95 is considered good. Our value of 
.979 is promising.

Let’s revisit RMSEA. As a measure of error, smaller is better. A lower bound 
of the confidence interval (LO 90) would be nice because it would indicate 
that an error of zero is within the confidence interval. We don’t quite achieve 
that, but it is rather low at .011. It would also be nice if the upper bound (HI 
90) were low enough that it would be under our upper limit for RMSEA 
itself. Since we like RMSEA to be under a value more like .08, we don’t quite 
achieve that either. However, over the years rules of thumb for RMSEA have 
sometimes allowed for an RMSEA as high as our value so it isn’t too bad. 
Our p-value of .042 (which we’ve already discussed) is testing whether our 
error is significantly greater than zero. PCLOSE is an interesting test—it is 
testing whether or not our error is greater than .05. So rather than testing 
for perfect fit, it is testing for “close” fit. Our PCLOSE is non-significant so 
we don’t have to reject the null hypothesis of a close fitting model. In short, 
this is good news.

There is certainly no shortage of creative fit measures in SEM. The Hoelter is 
an interesting test—it tells us what sample size would have been low enough 
to get a p value above 0.05 on our chi-square. We just barely fell below 0.05 on 
our p-value. We also know that a large enough sample size will guarantee this 
outcome, and a small enough sample size will guarantee that we are above 0.05. 
If it is a very low number (under 200 or so) we would conclude that our model 
wasn’t capable of being saved by a smaller sample size. However, our value of 
216 is just a few cases below our sample size of 222. This would be considered 
information in favor of our model. Note that it is only relevant when the p-value 
is significant, so it has been marked as N.A. (not applicable) for one of the models 
in Table 1-4 at the end of the chapter.

Revisiting the Other Covariates

Much earlier in the chapter, we considered sex and class rank as covariates. Let’s 
see if adding those to our model will be helpful. Figure 1-38 adds sex to the 
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model we just saw in Figure 1-32. The initial reaction, just from looking at the 
caption, is that is not a better fitting model. The p-value is much smaller, and 
the RMSEA is larger. These are unstandardized values as they were in Figure 
1-32 so we can see that the parameter estimate for S/N has barely moved from 
3.03 to 2.82. We don’t have any hypothesis that sex and S/N are explaining the 
same variance, but it seems like our earlier model was better. If you are curi-
ous about some of the other fit measures they are listed in Table 1-4 at the end 
of the chapter. For instance, the TLI is above .95, an acceptable value, but the fit 
measures have all moved in the wrong direction.

Figure 1-38:  General Model with S/N and sex

An attempt with class rank instead of sex has performed a bit better as shown 
in Figure 1-39. The p-value is low, but the RMSEA is nearly as good as our 
hypothesized model in Figure 1-32. The model is not listed in Table 1-4, but it is 
a fairly good model. Note that the parameter estimate for S/N has not moved, 
now at 2.92, but it does not appear that rank and S/N are competing for the 
same variance. The most straightforward conclusion is to stick with our work-
ing hypothesis and leave sex and rank out.
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Figure 1-39:  General Model with S/N and rank

The Direction of Causality

A fascinating option with SEM and AMOS is to explore directionality by con-
sidering both directions in the same model. Felson and Bohrnstedt did a famous 
study in 1979 using this technique that is always shown in the AMOS documen-
tation (Felson, R.B. & Bohrnstedt, G.W. “‘Are the good beautiful or the beautiful 
good?’ The relationship between children’s perceptions of ability and perceptions 
of physical attractiveness.” Social Psychology Quarterly, 42, 386–392. 1979). They 
studied whether there was a two-way causation between academic ability and 
perceived attractiveness. We will use a similar approach (Figure 1-40) but our 
question will be whether readiness predicts level, or level predicts readiness or 
perhaps it is a two-way causation. The logic behind a “downward” causation 
would be that bright students take tougher classes and therefore also get better 
scores. The logic behind an “upward” causation would be the argument made 
by the researchers who collected the data that the nature of the preparation 
in honors classes was better preparation for the kinds of ambiguity found in 
some PSAT questions. The results are shown as standardized scores to aid in 
direct comparison.
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The results are clear—the magnitude of one is much greater than the other. 
The evidence for readiness causing level is much stronger. The natural next 
experiment is to build the model with the causality in only one direction as 
shown in Figure 1-41. The result is quite strong. All of the fit measures are 
improved. It is not that dramatic a departure from the original hypothesis 
in an important respect. The nature of the study was to see if the S/N dif-
ference was significant, which it appears to be. Notice that the nature of this 
diagram is that S/N has a direct effect on readiness, and only an indirect 
effect on level.

The p-value is non-significant. The RMSEA is the best so far. The TLI (shown 
in Table 1-4) is the best so far at .983. And the LO 90 of the RMSEA is 0 (also 
in Table 1-4). So we’ve come full circle. We’ve established a significant effect of 
S/N on the PSAT after starting with a simple t-test and after much exploration 
and a modification to our hypothesis regarding the direction of causality. In 
the following two tables, we recap our AMOS models. Table 1-3 shows all of 
the models and their .amw file names. Table 1-4 recaps the measures of fit for 
four of the models.

Figure 1-40:  Dual causality
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Figure 1-41:  Our best model

table 1-3:  A Summary of the AMOS Models

QueStION FIgure
AMOS grAPhICS 
FIle

level only Can we establish an 
unobserved variable using 
the four level variables?

Figure 1-28 Chapter 1 AMOS 
level only.amw

general Model 1 Is our unobserved variable 
“level” predictive of 
another unobserved 
variable, “readiness”?

Figure 1-29 Chapter 1 AMOS 
general model 
1.amw

general Model 2 Could the causality go in 
the opposite direction?

Not Shown Chapter 1 AMOS 
general model 
2.amw

gM with S/N added Is SN an additional 
significant predictor of 
readiness?

Figure 1-32 Chapter 1 AMOS 
GM with SN 
2.amw

Continues
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table 1-4:  A Summary of the Fit Measures for Four of the Models

geNerAl 
MOdel 1 gM WIth SN

gM WIth 
SN ANd Sex

“BeSt” 
MOdel

dF 8 12 16 13

P value .010 .042 .006 .060

CMIN/dF 2.504 1.800 2.098 1.672

tlI .972 .979 .963 .983

rMSeA .082 .060 .070 .055

lO 90 .038 .011 .036 .000

hI 90 .129 .100 .104 .095

PClOSe .104 .303 .144 .375

hoetler 0.05 172 216 174 N.A.

Figure Figure 1-29 Figure 1-32 Figure 1-38 Figure 1-40

QueStION FIgure
AMOS grAPhICS 
FIle

gM with S/N and 
Sex added

Is Sex a significant 
predictor?

Figure 1-38 Chapter 1 AMOS 
SN and sex.amw

gM with S/N and 
rank added

Is Rank a significant 
predictor?

Figure 1-39 Chapter 1 AMOS 
SN and rank.amw

dual direction 
Model

Which direction of 
causality best fits the data?

Figure 1-40 Chapter 1 AMOS 
Dual Direction 
.amw

“Best” Model Does the dual direction 
model inspire a different 
option?

Figure 1-41 Chapter 1 AMOS 
Best Model.amw

table 1-3 (continued)

the PrOBleM OF uNIdeNtIFIed MOdelS

This chapter has shown a collection of Amos models that can be estimated, but this is 
not true of all the models you might think of. Amos models estimate their parameters, 
which correspond to arrows in the diagrams, from the correlations or covariances 
of the observed variables in the model. Those correlations and covariances are 
determined, in theory, by the structure of the model and the parameter values. If 
that relationship is unique, i.e., there is only one possible representation in terms 
of the parameters, the model is said to be identified. If, however, there are multiple 
sets of parameter values that imply the same correlations or covariances, then the 
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parameters cannot be uniquely determined, and the model is said to be unidentified or 
underidentified. We are not used to thinking about this in a simple regression model, 
which is actually a simple Amos model too, but such a model might be written as

Y = α + βX + δ, Var() = σ2

where  is the unobserved error term. We cannot estimate both δ and σ because 
only the combination matters, i.e., has an observable effect. In the regression model, 
 therefore, we fix δ at 1 with no loss of generality.

In more complicated models such as those in this chapter, there are additional  
unobserved or latent variables. Since latent variables don’t come with observable 
 correlations, enough constraints such as setting δ = 1 above or removing arrows 
in the model diagram need to be imposed to identify and estimate the model. At a 
minimum, there must be as many observable correlations or covariances as there are 
parameters. Amos will indicate in the text output if the model is probably unidenti-
fied, which parameters are unidentified, and how many additional constraints need to 
be imposed.
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In an ideal world, we would have the time and funds to obtain information from 
an entire population we’re interested in, and then we could draw our conclusions; 
in the real world, this is rarely ever the case. Instead we have to rely on samples, 
and because of this, we want to ensure that our samples are representative of 
the population. In addition, because we are using samples rather than a whole 
population, the statistical techniques we use have assumptions that should be 
met so that these techniques are performing at their optimal level. However, 
there are occasions when traditional assumptions either do not hold or there is 
uncertainty in the sample values. To help alleviate these problems, IBM SPSS 
Statistics added two advanced statistical techniques that allow users to estimate 
statistics (like the mean, standard deviation, and so on): Bootstrapping, in version 
18, and Monte Carlo Simulation, in version 21. SPSS Bootstrapping is a module, 
but Simulation is available to all users of SPSS Base.

The basic idea behind bootstrapping is that instead of obtaining additional 
samples from the population, we create additional samples by resampling data 
(with replacement) from the original sample. Each of the created samples will 
follow the same data distribution of the original sample, which in turn, fol-
lows the population. Bootstrapping also pertains to situations where the exact 
sampling distribution of the statistics is unknown or we have only asymptotic 
results. Monte Carlo simulation, on the other hand, starts by working with a 
particular distribution function (defined by specific model parameters), and we 
generate many samples so that we can compute the statistics of each sample and 

C h a p t e r 

2
Monte Carlo Simulation 

and IBM SpSS Bootstrapping
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see how the statistics are distributed across the samples. The main difference is 
that with Simulation we are resampling input (independent variables) in order 
to generate distributions of the dependent variable. Simulation also lets us do 
what-if analysis. In the case of bootstrapping, we are using resampling to build 
a sampling distribution around a sample statistic to estimate the magnitude of 
uncertainty.

N O t e  Bootstrapping is discussed again at the start of the second half of the  chapter, 
which is dedicated to the topic.

Monte Carlo Simulation

Monte Carlo simulation is a computerized mathematical technique that allows 
researchers to account for risk in data analysis and decision making. This tech-
nique samples values at random from the input probability distributions. Each 
set of samples is called an iteration, and the resulting outcome from that sample 
is recorded. Monte Carlo simulation does this hundreds or thousands of times, 
and the result is a probability distribution of possible outcomes. In this way, 
Monte Carlo simulation provides a much more comprehensive view of what 
may happen. It tells you not only what could happen, but how likely it is to 
happen. That is, it estimates the entire distribution of the outcomes, not just, 
say, the conditional mean as regression would do.

There are two main uses for Monte Carlo simulation: generating simulated data 
and assisting in the development of predictive models. I mainly use Monte Carlo 
simulation to create new datasets. This way I can create variables, and specify 
their relationships, to show students different statistical techniques. The most 
common way to use Monte Carlo simulation, however, is to use it in conjunction 
with predictive models. For example, a model like linear regression requires that 
you have a set of known variables to predict an outcome. In many real-world 
situations, however, the predictor variables are not known with certainty, and 
users are interested in accounting for that uncertainty in their models.

Monte Carlo simulation models uncertain inputs with probability distribu-
tions and the simulated values for those inputs are generated by drawing from 
those distributions. The simulated values are then used in the predictive model 
to generate an outcome.

Monte Carlo Simulation in IBM SPSS Statistics

Before we access the data that we will use in this chapter, let’s take a look at the 
initial available options for Monte Carlo simulation.

Select the Analyze menu, and then choose Simulation.
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As shown in Figure 2-1, there are four options to perform Monte Carlo 
simulation. The options to Select SPSS Model File, Type in the Equations, and 
Create Simulated Data are collectively known as the Simulation Builder. This 
is an advanced interface for users who are designing and running simulations. 
It provides the full set of capabilities for designing a simulation, saving the 
specifications to a simulation, specifying output and running the simulation. 
The option to Open an Existing Simulation Plan is known as the Run Simulation 
dialog. This is designed for users who have a simulation plan and primarily 
want to run the simulation. It allows you to modify settings that enable you 
to run the simulation under different conditions, but does not provide the full 
capabilities of the Simulation Builder for designing simulations. In our case we 
will use the Select SPSS Model File option, because this is the most common 
way to use Monte Carlo simulation to assist with predictive modeling. Often in 
the real world, an expert designs the simulation model, and a business analyst 
uses that model with variations in the assumptions.

N O t e  An IBM SPSS model file is an XML file that contains model PMML (predictive 
model markup language) created from IBM SPSS Statistics.

Figure 2-1:  Simulation: Model Source dialog

Creating an SPSS Model File

In this example, we address the following research question: A business owner 
has historical data for portable fan purchases in his store. He also has informa-
tion on the average temperatures for his store’s location. Based on previous 
research, he knows that temperature is related to fan purchases. Unfortunately, 
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he lives in an area where there is a lot of uncertainty in temperature, because 
temperature varies greatly. How many portable fans does he need in inventory 
so that at any moment he can provide fans to at least 75% of his customers? To 
access this data, open the dataset Fans.sav (see Figure 2-2).

Figure 2-2:  Fans dataset

Notice that the data file in Figure 2-2 only has three variables: units, which is 
the number of portable fans sold in a month; temp, which is the average tem-
perature in a month; and discount, which is the discount offered that month.

Before we create a simulation, we first need to create a model file. To do this, 
we will use linear regression. We are using linear regression because we will be 
predicting the number of units sold from temperature and discount, as shown 
in Figure 2-3.

Figure 2-3:  Completed Linear Regression dialog
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 1. Click the Analyze menu, and choose Regression ➪ Linear.

 2. Within the Linear Regression dialog:

 ■ Place the variable Units into the Dependent box.

 ■ Place the variables Temp and Discount into the Independent(s) box.

 3. Click Save.

The Save dialog allows users to create and save a model file, which can 
then be used by the simulation dialog.

 4. Click Browse.

 5. Name the file Simulation, as shown in Figure 2-4.

Figure 2-4:  Completed Linear Regression: Save dialog

N O t e  Not every statistical technique produces PMML model files. The following are 
all the models supported by the simulation procedure: Linear Regression, Generalized 
Linear Model, General Linear Model, Binary Logistic Regression, Multinomial Logistic 
Regression, Ordinal Multinomial Regression, Cox Regression, Tree, Discriminant, Two-
step Cluster, K-Means Cluster, and Neural Net.

 6. Click Continue.

 7. Click OK.
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Figure 2-5 shows the linear regression results. We can see that we have a 
statistically significant model that accounts for about 43% of the variation in 
the number of portable fans sold. We can further see that both predictors are 
statistically significant.

Figure 2-5:  Linear regression results

It is important to note that the total variance of the dependent variance 
comes from two sources: the equation error variance and the variance due 
to the independent variables. If the errors followed a normal distribution, 
we could use the estimated error variance to draw from a normal distribu-
tion with that variance to generate the entire conditional distribution of the 
dependent variable. Simulation focuses the variations of the independent 
variables in the equation.

A model like this is certainly useful, because we can now estimate the 
number of portable fans we would sell in a month. However, this model does 
not answer the original question that we had, which is: How many portable 
fans do we need in inventory so that at any moment we can provide fans to 
at least 75% of the customers? To answer this question, we will use Monte 
Carlo simulation:

 1. Click the Analyze menu, and choose Simulation.

 2. Click Select SPSS Model File (since we now have a model file).

 3. Click Continue.

 4. Navigate to the Simulation model file that we just created.
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 5. Click Open.

To run a simulation, each input in the predictive model must be specified as 
either fixed or simulated. Fixed inputs are those whose values are known 
and remain constant for each case generated in the simulation. Simulated 
inputs are those whose values are uncertain and will be generated by 
drawing from a specified probability distribution.

If historical data is available for the inputs to be simulated, the distribu-
tions that most closely fit the data can be automatically determined, along 
with any correlations between those inputs. To do this, verify that each of 
the model inputs (Input column) is matched up with the correct field (Fit 
to column) in the active dataset.

 6. Click Fit All.

The closest fitting distribution and its associated parameters are displayed 
in the Distribution column along with a plot of the distribution superimposed 
on the historical data. As shown in Figure 2-6, a triangular distribution was 
chosen for each field.

Figure 2-6:  Simulated Fields panel
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N O t e  You can also manually specify distributions or correlations if historical data is 
not available or if you require specific distributions or correlations.

The Fit Details dialog displays the results of automatic distribution fitting for 
a particular input. Distributions are ordered by goodness of fit, with the best 
fitting distribution listed first. As shown in Figure 2-7, the Triangular distribu-
tion had the best fit for the input Temp.

Figure 2-7:  Fit Details dialog

N O t e  Although in the initial simulation dialog we chose the option to select an SPSS 
model file, if you click the Model tab (Figure 2-8), notice that at this point you can still 
change your mind and type in an equation or create simulated data without a model.

When simulating data, it is important to take into account the correlations 
between inputs in order to preserve those relationships. The Correlations panel 
(Figure 2-9) has two options: the Recalculate correlations when fitting option 
specifies correlations between inputs automatically, while the Do not recalculate 
correlations when fitting option allows users to specify correlations manually. 
Notice that in our example, the correlation between temp and discount is essen-
tially zero (-.06).

The Advanced Options panel (Figure 2-10) allows users to specify the maxi-
mum number of cases to be simulated as well as stopping criteria so that the 
simulation can stop before the maximum number of cases is reached. In addition, 
the Advanced Options panel also allows users to specify the number cases to 
use and the goodness of fit criteria, as well the ability to set a seed so that you 
can replicate your results.
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Figure 2-8:  Model tab

Figure 2-9:  Correlations panel
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Figure 2-10:  Advanced Options panel

The Density Functions panel (Figure 2-11) allows users to customize the 
output for probability density functions and cumulative distribution functions.

The probability density function displays the distribution of target values. 
The cumulative distribution function displays the probability that the value of 
the target is less than or equal to a specified value. You can request a variety of 
vertical reference lines to be added to probability density functions and cumu-
lative distribution functions.

The Output panel (Figure 2-12) allows users to customize the output gener-
ated by the simulation. Tornado charts are bar charts that display relationships 
between targets and simulated inputs using a variety of metrics. Box plots allow 
users to view outliers, while scatterplots show relationships between targets 
and inputs. Various descriptive statistics can also be requested, and users can 
change the display format of the variables.

 1. Change the number of decimal places for the fields temp and units to 0.

The Save panel (Figure 2-13) allows users to save the current specifica-
tions for your simulation to a simulation plan file. You can save simulated 
inputs, fixed inputs, and predicted target values to an SPSS Statistics data 
file, a new dataset in the current session, or an Excel file. Note that this is 
generally not recommended as these files can be very large.
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Figure 2-11:  Density Functions panel

Figure 2-12:  Output panel
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 2. Click Save the plan file for this simulation.

 3. Click Run.

Output from a simulation includes the details of a simulation plan. This 
includes information about the predictive model on which the simulation is 
based, the distributions that will be used for simulating the inputs, correlations 
between those inputs, as well as various other settings. The Model Type table 
(Figure 2-14) displays details about the predictive model on which the simulation 
is based. It shows the variables that were used in the model, as well as variable 
properties. It also shows any filters that were used for the range of values that 
were simulated.

Figure 2-14:  Model Type table

Figure 2-13:  Save panel
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The Inputs Distributions table (Figure 2-15) displays the distribution associated 
with each input along with the parameters of the distribution. In our example, 
a triangular distribution was used and parameters shown are those required 
by a triangular distribution. The values shown here are values taken directly 
from our data.

Figure 2-15:  Input Distributions table

The Correlations table (Figure 2-16) displays the correlations between the 
inputs that are to be simulated. In our example, there really is no correlation 
between the inputs temp and discount.

Figure 2-16:  Correlations table

The Stopping Criteria table (Figure 2-17) displays the criteria that will be 
used for determining when to stop generating simulated cases. In our exam-
ple, cases will be generated until the confidence interval of the mean of the 
target is within 1% of the mean value, when using a 95% confidence interval. 
In addition, we are also specifying that the maximum number of cases to be 
generated is 100,000.

Figure 2-17:  Stopping Criteria table

The rest of the output displays the results of the actual simulation run. The 
Simulation Summary table (Figure 2-18) displays the maximum allowable num-
ber of cases, the number of cases that were actually generated, and whether any 
specified stopping criteria was achieved. In our example, we did achieve the 
stopping criteria and only 3262 cases were simulated.
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Figure 2-18:  Simulation Summary table

The Descriptive Statistics of Scale Targets (Figure 2-19) and Descriptive Statistics 
of Scale Inputs (Figure 2-20) tables display summary information about the dis-
tribution of the values of the simulated target and inputs. Notice that we obtain 
descriptive statistics like the mean, standard deviation, minimums, and maximums.

Figure 2-19:  Descriptive Statistics of Scale Targets table

Figure 2-20:  Descriptive Statistics of Scale Inputs table

It is always a good idea to make sure that your simulated values cover the 
entire range associated with your distribution. In our case it seems as though 
the range of simulated values are very similar to the range of the actual values.

The Correlations table (Figure 2-21) displays the correlations between the 
simulated inputs. As with the actual data, there really is no correlation between 
the inputs temp and discount.

Figure 2-21:  Correlations table

Probability Density charts (Figure 2-22) display the distribution of the target. 
This way you can see the range of values for the target, and you can see what 
the probability is of a particular outcome occurring. As a default, reference lines 
are placed at the 5% and 95% points of the distribution. The table displays the 
probability in the three regions bounded by the reference lines. If you recall, 
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the purpose of this analysis is have enough portable fans in inventory so that 
at any moment we can provide fans to at least 75% of the customers. To figure 
this out, we need to add in an additional reference line.

Figure 2-22:  Probability Density chart

 1. Double-click the Probability Density chart (to invoke the Graphboard 
editor).

 2. Click Chart Options to open the dialog shown in Figure 2-23.

Figure 2-23:  Chart Options dialog
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 3. Click Percentiles, and add the value 75 in the Top box.

 4. Click Continue.

 5. Close the Graphboard editor.

Notice that a new reference line has been added at the 75th percentile 
(Figure 2-24). We can now answer our original question: We need to have 
2029 portable fans in our inventory so that at any time we can provide fans 
to at least 75% of the customers. Note that the regression analysis implicitly 
assumes that the number of units sold was not clipped by a shortage. If the 
data contained cases where sales were limited by available inventory, a tech-
nique that takes this into account would be needed.

Figure 2-24:  Edited Probability Density chart

The correlation tornado chart (Figure 2-25) shows the Pearson correlation 
between the target and its simulated inputs. In our case both inputs have 
a positive correlation with the target, however temperature has a stronger 
relationship than discount. You could do a sensitivity analysis to the discount 
as well.
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Figure 2-25:  Tornado chart

IBM SPSS Bootstrapping

Resampling, as we have seen, is simply repeated sampling with replacement, 
drawing the resamples from your original dataset, thereby creating many and 
differing versions of that dataset. By default, IBM SPSS Statistics Bootstrapping 
creates 1,000 variant versions of a sample. Since you are resampling with replace-
ment, a particular original case could appear once, not at all, or multiple times in 
any resample. With 1,000 resamples, you now have the raw material in the form 
of a sampling distribution, to calculate 1,000 different estimates of a statistic. 
It is then a simple matter to build a confidence interval and estimate sampling 
error around the statistics without making any distributional assumptions. No 
assumption of fitting the distribution to a Z, t, F, or any other known distribu-
tion is required. So, obviously this comes in handy when the assumptions are 
not met or the theoretical distribution of a statistic is not known or known only 
asymptotically. Another benefit is that this process can produce a confidence 
interval for virtually any statistic even if that particular statistic does not have 
a supported parametric confidence interval in SPSS. Unlike many other SPSS 
modules, the Bootstrapping module does not have a single set of menus, but 
rather appears as an extra option, in an extra sub dialog, in more than a dozen 
analysis menus. Confidence intervals around proportions, correlations, and many 
other statistics can be calculated, even if a confidence interval is not supported 
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in the standard sub dialogs (if the Bootstrapping option is not available, the 
button does not appear). Even when confidence intervals are supported—as in 
the case of a simple standard mean—it is powerful to be able to compare the 
two confidence intervals side by side.

The following list shows procedures in IBM SPSS Statistics Base:

 ■ Descriptives

 ■ Frequencies

 ■ Examine

 ■ Means

 ■ Crosstabs

 ■ T-Tests

 ■ Correlations/Nonparametric Correlations

 ■ Partial Correlations

 ■ One-Way

 ■ Uni Anova

 ■ Discriminant

 ■ Binary Multi-Nomial Logistic Ordinal Regression

The next list shows procedures available if you have SPSS Bootstrap combined 
with the Regression or Advanced Statistics modules:

 ■ GLM: IBM SPSS Advanced Statistics

 ■ Regression: IBM SPSS Regression

 ■ Nominal Regression: IBM SPSS Regression

 ■ Logistic Regression: IBM SPSS Regression

 ■ GENLIN: IBM SPSS Advanced Statistics

 ■ Linear Mixed Models: IBM SPSS Advanced Statistics

 ■ Cox Regression: IBM SPSS Advanced Statistics

The motivation behind bootstrapping to estimate uncertainty can be easily 
explained with a brief anecdote. I was once helping a water utility do reservoir-
level forecasts. We were discussing how to handle a very unusual month. It was 
distorting the seasonal effect of that month of each year. The overwhelming 
temptation is to just drop the data point, and while that is sometimes a good 
move, it is not the only move. Also, in forecasting, dropping a data point is 
much less often an option than in some other techniques. I chimed in with the 
following notion. “A 50-year flood doesn’t have to cause forecasting problems 
placed in the context of 50 years’ worth of data, but a 50-year flood found in 36 
months of data needs to be addressed in some way.”
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Now, one doesn’t use 50 years’ worth of data to do forecasting, but the problem 
was that the unusual month represented 1/3 of the information on the month of 
October. The probability aspect of statistics is needed to determine how typical 
or atypical a sample data point is believed to be in the population. The data, 
without an analyst or local resident to interpret, would lead one to believe that 
such a flood would occur 1/3 of the time. A way to paraphrase my comment 
at the time is that more data would help. More data always helps puts outliers 
in a more accurate context. So how do you use more data when you don’t have 
any more? Resampling, in a sense, is simply a way to generate more data. The 
name “bootstrapping,” as in “pulling oneself up by one’s bootstraps,” makes 
explicit the seeming impossibility of making more data out of a single sample.

There are all kinds of reasons that our sample doesn’t resemble the popula-
tion perfectly. There are certainly numerous reasons why our samples don’t 
resemble the distributions like the ones listed in statistical tables. But what if we 
had lots of samples? With multiple samples, we can build a distribution, and we 
wouldn’t need the bell curve, or other distributions, to imitate the distribution by 
proxy. (Some have described what we do with known distributions as building 
sampling distributions through “imaginary repetitions” as discussed briefly in 
the sidebar.) The outliers, like the 50-year flood, might be found in some of the 

IMagINary repetItIONS

When you are unaccustomed to resampling, it can seem a little unusual. We some-
times forget that over many decades, the creation of sampling distributions through 
distributional assumptions has seemed odd to many influential statisticians. Sir 
Harold Jeffreys, a contemporary and intellectual sparring partner of R. A. Fisher, was 
among the most outspoken on this point. The following appears in The Theory that 
Would not Die by Sharon Bertsch McGrayne (Yale University Press, 2011). Note well that 
her book, and Jeffreys’ point, is to critique the classical Fisherian approach (sometimes 
called frequentism) in favor of Bayesian analysis. Bootstrapping did not yet exist, but 
the quote still seems apropos given that we are considering sometimes using an alter-
native to the classical approach, the same classical approach that we are now so accus-
tomed to that we rarely think of it in these terms.

Jeffreys thought it very strange that a frequentist considered possible outcomes 
that had not occurred. … Why should possible outcomes that had not occurred 
make anyone reject a hypothesis? Few researchers repeated—or could repeat— 
an experiment at random many, many times. “Imaginary repetitions,” a critic  
called them.

Bertsch McGrayne’s discussion is based on Jeffreys’ commentary in the early 
1960s. Bootstrapping, as performed in the module, is attributed to Bradley Efron’s 
Bootstrap Methods: Another Look at the Jacknife in 1979 (The Annals of Statistics vol.7 
no.1: pp. 1–26).
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resamples, but the context provided by the other samples (resamples that did 
not contain the 50-year flood) dilutes the impact of the outlier. As analysts, we 
don’t always have the benefit of personal experience (like being a local resident 
during a flood) to alert us to an outlier. Instead, we often struggle with the deci-
sion to keep it or drop it. Resampling, the core technique behind bootstrapping, 
puts outliers into a more proper context, removes the need to meet normality 
assumptions, and produces more robust statistics. It is not a panacea—biases 
and outliers will still affect us, and other assumptions remain required—but it 
is a great option when the standard options are problematic, and it is conceptu-
ally easy to explain the bootstrapping option to the audience of our analysis. 
Ultimately, it is just another way of determining what is typical, what is atypical, 
and how wide our confidence interval should be.

N O t e  The bootstrap is not a magic solution for a very small sample. In such sam-
ples it is not going to be all that accurate because there will not be much information 
about the distribution of the statistic available even with a large number of bootstrap 
replications. That is because the number of possible boostrap samples is too limited. 
The precision of the result is limited by the sample size regardless of the number of 
resamples. Also, if the boostrap results are very different from the results using classi-
cal methods, a hard look at the data may be beneficial.

Bootstrapping is also an interesting way to open the whole theme of this major 
section of the book. Why should we contemplate taking on an approach that is 
not the usual Statistics 101 approach? One of the main motivations seems to be 
the avoidance of “breaking the rules,” but we all know the normality assump-
tions are frequently not met. Why not avoid the assumptions altogether? In the 
case of bootstrapping, we might ponder an extreme solution. Why not always 
use bootstrapping and never have to worry about distributional assumptions 
again? The reluctance in years past would have certainly included the issue of 
computational intensity. Many analysts, who are mid-career now, grew up on 
home computers that were among the very first home computers. Our contempo-
rary smart phones, and to a lesser degree even our microwaves and thermostats, 
would be serious competition for the oldest of them. I remember trying this 
kind of approach in SPSS during a seminar in the late ’90s. A simple Crosstab 
calculation ran for a couple of hours and ultimately crashed. The same calcula-
tion now could easily run on my current laptop computer in just a few seconds. 
Imagine if one were trying to do it in the late ’80s, or late ’70s.

Of course, that is not the only concern. No one wants to have to complicate 
the narrative of their analysis write-up. But, in the case of bootstrapping, the 
approach is pretty straightforward. I’ve always thought, in fact, that understand-
ing bootstrapping, and teaching the concept to our colleagues, really underscores 
what we are trying to do when we do meet distributional assumptions. It is 
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impossible to understand and perform bootstrapping and not reflect on the 
magic number 1.96, and its role in determining the width of the 95% confidence 
interval around a simple mean. It makes normal distributions, and the tests that 
assume them, more tangible and less abstract. Some undergraduate textbooks 
have adopted this approach, notably Mathematical Statistics with Resampling and 
R by Laura M. Chihara and Tim C. Hesterberg (John Wiley & Sons, 2011), and 
the test presents the resampling method before the classical approach in the 
text. It may actually be easier to explain bootstrapping than classical Fisherian 
hypothesis testing to your colleagues in the workplace, especially if they are 
not already well grounded in the standard approach.

Proportions
At a bank with seven job categories, we are interested in looking at the distribution 
of those seven roles. A Frequencies table could certainly do the job, but it doesn’t 
offer confidence intervals. If we wanted to know that the jobs were or were not 
related to other variables like gender or minority status we could also request a 
Chi-Square test of independence in the Crosstabs procedure, but again the con-
fidence intervals would shed interesting light on the analysis. The Chi-Square 
would reveal whether the two variables (job role and gender, for instance) were 
not independent, but we might want to compare the confidence intervals of men 
and women on some of the roles. Bootstrapping allows us to add a confidence 
interval around dozens of tests that otherwise would not have them in SPSS Base. 
Note that CTABLES for version 24 does support some new confidence interval 
options that have not been available in CTABLES in past versions.

Let’s first consider the simple distribution of the job roles in the Bank.sav 
dataset, found in the downloads for this chapter. (Note that the dataset referred 
to here is similar to, but not identical to a dataset that is used in some Help 
examples.) A simple Frequencies of the Employment Category variable (jobcat) 
with default settings reveals the data shown in Figure 2-26.

Figure 2-26:  Default frequencies report

In order to request the confidence intervals, we simply have to access the 
Bootstrap submenu within the Frequencies menu (see Figure 2-27). Keep in mind 
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that the submenu will not appear without a license that includes the Bootstrap 
module. There are options within the submenu, but the most important is the 
check box that requests that bootstrapping be performed.

Figure 2-27:  The Frequencies menu with the Bootstrap submenu

From within the submenu, request Perform bootstrapping as shown in  
Figure 2-28. The remaining settings can be left as the defaults.

Figure 2-28:  The Bootstrap submenu

The resulting output is rather straightforward. We have our Frequencies infor-
mation, but with the addition of confidence intervals. In fact, four new columns 
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have been appended, all related to the confidence interval. The bias indicates 
the magnitude of difference between the standard calculation and the bootstrap 
version. As shown in Figure 2-29, the Bias is near zero in every instance.

Figure 2-29:  Frequency table with bootstrap results

A common argument is made that we essentially have a census of current 
employees, obviating a confidence interval, but since this is a snapshot in time, 
there is a stronger argument that this is a sample drawn from a larger popula-
tion of employees. This particular dataset reveals a difference in salary between 
men and women, and although we won’t explore the salary issue at the moment, 
it raises the question of whether men and women at the bank are serving in 
similar or dissimilar roles. If so, is that a potential source of bias that could 
influence the salary distribution? Again, a Chi-Square could establish a lack 
of independence between the two variables, and in the case of this dataset, a 
Chi-Square would indeed show a lack of independence.

A more complete picture would include confidence intervals for both men 
and women so that we could compare them. A simple Frequencies will do the 
job. We simply have to Split on gender. The Data ➪ Split File menu allows us 
to do just that. As shown in Figure 2-30, we will Compare groups based on Sex 
of employee (sex).

Figure 2-30:  Split File menu
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The results reveal more about the nature of the interplay between gender and 
job role (see Figure 2-31). In particular, it is interesting to identify the employ-
ment categories with overlapping confidence intervals and those that do not 
overlap. For instance, MBA Trainee clearly shows a larger number of men, 
but the small numbers make it hard to make an ironclad case that women are 
underrepresented as some of the bootstrap samples had just one male MBA 
Trainee (.4%), and some as many as three women (1.4%). Also noteworthy is 
that although the sheer number of Clerical is nearly the same (110 vs. 117), the 
proportions are quite different, and the confidence intervals built around the 
data for men and women just barely overlap. The confidence intervals for College 
Trainee and Office Trainee do not overlap, serving to draw more attention to  
them, especially College Trainee, which, lacking a large sample, might have 
been perceived as less interesting.

Figure 2-31:  Frequency table with bootstrap results and with a split applied

Bootstrap Mean
We’ve just seen an example of the Bootstrap allowing us to calculate a 95% confi-
dence interval around a statistic that would simply not be available in frequencies 
otherwise. Now we will briefly consider the plain old mean. Obviously, we have 
numerous choices including the standard calculation, the trimmed mean, the 
M-estimators in the Explore menu, and even abandoning the mean for related 
statistics like the median. So why perform a bootstrap mean?

There are two sources of variation in a bootstrap mean. The first is sampling 
error, and if our sample is a biased lens to view the population, then we are in 
trouble. All techniques will be affected, and bootstrapping will offer no relief. 
The second source of variation is the resampling itself. The potential advantage 
of the bootstrap mean is that the data itself, through this second source of varia-
tion, is shedding light on the level of uncertainty concerning the mean, and this 
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might be a superior approach to assuming that the data follows a particular 
theoretical distribution. In the standard approach, using standard error, we are 
simply using 1.96 as a multiplier to calculate the 95% confidence interval, and 
by doing so we are relying upon the truth of those distributional assumptions.

SPSS, in turn, relies upon us. While there are tests to check for distributional 
assumptions, they must be both requested and interpreted properly. SPSS will 
not warn us directly that we are relying upon assumptions that are not met. 
So, in short, the bootstrap mean cannot make our mean more accurate if our 
sample is biased, but it may give us a more accurate sense of our uncertainty 
around our mean. Figure 2-32 shows the Descriptives report from the Explore 
routine, but with the Bootstrap requested.

Figure 2-32:  Descriptives table with bootstrap results

The number of statistics capturing many aspects of the bootstrap sampling 
distribution that have confidence intervals around them is noteworthy. Normally, 
the standard error and the resulting confidence interval would only be calculated 
for three: Mean, Skewness, and Kurtosis.

Let’s zero in on the mean itself in these results because it is the primary statistic 
that is calculated both ways. Note that the distance between the traditionally 
calculated lower bound is .1146 from the mean of .3801. As we would expect, the 
upper bound is exactly the same distance. This must be true because the lower 
bound and upper bound are not derived from the data directly—only the mean 
itself is. The bounds are merely a set distance from the mean as determined 
by our distributional assumptions. The resulting symmetry reveals nothing. 
It merely reflects back the nature of our method. The Bootstrap lower bound 
and upper bound are not symmetric, true to our skewed data. Fascinating, as 
well, is the presence of a confidence interval around the Trimmed Mean, and 
that it, as well, is not symmetric around the statistic. With skewed data such as 
this, the median is often the preferred choice. Isn’t it nice to be able to report a 
confidence interval around the median?
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Bootstrap and Linear Regression
We’ve seen in the previous section that bootstrapping cannot “fix” a biased 
sample. Rather, it sheds a different light on the level of uncertainty in our sta-
tistics, light that is truer to the nature of the data itself and unreliant on distri-
butional assumptions. Now we have an opportunity to briefly investigate one 
of the most common and important techniques—Regression—through the lens 
of a highly problematic dataset–the Waste.sav dataset. It is small. It is highly 
skewed. Its issues with multicollinearity and suppression could serve as a case 
study in such problems, and that is precisely why it is an interesting example 
for our purposes. We will focus on just this one aspect: the difference in the 
assessment of uncertainty between the traditional approach and the bootstrap-
ping approach. Let’s begin with Figure 2-33 by orienting ourselves to the results 
using the traditional approach.

Figure 2-33:  Regression coefficients with standard confidence interval

The dependent variable is the amount of municipal waste as measured in 
tons. Each of the independent variables is the zoned use, in acres, of five dif-
ferent business types. Four out of five of the beta coefficients are significantly 
different than zero. The largest effect on the dependent variable is made by 
restaurants. Retail Trade, surprisingly, has a negative effect. Although we won’t 
pursue it here, it doesn’t take much detective work to reveal that something is 
amiss here. The correlation between Retail Trade and our dependent variable is 
actually positive. Either there is a powerful interaction or there is suppression 
(an insidious result of multicollinearity sometimes causing the sign of the coef-
ficient to “flip”). Suppression, the culprit in this case, is a fascinating topic, but 
our concern at the moment is that the coefficient appears to be significant, and 
the very serious problems are appearing too subtly, especially to the untrained 
eye. While much smaller in effect, Industrial Land’s negative coefficient draws 
attention to itself as well. The standardized coefficient for Restaurants and 
Hotels is above 1. The Collinearity Statistics are not extremely elevated, but they 
serve to increase concern. Alarm bells are sounding as to the trustworthiness 
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of these coefficients, but more information is desirable, specifically an objective 
and accurate criterion around each coefficient that would allow us to quantify 
our concerns. Figure 2-34 shows the coefficients for the same regression model, 
but with bootstrap confidence intervals.

Figure 2-34:  Regression coefficients with bootstrap confidence intervals

The bootstrap results seem to be just what we might desire. After all, what 
exactly becomes unstable when we do not meet distribution assumptions? The 
distributions themselves, the intervals and their widths, are the first to fail. The 
Bootstrap results actually show that only Restaurants and Hotels is consistently 
significant and positively correlated with the dependent variable. None of the 
variables are significant while negatively correlated with the dependent variable. 
The remarkable fact is that a single massive outlier (and there are plenty in this 
dataset) can cause a sign flip when the correlation is weak. You could explore 
these effects manually by deleting an observation, and observe the change in 
the regression results. This dataset, actually, can produce surprisingly varied 
results with the omission of a single case. Essentially, bootstrapping does this 
kind of experimentation systematically. Armed with this new evidence, our 
suspicions are confirmed, and we can proceed to look more carefully. All of the 
usual tricks come into play including the possible discarding of those outliers 
that are the most problematic, dropping independent variables, or transform-
ing our independent variables. In short, while this second regression result is 
hardly the final word, and we would not be ready for publication, the bootstrap 
confidence intervals have proven their worth, providing a very different, and 
almost certainly more accurate sense of the level of certainty around these five 
coefficients.
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Linear regression is one of the most widely used (and understood) statistical 
techniques. However, its typical use involves situations in which the outcome 
variable is continuous. Many situations in data analysis involve predicting the 
value of a nominal or an ordinal categorical outcome variable. For example, 
we may want to predict whether a student passes or fails a course, or we may 
want to predict a person’s level of product satisfaction. In situations in which 
you have a nominal categorical outcome variable, researchers quite often use 
either binary or multinominal logistic regression.

In addition, regression is normally associated with the idea of having con-
tinuous predictor variables, so that we need to create dummy variables to rep-
resent categorical variables in a regression model. This, however, can become 
unmanageable when we have many categorical variables.

When researchers have an ordinal categorical outcome variable, they typi-
cally use either linear regression or logistic regression (in both cases ignoring 
the level of measurement of the variable). In these situations, it would be more 
effective to leave the variables in their original categories, yet still use them 
directly in regression, because with a categorical dependent variable, the linear 
regression assumptions are violated, and the results may be poor or, for nominal 
variables, meaningless.

Although logistic regression is certainly an extremely useful technique, the 
purpose of this chapter is to make you aware that other regression techniques 
are available, which in certain cases may be more appropriate than either linear 
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or logistic regression. In particular, techniques have been developed to allow 
nominal and ordinal variables to be used directly in regression and to treat 
them not as interval-level variables, but at the appropriate scale on which they 
are measured.

Regression Approaches in SPSS

Generally, two approaches to regression have been taken:

 ■ Treat the variables as nominal or ordinal and use various complicated 
functions to model the relationship between the outcome variable and 
the predictors (ordinal regression).

 ■ Modify the values of the variables to create interval-level coding, then use 
these new values in standard linear regression (categorical regression).

The Regression submenu in SPSS Statistics contains various types of regres-
sion. However, in this chapter we focus on ordinal and categorical regression. 
Table 3-1 displays the different forms of regression that are available in SPSS 
Statistics (as built-in commands). Note that PLS is an extension command requir-
ing the Python Essentials.

table 3-1:  Regression Techniques in SPSS Statistics

teChnIque General uSe

Automated 
Linear 
Modeling

A version of linear regression that automatically prepares data to meet 
the assumptions of linear regression (transforms variables, trims outliers, 
creates dummy variables, and so on)

Linear Used when you have a continuous outcome variable that is linearly 
related to one or more independent variables

Curve 
Estimation

Plots 11 different curve estimation regression models that allow for only 
one independent variable

Partial Least 
Square

Used when predictor variables are highly correlated or when the 
number of predictors exceeds the number of cases. It first extracts a 
set of latent factors that explain as much of the covariance as possible 
between the independent and dependent variables. Then a regres-
sion predicts values of the dependent variables using the independent 
variables.

Binary Logistic Used in situations similar to a linear regression model, but the dependent 
variable is dichotomous

Multinomial 
Logistic

An extension of binary logistic regression where the dependent variable 
is not restricted to two categories

Ordinal Used when you are predicting an ordinal-level dependent variable from 
several independent variables (these may be categorical or continuous)
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teChnIque General uSe

Probit Used in situations where you have a dichotomous output that is influ-
enced by levels of the independent variables. This procedure will allow 
you to estimate the strength of a stimulus required to induce a certain 
proportion of responses.

Nonlinear Can create models with nonlinear relationships between independent 
and dependent variables, where you will need to define the equation 
that best captures the relationship

Weight 
Estimation

Linear regression assumes that variance is constant within the popula-
tion under study. When this is violated and the differences in variability 
can be predicted from another variable, the Weight Estimation proce-
dure can be used.

Two-Stage 
Least Squares

Linear regression assumes that errors in the dependent variable are 
uncorrelated with the independent variables. When this is violated, two-
stage least-squares regression can be used.

Optimal 
Scaling 
(CATREG)

Quantifies categorical data by assigning numerical values to the cat-
egories, resulting in an optimal linear regression equation for the trans-
formed variables

SPSS Statistics can perform both of the approaches mentioned in the introduc-
tion to this section. In the next few pages, we discuss both ordinal regression 
and categorical regression. However, before discussing the basics of ordinal 
regression, we first discuss the basics of logistic regression to provide a broader 
context.

Logistic Regression

Logistic regression is designed to use a mix of continuous and categorical predictor 
variables to predict a nominal categorical dependent variable. Logistic regres-
sion does not directly predict the values of the dependent variable. Instead, the 
logistic equation predicts the odds of the event of interest occurring. Specifically, 
the general equation for logistic regression is:

ln( )Odds X Xk k= + + +…+α Β Β Β1 1 2 2X

where the terms on the right are the standard terms for the independent variables 
and the intercept in a regression equation. On the left-hand side of the equa-
tion we have the natural log of the odds, and this quantity, ln(Odds), is called a 
logit. The logit function is actually one of a whole family of S-shaped functions, 
probit being the other well-known variant. As discussed in the following sec-
tion, ordinal regression uses several link functions (for example, logit, probit) 
to relate the predictors to the outcome variable.
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Ordinal Regression Theory

Ordinal regression (referred to as PLUM in syntax) is used when you are pre-
dicting an ordinal-level dependent variable from several independent variables 
(these may be categorical or continuous).

n O t e  The ordinal regression procedure is part of the SPSS Statistics Base module.

When predicting ordinal-level responses, linear regression models do not 
work well because they assume the dependent variable is measured on an 
interval scale; therefore, linear regression models may not accurately reflect the 
relationships in the data. Some researchers apply linear regression to ordinal 
dependents, especially if the number of levels of the dependent is high (5 or 7). 
The underlying assumption of this practice, of course, is that the greater the 
number of levels, the more the variable approaches interval-level status. This 
assumption, however, may or may not be valid for given data.

Likewise, ordinal regression is preferable to multinomial logistic regression 
when predicting an ordinal-level variable because with this latter procedure, 
you lose the information contained in the ordering of the levels of the dependent 
variable, resulting in loss of statistical power.

Ordinal regression models are sometimes called cumulative logit models 
because ordinal regression typically uses the logit link function, though other 
link functions are available (as you see later in this section). When trying to 
predict cumulative probabilities for the categories, you fit a separate equation 
for each category of the ordinal dependent variable. Each equation gives a pre-
dicted probability of being in the corresponding category or any lower category.

For example, look at the distribution shown in Table 3-2. With no predictors 
in the model, predictions are based only on the overall probabilities of being 
in each category. The predicted cumulative probability for the first category, 
which equals the probability itself at this point, is 0.20. The prediction for the 
cumulative probability for the second category is 0.20 + 0.60 = 0.80. The prediction 
for the third is 0.20 + 0.60 + 0.20 = 1.00. The prediction for the cumulative prob-
ability for the last category is always 1, because all cases must be in either the 
last category or a lower category. Because of this, the prediction equation for 
the last category is not needed.

table 3-2:  Hypothetical Distribution of an Ordinal Dependent Variable

CateGOry prObabIlIty Of MeMberShIp CuMulatIVe prObabIlIty

High Risk 0.20 0.20

Medium Risk 0.60 0.80

Low Risk 0.20 1.00
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Ordinal regression is a special case of generalized linear modeling (GZLM) 
and identical parameter and model fit estimates can be obtained using the GZLM 
procedure, but the options vary somewhat between the ordinal regression pro-
cedure discussed here and GZLM (which can build many additional types of 
statistical models and therefore contains many options that do not apply, nor 
are necessary to ordinal regression).

Generalized linear models are a very powerful class of models, which can be 
used to answer a wide range of statistical analysis questions. The basic form of 
a generalized linear model is shown in the following equation:

link ij j xi xi pxip( ) ( )γ θ β β β= − + +…+1 1 2 2

where:

Link( ) is the link function.

γij is the cumulative probability of the jth category for the ith case.

θj is the threshold for the jth category.

p is the number of regression coefficients.

xi1…xip are the values of the predictors for the ith case.

β1…βp are regression coefficients.

There are several important things to notice here.
First, the model is based on the notion that there is some latent continuous 

outcome variable, and that the ordinal outcome variable arises from discretizing 
the underlying continuum into ordered groups. The cutoff values that define 
the categories are estimated by the thresholds.

Second, the thresholds or constants (θj) in the model (corresponding to the 
intercept in linear regression models) depend only on which category’s prob-
ability is being predicted. Values of the predictor (independent) variables do 
not affect this part of the model.

Third, the prediction part of the model (β1xi1 + β2xi2 + … + βpxip) depends 
only on the predictors and is independent of the outcome category. These first two 
properties imply that the results will be a set of parallel lines or hyperplanes—one 
for each category of the outcome variable.

Finally, rather than predicting the actual cumulative probabilities, the model 
predicts a function of those values. This function is called the link function, and the 
form of the link function can be chosen when the model is built. This allows users 
to choose a link function based on the problem under consideration to optimize 
results. Several link functions are available in the Ordinal Regression procedure.

As you can see, these are very powerful and general models. Of course, there 
is also a bit more to keep track of here than in a typical linear regression model. 
An ordinal regression model contains three major components:

 ■ Location Components: The portion of the preceding equation that includes 
the coefficients and predictor variables is called the location component of 
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the model (β1xi1 + β2xi2 + … + βpxip). The location is the “meat” of the 
model. It uses the predictor variables to calculate predicted probabilities 
of membership in the categories for each case.

 ■ Scale Components: The scale component is an optional modification to 
the basic model to account for differences in variability for different values 
of the predictor variables. For example, if men have more variability than 
women in their risk values (that is, the underlying continuous outcome 
variable), using a scale component to account for this may improve the 
model. A model with a scale component follows the form shown in this 
equation:

link ij j xi xi pxip e zi mzim( ) ( )γ θ β β β τ τ= − + +…+ + … +1 1 2 2 1 1

where

zi1…zim are scale component predictors (a subset of the x’s).

τ1…τm are scale component coefficients.

Models with a scale component are known as unequal variance models, 
which indicate that the crossproducts of the regression coefficients with the 
predictor variables in the model need to be adjusted for unequal variances by 
using a scale variable.

When a scale component is used, the Parameter Estimates table will incorporate 
detection parameters (one per predictor) that measure the difference between 
the distribution of the levels of the dependent variable.

 ■ Available Link Functions: The link function is a transformation of the 
cumulative probabilities that allows estimation of the model. They are 
used to relate the dependent variable’s distribution to the predictors. The 
five link functions shown in Table 3-3 are available.

table 3-3:  Available Link Functions for Ordinal Regression

funCtIOn fOrM typICal applICatIOn

Logit f(y)=ln( y / (1−y)) Evenly distributed 
categories

Complementary 
log-log

f(y)=ln(−ln(1−y)) Higher categories more 
probable

Negative log-log f(y)=−ln(−ln(y)) Lower categories more 
probable

Probit f(y)=Φ−1(y), where Φ−1 is the inverse 
standard normal cumulative distribu-
tion function.

Latent variable is nor-
mally distributed.

Cauchit (inverse 
Cauchy)

f(y)=tan(π(y−0.5)) Latent variable has many 
extreme values.
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Assumptions of Ordinal Regression Models
Ordinal regression models make fewer assumptions than linear regression 
models, but they do still make many of the same assumptions about the data. 
Ordinal regression models assume that:

 ■ The dependent variable is an ordinal-level outcome variable.

 ■ Independent variables can be categorical or continuous.

 ■ Homogeneity of error variance for each level of the dependent variable 
is met (location-scale models can be used when violated).

 ■ There is an adequate cell count (80% of cells should have a cell count of 
5 or more, and no cells should have a count of zero). SPSS Statistics will 
print out a warning regarding the proportion of cells with a count of zero; 
however, if continuous variables are in the model, this warning is not a 
useful guide.

 ■ Assumption of parallel lines. It is assumed that the b coefficients of the 
predictor for each level of the dependent variable should be the same. In 
other words, the “meat” of the equation (β1xi1 + β2xi2 + … + βpxip) for 
each level of the dependent variable is the same; it is only the thresholds 
(θj) that differ among levels of the dependent variable.

Ordinal Regression Dialogs

In this example we use the file Satisfaction.sav (available on this book’s 
website). This file contains customer satisfaction data from a large company:

 1. To run ordinal regression, click Analyze ➪ Regression ➪ Ordinal.

In the Ordinal Regression dialog you need to specify a dependent variable, 
as well as specify the model predictors. Note that the last category of the 
dependent variable will be the reference category. Continuous predictors 
need to be placed in the Covariate(s) box, while categorical predictors 
need to be placed in the Factor(s) box. As shown in Figure 3-1, we will be 
predicting the level of satisfaction from when the product was purchased 
and how important the product is to the customer’s job (both predictors 
in this example are categorical variables).

 2. Move satisfied into the Dependent box.

 3. Move Important and When_Purchased into the Factor(s) box.

Although the OK button is active, we want to specify some additional 
options, including the link function.

 4. Click Options.
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In the Options dialog (Figure 3-2), the Iterations section allows the researcher 
to fine tune the analysis to achieve convergence. Also, as a default, a  
95% confidence interval is requested for parameters as well as a check for 
singularity (redundancy in predictors that leads to unstable parameter 
estimates). Also, no constant is added (Delta) to any cells with an observed 
frequency of zero.

figure 3-1:  Ordinal Regression dialog

figure 3-2:  Options dialog

The link function specifies what transformation is applied to the dependent 
variable. As a default, the logit link function is used. You’ll need to specify 
the appropriate link function based on the distribution of the dependent 
variable (refer to Table 3-2).

 5. Click the drop-down list and select Probit.

The distribution of the dependent variable is displayed with a bar chart in 
Figure 3-3 (produced with the Chart Builder procedure). We are using the 
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probit link function because the distribution of the variable satisfied seems 
to be somewhat normal, because most scores tend to be in the center por-
tion of the distribution (the probit and logit links are usually very similar).

figure 3-3:  Distribution of the satisfied variable

 6. Click Continue to return to the Ordinal Regression dialog (Figure 3-1).

 7. Click Output.

The Display section of the Output dialog (Figure 3-4) provides users with 
the ability to assess the model. It is important to view the goodness of 
fit and summary statistics as well as parameter estimates (all of which 
are shown as a default) to assess model adequacy. It is also important to 
view the test of parallel lines because this is an important assumption for 
ordinal regression. The correlation or covariance parameter estimates, 
although not viewed often, can provide additional insight into variable 
relationships. Finally, the Cell information option provides frequency 
and residuals information (remember ordinal regression relies on the 
chi-square statistic). However, this information may not be useful when 
covariates are included in the model because many cells will have very 
small frequencies, and very large tables will be produced.

The Saved Variables section is used to save the predicted category (value) 
and probabilities associated with the predicted and actual categories that 
are output from the model. It also saves the estimated probabilities of clas-
sifying a factor/covariate pattern into response categories. Each of these 
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options becomes another variable in the file that can be used in subsequent 
reports and analyses. The Predicted category option is especially useful 
to help build a classification table to determine the predictive accuracy 
of the model.

The Print Log-Likelihood section options allow researchers to select 
between including or excluding the multinomial constant. Including the 
constant gives the full value of the likelihood.

 8. Select Test of parallel lines.

 9. Select Predicted category.

 10. Click Continue to return to the Ordinal Regression dialog (Figure 3-1).

 11. Click Location.

In the Location dialog (Figure 3-5), the model predictors are specified. As a 
default, only the main effects will be included; however, the researcher may 
elect to include interactions as well (we will not do that here).

figure 3-4:  Output dialog

figure 3-5:  Location dialog
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 12. Click Continue to return to the Ordinal Regression dialog (Figure 3-1).

 13. Click Scale to display the Scale dialog shown in Figure 3-6.

figure 3-6:  Scale dialog

Ordinal regression models assume that error variances are the same for 
all levels of the ordinal dependent variable. That is, the variability of the 
underlying continuous outcome variable does not differ across differ-
ent values of the predictor variables. When this assumption is violated, 
parameter estimates are biased. The Scale option enables the estimation of 
separate variance models that eliminate the biased parameter estimates.

By default, researchers normally run ordinal regression models without a 
scale factor (that is, assuming an equal variance model). If goodness of fit 
statistics improve by adding a scale component, then the variability of the 
terms in the scale model is a significant contributor to explaining the vari-
ance of the dependent variable, and a location-scale model should be used.

 14. Click Continue to return to the Ordinal Regression dialog (Figure 3-1).

 15. Click OK to run the analysis.

Ordinal Regression Output

Figure 3-7 is the first piece of output, and it is a warning about cells with zero 
frequencies. This warning appears whenever any cell combinations have a 
frequency of zero. This is important information because certain fit statistics 
for the model depend on aggregating the data based on unique predictor and 
outcome value patterns. Whenever a continuous predictor is used, this results 
in a very large table with many empty cells, which makes it difficult to inter-
pret some of the fit statistics. Researchers will have to be careful in evaluat-
ing these models, particularly when looking at chi-square–based fit statistics. 
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In our example we have an adequate cell count because 90% of cells have a  
cell count of 5 or more.

figure 3-7:  Warning of cells with frequency of zero

The Case Processing Summary table (Figure 3-8) is the next piece of output. 
This table provides information on the number of valid cases and missing data 
for this model, as well as counts and percentages for the levels of the categorical 
variables in the model. It is important to make sure there are enough cases in 
each level or to think of ways in which to combine levels if there are not enough 
cases. It is also important to note which level is the last level of a categorical 
variable, because this will be the reference category. In this example “Strongly 
Disagree” will be the reference category for the dependent variable (level of sat-
isfaction), “no” will be the reference category for the independent variable (how 
important the product is to the customer’s job), and “recently” will be the refer-
ence category for the independent variable (when the product was purchased).

figure 3-8:  Case Processing Summary table

The model fitting information (Figure 3-9) is a likelihood-ratio chi-square test 
of the current model versus the null (intercept only) model. Lower -2LL values 
indicate better fit. The significance value of less than 0.05 indicates that the current 
model outperforms the null model. (To see the full significance value, double-click 
on the value itself.) Recall that the null model is the model with only the threshold 
(Intercept only (θj)) and the Final model is including the threshold and the “meat” 
part of the model (link(γij) = θj − [β1xi1 + β2xi2 + … + βpxip]). If this test is not 
significant, the remaining output is usually ignored because the model doesn’t 
have explanatory power. In the example a statistically significant result was 
found, thus our model with two predictors is an improvement over no model.
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figure 3-9:  Model Fitting Information table

The next table in the output is the Goodness-of-Fit table, shown in Figure  
3-10. This table contains Pearson’s chi-square statistic for the model and another 
chi-square statistic based on the deviance. These statistics are intended to test 
whether the observed data is inconsistent with the fitted model. When the data 
and the model predictions are similar, then you have a good model—this is 
indicated by obtaining non-significant results (as in our example).

figure 3-10:  Goodness-of-Fit table

These statistics can be very useful for models with a small number of categorical 
predictors. Unfortunately, these statistics are both sensitive to empty cells. When 
estimating models with continuous covariates, there are often many empty cells. 
Therefore, you should not rely on either of these test statistics with such models. This 
is because with empty cells, you cannot be sure that these statistics will really follow 
the chi-square distribution, and therefore the significance values will not be accurate.

The Pseudo R-Square table (Figure 3-11) prints three measures of overall 
effect size. Nagelkerke’s R-Square is the most commonly referenced, because it 
can attain the maximum value of 1, which the others do not. The table provides 
measures that are useful for comparing competing models. For a well-fitting 
model, Nagelkerke’s R-Square should be close to 1. In this example, all of the 
measures are small to moderate, meaning that even though our model is statisti-
cally significant (as evidenced by the Model Information table), and the data is 
consistent with the model (as seen in the Goodness of Fit table), our model could 
still be improved considerably in terms of predictive ability (which is typically 
what you really care about). Note that pseudo-R squared is typically lower than 
what you might be used to with linear regression. Producing a confusion table 
may give a better idea of prediction power (see Figure 3-14).

figure 3-11:  Pseudo R-Square table
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The Parameter Estimates table contains the estimated coefficients for the 
thresholds (intercepts) and location parameters (slopes of the predictor variables). 
It summarizes the effect of each of the predictors, with an unstandardized coef-
ficient, its standard error, a hypothesis test based on the Wald statistic, and a 95%  
confidence interval for the unstandardized coefficient.

In the output table (Parameter Estimates) shown in Figure 3-12, the “Threshold” 
rows contain information on the intercepts estimated for all but the highest level 
of the ordinal dependent variable. Threshold values are generally not important 
to interpretation of the results, but instead represent simple cutoff points. Most 
of the time, threshold values will be significant; however, it is possible that two 
thresholds will be non-significant. In that case, the levels of the dependent vari-
able do not differ from each other, so those levels have the same equations and 
should be combined. In our example, the levels are significantly different from 
each other so levels should not be combined.

figure 3-12:  Parameter Estimates table

The “Location” rows summarize the effect of each predictor. While interpre-
tation of the coefficients in this model is difficult due to the nature of the link 
function, the signs of the coefficients for the covariates and relative values of 
the coefficients for the factor levels can give important insights into the effects 
of the predictors in the model.

For example, both of the predictors, important and when_purchased, are 
statistically significant and they both have negative coefficients, which indicate 
that negative relationships exist between the predictors and the outcome.

For categorical variables, a factor level with a negative coefficient indicates a 
greater probability of being in one of the “lower” cumulative outcome categories. 
The sign of a coefficient for a factor level is dependent upon that factor level’s 
effect relative to the reference category—in the example, the reference category 
is the last category or the “Strongly Disagree” group. In our case (for the variable 
 important), the “Yes” group (important 1) is significantly different from the reference 
category, the “No” group (important 2), which means that customers that consider 
the software important to their job are more likely to endorse lower values on the 
satisfaction variable (lower values indicate more satisfaction) than the “No” group.
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As another example, (for the variable when_purchased), the “Purchased a 
long time ago” group (when_purchased 1) is significantly different from the 
reference category, the “Recent” group (when_purchased 2), which means 
that customers that purchased the software a long time ago are more likely to 
endorse lower values on the satisfaction variable (lower values indicate more 
satisfaction) than the “Recent” group.

As in other forms of regressions, non-significant predictors could be dropped 
to improve the model.

The final piece of tabular output is the assessment of the parallel lines assump-
tion. Recall that in ordinal regression there will be multiple regression equations, 
one for each level of the ordinal dependent variable (except for the last level). 
The parallel lines assumption means that the predictor coefficients are the same 
for each level of the dependent variable and that only the intercepts (thresholds) 
differ. Thus the regression lines are assumed to be parallel for each level of the 
dependent variable, indicating that the predictors have the same relationship 
to the different levels of the dependent variable. To assess this assumption, 
two models are compared to determine if the estimated model with one set 
of coefficients for all categories (Null Hypothesis) is similar to a model with a 
separate set of coefficients for each category (General). Well-fitting models result 
in a non-significant difference (as shown in Figure 3-13).

figure 3-13:  Test of Parallel Lines table

If you see that the general model (with separate parameters for each category) 
gives a significant improvement in the model fit over the null hypothesis model 
(with one set of parameters for each level), then this assumption has been violated, 
and the parameter estimates may be seriously biased (that is, ordinal regres-
sion should not be used). To correct this, the researcher may try a different link 
function; collapse or reorder the categories of the dependent variable; eliminate 
non-essential predictors or collapse predictor categories; or as a final resort use 
multinominal logistic regression, because that procedure does not have this 
assumption, though it does result in the loss of statistical power.

As a final assessment of the model, a new variable indicating model predic-
tions appears in the Data Editor.

Crosstabulating the dependent variable with the prediction (Analyze ➪ 
Descriptive Statistics ➪ Crosstabs) provides a classification table (Figure 3-14) 
used to assess the predictive accuracy of the model.
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figure 3-14:  Crosstab between actual and predicted outcomes

The classification table shows there are no predictions for “Strongly Agree,” 
“Disagree,” or “Strongly Disagree,” as all of these cases are misclassified. Almost 
68% of the “Agree” category is correctly predicted and about 72% of the “Neither 
Agree nor Disagree” group are correctly classified. Overall, 49% of all cases  
((0 + 180 + 245 + 0 + 0) / 875) were correct predictions. As was evidenced by the 
pseudo R-square statistics, the predictive accuracy of the current model is not 
great and can certainly be improved.

Categorical Regression Theory

Categorical regression with optimal scaling extends the regression model 
by quantifying categorical variables. Internally, interval scale values are 
assigned to each category of every variable so that these values are “opti-
mal” with respect to the regression. Categorical regression maximizes the 
squared correlation between the transformed dependent variable and the 
linear combination of the transformed predictors. In other words, interval 
scale values are assigned so as to account for as much variance as possible 
in the dependent variable.

It is important to emphasize that whether a variable is nominal or ordinal, 
categorical regression will transform the scores so that the variable is measured 
in an interval scale (and thus could be used by linear regression). It does so by 
taking into account the scale on which the variable is measured and its relation-
ship to other variables in the model.

In addition to the obvious benefit of using data of any scale, regression with 
optimal scaling can reduce multicollinearity among predictors, and it can model 
nonlinear relationships. This is because categorical predictors receive a different 
weight or score for each category, rather than one coefficient for the variable as 
a whole. Another benefit of categorical regression is that the output is similar 
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to that produced by linear regression, so there is little added complexity when 
using this technique. Categorical regression is part of the categories module. 
Note that CATREG can be used with continuous dependent variables in order 
to take advantage of shrinkage estimators.

Assumptions of Categorical Regression Models
Categorical regression models make the same assumptions as linear regression 
models. In addition, categorical regression models assume that:

 ■ There can be no negative numbers in the data and all the values must be 
integers (decimal digits are truncated).

 ■ All nominal and ordinal variables should be coded so that their values 
are consecutive integers beginning with 1.

Categorical Regression Dialogs

In these analyses we will continue to use the file Satisfaction.sav. This file 
contains customer satisfaction data from a large company.

 1. To run categorical regression, click Analyze ➪ Regression ➪ Optimal 
Scaling (CATREG).

In the Categorical Regression dialog you need to specify a dependent 
variable, as well as specify the model predictors. As shown in Figure 3-15,  
we will be predicting recommendation from the variables: when the 
product was purchased, how important the product is to the customer’s 
job, and level of satisfaction.

figure 3-15:  Categorical Regression dialog
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 2. Move the variable recommend into the Dependent Variable box.

 3. Move the variables valuable, when_purchased, and satisfied into the 
Independent Variable(s) box.

A problem survey researchers often face is whether a “don’t know” 
response is a true middle category between two extremes on a scale. If it 
is, the “don’t know” response can be recoded to a middle value and used 
in the analysis.

In this example we will be predicting the recommend variable (“Would 
you recommend this product?”). The response categories are yes, no, and 
don’t know. Many questions in surveys have a “don’t know” category and 
we are often interested in using this category as valid data, along with the 
other responses because it may be of intrinsic interest. Because we want to 
include all three categories, we cannot use binary logistic regression for 
this situation.

The variables satisfied and valuable are coded on a one through five scale 
and could be treated as interval-level variables; however, categorical regression 
provides us with the opportunity to explore how closely they match interval 
scaling in their current coding (the variable when purchased is a nominal-
level variable).

Before we proceed, we must tell SPSS Statistics on what scale each variable 
is measured:

 1. Click the variable recommend, and then click the Define Scale button.

The recommend variable is a nominal-level variable.

 2. Click Nominal and then click Continue.

Click each of the variables important, when_purchased, and satisfied, 
and then click the Define Scale button to display the dialog shown in 
Figure 3-16.

figure 3-16:  Define Scale dialog
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 3. Select Nominal and then click Continue.

All of the predictors could be defined as ordinal-level variables; how-
ever, doing this would restrict the procedure to create values for the 
variables that are ranked (this would keep the variables as ordinal). 
We recommend using the nominal level of measurement for categori-
cal predictors so that the optimal coding quantifications are used (and 
this way we can see exactly how each level of a variable relates to the 
outcome variable).

