
XML / WEB DESIGN

SVG Essentials

ISBN: 978-1-449-37435-8

US $39.99  CAN $41.99

“�The�first�edition�of�SVG 
Essentials�was�how�I��
first�learned�SVG,�back��
in�2002.�That�worked��
out�pretty�well�for�me.�
�It's�great�to�see�an��
updated�edition�for��
modern�browsers�and�
today's�developers�and�
designers”

—Doug Schepers
W3C, SVG Working Group

Twitter: @oreillymedia
facebook.com/oreilly

Learn the essentials of Scalable Vector Graphics, the markup language 
used by most vector drawing programs and interactive web graphics tools. 
SVG Essentials takes you through SVG’s capabilities, beginning with simple 
line drawings and moving through complicated features such as filters, 
transformations, gradients, and patterns.

This thoroughly updated edition includes expanded coverage of animation, 
interactive graphics, and scripting SVG. Interactive examples online make it 
easy for you to experiment with SVG features in your web browser. Geared 
toward experienced designers, this book also includes appendices that 
explain basic concepts such as XML markup and CSS styling, so even if you 
have no web design experience, you can start learning SVG.

 ■ Create and style graphics to match your web design in a way 
that looks great when printed or displayed on high-resolution 
screens

 ■ Make your charts and decorative headings accessible to search 
engines and assistive technologies

 ■ Add artistic effects to your graphics, text, and photographs 
using SVG masks, filters, and transformations

 ■ Animate graphics with SVG markup, or add interactivity with 
CSS and JavaScript

 ■ Create SVG from existing vector data or XML data, using 
programming languages and XSLT

J. David Eisenberg is a programmer and instructor in San Jose, California. He’s 
developed courses for CSS, JavaScript, CGI, and XML, and teaches Computer 
Information Technology courses at Evergreen Valley College. David has written 
Études for Erlang (O’Reilly) and Let’s Read Hiragana (Eisenberg Consulting), as well 
as SVG Essentials, First Edition.

Amelia Bellamy-Royds is a freelance writer specializing in scientific and technical 
communication. She helps promote web standards and design through participation 
in online communities such as Web Platform Docs, Stack Exchange, and Codepen.

 SVG 
Essentials
PRODUCING SCALABLE VECTOR  
GRAPHICS WITH XML

J. David Eisenberg &
Amelia Bellamy-Royds

  2nd Edition

SV
G

 E
ssentials

SECOND 
EDITION

Eisenberg &
 

Bellam
y-Royds

www.allitebooks.com

http://www.allitebooks.org


XML / WEB DESIGN

SVG Essentials

ISBN: 978-1-449-37435-8

US $39.99  CAN $41.99

“�The�first�edition�of�SVG 
Essentials�was�how�I��
first�learned�SVG,�back��
in�2002.�That�worked��
out�pretty�well�for�me.�
�It's�great�to�see�an��
updated�edition�for��
modern�browsers�and�
today's�developers�and�
designers.”

—Doug Schepers
W3C, SVG Working Group

Twitter: @oreillymedia
facebook.com/oreilly

Learn the essentials of Scalable Vector Graphics, the markup language 
used by most vector drawing programs and interactive web graphics tools. 
SVG Essentials takes you through SVG’s capabilities, beginning with simple 
line drawings and moving through complicated features such as filters, 
transformations, gradients, and patterns.

This thoroughly updated edition includes expanded coverage of animation, 
interactive graphics, and scripting SVG. Interactive examples online make it 
easy for you to experiment with SVG features in your web browser. Geared 
toward experienced designers, this book also includes appendices that 
explain basic concepts such as XML markup and CSS styling, so even if you 
have no web design experience, you can start learning SVG.

 ■ Create and style graphics to match your web design in a way 
that looks great when printed or displayed on high-resolution 
screens

 ■ Make your charts and decorative headings accessible to search 
engines and assistive technologies

 ■ Add artistic effects to your graphics, text, and photographs 
using SVG masks, filters, and transformations

 ■ Animate graphics with SVG markup, or add interactivity with 
CSS and JavaScript

 ■ Create SVG from existing vector data or XML data, using 
programming languages and XSLT

J. David Eisenberg is a programmer and instructor in San Jose, California. He’s 
developed courses for CSS, JavaScript, CGI, and XML, and teaches Computer 
Information Technology courses at Evergreen Valley College. David has written 
Études for Erlang (O’Reilly) and Let’s Read Hiragana (Eisenberg Consulting), as well 
as SVG Essentials, First Edition.

Amelia Bellamy-Royds is a freelance writer specializing in scientific and technical 
communication. She helps promote web standards and design through participation 
in online communities such as Web Platform Docs, Stack Exchange, and Codepen.

 SVG 
Essentials
PRODUCING SCALABLE VECTOR  
GRAPHICS WITH XML

J. David Eisenberg &
Amelia Bellamy-Royds

  2nd Edition

SV
G

 E
ssentials

SECOND 
EDITION

Eisenberg &
 

Bellam
y-Royds

www.allitebooks.com

http://www.allitebooks.org


J. David Eisenberg and Amelia Bellamy-Royds

SECOND EDITION

SVG Essentials

www.allitebooks.com

http://www.allitebooks.org


SVG Essentials, Second Edition
by J. David Eisenberg and Amelia Bellamy-Royds

Copyright © 2015 J. David Eisenberg and Amelia Bellamy-Royds. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://safaribooksonline.com). For more information, contact our corporate/
institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editors: Simon St. Laurent and Meghan Blanchette
Production Editor: Matthew Hacker
Copyeditor: Jasmine Kwityn
Proofreader: Sharon Wilkey

Indexer: Ellen Troutman Zaig
Cover Designer: Karen Montgomery
Interior Designer: David Futato
Illustrator: Rebecca Demarest

February 2002: First Edition

October 2014: Second Edition

Revision History for the Second Edition:

2014-10-02: First release

2015-05-01: Second release

See http://oreilly.com/catalog/errata.csp?isbn=9781449374358 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. SVG Essentials, the image of a great argus
pheasant, and related trade dress are trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc., was aware of a trade‐
mark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors assume
no responsibility for errors or omissions, or for damages resulting from the use of the information contained
herein.

ISBN: 978-1-449-37435-8

[LSI]

www.allitebooks.com

http://safaribooksonline.com
http://oreilly.com/catalog/errata.csp?isbn=9781449374358
http://www.allitebooks.org


To my late mother and father, for their advice and love through the years.—JDE

For Bill, who would have been so proud.—ABR

www.allitebooks.com

http://www.allitebooks.org


www.allitebooks.com

http://www.allitebooks.org


Table of Contents

Preface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  xi

1. Getting Started. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1
Graphics Systems                                                                                                               1

Raster Graphics                                                                                                               1
Vector Graphics                                                                                                              2
Uses of Raster Graphics                                                                                                 2
Uses of Vector Graphics                                                                                                 3

Scalability                                                                                                                            3
SVG’s Role                                                                                                                           5
Creating an SVG Graphic                                                                                                 6

Document Structure                                                                                                      6
Basic Shapes                                                                                                                    6
Specifying Styles as Attributes                                                                                      7
Grouping Graphic Objects                                                                                            8
Transforming the Coordinate System                                                                         9
Other Basic Shapes                                                                                                       10
Paths                                                                                                                               11
Text                                                                                                                                 12

2. Using SVG in Web Pages. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  15
SVG as an Image                                                                                                              15

Including SVG in an <img> Element                                                                        16
Including SVG in CSS                                                                                                  17

SVG as an Application                                                                                                     18
SVG Markup in a Mixed Document                                                                             20

Foreign Objects in SVG                                                                                               20
Inline SVG in XHTML or HTML5                                                                            22
SVG in Other XML Applications                                                                               25

v

www.allitebooks.com

http://www.allitebooks.org


3. Coordinates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  27
The Viewport                                                                                                                    27
Using Default User Coordinates                                                                                    28
Specifying User Coordinates for a Viewport                                                               30
Preserving Aspect Ratio                                                                                                  32

Specifying Alignment for preserveAspectRatio                                                       33
Using the meet Specifier                                                                                              34
Using the slice Specifier                                                                                               35
Using the none Specifier                                                                                              36

Nested Systems of Coordinates                                                                                      36

4. Basic Shapes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  39
Lines                                                                                                                                   39
Stroke Characteristics                                                                                                      40

stroke-width                                                                                                                  40
Stroke Color                                                                                                                  41
stroke-opacity                                                                                                               43
stroke-dasharray Attribute                                                                                          44

Rectangles                                                                                                                         45
Rounded Rectangles                                                                                                     46

Circles and Ellipses                                                                                                          47
The <polygon> Element                                                                                                 48

Filling Polygons That Have Intersecting Lines                                                        49
The <polyline> Element                                                                                                  51
Line Caps and Joins                                                                                                         52
Basic Shapes Reference Summary                                                                                 53

Shape Elements                                                                                                             53
Specifying Colors                                                                                                         54
Stroke and Fill Characteristics                                                                                    54

5. Document Structure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  57
Structure and Presentation                                                                                             57
Using Styles with SVG                                                                                                     58

Inline Styles                                                                                                                   58
Internal Stylesheets                                                                                                      58
External Stylesheets                                                                                                      59
Presentation Attributes                                                                                                60

Grouping and Referencing Objects                                                                               61
The <g> Element                                                                                                          61
The <use> Element                                                                                                      63
The <defs> Element                                                                                                     63
The <symbol> Element                                                                                               66

vi | Table of Contents

www.allitebooks.com

http://www.allitebooks.org


The <image> Element                                                                                                  67

6. Transforming the Coordinate System. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  69
The translate Transformation                                                                                        69
The scale Transformation                                                                                               71
Sequences of Transformations                                                                                       74
Technique: Converting from Cartesian Coordinates                                                  76
The rotate Transformation                                                                                             78
Technique: Scaling Around a Center Point                                                                  81
The skewX and skewY Transformations                                                                      81
Transformation Reference Summary                                                                            83
CSS Transformations and SVG                                                                                      83

7. Paths. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  85
moveto, lineto, and closepath                                                                                         85
Relative moveto and lineto                                                                                             88
Path Shortcuts                                                                                                                   88

The Horizontal lineto and Vertical lineto Commands                                           88
Notational Shortcuts for a Path                                                                                  89

Elliptical Arc                                                                                                                     90
Converting from Other Arc Formats                                                                            93
Bézier Curves                                                                                                                    93

Quadratic Bézier Curves                                                                                             94
Cubic Bézier Curves                                                                                                    96

Path Reference Summary                                                                                                99
Paths and Filling                                                                                                             100
The <marker> element                                                                                                 100
Marker Miscellanea                                                                                                       104

8. Patterns and Gradients. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  107
Patterns                                                                                                                            107

patternUnits                                                                                                                108
patternContentUnits                                                                                                  110
Nested Patterns                                                                                                           112

Gradients                                                                                                                         113
The linearGradient Element                                                                                     113
The radialGradient Element                                                                                     118
Gradient Reference Summary                                                                                  121

Transforming Patterns and Gradients                                                                        122

9. Text. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  125
Text Terminology                                                                                                           125

Table of Contents | vii

www.allitebooks.com

http://www.allitebooks.org


Simple Attributes and Properties of the <text> Element                                         126
Text Alignment                                                                                                               129
The <tspan> Element                                                                                                    129
Setting textLength                                                                                                          132
Vertical Text                                                                                                                    133
Internationalization and Text                                                                                       134

Unicode and Bidirectionality                                                                                   134
The <switch> Element                                                                                               135
Using a Custom Font                                                                                                 137

Text on a Path                                                                                                                 138
Whitespace and Text                                                                                                     141
Case Study: Adding Text to a Graphic                                                                        142

10. Clipping and Masking. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  145
Clipping to a Path                                                                                                          145
Masking                                                                                                                           149
Case Study: Masking a Graphic                                                                                   152

11. Filters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  155
How Filters Work                                                                                                           155
Creating a Drop Shadow                                                                                               156

Establishing the Filter’s Bounds                                                                               156
Using <feGaussianBlur> for a Drop Shadow                                                         157
Storing, Chaining, and Merging Filter Results                                                      158

Creating a Glowing Shadow                                                                                         159
The <feColorMatrix> Element                                                                                 160
More About the <feColorMatrix> Element                                                            161

The <feImage> Filter                                                                                                     163
The <feComponentTransfer> Filter                                                                            164
The <feComposite> Filter                                                                                            169
The <feBlend> Filter                                                                                                     172
The <feFlood> and <feTile> Filters                                                                            173
Lighting Effects                                                                                                              174

Diffuse Lighting                                                                                                          175
Specular Lighting                                                                                                       177

Accessing the Background                                                                                            179
The <feMorphology> Element                                                                                    181
The <feConvolveMatrix> Element                                                                              182
The <feDisplacementMap> Element                                                                          184
The <feTurbulence> Element                                                                                       186
Filter Reference Summary                                                                                            187

viii | Table of Contents

www.allitebooks.com

http://www.allitebooks.org


12. Animating SVG. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  191
Animation Basics                                                                                                           192
How Time Is Measured                                                                                                 194
Synchronizing Animation                                                                                            194
Repeated Action                                                                                                             196
Animating Complex Attributes                                                                                   197
Specifying Multiple Values                                                                                           198
Timing of Multistage Animations                                                                               199
The <set> Element                                                                                                         200
The <animateTransform> Element                                                                             200
The <animateMotion> Element                                                                                  202
Specifying Key Points and Times for Motion                                                            204
Animating SVG with CSS                                                                                             205

Animation Properties                                                                                                206
Setting Animation Key Frames                                                                                207
Animating Movement with CSS                                                                              207

13. Adding Interactivity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  209
Using Links in SVG                                                                                                       209
Controlling CSS Animations                                                                                        211
User-Triggered SMIL Animations                                                                               212
Scripting SVG                                                                                                                 213

Events: An Overview                                                                                                 216
Listening for and Responding to Events                                                                 217
Changing Attributes of Multiple Objects                                                               218
Dragging Objects                                                                                                        221
Interacting with an HTML Page                                                                              225
Creating New Elements                                                                                             229

14. Using the SVG DOM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  233
Determining the Value of Element Attributes                                                           233
SVG Interface Methods                                                                                                 241
Constructing SVG with ECMAScript/JavaScript                                                      248
Animation via Scripting                                                                                                251
Using JavaScript Libraries                                                                                             256
Event Handling in Snap                                                                                                261

Clicking Objects                                                                                                         262
Dragging Objects                                                                                                        262

15. Generating SVG. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  265
Converting Custom Data to SVG                                                                                266
Using XSLT to Convert XML Data to SVG                                                                270

Table of Contents | ix



Defining the Task                                                                                                       270
How XSLT Works                                                                                                       272
Developing an XSL Stylesheet                                                                                  273

A. The XML You Need for SVG. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  285

B. Introduction to Stylesheets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  299

C. Programming Concepts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  309

D. Matrix Algebra. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  319

E. Creating Fonts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  327

F. Converting Arcs to Different Formats. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  331

Index. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  335

x | Table of Contents



Preface

SVG Essentials introduces you to the Scalable Vector Graphics XML file format. SVG,
a recommendation from the World Wide Web Consortium, uses XML to describe
graphics that are made up of lines, curves, and text. This rather dry definition does not
do justice to the scope and power of SVG.

You can add SVG graphics to an Extensible Stylesheet Language Formatting Objects
(XSL-FO) document, and convert the combined document to Adobe PDF format for
high-quality printouts. Mapmakers and meteorologists are using SVG to create highly
detailed graphic images in a truly portable format. Web developers are embedding SVG
in web pages to create high-resolution, responsive graphics with small file sizes. All of
the diagrams in this book were originally created in SVG. As you learn and use SVG,
you’re sure to think of new and interesting uses for this technology.

Who Should Read This Book?
You should read this book if you want to

• Create SVG files in a text or XML editor
• Create SVG files from existing vector data
• Transform other XML data to SVG
• Use JavaScript to manipulate the SVG document object tree

Who Should Not Read This Book?
If you simply want to view SVG files, you need only acquire a viewer program or plug-
in for the Web, download the files, and enjoy them. There’s no need for you to know
what’s going on behind the scenes unless you wish to satisfy your lively intellectual
curiosity.

xi



If you wish to create SVG files with a drawing program that has SVG export capability,
just read that program’s documentation to learn how to use that program feature.

If You’re Still Reading This…
If you’ve decided that you should indeed read this book, you should also be aware that
most of the people who use this book will be fairly advanced users, quite probably from
a technical background rather than a graphics design background. We didn’t want to
burden them with a lot of basic material up front, but we did want the book to be
accessible to people with no background in XML or programming, so we created a
number of introductory chapters—and then put them in the back of the book as ap‐
pendixes. If you haven’t used XML or stylesheets (and this could include some of the
technical folks!) or have never programmed, you might want to turn first to the appen‐
dixes. A complete list of all the chapters and appendixes with details on what they contain
is given later in this preface.

If you’re one of the technical types, you definitely need to be aware that this book will
not make you a better artist, any more than a book on word processing algorithms will
make you a better writer. This book gives the technical details of scalable vector graphics;
to create better art, you need to learn to see, and the book you should read in addition
to this one is The New Drawing on the Right Side of the Brain by Dr. Betty Edwards
(Tarcher).

This book gives you the essentials of SVG; if you want to find out all the details, you
should go straight to the source, the W3C SVG specifications.

About the Examples
The examples in this book, except for those that involve HTML pages, have been tested
with the Batik SVG viewer on a system running GNU/Linux. The Batik SVG viewer is
an application of the software developed by the Apache Software Foundation’s Batik
project. This cross-platform software, written in Java, is available as open source under
the Apache Software License and can be freely downloaded from the project website.

All the examples (including those in Chapters 2, 13, and 14 that involve JavaScript and
HTML) were tested by being loaded into the Firefox and Chrome web browsers. The
level of support for the more sophisticated features of SVG differs depending upon the
browser.

As you look through the illustrations in this book, you will find that they are utterly
lacking in artistic merit. There are reasons for this. First, each example is intended to
illustrate a particular aspect of SVG, and it should do so without additional visual
distractions. Second, one of the authors (David) becomes terribly depressed when he
looks at other books with impossibly beautiful examples; “I can never draw anything

xii | Preface

http://www.w3.org/Graphics/SVG/Overview.htm8
http://xmlgraphics.apache.org/batik/


that looks like this,” he thinks. In an effort to save you from similar distress, the examples
are purposely as simple (or simplistic) as possible. As you look at them, your immediate
reaction will be: “I can certainly use SVG to draw something that looks far better than
this!” You can, and you will.

Organization of This Book
Chapter 1, Getting Started

This chapter gives a brief history of SVG, compares raster and vector graphics sys‐
tems, and ends with a brief tutorial introducing the main concepts of SVG.

Chapter 2, Using SVG in Web Pages
This chapter shows you the various methods that you can use to put SVG into your
HTML5 documents.

Chapter 3, Coordinates
How do you determine the position of a point in a drawing? Which way is “up”?
This chapter answers those questions, showing how to change the system by which
coordinates are measured in a graphic.

Chapter 4, Basic Shapes
This chapter shows you how to construct drawings using the basic shapes available
in SVG: lines, rectangles, polygons, circles, and ellipses. It also discusses how to
determine the colors for the outline and interior of a shape.

Chapter 5, Document Structure
In a complex drawing, there are elements that are reused or repeated. This chapter
tells you how to group objects together so they may be treated as a single entity and
reused. It also discusses use of external images, both vector and raster.

Chapter 6, Transforming the Coordinate System
If you draw a square on a sheet of stretchable material, and stretch the material
horizontally, you get a rectangle. Skew the sides of the sheet, and you see a paral‐
lelogram. Now tilt the sheet 45 degrees, and you have a diamond. In this chapter,
you will learn how to move, rotate, scale, and skew the coordinate system to affect
the shapes drawn on it.

Chapter 7, Paths
All the basic shapes are actually specific instances of the general concept of a path.
This chapter shows you how to describe a general outline for a shape by using lines,
arcs, and complex curves.

Chapter 8, Patterns and Gradients
This chapter adds more to the discussion of color from Chapter 4, discussing how
to create a color gradient or a fill pattern.

Preface | xiii



Chapter 9, Text
Graphics aren’t just lines and shapes; text is an integral part of a poster or a schematic
diagram. This chapter shows how to add text to a drawing, both in a straight line
and following a path.

Chapter 10, Clipping and Masking
This chapter shows you how to use a clipping path to display a graphic as though
it were viewed through a circular lens, keyhole, or any other arbitrary shape. It also
shows how to use a mask to alter an object’s transparency so that it appears to “fade
out” at the edges.

Chapter 11, Filters
Although an SVG file describes vector graphics, the document is eventually ren‐
dered on a raster device. In this chapter, you’ll learn how to apply raster-oriented
filters to a graphic to blur an image, transform its colors, or produce lighting effects.

Chapter 12, Animating SVG
This chapter shows you how to use SVG’s built-in animation capabilities.

Chapter 13, Adding Interactivity
In addition to SVG’s built-in animation, you can use both CSS and JavaScript to
dynamically control a graphic’s attributes.

Chapter 14, Using the SVG DOM
This chapter goes further in depth with using JavaScript to manipulate the Docu‐
ment Object Model. It also gives a brief introduction to a JavaScript library designed
for working with SVG.

Chapter 15, Generating SVG
Although you can create an SVG file from scratch, many people will have existing
vector data or XML data that they wish to display in graphic form. This chapter
discusses the use of programming languages and XSLT to create SVG from these
data sources.

Appendix A, The XML You Need for SVG
SVG is an application of XML, the Extensible Markup Language. If you haven’t used
XML before, you should read this appendix to familiarize yourself with this re‐
markably powerful and flexible format for structuring data and documents.

Appendix B, Introduction to Stylesheets
You can use stylesheets to apply visual properties to particular elements in your
SVG document. These are exactly the same kind of stylesheets that can be used with
HTML documents. If you’ve never used stylesheets before, you’ll want to read this
brief introduction to the anatomy of a stylesheet.

xiv | Preface



Appendix C, Programming Concepts
If you’re a graphic designer who hasn’t done much programming, you’ll want to
find out what programmers are talking about when they throw around words like
object model and function.

Appendix D, Matrix Algebra
To fully understand coordinate transformations and filter effects in SVG, it’s helpful,
though not necessary, to understand matrix algebra, the mathematics used to com‐
pute the coordinates and pixels. This appendix highlights the basics of matrix
algebra.

Appendix E, Creating Fonts
TrueType fonts represent glyphs (characters) in a vector form. This appendix shows
you how to take your favorite fonts and convert them to paths for use in SVG
documents.

Appendix F, Converting Arcs to Different Formats
Many applications represent arcs in a center-and-angles format. This appendix
provides code to convert from that format to SVG’s format for arcs and back again.

Conventions Used in This Book
Italic

Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program elements
such as variable or function names, databases, data types, environment variables,
statements, and keywords.

Constant width bold

Used to highlight a section of code being discussed in the text.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

This element signifies a tip, suggestion, or general note.

Preface | xv



This element indicates a warning or caution.

This book uses callouts to denote points of interest in code listings. A callout is shown
as a number in a filled circle; the corresponding number after the listing gives an ex‐
planation. Here’s an example:

Roses are red,
   Violets are blue. 
Some poems rhyme;
   This one doesn't. 

Violets actually have a color value of #9933cc.
This poem uses the literary device known as a surprise ending.

Many of the examples are available to test out online; the URL is indicated in the text.
Some of the online examples have markup that you can edit; click the Refresh button
to see the results of your changes. You may also click the Reset button to return the
example to its original state.

Safari® Books Online
Safari Books Online is an on-demand digital library that
delivers expert content in both book and video form from
the world’s leading authors in technology and business.

Technology professionals, software developers, web designers, and business and crea‐
tive professionals use Safari Books Online as their primary resource for research, prob‐
lem solving, learning, and certification training.

Safari Books Online offers a range of plans and pricing for enterprise, government,
education, and individuals.

Members have access to thousands of books, training videos, and prepublication manu‐
scripts in one fully searchable database from publishers like O’Reilly Media, Prentice
Hall Professional, Addison-Wesley Professional, Microsoft Press, Sams, Que, Peachpit
Press, Focal Press, Cisco Press, John Wiley & Sons, Syngress, Morgan Kaufmann, IBM
Redbooks, Packt, Adobe Press, FT Press, Apress, Manning, New Riders, McGraw-Hill,
Jones & Bartlett, Course Technology, and hundreds more. For more information about
Safari Books Online, please visit us online.

xvi | Preface

http://safaribooksonline.com
https://www.safaribooksonline.com/explore/
https://www.safaribooksonline.com/pricing/
https://www.safaribooksonline.com/enterprise/
https://www.safaribooksonline.com/government/
https://www.safaribooksonline.com/academic-public-library/
https://www.safaribooksonline.com/our-library/
http://safaribooksonline.com/


How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://shop.oreilly.com/product/
0636920032335.do.

To comment or ask technical questions about this book, send email to bookques‐
tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our website
at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments for the First Edition
I’d like to thank Simon St. Laurent, the editor of this book, for his guidance and com‐
ments, which were always right on the mark. He also told me in an email, “we already
know that you know how to write,” which is one of the nicest things anyone has ever
told me.

Thanks also to Edd Dumbill, who wrote the document that I modified only slightly to
create Appendix A. Of course, any errors in that appendix have been added by my
modifications.

Thanks also go to the technical reviewers of this book: Antoine Quint and David Kla‐
phaak and the SVG Quality Engineering team at Adobe, who did the technical review
of the manuscript. Your comments have helped improve many aspects of this book.

Jeffrey Zeldman is the person who first put the idea in my head that I, too, could write
a book, and for that I thank him most sincerely.

I also want to thank all the people, foremost among them my brother, Steven, who, when
I told them I was writing a book, believed in me enough to say, “Wow, that’s great.”

Preface | xvii

http://shop.oreilly.com/product/0636920032335.do
http://shop.oreilly.com/product/0636920032335.do
mailto:bookquestions@oreilly.com
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia


Acknowledgments for the Second Edition
We would like to thank Shelly Powers for her excellent technical review. Our thanks also
go to Simon St. Laurent and Meghan Blanchette for their fantastic job of editing and to
Matthew Hacker and the O’Reilly tools and production teams for getting all the finishing
touches just right, despite the best efforts of stubborn software and fussy authors.

From David: I’d like to give special thanks to Amelia Bellamy-Royds. She was initially
doing technical review of the book, and her comments were so lucid and well written
that I found myself lifting them verbatim and realized that she should be a coauthor.
Her corrections and additions have made the book far better than I could have imagined.

From Amelia: I’d like to thank David for being decent enough to recognize when I’d
exceeded my original job description and deserved extra credit. His original book was
a wonderfully welcoming introduction to SVG. As someone who had puzzled through
all the quirks of web browser implementations on my own, I really wanted the revised
book to have clear explanations for all the things that confused me when learning SVG
as it currently works in practice.

I also need to send special thanks to my husband, Chris, who has been hugely supportive,
but who has also regularly reminded me when I need to step away from the computer,
eat, sleep, or get some fresh air.

xviii | Preface



CHAPTER 1

Getting Started

SVG, which stands for Scalable Vector Graphics, is an application of XML that makes
it possible to represent graphic information in a compact, portable form. Interest in
SVG is growing rapidly. Most modern web browsers can display SVG graphics, and
most vector drawing software programs can export SVG graphics. This chapter begins
with a description of the two major systems of computer graphics, and describes where
SVG fits into the graphics world. The chapter concludes with a brief example that uses
many of the concepts that you will explore in detail in the following chapters.

Graphics Systems
The two major systems for representing graphic information on computers are raster
and vector graphics.

Raster Graphics
In raster graphics, an image is represented as a rectangular array of picture elements or
pixels (see Figure 1-1). Each pixel is represented either by its RGB color values or as an
index into a list of colors. This series of pixels, also called a bitmap, is often stored in a
compressed format. Because most modern display devices are also raster devices, dis‐
playing an image requires a viewer program to do little more than uncompress the
bitmap and transfer it to the screen.

1



Figure 1-1. Raster graphic rectangle

Vector Graphics
In a vector graphics system, an image is described as a series of geometric shapes (see
Figure 1-2). Rather than receiving a finished set of pixels, a vector viewing program
receives commands to draw shapes at specified sets of coordinates.

Figure 1-2. Vector graphic rectangle

If you think of producing an image on graph paper, raster graphics work by describing
which squares should be filled in with which colors. Vector graphics work by describing
the grid points at which lines or curves are to be drawn. Some people describe vector
graphics as a set of instructions for a drawing, while bitmap graphics (rasters) are points
of color in specific places. Vector graphics “understand” what they are—a square
“knows” it’s a square, and text “knows” that it’s text. Because they are objects rather than
a series of pixels, vector objects can change their shape and color, whereas bitmap
graphics cannot. Also, all text is searchable because it really is text, no matter how it
looks or how it is rotated or transformed.

Another way to think of raster graphics is as paint on canvas, while vector graphics are
lines and shapes made of a stretchable material that can be moved around on a back‐
ground.

Uses of Raster Graphics
Raster graphics are most appropriate for use with photographs, which are rarely com‐
posed of distinct lines and curves. Scanned images are often stored as bitmaps; even
though the original may be line art, you want to store the image as a whole and don’t

2 | Chapter 1: Getting Started



care about its individual components. A fax machine, for example, doesn’t care what
you’ve drawn; it simply transmits pixels from one place to another in raster form.

Tools for creating images in raster format are widespread and generally easier to use
than many vector-based tools. There are many different ways to compress and store a
raster image, and the internal representation of these formats is public. Program libraries
to read and write images in compressed formats such as JPEG, GIF, and PNG are widely
available. These are some of the reasons that web browsers have, until the arrival of SVG,
supported only raster images.

Uses of Vector Graphics
Vector graphics are used in the following:

• Computer Assisted Drafting (CAD) programs, where accurate measurement and
the ability to zoom in on a drawing to see details are essential.

• Programs for designing graphics that will be printed on high-resolution printers
(e.g., Adobe Illustrator).

• The Adobe PostScript printing and imaging language; every character that you print
is described in terms of lines and curves.

• The vector-based Macromedia Flash system for designing animations, presenta‐
tions, and websites.

Because most of these files are encoded in binary format or as tightly packed bitstreams,
it is difficult for a browser or other user agent to parse out embedded text, or for a server
to dynamically create vector graphic files from external data. Most of the internal rep‐
resentations of vector graphics are proprietary, and code to view or create them is not
generally available.

Scalability
Although they are not as popular as raster graphics, vector graphics have one feature
that makes them invaluable in many applications—they can be scaled without loss of
image quality. As an example, here are two drawings of a cat. Figure 1-3 was made with
raster graphics; Figure 1-4 is a vector image. Both are shown as they appear on a screen
that displays 72 pixels per inch.

Scalability | 3



Figure 1-3. Raster image of cat

Figure 1-4. Vector image of cat

When a display program zooms in on the raster graphic, it must find some way to expand
each pixel. The simplest approach to zooming in by a factor of four is to make each pixel
four times as large. The results, shown in Figure 1-5, are not particularly pleasing.

Figure 1-5. Expanded raster image

Although it is possible to use techniques such as edge detection and anti-aliasing to
make the expanded image more pleasing, these techniques are time-consuming. Fur‐
thermore, since all the pixels in a raster graphic are equally anonymous, there’s no
guarantee that an algorithm can correctly detect edges of shapes. Anti-aliasing results
in something like Figure 1-6.

4 | Chapter 1: Getting Started



Figure 1-6. Expanded anti-aliased raster image

Expanding a vector image by a factor of four, on the other hand, merely requires the
display program to multiply all the coordinates of the shapes by four and redraw them
at the full resolution of the display device. Thus, Figure 1-7, which is also a screenshot
from a 72 dots per inch (DPI) screen, shows crisp, clear edges on the lines with signif‐
icantly less of the stair-step effects of the expanded raster image.

Figure 1-7. Expanded vector image

SVG’s Role
In 1998, the World Wide Web Consortium formed a working group to develop a
representation of vector graphics as an XML application. Because SVG is an XML ap‐
plication, the information about an image is stored as plain text, and it brings the ad‐
vantages of XML’s openness, transportability, and interoperability.

CAD and graphic design programs often store drawings in a proprietary binary format.
By adding the ability to import and export drawings in SVG format, applications gain
a common standard format for interchanging information.

SVG’s Role | 5



Because it is an XML application, SVG cooperates with other XML applications. A
mathematics textbook, for example, could use XSL Formatting Objects for explanatory
text, MathML to describe equations, and SVG to generate the graphs for the equations.

The SVG working group’s specification is an official World Wide Web Consortium
Recommendation. Applications such as Adobe Illustrator and Inkscape can import and
export drawings in SVG format. On the Web, SVG is natively supported in many brows‐
ers and has many of the same transformation and animation capabilities that CSS-styled
HTML has. Because the SVG files are XML, text in the SVG display is available to any
user agent that can parse XML.

Creating an SVG Graphic
In this section, you will see an SVG file that produces the image of the cat that you saw
earlier in the chapter. This example introduces many of the concepts that you will read
about in further detail in subsequent chapters. This file will be a good example of how
to write an example file, which is not necessarily the way you should write an SVG file
that will be part of a finished project.

Document Structure
Example 1-1 starts with the standard XML processing instruction and DOCTYPE decla‐
ration. The root <svg> element defines the width and height of the finished graphic in
pixels. It also defines the SVG namespace via the xmlns attribute. The <title> element’s
content is available to a viewing program for use in a title bar or as a tooltip pointer, and
the <desc> element lets you give a full description of the image.

Example 1-1. Basic structure of an SVG document
<?xml version="1.0"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"
  "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">

<svg width="140" height="170"
  xmlns="http://www.w3.org/2000/svg">
<title>Cat</title>
<desc>Stick Figure of a Cat</desc>
<!-- the drawing will go here -->
</svg>

Basic Shapes
You draw the cat’s face by adding a <circle> element. The element’s attributes specify
the center x-coordinate, center y-coordinate, and radius. The (0,0) point is the upper-
left corner of the picture. x-coordinates increase as you move horizontally to the right;
y-coordinates increase as you move vertically downward.

6 | Chapter 1: Getting Started



The circle’s location and size are part of the drawing’s structure. The color in which it is
drawn is part of its presentation. As is customary with XML applications, you should
separate structure and presentation for maximum flexibility. Presentation information
is contained in the style attribute. Its value will be a series of presentation properties
and values, as described in Appendix B, in “Anatomy of a Style” on page 299. Use a stroke
color of black for the outline, and a fill color of none to make the face transparent. The
SVG is shown in Example 1-2, and its result in Figure 1-8.

Example 1-2. Basic shapes—circle
http://oreillymedia.github.io/svg-essentials-examples/ch01/ex01-02.html
<?xml version="1.0"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"
  "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">

<svg width="140" height="170"
  xmlns="http://www.w3.org/2000/svg">
<title>Cat</title>
<desc>Stick Figure of a Cat</desc>

<circle cx="70" cy="95" r="50" style="stroke: black; fill: none"/>

</svg>

Figure 1-8. Stage one—drawing a circle

Specifying Styles as Attributes
Now add two more circles for the eyes in Example 1-3. Although their fill and stroke
colors are really part of the presentation, SVG does allow you to specify them as indi‐
vidual attributes. In this example, the fill and stroke colors are written as two separate
attributes rather than together inside the style attribute. You probably won’t use this
method often; it’s described further in Chapter 5, in “Presentation Attributes” on page
60. We’ve put it here just to prove that it can be done. The results are shown in Figure 1-9.

The <?xml …?> and <!DOCTYPE?> have been omitted to save space in the listing.

Creating an SVG Graphic | 7

http://oreillymedia.github.io/svg-essentials-examples/ch01/ex01-02.html


Example 1-3. Basic shapes—filled circles
http://oreillymedia.github.io/svg-essentials-examples/ch01/ex01-03.html
<svg width="140" height="170"
  xmlns="http://www.w3.org/2000/svg">
  <title>Cat</title>
  <desc>Stick Figure of a Cat</desc>

  <circle cx="70" cy="95" r="50" style="stroke: black; fill: none"/>
  <circle cx="55" cy="80" r="5" stroke="black" fill="#339933"/>
  <circle cx="85" cy="80" r="5" stroke="black" fill="#339933"/>
</svg>

Figure 1-9. Stage two—drawing the face and eyes

Grouping Graphic Objects
Example 1-4 adds the whiskers on the right side of the cat’s face with two <line>
elements. You want to treat these whiskers as a unit (you’ll see why in a moment), so
enclose them in the <g> grouping element, and give it an id. You specify a line by giving
the x- and y-coordinates for its starting point (x1 and y1) and ending point (x2 and y2).
Figure 1-10 shows the result.

Example 1-4. Basic shapes—lines
http://oreillymedia.github.io/svg-essentials-examples/ch01/ex01-04.html
<svg width="140" height="170"
  xmlns="http://www.w3.org/2000/svg">
<title>Cat</title>
<desc>Stick Figure of a Cat</desc>

<circle cx="70" cy="95" r="50" style="stroke: black; fill: none;"/>
<circle cx="55" cy="80" r="5" stroke="black" fill="#339933"/>
<circle cx="85" cy="80" r="5" stroke="black" fill="#339933"/>
<g id="whiskers">
   <line x1="75" y1="95" x2="135" y2="85" style="stroke: black;"/>
   <line x1="75" y1="95" x2="135" y2="105" style="stroke: black;"/>
</g>
</svg>

8 | Chapter 1: Getting Started

http://oreillymedia.github.io/svg-essentials-examples/ch01/ex01-03.html
http://oreillymedia.github.io/svg-essentials-examples/ch01/ex01-04.html


Figure 1-10. Stage three—adding whiskers on the right side

Transforming the Coordinate System
Now you will <use> the whiskers group and transform it into the left whiskers.
Example 1-5 first flips the coordinate system by multiplying the x-coordinates by neg‐
ative one in a scale transformation. This means that the point (75,95) is now located
at the place that would have been (–75,95) in the original coordinate system. In the new
scaled system, coordinates increase as you move left. This means you have to translate
(move) the coordinate system 140 pixels right, the negative direction, to get them where
you want them, as shown in Figure 1-11.

Example 1-5. Transforming the coordinate system
http://oreillymedia.github.io/svg-essentials-examples/ch01/ex01-05.html
<svg width="140" height="170"
  xmlns="http://www.w3.org/2000/svg"
  xmlns:xlink="http://www.w3.org/1999/xlink">
  <title>Cat</title>
  <desc>Stick Figure of a Cat</desc>

  <circle cx="70" cy="95" r="50" style="stroke: black; fill: none;"/>
  <circle cx="55" cy="80" r="5" stroke="black" fill="#339933"/>
  <circle cx="85" cy="80" r="5" stroke="black" fill="#339933"/>
  <g id="whiskers">
    <line x1="75" y1="95" x2="135" y2="85" style="stroke: black;"/>
    <line x1="75" y1="95" x2="135" y2="105" style="stroke: black;"/>
  </g>
  <use xlink:href="#whiskers" transform="scale(-1 1) translate(-140 0)"/>
</svg>

Figure 1-11. Stage four—adding whiskers on the left side

Creating an SVG Graphic | 9

http://oreillymedia.github.io/svg-essentials-examples/ch01/ex01-05.html


The xlink:href attribute in the <use> element is in a different namespace (see Appen‐
dix A for details). To make sure your SVG document will work with all SVG viewers,
you must add the xmlns:xlink attribute to the opening <svg> tag.

The transform attribute’s value lists the transformations, one after another, separated
by whitespace.

Other Basic Shapes
Example 1-6 constructs the ears and mouth with the <polyline> element, which takes
pairs of x- and y-coordinates as the points attribute. You separate the numbers with
either blanks or commas as you please. The result is in Figure 1-12.

Example 1-6. Basic shapes—polylines
http://oreillymedia.github.io/svg-essentials-examples/ch01/ex01-06.html
<svg width="140" height="170"
  xmlns="http://www.w3.org/2000/svg"
  xmlns:xlink="http://www.w3.org/1999/xlink">
  <title>Cat</title>
  <desc>Stick Figure of a Cat</desc>

  <circle cx="70" cy="95" r="50" style="stroke: black; fill: none;"/>
  <circle cx="55" cy="80" r="5" stroke="black" fill="#339933"/>
  <circle cx="85" cy="80" r="5" stroke="black" fill="#339933"/>
  <g id="whiskers">
    <line x1="75" y1="95" x2="135" y2="85" style="stroke: black;"/>
    <line x1="75" y1="95" x2="135" y2="105" style="stroke: black;"/>
  </g>
  <use xlink:href="#whiskers" transform="scale(-1 1) translate(-140 0)"/>
  <!-- ears -->
  <polyline points="108 62,  90 10,  70 45,  50, 10,  32, 62"
    style="stroke: black; fill: none;" />
  <!-- mouth -->
  <polyline points="35 110, 45 120, 95 120, 105, 110"
      style="stroke: black; fill: none;" />
</svg>

Figure 1-12. Stage five—adding ears and mouth

10 | Chapter 1: Getting Started

www.allitebooks.com

http://oreillymedia.github.io/svg-essentials-examples/ch01/ex01-06.html
http://www.allitebooks.org


Paths
All of the basic shapes are actually shortcuts for the more general <path> element, which
Example 1-7 uses to add the cat’s nose. The result is in Figure 1-13. This element has
been designed to make specifying a path, or sequence of lines and curves, as compact
as possible. The path in Example 1-7 translates, in words, to “Move to coordinate (75,90).
Draw a line to coordinate (65,90). Draw an elliptical arc with an x-radius of 5 and a y-
radius of 10, ending back at coordinate (75,90).”

Example 1-7. Using the <path> element
http://oreillymedia.github.io/svg-essentials-examples/ch01/ex01-07.html
<svg width="140" height="170"
  xmlns="http://www.w3.org/2000/svg"
  xmlns:xlink="http://www.w3.org/1999/xlink">
  <title>Cat</title>
  <desc>Stick Figure of a Cat</desc>

  <circle cx="70" cy="95" r="50" style="stroke: black; fill: none;"/>
  <circle cx="55" cy="80" r="5" stroke="black" fill="#339933"/>
  <circle cx="85" cy="80" r="5" stroke="black" fill="#339933"/>
  <g id="whiskers">
    <line x1="75" y1="95" x2="135" y2="85" style="stroke: black;"/>
    <line x1="75" y1="95" x2="135" y2="105" style="stroke: black;"/>
  </g>
  <use xlink:href="#whiskers" transform="scale(-1 1) translate(-140 0)"/>
  <!-- ears -->
  <polyline points="108 62,  90 10,  70 45,  50, 10,  32, 62"
    style="stroke: black; fill: none;" />
  <!-- mouth -->
  <polyline points="35 110, 45 120, 95 120, 105, 110"
      style="stroke: black; fill: none;" />
  <!-- nose -->
  <path d="M 75 90 L 65 90 A 5 10 0  0 0 75 90"
    style="stroke: black; fill: #ffcccc"/>
</svg>

Figure 1-13. Stage six—adding a nose

Creating an SVG Graphic | 11

http://oreillymedia.github.io/svg-essentials-examples/ch01/ex01-07.html


Text
Finally, because this picture is so crudely drawn, there’s a good chance that people will
not know it is a cat. Hence, Example 1-8 adds text to the picture as a label. In the <text>
element, the x and y attributes that specify the text’s location are part of the structure.
The font family and font size are part of the presentation, and thus part of the style
attribute. Unlike the other elements you’ve seen, <text> is a container element, and its
content is the text you want to display. Figure 1-14 shows the final result.

Example 1-8. Adding a label
http://oreillymedia.github.io/svg-essentials-examples/ch01/ex01-08.html
<svg width="140" height="170"
  xmlns="http://www.w3.org/2000/svg"
  xmlns:xlink="http://www.w3.org/1999/xlink">
  <title>Cat</title>
  <desc>Stick Figure of a Cat</desc>

  <circle cx="70" cy="95" r="50" style="stroke: black; fill: none;"/>
  <circle cx="55" cy="80" r="5" stroke="black" fill="#339933"/>
  <circle cx="85" cy="80" r="5" stroke="black" fill="#339933"/>
  <g id="whiskers">
    <line x1="75" y1="95" x2="135" y2="85" style="stroke: black;"/>
    <line x1="75" y1="95" x2="135" y2="105" style="stroke: black;"/>
  </g>
  <use xlink:href="#whiskers" transform="scale(-1 1) translate(-140 0)"/>
  <!-- ears -->
  <polyline points="108 62,  90 10,  70 45,  50, 10,  32, 62"
    style="stroke: black; fill: none;" />
  <!-- mouth -->
  <polyline points="35 110, 45 120, 95 120, 105, 110"
      style="stroke: black; fill: none;" />
  <!-- nose -->
  <path d="M 75 90 L 65 90 A 5 10 0  0 0 75 90"
    style="stroke: black; fill: #ffcccc"/>
  <text x="60" y="165" style="font-family: sans-serif; font-size: 14pt;
    stroke: none; fill: black;">Cat</text>
</svg>

Figure 1-14. Stage seven—finished image with label

12 | Chapter 1: Getting Started

http://oreillymedia.github.io/svg-essentials-examples/ch01/ex01-08.html


That concludes our brief overview of SVG; in the following chapters, you’ll examine
these concepts in depth.

Creating an SVG Graphic | 13





CHAPTER 2

Using SVG in Web Pages

John Donne said that no man is an island, and likewise SVG does not exist in isolation.
Of course, you can view SVG images on their own, as an independent file in your web
browser or SVG viewer. Many of the examples in this book work that way. But in other
cases, you will want your graphic to be integrated in a larger document, which contains
paragraphs of text, forms, or other content that cannot easily be displayed using SVG
alone. This chapter describes various ways of integrating SVG within HTML and other
document types.

Figure 2-1 shows the cat drawing from the previous chapter, inserted into an HTML
page in four different ways. The results look almost identical, but each method has
benefits and limitations.

SVG as an Image
SVG is an image format, and as such it can be included in HTML pages in the same
ways as other image types. There are two approaches: you can include the image within
the HTML markup in an <img> element (recommended when the image is a funda‐
mental part of the page’s content); or you can insert the image as a CSS style property
of another element (recommended when the image is primarily decorative).

Regardless of which method you use, including SVG as an image imposes certain lim‐
itations. The image will be rendered (“drawn” in the sense that the SVG code is converted
to a raster image for display) separately from the main web page, and there is no way
to communicate between the two. Styles defined on the main web page will have no
effect on the SVG. You may need to define a default font size within your SVG code if
your graphic includes text or defines lengths relative to the font size. Furthermore,
scripts running on the main web page will not be able to discover or modify any of the
SVG’s document structure.

15



Figure 2-1. Screenshot of a web page with SVG inserted four ways

Most web browsers will not load files referenced from an SVG used as an image; this
includes other image files, external scripts, and even webfont files. Depending on the
browser and the user’s security settings, scripts defined within the SVG file may not run,
and URL fragments (the part of the URL after #, which indicates which part of the file
you’re interested in) may be ignored. Animation, as defined in Chapter 12, is supported
within images (in browsers that support it in SVG in general).

Including SVG in an <img> Element
The HTML <img> element defines a space into which the browser should draw an ex‐
ternal image file. The image file to use is specified with the src (source) attribute. In‐
cluding an SVG image within an <img> element is as simple as setting the source to
point to the location of your SVG file on the web server. Of course, you should also give
a description with an alt and/or a title attribute so that users who cannot see the
image can still understand what it represents. For example:

  <img src="cat.svg" title="Cat Image"
       alt="Stick Figure of a Cat" />

16 | Chapter 2: Using SVG in Web Pages



Although most web browsers now support SVG as images, some
older browsers will not know how to render the file and will dis‐
play a broken-file icon (or nothing at all). For other browsers, you
may need to confirm that your web server is configured to declare
the correct media type header (image/svg+xml) for files ending
in .svg.

The height and width of the image can be set using attributes or CSS properties (which
take precedence). Other CSS properties control the placement of the image within the
web page. If you do not specify dimensions for the <img> element, the intrinsic dimen‐
sions of the image file are used. If you specify only one of height or width, the other
dimension is scaled proportionally so that the aspect ratio (the ratio of width to height)
matches the intrinsic dimensions.

For raster images, the intrinsic dimension is the image size in pixels. For SVG, it’s more
complicated. If the root <svg> element in the file has explicit height and width attributes,
those are used as the intrinsic dimensions of the file. If one of height or width is specified,
but not both, and the <svg> has a viewBox attribute, then the viewBox will be used to
calculate the aspect ratio and the image will be scaled to match the specified dimension.
Otherwise, if the <svg> has a viewBox attribute but no dimensions, then the height and
width parts of the viewBox are treated as lengths in pixels. If that all sounds incompre‐
hensible, rest assured: we’ll introduce the viewBox attribute properly in “Specifying User
Coordinates for a Viewport” on page 30, in Chapter 3.

If neither the <img> element nor the root <svg> element has any information about the
size of the image, the browser should apply the default HTML size for embedded content,
150 pixels tall and 300 pixels wide, but it is best not to rely on this.

Including SVG in CSS
Various CSS style properties accept a URL to an image file as a value. The most com‐
monly used is the background-image property, which draws the image (or multiple
layered images) behind the text content of the element being styled.

By default, a background image is drawn at its intrinsic dimensions and repeated in
both the horizontal and vertical direction to fill up the dimensions of the element. The
intrinsic dimensions of an SVG file are determined in the same manner as described in
“Including SVG in an <img> Element” on page 16. If there are no intrinsic dimensions,
the SVG will be scaled to 100% of the height and width of the element. The size can be
set explicitly using the background-size property, and repeat patterns and image po‐
sition can be set using background-repeat and background-position:

div.background-cat {
 background-image: url("cat.svg");

SVG as an Image | 17



 background-size: 100% 100%;
}

When using raster images for multiple small icons and logos, it is
common to arrange all the images in a grid within a single image file,
and then use background-size and background-position to dis‐
play the correct image for each element. That way, the web browser
only has to download one image file, resulting in much faster dis‐
play of the web page. The compound image file is called a CSS sprite,
named after a mythical helpful elf that magically makes things eas‐
ier. SVG files can be designed as sprites, and browsers are getting
better at rendering them efficiently, but you should probably avoid
making the sprite file too big.
The SVG specifications define other ways to create multiple icons
within a single image file; you then use URL fragments to indicate
which icon to display. Ideally, these would replace sprites based on
the background-position property. However, as mentioned previ‐
ously, some browsers ignore URL fragments when rendering SVG as
an image, so these features are not currently of much practical use
in CSS.

In addition to background images, SVG files can be used in CSS as a list-image (used
to create decorative bulleted lists) or border-image (used to create fanciful borders).

SVG as an Application
To integrate an external SVG file into an HTML page without the limitations of treating
the SVG as an image, you can use an embedded object.

The <object> element is the general-purpose way of embedding external files in HTML
(version 4 and up) and XHTML documents. It can be used to embed images, similar to
<img>, or to embed separate HTML/XML documents, similar to an <iframe>. More
importantly, it can also be used to embed files of any arbitrary type, so long as the browser
has an application (a browser plug-in or extension) to interpret that file type. Using an
object to embed your SVG can make your graphic available to users of older browsers
that cannot display SVG directly, so long as they have an SVG plug-in.

The type attribute of the <object> element indicates the type of file you’re embed‐
ding. The attribute should be a valid Internet media type (commonly known as a MIME
type). For SVG, use type="image/svg+xml".

The browser uses the file type to determine how (or if) it can display the file, without
having to download it first. The location of the file itself is specified by the data attribute.
The alt and title attributes work the same as for images.

18 | Chapter 2: Using SVG in Web Pages



1. In addition to fallback content, an <object> may also contain <param> elements defining parameters for the
plug-in. However, these aren’t used for rendering SVG data.

The object element must have both a start and end tag. Any content in between the two
will be rendered only if the object data itself cannot be displayed. This can be used to
specify a fallback image or some warning text to display if the browser doesn’t have any
way of displaying SVG.1 The following code displays both a text explanation and a raster
image in browsers that don’t support SVG:

  <object data="cat.svg" type="image/svg+xml"
       title="Cat Object" alt="Stick Figure of a Cat" >
    <!-- As a fallback, include text or a raster image file -->
    <p>No SVG support! Here's a substitute:</p>
    <img src="cat.png" title="Cat Fallback"
       alt="A raster rendering of a Stick Figure of a Cat" />
  </object>

<object> versus <embed>
Prior to the introduction of the <object> element, some browsers used the non-
standard <embed> element for the same purpose. It has now been adopted into the
standards, so you can use <embed> instead of an <object> element if you’re worried
about supporting older browsers. For even wider support, use <embed> as the fallback
content inside the <object> tags.

There are two important differences between <embed> and <object>: first, the source
data file is specified using a src attribute, not data; second, the <embed> element cannot
have any child content, so there is no fallback option if the embed fails.

Although not adopted into the specifications, most browsers also support the optional
pluginspage attribute on <embed> elements, which gives the URL of a page where users
can download a plug-in for rendering the file type if they don’t have one installed.

When you include an SVG file as an embedded object (whether with <object> or
<embed>), the external file is rendered in much the same way as if it was included in an
<img> element: it is scaled to fit the width and height of the embedding element, and it
does not inherit any styles declared in the parent document.

Unlike with images, however, the embedded SVG can include external files, and scripts
can communicate between the object and the parent page, as described in “Interacting
with an HTML Page” on page 225.

SVG as an Application | 19



SVG Markup in a Mixed Document
The image and application approaches to integrating SVG in a web page are both meth‐
ods to display a complete, separate, SVG file. However, it is also possible to mix SVG
code with HTML or XML markup in a single file.

Combining your markup into one file can speed up your web page load times, because
the browser does not have to download a separate file for the graphic. However, if the
same graphic is used on many pages on your website, it can increase the total download
size and time by repeating the SVG markup within each page.

More importantly, all the elements within a mixed document will be treated as a single
document object when applying CSS styles and working with scripts.

Foreign Objects in SVG
One way of mixing content is to insert sections of HTML (or other) content within your
SVG. The SVG specifications define a way of embedding such “foreign” content within
a specified region of the graphic.

The <foreignObject> element defines a rectangular area into which the web browser
(or other SVG viewer) should draw the child XML content. The browser is responsible
for determining how to draw that content. The child content is often XHTML (XML-
compliant HTML) code, but it could be any form of XML that the SVG viewer is capable
of displaying. The type of content is defined by declaring the XML namespace on the
child content using the xmlns attribute.

The rectangular drawing area is defined by the x, y, width, and height attributes of the
<foreignObject> element, in a manner similar to the <use> or <image> elements, which
we’ll get to in Chapter 5.

The rectangle is evaluated in the local SVG coordinate system, and so is subject to
coordinate system transformations (which we’ll talk about in Chapter 6) or other SVG
effects. The child XML document is rendered normally into a rectangular frame, and
then the result is manipulated like any other SVG graphic. An SVG foreign object con‐
taining an XHTML paragraph is shown in Figure 2-2.

The <foreignObject> element has great potential for creating mixed SVG/XHTML
documents, but is currently not well supported. Internet Explorer (at least up to version
11) does not support it at all, and there are bugs and inconsistencies in the other brows‐
ers’ implementations.

If you want to define fallback content in case the SVG viewer cannot display foreign
content, you can use the <switch> element in combination with the requiredFeatures
attribute, as shown in Example 2-1. In browsers that support XHTML and foreign ob‐
jects, that code creates Figure 2-2; in other browsers, it displays SVG text.

20 | Chapter 2: Using SVG in Web Pages



Figure 2-2. Screenshot of an SVG file containing XHTML text

The <switch> element instructs the SVG viewer to draw only the first direct child ele‐
ment (and all of its children) for which the requiredFeatures, requiredExtensions,
and systemLanguage test attributes either evaluate to true or are absent. We’ll discuss
the use of the systemLanguage attribute to switch between different texts in “The
<switch> Element” on page 135, in Chapter 9. When testing for required features, you use
one of the URL strings given in the specifications; <foreignObject> support is part of
the Extensibility feature.

Unfortunately, there is no consistent, cross-browser way to specify
which type of foreign object is required. Maybe you want to use the
MathML language to display a formula for your chart, with a plain-
text version as a fallback for browsers that don’t understand
MathML. The requiredExtensions attribute is supposed to indi‐
cate what type of added capability is needed, but the SVG 1.1 spec‐
ifications did not clearly describe how the extensions should be
identified—except to say that it should be with a URL. Firefox uses
the XML namespace URL, but other browsers do not.

Example 2-1. The <foreignObject> element, with a <switch>
<g transform="skewX(20)">
<switch>
  <!-- select one child element  -->
  <foreignObject x="1em" y="25%" width="10em" height="50%"
     requiredFeatures=
     "http://www.w3.org/TR/SVG11/feature#Extensibility">
     <body xmlns="http://www.w3.org/1999/xhtml">
        <p>This is an XHTML paragraph embedded within an SVG!
           So this text will wrap nicely around multiple lines,
           but it will still be skewed from the SVG transform.
        </p>
     </body>

SVG Markup in a Mixed Document | 21

http://www.w3.org/TR/SVG11/feature


2. CSS positioning properties apply to top-level <svg> elements, ones which are direct children of HTML
elements. An <svg> that is a child of another SVG element will be positioned based on the rules for nested
SVGs, as described in Chapter 3.

  </foreignObject>
  <text x="1em" y="25%" dy="1em">
    This SVG text won't wrap, so it will get cut off...
  </text>

</switch>
</g>

Inline SVG in XHTML or HTML5
The other way to mix SVG with XHTML is to include your SVG markup in an XHTML
document; it also works with non-XML-compliant HTML documents using the
HTML5 syntax. This way of including SVG in a web page is called Inline SVG to dis‐
tinguish it from SVG embedded as an image or object, although it really should be called
Infile SVG, because there’s no requirement that your SVG code has to all appear on a
single line!

Inline SVG is supported in all major desktop web browsers for versions released in 2012
and later, and most of the latest mobile browsers. For XHTML, you indicate that you’re
switching to SVG by defining all your SVG elements within the SVG namespace. The
easiest way to do this is to set xmlns="http://www.w3.org/2000/svg" on the top-level
<svg> element, which changes the default namespace for that element and all its chil‐
dren. For an HTML5 document (a file with <!DOCTYPE html>), you can skip the name‐
space declaration in your markup. The HTML parser will automatically recognize that
<svg> elements and all their children—except for children of <foreignObject> ele‐
ments—are within the SVG namespace.

Inserting SVG markup into an (X)HTML document is easier than the reverse: you don’t
need a separate <foreignObject>-like element to define where to render the SVG. In‐
stead, you apply positioning styles to the <svg> element itself, making it the frame for
your graphic.

By default, the SVG will be positioned with the inline display mode (meaning that it is
inserted within the same line as the text before and after it), and will be sized based on
the height and width attributes of the <svg> element. With CSS, you can change the size
by setting the height and width CSS properties, and change the position with the
display, margin, padding, and many other CSS positioning properties.2

Example 2-2 gives the code for a very simple SVG drawing in a very simple HTML5
document. The result is Figure 2-3. The xmlns attribute on the <svg> element is optional
for HTML5. For an XHTML document, you would change the DOCTYPE declaration at

22 | Chapter 2: Using SVG in Web Pages



3. As explained in “Specifying Alignment for preserveAspectRatio” on page 33, the preserveAspectRatio
attribute will scale an SVG while maintaining its aspect ratio. For inline SVG, this will scale the graphic to fit
within the box (height and width) you define for it; it doesn’t change the size of the box within the web page.

the top of the file, and you would wrap the CSS code in the <style> element with a
<![CDATA[…]]> block.

If you do not set the height and width of the SVG with either CSS or attributes, web
browsers should apply the default 150-pixel-by-300-pixel size, but be warned! Many
versions of browsers apply different defaults. Unfortunately, unlike when using an SVG
file in an <img> element, you cannot just set one of the height or width and have the
SVG scale based on the aspect ratio defined by its viewBox attribute.3

Example 2-2. Inline SVG within an HTML file
<!DOCTYPE html>
<html>
<head>
  <title>SVG in HTML</title>
  <style>

svg {
  display:block; 
  width:500px;
  height:500px;
  margin: auto;
  border: thick double navy; 
  background-color: lightblue;
}
body {
  font-family: cursive; 
}
circle {
  fill: lavender; 
  stroke: navy;
  stroke-width: 5;
}

  </style>
</head>
<body>
  <h1>Inline SVG in HTML Demo Page</h1>
    <svg viewBox="0 0 250 250"
         xmlns="http://www.w3.org/2000/svg">
      <title>An SVG circle</title>
      <circle cx="125" cy="125" r="100"/>
      <text x="125" y="125" dy="0.5em" text-anchor="middle">
         Look Ma, Same Font!</text>
    </svg>
  <p>And here is regular HTML again...</p>

SVG Markup in a Mixed Document | 23



</body>
</html>

The first style rules define how the SVG should be positioned and sized within
the HTML document.
You can also style the box in which the SVG will be drawn using other CSS
properties.
Styles you define for the main document will be inherited by the SVG.
You can also define styles for your SVG elements within your main stylesheet.

Figure 2-3. The web page from Example 2-2

24 | Chapter 2: Using SVG in Web Pages



SVG in Other XML Applications
XML namespaces can be used to identify SVG markup in other XML documents, not
just XHTML. The details depend on the main XML document’s syntax, but there are
two essential requirements: the XML document must clearly define a layout box for the
SVG element, and the program that will display the document must know how to
draw SVG.

One type of XML document where inline SVG is commonly used is Extensible Stylesheet
Language Formatting Object (XSL-FO) files. An XSL-FO file defines both the content
and layout of a multipage document, and can be used in publishing or to create a PDF
file. The XSL-FO data type definition includes an <instream-foreign-object> ele‐
ment, which—just like SVG’s <foreignObject> element—defines a rectangular region
to hold content from a different namespace. Inside it, you can add your SVG markup.
Just make sure that the <svg> tag and all its children are defined within the SVG name‐
space, either by using a namespace prefix for all SVG elements or by changing the default
namespace with an xmlns attribute.

Example 2-3 gives a snippet of an XSL-FO file that uses the customary fo namespace
prefix for formatting object elements. The SVG namespace is set as the default for the
<svg> and its children, so no prefixes are necessary within the graphical markup.

Example 2-3. SVG inside an XSL-FO document
<?xml version="1.0" encoding="UTF-8"?>
<fo:root xmlns:fo="http://www.w3.org/1999/XSL/Format">
  <!-- other formatting object content -->
  <fo:instream-foreign-object width="140px" height="140px">
    <svg xmlns="http://www.w3.org/2000/svg"
         width="140px" height="140px">
      <!-- SVG code goes here -->
    </svg>
  </fo:instream-foreign-object>
  <!-- rest of document -->
</fo:root>

SVG Markup in a Mixed Document | 25





CHAPTER 3

Coordinates

The world of SVG is an infinite canvas. In this chapter, we’ll find out how to tell a viewer
program which part of this canvas you’re interested in, what its dimensions are, and
how to locate points within that area.

The Viewport
The area of the canvas your document intends to use is called the viewport. You establish
the size of this viewport with the width and height attributes on the <svg> element.
Each attribute’s value can be simply a number, which is presumed to be in pixels; this is
said to be specified in user coordinates. You may also specify width and height as a
number followed by a unit identifier, which can be one of the following:
em

The font size of the default font, usually equivalent to the height of a line of text

ex

The height of the letter x

px

Pixels (in CSS2-supporting graphics, there are 96 pixels per inch)

pt

Points (1/72 of an inch)

pc

Picas (1/6 of an inch)

cm

Centimeters

27



1. In this book, coordinates are specified as a pair of numbers in parentheses, with the x-coordinate first. Thus,
(10,30) represents an x-coordinate of 10 and a y-coordinate of 30.

2. To save space, we are leaving out the <?xml …?> and <!DOCTYPE …> lines. These are set in stone, so you can
take them for granite.

mm

Millimeters

in

Inches

Possible SVG viewport declarations include the following:
<svg width="200" height="150"> 
<svg width="200px" height="150px">

Both of these specify an area 200 pixels wide and 150 pixels tall.

<svg width="2cm" height="3cm">

This specifies an area 2 centimeters wide and 3 centimeters high.

<svg width="2cm" height="36pt">

It is possible, though unusual, to mix units; this element specifies an area 2 centi‐
meters wide and 36 points high.

An <svg> element may also specify its width and height as a percentage. When the
element is nested within another <svg> element, the percentage is measured in terms
of the enclosing element. If the <svg> element is the root element, the percentage is in
terms of the window size. You will see nested <svg> elements in “Nested Systems of
Coordinates” on page 36.

Using Default User Coordinates
The viewer sets up a coordinate system where the horizontal, or x-coordinate, increases
as you go to the right, and the vertical, or y-coordinate, increases as you move vertically
downward. The upper-left corner of the viewport is defined to have an x- and y-
coordinate of 0.1 This point, written as (0,0), is also called the origin. The coordinate
system is a pure geometric system; points have neither width nor height, and the grid
lines are considered infinitely thin. You can read more about this subject in Chapter 4.

Example 3-1 establishes a viewport 200 pixels wide and 200 pixels high, and then draws
a rectangle whose upper-left corner is at coordinate (10,10) with a width of 50 pixels
and a height of 30 pixels.2 Figure 3-1 shows the result, with rulers and a grid to show
the coordinate system.

28 | Chapter 3: Coordinates



Example 3-1. Using default coordinates
http://oreillymedia.github.io/svg-essentials-examples/ch03/default_coordinates.html
<svg width="200" height="200">
    <rect x="10" y="10" width="50" height="30"
        style="stroke: black; fill: none;"/>
</svg>

Figure 3-1. Rectangle using default coordinates

Even if you don’t specify units in the viewport, you may still use them in some SVG
shape elements, as in Example 3-2. Figure 3-2 shows the result, with rulers and a grid
to show the coordinate system.

Example 3-2. Explicit use of units
http://oreillymedia.github.io/svg-essentials-examples/ch03/explicit_units.html
<svg width="200" height="200">
    <rect x="10mm" y="10mm" width="15mm" height="10mm"
        style="stroke:black; fill:none;"/>
</svg>

Figure 3-2. Rectangle using explicit units

Using Default User Coordinates | 29

http://oreillymedia.github.io/svg-essentials-examples/ch03/default_coordinates.html
http://oreillymedia.github.io/svg-essentials-examples/ch03/explicit_units.html


Specifying units in the <svg> element does not affect coordinates given without units
in other elements. Example 3-3 shows a viewport set up in millimeters, but the rectangle
is still drawn at pixel (user) coordinates, as you see in Figure 3-3.

Example 3-3. Units on the svg element
http://oreillymedia.github.io/svg-essentials-examples/ch03/units_on_svg.html
<svg width="70mm" height="70mm">
    <rect x="10" y="10" width="50" height="30"
       style="fill: none; stroke: black;"/>
</svg>

Figure 3-3. Viewport with units; rectangle without units

Specifying User Coordinates for a Viewport
In the examples so far, numbers without units have been considered to be pixels. Some‐
times this is not what you want. For example, you might want to set up a system where
each user coordinate represents 1/16th of a centimeter. (We’re using this coordinate
system to prove a point, not to show a paragon of good design.) In this system, a square
that is 40 units by 40 units will display as 2.5 centimeters on a side.

To accomplish this effect, you set the viewBox attribute on the <svg> element. The value
of this attribute consists of four numbers that represent the minimum x-coordinate,
minimum y-coordinate, width, and height of the user coordinate system you want to
superimpose on the viewport.

So, to set up the 16-units-per-centimeter coordinate system for a 4-centimeter by 5-
centimeter drawing, you’d use this starting tag:

<svg width="4cm" height="5cm" viewBox="0 0 64 80">

Example 3-4 gives the SVG for a picture of a house, displayed using the new coordinate
system. Figure 3-4 shows the result. The grid and darker numbers show the new user
coordinate system; the lighter numbers are positioned at 1-centimeter intervals.

30 | Chapter 3: Coordinates

www.allitebooks.com

http://oreillymedia.github.io/svg-essentials-examples/ch03/units_on_svg.html
http://www.allitebooks.org


Example 3-4. Using a viewBox
http://oreillymedia.github.io/svg-essentials-examples/ch03/using_viewbox.html
<svg width="4cm" height="5cm" viewBox="0 0 64 80">
  <rect x="10" y="35" width="40" height="40"
    style="stroke: black; fill: none;"/>
  <!-- roof -->
  <polyline points="10 35, 30 7.68, 50 35"
    style="stroke:black; fill: none;"/>
  <!-- door -->
  <polyline points="30 75, 30 55, 40 55, 40 75"
    style="stroke:black; fill: none;"/>
</svg>

Figure 3-4. New user coordinates

The numbers you specify for the value of the viewBox attribute may be separated by
commas or whitespace. If either the width or height is 0, none of your graphic will
display. It is an error to specify a negative value for the viewBox width or height.

Specifying User Coordinates for a Viewport | 31

http://oreillymedia.github.io/svg-essentials-examples/ch03/using_viewbox.html


If you were reading the code in Example 3-4 carefully, you would have
noted that we used a decimal value to get the peak of the house’s roof
positioned just right. Nearly all numbers in SVG are floating-point
decimal numbers. SVG viewers are required to support at least 32-
bit precision numbers and are encouraged to use higher precision
numbers for some calculations. In fact, you can even use scientific
notation to work in a coordinate system with very large or small
numbers, so that the point 30,7.68 could have been written like
3.0E+1,7.68e0. But for readability and brevity, we wouldn’t recom‐
mend it—reserve the scientific notation for when it is really necessary.

Preserving Aspect Ratio
In the previous example, the aspect ratio, or ratio of width to height, of the viewport
and the viewBox were identical (4/5 = 64/80). What happens, though, if the aspect ratio
of the viewport and the viewBox are not the same, as in this example, where viewBox
has an aspect ratio of 1:1 (the width and height are equal), but the viewport has an aspect
ratio of 1:3 (the height is three times as big as the width)?

<svg width="45px" height="135px" viewBox="0 0 90 90">

There are three things SVG can do in this situation:

• Scale the graphic uniformly according to the smaller dimension so the graphic will
fit entirely into the viewport. In the example, the picture would become half its
original width and height. You’ll see examples of this in “Using the meet Specifi‐
er” on page 34.

• Scale the graphic uniformly according to the larger dimension and cut off the parts
that lie outside the viewport. In the example, the picture would become one and a
half times its original width and height. You’ll see examples of this in “Using the
slice Specifier” on page 35.

• Stretch and squash the drawing so it fits precisely into the new viewport. (That is,
don’t preserve the aspect ratio at all.) See the details in “Using the none Specifier”
on page 36.

In the first case, because the image will be smaller than the viewport in one dimension,
you must specify where to position it. In the example, the picture will be scaled uniformly
to a width and height of 45 pixels. The width of the reduced graphic fits the width of
the viewport perfectly, but you must now decide whether the image meets (is aligned
with) the top, middle, or bottom of the 135-pixel viewport height.

In the second case, because the image will be larger than the viewport in one dimension,
you must specify which area is to be sliced away. In the example, the picture will be
scaled uniformly to a width and height of 135 pixels. Now the height of the graphic fits

32 | Chapter 3: Coordinates



the viewport perfectly, but you must decide whether to slice off the right side, left side,
or both edges of the picture to fit within the 45-pixel viewport width.

Specifying Alignment for preserveAspectRatio
The preserveAspectRatio attribute lets you specify the alignment of the scaled image
with respect to the viewport, and whether you want it to meet the edges or be sliced off.
The model for this attribute is

preserveAspectRatio="alignment [meet | slice]"

where alignment specifies the axis and location and is one of the combinations shown
in Table 3-1. This alignment specifier is formed by concatenating an x-alignment and
a y-alignment min, mid (middle), or max value. The default value for
preserveAspectRatio is xMidYMid meet.

The y-alignment begins with a capital letter, because the x- and y-
alignments are concatenated into a single word.