 4. Click Discretization.

The Discretization dialog (Figure 3-17) allows you to specify a method for 
recoding your variables. In our example this is not necessary because we 
do not have any string variables nor any variables with values less than 
or equal to zero.

figure 3-17:  Discretization dialog

 5. Click Cancel.

 6. Click Missing Values.

The Missing Values dialog (Figure 3-18) allows you to choose how to 
handle missing values. Alternatively, we could have handled missing data 
before performing categorical regression. In our example we will use the 
default option, although we could decide to impute missing values with 
the mode or create an extra category for missing data.
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 7. Click Cancel.

 8. Click Options.

The Options dialog (Figure 3-19) allows you to specify the initial configu-
ration, iteration, and convergence criteria, supplementary objects, and the 
labeling of plots. Whenever at least one variable is coded as a nominal-
level variable (as we did in the Define Scale dialog), the random initial 
configuration must be used.

figure 3-18:  Missing Values dialog

figure 3-19:  Options dialog
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 9. Click Random.

 10. Click Continue.

 11. Click Regularization.

The Regularization dialog (Figure 3-20) allows you to specify methods 
that can improve the predictive error of the model, by reducing the 
variability in the regression coefficients. We will not make any changes 
in this dialog at this time. Regularization is an important, although 
large, topic. It is a good reason to use CATREG when all the variables 
are scale level.

figure 3-20:  Regularization dialog

 12. Click Cancel.

 13. Click Output.

The Output dialog (Figure 3-21) allows you to specify the statistics you 
want to display as part of the output. The defaults are that you will see 
the multiple correlation coefficient, the ANOVA table, and the Coefficients 
table. In addition to these pieces of output, you typically want to ask to 
see a table of quantifications so that you can see the transformed values 
of the variables (the scores are standardized to have a mean of zero and a 
standard deviation of one). This will allow us to see the exact values that 
optimal scaling used to run the categorical regression.
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 14. Move all the variables into the Category Quantifications box.

 15. Click Continue.

 16. Click Save.

The Save dialog (Figure 3-22) allows you to save predicted values, residu-
als, and transformed values. This allows you to use these values in other 
analyses or procedures.

figure 3-21:  Output dialog

figure 3-22:  Save dialog
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 17. Click Cancel.

 18. Click Plots.

The Plots dialog (Figure 3-23) allows you to create plots that show the 
relationship between the original variable values and the new transformed 
scores.

figure 3-23:  Plots dialog

 19. Move all the variables into the Transformation Plots box.

We will now be able to see how the new transformed variables relate to 
the original variables.

 20. Click Continue.

 21. Click OK.

Categorical Regression Output

The Case Processing Summary table (Figure 3-24) displays the total number of 
cases in the data set, the number of cases in the analysis, as well as the number 
of cases that were excluded because of missing data. In our example about 10%  
of the cases were excluded due to missing data, which is not a huge amount. 
Of course we could have intervened to replace missing values either directly 
within the categorical regression procedure (refer to Figure 3-18 for options) or 
by using other methods within SPSS Statistics.
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figure 3-24:  Case Processing Summary table

The Model Summary  and ANOVA tables (Figure3-25 and 3-26) are very 
similar to those produced by linear regression, and interpretation is the same.

figure 3-25:  Model Summary table

figure 3-26:  ANOVA table

The Model Summary table provides several measures of how well the model 
fits the data. Multiple R, which can range from 0 to 1, is the multiple correlation 
coefficient between the dependent variable and the combination of the predic-
tors; thus, the closer the multiple R is to 1, the better the fit. R Square, which can 
range from 0 to 1, is the correlation coefficient squared. It can be interpreted as 
the proportion of variance of the dependent variable that can be accounted for 
from the predictors. Adjusted R Square represents a technical improvement 
over R Square in that it explicitly adjusts for the number of predictor variables 
relative to the sample size.

Here the Multiple R correlation coefficient between the combination of pre-
dictors and the dependent variable is .625. If you square the multiple R, you get 
.390. Therefore, about 39% of the variance on the recommend variable can be 
predicted from the three independent variables.

Although the fit measures indicate how well you can expect to predict the 
dependent variable, they do not tell you whether there is a statistically significant 
relationship between the dependent and predictors. The analysis of variance 
table (ANOVA) presents technical summaries (sums of squares and mean square 
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statistics) of the variation accounted for by the prediction equation. The main 
interest is in determining whether there is a statistically significant relationship 
between the dependent variable and the predictors. In our example, we can see 
that we have a statistically significant relationship between the predictors and 
the recommend variable.

Because significant results were found, we next turn to the Coefficients table 
(Figure 3-27) to view the regression coefficients. Note that the Coefficients 
table is a bit different than the typical coefficients table for linear regression. 
This is because categorical regression transforms and standardizes the values 
of the variables; therefore, only Beta coefficients are reported. In our example 
all three predictors are statistically significant, and the satisfied variable is the 
most important predictor (because it has the largest Beta coefficient). With 
regard to interpretation, we will hold off on that discussion until we view the 
transformation plots.

figure 3-27:  Coefficients table

To help you further understand the effect of the predictors, various types of 
correlations are shown in the Correlations and Tolerance table (Figure 3-28). 
Zero-Order correlations display the Pearson correlation between the transformed 
scores of each predictor and the transformed dependent variable. Note that the 
satisfied variable has the strongest correlation with the dependent variable. The 
partial correlation is the Pearson correlation between the transformed scores 
of each predictor and the transformed dependent variable after removing the 
effects of the other predictors from both the independent and dependent vari-
ables. The part correlation (semipartial correlation) is the Pearson correlation 
between the transformed scores of each predictor and the transformed depen-
dent variable after removing the effects of the other predictors from just the 
independent variable.

figure 3-28:  Correlations and Tolerance table



96 part I ■ advanced Statistics

Pratt’s measure of relative importance is another way to determine predictor 
importance. The values of all the variables will sum to one, so therefore the satis-
fied variable accounts for 83.7% of the importance in the model. Because these 
values show relative importance that sum to one, they are additive, meaning that 
the satisfied variable and the valuable variable account for 94.5% of the importance 
in the model. It is important to remember, though, that here we are referring to 
relative importance; thus, we could have a model with very low explanatory power, 
yet have a variable with a high degree of importance to the model.

Finally, tolerance values are provided before and after the transformation of 
the data. Tolerance values range from 0 to 1, and higher values denote a higher 
proportion of uniqueness of the variable (less multicollinearity). Note that trans-
forming the data improves tolerance, therefore this reduces multicollinearity 
(not that it was a problem with the original data in this example).

Figure3-29 through 3-32 display the transformed scores of the dependent and 
independent variables. Recall that we began this example by wondering whether 
the “Don’t Know” response on the recommend variable should be coded as a 
middle category. The transformed scores on Figure 3-29 suggest that the “Don’t 
Know” category should be coded as a middle category. It is these new values that 
are used in categorical regression (the Save dialog would have allowed us to place 
these values in the data editor, and then we could have run linear regression).

The transformed values take into account the relationship between the predic-
tor and outcome variable. In addition, it is important to note that these values 
are only appropriate with this set of four variables because they have been 
based on the complete information for this set. That is, the quantifications are 
for the purpose of predicting the (transformed) dependent variable and do not 
necesarily indicate a tranformation that is appropriate for use in other contexts.

figure 3-29:  Quantifications table: recommend

figure 3-30:  Quantifications table: satisfied

Note that the satisfied variable is an ordinal-level variable.
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However, the valuable variable is not an ordinal-level variable.

figure 3-31:  Quantifications table: valuable

figure 3-32:  Quantifications table: when_purchased

Figure 3-33 through 3-36 display the transformation plots for each of our 
variables. These plots display the original category values on the x-axis and 
the transformed scores on the y-axis. In essence, the transformation plots are 
just visual representations of the values in the quantifications tables. Figure 3-33 
shows the transformed values for the recommend variable. As mentioned previ-
ously, note that the 3 “Don’t Know” category is in between the 1 “Yes” and the  
2 “No” groups. Also note that lower values are associated with the “Yes” group.

figure 3-33:  Transformation plot: recommend
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The satisfied variable (Figure 3-34) is a true ordinal-level variable (note the 
ranking of the values). However, because the categories are not equally spaced 
out, it is not an interval-level variable. Note that there is very little difference 
between 1 “Strongly Agree” and 2 “Agree,” whereas the other groups are equally 
spaced out. Notice that the valuable variable (Figure 3-35) is really a nominal 
level variable, as satisfaction does not have a linear relationship with the catego-
ries of the valuable variable.  Figure 3-36 shows the variable when_purchased 
only has two categories.

With regard to interpretation of the Beta coefficients, recall that all Beta 
coefficients were positive (refer to Figure 3-27). Notice that for the satisfied 
variable, lower values are associated with greater agreement, and as we 
saw in Figure 3-33, for the recommend variable, lower scores are associated 
with the “Yes” group. Therefore, lower values on the satisfied variable are 
associated with lower values on the recommend variable. In other words, 
higher satisfaction is associated with increased chances of recommending 
the product. This is why it is important to interpret the scores and Beta 
coefficients together.

figure 3-34:  Transformation plot: satisfied
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figure 3-35:  Transformation plot: valuable

figure 3-36:  Transformation plot: when_purchased
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C h a p t e r 

4
Building hierarchical  

Linear Models

Data often contain information that has a hierarchical (multilevel) structure. For 
example, a business may have many stores, and customer purchasing  behavior 
at each store may be influenced not only by customer-level characteristics (for 
example, income, age, and so on), but also by characteristics of where the store 
is located (for example, a large urban center), as well as characteristics of the 
store itself (for example, store size, store condition, number of employees). In this 
case, we could develop a model using variables from all levels of this hierarchy 
(customer and store characteristics); however, if we just incorporate all these 
variables in a linear regression model, for example, this ignores the influences 
of store and location variables on customer-level variables, as well as the cor-
relations that exist among the observations within levels (customers within 
a location). As another example, if we were investigating the effects of a new 
teaching method on math scores for a school district, we would need to take 
into account not only student characteristics (IQ, gender, and so on), but also 
the characteristics of the classrooms (for example, class size) and schools (for 
example SES).

In this chapter we discuss hierarchical linear mixed models. We start with 
an overview of the technique and then go through an example that illustrates 
where you can perform this technique within SPSS Statistics. We also discuss 
the options that are available within the hierarchical linear mixed models pro-
cedures, and we go over the interpretation of the output. Finally we discuss 
how you can compare models that have either different predictors or different 
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structures. That is, one model might allow for two variables to have an interac-
tion while another model might not allow for this.

Overview of Hierarchical Linear Mixed Models

Hierarchical linear mixed models (also known as multilevel models) are needed to 
take into account the hierarchical nature of the data. Linear mixed models adjust 
standard errors, which tend to be too small when using traditional models such 
as linear regression (because they do not take into account variation between 
predictors for different levels). The linear mixed models procedure, which we 
discuss in this chapter, can estimate a variety of complex models to predict 
a continuous outcome with both fixed and random effects at different levels.

Fixed effects are variables for which all levels of interest are included. For 
example, for the variable store condition, we might only have the values “old” 
and “new” and these are the only values we care about; therefore, the levels for 
the variable store condition are fixed. Random effects are variables for which 
not all possible values are included; the levels or values have been sampled 
from a larger population. For example, the store condition variable, in theory, 
could have had many values. However, if we did not have the time or funds 
to assess all of these values, we could have just randomly sampled some of the 
values, and therefore we would apply our findings not just to the actual values 
that were used in the analysis, but rather to the universe of potential values.

A Two-Level Hierarchical Linear Model Example
To introduce this topic let's consider a two-level hierarchical linear model where we 
are looking at customers that are nested within stores. (So the customer ID would be 
a random effect as actual customers are only a sample of the universe of potential 
customers.) In this two-level hierarchical linear model example, the dependent vari-
able (purchase amount) can be expressed as a linear function of effects at two levels.

The Level 1 Model:

y B rij oj ij= +

where Boj represents the mean purchase amount for store j and rij is the residual 
for customer i in store j (this represents the customer variation within stores).

The Level 2 Model:

B Xoj 00 01 j 0j= + +γ γ ν

where γ00 is the average purchase amount across stores, γ01 is the coefficient 
associated with the effect of predictor X, and ν0j  is the residual effect of 
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store j (this represents the variation between stores after adjusting for pre-
dictor X).

If the two levels are combined into a single equation, we have:

Y X rij 00 01 j 0j ij= + + +γ γ ν

Here, the customer purchase amount is a function of two fixed effects (inter-
cept and predictor X) and two random effects (store and customer within store). 
When this model is run using a linear mixed model, separate estimates of the 
customer-to-customer and store-to-store variation can be obtained, in addition 
to estimates for the fixed effects. The fact that we can determine how much 
variation is attributable to different random effects in the model is one of the 
advantages of using a linear mixed model. Following is a list of advantages of 
using linear mixed models:

 ■ Improved estimates of coefficients for within level regression effects 
(because we can account for additional variation)

 ■ Improved estimates of coefficient standard errors (because we can account 
for additional variation)

 ■ Simultaneous estimation of effects at all levels

 ■ Interactions across levels can be correctly modeled

 ■ Unexplained variance from the model can be assigned to various levels

aSSuMptIonS of LInear MIxed ModeLS

Linear mixed models have a lot of the same assumptions as linear regression, with a 
few differences. Most notably, linear mixed models do not assume homogeneity of 
variance and that the errors are independent. The following are assumptions for stan-
dard regression and for linear mixed models:

 ■ There is a linear relationship between the independent and the dependent 
variables.

 ■ All relevant variables and no irrelevant variables are included in the model.

 ■ No multicollinearity.

 ■ No outliers.

 ■ Errors are normally distributed.

The following are only assumptions for linear mixed models:

 ■ The covariance structure is properly specified.

 ■ Higher-level variables are assumed to be a random sample (or complete sample) 
of all values at that level.
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n o t e  When developing a linear mixed model, you should have a good reason for 
including effects in the model, especially random effects and interactions between 
effects at different levels. The reasons can be theoretical, or based on previous work 
that you or others in your field have done.

Mixed Models…Linear

In this analysis we use the file Merchandise sales.sav, as shown in Figure 4-1. 
This file contains customer purchase data from a large company. The company 
wants to know if an experimental inventory method is effective at improving 
sales amount. This is the overall goal of the analyses: to investigate the effect of 
this inventory method on sales amount, while controlling for other influences.

figure 4-1:  Merchandise sales data

The data has a hierarchical three-level structure, with customers grouped 
within stores, and stores grouped within distribution centers. There are 23 
distribution centers, 97 stores, and 2133 customers.

Now that we have data, follow these steps to create a hierarchical linear model:

 1. Select the Analyze menu, and then choose Mixed Models.

As shown in Figure 4-2, there are two options to create a hierarchical linear 
model: linear mixed models and generalized linear mixed models. This 
procedure expands the general linear model so that data are allowed to 
have correlated and nonconstant variability.

Both of these options will create a hierarchical linear model; however, 
the generalized linear mixed models extend the linear model so that the 
outcome variable can have a non-normal distribution, linear relationships 
between the outcome variable and predictors are achieved via a specified 
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link function, and observations can be correlated. For example, you might 
have data that follow a binomial distribution. In our case we could use 
either procedure to run the analysis; we will use both so we can point out 
some differences, but we will start by choosing Linear.

figure 4-2:  Analyze ➪ Mixed Models menu options

figure 4-3:  Specify Subjects and Repeated dialog

 2. Click Analyze ➪ Mixed Models ➪ Linear.

As shown in Figure 4-3, the first dialog that opens for the linear mixed 
models procedure is the Specify Subjects and Repeated dialog. When fit-
ting a hierarchical linear model, you need to specify one or more subject 
variables to define the units for the study; if more than one variable is 
listed, the combinations of variable values define the units. In our example, 
we have customers that are sampled from stores, which are sampled from 
distribution centers, so there are different designations of the subject for 
effects at different levels in the model.

n o t e  This dataset has variable labels. In order to see the variables names, as shown in 
the following screen shots, go to Edit ➪ Options ➪ General and choose Display names.
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 3. Move Center_ID, Store_ID, and Customer_ID into the Subjects box.

n o t e  It is not necessary to add the variable Customer_ID in the Subjects box. 
Because each case is a customer, the linear mixed models procedure will treat 
 customers as a source of random variation.

If you are conducting an analysis where subjects are assessed at multiple 
time points, you can specify any repeated measures variables and their 
covariance structure in the Repeated box.

 4. Click Continue.

In the Linear Mixed Models dialog you need to specify a dependent vari-
able, as well as specify the model predictors. Continuous predictors need 
to be placed in the Covariate(s) box, while categorical predictors need to be 
placed in the Factor(s) box. As shown in Figure 4-4, we will be predicting 
current sales from last month's sales, the number of store employees, store 
location, store condition, inventory, and whether the store accepts discounts.

figure 4-4:  Linear Mixed Models dialog

 5. Move Current into the Dependent Variable box.

 6. Move Last and Employees into the Covariate(s) box.

 7. Move Location, Condition, Discounts, and Inventory into the Factor(s) 
box.

Although the OK button is active, by default, a model containing only an 
intercept will be fit. We now need to specify how the model variables will 
be used by selecting the Fixed and Random buttons.

 8. Click Fixed.
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Main effects and interaction terms can be added to the model. When the 
Build terms option is selected in the Fixed Effects dialog you can use the 
drop-down menu to select the type of effect. Factorial is selected as a 
default, and this means that all main effect and interaction terms for factor 
variables selected in the Factors and Covariates list will be added to the 
model when the Add button is selected (be careful here because if all the 
variables are selected, this would create all the n-way interactions, not just 
two way interactions). Model terms for nested items can be constructed 
by clicking the Build nested terms option button, then using the By and 
Within buttons to construct model terms. As shown in Figure 4-5, here 
we will only use main effects as fixed effects.

figure 4-5:  Fixed Effects dialog

 9. Click the drop-down list and select Main Effects.

 10. Select all the variables.

 11. Click the Add button to move the variables to the Model box.

Interactions could be added by clicking the drop-down list and specifying 
the variables to include. By default, an intercept is included.

 12. Click Continue to return to the main Linear Mixed Models dialog shown 
in Figure 4-4.

 13. Click Random.
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The Random Effects dialog, shown in Figure 4-6, is used to specify the 
model terms for random effects. It is also used to specify subject  groupings 
and the appropriate covariance structure. In our example, we already 
specified that all our predictors were fixed effects, so we will have no 
random effects. However, earlier we did indicate that Center_ID, Store_ID, 
and Customer_ID were Subjects variables, so we need to specify this 
information here.

figure 4-6:  Random Effects dialog

The covariance type accounts for the relationships between the different 
hierarchical levels in the analysis. Variance Components is selected as the 
Covariance Type. This means that variance estimates will be made of the 
intercept based on the distribution center to distribution center variation. 
The Variance Components covariance type is often used for relatively 
simple models, but you should be aware that more complex covariance 
structures may be appropriate for certain types of models.

n o t e  Specifying a covariance matrix to be estimated and variables for random 
effects is the core of a multilevel model and is what separates it from a standard gen-
eral linear model.



 Chapter 4 ■ Building hierarchical Linear Models  109

 14. Move Center_ID into the Combinations box.

 15. Click Include intercept.

As shown in Figure 4-6, Center_ID is placed in the Combinations list box 
because it determines the units used to calculate this variation (distribu-
tion center to distribution center variation).

n o t e  How do you know which covariance type to use? As you will see in the output,  
the linear mixed models procedure provides information criterion measures that aid  
in evaluating and comparing models. These measures can guide the selection of a co-
variance model. These measures are not interpreted directly, but are used to compare 
alternative models applied to the same data, because lower values indicate better fit.

Multiple random effects can be specified and each can have their own 
unique Covariance Type.

 16. Click Next.

 17. Move Store_ID into the Combinations box. The Combinations box will 
now have both Center_ID and Store_ID, as shown in Figure 4-7.

figure 4-7:  Random Effects dialog
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 18. Click Include intercept.

As shown in Figure 4-7, by adding Center_ID and Store_ID into the Combinations 
box, we can now take into account distribution center to store variation.

 19. Click Continue to return to the main Linear Mixed Models dialog shown 
in Figure 4-4.

 20. Click Estimation.

The Estimation dialog (see Figure 4-8) allows you to specify the estimation 
method and to adjust technical aspects of model estimation—we will not 
make any changes here. However, it is important to have a large sample; 
preferably at least 50 cases, at the higher levels.

n o t e  The demands of maximum likelihood estimation mean that sometimes it will be 
difficult for the linear mixed models procedure to reach convergence. Pay careful atten-
tion to any warning you receive about problems estimating a model. You may need to 
try a different covariance structure, or specify the model differently. As a reference see 
http://stats.stackexchange.com/questions/116770/reml-or-ml-to-

compare-two-mixed-effects-models-with-differing-fixed-effects.

figure 4-8:  Estimation dialog

http://stats.stackexchange.com/questions/116770/reml-or-ml-to-compare-two-mixed-effects-models-with-differing-fixed-effects
http://stats.stackexchange.com/questions/116770/reml-or-ml-to-compare-two-mixed-effects-models-with-differing-fixed-effects
http://stats.stackexchange.com/questions/116770/reml-or-ml-to-compare-two-mixed-effects-models-with-differing-fixed-effects
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 21. Click Continue to return to the main Linear Mixed Models dialog shown 
in Figure 4-4.

 22. Click Statistics.

The Statistics button opens the dialog shown in Figure 4-9. This dialog 
provides options that control which statistical summaries are displayed 
in the output. It is common to choose the Parameter estimates, Tests for 
covariance parameters, and Covariances of random effects options.

figure 4-9:  Statistics dialog

 23. Check the Parameter estimates, Tests for covariance parameters, and 
Covariances of random effects check boxes.

 24. Click Continue to return to the main Linear Mixed Models dialog shown 
in Figure 4-4.

 25. Click EM Means.

Estimated marginal means for fixed effects can be displayed using the 
EM Means dialog (see Figure 4-10). You can also test for mean differ-
ences between categories to identify which factor levels differ from 
each other.

 26. Click Continue to return to the main Linear Mixed Models dialog shown 
in Figure 4-4.

 27. Click Save.

The Save dialog (see Figure 4-11) is used to save predicted values and 
residuals.
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figure 4-10:  EM Means dialog

figure 4-11:  Save dialog

 28. Click Continue to return to the main Linear Mixed Models dialog shown 
in Figure 4-4.

 29. Click OK to run the analysis. You will see the tables described in the fol-
lowing section, Figures 4-12 to 4-17.
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Mixed Models…Linear (Output)

The Model Dimension table (see Figure 4-12) identifies the model fit to the data 
and provides a valuable check to make sure that the model used is the one you 
intended. Effects are grouped by section pertaining to Fixed, Random, and 
Residual effects. Here we can see that all of our predictors are fixed effects, 
and the only random effects are based on the subject variables. The Number of 
Levels column is the number of categories for that predictor, while the Number 
of Parameters column lists the number of parameters needed to model each 
predictor. The covariance structure is the default of Variance Components 
(VC), which is adequate for many simple models. In particular, VC provides an 
estimate of the intercept variance.

figure 4-12:  Model Dimension table

The measures in the Information Criteria table (see Figure 4-13) are used to 
compare different models applied to the same data; with lower values indicating 
a better fit to the data. We will use these measures when we run another model 
assuming different covariance structures (see Figure 4-31). For the moment, we 
will skip that table.

The Tests of Fixed Effects table (see Figure 4-14) allows us to determine 
which fixed effect predictors are statistically significant. In this example, 
all of the fixed effect predictors are statistically significant except number 
of employees.
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Whereas the Tests of Fixed Effects table allows us to determine which fixed 
effect predictors are statistically significant, the Estimates of Fixed Effects table 
(see Figure 4-15) allows us to interpret the magnitude and direction of the effects.

figure 4-15:  Estimates of Fixed Effects table

figure 4-14:  Type III Tests of Fixed Effects table

figure 4-13:  Information Criteria table



 Chapter 4 ■ Building hierarchical Linear Models  115

Let's take a look at some of these predictors and their impact. For the 
variable discount, we see a statistically significant result and the parameter 
estimate is –3.77; this means that stores that do accept discounts earn about 
$3.77 less than stores that do not accept discounts (while controlling for all the 
other variables in the model). As another example, for the variable inventory 
(our main variable of interest), we see a statistically significant result and the 
parameter estimate is –13.79; this means that stores that have the standard 
inventory earn about $13.79 less than stores that have the experimental inven-
tory (while controlling for all the other variables in the model). As another 
example, for the variable condition, we see a statistically significant result 
and the parameter estimate is –9.74; this means that stores that are older 
earn about $9.74 less than stores that are newer (while controlling for all the 
other variables in the model). Finally, the last month's sales parameter is 0.50, 
which indicates that a $1 increase in last month's sales is associated with a 
$0.50 increase in current sales (while controlling for all the other variables 
in the model). The Intercept is 104.28, which indicates the sales amount of a 
customer that has values of 0 on all the variables. Note that it is common to 
center continuous predictors (subtracting the mean from the variable), so that 
the intercept can be interpreted as the mean value of the continuous predictor 
rather than when the value is 0.

The last table reports the covariance parameters (see Figure 4-16). There is a 
residual covariance estimate of 39.10. There is an intercept covariance estimate 
of 83.63, when the subject is equal to distribution center. Finally there is an 
intercept covariance estimate of 37.73, when the subject is equal to distribu-
tion center and store. All of these covariance estimates are significant, which 
suggests that there is still significant variability to be explained within stores 
and between stores.

figure 4-16:  Estimates of Covariance Parameters table

Often, researchers will compare the results from the Estimates of Covariance 
Parameters table to a null model (a model that only includes the random effects). 
Such a model is shown in Figure 4-17. Compared to the null model, the addition 
of the two factor variables reduces the residual variability, from 50.32 to 39.10. 
This decrease of 11.22 suggests that the predictors account for about 22.30% 
(11.22/50.32) of the within-store variability in sales.
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Comparing our model (with predictors) to the null model (without predictors), 
the between-store variance in sales in the intercepts has dropped from 641.34 
to 83.63. This suggests that within-store predictors account for about 86.96% 
(557.71/641.34) of the between-store variability in sales.

Comparing our model to the null model, the between-store variance in sales 
in the intercepts has dropped from 162.40 to 37.73. This suggests that within-
store predictors account for about 76.77% (124.67/162.40) of the between-store 
variability in sales.

It seems that our model is an improvement over the null model. It also seems 
all of the variables were important predictors, except for the variable number of 
employees. Furthermore, there were differences between inventory methods, as 
the experimental method earned about $13.79 more than the standard method.

Mixed Models…Generalized Linear

As mentioned in the “Mixed Models…Linear” section earlier in this chapter, there 
are two options to create a hierarchical linear model: linear mixed models and 
generalized linear lixed models. Both of these options will create a hierarchical 
linear model; however, the generalized linear mixed models option extends the 
linear model to allow observations that are correlated, it allows for response 
variables from non-normal distributions, and it allows for response variables to 
come from distributions that are not linear. For example, you might have data 
that follow a binomial distribution. Earlier, we demonstrated the Linear Mixed 
Models option; now we will use the same data file and replicate our findings 
using the Generalized Linear Mixed Models option:

 1. Click Analyze ➪ Mixed Models ➪ Generalized Linear.

As shown in Figure 4-18, the first dialog that opens for the Generalized 
Linear Mixed Models procedure is the Data Structure dialog. Although 
the user interface looks very different, you are doing essentially the same 
thing as when using the first procedure. As in the previous example, when 
fitting a hierarchical linear model, you need to specify one or more subject 
variables to define the units for the study.

figure 4-17:  Estimates of Covariance Parameters table for a null model
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 2. Move Center_ID, Store_ID, and Customer_ID into the Subjects box.

All of the variables specified in the Subjects list are used to define subjects 
for the residual covariance structure.

If you are conducting an analysis where subjects are assessed at multiple 
time points, you can specify any repeated measures variables and their 
covariance structure in the Repeated Measures box.

 3. Click the Fields & Effects tab.

As shown in Figure 4-19, the Target item allows users to specify the target 
or dependent variable. You can also specify the Target's Distribution 
and the Target's Relationship (Link) to the predictors through the 
link function. The linear mixed model option assumed a normal 
distribution for the target and used an identity link function. Here, 
under the generalized linear mixed model option, you are not restricted 
to linear relationships. You can specify different distributions and link  
functions.

figure 4-18:  Data Structure dialog
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 4. Click Use custom target.

 5. Select the variable Current as the target.

 6. Click the Fixed Effects item.

The Fixed Effects item (see Figure 4-20) allows users to specify the fixed 
effects (predictor variables) in the model. Fixed effects factors are gener-
ally thought of as fields whose values of interest are all represented in the 
dataset. Categorical fields will be treated as factors and continuous fields 
will be treated as covariates.

 7. Click Use custom inputs.

 8. Select the variables Location, Condition, Inventory, Employees,  
Discounts, and Last and drag them to the Main drop zone to create main 
effects.

figure 4-19:  Fields & Effects: Target dialog
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figure 4-20:  Fields & Effects: Fixed Effects dialog

 9. Click the Random Effects item.

The Random Effects item (see Figure 4-21) allows users to specify the 
random effects in the model. Random effects factors are fields whose 
values in the data file can be considered a random sample from a 
larger population of values. They are useful for explaining excess 
variation in the target. The procedure automatically creates a Random 
Effect block for each subject beyond the innermost subject. Notice that 
two intercept-only random effect subject blocks were created for us, 
as opposed to the previous procedure where we had to create these; 
one block has Center_ID as the subject field and the other block has 
Center_ID*Store_ID as the subject field.

The first block should account for correlation between stores within the 
same distribution center. The second block should account for correlation 
between customers within the same store.
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 10. Click Run.

 11. Double-click the model object in the output viewer.

n o t e  Under Edit ➪ Options ➪ Output users have a choice of viewing the results 
from the generalized linear mixed models procedure as model viewer output (the 
default) or traditional tables. We show the results as model viewer output because 
it is the default. However, if you are estimating many models, activating and clicking 
through the panels gets frustrating; the pivot table view can be read more quickly.

Mixed Models…Generalized Linear (Output)

The Model Summary table (see Figure 4-22) confirms basic model selections like 
the choices of target, probability distribution, link function, and model fit. The 
Akaike corrected and Bayesian measures are used for selecting and comparing 

figure 4-21:  Fields & Effects: Random Effects dialog
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figure 4-22:  Model Summary

figure 4-23:  Data Structure

models—smaller values indicate better models. Notice that these values are 
exactly the same as those obtained using the linear mixed models procedure.

The Data Structure view (see Figure 4-23) shows the actual values for the first 
subject—this helps you to confirm your data structure.
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figure 4-24:  Predicted by Observed

The Predicted by Observed view (see Figure 4-24) shows the relationship between 
the actual values of the target variable and those predicted by the model. Ideally we 
would like to see that the points lie near the diagonal, which means that no records 
are fit badly by the model. In our example it seems the model is doing a good job.

The Fixed Effects view (see Figure 4-25) is a visualization of the traditional 
tests of the Fixed Effects table. The effects are ordered from top to bottom in 
the order in which they were specified on the Fixed Effects settings, and the 
thickness of each line is based on the statistical significance of the effect. In our 
example, the variables Inventory, Discounts, and Last have the thickest lines, 
while the variable Employees has the thinnest line.

 1. Select Table in the style drop-down of the effects view.

This is the traditional test of the Fixed Effects table (see Figure 4-26) for the 
overall model and individual predictors. The model is statistically significant, 
as are all the predictors except for the Employees variable. Notice that these 
values are similar to those obtained using the linear mixed models procedure.
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figure 4-25:  Fixed Effects (diagram)

figure 4-26:  Fixed Effects (table)
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figure 4-27:  Fixed Coefficients (diagram)

The Fixed Coefficients view (see Figure 4-27) is a visualization of the 
traditional Parameter Estimates table. The coefficients are ordered from 
top to bottom in the order in which they were specified on the Fixed 
Effects settings, and the thickness of each line is based on the statistical  
significance of the effect. Also, the shading of the line indicates the direc-
tion of the relationship (blue is positive, while orange is negative). In our 
example, the variables Inventory and Discounts have negative relation-
ships with the target, while the variable Last has a positive relationship 
with the target.

 2. Select Table in the style drop-down of the coefficients view.

Similar to when we used the linear mixed models procedure, the Fixed 
Coefficients table (see Figure 4-28) allows us to interpret the magnitude 
and direction of the effects. Here we see the exact same result as when 
we ran the linear mixed model procedure.
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figure 4-28:  Fixed Coefficients (table)

The Covariance Parameters view (see Figure 4-29) displays the covari-
ance parameter estimates and related statistics for residual and random 
effects. The residual covariance parameters are shown by default. Again, 
here we see the exact same result as when we ran the linear mixed model 
procedure.
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Adjusting Model Structure

As an additional exercise, you can fit a linear regression model to this data; all 
you need to do is delete the two random effects blocks on the Random Effects 
item (see Figure 4-30).

 1. Click Run.

 2. Double-click the model object in the output viewer.

As mentioned earlier, we could use information criterion values to com-
pare models. Based on the information criteria (see Figure 4-31), the linear 
mixed model with two random intercepts is preferred over the linear 
regression model because it has smaller AICC (14207.795 vs. 14461.699) and 
BIC (14224.768 vs. 14467.329) values. In this way we can compare different 
models to determine which better fit the data.

figure 4-29:  Covariance Parameters
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figure 4-31:  Model Summary

figure 4-30:  No random effects

In addition, the variance estimate for the residual effect is larger in the 
linear regression model than in the linear mixed model (Figure 4-32).
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Finally, the fixed coefficient estimates (Figure 4-33) for the predictors are 
very different between the two models, so the interpretation of these effects 
is different (and in some cases the effects are significant in one model 
but not the other). As a result, different (incorrect) conclusions would be 
reached if the hierarchical linear model is not used.

figure 4-33:  Fixed Coefficients

figure 4-32:  Covariance Parameters
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Data Visualization

The length of Part II, encompassing a wide variety of visualization topics in six 
chapters, is a perhaps a bit of surprise for some readers. When Jesus and I have 
spoken to clients about custom training engagements, trying to negotiate cover-
age and the amount of time to dedicate to each topic, the topic of visualization is 
often among the most difficult to navigate. Clients we have met seem to assume 
that they’ve got this topic covered, that it is the easiest to master on their own, 
or that maybe they don’t need this material at all. In short, of all the topics in 
SPSS Statistics, it is the most commonly deemphasized in a client’s wish list. 
Visualization is seen as an almost mechanical step—sometimes literally so—
where the “results” are copied and pasted into a preexisting format that imitates 
earlier reports on older versions of the same data. Of course, not everyone is 
engaged in routine reports that are repeated on a monthly or quarterly basis, 
but the emphasis on visualization as business communication is common. We 
believe that visualization is powerful throughout the process of analysis and 
that one cannot separate the two.

Towards that end, Part II is lengthy and diverse. The first two chapters, num-
bered 5 and 6, can be thought of as a pair. In Chapter 5, the Graphboard Template 
Chooser is discussed, and the graphs are produced primarily using the menus. 
Of all the chapters in the book, it is, perhaps, the one focusing the most on 
fundamentals. It is important to include, however, because if you are new to 
graphing in SPSS, Chapter 6 will require some comfort in the graphing menus. 
Chapter 6 may prove a powerful experience if you dive in and try it. Graphing 
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Production Language (GPL) multiples the power of SPSS graphics by nearly an 
order of magnitude. It does require coding, so read Chapter 5 first, and consider 
reading Chapter 16 as well. Chapter 16 is a basic introduction to SPSS Statistics 
Syntax, so its importance as background for Chapter 6 is determined by your 
existing comfort with Syntax. Chapter 7 also utilizes Graphboard Template 
Chooser, but it is dedicated in its entirely to mapping. Since it spends time in 
some of the same menus, it is not a bad idea to read Chapter 5 before Chapter 7, 
but those interested in maps can probably start with Chapter 7 without much 
difficulty. Taken together, they are the most traditional of the chapters in Part 
II, but even veteran SPSS Statistics users should find a wealth of techniques that 
are new to them, and that make them both more comfortable and more ambi-
tious in their use of SPSS Statistics graphics.

We are proud that we are able to add Chapter 8, dedicated to geospatial 
 analytics. A major addition to SPSS features in version 23, we wanted a practical 
application using real world data. Predictive policing is fundamentally about 
having resources in the right place at the right time. Andrew Wheeler’s expertise 
in this area was an ideal contribution to the understanding of this approach, 
and certainly added to our own sophistication with these techniques.

Chapter 9 combines topics from other chapters in a way that is somewhat 
unique in the book. The notion of perceptual mapping is to use the “data reduc-
tion” of rich datasets (with multiple dimensions) to make the data more easily 
visualized in a two dimensional graphic. Several techniques take advantage of 
this approach—correspondence analysis is just one of them. Since the focus of 
the chapter is on the creation and interpretation of the perceptual map itself, the 
theory behind the data reduction aspect is covered only in brief. The Multiple 
Correspondence Analysis technique is also used in Chapter 9 to create perceptual 
maps. Chapter 6 and Chapter 17 should be read first if you are new to the topics. 
Multidimensional Scaling also uses data reduction to produce perceptual maps.  
Chapter 10, therefore, continues our discussion, but with more emphasis on theory, 
and without a discussion of GPL or OMS. Therefore, one can actually read 
Chapter 10 without reading Chapter 9 first. We believe that the resulting graphics 
from both Chapters 9 and 10 are testament to one of the themes of Part II—that 
well executed graphics can be a powerful form of analysis, in and of themselves.

In This Part

Chapter 5: Take Your Data Visualizations to the Next Level
Chapter 6: The Code Behind SPSS Graphics: Graphics Production Language
Chapter 7: Mapping in IBM SPSS Statistics
Chapter 8: Geospatial Analytics
Chapter 9: Perceptual Mapping with Correspondence Analysis, GPL, and OMS
Chapter 10: Display Complex Relationships with Multidimensional Scaling
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C h a P t e r 

5
take Your Data Visualizations to 

the Next Level 

Many SPSS users miss out on the advanced data visualization capabilities in SPSS 
because they do their charting in Excel, or don’t go beyond the basic capability of 
Chart Builder. However, data visualization is not just about sending a handful 
of data points to a charting menu. If it were, there would be little risk in doing 
your descriptive statistics in SPSS and your charting in Excel. The following 
are some reasons why it can be a less-than-efficient approach:

 ■ Most users vastly underestimate what is possible with SPSS graphics.

 ■ Moving data from SPSS to Excel is typically done manually with a copy-
and-paste operation, which is risky and inefficient. For example, often a 
user wants a quick chart based on some of the contents of a pivot table. 
Little known is that you can activate the table, select rows or column, and 
choose Create Graph from the context menu to get a quick chart. This 
feature supports the most popular chart types, and the resulting chart 
can be edited in the Chart Editor.

 ■ Graphical representation is best thought of as a single continuous process 
starting with data access, followed by data preparation and transformation, 
and ending with a visualization, preserving data integrity, and ensuring 
that the visualization is 100% consistent with the data.

At a minimum you should avoid the copy-and-paste maneuver by utilizing 
the Output Management System, which is discussed in detail in Chapter 17. In 
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this chapter we survey the landscape of SPSS graphics. We will explore options, 
but the broader goal is to understand SPSS graphics using menus to pave the 
way for the discussion of Graphics Production Language (GPL) in Chapter 6. 
Candidly, SPSS graphics has grown confusing in recent versions because mul-
tiple, seemingly competing systems are vying for your attention (even though 
underneath they all use the same charting engine).

There are three graphing options in SPSS Statistics: Chart Builder, Graphboard 
Template Chooser, and the Legacy Dialogs. Each is discussed in this chapter. 
First, we explore the history behind the design of current graphics options in 
SPSS. We investigate an influential book, The Grammar of Graphics by Leland 
Wilkinson (Springer, 2005), because the author of that book played a role in the 
design of SPSS graphics. Also, the popular ggplot2 package in the R statistical 
programming language is named after that book. Many who are impressed with 
R graphics, and who might be a bit befuddled by SPSS graphics, probably don’t 
realize that both are the intellectual heirs of the same author. We then discuss 
the graphing options in the menus, then the concepts behind them, and finally 
we walk through some examples.

Graphics Options in SPSS Statistics

The Graphs menu, shown in Figure 5-1, offers three fairly comprehensive 
submenus:

 ■ Legacy Dialogs

 ■ Chart Builder

 ■ Graphboard Template Chooser

The three other menu items are extension commands (that generate GPL).

Figure 5-1:  Graphs menu

Legacy Dialogs are the original graphing options in SPSS. The options here 
are the least interesting. For example, when you explore the Legacy Dialogs 
looking for Bar Charts, you are greeted with some pretty standard options, as 
shown in Figure 5-2.
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Figure 5-2:  Legacy Bar Charts menu

In the next section we discuss this kind of design principle, but essentially 
it starts with a chart type followed by populating a fairly rigid structure with 
variables. Finally, there is usually pretty extensive editing involved. A quick look 
at the pasted syntax shows that there don’t seem to be a lot of options, which 
would leave much of the work to the editing window:

GRAPH
  /BAR(SIMPLE)=COUNT BY degree.

N O t e  If you are new to syntax, the opening chapter of Part IV, “Programming and 
Introduction to Data Manipulation,” provides a good introduction to pasting syntax, 
and SPSS syntax in general.

This is one of the biggest problems with the legacy graphs. They have very 
simplified syntax, which seems like a good thing until you realize that everything 
is standardized. If you want to customize a graph, it has to be done after the 
fact (that is, the graph has to be manually edited). For those who use Excel, this 
may be the only approach to creating charts that you’ve tried. The heavy lifting 
is in the editing, and if you have been disappointed with SPSS, it is probably 
because you are frustrated with not being able to transform the resulting chart into  
what you want during the editing process. While the frustration is understand-
able, you can consider a completely different approach. That alternative approach, 
revolutionary in its thinking, is explored for the entire balance of the chapter.

The first menu option in Figure 5-1 is the SPSS Chart Builder. In this menu, 
more extensive options are available before you create the chart—that is before 
you get to the editing window—than are available in the Legacy Dialogs. Having 
these options available before you create the chart is important because the chart 
can be more easily automated, customized, and replicated. Most actions in the 
editing window, shown in Figure 5-3, are manual.
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Figure 5-3:  Chart Builder main menu

There is a clue that we have more options—the Basic Elements tab (see 
Figure 5-4), and the element properties. The revolutionary approach is to build 
up visualizations as a collection of elements, thoughtfully mixing and matching 
these elements, paving the way to many combinations that might be impossible 
if you were choosing only from the traditional choices in the gallery.

Figure 5-4:  Basic Elements submenu

If we paste the SPSS syntax from this menu, the result provides further evi-
dence that we are in new territory. The details don’t matter now except to observe 
that, while clearly more complex, it is also richer in options: options that can be 
changed and options that can be saved for later, obviating spending all of our 
time in the editing window. This language, GPL, is the subject of Chapter 6. 
Learning GPL opens the doors to hundreds of options that you would not have 
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via the menus. The Chart Builder menus only allow you to do about 5 to 8 % of what 
is possible with the GPL language.

* Chart Builder.
GGRAPH
  /GRAPHDATASET NAME="graphdataset" VARIABLES=degree
COUNT()[name="COUNT"] MISSING=LISTWISE
    REPORTMISSING=NO
  /GRAPHSPEC SOURCE=INLINE.
BEGIN GPL
  SOURCE: s=userSource(id("graphdataset"))
  DATA: degree=col(source(s), name("degree"), unit.category())
  DATA: COUNT=col(source(s), name("COUNT"))
  GUIDE: axis(dim(1), label("RS HIGHEST DEGREE"))
  GUIDE: axis(dim(2), label("Count"))
  SCALE: cat(dim(1), include("0", "1", "2", "3", "4"))
  SCALE: linear(dim(2), include(0))
  ELEMENT: interval(position(degree*COUNT),
shape.interior(shape.square))
END GPL.

The final Graphs menu choice is what we focus on in this chapter. The 
Graphboard Template Chooser (see Figure 5-5) allows users to select variables 
and then the appropriate charts are suggested based on the type of data. We 
can use a gallery approach, or an elements approach.

Figure 5-5:  Graphboard Template Chooser main menu
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In contrast to the Chart Builder, our syntax looks different. Note that both 
the Chart Builder and the Graphboard Template Chooser generate code using 
the GGRAPH command.

GGRAPH
  /GRAPHDATASET NAME="graphdataset"
    VARIABLES=degree[LEVEL=nominal]
    MISSING=LISTWISE REPORTMISSING=NO
  /GRAPHSPEC SOURCE=VIZTEMPLATE(NAME="Bar of Counts"[LOCATION=LOCAL]
    MAPPING( "categories"="degree"[DATASET="graphdataset"]
"Summary"="count"))
    VIZSTYLESHEET="Traditional"[LOCATION=LOCAL]
    LABEL='BAR OF COUNTS: degree'
    DEFAULTTEMPLATE=NO.

There is no denying that having three options gets confusing. Here is the 
bottom line for deciding which is right for you:

 ■ If you don’t have a long history with the Legacy Dialogs, then don’t start 
now.

 ■ If you like the convenience of menu-based help, and you want to create 
graphs based on suggestions after you have specified your variables, then 
the Graphboard Template Chooser is the way to go. You are in the right 
chapter for this option.

 ■ If you want to create graphs from predefined galleries of chart types or 
build graphs from chart elements, or you are a programmer at heart, then 
Chart Builder and GPL as presented in Chapter 6 may be the best option. 
It is my favorite option, and the code is not difficult to learn. The options 
are almost limitless. But even if this feels like the best option, press on, 
and finish this chapter because the case studies will help you understand 
the next chapter.

Understanding the Revolutionary Approach  
in The Grammar of Graphics

In this section we discuss The Grammar of Graphics by Leland Wilkinson. 
Knowledge of these ideas is interesting on its own, and will aid in understand-
ing why the Graphboard Template Chooser looks and works the way it does. As 
we show in the next chapter, GPL’s structure comes directly from The Grammar 
of Graphics, and the Graphboard Template Chooser is basically a menu system 
to eliminate the need to learn GPL. However, after reading both chapters, you 
may decide that GPL is not that difficult after all, and you may decide to work 
directly with GPL.
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Should you read The Grammar of Graphics? For most the answer is probably 
not, and to some it would seem a tortuous read and a strange book indeed, and 
for a few it would be a fascinating read. It is quite abstract, with lots of math 
notation, and is written for computer scientists and theoreticians. The practical 
nuts and bolts that are useful for the SPSS practitioner will be reviewed here.

a BIt OF the Grammar of Graphics PhILOsOPhY: sOme DeFINItIONs

Chart: Wilkinson views charts as static diagrams. The problem with this is that you 
are locked into a specific format. For instance, if you want SPSS or Excel to make a pie 
chart, you are asked to define what data the slices represent, and you are done. The 
basic form is predetermined by the software. Anything more requires editing, and your 
editing options might be limited. If we are not careful, or if our software is not careful, 
we might break the correspondence between the chart and the data during editing.

Graph: Wilkinson’s use of this term may seem abstract at first, but the distinction 
with graphic is critical. A graph is a collection of points—technically a collection of 
“vertices” and “edges.” He uses the same definition as students of graph theory, a 
branch of mathematics. For our purposes we can think of the “graph” as the data.

Graphic: A physical representation of a graph. In SPSS terms, a graphic is made up 
of elements. You might recall the Elements Properties in the menus. You may begin to 
see where this is headed—if you add aesthetics to the data in a graph, the graph can 
take on a particular form, a visual form. Each “element” (line, point, area, etc.) in an 
SPSS graphic has aesthetics.

For our purposes, what you need to know is that this approach is an alterna-
tive to having a chart typology. You can use a standard chart type as a starting 
off point, but this approach is different—it is all about elements and aesthetics.

 ■ An element is a graphical feature like a line, a point, or an area.

 ■ An aesthetic is what makes an element visible and distinct in the graphic. 
Examples include position, size, shape, color, transparency, and so on.

Each element and aesthetic can make a different aspect of your data visual. 
For instance, consider the bubble chart made famous by Hans Rosling https://
www.gapminder.org/world/. Although he is using his own software in his 
well-received TED videos, it is easy to use his graphics as an example. A point 
element shows the location of the countries on two axes. This alone would be a 
standard scatter plot. By adding aesthetics he enriches the information content 
many fold. He uses color for region of the world, size for population, and even 
animation for calendar year. All of this is possible in the Graphboard Template 
Chooser, and we will do a case study like this.

Because the graphic elements and aesthetics are like words, and the grammar 
allows us to create “sentences,” we can make countless visualizations. Rather 
than restricting ourselves to a dozen (or even several dozen) chart types, we have 
boundless options, including combinations of elements that the developers of 

https://www.gapminder.org/world/
https://www.gapminder.org/world/
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the grammar possibly never envisioned themselves. If you can draft an example 
on a whiteboard, and the data is capable of showing the relationships, then there 
is a very good chance that you can create it in SPSS.

Sometimes we think we are helping our audience if we make charts very 
simple, and put only statistics on each slide. This actually forces us to use our 
memory to establish relationships. Rosling is showing a great deal of informa-
tion all at once, but that is precisely what makes the relationships easy to see.

Bar Chart Case Study

For our first example, we will create a bar chart showing the relationship between 
how old people are when they have their first child and region of the country the 
live in. Then we will add a couple of variations like using color as an aesthetic 
to differentiate between men and women.

 1. Open the dataset GSS2012 Bar Chart.sav.

 2. To create a graph, go to the Graphs menu and choose Graphboard Template 
Chooser.

 3. The default is the Basic tab. Notice that it seems like nothing is available, 
as seen in Figure 5-6.

Figure 5-6:  Graphboard Template Chooser Basic tab
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 4. Click on the variable reg16.

 5. Hold the Control key down and also click on the variable agekdbrn. 
Notice that different visualizations become available as you specify which 
variables you want to display.

 6. Specify Bar as the Visualization type, as shown in Figure 5-7.

Figure 5-7:  Graphboard Template Chooser fields specified

 7. Choose Mean as the Summary. At this point we are ready to create a bar 
chart depicting the relationship between region of the country and age 
when first child is born.

 8. Before we do this, click the Detailed tab.

 9. The Detailed tab is another way to specify the same information as in the 
Basics tab, but with a little more control. (For example, if we had selected 
several categorical variables, the Detailed tab would allow you to better 
specify where you would like each variable to go.) Place the variable sex 
in the Color box, as shown in Figure 5-8.
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Figure 5-8:  Detailed Tab

 10. Click OK.

We have now created our graph, as shown in Figure 5-9.

Figure 5-9:  Bar chart
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 11. Once the graph has been created, double click on it to edit the graph, as 
shown in Figure 5-10.

 12. Click on the View menu, go down to Palettes and select Properties and 
then select Categories. You can begin to see how the process is all about 
elements and aesthetics.

 13. Let’s sort the regions by statistic. To do this you will have to click Region 
of Residence, Age 16 at the bottom, which will then populate the window 
on the left with the available categories. You can move the categories 
around manually, but we will choose Statistics in the drop-down menu, 
(see Figure 5-11).

 14. Now let’s make this a range bar instead of a bar chart where the height is 
a mean. We will display the mean, but in a different way. Click the bars to 
activate them, and in the lower left choose Region: Range in the Summary 
box for our bars (see Figure 5-12).

At a glance we can see that the survey respondents in East South Central 
USA were the youngest on average when they had their first child. The bars are 
“range bars” showing minimums and maximums. Not surprisingly, in every 
region, the maximum age of the men was older.

Figure 5-10:  Graphboard Editor
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Figure 5-11:  Regions sorted

Figure 5-12:  Region: Range as summary
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At this point we could make many other changes. We could exclude categories, 
add captions, change font styles and sizes, etc.

Bubble Chart Case Study

In this case study, we are going to do a bubble chart, not unlike the ones  
made famous by Hans Rosling’s TED videos. The advantages of this case 
study are:

 ■ Bubble charts are popular.

 ■ We will be doing this same chart as our first GPL example in the next 
chapter.

 1. Open the State Ranks.sav file.

 2. To a create a graph, go to the Graphs menu and choose Graphboard 
Template Chooser.

 3. Because we will be using several variables, it will be easier to work with 
the Detailed tab. Click on the Detailed tab.

 4. Select the Bubble Plot as out Visualization Type.

 5. Place the variable Bachelors_Perc in the X-axis, Unemp in the Y-axis, Pop in 
the sizes variable, Zip1_Mod in the Color box, and State as the Data Label 
(see Figure 5-13). Zip1 is the first digit of the zip code, which can be a good 
basis for a region variable. Zip1_Mod is collapsed into fewer categories. 
State2 is a possible variant—it is the two-letter postal abbreviation.

 6. Click OK.

As shown on Figure 5-14, the result on default settings shows the shape of 
our graphic. It already shows the pattern, but it could use some editing to be 
more readable.

Some possible edits for you to try are:

 ■ Improve the labeling of the axes.

 ■ Modify the point labeling.

 ■ Remove the legends.

 ■ Add gridlines.
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Figure 5-13:  Bubble Chart Detailed tab

Figure 5-14:  Bubble Chart
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For now we will just modify the point labeling.

 1. Double click on the graph to edit.

 2. Click on any state name.

 3. Use the toolbar to remove the white background behind the labels. Choose 
the option with the red line through the white background at the left of 
the top row of colors, which represents no background allowing you to 
see the gray background behind. I’ve also chosen no box or frame around 
the label, and chosen solid points with no border (see Figure 5-15).

In exploring the relationship between the percentage of adults (over 25 years 
old) who have earned a Bachelor’s degree and the unemployment rate at the state 
level, we discover that the relationship is rather weak. What becomes interesting 
in this graphic are the outliers. West Virginia has lowest degree attainment, but 
does not have the lowest unemployment. Michigan is average on degree attain-
ment, but is very high on unemployment. The District of Columbia is striking 
in that it occupies a completely different position on the graphic than any of the 
states. If we had done a traditional scatter plot without labeling, and without 
color, none of this would have been visible. Even though there is not a strong 
correlation here, we still learn a lot of these five variables: region, population, 
degree attainment, unemployment, and state.

The Graphboard Template Chooser was made available to the SPSS community 
as a way of avoiding having to learn GPL, although you’ve probably learned 
more about GPL than you realize. Take a little time to familiarize yourself with 
it. You may opt to circle back and apply the approach you’ve learned in this 
chapter, or you may decide to take what you’ve learned to the next level and 
build your graphics with a programming language approach.

Figure 5-15:  Edited Bubble Chart
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C h a p t e r  

6
the Code Behind SpSS Graphics: 

Graphics production Language 

In some ways this chapter is a continuation of the previous chapter. In Chapter 5 we 
used the Graphboard Template Chooser as a way to introduce Graphics Production 
Language (GPL). In this chapter the goal is to make GPL as painless as possible, 
but this time we will be using the Chart Builder. Our opening example will be the 
closing example from the previous chapter. Then we do a broader overview of GPL 
including GPL Help and advice on getting started. Finally, we return to the case 
study approach and have fun with the kinds of charts you can do in GPL. Don’t 
forget to revisit the examples in Chapter 5. They can all be done in GPL as well.

Introducing GPL: Bubble Chart Case Study

In this example we will begin by recreating the bubble chart we created in 
Chapter 5; however, in this case we will be using the Chart Builder. We won’t 
attempt to write the GPL from scratch in a blank window. Even if you had a 
complete understanding of the language, it would simply not be a good use of 
time. I never use this approach, and don’t recommend it. This is in part because 
the GPL code begins with a batch of “boilerplate” code that defines the data to 
the graphics engine, and pasting from the Chart Builder generates that repetititve 
code for us. We will either paste SPSS syntax (including GPL commands) from 
the Chart Builder menu system, or begin with some earlier code that we know 
to work. In this case, we will copy and paste.
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 1. Open the dataset State Ranks.sav.

 2. To create a graph, go to the Graphs menu and choose Chart Builder.

The Gallery tab of the Chart Builder has many prefabricated graphs where 
we just need to specify the type of graph we would like to create, and then 
we supply the variables that belong in the graph.

 3. Click Scatter/Dot and choose the Grouped Scatter choice as shown in 
Figure 6-1. This will get us 70 to 80% of what we need depending on how 
many features we want to add.

Figure 6-1:  Chart Builder Gallery tab

 4. Drag the Grouped Scatter Icon onto the Canvas. Notice that drop boxes 
appear that allow you to place variables onto the x and y axes as well as 
a set color box. Also notice that although a bubble chart always implies 
varying point size, the variable drag and drop areas do not include it. We 
will be adding that with code. Most of the other features are available, 
however.

 5. Place the variable Unemp in the y axis.
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 6. Place the variable Bachelors_Perc in the x axis.

 7. Place the variable Zip1_Mod in the set color box, as shown in Figure 6-2.

Figure 6-2:  Preview of grouped scatterplot

The variable State will not have a home unless we request it.

 8. Click on the Groups/Point ID tab.

 9. Check Point ID Label.

 10. Place the variable State in the Point ID box as shown in Figure 6-3.
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Figure 6-3:  Groups/Point ID tab

Rather than clicking OK to create the graph, let’s take a look at the syntax.

 11. Click the Paste button.

A new window appears; this is the syntax window. The resulting SPSS 
syntax looks like this:

* Chart Builder.

GGRAPH

  /GRAPHDATASET NAME="graphdataset" VARIABLES=Bachelors_Perc Unemp

Zip1_Mod State MISSING=LISTWISE

    REPORTMISSING=NO

  /GRAPHSPEC SOURCE=INLINE.

BEGIN GPL
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  SOURCE: s=userSource(id("graphdataset"))

  DATA: Bachelors_Perc=col(source(s), name("Bachelors_Perc"))

  DATA: Unemp=col(source(s), name("Unemp"))

  DATA: Zip1_Mod=col(source(s), name("Zip1_Mod"), unit.category())

  DATA: State=col(source(s), name("State"), unit.category())

  GUIDE: axis(dim(1), label("Bachelors_Perc"))

  GUIDE: axis(dim(2), label("Unemp"))

  GUIDE: legend(aesthetic(aesthetic.color.exterior), label("Zip1_Mod"))

  ELEMENT: point(position(Bachelors_Perc*Unemp),

color.exterior(Zip1_Mod), label(State))

END GPL.

The first aspect of the structure to underscore is that this code has two distinct 
sections. The first, indicated with the opening GGRAPH command, also includes 
the GRAPHDATASET and GRAPHSPEC subcommands. This section of code terminat-
ing in a period is SPSS syntax. These keywords can be found in the Command 
Syntax Reference guide (found under the Help menu). Just as a reminder, the 
Command Syntax Reference guide contains every single syntax command in 
SPSS Statistics. The next section, indicated with the BEGIN GPL command, is a 
completely different matter—it is a different language.

N O t e  If you need a quick primer (or refresher) about SPSS syntax in general, 
Chapter 16 is dedicated to that topic.

The BEGIN GPL ... END GPL command itself is a syntax command, but its job 
is to indicate that the block of code within it is Graphics Production Language 
and not SPSS syntax. It has a different grammar and these commands are 
defined in a different document. The examples in the GPL Reference guide, 
discussed in the next section, can be confusing because they do not include the 
necessary GGRAPH subcommands. This chapter offers considerable assistance 
in that regard, but if you simply copy and paste the GPL examples without 
“wrapping” the necessary syntax around it, they will not work. The purpose 
of the /GRAPHDATASET subcommand is to inform the GPL parser as to what 
data, usually variables, from the dataset GPL has access to. Without this criti-
cal command, GPL does not have access to any data. The easiest method for 
including GPL code is the method that we will use—paste from the menus 
and then modify the GPL.

N O t e  GPL cannot be used with old style (batch) syntax, and macros should not be 
used in GPL code. Rather Python programmability is necessary in situations where you 
might be tempted to use a macro. Also, unlike the rest of SPSS Statistics, GPL syntax is case 
sensitive.
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GPL has 10 statement commands (see the “GPL Help” section later in this 
chapter for a list of them). This example utilizes four of them: SOURCE, DATA, 
GUIDE, and ELEMENT. You won’t master all of GPL in this chapter, but you are 
going to become much more familiar with the ELEMENT statement. Examples 
of elements, as we saw in Chapter 5, include points, lines, and intervals. This 
example currently has a point element with three aesthetics: position, color, 
and label. We will be modifying and adding to the aesthetics of this point 
element.

Let’s start with a simple experiment involving a different statement.

 1. Go to the Graphs menu and choose Chart Builder.

 2. Click on the Options button.

 3. Choose 150% for size.

 4. Click OK.

 5. Click Paste.

Now we discover a new statement:

PAGE: begin(scale(937px,750px))

The scale function has been populated with size parameters using px or 
points, the same system as font size. It’s not the only option, however. You could 
use this instead:

PAGE: begin(scale(10in,6in))

You can choose cm for metric as well. Note well that there is also a required 
closing statement:

PAGE: end()

This is our first introduction to making little modifications, and I think that 
most would agree it was not so bad. A simple little setting like this could intro-
duce a nice continuity into our presentations of data by making everything 
look uniform or to ensure that our graphics fit inside a Word document or 
PowerPoint presentation.

Now try returning to the menus to adjust the x and y axes.

 1. Go to the Graphs menu and choose Chart Builder.

Ensure that the Element Properties pop-up window is visible (if it is not, 
click on the Properties Elements button). Here we are just going to specify 
the minimum values for the x and y axes.
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Figure 6-4:  Element Properties

 2. Select X-Axis1 (Point1).

 3. Deselect Automatic for Minimum and choose 10.

 4. Click Apply, as shown in Figure 6-4.

 5. Select Y-Axis1 (Point1).

 6. Deselect Automatic for Minimum and choose 2.

 7. Click Apply.

 8. Click Paste.

Here are the two new statements with the parameters we chose:

SCALE: linear(dim(1), min(10))
SCALE: linear(dim(2), min(2))

Now, let’s try a third modification with an eye toward doing a bigger modi-
fication in the “Bubble Chart Case Study Part Two” section later in this chapter. 
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Be very careful with the parentheses, and type in this one. There is no way to 
paste it. This is our first constant using a word as a parameter. The Help file 
has a surprising number of options for modifying size including using the px, 
in, and cm indicators that we saw earlier.

ELEMENT: point(position(Bachelors_Perc*Unemp), color.exterior(Zip1_Mod),

label(State), size(size.small))

<Note that in GPL, the x axis variable always precedes the y axis
variable unlike what you might be used to>

Now onto our first major modification. It will require making changes 
in three areas, but the changes are not difficult. We are going to assign a 
variable size.

 1. Specific that the variable Pop will be used in GGraph.

 2. Specific that the variable Pop will be used in GPL.

 3. Specific that the variable Pop will be the size variable.

* Chart Builder with Pop added for Size.

GGRAPH

  /GRAPHDATASET NAME="graphdataset" VARIABLES=Bachelors_Perc

Unemp Zip1_Mod State Pop MISSING=LISTWISE

    REPORTMISSING=NO

  /GRAPHSPEC SOURCE=INLINE.

BEGIN GPL

  PAGE: begin(scale(12in,6in))

  SOURCE: s=userSource(id("graphdataset"))

  DATA: Bachelors_Perc=col(source(s), name("Bachelors_Perc"))

  DATA: Unemp=col(source(s), name("Unemp"))

  DATA: Zip1_Mod=col(source(s), name("Zip1_Mod"), unit.category())

  DATA: State=col(source(s), name("State"), unit.category())

  DATA: Pop=col(source(s), name("Pop"))

  GUIDE: axis(dim(1), label("Bachelors_Perc"))

  GUIDE: axis(dim(2), label("Unemp"))

  GUIDE: legend(aesthetic(aesthetic.color.exterior), label("Zip1_Mod"))

  SCALE: linear(dim(1), min(10))

  SCALE: linear(dim(2), min(2))

  ELEMENT: point(position(Bachelors_Perc*Unemp),

color.exterior(Zip1_Mod), label(State), size(Pop))

  PAGE: end()
END GPL.

By specifying a varying point size using population, we have now created a 
bubble plot. (see Figure 6-5).
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Figure 6-5:  Bubble plot

GPL Help

Let’s pause our case study to get more grounded in our options before we return 
to our bubble chart. We are going to explore the GPL Reference to learn what 
else we can do. First you will have to access the GPL Reference from the Help 
menu, as shown in Figure 6-6. To do this:

 1. Click on the Help menu.

 2. Select Topics.

 3. Navigate down the left side of the window and expand the Reference 
dropdown.

 4. Here you will find the GPL Reference guide.

Figure 6-6:  Help and Reference options
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The previous section introduced the STATEMENT structure in understanding GPL.
If you take the time to explore the GPL Reference guide, you’ll see that there 

are dozens and dozens of functions. We will learn several of them in this chapter, 
including the aestheticMaximum and aestheticMinimum functions.

For example, the aestheticMinimum function has two formats:

aestheticMinimum(<aesthetic type>.<aesthetic constant>)

or

aestheticMinimum(<aesthetic type>."<aesthetic value>")

That might not help much, but the following example might:

SCALE: linear(aesthetic(aesthetic.size), aestheticMinimum(size."1px"),

              aestheticMaximum(size."5px"))
ELEMENT: point(position(x*y), size(z))

Applied to our example it will look like the following code snippet:

SCALE: linear(aesthetic(aesthetic.size), aestheticMinimum(size."5px"),
              aestheticMaximum(size."25px"))

t I p  Often it is helpful to simply copy and paste the example into the Syntax window, 
make it a comment, so you are able to read it or copy it directly from that window.

Aside from functions, you can also use constants in GPL. For example, this 
is how a  constant can be used in code:

SCALE: linear(aesthetic(aesthetic.size), aestheticMinimum(size.tiny),
              aestheticMaximum(size.large))

The Color Constants are a lot of fun, and there are a lot of colors to choose from. 
Just the As, Bs, and Cs include aliceblue, aqua, azure, bisque, black, blanched-
almond, blue, blueviolet, brown, burlywood, cadetblue, chartreuse, chocolate, 
coral, cornflowerblue, cornsilk, crimson, and cyan.

Because we are in the middle of a case study involving point elements, you 
might want to review these first. Nonetheless, now that you’ve learned how 
to navigate the Help and put it to good use you can go in whichever direction 
your interests take you. The Example section of Help is also a great place to 
visit, now that you will be able to put it into context.

Bubble Chart Case Study Part Two

The starting point for this section is shown in Figure 6-5. We are going to make 
the following changes to the bubble chart we created in the “Introducing GPL: 
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Bubble Chart Case Study” section earlier in this chapter. The code to accomplish 
these changes is shown after the following list:

 1. Make the points larger using aestheticMinimum and aestheticMaximum:

   SCALE: linear(aesthetic(aesthetic.size), aestheticMinimum(size."5px"),
               aestheticMaximum(size."25px"))

 2. Add gridlines with the gridlines() function on the first two GUIDE 
statements.

   GUIDE: axis(dim(1), label("Bachelors_Perc"), gridlines())
   GUIDE: axis(dim(2), label("Unemp"), gridlines())

 3. Make the points solid without a border by using both color.interior 
and color.exterior. Note that this affects two GUIDE statements as well 
as the ELEMENT statement.

   ELEMENT: point(position(Bachelors_Perc*Unemp), color.interior(Zip1_Mod),

  color.exterior(Zip1_Mod),
                  label(State), size(Pop))

 4. Remove the legend using the null() function on all three legend GUIDE 
statements.

GUIDE: legend(aesthetic(aesthetic.color.interior), label("Zip1_Mod"),

null())

  GUIDE: legend(aesthetic(aesthetic.color.exterior), 

label("Zip1_Mod"),

null())
 GUIDE: legend(aesthetic(aesthetic.size), null())

The following is the complete syntax to create the bubble chart with the 
changes specified above.

* Chart Builder with Pop added for Size.

GGRAPH

  /GRAPHDATASET NAME="graphdataset" VARIABLES=Bachelors_Perc

Unemp Zip1_Mod State Pop MISSING=LISTWISE

    REPORTMISSING=NO

  /GRAPHSPEC SOURCE=INLINE.

BEGIN GPL

  PAGE: begin(scale(12in,7in))  SOURCE: s=userSource(id("graphdataset"))

  DATA: Bachelors_Perc=col(source(s), name("Bachelors_Perc"))

  DATA: Unemp=col(source(s), name("Unemp"))

  DATA: Zip1_Mod=col(source(s), name("Zip1_Mod"), unit.category())

  DATA: State=col(source(s), name("State"), unit.category())

  DATA: Pop=col(source(s), name("Pop"))



158 part II ■ Data Visualization

  GUIDE: axis(dim(1), label("Bachelors_Perc"), gridlines())

  GUIDE: axis(dim(2), label("Unemp"), gridlines())

  GUIDE: legend(aesthetic(aesthetic.color.interior), 

label("Zip1_Mod"),

null())

  GUIDE: legend(aesthetic(aesthetic.color.exterior), label("Zip1_Mod"),

null())

  GUIDE: legend(aesthetic(aesthetic.size), null())

  SCALE: linear(dim(1), min(15))

  SCALE: linear(dim(2), min(2), max(9))

  SCALE: linear(aesthetic(aesthetic.size), 

aestheticMinimum(size."5px"),

              aestheticMaximum(size."25px"))

  ELEMENT: point(position(Bachelors_Perc*Unemp),

color.interior(Zip1_Mod), color.exterior(Zip1_Mod),

               label(State), size(Pop))

  PAGE: end()

END GPL.