Table 3-1. Values for alignment portion of preserveAspectRatio

Y Alignment

X Alignment

xMin

Align minimum x value
of viewBox with left
edge of viewport

xMid

Align midpoint x value
of viewBox with
horizontal center of
viewport

xMax

Align maximum x
value of viewBox
with right edge of
viewport

yMin

Align minimum y value of viewBox
with top edge of viewport

xMinYMin xMidYMin xMaxYMin

yMid

Align midpoint y value of viewBox
with vertical center of viewport

xMinYMid xMidYMid xMaxYMid

yMax

Align maximum y value of viewBox
with bottom edge of viewport

xMinYMax xMidYMax xMaxYMax

Thus, if you want to have the picture with a viewBox="0 0 90 90" fit entirely within a
viewport that is 45 pixels wide and 135 pixels high, aligned at the top of the viewport,
you would write the following:

<svg width="45px" height="135px" viewBox="0 0 90 90"
  preserveAspectRatio="xMinYMin meet">

Preserving Aspect Ratio | 33



In this case, because the width fits precisely, the x-alignment is irrel‐
evant; you could equally well use xMidYMin or xMaxYMin. However,
you normally use preserveAspectRatio when you don’t know the
aspect ratio of the viewport. For example, you might want the im‐
age to scale to fit the application window, or you might let the CSS of
a parent document set the height and width. In those situations, you
need to consider how you want your image to display when the view‐
port is too wide as well as when it is too tall.

If you don’t specify a preserveAspectRatio, the default value is xMidYMid meet, which
will scale down the graphic to fit the available space, and center it both horizontally and
vertically.

This is all fairly abstract; the following sections give some concrete examples that show
you how the combinations of alignment and meet and slice interact with one another.

Using the meet Specifier
The starting <svg> tags in Example 3-5 all use the meet specifier.

Example 3-5. Use of meet specifier
<!-- tall viewports -->
<svg preserveAspectRatio="xMinYMin meet" viewBox="0 0 90 90"
    width="45" height="135">

<svg preserveAspectRatio="xMidYMid meet" viewBox="0 0 90 90"
    width="45" height="135">

<svg preserveAspectRatio="xMaxYMax meet" viewBox="0 0 90 90"
    width="45" height="135">

<!-- wide viewports -->
<svg preserveAspectRatio="xMinYMin meet" viewBox="0 0 90 90"
    width="135" height="45">

<svg preserveAspectRatio="xMidYMid meet" viewBox="0 0 90 90"
    width="135" height="45">

<svg preserveAspectRatio="xMaxYMax meet" viewBox="0 0 90 90"
    width="135" height="45">

Figure 3-5 shows where the reduced image fits into the enclosing viewBox.

34 | Chapter 3: Coordinates



Figure 3-5. meet—viewBox fits in viewport

Using the slice Specifier
Figure 3-6 shows the use of the slice specifier to eliminate parts of the picture that do
not fit in the viewport. They were created with the <svg> tags in Example 3-6.

Example 3-6. Use of slice specifier
<!-- tall viewports -->
<svg preserveAspectRatio="xMinYMin slice" viewBox="0 0 90 90"
    width="45" height="135">

<svg preserveAspectRatio="xMidYMid slice" viewBox="0 0 90 90"
    width="45" height="135">

<svg preserveAspectRatio="xMaxYMax slice" viewBox="0 0 90 90"
    width="45" height="135">

<!-- wide viewports -->
<svg preserveAspectRatio="xMinYMin slice" viewBox="0 0 90 90"
    width="135" height="45">

<svg preserveAspectRatio="xMidYMid slice" viewBox="0 0 90 90"
    width="135" height="45">

<svg preserveAspectRatio="xMaxYMax slice" viewBox="0 0 90 90"
    width="135" height="45">

The online example for this section allows you to experiment with the different
preserveAspectRatio options to slice, shrink, and shift the cat around any
sized SVG:

http://oreillymedia.github.io/svg-essentials-examples/ch03/meet_slice_specifier.html

Preserving Aspect Ratio | 35

http://oreillymedia.github.io/svg-essentials-examples/ch03/meet_slice_specifier.html


Figure 3-6. slice—graphic fills viewport

Using the none Specifier
Finally, there is the third option for scaling a graphic when the viewBox and viewport
don’t have the same aspect ratio. If you specify preserveAspectRatio="none", then the
graphic will be scaled nonuniformly so its user coordinates fit the viewport. Figure 3-7
shows such a “fun-house mirror” effect produced with the <svg> tags in Example 3-7.

Example 3-7. Aspect ratio not preserved
<!-- tall viewport -->
<svg preserveAspectRatio="none" viewBox="0 0 90 90"
   width="45" height="135">

<!-- wide viewport -->
<svg preserveAspectRatio="none" viewBox="0 0 90 90"
  width="135" height="45">

Figure 3-7. Aspect ratio not preserved

Nested Systems of Coordinates
You can establish a new viewport and system of coordinates at any time by putting
another <svg> element into your document. The effect is to create a “mini-canvas” upon
which you can draw. We used this technique to create illustrations such as Figure 3-5.
Rather than drawing the rectangles, then rescaling and positioning the cat inside each
one (the brute-force approach), we took these steps:

36 | Chapter 3: Coordinates



• Draw the blue rectangles on the main canvas
• For each rectangle, define a new <svg> element with the appropriate
preserveAspectRatio attribute

• Draw the cat into that new canvas (with <use>), and let SVG do the heavy lifting

Here’s a simplified example that shows a circle on the main canvas, then inside a new
canvas outlined by a blue rectangle that’s also on the main canvas. Figure 3-8 is the
desired result.

Figure 3-8. Nested viewports

First, generate the SVG for the main coordinate system and the circle (note that the user
coordinates coincide exactly with the viewport in this document):

<svg width="200px" height="200px" viewBox="0 0 200 200">
    <circle cx="25" cy="25" r="25" style="stroke: black; fill: none;"/>
</svg>

The result is in Figure 3-9.

Figure 3-9. Circle in main viewport

Now, draw the boundary of the box showing where you want the new viewport to be:

<svg width="200px" height="200px" viewBox="0 0 200 200">
    <circle cx="25" cy="25" r="25" style="stroke: black; fill: none;"/>
    <rect x="100" y="5" width="30" height="80"
       style="stroke: blue; fill: none;"/>
</svg>

This produces Figure 3-10.

Nested Systems of Coordinates | 37



Figure 3-10. Circle and boundary box in main viewport

Now, add another <svg> element for the new viewport. In addition to specifying the
viewBox, width, height, and preserveAspectRatio specification, you may also specify
the x and y attributes—in terms of the enclosing <svg> element—where the new view‐
port is to be established (if you don’t give values for x and y, they are presumed to
be 0):

<svg width="200px" height="200px" viewBox="0 0 200 200">
    <circle cx="25" cy="25" r="25" style="stroke: black; fill: none;"/>
    <rect x="100" y="5" width="30" height="80"
        style="stroke: blue; fill: none;"/>

    <svg x="100px" y="5px" width="30px" height="80px"
      viewBox="0 0 50 50" preserveAspectRatio="xMaxYMax meet">
    </svg>
</svg>

Setting up the new coordinates with this nested <svg> element doesn’t change the visual
display, but it does permit you to add the circle in that new system, producing the result
shown in Figure 3-8:

<svg width="200px" height="200px" viewBox="0 0 200 200">
  <circle cx="25" cy="25" r="25" style="stroke: black; fill: none;"/>
  <rect x="100" y="5" width="30" height="80" style="stroke: blue;
    fill: none;"/>

  <svg x="100px" y="5px" width="30px" height="80px" viewBox="0 0 50 50"
    preserveAspectRatio="xMaxYMax meet">
    <circle cx="25" cy="25" r="25" style="stroke: black;
      fill: none;"/>
  </svg>
</svg>

If you try to use a meet or slice value for the preserveAspectRatio
attribute on an <svg> nested inside another <svg> with
preserveAspectRatio="none", the results may surprise you. The
aspect ratio of the nested element’s viewport will be evaluated in the
squished or stretched coordinates of the parent SVG, possibly re‐
sulting in an image that is both squished and cropped or shrunk
to fit.

38 | Chapter 3: Coordinates



CHAPTER 4

Basic Shapes

Once a coordinate system is established in the <svg> tag, you are ready to begin draw‐
ing. This chapter describes the basic shapes you can use to create the major elements of
most drawings: lines, rectangles, polygons, circles, and ellipses.

Lines
SVG lets you draw a straight line with the <line> element. Just specify the x- and y-
coordinates of the line’s endpoints. Coordinates may be specified without units, in which
case they are considered to be user coordinates, or with units such as em, in, etc. (as
described in Chapter 3, in “The Viewport” on page 27).

<line x1="start-x" y1="start-y"
  x2="end-x" y2="end-y" />

The SVG in Example 4-1 draws several lines; the reference grid in Figure 4-1 is not part
of the SVG you see in the example.

Example 4-1. Basic lines
http://oreillymedia.github.io/svg-essentials-examples/ch04/basic-lines.html
<svg width="200px" height="200px" viewBox="0 0 200 200"
  xmlns="http://www.w3.org/2000/svg">
  <!-- horizontal line -->
  <line x1="40" y1="20" x2="80" y2="20" style="stroke: black;"/>
  <!-- vertical line -->
  <line x1="0.7cm" y1="1cm" x2="0.7cm" y2="2.0cm"
    style="stroke: black;"/>
   <!-- diagonal line -->
   <line x1="30" y1="30" x2="85" y2="85" style="stroke: black;"/>
</svg>

39

http://oreillymedia.github.io/svg-essentials-examples/ch04/basic-lines.html


Figure 4-1. Basic lines

Stroke Characteristics
Lines are considered to be strokes of a pen that draws on the canvas. The size, color, and
style of the pen stroke are part of the line’s presentation. Thus, these characteristics will
go into the style attribute.

stroke-width
As mentioned in Chapter 3, the canvas grid lines are infinitely thin. Where, then, does
a line or stroke fall in relation to the grid line? The answer is that the grid line falls in
the center of a stroke. Example 4-2 draws some lines where the stroke width has been
set to 10 user coordinates to make the effect obvious. The result, in Figure 4-2, has the
grid lines drawn in so you can see the effect clearly.

Example 4-2. Demonstration of stroke-width
http://oreillymedia.github.io/svg-essentials-examples/ch04/stroke-width.html
<svg width="200px" height="200px" viewBox="0 0 200 200"
  xmlns="http://www.w3.org/2000/svg">
  <!-- horizontal line -->
  <line x1="30" y1="10" x2="80" y2="10"
    style="stroke-width: 10; stroke: black;"/>
  <!-- vertical line -->
  <line x1="10" y1="30" x2="10" y2="80"
    style="stroke-width: 10; stroke: black;"/>
  <!-- diagonal line -->
  <line x1="25" y1="25" x2="75" y2="75"
    style="stroke-width: 10; stroke: black;"/>
</svg>

40 | Chapter 4: Basic Shapes

http://oreillymedia.github.io/svg-essentials-examples/ch04/stroke-width.html


Figure 4-2. Demonstration of stroke-width

The SVG coordinate grid may be infinitely thin, but your computer
screen is made of fixed-size pixels. A diagonal line can look jagged as
the computer translates it to the nearest pixel blocks; this is known as
aliasing. Alternatively, the computer can use anti-aliasing to soften
the edges, blurring the line across all pixels it partially overlaps.
Most SVG viewers use anti-aliasing by default, and this can some‐
times make a 1-pixel black line look like a 2-pixel gray line, because
it is centered on the space between two pixels. You can control the
use of anti-aliasing with the CSS shape-rendering style property.
Setting this property to crispEdges (on an element or the SVG as a
whole) will turn off anti-aliasing, resulting in clear (if sometimes
jagged) lines. A value of geometricPrecision will emphasize smooth
(if sometimes blurry) edges.

Stroke Color
You can specify the stroke color in a variety of ways:

• One of the basic color keyword names: aqua, black, blue, fuchsia, gray, green,
lime, maroon, navy, olive, purple, red, silver, teal, white, and yellow. You may
also use the color keywords from section 4.2 of the SVG specification.

• A six-digit hexadecimal specifier in the form #rrggbb, where rr is the red compo‐
nent, gg is the green component, and bb is the blue component in the
range 00–ff.

• A three-digit hexadecimal specifier in the form #rgb, where r is the red component,
g is the green component, and b is the blue component in the range 0–f. This is a
shorthand form of the previous method of specifying color. To produce the six-
digit equivalent, each digit of the short form is duplicated; thus #d6e is the same
as #dd66ee.

• An rgb specifier in the form rgb(red-value, green-value, blue-value), where
each value is an integer in the range 0–255 or a percentage in the range 0%
to 100%.

Stroke Characteristics | 41

http://www.w3.org/TR/SVG/types.html#ColorKeywords


• The currentColor keyword, which uses the computed CSS color property for the
element. The color property—which doesn’t have a direct effect in SVG—is used
in HTML to set text color, and is inherited by child elements. Using currentColor
in an inline SVG icon (see “Inline SVG in XHTML or HTML5” on page 22) allows
the icon to take on the color of the surrounding text.

Example 4-3 uses all of these methods (with the exception of currentColor), giving the
colorful results of Figure 4-3.

Example 4-3. Demonstration of stroke color
http://oreillymedia.github.io/svg-essentials-examples/ch04/stroke-color.html
<svg width="200px" height="200px" viewBox="0 0 200 200"
  xmlns="http://www.w3.org/2000/svg">
  <!-- red -->
  <line x1="10" y1="10" x2="50" y2="10"
    style="stroke: red; stroke-width: 5;"/>

  <!-- light green -->
  <line x1="10" y1="20" x2="50" y2="20"
    style="stroke: #9f9; stroke-width: 5;"/>

  <!-- light blue -->
  <line x1="10" y1="30" x2="50" y2="30"
    style="stroke: #9999ff; stroke-width: 5;"/>

  <!-- medium orange -->
  <line x1="10" y1="40" x2="50" y2="40"
    style="stroke: rgb(255, 128, 64); stroke-width: 5;"/>

  <!-- deep purple -->
  <line x1="10" y1="50" x2="50" y2="50"
    style="stroke: rgb(60%, 20%, 60%); stroke-width: 5;"/>
</svg>

Figure 4-3. Demonstration of stroke color

There are yet more ways to specify color. They are taken from the CSS3 Color specifi‐
cation. Although widely supported in web browsers, they are not part of the SVG 1.1
specification, and may not be supported by other SVG implementations; as of this writ‐
ing, for example, neither Apache Batik nor Inkscape supports them. There are three
new color functions and one new keyword:

42 | Chapter 4: Basic Shapes

http://oreillymedia.github.io/svg-essentials-examples/ch04/stroke-color.html
http://www.w3.org/TR/css3-color/
http://www.w3.org/TR/css3-color/


• rgba() specifier in the form rgb(red-value, green-value, blue-value,
alpha-value), where the color values are in the same format as for the rgb()
function, and the alpha value is a decimal in the range 0–1

• hsl() specifier in the form hsl(hue, saturation, lightness), where hue is an
integer angle from 0 to 360, and saturation and lightness are integers in the range
0–255 or percentages in the range 0% to 100%

• hsla() specifier, with the hue, saturation, and lightness values the same as for
hsl, and the alpha value the same as for rgba

• transparent (fully transparent); this is the same as rgba(0, 0, 0, 0)

If you do not specify a stroke color, you won’t see any lines; the de‐
fault value for the stroke property is none.

stroke-opacity
Up to this point, all the lines in the example have been solid, obscuring anything beneath
them. You control the opacity (which is the opposite of transparency) of a line by giving
the stroke-opacity a value from 0.0 to 1.0, where 0 is completely transparent and 1
is completely opaque. A value less than 0 will be changed to 0; a value greater than 1
will be changed to 1. Example 4-4 varies the opacity from 0.2 to 1 in steps of 0.2, with
the result in Figure 4-4. The red line in the figure lets you see the transparency effect
more clearly.

Example 4-4. Demonstration of stroke-opacity
http://oreillymedia.github.io/svg-essentials-examples/ch04/stroke-opacity.html
<svg width="200px" height="200px" viewBox="0 0 200 200"
  xmlns="http://www.w3.org/2000/svg">
  <line x1="30" y1="0" x2="30" y2="60"
        style="stroke:red; stroke-width: 5;"/>
  <line x1="10" y1="10" x2="50" y2="10"
    style="stroke-opacity: 0.2; stroke: black; stroke-width: 5;"/>
  <line x1="10" y1="20" x2="50" y2="20"
    style="stroke-opacity: 0.4; stroke: black; stroke-width: 5;"/>
  <line x1="10" y1="30" x2="50" y2="30"
    style="stroke-opacity: 0.6; stroke: black; stroke-width: 5;"/>
  <line x1="10" y1="40" x2="50" y2="40"
    style="stroke-opacity: 0.8; stroke: black; stroke-width: 5;"/>
  <line x1="10" y1="50" x2="50" y2="50"
    style="stroke-opacity: 1.0; stroke: black; stroke-width: 5;"/>
</svg>

Stroke Characteristics | 43

http://oreillymedia.github.io/svg-essentials-examples/ch04/stroke-opacity.html


Figure 4-4. Demonstration of stroke-opacity

stroke-dasharray Attribute
If you need dotted or dashed lines, use the stroke-dasharray attribute, whose value
consists of a list of numbers, separated by commas or whitespace, specifying dash length
and gaps. The list should have an even number of entries, but if you give an odd number
of entries, SVG will repeat the list so the total number of entries is even. (See the last
instance in Example 4-5.)

Example 4-5. Demonstration of stroke-dasharray
http://oreillymedia.github.io/svg-essentials-examples/ch04/stroke-dasharray.html
<svg width="200px" height="200px" viewBox="0 0 200 200"
  xmlns="http://www.w3.org/2000/svg">
   <!-- 9-pixel dash, 5-pixel gap -->
   <line x1="10" y1="10" x2="100" y2="10"
       style="stroke-dasharray: 9, 5;
       stroke: black; stroke-width: 2;"/>

   <!-- 5-pixel dash, 3-pixel gap, 9-pixel dash, 2-pixel gap -->
   <line x1="10" y1="20" x2="100" y2="20"
       style="stroke-dasharray: 5, 3, 9, 2;
       stroke: black; stroke-width: 2;"/>

   <!-- Odd number of entries is duplicated; this is equivalent to:
        9-pixel dash, 3-pixel gap,  5-pixel dash,
        9-pixel gap,  3-pixel dash, 5-pixel gap -->
   <line x1="10" y1="30" x2="100" y2="30"
       style="stroke-dasharray: 9 3 5;
       stroke: black; stroke-width: 2;"/>
</svg>

Figure 4-5 shows the results, zoomed in for clarity.

Figure 4-5. Demonstration of stroke-dasharray

44 | Chapter 4: Basic Shapes

http://oreillymedia.github.io/svg-essentials-examples/ch04/stroke-dasharray.html


1. Technically, the x value is the smaller of the x-coordinate values, and the y is the smaller of the y-coordinate
values of the rectangle’s sides in the current user coordinate system. Because you are not yet using transfor‐
mations, which are covered in Chapter 6, this is the moral equivalent of the upper-left corner.

Rectangles
The rectangle is the simplest of the basic shapes. You specify the x- and y-coordinates
of the upper-left corner of the rectangle,1 its width, and its height. The interior of the
rectangle is filled with the fill color you specify. If you do not specify a fill color, the
interior of the shape is filled with black. The fill color may be specified in any of the ways
described in “Stroke Color” on page 41, or it may take the value none to leave the interior
unfilled and thus transparent. You may also specify a fill-opacity in the same format
as you did for stroke-opacity in “stroke-opacity” on page 43. Both fill and
fill-opacity are presentation properties, and they belong in the style attribute.

After the interior is filled (if necessary), the outline of the rectangle is drawn with strokes,
whose characteristics you may specify as you did for lines. If you do not specify a stroke,
the value none is presumed, and no outline is drawn. Example 4-6 draws several varia‐
tions of the <rect> element. Figure 4-6 shows the result, with a grid for reference.

Example 4-6. Demonstration of the rectangle element
http://oreillymedia.github.io/svg-essentials-examples/ch04/rectangle.html
<svg width="200px" height="200px" viewBox="0 0 200 200"
  xmlns="http://www.w3.org/2000/svg">
  <!-- black interior, no outline -->
  <rect x="10" y="10" width="30" height="50"/>

  <!-- no interior, black outline -->
  <rect x="50" y="10" width="20" height="40"
    style="fill: none; stroke: black;"/>

  <!-- blue interior, thick semi-transparent red outline -->
  <rect x="10" y="70" width="25" height="30"
    style="fill: #0000ff;
      stroke: red; stroke-width: 7; stroke-opacity: 0.5;"/>

  <!-- semi-transparent yellow interior, dashed green outline -->
  <rect x="50" y="70" width="35" height="20"
    style="fill: yellow; fill-opacity: 0.5;
      stroke: green; stroke-width: 2; stroke-dasharray: 5 2"/>
</svg>

Rectangles | 45

http://oreillymedia.github.io/svg-essentials-examples/ch04/rectangle.html


Figure 4-6. Demonstration of the rect element

The strokes that form the outline “straddle” the abstract grid lines, so
the strokes will be half inside the shape and half outside the shape.
Figure 4-7, a close-up of the semi-transparent red outline drawn in
Example 4-6, shows this clearly.

Figure 4-7. Close-up of transparent border

If you do not specify a starting x or y value, it is presumed to be 0. If you specify a width
or height of 0, then the rectangle is not displayed. It is an error to provide negative
values for either width or height.

Rounded Rectangles
If you wish to have rectangles with rounded corners, specify the x- and y-radius of the
corner curvature. The maximum number you may specify for rx (the x-radius) is one-
half the width of the rectangle; the maximum value of ry (the y-radius) is one-half the
height of the rectangle. If you specify only one of rx or ry, they are presumed to be
equal. Example 4-7 shows various combinations of rx and ry.

Example 4-7. Demonstration of rounded rectangles
http://oreillymedia.github.io/svg-essentials-examples/ch04/rounded-rectangles.html
<svg width="200px" height="200px" viewBox="0 0 200 200"
  xmlns="http://www.w3.org/2000/svg">
  <!-- rx and ry equal, increasing -->
  <rect x="10" y="10" width="20" height="40" rx="2" ry="2"

46 | Chapter 4: Basic Shapes

http://oreillymedia.github.io/svg-essentials-examples/ch04/rounded-rectangles.html


    style="stroke: black; fill: none;"/>

  <rect x="40" y="10" width="20" height="40" rx="5"
    style="stroke: black; fill: none;"/>

  <rect x="70" y="10" width="20" height="40" ry="10"
    style="stroke: black; fill: none;"/>

  <!-- rx and ry unequal -->
  <rect x="10" y="60" width="20" height="40" rx="10" ry="5"
    style="stroke: black; fill: none;"/>

  <rect x="40" y="60" width="20" height="40" rx="5" ry="10"
    style="stroke: black; fill: none;"/>
</svg>

Figure 4-8 shows the result, with a grid in the background for reference.

Figure 4-8. Demonstration of rounded rectangles

If you’re familiar with the CSS border-radius property, you might
know the trick of turning a rectangle into a circle or ellipse by set‐
ting the corner radius to 50% of the height and width. Although you
can specify an SVG rectangle’s corner radius with percent values, they
will be interpreted as a percent of the viewport width (rx) or height
(ry)—the same as if you used a percentage for setting the rectangle’s
width or height—not as a percentage of the rectangle itself. Good
thing SVG has an easier way to create circles and ellipses…

Circles and Ellipses
To draw a circle, use the <circle> element and specify the center x-coordinate, center
y-coordinate, and radius with the cx, cy, and r attributes. As with a rectangle, the default
is to fill the circle with black and draw no outline unless you specify some other com‐
bination of fill and stroke.

Circles and Ellipses | 47



An ellipse needs both an x-radius and a y-radius in addition to a center x- and y-
coordinate. The attributes for these radii are named rx and ry.

In both circles and ellipses, if the cx or cy is omitted, it is presumed to be 0. If the radius
is 0, no shape will be displayed; it is an error to provide a negative radius. Example 4-8
draws some circles and ellipses. They are shown in Figure 4-9.

Example 4-8. Demonstration of circles and ellipses
http://oreillymedia.github.io/svg-essentials-examples/ch04/circles-ellipses.html
<svg width="200px" height="200px" viewBox="0 0 200 200"
  xmlns="http://www.w3.org/2000/svg">
  <circle cx="30" cy="30" r="20" style="stroke: black; fill: none;"/>
  <circle cx="80" cy="30" r="20"
    style="stroke-width: 5; stroke: black; fill: none;"/>

  <ellipse cx="30" cy="80" rx="10" ry="20"
    style="stroke: black; fill: none;"/>
  <ellipse cx="80" cy="80" rx="20" ry="10"
    style="stroke: black; fill: none;"/>
</svg>

Figure 4-9. Demonstration of circle and ellipse elements

The <polygon> Element
In addition to rectangles, circles, and ellipses, you may want to draw hexagons, octagons,
stars, or arbitrary closed shapes. The <polygon> element lets you specify a series of
points that describe a geometric area to be filled and outlined as described earlier. The
points attribute consists of a series of x- and y-coordinate pairs separated by commas
or whitespace. You must give an even number of entries in the series of numbers. You
don’t have to return to the starting point; the shape will automatically be closed.
Example 4-9 uses the <polygon> element to draw a parallelogram, a star, and an irregular
shape.

48 | Chapter 4: Basic Shapes

http://oreillymedia.github.io/svg-essentials-examples/ch04/circles-ellipses.html


Example 4-9. Demonstration of the polygon element
http://oreillymedia.github.io/svg-essentials-examples/ch04/polygon.html
<svg width="200px" height="200px" viewBox="0 0 200 200"
  xmlns="http://www.w3.org/2000/svg">
  <!-- parallelogram -->
  <polygon points="15,10  55, 10  45, 20  5, 20"
    style="fill: red; stroke: black;"/>

  <!-- star -->
  <polygon
    points="35,37.5  37.9,46.1 46.9,46.1  39.7,51.5
      42.3,60.1  35,55  27.7,60.1  30.3,51.5
      23.1,46.1  32.1,46.1"
      style="fill: #ccffcc; stroke: green;"/>

  <!-- weird shape -->
  <polygon
    points="60 60,  65 72,  80 60,  90 90, 72 80, 72 85, 50 95"
    style="fill: yellow; fill-opacity: 0.5; stroke: black;
      stroke-width: 2;"/>
</svg>

The results, with a grid in the background for reference, are displayed in Figure 4-10.

Figure 4-10. Demonstration of the polygon element

Filling Polygons That Have Intersecting Lines
For the polygons shown so far, it’s been easy to fill the shape. None of the lines forming
the polygon cross over one another, so the interior is easily distinguished from the
exterior of the shape. However, when lines cross over one another, the determination
of what is inside the polygon is not as easy. The SVG in Example 4-10 draws such a
polygon. In Figure 4-11, is the middle section of the star considered to be inside or
outside?

Example 4-10. Unfilled polygon with intersecting lines
<svg width="200px" height="200px" viewBox="0 0 200 200"
  xmlns="http://www.w3.org/2000/svg">

<polygon  points="48,16  16,96  96,48  0,48  80,96"

The <polygon> Element | 49

http://oreillymedia.github.io/svg-essentials-examples/ch04/polygon.html


  style="stroke: black; fill: none;"/>

</svg>

Figure 4-11. Unfilled polygon with intersecting lines

SVG has two different rules for determining whether a point is inside a polygon or
outside it. The fill-rule (which is part of presentation) has a value of either nonzero
(the default) or evenodd. Depending on the rule you choose, you get a different effect.
Example 4-11 uses the rules to fill two diagrams of the star. The result is shown in
Figure 4-12.

Example 4-11. Effect of different fill-rules
http://oreillymedia.github.io/svg-essentials-examples/ch04/polygon-fill.html
<svg width="200px" height="200px" viewBox="0 0 200 200"
  xmlns="http://www.w3.org/2000/svg">

<polygon style="fill-rule: nonzero; fill: yellow; stroke: black;"
  points="48,16  16,96  96,48  0,48  80,96" />

<polygon style="fill-rule: evenodd;  fill: #00ff00; stroke: black;"
  points="148,16  116,96  196,48  100,48  180,96" />

</svg>

Figure 4-12. Effect of different fill-rules

Explanation of the Fill Rules
For the sake of completeness, here is how the fill-rules work, but don’t worry—you
don’t need to know the details in order to use them. The nonzero rule determines
whether a point is inside or outside a polygon by drawing a line from the point in
question to infinity. It counts how many times that line crosses the polygon’s lines, adding
one if the polygon line is going right to left, and subtracting one if the polygon line is

50 | Chapter 4: Basic Shapes

http://oreillymedia.github.io/svg-essentials-examples/ch04/polygon-fill.html


going left to right. If the total comes out to zero, the point is outside the polygon. If the
total is nonzero (hence the name), the point is inside the polygon.

The evenodd rule also draws a line from the point in question to infinity, but it simply
counts how many times that line crosses your polygon’s lines. If the total number of
crossings is odd, then the point is inside; if even, then the point is outside.

The <polyline> Element
Finally, to round out our discussion of basic shapes, we’ll return to straight lines. Some‐
times you want a series of lines that does not make a closed shape. You can use multiple
<line> elements, but if there are many lines, it might be easier to use the <polyline>
element. It has the same points attributes as <polygon>, except that the shape is not
closed. Example 4-12 draws the symbol for an electrical resistor. The result is in
Figure 4-13.

Example 4-12. The polyline element
http://oreillymedia.github.io/svg-essentials-examples/ch04/polyline.html
<svg width="100px" height="50px" viewBox="0 0 100 50"
  xmlns="http://www.w3.org/2000/svg">

<polyline
  points="5 20, 20 20, 25 10, 35 30, 45 10,
    55 30, 65 10, 75 30, 80 20, 95 20"
  style="stroke: black; stroke-width: 3; fill: none;"/>
</svg>

Figure 4-13. Example of the polyline element

It’s best to set the fill property to none when using <polyline>; 
otherwise, the SVG viewer attempts to fill the shape, sometimes with
startling results like those in Figure 4-14.

Figure 4-14. Example of filled polyline

The <polyline> Element | 51

http://oreillymedia.github.io/svg-essentials-examples/ch04/polyline.html


Line Caps and Joins
When drawing a <line> or <polyline>, you may specify the shape of the endpoints of
the lines by setting the stroke-linecap style property to one of the values butt,
round, or square. Example 4-13 uses these three values, with gray guide lines to show
the actual endpoints of the lines. You can see in Figure 4-15 that round and square
extend beyond the end coordinates; butt, the default, ends exactly at the specified end‐
point.

Example 4-13. Values of the stroke-linecap property
http://oreillymedia.github.io/svg-essentials-examples/ch04/linecap.html
<line x1="10" y1="15" x2="50" y2="15"
  style="stroke: black; stroke-linecap: butt; stroke-width: 15;"/>

<line x1="10" y1="45" x2="50" y2="45"
  style="stroke: black; stroke-linecap: round; stroke-width: 15;"/>

<line x1="10" y1="75" x2="50" y2="75"
  style="stroke: black; stroke-linecap: square; stroke-width: 15;"/>

<!-- guide lines -->
<line x1="10" y1="0" x2="10" y2="100" style="stroke: #999;"/>
<line x1="50" y1="0" x2="50" y2="100" style="stroke: #999;"/>

Figure 4-15. Values of the stroke-linecap attribute

You may specify the way lines connect at the corners of a shape with the
stroke-linejoin style property, which may have the values miter (pointed), round
(round—what did you expect?), or bevel (flat). Example 4-14 produces the result shown
in Figure 4-16.

Example 4-14. Values of the stroke-linejoin attribute
http://oreillymedia.github.io/svg-essentials-examples/ch04/linejoin.html
<polyline
  style="stroke-linejoin: miter; stroke: black; stroke-width: 12;
  fill: none;"
  points="30 30, 45 15, 60 30"/>

<polyline

52 | Chapter 4: Basic Shapes

http://oreillymedia.github.io/svg-essentials-examples/ch04/linecap.html
http://oreillymedia.github.io/svg-essentials-examples/ch04/linejoin.html


  style="stroke-linejoin: round; stroke: black; stroke-width: 12;
  fill: none;"
  points="90 30, 105 15, 120 30"/>

<polyline
  style="stroke-linejoin: bevel; stroke-width: 12; stroke: black;
  fill: none;"
  points="150 30, 165 15, 180 30"/>

Figure 4-16. Values of the stroke-linejoin attribute

If your lines meet at a sharp angle and have a mitered join, it’s possi‐
ble for the pointed part to extend far beyond the lines’ thickness. You
may set the ratio of the miter to the thickness of the lines being joined
with the stroke-miterlimit style property; its default value is 4.

Basic Shapes Reference Summary
The following tables summarize the basic shapes and presentation styles in SVG.

Shape Elements
Table 4-1 summarizes the basic shapes available in SVG.

Table 4-1. Shape elements
Shape Description

<line x1="start-x" y1="start-y"
x2="end-x" y2="end-y"/>

Draws a line from the starting point at coordinates (start-x,
start-y) to the ending point at coordinates (end-x, end-y).

<rect x="left-x" y="top-y"
width="width" height="height"/>

Draws a rectangle whose upper-left corner is at (left-x, top-y)
with the given width and height.

<circle cx="center-x" cy="center-y"
r="radius"/>

Draws a circle with the given radius, centered at (center-x,
center-y).

<ellipse cx="center-x" cy="center-y"
rx="x-radius" ry="y-radius"/>

Draws an ellipse with the given x-radius and y-radius centered
at (center-x, center-y).

<polygon points="points-list"/> Draws an arbitrary closed polygon whose outline is described by the
points-list. The points are specified as pairs of x- and y-
coordinates. These are user coordinates only; you may not add a length
unit specifier.

Basic Shapes Reference Summary | 53



Shape Description

<polyline points="points-list"/> Draws an arbitrary series of connected lines as described by the
points-list. The points are specified as pairs of x- and y-
coordinates. These are user coordinates only; you may not add a length
unit specifier.

When you specify a number for an attribute, it is presumed to be measured in user
coordinates. In all but the last two elements of Table 4-1, you may also add a length unit
specifier such as mm, pt, etc. to any number. For example:

<line x1="1cm" y1="30" x2="50" y2="10pt"/>

Specifying Colors
You may specify the color for filling or outlining a shape in one of the following ways:

• none, indicating that no outline is to be drawn or that the shape is not to be filled.
• A basic color name, which is one of aqua, black, blue, fuchsia, gray, green, lime,
maroon, navy, olive, purple, red, silver, teal, white, or yellow.

• One of the extended color names from the SVG specifications.
• Six hexadecimal digits #rrggbb, each pair describing red, green, and blue values.
• Three hexadecimal digits #rgb, describing the red, green, and blue values. This is

shorthand for the previous method; digits are replicated, so #rgb is equivalent to
#rrggbb.

• rgb(r, g, b), each value ranging from 0–255 or from 0% to 100%.
• currentColor, the computed (usually inherited) color property value for the ele‐

ment.
• One of the specifications from the CSS3 Color module (which may not be supported

by all SVG implementations).

Stroke and Fill Characteristics
In order to see a line or the outline of a shape, you must specify the stroke characteris‐
tics, using the following attributes. A shape’s outline is drawn after its interior is filled.
All of these characteristics, summarized in Table 4-2, are presentation properties, and
go in a style attribute.

54 | Chapter 4: Basic Shapes

http://www.w3.org/TR/SVG/types.html#ColorKeywords
http://www.w3.org/TR/css3-color/


Table 4-2. Stroke characteristics
Attribute Values

stroke The stroke color, as described in “Specifying Colors” on page 54. Default is none.

stroke-width Width of stroke; may be given as user coordinates or with a length specifier. The stroke
width is centered along the abstract grid lines. Default is 1.

stroke-opacity A number ranging from 0.0 to 1.0; 0.0 is entirely transparent; 1.0 is entirely opaque (the
default).

stroke-dasharray A series of numbers that tell the length of dashes and gaps with which a line is to be
drawn. These numbers are in user coordinates only. The default value is none.

stroke-linecap Shape of the ends of a line; has one of the values butt (the default), round, or
square.

stroke-linejoin The shape of the corners of a polygon or series of lines; has one of the values miter
(pointed; the default), round, or bevel (flat).

stroke-miterlimit Maximum ratio of length of the miter point to the width of the lines being drawn; the
default value is 4.