Figure 6-7 depicts the bubble plot with the first set of changes.

Figure 6-7:  Bubble plot with changes

Color mapping is our next modification. Unfortunately to get the borderless effect, 
which I happen to like, you have to map color.interior and color.exterior, 
and it looks a bit verbose, but it is not that difficult. The following code allows us to 
control the exact colors that we use, which can be very powerful in ensuring that 
we have color consistency in our presentation. For example, using red and blue to 
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color individual states on a political map of the United States means you probably 
don’t even need a legend to identify what those colors symbolize (see Figure 6-8).

Figure 6-8:  Bubble plot with red and blue states

SCALE: cat(aesthetic(aesthetic.color.interior), map(("1", color.blue),

("2", color.red), ("3", color.green), ("4", color.yellow),

("5", color.cyan)))

 

SCALE: cat(aesthetic(aesthetic.color.exterior), map(("1", color.blue),

("2", color.red), ("3", color.green), ("4", color.yellow),
("5", color.cyan)))

Finally, let’s try an effect that can be quite powerful, but might be a bit too 
much for this example because there are five regions in Zip1_Mod, which can 
make the chart difficult to read. What if we were to draw a boundary around 
the points for those regions, much like slipping an elastic band around push 
pins where our point elements are located?

In the SPSS Statistics Help documentation we can find an example of bank 
salaries that emphasize how the female employees are in a narrow salary band, 
and don’t experience many increases in their current salary above where they 
started at the bank. Let’s try this on our example by inserting our variable names 
into the same line from the SPSS Statistics Help example:

ELEMENT: edge(position(link.hull(Bachelors_Perc*Unemp)),
color.interior(Zip1_Mod))

As shown in Figure 6-9, I think you will agree that it is a little too much distrac-
tion. However, I’ve found this function to be a useful one to have in the toolkit.
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Figure 6-9:  Bubble plot with bands

Figure 6-10:  Bubble plot with polygon

Purely for fun, try this variation (see Figure 6-10):

ELEMENT: polygon(position(link.hull(Bachelors_Perc*Unemp)),
color.interior(Zip1_Mod))

Now that we have a good grounding we will work on a number of new case 
studies. Let’s begin.

Double Regression Line Case Study

The next two examples use the data file PainTreat.sav. Three drug treatments 
for pain are being considered over two time periods. As shown in Figure 6-11, 
in each of the time periods we have a measurement for pain from 0 to 25, and 
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we have the number of Physical Therapy hours that the patient received during 
that period.

Figure 6-11:  PainTreat data file

We want to see the trend lines and regression lines for both time periods. 
Let’s begin by pasting the GPL for a simple scatter plot.

 1. Open the dataset PainTreat.sav.

 2. To create the graph, go to the Graphs menu and choose Chart Builder.

 3. Click Scatter/Dot and choose the Simple Scatter.

 4. Drag the Simple Scatter Icon onto the Canvas.

 5. Place the variable pain1 in the y axis.

 6. Place the variable pt1 in the x axis, as shown in Figure 6-12.

Figure 6-12:  Scatterplot between pain and physical therapy during the first time period

 7. Click Paste.
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The scatterplot we are about to create shows the relationship between 
pain and physical therapy during the first time period. We could manually 
add a regression line with the Elements menu by choosing Add Fit Line at 
Total, but it is not at all clear how we are going to take the second period into 
account. It doesn’t seem like this is an auspicious start, but we are actually 
half way there.

Here is the syntax we have so far:

GGRAPH

  /GRAPHDATASET NAME="graphdataset" VARIABLES=pt1 pain1 

MISSING=LISTWISE

REPORTMISSING=NO

  /GRAPHSPEC SOURCE=INLINE.

BEGIN GPL

  SOURCE: s=userSource(id("graphdataset"))

  DATA: pt1=col(source(s), name("pt1"))

  DATA: pain1=col(source(s), name("pain1"))

  GUIDE: axis(dim(1), label("Hrs Physical Therapy - Period 1"))

  GUIDE: axis(dim(2), label("Pain - Period 1"))

  ELEMENT: point(position(pt1*pain1))
END GPL.

We can add a line with the following statement (after the element line):

ELEMENT: line(position(smooth.linear(pt1*pain1)), color(color.red) )

The pasted GPL is taking care of everything else. The points can stay (which 
is worth a try if you like), but they really will only detract when we add the 
other regression line. The final result is rather straightforward. We need to add 
the variables to the GGRAPH command as well as to their own DATA statements. 
We also add a footnote and a second line. We find a very uniform relationship 
between pain and physical therapy in the two time periods. Voila (see Figure 6-13)!

* Chart Builder.

GGRAPH

  /GRAPHDATASET NAME="graphdataset" VARIABLES=pt1 pain1 pt2 pain2

MISSING=LISTWISE REPORTMISSING=NO

  /GRAPHSPEC SOURCE=INLINE.

BEGIN GPL

  SOURCE: s=userSource(id("graphdataset"))

  DATA: pt1=col(source(s), name("pt1"))

  DATA: pain1=col(source(s), name("pain1"))

  DATA: pt2=col(source(s), name("pt2"))

  DATA: pain2=col(source(s), name("pain2"))
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  GUIDE: axis(dim(1), label("Hrs Physical Therapy"))

  GUIDE: axis(dim(2), label("Pain"))

  GUIDE: text.footnote(label("Red: Time Period 1\nBlue: Time 

Period 2"))

  ELEMENT: line(position(smooth.linear(pt1*pain1)), color(color.red) )

  ELEMENT: line(position(smooth.linear(pt2*pain2)), color(color.blue) )

END GPL.

Figure 6-13:  Double regression line

Arrows Case Study

In this case study, we are going to attempt to display an entire study in one 
graphic. At first glance, our graphic, which we create in just a couple of manual 
steps after pasting, will seem a bit complex. A little complexity is worth it if it 
can reveal patterns in your data that you might otherwise miss. Our audience 
should tolerate two minutes to acclimate to our graphic if it reveals all of the 
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major patterns in our data, especially when it reveals them through the lens of 
the complete dataset.

 1. Open the dataset PainTreat.sav.

 2. To create the graph, go to the Graphs menu and choose Chart Builder.

 3. Click Scatter/Dot and choose the Simple Scatter.

 4. Drag the Simple Scatter Icon onto the Canvas.

 5. Place the variable pain1 in the y axis.

 6. Place the variable pt1 in the x axis.

 7. Click on the Groups/Point ID tab.

 8. Check Columns panel variable.

 9. Place the variable drug in the Columns panel variable box as shown in 
Figure 6-14.

Figure 6-14:  Preview of scatterplot with panel variable

 10. Click OK.
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Here is the pasted syntax:

* Chart Builder.

GGRAPH

  /GRAPHDATASET NAME="graphdataset" VARIABLES=pt1 pain1 drug

MISSING=LISTWISE REPORTMISSING=NO

  /GRAPHSPEC SOURCE=INLINE.

BEGIN GPL

  SOURCE: s=userSource(id("graphdataset"))

  DATA: pt1=col(source(s), name("pt1"))

  DATA: pain1=col(source(s), name("pain1"))

  DATA: drug=col(source(s), name("drug"), unit.category())

  GUIDE: axis(dim(1), label("Hrs Physical Therapy - Period 1"))

  GUIDE: axis(dim(2), label("Pain - Period 1"))

  GUIDE: axis(dim(3), label("Drug"), opposite())

  SCALE: cat(dim(3), include("1", "2", "3"))

  ELEMENT: point(position(pt1*pain1*drug))
END GPL.

Something new is the grammar of panels (also called facets). It is written 
almost as though it is a third dimension:

ELEMENT: point(position(pt1*pain1*drug))

N O t e  A Row panel, as opposed to our Column panel, would have another dimen-
sion and would look like this:

ELEMENT: point(position(pt1*pain1*1*drug))

The 1 is just a placeholder, but there could be a variable there if you wanted a matrix.

We are going to take this graphic and make one major, rather tricky change. 
The + symbol won’t be found in any pasted GPL, but this example is a simple, 
yet powerful, example of its use.

Replace the ELEMENT statement with this:

ELEMENT: edge(position(link.join(pt1*pain1*drug+ pt2*pain2*drug)),
shape(shape.arrow))

I’ve also made some cosmetic changes to the code. The scale of 14” by 7” that 
I’ve chosen looks good on my screen, but you might need to adjust. The Axis 
labels have been modified as well. The complete code is shown here, as well as 
the resulting graphic:

* Chart Builder.

GGRAPH
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  /GRAPHDATASET NAME="graphdataset" VARIABLES=pt1 pain1 pt2 pain2 drug

MISSING=LISTWISE REPORTMISSING=NO

  /GRAPHSPEC SOURCE=INLINE.

BEGIN GPL

  PAGE: begin(scale(14in,7in))  SOURCE: s=userSource(id("graphda

taset"))

  DATA: pt1=col(source(s), name("pt1"))

  DATA: pain1=col(source(s), name("pain1"))

  DATA: pt2=col(source(s), name("pt2"))

  DATA: pain2=col(source(s), name("pain2"))

  DATA: drug=col(source(s), name("drug"), unit.category())

  GUIDE: axis(dim(1), label("Hrs Physical Therapy"))

  GUIDE: axis(dim(2), label("Pain"))

  GUIDE: text.footnote(label("Arrow indicates change

from Time 1 to Time 2"))

  ELEMENT: edge(position(link.join(pt1*pain1*drug+ pt2*pain2*drug)),

shape(shape.arrow))

  PAGE: end()
END GPL.

Figure 6-15:  Change in pain by drug treatment

What do we learn about our data? Take a moment to acclimate and the 
feeling that you are looking at “pick-up sticks” will fade. Notice that all of 
the arrows are pointing down—all of them. That is incredibly striking. A 
mean or median would not inform us of that. The Drug C group has a strik-
ing pattern as well. They were in more pain at the beginning, and although 
the change in pain is similar to the other groups, they exit period 2 in more 
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pain. Also noteworthy is the chaotic pattern of the arrows (change) some are 
straight, some titled to the left, and some titled to the right. The change in the 
amount of physical therapy from Period 1 to Period 2 is all over the place. That 
is exactly where my analysis would move next, and we might have missed it 
without this graphic.

MBTI Bubble Chart Case Study

This is a seemingly simple graphic (see Figure 6-16), but it is a wonderful example 
of how powerful GPL is. You might think that you could do this in Excel, but I 
doubt you can find an easy way (or any way) to do it. First, let’s discuss what the 
graphic tells about the data. The bubbles (the size indicates group size) and the 
locations of the points are the group means. The regression trend line is, however, 
based on the entire dataset. This is terribly important, yet very difficult to do.

Figure 6-16:  MBTI bubble chart

Let’s discuss a bit about the study, because this is actual data. A large group 
of high school students were administered the Myers Briggs Type Indicator 
Instrument (MBTI). Shown are just the seniors who have taken the SAT. They 
were given group feedback sessions, and were given the opportunity for indi-
vidual review of their results, but the data shown here was based on their paper 
and pencil results. It was not self-reported. Their class rank and SAT score was 
provided to the research team by the school district as part of the study so this 
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was also not self-reported. One of the major findings is that the Js (Judging) 
tend to be above the regression line, and the Ps (Perceiving) tend to be below. 
ESTJ (Extraversion, Sensing, Thinking, Judging) is an exception, and is a bit 
below the line. ISFP (Introversion, Sensing, Feeling, Perceiving) is a bit above the 
line, and ESFP (Extraversion, Sensing, Feeling, Perceiving) is bit above, nearly 
resting on the line. We can conclude that Ps tend to be “underachievers” with 
scores that might imply stronger grades, and Js tend to be “overachievers” with 
grades that might cause one to expect higher scores. The terms overachiever 
and underachiever are stereotypes, but the consistency of the finding is intrigu-
ing. The graphic makes this finding clear, nearly at a glance, and the finding 
is quite striking.

So what’s the big deal with this graphic? It isn’t easy to do with most software. 
There are two choices, and neither is ideal. One option is that we could plot 
all the data, all 850 points. A second option is that we could build a chart on 
aggregated data. Let’s consider a chart of all 850 points.

 1. Open the dataset sat_mbti_gpl_start.sav.

 2. To create the graph, go to the Graphs menu and choose Chart Builder.

 3. Click Scatter/Dot and choose the Grouped Scatter.

 4. Drag the Grouped Scatter Icon onto the Canvas.

 5. Place the variable classran in the y axis.

 6. Place the variable satcombo in the x axis.

 7. Place the variable jpcat in the set color box.

 8. Click on the Groups/Point ID tab.

 9. Check Point ID Label.

 10. Place the variable mbti in the Point ID box as shown in Figure 6-17.

 11. Click OK.

The result (see Figure 6-18) we get does not look like Figure 6-16.
One could accuse me of exaggerating for effect, because using just the group 

averages seems like the more obvious way to go. Clearly, if we were working 
in Excel, we would find the 16 averages and then calculate the regression line. 
But that would be wrong. It would make our results look cleaner, distorting 
them in the process. GPL, with its origins in The Grammar of Graphics, makes it 
hard to lie with our data. Wherein lies the potential lie? Our trend line should 
be based on 850 cases. If we base it on N=16 then the correlations will be higher 
because we’ve washed out some of the noise.

This can be easily proven. In this case, if we run a correlation between the 
SAT scores and rank we get a Pearson correlation of –.435, and a Spearman 
correlation of –.431. This makes sense because as rank goes down, SAT score 
goes up. However, and this is critical, if we run the same analysis using the 
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Figure 6-17:  Preview of bubble plot

aggregated N=16 dataset (or a worksheet with just the average values) we get 
–.573 for the Pearson and –.582 for the Spearman. This is more than enough to 
make a visible difference and move the regression line. Our findings would 
be more consistent with theory, but we would be misleading our audience. 
An experiment will show that the change is not visually too dramatic for this 
dataset, but ESFP does move to the theoretical expected side of the line with an 
N=16 regression line. Our audience deserves the correct graphic.

Here is the GPL code that does it. We will discuss the features that we haven’t 
seen before in considerable detail, but will not review commands that we have 
already learned. Let’s start with the GGRAPH command. We enter cool new ter-
ritory. We have two GRAPHDATASET subcommands! We are going to start with a 
single dataset, then run an AGGREGATE command to create a second dataset, and 
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then refer to both datasets in the GPL code. The line element will be based on 
an 850-row dataset, and the points will be based on the 16-row dataset.

Figure 6-18:   Relationship between class rank and SAT scores and MBTI results

Here are the AGGR commands:

DATASET ACTIVATE AllData.

DATASET DECLARE AGGR.

AGGREGATE

  /OUTFILE='AGGR'

  /BREAK=mbti jpcat

  /satcombo_mean 'Group Mean SAT Combined Score'=MEAN(satcombo)

  /classran_mean 'Group Mean Class Rank'=MEAN(classran)

  /N_BREAK=N.

 

DATASET ACTIVATE AGGR.
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* Define Variable Properties.

FORMATS  satcombo_mean(F8.0).
FORMATS  classran_mean(F8.0).

An important detail is the use of the DATASET NAME command to choose the 
“window name” of AllData to refer to the original data, and AGGR to refer to 
our new 16-row dataset. The FORMATS command gets rid of decimal places to 
clean up our chart. It is much easier to do that now before we build the chart.

Note that as an example you could look at the GPL generated by Graphs ➪ 
Compare Subgroups, which uses two datasets—one with split files on and a 
separate one for the overall data:

GGRAPH

  /GRAPHDATASET NAME="graphdataset" DATASET = AllData 

VARIABLES=ID

classran satcombo MISSING=LISTWISE

    REPORTMISSING=NO

  /GRAPHDATASET NAME="graphdataset2" DATASET = AGGR VARIABLES=N_BREAK

mbti classran_mean satcombo_mean jpcat MISSING=LISTWISE

    REPORTMISSING=NO
  /GRAPHSPEC SOURCE=INLINE.

Here is the GPL code:

BEGIN GPL

  PAGE: begin(scale(10in,6in))

  SOURCE: s=userSource(id("graphdataset"))

  SOURCE: s2=userSource(id("graphdataset2"))

  DATA: ID=col(source(s), name("ID"), unit.category())

  DATA: N_BREAK=col(source(s2), name("N_BREAK"))

  DATA: classran_mean=col(source(s2), name("classran_mean"))

  DATA: satcombo_mean=col(source(s2), name("satcombo_mean"))

  DATA: classran=col(source(s), name("classran"))

  DATA: satcombo=col(source(s), name("satcombo"))

  DATA: jpcat=col(source(s2), name("jpcat"), unit.category())

  DATA: mbti=col(source(s2), name("mbti"), unit.category())

  GUIDE: axis(dim(2), label("Group Mean Class Rank"))

  GUIDE: axis(dim(1), label("Group Mean SAT Combined Score"))

  GUIDE: legend(aesthetic(aesthetic.color.interior), null() )

  GUIDE: legend(aesthetic(aesthetic.color.exterior), null() )

  GUIDE: legend(aesthetic(aesthetic.size), null() )

  GUIDE: text.footnote(label("Point position is group mean. Point size

indicates group sample size. Regression line N=850."))

  SCALE: linear(dim(1), min(600), max(1000))
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  SCALE: linear(dim(2), min(45), max(125), reverse())

  SCALE: linear(aesthetic(aesthetic.size), aestheticMinimum(size."8px"),

              aestheticMaximum(size."25px"))

  ELEMENT: point(position(satcombo_mean*classran_mean),

color.exterior(jpcat),

  color.interior(jpcat), label(mbti), size(N_BREAK))

  ELEMENT: line(position(smooth.linear(satcombo*classran))  )

  PAGE: end()
END GPL.

Here are some things to look for in the code:

 ■ There are two SOURCE statements. Our original file is Source s, and our 
aggregated file is s2.

 ■ The legends have been declared null() since we have a caption.

 ■ The last GUIDE statement provides the caption.

 ■ We’ve declared min and max dimensions and used the reverse() function.

 ■ We’ve declared an aestheticMinimum and aestheticMaximum.

 ■ The point element uses only variables from the second dataset, and the 
line element uses only variables from the first dataset. We are not allowed 
to mix and match within the same ELEMENT statement.

If you copy all the syntax code shown in this case study, you will be using 
the active dataset and the aggregated dataset created by the AGGREGATE com-
mand. Finally you will be using information from both datasets along with the 
aesthetics specified above to create Figure 6-16. This case study is a very simple 
example of the power of GPL.
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As researchers, it is very important that we are able to communicate our findings. 
Typically we hold meetings or write reports that allow others to understand 
what we have found. Graphs allow researchers to summarize data quickly and 
easily. Graphs also allow you to visualize data to better understand relation-
ships among variables.

SPSS Statistics has several procedures that allow users to create graphs (for 
example, the Chart Builder, the Legacy Graphs, and the Graphboard Template 
Chooser). The standard graphs and charts in SPSS Statistics are complete enti-
ties, so that users need to know what they want to show in a graph before they 
create it. For example, I might want to create a scatterplot or a bar chart, so when 
using the Chart Builder or a Legacy Graph, I would choose a scatterplot or a bar 
chart type, and all the available elements of the graph would be chosen for me 
(of course the elements can be manipulated or removed using the Chart Editor).

The Graphboard Template Chooser, on the other hand, defines structure and 
elements of a graphic, not the entire graphic. For example, I may want to show 
the relationship between two categorical variables and one continuous variable, 
and I might want to display the mean for this combination of variables. With the 
Graphboard Template Chooser, users explore how best to visualize their data, 
or the Graphboard Template Chooser can recommend potential visualizations 
depending on the type(s) of data selected.

C h a p t e r 

7

Mapping in IBM SpSS Statistics 
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Creating Maps with the Graphboard Template Chooser

In these first examples, we will use the Worldwidesales.sav file. This file (see 
Figure 7-1) contains sales revenue broken down by product purchased and 
location.

Figure 7-1:  Worldwide sales data

Perhaps the simplest graph you can create using the Graphboard Template 
Chooser to show the distribution of customer locations is a bar chart. The bar 
chart shown in Figure 7-2 displays the number of customers in each continent, 
with each continent represented by a bar. The bars are arranged in alphabetical 
order. We can see that we have the fewest customers in Africa because it has 
the shortest bar, and North America is the continent where we have the most 
customers because it has the tallest bar.
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Figure 7-2:  Bar chart of customer location
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However, when data has a geographical component, a better solution might 
be to use a map. Maps allow you to see patterns in the data that might not be 
evident in traditional charts, such as clusters or regions with a higher concen-
tration of values. The map in Figure 7-3 shows the distribution customer loca-
tions. It shows the number of customers in each continent and each continent is 
represented by its geographical location. Furthermore, color saturation is used 
to represent values that correspond to the variables depicted on the map (here, 
darker values represent higher values). Maps give context that is meaningful.

Figure 7-3:  Map of customer locations

Maps can be used in a wide variety of settings to help answer many impor-
tant questions. For example, organizations may want to know the location of 
certain client characteristics to determine where to send salespeople, where to 
hire additional employees, where to create new stores, which marketing cam-
paigns to use, and so on.

Investigators can use maps to determine the locations of crimes, the spread 
of disease, fluctuations in temperature, population growth, distance traveled, 
where to send school buses, how to create new districts, and so on.

Creating a Choropleth of Counts Map
The Choropleth of Counts map is used when you have only one categorical vari-
able to display, and the categorical variable is the data key. This is the simplest 
map you can create because it only requires one categorical variable.
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This section walks you through the process of creating a Choropleth of Counts 
map:

 1. To access the Graphboard Template Chooser, click Graphs ➪ Graphboard 
Template Chooser.

Maps can be created from a single variable, or multiple variables. Maps 
can use categorical variables, continuous variables, and combinations of 
categorical and continuous variables.

 2. Click the Continent variable.

The Basic tab gives suggestions for templates. On the Basic tab, you first 
have to select the data that you are interested in analyzing and then select 
a graph that is appropriate for that data. You start from the data, rather 
than a specific graph type. Notice that there is only one possible map you 
can create (as shown in Figure 7-4).

Figure 7-4:  One variable selected
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 3. Click the Choropleth of Counts icon.

 4. Click the Detailed tab.

The Detailed tab is an alternative to the Basic tab where you can specify 
all required variables, summary statistics, and aesthetics. You select the 
graph type, specify the type of data, and then you can specify details that 
are not available on the Basic tab. The Detailed tab is optional for most 
visualizations; however, it is required when you are creating a map. You 
need to make sure that the right template and data key are selected. For 
example, if you have data for Africa, you need to make sure that the map 
template is also for Africa.

 5. Click the Select a Map File button.

The Select a Map dialog allows users to select the appropriate map and 
the template is specified next to the map box.

 6. Click the Map drop-down list and select Continents.

You then need to specify the map key. The map key contains the values 
that are represented on the map template. Then you need to specify the 
data key. The data key holds the values that you actually have in your 
dataset. A data key is a variable that contains the labels that correspond 
to the areas on a map. It is a way to tie the data to the map, so that the 
data can be displayed on the map correctly. It is important to make sure 
that the map and data key values match.

 7. Click the Data key drop-down list and select Continent.

You can click the Compare button after the appropriate map and data 
keys have been determined.

 8. Click the Compare button.

Now you can see which keys match between the map and data keys. 
Ideally you would like all the values to match. As shown in Figure 7-5, 
you want to make sure that all of the values for the data key match the 
values on the map. If your data does not have some of the values on the 
map key, that is okay. In our example Oceania appears on the map key 
but not in the data.

 9. Click OK.

Figure 7-6 shows the Detailed tab with the correct map file.

 10. Click OK. 
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Figure 7-5:  Select Maps dialog

Figure 7-6:  Completed Detailed tab
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N O t e  The Graphboard Template Chooser comes with several map files. You can view 
these map files by clicking the Manage button. Here you will be able to import or export 
map files. However, if you would like to create your own map files, you will need to use 
the map conversion utility. The map conversion utility is located under the Utility menu.

This type of map (Figure 7-7) is used when you want to see the frequency of 
different regions in your map or how often values for your data key occur. For 
example, it can be used when you want to look at number of sales or crimes in 
different regions. Color saturation is used to represent values that correspond 
to the variables depicted on the map (here, darker values represent higher 
values). We can see that we have the fewest customers in Africa because it has 
the lightest color, and North America is the continent where we have the most 
customers because it has the darkest color.

Figure 7-7:  Choropleth of Counts

Creating Other Map Types
In this section you continue using the Graphboard Template Chooser to create 
additional map types.

Choropleth of Values

The Choropleth of Values map shows relationships between two categorical 
variables. Here the mode or most common value is what is depicted on the map 
as a different color.
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Start by following these steps to create a Choropleth of Values map:

 1. Click Graphs ➪ Graphboard Template Chooser.

 2. Click the Continent variable.

 3. Hold down the Ctrl key and click the Product variable.

You have selected two categorical variables. Notice that six possible maps 
are available (as shown in Figure 7-8).

Figure 7-8:  Two categorical variables selected

 4. Click the Choropleth of Values icon.

Make sure when using the Detailed tab that you are using the Continents 
map and that the Continent variable is the data key.

 5. Click OK.

Figure 7-9 illustrates the relationship between the Continent and Product 
variables. The map shows that the continents of North America, Europe, and 
Australia prefer Product B, whereas Product A is the biggest seller in South 
America and Africa, and Asia has a preference for Product C.
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Figure 7-9:  Choropleth of Values

Pie of Counts

The pie of counts on a map (or bar of counts on a map) shows relationships 
between two categorical variables. It displays the proportion of rows divided 
by cases for each category of a variable for each map feature (area) as pie (or 
bar) charts positioned in the center of each map feature.

Let’s next create a Pie of Counts map for two categorical variables:

 1. Click Graphs ➪ Graphboard Template Chooser.

 2. Click the Continent variable.

 3. Hold down the Ctrl key and click the Product variable.

 4. Click the Pie of Counts on a Map icon.

  Make sure that you are using the Continents map and that the Continent 
variable is the data key.

 5. Click OK.

Figure 7-10 shows the relationship between the Continent and Product vari-
ables. The map shows the Product category breakdown within each Continent, 
so whereas the Choropleth of Values map showed only the modal response 
for each Continent, here we see the Product category breakdown within each 
Continent. Note that you can edit these charts.
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Figure 7-10:  Pie of counts on a map

Choropleth of Sums

The Choropleth of Sums (means or medians) map shows relationships between 
a categorical and a continuous variable.

Now let’s create a Choropleth of Sums map for one categorical variable and 
one continuous variable:

 1. Click Graphs ➪ Graphboard Template Chooser.

 2. Click the Continent variable.

 3. Hold down the Ctrl key and click the Revenue variable.

You have selected one categorical and one continuous variable. Notice that 
you can create three possible maps (as shown in Figure 7-11).

 4. Click the Choropleth of Sums icon.

Make sure that you are using the Continents map and that the Continent 
variable is the data key.

 5. Click OK to display the map shown in Figure 7-12.
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Figure 7-11:  One categorical and one continuous variable selected

Figure 7-12:  Choropleth of Sums
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Color saturation shows the sum of values within each continent (here, darker 
values represent higher values). We can see that we have the lowest revenue 
in Africa because it has the lightest color, and North America is the continent 
where we have the most revenue because it has the darkest color. A map like this 
can be used in various situations, including investigating the average income 
per neighborhood or amount spent by country on health care. Note that in this 
dataset the mean is just the average revenue per country, while the user would 
probably want average revenue per capita.

Bars on a Map

The bars (pie or line chart) on a map requires two categorical variables and one con-
tinuous variable. It displays a summary statistic for each category of a variable for each 
map feature as bar (pie or line) charts positioned in the center of each map feature.

Now let’s create one final map with this dataset for two categorical variables 
and one continuous variable:

 1. Click Graphs ➪ Graphboard Template Chooser.

 2. Click the Continent variable.

 3. Hold down the Ctrl key and click the Revenue variable.

 4. Hold down the Ctrl key and click the Product variable.

 5. Select Sum in the Summary drop-down list.

You have selected two categorical variables and one continuous variable. 
Notice that you can create three possible maps (as shown in Figure 7-13).

Figure 7-13:  Two categorical and one continuous variable selected
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 6. Click the Bars on a Map icon.

Make sure that you are using the Continents map and that the Continent 
variable is the data key.

 7. Click OK. You should see the map shown in Figure 7-14.

Figure 7-14:  Bars on a Map

This type of map can be used to show the number of sales of different prod-
ucts in different areas where you do business or how different types of crimes 
relate to home values in different neighborhoods. In our example, the map shows 
total revenue by the Product category breakdown within each Continent. So 
we see that South America and Africa had the greatest revenue from Product 
A, Asia had the greatest revenue from Product C, and North America, Europe, 
and Australia had the greatest revenue from Product B.

Creating Maps Using Geographical Coordinates
In these next examples, we will use the file Coordinates.sav. This file contains 
latitude and longitude coordinates of customer location. Longitude and latitude 
coordinates can be created using freeware on the Internet from many different 
pieces of geographical information including addresses, zip codes, cities, and 
so on.
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Coordinates on a Reference Map

Coordinates on a Reference map uses two continuous variables—one repre-
senting longitude, and one representing latitude—and then draws a map that 
displays points using longitude and latitude coordinates.

First let’s create a map using latitude and longitude coordinates:

 1. Click Graphs ➪ Graphboard Template Chooser.

 2. Click the Longitude variable.

 3. Hold down the Ctrl key and click the Latitude variable.

You have selected two continuous variables. Notice that you can create 
one possible map (as shown in Figure 7-15).

Figure 7-15:  Two continuous variables selected

 4. Click the Coordinates on a Reference Map icon.

Make sure that you are using the Continents map and that the latitude 
and longitude variables point to the correct location.

 5. Click OK. You should see the map shown in Figure 7-16.
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This type of map can be used to show where different crimes are committed, or 
the spread of disease, or where customers are located, or to modify school bus 
routes where children live. In this example we can see that most of our custom-
ers are located in the Eastern United States and Western Europe.

Coordinates on a Choropleth of Counts

The Coordinates on a Choropleth of Counts map uses two continuous variables 
that represent longitude and latitude coordinates and one categorical variable 
that represents the color depicted on the map.

Now let’s create a Coordinates on a Choropleth of Counts map:

 1. Click Graphs ➪ Graphboard Template Chooser.

 2. Click the Longitude variable.

 3. Hold down the Ctrl key and click the Latitude variable.

 4. Hold down the Ctrl key and click the Region variable.

You have selected two continuous variables and one categorical 
variable. Notice that you can create two possible maps (as shown in 
Figure 7-17).

Figure 7-16:  Coordinates on a Reference map
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Figure 7-17:  Two continuous variables and one categorical variable selected

 5. Click the Coordinates on a Choropleth of Counts icon.

Make sure when using the Detailed tab that you are using the Continents 
map file and that the latitude and longitude variables point to the correct 
location.

 6. Click OK to display the map shown in Figure 7-18.

The longitude and latitude coordinates are used to identify points on a map, 
and color saturation (here, darker values represent higher values) is used to 
represent the number of cases that correspond to the variables depicted on a 
map. We can see that we have the least number of customers in Africa and South 
America because they have the lightest color, and North America and Europe 
are the continents where we have the most customers because they have the 
darkest color.

Arrows on a Reference Map

The Arrows on a Reference map uses four continuous variables for starting 
and ending coordinates. These variables represent the starting longitude and 
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Figure 7-18:  Coordinates on a Choropleth of Counts map

latitude coordinates and the ending longitude and latitude coordinates. These 
types of maps are ideal for displaying the spread of disease, or movement, or 
distance traveled.

Now let’s create one final map:

 1. Click Graphs ➪ Graphboard Template Chooser.

 2. Click the Longitude variable.

 3. Hold down the Ctrl key and click the Latitude variable.

 4. Hold down the Ctrl key and click the Longitude of destination variable.

 5. Hold down the Ctrl key and click the Latitude of destination variable.

You have selected four continuous variables. Notice that there is one possible 
map you can create (as shown in Figure 7-19). Note that depending on your 
preference settings, variable names or labels appear on the variable list.

 6. Click the Arrows on a Reference Map icon.

In the Detailed tab make sure that you are using the Continents map 
file and that the latitude and longitude variables are in the correct 
location.
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 7. Click OK to display the map shown in Figure 7-20.

Figure 7-20:  Arrows on a Reference map

Figure 7-19:  Four continuous variables selected
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The Options tab of the Graphboard Template Chooser controls how missing 
data is handled. As a default, listwise deletion is used. Notice that in our dataset 
we only have ending coordinates for people that originated in North America, 
so we can easily see where each person in North America traveled.

In SPSS Statistics V23, three new mapping procedures are introduced: Geospatial 
Association Rules, Spatial Mapspec, and Spatial Temporal Prediction. These are 
covered in Chapter 8, and they are the natural evolution from the simple map-
ping approach illustrated here.
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The majority of data that businesses deal with is associated with a particular 
location. For many problems, incorporating where events occur can improve 
predictions and help you better understand the data. Almost all spatial data 
exhibits some type of spatial dependence, and exploiting that dependence is 
what spatial analysis is all about.

Two new spatial analytic techniques have been added to SPSS Statistics Ver-
sion 23: Geospatial Association Rules and Spatio-Temporal Prediction. Both 
techniques are available to all users. Both techniques can take a set of data that 
has an associated set of X and Y coordinates, or has a field that associates it with 
a particular map file (for example, a ZIP code) and then generate predictions for 
an area given a set of map locations and additional variables associated with 
those areas.

This chapter provides a walkthrough of each technique applied to different 
case studies of crime analysis. Crime tends to be highly clustered in certain areas, 
and so many police departments conduct geographic analysis to identify these 
hot spots of crime. Police departments then frequently deploy more resources 
at these hot spots, such as conducting more patrols, writing more traffic tickets, 
or having community police officers meet with community members to discuss 
local problems and potential remedies. Each of the new geospatial analytic 
techniques in SPSS can facilitate the types of analyses many police departments 
or other businesses undertake.

C h a p t e r 

8

Geospatial analytics 
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Geospatial Association Rules

The association rules technique finds the items that occur the most frequently 
together, often among a set of very many different items. The most common 
examples are in basket analysis, in which association rules identify the most 
common items people purchase together. One surprising example of this type 
of analysis is that males tend to purchase diapers and beer together.

We can think of the overlap in terms of a crosstabs table, where each cell 
defines whether a shopper buys neither beer nor diapers, buys one or the other 
product, or buys both. When you are only examining two items it is simple to 
see the overlap, but the task becomes more complicated when you have many 
different items, and the associations may be between more than two items. 
Geospatial Association Rules is an automated procedure to find those catego-
ries that have a large degree of overlap. The Association Rules algorithm can 
search over many different crosstabulations and return sets of items that meet 
user-specified criteria.

With SPSS’s Geospatial Association Rules, instead of the unit of analysis 
being an individual shopper, the unit of analysis is a particular place. To 
continue the example of basket analysis, say the analyst has different sales 
figures for stores by ZIP code. Do ZIP codes that tend to sell more beer also 
tend to sell more diapers? Even if the individual-level association between 
beer and diapers exists, that does not guarantee that the relationship will also 
exist at the ZIP code level. (The reverse is true as well, that a relationship at 
the aggregate level will not necessarily exist at the individual level; this is 
known as the ecological fallacy.) For the basket analysis example, differences 
between ZIP codes may suggest different marketing strategies in different 
ZIP codes.

Case Study: Crime and 311 Calls

This section provides an example of geospatial association rules between reported 
crime and 311 calls-for-service in Washington, D.C., in 2013 at a set of 500 meter 
by 500 meter grid cells. The types of crime that will be examined are thefts 
from auto, burglary, robbery, and aggravated assault with a weapon. 311 calls-
for-service are non-emergency complaints directed toward city agencies. A 311 
hotline is not available in all places in the United States (unlike 911), but many 
large cities have a 311 system. 311 complaints encompass quite a large number 
of categories, but some examples in D.C. are loose garbage on the street, a bro-
ken parking meter, or a sidewalk that needs to be repaired. The original data is 
publicly available at http://data.octo.dc.gov/, and this book provides a set 
of files to reproduce the analysis.

http://data.octo.dc.gov/
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The theory of the relationship between crime and 311 calls is the broken-
windows theory of crime. The theory states where there is one broken window, 
more are likely to follow. The reasoning behind this relationship is that when 
an individual sees one broken window, it shows that no one cares, and if that 
individual breaks another window there is unlikely to be repercussions. 
The analogy of broken windows can be extended to other visible signs of 
disorder, such as throwing garbage on the street, spray painting graffiti, or 
pan handling.

A popular technique conducted by police departments to combat disor-
der problems in communities is called problem-oriented policing. This entails 
looking at the particular problems faced by a community, and even if they 
aren’t directly crime related to try to help the community solve them. Even 
in high crime areas people complain more often about visible signs of dis-
order, like vacant lots and pan handling, than they do about more serious 
crime. Problem-oriented policing strategies frequently involve reducing 
such disorder.

Geospatial Association Rules can help crime analysts to identify areas that 
have high levels of particular 311 calls and different types of crimes. This can 
aid problem-oriented policing, and part of the reason the 311 number was origi-
nally reserved in the U.S. was to aid the police in measuring disorder problems. 
If one believes the broken-windows theory of crime, reducing such physical 
disorder problems will result in crime reductions. Another potential avenue 
for crime reduction is that if police spend more time in a particular area, no 
matter what they do, they are likely to deter more crime. So identifying areas 
with both high disorder problems and particular crime problems for community 
police officers to focus on can facilitate a two birds with one stone type crime and 
disorder targeting strategy.

To start the example, open the SPSS data file DC_Crime_2013.sav, which 
contains the crime data with geographic coordinates, and Agg311_Data.sav, 
which contains a set of 311 complaints aggregated to grid cells in D.C., and then 
follow these steps:

 1. To start the example, open the SPSS data files DC_Crime_2013.sav and 
Agg311_Data.sav. The DC_Crime_2013.sav data file contains the crime 
data with geographic coordinates, and the Agg311_Data.sav data file 
contains a set of 311 complaints aggregated to grid cells in D.C.

 2. Open up the Geospatial Modeling Wizard from the Analyze menu and 
select Spatial and Temporal Modeling ➪ Spatial Modeling. It does not 
matter which dataset is the active one when starting the wizard. Unlike 
most SPSS dialogs, the Geospatial Modeling Wizard will have access to 
all opened datasets.

Figure 8-1 shows the Geospatial Modeling Wizard.
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 3. For this analysis, select the “Find associations based on event and geos-
patial data (Geospatial Association Rules)” option.

 4. Click Next. The dialog that opens will then set up the map data.

 5. Click the Add Map File button, and then navigate to the DC_Fishnet.shp 
shapefile to import the regular grid.

For both Geospatial Association Rules and Spatio-Temporal Prediction 
you need to associate a map file, and these define the areas for which 
predictions are generated. Figure 8-2 shows the expected output. For this 
example, we have a set of polygon data, and so each crime will be (by 
default) associated with the polygon that it falls within. You can use other 
types of spatial data for Geospatial Association Rules, such as points, and 
have individual events associated with those points. An example might 
be if you have point locations of stores, and you want to associate home 
locations to the nearest store. You can set these types of associations via 
the Relationship button.

You can also add supplemental information as background layers into the 
map. For example, for reference data you could add in areas of bodies of 
water, or a road network. Separate layers can help provide references to 
locations in the map.

Figure 8-1:  Opening the Geospatial Modeling Wizard
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 6. After the map is set up, as shown in Figure 8-2, click the Next button, and 
you will be prompted by a dialog to set data to be context and the event 
data (the data to be predicted), shown in Figure 8-3.

Figure 8-2:  Adding map data

Figure 8-3:  Assigning context and prediction data
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Here you assign different data sources to either the context data or the 
event data. Options are to use data from currently opened datasets, data 
from one of the maps, or data from an external SPSS statistics data file.

 7. Click the Add button in the Context Data box, and you will be presented 
with the dialog shown in Figure 8-4.

Figure 8-4:  Associating map data

 8. Select Agg311_Data.sav and click Continue.

You will then be prompted with the dialog shown in Figure 8-5 that 
associates the SPSS data to the geographic units in the shapefile. Here the 
FishId variable is the key that matches the records in Agg311_Data to their 
associated polygon in the DC_Fishnet shapefile.

Figure 8-5:  Associating fields from data to the map
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 9. For both the Dataset fields and the map keys select the FishID variable 
and place it to the right in the Data keys and Map key boxes.

You can click Validate to see whether your keys were correctly matched 
between the two different data sources, and see a summary of fields that 
were not matched.

 10. Click Continue, and you will be back at Figure 8-3. Click the Add button 
in the Event Data field, and select the DC_Crime_2013.sav dataset.

 11. Click Continue.

When following these prompts for the Event dataset, you will have to 
associate the X and Y coordinates of the data, as opposed to identifying 
a field to match the prediction data to the map polygons.

 12. Using the DC_Crime_2013 data for the predictions, assign the fields 
BLOCKXCOORD and BLOCKYCOORD to the X (longitude) and Y (lati-
tude) fields, respectively, as shown in Figure 8-6.

Figure 8-6:  Assigned geospatial coordinates

 13. Click Continue.

A dialog will then appear on the screen that asks you to identify the 
projection of the coordinates. Geographic data can come in the form 
of spherical longitude and latitude coordinates, or it can be projected 
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into some other coordinate system. Most maps that examine a small 
area (as is the case for most police departments) use some type of 
local projection.

 14. Here the well-known ID (WKID) of the projection is 26985, so select that 
option and input the value, as shown in Figure 8-7.

Figure 8-7:  Setting the coordinate system

The WKID is simply a numeric value associated with popular projections, 
originated by the mapping company ESRI. This particular projection is one 
associated with the state plane coordinate system, and is centered directly on 
D.C. One way to find out the WKID of the map projection is to select simple 
Cartesian (X and Y) as the option in this dialog, and paste the syntax at the 
end. If your shapefile has an associated .prj (projection file), SPSS will rec-
ognize this and supply the WKID in the pasted syntax. Another way is to 
upload your .prj file (or copy-and-paste the text) into the online app http://
prj2epsg.org/search.

Now we can move onto setting up the prediction models based on the con-
text and prediction datasets. On the next screen in the Geospatial Modeling 
Wizard you will be presented with the variables in all of the associated 
data sources:

 1. Click the Event Data in the Data Sources box to see the variables shown 
in Figure 8-8. Place the OFFENSE categorical field in the Prediction 
only box.

 2. Now click the Context data in the Data Sources box, and then move the 
variables Garbage, Infra, Graff, and Parking into the Condition only box, 
as shown in Figure 8-9.

http://prj2epsg.org/search
http://prj2epsg.org/search
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Figure 8-8:  Setting the prediction variables

Figure 8-9:  Setting the condition variables
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These particular fields are counts of 311 complaints classified into 
different general categories. The Garbage category holds complaints 
about loose garbage on the street, Infra holds complaints about infra-
structure (such as street lights out or a broken sidewalk), Graff is 
graffiti complaints, and Parking is complaints about illegally parked 
individuals.

 3. After those variables are set in the Conditions box, click Next.

Now you will be presented with the dialog for setting the output, deciding 
the criteria for selecting rules, and running or pasting the syntax from the  
dialog. Figure 8-10 shows the available options for the output. Keep the 
default settings, except check the Lift tab for both the Rules Tables section 
and the Map section.

Figure 8-10:  Setting output for geospatial association rules

 4. Click the Rule Building option in the left pane, and you will be presented 
with the options in Figure 8-11. Change the Rule Support and Condition 
Support from their defaults of 5% to 1%, but leave the other options at 
their default values.



 Chapter 8 ■ Geospatial analytics  203

The criteria specified in these options limits what associations the proce-
dure will identify. These criteria are based on marginal and conditional 
properties for each of the categories.

Rule Support is the proportion of the data values that meet both the predicted 
category and the condition. For example, if a rule is X & Y (with X the condition 
and Y the predicted category), the rule support is the percentage of cases that 
meet both X & Y in the sample. Written in probability terms, rule support is 
then P(X = True And Y = True). Confidence is the value of rule support divided 
by the base probability of the condition, X, in the sample. So Confidence is 
equal to P(X = True AND Y = True)/P(X = True). The Lift field has the same 
numerator, the rule support, but the denominator is the base probability of 
the predicted category in the sample, P(X = True AND Y = True)/P(Y = True). 
Condition support is simply the probability of the condition, P(X = True).

When setting conditions for particular rules to display, you need to keep 
in mind the baseline probabilities for the categories, in particular potential 
small numbers problems. If there is either a very small probability for 
either the condition or the predicted category, rule support will always 
be very small, and so the algorithm will always exclude that particular 

Figure 8-11:  Setting the rules
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combination. For instance, if we included the offense of homicides to 
predict, they happen much less frequently than any of the other listed 
crimes, and so if you want to at least have the potential to identify rules 
predicting homicide, it is better to lower the probability for rule support. 
If there are fairly rare outcomes in the conditions, the same applies to 
lowering the probability of the condition support.

Here we have restricted the offense categories to thefts from auto, bur-
glary, robbery, and aggravated assault with a weapon, and aggregated 
311 calls to the general categories of garbage, infrastructure, graffiti, and 
parking related complaints, so none of the categories are very small in this 
example. Typically, it is easier to approach association rules with a broad 
to specific workflow. That is, use broader and fewer categories to identify 
easily interpretable rules at first. Then, if warranted upon identifying rules 
among the broader set, you can drill down to see if you can identify more 
specific rules among a smaller set of data or a more specific set of categories.

 5. Next click the Binning and Aggregation option in the item box on the 
left-hand side. This dialog, shown in Figure 8-12, defines how fields are 
aggregated to the map categories, how many bins to split continuous 
inputs into, or arbitrary cut points to use in binning the categories.

Figure 8-12:  Defining bins
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The Aggregate the map option is checked by default, but for this example 
it does not matter, because each of the records in Agg311_Data.sav are 
only associated with one polygon in the map. If it was the case that  
we had different types of relationships between the context data and 
the map data (for example, associating stores to the nearest ZIP code), 
we can choose different types of aggregation schemes (such as the 
mean or the sum) when aggregating to the spatial units of analysis 
used in the map.

Here I will be changing the cut points for each of the 311 fields. I 
inspected the data previously, and define cut points for each of the 
311 variables based on approximately the 75th quantile of the data. So 
above the cut point are locations that have relatively high amounts of 
that particular type of 311 call-for-service. Again this is motivated by 
identifying broader and more interpretable rules at first. If you made 
more bins besides high and low categories, the rules will end up being 
more difficult to interpret.

 6. To set custom settings for specific fields, click the scale icon on the right-
hand side of the GUI, and then select the four fields.

 7. Once the four fields are placed in the Custom settings table, click within 
the Bins column for each variable to set its cut point. Here I use 160 
for garbage complaints, 50 for infrastructure, 3 for graffiti, and 40 for 
parking.

 8. Once you finish inputting the cut points, you are ready to click Next and 
go on to the final screen.

N O t e  If you want to save a map plan for the future, you can select the Save option 
before navigating to the final screen.

 9. On the final screen, you will be presented with a preview map, and an 
option to either run the command or paste the syntax for future use. Go 
ahead and keep the default, Run Model.

 10. Click the Finish button. For this example dataset, the association rules 
algorithm takes about 2 to 3 minutes before returning results.

In the output you are then presented with a series of tables and maps. The 
maps are interactive, and show both of the predicted offense points, with 
blue colored points being ones that are associated with the rule, and salmon 
colored points being ones that are not associated with the rule. Polygons that 
meet the rule are highlighted as a brighter shade of green, although these 
examples are covered by so many points they are harder to identify. You 
can toggle different rules in the bar chart on the left-hand side and update 
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the map. By double-clicking on the map, you can also pan and zoom in the 
map to see locations up close.

Figure 8-13 shows an example rule and map. There are high concentrations 
of areas with Theft F/Auto and over three Graffiti complaints in several areas of 
the city. These include both the central part of the city that has more bars and 
other nightlife attractions, as well as more northwestern parts of the city that 
encompass American University and are more residential.

Figure 8-13:  Rule 14: Theft F/Auto and Graffiti > 3

Figure 8-14, and its example rule for Assault w/Dangerous Weapon, shows 
quite a different spatial pattern. The majority of the blue points that meet the 
condition are in the southeastern part of the city, what happen to be more resi-
dential neighborhoods south and east of the Anacostia River. Notice the rule 
is associated with high levels of garbage complaints, but otherwise low levels 
of infrastructure, graffiti, and parking complaints. Thus these much smaller 
areas are places where community police officers may consider focusing on 
garbage complaints as opposed to other types of less frequently reported 
problems.
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Spatio-Temporal Prediction

The second geospatial statistical procedure introduced in SPSS Statistics V23 is 
Spatio-Temporal Prediction. In this module you can take a set of point data, or 
data associated with particular areas, and predict future counts for geographic 
areas given temporal measures of other variables. It subsequently provides 
helpful interpretation at the geographic level, to see in what areas what time 
series are more correlated with one another, and it also provides a tool to predict 
future values. It also provides similar mapping capabilities as those shown in 
Geospatial Association Rules to explore your data after the models are fit.

Case Study: Predicting Weekly Shootings

This case study will be predicting weekly shooting locations from prior 
shootings as well as other reported crime in Washington D.C., an example of  
predictive policing. Unlike the Tom Cruise movie Minority Report, this simply 
means forecasting the number of crimes that will occur in the future at some 
location given historical numbers and other pertinent data. It does not mean 
predicting who will commit a crime before it happens!

Figure 8-14:  Rule 32: Assault w/Dangerous Weapon
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Police departments forecast future counts of crime for the same reasons any 
business forecasts future values of variables of interest. Forecasts can help allocate 
resources to where they are needed most, and prepare the police department 
to try to take the best possible steps to deter crime.

If a police department is interested in long-term forecasts for an entire city, they may 
use demographic predictors, such as expected increases in the residential population 
or changes of the percentage of people in poverty to forecast future crime counts. If 
they are interested in smaller areas or smaller temporal windows, the demographic 
measures are not useful because such fine-grained measures are not available.

One source of data that is available though at smaller geographic units and tem-
poral windows is other crimes. The majority of shootings are retaliatory in nature, 
and so shootings are sometimes precipitated by other crimes, such as an assault, 
robbery, or a burglary (besides in response to prior shootings). It is also the case 
that other external factors, such as intense heat causing people to be more irritable, 
or very cold weather or heavy precipitation causing people to stay indoors, can 
respectively cause all types of crime to increase or decrease from week to week.

Shooting locations in D.C. are triangulated with the ShotSpotter detection system. 
This is a set of audio recorders placed around the city that can specifically detect 
when and where a gun is fired. But D.C. does not have ShotSpotter sensors covering 
the entire city. Coverage of shootings is minimal in police District 2, which hap-
pens to be most of the area of the western part of the city, including Georgetown 
and Rock Creek Park. Crime locations are the same ones that were used in the 
prior Geospatial Association Rules, but aggregated to the grid cells at the weekly 
level from 2011 through 2012, and other reported crimes are also included. Only 
locations that have an average of over 0.1 shootings per week are included in these 
datasets (that is, at least one shooting every two and a half months on average).

N O t e  See this Washington Post article for a description of the sensors: http://
www.washingtonpost.com/wp-srv/special/local/dc-shot-spotter/.

These steps show how to use the Spatio-Temporal Prediction procedure to 
forecast shootings.

 1. Open the SPSS data files ShootingsWeekly.sav and ForwardCrime_toScore 
.sav.

 2. Then, just like in Geospatial Association Rules, open up the Geospatial 
Modeling Wizard by clicking the Analyze menu and selecting Spatial and 
Temporal Modeling ➪ Spatial Modeling.

 3. Select the option “Create a time series model with geo-spatial data.”

 4. Click Next.

You will then be prompted with the same map dialog screen as in the 
Geospatial Association Rules (refer to Figure 8-2).

http://www.washingtonpost.com/wp-srv/special/local/dc-shot-spotter/
http://www.washingtonpost.com/wp-srv/special/local/dc-shot-spotter/
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 5. Follow those same steps (refer to Figures 8-2 to 8-5) to choose the  
DC_Fishnet.shp  shapefile as the resulting map, and set up the 
ShootingsWeekly.sav file as the context data.

 6. Then set the association between the map key and the data key to FishID. 
This file contains both the explanatory crime variables and the weekly 
shooting data, so there is no need to set up a separate prediction file.

Although the wizard can take the shooting data directly as X and Y 
coordinates (similar to Geospatial Association Rules) and predict the 
density of shootings within grid cells, it still expects some context data to 
be provided. That is, you cannot simply base the prediction of the future 
data on the prior values, and it is expected that you will provide other 
information to inform future predictions. It is also the case when using X 
and Y coordinates as input that there needs to be a non-zero density for 
each of the space-time units. In this dataset (as there will be with most 
crimes police departments would be interested in predicting) there will 
be locations in which crimes are sparse, and there will be weeks with zero 
shootings for many locations. So it is necessary to include zero values for 
particular week/grid-cell combinations in this example.

After setting up the map and the context data on the next screen you will 
be presented with the familiar regression type dialog, shown in Figure 8-15.

Figure 8-15:  Setting target and predictor fields for spatio-temporal modeling
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 7. Here we place ShootSmooth in the target field, and place all of the Lag 
variables (crimes in the lagged week) in the Predictors box.

 8. We then place Week in the time stamp data field. For the sensor shooting 
data there are anomalous high values near the New Year and around the 
Fourth of July, which are attributed to false-positive shootings based on 
fireworks. (Being somewhat high is expected, as some individuals actu-
ally do shoot guns in celebration.) The variable ShootSmooth corrected 
these values by interpolating weeks before and after those particular dates 
(where the variable Shootings are the original counts).

 9. After clicking Next, SPSS will then open to the screen shown in Figure 8-16. 
Here SPSS auto-recognizes that the time intervals are weeks.

Figure 8-16:  Setting the time intervals

 10. Click the Output option on the left-hand side to bring up a series of options 
for what will be included in the output.

 11. For this example, unclick Clusters, and then click the options for Test 
of effects in mean structure, Mean structure of model coefficients, and 
Autoregressive coefficients. Leave all other options the same, and the 
dialog will appear like Figure 8-17.
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 12. Next, click the Save option in the tab on the left-hand side.

On the Save dialog shown in Figure 8-18, you will then be presented with 
options to save the map and context data as a map specification (to prevent 
going through all of the same steps in the future) as well as an interface 
to score either an open dataset or another SPSS data file. Scoring is how 
SPSS provides predictions for future data.

 13. Select “Score an open dataset” and then select the open table ForwardCrime_
toScore.sav. This file contains the same lagged values that are used as 
predictors, which SPSS will use (along with prior values of ShootSmooth) 
to predict future shootings for the grid cell areas.

 14. Leave all other options as their default, and then click the Finish button. 
You will be presented with a preview map, and then be given the option 
to either run the model or paste the syntax.

 15. Click Finish again to run the model. The model takes around a minute 
to finish, after which you will be presented with a series of tables and 
maps. You can set further options about how the spatial covariance is 
estimated in the Model Options tab, but in this case SPSS automatically 
determines that the default model parameters are not appropriate, and 

Figure 8-17:  Setting the output
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so estimates the spatial covariance parameters using a non-parametric 
procedure.

Figure 8-18:  Scoring a separate file

Figure 8-19 displays two of the regression coefficient tables. You can see that 
the effects of all of the lagged crime counts are statistically significant predic-
tors of shootings, but all have relatively small coefficients. The lagged counts 
of assaults, burglaries, and mv theft have a positive effect on shootings, while 
thefts from auto and other thefts have a negative coefficient.

For interpretation of the lagged assault coefficient, an increase in one assault 
in the prior week increases the expected number of shootings by 0.05. So if there 
were 20 more assaults than usual in the prior week, you would expect 1 more 
shooting than usual in the current week. Burglaries and motor vehicle thefts 
have a similar interpretation.

While the effect of the prior week’s robberies is statistically significant, the 
coefficient is very small and is still zero when rounded to two decimal points. 
Thefts from auto and other thefts have a negative effect, which is somewhat 
counterintuitive but not altogether unsurprising. It may be the case that areas 
with more property crimes have more people interacting (for example, a shop-
ping mall), and due to there being many people around these areas are less 
likely to be locations where shootings occur.
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The second table displays the autoregressive coefficients, and you can see 
that SPSS automatically chooses the first five lags for the AR model. These 
autoregressive coefficients are all quite large compared to the lagged counts  
of crime, so this would suggest that prior shootings are a better predictor of 
future shootings, compared to other crimes.

In the output there will be a series of additional maps that allow you to explore 
different summary statistics, as well as to interactively choose several locations 
and explore the time series values among them or their spatial autocorrelation. 
Also, because we chose to score the ForwardCrime_toScore dataset, we are 
given predictions for the week of 12/30/12.

Figure 8-20 shows a screen shot of the variables that SPSS added to the 
dataset, which included the predicted number of shootings, the standard 
error, and the upper and lower prediction intervals. These predictions can 
subsequently be mapped using SPSS’s other map making facilities, as shown 
in Chapter 7.

You can see in Figure 8-20 that the intervals for the predictions frequently 
go into negative values, and often have a range of around 2 to 3 shootings. 
The point forecasts, though, are positive in the majority of cases. It is of course 
the case that counts of shootings cannot be below zero, and so you could 
logically only consider ranges in predictions from zero to the upper forecast 
interval. It is also the case that SPSS will not provide a forecast interval in 
the case that the standard error is too large, as can be seen in the last visible 
row in Figure 8-20.

Figure 8-19:  Regression coefficient tables
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In this particular example, while providing interesting evidence for the rela-
tionship between prior crime and future shootings, whether the predictions 
provided by the model will be informative enough to shape policing practice 
is an open question. Even if the forecasts are overall accurate, it may be the case 
that the prediction intervals are too wide to be of much use.

Potential modeling strategies to improve the forecasts may be to estimate 
generalized Poisson or negative binomial time series models predicting the 
counts (and potentially zero-inflated or hurdle variants intended for outcomes 
with many zero events). Because such models restrict the range of forecasts to 
positive values, they may provide more accurate forecast intervals, although 
potentially the linear time series model provides better point forecasts. Also, 
there may be other information that can be incorporated into the model to bet-
ter predict future shootings. Such new variables may be other crimes, weather 
forecasts, the number of parolees in an area, and interactions between any of 
these variables.

Another strategy would be to predict shootings over longer time periods. It 
is often the case that shorter time periods show a larger amount of variance, 

Figure 8-20:  Predictions of future shootings
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and so aggregating to monthly or quarterly periods may produce more accurate 
predictions. Typically for an analyst there is a give-and-take between the needs 
of the agency for particular forecasts to inform certain actions and the feasibility 
to produce accurate forecasts. Analysts in general may describe basing certain 
decisions on inaccurate forecasts as chasing the noise, but a synonymous colloquial 
phrase often used among crime analysts is chasing dots on a map.

For an example, a police agency may develop a specific team of officers intended 
to reduce violence. Initial plans may be to have this team focus on a new area 
every week that is at a high risk of violence based on forecasts. If the predictions 
from the weekly shooting data are deemed too erratic to justify changing loca-
tions every week, an analyst may incorporate other crimes into the prediction. 
For example, predicting shootings and aggravated assaults is likely to be more 
accurate, because aggravated assaults occur with a much greater frequency. Or 
an analyst may decide that weekly forecasts for any crime are too variable to 
justify changing locations on a weekly basis, and so may suggest only setting 
new target areas for the team on a quarterly basis.

Many predictive policing initiatives currently focus only on what can be 
accurately forecast, but what the agency plans on doing with that information 
should equally factor into what forecasts are generated and the temporal time 
period that is being predicted. For the hypothetical example, it may be reasonable 
for the agency to produce forecasts over a longer period of time, but it wouldn’t 
be reasonable to change the forecasts to burglaries instead of shootings simply 
because burglaries are easier to forecast.
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This chapter is a bit different from the others in that while it introduces two 
new topics, Correspondence Analysis and Multiple Correspondence Analysis 
(MCA), it presents a case study that also incorporates techniques from Chapters 6 
and 17. Note that both techniques require the Categories module. Graphics 
Production Language (GPL) and Output Management System (OMS) play a 
sufficiently important role in the solution that two new techniques will be 
discussed (but in somewhat less depth here than they would be in a chapter 
that was dedicated solely to them). Correspondence Analysis and MCA actually 
differ to a greater degree than their names would suggest. Brigitte LeRoux and 
Henry Rouanet wrote a well-received book, Multiple Correspondence Analysis 
(SAGE Publications, Inc., 2009), that treats MCA as a “method in its own right” 
and neither discusses nor assumes knowledge of Correspondence Analysis. 
Implied in their decision, certainly, and consistent with other chapters in this 
book, is that these two techniques could each be worthy of their own chapters, 
or even their own books. While the final result of these techniques, a percep-
tual map, is the focus of this chapter; we won’t explore the theory behind these 
techniques in detail.

The focus on the combined use of statistical analysis, powerful graphics, and 
OMS is done without apology because combining tools within SPSS Statistics 
is such an important theme of the book. SPSS Statistics users may sometimes 

C h a p t e r 

9
perceptual Mapping  

with Correspondence  
analysis, GpL, and OMS
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be tempted to look elsewhere for their graphics solutions, feeling that other, 
perhaps more familiar, graphical solutions are readily available. Excel is a 
favorite of many. What is forgotten is how some powerful “number crunch-
ing” can be combined with fairly straightforward graphics, and a little bit of 
automation—all of which SPSS provides. The combination of all three is the 
key. This gives you a complete solution that is completely SPSS Statistics, and 
is uniquely in the spirit of this book. OMS is drawn upon, but not discussed 
as a general set of techniques in the same way that it is presented in Chapter 
17. Ideally, Chapter 17 is seen as a companion to this chapter, and in the same 
way, Chapter 6 treats GPL “from scratch” in a way that is not possible in this 
chapter.

The best way to become familiar with this approach is to jump in at the end, 
with the final result, an effective perceptual map. In their government report 
for the UK’s Department for Culture Media and Sport, “Understanding the 
relationship between taste and value in culture and sport” (https://www.gov 
.uk/government/uploads/system/uploads/attachment_data/file/77966/

DCMS_taste_and_value_document.pdf), Andrew Miles and Alice Sullivan pro-
duce a powerful visualization revealing complex interactions between numerous 
demographics and activities, all in a single, very digestible “map.” Their use 
of the word “taste” in the title is no accident. They are referencing the work of 
the pioneer of this approach—the sociologist Pierre Bourdieu. (See the “A Taste 
for Correspondence Analysis” sidebar later in this chapter for more about the 
history of this technique.)

Take a moment to reflect on Figure 9-1, which appears in their report. Like 
many other types of effective complex visualizations, it rewards careful study. 
Like a well-designed roadmap or subway map, a good perceptual map can take 
several minutes of attention before it reveals its multiple patterns. We notice that 
map locations for younger respondents seem to be found toward the top, with 
older toward the bottom. As the authors of the study note, non-participation 
tends to be found toward the middle “reflecting the fact that non-participation 
is the norm.” Gender seems to reveal that females are more closely related to 
“no computer games,” and males more closely to “no arts and crafts.” Like 
factor analysis, cluster analysis, and other exploratory techniques, there is no 
formal definition of Axis 1 and Axis 2. Their meaning has to be deciphered, 
is subject to debate, and is somewhat subjective. The basic notion, as we will 
see, is that proximity on the map implies a relationship. (If you want to jump 
ahead, our first perceptual map made in SPSS with OMS and GP is shown in 
Figure 9-17.)

https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/77966/DCMS_taste_and_value_document.pdf
https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/77966/DCMS_taste_and_value_document.pdf
https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/77966/DCMS_taste_and_value_document.pdf
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Starting with Crosstabs

Now let’s get to work in SPSS Statistics. We will be using a modified version of the 
LeRoux and Rouanet dataset. Our version is different in two ways from other ver-
sions you may find: The Multiple Imputation feature of SPSS Statistics has been used 
to replace the missing Income values, and AutoRecode has been used to replace the 
string values with numeric values and labels. The version of the data that we will 
be using is called Taste_Imputed.sav, which is available on the book’s website.

We will begin with Correspondence Analysis. The trick in selecting appro-
priate variables for this technique is to remember a couple of key points. First, 
Correspondence Analysis allows just two variables: a row variable and a column 
variable. Second, the whole point of the technique is to display on two dimensions 
information that otherwise would be difficult to display on two dimensions. So, if 
you only have a 2x2 crosstabulation matrix you don’t need it. Also, if you have strong 
linear associations between two ordinal variables you can probably visualize that 
with less effort. The variables most appropriate will be a pair of nominal variables 
with several categories. While there is no rule that we must pair a demographic vari-
able with a behavioral variable, it is an approach that is quite common. For instance, 
if you are a film studio, you might want to know which demographic patterns are 
associated with film attendance. While it might also be quite interesting to relate 
film preference with concert attendance, it might not be as immediately actionable 
as the demographics. With this in mind, we will set up the Crosstabs menu with 
TV, Film, Art, and Eat in rows, and Income and Age in Columns (Figure 9-2).

Figure 9-2:  Crosstabs main menu
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The choice of row and column is arbitrary. Also, Gender will be left out because 
with only two categories, we don’t really need the power of Correspondence 
Analysis to decipher the pattern. A simple table would be just as useful. We are 
beginning with Crosstab because we can use some of its features to ferret out 
which variable pair has the strongest relationship. Several measures of associa-
tion are supported in the Statistics submenu. Our choice is not especially critical. 
We will use Phi and Cramer’s V (Figure 9-3). This way we can find the variable 
pair with the strongest association with which to try Correspondence Analysis.

Figure 9-3:  Crosstabs: Statistics submenu

a taSte FOr COrreSpOnDenCe anaLySIS

Virtually all discussions of Correspondence Analysis and Multiple Correspondence 
Analysis pay homage to Pierre Bourdieu, the innovator of the technique. Perhaps it is 
because the technique is fairly young compared to some other statistical techniques, 
dating only to the 1970s with the publication of Bourdieu’s Distinction (1984, Harvard 
University Press) in French and its translation into English in the ‘80s, that it is still 
closely tied to a single individual. So complete is his influence that not only is the tech-
nique associated with him, but also the kind of study he reports in Distinction.

The subtitle of the book is A Social Critique of the Judgement of Taste, and many 
practitioners of the technique have imitated his data as well as his approach. Both the 
book and the report cited earlier do this. Here, “taste” is referencing cultural taste. 
Which movie actors are the favorites of opera fans? Which magazines are read by the 
working class? Such patterns emerge casually around the dinner table, but Bourdieu 
attempted to quantify and describe them. If one tried to capture the basic idea in a 
single word, one might choose the same word that Jon Elster of the London Review of 
Books chose to title his review of Bourdieu when the French edition was first released: 
“Snobs.” In other words, opera goers tend not to like pop culture, and vice versa.

Continues
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While the output shows the association measure results for all eight of the 
variable pairs (not shown), the results for Age and Film has the largest Cramer’s 
V with a value of .216. The pair also has a clearly significant p value for the 
Pearson Chi-Square (Figure 9-4). The Chi-Square would be a poor choice to rank 
the results, however, as it is not a measure of association, and all but one of the 
pairs produced a p value of zero to three decimal places. Note that we chose an 
association measure for nominal variables because we ran an analysis for several 
pairs of variables. There are other additional association measures that you might 
chose with pairs that include one nominal and one ordinal, like Age and Film. 
We will stick with Cramer’s V, but the other choices can be seen in Figure 9-3.

In the preface to the English edition, Bourdieu himself speculates “Is Brigitte Bardot 
like Marilyn Monroe? Is Jean Gabin the French John Wayne, or Humphrey Bogart or 
Spencer Tracy?” If this all seems a little too academic, imagine that you are trying 
to define a brand. One can quickly see why this has been embraced by marketing 
research. While snobbery is not particularly flattering, some brands embrace it, and 
other brands avoid it. It is powerful indeed to be able to examine several demographic 
factors along with numerous cultural preferences all in one visualization.

While we will not make further reference to the Miles and Sullivan report, it is 
worth seeking out because they have several figures as complex as the one shown 
in Figure 9-1. The “Taste” dataset compiled by LeRoux and Rouanet many years after 
Bourdieu’s own study has become popular in the R community, and constitutes a 
 classic example of the type of data that Bourdieu collected. We will use this dataset for 
our first exploration of the technique.

(continued)

Figure 9-4:  Crosstabs results
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Now that we know our most promising pair, let’s take a closer look at the 
crosstab’s residuals. To request the residuals we will select Standardized in the 
Cell Display submenu, shown in Figure 9-5.

Figure 9-5:  Crosstabs Cell Display submenu

The interpretation, in terms of its magnitude, would be similar to interpret-
ing z scores. Scores with absolute values greater than 3 would be especially 
noteworthy. What patterns can we anticipate in our perceptual map? The two 
largest values (not shown) are positive residuals of 6 or greater for Musical and 
older respondents, and Horror and younger respondents. Let’s take advantage 
of the Style submenu (available since version 22) and make this especially easy 
to see (Figure 9-6).

Figure 9-6:  Crosstabs Style submenu
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Within the submenu, make the following changes:

 1. Choose Crosstabulation as the Table type.

 2. Choose Residuals as the Value.

 3. Choose Both as the Dimension.

 4. Choose Greater Than or Equal To 3.0 (absolute value) as the Condition.

 5. Choose yellow Background highlighting as the Format.

The highlighting (Figure 9-7) helps us spot some of the relationships that 
we can expect to see in the perceptual map. In addition to the two values of 6 
or higher, we also see some large negative values. We would expect that ages 
25–34 will not be close to Costume Drama. We would not expect 65+ to be 
close to Comedy. As tables like this get larger and more complex, perhaps with 
many dozens of cells, even the highlighting isn’t enough to make the patterns 
as clear as what a perceptual map is capable of. Naturally, the perceptual map 
is also visually more compelling, especially when we take the effort to produce 
a good and easy-to-read map.

Figure 9-7:  Crosstabs results (with highlighting style)

Correspondence Analysis

Correspondence Analysis is found in the Data Reduction submenu of the Analyze 
main menu (Figure 9-8). Once you access the menu, you will have to declare 
the range of the two variables in the Define Range submenus. We will choose 
Film_Num as our Row, with a range of 1 through 8, and Age_Num as our 
Column with a range of 1 through 6 (Figure 9-9). We will simply allow for the 
default output—we will make no modifications in the other submenus at this 
time. However, it is worth noting that in the Model submenu you can choose 
Euclidian distance instead of Chi-Square as a distance measure. It can be inter-
esting to run both and compare them. If you do (not shown) you will notice a 
similar pattern, but with some obvious differences.
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Scroll all the way down to the bottom of the resulting output, and you will 
find our perceptual map (Figure 9-10). It has a distinctive “horseshoe” pat-
tern, which is not unusual with Correspondence Analysis. There is a clear 
pattern of decreasing age moving up and to the right, and then down around 
the horseshoe. However, it is less clear what the up and down direction on 
Dimension 2 could represent. It appears as if there is really just one dimension 
that has been bent, with Musical and 65+ at one end, and 18–24 and Horror 
at the other end.

Figure 9-8:  Dimension Reduction menu

Figure 9-9:  Correspondence Analysis
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An examination of the tabular output makes this interpretation even more 
clear. Specifically, in the Summary table, shown in Figure 9-11, we see that 
the “Proportion of Inertia” in the first dimension is quite high at .782. Inertia, 
a measure of variance, reveals here that an attempt to explain the variance 
with just one dimension would explain the majority of the variance. The 
second dimension doesn’t add very much in comparison. In addition to the 
concern that our map is not entirely successful, there is an added problem. 
We would have to coach any readers of the map to pay attention more to 
Dimension 1 than to Dimension 2 because of its greater importance. This is 
difficult to do in practice. Despite our best efforts, anyone examining the 
map will almost certainly attend to diagonal distance, which would be a 
distortion of the pattern.

Figure 9-10:  Initial attempt of the perceptual map
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We wouldn’t consider more than two dimensions as the technique is generally 
used to create a flat, two-dimensional visualization. It is conceivable that one 
could attempt a third dimension, and to display it with a three-dimensional plot, 
but as anyone who has attempted a three-dimensional scatter plot can attest, 
they can be tricky to get right, and tricky to interpret. Not only that, since the 
cumulative intertia for dimensions 1 and 2 is 91.7%, there would be little value 
in attempting to add a third dimension to a plot.

Figure 9-11:  Correspondence Analysis Dimension Summary

There is plenty more about the menus we could explore, and numerous ways 
in which we could polish our visualization aesthetically. We won’t pursue either 
of those avenues just yet because there is an easy trick to incorporate Gender 
into the mix that might improve our perceptual map. While Correspondence 
Analysis allows for only two variables, we can recode Age and Gender into a 
combined variable. The Syntax that we used is provided for your reference:

DO IF  (Gender_num = 1).
RECODE Age_num (1 thru 6=Copy) INTO Age_Gender.
ELSE IF  (Gender_num = 2).
RECODE Age_num (1=7) (2=8)(3=9) (4=10)(5=11) (6=12) INTO Age_Gender.
END IF.
 
VALUE LABELS Age_Gender
  1.00 'M 18-24'
  2.00 'M 25-34'
  3.00 'M 35-44'
  4.00 'M 45-54'
  5.00 'M 55-64'
  6.00 'M 65+'
  7.00 'F 18-24'
  8.00 'F 25-34'
  9.00 'F 35-44'
  10.00 'F 45-54'
  11.00 'F 55-64'
  12.00 'F 65+'.
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For the preceding code, we could also simply leverage multiplication, and the 
following would achieve the same result as the DO IF and RECODE commands.

Compute Age_Gender = 
(Gender_num = 1) * Age_num + (Gender_num = 2) * Age_num * 2.

If you are new to Syntax, Chapter 16 provides an introduction.
Let’s rerun the Correspondence Analysis, using default settings, and with 

our new variable. Remember to declare the range, which is 1 through 12. The 
resulting perceptual map is quite different, and more interesting (Figure 9-12). 
An examination of the Proportion of Inertia (not shown) also indicates that 
Dimension 2 gets a larger share of the variance than it did in the last example 
making us less concerned about the diagonal distance issue that we raised 
about Figure 9-10.

Figure 9-12:  Improved perceptual map
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We see a handful of natural groupings, the horseshoe is gone, and there is 
more complexity to the pattern. Males are found in the upper left. Interestingly, 
older males, 65+, seem to be more interested in Documentaries than older 
females, who prefer Costume Dramas and Musicals. Horror seems to appeal 
to both males and females of young age (18–24) equally, but the females of 
that age prefer Comedy more. Slightly older males like SciFi and Action 
movies.

Because this perceptual map is more interesting, let’s consider some aesthetic 
changes that we can make to it. The labeling is fine for an analyst, but since the 
axes are standardized the values are essentially arbitrary. Depending on our 
audience, they might not be very useful or interesting. Also, the aesthetics of 
the labeling and points could be improved. Most decision makers won’t want 
to explain Symmetrical Normalization (or have it explained to them). Once 
the salient features have been explained, and trust in the chart is built, that 
is probably a detail that we won’t want labeled on the perceptual map. If we 
removed some of the unnecessary information, we could make everything a 
bit larger and more easily read. For instance, the point labels seem to make the 
legend redundant.

All of the following would probably help:

 ■ Remove/replace the existing titles and labels.

 ■ Remove the legend and reallocate the space.

 ■ Improve the legibility of the points and point labels.

Editing a graphic in SPSS Statistics directly is often not the ideal solution. 
We could do it, but it would only improve this particular graphic. Much 
better would be if we came up with an “assembly line” type approach so 
that we can rerun this on updated data with minimal effort. In short, we 
should be using a more syntax-friendly approach. Keep in mind that while 
we covered GPL in Chapter 6, Syntax and the Output Management System 
are covered in Chapters 16 and 17. If you are brand new to either, you might 
want to skim those chapters. However, you won’t need all of the detail that 
is presented in those chapters, and as long as you are prepared for a couple 
of new concepts you can safely proceed right here with this chapter. Before 
we can begin in earnest we need to solve a problem—the relevant data we 
need is in the output window and not in the data window. Let’s address 
that issue first.

In the Output Management System Control Panel, shown in Figure 9-13, we 
make the following selections:

 ■ Output Type = Table.

 ■ Command Identifier = Correspondence.



230 part II ■ Data Visualization

Figure 9-13:  OMS Control Panel

 ■ Table Subtypes for Selected Commands is both Overview Column Points 
and Overview Row Points.

 ■ New dataset = “Points” although you can choose your own name as long 
as you keep track of where you are sending the data.

Click the Add button to generate the request.
Chapter 17, which is dedicated to OMS, explains all of this in more detail, 

but in order to get this to work you will have to generate the relevant output by 
returning to the Correspondence Analysis menu and rerunning the analysis. 
Finally—and if you are unfamiliar with OMS, this might be the most likely step 
to miss—you must return to the OMS menu and “End” the request. This lets 
SPSS know that you want to convert the stored information to data now. It might 
seem like a strange step, but in certain cases you want the data to continue to 
accumulate over multiple executions.

You should generate data that looks like Figure 9-14. Note that the Variable 
View and not the Data View is shown.
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Figure 9-14:  Variable View of OMS results

Figure 9-15:  Modified Data View of OMS results

After several manual modifications the data looks like Figure 9-15. Note that 
while these modifications were manual and not discussed in this chapter, all of 
these modifications could be accomplished with Syntax. The commands would 
be fairly straightforward for the most part and would include simple-to-use 
commands like DELETE VARIABLES and RENAME VARIABLES.

The GPL required is no more complex than the code explored in Chapter 6. 
While we will not walk through it command by command, it is provided for 
your reference. The initial GPL was generated using the Chart Builder menu 
(Figure 9-16) and then a handful of commands were modified manually.
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Figure 9-16:  Correspondence Analysis dimension summary

Keep in mind that the names have been changed from what was originally 
produced by OMS. The row variable is Row, the column variable is Column, the 
color is set by TableNumber_, and the Point ID is Label.

The resulting pasted syntax and GPL is modified to the following:

* Chart Builder.
GGRAPH
  /GRAPHDATASET NAME="graphdataset" VARIABLES=Row Column
TableNumber_ Label MISSING=LISTWISE
    REPORTMISSING=NO
  /GRAPHSPEC SOURCE=INLINE.
BEGIN GPL
  PAGE: begin(scale(6in,6in))
  SOURCE: s=userSource(id("graphdataset"))
  DATA: Row=col(source(s), name("Row"))
  DATA: Column=col(source(s), name("Column"))
  DATA: TableNumber_=col(source(s), name("TableNumber_"),
unit.category())
  DATA: Label=col(source(s), name("Label"), unit.category())
  GUIDE: axis(dim(1), null() )



 Chapter 9 ■ perceptual Mapping with Correspondence analysis, GpL, and OMS   233

  GUIDE: axis(dim(2), null() )
  GUIDE: legend(aesthetic(aesthetic.color.exterior), null() )
  GUIDE: legend(aesthetic(aesthetic.color.interior), null() )
  GUIDE: text.title(label("Perceptual Map of Film and Age-Gender"))
  ELEMENT: point(position(Row*Column), color.exterior(TableNumber_),
color.interior(TableNumber_), label(Label), size(size.small))
  PAGE: end()
END GPL.

The result, shown in Figure 9-17, certainly represents progress although 
each analyst might differ somewhat on what modifications they would prefer. 
Once you become more comfortable with all of the incorporated elements you 
can completely automate the process. There are no steps that have been dem-
onstrated from opening the file to the final result that could not be produced 
using a Syntax program.

Figure 9-17:  Perceptual map with GPL modifications
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Multiple Correspondence Analysis

Multiple Correspondence Analysis (MCA) will allow us to use more than 
one row and one column variable. As in the last example, our focus is on 
producing a perceptual map, and rehearsing some of the logistics in SPSS 
Statistics. We address the theory behind the technique only in the most lim-
ited way necessary to support this single example. The dataset that we will 
use, Tea.sav, is a modified version of a popular dataset and is available on the 
book’s website. It has dozens of variables that represent traits and behaviors 
of tea drinkers exploring the when, where, and how of their tea drinking. 
In theory, we could simply send all three dozen variables to the menu, and 
try to sort it out by staring at the resulting perceptual map. In practice, this 
would not be very efficient. The map can get so cluttered that it is unread-
able. However, simply choosing a handful of the variables at random isn’t 
a great strategy either because what makes a perceptual map compelling is 
being able to see relationships that are strong enough that the map is able 
to reveal them visually. We will attempt to tackle the issue of paring down 
the number of variables in two ways: a large number of crosstabulations and 
then a feature of MCA itself.

Crosstabulations
First, let’s see if we can’t find some interesting patterns. If we run two lists of 
variables against each other, exhaustively, we can wade through to find which 
relationships can be communicated on a perceptual map. 

The following 22 variables, which describe the context of the tea drinking 
and the tea drinker, can be used as row variables:

breakfast, afternoon.tea, evening, after.lunch, after.dinner, anytime, 
home, work, tearoom, friends, restaurant, pub, variety, how, sugar, format, 
place.of.purchase, type, sex, profession, sport, age_Q

(Note that age is in quintiles. Remember that CORRESPONDENCE ANALYSIS 
and MCA work with categorical variables.)

The second list of 13 variables, which is more focused on the drinker’s per-
ceptions around the tea, can serve as column variables:

stimulant, frequency, exotic, spirituality, goodforhealth, diuretic, 
friendliness, ironabsorption, feminine, refined, slimming, relaxant, 
no.effect.health

Simple arithmetic confirms that this will produce nearly 300 tables. Some 
of the variable pairings are statistically significant, reveal strong relation-
ships, and make intuitive sense, like the one in Figure 9-18, but many of 
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Figure 9-18:  Correspondence Analysis dimension summary

the tables are none of those things. In Figure 9-18, we learn that those who 
drink more than 2 cups of tea a day disproportionately drink a cup at 
breakfast. The table shows a standardized residual of 3.2 for the combina-
tion of breakfast and “more than 2 per day.” While that seems obvious, it 
seems especially true that the tea drinking of the loyal drinkers includes 
this meal. The pattern seems stronger than some of the other meals and 
times of day (not shown).

A good example of a weak relationship is the pairing of “friends” with 
“exotic” as shown in Figure 9-19. The pattern is so consistent with the null 
hypothesis (no relationship) that the standardized residual is zero. Our 
perceptual map will be extremely difficult to read if the strong relation-
ships are sharing space with the weak relationships. There will simply be 
so many dots and labels on top of each other that we won’t be able to see 
the pattern.

Although there are ways to do this systematically and with some automation, 
reviewing manually is quite labor intensive. We used this technique briefly in 
preparing the chapter simply to confirm that there were relationships worth 
exploring, but we did not rely upon this approach only nor did we do an exhaus-
tive search of all of the tables. (One can use “scripts” in SPSS Statistics to auto-
matically hide non-significant results to allow for a less labor-intensive search 
of the results.) In this case, we will use a feature within MCA itself to try to 
figure out which variables to use in the perceptual map.
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We will now run the MCA analysis using all of the variables, with one special 
request, but otherwise on default settings. First, to find MCA go to the Analyze menu 
and then the Dimension Reduction submenu, and then select Optimal Scaling. You 
will find the submenu shown in Figure 9-20. Notice that, depending on your selection, 
you may get routed to a menu other than MCA. We will keep the default settings.

Figure 9-20:  Optimal Scaling submenu

Figure 9-19:  Correspondence Analysis dimension summary

We will be using all of the variables with the prefix “num_.” (The original file 
had string values, which crosstabs was content to run, but MCA requires numeric 
values with labels.) There are many of them—more than you can see in Figure 9-21.
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Figure 9-21:  Multiple Correspondence Analysis main menu

Figure 9-22:  Variable Plots submenu

The one special request that we will make is to request a Joint Category Plot 
in the Variable Plots submenu using all of the variables as shown in Figure 9-22. 
(Not all the variables names are visible in the figure.)
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Figure 9-23:  Very crowded Joint Category Plot

A quick look at the resulting Joint Category Plot found near the middle of 
the output and also shown in Figure 9-23 confirms our fears. It is an incoherent 
jumble. There are too many variables and labels fighting for the space at zero 
on both dimensions.

Mere cosmetic changes won’t be enough. We need to make structural changes—
namely we need to identify those variables that best represent the underlying 
pattern. The Discrimination Measures Plot will be of assistance. It is shown in 
Figure 9-24. Some variables, notably num_ageq, numprofession, num_purchase, 
and num_afternoon are breaking away from the pack, and are showing an 
influence on either Dimension 2 or Dimension 1 or both. The magnitude of that 
impact can be measured by the distance from the lower-left corner. If they are 
high, they influence Dimension 2, and if they are far to the right, they influence 



 Chapter 9 ■ perceptual Mapping with Correspondence analysis, GpL, and OMS   239

Figure 9-24:  Discrimination Measures Plot

One can also review the tabular version of this result (Figure 9-25). There 
are a lot of variables, but we can see the Dimension 1 and 2 values, and also a 
mean value.

A review of these results (and admittedly a bit of experimentation) led me to 
choose the following variables as being a promising list for our perceptual map:

num_afternoon, num_tearoom, num_restaurant, num_pub, num_variety, 
num_format, num_purchase, num_price, num_sex, num_profession, num_ageq

An interesting trick can be applied to Figure 9-25 if you choose. When in 
editing mode, you can use the context menu (accessed by right clicking) to sort 
rows in a pivot table (shown in Figure 9-26).

Dimension 1. If they are neither, they are going to make the center of any Joint 
Category Plot (our perceptual map) very noisy. Those variables in the lower-left 
corner need to be removed to avoid this.
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Figure 9-25:  Discrimination Measures table

Figure 9-27 shows the results of an experiment using just these variables. (The 
shading has been added manually.) This is more like what we hope to see. The 
shaded area in the upper right-hand corner shows an interesting clustering of 
traits and circumstances. Having tea out at a tearoom, pub, or restaurant seems 
to be more a social activity for the younger crowd: ages 15–24 (college age?) more 
so than other ages, and more female than male.
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Figure 9-26:  Sorting the mean discrimination measures

Figure 9-27:  Draft map with few variables
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The lower left (not shaded) has a possible pattern involving specialist shop, 
loose tea, and luxury brands.

Let’s revisit the techniques that we used earlier in the chapter with 
Correspondence Analysis to improve this perceptual map.

Applying OMS and GPL to the MCA Perceptual Map

The MCA menus have a few more moving parts, so it will take a bit of 
care to produce the dataset that we need for our perceptual map. Unlike 
Correspondence Analysis, MCA does not send the coordinates to the output 
window by default. We will have to request them using the Output submenu 
as shown in Figure 9-28.

Figure 9-28:  MCA Output submenu

Also, when they do show up in the Output window, there are many of 
them (not all shown) because there is a small table produced for each vari-
able (Figure 9-29). Note that it is always a good idea to suppress output that 
you know you are not going to use. MCA, in particular, can produce an 
intimidating amount of output that can make it difficult to find what you 
are looking for.
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Frankly, the formatting in a single table or multiple tables will have no effect 
on our plan because we will be using OMS, not the output window. In OMS 
(Figure 9-30) we want to select the following:

 ■ Tables for Output Type

 ■ Multiple Correspondence Analysis for Command Identifiers

 ■ Quantifications for Table Subtypes for Selected Commands

 ■ New Data with name “Points”

Then click Add.
The resulting dataset seems particularly complex because it contains a number 

of data points that we don’t need (Figure 9-31). The details of this dataset are not 
important because we will be discarding much of this information.

Figure 9-29:  Coordinates (partial)
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Figure 9-30:  OMS Control Panel

Figure 9-31:  Dataset produced by OMS

It is a simple matter to clean it up to get only what we need. This is helpful to 
see what we are doing in Figure 9-32, but when you are fully automating this you 
should use the names that OMS produces, and there is no need to drop variables. 
All we need are the Coordinates and Label_, and Var1 will be useful for labeling. 
You might also be tempted to rename the variables, but we are simply passing the 
information to GPL, so it is best to keep everything just as it was produced by OMS.
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The GPL that we will be using is very similar indeed to the CORRESPONDENCE 
ANALYSIS example. To create it, we first pasted it from the menus, and then 
made modifications that are nearly exact to the earlier example. The GPL is here 
for your reference:

GGRAPH
  /GRAPHDATASET NAME="graphdataset" VARIABLES=@1[name="_1"]
@2[name="_2"] Label_ Var1
    MISSING=LISTWISE REPORTMISSING=NO
  /GRAPHSPEC SOURCE=INLINE.
BEGIN GPL
  PAGE: begin(scale(7in,7in))
  SOURCE: s=userSource(id("graphdataset"))
  DATA: var=col(source(s), name("_1"))
  DATA: var3=col(source(s), name("_2"))
  DATA: Label_=col(source(s), name("Label_"), unit.category())
  DATA: Var1=col(source(s), name("Var1"), unit.category())
  GUIDE: axis(dim(1), null() )
  GUIDE: axis(dim(2), null() )
  GUIDE: legend(aesthetic(aesthetic.color.exterior), null() )
  GUIDE: legend(aesthetic(aesthetic.color.interior), null() )
  GUIDE: legend(aesthetic(aesthetic.color.exterior), label("Label_"))
  ELEMENT: point(position(var*var3), color.exterior(Label_),
color.interior(Label_), label(Var1), size(size.small))
  PAGE: end()
END GPL.

The resulting map is shown in Figure 9-33. It is much more readable, and some 
patterns are salient. In addition to the ones already mentioned, there seems to 
be a pattern—not surprising—of buying cheaper brands at the supermarket 

Figure 9-32:  OMS Control Panel
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to consume at home (not restaurant and not tea room). The professions associ-
ated with this pattern are “employees” and manual laborers in their mid-20s 
to mid-30s.

Figure 9-33:  MCA perceptual map using OMS and GPL

With the large number of variables, and the complex set of settings available 
in MCA, we certainly could have explored alternative maps, but the map suc-
ceeds in a way that a table (even a highlighted one) might not. Also, the basic 
skills of using calculations, OMS, and GPL in combination that we explored can 
apply to a number of areas.

As a brief coda, let’s revisit the perceptual map that we produced much earlier 
in the chapter, Figure 9-12. Now that we’ve used the MCA menus, we can show 
the three-variable perceptual map without recoding to create age_gender. Neither 
the perceptual map nor approach is necessarily superior, but it is interesting to 
see the alternative, shown in Figure 9-34.
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Figure 9-34:  MCA version of Figure 9-12
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C h a p t e r 

10
Display Complex relationships 
with Multidimensional Scaling 

Multidimensional scaling (MDS) is an exploratory statistical technique that 
positions objects (products, services, and so on) in a graph based on how similar 
or dissimilar the objects are to each other so as to determine which features are 
most important in people’s perceptions of object relatedness. Multidimensional 
scaling mathematically transforms the perceived relatedness among objects 
into a visual display of distance that helps determine which characteristics are 
most important in detecting the structure or dimensions of similarity judg-
ments. Dimensions are then interpreted by using both subjective and statistical 
techniques.

As an example, in the area of market research, multidimensional scaling can 
be used to identify brand positions and the dimensions along which customers 
view brands. In its most basic form, respondents indicate how similar or dissimilar 
different pairs of objects (often brands) are from one another. Using ice cream 
as an example, we can ask respondents, how similar are vanilla and chocolate? 
Chocolate and strawberry? Vanilla and strawberry? Lemon and raspberry? 
Multidimensional scaling then attempts to fit these proximity measures by 
placing the objects in a low‐dimensional space so that the distances between 
the objects in the space reproduce the observed proximities.

Figure 10-1 shows a two dimensional display of the relationships among ice 
cream flavors. Notice that the first dimension places water‐based flavors on one 
end of the spectrum and milk‐based flavors on the other end. We would have 
to do a little more work to figure out the meaning of the second dimension.
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Figure 10-1:  Object points plot

Multidimensional scaling can, and has, been used in a number of ways. For 
example, MDS can be used to position products, political candidates, organiza-
tions, or services in a space based on similarity ratings. As an example, one of 
the book’s authors used MDS to study how outpatients used different medi-
cal services (for example, dentists, chiropractors, optometrists, and so on) to 
understand usage patterns.

It is important to note that respondents in these studies need not be asked to 
indicate how similar objects are along specific attributes. Rather, the expecta-
tion is that the dimensions through which respondents view the objects will be 
understood by viewing how the objects are positioned in the low‐dimensional 
space. In this way, the analyst tries to understand the major dimensions on 
which respondents differentiate objects without obtaining explicit attribute 
ratings. However, in some marketing studies involving multidimensional scal-
ing, respondents do rate products on a set of attributes and the scaling is based 
on product similarities (or dissimilarities) derived from the attribute ratings.

Many forms of multidimensional scaling exist, varying in the assumptions 
made about the scale of measurement, allowable transformations, means of 
accommodating individual differences, the method of estimation, and measure 
of fit, among other factors.

In this chapter you learn about the different kinds of MDS that are available. 
We use a practice dataset so that you can get a feel for the technique as well as 
the options that are available in the dialogs associated with MDS. Finally, we 
cover how to interpret the results.
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Metric and Nonmetric Multidimensional Scaling

The basic multidimensional scaling model begins with data containing measures 
of similarity or dissimilarity for pairs of objects. The model assumes that each 
object is represented by a point in a space. Objects are positioned in this space 
so that distances between the objects closely approximate the original proximi-
ties. Solutions with different numbers of dimensions can be applied and several 
measures of fit are available. Two‐dimension solutions are popular, because it 
is easy to interpret two‐dimensional plots.

Metric multidimensional scaling assumes that a parametric model relates the 
proximities to the object distances; that is, it is assumed that distances between 
objects are either ratio or interval level in nature. Nonmetric multidimensional 
scaling makes weaker assumptions about this relationship, so that it only assumes 
that distances between objects are based on rank order or ordinal‐level data.

Nonmetric Scaling of Psychology Sub‐Disciplines

In this example, we perform a nonmetric multidimensional scaling analysis on data 
for six psychology sub‐disciplines. The goal of this study is to describe how psychol-
ogy’s sub‐disciplines relate to each other. The data is in the form of a dissimilarity 
matrix, where each value represents the distance between a pair of sub‐disciplines 
(lower values indicate that the sub‐disciplines are more similar to each other).

To access this data, open the dataset Psychology.sav, shown in Figure 10-2.

Figure 10-2:  Dissimilarity matrix of psychology data
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The data in Figure 10-2 is in the form of a proximity matrix (specifically, dis-
similarities, where larger values indicate greater distances) and a single group 
is involved. We can see, for example, that psychometrics and social psychology 
are very different from each other (because they have the largest distance value, 
4.20), while cognitive and neuropsychology are the most similar (because they 
have the smallest distance value, 1.84).

Although the dataset we will use in this chapter was specifically collected for 
multidimensional scaling, I want to point out that you do not need to have your 
data in the form of a proximity matrix. In fact, it is very easy to perform multi-
dimensional scaling on Likert type rating scales (the most widely used response 
scales in survey research) or on any type of data. For example, Figure 10-3 shows 
data on ice cream preferences. Here respondents were simply asked to specify 
whether they liked (a value of 1) or disliked (a value of 0) different ice cream flavors.

Figure 10-3:  Ice cream preference data

This data is then used in the multidimensional scaling procedure, 
and internally, multidimensional scaling created a proximity matrix (see  
Figure 10-4) to run this statistical routine.

Figure 10-4:  Proximities matrix ice cream preference data
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This is why I mentioned in the opening paragraph of this chapter that “this 
technique could be applied in so many ways if analysts just took the time to 
dig a little deeper into their data.” Essentially MDS takes any type of data and 
internally transforms the data into a proximity matrix that MDS uses for the 
analyses.

Multidimenional Scaling Dialog Options

Now that we have data, to perform multidimensional scaling select the Analyze 
menu and then choose Scale to display the options shown in Figure 10-5. There 
are two options to perform multidimensional scaling: ALSCAL, which is part 
of the SPSS Statistics Base system, and PROXSCAL, which is part of the SPSS 
Categories module. Both support a wide range of multidimensional scaling 
options; however, PROXSCAL has some additional advanced features. In our 
case we could use either procedure to run the analysis; we will use PROXSCAL 
because it offers additional options.

Figure 10-5:  Analyze ➪Scale menu options

Within the multidimensional scaling procedure, we need to indicate 
whether the data source contains proximities or the actual data values. If you 
do have proximities, then the format of the proximities must be specified. If 
the data source does not contain proximities, they will be calculated from the 
data (as shown in Figures 10-3 and 10-4). The Number of Sources section (see  
Figure 10-6) concerns whether we will be forming a single‐group analysis (One 
matrix source) versus an individual‐differences or multiple‐group analysis 
(Multiple matrix sources).

N O t e  Multidimensional scaling also includes models that allow for group and 
individual differences. Individual differences or weighted multidimensional scal-
ing (INDSCAL), as it is often called, assumes that sources (or individuals) differ on 
the characteristics they use to define or construct a configuration and/or on the 
importance they place on each dimension within a given configuration. Aside 
from this important distinction, weighted MDS operates in a similar manner as 
unweighted MDS.
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A matrix of proximities can be read in a matrix format across data columns 
(our situation) or as one data element per line with row and column identifiers. 
In our case the data are proximities so:

 1. Click the Data are proximities option button in the Data Format group 
shown in Figure 10-6.

 2. Click the Define button. This will open the dialog shown in Figure 10-7.

 3. As shown in Figure 10-7, place the six psychology sub‐disciplines into 
the Proximities list box. The Sources list box is inactive because we are 
running a single source (group) analysis.

Weights can be assigned to each proximity variable (here representing an 
object), but are not needed in our analysis.

 4. Move the variables from clinical to social into the Proximities list box.

 5. Click Model at the top of the right‐hand group of buttons to open the 
Multidimensional Scaling: Model dialog shown in Figure 10-8.

Because we are working with a single data source, options pertaining to 
the type of individual‐difference (group) model are inactive. We also need 
to specify the form of the proximity matrix, and as we saw in Figure 10-2, 
we have a lower‐triangular matrix (which is the default).

Figure 10-6:  Multidimensional Scaling: Data Format dialog



 Chapter 10 ■ Display Complex relationships with Multidimensional Scaling  255

Figure 10-7:  Multidimensional Scaling: (Proximities in Matrices Across Columns) dialog

Figure 10-8:  Multidimensional Scaling: Model dialog
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 6. Click the Ordinal button in the Proximity Transformations area.

We have requested an ordinal (nonmetric) scaling model. Notice that 
metric scaling choices (Ratio, Interval) are available, along with the more 
general spline.

 7. Enter 1 in the Minimum Dimensions text box.

 8. Enter 3 in the Maximum Dimensions text box.

By default, a two‐dimensional multidimensional scaling solution will be fit. 
We request solutions containing 1 through 3 dimensions and will examine 
the fit measures to decide among the models, as shown in Figure 10-8.

 9. Click Continue to return to the dialog shown in Figure 10-7. Clicking the 
Restrictions button opens the Restrictions dialog; clicking the Options 
button opens the Options dialog.

 ■ The Restrictions dialog (Figure 10-9) allows you to enter restrictions 
on the solution space (by fixing object points or requiring the solution 
space to be a linear combination of specified variables—we will not 
use these options in our current example).

Figure 10-9:  Multidimensional Scaling: Restrictions dialog

 ■ The Options dialog (Figure 10-10) controls technical options for the 
estimation process.
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Figure 10-10:  Multidimensional Scaling: Options dialog

We will not use any features in the two prior dialogs. Click Continue or 
Cancel to return to the main Multidimensional Scaling dialog.

 10. Click Plots in the Multidimensional Scaling: (Proximities in Matrices Across 
Columns) dialog (shown in Figure 10-7).

The Plots dialog generates various types of graphs that allow users to 
determine the adequacy of their solutions. By default, the common space 
(objects placed in the solution space) will be plotted. The Stress option will 
produce a plot of stress values (defined a bit later) against the number of 
dimensions—the scree plot. This choice will only be active when a range 
of dimensional solutions is requested (as is our current situation). The 
Original vs. transformed proximities plot choice will graph the original 
proximities and the transformed (here by an ordinal function, because 
we chose ordinal in the Model dialog) proximities. This graph provides 
insight into the nature and effectiveness (when the model is ordinal) of the 
transformation. The Transformed proximities vs. distances plot provides 
a visual sense of how well the model reproduces the proximities and 
identifies exceptions. When multiple data sources (individuals or groups) 
are analyzed, you can opt to view some of the plots (individual plots and 
the proximity plots) for only specified data sources.
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 11. Click the following checkboxes:

 ■ Stress

 ■ Original vs. transformed proximities

 ■ Transformed proximities vs. distances

The completed Plots dialog is shown in Figure 10-11.

Figure 10-11:  Multidimensional Scaling: Plots dialog

 12. Click Continue to return to the main Multidimensional Scaling dialog.

 13. Click the Output button.

Additional summaries can be requested in the Output dialog and some 
of these can be written to an SPSS Statistics data file. If you did not have 
proximities, you could display the input data, so you can view the calculated 
proximities on which multidimensional scaling will be run. The Stress 
decomposition option produces a table that breaks down the stress (lack 
of fit) into components attributable to each object and group. Here it will 
provide information about which objects (psychology sub‐disciplines), if 
any, contribute disproportionately to the stress measure (that is, which 
proximities were not fit as well by the solution). This is useful in identi-
fying sources for a poor fit. The Save to New File box allows you to save 
important information to different files. For instance, you may want to save 
the Common space coordinates to later use these to help you statistically 
interpret the dimensions of the solution (we will do this later).

 14. Click the Stress decomposition check box.

The completed Output dialog is shown in Figure 10-12.
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Figure 10-12:  Multidimensional Scaling: Output dialog

 15. Click Continue to return to the main Multidimensional Scaling dialog.

 16. Click OK to run the analysis.

Multidimensional Scaling Output Interpretation

Now let’s take a look at the results of the analysis and interpret the results.

 1. Scroll down to the Scree Plot.

The error or lack of fit of a multidimensional scaling model is evaluated by 
comparing the estimated distances between points in the model space to 
the transformed proximities. Several variations exist, involving different 
functions and normalizations, under the general label of stress. They are 
scaled so that a perfect fit would have a stress value of 0 and the upper 
bound cannot exceed 1. While smaller values are better, there isn’t an 
agreed‐upon cutoff value below which the model fit is regarded as good. 
Because the stress values typically decrease with increasing dimensionality 
of the object space, analysts can plot the stress values as a function of the 
number of dimensions and look for an “elbow” or “bend,” representing a 
point beyond which increasing the dimensionality of the solution results 
in little improvement of fit. This “scree” plot is also used in factor analysis 
to investigate the number of factors required to fit a correlation matrix.

As shown in Figure 10-13, the vertical axis of the scree plot contains the 
normalized stress values (values closer to 0 indicate better fit), while the 
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dimensionality of the solution appears on the horizontal axis. Although 
all the stress values are small, there is a noticeable decrease moving from a 
one‐ to a two‐dimensional solution, after which the plot is relatively flat—the 
bend or elbow occurs at dimension 2. This suggests that a two‐dimensional 
solution is the most promising starting point.

Figure 10-13:  Scree plot of normalized raw stress

 2. Scroll up to the Stress and Fit Measures pivot table.

Figure 10-14 displays the Stress and Fit Measures pivot table of various 
measures of model fit. The layer label indicates that these results are for 
the one‐dimensional solution. This is because the solution dimensionality 
appears in the layer dimension of the pivot table.

Figure 10-14:  Stress and Fit Measures table displaying results for a one‐dimensional 
solution
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To examine stress and fit measures for the other solutions, we can either 
change the layer displayed or move the layer into the column dimension 
of the pivot table. Either can be easily done within the Pivot Table editor; 
we will take the latter path.

 3. To edit the pivot table, double‐click the Stress and Fit Measures pivot table 
(to invoke the Pivot Table editor).

If the window of the pivoting trays is not shown, click Pivot ➪ Pivoting 
Trays in the Pivoting Trays window.

 4. Drag and drop the Dimensionality icon from the Layer below Statistics 
in the column.

 5. Close the Pivot Table editor.

Figure 10-15 shows the Stress and Fit Measures pivot table of all three solu-
tions. Not surprisingly, because more parameters are fit by the models as 
the dimensionality of the multidimensional scaling solution increases, the 
stress measures tend to decrease and the fit measures increase. The greatest 
changes occur moving from the one‐ to the two‐dimensional solution, 
which we also saw in the scree plot. When estimating model coefficients, 
PROXSCAL seeks to minimize the normalized raw stress measure. In any 
column, each representing a different model, there is considerable variation 
in values for the different stress measures. This is because they differ in 
technical aspects (what is used as the norming factor; are differences in 
distances or in squared distances used; and so on).

Figure 10-15:  Stress and Fit Measures for three multidimensional scaling solutions
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Based on the scree plot and the Stress and Fit Measures table, in the 
remaining summaries and plots we will focus on the two‐dimensional 
solution. This will involve examining only the two‐dimensional solution 
layer of pivot tables and one of three plots.

So far we have discussed technical measures of fit. Because the purpose of 
multidimensional scaling is to better understand how the objects (products, 
brands, companies, and so on) are viewed by the respondents, consid-
eration should be given to how interpretable a solution is. For example, 
moving from a two‐dimensional to a three‐dimensional solution may not 
be justified if the third dimension cannot be meaningfully interpreted. 
This consideration is also present in factor analysis.

 6. Scroll down to the Decomposition of Normalized Raw Stress pivot table 
shown in Figure 10-16.

Figure 10-16:  Stress decomposition table

Figure 10-16 shows that the objects (here psychology sub‐disciplines) are 
listed in the rows and the different data sources (groups or individuals; here 
there is a single source) constitute the columns. The mean value across the 
objects is the normalized raw stress value (.0011) reported in the Stress and Fit 
Summary table. Examining the stress values for the different sub‐disciplines, 
we find that Developmental and Social psychology have values considerably 
smaller than the other sub‐disciplines. Proximities involving the other sub‐
disciplines are not modeled as well, and they contribute disproportionately 
to the normalized raw stress. In practice, knowing which objects or groups 
are not modeled well can provide some insight into the problem (although 
in this case the stress values are very low across all objects).

N O t e  If there are many objects, sorting the rows makes it easier to digest this 
table. Sorting is available in the pivot table editor in recent versions of Statistics by 
selecting the column, right clicking, and choosing Sort Rows.
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 7. Scroll down to the Final Coordinates pivot table in the Common Space 
section.

 8. Double‐click the Final Coordinates pivot table.

 9. Select 2 from the Dimensionality drop‐down list (in the Layer area, just 
above the pivot table).

 10. Close the Pivot Table editor.

The Final Coordinates table (Figure 10-17) represents the positioning of the 
objects (psychology sub‐disciplines) in the two‐dimensional solution space.

Figure 10-17:  Coordinates for a two‐dimensional solution

Although you can work from this table, most analysts would move to the 
plot containing these points, shown in Figure 10-18.

Figure 10-18:  Object points plot



264 part II ■ Data Visualization

 11. Click the Objects Points graph icon labeled “Dimensionality 2” in the 
Outline pane.

Subjective Approach to Dimension Interpretation

The subjective approach to dimension interpretation examines the graphi-
cal representation of objects to discover underlying patterns that are based 
on what one knows about the objects. So basically we have to ask ourselves 
(based on what we know about the objects) how do these objects differ along 
each dimension? In this two‐dimensional solution, the horizontal axis seems 
to be a type of data dimension with quantitative sub‐disciplines on the right 
and qualitative sub‐disciplines on the left. With regards to the vertical dimen-
sion, it might represent either the illness severity typically encountered by 
psychologists in these different sub‐disciplines or alternatively, the generality 
or specificity of ramifications regarding research in these sub‐disciplines. Using 
the illness severity interpretation, the sub‐discipline of social psychology would 
be viewed as dealing with non‐severe illnesses, whereas the sub‐discipline of 
neuropsychology might be thought of as dealing with severely ill populations. 
Using the ramifications interpretation, the sub‐discipline of social psychology 
would be viewed as having ramifications for society at large, whereas the sub‐
discipline of neuropsychology might be thought of as having ramifications for 
specific individuals (we will return to the idea of dimension interpretation in 
the next section).

N O t e  While these can give insight, they are subjective interpretations,  
not statistical proofs.

 1. Scroll down to the Transformation Plot.

 2. Click the Transformation Plots graph icon labeled “Dimensionality 2” in 
the Outline pane.

The plot in Figure 10-19 provides information about the transformation 
function applied to the proximities. The vertical axis represents the 
proximities after the transformation (here an ordinal transformation) 
is applied, and the horizontal axis represents the actual proximities in 
the data. The plot has a pronounced step function. If this plot had been 
smooth and near linear, then a metric multidimensional scaling model 
could have been used to fit the data. In our case using a nonmetric 
model for this data was a good choice because this plot is clearly neither 
smooth nor linear.
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 3. Click the Residuals Plots graph icon labeled “Dimensionality 2” in the 
Outline pane.

Figure 10-20 displays the model‐estimated distances as they relate to the actual 
proximities (transformed). The points (representing a pairing of sub‐disciplines) 
are tightly clustered around an imaginary 45‐degree line. The fact that the points 
are clustered around this imaginary 45‐degree line is consistent with the low 
stress and high fit measures. Points off the line represent errors by the model 
(residuals), and points far off the line might be examined in greater detail (that 
is, what is it about a specific object pairing that might have led to the model 
failing), just as you would in regression analysis.

N O t e  There is an interesting connection between MDS and TURF analysis. TURF 
finds bundles of items/objects that maximize the probability that a bundle contains 
at least one item that consumers like. If you do both TURF and MDS, you would get 
more insight into the properties of the optimal bundle. With the ice cream data 
and a three‐flavor bundle, TURF picks coconut, rocky road, and vanilla, or butter 
pecan, coconut, and vanilla (tie), although the top combinations are all very close. 
With MDS, using the same options as in this example, you see that these flavors 
are widely separated, which is a major factor in the reach calculation (along with 
individual popularity).

Figure 10-19:  Plot of the actual and transformed proximities (two‐dimensional solution)
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Figure 10-20:  Residuals plot of distances

Statistical Approach to Dimension Interpretation

In the previous section we used the subjective approach to dimension interpre-
tation, where we examined the graphical representation of the objects to try to 
discover underlying patterns. Linear regression or correlations can also be used 
for dimension interpretation. With this method, data is collected on additional 
variables that one believes will be related to the position of objects in the con-
figuration (this data can be collected when dissimilarity data was collected or at 
a later time point). The mean ratings of these additional variables are then used 
as dependent variables in regression equations, while the coordinates obtained 
from the configuration are used as predictor variables. Because the coordinates 
capture the pattern of perceived relatedness among objects, the correlations are 
measures of how well the coordinates of a dimension fit a possible interpretation, 
and thus can help confirm or negate interpretations found using the subjective 
dimension interpretation method.

N O t e  The dimension coordinates were obtained by choosing Common Space 
Coordinates in the Multidimensional Scaling: Output dialog (see Figure 10-12).

N O t e  Another approach in some cases would be to do a multigroup MDS.
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In our dataset (psychology.sav, shown in Figure 10-21) we have the 
coordinates for each psychology sub‐discipline on each dimension, as well 
as the aggregated means on the following variables: research orientation (that 
is, not at all research oriented vs. very research oriented), type of research 
(basic research vs. applied research), type of data collected (qualitative vs. 
quantitative), ramifications for research (specific individuals vs. society at 
large), and severity of illnesses ordinarily encountered (not at all severe vs. 
very severe).

Figure 10-21:  Dimension coordinates and aggregated mean rating on additional scales

N O t e  I had previously hypothesized what the dimensions might represent; 
therefore, I collected additional data to try to describe the dimensions.

To assess the relationship between the dimensions and rating scales, we will 
perform correlations:

 1. Click Analyze ➪ Correlate ➪ Bivariate.

 2. Move research_orientation, type_of_research, type_of_data, social_ramifications, 
illness_severity, dim_1, and dim_2 into the Variables box.

N O t e  To get this view the reader needs to go into the Edit menu, then choose 
Options  ➪ General  ➪ Display Names.

Because we only care about the correlations between the dimension vari-
ables and the rating scale variables, we will use syntax.

 3. Click Paste.

The Paste button opens up the syntax editor, and now we have more options 
than those available through menus and windows.
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 4. Type the word with between the variables illness severity and dim_1.

In this situation, as shown in Figure 10-22, the keyword with tells SPSS 
that we should correlate all of the variables to the left (the rating scale 
variables) of the keyword with all of the variables to the right (the dimension 
variables) of the keyword.

Figure 10-22:  Modified correlation procedure syntax

 5. Click Run.

 6. Scroll down to the Correlations table, shown in Figure 10-23.

Figure 10-23:  Correlations between dimensions and aggregated mean rating scales
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The results suggest that for the first dimension, the variable type of data  
(r = .969) better explained this dimension than any of the other variables. For 
the second dimension, the variable illness severity (r = −.800) better accounted 
for the variation. This statistical technique confirmed the results obtained 
through the subjective interpretation approach, as well as eliminated possible 
additional interpretations.
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III
Predictive Analytics

Predictive analytics is a big topic, but a timely one. Virtually all of us who 
are statistically inclined need some techniques borrowed from our Computer 
Science, Knowledge Discovery, and Machine Learning colleagues in our pre-
dictive analytics toolkit. But that doesn’t mean that we need a dedicated tool 
to do predictive analytics. Dedicated data mining tools like SPSS Modeler are 
extremely powerful, and they have their place and advantages, but there is 
much that can be done right in SPSS Statistics. This five-chapter part advances 
one of the motivating themes of the entire book: What features of SPSS Statistics 
constitute untapped resources that can potentially transform the way we use SPSS 
Statistics? Specifically, in this part of the book you learn how SPSS Statistics can 
be used to do data mining. While not absolutely everyone needs the techniques 
in Part III, an increasingly large proportion of analysts do. Machine learning is 
mainstream in a way that it wasn’t even 10 years ago. Familiarity is wise even 
if one’s day to day statistics work is more traditional.

We don’t always have the benefit of a hypothesis. What are we to do when we 
have a research question, but we don’t have a hypothesis? For instance, what if 
we simply want to know who among our customers are most likely to respond 
to a particular marketing campaign? They are our customers, after all. So we 
have more information about them than anyone else does. We certainly have 
some basis for answering the question, but we might be without hypotheses. 
There is no literature to tap into. We are likely lacking any resources outside of 
our organization for hypotheses. More importantly, it would be irresponsible to 
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let hunches, even when we have them, influence our behavior when a surpris-
ing result is often the most powerful result we can get. Why would we narrow 
our independent variables down to those based purely on a hunch, a priori? We 
might not guess which are the best variables? It would seem we are in a bit of a 
bind. It would be inappropriate to throw out variables a priori with no basis for 
doing so, yet isn’t it also inappropriate to throw all of our potential variables 
available in?

The job of Chapter 11 is to make this argument more thoroughly. Another goal 
for Chapter 11 is to explore data mining, and to begin the process of explaining 
the core skills that are necessary to do it well. Toward that end we will demon-
strate some features of SPSS Modeler that are used to perform data mining tasks. 
It is a bit of fun to see them in action in Modeler, and it is an interesting way to 
explore the concepts because Modeler is specifically designed to specialize in 
these tasks. The contrast between the approach in Modeler and the approach we 
will have to use in SPSS Statistics will sharpen the contrast between data mining 
and statistics. That will, in turn, assist us in our quest of making the leap to a 
new way of structuring our analysis, albeit without necessarily switching tools.

In the chapter that follows our discussion of data mining tasks, Chapter 12, 
we will see two of the four key features of the SPSS Statistics Data Preparation 
module. The other data mining skills will be spread out among three Modeling 
chapters—Chapters 13, 14, and 15. Therefore, unless you are quite familiar with 
data mining already, it will be important to start with Chapter 11. We will explore 
and demonstrate three of the most popular data mining modeling techniques: 
neural nets, Decision Trees, and K Nearest Neighbors. The remaining chapters 
in Part III are dedicated to SPSS Statistics. Along the way, as needed, the data 
mining skills will be introduced. For example, how to create a hold-out partition 
is shown in the neural net chapter (13), but that same partition is reused in the 
chapters on Decision Trees and K Nearest Neighbors (14 and 15).

Naturally, the ideal chapter in which to compare the success of the three tech-
niques is the final one. Therefore, it is in the K Nearest Neighbors chapter that 
we compare the performance of all of the techniques. In statistics, one chooses 
a technique in advance, a priori, based upon theoretical criterion. In data min-
ing, the empirical, the a posteriori, is always the proper route. So it is natural, if 
not required, that we use multiple approaches and then choose the one that is 
empirically proven to be the better performer on an unseen dataset. There will 
be more on this approach in Chapter 11.

The goal of the chapters is consistent with the goals of the book: to expand 
your horizons a bit. Neither the conclusion that SPSS Modeler is unnecessary, 
nor the conclusion that it is essential, can be drawn from the chapters that 
 follow. The goal is to:

 ■ Sharpen the contrast between traditional statistics and data mining.

 ■ Explore some of the key concepts in data mining.



 ■ Learn which of the most important data mining tasks are easily done in 
SPSS Statistics and how to do them.

In This Part

Chapter 11:  SPSS Statistics versus SPSS Modeler: Can I Be a Data Miner Using 
SPSS Statistics?

Chapter 12: IBM SPSS Data Preparation
Chapter 13: Model Complex Interactions with IBM SPSS Neural Networks
Chapter 14: Powerful and Intuitive: IBM SPSS Decision Trees
Chapter 15: Find Patterns and Make Predictions with K Nearest Neighbors
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In this chapter, I will attempt to answer three questions:

 ■ What is “data mining,” and how is it different from statistics?

 ■ What is the SPSS Modeler data mining workbench?

 ■ Is it possible to perform data mining tasks effectively in SPSS Statistics?

Our discussion focuses on two case studies, which will help us address 
these questions. One case study has a continuous dependent variable (“target” 
as Modeler users would call it), and the other has a binary dependent variable. 
Along the way, we will learn a number of tricks and tips. As you may have 
guessed, it is indeed possible to do data mining effectively in SPSS Statistics, 
but it is not always obvious how to perform all of the tasks, or even what the 
required tasks are.

What Is Data Mining?

My own definition of data mining has evolved slightly over the years, but this 
one has served me well:

Data mining uses historical data, accumulated during the normal course of doing 
business, and involves selecting, preparing, and analyzing the data, finding (and 

C h A P t e r 

11
SPSS Statistics versus SPSS 

Modeler: Can I Be a Data  
Miner Using SPSS Statistics? 
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confirming) previously unknown patterns, building predictive models, and deploy-
ing the models on current data.

Each element of the definition is worth elaborating:

 ■ Historical data: Data mining needs data for which the outcome of interest 
has been achieved. The resulting model is then applied to newer data for 
which the outcome is currently unknown, but can be predicted.

 ■ Normal course of business: In statistics, one often has a hypothesis and 
then creates an experimental design to capture data capable of testing 
the hypothesis. Data mining data was captured to run the business, not 
to perform experiments.

 ■ Selecting and preparing: It is often believed that data mining is conducted 
on all of the data that you have, and that the algorithms automatically 
search for patterns. This is not true. Data mining is almost always con-
ducted on a much smaller portion of the data. It is not random sampling 
in the same sense as in a political poll, but it is selecting that portion of 
the data that is relevant to the business problem.

 ■ Previously unknown patterns: Data mining is not about having a hunch, 
and exploring the data to confirm that hunch. It is also quite different from 
hypothesis testing, and the contrast between the two gets an entire sec-
tion in this chapter. It is a systematic search for patterns that can provide 
value to the business. A search without some valuable surprises would 
be a disappointment, but it is actually very rare.

 ■ Models: A model, usually in the form of a formula like a regression for-
mula, or a set of rules like a Decision Tree, is a systematic way of recoding 
the patterns so that they can be applied to new data. The ability to apply 
to new data is the goal, not up or down conclusions about the importance 
of each variable. Most data mining techniques will give you limited infor-
mation, or perhaps no information, on overall model significance or the 
significance of each predictor.

 ■ Deployment: We believe that a project that is not deployed is incomplete. 
The model only provides value if it is inserted into the business process, 
driving better decisions, and shown to provide a measurable benefit to 
the business.

What Is IBM SPSS Modeler?

SPSS Modeler, formerly called Clementine, is explicitly described as a “data 
mining” workbench. What is it, and how is it different from SPSS Statistics? 
Modeler uses an approach called “visual programming.” You essentially draw 
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a flowchart, and the flowchart represents a process that is easily repeated on 
new data. In Modeler, the flowchart (shown in Figure 11-1) is called a “stream.” 
In this sense, Modeler is much more like working in SPSS syntax than it is like 
using the menus in SPSS Statistics. The symbols in Modeler are called “nodes,” 
and in the following simple example we explore just three of the many available 
nodes in Modeler. You learn more about Modeler as the chapter progresses.

Figure 11-1:  An SPSS Modeler “stream”

In this simple Modeler stream you get the idea of how a process would be 
set up. Files are not opened, per se. Rather, the stream points to the location 
of the data. The data stays right where it is, and if the file is very large, we can 
select portions of it and have the large file stay on the server or wherever the 
file is located. In short, SPSS Modeler is potentially more scalable than SPSS 
Statistics, but SPSS Statistics can handle a lot itself. How large is large? Most 
would consider 10s or 100s of millions large, whereas 10,000 or 100,000 or even a 
million should pose no problem in either package. This is a complex issue, and 
large scale is a moving target with hardware improving every year. Another 
advantage of having a “source node” pointing to a file is that there is virtually no 
tendency to create multiple versions of a data file. Most of us are guilty, in SPSS 
Statistics, of having filenames like Survey_original, Survey_clean, Survey_Final, 
Survey_with_new_vars, and so on. The reason we all tend to do this, at least to 
a degree, is that in SPSS Statistics we save our work by saving our data file. In 
Modeler, we save the stream. Saving a stream is similar to saving a syntax file, 
but it is not like saving a data file.

The Type node is much like the variable view. In the Type node we declare 
the level of measurement, and missing values, for instance. Declaring a role 
is a bit of an obscure feature in SPSS Statistics, but in Modeler it is terribly 
important. By declaring our target, which in the Titanic dataset is “survived,” 
our dependent variable and all of our independent variables are set for all 
appropriate modeling methods. Train.csv and Test.csv are available on the 
book’s website, and have been adopted from the data mining competition 
on the kaggle.com website. Aside from a different design, there are other 
reasons why we don’t approach it this way in SPSS Statistics. It would be 
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strange to be testing hypotheses and to use multiple algorithms. One uses 
the correct algorithm given the hypothesis and the data. In data mining, 
it is natural to use many algorithms and to try multiple settings, and to 
even consider using the models in combination. We will see combinations 
of models, usually called “ensembles,” later in this chapter in the section 
“Creating Ensembles.”

The Logistic node has the caption Survived because that is the variable that 
we have declared as our target. We can often run the node without making any 
further declarations. When we do, a diamond-shaped node appears. That is 
our model—that is, the resulting formula is stored in this node so that we can 
very efficiently score new data. Figure 11-2 shows both a diamond shaped gold 
“nugget” as well as a second source node.

Figure 11-2:  Stream with model

Can Data Mining Be Done in SPSS Statistics?

If you have access to the appropriate modules, you can use SPSS Statistics to 
perform a number of the very same data mining algorithms that are in SPSS 
Modeler. They aren’t all possible, but some of the most important ones are 
available, including:

 ■ Decision Trees

 ■ Neural nets

 ■ Nearest Neighbor

Decision Trees, neural nets, and Nearest Neighbor each get a dedicated chapter 
in Part III of this book.

You may already be familiar with Stepwise techniques. Stepwise is avail-
able for Linear Regression, Logistic Regression, and Discriminant Analysis. 
No doubt about it—these are data mining techniques. We will get a sense as 
to why these are data mining techniques, and how to validate these kinds of 
models later in this chapter.
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In addition to these algorithms, which can help you use predictive analytics 
to classify future cases, supporting routines help you prepare and explore your 
data. Both Optimal Binning and Identify Unusual Cases are nearly identical to 
similar procedures in SPSS Modeler. Chapter 12 explores some of the features 
of the SPSS Data Preparation module, which is really more focused on data 
preparation for data mining in many ways than it is focused on data prepara-
tion for statistics. As much as we might dread data preparation for statistical 
analysis, the modest number of independent variables restricts the amount of 
effort to something manageable. When the number of predictors multiplies, 
the effort to perform proper data preparation often requires some automation.

hIStory oF MoDeler

Modeler had a completely different corporate and development history before SPSS, Inc. 
bought the company that created Modeler, then called by its original name, Clementine. 
In the early '90s a British company, ISL, offered some data mining algorithm software, 
starting with neural nets and the ID3 Decision Tree algorithm, and suddenly found itself 
in the consulting business. Colin Shearer headed up the new data mining practice for 
ISL, and eventually created Clementine to meet an emerging need: “We were finding 
that data mining projects involved a lot of hard work, and that most of that work was 
boring. Unearthing significant patterns and delivering accurate predictions…that part 
was fun. But most of our effort went on mundane tasks such as manipulating data into 
the formats required by the various modules and algorithms we applied.” (From Colin 
Shearer's forward to the IBM SPSS Modeler Cookbook, Packt Publishing, 2013)

Tom Khabaza, a colleague of Colin's at ISL, would eventually coauthor the “Cross 
Industry Standard Process for Data Mining” (CRISP-DM Consortium, 1999) with Colin 
and a consortium drawn from a number of major European companies. In his “The 
Story of Clementine,” he explained the inspiration for Clementine's design: “As these 
projects succeeded one another, it became clear that we were performing the same 
coding tasks repeatedly; ISL had also been involved in some R&D projects involving 
visual programming, and it was from these two threads that Clementine was born. 
Colin Shearer's design for Clementine combined re-useable versions of the modules 
we had developed for specific projects with a visual programming interface which 
made it extremely easy to ‘plug together’ these modules to form a data mining pro-
cess.” (https://www.cs.bham.ac.uk/research/projects/poplog/ 
isl-docs/1999-AISBQ-TheStoryofClementine.pdf)

A critical feature of Modeler is also, perhaps, its sharpest contrast with SPSS 
Statistics. Shearer: “We made an important design decision that predictive models 
should have the same status within the visual workflow as other ‘tools,’ and that their 
outputs should be treated as first-order data. This sounds like a simple point, but the 
repercussions are enormous. Want more than the basic analysis of your model's  
performance? No problem—run its output through any of the tools in the workbench. 
Curious to know what might be going on inside your neural network? Use rule induc-
tion to tell you how combinations of inputs map onto output values. Want to have 

Continues
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Predictive analytics is not just about the latest algorithms, however. There is 
a quite different way of thinking through a project when you are data mining. 
The “Cross Industry Standard Process for Data Mining (CRISP-DM)” is a free, 
software-neutral, and industry non-specific approach to data mining. We will 
explore Modeler’s approach and SPSS Statistics’ approach in parallel. This way 
we can learn some of the key steps in data mining, get a peek at SPSS Modeler, 
and see what options SPSS has for some of the same steps.

Hypothesis Testing, Type I Error, and Hold-Out Validation

Classical hypothesis testing is the cornerstone of virtually all statistical analyses. 
Its role in data mining is quite different, and when statisticians stumble dur-
ing their first data mining project, difficulty surrounding this topic is often the 
reason. Table 11-1 provides a quick reminder of how it works, but the Internet 
is overflowing with videos and discussions of this topic if you need a more 
thorough review. The motivation of the “review” here is really to contrast it with 
alternatives. Keep in mind, however, that we won’t be doing it this way when 
we are using data mining techniques; we will be pursuing the alternatives, so 
you won’t need to review this now unless you are haunted by the absence of 
hypothesis testing while data mining.

table 11-1:  Classical Hypothesis Testing

In the PoPUlAtIon

nUll 
hyPotheSIS 
IS trUe

nUll 
hyPotheSIS 
IS FAlSe

Conclusion from 
hypothesis test 
results

Reject Null Hypothesis (usually 
significance below .05)

False Positive 
Type I Error

True Negative

Accept Null Hypothesis True Positive False Negative

multiple models ‘vote’? Easy. Want to combine them in more complex ways? Just feed 
their inputs, along with any data you like, into a ‘supermodel’ that can decide how 
best to combine their predictions.”

Why is Clementine the success that it is? There are many different answers to this 
question, but here I give the answer closest to the concerns of the AI researcher. 
Clementine is a success not because of any particular technical innovation, but 
because it fits the data mining task better than any previous tool.

Tom Khabaza, The Story of Clementine.

(continued)
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The definitions of hypothesis testing that we generally use when we are speak-
ing with other statisticians include phrasing like “rejecting the null hypothesis” 
or “probability that the null hypothesis is true,” but in data mining we have no 
null hypothesis, and the reliance on probability is highly problematic. We need 
another way, and we need a broader definition. We need to describe the problem 
behind the Type I error broadly enough so that it applies to both statistics and 
data mining. Thankfully, this is easy to do.

In both statistics and data mining, we want to screen out patterns in our 
sample data that will fail to generalize—that is, patterns that will fail to be 
found in other datasets in the future. That’s really all a Type I error is: a fail-
ure to generalize. In statistics we avoid the problem through the combination 
of parsimony, determining hypotheses prior to performing hypotheses tests, 
distributional assumptions, and probability. In data mining, we use random 
selection, and validating our model against one or more additional datasets.

Let’s explore an example. Data from the famous Titanic disaster will assist 
us. Note that the data file in support of this chapter, Titanic.sav, represents 
about one half of the passengers on the ship. If you ever decide to attempt the 
competition on kaggle.com using this dataset, they have retained the second 
half of the passenger list as a “Test” dataset. Let’s test the hypothesis that the 
three boarding locations—England, France, and Ireland—each had a different 
mix of passengers that paid a different fare, and were thus in a different class. If 
we are right, then survival rates might differ for the three embarkation points. 
We won’t let the speculation get too complex; we just have a hypothesis that 
fare differs for these three groups so we run an Analysis of Variance (ANOVA) 
in SPSS, much like the ANOVA example you saw in the previous chapter. And 
sure enough, the probability calculation indicates that our null hypothesis (that 
they are the same) is likely false, so we conclude that they are different. Voila. 
Referring to the ANOVA results, shown in Figure 11-3, the key number of the 
overall significance (labeled Sig.) is zero to three decimal places, well below .05, 
indicating statistical significance.

Figure 11-3:  ANOVA results showing a significant difference

What is the probability that we are wrong about that? What is the probability 
that we have committed a Type I error? Forgive the review, but this is leading up 
to an important distinction between statistics and data mining. Either by force 
of habit or by conscious choice, we usually decide that alpha is .05, so therefore 
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we say that we have a 5% chance of committing a Type I error if the null is true. 
Is it always true? Let’s take it a step further.

To compare Ireland and England, Ireland and France, and finally England 
and France, we request Post-Hoc tests. That’s a lot of tests—and we are just 
warming up if we are going to mine the whole dataset. Two different meth-
ods, Least Square Difference (LSD) and Bonferroni, give us slightly different 
results. Cherbourg in Normandy, France (C), Queensland in Cork, Ireland (Q), 
and Southampton in the UK (S) produce six significance tests, although a closer 
inspection reveals that there is redundancy, and there are really only three 
different tests for each method. All are shown in Figure 11-4. So what was our 
risk of Type I? “Experimentwise” our chance of avoiding Type I on three tests 
was .95 cubed, so our risk of committing Type I was 14.26%. That is our answer 
for the LSD method. For the Bonferroni method, an adjustment has been made 
forcing our risk to stay at 5%. We do pay a price, however, because our risk of 
Type II (false negatives) has gone up. The adjustment is also why we easily come 
in below .05 with LSD, but nearly miss it on identical data, with the Bonferroni. 
In short, there is no free lunch. This simple little example is more complicated 
than it seems.

Figure 11-4:  Post hoc results table showing a variety of test results

The real problem is that the number of variables and the number of categories 
across the collection of categorical variables will almost always be greater than 
these kinds of adjustments can handle. Note the Decision Tree, which we study 
in greater detail in Chapter 14, and shown in Figure 11-5. Seven variables were 
considered of which four were chosen, but each has subcategories or “bins.” This 
approach also uses a Bonferonni adjustment, but it is still a struggle to find the 
right balance between Type I and Type II concerns. Many approaches, includ-
ing many of the best ones, have abandoned probability-based tests altogether. 
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Their better performance is not a coincidence. The use of legacy techniques 
that have been redesigned to do something very different is a burden to these 
more traditional techniques. Hypothesis testing was never designed to handle 
a large volume of concurrent tests.

Figure 11-5:  A Decision Tree

Further, the large sample sizes we often see in data mining make Type I a 
near certainty. Why? As sample size goes up, a smaller and smaller effect size 
will still allow the tests of significance to come in below .05. Fisherian-style 
hypothesis testing simply cannot be trusted under these circumstances. Its 
misuse will guarantee what we are trying to avoid—a failure to generalize. 
While some techniques use aspects of this approach (like Stepwise and CHAID), 
you absolutely must have an alternative method of avoiding Type I. The data 
miner’s solution, which we discuss in the “Classic and Important Data Mining 
Tasks” section later in this chapter, is a hold-out sample. Modeler automates 
this process and makes it very simple using a Partition node.
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Significance of the Model and Importance of Each 
Independent Variable

Those of us who are classically trained look for a number of things in a technique, 
and when they are absent it can be, at first, a little disappointing. One could 
differ slightly on the details, but I usually identify four things that statisticians 
expect to find in a modeling technique:

 ■ Omnibus test: A test of the entire model that reports whether the model 
is significant

 ■ Goodness of fit: Some measure that helps determine that the model fits the 
data well or poorly. R Squared is a famous one, but there are many others.

 ■ Effect size: Determined for each and every variable, including interactions 
when they are tested. For example, the standardized beta in regression can 
be used to compare the importance of each variable to the other variables.

 ■ Significance test: Performed for each and every variable, including 
interactions

I found that the adjustment to data mining took a substantial amount of time 
and reflection. A common reaction, but a potentially dangerous one, is to seek 
out those techniques that are most like what we already know, that have all of 
the features just listed. The problem with this is that it is too limiting. Stepwise 
Binary Logistic Regression looks and feels like a statistical technique, but that 
doesn’t make it the right tool for every data mining project. Stepwise is poten-
tially an issue, which we discuss in the “A Caution About ‘Stepwise’ Techniques” 
sidebar later in this chapter. I would caution against avoiding those techniques 
that do not resemble classical techniques. Data mining requires a diverse toolkit 
because you never know a priori what you are up against. Don’t limit yourself. 
One doesn’t need 100 algorithms, but don’t limit yourself only to algorithms 
that report p values, and the other features. Many data mining techniques will 
be missing some or even all of these four features.

The Importance of Finding and Modeling Interactions

Interactions will be an important theme for us, which will get the most 
attention in the neural net case study. The way that a data miner deals with 
interactions is quite different from the way that a statistician deals with 
interactions. For the statistician, interactions must be formally tested. If they 
are not formally tested, and this is where even the experienced often err by 
failing to take steps to include them, they are assumed to be absent. More 
accurately, they are forced to be absent.
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Consider the example shown in Figure 11-6. The male employees (the dia-
monds) and the female employees (the stars) have quite different patterns.

Figure 11-6:  Two very different slopes

Obviously, it is striking that the males uniformly earn more. The males with 
higher education earn more than males without higher education. Females 
with the highest levels of education seem to be almost entirely absent. Striking, 
also, is the difference in slopes. There is little difference between the salaries 
of females at 16 years of education as opposed to those with less than 12. (This 
dataset, Bank.sav, which is provided on the book website, shows a salary bias 
that, although from many years ago, clearly shows a very distinct interaction.)

Consider the following regression formula:

Y B0 B1 Education B2 Sex Error= + + +( ) ( )

Unless an interaction term is formally added, the slopes will be forced to be 
equal, and the resulting lines would be forced to be parallel. The only way to 
avoid this is to test the interaction by adding an additional coefficient, which 
requires the creation of a new variable:

Y B0 B1 Education B2 Sex B3 Education Sex Error= + + + +( ) ( ) ( * )

So, what is the big deal? This seems to be Regression 101. Perhaps. The issue 
is that in data mining we are at an impasse. This seemingly trivial issue turns 
out not to be trivial at all. If we don’t have a hypothesis, and in data mining we 
do not, and should not, and cannot, we can’t explicitly test all possible inter-
actions because we could easily find ourselves testing thousands of possible 
interactions. A hundred variables, which is a modest number, would have  
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100 * 99/2 two-way interactions, and higher-order interactions might also occur. 
So the impasse takes the following form:

 1. We cannot rely on a main effects model (no interactions) because the risk 
of some interactions is much too high, especially when the number of 
independent variables is large.

 2. We cannot rely on a full factorial model (all interactions) because the 
number of variables would explode, and the resulting model would be 
highly flawed and unstable.

 3. We have no option of formally stating hypotheses, a priori, because if we 
are in a position to do so we are using the wrong approach. We should 
not be data mining. If we were to attempt this, how do we know that we 
have correctly ruled in and correctly ruled out hypotheses?

So even if we use traditional techniques, like regression, we have to use them 
in a different way. Techniques that have been built specifically to perform this 
kind of analysis, like neural nets, do not have this specific problem—they do 
not require this choice between a main effects model and a full factorial model. 
As we shall see, there simply is no way of making the choice. The model will 
converge on a solution that takes the data into account, whether the variables 
interact or not, or are linear or not. Neural nets are not without shortcomings, 
however. What we lose, and some may consider this a high price, is an explicit 
significance value for the interactions. Some techniques will reveal the patterns 
more explicitly than others, but we will generally lose something as specific 
as the significance of B3—the coefficient associated with the Education * Sex 
Interaction.