You can control the way in which the interior of a shape is to be filled by using one of
the fill attributes shown in Table 4-3. A shape is filled before its outline is drawn.

Table 4-3. Fill characteristics
Attribute Values

fill The fill color, as described in “Specifying Colors” on page 54. The default is black.

fill-opacity A number ranging from 0.0 to 1.0; 0.0 is entirely transparent; 1.0 (the default) is
entirely opaque.

fill-rule This attribute can have the values nonzero (the default) or evenodd, which apply
different rules for determining whether a point is inside or outside a shape. These
rules generate different effects only when a shape has intersecting lines or “holes”
in it. Details are in “Filling Polygons That Have Intersecting Lines” on page 49 earlier
in this chapter.

This is only a small sample of the style properties that can apply to SVG elements;
Table B-1, in Appendix B, has a complete list.

Basic Shapes Reference Summary | 55





CHAPTER 5

Document Structure

We’ve casually mentioned that SVG lets you separate a document’s structure from its
presentation. In this chapter, we’re going to compare and contrast the two, discuss the
presentational aspects of a document in more detail, and then show some of the SVG
elements you can use to make your document’s structure clearer, more readable, and
easier to maintain.

Structure and Presentation
As mentioned in Chapter 1, in “Basic Shapes” on page 6, one of XML’s goals is to provide
a way to structure data and separate this structure from its visual presentation. Consider
the drawing of the cat from that chapter; you recognize it as a cat because of its structure
—the position and size of the geometric shapes that make up the drawing. If we were
to make structural changes, such as shortening the whiskers, rounding the nose, and
making the ears longer and rounding their ends, the drawing would become one of a
rabbit, no matter what the surface presentation might be. The structure, therefore, tells
you what a graphic is.

This is not to say that information about visual style isn’t important; had we drawn the
cat with thick purple lines and a gray interior, it would have been recognizable as a cat,
but its appearance would have been far less pleasing. These differences are shown in
Figure 5-1. XML encourages you to separate structure and presentation; unfortunately,
many discussions of XML emphasize structure at the expense of presentation. We’ll
right this wrong by going into detail about how you specify presentation in SVG.

57



Figure 5-1. Structure versus presentation

Using Styles with SVG
SVG lets you specify presentational aspects of a graphic in four ways: with inline styles,
internal stylesheets, external stylesheets, and presentation attributes. Let’s examine each
of these in turn.

Inline Styles
Example 5-1 uses inline styles. This is exactly the way we’ve been using presentation
information so far; we set the value of the style attribute to a series of visual properties
and their values as described in Appendix B, in “Anatomy of a Style” on page 299.

Example 5-1. Use of inline styles
<circle cx="20" cy="20" r="10"
    style="stroke: black; stroke-width: 1.5; fill: blue;
           fill-opacity: 0.6"/>

Internal Stylesheets
You don’t need to place your styles inside each SVG element; you can create an internal
stylesheet to collect commonly used styles, which you can apply to all occurrences of a
particular element, or use named classes to apply styles to specific elements. Example 5-2
sets up an internal stylesheet that will draw all circles in a blue double-thick dashed line
with a light yellow interior. The stylesheet is within a <defs> element, which we will
discuss later in this chapter.

The example then draws several circles. The circles in the second row of Figure 5-2 have
inline styles that override the specification in the internal stylesheet.

Example 5-2. Use of internal stylesheet
http://oreillymedia.github.io/svg-essentials-examples/ch05/internal-stylesheets.html
<svg width="200px" height="200px" viewBox="0 0 200 200"
  xmlns="http://www.w3.org/2000/svg">
<defs>

58 | Chapter 5: Document Structure

http://oreillymedia.github.io/svg-essentials-examples/ch05/internal-stylesheets.html


<style type="text/css"><![CDATA[
    circle {
        fill: #ffc;
        stroke: blue;
        stroke-width: 2;
        stroke-dasharray: 5 3
    }
]]></style>
</defs>

<circle cx="20" cy="20" r="10"/>
<circle cx="60" cy="20" r="15"/>
<circle cx="20" cy="60" r="10" style="fill: #cfc"/>
<circle cx="60" cy="60" r="15"
  style="stroke-width: 1; stroke-dasharray: none;"/>
</svg>

Figure 5-2. Internal stylesheet with SVG

External Stylesheets
If you want to apply a set of styles to multiple SVG documents, you could copy and paste
the internal stylesheet into each of them. This, of course, is impractical for a large volume
of documents if you ever need to make a global change to all the documents. Instead,
you should take all the information between the beginning and ending <style> tags
(excluding the <![CDATA[ and ]]>) and save it in an external file, which becomes an
external stylesheet. Example 5-3 shows an external stylesheet that has been saved in a
file named ext_style.css. This stylesheet uses a variety of selectors, including *, which
sets a default for all elements that don’t have any other style, and it, together with the
SVG, produces Figure 5-3.

Example 5-3. External stylesheet
* { fill:none; stroke: black; } /* default for all elements */

rect { stroke-dasharray: 7 3; }

circle.yellow { fill: yellow; }

.thick { stroke-width: 5; }

.semiblue { fill:blue; fill-opacity: 0.5; }

Using Styles with SVG | 59



Figure 5-3. External stylesheet with SVG

Example 5-4 shows a complete SVG document (including <?xml …?>,
<?xml-stylesheet …?>, and the <!DOCTYPE>) that references the external stylesheet.

Example 5-4. SVG file that references an external stylesheet
<?xml version="1.0"?>
<?xml-stylesheet href="ext_style.css" type="text/css"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"
  "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
<svg xmlns="http://www.w3.org/2000/svg"
  width="200px" height="200px" viewBox="0 0 200 200">

<line x1="10" y1="10" x2="40" y2="10"/>
<rect x="10" y="20" width="40" height="30"/>
<circle class="yellow" cx="70" cy="20" r="10"/>
<polygon class="thick" points="60 50, 60 80,  90 80"/>
<polygon class="thick semiblue"
  points="100 30, 150 30, 150 50, 130 50"/>
</svg>

Inline styles will almost always render more quickly than styles in an
internal or external stylesheet; stylesheets and classes add rendering
time due to lookup and parsing. However, stylesheets are easier to
maintain, and smaller file size and caching can result in faster file-
loading time.

Presentation Attributes
Although the overwhelming majority of your SVG documents will use styles for pre‐
sentation information, SVG does permit you to specify this information in the form of
presentation attributes. Instead of saying

<circle cx="10" cy="10" r="5"
    style="fill: red; stroke:black; stroke-width: 2;"/>

you may write each of the properties as an attribute:

<circle cx="10" cy="10" r="5"
    fill="red" stroke="black" stroke-width="2"/>

If you are thinking that this is mixing structure and presentation, you are right. Pre‐
sentation attributes do come in handy, though, when you are creating SVG documents
by converting an XML data source to SVG, as you will see in Chapter 15. In these cases,

60 | Chapter 5: Document Structure



it can be easier to create individual attributes for each presentation property than to
create the contents of a single style attribute. You may also need to use presentation
attributes if the environment in which you will be placing your SVG cannot support
stylesheets.

Presentation attributes are at the very bottom of the priority list. Any style specification
coming from an inline, internal, or external stylesheet will override a presentation at‐
tribute, although presentation attributes override inherited styles. In the following SVG
document, the circle will be filled in red, not green:

<svg width="200" height="200"
  xmlns="http://www.w3.org/2000/svg">
  <defs>
    <style type="text/css"><![CDATA[
      circle { fill: red; }
    ]]></style>
  </defs>
  <circle cx="20" cy="20" r="15" fill="green"/>
</svg>

Again, we emphasize that using style attributes or stylesheets should always be your
first choice. Stylesheets, in particular, let you apply a complex series of fill and stroke
characteristics to all occurrences of certain elements within a document without having
to duplicate the information into each element, as presentation attributes would require.
The power and flexibility of stylesheets allow you to make significant changes in the
look and feel of multiple documents with a minimum of effort.

Grouping and Referencing Objects
While it is certainly possible to define any drawing as an undifferentiated list of shapes
and lines, most nonabstract art consists of groups of shapes and lines that form recog‐
nizable named objects. SVG has elements that let you do this sort of grouping to make
your documents more structured and understandable.

The <g> Element
The <g> element gathers all of its child elements as a group and often has an id attribute
to give that group a unique name. Each group may also have its own <title> and <desc>
to identify it for text-based XML applications or to aid in accessibility for visually im‐
paired users. Many SVG rendering agents will display a pop-up tooltip with the content
of a <title> element when you hover over or tap any graphics within that group. Screen
readers will read the contents of <title> and <desc> elements.

In addition to the conceptual clarity that comes from the ability to group and document
objects, the <g> element also provides notational convenience. Any styles you specify
in the starting <g> tag will apply to all the child elements in the group. In Example 5-5,

Grouping and Referencing Objects | 61



this saves us from having to duplicate the style="fill:none; stroke:black;" on
every element shown in Figure 5-4. It is also possible to nest groups within one another,
although you won’t see any examples of this until Chapter 6.

The <g> element is analogous to the Group Objects function in programs such as Adobe
Illustrator. It also serves a similar function to the concept of layers in such programs; a
layer is also a grouping of related objects.

Example 5-5. Simple use of the g element
<svg width="240px" height="240px" viewBox="0 0 240 240"
  xmlns="http://www.w3.org/2000/svg">
<title>Grouped Drawing</title>
<desc>Stick-figure drawings of a house and people</desc>

<g id="house" style="fill: none; stroke: black;">
  <desc>House with door</desc>
  <rect x="6" y="50" width="60" height="60"/>
  <polyline points="6 50, 36 9, 66 50"/>
  <polyline points="36 110, 36 80, 50 80, 50 110"/>
</g>

<g id="man" style="fill: none; stroke: black;">
  <desc>Male human</desc>
  <circle cx="85" cy="56" r="10"/>
  <line x1="85" y1="66" x2="85" y2="80"/>
  <polyline points="76 104, 85 80, 94 104" />
  <polyline points="76 70, 85 76, 94 70" />
</g>

<g id="woman" style="fill: none; stroke: black;">
  <desc>Female human</desc>
  <circle cx="110" cy="56" r="10"/>
  <polyline points="110 66, 110 80, 100 90, 120 90, 110 80"/>
  <line x1="104" y1="104" x2="108" y2="90"/>
  <line x1="112" y1="90" x2="116" y2="104"/>
  <polyline points="101 70, 110 76, 119 70" />
</g>
</svg>

Figure 5-4. Grouped stick-figure drawing

62 | Chapter 5: Document Structure



The <use> Element
Complex graphics often have repeated elements. For example, a product brochure may
have the company logo at the upper left and lower right of each page. If you were drawing
the brochure with a graphic design program, you’d draw the logo once, group all its
elements together, and then copy and paste them to the other location. The SVG <use>
element gives you an analogous copy-and-paste ability with a group you’ve defined with
<g> or any individual graphic element (such as a complex polygon shape that you want
to define only once).

Once you have defined a group of graphic objects, you can display them again with the
<use> tag. To specify the group you wish to reuse, give its URI in an xlink:href at‐
tribute, and specify the x and y location where the group’s (0,0) point should be moved
to. (We will see another way to achieve this effect in Chapter 6, in “The translate Trans‐
formation” on page 69.) So, to create another house and set of people, as shown in
Figure 5-5, you’d put these lines just before the closing </svg> tag:

<use xlink:href="#house" x="70" y="100"/>
<use xlink:href="#woman" x="-80" y="100"/>
<use xlink:href="#man" x="-30" y="100"/>

Figure 5-5. Reuse of grouped stick figures

The <defs> Element
You may have noticed some drawbacks with the preceding example:

• The math for deciding where to place the reused man and woman requires you to
know the positions of the originals and use that as your base, rather than using a
simple number like zero.

• The fill and stroke color for the house were established by the original, and can’t be
overriden by <use>. This means you can’t make a row of multicolored houses.

• The document draws all three groups: the woman, the man, and the house. You
can’t “store them away” and draw only a set of houses or only a set of people.

Grouping and Referencing Objects | 63



The <defs> (definitions) element solves these problems. By putting the grouped objects
between the beginning and ending <defs> tags, you instruct SVG to define them without
displaying them. The SVG specification, in fact, recommends that you put all objects
you wish to reuse within a <defs> element so that SVG viewers working in a streaming
environment can process data more efficiently. In Example 5-6, the house, man, and
woman are defined with their upper-left corner at (0,0), and the house is not given any
fill color. Because the groups will be within the <defs> element, they will not be drawn
on the screen right away and will serve as a “template” for future use. We have also
constructed another group named couple, which, in turn, <use>s the man and woman
groups. (Note that the bottom half of Figure 5-6 can’t use couple, as it uses the figures
in a different arrangement.)

Example 5-6. The defs element
http://oreillymedia.github.io/svg-essentials-examples/ch05/defs-example.html
<svg width="240px" height="240px" viewBox="0 0 240 240"
  xmlns="http://www.w3.org/2000/svg">
<title>Grouped Drawing</title>
<desc>Stick-figure drawings of a house and people</desc>

<defs>
<g id="house" style="stroke: black;">
  <desc>House with door</desc>
  <rect x="0" y="41" width="60" height="60"/>
  <polyline points="0 41, 30 0, 60 41"/>
  <polyline points="30 101, 30 71, 44 71, 44 101"/>
</g>

<g id="man" style="fill: none; stroke: black;">
  <desc>Male stick figure</desc>
  <circle cx="10" cy="10" r="10"/>
  <line x1="10" y1="20" x2="10" y2="44"/>
  <polyline points="1 58, 10 44, 19 58"/>
  <polyline points="1 24, 10 30, 19 24"/>
</g>

<g id="woman" style="fill: none; stroke: black;">
  <desc>Female stick figure</desc>
  <circle cx="10" cy="10" r="10"/>
  <polyline points="10 20, 10 34, 0 44, 20 44, 10 34"/>
  <line x1="4" y1="58" x2="8" y2="44"/>
  <line x1="12" y1="44" x2="16" y2="58"/>
  <polyline points="1 24, 10 30, 19 24" />
</g>

<g id="couple">
  <desc>Male and female stick figures</desc>
  <use xlink:href="#man" x="0" y="0"/>
  <use xlink:href="#woman" x="25" y="0"/>

64 | Chapter 5: Document Structure

http://oreillymedia.github.io/svg-essentials-examples/ch05/defs-example.html


</g>
</defs>

<!-- make use of the defined groups -->
<use xlink:href="#house" x="0" y="0" style="fill: #cfc;"/>
<use xlink:href="#couple" x="70" y="40"/>

<use xlink:href="#house" x="120" y="0" style="fill: #99f;"/>
<use xlink:href="#couple" x="190" y="40"/>

<use xlink:href="#woman" x="0" y="145"/>
<use xlink:href="#man" x="25" y="145"/>
<use xlink:href="#house" x="65" y="105" style="fill: #c00;"/>
</svg>

Figure 5-6. Result of using groups within defs

The <use> element is not restricted to using objects from the same file in which it occurs;
the xlink:href attribute may specify any valid file or URI. This makes it possible to
collect a set of common elements in one SVG file and use them selectively from other
files. For example, you could create a file named identity.svg that contains all of the
identity graphics your organization uses:

<g id="company_mascot">
   <!-- drawing of company mascot -->
</g>

<g id="company_logo" style="stroke: none;">
   <polygon points="0 20, 20 0, 40 20, 20 40"
      style="fill: #696;"/>
   <rect x="7" y="7" width="26" height="26"
      style="fill: #c9c;"/>
</g>

<g id="partner_logo">
    <!-- drawing of company partner's logo -->
</g>

and then refer to it with the following:

Grouping and Referencing Objects | 65



<use xlink:href="identity.svg#company_logo" x="200" y="200"/>

External references may not be supported in all SVG viewers, par‐
ticularly web browsers, for security reasons. Some browsers (nota‐
bly Internet Explorer) currently do not support external file refer‐
ences at all. Others only allow <use> elements to reference files on
the same web domain or on a web server that is specifically config‐
ured to allow cross-origin use.

The <symbol> Element
The <symbol> element provides another way of grouping elements. Unlike the <g>
element, a <symbol> is never displayed, so you don’t have to enclose it in a <defs>
specification. However, it is customary to do so, because a symbol really is something
you’re defining for later use. Symbols can also specify viewBox and
preserveAspectRatio attributes, allowing a symbol to fit into a viewport established
by adding width and height attributes to the <use> element. Example 5-7 shows that
the width and height are ignored for a simple group (the top two octagons), but are
used when displaying a symbol. The edges of the lower-right octagon in Figure 5-7 are
cut off because the preserveAspectRatio has been set to slice. The <rect> elements
are included to show the coordinates of each <use>.

Example 5-7. Symbols versus groups
http://oreillymedia.github.io/svg-essentials-examples/ch05/symbol.html
<svg width="200px" height="200px" viewBox="0 0 200 200"
  xmlns="http://www.w3.org/2000/svg">
<title>Symbols vs. groups</title>
<desc>Use</desc>

<defs>
  <g id="octagon" style="stroke: black;">
    <desc>Octagon as group</desc>
    <polygon points="
      36 25, 25 36, 11 36, 0 25,
      0 11, 11 0, 25 0, 36 11"/>
  </g>

  <symbol id="sym-octagon" style="stroke: black;"
    preserveAspectRatio="xMidYMid slice" viewBox="0 0 40 40">
    <desc>Octagon as symbol</desc>
    <polygon points="
      36 25, 25 36, 11 36, 0 25,
      0 11, 11 0, 25 0, 36 11"/>
  </symbol>
</defs>

66 | Chapter 5: Document Structure

http://oreillymedia.github.io/svg-essentials-examples/ch05/symbol.html


<g style="fill:none; stroke:gray">
  <rect x="40" y="40" width="30" height="30"/>
  <rect x="80" y="40" width="40" height="60"/>
  <rect x="40" y="110" width="30" height="30"/>
  <rect x="80" y="110" width="40" height="60"/>
</g>
<use xlink:href="#octagon" x="40" y="40" width="30" height="30"
  style="fill: #c00;"/>
<use xlink:href="#octagon" x="80" y="40" width="40" height="60"
  style="fill: #cc0;"/>
<use xlink:href="#sym-octagon" x="40" y="110" width="30" height="30"
  style="fill: #cfc;"/>
<use xlink:href="#sym-octagon" x="80" y="110" width="40" height="60"
  style="fill: #699;"/>
</svg>

Figure 5-7. Groups versus symbols

The <image> Element
While <use> lets you reuse a portion of an SVG file, the <image> element includes an
entire SVG or raster file. If you are including an SVG file, the x, y, width, and height
attributes establish the viewport in which the referenced file will be drawn; if you’re
including a raster file, it will be scaled to fit the rectangle that the attributes specify. The
SVG specs require viewers to support both JPEG and PNG raster files; viewers may
support other files. For example, most web browsers will also support GIF. Example 5-8
shows how to include a JPEG image with SVG. The result is in Figure 5-8.

Example 5-8. Use of the image element
<svg width="310px" height="310px" viewBox="0 0 310 310"
  xmlns="http://www.w3.org/2000/svg">

<ellipse cx="154" cy="154" rx="150" ry="120" style="fill: #999999;"> 
<ellipse cx="152" cy="152" rx="150" ry="120" style="fill: #cceeff;"> 

<image xlink:href="kwanghwamun.jpg"  
  x="72" y="92"     
  width="160" height="120"/>     

</svg>

Grouping and Referencing Objects | 67



1. In Chapter 11, we’ll see another way to create a drop shadow in “Creating a Drop Shadow” on page 156.

Create a gray ellipse to simulate a drop shadow.1

Create the main blue ellipse. Because it occurs after the gray ellipse, it is displayed
above that object.
Specify the URI of the file to include.
Specify the upper-left corner of the image.
Specify the width and height to which the image should be scaled.

Figure 5-8. JPEG image included in an SVG file

An <image> element may have a preserveAspectRatio attribute to indicate what to do
if the dimensions of the image file do not match the width and height of the element.
The default value, xMidYMid meet, will scale the image to fit and center it in the rectangle
you specify (see “Preserving Aspect Ratio” on page 32). If you are including an SVG file,
you may add the keyword defer at the beginning of the preserveAspectRatio value
(like defer xMidYMin meet); if the included image has a preserveAspectRatio at‐
tribute, it will be used instead.

68 | Chapter 5: Document Structure



CHAPTER 6

Transforming the Coordinate System

Up to this point, all graphics have been displayed as is—drawn exactly where and how
they are defined in their attributes. There will be times when you have a graphic you
would like to rotate, scale, or move to a new location. To accomplish these tasks, you
add the transform attribute to the appropriate SVG elements. This chapter examines
the details of these transformations.

The translate Transformation
In Chapter 5, you saw that you can use x and y attributes with the <use> element to
place a group of graphic objects at a specific place. Look at the SVG in Example 6-1,
which defines a square and draws it at the upper-left corner of the grid, then redraws it
with the upper-left corner at coordinates (50,50). The dotted lines in Figure 6-1 aren’t
part of the SVG, but serve to show the part of the canvas we’re interested in.

Example 6-1. Moving a graphic with use
<svg width="200px" height="200px" viewBox="0 0 200 200"
  xmlns="http://www.w3.org/2000/svg">
    <g id="square">
        <rect x="0" y="0" width="20" height="20"
            style="fill: black; stroke-width: 2;"/>
    </g>
    <use xlink:href="#square" x="50" y="50"/>
</svg>

As it turns out, the x and y values are really shorthand for one form of the more general
and more powerful transform attribute. Specifically, the x and y values are equivalent
to an attribute like transform="translate(x-value, y-value)", where translate is a
fancy technical term for move. The x-value and y-value are measured in the current user
coordinate system. Let’s use transform to get the same effect of making a second square
with its upper-left corner at (50,50). Example 6-2 lists the SVG.

69



Figure 6-1. Result of moving with use

Example 6-2. Moving the coordinate system with translation
<svg width="200px" height="200px" viewBox="0 0 200 200"
  xmlns="http://www.w3.org/2000/svg">
    <g id="square">
        <rect x="0" y="0" width="20" height="20"
            style="fill: none; stroke:black; stroke-width: 2;"/>
    </g>
    <use xlink:href="#square" transform="translate(50,50)"/>
</svg>

The resulting display will look exactly like that in Figure 6-1. You might think this was
accomplished by moving the square to a different place on the grid, as shown concep‐
tually in Figure 6-2, but you would be wrong.

Figure 6-2. How moving appears to work (but really doesn’t)

What is really going on behind the scenes is an entirely different story. Rather than
moving the square, the translate specification picks up the entire grid and moves it to
a new location on the canvas. As far as the square is concerned, it’s still being drawn
with its upper-left corner at (0,0), as depicted in Figure 6-3.

70 | Chapter 6: Transforming the Coordinate System



Figure 6-3. How moving with translate really works

The online example allows you to experiment with different coordinates:

http://oreillymedia.github.io/svg-essentials-examples/ch06/translate.html

A transformation never changes a graphic object’s grid coordinates;
rather, it changes the position of the grid on the canvas.

At first glance, using translate seems as ridiculous and inefficient as moving your
couch further away from the outside wall of the house by moving the entire living room,
walls and all, to a new position. Indeed, if translation were the only transformation
available, moving the entire coordinate system would be wasteful. However, you will
soon see other transformations and combinations of a sequence of transformations that
are more mathematically and conceptually convenient if they apply to the entire coor‐
dinate system.

The scale Transformation
It is possible to make an object appear larger or smaller than the size at which it was
defined by scaling the coordinate system. Such a transformation is specified as follows:
transform="scale(value)"

Multiplies all x- and y-coordinates by the given value.

transform="scale(x-value, y-value)"
Multiplies all x-coordinates by the given x-value and all y-coordinates by the given
y-value.

Example 6-3 is an example of the first kind of scaling transformation, which uniformly
doubles the scale of both axes. Once again, the dotted lines in Figure 6-4 aren’t in the
SVG; they simply show the area of the canvas we’re interested in. Note that the square’s
upper-left corner is at (10,10).

The scale Transformation | 71

http://oreillymedia.github.io/svg-essentials-examples/ch06/translate.html


Example 6-3. Uniformly scaling a graphic
http://oreillymedia.github.io/svg-essentials-examples/ch06/scale.html
<svg width="200px" height="200px" viewBox="0 0 200 200"
  xmlns="http://www.w3.org/2000/svg">
    <g id="square">
        <rect x="10" y="10" width="20" height="20"
            style="fill: none; stroke: black;"/>
    </g>
    <use xlink:href="#square" transform="scale(2)"/>
</svg>

Figure 6-4. Result of using scale transformation

You might be thinking, “Wait a minute—I can understand why the square got larger.
But I didn’t ask for a translate, so why is the square in a different place?” Everything
becomes clear when you look at Figure 6-5 to see what has actually occurred. The grid
hasn’t moved; the (0,0) point of the coordinate system is still in the same place, but each
user coordinate is now twice as large as it used to be. You can see from the grid lines
that the upper-left corner of the rectangle is still at (10,10) on the new, larger grid,
because objects never move. This also explains why the outline of the larger square is
thicker. The stroke-width is still one user unit, but that unit has now become twice as
large, so the stroke thickens.

Figure 6-5. How the scale transformation works

72 | Chapter 6: Transforming the Coordinate System

http://oreillymedia.github.io/svg-essentials-examples/ch06/scale.html


A scaling transformation never changes a graphic object’s grid
coordinates or its stroke width; rather, it changes the size of the
coordinate system (grid) with respect to the canvas.

It is possible to specify a different scale factor for the x-axis and y-axis of the coordinate
system by using the second form of the scale transformation. Example 6-4 draws the
square with the x-axis scaled by a factor of three and the y-axis scaled by a factor of one
and a half. As you can see in Figure 6-6, the one-unit stroke width is also nonuniformly
scaled.

Example 6-4. Nonuniform scaling of a graphic
<svg width="200px" height="200px" viewBox="0 0 200 200"
  xmlns="http://www.w3.org/2000/svg">
  <g id="square">
    <rect x="10" y="10" width="20" height="20"
      style="fill: none; stroke: black;"/>
  </g>
  <use xlink:href="#square" transform="scale(3, 1.5)"/>
</svg>

Figure 6-6. Result of using nonuniform scale transformation

To this point, the examples have applied the transform attribute to only the <use>
element. You can apply a transformation to a series of elements by grouping them and
transforming the group:

<g id="group1" transform="translate(3, 5)">
  <line x1="10" y1="10" x1="30" y2="30"/>
  <circle cx="20" cy="20" r="10"/>
</g>

You may also apply a transformation to a single object or basic shape. For example, here
is a rectangle whose coordinate system is scaled by a factor of three:

<rect x="15" y="20" width="10" height="5"
  transform="scale(3)"
  style="fill: none; stroke: black;"/>

It’s fairly clear that the width and height of the scaled rectangle should be three times as
large as the unscaled rectangle. However, you may wonder if the x- and y-coordinates
are evaluated before or after the rectangle is scaled. The answer is that SVG applies
transformations to the coordinate system before it evaluates any of the shape’s

The scale Transformation | 73



coordinates. Example 6-5 is the SVG for the scaled rectangle, shown in Figure 6-7 with
grid lines that are drawn in the unscaled coordinate system.

Example 6-5. Transforming a single graphic
<!-- grid guide lines in non-scaled coordinate system -->
<line x1="0" y1="0" x2="100" y2="0" style="stroke: black;"/>
<line x1="0" y1="0" x2="0" y2="100" style="stroke: black;"/>
<line x1="45" y1="0" x2="45" y2="100" style="stroke: gray;"/>
<line x1="0" y1="60" x2="100" y2="60" style="stroke: gray;"/>

<!-- rectangle to be transformed -->
<rect x="15" y="20" width="10" height="5"
    transform="scale(3)"
    style="fill: none; stroke: black;"/>

Figure 6-7. Result of transforming a single graphic

The effect of applying a transformation to a shape is the same as if the
shape were enclosed in a transformed group. In the preceding exam‐
ple, the scaled rectangle is equivalent to this SVG:

<g transform="scale(3)">
   <rect x="15" y="20" width="10" height="5"
     style="fill: none; stroke: black;"/>
</g>

Sequences of Transformations
It is possible to do more than one transformation on a graphic object. You just put the
transformations, optionally separated by whitespace or a comma, in the value of the
transform attribute. Here is a rectangle that undergoes two transformations, a trans‐
lation followed by a scaling. (The axes are drawn to show that the rectangle has, indeed,
moved.)

<!-- draw axes -->
<line x1="0" y1="0" x2="0" y2="100" style="stroke: gray;"/>
<line x1="0" y1="0" x2="100" y2="0" style="stroke: gray;"/>

<rect x="10" y="10" height="15" width="20"
  transform="translate(30, 20) scale(2)"
  style="fill: gray;"/>

74 | Chapter 6: Transforming the Coordinate System



This is the equivalent of the following sequence of nested groups, and both will produce
what you see in Figure 6-8:

<g transform="translate(30, 20)">
  <g transform="scale(2)">
  <rect x="10" y="10" height="15" width="20"
    style="fill: gray;"/>
  </g>
</g>

Figure 6-8. Result of translate followed by scale

Figure 6-9 shows what is happening at each stage of the transformation.

Figure 6-9. How translate followed by scale works

The order in which you do a sequence of transformations affects the
result. In general, transformation A followed by transformation B will
not give the same result as transformation B followed by transforma‐
tion A.

Example 6-6 draws the same rectangle as in the previous example, in gray. Then it draws
the rectangle again in black, but does the scale before the translate. As you can see
from the result in Figure 6-10, the rectangles end up in very different places on the
canvas.

Example 6-6. Sequence of transformations—scale followed by translate
<!-- draw axes -->
<line x1="0" y1="0" x2="0" y2="100" style="stroke: gray;"/>
<line x1="0" y1="0" x2="100" y2="0" style="stroke: gray;"/>

Sequences of Transformations | 75



<rect x="10" y="10" width="20" height="15"
    transform="translate(30, 20) scale(2)" style="fill: gray;"/>

<rect x="10" y="10" width="20" height="15"
    transform="scale(2) translate(30, 20)"
    style="fill: black;"/>

Figure 6-10. Result of scale followed by translate

The reason the black rectangle ends up farther away from the origin is that the scaling
is applied first, so the translate of 20 units in the x-direction and 10 units in the y-
direction is done with units that are now twice as large, as shown in Figure 6-11.

Figure 6-11. How scale followed by translate works

In the online example, you can experiment with any sequence of transformations, and
compare the transformed rectangle against the original:

http://oreillymedia.github.io/svg-essentials-examples/ch06/sequence.html

Technique: Converting from Cartesian Coordinates
If you are transferring data from other systems to SVG, you may have to deal with vector
drawings that use Cartesian coordinates (the ones you learned about in high school
algebra) to represent data. In this system, the (0,0) point is at the lower left of the canvas,
and y-coordinates increase as you move upward. Figure 6-12 shows the coordinates of
a trapezoid drawn with Cartesian coordinates.

76 | Chapter 6: Transforming the Coordinate System

http://oreillymedia.github.io/svg-essentials-examples/ch06/sequence.html


Figure 6-12. Trapezoid drawn with Cartesian coordinates

The y-axis is “upside-down” relative to the SVG default, so the coordinates need to be
recalculated. Rather than do it by hand, you can use a sequence of transformations to
have SVG do all the work for you. First, translate the picture into SVG, with the coor‐
dinates exactly as shown in Example 6-7. (The example also includes the axes as a guide.)
To nobody’s surprise, the picture will come out upside-down. Note that the image in
Figure 6-13 is not left-to-right reversed, because the x-axis points in the same direction
in both Cartesian coordinates and the default SVG coordinate system.

Example 6-7. Direct use of Cartesian coordinates
<svg width="200px" height="200px" viewBox="0 0 200 200"
  xmlns="http://www.w3.org/2000/svg">
  <!-- axes -->
  <line x1="0" y1="0" x2="100" y2="0" style="stroke: black;"/>
  <line x1="0" y1="0" x2="0" y2="100" style="stroke: black;"/>

  <!-- trapezoid -->
  <polygon points="40 40, 100 40, 70 70, 40 70"
      style="fill: gray; stroke: black;"/>
</svg>

Figure 6-13. Result of using original Cartesian coordinates

To flip the image back right-side-up, you can take advantage of the fact that scaling a
shape by a negative value reverses the order of coordinates. However, because the entire
grid ends up flipped to the other side of the 0 coordinate, you also need to translate the
shape back onto the visible part of the canvas. The conversion follows these steps:

1. Find the maximum y-coordinate in the original drawing. In this case, it turns out
to be 100, the endpoint of the y-axis in the original.

2. Enclose the entire drawing in a <g> element.

Technique: Converting from Cartesian Coordinates | 77



3. Enter a translate that moves the coordinate system downward by the maximum y
value: transform="translate(0, max-y)".

4. The next transform will be to scale the y-axis by a factor of –1, flipping it upside-
down: transform="translate(0, max-y) scale(1, -1)".

You don’t want to change the x-axis values, but you still need to specify
an x-value for both the translate and scale functions. The do-
nothing value for the translate is 0, but the do-nothing value for the
scale transform is 1, because coordinates are multiplied by the scale
factor. A scale(0) transform would collapse your shape to a single
point (because every coordinate, multiplied by zero, would
become zero).

Example 6-8 incorporates this transformation, producing a right-side-up trapezoid in
Figure 6-14.

Example 6-8. Transformed Cartesian coordinates
<svg width="200px" height="200px" viewBox="0 0 200 200"
  xmlns="http://www.w3.org/2000/svg">
  <g transform="translate(0,100) scale(1,-1)">
    <!-- axes -->
    <line x1="0" y1="0" x2="100" y2="0" style="stroke: black;"/>
    <line x1="0" y1="0" x2="0" y2="100" style="stroke: black;"/>

    <!-- trapezoid -->
    <polygon points="40 40, 100 40, 70 70, 40 70"
        style="fill: gray; stroke: black;"/>
  </g>
</svg>

Figure 6-14. Transformed Cartesian coordinates

The rotate Transformation
It is also possible to rotate the coordinate system by a specified angle. In the default
coordinate system, angle measure increases as you rotate clockwise, with a horizontal
line having an angle of 0 degrees, as shown in Figure 6-15.

78 | Chapter 6: Transforming the Coordinate System



1. All the figures in this chapter are static pictures. This one shows two squares (one rotated and one unrotated).
To show an animation of a rotating square, use <animateTransform>, which we will discuss in Chapter 12,
in “The <animateTransform> Element” on page 200.

Figure 6-15. Default measurement of angles

Unless you specify otherwise, the center of rotation (a fancy term for the pivot point) is
presumed to be (0,0). Example 6-9 shows a square drawn in gray, then drawn again in
black after the coordinate system is rotated 45 degrees. The axes are also shown as a
guide. Figure 6-16 shows the result. If you’re surprised that the square has appeared to
move, you shouldn’t be. Remember, as shown in Figure 6-17, the entire coordinate
system has been rotated.1

Example 6-9. Rotation around the origin
http://oreillymedia.github.io/svg-essentials-examples/ch06/rotate.html
<!-- axes -->
<polyline points="100 0, 0 0, 0 100" style="stroke: black; fill: none;"/>

<!-- normal and rotated square -->
<rect x="70" y="30" width="20" height="20" style="fill: gray;"/>
<rect x="70" y="30" width="20" height="20"
    transform="rotate(45)" style="fill: black;"/>

Figure 6-16. Result of rotation around the origin

The rotate Transformation | 79

http://oreillymedia.github.io/svg-essentials-examples/ch06/rotate.html


Figure 6-17. How rotation around the origin works

Most of the time, you will not want to rotate the entire coordinate system around the
origin; you’ll want to rotate a single object around a point other than the origin. You
can do that via this series of transformations: translate(centerX, centerY)
rotate(angle) translate(-centerX, -centerY). SVG provides another version of
rotate to make this common task easier. In this second form of the rotate transfor‐
mation, you specify the angle and the center point around which you want to rotate:

rotate(angle, centerX, centerY)

This has the effect of temporarily establishing a new system of coordinates with the
origin at the specified center x and y points, doing the rotation, and then re-establishing
the original coordinates. Example 6-10 shows this form of rotate to create multiple
copies of an arrow, shown in Figure 6-18.

Example 6-10. Rotation around a center point
http://oreillymedia.github.io/svg-essentials-examples/ch06/rotate-center.html
<!-- center of rotation -->
<circle cx="50" cy="50" r="3" style="fill: black;"/>

<!-- non-rotated arrow -->
<g id="arrow" style="stroke: black;">
    <line x1="60" y1="50" x2="90" y2="50"/>
    <polygon points="90 50, 85 45, 85 55"/>
</g>

<!-- rotated around center point -->
<use xlink:href="#arrow" transform="rotate(60, 50, 50)"/>
<use xlink:href="#arrow" transform="rotate(-90, 50, 50)"/>
<use xlink:href="#arrow" transform="rotate(-150, 50 50)"/>

Figure 6-18. Result of rotation around a center point

80 | Chapter 6: Transforming the Coordinate System

www.allitebooks.com

http://oreillymedia.github.io/svg-essentials-examples/ch06/rotate-center.html
http://www.allitebooks.org


2. This is also a static picture, a “square bull’s-eye.” If you want to show an animation of an expanding square,
you’ll use <animateTransform>, which we will discuss in Chapter 12, in “The <animateTransform> Ele‐
ment” on page 200.

Technique: Scaling Around a Center Point
While it’s possible to rotate around a point other than the origin, there is no corre‐
sponding capability to scale around a point. You can, however, make concentric sym‐
bols with a simple series of transformations. To scale an object by a given factor around
a center point, do this:

translate(-centerX*(factor-1), -centerY*(factor-1))
scale(factor)

You may also want to divide the stroke-width by the scaling factor so the outline stays
the same width while the object becomes larger. Example 6-11 draws the set of concentric
rectangles shown in Figure 6-19.2

Example 6-11. Scaling around a center point
<!-- center of scaling -->
<circle cx="50" cy="50" r="2" style="fill: black;"/>

<!-- non-scaled rectangle -->
<g id="box" style="stroke: black; fill: none;">
    <rect x="35" y="40" width="30" height="20"/>
</g>

<use xlink:href="#box" transform="translate(-50,-50) scale(2)"
    style="stroke-width: 0.5;"/>
<use xlink:href="#box" transform="translate(-75,-75) scale(2.5)"
    style="stroke-width: 0.4;"/>
<use xlink:href="#box" transform="translate(-100,-100) scale(3)"
    style="stroke-width: 0.33;"/>

Figure 6-19. Result of scaling around a center point

The skewX and skewY Transformations
SVG also has two other transformations: skewX and skewY, which let you skew one of
the axes. The general form is skewX(angle) and skewY(angle). The skewX transfor‐
mation “pushes” all x-coordinates by the specified angle, leaving y-coordinates

Technique: Scaling Around a Center Point | 81



unchanged. skewY skews the y-coordinates, leaving x-coordinates unchanged, as shown
in Figure 6-20, which is drawn with the code in Example 6-12.

Example 6-12. skewX and skewY
http://oreillymedia.github.io/svg-essentials-examples/ch06/skew.html
<!-- guide lines --> 
<g style="stroke: gray; stroke-dasharray: 4 4;">
    <line x1="0" y1="0" x2="200" y2="0"/>
    <line x1="20" y1="0" x2="20" y2="90"/>
    <line x1="120" y1="0" x2="120" y2="90"/>
</g>

<g transform="translate(20, 0)">     
    <g transform="skewX(30)">     
        <polyline points="50 0, 0 0, 0 50"      
             style="fill: none; stroke: black; stroke-width: 2;"/>
        <text x="0" y="60">skewX</text>     
    </g>
</g>

<g transform="translate(120, 0)">     
    <g transform="skewY(30)">
        <polyline points="50 0, 0 0, 0 50"
            style="fill: none; stroke: black; stroke-width: 2;"/>
        <text x="0" y="60">skewY</text>
    </g>
</g>

These dashed lines are drawn in the default coordinate system, before any
transformation has occurred.
This will move the entire skewed “package” to the desired location.
Skew the x-coordinates 30 degrees. This transformation doesn’t change the
origin, which will still be at (0,0) in the new coordinate system.
To make things easier, we draw the object at the origin.
Text will be covered in more detail in Chapter 9.
These elements are organized exactly like the preceding ones, except the y-
coordinates are skewed.

Figure 6-20. Result of skewX and skewY transformations

82 | Chapter 6: Transforming the Coordinate System

http://oreillymedia.github.io/svg-essentials-examples/ch06/skew.html


Notice that skewX leaves the horizontal lines horizontal, and skewY leaves the vertical
lines untouched. Go figure.

Transformation Reference Summary
Table 6-1 gives a quick summary of the transformations available in SVG.

Table 6-1. SVG transformations
Transformation Description

translate(x, y) Moves the user coordinate system by the specified x and y amounts.
Note: If you don’t specify a y value, 0 is assumed.

scale(xFactor, yFactor) Multiplies all user coordinates by the specified xFactor and
yFactor. The factors may be fractional or negative.

scale(factor) Same as scale(factor, factor).

rotate(angle) Rotates the user coordinate system by the specified angle. The center
of rotation is the origin (0,0). In the default coordinate system, angle
measure increases as you rotate clockwise, with a horizontal line having
an angle of 0 degrees.

rotate(angle, centerX, centerY) Rotates the user coordinate system by the specified angle. The center
of rotation is specified by centerX and centerY.

skewX(angle) Skews all x-coordinates by the specified angle. Visually, this makes
vertical lines appear at an angle.

skewY(angle) Skews all y-coordinates by the specified angle. Visually, this makes
horizontal lines appear at an angle.

matrix(a b c d e f) Specifies a transformation in the form of a transformation matrix of six
values. See Appendix D.

CSS Transformations and SVG
As of this writing, CSS also has a working draft of a transformations module. Because
it is a working draft, details may change and browser support may vary. If you are already
using CSS transforms, there are some important differences from SVG:

• SVG 1.1 transforms are in user units or implicit degrees. CSS transforms use CSS
length and angle units, although the specification would also allow implicit user
units when applied to SVG elements.

• SVG 1.1 transforms are structural attributes, whereas CSS transforms can be speci‐
fied in stylesheets. Stylesheet specifications override attribute values.

• In CSS, you cannot have space between the transform type and the opening pa‐
renthesis, and you must use commas to separate numerical values.

Transformation Reference Summary | 83

http://www.w3.org/TR/css-transforms-1/


• CSS transforms include a separate property to specify the origin for rotation and
scaling. In SVG, the rotation origin is part of the rotate() function, and you cannot
specify an origin for scaling.

• CSS transforms include 3D effects.

84 | Chapter 6: Transforming the Coordinate System



CHAPTER 7

Paths

All of the basic shapes described in Chapter 4 are really shorthand forms for the more
general <path> element. You are well advised to use these shortcuts; they help make
your SVG more readable and more structured. The <path> element is more general; it
draws the outline of any arbitrary shape by specifying a series of connected lines, arcs,
and curves. This outline can be filled and drawn with a stroke, just as the basic shapes
are. Additionally, these paths (as well as the shorthand basic shapes) may be used to
define the outline of a clipping area or a transparency mask, as you will see in Chapter 10.

All of the data describing an outline is in the <path> element’s d attribute (the d stands
for data). The path data consists of one-letter commands, such as M for moveto or L for
lineto, followed by the coordinate information for that particular command.

moveto, lineto, and closepath
Every path must begin with a moveto command.

The command letter is a capital M followed by an x- and y-coordinate, separated by
commas or whitespace. This command sets the current location of the “pen” that’s
drawing the outline.

This is followed by one or more lineto commands, denoted by a capital L, also followed
by x- and y- coordinates, and separated by commas or whitespace. Example 7-1 has
three paths. The first draws a single line, the second draws a right angle, and the third
draws two 30-degree angles. When you “pick up” the pen with another moveto, you are
starting a new subpath. Notice that you can use either a comma or whitespace to separate
the x- and y-coordinates, as shown in all three paths. The result is Figure 7-1.

85



Example 7-1. Using moveto and lineto
http://oreillymedia.github.io/svg-essentials-examples/ch07/moveto-lineto.html
<svg width="150px" height="150px" viewBox="0 0 150 150"
  xmlns="http://www.w3.org/2000/svg">
<g style="stroke: black; fill: none;">
  <!-- single line -->
  <path d="M 10 10 L 100 10"/>

  <!-- a right angle -->
  <path d="M 10, 20  L 100, 20  L  100,50"/>

  <!-- two 30-degree angles -->
  <path d="M 40 60 L 10, 60 L 40 42.68
    M 60, 60 L 90 60 L 60, 42.68"/>
</g>
</svg>

Figure 7-1. Result of using moveto and lineto

Examining the last path more closely, with commas replaced by whitespace:

Value Action

M 40 60 Move pen to (40,60)

L 10 60 Draw a line to (10,60)

L 40 42.68 Draw a line to (40,42.68)

M 60 60 Start a new subpath; move pen to (60,60)—no line is drawn

L 90 60 Draw a line to (90,60)

L 60 42.68 Draw a line to (60,42.68)

You may have noticed the path data doesn’t look very much like the
typical values for XML attributes. Because the entire path data is
contained in one attribute rather than an individual element for each
point or line segment, a path takes up less memory when read into a
Document Object Model structure by an XML parser. Additionally, a
path’s compact notation allows a complex graphic to be transmitted
without requiring a great deal of bandwidth.

If you want to use a <path> to draw a rectangle, you can draw all four lines, or you can
draw the first three lines and then use the closepath command, denoted by a capital Z,
to draw a straight line back to the beginning point of the current subpath. Example 7-2

86 | Chapter 7: Paths

http://oreillymedia.github.io/svg-essentials-examples/ch07/moveto-lineto.html


is the SVG for Figure 7-2, which shows a rectangle drawn the hard way, a rectangle
drawn with closepath, and a path that draws two triangles by opening and closing two
subpaths.

Example 7-2. Using closepath
<g style="stroke: black; fill: none;">
  <!-- rectangle; all four lines -->
  <path d="M 10, 10 L 40, 10 L 40, 30 L 10, 30 L 10, 10"/>

  <!-- rectangle with closepath -->
  <path d="M 60 10 L 90 10 L 90 30 L 60 30 Z"/>

  <!-- two 30-degree triangles -->
  <path d="M 40 60 L 10 60 L 40 42.68 Z
     M 60 60 L 90 60 L 60 42.68 Z"/>
</g>

Examining the last path more closely:

Value Action

M 40 60 Move pen to (40,60)

L 10 60 Draw a line to (10,60)

L 40 42.68 Draw a line to (40,42.68)

Z Close path by drawing a straight line to (40,60), where this subpath began

M 60 60 Start a new subpath; move pen to (60,60)—no line is drawn

L 90 60 Draw a line to (90,60)

L 60 42.68 Draw a line to (60,42.68)

Z Close path by drawing a straight line to (60,60), where this subpath began

Figure 7-2. Result of using closepath

There is another difference between drawing the rectangle with all four lines and using
a closepath command. When you close the path, the start and end lines are joined to‐
gether to form a continuous shape for stroking styles. The difference is noticeable if you
are using wide strokes or stroke-linecap and stroke-linejoin effects. Example 7-3
uses a larger stroke width, and Figure 7-3 shows the result, magnified to make the
difference more clearly visible.

moveto, lineto, and closepath | 87



Example 7-3. Individual lines versus closepath
<g style="stroke: gray; stroke-width: 8; fill: none;">

    <!-- rectangle; all four lines -->
    <path d="M 10 10 L 40 10 L 40 30 L 10 30 L 10 10"/>

    <!-- rectangle with closepath -->
    <path d="M 60 10 L 90 10 L 90 30 L 60 30 Z"/>
</g>

Figure 7-3. Result of individual strokes versus closepath

Relative moveto and lineto
The preceding commands are all represented by uppercase letters, and the coordinates
are presumed to be absolute coordinates. If you use a lowercase command letter, the
coordinates are interpreted as being relative to the current pen position. Thus, the fol‐
lowing two paths are equivalent:

<path d="M 10 10 L 20 10 L 20 30  M 40 40 L 55 35"
    style="stroke: black;"/>
<path d="M 10 10 l 10  0 l  0 20  m 20 10 l 15 -5"
    style="stroke: black;"/>

If you start a path with a lowercase m (moveto), its coordinates will be interpreted as an
absolute position, as there’s no previous pen position from which to calculate a relative
position. All the other commands in this chapter also have the same upper- and
lowercase distinction. An uppercase command’s coordinates are absolute, and a low‐
ercase command’s coordinates are relative. The closepath command, which has no co‐
ordinates, has the same effect in both upper- and lowercase.

Path Shortcuts
If content is king and design is queen, then bandwidth efficiency is the royal courtier
who keeps the palace running smoothly. Because any nontrivial drawing will have paths
with many tens of coordinate pairs, the <path> element has shortcuts that allow you to
represent a path in as few bytes as possible.

The Horizontal lineto and Vertical lineto Commands
Horizontal and vertical lines are common enough to warrant shortcut commands. A
path may specify a horizontal line with an H command followed by an absolute

88 | Chapter 7: Paths



1. You can also put multiple single coordinates after a horizontal lineto or vertical lineto, although you’ll only
notice an effect if you’re using line markers, which we haven’t discussed yet. H 25 35 45 is the same as
H 45, and v 11 13 15 is the same as v 39.

x-coordinate, or an h command followed by a relative x-coordinate. Similarly, a vertical
line is specified with a V command followed by an absolute y-coordinate, or a v com‐
mand followed by a relative y-coordinate.

The following table compares the short and long way to draw horizontal and vertical
lines:

Shortcut Equivalent to Effect

H 20 L 20 current_y Draws a line to absolute location (20,current_y)

h 20 l 20 0 Draws a line to (current_x + 20,current_y)

V 20 L current_x 20 Draws a line to absolute location (current_x,20)

v 20 l 0 20 Draws a line to location (current_x, current_y + 20)

Thus, the following path draws a rectangle 15 units in width and 25 units in height, with
the upper-left corner at coordinates (12,24).

<path d="M 12 24 h 15 v 25 h -15 z"/>

Notational Shortcuts for a Path
Paths can also be made shorter by applying the following two rules:

• You may place multiple sets of coordinates after an L or l, just as you do in the
<polyline> element. The following six paths all draw the same diamond shown in
Figure 7-4; the first three are in absolute coordinates and the last three in relative
coordinates. The third and sixth paths have an interesting twist—if you place mul‐
tiple pairs of coordinates after a moveto, all the pairs after the first are presumed to
be preceded by a lineto: 1

<g style="fill:none; stroke: black">
  <path d="M 30 30 L 55 5 L 80 30 L 55 55 Z"/>
  <path d="M 30 30 L 55 5 80 30 55 55 Z"/>
  <path d="M 30 30 55 5 80 30 55 55 Z"/>
  <path d="m 30 30 l 25 -25 l 25 25 l -25 25 z"/>
  <path d="m 30 30 l 25 -25 25 25 -25 25 z"/>
  <path d="m 30 30 25 -25 25 25 -25 25 z"/>
</g>

Path Shortcuts | 89



Figure 7-4. Result of drawing a diamond with a path

• Any unnecessary whitespace may be eliminated. You don’t need a blank after a
command letter because all commands are one letter only. You don’t need a blank
between a number and a command because the command letter can’t be part of the
number. You don’t need a blank between a positive and a negative number because
the leading minus sign of the negative number can’t be a part of the positive number.
This lets you reduce the third and sixth paths in the preceding listing even further:

<path d="M30 30 55 5 80 30 55 55Z"/>
<path d="m30 30 25-25 25 25-25 25z"/>

Another example of the whitespace elimination rule in action is shown by the ex‐
ample that drew a rectangle 15 units in width and 25 units in height, with the upper-
left corner at coordinates (12,24):

<path d="M 12 24 h 15 v 25 h -15 z"/> <!-- original -->
<path d="M12 24h15v25h-15z"/> <!-- shorter -->

Elliptical Arc
Lines are simple; two points on a path uniquely determine the line segment between
them. Because an infinite number of curves can be drawn between two points, you must
give additional information to draw a curved path between them. The simplest of the
curves we will examine is the elliptical arc—that is, drawing a section of an ellipse that
connects two points.

Although arcs are visually the simplest curves, specifying a unique arc requires the most
information. The first pieces of information you need to specify are the x- and y-radii
of the ellipse on which the points lie. This narrows it down to two possible ellipses, as
you can see in section (a) of Figure 7-5. The two points divide the two ellipses into four
arcs. Two of them, (b) and (c), are arcs that measure less than 180 degrees. The other
two, (d) and (e), are greater than 180 degrees. If you look at (b) and (c), you will notice
they are differentiated by their direction; (b) is drawn in the direction of increasing
negative (counterclockwise) angle, and (c) in the direction of increasing positive (clock‐
wise) angle. The same relationship holds true between (d) and (e).

But wait—that still doesn’t uniquely specify the potential arcs! There’s no law that says
the ellipse has to have its x-radius parallel to the x-axis. Part (f) of Figure 7-5 shows the
two points with their candidate ellipses rotated 30 degrees with respect to the x-axis.

90 | Chapter 7: Paths



Figure 7-5. Variations of the elliptical arc command

(Figure 7-5 is adapted from the one found in section 8.3.8 of the World Wide Web
Consortium’s SVG specification.)

Thus, an arc command begins with the A abbreviation for absolute coordinates or a for
relative coordinates, and is followed by seven parameters:

• The x- and y-radius of the ellipse on which the points lie.
• The x-axis-rotation of the ellipse.
• The large-arc-flag, which is 0 if the arc’s measure is less than 180 degrees, or 1

if the arc’s measure is greater than or equal to 180 degrees.
• The sweep-flag, which is 0 if the arc is to be drawn in the negative angle direction,

or 1 if the arc is to be drawn in the positive angle direction.
• The ending x- and y- coordinates of the ending point. (The starting point is deter‐

mined by the last point drawn or the last moveto command.)

Here are the paths used to draw the elliptical arcs in sections (b) through (e) of Figure 7-5:

<path d="M 125,75 A100,50 0 0,0 225,125"/> <!-- b -->
<path d="M 125,75 A100,50 0 0,1 225,125"/> <!-- c -->
<path d="M 125,75 A100,50 0 1,0 225,125"/> <!-- d -->
<path d="M 125,75 A100,50 0 1,1 225,125"/> <!-- e -->

Online, you can experiment with all the arc parameters to see what they do:

http://oreillymedia.github.io/svg-essentials-examples/ch07/arc.html

As a further example, let’s enhance the background we started in Example 5-8 to com‐
plete the yin-yang symbol that is part of the South Korean flag. Example 7-4 keeps the

Elliptical Arc | 91

http://oreillymedia.github.io/svg-essentials-examples/ch07/arc.html


full ellipses as <ellipse> elements, but creates the semicircles it needs with paths. The
result is shown in Figure 7-6.

Example 7-4. Using elliptical arc
<svg width="400px" height="300px" viewBox="0 0 400 300"
  xmlns="http://www.w3.org/2000/svg">
  <!-- gray drop shadow -->
  <ellipse cx="154" cy="154" rx="150" ry="120" style="fill: #999999;"/>

  <!-- light blue ellipse -->
  <ellipse cx="152" cy="152" rx="150" ry="120" style="fill: #cceeff;"/>

  <!-- large light red semicircle fills upper half,
      followed by small light red semicircle that dips into
      lower-left half of symbol -->
  <path d="M 302 152 A 150 120, 0, 1, 0, 2 152
      A 75 60, 0, 1, 0, 152 152" style="fill: #ffcccc;"/>

  <!-- light blue semicircle rises into upper-right half of symbol -->
  <path d="M 152 152 A 75 60, 0, 1, 1, 302 152" style="fill: #cceeff;"/>
</svg>

Figure 7-6. Result of using elliptical arc

You cannot draw a full ellipse with a single path command; if the
starting and ending points of the arc are the same, there are infin‐
ite ways to position the ellipse. SVG viewers will skip such an arc
command. If you specify an ellipse that is too small to reach be‐
tween the starting and ending points, the SVG viewer will scale up
the ellipse until it is just big enough.
For exact details on how out-of-range parameters are handled, see
the specification’s arc implementation notes.

92 | Chapter 7: Paths

http://www.w3.org/TR/SVG11/implnote.html#ArcImplementationNotes


Converting from Other Arc Formats
You may be wondering why you can’t specify an arc by defining a center point for the
ellipse, its x- and y-radius, the starting angle, and the extent of the angle’s arc, as some
other vector graphics systems do. This is a straightforward method of specification, and
is excellent for drawing arcs as single objects. This, paradoxically, is exactly why SVG
instead chooses such a seemingly eccentric method to specify arcs. In SVG, an arc is not
presumed to be living in lonely splendor; it is intended to be part of a connected path
of lines and curves. (For example, a rounded rectangle is precisely that—a series of lines
and elliptical arcs.) Thus, it makes sense to specify an arc by its endpoints.

Sometimes, though, you do want an isolated semicircle (or, more accurately, semi-
ellipse). Presume you have an ellipse specified as follows:

<ellipse cx="cx" cy="cy" rx="rx" ry="ry"/>

Here are the paths to draw the four possible semi-ellipses (items in parentheses are
intended as algebraic expressions to be calculated):

<!-- northern hemisphere -->
<path d="M (cx - rx) cy
  A rx ry 0 1 1 (cx + rx) cy"/>
<!-- southern hemipshere -->
<path d="M (cx - rx) cy
  A rx ry 0 1 0 (cx + rx) cy"/>
<!-- eastern hemisphere -->
<path d="M cx (cy - ry)
  A rx ry 0 1 1 cx (cy + ry)"/>
<!-- western hemisphere -->
<path d="M cx (cy - ry)
  A rx ry 0 1 0 cx (cy + ry)"/>

Sometimes you may want to draw an arbitrary arc that has been specified in center-and-
angles notation and wish to convert it to SVG’s endpoint-and-sweep format. In other
cases, you may want to convert an arc from the SVG format to a center-and-angles
format. The mathematics for this second case is rather complex, and is detailed in the
SVG specification. You can see a JavaScript version of these conversions in Appendix F.

Bézier Curves
Arcs can be characterized as clean and functional, but one would rarely use the word
graceful to describe them. If you want graceful, you need to use curves that are produced
by graphing quadratic and cubic equations. Mathematicians have known about these
curves for literally hundreds of years, but drawing them was always a computationally
demanding task. This changed when Pierre Bézier, an engineer who worked for French
car manufacturer Rénault, and Paul de Casteljau, a physicist and mathematician who

Converting from Other Arc Formats | 93



worked for Citroën, developed and promoted a computationally convenient way to
generate these curves.

If you have used graphics programs like Adobe Illustrator, you draw these Bézier curves
by specifying two points and then moving a “handle” as shown in the following diagram.
The end of this handle is called the control point, because it controls the shape of the
curve. As you move the handle, the curve changes in a way that, to the uninitiated, is
completely mystifying. Mike Woodburn, a graphic designer at Key Point Software, sug‐
gests Figure 7-7 as a way to visualize how the control point and the curve interact:
imagine the line is made of flexible metal. Inside the control point is a magnet; the closer
a point is to the control point, the more strongly it is attracted.

Figure 7-7. How graphics programs draw Bézier curves

Another way to visualize the role of the control point is based on the de Casteljau method
of constructing the curves. We will use this approach in the following sections. See
further details on the underlying mathematics, presented in a remarkably lucid fashion.

Quadratic Bézier Curves
The simplest of the Bézier curves is the quadratic curve. You specify a beginning point,
an ending point, and a control point. Imagine two tent poles placed at the endpoints of
the line. These tent poles meet at the control point. Stretched between the centers of the
tent poles is a rubber band. The place where the curve bends is tied to the exact center
of that rubber band. This situation is shown in Figure 7-8.

Figure 7-8. Visualizing a quadratic Bézier curve

The lines between the start and endpoints and the control point are tangent to the start
and end of the curve. The curve starts by following the line to the control point, but
then bends over to reach the midpoint heading in the same direction as the “tent pole”
line. The curve ends by sliding up alongside the line from the control point to the
endpoint. Programs like Adobe Illustrator show you only one of the “tent poles.” The

94 | Chapter 7: Paths

http://graphics.cs.ucdavis.edu/~joy/ecs178/Unit-2-Notes/Divide-and-Conquer-Bezier-Curve.pdf


next time you’re using such a program, mentally add in the second pole and the resulting
curves will be far less mysterious.

That’s the concept; now for the practical matter of actually producing such a curve in
SVG. You specify a quadratic curve in a <path> data with the Q or q command. The
command is followed by two sets of coordinates that specify a control point and an
endpoint. The uppercase command implies absolute coordinates; lowercase implies
relative coordinates. The curve in Figure 7-8 was drawn from (30,75) to (300,120) with
the control point at (240,30), and was specified in SVG as follows:

<path d="M30 75 Q240 30, 300 120" style="stroke: black; fill: none;"/>

The online example shows it with and without the “tent poles”:

http://oreillymedia.github.io/svg-essentials-examples/ch07/quadratic-bezier.html

You may specify several sets of coordinates after a quadratic curve command. This will
generate a poly-Bézier curve. Presume you want a <path> that draws a curve from
(30,100) to (100,100) with a control point at (80,30) and then continues with a curve to
(200,80) with a control point at (130,65). Here is the SVG for this path, with control
point coordinates in bold. The result is shown in the left half of Figure 7-9; the control
points and lines are shown in the right half of the figure:

<path d="M30 100 Q 80 30, 100 100, 130 65, 200 80"/>

Figure 7-9. Quadratic poly-Bézier curve

You are probably wondering, “What happened to graceful? That curve is just lumpy.”
This is an accurate assessment. Just because curves are connected doesn’t mean they will
look good together. That’s why SVG provides the smooth quadratic curve command,
which is denoted by the letter T (or t if you want to use relative coordinates). The
command is followed by the next endpoint of the curve; the control point is calculated
automatically, as the specification says, by “reflection of the control point on the previous
command relative to the current point.”

Bézier Curves | 95

http://oreillymedia.github.io/svg-essentials-examples/ch07/quadratic-bezier.html


For the mathematically inclined, the new control point x2, y2 is cal‐
culated from the previous segment’s endpoint x, y and the previous
control point x1, y1 with these formulas:

x2 = x + (x - x1) = 2 * x - x1
y2 = y + (y - y1) = 2 * y - y1

Here is a quadratic Bézier curve drawn from (30,100) to (100,100) with a control point
at (80,30) and then smoothly continued to (200,80). The left half of Figure 7-10 shows
the curve; the right half shows the control points. The reflected control point is shown
with a dashed line. Gracefulness has returned!

<path d="M30 100 Q 80 30, 100 100 T 200 80"/>

Figure 7-10. Smooth quadratic poly-Bézier curve

The online example allows you to experiment with the quadratic poly-Bézier curve:

http://oreillymedia.github.io/svg-essentials-examples/ch07/smooth-quadratic-
bezier.html

Cubic Bézier Curves
A single quadratic Bézier curve has exactly one peak or valley per curve segment. While
these curves are more versatile than simple arcs, you can do even better by using cubic
Bézier curves, which can have both a peak and a valley in the same segment, among
other possible shapes. In other words, a cubic curve can contain an inflection point (the
point where the curve changes from bending in one direction to bending in the other).

The difference between the quadratic and cubic curves is that the cubic curve has two
control points, one for each endpoint. The technique for generating the cubic curve is
similar to that for generating the quadratic curve. As you can see in Figure 7-11, you
draw three lines that connect the endpoints and control points (a), and connect their
midpoints. That produces two lines (b). You connect their midpoints, and that produces

96 | Chapter 7: Paths

http://oreillymedia.github.io/svg-essentials-examples/ch07/smooth-quadratic-bezier.html
http://oreillymedia.github.io/svg-essentials-examples/ch07/smooth-quadratic-bezier.html


2. We’re dispensing with the tent analogy; it gets too unwieldy. Curves based on yurts and geodesic domes are
left as exercises for the reader.

one line (c), whose midpoint determines one of the points on the final curve.2 Notice
that the start, end, and middle angles of the curve are tangent to (they “follow”) the
control lines.

Figure 7-11. Visualizing a cubic Bézier curve

To specify such a cubic curve, use the C or c command. The command is followed by
three sets of coordinates that specify the control point for the start point, the control
point for the endpoint, and the endpoint. As with all the other path commands, an
uppercase command implies absolute coordinates; lowercase implies relative coordi‐
nates. The curve in the preceding diagram was drawn from (20,80) to (200,120) with
control points at (50,20) and (150,60). The SVG for the path was as follows:

<path d="M20 80 C 50 20, 150 60, 200 120"
    style="stroke: black; fill: none;"/>

There are many interesting curves you can draw, depending upon the relationship of
the control points (see Figure 7-12). To make the graphic cleaner, we show only the lines
from each endpoint to its control point.

Figure 7-12. Result of cubic Bézier control point combinations

Bézier Curves | 97



Experiment with these combinations and more in the online example:

http://oreillymedia.github.io/svg-essentials-examples/ch07/cubic-bezier.html

As with quadratic curves, you can construct a cubic poly-Bézier by specifying several
sets of coordinates after a cubic curve command. The last point of the first curve be‐
comes the first point of the next curve, and so on. Here is a <path> that draws a cubic
curve from (30,100) to (100,100) with control points at (50,50) and (70,20); it is imme‐
diately followed by a curve that doubles back to (65,100) with control points at (110,130)
and (45,150). Here is the SVG for this path, with control point coordinates in bold:

<path d="M30 100 C 50 50, 70 20, 100 100,
                  110, 130, 45, 150, 65, 100"/>

The result is shown in the left half of Figure 7-13; the control points and lines are shown
in the right half of the diagram.

Figure 7-13. Cubic poly-Bézier curve

If you want to guarantee a smooth join between curves, you can use the S command (or
s if you want to use relative coordinates). In a manner analogous to that of the T com‐
mand for quadratic curves, the new curve will take the previous curve’s endpoint as its
starting point, and its first control point will be the reflection of the previous ending
control point. All you need to supply is the control point for the next endpoint on the
curve, followed by the next endpoint itself.

Here is a cubic Bézier curve drawn from (30,100) to (100,100) with control points at
(50,30) and (70,50). It continues smoothly to (200,80), using (150,40) as its ending
control point. The left half shows the curve; the right half shows the curve with the
control points. The reflected control point is shown with a dashed line in Figure 7-14:

<path d="M30 100 C 50 30, 70 50, 100 100 S 150 40, 200 80"/>

98 | Chapter 7: Paths

http://oreillymedia.github.io/svg-essentials-examples/ch07/cubic-bezier.html


Figure 7-14. Smooth cubic poly-Bézier curve

Path Reference Summary
In Table 7-1, uppercase commands use absolute coordinates, and lowercase commands
use relative coordinates.

Table 7-1. Path commands
Command Arguments Effect

M m x y Move to given coordinates.

L l x y Draw a line to the given coordinates. You may supply multiple sets of
coordinates to draw a polyline.

H h x Draw a horizontal line to the given x-coordinate.

V v y Draw a vertical line to the given x-coordinate.

A a rx ry x-axis-rotation

large-arc sweep x y

Draw an elliptical arc from the current point to (x,y). The points are on
an ellipse with x-radius rx and y-radius ry. The ellipse is rotated
x-axis-rotation degrees. If the arc is less than 180 degrees,
large-arc is 0; if greater than 180 degrees, large-arc is 1. If the
arc is to be drawn in the positive direction, sweep is 1; otherwise it is 0.

Q q x1 y1 x y Draw a quadratic Bézier curve from the current point to (x,y) using control
point (x1,y1).

T t x y Draw a quadratic Bézier curve from the current point to (x,y). The control
point will be the reflection of the previous Q command’s control point. If
there is no previous curve, the current point will be used as the control
point.

C c x1 y1 x2 y2 x y Draw a cubic Bézier curve from the current point to (x,y) using control
point (x1,y1) as the control point for the beginning of the curve and
(x2,y2) as the control point for the endpoint of the curve.

S s x2 y2 x y Draw a cubic Bézier curve from the current point to (x,y), using (x2,y2)
as the control point for this new endpoint. The first control point will be
the reflection of the previous C command’s ending control point. If there
is no previous curve, the current point will be used as the first control
point.

Path Reference Summary | 99



Paths and Filling
The information described in Chapter 4 in “Filling Polygons That Have Intersecting
Lines” on page 49 is also applicable to paths, which not only can have intersecting lines,
but also can have “holes” in them. Consider the paths in Example 7-5, both of which
draw nested squares. In the first path, both squares are drawn clockwise; in the second
path, the outer square is drawn clockwise and the inner square is drawn
counterclockwise.

Example 7-5. Using different fill-rule values on paths
<!-- both paths clockwise -->
<path d="M 0 0, 60 0, 60 60, 0 60 Z
    M 15 15, 45 15, 45 45, 15 45Z"/>

<!-- outer path clockwise; inner path counterclockwise -->
<path d="M 0 0, 60 0, 60 60, 0 60 Z
    M 15 15, 15 45, 45 45, 45 15Z"/>

Figure 7-15 shows there is a difference when you use a fill-rule of nonzero, which
takes into account the direction of the lines when determining whether a point is inside
or outside a path. Using a fill-rule of evenodd produces the same result for both paths;
it uses total number of lines crossed and ignores their direction.

Figure 7-15. Result of using different fill-rule values

The <marker> element
Consider the following path, which uses a line, an elliptical arc, and another line to draw
the rounded corner in Figure 7-16:

<path d="M 10 20 100 20 A 20 30 0 0 1 120 50 L 120 110"
    style="fill: none; stroke: black;"/>

100 | Chapter 7: Paths



3. Yes, markers are considered to be part of presentation rather than structure. This is one of those gray areas
where you could argue either case.

Figure 7-16. Lines and arc

Presume you want to mark the direction of the path by putting a circle at the beginning,
a solid triangle at the end, and arrowheads at the other vertices, as shown in
Figure 7-17. To achieve this effect, you need to construct three <marker> elements and
tell the <path> to reference them.

Figure 7-17. Lines and arc with markers

As a first step, consider Example 7-6, which adds the circular marker. A marker is a
“self-contained” graphic with its own private set of coordinates, so you have to specify
its markerWidth and markerHeight in the starting <marker> tag. That is followed by the
SVG elements required to draw the marker, and ends with a closing </marker>. A
<marker> element does not display by itself, but we are putting it in a <defs> element
because that’s where reusable elements belong.

We want the circle to be at the beginning of the path, so we add a marker-start to the
style in the <path>.3 The value of this property is a URL reference to the <marker>
element we’ve just created.

Example 7-6. First attempt at circular marker
<defs>
<marker id="mCircle" markerWidth="10" markerHeight="10">
    <circle cx="5" cy="5" r="4" style="fill: none; stroke: black;"/>
</marker>
</defs>

<path  d="M 10 20 100 20 A 20 30 0 0 1 120 50 L 120 110"
    style="marker-start: url(#mCircle);
    fill: none; stroke: black;"/>

The <marker> element | 101



The result in Figure 7-18 is not quite what you planned…

Figure 7-18. Misplaced circular marker

The reason the circle appears in the wrong place is that, by default, the start marker’s
(0,0) point is aligned with the beginning coordinate of the path. Example 7-7 adds refX
and refY attributes specifying which coordinates (in the marker’s system) are to align
with the beginning coordinate. Once these are added, the circular marker appears ex‐
actly where it is desired in Figure 7-19.

Example 7-7. Correctly placed circular marker
<marker id="mCircle" markerWidth="10" markerHeight="10"
        refX="5" refY="5">
    <circle cx="5" cy="5" r="4" style="fill: none; stroke: black;"/>
</marker>

Figure 7-19. Correctly placed circular marker

Given this information, you can now write Example 7-8, which adds the triangular
marker and references it as the marker-end for the path. Then we can add the arrowhead
marker and reference it as the marker-mid. The marker-mid will be attached to every
vertex except the beginning and end of the path. Notice that the refX and refY attributes
have been set so the wide end of the arrowhead aligns with the intermediate vertices,
while the tip of the solid triangle aligns with the ending vertex. Figure 7-20 shows the
result, which draws the first marker correctly but not the others.