A CAUtIon ABoUt “StePwISe” teChnIqUeS

Few technical topics provoke the ire that Stepwise does in discussion groups on the 
Internet. One might think that the topics were politics or religion. It is not our pur-
pose in this section to fuel the debate, but weigh the logic at your leisure, and you 
will probably conclude that the critics have the stronger hand. These approaches are 
common enough that we will not outline their logic, nor the debate around them in 
this chapter. They are still in common use, and we, the authors, use them ourselves, 
although we usually do not use the results in the final deployed model directly, and 
they are usually more useful for exploration. What is not, or should not, be in debate 
is that Stepwise Regression, Stepwise Logistic Regression, and Stepwise Discriminant 
Analysis are data mining techniques. As such, they are mentioned in this chapter to 
ensure that if you do use them, you take advantage of the appropriate procedures, 
as outlined in the next section. In particular, all Stepwise models should be validated 

Continues
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Classic and Important Data Mining Tasks

In this section we discuss some features that are unique to data mining, and 
quite different from statistics. All of them are easily done in Modeler with 
features specifically designed for that purpose. In SPSS Statistics, they are 
always more hidden, and sometimes absent. Generally, though, you can do a 
pretty thorough job. You will just need the coaching from this chapter, a little 
persistence, a willingness to live without some shortcuts, and a willingness 
to consider forgoing with some niceties altogether. As Table 11-2 shows, this 
chapter explains the concepts and shows short demonstrations in Modeler. In 
the following four chapters we learn how to perform several equivalent (or near 
equivalent) operations in SPSS Statistics. The goal is to use the SPSS Modeler 
demonstrations to clarify the concepts, delaying our procedural walkthrough in 
SPSS Statistics until after we have gotten the big picture. It will also be a great 
opportunity to satisfy, briefly, the curiosity that any SPSS Statistics user would 
have about the sibling product and how it differs.

with a hold-out sample. In fairness, it can be argued that it is a bit of a false dichotomy 
because there are newer techniques that are superior to stepwise, including L1 and L2 
shrinkage methods. Our goal at the moment, however, is to continue to contrast sta-
tistics with data mining.

Setting aside the quality of the stepwise approach and the resulting quality of the 
models, it is simply fact that these are not confirmatory techniques. Type I error risk is 
elevated by the very nature of these techniques, so partitioning and validation when 
using these techniques are a requirement. The Selection Variable approach, which 
will be demonstrated, will go a long way toward combating the elevated Type I risk. 
Also, like all data mining techniques, you will assess their appropriateness to the data 
empirically, not theoretically, so it will be natural to try them right along with other 
techniques. Comparing models, even something more elaborate like an ensemble, 
and all of the other procedures in the next section, apply to Stepwise as much as 
techniques like neural nets. Without getting carried away too much with procedural 
speculation, one could imagine using a Decision Tree to pare down the number of 
independents, and then follow up with a logistic regression using only the utilized 
variables. The need for stepwise selection goes away, but one still gets to deploy a 
logistic regression  solution. There are as many ways to combine techniques like this as 
there are data mining projects.

(continued)
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table 11-2:  Common Data Mining Procedures in SPSS Statistics and SPSS Modeler

ProCeDUre

ProCeSS 
In SPSS 
MoDeler

ProCeSS 
In SPSS 
StAtIStICS

DeMonStrAteD 
In SPSS 
MoDeler?

DeMonStrAteD 
In SPSS 
StAtIStICS?

Anomaly 
Detection

Anomaly 
Node

Data Prep 
Module

No Chapter 12

Optimal 
Binning

Binning 
Node

Data Prep 
Module

No Chapter 12

Partitioning Partition 
Node

Selection 
Variable

Current Chapter Chapter 13

Selecting 
Inputs

Feature 
Selection 
Node

Data Prep 
Module

Current Chapter No

Balancing Balance 
Node

Would be 
difficult

Current Chapter No

Comparing 
Results

Analysis 
Node

Requires 
Syntax

Current Chapter Chapter 15

Creating 
Ensembles

Ensemble 
Node

Requires 
Syntax

Current Chapter Chapter 15

Scoring New 
Records

Model 
“Nugget”

Scoring 
Wizard

Current Chapter Chapter 14

Partitioning and Validating
When we build a model, how can we be sure that it will generalize to new 
datasets? In data mining, we take what I believe to be the most obvious 
possible action—we use a second dataset. To accomplish this we divide our 
original data into two portions. In the first portion, called the Train dataset, 
we allow our modeling algorithms to explore patterns. In the second por-
tion, called our Test dataset, we verify that our model generalizes. It really 
couldn’t be simpler.

This actually raises the question, prompting us to remind ourselves, what 
action are we taking when we try to prevent the same problem while doing 
statistics? It is not a simple process at all. As routine users of statistical tech-
niques, we’ve learned it, but usually don’t have to compare it side by side 
with hold-out validation. We’ve explored this already in our discussion of 
Type I error, but essentially what we are doing is comparing our results to 
a probabilistic proxy of additional datasets—really a kind of fictional col-
lection of datasets—using distributional assumptions. This is why meeting 
distributional assumptions is so important while using this approach. The 
material in Chapter 2 will also help in exploring this because those techniques 
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represent a third way of addressing this issue. One can summarize the three 
approaches in the following way:

 1. Hold-Out Validation uses random assignment to produce an actual second 
“Test” dataset.

 2. Traditional Hypothesis Testing uses distributional assumptions as a proxy 
for a second Test dataset, in a more accurate sense a proxy for a whole 
collection of datasets.

 3. Bootstrapping and Monte Carlo Simulation use random numbers to generate 
numerous datasets for comparison using the same data from the original 
dataset. The collection of datasets allows for distributions of virtually any 
statistic to be created.

SPSS Modeler makes Hold-Out Validation very simple indeed. Let’s consider 
the first case study dataset, the famous Titanic dataset. Recall that our sample 
size is smaller than the number of passengers on the fateful night.

We’ve already learned a little bit about SPSS Modeler in the very beginning of 
the chapter. Now, let’s zoom back, literally, and see a small little stream, Figure 
11-7, sitting in the “canvas” of the entire interface. Modeler is composed of that 
full Tcanvas area, shown in Figure 11-8, dominating the image in size: a toolbar 
and menus, a set of “palettes” down at the bottom filled with collections of 
“nodes,” and some areas to the right where we organize our work product. The 
details are not going to be important to us because our goal is to review the key 
tasks, while making note that SPSS Modeler has dedicated menus, specifically 
designed to perform these tasks. Once we better understand the tasks, we will 
learn how to mimic them in SPSS Statistics.

Figure 11-7:  A closer look at the stream

Let’s take a closer look at the stream. We’ve seen a node like the circular source 
node, labeled “train.csv,” before. It indicates where our data is, but it does not open 
the data in the sense that we open it in SPSS Statistics, so the table that we will 
examine shortly is essentially a print screen of our data allowing us to see it. The 
Partition node is our focus at the moment, and we see an interface in Figure 11-9 
dedicated to this one task. In fact, just click OK and you will get a reasonable result.
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Figure 11-8:  A stream shown on the full canvas area

Figure 11-9:  Partition node settings
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Most Modeler nodes are dedicated to very specific tasks with reasonable 
defaults, so connecting them in their proper place is sometimes all you have 
to do. This case uses the widely adopted strategy of assigning half of our data  
to the “train” dataset to build our model, and half of our “test” dataset is used to 
verify that our model generalizes effectively to unseen data. What is impressive 
is not just that we don’t have to give this node any instruction, but that we don’t 
have to give the Modeling nodes or the evaluation nodes any instruction either. 
In most situations all of the “downstream” nodes will behave quite appropriately 
on defaults, and we don’t have to take any action to make explicit what we want 
done with the partitions.

Creating two random halves of our data is an easy matter in SPSS Statistics, 
but the complete process takes more work in SPSS Statistics because the rest 
of the interface does not automatically recognize what we want done with the 
partitions. Briefly, what we need is to have the modeling algorithms ignore the 
test data, but the evaluation nodes to use both datasets, and report them sepa-
rately. It will all be automatic. If we look at the data, we see that for now it has 
flagged each case as belonging to one group or the other. As shown in Figure 
11-10, the data, which shows just 10 passengers and just a portion of the variables, 
shows that 7 out of the first 10 have been assigned the Training partition. This 
new variable, created by the data passing through the Partition node, will com-
municate that status to other nodes that will eventually be added to the stream.

Feature Selection
In statistics, the issue of feature selection, the section of input variables (indepen-
dent variables) takes on a completely different form. Because we would typically 
be testing hypotheses when doing statistics, the choice of which variables to 
include among our independent variables is based upon our theory, our literature 
review, and our research design. While most analysts, when pressed, will admit 
that they have added or dropped variables in their models during the modeling 
process after having examined the data, we all recognize it to be a dangerous 
practice. It, deservedly, would be described as a kind of fishing. Taken to the 
extreme, some researchers, behind closed doors, will manually perform a kind 
of “best subsets” approach, trying the combination of independent variables 
every which way until they optimize the model. This is dangerous, and does 
not resemble the correct approach.

Figure 11-10:  Result set
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When data mining, the trick is to try all of the reasonable variables system-
atically, and verify the model against the test partition. The catch is that “all of 
the variables” might be hundreds, or even more. For some algorithms we need 
to narrow it down, but cannot do so on a hunch, and cannot do it based on 
hypotheses. So we must narrow it down, but empirically, based on strength of 
the relationship with the target and with data quality. SPSS Modeler provides 
a way to do just this, the Feature Selection node, shown incorporated into the 
stream in Figure 11-11. It should be used with caution for the following two 
reasons. One, strength is measured using bivariate pairs, which runs the risk 
of missing interactions. Two, data quality does not assess which variables can 
be repaired and which variables should be dropped. Which algorithms need 
this preprocessing step more than others is a big topic, and beyond the scope 
of this discussion. One can summarize, however, by simply stating that some 
algorithms are quite content to accept hundreds of variables and choose which 
variables it needs. Keep in mind, however, that data quality affects virtually all 
techniques, although some techniques are more sensitive to this than others. 
Simple examples include when all the data is null or blank. Another is when a 
categorical variable has only one value. We will limit the discussion to what, 
and how, the Feature Selection node does.

Figure 11-11:  Feature Selection node and model added to stream

A pentagon-shaped node with the caption Survived is visible in the stream 
as well as a diamond-shaped node with the same caption. The pentagon node 
is the modeling node, with settings and menus inside, and its operation created 
the gold colored diamond (sometimes called a “nugget” as in gold mining). 
Inside the diamond (seen by editing the node) we get some insight into what 
it is trying to do. The results, Figure 11-12, show that none of the variables had 
enough data quality issues to be screened: “0 Screened fields.” The mistake 
that some rookies make is to give up on these variables too quickly. Better data 
cleaning might allow such screened fields to be rescued. For example, in many 
instances a null value is known to really be a zero value. This is very common 
when converting transactional data to customer-level data. One might think 
that if you have hundreds there is no urgency in fixing fields with problems. 
This would be a mistake. Every variable deserves the possibility of inclusion 
until you have actual evidence that it should be left out. In general, you can 
summarize the difference between choosing variables in statistics and choosing 
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variables in data mining in the following way: In statistics we include only 
when we have evidence to include, and in data mining we include until we 
have evidence to exclude.

Figure 11-12:  0 screened fields

We also discover that Sex is the best predictor, and that seems in keeping 
with what we know about this famous accident, but normally we would treat 
this ranking with some skepticism because it is based on bivariate relation-
ships. The real magic happens when we model the multivariate relationships. 
We start with bivariate because it is scalable, less complicated, and  expedient. 
It is not without risks. We know that interactions are critical in this kind 
of modeling. Finally, Age and SibSp, which is the number of siblings and 
spouses traveling with the passenger, are deemed “unimportant,” so Modeler 
automatically dropped them. With a large dataset—certainly larger than  
7 inputs—this feature must be necessary to produce good modeling per-
formance downstream. Unfortunately, how much of this is necessary is so 
algorithm specific that it is very difficult indeed to provide good guidelines. 
One can say that one or two dozen inputs is rarely a problem for any technique 
that is useful in data mining. Some can handle one hundred well, but above 
one hundred I would certainly consider the possibility of feature selection. 
Techniques like Factor Analysis potentially play a role. It is a challenging 
phase of the data mining process. SPSS Statistics Base is capable of all of the 
discrete functions that this node performs, but doing it using Base would 
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be labor intensive. The Data Preparation module has features that would 
be very similar. Chapter 12 looks into two features of the module, but does 
not include a discussion of the equivalent operations of this particular node.

Balancing
Sometimes, when encountering balancing, those new to data mining find it 
somewhat artificial. The idea is to force rare groups and the common groups 
to be equally sized. For instance, one might force the group that gets heart 
disease and the group that does not get heart disease to be equally sized before 
using an algorithm to try to find the key drivers of getting heart  disease. On 
reflection, however, this is something we constantly do in statistics. When 
doing this in preparation of data collection, we call it “oversampling.” Recall 
that equally sized groups are desirable in ANOVA because it makes meeting 
the homogeneity of variance assumption more likely. We are used to the idea 
of recruiting a lot of patients with a particular illness because we want to 
understand them, and then recruit an equal number (but unequal propor-
tion of the general population) of those who don’t get the disease. Balancing 
isn’t that different. The aspect that sometimes surprises is the notion that 
some data is being discarded. Unlike the recruitment of patients scenario, 
in data mining, we usually have all of the data, so we would have many 
more patients without the disease than we need. In both scenarios we do it 
because it works—the algorithms do a better job if we prepare the data in 
this way. And we will know if it does a better job because we will verify its 
efficacy on the test dataset, which will not be balanced.

SPSS Modeler has a dedicated node just for this purpose. A Distribution of the 
target variable Survived shows that of this sample of the passengers (just half of 
the ship) about 1/3 survived. A Distribution is much like a Frequencies report 
combined with a bar chart. By using the Generate menu, Modeler automatically 
calculates the proportion of the larger group (those that died) to retain at  random. 
By discarding some, and creating roughly equally sized groups, virtually all 
algorithms have the possibility of performing better. It is difficult to predict 
in advance, so like most all data mining decisions, it should be determined 
empirically. However, few data miners would balance this dataset because it is 
not sufficiently out of balance. How extreme an out-of-balance condition would 
cause a problem? A ratio of 70/30 or 80/20 might prompt action. Few would 
ignore a situation at 90/10. Again, it is best to try it both ways. The Distribution 
node results shown in Figure 11-13 indicated 61.62% and 38.38%. An additional 
logistical challenge is the requirement that a valid test of our model requires 
that the test be performed on unbalanced data. Modeler does this downstream 
automatically, and makes it easy.
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In this case, if balancing were required, SPSS Modeler would give each survivor 
a 62.3% chance of being retained. What would make this very challenging in 
SPSS Statistics would not be the random sampling. The challenge would be bal-
ancing the train dataset, but not balancing the test dataset: having the modeling 
algorithms use balanced data, and having the evaluation nodes automatically 
know to ignore any balancing. SPSS Modeler makes it comparatively easy. If 
you use the Generate menu, it does the math for you, resulting in the Balance 
node shown in Figure 11-14.

Figure 11-14:  Generated Balance node calculation

Comparing Results from Multiple Models
Comparing model results is possible in SPSS Statistics, but it is largely accom-
plished by comparing the results, by eye, in the output window. Frankly, I’ve 
never seen it as a shortcoming because I typically use only one technique when 
doing statistics, the recommended one for the situation at hand. In fact, if we 
are really playing by the rules, we should use just a selection of settings, and 
one set of independent variables. Data mining is very different, however. I’m 
so accustomed to the Analysis node in Modeler, that I might find comparing 
neural net results to Decision Tree results in the output window a little clumsy 
and frustrating. However, there is no reason that it can’t be done.

Figure 11-13:  Distribution node results
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The approach that I have adopted for the three modeling chapters (Chapters 13, 
14, and 15) is to come out with an easy formula that can allow easy  comparison. 
Two analysts could differ considerably on their favorite measure of model perfor-
mance, and in the statistics world one often chooses different measures of model 
fit for each technique. We will be focused on comparison, however, so I will use 
Mean Absolute Percent Error (MAPE) and simple overall accuracy in the three 
modeling chapters. Modeler primarily uses overall accuracy in the Analysis node. 
I’m not trying to argue that MAPE is ideal, but rather that it is possible to compare 
models in SPSS Statistics. You may choose to use a different formula.

At this point in our discussion, we will want to explore how SPSS Modeler 
compares models. The Analysis node is easily demonstrated as we shall see. 
Although the Feature Selection node is not really necessary—with only 7 original 
inputs—it has been kept in place to show how a stream grows over the course of 
an analysis. The current stream, with some additions, is shown in Figure 11-15. 
It actually prevents the two weakest variables from being considered: the two 
that were deemed “unimportant” by the Feature Selection algorithm.

Figure 11-15:  Stream with two models added

The CHAID nugget and the neural net nugget (second and third from left 
after the feature selection nugget, which is the first nugget from left to right) are 
essentially in competition with each other. The second one in no way benefits 
from the prediction of the first one. They simply both make predictions, which 
are processed downstream. In this case, the Analysis node is the key. It is the job 
of this node to automatically take into account information passed to it down the 
stream from the Partition node, the CHAID nugget, and the neural net nugget.

What is perhaps most impressive about the Analysis node’s report (shown in 
Figure 11-16) is that it was run purely on defaults. No instruction had to be given 
except to drag it into place downstream of the other nodes. Modeler automatically 
knows how to process the two partitions. The phrase “Comparing $R-Survived 
with Survived” means comparing the first model’s prediction with the actual 
outcome. The phrase “Comparing $N-Survived with Survived” is referring to 
the second model. The prefixes can be confusing, but $R is always associated 
with CHAID, and $N is always associated with neural net.
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Figure 11-16:  Analysis node results

We are interested in two things in the top half of the report: accuracy and 
generality. We see that in both cases, $R-Survived and $N-Survived, the Training 
performance and Testing performance are fairly close. By “close” most analysts 
use a rule of thumb of 5%. As applied to this example that means that the Test 
performance is within 5% less of the Training performance that the models 
generalize reasonably well. Remember that failure to generalize is essentially 
what a Type I error is. Both meet the rule of thumb requirement here. In terms 
of accuracy, the Training accuracy is not paramount. What we are really inter-
ested in is Test performance. CHAID’s prediction, with the $R prefix, appears 
to be the stronger performer. Keep in mind that this is just a first attempt and 
was run on default settings. It would not be unusual to try dozens of models 
during a project. At the moment, CHAID seems like it is the leader by a small 
margin. We will learn that this kind of analysis is possible in SPSS Statistics, 
but it will require a bit of effort and will require SPSS syntax. We will review 
the steps carefully in Chapter 15.

Let’s briefly examine the rest of the Analysis node report. We learn that 
$R-Survived and $N-Survived generally agree, about 86% agreement in both 
samples. When they agree, the combined accuracy is almost 83%. At first, this 
news seems pretty exciting: 83% is much better, but it comes with a cost, that 
83% is only measured on the cases where they agree. Combining models can 
be powerful, but this report tips the scales a little too much in favor of pursu-
ing a combined model. Such models, called ensembles, can be created with the 
dedicated Ensemble node and are the subject of the next section.

Creating Ensembles
The concept of model ensembles is more subtle than what we saw implied in the 
Analysis node. The Analysis node gave us some clues as to whether an ensemble 
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might be fruitful. In order to produce an ensemble, however, there has to be 
some way of resolving conflict among the models. It simply is not acceptable 
to ignore those cases where the models do not have a consensus prediction. In 
fact, that is really what “agreement” in the Analysis node implies—complete 
consensus. Cases where consensus is not reached are simply not used in the 
calculation in the Analysis node so it really just hints as to whether an ensemble 
might possibly be useful. The goal is to produce a new model that uses predic-
tions from all of the input models.

Clearly, the input models will not always agree, and that is the interesting and 
compelling aspect of building an ensemble. When they all agree, they are very 
often all right. The “secret sauce” is doing a clever of job of figuring out what the 
prediction should be when they do not all agree, and there are numerous ways 
of doing so. Unfortunately, the fact that there are numerous ways would make 
creating ensembles in SPSS Statistics labor intensive. Labor intensive makes 
experimentation difficult, which is a problem in data mining.

It can certainly be done, but would be done by using formulas in SPSS syntax. 
Something like:

IF (PredA = 'true' and PredB = 'true') PredEnsemble = 'true'

All possible combinations would have to be taken into account, and typically 
you would want the formulas to involve confidence scores, which would com-
plicate things considerably. Would I rule out ensembles if I was working in SPSS 
Statistics? Each situation is different, but I would have to be convinced that the 
ensemble was worth it, and I would want to be collaborating with a team that 
was comfortable with SPSS syntax.

SPSS Modeler makes it so easy that there might be a tendency to do ensembles 
a little too often. They are incredibly enticing, and when there is no barrier in the 
form of complicated implementation the temptation can be hard to resist. Why 
so tempting? Well, quite simply, ensembles almost always look like a good idea 
when you examine the Analysis node. We have already discussed why this is 
the case, but even when the models don’t agree often, accuracy tends to go up, 
just on a smaller and smaller proportion of the cases. So, it looks better than it 
would be in practice. Ensembles are most powerful when models with differ-
ent strengths and weaknesses are combined to make a more effective team. For 
instance, on one major project I once paired a neural net, which was my most 
accurate model but which was sensitive to missing data, with a C&RT Tree, 
which was a bit less accurate but more resilient to missing data. The combina-
tion was stronger on the entire dataset than either was alone. Let’s take a look 
at an example (see Figure 11-17).

Modeler makes it easy. We simply place an Ensemble node downstream 
of the two models. Inside the Ensemble node we see an impressive array 
of choice on how to resolve conflict between the models. Also note that it 
filters out the earlier models by default. However, that can be turned off, and 
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we can examine the Analysis node again. I’ve chosen Confidence-weighted 
voting as the tie breaker.

We will look at just the top half of the new Analysis node, and we actually learn 
that the ensemble, with the prefix $XF, is the weakest of the three (see Figure 11-18). 
Ensembles are a powerful technique, but they are challenging to do in SPSS 
Statistics, not because of the IF statements and the syntax, but rather because 
trying multiple variations would be labor intensive, and the evaluation of all 
of those variations on the theme would also be labor intensive. While possible, 
I would focus my attention on the other tasks, and probably consider living 
without the ensemble strategy when using SPSS Statistics. Many successful 
models, including several members of the top 10 of the famous million-dollar 
Netflix prize, were ensembles. However, no ensemble will succeed unless the 
component models are the best that they can be, so focus on improving your 
individual models first.

Figure 11-18  Comparing models to ensemble results

Figure 11-17:  Ensemble methods
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Scoring New Records
SPSS Statistics has added a number of features over the years to facilitate the 
scoring of new data. Not that many years ago, I might have written SPSS syntax, 
using the coefficients found in the output. It would have been a manual process, 
but fairly easily done, if you know how. That is no longer necessary. Now we 
have a wizard to help us do it. Scoring new records in Modeler is especially 
easy—it essentially just involves connecting new data to the stream.

An interesting fact about our dataset is that it is one of the practice datasets 
on the kaggle.com data mining crowd sourcing competition website. On this 
site data miners compete and are sometimes awarded money for building the 
best model. The Titanic dataset is provided for practice on the site. They have 
divided the data into two, and they only provide the “answer” for the Train 
half. If we wanted to score the Test half we would simply run the new data 
through the best model, which for us was the CHAID model. I’ve made a copy 
of the CHAID nugget (through a simple copy-and-paste operation) and simply 
allowed the test.csv data to flow through it to the Table node (see Figure 11-19). 
Two new variables have been appended to the far right of the data. Data for the 
first 10 passengers in test.csv are shown revealing that only 2 are predicted 
to survive. The values with the $RC prefix are the confidence scores of that 
prediction and are shown in Figure 11-20.

Figure 11-19:  Stream with scoring of test.csv added

Figure 11-20:  Scoring results for 10 passengers
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In the final table of the chapter (Table 11-3), a substantial list of dozens of 
algorithms shows that with access to some of the modules an SPSS Statistics 
user can do a very large chunk of what an SPSS Modeler user can do. Keep in 
mind that access to Modeling algorithms is only half the battle. We’ve seen that 
on the tasks there are some real differences, and more differences kick in when 
you consider either huge datasets or automated deployment. Nonetheless, the 
SPSS user has access to considerable resources right in SPSS Statistics.

table 11-3:  Data Mining Algorithms

CAtegory teChnIqUe MoDeler

StAtIStICS 
MoDUle or 
CoMMAnD 
extenSIon

Decision Tree CHAID Yes Trees

C&RT Yes Trees

C5.0 Yes STATS C5.0 extension 
command

QUEST Yes Trees

Association A Priori Yes SPSSINC APRIORI 
extension

CARMA Yes

Sequence Detection Yes

Association Rules Node Yes

Classification (Statistical) Discriminant Yes Base

Logistic Yes

Loglinear No

Numeric Prediction Linear Regression Yes Base

Automatic Linear 
Modeling

Yes Base

CHAID Yes Trees

C&RT Yes Trees

Neural Net Yes Neural

Classification Neural Net Yes Neural

SVM Yes STATS SVM Extension

Bayes Net Yes Statistics Server Only

Continues
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CAtegory teChnIqUe MoDeler

StAtIStICS 
MoDUle or 
CoMMAnD 
extenSIon

Decision List Yes

Nearest Neighbors Yes

Clustering Hierarchical No

K-Means Yes Base

Two Step Yes

Kohonen Yes

table 11-3 (continued)
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IBM SPSS Statistics is comprised of a base system, which has many options for 
data preparation, graphing, and data analysis. Users can also add modules that 
provide additional functionality. Personally, I would recommend some of these 
modules, like the Custom Tables module, to just about every user. Other modules, 
like the Forecasting module, are very specialized, and I would only recommend it 
to users that truly require these techniques. One module that SPSS Statistics users 
may not be aware of but which can be very useful is the Data Preparation module.

The Data Preparation module consists of four techniques: two (Validation and 
Identify Unusual Cases) are located under the Data menu; and two (Optimal 
Binning and Data Preparation for Modeling) are positioned under the Transform 
menu. These four techniques can be used to improve the quality of your data 
before performing data analysis.

Unfortunately, to provide a complete example of each of the techniques would 
result in an incredibly long chapter, therefore I will only cover two of these tech-
niques (Identify Unusual Cases and Optimal Binning). I have chosen these two 
procedures because I wanted to show at least one technique from each menu (Data 
and Transform), but also because I find Identify Unusual Cases and Optimal Binning 
to be the most useful of the four components of the Data Preparation module.

N O T E  Because this chapter does not have space to cover two of the components 
of the Data Preparation module, here is a brief description of those two components. 
These components are designed to improve the data analyst’s efficiency in what is 
often the most time consuming part of a project.

C h a p T E r 

12

IBM SpSS Data preparation 
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 ■ Validation: Data validation functions by defining rules, either based on a single 
variable or across variables. These rules check for several types of errors and 
problems in your data, such as incorrect labels, values, or missing value codes, out‐
of‐range values, odd distributions, outliers, skip instructions being followed incor-
rectly, logical inconsistencies, and acquiescence bias. The output includes both 
reports that can help the analyst assess the quality of the data and reports that can 
be used by the data providers to make corrections in the data. Rule violations can 
be recorded as variables in the data and used for further analysis of error patterns.

 ■ Data preparation for Modeling: Data preparation analyzes data and screens 
out fields that are problematic or not likely to be useful, derives new attributes 
when appropriate, and improves performance through various screening tech-
niques. It can make substitutions for missing data as part of its data preparation, 
and can even adjust the measurement level of variables automatically. It can 
also extract information from date and time fields. You can use this technique 
in a fully automatic fashion, allowing it to choose and apply changes, or you can 
use it in an interactive fashion, previewing the changes before they are made. 

Identify Unusual Cases

Unusual data is not always a cause for concern. Sometimes unusual cases can be 
errors in the data. For example, a school teacher’s recorded salary of $1,000,000 
is most likely due to an extra zero that was added during data entry. Sometimes 
unusual cases can be extreme scores; for example, a customer that purchased 
5,000 speakers in the last month, where typically monthly orders range from 
100 to 1,000 speakers per month. Sometimes unusual cases can be interesting 
cases; for example, a patient with cystic fibrosis who is 52 years old, where life 
expectancy for this disease is in the mid‐30s.

In addition, sometimes unusual cases can be valuable. For example, there might 
a small group of customers that use their cell phones a lot and so this group is 
valuable as customers, but we might want to analyze their data separately so 
they do not distort the findings of typical customers. Or sometimes unusual 
cases can be a real cause for concern, such as when investigating insurance fraud.

Whatever you call them, outliers, unusual cases, or anomalies can be prob-
lematic for statistical techniques. By definition, an outlier is a data value unlike 
other data values. Someone can be an outlier on a single variable or they can be 
an outlier on a combination of variables. Outlier detection can be as simple as 
running a series of graphs or frequencies to detect outliers on a single variable. 
It is also relatively simple to identify outliers on a combination of two or maybe 
three variables—many times a graph, like a scatterplot, can detect these situa-
tions. However, detecting unusual cases on a combination of many variables is 
almost impossible to do manually, and even low‐dimensional error detection 
can be time consuming.
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IBM SPSS Statistics includes the ability to Identify Unusual Cases on a combina-
tion of many variables in an automatic manner. This technique is an exploratory 
method designed for the quick detection of unusual cases that should be can-
didates for further analysis. This procedure is based on the TwoStep clustering 
algorithm, and is designed for generic anomaly detection, not specific to any 
particular application. The basic idea is that cluster analysis is used to create 
groups of similar cases. Cases are then compared to the group norms and the 
cases are assigned an anomaly score. Larger anomaly scores indicate that a case 
is more deviant (anomalous) than the cluster or group. Cases with anomaly 
scores or index values greater than two could be good anomaly candidates 
because the deviation is at least twice the average. In addition, this technique 
not only identifies which cases are most unusual, but it also specifies which 
variables are most unusual.

Identify Unusual Cases Dialogs
In this example we will use the file Electronics.sav. The Electronics.sav file 
has several variables and we will use the Identify Unusual Cases procedure to 
look for unusual cases on the combination of all the variables:

 1. Select the Data menu, and then choose Identify Unusual Cases, as shown 
in Figure 12-1.

Figure 12-1:  Data menu
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The Identify Unusual Cases: Variables dialog allows you to specify 
the variables to use in the analysis. You can optionally place a case 
identification variable in the Case Identifier Variable box to use in  
labeling output, and you must place at least one variable in the Analysis 
Variables box. Typically you would place all the variables that you 
would use in your models in the Analysis Variables box, as shown 
in Figure 12-2.

Figure 12-2:  Identify Unusual Cases: Variables dialog

 2. Place the variable ID in the Case Identifier Variable box.

 3. Place all the other variables in the Analysis Variables box.

This procedure works with both continuous and categorical variables  
and it assumes that all variables are independent. Each continuous  
variable is assumed to have a normal distribution, and each categorical 
variable is assumed to have a multinomial distribution, although this 
technique is fairly robust to violations of both the assumption of inde-
pendence and the distributional assumptions.

N O T E  Measurement level affects the computation of the results for this procedure, 
so all variables must have a correctly defined measurement level.



 Chapter 12 ■ IBM SpSS Data preparation  307

 4. Click the Outputs tab.

The Identify Unusual Cases: Output dialog (see Figure 12-3) allows you 
to specify what output you would like to view.

Figure 12-3:  Identify Unusual Cases: Output dialog

 ■ The List of unusual cases and reasons why they are considered unusual 
option produces three tables that display the unusual cases and infor-
mation concerning their corresponding peer groups. Anomaly index 
values are also displayed for cases identified as unusual and the reason 
(variable) why a case is an anomaly is also displayed.

 ■ The Peer group norms option produces peer group norms for continu-
ous and categorical variables.

 ■ The Anomaly indices option produces anomaly index scores based 
on deviations from peer group norms for cases that are identified as 
unusual.

 ■ The Reason occurrence by analysis variable option produces variable 
impact values for variables that contribute most to a case considered 
unusual.

 ■ The Cases processed option produces counts and percentages for each 
peer group.

 5. Choose all of these options, as shown in Figure 12-3, so that we can discuss 
these.

 6. Click the Save tab.
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The Identify Unusual Cases: Save dialog (shown in Figure 12-4) allows 
you to save model variables to the active dataset. You can also choose 
to replace existing variables whose names conflict with the variables to 
be saved.

Figure 12-4:  Identify Unusual Cases: Save dialog

 ■ The Anomaly index option saves the anomaly index value for each 
case.

 ■ The Peer groups option saves the peer group ID, case count, and size 
as a percentage for each case to variables.

 ■ The Reasons option saves sets of reasoning variables. A set of rea-
soning variables consists of the name of the variable as the reason, 
its variable impact measure, its own value, and the norm value. The 
number of sets depends on the number of reasons requested on the 
Options tab.

 ■ The Replace existing variables checkbox is used when repeating this 
procedure.

 ■ The Export Model File option allows you to save the model in XML 
format.

As shown in Figure 12-4, again choose all of these options, so that we can 
discuss these.

 7. Click the Missing Values tab.
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The Identify Unusual Cases: Missing Values dialog (see Figure 12-5) 
is used to control how to handle user‐missing and system‐missing 
values.

Figure 12-5:  Identify Unusual Cases: Missing Values dialog

 ■ The Exclude missing values from analysis option excludes cases with 
missing values from the analysis.

 ■ The Include missing values in analysis option substitutes missing val-
ues of continuous variables with means, and groups missing values of 
categorical variables together so they are treated as a valid category. 
Optionally, you can request the creation of an additional variable that 
represents the proportion of missing variables in each case and use 
that variable in the analysis.

Single or multiple imputation missing value analysis is available in sepa-
rate procedures.

In our dataset we have no missing data, so in our case either option will 
produce the same result (see Figure 12-5).

 8. Click the Options tab.

The Identify Unusual Cases: Options dialog (shown in Figure 12-6) allows 
you to specify the criteria for identifying unusual cases and to determine 
how many peer groups (clusters) will be created.
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 ■ The Criteria for Identifying Unusual Cases option determines how 
many cases are included in the anomaly list. This can be specified as 
a Percentage of cases with highest anomaly index values or as a Fixed 
number of cases with highest anomaly index values.

 ■ The Identify only cases whose anomaly index value meets or exceeds 
a minimum value option identifies a case as anomalous if its anomaly 
index value is larger than or equal to the specified cutoff point. This 
option is used together with the Percentage of cases and Fixed number 
of cases options.

 ■ The Number of Peer Groups option searches for the best number of 
peer groups between the specified minimum and maximum values.

N O T E  The results of the cluster solution may depend on the order of cases. To mini-
mize order effects, randomly order the cases. To verify the stability of a given solution, 
you may want to obtain several different solutions with cases sorted in different 
 random orders.

 ■ The Maximum Number of Reasons option controls the number of sets 
of reasoning variables in the Save tab. A set of reasoning variables 
consists of the variable impact measure, the variable name for this 
reason, the value of the case on the variable, and the value of the cor-
responding peer group.

We will just go with the default options as shown in Figure 12-6.

 9. Click OK.

Figure 12-6:  Identify Unusual Cases: Options dialog
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Identify Unusual Cases Output
The Case Processing Summary table (Figure 12-7) displays the counts and percent-
ages for each peer group (cluster). In our data three clusters were found and the 
largest cluster was Peer ID 1 with a total of 1,659 cases or almost 50% of the sample.

Figure 12-7:  Case Processing Summary table

The Anomaly Case Index List table (Figure 12-8) displays cases that are iden-
tified as unusual and displays their corresponding anomaly index values. This 
table lets us know who the unusual cases are, so now we can further investigate. 
In our data cases 714 and 1835 had the largest anomaly index values (3.925). This 
means that these cases had a deviation that is almost four times the average.

N O T E  All tables are sorted by anomaly index values in descending order. Also note 
that the IDs of the cases are displayed if the case identifier variable is specified on the 
Variables tab.

Figure 12-8:  Anomaly Case Index List table

The Anomaly Case Peer ID List table (Figure 12-9) displays unusual cases 
and information concerning their corresponding peer groups. For example, we 
can see that Case ID 714 is in Peer ID group 1 and that this peer group has 1659 
cases, which account for about 50% of the data file.
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Figure 12-9:  Anomaly Case Peer ID List table

The Anomaly Case Reason List table (Figure 12-10) displays the case number, the 
reason variable, the variable impact value (percentage of anomaly score due to 
that variable), the value of the case on the variable, and the norm (typical value) 
of the variable for each reason. As an example, Case ID 714 as we have seen has a 
high anomaly index score, 3.925 (see Figure 12-8). This case was most unusual on 
the variable Speakers. The contribution of this variable to Case ID 714’s anomaly 
index score was .678. Case ID 714 had a score of 411 on the Speakers variable 
while the mean score for peer group 1 on this variable was only 54.64. Note that 
if the variable impact value is low, it suggests that the case was classified as an 
outlier because of unusual values on more than one variable.

 
Figure 12-10:  Anomaly Case Reason List table

So now not only do we know which cases are unusual, we also now know 
on what variables these cases are most unusual.
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N O T E  We chose to display only one reason, but we could have chosen more than 
one reason, and that may have given us more information. Additionally, notice that the 
main reason for all of these outliers is the variable Speakers. At this point you might 
want to further investigate this variable to try to better understand what might be  
happening here. It may be that the problem is not with cases, but with the variable. For 
example, the variable may have been coded incorrectly or if this was a survey ques-
tion, the question may have been misunderstood. In this situation the Validate Data 
procedure for such variables could be a useful tool to use on the reason variables.

The Scale Variable peer group Norms table (Figure 12-11) displays the mean and 
standard deviation of each continuous variable for each peer group. The mean of 
a continuous variable is used as the norm value to compare to individual values.

Figure 12-11:  Scale Variable Norms table

The Categorical Variable Norms table (Figure 12-12) displays the mode, frequency, 
and frequency percentage of each categorical variable for each peer group. The mode 
of a categorical variable is used as the norm value to compare to individual values.

Figure 12-12:  Categorical Variable Norms table

The Anomaly Index Summary table (Figure 12-13) displays an overall sum-
mary of the descriptive statistics for the anomaly index of the cases that were 
identified as the most unusual. You can see that for our data, 19 cases were iden-
tified as unusual and you can see the minimum, maximum, and mean values.
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Figure 12-13:  Anomaly Index Summary table

The Reason Occurrence by Analysis Variable table (Figure 12-14) displays the 
frequency and percentage of each variable’s occurrence as a reason. The table 
also reports the overall descriptive statistics of the impact of each variable. As 
was mentioned previously, only one variable appeared as the main reason for all 
of these outliers, and you can see the minimum, maximum, and mean values.

Figure 12-14:  Reason 1 table

Now let’s take a look at the Identify Unusual Cases procedure created in the 
data editor.

 1. Switch to the Data Editor.

 2. Right‐click the AnomalyIndex variable and choose Sort Descending, as 
shown in Figure 12-15.

Figure 12-15:  Sorting data
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Figure 12-16 shows the new variables that were saved to the data file. As 
you can see, the data has now been sorted on the anomaly index value so 
it is easy to identify the unusual cases and begin further investigations. 
Now the researcher will need to determine if the unusual cases should 
be kept, removed, or modified.

Figure 12-16:  New variables sorted

Optimal Binning

After exploring a data file, you often need to modify some variables. One com-
mon type of modification is to transform a continuous variable into a categorical 
variable; this is often referred to as binning. Note that since binning necessarily 
results in a loss of information, it should only be done where necessary. You 
might do this for several reasons:

 ■ Some algorithms may perform better if a predictor has fewer categories.

 ■ Some algorithms handle a continuous field by grouping it; however, you 
may wish to control the grouping beforehand.

 ■ The effect of outliers can be reduced by binning.

 ■ Binning solves problems of the shape of a distribution because the continu-
ous variables are turned into an ordered set. Note that binning followed 
by treating a variable as a factor allows for nonlinear effects of predictors 
in a regression context.

 ■ Binning can allow for data privacy by reporting such things as salaries 
or bonuses in ranges rather than the actual values.

SPSS Statistics has several procedures that allow users to bin continuous 
variables. For example, you can use the Visual Binning technique to create 
fixed‐width bins (a new variable with groups of equal width, or ranges, such 
as age in groups of 20–29, 30–39, and so on). You can also use Visual Binning to 
divide a field into groups based on percentiles so that you create groups of equal 
numbers of cases. You can also use Visual Binning to create a field based on a 
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z‐score, with the groups defined as the number of standard deviations below and 
above the mean. Lastly, you can use Visual Binning to create customized bins.

Optimal Binning Dialogs
Optimal binning is another technique that bins a continuous field. Here, how-
ever, the transformation is based on the help of a separate categorical field that 
is used to guide or “supervise” the binning process. The transformation is 
done so that there is maximum separation between groups in the binned field’s 
relationship with the supervising field. The supervising field should be at least 
moderately related to the field to be binned. Note that this technique is only 
for continuous variables; however, the STATS OPTBINEX extension command 
(Data ➪ Extended Optimal Binning) extends this technique to allow binning of 
categorical variables by using the CHAID algorithm from the TREES procedure.

N O T E  Before binning, it is a good idea to examine the relationship between the 
continuous and categorical variables to see whether the categorical variable might 
successfully supervise binning. 

 1. To use Optimal Binning, select the Transform menu, and then choose 
Optimal Binning, as shown in Figure 12-17.

Figure 12-17:  Transform menu

The Optimal Binning: Variables dialog allows you to specify the variables 
to use in the analysis. You will need to place your categorical supervisor 
variable in the Optimize Bins with Respect to box and you must place at 
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least one continuous variable in the Variables to Bin box. By optimally 
binning a predictor variable with the outcome variable, we create the ideal 
cutpoints to best separate—predict—the outcome’s values. Because the 
supervising variable must be categorical, this procedure can only be used 
with categorical outcome variables. However, you can always use another 
categorical variable in your data to bin a continuous predictor variable.

 2. Place the variable Status in the Optimize Bins with Respect to box.

 3. Place Stereos, TVs, and Speakers in the Variables to Bin box, as shown in 
Figure 12-18.

Figure 12-18:  Optimal Binning: Variables dialog

 4. Click the Output tab.

The Optimal Binning: Output dialog (Figure 12-19) allows you to specify 
what output you would like to view.

 ■ The Endpoints for bins option creates a table for each binned variable 
that displays the cutoff values for each bin.

 ■ The Descriptive statistics for variables that are binned option produces 
a table that shows the minimum and maximum values for each original 
field, as well as the number of unique original values and the number 
of bins that were created for each new binned field.

 ■ The Model entropy for variables that are binned option produces the 
entropy scores for each binned field. The transformation is done so 
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that there is maximum separation between groups in the binned field’s 
relationship with the supervising field. If there is only one value of 
the categorical variable in a bin of the continuous variable, then the 
entropy is a minimum (equal to 0). That is the ideal, but the entropy 
will always be greater than 0 in practice.

Figure 12-19:  Optimal Binning: Output dialog

Choose all of these options, as shown in Figure 12-19, so that we can 
discuss these.

 5. Click the Save tab.

The Optimal Binning: Save dialog, shown in Figure 12-20, allows you to 
save binned variables to the active dataset. You can also choose to replace 
existing variables whose names conflict with the variables to be saved.

 6. Select Create variables that contain binned data values.

 7. Click the Missing Values tab.

The Optimal Binning: Missing Values dialog, shown in Figure 12-21, is used 
to control how to handle missing values. Listwise deletion only uses cases 
that have complete data across all the variables that will be used in the 
analysis (this ensures that you have a consistent case base across all of the 
newly created variables). Pairwise deletion, on the other hand, focuses on 
each binned variable separately; therefore, it uses as much data as possible. 
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Figure 12-20:  Optimal Binning: Save dialog

However, this results in not having a consistent case base across all of the 
newly created variables. As mentioned previously, in our dataset we have 
no missing data, so in our case either option will produce the same result.

Figure 12-21:  Optimal Binning: Missing Values dialog
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 8. Click the Options tab.

The Optimal Binning: Options dialog (see Figure 12-22) allows you to 
specify the maximum number of possible bins to create, identify criteria 
for bin endpoints, and define how to handle bins with a small number 
of cases.

Figure 12-22:  Optimal Binning: Options dialog

 ■ In the Preprocessing option, the binning input variable is divided 
into n bins (where n is specified by you), and each bin contains 
the same number of records, or as near the same number as pos-
sible. This is used as the maximum potential number of bins, by 
default 1,000.

 ■ Sometimes optimal binning creates bins with very few cases. The 
Sparsely Populated Bins option allows for the possibility of merging 
small‐sized bins with neighboring bins.

 ■ The last couple of options, Bin Endpoints and First/Last Bin, focus on 
bin criteria preferences.

We will just go with the default options as shown in Figure 12-22.

 9. Click OK.
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Optimal Binning Output
The Descriptive Statistics table (Figure 12-23) displays the number of cases, 
and the minimum and maximum values for each original field, as well as the 
number of unique original values and the number of bins that were created 
for each new binned field. In our data we can see that two bins were created 
for the variables Stereos and Speakers, while three bins were created for the 
variable TVs.

Figure 12-23:  Descriptive Statistics table

The Model Entropy table (Figure 12-24) shows the entropy values for each new 
binned variable. As mentioned in the table, lower entropy scores are associated 
with a stronger relationship between the binned and supervisor variables. In 
our case, all the entropy scores are similar; however, the new binned version 
of the variable, Stereos, has a slightly stronger relationship with the supervisor 
variable than the other binned variables.

Figure 12-24:  Model Entropy table

The binning summary tables (Figure 12-25) display the number of bins for 
each newly created variable, as well as the endpoints. Furthermore, we can see 
how the newly created binned variables relate to the supervisor variable. In 
our data, for example, we can see that two bins were created for the variable 
Stereos and that the first bin captures all the values from negative infinity to one, 
while the second bin captures all the values from two to positive infinity (the 
presentation of these endpoints is controlled in the Optimal Binning Options 
dialog). We can also see that the first bin is associated with churned customers, 
since of the 422 cases in this bin, 361 (86%) are churned customers. Meanwhile, 
the second bin is associated with current customers, since of the 2916 cases in 
this bin, 1828 (63%) are current customers.
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Figure 12-25:  Binning summary table

We have now created binned versions of the variables: Stereos, TVs, and 
Speakers. As a simple test, we can do a quick analysis to determine if these 
binned versions of these variables are indeed more strongly related to the 
outcome variable, Status, than the original variables. To do this, we will run a 
stepwise logistic regression.

To use logistic regression:

 1. Select the Analyze menu, choose Regression, and then choose Binary 
Logistic.

 2. As shown in Figure 12-26:

 a. Place the variable Status in the Dependent box.

 b. Place the variables Stereos, TVs, Speakers, Stereos_bin, TVs_bin, and 
Speakers_bin in the Covariates box.

 c. Choose Forward:LR in the Method box.

Now we have specified our outcome variable as well as the predictors. 
The Forward:LR method is a form of stepwise logistic regression that 
selects the predictor variable that has the strongest relationship with 
the outcome variable. It will choose the predictor variable that has the 
second strongest relationship with the outcome variable second (after 
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Figure 12-26:  Logistic Regression dialog

controlling for any previously selected variables), and so forth. The 
Forward:LR method will stop once it can no longer incorporate additional 
significant predictors.

Figure 12-27:  Variables in the Equation table

 3. Click OK.

Because the purpose of this logistic regression is just to show that the binned 
versions of the Speakers, TVs, and Stereos variables are more strongly related 
to the outcome variable, Status, than the original variables, scroll through the 
output until you find the output shown in Figure 12-27.

The Variables in the Equation table (Figure 12-27) shows that the first vari-
able in the equation was Stereos_bin, and this is the variable with the strongest 
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relationship to the outcome field status (incidentally, this is also the variable that 
had the lowest entropy score). The second variable admitted into the model was 
TVs_bin, and this is the variable with the second strongest relationship to the 
outcome variable after controlling for the previous variables in the equation. 
The third variable in the model was Speakers_bin, and this is the variable with 
the third strongest relationship to the outcome variable after controlling for the 
previous variables in the equation. Note that in this simple demonstration, all of 
the binned variables were chosen over their continuous counterparts; thus, the 
Optimal Binning procedure successfully created binned variables that maximized 
the relationship between the supervisor variable and the variables of interest.
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In this chapter, we are going to use a demonstration and two different case 
studies to explore artificial neural networks, as a technique available in the 
IBM SPSS Statistics Neural Networks module. Along the way, we are also 
going to pick up on some general data mining skills. In particular, we will 
learn how to create and use a partition variable in SPSS Statistics even though 
there is no dedicated menu for creating partitions. We will also discuss some 
theory, but focus on what is necessary to know regarding the why and how 
of the technique. A key strategy for that will be to use linear regression as a 
point of comparison.

We could explore a number of other related topics, but we choose not to 
pursue them here, with the goal of achieving sufficient depth in the topics 
that we do explore. We will discuss only multilayer perceptrons. We will not 
discuss the theory or the practice of radial basis functions, which is another 
kind of artificial neural network (ANN). Both are available types of neural 
nets in SPSS Statistics. We make the choice we do because it is the more com-
monly used and because it is more closely tied to the earliest incarnations of 
the technique. It will make it easier to make the transition between the history 
of the technique and the examples we will run in SPSS. Also, we will spend 
minimal time on the “tuning” of models. Changing settings in order to boost 
performance is of value, but it can be very time consuming to both explore 
our choices and to actually walk through the process in the text. For this rea-
son, we will discuss the important aspect of tuning data mining models only 
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in Chapter 14, via decision trees, but neither in this chapter nor in the KNN 
chapter (Chapter 15). Finally, comparing all the three techniques in the output 
window will wait for Chapter 15.

We noted in our discussion in Chapter 11 the importance of interactions. 
In this chapter, the last section compares the neural net and linear regression 
models to demonstrate this. We need a way to compare them—R Squared is 
the classic measure of regression model fit, but it doesn’t really suit our desire 
for a simple calculation that we can use to compare both techniques side by 
side. One could reasonably suggest other choices, but the demonstration in this 
chapter uses Mean Absolute Percent Error (MAPE). It is an easy formula, and 
it is just as easily calculated for both approaches.

Our goal, clearly, is to make the case for neural net, but not at the cost of sug-
gesting that linear regression is not a fantastic technique. It is. Most of us will 
need linear regression more often than we will need neural nets. However, at 
the risk of spoiling some of the potential suspense, the case study in this chapter 
will show off some of neutral net’s strengths. As for potential weaknesses, the 
most famous limitation is the issue of how it is a so-called “black box” technique. 
The demonstration in this chapter, and specifically the output, will show this, 
but we will stay focused on the strengths, especially in regards to addressing 
variance that linear regression seems to miss.

By comparing neural nets to linear regression we are not trying to make 
a straw man argument. It may seem at times that regression is competing 
with one arm tied behind its back. There are many forms of regression that 
overcome some of the limitations that we will discuss. We will limit the dis-
cussion to fairly basic regression options, however, to keep the comparison 
easy to follow. We will stay focused on what neural nets are and why they 
are sometimes useful.

Why “Neural” Nets?

The history of artificial neural nets dates back more than half a century. The 
history is a tale told many times, and more completely than it is appropriate to 
do here. Data Mining Techniques: For Marketing, Sales, and Customer Relationship 
Management by Gordon S. Linoff and Michael J. A. Berry (Wiley, 2011) pro-
vides a practical, yet detailed, review of all of this. Nonetheless, the history is 
arguably the best way to explain the theory because the approach has evolved 
substantially over the years. The first important event was the proposal by  
F. Rosenblatt in the late ‘50s of the concept of the perceptron in his paper “The 
Perceptron: A Probabilistic Model for Information Storage and Organization in 
the Brain” (Psychological Review, 1958). It was the first attempt to use computers 
to imitate a biological neuron in a way that we would recognize today. It had 
major limitations, and in 1969 there was a very influential book, Perceptrons by 
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Marvin Minsky and Seymour A. Pappert (MIT Press, 1987) that pretty much 
convinced everyone that neural nets were not going to work out. This critique 
inspired the demonstration comparing neural networks and regression cov-
ered in the next section of this chapter. The relevance to us is the following: 
The artificial neural net approach that we currently use, and that we will be 
demonstrating in this chapter, was a response to the limitations of the earliest 
attempts. In the ‘80s some improvements came together that gave neural nets 
new life, and they took on a form much like what we use today. We will explore 
those earlier limitations next, but we won’t worry about the perceptron beyond 
our brief discussion here. Instead we will be comparing the more sophisticated 
multilayer perceptron to linear regression. Figure 13-1 offers a visual depiction 
of a perceptron.

V1
W1 Weighted

Sum
Activation
Function

Output

V2
W2

V3

W3

Figure 13-1: An illustration of a perceptron

Many discussions of neural nets discuss their similarity with biological neurons. 
The salient characteristic is that each biological neuron receives input signals 
from many other neurons via the receiving neuron’s dendrites. The whole process 
is fascinating, and numerous books on machine learning discuss the process. 
Those numerous inputs are weighted, and their combined signal strength causes 
the neuron to fire or not (it is binary in nature), if the weighted input exceeds a 
threshold, thereby sending its signal to other neurons. An artificial “perceptron” 
like the illustration in Figure 13-1 also has multiple inputs, generally one for 
each of the input variables, and they are also weighted and combined. In the 
case of a binary classification problem, the act of firing or not signals which of 
two outcomes are predicted. The power switch is a metaphor for this firing (or 
not), causing the light bulb to light (or not).

If the notion of combing the product of inputs and weights sounds like regres-
sion, it’s because the resemblance is quite strong. The weights are like beta coef-
ficients. In regression, the weights are combined via the regression formula. In a 
perceptron, the weights are combined with an “activation function.” In Rosenbaltt’s 
original description the activation function was a step function that produced 
either a 0 or a 1, thus the similarity to a light switch. More detailed discussions 
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of this topic often describe several different activation functions—not always 
step functions. We will revisit this topic when we perform an example in SPSS.

In the next section, we will see why neither regression nor perceptrons can 
solve an important class of problems. So important, in fact, that it will almost 
always create problems for the data miner. We will learn how the multilayer 
perceptron addressed the issue. In the sections that follow, we will get some 
exposure to the fact that the neural net menus in SPSS allow you to choose from 
different multiple choices for activation function, but we will not demonstrate 
multiple activation functions in the chapter.

The Famous Case of Exclusive OR and the Perceptron
Most discussions of neural nets that go into enough detail to mention the per-
ceptron and the development of the multilayer perception (MLP) also mention 
this example. It can be easily found on the Internet, or in books on the subject. 
Berry and Linoff cover this ground in their discussion of the history, but we 
aren’t concerned with repeating the history here. Our goal is to use this famous 
example to illustrate an instance where an MLP would succeed, but linear 
regression would fail.

Exclusive OR is a relationship between two facts in Boolean algebra. It can be 
simply stated as “either, but not both.” A truth table (see Table 13-1) is another 
way of making clear what Exclusive OR (XOR) is all about. When both inputs 
are the same, XOR is false. When “either, but not both” are true, XOR is true.

table 13-1: XOR Truth Table

INput 1 INput 2 Output

0 (False) 0 (False) 0 (False)

1 (True) 0 (False) 1 (True)

0 (False) 1 (True) 1 (True)

1 (True) 1 (True) 0 (False)

We are not concerned with Boolean algebra, so how does this help us? It can 
be shown that a perceptron cannot address this pattern, but an MLP can. The 
XOR pattern is not “linearly separable,” meaning that a single straight line 
cannot be drawn that separates the two outcome categories. More important 
for us, we will show that regression is much like a perceptron and also can-
not handle this situation. In short, if you have interactions or non-linearity 
you are in trouble with regression unless you intervene in some way and fix 
the problem by including interaction terms. An MLP, on the other hand, can 
address the problem, and without intervention. Of course, in a real-world 
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situation, the pattern might not be deterministic in this way. It might be true 
that a value of 1 on both inputs was paired with a value of 0 on the output 
only most of the time. There is no doubt, however, that real-world patterns 
exist that cannot be addressed with a single straight line, and we will see one 
in the next section.

Most discussions of this use diagrams and logic to make their case. We will 
do some of that, but we will mostly use an actual dataset exhibiting the XOR 
relationships, and run the data through SPSS and then examine the SPSS out-
put. We will let regression take a shot at it, but we will easily confirm that one 
equation doesn’t work. As we shall see, you need two equations.

First, we take the XOR.sav dataset (available from this book’s web page). (See 
the “Creating the XOR Dataset” sidebar for how the dataset was created.) Linear 
regression does not attempt to identify a line that separates the two output cat-
egories. We know that it is attempting to minimize the error in predicting the 
relationship between the inputs and the output. Nonetheless, the scatterplot of 
Input 1, Input 2, and the Output makes the problem very clear. Regression is 
struggling, and to use a football analogy, it punts. It simply cannot produce a 
regression line that accomplishes our goal of predicting when Output will be 1, 
and when Output will be 0. The slight variation in the coefficients is just noise 
resulting from the fact that not all four groups are exactly equal in sample size. 
A flat regression line, as shown in Figure 13-2, means that we have no variance 
explained.

Figure 13-2: A flat regression line
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Admittedly, we have been using regression to predict a binary dependent which 
might seem strange, but the next figure will show the second line (Figure 13-3). 
Here we have used the “Fit Line at Subgroups” feature of SPSS’s scatterplots. 
Two regression lines are fit, and they are fit perfectly. R2 shows 100% of variance  
explained. One regression line intersects the upper left (Input1 = 0, Input 2 = 1), 
and the lower right (Input1 = 1 and Input2 = 1). The second regression line 
intersects with the opposite corners.

Figure 13-3: Two regression lines

The formulas for the two regression lines are:

Y 0 1* X= −

Y 0 1* X= +

CreatINg the XOr DataSet

Regression and neural net will give us strange results if SPSS is dealing with a dataset 
that only has 4 cases. I generated 100 cases, and then assigned a random number to 
the new variable X.

The random variable is easily done with the following command:

COMPUTE x=RND(RV.UNIFORM(0.5,4.5)).
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How will we know when a single regression relationship is insufficient? 
When data mining, we won’t because we won’t have any a priori sense of 
the relationships. This is clearly a problem. Regression does offer a partial 
solution, but it won’t be using more than one regression formula. We need to 
explicitly create interaction terms and fit more coefficients to those terms. We 
will demonstrate this, later, using the ANN_Bank_Results.sav dataset (avail-
able on the website). The same bank data provides an example of needing 
an interaction term. See Figure 13-4. The regression line for males at the 
bank is the steeper of the two lines indicating that as education goes up, 
beginning salary goes up. This is also true for females, but the slope of the 
line is much more modest. They are not parallel lines. The gender gap for 
pay is not uniform. The rate of change is different for males and females. 
There is an interaction between gender and education in predicting begin-
ning salary.

RND simply ensures that we will get integers, and using a uniform distribution will 
give us approximately the same number of each. The rest simply applies the relation-
ships for XOR that we saw in the truth table.

XOr example Syntax
DO IF (x=1).

COMPUTE Input1 = 0.

COMPUTE Input2 = 0.

COMPUTE Output = 0.

ELSE IF (x=2).

COMPUTE Input1 = 1.

COMPUTE Input2 = 0.

COMPUTE Output = 1.

ELSE IF (x=3).

COMPUTE Input1 = 0.

COMPUTE Input2 = 1.

COMPUTE Output = 1.

ELSE IF (x=4).

COMPUTE Input1 = 1.

COMPUTE Input2 = 1.

COMPUTE Output = 0.

END IF.
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Figure 13-4: Displaying interaction

The reason that the possibility of adding interaction terms is only a partial 
solution is that we generally won’t know what those interactions are a priori. 
That is the real problem. If we knew in advance what the relationships were, we 
wouldn’t be in a data mining situation. As the number of predictors increases 
our ability to discover these relationships is reduced as well. (The observa-
tion that we are always in ignorance of specific relationships a priori has been 
dubbed No Free Lunch for the Data Miner by author and thought leader Tom 
Khabaza in his Nine Laws of Data Mining, http://khabaza.codimension.net/
index_files/9laws.htm.) Now let’s briefly consider neural net’s ability to tackle 
this same XOR problem.

What Is a Hidden Layer and Why Is It Needed?
Just as the regression failed with a single straight line, the neural net will need a 
way to allow the inputs to relate to the output in at least two ways. The solution 
to this problem was the multilayer perceptron. Instead of fitting weights from 
the inputs to the activation function of output directly, the inputs are first fed to 
an activation “hidden layer.” In this section we will focus on the hidden layer, 
and in a following section on Error Backpropagation, we will explain how the 
weights are calculated. Each input has a weight assigned to each “node” in the 
hidden layer. The job of the hidden layer is to allow a more complex relationship 

http://khabaza.codimension.net/index_files/9laws.htm
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to emerge. The hidden layer, via its own set of weights, gets fed to the activation 
function of the output. So, in Figure 13-5 both inputs are used in the activation 
function of both hidden layers. One way of thinking about the two nodes in the 
hidden layer is that each is a perceptron—two perceptrons working together, 
combined at the output layer. Two nodes in the hidden layer allow for two dif-
ferent patterns, not at all unlike the two lines, but which is which is arbitrary. 
In a neural net applied to a real world problem, this arbitrariness makes inter-
pretation nearly impossible.

V1

V2

V3

Hidden Layer

Figure 13-5: An illustration of a multilayer perceptron

Neural Net Results with the XOR Variables

For years, I’ve had a certain stubborn fascination with neural network weights. 
The more I was told that “they aren’t very interesting,” the more intrigued I 
became. In addition to showing how the neural network addresses the problem 
we are exploring—the same problem that regression and the perceptron failed 
to address—I want to resolve what the weights are up to. We will explore them 
in some detail, with the expectation that you will probably be quite content to 
ignore them in the future, focusing your attention on more important aspects 
of your neural net models.

The result shown in Figure 13-6 from the SPSS Statistics output window reflects 
a default neural network run on the XOR dataset. No instructions were given 
regarding the architecture, called the topology. In other words, SPSS figured out, 
on its own, that two nodes in the hidden layer were sufficient to fit this data, and 
as it turns out, it fits the data perfectly. Consistent with the regression example, 
the target was declared as a scale variable. It is also possible to define this as a 
binary classification problem, and we will actually try that approach as well. 
This solution resembles the two-line regression solution. Note the parameter 
estimates in Figure 13-7.
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Figure 13-6: The neural net “topology”

Figure 13-7: Parameter Estimates for the neural net

The weights and the biases (similar functionally to a Y intercept) are essen-
tially arbitrary. You can try to get your mind wrapped around which is negative 
and which is positive, but the exact values are also essentially arbitrary. Also, 
which node in the hidden layer has the job of which aspect of the relation-
ships is arbitrary. If there were dozens of inputs, and several nodes in the 
hidden layer, trying to figure out the pattern would be difficult, and would 
ultimately yield little insight. Even the signs are arbitrary, except to show 
contrast. However, the contrast is the key to the whole problem. The weights 
from Figure 13-7 as well as some calculations are shown in Table 13-2 to make 
it easier to examine them.

table 13-2: Calculating the Output Using the Weights

I 1 I 2 h(1:1) h(1:2) preD. Output Output

0 0 0.937 –0.696 –0.938 0 (False)

1 0 0.415 0.910 0.941 1 (True)

0 1 0.410 0.923 0.944 1 (True)

1 1 –0.681 0.999 –0.918 0 (False)
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WeIghtS h(1:1) h(1:2) Output Layer

(Bias) 1.709 –0.859 –2.563

Input 1 –1.267 2.384 3.297

Input 2 –1.273 2.471 3.232

If you compare this to the two regression lines we fit earlier, you can begin 
to see a certain vague resemblance. Somehow we need to replicate “lines,” one 
having a “positive slope” and another having a “negative slope.” The neural net 
doesn’t deal in lines and slopes in the same sense, but the resemblance can still 
be seen in the interplay between the positive weights and the negative weights. 
Notice that some of the weights are very similar in size, seemingly canceling 
each other out. Essentially, there is a node in the hidden layer with positive 
weights for the inputs, and a node with negative weights for the inputs. For the 
following Predicted Output values, note that adjusted normalized values fall 
between −1 and 1. This is the required rescaling method for scale-dependent 
variables if the output layer uses the hyperbolic tangent activation function, 
which was the chosen activation function in this case.

H 1 1 TANH 1 709 1 267 Input 1 1 273 Input 2( : ) ( . ( . ) ( . ))= + − × + − ×

H 1 1 TANH 0 859 2 384 Input 1 2 471 Input 2( : ) ( . ( . ) ( . ))= − + − × + ×

Predicted Output TANH 2 563 3 297 Input 1 3 232 Input 2= − + × + ×( . ( . ) ( . ))

So, in this simple case the weights tell a story of sorts. They force us to rehearse 
the math behind the TANH Activation Function, making it less mysterious. 
They clarify what the hidden layer is doing. What they do not do is establish 
clearly that Input 1 is positively correlated with the Output, or that Input 1 is 
more important than Input 2. I think this simple example also makes clear that a 
real example would not be simple at all. An alternate run of the same model, in 
Figure 13-8, is just as accurate, but all of the weights have completely changed. 
The reason that everything changes will be further explained in the next section.

Figure 13-8: Alternative weights from a second neural net
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aLterNate XOr DeMONStratION DepeNDeNt DeCLareD  
aS a NOMINaL

Figures 13-9 and 13-10 and Table 13-3 show the results if the Output Variable was 
declared as a Nominal. The interpretation would be the same except that the adjusted 
normalization does not apply, so the output values are between 0 and 1 instead of -1 
and 1. Both approaches produce perfect classification with no errors.

Figure 13-9: Topology with outcome declared as nominal

Figure 13-10: Parameter Estimates with outcome declared as nominal

table 13-3: Weights and Calculations for Neural Net with Nominal Outcome

I 1 I 2 h(1:1) h(1:2) Output 0 Output 1 Output

0 0 –0.958 0.779 0.982 0.006 0 (False)

1 0 –0.506 –0.946 0.006 0.988 1 (True)

0 1 –0.530 –0.922 0.003 0.988 1 (True)

1 1 0.649 –1.000 0.974 0.004 0 (False)

H(1:1) H(1:2) Output 0 Output 1

–1.920 1.044 2.773 –0.583

1.363 –2.836 1.962 –2.316

1.330 –2.649 1.876 –2.090
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How the Weights Are Calculated: Error Backpropagation
The SPSS Algorithms Guide (available in the SPSS Help system) helps to clarify the 
exact nature of the implementation of MLP in SPSS. This is necessary because 
the broader literature will speak of many different flavors and variants:

The multilayer perceptron (MLP) is a feed-forward, supervised learning network 
with up to two hidden layers. The MLP network is a function of one or more pre-
dictors (also called inputs or independent variables) that minimizes the prediction 
error of one or more target variables (also called outputs). Predictors and targets 
can be a mix of categorical and scale variables.

In other sections, two further clarifications are given. SPSS uses the common 
“Error Backpropagation” method with either a “Scaled conjugate gradient” or 
“Gradient Descent.” Gradient Descent is what you will encounter in most intro-
ductions to the subject. Although the default setting is Scaled conjugate descent, 
we will explain the more basic method here. We will not get deep into the theory, 
but will explore it in enough detail to help you understand two key aspects:

 ■ How the weights are calculated

 ■ Why the weights change when you rerun the neural net

Neural networks are iterative learners. The weights get a little closer to opti-
mal each time a record passes through the learning process. “Optimal” is a 
better word than “correct” because “correct” would imply the same results each 
time. Each neural net will make very similar predictions, but the underlying 
weights may be dramatically different, especially with the necessary presence 
of the hidden layer. A change in one area of the network can have a ripple effect 
to other nodes in the network, with all kinds of compensation effects, sign 
changes, and canceling out being the result. So to be clear: Two networks can 
make near identical predictions while having extremely different weights and 
even architectures (topologies).

How does it all work? Dean Abbott, in Applied Predictive Analytics (Wiley, 
2014), provides a great metaphor for how an ANN learns:

The learning process is similar to how I learned to catch fly balls as a boy. First, 
imagine my father hitting a ball to me in the outfield. In the beginning, I had abso-
lutely no idea where the ball was going to land, so I just watched it until it landed, 
far to my left. Since my goal was to catch the ball, the distance between where the 
ball landed and where I stood was the error. Then my father hit a second fly ball, 
and, because of the prior example I had seen, I moved (hesitantly) toward where 
the ball landed last time, but this time the ball landed to my right. Wrong again.