Example 7-8. Attempt to use three markers
<defs>
    <marker id="mCircle" markerWidth="10" markerHeight="10"
        refX="5" refY="5">
        <circle cx="5" cy="5" r="4" style="fill: none; stroke: black;"/>
    </marker>

    <marker id="mArrow" markerWidth="4" and markerHeight="8"

102 | Chapter 7: Paths



4. To be exact, the rotation is the average of the angle of the direction of the line going into the vertex and the
direction of the line going out of the vertex.

        refX="0" refY="4">
        <path d="M 0 0 4 4 0 8" style="fill: none; stroke: black;"/>
    </marker>

    <marker id="mTriangle" markerWidth="5" markerHeight="10"
        refX="5" refY="5">
        <path d="M 0 0 5 5 0 10 Z" style="fill: black;"/>
    </marker>
</defs>

<path d="M 10 20 100 20 A 20 30 0 0 1 120 50 L 120 110"
    style="marker-start: url(#mCircle);
        marker-mid: url(#mArrow);
        marker-end: url(#mTriangle);
        fill: none; stroke: black;"/>

Figure 7-20. Incorrectly oriented markers

To get the effect you want, you must explicitly set a marker’s orient attribute to auto. 
This makes the marker automatically rotate to match the direction of the path.4 (You
may also specify a number of degrees, in which case the marker will always be rotated
by that amount.) Here in Example 7-9 are the markers, set to produce the effect shown
in Figure 7-17. You don’t need to orient the circle; it looks the same no matter how it’s
rotated.

Example 7-9. Correctly oriented markers
<defs>
    <marker id="mCircle" markerWidth="10" markerHeight="10"
        refX="5" refY="5">
        <circle cx="5" cy="5" r="4" style="fill: none; stroke: black;"/>
    </marker>

    <marker id="mArrow" markerWidth="6" markerHeight="10"
        refX="0" refY="4" orient="auto">
        <path d="M 0 0 4 4 0 8" style="fill: none; stroke: black;"/>
    </marker>

    <marker id="mTriangle" markerWidth="5" markerHeight="10"
        refX="5" refY="5" orient="auto">

The <marker> element | 103



        <path d="M 0 0 5 5 0 10 Z" style="fill: black;"/>
    </marker>
</defs>

<path d="M 10 20 100 20 A 20 30 0 0 1 120 50 L 120 110"
    style="marker-start: url(#mCircle);
        marker-mid: url(#mArrow);
        marker-end: url(#mTriangle);
        fill: none; stroke: black;"/>

Another useful attribute is the markerUnits attribute. If set to strokeWidth, the marker’s
coordinate system is set so one unit equals the stroke width. This makes your marker
grow in proportion to the stroke width; it’s the default behavior and it’s usually what
you want. If you set the attribute to userSpaceOnUse, the marker’s coordinates are pre‐
sumed to be the same as the coordinate system of the object that references the marker.
The marker will remain the same size irrespective of the stroke width.

Marker Miscellanea
If you want the same marker at the beginning, middle, and end of a path, you don’t need
to specify all of the marker-start, marker-mid, and marker-end properties. Just use the
marker property and have it reference the marker you want. Thus, if you wanted all the
vertices to have a circular marker, as shown in Figure 7-21, you’d write the SVG in
Example 7-10.

Example 7-10. Using a single marker for all vertices
<defs>
    <marker id="mCircle" markerWidth="10" markerHeight="10"
        refX="5" refY="5">
        <circle cx="5" cy="5" r="4" style="fill: none; stroke: black;"/>
    </marker>
</defs>

<path d="M 10 20 100 20 A 20 30 0 0 1 120 50 L 120 110"
    style="marker: url(#mCircle); fill: none; stroke: black;"/>

Figure 7-21. Using a single marker for all vertices

It is also possible to set the viewBox and preserveAspectRatio attributes on a <marker>
element to gain even more control over its display. For example, you can use a viewBox

104 | Chapter 7: Paths



to define the grid so that the (0,0) coordinate is in the center of your marker; you may
want to do this instead of using refX and refY. viewBox and preserveAspectRatio
work exactly as described in “Specifying User Coordinates for a Viewport” on page 30
and in “Preserving Aspect Ratio” on page 32.

You may reference a <marker> in a <polygon>, <polyline>, or <line> element as well
as in a <path>.

The following thought may have occurred to you: “If a marker can have a path in it, can
that path have a marker attached to it as well?” The answer is yes, it can, but the second
marker must fit into the rectangle established by the first marker’s markerWidth and
markerHeight. Remember that just because a thing can be done does not mean it should
be done. If you need such an effect, you are probably better off to draw the secondary
marker as a part of the primary marker rather than attempting to nest markers.

Make sure you don’t define a part of a marker to use itself as a marker. This could happen
if you had a CSS rule like this to give all your paths a star as a marker:

path {marker: url(#star)}

If the <marker> with id star has a <path> in it, that path would refer to itself in an
infinite loop. To prevent this, you would add a CSS rule that says not to put any marker
on a path that is part of the star marker:

path {marker: url(#star)}
marker#star path {marker: none}

Marker Miscellanea | 105





CHAPTER 8

Patterns and Gradients

To this point, you have used only solid colors to fill and outline graphic objects. You are
not restricted to using solid colors; you may also use a pattern or a gradient to fill or
outline a graphic. That’s what we’ll examine in this chapter.

Patterns
To use a pattern, you define a graphic object that is replicated horizontally and vertically
to fill another object (or stroke). This graphic object is called a tile, because the act of
filling an object with a pattern is very much like covering an area of a floor with tiles.
In this section, we will use the quadratic curve drawn by the SVG in Example 8-1 as our
tile. It’s outlined in gray to show its area (20 by 20 user units) clearly.

Example 8-1. Path for a pattern tile
<path d="M 0 0 Q 5 20 10 10 T 20 20"
    style="stroke: black; fill: none;"/>
<path d="M 0 0 h20 v20 h-20 z"
    style="stroke: gray; fill: none;"/>

Figure 8-1 is zoomed in so you can see it in detail.

Figure 8-1. Zoomed-in view of pattern tile

107



patternUnits
To create a pattern tile, you must enclose the <path> elements that describe your tile in
a <pattern> element, and then make several decisions. The first decision is how you
wish to space the tiles, and this is reflected in the patternUnits attribute. Do you want
the tiles spaced to fill a certain percentage of each object they’re applied to, or do you
want them spaced at equal intervals, no matter what the size of the object they’re filling?

If you want the tile dimensions on an object-by-object basis, you specify the pattern’s
upper-left x and y coordinates, and its width and height as percentages or decimals in
the range 0 to 1, and set the patternUnits attribute to objectBoundingBox. An object’s
bounding box is the smallest rectangle that completely encloses a particular graphic
object. Example 8-2 creates a sample tile that will be replicated five times horizontally
and five times vertically in any object that it fills.

Example 8-2. Tiles spaced with patternUnits set to objectBoundingBox
<defs>
<pattern id="tile" x="0" y="0" width="20%" height="20%"
    patternUnits="objectBoundingBox">
<path d="M 0 0 Q 5 20 10 10 T 20 20"
    style="stroke: black; fill: none;"/>
<path d="M 0 0 h 20 v 20 h -20 z"
    style="stroke: gray; fill: none;"/>
</pattern>
</defs>

<rect x="20" y="20" width="100" height="100"
    style="fill: url(#tile); stroke: black;"/>
<rect x="135" y="20" width="70" height="80"
    style="fill: url(#tile); stroke: black;"/>
<rect x="220" y="20" width="150" height="130"
    style="fill: url(#tile); stroke: black;"/>

In Figure 8-2, the leftmost rectangle, which is 100 user units wide and tall, provides an
exact fit for five tiles that are each 20 user units wide and tall. In the middle rectangle,
the width and height aren’t great enough to show any one pattern tile completely, so
they are truncated. In the rightmost rectangle, extra space is added, because the rec‐
tangle’s width and height exceeds five times the space required for a single tile. In all
cases, because x and y are both set, the upper-left corner of the tile coincides with the
upper-left corner of the rectangle.

108 | Chapter 8: Patterns and Gradients



Figure 8-2. Tiles spaced by objectBoundingBox

If you’re used to most graphics programs, this behavior comes as somewhat of a shock.
Typical graphic editing programs put tiles directly next to one another to fill the area,
no matter what its size. There is never extra padding between tiles, and tiles are cut off
only by the edge of the object they’re filling. If this is the behavior that you want, you
must set the patternUnits attribute to userSpaceOnUse, and specify the x and y coor‐
dinates, and the width and height of the tile in user units. Example 8-3 uses the same
sample tile, set to its exact width and height of 20 user units.

Example 8-3. Changing patternUnits to userSpaceOnUse
http://oreillymedia.github.io/svg-essentials-examples/ch08/patternunits.html
<defs>
<pattern id="tile" x="0" y="0" width="20" height="20"
    patternUnits="userSpaceOnUse">
<path d="M 0 0 Q 5 20 10 10 T 20 20"
    style="stroke: black; fill: none;"/>
<path d="M 0 0 h 20 v 20 h -20 z"
    style="stroke: gray; fill: none;"/>
</pattern>
</defs>

<rect x="20" y="20" width="100" height="100"
    style="fill: url(#tile); stroke: black;"/>
<rect x="135" y="20" width="70" height="80"
    style="fill: url(#tile); stroke: black;"/>
<rect x="220" y="20" width="150" height="130"
    style="fill: url(#tile); stroke: black;"/>

In Figure 8-3, the tiles have constant size in all three rectangles. Their alignment is,
however, dependent upon the underlying coordinate system. The middle rectangle, for
example, has an x-coordinate that is not a multiple of 20, so the rectangle’s upper-left
corner doesn’t coincide with a tile’s upper-left corner. (The top edges do align, because
the upper y-coordinate of all three rectangles was carefully chosen to be a multiple
of 20.)

Patterns | 109

http://oreillymedia.github.io/svg-essentials-examples/ch08/patternunits.html


Figure 8-3. Tiles spaced by userSpaceOnUse

If you do not specify a value for patternUnits, the default is set to
objectBoundingBox.

patternContentUnits
You must next decide what units are to be used to express the pattern data itself. By
default, the patternContentUnits attribute is set to userSpaceOnUse. If you set the
attributes to objectBoundingBox, the path data points are expressed in terms of the
object being filled. Example 8-4 shows the SVG that produces Figure 8-4.

If you use userSpaceOnUse for your patternContentUnits, you
should draw any objects to be filled with the upper-left corner of their
bounding boxes at the origin (0,0).
If you use objectBoundingBox, you will have to reduce the
stroke-width in the pattern data. The width will also be scaled pro‐
portionally to the bounding box, not measured in user units, so a
stroke-width of 1 would cover the entire tile. In the example, the
stroke is set to 0.01, or 1% of the average of the object bounding box’s
height and width.

Example 8-4. patternContentUnits set to objectBoundingBox
<defs>
<pattern id="tile"
    patternUnits="objectBoundingBox"
    patternContentUnits="objectBoundingBox"
     x="0" y="0" width=".2" height=".2">
    <path d="M 0 0 Q .05 .20 .10 .10 T .20 .20"
        style="stroke: black; fill: none; stroke-width: 0.01;"/>
    <path d="M 0 0 h 0.2 v 0.2 h-0.2z"
        style="stroke: black; fill: none; stroke-width: 0.01;"/>
</pattern>

</defs>

110 | Chapter 8: Patterns and Gradients



<g transform="translate(20,20)">
<rect x="0" y="0" width="100" height="100"
    style="fill: url(#tile); stroke: black;"/>
</g>

<g transform="translate(135,20)">
<rect x="0" y="0" width="70" height="80"
    style="fill: url(#tile); stroke: black;"/>
</g>

<g transform="translate(220,20)">
<rect x="0" y="0" width="150" height="130"
    style="fill: url(#tile); stroke: black;"/>
</g>

Figure 8-4. patternContentUnits set to objectBoundingBox

If you want to reduce an existing graphic object for use as a tile, it’s easier to use the
viewBox attribute to scale it. Specifying viewBox will override any
patternContentUnits information. Another possible option is to use the
preserveAspectRatio attribute, as described in “Preserving Aspect Ratio” on page 32.
Example 8-5 uses a scaled-down version of the cubic poly-Bézier curve from Figure 7-13
as a tile. The stroke-width is set to 5; otherwise, when scaled down, the pattern you
see in Figure 8-5 would not be visible.

Example 8-5. Using viewBox to scale a pattern
<defs>
<pattern id="tile"
    patternUnits="userSpaceOnUse"
    x="0" y="0" width="20" height="20"
    viewBox="0 0 150 150">
    <path d="M30 100 C 50 50, 70 20, 100 100,
                      110, 130, 45, 150, 65, 100"
        style="stroke: black; stroke-width: 5; fill: none;"/>
</pattern>
</defs>

<rect x="20" y="20" width="100" height="100"
    style="fill: url(#tile); stroke: black;"/>

Patterns | 111



Figure 8-5. Pattern scaled with viewBox

Nested Patterns
Again, this may have occurred to you: “If an object can be filled with a pattern, can that
pattern be filled with a pattern as well?” The answer is yes. As opposed to nested markers,
which are rarely necessary, there are some effects you can’t easily achieve without nested
patterns. Example 8-6 creates a rectangle filled with circles, all filled with horizontal
stripes. This produces the unusual, but valid, striped polka-dot effect shown in
Figure 8-6.

Example 8-6. Nested patterns
<defs>
  <pattern id="stripe"
    patternUnits="userSpaceOnUse"
    x="0" y="0" width="6" height="6">
    <path d="M 0 0 6 0"
      style="stroke: black; fill: none;"/>
  </pattern>

  <pattern id="polkadot"
    patternUnits="userSpaceOnUse"
    x="0" y="0" width="36" height="36">
    <circle cx="12" cy="12" r="12"
      style="fill: url(#stripe);  stroke: black;"/>
  </pattern>
</defs>

<rect x="36" y="36" width="100" height="100"
    style="fill: url(#polkadot); stroke: black;"/>

Figure 8-6. Patterns within patterns

112 | Chapter 8: Patterns and Gradients



Gradients
Rather than filling an object with a solid color, you can fill it with a gradient, a smooth
color transition from one shade to another. Gradients can be linear, where the color
transition occurs along a straight line, or radial, where the transition occurs as you
radiate outward from a center point.

The linearGradient Element
A linear gradient is a transition through a series of colors along a straight line. You
specify the colors you want at specific locations, called gradient stops. The stops are part
of the structure of the gradient; the colors are part of the presentation. Example 8-7
shows the SVG for a gradient that fills a rectangle with a smooth transition from gold
to cyan. The result is in Figure 8-7.

Example 8-7. Simple two-color gradient
http://oreillymedia.github.io/svg-essentials-examples/ch08/linear_gradient.html
<defs>
  <linearGradient id="two_hues">
    <stop offset="0%" style="stop-color: #ffcc00;"/>
    <stop offset="100%" style="stop-color: #0099cc;"/>
  </linearGradient>
</defs>

<rect x="20" y="20" width="200" height="100"
  style="fill: url(#two_hues);  stroke: black;"/>

Figure 8-7. Simple two-color gradient

The <stop> element

Let’s examine the <stop> element more closely. It has two required attributes: offset
and stop-color. The offset tells the point along the line at which the color should be
equal to the stop-color. The offset is expressed as a percentage from 0 to 100% or as
a decimal value from 0 to 1.0. While you don’t need to place stops at 0% and 100%, you
usually will. The stop-color is specified here in a style, but you may also specify it as
an attribute. Example 8-8 is a slightly more complex linear gradient, with stops for gold
at 0%, reddish-purple at 33.3%, and light green at 100%. The result is shown in
Figure 8-8.

Gradients | 113

http://oreillymedia.github.io/svg-essentials-examples/ch08/linear_gradient.html


Example 8-8. Three-color gradient
http://oreillymedia.github.io/svg-essentials-examples/ch08/three_stop_gradient.html
<defs>
  <linearGradient id="three_stops">
    <stop offset="0%" style="stop-color: #ffcc00;"/>
    <stop offset="33.3%" style="stop-color: #cc6699"/>
    <stop offset="100%" style="stop-color: #66cc99;"/>
  </linearGradient>
</defs>

<rect x="20" y="20" width="200" height="100"
    style="fill: url(#three_stops); stroke: black;"/>

Figure 8-8. Three-stop gradient

You can also use a stop-opacity attribute when specifying a stop color, with 1 being
totally opaque and 0 being totally transparent. Example 8-9 creates a gradient that fades
out dramatically up to the halfway point, then fades slightly toward the end. The result
is shown in Figure 8-9.

Example 8-9. Three-opacity gradient
http://oreillymedia.github.io/svg-essentials-examples/ch08/stop_opacity.html
<defs>
  <linearGradient id="three_opacity_stops">
    <stop offset="0%" style="stop-color: #906; stop-opacity: 1.0"/>
    <stop offset="50%" style="stop-color: #906; stop-opacity: 0.3"/>
    <stop offset="100%" style="stop-color: #906; stop-opacity: 0.10"/>
  </linearGradient>
</defs>

<rect x="20" y="20" width="200" height="100"
    style="fill: url(#three_opacity_stops); stroke: black;"/>

114 | Chapter 8: Patterns and Gradients

http://oreillymedia.github.io/svg-essentials-examples/ch08/three_stop_gradient.html
http://oreillymedia.github.io/svg-essentials-examples/ch08/stop_opacity.html


Figure 8-9. Gradient using stop-opacity

Establishing a transition line for a linear gradient
The default behavior of a linear gradient is to transition along a horizontal line from
the left side of an object to its right side. If you want the transition of colors to occur
across a vertical line or a line at an angle, you must specify the line’s starting point with
the x1 and y1 attributes and its ending points with the x2 and y2 attributes. By default,
these are also expressed as percentages from 0% to 100% or decimals from 0 to 1.
Example 8-10 uses the same color stops in a horizontal, vertical, and diagonal gradi‐
ent. Rather than duplicate the stops into each <linearGradient> element, the example
uses the xlink:href attribute to refer to the original left-to-right gradient. The stops
will be inherited, but the x- and y-coordinates will be overridden by each individual
gradient. The arrows in Figure 8-10 do not appear in the SVG of Example 8-10.

Example 8-10. Defining vectors for a linear gradient
http://oreillymedia.github.io/svg-essentials-examples/ch08/transition_line.html
<defs>
<linearGradient id="three_stops">
  <stop offset="0%" style="stop-color: #ffcc00;"/>
  <stop offset="33.3%" style="stop-color: #cc6699"/>
  <stop offset="100%" style="stop-color: #66cc99;"/>
</linearGradient>

<linearGradient id="right_to_left"
  xlink:href="#three_stops"
  x1="100%" y1="0%" x2="0%" y2="0%"/>

<linearGradient id="down"
  xlink:href="#three_stops"
  x1="0%" y1="0%" x2="0%" y2="100%"/>

<linearGradient id="up"
  xlink:href="#three_stops"
  x1="0%" y1="100%" x2="0%" y2="0%"/>

<linearGradient id="diagonal"
  xlink:href="#three_stops"
  x1="0%" y1="0%" x2="100%" y2="100%"/>
</defs>

<rect x="40" y="20" width="200" height="40"

Gradients | 115

http://oreillymedia.github.io/svg-essentials-examples/ch08/transition_line.html


  style="fill: url(#three_stops); stroke: black;"/>

<rect x="40" y="70" width="200" height="40"
  style="fill: url(#right_to_left); stroke: black;"/>

<rect x="250" y="20" width="40" height="200"
  style="fill: url(#down); stroke: black;"/>

<rect x="300" y="20" width="40" height="200"
  style="fill: url(#up); stroke: black;"/>

<rect x="40" y="120" width="200" height="100"
  style="fill: url(#diagonal); stroke: black;"/>

Figure 8-10. Defining vectors for a linear gradient

If you wish to establish the transition line using user space coordi‐
nates instead of percentages, set the gradientUnits to
userSpaceOnUse instead of the default value, which is
objectBoundingBox.

The spreadMethod attribute
The transition line does not have to go from one corner of an object to another. What
happens if you say that the transition line goes from (20%,30%) to (40%,80%)? What
happens to the part of the object outside that line? You can set the spreadMethod at‐
tribute to one of these values:
pad

The beginning and ending stop colors will be extended to the edges of the object.

repeat

The gradient will be repeated start-to-end until it reaches the edges of the object
being filled.

116 | Chapter 8: Patterns and Gradients



reflect

The gradient will be reflected end-to-start, start-to-end until it reaches the edges of
the object being filled.

Figure 8-11 shows the leftmost square’s gradient padded, the middle square’s gradient
repeated, and the right square’s gradient reflected. The original transition line has been
added to the SVG for each square in Example 8-11 to make the effect easier to detect.

Example 8-11. Effects of spreadMethod values on a linear gradient
http://oreillymedia.github.io/svg-essentials-examples/ch08/spread_method.html
<defs>
<linearGradient id="partial"
  x1="20%" y1="30%" x2="40%" y2="80%">
  <stop offset="0%" style="stop-color: #ffcc00;"/>
  <stop offset="33.3%" style="stop-color: #cc6699"/>
  <stop offset="100%" style="stop-color: #66cc99;"/>
</linearGradient>

<linearGradient id="padded"
  xlink:href="#partial"
  spreadMethod="pad"/>

<linearGradient id="repeated"
  xlink:href="#partial"
  spreadMethod="repeat"/>

<linearGradient id="reflected"
  xlink:href="#partial"
  spreadMethod="reflect"/>

<line id="show-line" x1="20" y1="30" x2="40" y2="80"
  style="stroke: white;"/>
</defs>

<rect x="20" y="20" width="100" height="100"
  style="fill: url(#padded); stroke: black;"/>
<use xlink:href="#show-line" transform="translate (20,20)"/>

<rect x="130" y="20" width="100" height="100"
  style="fill: url(#repeated); stroke: black;"/>
<use xlink:href="#show-line" transform="translate (130,20)"/>

<rect x="240" y="20" width="100" height="100"
  style="fill: url(#reflected); stroke: black;"/>
<use xlink:href="#show-line" transform="translate (240,20)"/>

Gradients | 117

http://oreillymedia.github.io/svg-essentials-examples/ch08/spread_method.html


1. If the bounding box of the object being filled is not square, the transition path will become elliptical to match
the aspect ratio of the bounding box.

Figure 8-11. spreadMethod values pad, repeat, and reflect for a linear gradient

The radialGradient Element
The other type of gradient you can use is the radial gradient, where each color stop
represents a circular path, radiating outward from a focus point.1 It’s set up in much the
same way as a linear gradient. Example 8-12 sets three stops: orange, green, and purple.
The result is shown in Figure 8-12.

Example 8-12. Radial gradient with three stops
http://oreillymedia.github.io/svg-essentials-examples/ch08/three_stop_radial.html
<defs>
  <radialGradient id="three_stops">
    <stop offset="0%" style="stop-color: #f96;"/>
    <stop offset="50%" style="stop-color: #9c9;"/>
    <stop offset="100%" style="stop-color: #906;"/>
  </radialGradient>
</defs>

<rect x="20" y="20" width="100" height="100"
  style="fill: url(#three_stops); stroke: black;"/>

Figure 8-12. Radial gradient with three stops

Establishing transition limits for a radial gradient
Instead of using a line to determine where the 0% and 100% stop points should be, a
radial gradient’s limits are determined by a circle; the center is the 0% stop point, and
the outer circumference defines the 100% stop point. You define the outer circle with
the cx (center x), cy (center y), and r (radius) attributes. All of these are in terms of

118 | Chapter 8: Patterns and Gradients

http://oreillymedia.github.io/svg-essentials-examples/ch08/three_stop_radial.html


percentages of the object’s bounding box. The default value for all these attributes is
50%. Example 8-13 draws a square with a radial gradient with the zero point centered
at the upper left of the square and the outer edge at the lower right. The result is shown
in Figure 8-13.

Example 8-13. Setting limits for a radial gradient
http://oreillymedia.github.io/svg-essentials-examples/ch08/radial_limits.html
<defs>
  <radialGradient id="center_origin"
    cx="0%" cy="0%" r="141%">
      <stop offset="0%" style="stop-color: #f96;"/>
      <stop offset="50%" style="stop-color: #9c9;"/>
      <stop offset="100%" style="stop-color: #906;"/>
  </radialGradient>
</defs>

<rect x="20" y="20" width="100" height="100"
  style="fill: url(#center_origin); stroke: black;"/>

Figure 8-13. Setting limits for a radial gradient

In the preceding example, the radialGradient’s r was set to 141%
instead of 100%. This is because the unit used to measure the radius
is the average of the height and width of the object’s bounding box,
not the box’s diagonal. The ratio of the diagonal to the side of a square
is the square root of two, or 1.41.

The 0% stop point, also called the focal point, is by default placed at the center of the
circle that defines the 100% stop point. If you wish to have the 0% stop point at some
point other than the center of the limit circle, you must change the fx and fy attributes.
The focal point should be within the circle established for the 100% stop point. If it’s
not, the SVG viewer program will automatically move the focal point to the outer cir‐
cumference of the end circle.

In Example 8-14, the circle is centered at the origin with a radius of 100%, but the focal
point is at (50%,50%). As you see in Figure 8-14, this has the visual effect of moving the
“center.”

Gradients | 119

http://oreillymedia.github.io/svg-essentials-examples/ch08/radial_limits.html


Example 8-14. Setting focal point for a radial gradient
http://oreillymedia.github.io/svg-essentials-examples/ch08/radial_focus.html
<defs>
  <radialGradient id="focal_set"
    cx="0%" cy="0%" fx="50%" fy="50%" r="100%">
      <stop offset="0%" style="stop-color: #f96;"/>
      <stop offset="50%" style="stop-color: #9c9;"/>
      <stop offset="100%" style="stop-color: #906;"/>
  </radialGradient>
</defs>

<rect x="20" y="20" width="100" height="100"
  style="fill: url(#focal_set); stroke: black;"/>

Figure 8-14. Setting focal point for a radial gradient

The default values for the limit-setting attributes of a <radialGradient> are as
follows:

Attribute Default value

cx 50% (horizontal center of object bounding box)

cy 50% (vertical center of object bounding box)

r 50% (half the width/height of object bounding box)

fx Same as cx

fy Same as cy

If you wish to establish the circle limits using user space coordi‐
nates instead of percentages, set the gradientUnits to
userSpaceOnUse instead of the default value, which is
objectBoundingBox.

The spreadMethod attribute for radial gradients
In the event that the limits you’ve described don’t reach to the edges of the object, you
can set the spreadMethod attribute to one of the values pad, repeat, or reflect as
described earlier in “The spreadMethod attribute” on page 116 to fill up the remaining
space as you wish. Example 8-15 has all three effects; Figure 8-15 shows the leftmost

120 | Chapter 8: Patterns and Gradients

http://oreillymedia.github.io/svg-essentials-examples/ch08/radial_focus.html


square’s gradient padded, the middle square’s gradient repeated, and the right square’s
gradient reflected.

Example 8-15. Effects of spreadMethod values on a radial gradient
http://oreillymedia.github.io/svg-essentials-examples/ch08/radial_spread_method.html
<defs>
  <radialGradient id="three_stops"
    cx="0%" cy="0%" r="70%">
      <stop offset="0%" style="stop-color: #f96;"/>
      <stop offset="50%" style="stop-color: #9c9;"/>
      <stop offset="100%" style="stop-color: #906;"/>
  </radialGradient>

  <radialGradient id="padded" xlink:href="#three_stops"
    spreadMethod="pad"/>
  <radialGradient id="repeated" xlink:href="#three_stops"
    spreadMethod="repeat"/>
  <radialGradient id="reflected" xlink:href="#three_stops"
    spreadMethod="reflect"/>
</defs>

<rect x="20" y="20" width="100" height="100"
  style="fill: url(#padded); stroke: black;"/>
<rect x="130" y="20" width="100" height="100"
  style="fill: url(#repeated); stroke: black;"/>
<rect x="240" y="20" width="100" height="100"
  style="fill: url(#reflected); stroke: black;"/>

Figure 8-15. spreadMethod values pad, repeat, and reflect for a radial gradient

Gradient Reference Summary
Linear and radial gradients describe a smooth transition of colors used to fill an ob‐
ject. The object in question has a bounding box, defined as the smallest rectangle that
entirely contains the object. The <linearGradient> and <radialGradient> elements
are both containers for a series of <stop> elements. Each of these <stop> elements
specifies a stop-color, an offset, and optionally a stop-opacity. For linear gradients,
the offset is a percentage of the distance along the gradient’s linear vector. For radial
gradients, it is a percentage of the distance along the gradient’s radius.

Gradients | 121

http://oreillymedia.github.io/svg-essentials-examples/ch08/radial_spread_method.html


For a linear gradient, the starting point of the vector (which has the 0% stop color) is
defined by the attributes x1 and y1; the ending point (which has the 100% stop color)
by the attributes x2 and y2.

For a radial gradient, the focal point (which has the 0% stop color) is defined by the
attributes fx and fy; the circle that has the 100% stop color is defined by its center
coordinates cx and cy and its radius r.

If the gradientUnits attribute has the value objectBoundingBox, the coordinates are
taken as a percentage of the bounding box’s dimensions (this is the default). If the value
is set to userSpaceOnuse, the coordinates are taken to be in the coordinate system used
by the object being filled.

If the vector for a linear gradient or the circle for a radial gradient does not reach to the
boundaries of the object being filled, the remaining space will be colored as determined
by the value of the spreadMethod attribute: pad, the default, extends the start and end
colors to the boundaries; repeat repeats the gradient start-to-end until it reaches the
boundaries; and reflect replicates the gradient end-to-start and start-to-end until it
reaches the object boundaries.

Transforming Patterns and Gradients
Sometimes you may need to skew, stretch, or rotate a pattern or gradient. You’re not
transforming the object being filled; you’re transforming the pattern or the color spec‐
trum used to fill the object. The gradientTransform and patternTransform attributes
let you do just that, as written in Example 8-16 and shown in Figure 8-16.

Example 8-16. Transforming patterns and gradients
http://oreillymedia.github.io/svg-essentials-examples/ch08/pattern_gradient_trans‐
form.html
<defs>
  <pattern id="tile" x="0" y="0" width="20%" height="20%"
      patternUnits="objectBoundingBox">
  <path d="M 0 0 Q 5 20 10 10 T 20 20"
      style="stroke: black; fill: none;"/>
  <path d="M 0 0 h 20 v 20 h -20 z"
      style="stroke: gray; fill: none;"/>
  </pattern>

  <pattern id="skewed-tile"
    patternTransform="skewY(15)"
    xlink:href="#tile"/>

  <linearGradient id="plain">
    <stop offset="0%" style="stop-color: #ffcc00;"/>
    <stop offset="33.3%" style="stop-color: #cc6699"/>

122 | Chapter 8: Patterns and Gradients

http://oreillymedia.github.io/svg-essentials-examples/ch08/pattern_gradient_transform.html
http://oreillymedia.github.io/svg-essentials-examples/ch08/pattern_gradient_transform.html


    <stop offset="100%" style="stop-color: #66cc99;"/>
  </linearGradient>

  <linearGradient id="skewed-gradient"
    gradientTransform="skewX(10)"
    xlink:href="#plain"/>
</defs>

<rect x="20" y="10" width="100" height="100"
    style="fill: url(#tile); stroke: black;"/>
<rect x="135" y="10" width="100" height="100"
    style="fill: url(#skewed-tile); stroke: black;"/>

<rect x="20" y="120" width="200" height="50"
    style="fill: url(#plain); stroke: black;"/>
<rect x="20" y="190" width="200" height="50"
    style="fill: url(#skewed-gradient); stroke: black;"/>

Figure 8-16. Transformation of a pattern and gradient

One final note about gradients and patterns—although these examples have applied
them to only the filled area of a shape, you may also apply them to the stroke. This lets
you produce a multicolored or patterned outline for an object. You’ll usually set the
stroke-width to a number greater than 1 in order to make the effect more clearly visible.

The objectBoundingBox is based on the extent of the shape before
adding the stroke. Because straight vertical and horizontal lines have
a zero-width or zero-height bounding box, a gradient or pattern
using objectBoundingBox units will be ignored when used as the
stroke value for these lines. This means that the line won’t be drawn
at all unless you specify a fallback stroke value like
stroke: url(#rainbow) red; in your style.
Fallback fill and stroke options are also a good idea if your pattern
or gradient is defined in a separate file, in case that file cannot be
loaded or the SVG viewer doesn’t support external references.

Transforming Patterns and Gradients | 123





CHAPTER 9

Text

While it may be true that every picture tells a story, it’s perfectly all right to use words
to help tell the story. Thus, SVG has several elements that let you add text to your
graphics.

Text Terminology
Before investigating the primary method of adding text, the <text> element, we should
define some terms you’ll see if you read the SVG specification or if you work with text
in any graphic environment:
Character

A character, as far as an XML document is concerned, is a byte or bytes with a
numeric value according to the Unicode standard. For example, what we call the
letter g is the character with Unicode value 103.

Glyph
A glyph is the visible representation of a character or characters. A single character
can have many different glyphs to represent it. Figure 9-1 shows the word glyphs
written with two different sets of glyphs—look particularly at the initial g—it’s the
same character, but the glyphs are markedly different.

Figure 9-1. Two sets of glyphs

Multiple characters can reduce to a single glyph; some fonts have separate glyphs
for the letter combinations fl and ff to make their spacing look better (these are
called ligatures). Other times, a single character can be composed of multiple glyphs;

125



a print program might create the character é (which has Unicode value 233) by
combining the e glyph with a nonspacing accent mark (´).

Font
A font is a collection of glyphs representing a certain set of characters.

All the glyphs in a font will normally have the following characteristics in common:
Baseline, ascent, and descent

All the glyphs in a font line up on the baseline. The distance from the baseline to
the top of the tallest character in the font is the ascent; the distance from the baseline
to the bottom of the deepest character is the descent. The total height of the char‐
acter, which is the sum of the ascent and descent, is also called the em-height. The
em-box is a square that has a width as large as an em-height.

Cap-height, ex-height
The cap-height is the height of a capital letter above the baseline. The ex-height is,
logically enough, the distance from the baseline to the top of a lowercase letter x.
The ex-height is often a better measure of the subjective size (and readability) of a
font than the em-height.

The baseline, ascent, and descent of a typical Roman-letter font are marked in
Figure 9-2. The upper dotted line shows the cap-height, while the lower dotted line
marks the ex-height.

Figure 9-2. Glyph measurements

Simple Attributes and Properties of the <text> Element
The simplest form of the <text> element requires only two attributes, x and y, which
define the point where the baseline of the first character of the element’s content is
placed. The default style for text, as with all objects, is to have a fill color of black and
no outline. This, as it turns out, is precisely what you want for text. If you set the outline
as well as the fill, the text looks uncomfortably thick. If you set only the outline, you can
get a fairly pleasant set of outlined glyphs, especially if you lower the stroke width.
Example 9-1 uses the placement and stroke/fill characteristics for <text>; the result is
Figure 9-3.

126 | Chapter 9: Text



Example 9-1. Text placement and outlining
<!-- guide lines -->
<path d="M 20 10, 20 120 M 10 30 100 30 M 10 70 100 70
   M 10 110 100 110" style="stroke: gray;"/>

<text x="20" y="30">Simplest Text</text>
<text x="20" y="70" style="stroke: black;">Outlined/filled</text>
<text x="20" y="110" style="stroke: black; stroke-width: 0.5;
    fill: none;">Outlined only</text>

Figure 9-3. Text placement and outlining

Many of the other properties that apply to text are the same as they are in the Cascading
Style Sheets standard. Here are some of the CSS properties and values that are imple‐
mented in the Apache Batik viewer version 1.7. They also work in most (but not all)
browsers:
font-family

The value is a whitespace-separated list of font family names or generic family
names. This is a list of fallback values; the SVG viewer will use the first family name
it recognizes. The generic names must be the last in the list. The SVG viewer is
required to recognize generic names and have fonts available for them. The generic
family names are serif, sans-serif, monospace, fantasy, and cursive. Serif fonts
have little “hooks” at the ends of the strokes; sans-serif fonts don’t. In Figure 9-1,
the word at the left is in a serif font and the word on the right is in a sans-serif font.
Both serif and sans-serif fonts are proportional; the width of a capital M is not the
same as the width of a capital I. A monospace font, which may or may not have
serifs, is one where all the glyphs have the same width, like the letters of a typewriter.
The fantasy and cursive default fonts can vary considerably from one browser or
SVG viewer to another.

font-size

The value is the baseline-to-baseline distance of glyphs if you were to have more
than one line of text. (In SVG, you must position multiline <text> content yourself,
so the concept is somewhat abstract.) If you use units on this attribute, as in
style="font-size: 12pt", the size will be converted to user units before being
rendered, so it can be affected by transformations and the SVG viewBox. If you use

Simple Attributes and Properties of the <text> Element | 127



relative units (em, ex, or percentages), they are calculated relative to the inherited
font size.

font-weight

The two most commonly used values of this property are bold and normal. You
need the normal value in case you want to place nonbold text in a group that has
been set to style="font-weight: bold".

font-style

The two most commonly used values of this property are italic and normal.

text-decoration

Possible values of this property are none, underline, overline, and
line-through.

word-spacing

The value of this property is a length, either in explicit units such as pt or in user
units. Make this a positive number to increase the space between words, set it to
normal to keep normal space, or make it negative to tighten up the space between
words. The length you specify is added to the normal spacing.

letter-spacing

The value of this property is a length, either in explicit units such as pt or in user
units. Make this a positive number to increase the space between individual letters,
set it to normal to keep normal space, or make it negative to tighten up the space
between letters. The length you specify is added to the normal spacing.

Example 9-2 uses these styles to produce Figure 9-4, with effects you’d expect from any
competent text application.

Example 9-2. Text weight, style, decoration, and spacing attributes
<g style="font-size: 18pt">
<text x="20" y="20" style="font-weight:bold;">bold</text>
<text x="120" y="20" style="font-style:italic;">italic</text>
<text x="20" y="60" style="text-decoration:underline;">under</text>
<text x="120" y="60" style="text-decoration:overline;">over</text>
<text x="200" y="60" style="text-decoration:line-through;">through</text>
<text x="20" y="90" style="word-spacing: 10pt;">more word space</text>
<text x="20" y="120" style="word-spacing: -3pt;">less word space</text>
<text x="20" y="150" style="letter-spacing: 5pt;">wide letter space</text>
<text x="20" y="180"
      style="letter-spacing: -6pt;">narrow letter space</text>
</g>

128 | Chapter 9: Text



Figure 9-4. Text weight, style, decoration, and spacing

Text Alignment
The <text> element lets you specify the starting point, but you don’t know, a priori, its
ending point. This would make it difficult to center or right-align text, were it not for
the text-anchor property. You set it to a value of start, middle, or end. For fonts that
are drawn left-to-right, these are equivalent to left, center, and right alignment. For fonts
that are drawn in other directions (see “Internationalization and Text” on page 134), these
have a different effect. Example 9-3 shows three text strings, all starting at an x-location
of 100, but with differing values of text-anchor. A guide line is drawn to show the effect
more clearly in the result, Figure 9-5.

Example 9-3. Use of text-anchor
http://oreillymedia.github.io/svg-essentials-examples/ch09/text_alignment.html
<g style="font-size: 14pt;">
  <path d="M 100 10 100 100" style="stroke: gray; fill: none;"/>
  <text x="100" y="30" style="text-anchor: start">Start</text>
  <text x="100" y="60" style="text-anchor: middle">Middle</text>
  <text x="100" y="90" style="text-anchor: end">End</text>
</g>

Figure 9-5. Result of using text-anchor

The <tspan> Element
Another consequence of not knowing a text string’s length in advance is that it is difficult
to construct a string with varying text attributes, such as this sentence, which switches
among italic, normal, and bold text. If you had only the <text> element, you’d need to

Text Alignment | 129

http://oreillymedia.github.io/svg-essentials-examples/ch09/text_alignment.html


experiment to find where each differently styled segment of text ended in order to space
them properly. To solve this problem, SVG provides the <tspan>, or text span ele‐
ment. Analogous to the (X)HTML <span> element, <tspan> is a tabula rasa that may
be embedded in text content, and upon which you may impose style changes. The
<tspan> remembers the text position, so you don’t have to. Thus, Example 9-4, which
produces the display in Figure 9-6.

Example 9-4. Using tspan to change styles
<text x="10" y="30" style="font-size:12pt;">
  Switch among
  <tspan style="font-style:italic">italic</tspan>, normal,
  and <tspan style="font-weight:bold">bold</tspan> text.
</text>

Figure 9-6. Styles changed with tspan

In addition to changing presentation properties such as font size, color, weight, etc., you
can also use attributes with <tspan> to change the positioning of individual letters or
sets of letters. If, for example, you want superscripts or subscripts, you can use the dy
attribute to offset characters within a span. The value you assign to this attribute is added
to the vertical position of the characters, and continues to affect text even outside the
span. Negative values are allowed. A similar attribute, dx, offsets characters horizontally.
Example 9-5 uses vertical offsets to create the “falling letters” in Figure 9-7.

Example 9-5. Using dy to change vertical positioning within text
<text x="10" y="30" style="font-size:12pt;">
  F <tspan dy="4">a</tspan>
  <tspan dy="8">l</tspan>
  <tspan dy="12">l</tspan>
</text>

Figure 9-7. Vertical positioning with dy

If you wish to express the offsets in absolute terms rather than relative terms, use the x
and y attributes. This is handy for doing multiline runs of text. As you will see in
“Whitespace and Text” on page 141, SVG never displays newline characters in text, so you
need to manually reset the x value for each line, and use y or dy to position it vertically.
You should always use <tspan>s within a <text> element to group related lines, not

130 | Chapter 9: Text



only to allow them to be selected as a unit, but also because it adds structure to your
document. Example 9-6 presents a verse of Edward Lear’s The Owl and the Pussycat
using <tspan> elements with absolute x-coordinates and a mix of y and dy values.

Example 9-6. Use of absolute positioning with tspan
<text x="10" y="30" style="font-size:12pt;">
  They dined on mince, and slices of quince,
  <tspan x="20" y="50">Which they ate with a
    runcible spoon;</tspan>
  <tspan x="10" y="70">And hand in hand, on the edge
    of the sand,</tspan>
  <tspan x="20" dy="20">They danced by the light of the moon.</tspan>
</text>

There’s no visual evidence in Figure 9-8 that all the text is in one <text> element, but
trust us—they’re all connected.

Figure 9-8. Absolutely positioned poetry

You may also rotate a letter or series of letters within a <tspan> by using the rotate
attribute, whose value is an angle in degrees.

If you have to modify the positions of several characters, you can do it easily by speci‐
fying a series of numbers for any of the x, y, dx, dy, and rotate attributes. The numbers
you specified will be applied, one after another, to the characters within the <tspan>.
This is shown in Example 9-7.

Example 9-7. Use of multiple values for dx, dy, and rotate in a text span
<text x="30" y="30" style="font-size:14pt">It’s
<tspan dx="0 4 -3 5 -4 6" dy="0 -3 7 3 -2 -8"
  rotate="5 10 -5 -20 0 15">shaken</tspan>,
not stirred.
</text>

Notice in Figure 9-9 that the effects of dx and dy persist after the <tspan> ends. The text
after the closing </tspan> is at the same offsets as the letter n in shaken. The text does
not return to the baseline established by the first letter in the <tspan>.

The <tspan> Element | 131



Figure 9-9. Multiple horizontal and vertical offsets

Although you can use the dy attribute to produce superscripts and subscripts, it’s easier
to use the baseline-shift style, as in Example 9-8. This style property has values of
super and sub. You may also specify a length, such as 0.5em, or a percentage, which is
calculated in terms of the font size. baseline-shift’s effects are restricted to the span
in which it occurs.

Example 9-8. Use of baseline-shift
<text x="20" y="25" style="font-size: 12pt;">
C<tspan style="baseline-shift: sub;">12</tspan>
H<tspan style="baseline-shift: sub;">22</tspan>
O<tspan style="baseline-shift: sub;">11</tspan> (sugar)
</text>

<text x="20" y="70" style="font-size: 12pt;">
6.02 x 10<tspan baseline-shift="super">23</tspan>
(Avogadro's number)
</text>

In Figure 9-10, the subscripted numbers appear too large. In an ideal case, you’d set the
font-size as well, but we wanted this example to concentrate on only one concept.

Figure 9-10. Subscripts and superscripts

Setting textLength
Although, as mentioned previously, there’s no a priori way to determine the endpoint
of a segment of text, you can explicitly specify the length of text as the value of the
textLength attribute. SVG will then fit the text into the given space. It does so by ad‐
justing the space between glyphs and leaving the glyphs themselves untouched, or it can
fit the words by adjusting both the spacing and glyph size. If you want to adjust space
only, set the value of the lengthAdjust to spacing (this is the default). If you want SVG
to fit the words into a given length by adjusting both spacing and glyph size, set
lengthAdjust to spacingAndGlyphs. Example 9-9 uses these attributes to achieve the
results of Figure 9-11.

132 | Chapter 9: Text



Example 9-9. Use of textLength and lengthAdjust
http://oreillymedia.github.io/svg-essentials-examples/ch09/text_length.html
<g style="font-size: 14pt;">
<path d="M 20 10 20 70 M 220 10 220 70" style="stroke: gray;"/>
<text x="20" y="30"
  textLength="200" lengthAdjust="spacing">Two words</text>
<text x="20" y="60"
  textLength="200" lengthAdjust="spacingAndGlyphs">Two words</text>

<text x="20" y="90">Two words
  <tspan style="font-size: 10pt;">(normal length)</tspan></text>

<path d="M 20 100 20 170 M 100 100 100 170" style="stroke: gray;"/>
<text x="20" y="120"
  textLength="80" lengthAdjust="spacing">Two words</text>
<text x="20" y="160"
  textLength="80" lengthAdjust="spacingAndGlyphs">Two words</text>
</g>

Figure 9-11. Effects of varying textLength and lengthAdjust

Vertical Text
When you use SVG to create charts, graphs, or tables, you will often want labels running
down the vertical axes. One way to achieve vertically oriented text is to use a transfor‐
mation to rotate the text 90 degrees. Another way to achieve the same effect is to change
the value of the writing-mode style property to the value tb (meaning top to bottom).

Sometimes, though, you want the letters to appear in a vertical column with no rotation.

Example 9-10 does this by setting the glyph-orientation-vertical property with a
value of 0. (Its default value is 90, which is what rotates top-to-bottom text 90 degrees.)
In Figure 9-12, this setting tends to display the inter-letter spacing as unnaturally
large. Setting a small negative value for letter-spacing solves this problem.

Example 9-10. Producing vertical text
<text x="10" y="20" transform="rotate(90,10,20)">Rotated 90</text>
<text x="50" y="20" style="writing-mode: tb;">Writing Mode tb</text>

Vertical Text | 133

http://oreillymedia.github.io/svg-essentials-examples/ch09/text_length.html


<text x="90" y="20" style="writing-mode: tb;
   glyph-orientation-vertical: 0;">Vertical zero</text>

If you have been trying out these examples, you may have noticed that a number of
features (such as baseline-shift, spacing, and vertical text) are poorly supported in
some browsers. It’s always a good idea to test out your designs in any SVG viewers that
you want to support.

Figure 9-12. Vertical text

Internationalization and Text
If your graphic has text that needs to be translated into multiple languages, SVG’s sup‐
port for Unicode and ability to display many languages in a single document will save
you the trouble of creating separate documents for each language.

Unicode and Bidirectionality
XML is based on the Unicode standard (fully documented at the Unicode Consortium’s
website). This lets text display in any language the underlying viewer software can dis‐
play, as you can see in Figure 9-13. Some languages such as Arabic and Hebrew are
written right to left, so when text in these languages is mixed with text written left to
right, as English is, the text is bidirectional, or bidi for short. The system software knows
which characters go in which direction and works out their positions accordingly.
Example 9-11 also overrides the implicit directionality of a segment of text by setting
its direction style property to rtl, which stands for right-to-left. If you wish to change
the direction of Hebrew or Arabic text, set it to ltr, which is left-to-right. You must also
explicitly override the underlying Unicode bidirectionality algorithm by setting the
unicode-bidi style property to bidi-override.

Example 9-11. International text using Unicode
<g style="font-size: 14pt;">

<text x="10" y="30">Greek: </text>

134 | Chapter 9: Text

http://www.unicode.org
http://www.unicode.org


<text x="100" y="30">
  αβγδε
</text>

<text x="10" y="50">Russian:</text>
<text x="100" y="50">
  абвгд
</text>

<text x="10" y="70">Hebrew:</text>
<text x="100" y="70">
(written right to left) אבגדה    
</text>

<text x="10" y="90">Arabic:</text>
<text x="100" y="90">
د ج ب ا   (written right to left)
</text>

<text x="10" y="130">
  This is
    <tspan style="direction: rtl; unicode-bidi: bidi-override;
      font-weight: bold;">right-to-left</tspan>
  writing.
</text>
</g>

Figure 9-13. Multilingual text

The <switch> Element
The ability to display multiple languages in a single document is useful for such things
as a brochure for an event that receives international visitors. Sometimes, though, you
would like to create one document with content in two languages—say, Spanish and
Russian. People viewing the document with Spanish system software would see the
Spanish text, and Russians would see Russian text.

SVG provides this capability with the <switch> element. This element searches through
all its children until it finds one whose systemLanguage attribute has a value that

Internationalization and Text | 135



1. The <switch> element can also be used for other tests; in “Foreign Objects in SVG” on page 20, we showed
how to use a switch to test for support for specific features. If you use multiple test attributes on the children
of a <switch> element, all of them must match for the content to be displayed.

matches the language the user has chosen in the viewer software’s preferences.1 The
value of systemLanguage is a single value or comma-separated list of language names.
A language name is either a two-letter language code, such as ru for Russian, or a lan‐
guage code followed by a country code, which specifies a sublanguage. For instance,
fr-CA denotes Canadian French, while fr-CH denotes Swiss French.

Once a matching child element is found, all its children will be displayed. All the other
children of the <switch> will be bypassed. Example 9-12 shows text in UK English, US
English, Spanish, and Russian. A match of language code alone is considered a match,
and country codes are used only to “break a tie,” so the text for UK English must come
first.

Example 9-12. Use of the switch element
<circle cx="40" cy="60" r="20" style="fill: none; stroke: black;"/>
<g font-size="12pt">
  <switch>
    <g systemLanguage="en-UK">
      <text x="10" y="30">A circle</text>
      <text x="10" y="100">without colour.</text>
    </g>
    <g systemLanguage="en">
      <text x="10" y="30">A circle</text>
      <text x="10" y="100">without color.</text>
    </g>
    <g systemLanguage="es">
      <text x="10" y="30">Un círculo</text>
      <text x="10" y="100">sin color.</text>
    </g>
    <g systemLanguage="ru">
      <text x="10" y="30">Круг</text>
      <text x="10" y="100">без света.</text>
    </g>
  </switch>
</g>

Figure 9-14 is a combination of screenshots taken with the language set to each of the
choices in Example 9-12. You should normally provide a fallback (a group without any
systemLanguage attribute, as the last element in the <switch> block) to display some‐
thing in case none of the languages match. Ideally, you would like to give users a way of
selecting a language from the ones you have available.

136 | Chapter 9: Text



Figure 9-14. Combined screenshots as seen with different language preferences

Using a Custom Font
Sometimes you need special symbols that are not represented in Unicode, or you want
a subset of the Unicode characters without having to install an entire font. An example
is Figure 9-15, which needs only a few of the over 2,000 Korean syllables. You can create
a custom font as described in Appendix E and give its starting <font> tag a unique id.
Here is the relevant portion of a file containing six of the Korean syllables exported from
the Batang TrueType font. The file is called kfont.svg:

<font id="kfont-defn" horiz-adv-x="989" vert-adv-y="1200"
  vert-origin-y="0">
  <font-face font-family="bakbatn"
    units-per-em="1000"
    panose-1="2 3 6 0 0 1 1 1 1 1"
    ascent="800" descent="-200" baseline="0" />
    <missing-glyph horiz-adv-x="500" />
    <!-- glyph definitions go here -->
  </font-face>
</font>

Figure 9-15. Korean syllables from an external font

Once that is done, Example 9-13 can reference the font in that external file. For the sake
of consistency, the value of the font-family you use in this SVG file should match the
value in the external file.

Example 9-13. Use of an external font
<defs>
  <font-face font-family="bakbatn">
    <font-face-src>
      <font-face-uri xlink:href="kfont.svg#kfont-defn">
        <font-face-format string="svg" />

Internationalization and Text | 137



      </font-face-uri>
    </font-face-src>
  </font-face>
</defs>

<text font-size="28" x="20" y="40"
  style="font-family: bakbatn, serif;">
    서울 - 대한민국
</text>

SVG fonts are currently not supported in Internet Explorer brows‐
ers (including version 11) or Firefox browsers (version 30). For these
browsers, you can include a second <font-face-src> element, with
the URI of an alternate font file in a different format. Alternatively,
you can use a <font-face-name> element with the single attribute
name, containing the name of a system font to use. All of these ele‐
ments have the same interpretation as their equivalent CSS font-
face properties.
If none of your specified fonts can be used, the browser will try to
find any font on its system that can display the Unicode characters
used in the text.

Text on a Path
Text does not have to go in a straight horizontal or vertical line. It can follow any arbitrary
path; simply enclose the text in a <textPath> element that uses an xlink:href attribute
to refer to a previously defined <path> element. Letters will be rotated to stand “per‐
pendicular” to the curve (i.e., the letter’s baseline will be tangent to the curve). Text along
a gently curving and continuous path is easier to read than text that follows a sharply
angled or discontinuous path.

Referencing a <path> within a <textPath> element does not auto‐
matically display that path. In Example 9-14, the <path>s are de‐
fined in a <defs> section, so they wouldn’t normally be displayed.
The example has <use> elements to draw the visible lines.

Example 9-14. Examples of textPath
http://oreillymedia.github.io/svg-essentials-examples/ch09/text_path.html
<defs>
<path id="curvepath"
    d="M30 40 C 50 10, 70 10, 120 40 S 150 0, 200 40"
    style="stroke: gray; fill: none;"/>

<path id="round-corner"

138 | Chapter 9: Text

http://oreillymedia.github.io/svg-essentials-examples/ch09/text_path.html


    d="M250 30 L 300 30 A 30 30 0 0 1 330 60 L 330 110"
    style="stroke: gray; fill: none;"/>

<path id="sharp-corner"
    d="M 30 110 100 110 100 160"
    style="stroke: gray; fill: none;"/>

<path id="discontinuous"
    d="M 150 110 A 40 30 0 1 0 230 110 M 250 110 270 140"
    style="stroke: gray; fill: none;"/>
</defs>

<g style="font-family: 'Liberation Sans';
  font-size: 10pt;">
  <use xlink:href="#curvepath"/>
  <text>
    <textPath xlink:href="#curvepath">
    Following a cubic Bézier curve.
    </textPath>
  </text>

  <use xlink:href="#round-corner"/>
  <text>
    <textPath xlink:href="#round-corner">
    Going 'round the bend
    </textPath>
  </text>

  <use xlink:href="#sharp-corner"/>
  <text>
    <textPath xlink:href="#sharp-corner">
    Making a quick turn
    </textPath>
  </text>

  <use xlink:href="#discontinuous"/>
  <text>
      <textPath xlink:href="#discontinuous">
      Text along a broken path
      </textPath>
  </text>
</g>

Example 9-14 produces Figure 9-16; Figure 9-17 shows you what it looks like if we draw
the text without the underlying paths.

Text on a Path | 139



Figure 9-16. Text along a path (with paths shown)

Figure 9-17. Text along a path (paths not shown)

You may adjust the beginning point of the text along its path by setting the startOffset
attribute to a percentage or to a length. For example, startOffset="25%" will start the
text one-fourth of the distance along the path, and startOffset="30" will start the text
at a distance of 30 user units from the beginning of the path. If you wish to center text
on a path, as in Example 9-15, set textanchor="middle" on the <text> element and
startOffset="50%" on the <textPath> element. Text falling beyond the ends of the
path will not be displayed, as shown in the left half of Figure 9-18.

Example 9-15. Text length and startOffset
http://oreillymedia.github.io/svg-essentials-examples/ch09/start_offset.html
<defs>
  <path id="short-corner" transform="translate(40,40)"
      d="M0 0 L 30 0 A 30 30 0 0 1 60 30 L 60 60"
    style="stroke: gray; fill: none;"/>

  <path id="long-corner" transform="translate(140,40)"
      d="M0 0 L 50 0 A 30 30 0 0 1 80 30 L 80 80"
    style="stroke: gray; fill: none;"/>
</defs>

<g style="font-family: 'Liberation Sans'; font-size: 12pt">
  <use xlink:href="#short-corner"/>
  <text>
    <textPath xlink:href="#short-corner">
      This text is too long for the path.
      </textPath>

140 | Chapter 9: Text

http://oreillymedia.github.io/svg-essentials-examples/ch09/start_offset.html


  </text>

  <use xlink:href="#long-corner"/>
  <text style="text-anchor: middle;">
    <textPath xlink:href="#long-corner" startOffset="50%">
      centered
    </textPath>
  </text>
</g>

Figure 9-18. Effects of long text and startOffset

Whitespace and Text
You may change the way SVG handles whitespace (blanks, tabs, and newline characters)
within text by changing the value of the xml:space attribute. If you specify a value of
default (which, coincidentally, is the default value), SVG will handle whitespace as
follows:

• Remove all newline characters
• Change all tabs to blanks
• Remove all leading and trailing blanks
• Change any run of intermediate blanks to a single blank

Thus, this string, where \t represents a tab and \n represents a newline, and an under‐
score represents a blank:

   \n\n___abc_\t\t_def_\n\n__ghi

will render as:

   abc_def_ghi

The other setting of xml:space is preserve. With this setting, SVG will simply convert
all newline and tab characters to blanks, and then display the result, including leading
and trailing blanks. The same text:

   \n\n___abc_\t\t_def_\n\n__ghi

then renders as:

   _____abc____def_____ghi

Whitespace and Text | 141



SVG’s handling of whitespace is not like that of HTML. SVG’s de‐
fault handling eliminates all newlines; HTML changes internal new‐
lines to a space. SVG’s preserve method converts newlines to blanks;
HTML’s <pre> element does not. There is no newline in SVG 1.0;
this bothers people until they realize that SVG text is oriented to‐
ward graphic display, not textual content (as in XHTML).

Case Study: Adding Text to a Graphic
Figure 9-19 adds Korean and English text to the Korean national symbol shown in
Figure 7-6. The text is centered along an elliptical path. The additional SVG in
Example 9-16 is shown in boldface.

Example 9-16. Text case study
<defs>
  <font-face font-family="bakbatn">
    <font-face-src>
      <font-face-uri xlink:href="kfont.svg#kfont-defn">
        <font-face-format string="svg" />
      </font-face-uri>
    </font-face-src>
  </font-face>

  <path id="upper-curve" d="M -8 154 A 162 130 0 1 1 316 154"/>
  <path id="lower-curve" d="M -21 154 A 175 140 0 1 0 329 154"/>
</defs>

<ellipse cx="154" cy="154" rx="150" ry="120" style="fill: #999999;"/>
<ellipse cx="152" cy="152" rx="150" ry="120" style="fill: #cceeff;"/>

<!--
  large light red semicircle fills upper half,
  followed by small light red semicircle that dips into
  lower-left half of symbol
-->
<path d="M 302 152 A 150 120, 0, 1, 0, 2 152
  A 75 60, 0, 1, 0, 152 152" style="fill: #ffcccc;"/>

<!--
  light blue semicircle rises
  into upper-right half of symbol
-->
<path d="M 152 152 A 75 60, 0, 1, 1, 302 152"
  style="fill: #cceeff;"/>

<text font-family="bakbatn, serif"
  style="font-size: 24pt; text-anchor: middle;">
  <textPath xlink:href="#upper-curve" startOffset="50%">
    서울 - 대한민국

142 | Chapter 9: Text



  </textPath>
</text>

<text style="font-size: 14pt; text-anchor: middle;">
  <textPath xlink:href="#lower-curve" startOffset="50%">
  Seoul - Republic of Korea
  </textPath>
</text>

Figure 9-19. Text along path added to graphic

Case Study: Adding Text to a Graphic | 143





1. You can change this behavior by setting the overflow style property to visible.

CHAPTER 10

Clipping and Masking

Sometimes you don’t want to see an entire picture. For example, you might wish to draw
a picture as though it were seen through binoculars or a keyhole; everything outside the
boundary of the eyepieces or keyhole will be invisible. Or, you might want to set a mood
by showing an image as though viewed through a translucent curtain. SVG accomplishes
such effects with clipping and masking.

Clipping to a Path
When you create an SVG document, you establish its viewport by specifying the width
and height of the area you’re interested in. This becomes by default your clipping area;
anything drawn outside these limits will not be displayed.1 You can establish a clipping
area of your own with the <clipPath> element.

Here’s the simplest case: establishing a rectangular clip path. Inside the <clipPath>
element will be the <rect> you want to clip to. The rectangle itself is not displayed; we
only love it for its coordinates. Thus, you are free to add any fill or stroke styles you wish
to the elements within the <clipPath>. On the object to be clipped, you add a clip-path
style property whose value references the <clipPath> element. Note that the property
is hyphenated and not capitalized; the element is capitalized and not hyphenated. In
Example 10-1, the object being clipped is a small version of the cat picture from Chap‐
ter 1. The result is in Figure 10-1.

Example 10-1. Clipping to a rectangular path
http://oreillymedia.github.io/svg-essentials-examples/ch10/clip_path.html
<svg width="350" height="200" viewBox="0 0 350 200"
  xmlns="http://www.w3.org/2000/svg"

145

http://oreillymedia.github.io/svg-essentials-examples/ch10/clip_path.html


  xmlns:xlink="http://www.w3.org/1999/xlink">
  <defs>
  <clipPath id="rectClip">
    <rect id="rect1" x="15" y="15"
      width="40" height="45"
      style="stroke: gray; fill: none;"/>
  </clipPath>
  </defs>

  <!-- clip to rectangle -->
  <use xlink:href="minicat.svg#cat"
    style="clip-path: url(#rectClip);"/>

  <!--
    for reference, show entire picture
    with clipping area outlined
  -->
  <g transform="translate(100,0)">
    <use xlink:href="#rect1"/>    <!-- show clip rectangle -->
    <use xlink:href="minicat.svg#cat"/>
  </g>
</svg>

Figure 10-1. Simple rectangular clipping

As the name <clipPath> implies, you can clip to any arbitrary path. Indeed, the
<clipPath> element can contain any number of basic shapes, <path> elements, or
<text> elements. Example 10-2 shows a group of shapes clipped to a curved path and
the same group of shapes clipped by text.

Example 10-2. Complex clip paths
http://oreillymedia.github.io/svg-essentials-examples/ch10/complex_clip_path.html
<defs>
  <clipPath id="curveClip">
    <path id="curve1"
      d="M5 55 C 25 5, 45 -25, 75 55, 85 85, 20 105, 40 55 Z"
      style="stroke: black; fill: none;"/>
  </clipPath>

  <clipPath id="textClip">
    <text id="text1" x="20" y="20" transform="rotate(60)"
      style="font-family: 'Liberation Sans';
        font-size: 48pt; stroke: black; fill: none;">

146 | Chapter 10: Clipping and Masking

http://oreillymedia.github.io/svg-essentials-examples/ch10/complex_clip_path.html


      CLIP
    </text>
  </clipPath>

  <g id="shapes">
    <rect x="0" y="50" width="90" height="60" style="fill: #999;"/>
    <circle cx="25" cy="25" r="25" style="fill: #666;"/>
    <polygon points="30 0 80 0 80 100" style="fill: #ccc;"/>
  </g>
</defs>

<!-- draw with curved clip-path -->
<use xlink:href="#shapes" style="clip-path: url(#curveClip);" />

<!-- draw with text as clip-path -->
<use transform="translate(100, 0)"
  xlink:href="#shapes" style="clip-path: url(#textClip);"/>

<g transform="translate(0, 150)">
  <use xlink:href="#shapes"/>
  <use xlink:href="#curve1"/>   <!-- show clip path -->
</g>

<g transform="translate(100,150)">
  <use xlink:href="#shapes"/>
  <use xlink:href="#text1"/>
</g>

To help you see the areas better, the preceding SVG draws the clipping path above the
entire figure; you see this in the right half of Figure 10-2.

Figure 10-2. Complex path clipping

The coordinates for the preceding clip paths have been specified in user coordinates. If
you wish to express coordinates in terms of the object bounding box, then set

Clipping to a Path | 147



clipPathUnits to objectBoundingBox (the default is userSpaceOnUse). Example 10-3
uses a clip path that will produce a circular (or oval) window on any object it’s
applied to.

Example 10-3. clipPathUnits using objectBoundingBox
<defs>
 <clipPath id="circularPath" clipPathUnits="objectBoundingBox">
   <circle cx="0.5" cy="0.5" r="0.5"/>
 </clipPath>

  <g id="shapes">
    <rect x="0" y="50" width="100" height="50" style="fill: #999;"/>
    <circle cx="25" cy="25" r="25" style="fill: #666;"/>
    <polygon points="30 0 80 0 80 100" style="fill: #ccc;"/>
  </g>

  <g id="words">
    <text  x="0"  y="19" style="font-family: 'Liberation Sans';
      font-size: 14pt;">
    <tspan x="0"  y="19">If you have form'd a circle</tspan>
    <tspan x="12" y="35">to go into,</tspan>
    <tspan x="0"  y="51">Go into it yourself</tspan>
    <tspan x="12" y="67">and see how you would do.</tspan>
    <tspan x="50" y="87">&#8212;William Blake</tspan>
    </text>
  </g>
</defs>

<use xlink:href="#shapes" style="clip-path: url(#circularPath);" />
<use xlink:href="#words" transform="translate(110,0)"
    style="clip-path: url(#circularPath);"/>

In Figure 10-3, the geometric figures happen to have a square bounding box, so the
clipping appears circular. The text is bounded by a rectangular area, so the clipping area
appears to be an oval.

For <marker>, <symbol>, and <svg> elements, which define their own
viewport, you can also clip content to the viewport by using a style of
overflow: hidden. However, if the content has a meet value for
preserveAspectRatio, the viewport may be larger than the viewBox.
To clip to the viewBox, create a <clipPath> element containing a
rectangle that matches the minimum x, minimum y, width, and height
of the viewBox.

148 | Chapter 10: Clipping and Masking



Figure 10-3. Use of a circular/oval clipping path

Masking
A mask in SVG is the exact opposite of the mask you wear to a costume party. With a
costume party mask, the parts that are opaque hide your face; the parts that are trans‐
lucent let people see your face dimly, and the holes (which are transparent) let people
see your face clearly. An SVG mask, on the other hand, transfers its transparency to the
object it masks. Where the mask is opaque, the pixels of the masked object are opaque.
Where the mask is translucent, so is the object, and the transparent parts of the mask
make the corresponding parts of the masked object invisible.

You use the <mask> element to create a mask. You may specify the mask’s dimensions
with the x, y, width, and height attributes. These dimensions are in terms of the masked
objectBoundingBox. If you want the dimensions to be in terms of user space coordi‐
nates, set maskUnits to userSpaceOnUse.

Between the beginning <mask> and ending </mask> tags are any basic shapes, text, im‐
ages, or paths you wish to use as the mask. The coordinates on these elements are
expressed in user coordinate space by default. If you wish to use the object bounding
box for the contents of the mask, set maskContentUnits to objectBoundingBox. (The
default is userSpaceOnUse.)

The question then becomes: how does SVG determine the transparency, or alpha value,
of the mask? We know each pixel is described by four values: its red, green, and blue
color value, and its opacity. While at first glance it would seem logical to use only the
opacity value, SVG decides to use all the information available to it rather than throwing
away three-fourths of a pixel’s information. SVG uses this formula:

(0.2125 * red value + 0.7154 * green value + 0.0721 * blue value) * opacity value

where all of the values are floating-point numbers in the range 0 to 1. You may be
surprised that the proportions aren’t equal, but if you look at fully saturated red, green,
and blue, the green appears to be the brightest, red darker, and blue the darkest. (You
can see this in Figure 10-4.) The darker the color, the smaller the resulting alpha value
will be, and the less opaque the masked object will be.

Masking | 149



Figure 10-4. Effect of mask color values on transparency

Figure 10-4 was drawn with Example 10-4, which creates black text and a black circle
masked by a totally opaque red, green, blue, and white square. The text and circle are
grouped together, and the group uses a mask style property to reference the appropriate
mask. The yellow horizontal bars in the background show you that, indeed, the text and
circles are partially transparent.

Example 10-4. Masking with opaque colors
<defs>
  <mask id="redmask" x="0" y="0" width="1" height="1"
    maskContentUnits="objectBoundingBox">
    <rect x="0" y="0" width="1" height="1" style="fill: #f00;"/>
  </mask>

  <mask id="greenmask" x="0" y="0" width="1" height="1"
    maskContentUnits="objectBoundingBox">
    <rect x="0" y="0" width="1" height="1" style="fill: #0f0;"/>
  </mask>

  <mask id="bluemask" x="0" y="0" width="1" height="1"
    maskContentUnits="objectBoundingBox">
    <rect x="0" y="0" width="1" height="1" style="fill: #00f;"/>
  </mask>

  <mask id="whitemask" x="0" y="0" width="1" height="1"
    maskContentUnits="objectBoundingBox">
    <rect x="0" y="0" width="1" height="1" style="fill: #fff;"/>
  </mask>
</defs>

<!-- display the colors to show relative brightness (luminance) -->
<rect x="10" y="10" width="50" height="50" style="fill: #f00;"/>
<rect x="70" y="10" width="50" height="50" style="fill: #0f0;"/>
<rect x="130" y="10" width="50" height="50" style="fill: #00f;"/>
<rect x="190" y="10" width="50" height="50"
    style="fill: #fff; stroke: black;"/>

<!-- background content to show transparency -->
<rect x="10" y="72" width="250" height="5" style="fill: yellow"/>
<rect x="10" y="112" width="250" height="5" style="fill: yellow"/>

150 | Chapter 10: Clipping and Masking



<g style="mask: url(#redmask);
    font-size: 14pt; text-anchor: middle;">
  <circle cx="35" cy="115" r="25"  style="fill: black;"/>
  <text x="35" y="80">Red</text>
</g>

<g style="mask: url(#greenmask);
    font-size: 14pt; text-anchor: middle;">
  <circle cx="95" cy="115" r="25" style="fill: black;"/>
  <text x="95" y="80">Green</text>
</g>

<g style="mask: url(#bluemask);
    font-size: 14pt; text-anchor: middle;">
  <circle cx="155" cy="115" r="25" style="fill: black;"/>
  <text x="155" y="80">Blue</text>
</g>

<g style="mask: url(#whitemask);
    font-size: 14pt; text-anchor: middle;">
  <circle cx="215" cy="115" r="25" style="fill: black;"/>
  <text x="215" y="80">White</text>
</g>

Figuring out the interaction between color, opacity, and final alpha value is not exactly
intuitive. If you fill and/or stroke the mask contents in white, the “color factor” adds up
to 1.0, and the opacity will then be the only factor that controls the mask’s alpha value.
Example 10-5 is written this way, and the result is in Figure 10-5.