But then something began to happen. The more fly balls my father hit, the more 
I was able to associate the speed the ball was hit, the steepness of the hit, and the 
left/right angle—the initial conditions of the hit—and predict where the ball was 
going to land.
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The process in SPSS for MLPs is as follows:

 1. Random weights are assigned.

 2. Errors are calculated for each case.

 3. Weights are updated for each case.

 4. After a minimum of one “epoch,” Stopping Rules are checked.

Random weights are assigned. Keep in mind that there are weights associating 
the inputs to the hidden layer(s) as well as weights associated the hidden layer(s) 
to the output(s). For each case in the Training partition the output is compared 
to the actual value, and an error is calculated. All of the weights are updated to 
reduce the error on the next try. The “learning rate” is used to determine how 
much of an adjustment to make to all of the weights. For gradient descent, an 
Initial Learning Rate is set, and with each epoch the learning rate is reduced 
until the Lower Boundary of the Learning Rate is reached. “Momentum” is also 
involved in this process by controlling how much weight to give to prior weight 
changes. In other words, with each adjustment, it gets closer and closer to a 
solution and makes smaller and smaller changes. A single complete data pass 
of the Training sample is referred to as an “epoch” in the menus, Figure 13-11.

Figure 13-11: Training submenu
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The Stopping Rules are checked, and if not met, the training continues. Stopping 
Rules naturally include failing to make a minimum change to the errors, but 
also include a time limit since training a neural network can take a very long 
time. See Figure 13-12.

Figure 13-12: Options submenu

Few practitioners will choose to make changes to these settings (and perhaps 
even fewer should), and the briefing in this section would be incomplete train-
ing to do so. Experts will make changes, and it can help if they have the proper 
training, but even then only a modest proportion of the model’s performance 
depends upon these settings. Even without that expertise, you will now be able 
to recognize the role played by some of the settings in the creation of the network 
and the fitting of the weights. The hope is that neural networks are consider-
ably less mysterious. We will draw attention to key features and interpretation 
during our discussion of the two case studies. First, in the next section, we will 
learn how to create a reusable partition variable.
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Creating a Consistent Partition in SPSS Statistics
In SPSS Statistics, we do not have a dedicated process like the Partition 
Node in SPSS Modeler. Instead, the necessary features are distributed in 
a couple of different places. Importantly, all of the necessary features are 
accounted for:

 ■ The need for consistency

 ■ The ability to create a partition variable

 ■ The assignment of the partition variable to all of the models

We explain this in this chapter only, but it applies to the Decision Tree and 
KNN chapters as well (Chapters 14 and 15). The easiest way to create a variable 
divided into two randomly chosen partitions is the following syntax command. 
The function is also available through the menus—all you need is the portion to 
the right of the equals sign. The choice of 0.5 as a parameter will create roughly 
50% 1s and 50% 0s, assigned at random, and the new variable will appear in 
the data window:

Compute Train Test rv bernoulli 0 5_ . ( . )=

Each time you run the command, you will get different assignments, so if you 
are sharing data you will want to be consistent with your colleagues. To achieve 
this either save the dataset and share the variable, or share a “seed” variable 
with the random number generator. The Train_Test variable is available in 
the dataset ANN_Bank_Results.sav. SPSS Help can provide more information 
on assigning and sharing a seed. We will mention this phenomenon again 
later, but for proper emphasis it should be mentioned now that neural nets 
will produce a different result each time, so the ANN_Bank_Results.sav dataset 
also has the neural net prediction values. If you were to follow the steps with 
the original data you could produce variability in two distinct ways: having 
a different partition or simply producing a different neural net. The steps are 
straightforward, but they will not produce identical results even when using 
identical data.

The final step in using the partition variable is assigning it when it comes 
time to run the model. The “Selection Variable” variable selection box is 
available in a number of menus including Linear Regression as shown in 
Figure 13-13.
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Figure 13-13: The Selection Variable option in Linear Regression

By declaring “1” in the Rule submenu (as shown in Figure 13-14), the 1s will 
be assigned to the Train partition, and the 0s to the Test partition. The impact of 
this setting on the output will be discussed in the example in the next section.

Figure 13-14: Set Rule submenu

Comparing Regression to Neural Net with the 
Bank Salary Case Study

We are going to begin a series of models and modeling approaches in this 
section beginning with a regression with two main effects, but no interaction 
term. Beginning salary is the dependent variable, and Education and Sex are 
the independent variables, but Education has been transformed. It has been 
“centered”—that is, zero on the transformed variable represents average educa-
tion, not zero education. This transformation is not necessary yet, but will be  
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necessary when we explore interactions using regression, so it is being introduced 
now for consistency. This dataset is available on the book’s website.

The output (shown in its entirety in Figure 13-15) makes it clear that only the 
1s are being using to build the model. However, the 0s do have a role to play. 
That data is used to show that the regression generalizes well to other data. Note 
that the multiple R for the Train data (.664) is very close to the multiple R for the 
Test data (.695). Both independent variables are significant. The gender gap of 
$1804 is nontrivial in an era when total annual salary was thousands, not tens 
of thousands for most employees. Ed_cen reveals that each year of schooling 
adds about $532 to annual salary.

Figure 13-15: Complete Regression Output
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Now we will proceed with an ANN using the same predictors as shown in 
Figure 13-16. Education has not been transformed as this precaution is unneces-
sary with ANN. By default, the neural net module does its own partitioning, 
but we have used the same Train_Test variable for consistency as shown in 
Figure 13-17.

Figure 13-16: Multilayer Perceptron main menu

Figure 13-17: Partitions submenu
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Let’s examine the results. The network topology diagrams (Figure 13-18) 
are very visually compelling, but they ultimately don’t tell us much about 
the model, at least not in the same way as our regression output did. We do 
see that sex and edlevel behave a bit differently. Sex is shown as two inputs 
because it is a factor, but edlevel is only shown once because it is a covari-
ate. There are four nodes in the hidden layer. We did not choose this, nor 
influence it. The neural net algorithm determined that it was the optimal 
architecture, or topology, for the problem. Some weights are positive, and 
some are negative, but there is no explanation for which node in the hidden 
layer represents which aspect of the problem. We could request the actual 
weights, but it would not resolve these questions, and a positive weight in 
one run could reverse in the next. In short, it is not nearly as transparent as 
the regression output, but its advantages will become clear as we compare 
some variants with each method.

Figure 13-18: Network topology diagram

Calculating Mean Absolute Percent Error for Both Models
Regression provides us with a residual (named RES_1) when we ask for it. In 
the case of ANN_Res, we are calculating our own:

COMPUTE APE=(ABS(RES_1)/salbeg)*100.
COMPUTE ANN_Res=salbeg—MLP_PredictedValue.
COMPUTE ANN_APE=(ABS(ANN_Res)/salbeg)*100.
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Armed with these calculations, it is a simple matter to compare the two (Figure 
13-19). We find that the neural net results, ANN_APE, are much better than the 
regression results. Lower is better since these are errors. Recall that the .00 results 
represent our most important Test results as they reflect the ability of the models 
to perform on unseen data. Comparing the .00 results to the 1.00 results vertically 
shows good consistency at 13.1% and 13.8% for the ANN. The regression’s con-
sistency, 19.2% versus 23%, is not awful, but it is not good either. Looking only at 
the test results, the 13.1% is much better than the 19.2%. These reflect an accuracy 
of 86.9% and 80.8% (by subtracting the error from 100%). Why is the ANN so 
much better? It’s not magic, of course. It means that one is missing something that 
the other one has captured. How? They seemingly have the same ingredients.

Figure 13-19: Comparing performance

Regression requires the human analyst to manually create interaction terms, 
and the neural net does not. So it appears to be an apples-to-apples comparison, 
but the neural net has an advantage that the regression cannot overcome without 
help. We will now provide that help by adding an interaction term, and continue 
with more models and more comparisons (Figure 13-20).

Figure 13-20: Regression results with interaction terms
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We can see that the performance is considerably better. An interaction term 
has been formally created and added to the model. Ed_sex is simply the product 
of our two other independent variables—simple multiplication and nothing 
more. However, this is why we centered the variable earlier. If we hadn’t, the 
regression would have suffered from multicollinearity. The R2 has increased 
from 44.1% to almost 50%. Also, the interaction term, ed_sex, is clearly significant, 
giving a clue as to why the main effects-only version had trouble competing 
with the neural net.

We will name this result APE2. The updated Compare Means report 
(Figure 13-21) shows improvement in both stability (comparing 17.9% to 20.9%) 
and accuracy on the test partition (17.9% compared to last time, 19.2%). It still 
hasn’t caught up with the neural net:

COMPUTE APE2=(ABS(RES_2)/salbeg)*100.

Figure 13-21: Updated results with three models compared

We will now consider a more complete, but also more complex Regression 
approach (Figure 13-22).

Minority classification and a collection of variables representing job clas-
sification have been added. Most of the individual variables are significant. 
Interactions with these new variables could be considered, but the regression is 
already getting rather complex. Minority status is not significant, but it could be 
shown to be significant as a main effect if alone in a model (not shown). There is 
sometimes a temptation to keep some of the occupation variables, and remove 
the others. This is usually not recommended as they represent a single categori-
cal variable and have simply been transformed. Also, neural net doesn’t even 
present us with that choice as it doesn’t require any transformation, accepting 
the occupation variable as it is. A chapter-length treatment of this case study as 
a regression would provide the opportunity to explore several improvements 
to this model, but in shorter form here it is a worthy enough attempt for our 
purposes. It is not yet optimal, but more than merely a straw man challenger 
to the neural net. R2 is now 82%.
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Let’s give the neural net an opportunity to use the same inputs.
Again, the network diagram, shown in Figure 13-23, is very compelling visu-

ally, but doesn’t reveal much. It does show that only edlevel is being treated as 
a covariate. All of the factor variables have an input for each category.

Now we are in a position to compare all five versions. As shown in Figure 13-24, 
the latest regression Absolute Percent Error result is named APE3, and the latest 
ANN results is called ANN_APE2.

The regression is much better than any earlier regression. The neural net is 
better as well. In terms of accuracy, the neural net is only a half point better. 
Both are stable. Perhaps with more work on the regression that gap could be 
closed even more. So what might we conclude? The neural net is not magic, but 
to compete with it, the regression needed considerable help from the human 
analyst. The main effects only model, APE, did not offer much competition to 
ANN_APE. Only the regression models with interaction terms added produced 
results that were comparable to the neural net. One lesson learned is that with 
enough persistence, a skilled analyst should be able to build a pretty good 
regression model, but when the number of input variables balloons up into the 
hundreds, the techniques that were used here to improve the regression become 
unrealistic. While the “black box” nature of neural nets sometimes makes them 
an imperfect choice, the approach definitely has its merits.

Figure 13-22: Results for a more complex regression
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Figure 13-23: Topology diagram for the more complex neural net
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Classification with Neural Nets Demonstrated with the  
Titanic Dataset
We will briefly build a neural network for classification in this example so that 
we can compare to other classifications’ attempts in the next two chapters. In 
order to do that, we will create a partition variable again. The variable is already 
created in the Titanic_Results.sav dataset.

This time a 70% Train/30% Test partition will be used:
COMPUTE Train_Test=rv.bernoulli(0.7).

The Dependent variable is Survived, and there will be four predictors. Pclass 
(passenger class) and Sex are Factors and Age and Parch (which refers to num-
ber of parents and children aboard) are covariates. In theory, the neural net 
could handle the entire dataset, but neural nets tend to become overly complex 
and we won’t have the opportunity in this section to do a proper job of fea-
ture selection. One should be a bit cautious about giving neural net variables 
that have a very weak relationship to the Dependent as it will always use all 
variables. Weak predictors will be not be given large weights, but they will 
make the model more complex nonetheless. So to make it simple in this case,  
the variables chosen are variables known to have an ability to predict Survived 
(Figure 13-25).

Note that since the output variable is binary there are two nodes in the output 
layer as shown in Figure 13-26.

Figure 13-24: Comparing five models
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Figure 13-26: Neural net topology diagram

Figure 13-25: Variables selected for the neural net
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We have much more to say about the results in Chapter 15. The accuracy is 
OK, but not stellar (Figure 13-27). Although the accuracy degrades on the Testing 
partition, the amount that the accuracy has dropped is within acceptable limits, 
but just barely. It has dropped from 82.0% to 77%. A common rule of thumb is 
that a drop of greater than 5% would indicate that it is unstable. It does a better 
join with non-survivors (83.2%) than survivors (70.1%). This might tempt us to 
balance the data (as discussed in the previous chapter), but balancing in SPSS 
Statistics would be a bit time consuming and a bit of a challenge. (However, 
seemingly difficult steps like this can be much easier with a good extension 
command. We discuss this in Chapter 18.) This result is acceptable enough to 
represent neural net in the “competition” in Chapter 15. If neural net were to 
win, we might want to revisit the model and see if we couldn’t improve both 
stability and accuracy a bit. Nonetheless, we will give it one more try.

Figure 13-27: Classification accuracy results

We will now add more variables (Figure 13-28), but the additional variables 
will make the network diagram more complex (not shown). SibSp is a count of 
family members traveling with the passenger, siblings and spouse.

Figure 13-28: Adding additional variables
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We will also request some options under the Save tab (Figure 13-29). This will 
allow us to compare this second neural net to other models in Chapter 15.

Finally, we will take a peek at the accuracy and stability of the second  
neural net (Figure 13-30). It is slightly less accurate on the Testing sample, but 
it is more stable. The two accuracies are much closer. A rule of thumb that is 
often used is that a drop in accuracy of more than five points is a cause for 
concern. The first model seems unstable. Based on a quick glance, the second 
model seems the stronger model.

Figure 13-29: The Save submenu

Figure 13-30: Model accuracy for the second attempt
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In a real situation, these two models would be compared more closely, and 
more than two models would likely be considered. Just one example of some-
thing that we are not looking into carefully is the relative ability of the two 
models to find the 1s and the 0s. In most real world situations we care more 
about finding those at high risk than those at low risk. These models are better 
at finding 0s than 1s. That is often a consideration. Nonetheless, we have two 
more algorithms to discuss in Chapters 14 and 15 before we can revisit this 
issue, so we will conclude this section choosing the second model to represent 
neural net in the Chapter 15.
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Now that we’ve seen Artificial Neural Nets, we are going to move on to another 
technique. Decision trees are more accurately thought of as a class of techniques 
as they represent multiple algorithms. The chapter that lays the groundwork 
for what we will see in this chapter, and all of Part III, is Chapter 11. If you are 
new to data mining, in general, you may want to start there. IBM SPSS Decision 
Trees offers four “Growing Methods”: CHAID, Exhaustive CHAID, CRT, and 
QUEST. The C5.0 Tree extension command offers a fifth possible option. Extension 
 commands will be discussed in Chapter 18. We will demonstrate just CHAID 
and CRT, but running more than one iteration of each. CHAID and CRT provide 
a number of contrasts to each other so those two will give a good understanding 
of the decision tree approach. By altering the settings of both CHAID and CRT, 
it will allow the differences to become even more clear. A deeper understand-
ing of two will prove a more satisfying introduction than a brief introduction 
of all five. (Note that Exhaustive CHAID, as the name implies, is quite similar 
to CHAID.) Finally, at the close of the chapter we will demonstrate the Scoring 
Wizard.

Building a Tree with the CHAID Algorithm

We’ll use the Titanic_Results.sav dataset (available in this chapter’s down-
loads), and the same partition variable, Train_Test, that was created near the 
end of Chapter 13. As shown in Figure 14-1, Pclass, Age, Sex, and Parch (as scale) 

C h a p t e r 

14
powerful and Intuitive:  

IBM SpSS Decision trees
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will be chosen as Independent Variables. Train/Test validation using a partition 
variable is not the only method, however, and alternatives are covered in the 
“Alternative Validation Options” section near the end of this chapter.

N O t e  We use this same partition variable throughout Part III of this book to allow 
us to compare the results of Chapters 13, 14, and 15. A side-by-side comparison of 
three techniques, from three chapters, is shown in the final section of Chapter 15.

Notice that the button for the Validation submenu is selected in  
Figure 14-1. We move to that submenu next. Note the symbols next to the 
variables in the figure indicating level of measurement. Different levels of 
measurement declarations in the Variable View could result in a different 
tree, as the algorithm will treat nominal, ordinal, and continuous  independent 
variables differently.

Figure 14-1:  Decision tree main menu

Restricting the variables like this is temporary while you get used to this 
new technique. Once we review the basics, we will be using all of the available 
variables. Tree algorithms are generally quite good at performing feature selec-
tion as part of model building.

As mentioned, we will also perform a couple of iterations to show what it 
is like to repeat the model a number of times. In statistics, confidence in one’s 
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result comes from carefully choosing a single approach that is recommended 
by theory. When using these predictive modeling techniques rigor comes from 
systematically attempting all plausible options, carefully documenting what 
you have tried, and validating all attempts against a hold-out sample (or similar 
alternative approaches like N-fold validation). The choice of the final model is 
justified empirically, not on theoretical grounds.

The partition variable is declared in the Validation submenu shown in 
Figure 14-2. Using an external variable is not the default, but the necessary 
choice is easily indicated. Select “Use variable” and indicate that we will “Split 
Sample By” Train_Test.

Figure 14-2:  Validation submenu

Otherwise, we will let the model run on defaults. The result in the output 
window shows us the Training Sample tree, shown in Figure 14-3, as well as 
the Test Sample tree, shown in Figure 14-4. The shape of the two trees will be 
the same since the shape was built using the Training Sample only. However, 
the tree can be thought of as a set of rules. For instance, this rule:

If Female and First/Second class then Survive

can be applied to any other data. So the Test Sample tree has the identical shape 
to correspond to the same rules, but the values are drawn from the Test dataset 
so the exact values will be somewhat different. However, since the Train and 
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Test datasets were chosen at random, they are structurally the same—they have 
the same variables and the same possible categories. Any future dataset for 
which you used the tree model to make predictions would also have the same 
variables and categories.

Figure 14-3:  Training Sample tree

For example, let’s consider the rule involving female passengers in First 
or Second class, the survival rate in the Training Sample is 95.5%, but a tad 
lower at 93.2% in the Test Sample. (The relevant information is in Node 3 in 
both cases.)

While we are at it, let’s review some more details of the tree using the Training 
Sample. Remember that the Training Sample tree is the one shown in Figure 14-3. 
We observe the following:

 ■ The “Root Node” (Node 0) reveals that we have a total sample size of 608, 
of which 38.7% survived.

 ■ The most important variables are Gender and Pclass, in that order.
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 ■ There are four “leaf nodes” (Nodes 3, 4, 5, and 6). Their sample sizes 
add up to 608, and they represent a mutually exclusive and exhaustive 
segmentation of the sample.

 ■ The lowest survival rate is found in Node 6 (15.9%) and the highest (95.5%) 
in Node 3.

Figure 14-4:  Test Sample tree

Finally, if we observe the survival rates for the same nodes, 6 and 3, but this 
time in the Test Sample tree, Figure 14-4, we find that while they are not identi-
cal, they show a similar pattern.

Next we will consider our overall accuracy. Figure 14-5 gives us a report of 
the performance of the tree as a whole. There are four figures in the table that 
we will focus on:

 ■ The Training Risk Estimate: .220

 ■ The Test Risk Estimate: .198

 ■ The Overall Percentage Correct for the Training Sample: 78.0%

 ■ The Overall Percentage Correct for the Test Sample: 80.2%
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Figure 14-5:  Overall accuracy results

The “Risk” is simply a measure of inaccuracy. Why report for the training 
sample .22 wrong instead of .78 correct? This is because, by reporting that along 
with a standard error, you can build a confidence interval around it. When 
reporting to others, the more salient facts will be the stability in the form of 
comparing the training accuracy to test accuracy (here 78.0% and 80.2%), and 
the test accuracy. The accuracy for the test sample is especially important since 
it is based on “unseen” data, but the most conservative approach is reporting the 
lower accuracy of the two. This result would be considered stable, but a closer 
level of accuracy between the two would have been desirable. In other words, 
the test accuracy is OK, but it would be nice to do better. However, the fact that 
the test accuracy is even better than the training accuracy certainly makes the 
model appear stable. If the test accuracy were much worse than the training  
accuracy we would be concerned about stability.

It is noteworthy that the tree didn’t grow all that much. We only have four 
leaf nodes. We will make some changes to our settings and give this another 
shot. First, however, let’s review what CHAID is doing behind the scenes to 
produce the tree.

Review of the CHAID Algorithm

Note that Sex was the first split variable. It was chosen over Pclass. Let’s refer 
to the Crosstab results, which have been produced using the Crosstab menus, 
shown in Figures 14-6 and 14-7, to explore why. Although both Sex and Pclass 
have Asymptotic Significance results (p values) that are very small, and well 
below .05, the result for Sex is smaller. That is why Sex is the top branch of the tree.
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Figure 14-6:  Crosstab results for Sex variable

N O t e  The cell format properties of the Chi-Square test has been adjusted so that 
the scientific notation can reveal which of the two extremely small values is smaller, 
and shows that one has a larger exponent of 59 for Sex.

Figure 14-7:  Crosstab results for Pclass variable
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We’ve just seen that in CHAID the top branch is awarded to the lowest p value, 
but in actuality, our Crosstab demonstration is concealing a step. First, we have 
to determine if our ordinal variable will collapse any categories. Reference to the 
tree diagrams will show that collapsing has, indeed, occurred. However, the left 
branch and right branch differ. Why is this occurring? To answer, we need a more 
descriptive Crosstab result. As shown in Figure 14-8, we need to split on gender to 
show that the Pclass crosstab, when examining only females, is different when we 
examine only males. We noticed that the survival rate for First class and Second 
class females is actually very similar—96.8% and 92.1%—so the CHAID algorithm 
first collapses them and uses the two-category version of Pclass for a new Chi-Sq p 
value (not shown). For males, Second class and Third class are very similar (15.7% 
and 13.5%) so the CHAID algorithm collapses those two categories. Scale variables 
pose an interesting problem because Chi-Sq is not designed to investigate scale 
variables. CHAID buckets scale variables into deciles (a default setting which can 
be changed), and then treats them as ordinal variables. While the results work 
pretty well, recognize that the boundaries between the deciles are essentially 
arbitrary. These differences in treatment serve as an important reminder that the 
independent variables must have their levels of measurement declared properly in 
the very first step (Figure 14-1). We will see later that CRT finds boundaries with 
a more granular level of precision using a very different approach.

Figure 14-8:  Crosstab showing all three variables

the trOuBle wIth p ValueS

We are taught in Statistics 101 that lower p values do not mean greater “importance,” 
but we also recognize that many investigators can’t help themselves in the prose 
that they write about their findings. While a lower p value does provide stronger 
evidence for rejecting the null, we are coached to use other tests to get at issues like 
the strength of a relationship. Or we are cautioned that the p value simply reflects 
a threshold that is met or not. Yet, we award a triple asterisk to findings at 99.9% 
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Adjusting the CHAID Settings
In order to let the tree grow more aggressively, we will allow for a depth of 5 
and smaller Parent/Child sizes, as shown in Figure 14-9. One could also describe 
the result as being more flexible, or even more “liberal” as the word is used in 
statistics. In short, the tree will become a larger tree with more branches and 
leaf nodes, as shown in Figure 14-10. We will also allow all of the available inde-
pendent variables to be used (not shown). There is nothing magic about these 
adjustments. Given our sample size the default settings of 100 and 50 are a bit 
high. Is a maximum tree depth of 5 too aggressive? It is more aggressive than 
3, but we are simply responding to the fact that we got a fairly parsimonious 
tree on the first attempt, so we are attempting to get a more “bush like” tree 
with more branches. If the more aggressive settings produce an unstable tree, 
we have a failed experiment. If it is more accurate (bush-like trees are always 
more accurate on the training sample), but also stable (accurate on both training 
and test samples), then we have a successful experiment.

Figure 14-9:  Decision tree criteria

confidence, and only one asterisk for 95% confidence in some academic papers. The 
podiums of different heights in the Olympics come to mind. Although this is some-
what out of fashion—so much so that it has become very controversial—its influence 
is still felt. It is actually the very basis of variable ranking in CHAID. While CHAID has 
stood the test of time, and is still popular, the fact that this p value ranking is done 
after so many decimal places should give us pause. Certainly, it should not give us any 
special comfort that CHAID uses “significance testing” while CRT does not. Some new 
to predictive analytics actually refuse to use modeling techniques that don’t utilize p 
values, at first. Their presence should not give the technique any particular status as 
they are not being used in the traditional way. The value of our models will be demon-
strated in their ability to generalize to new data in the form of the Test dataset, not in 
the incorporation of a few traditional ingredients in their algorithms.
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Figure 14-10:  Training tree after changing settings

The tree is much expanded. The top half of the tree (Train Sample) is the 
same. Three new variables have joined Sex and Pclass: Embarked Code, Age, 
and Fare. Embarked Code represents where the passenger boarded the Titanic. 
It made three stops in Europe before entering the North Atlantic. The new 
variables create a more granular tree, and we now have a segment with a lower 
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survival rate than we saw in our Training Sample tree before. Node 12 has a 
survival rate of 9.5%. Note that Age has been split (or rather its deciles have 
been collapsed down to two categories). Those missing Age have a survival rate 
somewhat like the passengers over 14 years of age so CHAID has combined 
them with this group. We will see that CRT has a very different approach. Fare 
has also been collapsed down to two groups even though it too would have 
started with deciles.

Let’s examine the accuracy and stability of this example using the results 
shown in Figure 14-11. It won’t always be the case, but we achieved consider-
ably better results on the second try. Sometimes you might need a compromise 
between the conservative and aggressive settings. You may also choose to 
change the settings shown in the CHAID tab (not shown). These settings 
would include changing from 95% confidence levels to something either more 
or less aggressive like 90% or 99%. Lowering to 90% would allow for an even 
larger tree. Raising to 99% would make it more conservative, resulting in 
a potentially smaller tree. A half dozen or even a dozen different versions 
of settings for just the CHAID algorithm would not be unusual. Because it 
is more accurate, and quite stable (even better performance on the Test is 
always nice) this model is now in first place, and we will try another algo-
rithm. It is worth noting that it is more common to have a slight degrading 
of performance on the test. Having better performance on the test is less 
common. However, the more important fact is that the numbers are fairly 
similar, indicating stability.

Figure 14-11:  Accuracy results for the larger tree
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CRT for Classification

Set the configuration for this example in the dialog shown in Figure 14-12. We 
will change the Growing Method to CRT, but not make any other changes. 
All of the possible inputs will be used (which was the case for our second 
CHAID attempt). The variables as shown are Pclass, Sex, Parch, Age, SibSp, 
Fare, and Embarked_Code. As we noted with CHAID, remember that the 
Level of Measurement declaration has an impact on the outcome. Validation 
remains the same—use the Train_Test variable. For Criteria use the set-
tings we just chose for the second CHAID attempt—depth of 5, 30 for parent 
minimum, and 15 for child minimum. The result, shown in Figure 14-13 is a 
much larger tree.

Figure 14-12:  Decision tree main menu

CRT has produced a considerably more complex tree. Its performance is about 
the same as the second CHAID attempt. It is also fairly stable (see Figure 14-14). 
Note that it uses Age as the second most important variable for males. Also, 
Fare is used multiple times with subtle and tiny little differences between the 
cut-off points.
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Figure 14-13:  Intial CRT tree

Figure 14-14:  Accuracy results for CRT tree
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Understanding Why the CRT Algorithm Produces  
a Different Tree
The CRT algorithm was first described in 1984 by Leo Breiman, Jerome Friedman, 
Charles J. Stone, and R.A. Olshen in their book Classification and Regression Trees 
(Chapman and Hall/CRC). However, a key component of the approach is to 
use the Gini Coefficient, which is 75 years older. Sociologist Corrado Gini’s 
Gini Coefficient is used to describe income disparity in countries. A Gini 
Coefficient of zero would describe a country where everyone has the same 
income, and a Gini coefficient of 1 means that one person has all the income. 
The CRT algorithm repurposes this in a clever way. Ultimately the goal of a 
decision tree is to identify leaf nodes where there is no “disparity” in the target 
variable. Alternate vocabulary serves us better in the context of a decision tree. 
In a “pure” leaf node, all values of the target variable would be the same. So, 
when using CRT or adjusting settings we generally use the words “purity” 
and “impurity.”

So there are two key observations to make about the fact that CRT selected 
Sex as the first variable. First, CRT always produces a binary split. CHAID, 
as we have seen, does not always do so. So two trees, one CHAID and one 
CRT, will tend to look quite different, but may be similar, or even identical 
in their predictions. Second, since reduction in impurity is a goal, Sex must 
have produced a substantive reduction in impurity. The overall survival rate 
is about 40%, which is not terribly far away from the percentage that would 
maximize impurity. A binary target with 50% in each category would achieve 
that. In contrast, after splitting on Sex, the survival rate for females climbs, 
moving away from 50% within Node 1, and the opposite occurs for Males. 
CHAID’s search for the lowest p value tends to produce the same effect, 
but with CRT we move rather directly to the goal of pure leaf nodes. If you 
reflect carefully on this approach, you should grow concerned. A leaf node 
with only one case will always be pure. This is disconcerting, but the CRT 
algorithm addresses this by weighing “balance” equally with the reduc-
tion in impurity. While Nodes 1 and 2 are not equal in size, their sizes of  
212 and 396 are not terribly out of balance. The Sex variable was the strongest 
option when weighing both purity and balance, and therefore CRT split on 
Sex first.

Scale variables are handled elegantly in CRT. It need not transform them as 
an initial step. As we have seen, CHAID converts scale variables into deciles and 
then treats them as ordinal variables in later steps. CRT’s algorithm considers 
every possible cut point. Naturally, the first and last cut points would produce 
a very unbalanced split, but it calculates them all. In the instance of this dataset 
we see that young boys have a much higher survival rate than male teens and 
adults. Of all the possible cut points for age, 13 years old was the optimal for 
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purity and balance. And of all the possible variables with which to subdivide 
Males, Age was the best.

Missing Data
Surrogates are a fascinating solution to the problem of missing data. In contrast 
to CHAID, CRT does not treat missing data as a separate category. A substan-
tial number of passengers are missing a value for age in the Titanic data, for 
instance. CHAID’s behavior in this regard makes its treatment of missing data 
rather transparent because you can easily see where the cases with a missing 
value are in the tree. Instead, when CRT encounters a missing value, it attempts 
to determine whether that case should join the left branch or the right branch. 
What is brilliant about the solution of using surrogates is that it does not require 
a very precise estimate of age. Imputation, a well-known technique, would 
involve trying to estimate the passenger’s age, producing an estimate such 
as 5 years old, or 48 years old. With surrogates, we simply need to identify if 
the passenger is more likely to be younger or older than 13 since that was the 
threshold that we just discussed. CRT identifies five variables from among the 
variables specified for the tree that allow us to make this determination. If they 
are traveling with a spouse or their own children, for instance, they are certainly 
unlikely to be under 13 years old. Each node has up to five surrogates, and obvi-
ously they will be different depending on what is missing. The five variables 
will be those five that the complete data reveals to be the most correlated with 
the missing information.

Changing the CRT Settings
We can change a number of settings with CRT to produce a larger or smaller 
tree. We could change the maximum depth or the parent/child settings. We 
could also change the “minimum change in impurity” found on the CRT tab, 
which has a line of coaching on the effect of increasing or decreasing this 
setting: “Large values tend to produce larger trees.” Try adding or dropping 
a zero (or two) at first so that you have more or fewer decimal places. That 
should serve as a guideline for how much of a change will have a noticeable 
effect. We will only be attempting one additional CRT tree in this chapter, and 
will choose Pruning as the criterion to change. This is a terribly important 
setting, is how CRT is designed to work, and frankly should be on by default. 
It can be interesting to examine an unpruned tree as an exploratory step, but 
generally this setting should be turned on. The Pruning submenu is shown 
in Figure 14-15.
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Figure 14-15:  Pruning criteria submenu

The resulting tree is very different, and much smaller (the Training Sample 
tree is shown in Figure 14-16).

Figure 14-16:  Second CRT tree
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The original developers of the CRT algorithm approach (Breiman et al.) experi-
mented with a number of variations on the algorithm and discovered that 
the best results were found when they grew a tree aggressively and pruned 
it back. This was better, for instance, than constraining the growth of the tree 
without pruning. What “cost complexity” pruning attempts to do is remove 
those branches that have more complexity than they are “worth.” Branches 
that increase accuracy enough are worth it, but branches that fail to increase 
accuracy enough are not. It is this ratio between complexity and the increase 
in accuracy that is being weighed.

The stability is quite good—the Overall Percentage accuracy is similar  
in both the Training and Test samples. The accuracy is also good, at  
83.4% for the Test data. It actually appears to be the best so far, as shown 
in Figure 14-17.

Figure 14-17:  Second CRT tree accuracy results

Comparing the Results of All Four Models
Let’s compare the results of the four models. We can apply many criteria in 
comparing and contrasting these results. Table 14-1 shows just one possible 
way to examine the results in a table. In data mining consulting work, it is not 
unusual to consider more than 100 models using many algorithms and dozens 
of settings.
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table 14-1:  Comparing our four tree attempts

FIrSt ChaID SeCOND ChaID FIrSt Crt SeCOND Crt

Number of 
Variables Used in 
Tree

Two Five Five Three

Number of Leaf 
Nodes

Four Seven Ten Four

Highest Survival 
Rate (Train)

95.5% 98.6% 95.5%

Lowest Survival 
Rate (Train)

15.9% 0% 5.9%

Settings Default Increased depth, 
and reduced 
Parent/Child

Reduced 
Parent/
Child

Reduced 
Parent/Child 
and Pruning

Train Accuracy 78.0% 80.6% 80.9% 79.6%

Test Accuracy 80.2% 82.3% 82.0% 83.4%

KhaBaza’S Value law

The most accurate model should not be assumed to be the “winner.” In Tom Khabaza’s 
9 Laws of Data Mining, the 8th Law of Data Mining is The Value Law: “The value of data 
mining results is not determined by the accuracy or stability of predictive models.” 
This is not to say that accuracy and stability play no role, but rather to say that they are 
not the whole story. As Khabaza puts it, “A high degree of accuracy does not enhance 
the value of these models when they have a poor fit to the business problem.” 

In a real world modeling exercise, the input variables might have different costs to 
acquire or to measure, creating a trade-off between accuracy and cost. One’s IT col-
leagues might explain that fare is not recorded until the tickets are paid for, and if a 
travel agent books the trip that information might be delayed. 

We might need to use only models that use variables that were reliably available at 
the time of departure because at that time we might still have an opportunity to do 
something about risk. Understanding the risk of an individual passenger might cause 
us to move the cabin of someone who was at high risk before the ship leaves port. The 
final selection would be made by considering many factors, all focused on how well 
the model solves the business problem. The 9 Laws are easily found on the Internet, 
and are worth seeking out.

Given the results here, we would probably be inclined to go with the Second 
CRT. We’ve been lucky in that all four are stable. None have a dramatic gap 
drop in accuracy moving from Train to Test. In fact, all did better in the Test, 
so all are viable in that sense. The last one has somewhat better Test accuracy, 
and once we establish stability we don’t care that much about Train accuracy. 
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Finally, the fourth model is even somewhat parsimonious. It is not an overly 
complex tree. With that in mind, we will save the predicted values as a new 
variable in the dataset to be used in the next chapter. We will close the chapter 
with a discussion of the Scoring Wizard, using our best model for the example. 
But first, we will discuss alternative validation options.

Alternative Validation Options
Let’s consider an alternative setting for our validation. We have been using 
the same variable, Train_Test, in order to compare multiple algorithms. It is 
possible, and quite easy, to have SPSS generate partition variables as shown in 
Figure 14-18. Note that we’ve chosen 70% for the Training Sample because the 
sample size is a bit small in the Titanic dataset. When faced with that challenge 
it is usually recommended to increase the Training Sample somewhat, just as 
we did with the Train_Test variable.

Figure 14-18:  Using a random assignment

The results when rerunning with the same settings as the second CRT tree 
indicate a lower value for Test accuracy, 80.8%, than for Training accuracy, 
81.1%. The steps in creating the tree are not reshown, but the Risk results are 
in Figure 14-19.
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Figure 14-19:  Results using the random assignment

This pattern, of higher Train accuracy, is more typical than higher Test  accuracy. 
As we have seen several times in this chapter, it is not impossible to have higher 
Test accuracy, but the pattern in Figure 14-19 is more common.

You may have noticed another option in Figure 14-18. Although we will not 
repeat our analysis using this option, cross-validation works in the following 
way. Crossvalidation divides the sample into a number of subsamples, or “folds.” 
The default is 10, but you can specify up to 25 sample folds. Each time a differ-
ent fold is withheld. For example, if you choose the default of 10, the first tree 
would use 90% of the data to build the tree, and 10% (the first 10%) as the test 
data. Crossvalidation reveals a single, final tree model in the output. The risk 
in the output is the average risk of all the trees.

The Scoring Wizard

In order to show the Scoring Wizard, we are going to save our model as an XML 
file as shown in Figure 14-20. While we are going to demonstrate only one scoring 
method, there are actually numerous options. For example, the TREES procedure 
(the SPSS Syntax command for producing decision trees) offers a number of other 
formats for saving the rules that may be useful in other scoring contexts. The 
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RULES subcommand of the TREE procedure allows you to generate SQL state-
ments. If you are new to SPSS Syntax, you will want to read the chapters in Part 
IV of this book, starting with the introduction to SPSS Syntax in Chapter 16. It is 
not uncommon to find features—like the SQL rules option—that are available 
in SPSS Syntax, but are not found in the menus.

Figure 14-20:  Scoring Wizard first menu

To be consistent with the figures, be certain to use the settings of the second 
CRT model that we’ve decided was our best option.

Now load a different data file. We will use the Titanic_Test.sav file. This 
file contains the same variables except that it is lacking the Survived vari-
able. A willing suspension of disbelief is required here. We all know that 
the Titanic sank a hundred years ago, so naturally we know the outcome of 
all of the passengers, but we are going to pretend to not know the outcome 
for the Test data. We are going to use our Train dataset’s model, but use it 
to score the Test dataset. This is a bit different in SPSS Modeler, as we have 
seen with its unique partition node, and so on, but SPSS Statistics is quite 
capable of doing a hold-out sample validation as well, and it does it quite 
elegantly as we are about to rehearse. Please ensure that Titanic_Test.sav 
is not only open, but is the active file.

The Scoring Wizard is found in the Utilities menu. It will list any .xml files 
that can be used. Note that it may also display .zip files that you might have on 
your machine. We are only interested in the file that we just made: TitanicModel 
.xml. The opening screen is shown in Figure 14-21.
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Figure 14-21:  Scoring Wizard second menu

SPSS wants to verify that the variables referred to in the model are also found 
in the Test dataset, shown in Figure 14-22. They should indeed align, which 
allows us to continue.

Figure 14-22:  Scoring Wizard third menu
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Finally, we have to decide which new scored variables are to be created by 
the Scoring Wizard. These differ by model type, and are affected by what we 
requested when we built the .xml file. We will request the latter three choices: 
Node Number, Predicted Value, and Confidence as shown in Figure 14-23.

Figure 14-23:  Scoring Wizard fourth menu

The predictions for the Test passengers should now be visible in the data 
window, Figure 14-24. (The Name variable has been moved to make it easy to 
view the predictions.)

Figure 14-24:  Predictive scores for some passengers in the Test dataset
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We covered the Scoring Wizard in some detail, showing each screen, 
but as you can see it is really quite straightforward. It is one of many SPSS 
Statistics features that fewer people know about than those that can benefit 
from it. For instance, many SPSS Statistics users use linear regression, but 
few also know that they can score new records with their regression model 
using this same menu.
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C h a p t e r 

15
Find patterns and  

Make predictions with  
K Nearest Neighbors

K Nearest Neighbors (KNN) provides an interesting contrast to the other two 
algorithms that we have seen in this section of the book, neural networks and 
decision trees. It also offers the sharpest contrast with traditional techniques. 
The basic concept is simple: When a new case is presented to the algorithm, it 
simply finds a small number of training cases that are most like the new case, 
and classifies the new case on the assumption that it will fall into the same 
category as the majority of the closest cases. If you are trying to predict the sal-
ary of an employee, and k = 5, the predicted salary will be the average of the 5 
employees in the training dataset most like the new case. So, although we will 
start by predicting survival with the Titanic dataset, you could also use this 
technique for predicting salary with the Bank dataset used in the neural net 
chapter (13). After we’ve discussed finding “neighbors” and using KNN as a 
classifier, we will end the chapter with a comparison of the performance of the 
three classifiers we’ve seen in Part III.

There is no generalization in the form of a model made from the training set. 
There are no coefficients. There is no significance testing, and no goodness of fit 
like R2. The phrase that computer scientists specializing in machine learning 
often use to describe this is that KNN is a “lazy learner”—that is, it does not 
create a model in the traditional sense. The “model” is really just all of the loca-
tions of the training data, and for that reason it is often described as a “memory 
based” or “instance based” technique. Related to these features, it can be rather 
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slow because it is “memorizing” the entire training dataset. Data miners, as we 
have seen, do not pass judgment on an algorithm because they are impressed 
(or not) with a technique’s sophistication. There is almost no theory here. There 
are no distributional assumptions. The concept is simple, so the effectiveness of 
the algorithm will have to be proven with its practical use. Does it predict well 
on new data? Since KNN is the last of our three algorithms using the Titanic 
dataset we will perform a side by side comparison of the ability of each to predict 
values in new data using the same train and test partition. As mentioned at the 
end of the previous paragraph, we’ll also briefly explore what it could be like to 
use them in conjunction with each other, a so-called ensemble.

Using KNN to Find “Neighbors”

KNN need not be used only to classify (which is discussed in the next section). 
It is sometimes used solely to find distances—usually with the goal of finding 
which data points are closest. We could simply run the technique without a target 
variable to find passengers that are similar to other passengers on the input vari-
ables. This aspect of the technique could also apply in a case like the eHarmony 
dating website service. In the case of a dating website like eHarmony, it is not 
predicting in the traditional sense. It is simply identifying those records (men, for 
instance) that are proximate (literally in terms of Euclidean distance or some other 
distance measure) from other records (women whose minimal distance implies 
similar answers on the survey questions). The theory behind the approach in the 
case of a dating website is that a “connection” with someone is made more likely 
through “compatibility” as measured by similar answers on a large set of ques-
tions. The notion of a dating website also helps us imagine what deployment of 
a model like this would be like. The algorithm would “memorize” the locations 
of the men, and then could be deployed on a single woman. The reverse could 
be done if we were trying to find the closest women for a single man.

In the IBM SPSS Modeler Cookbook (McCormick et al., Packt Publishing, 2013)—
Modeler also supports this technique—there is another example. This one involves 
matching sales personnel in a fictional call center to inbound calling customers 
that have similar profiles: the sales reps in terms of sales they had handled and 
the customers in terms of purchases that they had made. Table 15-1 shows ratios of  
rep sales and customer spend, and reveals an identical pattern across the ratios 
for a certain Customer/Rep pair. The pairs that are closest have similar dollar 
ratios in these categories. In the Figure, both the Customer and the Rep have zero 
in all categories except for Video Games. Not all pairs would be identical, but 
if they are “nearest neighbors” the pattern on the ratios would be very similar.
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table 15-1:  “Neighboring” Customer and Sales Rep Pair

CustoMer_
ID

eNtertaIN-
MeNt

GaMe 
CoNsoles

harD-
ware MovIes

soFt-
ware

streaM-
ING

vIDeo 
GaMes

100004832 0.000 0.000 0.000 0.000 0.000 0.000 1.000

repID
eNtertaIN-
MeNt

GaMe 
CoNsoles

harD-
ware MovIes

soFt-
ware

streaM-
ING

vIDeo 
GaMes

32 0.000 0.000 0.000 0.000 0.000 0.000 1.000

Rep #32 is the closest “neighbor” for this customer, so one can imagine an 
automated system that routes the best matching rep to each inbound customer. 
As long as it didn’t create a delay in the queue for any customers, routing to a 
better match might be a better system than simply routing to first available. If 
they were being paired permanently—perhaps an investor and a broker—then 
it might be especially useful. Their similarity should prove valuable because it 
implies similar interests and experiences.

The Titanic Dataset and KNN Used as a Classifier

KNN as used for classification is a little different than when used to find the 
proximity of data points. First we find the nearest “neighbors,” then we determine 
which category on the target variable was the most common for the neighbors. 
That category becomes our predicted category for any scored record. Of course, 
one of the interesting things about using the Titanic dataset with this technique 
is that we will see the names of the “focal point” and the “neighbors” in the 
output. Sometimes the name itself will reveal something intriguing about the 
person, like a child named “Master” Eugene Rice.

For this example we will be using the Titanic_Results.sav file, which is avail-
able on the book’s website. This file has variables that represent the predictions 
of a tree model and a neural net model, both of which were created using steps 
explained in Chapters 13 and 14.

We will begin with only minor adjustments to the settings, and with four 
predictors. Specifically, as shown, we will predict Survived with Pclass, Age, 
Sex, and Parch (Figure 15-1). We could add SibSp and Embarked as well, but 
we know from Chapters 13 and 14 (using trees and neural nets) that these are 
the most important four. The KNN output will be a little easier to digest with 
fewer inputs. (Note that the variable order makes a difference because part of 
the output we will examine will only show the first three.) Include Name as 
the Case Label, as shown.
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Figure 15-1:  Nearest Neighbor Analysis main menu

The final predictor, Parch, is the number of parents and children travel-
ing with the passenger. Including this predictor will help you determine, for 
example, whether having a dependent to worry about makes movement on the 
ship more difficult. Or, alternatively, whether having dependents increases the 
likelihood that an adult male might survive because he might stay with the rest 
of his family. Note that Parch has been declared as a scale variable. When a scale 
variable has a small number of integer-level categories, SPSS will often default 
to treating it as a nominal. We will use Name as a Case Label. This will add the 
passenger’s name to the output. In order to compare neural net, decision trees, 
and KNN easily, we will ensure that KNN is using the same Partition Variable 
(Figure 15-2) that we created for the other algorithms. (Make sure that you are 
using the file Titanic_Results.sav, which has the results of a tree model and 
a neural net from Chapters 13 and 14.)

To see the results you must double-click the Model Viewer in the output 
window. In our results, we can click a particular “Focal Point.” The circle 
will turn red (Figure 15-3). When you do so a second diagram will appear 
on the right. From the image alone, it might be difficult to pinpoint the indi-
vidual who is the “focal record.” As further examination will reveal, he is 
Mr. Johan Svensson.
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Figure 15-2:  Partitions submenu

Figure 15-3:  Mr. Svensson as focal record
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There are a few choices for which diagram to show on the right. One choice 
is the “Neighbors and Distances” chart displayed in Figure 15-4. It shows up 
to three full names, in order, from closest to furthest, since we went with the 
default of k=3. As you can see, Mr. Svensson’s nearest “neighbors” are Mr. Patrick 
Connors, Mr. Frank Duane, and Mr. Johan Hansen Nysveen.

Figure 15-4:  Mr. Svensson’s neighbors

There is also the Peers chart, shown in Figure 15-5, which takes a closer look 
at the closest passengers on the variables we’ve chosen. Mr. Svensson was a vic-
tory for the technique as shown in the “Peers Chart” since all of his neighbors 
shared the same fate, confirming, in this case, its effectiveness as a classifier. 
As we would anticipate, adult males often died in the accident, as did all three 
of Mr. Svensson’s nearest neighbors. All were male, 3rd class, and in their 60s 
or early 70s. Mr. Svensson was the oldest at 73. None had dependents on board. 
Note that when there are too many predictors to display, you can use the Select 
Predictors option to show fewer.

Figure 15-5:  Mr. Svensson’s Peers Chart
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One of the features of nearest neighbors that I’ve always found fascinating is 
the individual detail it provides. As you might imagine, it can be revealing in 
the case of something like insurance fraud. The nearest cases might be investi-
gated to see if they had the same modus operandi. In fact, wouldn’t it be fascinat-
ing if two fraud cases turned out to have the same culprit working under two 
different names? However, despite our efforts to consider every variable during 
a manual examination of a case file, this sort of discovery simply isn’t possible 
in practice. If Mr. Svensson had been a perpetrator of fraud as opposed to the 
victim of a famous accident, one might read the entire case files of Mr. Duane, 
Mr. Connors, and Mr. Nysveen. In practice, this might be prompted by a high 
fraud risk score for Mr. Svensson, thus warrenting extra attention. There might 
be some information that had never been made available in electronic form, or 
that simply wasn’t used in the model. You might notice something interesting 
in the unstructured data like the case notes or a police report. Knowing which 
individual cases to examine more closely would be enough of a hint that it 
would be worth reading those case files in detail. If a major discovery was 
made you might iterate back to the modeling phase and add some new input 
variables to the models.

Finally, we will take a quick look at the accuracy of the model when used as a 
classifier. The results, shown in Figure 15-6, reveal pretty good accuracy on our 
Holdout (Test) data. This is comparable to the results we were able to achieve 
with the decision tree and the neural net. We are doing a somewhat better job 
predicting those that died, at about 85% as opposed to those that survived. But 
the accuracy for the 1s in the training dataset and test dataset are not as stable 
as we would like. It would be nice to get better performance for our test dataset 
(labled “Holdout” in the figure), but a difference this large does make one doubt 
the stability of the model, and question what performance might look like on 
future data. While we won’t engage in extensive experiments in this chapter, 
we will explore ways to improve our model in the next section.

Figure 15-6:  Model accuracy
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The Trade-Offs between Bias and Variance

In trying to fine-tune our models, we obviously want accuracy, but we also want 
generality beyond the training dataset. If we make our model more complex, the 
accuracy on the training dataset will almost certainly improve, but the ability 
to generalize to other datasets, including the test dataset, might suffer. This is 
often described as a trade-off between bias and variance:

 ■ Bias is the measured difference between our predictions and the actual 
values. High bias is low accuracy, and is associated with underfitting.

 ■ Variance is the magnitude of the variability of our predictions. High variance 
is associated with overfitting and allowing noise to mix in with the signal.

We’ve discussed these kinds of issues before in the “Partitioning and Validating” 
section of Chapter 11, but KNN offers a direct way to examine this trade-off. 
Increasing k decreases variance and increases bias. Decreasing k increases vari-
ance and decreases bias—with the risk of overfitting. We can see it for ourselves 
with an experiment. In the Neighbors submenu we can request “Automatically 
select k” and provide a range. We’ve chosen a range between 1 and 15 as shown 
in Figure 15-7.

Figure 15-7:  Neighbors submenu
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The result shows us that the lowest error rate is a compromise between a low 
and high value for k (Figure 15-8). Error is on the y axis, so lower is better. And 
the “winner” seems to be k=6. However, the k=4 option is in second place and 
fairly close. It is not a bad idea to try both.

k Selection Error log

0.28

0.26

0.24

E
rr

or
 r

at
e

0.22

1 2 3 4 5 6 7 8
Number of Nearest Neighbors (k)

9 10 11 12 13 14 15

Figure 15-8:  Optimal value for k

Note that in the Partitions submenu we learn that “V-fold cross-validation is 
performed if you choose automatic k selection but do not choose feature selec-
tion.” Because the V-folds are chosen at random, the results will vary somewhat. 
With that in mind, we will explicitly request k=4 and k=6 to get our results. If 
you refer to the k=6 solution when k was automatically chosen your results will 
be similar, but not identical to the results in this book because the Train_Test 
partition will not be used.

First we will look at the k=6 option, shown in Figure 15-9. The results are 
not dissimilar to the run with k=3, but the comparison of train and test seems 
more stable, which is also true of the k=4 option, shown in Figure 15-10. The 
best hold-out accuracy, which is the more important, does seem to be k=6. Also, 
the k=6 option seems to be better for both predicting survivors as well as those 
who died. So we have determined our representative for the KNN approach 
for the next section. We will go with k=6.
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Figure 15-9:  Results for k=6

Figure 15-10:  Results for k=4

Comparing Our Models: Decision Trees, Neural  
Nets, and KNN

In this section, we will use the two model predictions that are already in our 
dataset from the work in Chapters 13 and 14, add the predictions from our KNN 
model, and then compare all three. In order to save the predictions, check that 
k=6, and that you are not doing a range of values for k. Then, in the Save sub-
menu select the following two options (Figure 15-11):

 ■ Predicted Value or category

 ■ Predicted probability (categorical target)
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Figure 15-11:  Output submenu

We will have to come up with our own process for comparing the models. There 
is no central location for generating an accuracy table—each technique does so 
individually in the output window. Of course, we saw this throughout Part III 
including the previous section of this chapter. Also, it would be an interesting 
project to come up with a way of doing this using the programmability features 
that are discussed in Chapter 18. For now, we will adopt a manual approach, 
but it won’t be difficult or time consuming. As a first step, we have to calculate 
a variable to help us display overall accuracy. If we attempted to use a simple 
crosstabulation, we would run into a problem (Figure 15-12). Note that I have 
“split” on Train_Test. This is demonstrated in the next example.

Figure 15-12:  Output submenu

We can see that with the Test group, the accuracy for the survived passen-
gers is 92.5%, and for those that died it is 66.7% accurate. However, we don’t 
see overall accuracy. We can use numerous options to add overall accuracy, but 
one of the easiest is to simply calculate a new variable. The following syntax 
will give us what we need:

COMPUTE Tree_Correct_YN = (Survived = PredictedValue).

COMPUTE NN_Correct_YN = (Survived = MLP_PredictedValu).

COMPUTE KNN_Correct_YN = (Survived = KNN_PredictedValue).
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Now that we have the variable we need, we will simply run a stripped 
down Descriptives table. However, we need to Split File on Train_Test first 
(Figure 15-13). The Split option is found near the bottom of the Data main 
pull-down menu. The impact of this, as we have just seen, is to give us two 
(or more) sets of tabular results in a single pivot table. (Split is useful for much 
more than just this. Its effects are not limited to pivot tables.)

Figure 15-13:  Output submenu

Now that Split File is in effect, we will run a Descriptive Statistics report using 
the three variables that we just created with syntax. The results are shown in 
Figure 15-14. The results are not as extensive as the Classification Table produced 
by KNN, or the accuracy results from the other algorithms, but it meets our 
bare minimum need. Because the Test performance is the more important of 
the two, and because all three appear to be stable, it seems that the neural net 
model currently looks like our strongest performer.

Figure 15-14:  Comparing the models with Descriptives

We don’t want to miss an opportunity to apply something that we learned 
in Chapter 2. Bootstrapping is quite appropriate here to build confidence inter-
vals around these accuracies—and it is easy to do. The results are shown in 
Figure 15-15. Given the sample size of the test data (only the test data is shown), 
it is not terribly surprising that the widths of the intervals are wider than the  
differences between the algorithms. The decision tree, in particular, has very 
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close to the same performance, so you should factor in the entirety of the busi-
ness problem when choosing which model you will deploy. Overall accuracy is 
just one of those considerations. The relative transparency of the decision tree 
may weigh more heavily in many cases.

Figure 15-15:  Descriptives with Bootstrapping

Building an Ensemble

Now we are ready to consider a fourth option. We will allow the three models 
to vote, thereby creating an “ensemble.” There are many ways of building an 
ensemble. It is simply multiple models working together to make the predic-
tion. Some ensemble methods are quite complex, and it can be thought of as a 
modeling approach in its own right. Our demonstration will be quite straight-
forward, however. We will simply use “two out of three wins” as our voting 
method. Recall that in section “Creating Ensembles” in Chapter 11, we saw the 
Ensemble Node in SPSS Modeler. Revisiting that section will give you just a 
few ideas of how we could calculate the vote differently. We could envision a 
number of ways to calculate this, but among the easiest is to calculate an aver-
age of the three predicted value variables. Because they are coded 0 or 1, an 
average of the three can only yield four results: 0, 1/3, 2/3, or 1. Any vote with 
a mean greater than .66 will indicate a 1, and all other values will be 0. The 
following three lines of syntax will give us the new information that we need. 
The first calculates the mean. The second creates Boolean variables indicating 
if the vote is for 1 or 0, and the third adds a fourth variable to our collection of 
“Correct_YN” variables:

COMPUTE Vote=Mean(PredictedValue,MLP_PredictedValue, 

KNN_PredictedValue).

 
COMPUTE Vote_PredictedValue = (Vote >= .66).

 
COMPUTE Vote_Correct_YN = Survived = Vote_PredictedValue.
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All we have to do is run another Descriptives report with all four variables. 
We will continue to request bootstrapping, but in Figure 15-16 I’ve requested 
90% confidence. There is certainly no rule that we must always use 95%, and 
with the lower sample size, 90% may be the better choice. In fact, there is no 
rule that 80% could not be considered in a context like this.

Figure 15-16:  All four models compared

We find that the ensemble does quite well. On the test data, its overall accu-
racy is just over 84% (only test data is shown). However, ensembles will tend to 
favor accuracy as they are more complex. (This is true for the reasons discussed 
in the previous section on bias and variance.) In this case, it does seem to test 
well, so there is no immediate concern that it is overfit, but this solution requires 
all three models and a final calculation on top of that. This does not rule it out, 
but that should be considered. Ensembles become a bit of a black box even if 
they are composed of relatively transparent models because the combination 
of models itself becomes complex. In this case, we have the neural net involved, 
which lends its own complexity. Ensembles should not be ruled out, though. 
In recent years virtually all data mining competitions, like those conducted on 
Kaggle.com and the KDD Cup, are won by teams employing ensembles. They 
are not a magic bullet, but they can be a very powerful technique.
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Par t 

IV
Syntax, Data Management, and 

Programmability

The general introduction mentioned that we wanted to encourage greater sophis-
tication with the “mechanics” of SPSS Statistics. We consider programming and 
data management to be among the most important examples of this in the book. 
Among the scores of available books on SPSS Statistics, very few invest pages on 
this topic, and we think that is a mistake. A likely reason is that most readers 
naturally want to focus on analysis and interpretation because that is why we 
all use SPSS. However, virtually all SPSS users will employ some aspect of SPSS 
Syntax in their work at some point. Many embrace it, but a large group avoids 
it, turning to it only when they must. Both groups will benefit from these three 
chapters, but may target different chapters.

We collect data to test theories and explore the conceptual, but while our final 
reports might discuss these theories and concepts, when we sit down in front 
of SPSS we are confronted by data. Our datasets are numbers and symbols. In 
our effort to test our theories we have to manipulate that data. Whether or not 
programming is something that we enjoy, it is often the path of least resistance 
to get our data in the form that we need. Finally, when it is done effectively, it 
is the easiest way to do it. That is precisely why we recommended upgrading 
your skills in this area. We don’t suggest SPSS programming for its own sake. 
Use it only when it is your best option. Often weaker ways of tackling certain 
problems prevail simply out of ignorance that SPSS has an easy way to do it.
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The first chapter in this part, Chapter 16, written by Keith, introduces best 
practices. If you are new to syntax you should absolutely start there. Chapter 16 
is mentioned in some earlier sections of the book that use syntax, so you might 
have jumped to it at that time and then returned to those earlier chapters. 
Chapter 16 is written with the newer user of SPSS Syntax in mind. If you have 
considerable experience with SPSS programming you may find substantial 
parts of this chapter are review. However, the general approach to writing SPSS 
code will be of some value even if some of the commands are familiar to you.

The second chapter in this part, Chapter 17, is an introduction to the Output 
Management System (OMS), written by Jesus. If our interaction with colleagues 
and clients is a good indication, many have not heard about this powerful 
feature. When it was released, several years ago now, it truly transformed our 
options in SPSS. If you are not an expert SPSS programmer, but you’ve always 
been intrigued with what they can do, you may discover that the menus offer 
tremendous untapped power. If you know just a little bit more about how 
SPSS programming is working behind the scenes, SPSS makes it easier than 
ever before to tap into those resources. Once you’ve had a chance to learn the 
material in Chapters 16 and 17, you might want to read (or reread) Chapter 6. It 
uses Graphics Programming Language (GPL) and OMS as major elements in its 
case study. You will have a richer understanding of that chapter after reading 
the chapters in Part IV.

We are very fortunate to be able to offer an introduction to SPSS extension 
commands in Chapter 18, written by Jon Peck, someone who was instrumental in 
creating this option in SPSS. Jon has been a key collaborator on the entire book, 
and agreed to author this chapter. Extension commands create the easiest path 
to incorporating R and Python into your SPSS programming. They represent 
another area that absolutely need not be difficult, yet is not widely understood. 
This topic deserves more attention, and we hope that Chapter 18 ushers in a wider 
understanding of it. Perhaps the whole notion of learning additional languages 
might seem intimidating, but as the chapter explains you have numerous ways 
of taking advantage of these resources without learning R or Python. Some of 
the new features can be accessed into the SPSS menus. They are powerful, and 
everyone can and should take advantage of them.

In This Part

Chapter 16: Write More Efficient and Elegant Code with SPSS Syntax Techniques
Chapter 17:  Automate Your Analyses with SPSS Syntax and the Output 

Management System
Chapter 18:  Statistical Extension Commands
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C h a P t e r 

16
Write More efficient and  
elegant Code with SPSS  

Syntax techniques 

Many SPSS users rarely (or never) use SPSS Syntax. Others remember when 
Syntax was the only way to interact with SPSS. Back in the ’90s, not everyone 
embraced the graphical user interface (GUI) at the same time or to the same 
extent. The GUI definitely leapt forward around the time of Windows 95. It 
is easy to forget that SPSS was already in its fourth decade at that time, first 
written in 1968! Now, few SPSS users ignore the GUI completely. However, the 
reverse, predictably, has occurred—many SPSS users don’t learn about Syntax. 
If you are among them, why learn now? If you are rusty, what is the latest news 
regarding Syntax? If you are expert, are there any commands that you might 
be missing out on?

When I (Keith) was first faced with SPSS in college (late ’80s), my project advisor 
dropped a very big and very heavy tome on the desk. It was the programming 
manual for SPSS-X, an older version of SPSS that would have forced me to learn 
SPSS Syntax in earnest. I was studying computer science so I wasn’t particularly 
reluctant about using code, but having to worry about statistics theory, the 
specifics of the project, deadlines, and learning a new programming grammar 
all at the same time was daunting. Fortunately, I had just won a research grant. 
It was a small grant, but it allowed me to purchase my own copy of the much 
newer version of SPSS with a graphical user interface. It reduced the amount left 
over to pay me for the research considerably. My advisor thought that quite a 
prodigal move given my age and resources, but I somehow knew that it would 
pay off in the long run. My coauthor, Jesus, had a similar initial frustration with 
Syntax, which he describes in the next chapter.
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Why did I avoid Syntax at the time, and why do I embrace it to such an extent 
now? Frankly, Syntax has a bit of a learning curve, which I feared would slow 
me down. I was more enthusiastic about the results, and wanted to jump right 
in. Also, I was at the stage in the project during which I was exploring data. 
I’ve always felt that the menus make that easier and faster. However, when  
the analysis becomes routinized and repetitive, switching to Syntax can increase 
efficiency by an order of magnitude. I can say without exaggeration that some 
analyses are simply not possible (or at least not practical) without some coding. 
Quite simply, you can’t be a power user of SPSS without it.

The goals of this chapter are to move you along to your next milestone in 
your journey of using Syntax, and to prepare you for some of the topics in this 
section of the book. Many SPSS users are a bit intimidated by Python and R, for 
instance. One can actually make the argument that as a programming language 
Python is easier to learn than Syntax. However, you have to get used to using 
code, and not clicks, to control SPSS. What if you are already using Syntax? 
Your next milestone is learning about commands that cannot be pasted from 
the menus, which means learning of their existence, adopting strategies that 
use them, and writing better and more readable code as a result. Even if you 
are doing all of that, this chapter reviews those topics in a way that prepares 
you for the chapter on programmability and extension commands, Chapter 18.

The themes of this chapter are efficiency, elegance, and readability/maintain-
ability. Efficiency is simply working smart, and ultimately working briskly. 
Computers are generally pretty quick, so efficiency means working on the 
slower half of the human/computer interface. It means getting past performing 
tasks like pointing and clicking the same steps repeatedly, or needless copy-
ing and pasting. Elegance is about writing code that is easy to read (by our 
colleagues and ourselves), correct, and easy to maintain. Code that is easy to 
read and easy to maintain is relatively short and easier to validate. Code that 
is hundreds of pages long is a challenge on both counts. Easy to read implies 
well-documented code. Easy to maintain involves concepts like parameters 
and loops, which we will explore. These techniques allow us to keep our code 
reasonable in length.

We are going to take precautions and assume that you haven’t used Syntax at 
all before. We show how to “paste” commands and review the grammar. This 
is a brief transition before the real nuts and bolts of the chapter: using Syntax 
well and being brilliant in the basics of Syntax.

A Syntax Primer for the Uninitiated

If you’ve never used Syntax before, the best place to start your journey is not 
with typing in a blank syntax window, but rather with using the Paste button. 
This is not the same as “cut and paste,” as we will see. Consider the Frequencies 
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dialog shown in Figure 16-1. The Paste button is shown at the bottom of the dia-
log on the left. (Its position on a windows version will be somewhat different.)

Figure 16-1:  Frequencies main dialog

Let’s examine the results as they appear in the Syntax window, shown in 
Figure 16-2.

Figure 16-2:  Resulting Syntax in the Syntax Editor

Note that the SPSS Syntax window is not merely a text editor. It has features 
specifically designed to help you write Syntax. On the left is a list of commands. 
At the moment, we have just two. On the right we have line numbers and the 
complete Syntax code. The color coding is important; you can see it when working 
in the Syntax window. Commands are blue, and appear right up against the left 
margin. Back in the day, when punch cards were still used, starting commands 
in the first column was a requirement but that is no longer the case. The use of 
capitals is not required, but it is conventional to use uppercase for commands. 
In contrast, variable names, like Product_Category, are conventionally typed 
in mixed case or lowercase.

Our first command is DATASET ACTIVATE. This can be valuable when using 
multiple data windows, but we will set aside our discussion of this command 
until later. The second command, FREQUENCIES, is the command we were 
expecting because it is the dialog that we are working in. Subcommands appear 
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in green. We have one subcommand, /ORDER. The subcommands allow you 
to take advantage of the potentially numerous features of the commands. In 
the Syntax Reference Guide, available in the Help menu, you will find many 
pages dedicated to some of the more complex commands. They can have 
numerous subcommands. Some keywords are also reserved words—words 
are not available to be used as variable names. While it is sometimes possible, 
it is rarely a good idea to use any variable name that could be confused with 
commands or keywords. When Syntax users speak of keywords they generally 
mean the words appearing in a maroon color in the editor. In this case, the 
ANALYSIS portion of /ORDER = ANALYSIS is this part of the command. The ORDER 
subcommand indicates that we want to designate the order, and ANALYSIS 
makes explicit what order we would like. Variable names, filenames, and so 
on appear in black. They do not belong to the language, but are rather refer-
ring to the specifics of our dataset.

N O t e  You may not be able to detect the colors in this book (because the images 
are printed in black and white), but if you experiment in the editor, you will be able to 
see how the commands’ structure is revealed in color.

Note well that both commands—not all three lines—end in periods. This 
is critical. If we violate this rule, the color coding will change, and we run a 
considerable risk of an unexpected result or no result at all. Note as well that 
the subcommand is indented and has a slash. The indentation is not as critical 
as it was in the punch card days. The slash punctuation, however, remains very 
important.

Two important buttons are visible in Figure 16-2. The Run Selection button, 
which looks like a “play” button, is indicated with a green arrow and can be 
used to run selected code. Four icons to its right is the symbol showing a page 
and question mark. It is the Syntax Help button. An example of Syntax Help is 
shown in Figure 16-3.

The results of requesting Syntax Help might be a bit different than you were 
expecting. It is essentially a grammar chart. There is hypertext in the document 
that takes you to examples and explanations of the command, but the primary 
purpose of this button is to show you the available subcommands, and available 
choices for each subcommand. Notice, for instance, that in lieu of /ORDER = 
ANALYSIS we could have chosen /ORDER = VARIABLE. Brackets ([ ]) indicate 
that the entire subcommand or a portion of it is optional, and braces ({ }) indicate 
our choices on the subcommand.

Note that virtually everything is optional. We could actually type the follow-
ing, and it would run just fine:

FREQ Product_Category.
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Figure 16-3:  Syntax Help

In contrast, the full command, as SPSS pastes it into the Syntax Window, 
appears in Figure 16-4. Note that the code has been highlighted which is required 
is you are going to use the Run Selection button (green arrow icon) which we 
discussed earlier. The menus also offer you the option to Run All (not shown) 
which would not require this step.

Figure 16-4:  Frequencies command in the Syntax editor

You won’t want to get bogged down in the details. The key point is that pasting 
easily produces accurate Syntax that we can save and rerun when we need the 
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same result in the future. However, that doesn’t mean that you will never want 
to modify the result. In particular, pasting on default settings will produce an 
EXECUTE command. See the side bar on this subject.

the eVIl eXeCUte COMMaND

EXECUTE is the most misunderstood and misused command in Statistics. It forces a 
data pass, which causes any pending transformations to be executed immediately. 
While this refreshes the Data Editor contents, it is almost always a waste of time. For 
efficiency, transformations such as COMPUTE or SELECT IF are carried out by “lazy 
evaluation,” which means that they are piggy-backed on the next required data pass, 
which would be a procedure such as FREQUENCIES. This saves data passes, which can 
be expensive. So a set of transformations followed by a procedure would all happen 
on one pass automatically unless an EXECUTE intervenes, in which case two or more 
passes would occur.

There are only two situations when EXECUTE is needed, apart from immediately 
updating the Data Editor:

 ■ There are transformation commands in the transformation block that would 
be executed out of order and change the result of a previously read but not yet 
executed command.

 ■ The LAG function is used and sample selection follows in the same transforma-
tion block.

Out-of-order commands include commands like MISSING VALUES, which take 
effect as soon as they are read and before, say, a COMPUTE command that actually pre-
cedes them in the block. An intervening procedure prevents this. Out-of-order execu-
tion is noted in the Command Syntax Reference descriptions.

There is a preference setting in Edit ➪ Options ➪ Data that controls whether the 
Transform ➪ Compute Variable and other transformation dialogs generate EXECUTE 
after every command. The default value is to generate it so that the Data Editor shows 
the results of transformations immediately, but changing the setting can save a lot 
of time. This default setting plus, perhaps, the somewhat similar but necessary RUN 
command in SAS leads to much overuse. And if you do need to see the transformation 
results immediately, you can use Transform ➪ Run Pending Transformations to run  
that EXECUTE.

This rapid-fire review is enough to get you through the chapter, but if it is a 
brand new topic to you, you should read the following chapters of the Command 
Syntax Reference:

 ■ Introduction

 ■ Universals
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You can find this extensive (and huge) document in the Help menu, as shown 
in Figure 16-5. Note that the Help menu in version 24 is abbreviated and doesn’t 
have as many options listed, but the Command Syntax Reference is still avail-
able in the menu. Don’t get dissuaded by the size of the document—the two 
recommended chapters are manageable.

Figure 16-5:  Help menu showing the Command Syntax Reference

Making the Connection: Menus and the Grammar of Syntax
Understanding commands, subcommands, and keywords is very easy if you 
compare some pasted Syntax to the dialogs. The name of the dialog corresponds, 
sometimes exactly, with the command. The subcommands are generally modi-
fied via subdialogs and the keywords are modified with check boxes. This is 
not always followed in the design of the dialogs, but using two commands as 
examples we will explore how the dialogs and the resulting Syntax relate to 
each other. We will take a closer look at the familiar Frequencies and Crosstab 
commands.

The first example of the command (Figure 16-6) was done with default 
settings (Lines 1–2). “Old school” syntax practitioners who mastered syntax 
without the menus sometimes find the “extra words” distracting, but it is 
harmlessly making the defaults explicit. Line 4 provides an example stripped 
of the defaults.

Figure 16-6:  Frequencies dialog and Frequencies commands
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Noteworthy is the near one-to-one correspondence between the rectangular 
buttons in the upper right-hand portion of the menus, and the three pasted 
commands (Lines 6–9). /BARCHART, inserted with the Chart button, and /FORMAT, 
inserted with the Format button, are two examples. The Charts subdialog, acces-
sible by pressing the Charts button, is shown in Figure 16-7.

Figure 16-7:  Charts subdialog

Figure 16-7 shows the check boxes within the menus. In this case, Bar Charts 
have been requested and that is visible in the syntax as the /BARCHART subcom-
mand with the keyword FREQ. Figure 16-8 shows the Crosstabs main dialog and 
the Cell Display subdialog.

   
Figure 16-8:  Main dialog and Cell Display subdialog

The CROSSTABS command provides an additional example of the relationship 
between the dialogs and the commands. The first pasted bit of code (Lines 11–15) 
imitates our last example in that it was pasted with default settings. Line 17 in 
Figure 16-9 shows an example that has been typed with abbreviations. Though 
this is an old style, it is not just nostalgia. Because you will find collections of 
code written like this lurking about in organizations that have been using SPSS 
Syntax for decades, seeing it might help you understand why it looks that way.
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Figure 16-9:  Three CROSSTABS examples

N O t e  Autocomplete in the editor makes typing complete commands easy so there 
is no need for abbreviations. Avoid them.

Let’s examine some of the specifics of this example. In the third example of 
the CROSSTABS command (Lines 19–25) you can see the keywords that have been 
chosen. The format has been changed—Line 21. The choice of the Chi-Square 
statistic (check box not shown) adds a new subcommand with keyword CHISQ. 
The additional, non-default check boxes Row and Column are visible on Line 
23. The choice to Display cluster bar charts is visible on Line 25.

What Is “Inefficient” Code?
Obviously for a series of pasted syntax commands to be useful, they have to 
work, and they have to reproduce the correct result consistently. However, we 
want to set the bar higher than merely “working.” They should also be easy to 
read and easy to modify.

Many organizations get trapped in a situation where a single Syntax user 
produces some code, often running dozens or hundreds of pages, and colleagues 
struggle to read it, making it impossible to modify or maintain. Even if it is well 
documented, it is very difficult to maintain a large program. There are ways of 
shortening the code, and this is not a trivial improvement as it eases readability 
and modification. Code that “works” but ties the organization to something 
that no one can adapt to current processes can do considerable harm in the long 
run. Many an SPSS expert has been asked to visit an organization to address a 
problem like this that has been accumulating over many years.

Another big problem area is copying and pasting that produces many very 
similar jobs that all have to be maintained separately. This can grow into thou-
sands or tens of thousands of jobs, which paralyzes the organization. Attention 
should be paid to ways to generalize the code to minimize the number of jobs.

Most discussions of SPSS command syntax are organized around a series of com-
mands with one or more examples per command. In the case of the massive (albeit 
necessary) Command Syntax Reference the commands are arranged alphabetically, 
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all 2000+ pages of it. The majority of shorter introductions follow the same basic 
approach. We will use a different approach. We will take a single extended case 
study, and introduce only those commands that support the case study.

The Case Study

In the case study, we begin with two datasets from a fictional media distribution 
firm. It sells media services to hotels, bars, college dorms, and so on. It special-
izes in one time fee-for-service sales like in room hotel pay per view, but it offers 
some monthly plans and bundles as well. Along the way, we are going to make 
some simple formatting changes, merge and label the datasets, restructure the 
resulting dataset, and make some calculations. If we assume that these files are 
pulled off routine systems like Point of Sale or CRM systems, these are tasks that 
we might have to perform monthly or even daily. Therefore, automating them 
seems appropriate if not critical. Doing so in a way that enables multiple members 
of the team to understand, modify, and execute the code is important. If this sup-
ports a routine reporting function and is mission-critical data, then the vacation, 
or illness, or departure of the code author cannot jeopardize the data. If the code 
is opaque to all but the author, this is exactly what can (and often does) happen.

The first dataset is called Media Sales Transactions Start.sav. We notice 
two issues that can be easily resolved in the menus. The currency column, 
Sales_Amount, needs its formatting corrected because we cannot see decimal 
places that we know are expected. Also, a nominal variable, Category_Code, 
needs labeling. We could use the Variable View tab (Figure 16-10), but it is not 
recommended in this instance.

Figure 16-10:  Data View (above) and Variable View (below)

Using the Define Variable Properties window (accessed from the Data menu) 
is a better choice because we can paste from it (Figure 16-11). We only have three 
variables so we will scan all three.
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Figure 16-11:  Define Variable Properties dialog

As shown in Figure 16-12, to correct Sales_Amount, we will simply choose 
Currency, and adjust the width. The width refers to the total width, so when 
displaying two decimals, this allows for the amount to display tens of thou-
sandths, which is sufficient.

Figure 16-12:  Declaring the Sales_Amount variable

 To correct our nominal variable’s value labels, we are going to employ 
a little trick. First we are going to label just one category in the menus 
(Figure 16-13). Add the label “Special Event” to the code 101, and then click 
the Paste button.

Figure 16-13:  Adding a Value Label to Category_Code
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The resulting syntax is quite easy to read (Figure 16-14). The FORMATS line 
declares Sales_Amount as Dollar, just as we indicated in the dialog. Now, we 
will turn our attention to completing the VALUE LABELS command.

Figure 16-14:  Pasted code from the Define Variable Properties dialog

The “trick” used here is that we only pasted one of twenty one categories in 
the menus. The structure of the command is easily grasped, so we can imitate 
the structure using just that one example, supplying the relevant codes (see 
Figure 16-15). We simply add additional value labels. If you are lucky you might 
have a Word doc with these code and label pairs lying about that has been 
maintained by others in the organization, which would allow you to copy and 
paste them into the Syntax window. There is no assumption that this is another 
SPSS user. These product category codes tie the products with their descriptive 
labels so they can probably be found somewhere in electronic form. You will 
almost certainly have to alter the list to meet the grammatical requirements, 
but it will still save time.

Figure 16-15:  Value Labels with additional category codes

With only twenty one codes, we wouldn’t worry about this too much, but 
if there were a thousand, we would ask everyone we could if the values were 
available in a spreadsheet somewhere before we resorted to typing. This might 
seem trivial, but this is just about the easiest command to learn, and there is 
little reason to do labeling in the menus.

Customer Dataset
Let’s take a look at the second dataset, Customer Financial Start.sav. 
This dataset has a variety of variables that include credit card and shipping 
information (all completely faked data). This represents the most recently 
available personal financial information for each customer, and is pulled 
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from the most recent transaction. Much of it is unnecessary to the analysis 
and can be deleted, but some of the information will be important to us 
(Figure 16-16). In particular, we are going to rehearse three examples of 
formatting steps:

 ■ Fixing the four-digit ZIP codes in Massachusetts and elsewhere

 ■ Addressing the fact that some cities’ names are in caps, and others 
are not

 ■ Parsing the e-mail addresses to place the domain name in a new variable 

Figure 16-16:  A few rows of address information in the customer data

Fixing the ZIP Codes
Our first task, fixing the ZIP codes, is straightforward enough, but will require 
using some conversion functions and string functions. The actual solution is 
a bit more involved than you might guess because SPSS doesn’t allow you to 
do this kind of conversion in one step. Also, the conversion is only part of the 
problem. We have to add (or “pad”) the zeros that are missing. We can do the 
first step in the windows. If you are really savvy with functions in SPSS or 
even Excel, you might question the creation of ZipCode2. Note the use of the 
Type and Label subdialog in Figure 16-17. I’m approaching it this way to make 
a point—a point that will become clear by the end of the example. If we paste 
this, we get the code shown in Lines 1–2 (Figure 16-18). We’ve already discussed 
that you won’t always need the DATASET ACTIVATE line that is pasted. Also, as 
we’ve seen, we don’t need an EXECUTE after every transformation. All of that 
has been removed. Note that the sidebar in the Syntax Primer section of this 
chapter discusses EXECUTE in some detail.

For ZipCode3, Lines 4–5, we introduce two functions, and notice that they’ve 
been nested. The LTRIM portion gets rid of the leading space that has filled the 
vacuum. We must remove that space before CHAR.LPAD can do its job of making 
sure that all of the ZIP codes have five characters.
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Figure 16-17:  Type and Label subdialog

Figure 16-18:  The STRING command

N O t e  Some U.S. ZIP codes actually start with a double zero. They are not common, 
so we don’t address that here, but being a good programmer includes expecting the 
unexpected.

Now, let’s take a look at some ways to improve what was pasted. We don’t 
really need to keep ZipCode2. It is an intermediate step. Nesting is one way 
to try to address this, but in this case a very easy way is to make ZipCode2 a 
“scratch variable” by adding a # symbol. As a result it will never appear in the 
data window. It will have meaning only in the Syntax Window, and only until 
SPSS encounters a procedure command.

Because you can’t put string values in a numeric value, it is easier to just cre-
ate a new variable and give it a meaningful name. We might have 9-digit ZIP 
codes for some addresses, so Zip5 seems like a good name. We no longer need 
the original, so we apply DELETE VARIABLES to it (Figure 16-19). We could try 
using RENAME VARIABLES to go back to the original if we wanted (not shown). A 
little documentation would be wise as well. Also, note that DELETE VARIABLES 
won’t execute (yet) until it is followed by a procedure command. (The difference 
between procedure and transformation commands is discussed in the sidebar 
“The Evil Execute Command” earlier in this chapter.)

Figure 16-19:  Code examples using scratch variables
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Addressing Case Sensitivity of City Names with UPPER()  
and LOWER()
Some cities are mixed case and some are all uppercase. Why should we be con-
cerned? A number of operations are case sensitive, including merging (it is the 
variable key that causes the problem) and reporting. For instance, consider the 
frequencies output shown in Figure 16-20. Boca Raton has 51 sales and Boise 
has 91, but we have to get out our scratchpad to confirm that because both cities 
have variation in the use of upper and lower case. Of course, there are misspell-
ings and other issues, but we will address just the mixed case for now. It will 
be sufficient to accomplish our goal—identify the Top 10 cities.

Figure 16-20:  City names in mixed case

We could simply make everything all uppercase:

COMPUTE City = UPCASE(City).

But we will try a command that is a little more interesting:

COMPUTE City =

CONCAT( CHAR.SUBSTR(City,1,1) , LOWER(CHAR.SUBSTR(City,2)) ).

In theory you could work exclusively with the mouse to perform these func-
tions, but when you are writing functions inside of functions it is easier to work 
in the Syntax window, and it is much easier to save your work. The new frequen-
cies with the descending cases output shown in Figure 16-21 shows that we have 
made progress.

Figure 16-21:  City names in descending case
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We could be considerably more ambitious. For instance, “New york” has a 
space in its name, and we have not addressed that. It leaves the second word in 
its name lowercase. For this, and similar complications, we will delay a richer 
solution until we get to Chapter 18.

Parsing Strings and the Index Function
For this example, we are going to extract the e-mail domain information from 
the client’s e-mail addresses. Domains sometimes have slightly different rules 
on what e-mail attachments are allowed. This information might help our 
marketing materials successfully reach our clients. In our fake data, the e-mails 
are unnaturally uniform, and some of the domain names are odd, but there are 
plenty of formatting issues to contend with. We are only interested in the string 
between the @ symbol and the period that follows the @ symbol.

First we have to find the locations and the length of the domain name:

COMPUTE At_Loc=CHAR.INDEX(EmailAddress,'@').
 

COMPUTE Period_Loc=CHAR.RINDEX(EmailAddress,'.').
 

COMPUTE Domain_Length = (Period_Loc-At_Loc)-1.

Run these and examine the results. We get the locations, as an integer, of the 
symbols. Note that the RINDEX looks for the last instance of the period. Now, we 
will use the STRING and SUBSTRING functions again while converting our new 
variables into scratch variables:

COMPUTE #At_Loc=CHAR.INDEX(EmailAddress,'@').

COMPUTE #Period_Loc=CHAR.RINDEX(EmailAddress,'.').

COMPUTE #Domain_Length = (#Period_Loc-#At_Loc)-1.
 

STRING Domain(A16).

COMPUTE Domain=CHAR.SUBSTR(EmailAddress,#At_Loc+1,#Domain_Length).

EXECUTE.

This dataset is ready to merge, so we are going to switch back to the other 
dataset and finalize it for merging.

Aggregate and Restructure
We are almost ready to combine the datasets so we are going to switch back 
to the transactional dataset. We will use the Restructure Data Wizard, but for 
that we have to aggregate first. In a sense, this is the most sophisticated data 
manipulation thus far, but the menus do all the work. Take a closer look at the 
first customer, as shown in Figure 16-22.
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Figure 16-22:  A few rows of the transactional dataset

Currently there are two lines for TV Season; restructuring forces us to have 
just one line. The same problem exists for HD Movie Upgrade. Aggregating eas-
ily solves the problem. We will choose both Customer_ID and Category_Code as 
break variables and sum customer spending within the categories. Importantly, 
we are using the DATASET commands for the first time. DATASET DECLARE will give 
our new dataset a name. This is not at all the same as saving it to a drive. If we 
were to exit SPSS without saving it, we would lose the new data file. When we  
restructure we will reference this data window by name using DATASET ACTIVATE:

DATASET DECLARE Media_Trans_AGGR.

AGGREGATE

  /OUTFILE='Media_Trans_AGGR'

  /BREAK=Customer_ID Category_Code

  /Sales_Amount_sum=SUM(Sales_Amount).

The restructure menu (see Figure 16-23) presents three choices. We want the 
middle choice because we want to convert a “tall dataset” into a “wide dataset.” 
Specifically, a transactional dataset needs to become a customer-level dataset. 
When you’ve made the selection, click Continue.

Figure 16-23:  First screen of the Restructure Wizard
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We want Customer_ID to define the height, or number of rows, of the dataset. 
Category_Code is in the important Index Variable Role and will define the columns 
of the dataset. The only variable that should be remaining, Sales_Amount_Sum 
will populate the body of the resulting table. See Figure 16-24. Press continue 
and paste the syntax.

Figure 16-24:  Second screen of the Restructure Wizard

The resulting Syntax follows:

DATASET ACTIVATE Media_Trans_AGGR.

SORT CASES BY Customer_ID Category_Code.

CASESTOVARS

  /ID=Customer_ID

  /INDEX=Category_Code

  /GROUPBY=INDEX.

Pasting Variable Names, TO, Recode, and Count
Next we have to create a sum of all of our customers’ spending so that we can 
use it as our denominator. The menus offer up many ways to save time. We 
could go into the Transform ➪ Compute menu, and drag all of the variables into 
place, but there is also a way to be more creative. We can use just two variables 
to make sure that we have the proper grammar:

Compute Total_Spend = SUM( Sales_Amount_sum.101,

Sales_Amount_sum.102).
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Then use the following trick. From the Utilities menu click Variables 
(Figure 16-25). Choose all of the variables you need, and then click Paste. 
The variables will appear in the Syntax window. All you have to do now is 
add some commas and writing the command is quite quick. You still have 
to understand the command, and how to write it, but you’ve saved yourself 
considerably on the typing.

Figure 16-25:  The Utilities Menu

Compute Total_Spend = SUM( Sales_Amount_sum.101,

Sales_Amount_sum.102, Sales_Amount_sum.103,

Sales_Amount_sum.201, Sales_Amount_sum.202,

Sales_Amount_sum.203, Sales_Amount_sum.204,

Sales_Amount_sum.205, Sales_Amount_sum.301,

Sales_Amount_sum.401, Sales_Amount_sum.402,

Sales_Amount_sum.403, Sales_Amount_sum.501,

Sales_Amount_sum.502, Sales_Amount_sum.503,

Sales_Amount_sum.601, Sales_Amount_sum.701,

Sales_Amount_sum.702, Sales_Amount_sum.703,

Sales_Amount_sum.704, Sales_Amount_sum.705).

There is an even better trick we can use when we don’t have to worry about 
the commas. Let’s use the Count Values within Cases menu option (Figure 16-26). 
Located in the Transform menu, this is going to be the easiest way to determine 
how many null values (more accurately called “system missing” and identified with 
the dot in the cell) there are in our sales ratios for each customer. This will allow 
us to figure out how many departments they have made purchases in. Customers 
who shop in only one department might need a different marketing approach than 
those who shop in many departments. When we load the variables and Define 
Values as being system missing, SPSS lists all of the variables. That is OK, but our 
code will be easier to read if we place the TO keyword between the first and last 
Sales_Amount_sum variable. As an added twist, we will try a scratch variable again.

Figure 16-26:  Count Values within Cases menu option

COUNT

#NumMiss=Sales_Amount_sum.101 TO Sales_Amount_sum705(SYSMIS).
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Because we want to know how many departments they’ve shopped in, and 
not how many that they have failed to shop in, we will perform the following 
calculation. Now the new variable NumCats will tell us in how many sales cat-
egories they have a non-SYSMIS value:

COMPUTE NumCats = 21 - #NumMiss.

The same TO keyword can be used with the RECODE command. Note that this 
is the equivalent of RECODE into SAME VARIABLES in the menus because no new 
variable name is given. RECODE into DIFFERENT VARIABLES would require the 
optional INTO keyword, as shown in Figure 16-27.

Figure 16-27:  RECODE command in Syntax Help

Our RECODE command will be the following:

RECODE Sales_Amount_sum.101 TO Sales_Amount_sum.705 (SYSMIS=0).

DO REPEAT Spend Ratios
We now need to create 21 ratios. We could use 21 COMPUTE statements, but 
we are going to use a kind of loop. The DO REPEAT command may not be 
familiar to you or your colleagues, but it is easily explained with just a sen-
tence or two of documentation. It will take up less space, which makes the 
total code easier to read and easier to test. When a section of code is longer 
than a page (or a screen) it invites mistakes. We have to take 21 Numerators 
(one for each sales category) and divide all of them by our sum. That’s it.  
DO REPEAT makes it easy.

First we declare what the Command Syntax Reference calls a stand-in variable. 
Ours is called numerator. Using the TO keyword we can refer to all of them as 
long as they are contiguous—which they are. In the case of our new variables, 
we are going to list them all explicitly. We must because they don’t exist yet, and 
because the names are not a simple increment. Note that if they had names like 
ratio1, ratio2, and so on, we could use a code fragment like this:

ratio = ratio1 to ratio21

Because we can’t do that, we write them out explicitly, being careful to place 
a period at the end of this section of code. The grammar requires that we sepa-
rate the declarations of the stand-ins with a slash, and terminate the section 
with a period.
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Next we have a COMPUTE statement embedded in the middle of the command:

COMPUTE ratio = numerator / Total_Spend.

The formula uses our two stand-ins as well as our variable Total_Spend. 
The entire command successfully creates 21 new variables. The optional PRINT 
keywords display the 21 COMPUTE statements as they are actually performed 
by SPSS:

DO REPEAT numerator = Sales_Amount_sum.101 TO Sales_Amount_sum.705

   / ratio = Sales_Ratio.101, Sales_Ratio.102, Sales_Ratio.103,

    Sales_Ratio.201, Sales_Ratio.202, Sales_Ratio.203, 

    Sales_Ratio.204, Sales_Ratio.205, Sales_Ratio.301,

    Sales_Ratio.401, Sales_Ratio.402, Sales_Ratio.403,

    Sales_Ratio.501, Sales_Ratio.502, Sales_Ratio.503,

    Sales_Ratio.601, Sales_Ratio.701, Sales_Ratio.702,

    Sales_Ratio.703, Sales_Ratio.704, Sales_Ratio.705.

COMPUTE ratio = numerator / Total_Spend.

END REPEAT PRINT.

Merge
You are likely familiar with the MERGE commands in the menus. If you have 
been using SPSS for a while, you might be a bit surprised by the pasted com-
mand. When you paste from the Merge menus you get the STAR JOIN command. 
Let’s begin in the menus. We are going to write the code to be in the Customer 
Financial Start dataset at the time of the merge, so we want to indicate to 
SPSS that we want to merge with the [Media_Trans_AGGR] dataset. Untitled9 
(shown in Figure 16-28) may or may not be the filename. It is an indication of 
how busy a session you have had. It is not important here. What is important 
is the “window name”—the one that we reference with DATASET ACTIVATE 
and DATASET NAME.

Figure 16-28:  First screen of Add Variables
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In the next step, we will have an opportunity to remove some variables that we 
do not need. We choose Match cases on key variables, and choose Customer_ID 
as our key. We simply exclude Zip Code (because we’ve made a new version) and 
the private variables Mother’s Maiden name, CCNumber, CVV2, and NationalID 
(Figure 16-29).

Figure 16-29:  Second screen of Add Variables

We will also paste a SAVE command into our Syntax.
Let’s briefly review some little improvements that are found in the final ver-

sion. (You can find the complete program in the final section of this chapter.) 
Consider reviewing the final syntax file in the Syntax window where the color 
coding may ease your review.

 ■ We’ve consolidated everything into one file including the GET FILE com-
mands. These can be easily generated from the menus.

 ■ We’ve added the FILE HANDLE command and declared both file handles 
at the top of the file where they can be easily changed.

 ■ We’ve used the INSERT command, allowing the VALUE LABELS command 
to be stored in its own file. This can be easily updated without affecting 
the rest of the code.

 ■ We’ve added a few comments for documentation. We could add even 
more, especially if our coworkers are new to SPSS.

There is always more to be done, but the goal of the case study was to advance 
your knowledge of Syntax by showing that the menus can help you assemble a 
single cohesive program that can perform potentially complex tasks. There are 
hundreds of commands to learn, but any commands that were learned were 
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a side benefit of the primary goal: Syntax programs do not have to be stolen 
little bits of code. Syntax programs can be solutions to routine problems that 
can be documented and shared, saving you and your colleagues much time in 
the process.

Final Syntax File
Here is the final code in its entirety. Use this code carefully. Download the code 
from the book’s website. Do not attempt to type it or copy and paste it. There 
are three complications that make it useful for reference only, but prone to error 
if you are not careful.

 ■ Embedded carraige returns can impact SPSS even when they are not vis-
ible. This is primarily a problem when there is a carraige return within 
quotes. Consider the first three lines of code:

FILE HANDLE Trans /NAME = '/Users/KMcCormick/Documents/Wiley SPSS

Stats/Syntax Chapter/Media Sales Transactions '+

    'Start.sav'.

The + symbol gets around this problem, but with a lengthy section of code 
it is easy to miss. So, again, be careful.

 ■ Publishing has different limits for the width of code than the SPSS Syntax 
editor does. What fits on the line can change the appearance in a way 
that if imitated in the editor could cause problems. Effort has been made 
to minimize the effect, but in the age of electonic books and devices, it 
would be easy to have an error introduced by changing display column 
widths or font sizes.

 ■ In a related problem, indenting code is often quite useful when writing 
code in the SPSS Syntax editor, but it takes up columns in print potentially 
exacerbating the issues listed already. In the following section (abreviated), 
an indent would be encouraged (as shown):

DO REPEAT numerator = Sales_Amount_sum.101 TO Sales_Amount_sum.705

    / ratio = Sales_Ratio.101, Sales_Ratio.102,

  Sales_Ratio.103, Sales_Ratio.201,

  Sales_Ratio.705.

  COMPUTE ratio = numerator / Total_Spend.

END REPEAT PRINT.

There is enough value in being able to see the “big picture,” however, that the 
code is listed dispite the risks. It should be able to give you a better feel for the 
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flow of the code, especially if you are reading a traditional print book, during 
some stolen moments away from your laptop.

FILE HANDLE Trans /NAME = '/Users/KMcCormick/Documents/Wiley SPSS Stats/

Syntax Chapter/Media Sales Transactions '+

    'Start.sav'.
 

FILE HANDLE Customers /NAME='/Users/KMcCormick/Documents/

Wiley SPSS Stats/Syntax Chapter/Customer Financial Start.sav'.
 

FILE HANDLE Categories /NAME = '/Users/KMcCormick/Documents/

Wiley SPSS Stats/Syntax Chapter/Category Code Labels.sps'.
 

GET FILE = Trans.

DATASET NAME Trans WINDOW=FRONT.
 

* Define Variable Properties.

*Sales_Amount.

FORMATS  Sales_Amount(DOLLAR7.2).

*Category_Code.

VARIABLE LEVEL  Category_Code(NOMINAL).
 

* The following INSERT applies labels found in an external file.
 

INSERT File = Categories.
 

DATASET DECLARE Media_Trans_AGGR.

AGGREGATE

  /OUTFILE='Media_Trans_AGGR'

  /BREAK=Customer_ID Category_Code

  /Sales_Amount_sum=SUM(Sales_Amount).
 

DATASET ACTIVATE Media_Trans_AGGR.

SORT CASES BY Customer_ID Category_Code.

CASESTOVARS

  /ID=Customer_ID

  /INDEX=Category_Code

  /GROUPBY=INDEX.
 

Compute Total_Spend = SUM( Sales_Amount_sum.101,

Sales_Amount_sum.102, Sales_Amount_sum.103,

Sales_Amount_sum.201, Sales_Amount_sum.202,

Sales_Amount_sum.203, Sales_Amount_sum.204,

Sales_Amount_sum.205, Sales_Amount_sum.301,

Sales_Amount_sum.401, Sales_Amount_sum.402,

Sales_Amount_sum.403, Sales_Amount_sum.501,
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Sales_Amount_sum.502, Sales_Amount_sum.503,

Sales_Amount_sum.601, Sales_Amount_sum.701,

Sales_Amount_sum.702, Sales_Amount_sum.703,

Sales_Amount_sum.704, Sales_Amount_sum.705).
 

COUNT #NumMiss=Sales_Amount_sum.101 TO Sales_Amount_sum.705(SYSMIS).
 

COMPUTE NumCats = 21 - #NumMiss.
 

RECODE Sales_Amount_sum.101 TO Sales_Amount_sum.705 (SYSMIS=0).
 

* ratio = ratio1 to ratio21.
 

DO REPEAT numerator = Sales_Amount_sum.101 TO Sales_Amount_sum.705

 / ratio = Sales_Ratio.101, Sales_Ratio.102,

 Sales_Ratio.103, Sales_Ratio.201,

 Sales_Ratio.202, Sales_Ratio.203,

 Sales_Ratio.204, Sales_Ratio.205,

 Sales_Ratio.301, Sales_Ratio.401,

 Sales_Ratio.402, Sales_Ratio.403,

 Sales_Ratio.501, Sales_Ratio.502,

 Sales_Ratio.503, Sales_Ratio.601,

 Sales_Ratio.701, Sales_Ratio.702,

 Sales_Ratio.703, Sales_Ratio.704,

 Sales_Ratio.705.

 COMPUTE ratio = numerator / Total_Spend.

END REPEAT PRINT.
 

Get File = Customers.
 

DATASET NAME Customers WINDOW=FRONT.
 

* Mixed Case.
 

COMPUTE City = CONCAT( CHAR.SUBSTR(City,1,1) ,

LOWER(CHAR.SUBSTR(City,2)) ).
 

* Domain Name.
 

COMPUTE #At_Loc=CHAR.INDEX(EmailAddress,'@').

COMPUTE #Period_Loc=CHAR.RINDEX(EmailAddress,'.').

COMPUTE #Domain_Length = (#Period_Loc-#At_Loc)-1.
 

STRING Domain(A16).

COMPUTE Domain=CHAR.SUBSTR(EmailAddress,#At_Loc+1,#Domain_Length).

EXECUTE.
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* Zip Code.
 

STRING  #ZipCode2 (A5).

COMPUTE #ZipCode2=STRING(ZipCode,F5).

STRING Zip5(A5).

COMPUTE Zip5= CHAR.LPAD(LTRIM(#ZipCode2),5,'0').
 

STAR JOIN

  /SELECT t0.Gender, t0.GivenName, t0.MiddleInitial, t0.Surname,

t0.StreetAddress, t0.City,

t0.State, t0.Country, t0.EmailAddress, t0.TelephoneNumber, t0.Birthday,

t0.CCType, t0.CCExpires,

t0.UPS, t0.Domain, t1.Sales_Amount_sum.101,

t1.Sales_Amount_sum.102, t1.Sales_Amount_sum.103,

t1.Sales_Amount_sum.201, t1.Sales_Amount_sum.202,

t1.Sales_Amount_sum.203, t1.Sales_Amount_sum.204,

t1.Sales_Amount_sum.205, t1.Sales_Amount_sum.301,

t1.Sales_Amount_sum.401, t1.Sales_Amount_sum.402,

t1.Sales_Amount_sum.403, t1.Sales_Amount_sum.501,

t1.Sales_Amount_sum.502, t1.Sales_Amount_sum.503,

t1.Sales_Amount_sum.601, t1.Sales_Amount_sum.701,

t1.Sales_Amount_sum.702, t1.Sales_Amount_sum.703,

t1.Sales_Amount_sum.704, t1.Sales_Amount_sum.705,

t1.Total_Spend, t1.NumCats, t1.Sales_Ratio.101,

t1.Sales_Ratio.102, t1.Sales_Ratio.103,

t1.Sales_Ratio.201, t1.Sales_Ratio.202,

t1.Sales_Ratio.203, t1.Sales_Ratio.204,

t1.Sales_Ratio.205, t1.Sales_Ratio.301,

t1.Sales_Ratio.401, t1.Sales_Ratio.402,

 t1.Sales_Ratio.403, t1.Sales_Ratio.501,

t1.Sales_Ratio.502, t1.Sales_Ratio.503,

t1.Sales_Ratio.601, t1.Sales_Ratio.701,

t1.Sales_Ratio.702, t1.Sales_Ratio.703,

t1.Sales_Ratio.704, t1.Sales_Ratio.705,

    t0.Zip5

  /FROM * AS t0

  /JOIN 'Media_Trans_AGGR' AS t1

    ON t0.Customer_ID=t1.Customer_ID

  /OUTFILE FILE=*.
 

SAVE OUTFILE='/Users/KMcCormick/Documents/Wiley SPSS Stats

/Syntax Chapter/Syntax Chapter Complete.sav'

  /COMPRESSED.
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When I first started using SPSS Statistics, the version of the software that my 
university supported only consisted of a blank screen where we had to enter 
in our data and type command syntax to run any routine. Needless to say, I 
did not like using SPSS.

Some years later, still as an undergraduate student, I was working on a consult-
ing project for which, among other things, we had to use The Sixteen Personality 
Factors Questionnaire (16 PF) to predict career interest scores on both the Strong 
Interest Inventory (SII) and the Campbell Interest and Skill Survey (CISS). At 
first this seemed like an easy enough task; I had to build a linear regression 
model, using all 16 personality factors, to predict interest in each career (of 
which several hundred careers exist between the two tests).

Using a newer version of SPSS Statistics (that had menus and windows), I ran 
my first regression, I looked over the results, and everything seemed okay. I ran 
a second regression, I looked over the results, and everything seemed okay. I did 
this a few more times and then I realized that this project was going to take a 
lot longer than I originally thought, unless I resorted to my old “friend” syntax.

So I rebuilt my first regression using menus and windows, clicked the Paste 
button to open the Syntax Editor, and then I copied my syntax and pasted it 
several hundred times within the Syntax Editor. Then I changed the name of 
the dependent variable for each equation, ran the syntax, saved the syntax and 
output files, and I was done in less than an hour; or so I thought.

C h a p t e r 

17
automate Your analyses with 

SpSS Syntax and the Output 
Management System 
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The final piece of this project was that I needed to take the regression 
 co-efficients and do some additional analyses. Put in simple terms, I needed to 
take SPSS output and convert it into SPSS input (data). I did not know how to 
do this; nor did anyone I asked. It should have been easy to simply move data 
from one screen over to another, and yet there was no way to do this. So, did 
I enter all of these coefficients back into SPSS by hand? No, I managed to copy 
and paste them into SPSS Statistics, but first I had to copy the coefficients table 
into Notepad to make the table editable (back then the output was not as edit-
able like it is now). Then I had to copy the editable table into Excel so I could 
remove all the other output that I did not need, and this way I only kept the 
regression coefficients. From there I was able to bring the data back into SPSS 
so that I could do my additional analyses.

I never forgot this experience. Some years later, I was working on my dis-
sertation, trying to validate a creativity measure I had developed. In this case 
I had to obtain the correlation between my measure and each of the other 
creativity measures that had been administered. That is, I simply used the 
Bivariate Correlations procedure. I also wanted to determine the average cor-
relation between my measure and all of the other creativity measures. This 
is not as easy to do, because again, I had to take SPSS output (in this case the 
actual correlation coefficients) and convert it into SPSS input (data), so that I 
could obtain a mean correlation. By this time, however, SPSS Statistics version 
12 included a technique called the Output Management System (OMS), which 
among several other things, allows users to take SPSS output and convert it 
into data.

In this chapter we discuss the basics of the output management system and 
go over an example of how to use this technique.

Overview of the Output Management System

The Output Management System enables users to automatically write selected 
types of output to different formats. The supported formats include SPSS Statistics 
data, Viewer files, and Web Reports files, as well as Word, Excel, XML, text, PDF, 
and HTML files. This means that the OMS provides a way to automatically write 
pivot table output from a procedure (for example, Correlations or Regression) to 
files in one of these formats. This enables SPSS Statistics users to use the OMS 
as a way to export output or just use the output as input in subsequent analyses 
(you can even do bootstrapping this way if you’d like).

Additionally, the OMS facility can also automatically exclude selected types 
of output from the Output Viewer, so that you do not need to see logs, or notes, 
or case processing summary tables, for example. This option to exclude certain 
types of output can be useful if you want to save only selected types of tables in 
your SPSS Statistics Viewer. For example, if you only want to save the coefficients 
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table from the regression procedure, you can use the OMS to exclude all other 
types of output from regression.

Although you can use the OMS facility to automatically send output to different 
destinations, it is not designed to be a replacement for the SPSS Statistics Export 
facility. The main purpose of the OMS is to turn tabular output automatically into 
an SPSS data file, an option that is unavailable in the Export facility. Then after 
saving pivot table output into SPSS Statistics data files, you can use that output as 
input in subsequent commands or sessions. It can also save output into the XML 
workspace where it can be accessed through Python, R, or Java programmability.

The Output Management System can be run through either menus or SPSS 
syntax. Let’s go through an example of how to use the OMS. In this example 
we will use the file satisf.sav, which you can find in the following location: 
C:\Program Files\IBM\SPSS\Statistics\22\Samples\English.

Running OMS from Menus

The satisfy.sav file has several satisfaction variables. We will use SPSS Statistics 
to run correlations among these satisfaction variables and then we will use the 
OMS to capture these correlations and send them back into SPSS Statistics as 
a data file. After we have the correlation coefficients as data, we will be able to 
determine the average correlation among the variables. That is, we will get the 
average correlation between one measure and all the other measures.

 1. To begin, open the OMS control panel by selecting the OMS Control Panel 
option from the Utilities menu, as shown in Figure 17-1.

Figure 17-1:  Utilities menu options

You can use OMS control panel, shown in Figure 17-2, to both start and 
stop the routing of output or to exclude types of output from the Viewer. 
The OMS accomplishes these tasks by specifying the output types. These 
output types are associated with SPSS Statistics commands to explicitly 
identify any output that has been generated.
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Figure 17-2:  Output Management System Control Panel dialog

After the output to be manipulated has been identified, the user speci-
fies what actions should be taken. These are specified as OMS Requests 
from the OMS Control Panel. When the specific output is generated, the 
requested action is taken.

 2. Now add an OMS request. To do so, you must first specify the type or types 
of output you want to work with by selecting the Output Type. The listing 
in the Control Panel dialog (Figure 17-2) includes all the standard types of 
output that SPSS Statistics creates in the Viewer window. Then you select 
one or more Command Identifiers, which are available for all statistical and 
graphing procedures that produce blocks of output in the outline pane of 
the Viewer. Finally, you select one or more table subtypes for the selected 
commands. You can make more than one selection in all three lists.

Automatically Writing Selected Categories of Output to 
Different Formats

Because in this example we are focusing on correlations:

 ■ Select Tables in the Output Types box.
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 ■ Select Correlations in the Command Identifiers box.

 ■ Select Correlations in the Tables Subtype for Selected Commands box.

The completed Output Management System Control Panel is shown in  
Figure 17-3.

Figure 17-3:  Completed Output Management System Control Panel dialog

OMS LabeLS

Occasionally you might not know all the information (or it may not be available) to 
specify an Output Type and/or Command Identifiers and/or Table Subtypes for the 
Selected Commands option. In these cases you can identify output by using its OMS 
Label.

You can copy OMS labels by right‐clicking any output item from the Outline pane of 
the Viewer (see Figure 17-4) and then choosing Copy OMS Label.

After you have copied the OMS label, you can paste it into the OMS Control Panel 
directly by clicking the Labels radio button and placing the label there (see  
Figure 17-5). Now the object is identified and you can manipulate it.

Continues
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Figure 17-4:  Outline pane options

Figure 17-5:  OMS label added

(continued)

Now that we have specified the type of output we are interested in (correla-
tions), we need to specify the destination of the output.

Once output has been identified, the user then needs to decide what action 
should be taken once the output is generated. Two actions can be specified (see 
the Output Destinations section in Figure 17-3):

 ■ Suppressing output

 ■ Automatically writing selected categories of output to different formats

Suppressing output is useful if a minimal amount of output is required. For 
example, maybe only regression coefficient tables are required from the Regression 
procedure as opposed to the many tables of output that are normally generated.
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This option can be very useful when planning to export output. If a lot of 
output is generated, rather than going through the generated output and remov-
ing what is not needed before exporting, you can do this more efficiently by 
suppressing what is not needed as the output is created.

Writing selected categories of output to different formats can be very useful 
if tabular output requires further manipulation or if output needs to be sent 
to an alternative format. When exporting pivot tables they can be handled 
in several ways. For example, if exporting a frequency table back to an SPSS 
Statistics data file, the table columns become the variables and the table rows 
become the cases in the newly created file. This is the default operation but this 
structure can be changed.

Next, calculate an average correlation:

 1. We need to get the correlations into a data file and then use an appropriate 
set of commands for the calculation:

 a. Select File in the Output Destination box.

 b. Click the Options button.

 c. Select SPSS Statistics Data File from the Format drop‐down list (see 
Figure 17-6).

Figure 17-6:  OMS: Options dialog

At this point we have specified that any correlations we run will be sent 
to an SPSS Statistics data file. Note that we could have sent the output to 
various other file types.
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 2. Now we need to name the new file with the correlations:

 a. Click Continue to open the Output Management System Control Panel.

 b. Click the Browse button next to the File option (see Figure 17-7).

 c. Name the new file Correlations.

 d. Click Save.

Figure 17-7:  Output destination added

 3. The last thing we need to do is add the request:

 ■ Click the Add button to see the new request in the Requests list (see 
Figure 17-8).

We have now created our first OMS request. Each OMS request remains 
active until it is explicitly ended or when the session ends. A destination file 
that is specified as an OMS request is unavailable to other procedures and other 
applications until the OMS request is ended.
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N O t e  It is important to remember that while an OMS request is active, the speci-
fied destination files are stored in memory (RAM), so active OMS requests that write 
a large amount of output to external files may consume a large amount of memory. 
However text format files are streamed to disk rather than being kept in memory.

Suppressing Output

Let’s create a second OMS request (see Figure 17-9). In this request we show how 
to suppress output. The Case Processing Summary table and the Notes table 
are not essential to the output from any SPSS Statistics procedure, although the 
Case Processing Summary does show the number of valid and missing cases 
for an analysis. We will suppress these two tables for all commands with the 
following steps:

 1. Select Tables in the Output Types box.

 2. Select all commands in the Command Identifiers box (you can use Ctrl+A  
since there is no button that automatically selects all the commands).

Figure 17-8:  New OMS request added
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 3. Select Case Processing Summary and Notes in the Table Subtypes for 
Selected Commands box.

 4. Select Exclude from Viewer check box in the Output Destinations box.

 5. Click the Add button.

Figure 17-9:  Second OMS request added

We now have multiple OMS requests that will be active once we click OK, 
and the requests are independent of each other. So it is possible that the same 
output can be routed to different locations in different formats.

To create and run the requests, follow these steps:

 1. Click OK.

Once OK is selected in the OMS Control Panel, the request will be created.

The Summary alert window (Figure 17-10) informs us that the request 
will be created and active until we end it or end the session. Now that the 
OMS is activated, the next time the appropriate output is generated the 
specific action will take place.
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 2. Click OK.

There is no Viewer output from the OMS Facility. To determine whether 
the requested actions are working properly, we’ll run a Crosstabs and a 
Bivariate procedure, as shown in Figure 17-11.

 3. Click Analyze ➪ Descriptive Statistics ➪ Crosstabs.

 4. Place Age Category in the Row(s) box.

 5. Place Gender in the Column(s) box.

Figure 17-10:  OMS Control Panel: Summary dialog

Figure 17-11:  Crosstabs dialog
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 6. Click OK.

If the OMS request was successful, the Viewer will not display the Notes 
table or the Case Processing Summary table.

Notice that, as shown in Figure 17-12, the request was successful. The Notes 
and the Case Processing Summary tables are not listed in the Outline pane nor 
displayed.

Figure 17-12:  Output without Case Processing Summary table

Now we need to request the Correlations procedure with the appropriate 
variables:

 1. Click Analyze ➪ Correlate ➪ Bivariate to open the Bivariate Correlations 
dialog shown in Figure 17-13.

 2. Move the six satisfaction variables into the Variables box.

At this point we could click OK, and we would create a correlations table like 
the one shown in Figure 17-14, where we see the correlations between all the 
bivariate combinations.
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Figure 17-13:  Bivariate Correlations dialog

Figure 17-14:  Traditional correlations output

This table is certainly useful, but what if we only wanted to see the correla-
tions between the Overall Satisfaction variable and the other variables; that is, 
we only want to see the last column on the table?
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The easiest way to request this is by using syntax. To do that, follow these steps:

 1. Click Paste.

The Paste button opens up the Syntax Editor and now we have more 
options than those available through menus and windows.

 2. Type the word with between the variables quality and overall, make 
sure the variables are in the order as shown in Figure 17-15.

Figure 17-15:  Manipulated correlations syntax

In this situation, the keyword with tells SPSS that it should correlate all 
of the variables to the left of the keyword with all of the variables to the 
right of the keyword.

 3. Click Run to display the Correlations output shown in Figure 17-16.

Figure 17-16:  Manipulated correlations output
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Now that we have the correlations we want, we must end the OMS request to 
close the newly created dataset so that we can open it in a Data Editor window:

 1. Select OMS Control Panel from the Utilities menu to display the screen 
shown in Figure 17-17.

Figure 17-17:  Ending OMS requests

The requests that we made are still available.

 2. To end the requests, click End All.

 3. Click OK.

We have now ended the two OMS requests (see Figure 17-18).

Figure 17-18:  OMS Control Panel: Summary dialog

 4. Click OK.
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Working with OMS data

Now we need to open the new Correlations dataset, shown in Figure 17-19. 
Navigate to where you saved the Correlations.sav dataset and open it.

Figure 17-19:  Correlations dataset

There are identifiers in the first few columns for the Table, the Command, 
the Subtype, and the Label (the selections we made in the OMS Control Panel). 
This is followed by variables that record elements of the table itself.

The variable label is repeated three times because three statistics are associ-
ated with each variable (Pearson Correlation, significance of the correlation, and 
sample size for the correlation). In this example, we will only use the correlation 
itself. With the correlations in the data file, we can now calculate an average 
correlation. To do so, we will only use (select) the cases identified by the text 
Pearson Correlation in Var2:

 1. Click Data ➪ Select Cases.

 2. Click If condition is satisfied, then click the If button.

 3. Place Var2 in the text box, and then add an equal sign.

 4. Add the text “Pearson Correlation” after the equal sign, including the 
quotes, as shown in Figure 17-20.
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 5. Click Continue.

 6. Click OK.

We are now ready to calculate the average correlation between the variable 
Overall Satisfaction and all the other satisfaction variables. We will use the 
Descriptives procedure to report on the average for the correlations variables:

 1. Click Analyze ➪ Descriptive Statistics ➪ Descriptives.

 2. Place the variable Overall Satisfaction in the Variables box as shown in 
Figure 17-21.

Figure 17-20:  Select Cases: If dialog

Figure 17-21:  Descriptives dialog
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 3. Click OK to display the Descriptive Statistics table shown in Figure 17-22.

Figure 17-22:  Average correlation

We are now able to answer our question. We can see that the correlations 
range from .233 to .602 and that the average correlation between the variable 
Overall Satisfaction and the other satisfaction variables is .49.

Note that if we had asked for the traditional correlations output as shown 
in Figure 17-14, we would have had to specify that a correlation of one (the 
diagonal) was missing (by defining missing values using the Variable View 
tab of the Data Editor). Additionally, if there had been negative correlations we 
would have had to take the absolute value of the correlations (by using the ABS 
function in the Compute Variable dialog).

Running OMS from Syntax

If you want to automate the OMS facility, you can run it from syntax. The syntax 
can be pasted from the OMS Control Panel. For example, the OMS command 
shown in Figure 17-23 was pasted from the previous example.

Figure 17-23:  OMS syntax

Within the OMS command, the SELECT subcommand specifies that pivot 
table output will be written. The IF subcommand gives the specific class of 
pivot table. The COMMANDS list indicates the Correlations command and the 
SUBTYPES list restricts the tables written to the Correlations pivot tables. The 
DESTINATION subcommand is used to specify the output file format (here SAV, or 
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an SPSS data file), with the file destination listed in the OUTFILE subcommand 
(here the open dataset "Correlations").

If you choose to build the OMS command directly, an OMS Identifiers dialog 
is available to aid you in specifying just which output types and subtypes from 
which commands should be written.

To help build your OMS command syntax, the OMS Identifiers dialog, shown in 
Figure 17-24, can paste the command and subtype identifiers into a Syntax window.

Figure 17-24:  OMS Identifiers dialog

 1. Click Utilities ➪ OMS Identifiers.

 2. Select Correlations in the Command Identifiers list.

The OMS Identifiers dialog allows users to receive some help if you want to 
build an OMS request directly within syntax.

The following are some additional points to bear in mind regarding OMS 
requests directly within syntax:

 ■ Syntax users should not assume that the name of a command is also the 
OMS command identifier. In most cases it is, but this is a common source 
of error.

 ■ Extension commands do not appear in the Control Panel or OMS Identifiers 
tables, but their output is subject to OMS just like built‐in commands. Users 
should right click in the outline on an instance of the output to select and 
pick the command and table identifiers, as appropriate. In fact, this can 
be more convenient than using the OMS Identifiers table.

 ■ If the target output is empty, it is often because one of the identifiers was 
incorrect.

 ■ If the OMS requests will need to operate independently of the current out-
put language setting, users should avoid using the labels choice. The OMS 
Command and Subtype identifiers are independent of the output language.
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SPSS Statistics has a large number of statistical procedures and other com-
mands built in, but there is always a need for more. Starting with version 14 
in 2006, SPSS Statistics, then just called SPSS, added the ability for users to use 
standard programming languages within the product to extend its capabilities. 
First Python, then R, and then Java were added in subsequent releases. This is 
referred to as programmability.

Programmers can write and run code in these languages directly, but program-
mability also provides a way to create new commands that look to the user like 
built-in commands. Called extension commands, they can have a dialog box inter-
face, traditional syntax, and produce traditional pivot table and graphical output 
in the Viewer. They can greatly expand the built-in capabilities of SPSS Statistics.

This chapter explains what an extension command is and then illustrates the use 
of three extension commands available for statistical analysis and one for computa-
tion on pivot tables. The first three do not require any knowledge of Python or R to 
use them; the fourth one uses a snippet of Python with the extension command.

What Is an Extension Command?

Python, R, and Java programmers can run their programs directly within  
the regular syntax stream by enclosing the code in a BEGIN PROGRAM ... END 
PROGRAM block. The code can use any of the facilities of these languages and uses 

C h a p t e r 
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Statistical extension Commands 



442 part IV ■ Syntax, Data Management, and programmability

libraries of IBM application programming interfaces (APIs) provided via a plug-
in for the language. A plug-in is a module that is installed in the main product.  
The APIs are important to the programmers but do not need to be learned 
by those using programs written by others. Programs can access and modify 
the variable dictionary and data, build and run regular Statistics commands, 
manipulate the output, and do other tasks. Programming and Data Management 
(SPSS Inc., 2016), available from the SPSS Community website, contains many 
examples of solving SPSS Statistics tasks with programmability.

These programs add great power to do things that are difficult or impossible 
to do with standard syntax, but they require some knowledge of those program-
ming languages. The extension command mechanism makes it possible to cre-
ate commands that can be used by general users without any such knowledge 
because they behave like the built-in commands.

For people who want to create extensions, all the necessary information is 
available from the Help menu. The Custom Dialog Builder, which is included 
in Statistics Base, provides an easy, no-programming way to create a dialog box 
interface. A number of utility modules are provided to facilitate processing the 
command specifications. Extension bundles, which are the main way to package 
and distribute extensions, are created using Statistics Base.

People who just want to use already developed extensions can download 
and install them using the Statistics menus or update them directly from the 
website if they are not included in the many that are installed with Statistics. 
Extensions written in R require also that R and the R Essentials be installed 
separately from Statistics. At the time of this writing, over 100 extension com-
mands, including those discussed in this chapter, have been created and made 
available by IBM and other authors. Forums and Q&A pages are available on 
the community site for discussing extensions.

N O t e  In Statistics 22 and 23, use Utilities ➪ Extension Bundles. Starting with ver-
sion 24, use Extensions ➪ Extension Hub. The IBM SPSS Predictive Analytics website is 
at https://developer.ibm.com/predictiveanalytics. The R Essentials can 
be obtained from that site. R can be obtained from the CRAN site. Users can also install 
extensions not available from the website using these menus.

The three extension procedures discussed in this chapter are SPSSINC TURF 
(Analyze ➪ Descriptive Statistics ➪ TURF Analysis), SPSSINC QUANTREG (Analyze 
➪ Regression ➪ Quantile Regression), and STATS SVM (Analyze ➪ Classify ➪ 
Support Vector Machines). SPSSINC TURF is implemented in Python and is included 
in the standard Statistics installation, while the other two are implemented in 
R and are included in the installation of the R Essentials as of version 23, but 
must be installed from the website for earlier versions. After TURF is installed, 
you would see Figure 18-1 on the Analyze menu.

https://developer.ibm.com/predictiveanalytics
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Figure 18-1:  The menus show the installed extensions. Extension commands have a white  
“+” icon.

The IBM SPSS Predictive Analytics website downloads section allows you 
to filter and search the available extensions and install or update the ones 
you want. For example, you might see Figure 18-2 in the downloads section 
of the site.

Figure 18-2:  Available extensions are listed on the website.

The command names for extensions created by IBM always start with SPSSINC 
or STATS except for a few very early extensions that have one-word names 
such as FUZZY and GATHERMD, so you can usually tell that a command is an 
IBM extension by the first word of the name. Extensions are not documented 
in the IBM SPSS Statistics Command Syntax Reference, but browser-based help 
is available by pressing F1 on the command in the Syntax Editor in version 
23 or later. In earlier versions run COMMAND NAME/HELP.

Unlike the built-in commands in Statistics, extensions are delivered in source 
code form, so users with the requisite skills can read the extension source code to 
understand nuances not covered in the documentation and can make corrections 
or enhancements on their own. 

Extension commands from IBM are free, and new ones appear often. Look 
for them on the Predictive Analytics Community website or from the extension 
command menus within Statistics.
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TURF Analysis—Designing Product Bundles

TURF (Total Unduplicated Reach and Frequency) Analysis is a technique devel-
oped in market research to solve a class of problems that arise in designing 
bundles of product offerings. For example, suppose you are going to set up small 
shops or carts such as often seen in airports that sell frozen yogurt. You can 
offer only a limited number of flavors. How do you pick a small set of flavors 
in such a way that the most customers possible who come into the shop will 
like at least one flavor and will make a purchase?

In another application, suppose you are offering a conference in several loca-
tions, and you want to maximize the probability that potential attendees will 
attend one of the locations. A third application is media advertising. Suppose 
you want to advertise in a set of magazines or on websites in such a way as to 
maximize the probability that a potential buyer will see at least one ad. Problems 
such as these are common in marketing.

Reach is the percentage of buyers who like at least one item in the bundle. 
The frequency is the total number of likes for a bundle. The goal is to maximize 
the reach.

The data on which to base the bundle selection is information on preferences 
from a survey or other source such as historical purchase records. For example, 
you might have a survey in which people rate various yogurt flavors, or a sur-
vey indicating whether they would or would not attend a seminar in various 
locations. In a media example, you would have data on what magazines, TV 
channels, or Internet sites people visit.

The obvious bundle design strategy, considering the yogurt shop example, 
would be to pick the most popular flavor, then the next most popular flavor, 
and so on. In the media example, you might pick the most watched TV station, 
the next most watched station, and so on. This will generally not produce the 
optimal combination, however, because of overlapping preferences.

Consider the preference sets represented in Figure 18-3.

Figure 18-3:  Two preference sets

The circles represent the sets of survey respondents who like options a, 
b, c, and d. The sizes represent the number in the set who like the item. In 
the left figure, the sets of respondents are disjoint. In other words, no one 
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likes more than one item. Therefore, one would maximize the reach by first 
choosing the largest circle, which is item a, then item b, and so on. The naïve 
strategy works.

In the more realistic figure on the right, respondents’ preferences overlap. 
Many people who like item a also like item b, and some like a, b, and c, while 
d has a disjoint set of respondents. Even though the size of the group that likes 
item d is the smallest, it might be a better choice than group c likers because 
of the overlap.

The reach is the set union of liking respondents for the combined options. 
The union of the a and b likes would be a set containing all the respondents 
who like either item a or item b or both. If there are 100 a likers and 50 b likers, 
the union will have between 100 and 150 respondents. If all b likers also like a, 
the size will be 100, and if there is no overlap, the size is 150. The computational 
problem in calculating the best reach bundle is, given a set of respondent prefer-
ences and the number of items to go into a bundle, to find the combination of 
items that maximizes the reach; that is, the combination with the largest union 
of liking respondents. In this four-item example, if the bundle size is three, the 
possibilities are (a, b, c), (a, b, d), (a, c, d), and (b, c, d). It is computationally easy 
to calculate the union of respondents in each group. Although Statistics does not 
have a set data type, we could use the OR operator in COMPUTE. For example, the 
likes for the bundle (a,b,c) could be computed as shown in Figure 18-4, assum-
ing that the variables are coded as 0 and 1.

Figure 18-4:  Computing reach manually

Even if we want to know the reach for sets of size 1, 2, and 3, there are only 
14 set unions to calculate (including the trivial unions of size 1).

Suppose, however, that we have more items. With 20 items, we have to 
calculate 1,350 set unions, and the problem size grows rapidly as the num-
ber of items increases. The SPSSINC TURF extension command (Analyze ➪ 
Descriptive Statistics ➪ TURF Analysis), which is implemented in Python, 
does these calculations efficiently. The input data for TURF is one variable for 
each item. In the simplest case these variables are like/dislike dichotomies 
represented as 0 or 1 values. If we had ratings, we would specify the rating 
values that constitute a like. For this example, we have 20 variables, x1 to x20, 
and 280 respondents who evaluated each flavor. (The data for this example 
is proprietary and not publicly available.) Looking at the “like” frequencies 
as produced by TURF, we see that item x12 is the most liked at 51.8%, and 
item x8 is the least liked at only 2.9%. The naïve strategy for picking the best 
items would add x18 for the best two, x11 for the best three, and x14 for the 
best four. Figure 18-5 shows the single-variable frequencies in order of reach.
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Figure 18-5:  Maximum Group Size: 1. Reach and Frequency

Figure 18-6 shows the SPSSINC TURF dialog.

Figure 18-6:  The TURF dialog box

All twenty variables are selected; we ask for the best four combinations but 
ask for the best five for each best-n output. This is useful for seeing how close 
the top contenders are to each other, because there may be other considerations 
in choosing the bundle. The variables are coded as 0/1, so the positive response 
value of 1 is appropriate. If variables were coded, say on a 1 to 5 scale, we might 
list 4 and 5 here to count the top two ratings. We can also specify a minimum 
threshold to discard variables that have virtually no chance of making it into 
a best combination. We discuss heats later: They are not used for this example.
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The Times to Remove Top Variable and Repeat Run control allows you to 
explore subgroups. It removes the single best variable from the collection and 
runs TURF again using only those cases where the best variable did not have a 
positive response. For example, if the best flavor is vanilla, it would run TURF 
excluding vanilla as a flavor on the cases that do not like vanilla. This can be 
repeated, each time removing the then-best variables cumulatively. The results 
are generally very similar to the normal TURF results. By default, no removal 
cycles are performed.

The output displays the best n combinations for sizes one through four. For 
size two, we get the results shown Figure 18-7.

Figure 18-7:  Maximum Group Size: 2. Reach and Frequency

Variables x11 and x12 are selected even though x11 was not the second-best 
variable. It has noticeably fewer positive responses than x18. x11 and x12 were 
selected because of the overlapping preferences. Of those who like x12, 40% also 
like x18 while only 30% like x11. The difference in reach, however, for x11 and 
x12 versus x12 and x18 is small. Skipping to the best-four table shown in Figure 
18-8, we see a reach of 99.6% using x11, x12, x17, x2, although x2 was eighth in 
the individual variable order.

Figure 18-8:  Maximum Group Size: 4. Reach and Frequency

Although it did not happen here, it can happen that a lower ranked vari-
able can actually drive out a higher one as the size of the variable combination 
increases. This means that another naïve search strategy is also not optimal in 
general. That is, start with the best variable; then add the variable that increases 
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the reach the most given the first variable; then add the variable that increases 
the reach the most given the first two, and so on. Because lower ranked variables 
can drive out higher ones and give a better reach, this naïve search strategy can 
also fail to produce the optimal result. To get the optimal result, it is necessary 
to allow variables to be removed as the bundle size increases.

This analysis presumes that the bundle size is fixed; however, TURF shows 
the effect of varying the size, which can help determine the optimal size. Figure 
18-6 shows how the reach and frequency change as the group size increases. 
The reach and frequency increase with the group size, but diminishing returns 
set in. Figure 18-9 is the reach and frequency plot for bundle sizes of one to ten. 
Although the frequency continues to increase, the reach has essentially reached 
its maximum at size 4, so the return to increasing the number of items beyond 
that point is negligible unless having a higher frequency (number of likes) given 
the reach is important.

Figure 18-9:  Effect of group size

It may happen that data is available on the value to the business of respondents. 
For example, if purchase history is available, you may want to weight respondents 
by their purchase frequency or purchase value. (RFM analysis, which is available 
in the Direct Marketing option, can help define the best customers.) You can do 
this by assigning the value as the case weight. Another type of weighting is of 
the variables. Some items might be more profitable than others, for example. 
TURF allows variable weights to be assigned using the Weights subdialog or the 
equivalent IMPORTANCE subcommand. When importance weights are assigned, 
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the mean and total importance for each combination is displayed, but the weight 
is not used in the optimization. By displaying a number of combinations for 
each bundle size, the impact of the importance can be seen.

Sometimes certain variables are required in the selected bundle regardless 
of their effect on the reach. This might happen if an incremental change is to be 
made to an existing offering. By listing the required variables first in the dialog 
box and specifying the number of these in the Number of Analyze Variables 
Always Required field, only bundles containing those variables will be consid-
ered. (Older versions of this procedure do not offer this option, but the installed 
version can be updated if necessary as described above.)

It will often happen that the top contender combinations will be very close 
in reach, so other considerations may be used to make the final choice. In using 
the TURF results, it is important to realize that TURF may overfit the survey 
data, so the results with new respondents may not perform as well as the results 
on the sample used for fitting. It may be wise to construct a random holdout 
sample to test the TURF results on, if enough survey data is available. At this 
writing, TURF does not do this for you, but you could do it by first partitioning 
the dataset, holding out, say, 30% of the data (Data ➪ Select Cases ➪ Random 
Sample of Cases); then running TURF; then switch to the holdout sample; and 
finally, use code like the preceding example for the (a, b, c) bundle. Doing this 
for the top few selected bundles would be a sufficient reality check. This func-
tionality may be incorporated into TURF at a future time.

Large Problems
As described earlier, the computational burden of enumerating all possible 
bundles grows rapidly as the number of variables increases and makes TURF 
impractical. In addition, the degree of overfitting is likely to grow with the 
number of variables. The Heats mechanism in TURF overcomes the computa-
tional burden problem while producing answers that are only approximately 
optimal. In practical experience, the Heats approach is usually very close to the 
optimal solution.

Heats work the way you would expect in a tournament. First, the variables are 
assigned randomly to one of a number of heats. The number of heats is chosen 
so that the size of the heats is small enough that the TURF calculation can be 
carried out quickly. Then the TURF analysis is carried out for each heat, and the 
winning combination or the first few combinations of variables are collected 
from each heat, and the second round TURF analysis takes place with those 
inputs. In principle there could be further rounds, but problems large enough 
to need more rounds are unlikely to be encountered in practice. The Heats 
subdialog or the corresponding HEATS subcommand allows you to change the 
default size, 18, and the default number of winning combinations, 2, from each 
heat or to not use heats at all. The defaults avoid the computational explosion, 
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keep the size of the final round manageable, and capture most of the power of 
the best variable combinations.

Using heats, the computation time for large problems is dramatically reduced. 
In one large test, the run time was reduced from three days to thirty minutes. 
Just as with sports tournaments, the heat structure does not guarantee that the 
global best winners will be found, but in various tests with real and simulated 
data, the results have been very close. Because the initial assignment of variables 
to heats is random, running TURF more than once can be useful in assessing 
the results. This is practical because of the large reduction in run time.

Quantile Regression—Predicting Airline Delays

Ordinary regression estimates the mean of a continuous dependent variable 
conditional on a set of explanatory variables:

Y X= +β 

where Y is an Nx1 vector of the dependent variable values, X is an Nxk matrix 
of explanatory variables, and  is an Nx1 vector of independent, identically 
distributed unobserved random errors that is independent of the explanatory 
variables and has variance σ2. Given a set of X values, the distribution of Y has 
conditional mean Xβ. If, as conventional, we assume that  has a Normal distribu-
tion, then Y, conditional on X, does also. The parameters are typically estimated 
by Ordinary Least Square (OLS) using a procedure such as REGRESSION in 
Statistics.

This model works well in a wide variety of real applications, but sometimes 
we are interested in aspects of the conditional distribution of Y other than the 
mean but do not want to depend on the normality assumption for the error 
term or to assume that the X variables have the same effect throughout the 
distribution of Y. For example, suppose you are an airport manager, an airline 
planner, or a traveler who needs to make a connection at a particular airport. 
You want to know how much time should be left between flights so as to give 
travelers a high probability of making the connection. In addition to the known 
time required to get from arrival to departure gate, arrival delays may occur.

Arrival time delays depend on a number of factors such as the time of day, 
the day of the week, the specific airline, air traffic, weather, and the arrival and 
destination airports. We can model the average arrival delay of an inbound flight 
as a function of such variables using ordinary regression, but the question of 
interest here is how often the arrival delay will be great enough that the traveler 
will miss his or her connection. Quantile regression can help us to answer that 
question. Instead of being interested in the mean arrival delay of the inbound 
flight, we would like to estimate more of the delay distribution, say, the 90th 
percentile conditional on our explanatory variables. We may want to estimate 



 Chapter 18 ■ Statistical extension Commands  451

many quantiles of the arrival delay distribution. If the ordinary regression 
assumptions are satisfied, we could apply OLS and add the appropriate quan-
tile of the error distribution, but we may not want to make those assumptions. 
We might also consider logistic regression, cutting the distribution at various 
amounts of delay, but quantile regression gives us the most comprehensive 
picture of the delay distribution, and it allows us to test whether the effect of 
the explanatory variables differs across quantiles.

As a practical matter, there are other complications beyond the scope of this 
example such as correlation between arrival and departure delays at the connec-
tion airport, but the example focuses on the difference between the traditional 
regression approach and the quantile regression approach.

The data for this example comes from the United States Department of 
Transportation Bureau of Transportation Statistics. The dataset records arrival 
and departure information for all commercial flights in the U.S. A convenient 
source is available here: http://stat-computing.org/dataexpo/2009/. The 
entire dataset is very large. Table 18-1 contains a description of some of the vari-
ables as modified for this example. CRS stands for Computerized Reservation 
Systems, that is, scheduled times. You can find detailed definitions of the original 
variables here: http://aspmhelp.faa.gov/index.php/Types_of_Delay. We will 
use data for one year and focus on the two very busy Chicago airports, O’Hare 
(ORD) and Midway (MDW), where many transfers take place.

table 18-1:  Variable Definitions

VarIable DeSCrIptION

Month 1–12

DayofMonth 1–31

DayOfWeek 1 (Monday)–7 (Sunday)

DepTime Actual departure time (local, hhmm)

CRSDepTime Scheduled departure time (local, hhmm)

ArrTime Actual arrival time (local, hhmm)

CRSArrTime /CRSArrTimeHr Scheduled arrival time (local, hhmm)/hh

UniqueCarrier/
UniqueCarrierCollapsed

Unique carrier code

ActualElapsedTime In minutes

CRSElapsedTime In minutes

AirTime In minutes

ArrDelay Arrival delay, in minutes

Continues

http://stat-computing.org/dataexpo/2009/
http://aspmhelp.faa.gov/index.php/Types_of_Delay
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VarIable DeSCrIptION

DepDelay Departure delay, in minutes

Origin Origin IATA airport code

Dest Destination IATA airport code

Distance In miles

CarrierDelay In minutes. Delay within control of the carrier

WeatherDelay In minutes. Extreme or hazardous forecasted or actual

NASDelay In minutes. Nonextreme weather, airport operations, traffic

LateAircraftDelay In minutes. Late arrival at a previous airport

The dataset includes delay variables CarrierDelay, WeatherDelay, NASdelay, 
SecurityDelay, and LateAircraftDelay, but they are not reported—that is, 
are missing—unless the arrival delay is at least 15 minutes. These vari-
ables are, of course, not known when planning a trip, and they partition 
the dependent variable, so we will not use them here. Modeling cancel-
lations and diversions might be useful for travelers, but you would miss 
the flight anyway, and these are a very small percentage of the data. Small 
carriers, representing less than 2% of flight volume, have been collapsed 
into an OTHER category, leaving eight categories, and a small number of 
cases with missing data and cases for cancelled or diverted flights have 
been discarded.

Running DESCRIPTIVES on our one-year dataset, we see that it records 7,000,728 
flights. Selecting out only arrivals at Chicago airports (Dest = ORD or MDW), 
we have 419,322 flights. Plotting a population pyramid of arrival delays at 
both airports, we see that the distribution is quite asymmetrical as shown in 
Figure 18-10.

t I p  Data is traditionally saved in an SPSS .sav file, which compresses the data to 
some degree depending on the nature of the variables, but the newer .zsav format 
generally gives much better compression. A .sav file holding all of this data for one 
year is 854MB, while the same data in .zsav format is 275MB—about 1/3 the size. 
However, processing time for a .zsav file may be greater.

Calculating some statistics with SUMMARIZE, we have the results shown in 
Figure 18-11.

This confirms the skewness we see in the graph in Figure 18-10. Notice also 
that the mean delay is much greater at ORD, but the median delay is almost 
the same. These statistics suggest nonnormality of the delays, but we have not 

table 18-1  (continued)
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For airport management study of delays, we are more concerned about 
causes than forecasting, while for traveler decision making, we are more 
interested in forecasting, which requires estimating the independent variable 
values at the time of a particular trip. If we were using the delay variables, 
and not knowing some of these in advance, we might use averages for the 
destination airport. For our regression model, we will use Month, DayOfWeek, 
uniqueCarrierCollapsed, and CRSArrTimeHr as factors, and CRSElapsedTime 
as a covariate. We will save the predicted values for comparison with the 
quantile regression results.

Figure 18-10:  Arrival delays by airport

Figure 18-11:  Arrival Delays by Airport

yet controlled for any variables, and it is normality of the error terms, not the 
distribution of the Y variable that matters for regression.
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The syntax generated from the Analyze ➪ General Linear Model ➪ Univariate 
dialog is shown in the following code snippet:

SORT CASES  BY DEST.
SPLIT FILE BY DEST.
UNIANOVA ArrDelay BY Month DayOfWeek CRSArrTimeHr uniqueCarrierCollapsed
WITH CRSElapsedTime
 /SAVE=PRED(RegPred)
 /PRINT=PARAMETER
 /DESIGN=Month DayOfWeek CRSArrTimeHr uniqueCarrierCollapsed
CRSElapsedTime.

We use UNIANOVA rather than REGRESSION, because it is more convenient for 
handling factors, but the results would be the same if we created the factor 
variable dummies explicitly and used REGRESSION. The data is split by DEST, 
which has values “MDW” and “ORD.”

All of the factors and the covariate are highly significant. We do not show 
all the results here, but to summarize, holding other variables constant, arrival 
time delays for Midway are greatest at 6am–8am, Mondays, and in December. 
Longer flights have fewer delays. For O’Hare, 2am–3am scheduled arrival times 
have large delays, after which 6am–7am is next. Friday is the worst day, and 
December the worst month. Longer flights have lower delays, –.3.96 minutes 
per hour versus –.974 at Midway.

We turn next to quantile regression. The following code snippet shows the 
syntax for the same model generated by Analyze ➪ Regression ➪ Quantile 
Regression:

SPSSINC QUANTREG DEPENDENT=ArrDelay
  ENTER= Month DayOfWeek CRSArrTimeHr uniqueCarrierCollapsed
CRSElapsedTime
    QUANTILES = .5 .7 .9
  /OPTIONS METHOD = BR STDERR = IID MISSING=LISTWISE.

This estimates the 50%, 70%, and 90% quantiles of the arrival delay. With split 
files on, we get separate estimation results for the two airports. We are using the 
default estimation method, which is Barrodale-Roberts (BR), but we are using 
a nondefault method for the coefficient standard errors for reasons that will be 
discussed later. In order to save residuals and predicted values, we would add:

/SAVE PREDDATASET=qrpred RESIDUALSDATASET=qrresids id = id.

We can also test whether the regression coefficients differ for the selected 
quantiles by specifying ANOVA=JOINT or ANOVA=SEPARATE on OPTIONS for a joint 
equality test of all the coefficients or separate tests for each coefficient. If the 
coefficients, apart from the intercept, do not differ, that is, all the quantile lines 
are parallel, the simpler regression model may be adequate.
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Comparing Ordinary Least Squares with Quantile 
Regression Results

We will focus on just the ORD results in this section.
As a first step, we can look at the OLS residual histogram for evidence on 

whether the error distribution satisfies the usual assumption about that distri-
bution. Figure 18-12 shows the residual histogram with a normal curve super-
imposed for regression. Clearly the residuals are not normally distributed.

Figure 18-12:  Regression residuals histogram

One obvious way to compare the results is to inspect the coefficients. For 
prediction purposes, the QR coefficients have the same meaning as from OLS. 
The coefficients for the month factor are displayed in Table 18-2.

table 18-2:  Month Regression Coefficients

MONth OlS QUaNtreG(.5) QUaNtreG(.9)

1 3.62 0 0

2 4.12 3.28 -6.17

Continues
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MONth OlS QUaNtreG(.5) QUaNtreG(.9)

3 -9.488 -6.84 -29.54

4 -14.73 -8.45 -48.67

5 -16.83 -9.27 -49.33

6 -.211 -.361 -20.96

7 -13.81 -8.60 -45.65

8 -21.29 -12.47 -60.30

9 -20.32 -11.97 -54.36

10 -26.87 -13.61 -66.27

11 -26.86 -15.31 -65.41

12 0 -1.66 -4.26

The coefficients are normalized differently by the two procedures. Figure 18-13  
shows a graph of the QUANTREG coefficients against the OLS coefficients for two 
quantiles. While the .5 QUANTREG coefficients track the OLS coefficients fairly 
closely, the .9 coefficients are rather different.

Figure 18-13:  OLS vs. QR coefficients for month

The CRSElapsedTime coefficient is –.066 for OLS, –.003 for QUANTREG(.5),  
and –.061 for QUANTREG(.9) with QUANTREG standard errors of .001 to .005 suggesting 
that the constant effect from OLS is an oversimplification.

table 18-2 (continued)
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To compare residuals and fitted values between the two techniques, we need 
to merge the quantile regression residual and predicted value datasets with the 
input dataset containing the regression residuals. They can be combined by a 
simple MATCH FILES command using the QUANTREG-generated datasets as table 
matches. Before doing that, we need to change the ID variable to numeric, since 
the QUANTREG ID values are always strings. ALTER TYPE makes that easy.

The residuals for regression, which is the first variable, are highly correlated 
with the quantile regression equivalents, but the correlations are lower for the 
quantile of most interest, .9, as shown in Figure 18-14.

Figure 18-14:  Residual correlations

The tails of the distribution are of interest here. One way to compare the distribu-
tions is to do a Q-Q plot of the OLS and QUANTREG residuals. The standard Statistics 
Q-Q plot compares a variable with a specific theoretical distribution, so instead we 
use the SPSSINC QQPLOT2 extension command (Analyze ➪ Descriptives ➪ Two-
Variable or Group Q-Q Plot), which allows us to easily compare the distributions of 
two variables. Figure 18-15 shows the plot for the .9 quantile. As an aside, notice that 
the QUANTREG residuals have a higher mean: the regression residuals must have mean 
zero (as long as a constant term is included), but the QUANTREG residuals have a mean 
of –51.9. Conversely, the regression residuals have a median value of –11.25 while the  
.5 QUANTREG residuals have a median of 0. The .9 residual median is –55.9. The QUANTREG 
.9 residuals have a larger range, reflecting the lower sensitivity to outliers, but the dif-
ference is small in this case (1083 vs. 1192). As shown in Figure 18-15, the QUANTREG 
residual distribution has fatter tails and, in fact appears more normally distributed.

The correlation output shown in Figure 18-14 shows different results for the two 
quantiles. This suggests that the quantile functions are different, and indeed a joint 
test for equality in the two quantiles rejects equality with an F(46, 666,294) of 513.127.

It may be useful to study how the coefficients change with the quantile. Using 
PLOT on the OPTIONS subcommand produces a plot of the coefficient value against 
the quantile including, if possible, a confidence band. The plots are too small 
to be useful if there are many coefficients, but Figure 18-16 shows an example 
with a simplified equation estimated for six quantiles. The X axis is the quantile, 
and the Y axis is the coefficient. The CRSElapsedTime plot, for example, shows 
a positive effect at the .7 quantile but negative effects at the .2 and .9 quantiles.
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Figure 18-15:  Q-Q plot of OLS against QUANTREG residuals

Figure 18-16:  QR coefficients by quantile
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Operational Considerations
Two technical issues need to be considered when using SPSSINC QUANTREG: the 
estimation method and how to compute the standard errors. There are three 
choices of estimation methods: Barrodale-Roberts (BR), Frisch-Newton (FN), and 
Frisch-Newton with preprocessing (PFN). The first is efficient for problems up to 
a few thousand cases; the third is better for very large problems, and the second is 
appropriate in between. The actual estimates are the same, but the time required 
for estimation varies. On a small problem, PFN may take twice as long as BR, but 
both complete quite quickly. On a very large problem, BR is slower than PFN. 
It can happen that FN and PFN fail reporting singularity when BR succeeds. If 
this happens, a slight perturbation of the quantile values may succeed. In this 
example, the .5 quantile failed for PFN, but .501 succeeded. The author of the 
R package said in a personal communication that .5 is particularly problematic 
for technical reasons when the independent variables include a lot of factors.

DIGGING Deeper

In ordinary least squares, the parameter estimates are chosen to minimize the residual 
sum of squares y X y X−( ) −( )ˆ ˆβ β′ , which can be done by solving a set of linear equa-
tions. Quantile regression estimation is more complicated. For each quantile esti-
mated, there is a different set of estimates. One common choice is the 50th quantile, 
that is, the median. Since the estimate of the median of the distribution of y is the 
value of m that minimizes ∑ −( )y m , the median quantile regression estimate is 

found by minimizing ∑ −( )y Xβ̂ . Generalizing this to any quantile, α, we minimize

∑ −( ) >( ) + −( ) −( ) ≤( )α β β α β βy X I y X y X I y Xˆ ˆ ˆ ˆ1

with respect to β̂  where I(·) is the indicator function whose value is 1 if the condition is 
true and 0 otherwise. If α = .5, this reduces to the equation for the median. If α = .75,  
for example, we find estimates such that 75% of the residuals are negative and 25% are 
positive. Actually performing this minimization is more difficult and time consuming 
than performing the minimization required for OLS, but that’s what computers are for. 
Quantile regression estimates can be calculated by solving a linear programming prob-
lem. We won’t discuss the computation further here except to note that the QUANTREG 
procedure provides three choices for solving the linear programming problem that  
differ in their run times for various problems. They should all give the same result if 
they complete, but it may be necessary to try more than one in case of failure.

One immediate difference from OLS is that since the minimization criterion is abso-
lute value instead of quadratic error, quantile regression is less influenced by large 
outliers. More importantly for our airline example, though, is that by estimating mul-
tiple quantiles, the entire distribution of the errors, and, hence, the entire conditional 
distribution of y can be characterized. Furthermore, while inference with the OLS 
model relies on the normality of the errors for certain results, although that may not 
matter with large samples, that assumption is not required here.
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N O t e  There are five ways to compute the standard errors necessary for judging the 
precision of the estimates. RANK, which is the default, produces confidence intervals. 
The others produce standard errors and t statistics. The different methods make dif-
ferent assumptions, particularly concerning whether the errors are i.i.d, and can give 
substantially different results (Buchinsky, Moshe [1998] “Recent Advances in Quantile 
Regression Models: A Practical Guideline for Empirical Research.” Journal of Human 
Resources, Vol 33, No 1, pp 88–126).

There is no definitive choice, but the bootstrap method (STDERR=BOOT) makes the 
fewest assumptions. However, it requires the most computing time. As with the esti-
mation method, some choices for the standard error method may fail or may take an 
excessively long time to compute. In the airline example, it was necessary to use the 
IID method in order to obtain results.

The regular output from SPSSINC QUANTREG provides confidence intervals 
or T-Tests for the coefficient estimates for each quantile, but if all the slope 
coefficients were equal, the model would be much simpler to present and 
understand, and this hypothesis may be of considerable interest. The SPSSINC 
QUANTREG command can test the joint hypothesis of equality for all slope coef-
ficients across quantiles, and it can test equality for individual coefficients. 
To obtain the former test, specify ANOVA=JOINT on the OPTIONS subcommand. 
ANOVA=SEPARATE tests the individual coefficients. See the Koenker vignette, 
which you can access as described later in this section, for details of the testing 
methods. Plots of the coefficients across quantiles are obtained by specifying 
PLOT on the OPTIONS subcommand. These plots include confidence intervals 
when available.

A final issue is the treatment of categorical (nominal or ordinal) independent 
variables. Such variables are automatically treated as factors by the procedure. 
The levels of the factors are the values taken by these variables, and the output 
is labeled accordingly.

The SPSSINC QUANTREG command is based on the R quantreg package written 
by Roger Koenker. Detailed information about the package is available in the R 
documentation for quantreg. R packages, including this one, sometimes include 
a vignette, which is an explanatory article with examples. You can access the 
vignette for quantreg by running this code from a syntax window:

begin program r.
library(quantreg)
vignette("rq")
end program.

N O t e  For more information, see Quantile Regression by R. W. Koenker (Cambridge 
U.P., 2005) and “Regression quantiles” by R. W. Koenker and G. W. Bassett in 
Econometrica, Vol 46, pp 33–50.
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Support Vector Machines—Predicting Loan Default

Support vector machines (SVM) and random forests are mainstays in machine 
learning. While they are not much to look at, because they don’t provide a 
crisp, comprehensible model, they can be very effective for mean  predic-
tion of continuous variables and classification of categorical ones. SVM is 
provided in Statistics by the STATS SVM extension command; random forests 
are available in the SPSSINC RANFOR for estimation and SPSSINC RANPRED for 
prediction extension commands but will not be discussed further here. SVM 
is implemented using the R e1071 package by David Meyer and others. You 
can access details beyond the introductory material in this chapter via the 
R vignettes for these packages. For the SVM vignette, run this code from a 
syntax window:

begin program r.
library(e1071)
vignette("svmdoc")
end program.

N O t e  For an extensive mathematical treatment of SVM, see The Elements of 
Statistical Learning, Second Edition by T. Hastie, R. Tibshirani, and J. Friedman 
(Springer, 2009).

Background
SVMs (and random forests) can be used both for regression problems, where 
there is a continuous dependent variable, and for classification problems where 
the dependent variable is categorical with two or more values. We first discuss 
the classification problem and then the regression problem.

Suppose we have data on a dichotomous variable y representing two groups 
and a set of explanatory variables X Xn1 , ,… . We might model y using discrimi-
nant analysis (DISCRIMINANT), or logistic regression (LOGISTIC REGRESSION or 
NOMREG; these can handle more than two groups as well). These methods, as 
well as SVM, find the equation of a separating hyperplane—with two variables 
that is just a line. That is, they find a linear combination of the X variables that 
partitions the n-dimensional space of the X variables so as to best predict the 
group ( the y variable). A perfect classifier would draw a line or hyperplane that 
perfectly divides the cases into groups if such a line exists; that is, the groups 
are separable. In the real world, of course, the groups are probably not separable, 
and the hyperplane will leave some points on the wrong side, but the SVM goal 
is to find the best possible division subject to considerations discussed later in 
this chapter.
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The details of the SVM algorithm are beyond the scope of this chapter, but 
two points are noteworthy. First, the SVM differs from discriminant analysis or 
logistic regression in that extreme points (points that are far from the separat-
ing hyperplane) do not matter. The only points that matter are those that are 
misclassified by the hyperplane or that lie in the margin of the hyperplane—that 
is, are close to it—these are called the support vectors. The other points do not 
contribute to the definition of the hyperplane. In contrast, discriminant analysis 
is based on the means and variance-covariance matrix of all the data. Logistic 
regression is more similar to SVM, but all points contribute, although it is less 
sensitive to extreme values than is discriminant analysis. Thus SVM is more 
robust than discriminant analysis or logistic regression.

Second, the number of support vectors will increase as the margin is wid-
ened, which is related to the cost parameter. This tuning parameter controls 
the tradeoff between bias and variance. A narrow margin means a tighter fit 
to the estimation data and low variance compared with a wider margin and 
more support vectors and more bias. More support vectors means potentially 
less robustness.

If y has more than two values, we can construct the hyperplane for each pair 
of values. If the values are a, b, and c, for example, we construct the SVM for 
(a,b), (a,c), and (b,c), or in general with k values, we construct k(k–1)/2 SVMs. For 
prediction, each case is classified using each SVM, and the prediction outcome 
is chosen by voting. The category that was assigned most often wins.

With a continuous y, ordinary regression would minimize the sum of squared 
errors. For SVM, instead, small residuals in absolute value don’t count, and the 
minimization is of the sum of squared errors greater in absolute value than 
some constant.

A simple hyperplane separation boundary based on the X variables will not 
always exist. In the other models, one might introduce nonlinear functions of the 
Xs to account for interactions or polynomial effects, although with many predic-
tors, this can introduce a large number of parameters to be estimated. In SVM, 
in contrast, nonlinear effects are accommodated by using a nonlinear kernel. 
The SVM estimation is based on the distances between all pairs of points. For a 
linear kernel, the distance between two cases is calculated simply as the inner 
product of the (standardized) explanatory variables, that is, Euclidean distance. 
By choosing different distance measures, nonlinear effects can be introduced. 
The hyperplane becomes a “hyperwiggle” allowing the boundary to be more 
flexible. The distance measure is referred to as the kernel, and the SVM procedure 
provides three parameterized alternatives to the linear kernel. The authors of 
the package underlying the R code recommend the Radial Basis Function (RBF) 
as the first choice as it subsumes the linear kernel and is similar to the sigmoid 
kernel in some cases (G. James, T. Hastie, and R. Tibshirani, An Introduction to 
Statistical Learning with Applications in R, Springer, 2013). However, if the number 
of variables is very large, the linear kernel may be preferable (Chih-Wei Hsu, 
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C. Chang, and C. Lin, A Practical Guide to Support Vector Classification, http://
ntucsu.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf).

N O t e  You can find detailed technical information about kernels and SVM types 
as implemented in this package in LIBSVM: A Library for Support Vector Machines by 
Chih-Chung Chang, and C. Lin at http://ntucsu.csie.ntu.edu.tw/~cjlin/
papers/libsvm.pdf.

The challenge with the kernels other than the linear one is how to choose 
the parameter values. For the polynomial kernel, you must specify the degree 
and the weight for the inner product; for most of the others, you must specify 
the rate of decay, and so on. The procedure provides default values, but these 
are not optimal for any particular problem, and experimentation is required 
for best results. The procedure provides a mechanism for a grid search over 
the parameter space, which allows you to explore the space and choose good 
values. Starting with a coarse grid and refining this for promising regions can 
keep the computation time reasonable.

The gamma parameter applies to all but the linear kernel. Gamma determines 
the rate of decay of the effect of one X vector on another. Large values mean 
rapid decay and hence little smoothing and small values meaning slow decay, 
or a lot of smoothing. The default is 1/(number of variables).

The cost parameter, which defaults to 1, is the misclassification cost. A large 
value means a high penalty for misclassification, which is associated with low 
bias but high variance and may overfit the training set, while a small value has 
the opposite effect.

Whatever kernel is used, it is sensitive to the scale of the independent vari-
ables. To avoid having the distances arbitrarily dominated by variables with 
large values, the variables should be placed on the same scale. By default, the 
procedure scales all variables to have zero mean and unit variance. If the data 
is already scaled or you want to customize the scaling, you can turn off the 
default scaling and perform the appropriate transformations prior to running 
the procedure.

The generalizability of the estimated model on the training data input to 
the estimation process can be assessed by cross validation, in which the train-
ing data is randomly partitioned into an estimation set and a testing set. This 
process is repeated a specified number of times and the accuracy or error rate 
is reported. Cross validation can mitigate the overfitting problem, which may 
make a seemingly good performing SVM generalize poorly.

If the sizes of the categories of the dependent variable vary considerably, that 
is, the data is unbalanced, it may help to assign category weights. All categories 
start with a weight of 1, but increasing the weight for an important but rare 
category may improve the result. For example, modeling loan defaults, where 
the default rate is low, might result in simply choosing nondefault as the best 

http://ntucsu.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf
http://ntucsu.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf
http://ntucsu.csie.ntu.edu.tw/~cjlin/papers/libsvm.pdf
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prediction for all cases. Assigning a larger weight to the default cases addresses 
this issue.

An Example
We use the bankloan.sav dataset shipped with Statistics as an example. To 
facilitate comparison of the methods, we standardize the X variables using 
DESCRIPTIVES. (STATS SVM can do the standardization itself.) The variables are 
age in years; level of education from 1 = less than high school to 5 = post-graduate 
degree; income in thousands; and total debt, which is computed as the sum of 
credit card and other debt. The dependent variable is occurrence of default, which 
is 0 or 1. Cases with no loan history are screened out. The preparation syntax is:

SELECT IF MISSING(default) = 0.
COMPUTE totalDebt = CREDDEBT + OTHDEBT.
DESCRIPTIVES VARIABLES=age(zAge) ed(zEd) income(zIncome) TotalDebt
(zTotalDebt).

There are 700 cases, of which 26% defaulted.
Starting with DISCRIMINANT (Analyze ➪ Classify ➪ Discriminant), we obtain 

these classification results (shown in Figure 18-17) using the option of taking 
prior probabilities from the estimation group sizes. Seventy-six percent of the 
cases are correctly classified.

Figure 18-17:  Discriminant classification

With LOGISTIC REGRESSION (Analyze ➪ Regression ➪ Binary Logistic), this 
error rate is very similar, as shown in Figure 18-18. Here the cut point for the clas-
sification table is set to 0.739, the same percentages of “No” values in the dataset.

Figure 18-18:  Logistic regression classification



 Chapter 18 ■ Statistical extension Commands  465

Focusing on STATS SVM (Analyze ➪ Classify ➪ Support Vector Machines), 
we first estimate with all the default settings, which means that the kernel is 
RBF, gamma = .25, and the cost is 1. Figure 18-19 shows the classification table 
(referred to as the Confusion Table in the procedure).

Figure 18-19:  SVM classification

The syntax to produce this result omitting some irrelevant parameters, gen-
erated by the dialog, is:

STATS SVM CMDMODE=ESTIMATE DEPENDENT=default
INDEP=zAge zEd zIncome zTotalDebt SVMTYPE=AUTOMATIC
KERNEL=RADIAL
/OPTIONS GAMMA=.25 COST=1
NUMCROSSFOLDS=0 PROBPRED=NO MISSING=OMIT
/SAVE WORKSPACE=CLEAR
/OUTPUT FEATUREWEIGHTS=YES.

If we employ a grid search, the output includes a table showing the error rate. 
Figure 18-20 shows an example. In this case, the default gamma is the best within 
the granularity tested. The table includes all the possible parameters even for 
other kernels, so in this instance, only the gamma column is of interest, because 
the others are not varied or do not apply to the RBF kernel. In order to specify 
a grid search, enter the values as shown in Figure 18-21.

Figure 18-20:  SVM parameter tuning

Figure 18-21:  Entering grid search parameters
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The grid search can be over multiple parameters. Searching on both gamma 
and cost produces the table shown in Figure 18-22, where the minimum error 
occurs for gamma=.75 and cost=2, although gamma = .75 and cost=10 is very 
close. Note that there is some randomization in the tuning, so your results might 
be slightly different from these.

Figure 18-22:  SVM Parameter tuning with two parameters

The confusion matrix in Figure 18-23 using the best tuning parameters shows 
that we have increased the percentage of correct predictions of default to 38.25% 
from the original 13.66%. The number of support vectors has increased from 
377 to 390, which is 56% of the sample. If we perform crossfold validation, the 
overall accuracy is somewhat lower as we would expect.

Figure 18-23:  SVM classification result with tuning

It is reasonable to think that a lender’s principal interest is in guarding against 
default and would want to trade some accuracy in the prediction of nondefault 
for a more accurate prediction of default when it will actually occur. Weighting 
the default category more heavily than nondefault can emphasize that cat-
egory. We can do this by assigning a weight to the category of default with 
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the CLASSWEIGHTS keyword, which accepts a list of category values and weight 
pairs. Using CLASSWEIGHTS = 1 5 specifies that the loan default category, 1, has 
a weight five times as large as loan nondefault. If no weights are specified, all 
categories have a weight of 1. It is only necessary to specify weights where a 
category should have a nondefault weight. Using the default RBF settings with 
this weight produces the confusion table shown in Figure 18-24.

Figure 18-24:  SVM classification results with weighting

Comparing this with the confusion table shown in Figure 18-19, we see that 
the accuracy of the default prediction increases from 13% to 90% while the 
nondefault percent correct falls from 99% to 51%.

Operational Issues
The STATS SVM command and dialog operate in two modes. Figure 18-25 shows 
the dialog.

Figure 18-25:  The SVM dialog
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In the first mode, SVM Estimation, the model is estimated and estima-
tion results displayed. Predictions can be made for the estimation data at 
the same time. The model can be saved to disk as an R workspace file. It 
can also be retained in memory for immediate use in making predictions 
with new data.

In the second mode, Prediction, you specify the model source as a file or 
the current R workspace and apply it to new data. The X variables in the new 
dataset must have the same names and measurement levels and, for factors, the 
same category values as in the estimation dataset. The Viewer output displays 
a summary of the specifications from the estimated mode.

In both modes, the predicted values, which are categories or in the regression 
case, values, are written to a new dataset, which can be merged with the input 
data using MATCH FILES. It is a good idea to include an ID variable when 
making predictions to facilitate a correct match.

Discriminant analysis, logistic regression, and SVM all make different 
assumptions and are sensitive to different aspects of the data. SVM handles 
large numbers of variables and nonlinearities in the relationship better than the 
other techniques, and is more robust. It has more tuning options and ways of 
handling nonlinearities than the other methods and is among the most popular 
techniques in machine learning.

Computing Cohen’s d Measure of Effect Size for a T-Test

The extension commands we have discussed so far do not require any  knowl-
edge of programming in Python or R in order to use them. In this section we 
show an example of using another extension command that allows you to insert 
a snippet of Python code to extend its built-in functionality. The example uses 
only a few very basic features of the Python language.

Cohen’s d statistics is a measure of the effect size of a treatment or group. 
In a T-Test, it is the standardized difference of the means in the two groups. 
Unlike the T-Test, it is not affected by the sample size. By standardizing the 
measure, it can be compared across multiple datasets. Although it is not part 
of the standard T-TEST procedure output, it is simple to compute by hand 
from that output. However, we can automate this and add the result to the 
output by applying one of the Statistics extension commands to the standard 
output from T-TEST. Here’s how to do this for the independent samples  
case. We will illustrate this using the employee data.sav file shipped with 
Statistics, testing the difference in mean salary for minorities compared to 
nonminorities.

First we run the T-Test, which is found at Analyze ➪ Compare Means ➪ 
Independent-Samples T Test as shown in Figure 18-26.
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Figure 18-26:  The T-Test dialog

Figure 18-27 shows the output (it has a different custom tableLook applied 
from the earlier output examples).

Figure 18-27:  The T-TEST output

The numbers we need are all in the first table, so we could just use a calculator 
to calculate d, but we would like to automate this and have the d statistic as part 
of the output. To do this we will use the STATS TABLE CALC extension command 
(Utilities ➪ Calculate with Pivot Tables). This command does calculations on 
cells in pivot tables and adds those results to the table. In this case we want 
to add a column to the Group Statistics table showing d in the first row. TABLE 
CALC can apply a formula to each row or column of a table based on values in 
that row or column, but here we need values from multiple rows. To do that 
we create a small custom function in Python and apply it with the TABLE CALC 
command. The function, named d, is stored in a module we call cohen.py. It 
could be created directly in a BEGIN PROGRAM block, but it is tidier to put this in 
a separate file for reuse. The file must be saved in a location where Python can 
find it. (One way to find a suitable location is to run SHOW EXTPATH and save it 
to one of the locations listed under EXTPATHS EXTENSIONS.)

Figire 18-28 shows the function. Even if you do not know Python, you can easily 
read this code and see the formula. The calls to GetUnformattedValueAt extract values 
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from the pivot table cells, which are numbered counting from 0. So, for example, 
datacells.GetUnformattedValueAt(0, 2) returns the value in the first row and 
third column of the table, which here is the standard deviation of the first category.

Figure 18-28:  The Python plugin code for Cohen’s d

Now we apply this function using TABLE CALC, which we run right after the 
T-Test command. Figure 18-29 shows the Calculate with Pivot Tables dialog. We 
select the table to process using the OMS table subtype, and we call our d func-
tion using the TABLE CALC formula field. datacells passes the entire data portion 
of the table to the function, and rowsorcols passes the current row number each 
time the function is called.

Figure 18-29:  The Calculate with a Pivot Table dialog
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The equivalent syntax is shown in Figure 18-30.

Figure 18-30:  The TABLE CALC syntax

The result is added as a new column to the table. We show only the first 
table, which now has a new column with Cohen’s d in the first cell, as shown 
in Figure 18-31.

Figure 18-31:  The modified T-TEST output

STATS TABLE CALC can be used with most table types and allows you to 
customize or augment the standard output however you need.



SPSS® Statistics for Data Analysis and Visualization 
By Keith McCormick and Jesus Salcedo 
Copyright © 2017 by John Wiley & Sons, Inc., Indianapolis, Indiana 

473

Index

Numbers
16PF (Sixteen Personality Factors 

Questionnaire), 421
911 calls case study, 194–195. See also 

Geospatial Association Rules
broken-windows theory of crime, 195
problem-oriented policing, 195

A
A Practical Guide to Support Vector 

Classification (Hsu, Chang, and Lin), 
462–463

Abbott, Dean, Applied Predictive 
Analytics, 337–338

absolute percent, mean absolute 
percent, 344–349

Advanced Options panel, 52
AGGREGATE command, 169–170
aggregation, datasets, 410–412
ALSCAL, 253
AMOS, 2

Baseline Comparisons, TLI, 33–35
case study and, 4–5
causation, direction, 37–40
Chi-Square tests, 28–31
CMIN, 33–34
CMIN/DF, 35

diagrams, 28
factor analysis, 26–27
general model, 29–30

S/N, 31–35
goodness of fit, 28–29, 31
Graphics, 26–27
GUI, 3, 27
Hoelter results, 34–35
icons, 29
model, 27
Model Fit Summary, 33–34
null hypothesis, 28–29
PCLOSE, 35
RMSEA, 29, 35

results, 34
Tools and Plugins, 30–31
User’s Guide, 3–4

AMOS PSAT data.sav file, 4
An Introduction to Statistical Learning 

with Applications in R (James, 
Hastie, and Tibshirani), 462

Analysis node, 295–297
Analyze menu, 23, 47
ANCOVA (Analysis of Covariance), 4, 

8–9
multivariate tests, 25–26
univariate analysis of variance, 13



474 Index ■ b–C

ANN (artificial neural network), 272, 
286, 325, 326–333

classification, Titanic dataset and, 
349–353

Error Backpropagation, 337–339
hidden layers, 332–333
interactions, 331–332
learning, 337–338
mean absolute percent, 344–349
MLP (multilayer perception), 328
output, weights and, 334–335, 337–339
Parameter Estimates, 334, 335
perceptrons, 327

multilayered, 343
regression, 347

bank salary case study, 341–353
output, 342
slope, 335
XOR and, 329–330

topology, 333–334
complex neural net, 348

XOR
Nominal Output Variable, 336
truth table, 328
variables and, 333–341

Anomaly Case Index list, 311
Anomaly Index Summary table, 314
ANOVA (Analysis of Variance), 10–11

data mining results, 281
techniques, 4–5

versus SEM via AMOS, 4
ANOVA table, categorical regression, 94
Applied Predictive Analytics (Abbott), 

337–338
arrow case study, GPL and, 163–167
Arrows on a Reference map, 188–191
Asymptomatic Significance, 360
automated linear modeling 

regression, 72

b
bar charts

case study, 138–143
Legacy Dialogs, 132–133
mapping and, 174

bars on maps, 184–185
BEGIN GPL ... END GPL command, 

151
Berry, Michael J.A., Data Mining 

Techniques: For Marketing, 
Sales, and Customer Relationship 
Management, 326

bias, KNN and, 386–388
binary logistic regression, 72, 284
Binary Logistic Regression Model, 47
Binning summary table, 322–232
Bivariate Correlations procedure, 422, 

432–433
Bohrnstedt and Felson, 37
Bonferroni method, 282
bootstrapping, 43–44, 59–62
Bourdieu, Pierre, 218

Distinction: A Social Critique of the 
Judgement of Taste, 221

BR (Barrodale-Roberts) estimation 
method, 454

Breiman, Leo, Classification and 
Regression Trees, 368

broken-windows theory of crime, 195
bubble charts

bands, 159–160
case study, 143–145

Rosling, 137
color mapping, 158–159
GPL case study, 147–160
MBTI case study, 167–172
polygon and, 160

C
Case Processing Summary table, 82

categorical regression, 93–94
Identify Unusual Cases, 311

case sensitivity in datasets, 409–410
case studies

911 calls, 194–195
arrows, GPL and, 163–167
bank salary (ANN), 341–353
bar charts, 138–143
bubble chart/GPL, 147–160
bubble charts, 143–145



 Index ■ C–C 475

double regression lines, GPL and, 
160–163

MBTI bubble chart, GPL and, 167–172
media distribution datasets, 404–420
Monte Carlo Simulation, 43
predicting shootings, 207–215
PSAT tests

learning styles and, 6
overview, 4–6
reading comprehension, 20

categorical regression, 86–87
dialogs

Categorical Regression, 87–88
Discretization, 89
Missing Values, 90
Options, 90
Output, 92
Plots, 93
Regularization, 91–92
Save, 92

output
ANOVA table, 94
Case Processing Summary table, 

93–94
Coefficients table, 95
Correlations and Tolerance  

table, 95
Model Summary table, 94
Quantifications table, 96–97
transformation plot, 97–99

Categorical Variable Norms table, 313
causation, direction, 37–40
CHAID algorithm, Decision Tree 

building, 355–360
Chi-Square, 361–362
Crosstabs, 360–362
results comparison, 372
setting changes, 363–365

CHAID nugget, 296–297
Chang, C., A Practical Guide to Support 

Vector Classification, 462–463
Chart Builder, 132

Element Properties, 153
Gallery tab, 148
Groups/Point ID tab, 150

main menu, 133–134
Basic Elements submenu, 134

scatterplots
colored, 9
grouped, 149

Chart Options dialog, 57
charts

aesthetics, 137
bubble charts, 137
elements, 137
Probability Density, 56–57

edited, 58
regression lines, 10
scatter plots, colored, 9
as static diagrams, 137

Chihara, Laura M., Mathematical 
Statistics with Resampling and R, 63

Chi-Square, 28–31
CHAID algorithm, Decision Trees, 

361–362
Correspondence Analysis, 222

Choropleth of Counts map, 175–179
Choropleth of Sums map, 182–184
Choropleth of Values map, 179–181
CISS (Campbell Interest and Skill 

Survey), 421
classical hypothesis testing, 280–283
Classification and Regression Trees 

(Breiman, Friedman, Stone, and 
Olshen), 368

CLASSWEIGHTS keyword, 467
Clementine. See Modeler
code, inefficient, 403–404
Coefficients table, categorical 

regression, 95
coeffiecients, linear mixed models 

and, 103
Cohen’s d, 8

T-Tests and, 468–471
color mapping, bubble plot, 158–159
Command Syntax Reference guide, 

151, 400–401
commands. See also extension 

commands
CROSSTABS, 402–403



476 Index ■ C–D

DATASET ACTIVATE, 397
DATASET DECLARE, 411
DO REPEAT, 414–415
EXECUTE, 400
FREQUENCIES, 397

Syntax Editor, 399
GPL (Graphics Production 

Language)
AGGREGATE, 169–170
BEGIN GPL ... END GPL, 151
GGRAPH, 151, 169–170
GRAPHDATASET, 151, 169–170
GRAPHSPEC, 151
statement commands, 152

IBM SPSS Statistics Command Syntax 
Reference, 443

INDEX, 410
LOWER( ), 409–410
MERGE, 415–417
subcommands, ORDER, 398
UPPER( ), 409–410

COMPUTE statement, 415
Coordinates on a Choropleth of 

Counts map, 187–188
Coordinates on a Reference map, 

186–187
Correlations and Tolerance table, 95
Correlations panel, 50, 51
Correlations table, 55, 56, 268–269
Correspondence Analysis, 217

Chi-Square, 222
Cramer’s V, 222
Crosstabs menu, 220–223
Define Range submenus, 224
dimension reduction, 225–229, 235
dimension summary, 227, 232
dimensions, 220

covariance, Estimates of Covariance 
Parameters table, 115–116

Covariates, 11
Cox Regression Model, 47
Cramer’s V, 222
CROSSTABS command, 402–403
Crosstabs menu, Correspondence 

Analysis, 220–223

cross-validation, V-fold cross-
validation, 387

CRT algorithm
binary split, 368
Classification and Regression Trees 

(Breiman, Friedman, Stone, and 
Olshen), 368

Decision Trees and, 355, 366–367
results comparison, 372

missing values, 369
scale variables, 368
settings, 369–371

curve estimation regression, 72
Custom Dialog Builder, 442

D
Data Format dialog, 253–254
data management, 393–394
data mining

algorithms
Association, 301
Classification, 301–302
Classification (Statistical), 301
Clustering, 302
Decision Trees, 301
Numeric Prediction, 301

ANOVA results, 281
balancing, 294–295
Decision Trees, 272
deployment, 276
ensembles, 297–299
historical data and, 276
interactions, 284–287
K Nearest Neighbors, 272
models, 276

effect size, 284
goodness of fit, 284
omnibus test, 284
significance test, 284

neural nets, 272, 286
Nine Laws of Data Mining (Khabaza), 

332
overview, 275–276
partitioning, 288–291
patterns, 276



 Index ■ D–D 477

procedures, 287–288
results comparison, 295–297
SPSS Statistics, 278–280
Tom Khabaza’s 9 Laws of Data 

Mining, 372
validation, 288–291

Data Mining Techniques: For Marketing, 
Sales, and Customer Relationship 
Management (Linoff and Berry), 326

data preparation for modeling,  
303–304

Data Preparation module, 272, 303
Data menu

Identify Unusual Cases, 303–306
Validation, 303

Transform menu
Data Preparation for Modeling, 303
Optimal Binning, 303–304, 315–316

Data Structure dialog, 117
data validation, 304
data visualization, 129, 131–132
DATASET ACTIVATE command, 397
DATASET DECLARE command, 411
datasets

aggregation, 410–412
case sensitivity, 409–410
Data View, 404–405
Define Variable Properties dialog, 405
parsing strings, 410
restructuring, 410–412
Type and Label subdialog, 408
value labels, 405
Variable View, 404–405
variables, pasting, 412–414
ZIP codes, 407–408

Decision Trees, 272
C5.0 Tree extension command, 355
CHAID algorithm, 355–363

Crosstabs, 360–362
setting changes, 363–365

CRT algorithm, 355, 366–367
Growing Methods

CHAID, 355
CRT, 355
Exhaustive CHAID, 355

QUEST, 355
results comparison, 371–373

impurity, 368
main menu, 356
Post-Hoc tests, 283
purity, 368
Scoring Wizard, 374–378
Test Sample tree, 357–359
Training Sample tree, 357–359
validation options, 373–374
Validation submenu, 357

restricting variables, 356–357
variables, restricting, 356–357

Decomposition of Normalized Raw 
Stress pivot table, 262

Define Groups subdialog, 7
Define Variable Properties dialog, 405
Density functions panel, 52, 53
Descriptive Statistics of Scale Inputs, 

56
Descriptive Statistics of Scale Targets, 

56
Descriptive Statistics report, 390
Descriptive Statistics table, 321
DESCRIPTIVES command, 452
dialogs

Categorical Regression, 87–88
Chart Builder, 9
Chart Options, 57
Custom Dialog Builder, 442
Data Format, 253–254
Data Structure, 117
Define Groups subdialog, 7
Define Variable Properties, 405
Discretization, 89
EM Means, 112
Estimation, 110–111
Factor Analysis, 24
Fields & Effects: Fixed Effects, 119
Fields & Effects: Random Effects, 120
Fields & Effects: Target, 118
Fit Details, 50
Fixed Effects, 107–108
Frequencies, 397
General Linear Model, 10



478 Index ■ D–e

Identify Unusual Cases, 305
Data menu, 305
Missing Values, 309
Options dialog, 310
Output, 307
Save, 308
Variables, 306

Legacy Dialogs, 132–133
Linear Mixed Models, 106–107
Linear Regression, 46–47
Maps, 178
MDS (multidimensional scaling) 

options, 253
Missing Values, 90
Model, 254–255
Optimal Binning

Missing Values, 319
Options, 320–321
Output, 318–319
Save, 319
Variables, 316–317

Options, 256–257
ordinal regression, 77–81
Output, 92, 258–259
Plots, 93, 257–258
Proximities in Matrices Across 

Columns, 254–255
Random Effects, 108–110
Regularization, 91–92
Restrictions, 256
Save, 92, 112–113
Simulation Model Source, 45
Specify Subjects and Repeated, 105–106
Statistics, 111
Syntax, 401–402
T-Test, 469
TURF, 446
Univariate, 11

dimension interpretation
statistical approach, 266–269
subjective approach, 264–266

dimension reduction, Correspondence 
Analysis, 225–229

Discretization dialog, 90

DISCRIMINANT extension 
command, 464

Discriminant Model, 47
Stepwise, 278

Distinction: A Social Critique of the 
Judgement of Taste (Bourdieu), 221

Distribution, Monte Carlo 
Simulation, 49

DO REPEAT command, 414–415
double regression lines, case study, 

GPL and, 160–163

e
ecological fallacy, 194
effect size, 284
EM Means dialog, 112
ensembles

building, 391–392
data mining and, 297–299

Error Backpropagation, 337–339
Estimates of Covariance Parameters 

table, 115–116
Estimates of Fixed Effects table, 114
Estimation dialog, 110–111
estimation of effects, linear mixed 

models and, 103
EXECUTE command, 400
extension commands, 441

C5.0, 355
DESCRIPTIVES, 452
DISCRIMINANT, 464
installed extensions, 443
MATCH FILES, 457
OMS and, 439
Predictive Analytics download, 443
Python and, 394, 396
R and, 394, 396
SPSSINC QQPLOT2, 457
SPSSINC QUANTREG, 458–460
SPSSINC RANFOR, 461
SPSSINC RANPRED, 461
STATS SVM, 461, 467
SUMMARIZE, 452
UNIANOVA, 454



 Index ■ F–G 479

F
Factor Analysis, 293–294
factor analysis, 23–26

AMOS, 26–27
Analyze menu, 23–24
results, 24

Factor Analysis dialog, 24
Extraction subdialog, 24

Feature Selection (Modeler),  
291–294

Felson and Bohrnstedt, 37
Fields & Effects: Fixed Effects  

dialog, 119
Fields & Effects: Random Effects 

dialog, 120
Fields & Effects: Target dialog, 118
Final Coordinates pivot table, 263
Fit Details dialog, 50
fixed coefficients, 124
Fixed Effects dialog, 107–108
flowcharts, Modeler and, 276–277
focal points, 382–383
FREQUENCIES command, 397

Syntax Editor, 399
Frequencies dialog, 397

Charts subdialog, 402
Frequencies table, 63–65
Friedman, Jerome, Classification and 

Regression Trees, 368

G
General Linear Model, 47
General Linear Model dialog, 10

MANOVA and, 14
Generalized Linear Model, 47
geographical coordinates, Coordinates 

on a Reference map, 185–187
Geospatial Association Rules, 193, 195. 

See also 911 calls case study
Binning and Aggregation,  

204–205
map files, 196–197

condition variables, 201
context data, 197–198

event data, 197–198
prediction variables, 201
WKID, 200

output, 202–206
overview, 194
Rule Support, 203

Geospatial Modeling Wizard, 195–196
ggplot2 package, 132
GGRAPH command, 151, 169–170
GGRAPH subcommands, 151
Gini Coefficient, 368
goodness of fit statistics, 284

AMOS, 28–29, 31
Goodness-of-Fit table, 83
GPL (Graphics Production Language), 

394
arrow case study, 163–167
bubble chart case study, 156–160
commands

AGGREGATE, 169–170
BEGIN GPL ... END GPL, 151
DATA, 152
ELEMENT, 152
GGRAPH, 151, 169–170
GRAPHDATASET, 151, 169–170
GRAPHSPEC, 151
GUIDE, 152
SOURCE, 152
statement commands, 152

Correspondence Analysis and, 217
double regression line case study, 

160–163
ELEMENT statement, 157
functions

aestheticMaximum, 156
aestheticMinimum, 156
null( ), 157
scale, 152

GUIDE statements, 157
MBTI bubble chart case study, 

167–172
MCA (Multiple Correspondence 

Analysis) and, 217
Perceptual Map, 242–247
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GPL (Graphing Production Language), 
129–130, 132, 147

bubble chart case study, 147–155
Chart Builder, 134
statement commands, 152

GPL Reference guide, 155–156
The Grammar of Graphics (Wilkinson), 

132, 136–138
Graphboard Editor, 141

regions, 142
Graphboard Template Chooser, 129, 

132, 135–136
aesthetics, 137
Basic tab, 138–139
Detailed tab, 140

Bubble chart, 144
elements, 137
fields, specification, 139
The Grammar of Graphics and, 136–137
Graphboard Editor, 141
mapping

Arrows on a Reference map,  
188–191

bar chart, 174
bars, 184–185
Choropleth of Counts, 175–179
Choropleth of Sums, 182–184
Choropleth of Values, 179–181
Coordinates on a Choropleth of 

Counts, 187–188
Coordinates on a Reference,  

186–187
maps, 175
Pie of Counts, 181–182

GRAPHDATASET command, 151, 
169–170

graphics
editing, 229
Wilkinson, 137

graphing
Chart Builder, 132
Graphboard Template Chooser, 132
Legacy Dialogs, 132
Wilkinson, 137

Graphs menu
Chart Builder, 132
Graphboard Template Chooser, 132, 

135–136
Legacy Dialogs, 132–133

GRAPHSPEC command, 151
grouped scatterplot, 149
Grouping Variable, 7
GUI (graphical user interface)

AMOS, 3, 27
Syntax and, 395

H
Hastie, T., An Introduction to Statistical 

Learning with Applications, 462
Help, 398–399
Hesterberg, Tim C., Mathematical 

Statistics with Resampling and R, 63
hidden layers, neural nets and,  

332–333
hierarchical linear mixed models. See 

linear mixed models
Hierarchical Linear Models, 2
historical data, data mining and, 276
Hoelter results, 34–35
Hold-Out Validation, 289
Hsu, Chih-Wei, A Practical Guide to 

Support Vector Classification,  
462–463

hyperwiggle, 462
hypothesis testing, 280–283

I
IBM SPPS Modeler Cookbook 

(McCormick), 380
IBM SPSS Statistics Command Syntax 

Reference, 443
ID3 Decision Tree, 279
Identify Unusual Cases (Data 

Preparation), 303–304
dialogs, 305

Data menu, 305
Missing Values, 309
Options dialog, 310
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Output, 307
Save, 308
Variables, 306

output
Anomaly Case Index list, 311
Anomaly Case Reason List, 312
Anomaly Index Summary table, 314
Case Processing Summary table, 311
Categorical Variable Norms table, 313
Scale Variable Norms table, 313

impurity, decision trees and, 368
INDEX command, 410
INDSCAL (weighted 

multidimensional scaling), 253
inefficient code, 403–404
Inputs Distributions table, 55
interactions, data mining and,  

284–287

J
James, G., An Introduction to Statistical 

Learning with Applications, 462

K
keywords, 398

TO, 413–415
CLASSWEIGHTS, 467
Syntax, 398

Khabaza, Tom, 279
8th Law of Data Mining, 372
Nine Laws of Data Mining, 332

K-Means Cluster Model, 47
KNN (K Nearest Neighbor), 272, 379

bias, 386–388
classification tables, 384, 388
finding neighbors, 380–381
as lazy learner, 379
Nearest Neighbor Analysis main 

menu, 382
Partitions submenu, 383

Peers chart, 384
predictions, saving, 388–389
Titanic dataset, 380–385
variance, 386–388

L
labels, OMS, 425–426
Latent Class analysis, 12
lazy learners, 379
learning styles, case study and, 6
Legacy Dialogs, 132–133

Bar Charts, 132–133
LeRoux, Brigitte, Multiple 

Correspondence Analysis, 217–218
Levene’s Test, 7
Lin, C., A Practical Guide to Support 

Vector Classification, 462–463
linear hierarchical models, 101
linear mixed models, 103

EM Means dialog, 112
Estimation dialog, 110–111
Fixed Effects dialog, 107–108
generalized, 116–117

Data Structure dialog, 117
Fields & Effects: Fixed Effects 

dialog, 119
Fields & Effects: Random Effects 

dialog, 120
Fields & Effects: Target dialog, 118
output, 120–126

hierarchical, 101–102
mixed models, 101–102
two-level example, 102–104

Linear Mixed Models dialog, 106–107
output

Estimates of Covariance Parameters 
table, 115–116

Estimates of Fixed Effects table, 114
Information Criteria table, 113–114
Model Dimension table, 113
Tests of Fixed Effects table, 113–114

Random Effects dialog, 108–110
Save dialog, 112–113
Specify Subjects and Repeated 

dialog, 105–106
Statistics dialog, 111
structure adjustments, 126–128

Linear Mixed Models dialog,  
106–107
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linear regression, 71, 72
Monte Carlo Simulation, 48
SPSS Bootstrap, 68–69
Stepwise, 278

Linear Regression dialog, 46–47
Linear Regression models, 47
Linoff, Gordon S., Data Mining 

Techniques: For Marketing, Sales, and 
Customer Relationship Management, 326

Logistic node (Modeler), 278
logistic regression, 71, 73, 464–465

Stepwise, 278
Logistic Regression dialog, Optimal 

Binning, 323
LOWER( ) command, 409–410
LSD (Least Square Difference), 282

m
MANCOVA (Multivariate Analysis of 

Covariance), 4
covariants

four, 18–21
single, 16–18

multivariate tests, 18, 25–26
alternate, 22
results, 17

Parameter Estimates, 18, 21
alternate, 22

Pillai’s Trace, 17
Tests of Between-Subjects Effects, 20

results, 17
MANOVA (Multivariate Analysis of 

Variance), 4, 13
Fixed Factors, 14
General Linear Model, 14
General Linear model, 15
Multivariate dialog, 14
multivariate tests, 15
Tests of Between-Subjects Effects, 15

MAPE (Mean Absolute Percent Error), 
296, 326

mapping, 173
Graphboard Template Chooser

Arrows on a Reference map, 188–191
bar chart, 174

bars, 184–185
Choropleth of Counts, 175–179
Choropleth of Sums, 182–184
Choropleth of Values, 179–181
Coordinates on a Choropleth of 

Counts, 187–188
Coordinates on a Reference, 186–187
maps, 175
Pie of Counts, 181–182

Maps dialog, 178
MATCH FILES command, 457
Mathematical Statistics with Resampling 

and R (Chihara and Hesterberg), 63
MBTI bubble chart case study, 167–172
MCA (Multiple Correspondence 

Analysis), 217
crosstabulations, 234–242
Discrimination Measures Plot, 239
Discrimination Measures table, 240

sorting, 241
Joint Category Plots, 237–238
main menu, 237
Optimal Scaling, 236
Perceptual Map, 242–247
variable plots, 237–238

McGrayne, Sharon Bertsch, 61
MDS (multidimensional scaling), 249

ALSCAL, 253
Data Format dialog, 253–254
dialog options, 253
dimension coordinates, 266–267
INDSCAL (weighted 

multidimensional scaling), 253
metric, 251
Model dialog, 254–255
nonmetric, 251

psychology sub-disciplines, 251–253
object points plot, 250
Options dialog, 256–257
output

Correlations table, 268–269
Decomposition of Normalized Raw 

Stress, 262
Final Coordinates pivot table, 263
Object points plot, 263–264
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statisical approach to 
interpretation, 266–269

Stress and Fit Measures table, 
260–262

subjective approach to 
interpretation, 264–266

Output dialog, 258–259
Plots dialog, 257–258
Proximities in Matrices Across 

Columns dialog, 254–255
PROXSCAL, 253
Restrictions dialog, 256
Transformation Plot, 264–265
TURF analysis and, 265

mean absolute percent, 344–349
media distribution case study, 404–420
MERGE command, 415–417
metric multidimensional scaling, 251
Miles, Andrew, 218
Minsky, Marvin, Perceptrons, 326–327
missing values, CRT algorithm, 369
Missing Values dialog, 90

Optimal Binning, 319
mixed models, linear, 101–104

generalized linear, 116–120
structure adjustments, 126–128

MLP (multilayer perception), 328, 337
XOR patterns and, 328–329

Model dialog, 254–255
Model Dimension table, 113
Model Entropy table, 321–322
model files

creating, 45–59
Linear Regression dialog, 46–47

Model Fitting Information table, 83
Model Summary table, categorical 

regression, 94
Model tab, 51
Model Type table, 54
Modeler, 271–273, 276–277

balancing, 294–295
Factor Analysis, 293–294
Feature Selection, 291–294
history, 279–280
KNN and, 380

nodes, 277
Analysis, 295–297
Distribution, 294–295
Ensemble, 297–299
Logistic, 278
Type node, 277–278

results comparison, 295–297
scoring new records, 300–302
streams, 276–277, 289–291

models
Binary Logistic Regression  

Model, 47
Cox Regression Model, 47
Discriminant Model, 47
General Linear Model, 47
Generalized Linear Model, 47
K-Means Cluster Model, 47
Linear Regression models, 47
Multinomial Logistic Regression 

Model, 47
Neural Net Model, 47
Ordinal Multinomial Regression 

Model, 47
Tree Model, 47
Two-step Cluster Model, 47

Monte Carlo Simulation, 43
Correlations panel, 50, 56
Correlations table, 55
Density Functions panel, 52, 53
Descriptive Statistics of Scale  

Inputs, 56
Descriptive Statistics of Scale 

Targets, 56
Distribution, 49
Fit Details dialog, 50
Frequencies table, 63–65
Inputs Distributions table, 55
linear regression, results, 48
model files, 45
Model Type table, 54
options, 44–45
Output panel, 52, 53
overview, 44
Probability Density charts,  

edited, 58
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Simulated Fields panel, 49
Simulation Summary table, 56
Stopping Criteria table, 55

multinomial logistic regression, 72
Multinomial Logistic Regression 

Model, 47
Multiple Correspondence Analysis 

(LeRoux & Rouanet), 217–218
Multiple Imputation, 220
Multivariate dialog, 14
multivariate tests, summary, 25–26

N
Nearest Neighbor Analysis main 

menu, 382
Neighbors submenu, 386
Partitions submenu, 383

nearest neighbors. See KNN (K 
Nearest Neighbor)

Neural Net Model, 47
neural nets. See ANN (artificial neural 

network)
Neural Networks module, 325
Nine Laws of Data Mining (Khabaza), 332
nodes, Modeler

Analysis, 295–297
Distribution, 294–295
Logistic, 278
Type node, 277–278

nonlinear regression, 73
nonmetric multidimensional scaling, 251

psychology sub-disciplines, 251–253

O
object points, multidimensional 

scaling and, 250
Object points plot, 263–264
OLS (Ordinary Least Square), 450–451

QR comparison, 455–460
Olshen, R.A., Classification and 

Regression Trees, 368
omnibus test, 284
OMS (Output Management System), 

217, 218, 394
Bivariate Correlations procedure, 

432–433

manipulated Correlations,  
434–435

Control Panel, 229–230, 244,  
423–424

completed dialog, 425
Correlations dataset, 436–438
Crosstabs dialog, 431
dataset, 244–245
Descriptives dialog, 437
Identifiers dialog, 439
labels, 425–426
MCA Perceptual Map and, 242–247
Options dialog, 427–428
output

formats, 424–429
suppressing, 426–427, 429–435

overview, 422–423
requests, 428–429
results views, 230–232
running

from menus, 423–424
from Syntax, 438–439

supported formats, 422
Optimal Binning (Data Preparation), 

303–304, 315–316
dialogs

Missing Values, 319
Output, 318–319
Save, 319
Variables, 316–317

Options dialog, 320–321
output

Binning summary table, 322–232
Descriptive Statistics table, 321
Logistic Regression dialog, 323
Model Entropy table, 321–322
Variables in the Equation table, 

323–324
Optimal Scaling (CATREG) 

regression, 73
Options dialog, 256–257

Identify Unusual Cases, 310
Optimal Binning, 320–321

ORD (Ordinary Least Squares), 
quantile regression and, 455–460
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ORDER subcommand, 398
ordinal data, four-category  

variables, 12
Ordinal Multinomial Regression 

Model, 47
ordinal regression, 72

dialogs, 77–81
output, 81

Case Processing Summary table, 82
Goodness-of-Fit table, 83
Model Fitting Information table, 83
Parameter Estimates table, 84
Pseudo R-Square table, 83
Test of Parallel Lines table, 85

ordinal regression theory, 74
assumptions of models, 77
cumulative logit models, 74
distribution, 74–75
GZLM (generalized linear 

modeling), 75
link functions, 74

Cauchit, 76
complementary log-log, 76
Logit, 76
negative log-log, 76
probit, 76

location components, 75–76
scale components, 76

outlier detection, 304
output. See also OMS (Output 

Management System)
categorical regression

ANOVA table, 94
Case Processing Summary table, 

93–94
Coefficients table, 95
Correlations and Tolerance table, 95
Model Summary table, 94
Quantifications table, 96–97
transformation plot, 97–99

Geospatial Association Rules,  
202–206

Identify Unusual Cases, 307
Anomaly Case Index List, 311
Anomaly Case Reason List, 312–313

Anomaly Index Summary table, 314
Case Processing Summary  

table, 311
Categorical Variable Norms  

table, 313
Scale Variable Norms table, 313

linear mixed models
Estimates of Covariance Parameters 

table, 115–116
Estimates of Fixed Effects table, 114
generalized, 120–126
Information Criteria table, 114
Model Dimension table, 113
Tests of Fixed Effects table, 114

MDS (multidimensional scaling)
Decomposition of Normalized Raw 

Stress, 262
Final Coordinates pivot table, 263
Object points plot, 263–264
scree plot, 260
Stress and Fit Measures table, 

260–262
Monte Carlo Simulation, 52, 53
neural nets

regression, 342
weights and, 334–335, 337–339

Optimal Binning
Binning summary table, 322–232
Descriptive Statistics table, 321
Logistic Regression dialog, 323
Model Entropy table, 321–322
Variables in the Equation table, 

323–324
ordinal regression, 81

Case Processing Summary table, 82
Goodness-of-Fit table, 83
Model Fitting Information table, 83
Parameter Estimates table, 84
Pseudo R-Square table, 83
Test of Parallel Lines table, 85

Output dialog, 92, 258–259
Identify Unusual Cases, 307
Optimal Binning, 318–319

Output Management System. See OMS
Output panel, 52, 53
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P
p values, 360, 362–363
Pappert, Seymour A., Perceptrons, 

326–327
Parameter Estimates, 11, 15, 20–21

MANCOVA, 18
alternate, 22

table, 12, 84
parsing strings, 410
partial least square regression, 72
partitioning, 340–341

data mining and, 288–291
PCLOSE, 35
perceptrons, 327

multilayered, 333, 343
Perceptrons (Minsky and Pappert), 

326–327
Pie of Counts map, 181–182
Pillai’s Trace, 17, 18

results, 19
Plots dialog, 93, 257–258
plug-ins, 442
Post-Hoc tests

Bonferroni, 282
Decision tree, 283
LSD (Least Square Difference), 282

Pratt’s measure of relative 
importance, 96

Predicted by Observed view, 122
predictive analytics, 271–272. See also 

data mining
predictive policing, case study and, 

207–215
predictors, 381–384

chart focal point, 383
Probability Density charts, 56–57

edited, 58
probit regression, 73
programmability, 393–394
Programming and Data Management, 442
Proximities in Matrices Across 

Columns dialog, 254–255
proximity matrices, 252, 254
PROXSCAL, 253

PSAT tests case study
learning styles and, 6
overview, 4–6
reading comprehension, 20

Pseudo R-Square table, 83
psychology sub-disciplines nonmetric 

multidimensional scaling,  
251–253

purity, decision trees and, 368
Python, extension commands and, 

394, 396

Q
Quantifications table, categorical 

regression, 96–97
quantile regression, 450–454

coefficients, 455–456
by quantile, 458

estimation, 458
OLS comparison, 455–460
ORD (Ordinary Least Squares) and, 

455–460
residuals histogram, 455

QUANTREG coefficients, 456

r
R language

extension commands and, 394, 396
graphics, 132

R Squared, 326
Random Effects dialog, 108–110
RBF (Radial Basis Function), 462–463
recalculate correlations, 50
regression

automated linear modeling, 72
binary logistic, 72
categorical, 86–87

dialogs, 87–93
curve estimation, 72
linear, 71, 72

Monte Carlo Simulation, 48
SPSS Bootstrap, 68–69

logistic, 71, 73, 464–465
multinomial logistic, 72
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neural nets, 347
mean absolute percent, 345–346
slope, 335

neural nets bank salary case study, 
341–353

nonlinear, 73
Optimal Scaling (CATREG), 73
ordinal, 72, 74

assumptions of models, 77
cumulative logit models, 74
dialogs, 77–81
distribution, 74–75
GZLM, 75
link functions, 74, 76
location components, 75–76
output, 81–86
scale components, 76

partial least square, 72
probit, 73
quantile regression, 450–454
R Squared, 326
regression lines, 10
SVM and, 461–462
two-stage least squares, 73
weight estimation, 73

Regularization dialog, 91–92
relative importance, 96
Restrictions dialog, 256
Restructure Data Wizard, 410–412
RMSEA (Root Mean Square Error of 

Approximation), 29, 34, 35
Rosenblatt, F., 326
Rosling, Hans, 137, 143
Rouanet, Henry, Multiple 

Correspondence Analysis, 217–218
Run Selection button, 398

s
SAT origins, 21
.sav data file, 4
Save dialog, 92, 112–113

Identify Unusual Cases, 307
Optimal Binning, 319

scale function, 152

Scale Variable Norms table, 313
scaling

INDSCAL (weighted 
multidimensional scaling), 253

multidimensional (See MDS 
(multidimensional scaling))

scatterplots
colored, 9
grouped, 149

Scoring Wizard, 374–378
SEM (Structural Equation Modeling), 

2, 3
Shearer, Colin, 279
significance tests, 284
Simulated Fields panel, 49
Simulation Builder, Monte Carlo 

Simulation, 45
Simulation Model Source dialog, 45
Simulation Summary table, 56
Spatial Modeling, 195–196
Spatio-Temporal Prediction, 193,  

196, 207
Specify Subjects and Repeated dialog, 

105–106
Split File menu (Bootstrapping),  

65–66, 390
SPPS-X, 395
SPSS Algorithms Guide, 337
SPSS AMOS. See AMOS
SPSS Bootstrap

Advanced Statistics module and, 60
frequencies report, 63–64
Frequencies table, 63–65
linear regression, 68–69
mean, 66–67
proportions, 63–66
Regression module and, 60
Split file menu, 65–66

SPSS Statistics GUI, 3
SPSSINC QQPLOT2 extension 

command, 457
SPSSINC QUANTREG extension 

command, 458–460
SPSSINC QUANTREG procedure, 442
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SPSSINC RANFOR extension 
command, 461

SPSSINC RANPRED extension 
command, 461

SPSSINC TURF procedure, 442
stand-in variables, 414–415
Statistics Base, procedures, 60
Statistics dialog, 111
STATS SVM extension command, 442, 

461, 467
Stepwise, 278

Binary Logistic Regression, 284
cautions, 286–287

Stone, Charles J., Classification and 
Regression Trees, 368

Stopping Criteria table, 55
Stress and Fit Measures table, 260–262
strings, parsing, 410
Sullivan, Alice, 218
SUMMARIZE command, 452
surrogates, missing values and, 369
SVM (support vector machines), 

461–468
Syntax, 393–396

code, inefficient, 403–404
Command Syntax reference, 400–401
commands

COMPUTE, 415
CROSSTABS, 402–403
DATASET ACTIVATE, 397
DATASET DECLARE, 411
DO REPEAT, 414–415
FREQUENCIES, 397
INDEX, 410
LOWER( ), 409–410
ORDER subcommand, 398
UPPER( ), 409–410

datasets
aggregation, 410–412
case sensitivity, 409–410
Data View, 404–405
Define Variable Properties  

dialog, 405
parsing strings, 410

restructuring, 410–412
Type and Label subdialog, 408
value labels, 405
Variable View, 404–405
ZIP codes, 407–408

dialogs, 401–402
final file, 417–420
Help, 398–399
TO keyword, 413–414
media distribution case study, 

404–420
MERGE command, 415–417
OMS, running, 438–439
Restructure Data Wizard, 410–412
returns, 417
Run Selection button, 398
variables, stand-in, 414–415

Syntax Editor, 397
FREQUENCIES command, 399
Frequencies main dialog, 397

Charts subdialog, 402
indenting, 417

Syntax Reference Guide, 398
syntax window, 150

T
T-Tests, Cohen’s d and, 468–471
tables

Anomaly Index Summary, 314
ANOVA, 94
Binning summary, 322–232
Case Processing Summary, 82, 93–94

Identify Unusual Cases, 311
Categorical Variable Norms table, 313
Coefficients, 95
Correlations, 55, 56, 268–269
Correlations and Tolerance, 95
Decomposition of Normalized Raw 

Stress, 262
Descriptive Statistics, 321
Descriptive Statistics of Scale  

Inputs, 56
Descriptive Statistics of Scale 

Targets, 56
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Discrimination Measures table, 240
Estimates of Fixed Effects, 114
Final Coordinates, 263
Frequencies table, 63–65
Goodness-of-Fit, 83
Information Criteria table, 114
Inputs Distributions, 54
Model Dimension, 113
Model Entropy, 321–322
Model Fitting Information, 83
Model Summary, 94
Model Type, 54
Parameter Estimates, 12, 84
Pseudo R-Square table, 83
Quantifications, 96–97
Scale Variable Norms table, 313
Simulation Summary, 56
Stopping Criteria, 55
Stress and Fit Measures, 260–262
Test of Parallel Lines, 85
Tests of Fixed Effects table, 114
Variables in the Equation, 323–324

Test of Parallel Lines table, 85
Test Variable, 7
Tests of Between-Subjects Effects, 15

MANCOVA, 20
results, 17

The Theory that Would not Die 
(McGrayne), 61

Tibshirani, R., An Introduction to 
Statistical Learning with Applications, 
462

Titanic dataset
Decision Trees

CHAID algorithm, 355–360,  
364, 369

Scoring Wizard, 375–378
KNN and, 380–385
neural nets and, 349–353

TLI (Tucker Lewis Index), 33–35
TO keyword, 413–415
topology

bank salary case study, 343
neural nets, 333–334, 348

transformation plot, categorical 
regression, 97–99

Transformation Plots, 264–265
Tree Model, 47
T-test, 4, 7

Cohen’s d, 8
dialog, 16
Levene’s Test, 7

T-Test dialog, 469
TURF analysis, 265, 444–450
two-level hierarchical linear model, 

102–104
two-stage least squares regression, 73
Two-step Cluster Model, 47
Type and Label subdialog, 408
Type I error, 281–283
Type node (Modeler), 277–278

u
UNIANOVA command, 454
univariate analysis of variance, 13
Univariate dialog, 11
unobserved variables, 23
UPPER( ) command, 409–410
Utilities menu, OMS Control Panel, 

423–424

V
validation, 304

alternative options, 373–374
data mining and, 288–291

Hold-Out Validation, 289
V-fold cross-validation, 387

Validation (Data Preparation), 303
value labels, datasets, 405
variables

CRT algorithm, 368
Decision Trees, restricting, 356–357
pasting names, 412–414
stand-in, 414–415
unobserved, 23

Variables dialog, 316–317
Variables in the Equation table,  

323–324
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variance
KNN and, 386–388
linear mixed models and, 103

V-folds, cross-validation, 387
views, Predicted by Observed, 122
visual programming, 276–277

W
weight estimation regression, 73
Wheeler, Andrew, 130
Wilkinson, Leland, The Grammar of 

Graphics, 132, 136–138

windows, syntax, 150
wizards, Geospatial Modeling 

Wizard, 195–196

X
XOR

dataset creation, 330–331
Nominal Output Variable, 336
truth table

flat regression line, 329–330
neural nets and, 328

variables, neural nets and, 333–341
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