Figure 10-5. Alpha value equal to opacity

Example 10-5. Mask alpha using opacity only
http://oreillymedia.github.io/svg-essentials-examples/ch10/alpha_opacity_mask.html
<defs>
<mask id="fullmask" x="0" y="0" width="1" height="1"
    maskContentUnits="objectBoundingBox">
    <rect x="0" y="0" width="1" height="1"
        style="fill-opacity: 1.0; fill: white;"/>
</mask>

<mask id="three-fourths" x="0" y="0" width="1" height="1"
    maskContentUnits="objectBoundingBox">
    <rect x="0" y="0" width="1" height="1"
        style="fill-opacity: 0.75; fill: white;"/>

Masking | 151

http://oreillymedia.github.io/svg-essentials-examples/ch10/alpha_opacity_mask.html


</mask>

<mask id="one-half" x="0" y="0" width="1" height="1"
    maskContentUnits="objectBoundingBox">
    <rect x="0" y="0" width="1" height="1"
        style="fill-opacity: 0.5; fill: white;"/>
</mask>

<mask id="one-fourth" x="0" y="0" width="1" height="1"
    maskContentUnits="objectBoundingBox">
    <rect x="0" y="0" width="1" height="1"
        style="fill-opacity: 0.25; fill: white;"/>
</mask>
</defs>

<g style="font-size: 14pt; text-anchor:middle; fill:black;">
    <g style="mask: url(#fullmask);">
    <circle cx="35" cy="35" r="25"/>
    <text x="35" y="80">100%</text>
    </g>

    <g style="mask: url(#three-fourths);">
    <circle cx="95" cy="35" r="25"/>
    <text x="95" y="80">75%</text>
    </g>

    <g style="mask: url(#one-half);">
    <circle cx="155" cy="35" r="25"/>
    <text x="155" y="80">50%</text>
    </g>

    <g style="mask: url(#one-fourth);">
    <circle cx="215" cy="35" r="25"/>
    <text x="215" y="80">25%</text>
    </g>
</g>

Case Study: Masking a Graphic
Example 10-6 adds a JPG image to the graphic that was constructed in “Case Study:
Adding Text to a Graphic” on page 142. As you can see in Figure 10-6 (reduced to save
space), the image obscures the curve inside the main ellipse, and the blue sky intrudes
horribly on the pale red section.

Example 10-6. Unmasked <image> inside a graphic
<defs>
  <font-face font-family="bakbatn">
    <font-face-src>
      <font-face-uri xlink:href="kfont.svg#kfont-defn"/>
    </font-face-src>

152 | Chapter 10: Clipping and Masking



  </font-face>
</defs>

<!-- draws ellipse and text -->
<use xlink:href="ksymbol.svg#ksymbol"/>

<image xlink:href="kwanghwamun.jpg" x="72" y="92"
    width="160" height="120"/>

Figure 10-6. Unmasked <image> inside a graphic

The solution is to fade out the edges of the picture, which is easily done by using a radial
gradient as a mask. Here’s the code to be added to the <defs> section of the document:

<radialGradient id="fade">
  <stop offset="0%" style="stop-color: white; stop-opacity: 1.0;"/>
  <stop offset="85%" style="stop-color: white; stop-opacity: 0.5;"/>
  <stop offset="100%" style="stop-color: white; stop-opacity: 0.0;"/>
</radialGradient>
<mask id="fademask" maskContentUnits="objectBoundingBox">
  <rect x="0" y="0" width="1" height="1"
    style="fill: url(#fade);"/>
</mask>

Then add a mask reference to the <image> tag, resulting in Figure 10-7:

<image xlink:href="kwanghwamun.jpg" x="72" y="92"
  width="160" height="120"
  style="mask: url(#fademask);"/>

Case Study: Masking a Graphic | 153



Figure 10-7. Masked image

Using less of the picture can substantially improve the graphic as a whole. 

154 | Chapter 10: Clipping and Masking



CHAPTER 11

Filters

The preceding chapters have given you a basis for creating graphics that convey infor‐
mation with great precision and detail. If you’re going on a spring picnic, you want a
precise map. When you look in the newspaper for the graphics that describe the weather
forecast, you want “just the facts.”

If you’re asked later to describe the day of the picnic, nobody wants a crisp recitation of
meteorological statistics. Similarly, nobody wants to see a graphic of a spring flower
composed of pure vectors; Figure 11-1 fails totally to convey any warmth or charm.

Figure 11-1. Flower composed of plain vectors

Graphics are often designed to evoke feelings or moods as much as they are meant to
convey information. Artists who work with bitmap graphics—and therefore work with
the appearance of an object instead of its geometrical definition—have many tools at
their disposal to add such effects. They can produce blurred shadows, selectively thicken
or thin lines, add textures to part of the drawing, or make an object appear to be em‐
bossed or beveled.

How Filters Work
Although SVG is not a bitmap description language, it still lets you use some of these
same tools. When an SVG viewer program processes a graphic object, it will render the

155



object to some bitmapped output device; at some point, the program will convert the
object’s description into the appropriate set of pixels that appear on the output device.
Now let’s say that you use the SVG <filter> element to specify a set of operations (also
called primitives) that display an object with a blurred shadow offset slightly to the side,
and attach that filter to an object:

<filter id="drop-shadow">
  <!-- filter operations go here -->
</filter>

<g id="spring-flower"
  style="filter: url(#drop-shadow);"/>
  <!-- drawing of flower goes here -->
</g>

Because the flower uses a filter in its presentation style, SVG will not render the flower
directly to the final graphic. Instead, SVG will render the flower’s pixels into a temporary
bitmap. The operations specified by the filter will be applied to that temporary area and
their result will be rendered into the final graphic.

The size of the temporary bitmap will by default depend on the resolution and size of
the display screen on which the image will be rendered. This means that some filter
effects can have different appearances at different sizes, even if all the SVG code is the
same. The specifications define attributes to control the effective resolution of the filter
effects, but these are not consistently implemented in SVG viewers and are not discussed
here.

Creating a Drop Shadow
Example 5-8 created a drop shadow by offsetting a gray ellipse underneath a colored
ellipse. It worked, but it wasn’t elegant. Let’s investigate a way to create a better-looking
drop shadow with a filter.

Establishing the Filter’s Bounds
The <filter> element has attributes that describe the clipping region for a filter. You
specify an x, y, width, and height in terms of the percentage of the filtered object’s
bounding box. (That is the default.) Any portion of the resulting output that’s outside
the bounds will not be displayed. If you are intending to apply a filter to many objects,
you may want to omit these attributes altogether and take the default values of x equal
to –10%, y equal to –10%, width equal to 120%, and height equal to 120%. This gives
extra space for filters—such as the drop shadow that we’re constructing—that produce
output larger than their input.

156 | Chapter 11: Filters

http://www.w3.org/TR/SVG11/filters.html#FilterEffectsRegion
http://www.w3.org/TR/SVG11/filters.html#FilterEffectsRegion


These attributes are in terms of the filtered object’s bounding box; specifically,
filterUnits has a value of objectBoundingBox by default. If you wish to specify
boundaries in user units, then set the attribute’s value to userSpaceOnUse.

You can also specify the units used in the filter primitives with the primitiveUnits
attribute. Its default value is userSpaceOnUse, but if you set it to objectBoundingBox,
then you can express units as a percent of the graphic’s size.

Using <feGaussianBlur> for a Drop Shadow
Between the beginning and ending <filter> tags are the filter primitives that perform
the operations you desire. Each primitive has one or more inputs, and exactly one out‐
put. An input can be the original graphic, specified as SourceGraphic, the alpha (opa‐
queness) channel of the graphic, specified as SourceAlpha, or the output of a previous
filtering primitive. The alpha source is useful when you’re interested in only the shape
of the graphic, regardless of color; it avoids the interactions of alpha and color, as de‐
scribed in Chapter 10, in “Masking” on page 149.

Example 11-1 is a first attempt to produce a drop shadow on the flower, using the
<feGaussianBlur> filter primitive. We specify SourceAlpha as its input (the in at‐
tribute), and the amount of blur with the stdDeviation attribute. The larger this num‐
ber, the greater the blur. If you give two numbers separated by whitespace as the value
for stdDeviation, the first number is taken as the blur in the x-direction and the second
as the blur in the y-direction.

Example 11-1. First attempt to produce a drop shadow
<defs>
  <filter id="drop-shadow">
      <feGaussianBlur in="SourceAlpha" stdDeviation="2"/>
  </filter>
</defs>

<g id="flower" filter="url(#drop-shadow)">
    <!-- drawing here -->
</g>

Figure 11-2 shows the result, which is probably not what you thought it would be.

Don’t be surprised; remember, the filter returns the output, which is a blurred alpha
channel, instead of the original source graphic. You could get the effect you want by
putting the flower within the <defs> section of the document and changing the SVG to
read as follows:

<use xlink:href="#flower" filter="url(#drop-shadow)"
    transform="translate(4, 4)"/>
<use xlink:href="#flower"/>

Creating a Drop Shadow | 157



Figure 11-2. Result of first attempt at a drop shadow

However, that would require SVG to execute all the elements that make up the flower
twice. Instead, the solution is to add more filter primitives, so that all the work can be
handled during rendering.

Storing, Chaining, and Merging Filter Results
Example 11-2 is the updated filter.

Example 11-2. Improved drop shadow filter
<filter id="drop-shadow">
  <feGaussianBlur in="SourceAlpha" stdDeviation="2" result="blur">  
  <feOffset in="blur" dx="4" dy="4" result="offsetBlur">  
  <feMerge>    
        <feMergeNode in="offsetBlur">
        <feMergeNode in="SourceGraphic"/>
  </feMerge>
</filter>

The result attribute specifies that the result of this primitive can be referenced
later by the name blur. This isn’t like an XML id; the name you give is a local
name that’s valid only for the duration of the primitives contained in the current
<filter>.
The <feOffset> primitive takes its input, in this case the blur result from the
Gaussian blur, offsets it by the specified dx and dy values, and stores the resulting
bitmap under the name offsetBlur.
The <feMerge> primitive encloses a list of <feMergeNode> elements, each of
which specifies an input. The inputs are stacked one on top of another in the
order that they appear. In this case, you want the offsetBlur below the original
SourceGraphic.

You can now refer to this improved drop shadow filter sequence when drawing the
flower, producing a surprisingly pleasant image in Figure 11-3.

158 | Chapter 11: Filters



<g id="flower" filter="url(#drop-shadow)">
    <!-- drawing here -->
</g>

Figure 11-3. Result of improved drop shadow

When you first start working with filters, we strongly recommend
that you do things in stages, testing filters one at a time. I created large
numbers of stunningly ugly results during botched attempts to dis‐
cover how a filter really works. You probably will too. We’ll just keep
it as our little secret.
Similarly, when you first learn about filters, you will be tempted to
apply as many of them as possible to a drawing, just to see what will
happen. Your purpose is experimentation, so go ahead. Once you
finish experimenting and begin production work, the purpose of the
filter changes. Filters should support and enhance your message, not
overwhelm it. Judicious use of one or two filters is a buoy; a flotilla
of filters almost always sinks the message.

Creating a Glowing Shadow
The drop shadow works well on the flower, but looks totally unimpressive when ap‐
plied to text, as you can see in Figure 11-4.

Figure 11-4. Drop shadow applied to text

The text would look better with a glowing turquoise area surrounding it, and you can
create this effect with the <feColorMatrix> primitive to change black to a different
color.

Creating a Glowing Shadow | 159



The <feColorMatrix> Element
The <feColorMatrix> element allows you to change color values in a very generalized
way. The sequence of primitives used to create a glowing turquoise shadow is shown in
Example 11-3.

Example 11-3. Glow filter
<filter id="glow">
  <feColorMatrix type="matrix"
    values=
      "0 0 0 0   0
       0 0 0 0.9 0
       0 0 0 0.9 0
       0 0 0 1   0"/>
  <feGaussianBlur stdDeviation="2.5"
    result="coloredBlur"/>
  <feMerge>
    <feMergeNode in="coloredBlur"/>
    <feMergeNode in="SourceGraphic"/>
  </feMerge>
</filter>

The <feColorMatrix> is a very versatile primitive, allowing you to modify any of the
color or alpha values of a pixel. When the type attribute equals matrix, you must set
the value to a series of 20 numbers describing the transformation. The 20 numbers are
best understood when written in four rows of five columns each. Each row represents
an algebra equation defining how to calculate the output R, G, B, or A value (in order
by row). The numbers in the row are multiplied by the input pixel’s value for R, G, B,
and A and the constant 1 (in order by column), and then added together to get the
output value. To set up a transformation that paints all opaque areas the same color, you
can ignore the input colors and the constant, and just set the values in the alpha col‐
umn. The model for such a matrix looks like this:

values=
  "0 0 0 red 0
   0 0 0 green 0
   0 0 0 blue 0
   0 0 0 1 0"

where the red, green, and blue values are decimal numbers that usually range from 0 to
1. In Example 11-3, red is set to to 0, and the green and blue values are set to 0.9, which
will produce a bright cyan color.

You’ll note that the example does not have an in attribute for the input to this primitive;
the default is to use the SourceGraphic. There is also no result attribute on this prim‐
itive. This means that the color matrix operation’s output is available only as the implicit
input to the next filter primitive. If you use this shortcut, then the next filter primitive
must not have an in attribute.

160 | Chapter 11: Filters



In the example, the result of <feColorMatrix> is a cyan-colored source. The rest of the
filter uses a Gaussian blur to spread it out; the resulting cyan-colored blur is stored for
future reference as coloredBlur. Finally, <feMerge> produces the output glow under‐
neath the object in question.

With these two filters, you can create the new, improved Figure 11-5 with SVG like this:

<g id="flower" style="filter: url(#drop-shadow);">
  <!-- draw the flower -->
</g>
<text x="120" y="50"
  style="filter: url(#glow); fill: #003333; font-size:18;"">
Spring <tspan x="120" y="70">Flower</tspan>
</text>

Figure 11-5. Drop shadow and glowing text

More About the <feColorMatrix> Element
The preceding example used the most general kind of color matrix, where you get to
specify any values you wish. There are three other values for the type attribute. Each of
these “built-in” color matrices accomplishes a particular visual task and has its own way
of specifying values:
hueRotate

The values is a single number that tells how many degrees the color values should
be rotated. The mathematics used to accomplish this are very similar to those used
in the rotate transformation as described in “The rotate Transformation” on page
78 in Chapter 6. The relation between rotation and resulting color is not at all
obvious, as shown in Figure 11-6; you may want to experiment with the online
version:

http://oreillymedia.github.io/svg-essentials-examples/ch11/hue_rotate.html

Creating a Glowing Shadow | 161

http://oreillymedia.github.io/svg-essentials-examples/ch11/hue_rotate.html


Figure 11-6. Result of hueRotate on fully saturated colors

saturate

The values attribute specifies a single number in the range 0 to 1. The smaller the
number, the more “washed out” the colors will be, as you see in Figure 11-7. A value
of 0 converts the graphic to black and white. The filter can be used only to de-
saturate (wash out) an image; you cannot increase saturation (to make a normal
image technicolor) with this method.

Test out other saturation values with the online example:

http://oreillymedia.github.io/svg-essentials-examples/ch11/saturate.html

Figure 11-7. Result of saturate on primary and secondary colors

luminanceToAlpha

This filter creates an alpha channel based upon a color’s luminance. The luminance
is the inherent “brightness” of a color, as described in “Masking” on page 149 in
Chapter 10. In Figure 11-8, the luminance of the colored squares is used as an alpha
channel for solid black squares. The filter discards the color of the original squares,
with the result being solid black with varying opacity levels. The lighter a color, the
less the transparency it confers upon the filtered object. The values attribute is
ignored for this type.

Figure 11-8. Result of luminanceToAlpha

162 | Chapter 11: Filters

http://oreillymedia.github.io/svg-essentials-examples/ch11/saturate.html


The <feImage> Filter
Up to this point, you have seen only the original graphic or its alpha channel as input
to a filter. SVG’s <feImage> element lets you use any JPG, PNG, or SVG file—or an SVG
element with an id attribute—as input to a filter. Example 11-4 imports a picture of the
sky with a cloud in it to use as a background for the picture of the flower.

Example 11-4. Using the feImage element
<defs>
<filter id="sky-shadow" filterUnits="objectBoundingBox">
    <feImage xlink:href="sky.jpg" result="sky"
         x="0" y="0" width="100%" height="100%"
         preserveAspectRatio="none"/>
    <feGaussianBlur in="SourceAlpha" stdDeviation="2" result="blur"/>
    <feOffset in="blur" dx="4" dy="4" result="offsetBlur"/>
    <feMerge>
        <feMergeNode in="sky"/>
        <feMergeNode in="offsetBlur"/>
        <feMergeNode in="SourceGraphic"/>
    </feMerge>
</filter>
</defs>

<g id="flower" style="filter: url(#sky-shadow)">
    <!-- flower graphic goes here -->
</g>

<!-- show original image -->
<image xlink:href="sky.jpg" x="170" y="10"
    width="122" height="104"/>

Figure 11-9 shows the result, with the original picture of the sky shown at right at its
true size. The image is stretched to fit the filter region defined on the <filter> element
by default (there are no dimensions on the filter, so the default filter region is 10%
padding around the object bounding box). You can set explicit height, width, and x/y
offsets on the <feImage> element. By default, these measurements are in
userSpaceOnUse units; however, any percentage values are calculated relative to the
filter region. You can use the primitiveUnits attribute on the <filter> element to
switch to objectBoundingBox units, but this will affect all the elements in the filter.

The <feImage> Filter | 163



Figure 11-9. Result of feImage

In addition to importing a complete image file, you can use a URL
fragment in the xlink:href attribute to import part of an SVG
graphic—from a file or from elsewhere in the same SVG—into your
filter. Unfortunately, image fragments in <feImage> are not yet sup‐
ported in Mozilla Firefox. You can monitor Bugzilla bug 455986 to
see if that changes.

The <feComponentTransfer> Filter
The problem with the background is that it is too dark. Using saturate isn’t the answer;
it changes the intensity of the color, but maintains its brightness (luminance). To lighten
the image, you need to increase the value of each color channel. You could do this with
a custom color matrix, but <feComponentTransfer> provides an easier and more flex‐
ible way to manipulate each channel (component) separately. It also lets you adjust each
color channel differently, so you can make the blue sky both lighter and less intense by
increasing the level of green and red more than the blue level.

You adjust the levels of red, green, blue, and alpha by placing a <feFuncR>, <feFuncG>,
<feFuncB>, and <feFuncA> element inside <feComponentTransfer>. Each of these sub‐
elements may independently specify a type attribute telling how that particular channel
is to be modified.

To simulate the effect of a brightness control, you specify the linear function, which
places the current color value C into the formula slope * C + intercept. The intercept
provides a “base value” for the result; the slope is a simple scaling factor. Example 11-5
uses a filter that adds a brightened sky to the flower with the drop shadow. Note that
the red and green channels are adjusted differently than the blue channel. This dra‐
matically brightens the sky in Figure 11-10.

164 | Chapter 11: Filters

https://bugzilla.mozilla.org/show_bug.cgi?id=455986


Example 11-5. Changing brightness with feComponentTransfer
http://oreillymedia.github.io/svg-essentials-examples/ch11/linear_transfer.html
<filter id="brightness-shadow" filterUnits="objectBoundingBox">
  <feImage xlink:href="sky.jpg" result="sky"/>
  <feComponentTransfer in="sky" result="sky">
    <feFuncB type="linear" slope="3" intercept="0"/>
    <feFuncR type="linear" slope="1.5" intercept="0.2"/>
    <feFuncG type="linear" slope="1.5" intercept="0.2"/>
  </feComponentTransfer>
  <feGaussianBlur in="SourceAlpha" stdDeviation="2" result="blur"/>
  <feOffset in="blur" dx="4" dy="4" result="offsetBlur"/>
  <feMerge>
    <feMergeNode in="sky"/>
    <feMergeNode in="offsetBlur"/>
    <feMergeNode in="SourceGraphic"/>
  </feMerge>
</filter>

Figure 11-10. Result of linear component transfer

A simple linear adjustment will add and multiply the same amount to every color value
within a channel. This is not the case with the gamma function, which places the current
color value C into the formula amplitude * Cexponent + offset. The offset provides a
“base value” for the result; the amplitude is a simple scaling factor, and exponent makes
the result a curved line rather than a straight line. Because the color value is always
between 0 and 1, the larger your exponent, the smaller the modified value will be.
Figure 11-11 shows the curves generated with exponent values of 0.6 (the solid black
line), 0.3 (the dashed line), and 1.66667 (the gray line).

Looking at the dashed line, you can see that a low original color value such as 0.1 will
be boosted to 0.5, a 400% increase. An original value of 0.5, on the other hand, will
increase only 60% to 0.8. The effect is to brighten the image as a whole and to increase
the contrast in dark areas while reducing contrast in light areas. For exponents greater
than 1 (the gray line), the modified values are smaller than the original, darkening the
image while increasing the contrast in bright areas. Note that the solid gray and black
lines are symmetrical around the diagonal: the gamma value of 1.6667 is the inverse of

The <feComponentTransfer> Filter | 165

http://oreillymedia.github.io/svg-essentials-examples/ch11/linear_transfer.html


a gamma of 0.6. In any case, the exponent has no effect when the original value is either
0 or 1.

Figure 11-11. Gamma curve functions

When you specify a gamma filter, you set the amplitude, exponent, and offset at‐
tributes to correspond to the values in the preceding formula. Example 11-6 uses gamma
correction to adjust the sky. In this particular case, the differences between Figures 11-10
and 11-12 are minor, but there are some images that can be improved much more by
one method than by the other.

Example 11-6. Gamma adjustment with feComponentTransfer
http://oreillymedia.github.io/svg-essentials-examples/ch11/gamma_transfer.html
<feImage xlink:href="sky.jpg" result="sky"/>
<feComponentTransfer in="sky" result="sky">
  <feFuncB type="gamma"
    amplitude="1" exponent="0.2" offset="0"/>
  <feFuncR type="gamma"
    amplitude="1" exponent="0.707" offset="0"/>
  <feFuncG type="gamma"
    amplitude="1" exponent="0.707" offset="0"/>
</feComponentTransfer>

Figure 11-12. Result of using gamma correction

166 | Chapter 11: Filters

http://oreillymedia.github.io/svg-essentials-examples/ch11/gamma_transfer.html


The astute reader (that’s you) may have observed that both linear and
gamma functions can produce color values greater than 1.0. The SVG
specification says this is not an error; after each filter primitive, the
SVG processor will clamp the values to a valid range. Thus, any val‐
ue greater than 1.0 is reduced to 1.0, and any value less than 0 is set
to 0.

<feComponentTransfer> has other options for the type attribute. Note that you may
mix and match any of these; you can gamma-correct the red values while brightening
the green values with a linear function:
identity

A “do-nothing” function. This lets you explicitly state that a color channel should
remain unaffected. (This is the default if you don’t provide an <feFuncX> element
for a particular channel.)

table

Lets you divide the color values into a series of equal intervals, each of which will
be proportionately scaled. Consider the following remapping, which doubles the
value of the lowest quarter of the color range, squeezes the next quarter into a range
of one-tenth, keeps the third quarter in exact proportion, and then squeezes the last
quarter of the values into the remaining 15% of the color range:

Original value range Modified value range

0.00–0.25 0.00–0.50

0.25–0.50 0.50–0.60

0.50–0.75 0.60–0.85

0.75–1.00 0.85–1.00

You would specify this mapping for the green channel by listing the endpoints of the
remapped range in the tableValues attribute:

<feFuncG type="table"
  tableValues ="0.0, 0.5, 0.6, 0.85, 1.0"/>

If you are dividing the input spectrum into n different sections, you must provide n+1
items in tableValues, separated by whitespace or commas:
discrete

Lets you divide the color values into a series of equal intervals, each of which will
be mapped to a single discrete color value. Consider the following remapping, which
maps the value of the lowest quarter of the color range to 0.125, sets the next quarter
to 0.375, the third quarter to 0.625, and remaining quarter to 0.875 (i.e., each quarter
of the range is mapped to its center point):

The <feComponentTransfer> Filter | 167



Original value range Modified value

0.00–0.25 0.125

0.25–0.50 0.375

0.50–0.75 0.625

0.75–1.00 0.875

You would specify this mapping for the green channel by listing the discrete values,
separated by commas or whitespace, in the tableValues attribute:

<feFuncG type="discrete"
  tableValues ="0.125 0.375 0.625 0.875"/>

Dividing the input channel into n sections requires n entries in the tableValues at‐
tribute. Exception: If you want to remap all the input values to a single output value, you
must place that entry into tableValues twice. Thus, to set any input value of the blue
channel to 0.5, you would say:

<feFuncB type="discrete" tableValues="0.5 0.5"/>

If you want to invert the range of color values for a channel (i.e.,
change increasing values from a minimum to maximum into de‐
creasing values from the maximum to the minimum), use this:

<feFuncX type="table"
  tableValues="maximum minimum"/>

Figure 11-13 shows the result of using discrete and table transfers as well as inversion
via a table transfer.

Figure 11-13. Result of using table and discrete transfers

168 | Chapter 11: Filters



Defining the Color Space
Ordinarily, the values for red, green, or blue run in a straight line from 0 to 1, with 0
being none of the color and 1 being 100% of the color. This is called a linear color
space. However, when SVG calculates the color values between gradient stops (as de‐
scribed in Chapter 8, in “Gradients” on page 113), SVG uses a special way of representing
color such that the values do not follow a straight line from 0 to 1. This representation
is called the standard RGB or sRGB color space, and its use can make gradients much
more natural-looking. Figure 11-14 shows a comparison. The first gradient goes from
black to green, the second from red to green to blue, and the third from black to white.

By default, filter arithmetic calculates any interpolated (“in-between”) values in the lin‐
ear RGB space, so if you apply a filter to an object that has been filled with a gradient,
you will get results that aren’t at all what you expect. In order to get the correct result,
you must tell the filter to do its calculations in sRGB space by adding a
color-interpolation-filters="sRGB" attribute to your <filter> element. As
an alternative, you may choose to leave the filter alone and apply
color-interpolation="linearRGB" to the <gradient> element, so that it uses the same
color space as the default for filters.

Figure 11-14. Comparison of linearRGB and sRGB

The <feComposite> Filter
So far we have combined the results of filters by using <feMerge> to layer the inter‐
mediate results one over another. The much more general <feComposite> element takes
two inputs, specified with the in and in2 attributes, and an operator that tells how the
two are to be combined. In the following explanation, presume you’ve specified
result="A" and result="B" for previous filter primitive outputs:
<feComposite operator="over" in="A" in2="B"/>

Produces the result of layering A over B, exactly as <feMergeNode> does. In fact,
<feMergeNode> is really just a convenient shortcut for an <feComposite> element
that specifies an over operation. (<feMergeNode> also allows you to layer more than
two graphics at a time.)

The <feComposite> Filter | 169

http://www.w3.org/Graphics/Color/sRGB.html


1. “Compositing Digital Images,” T. Porter, T. Duff, SIGGRAPH ’84 Conference Proceedings, Association for
Computing Machinery, Volume 18, Number 3, July 1984.

<feComposite operator="in" in="A" in2="B"/>
The result is the parts of A that overlap the opaque areas of B. It is similar to a masking
effect, but the mask is based on only the alpha channel of B, not its color luminance.
Don’t confuse the name of this attribute value with the in attribute.

<feComposite operator="out" in="A" in2="B"/>
The result is the parts of A that are outside the opaque areas of B (with a reverse-
masking effect for partially transparent areas).

<feComposite operator="atop" in="A" in2="B"/>
The result is the part of A that is inside B, as well as the part of B outside A. To quote
the article in which these operators were first defined: “…paper atop table includes
paper where it is on top of table, and table otherwise; area beyond the edge of the
table is out of the picture.”1

<feComposite operator="xor" in="A" in2="B"/>
The result is the part of A that is outside B together with the part of B that is
outside A.

<feComposite in="A" in2="B" operator="arithmetic"…/>
The ultimate in flexibility. You provide four coefficients: k1, k2, k3, and k4. The
result for each channel of each pixel is calculated as follows:

k1 * A * B + k2 * A + k3 * B + k4

where A and B are the values for that channel and pixel from the input graphics.

The arithmetic operator is useful for doing a “dissolve” effect. If you
want to have a resulting image that is a% of image A and b% of image
B, set k1 and k4 to 0, k2 to a/100, and k3 to b/100. For example, to
make a blend with 30% of A and 70% of B, you’d use this:

<feComposite in="A" in2="B" result="combined"
  k1="0" k2="0.30" k3="0.70" k4="0"/>

Figure 11-15 shows the combinations we’ve described, with red text as the in image and
a blurred offset shadow as the in2 image; the arithmetic blend is 50% of the text and
50% of its shadow.

170 | Chapter 11: Filters



Figure 11-15. Result of using feComposite operators

Example 11-7 uses the in and out operators to do “cut-outs.” The drop shadow has been
eliminated from this example to produce a more visually pleasing result in Figure 11-16.

Example 11-7. Use of feComposite in and out
<defs>
<filter id="sky-in" filterUnits="objectBoundingBox">
  <feImage xlink:href="sky.jpg" result="sky"
    x="0" y="0" width="100%" height="100%"
    preserveAspectRatio="none"/>
  <feComposite in="sky" in2="SourceGraphic"
    operator="in"/>
</filter>

<filter id="sky-out" filterUnits="objectBoundingBox">
  <feImage xlink:href="sky.jpg" result="sky"
    x="0" y="0" width="100%" height="100%"
    preserveAspectRatio="none"/>
  <feComposite in="sky" in2="SourceGraphic"
    operator="out"/>
</filter>

<g id="flower">
  <!-- flower graphic goes here -->
</g>
</defs>

<use xlink:href="#flower" transform="translate(10,10)"
  style="filter: url(#sky-in);"/>

<use xlink:href="#flower" transform="translate(170,10)"
  style="filter: url(#sky-out);"/>

Figure 11-16. Result of feComposite in and out

The <feComposite> Filter | 171



The <feBlend> Filter
But wait, there’s more! Yes, filters provide yet another way to combine images. The
<feBlend> element requires two inputs, specified with the in and in2 attributes, and a
mode that tells how the inputs are to be blended. The possible values are: normal,
multiply, screen, lighten, and darken. Given opaque inputs
<feBlend in="A" in2="B" mode="m"/>, the following describes the color of the re‐
sulting pixel for each mode:
normal

B only; this is the same as the over operator in <feComposite>.

multiply

Multiplies (as the name suggests) A’s value and B’s value for each color channel.
Because color values are in the range 0–1, multiplying them makes them smaller.
This darkens colors, with the strongest effect for dark colors or very different intense
colors, and no effect when one of the colors is white. The result is similar to creating
photographic slides for both images and then stacking them together in the same
slide projector—only the light that passes through both is visible.

screen

Adds the color values together for each channel, and then subtracts their product.
Bright or light colors tend to dominate over dark colors, but colors of similar
brightness get combined. The result is similar to having two different slide projec‐
tors, one for each image, shining on the same screen—bright light from one pro‐
jector overpowers shadows from the other.

darken

Takes the minimum of A and B in each channel. This is the darker color, hence the
name.

lighten

Takes the maximum of A and B in each channel. This is the lighter color, hence the
name.

Note that the appropriate calculation is done independently for each of the red, green,
and blue values. So, if you were to darken a pure red square with RGB values of
(100%, 0%, 0%) and a gray square with RGB values of (50%, 50%, 50%), the resulting
color would be (50%, 0%, 0%). If the inputs are not opaque, then all the modes except
for screen factor in the transparencies when making the calculations.

Finally, once the color value is calculated, the opacity of the result is determined by the
formula 1 – (1 – opacity of A) * (1 – opacity of B). Using this formula, two opaque
items will still be opaque; two items that are 50% opaque will combine to one that is
75% opaque.

172 | Chapter 11: Filters



Figure 11-17 shows the result of blending an opaque, white-to-black gradient bar with
opaque and 50% opaque color squares that have RGB values of black (#000), yellow
(#ff0), red (#f00), medium-bright green (#0c0), and dark blue (#009).

Figure 11-17. Result of feBlend

The <feFlood> and <feTile> Filters
The <feFlood> and <feTile> elements are utility filters. Much like <feOffset>, they
allow you to carry out certain common operations within a series of filter primitives
rather than having to create extra SVG elements in your main graphic.

<feFlood> provides a solid-colored area for use in compositing or merging. You provide
the flood-color and flood-opacity, and the filter does the rest.

<feTile> takes its input and tiles it horizontally and vertically to fill the area specified
in the filter. The size of the tile itself is specified by the size of the input to <feTile>.

Example 11-8 uses <feComposite> to cut out the flooded and tiled area to the shape of
a flower. The image used as a tile is shown for reference at the upper right of Figure 11-18.

Example 11-8. Example of feFlood and feTile
<defs>
<filter id="flood-filter" x="0" y="0" width="100%" height="100%">
  <feFlood flood-color="#993300" flood-opacity="0.8" result="tint"/>
  <feComposite in="tint" in2="SourceGraphic"
    operator="in"/>
</filter>

<filter id="tile-filter" x="0" y="0" width="100%" height="100%">
  <feImage xlink:href="cloth.jpg" width="32" height="32"
    result="cloth"/>

The <feFlood> and <feTile> Filters | 173



  <feTile in="cloth" result="cloth"/>
  <feComposite in="cloth" in2="SourceGraphic"
    operator="in"/>
</filter>

<g id="flower">
    <!-- flower graphic goes here -->
</g>
</defs>

<use xlink:href="#flower" transform="translate(0, 0)"
  style="filter: url(#flood-filter);"/>
<use xlink:href="#flower" transform="translate(110,0)"
  style="filter: url(#tile-filter);"/>
<image xlink:href="cloth.jpg" x="220" y="10"
  width="32" height="32"/>

Figure 11-18. Result of feFlood and feTile elements

Lighting Effects
If you draw a bright green circle with SVG, it looks like a refugee from a traffic signal,
glowing by its own light and otherwise lying flat on the screen. If you look at a circle
cut out of green construction paper, it looks more “real” because it is lit from an outside
source and has some texture. A circle cut from green plastic not only is lit from outside;
it also has reflected highlights. Light from an outside source is called diffuse lighting,
and the highlights that reflect off a surface are called specular lighting, from the Latin
speculum, meaning mirror.

In order to achieve these effects, you must specify the following:

• The type of lighting you want (<feDiffuseLighting> or <feSpecularLighting>)
• The object you want to light
• The color of light you are using
• The type of light source you want (<fePointLight>, <feDistantLight>, or
<feSpotLight>) and its location

174 | Chapter 11: Filters



You specify the location of a light source in three dimensions; this means you will need
a z-value in addition to x- and y-values. As with two-dimensional graphics, the positive
x-axis goes from left to right, and the positive y-axis goes from top to bottom. The
positive z-axis is “coming out of the screen” and pointing at you.

Both these lighting effects use the alpha channel of the object they are illuminating as
a bump map; higher alpha values are presumed to be “raised” above the surface of the
object.

Diffuse Lighting
The best way to show how the <feDiffuseLighting> element works is to jump right
into Example 11-9, which shines a pale yellow light on a green circle, textured with the
curve pattern from Example 8-1.

Example 11-9. Diffuse lighting with a point light source
<defs>
  <path id="curve" d="M 0 0 Q 5 20 10 10 T 20 20"     
      style="stroke: black; fill: none;"/>     

  <filter id="diff-light" color-interpolation-filters="sRGB"
    x="0" y="0" width="100%" height="100%">    

    <feImage xlink:href="#curve" result="tile"
        width="20" height="20"/>     

    <feTile in="tile" result="tile"/>

    <feDiffuseLighting in="tile"     
        lighting-color="#ffffcc"
        surfaceScale="1"      
        diffuseConstant="0.5"      
        result="diffuseOutput">     
        <fePointLight x="0" y="50" z="50"/>     
    </feDiffuseLighting>     

    <feComposite in="diffuseOutput" in2="SourceGraphic"
        operator="in" result="diffuseOutput"/>    

    <feBlend in="diffuseOutput" in2="SourceGraphic"
        mode="screen"/>     
  </filter>
</defs>

<circle id="green-light" cx="50" cy="50" r="50"
    style="fill: #060; filter: url(#diff-light)"/>     

Define the curve to be used as the tile.

Lighting Effects | 175



Set the color interpolation method and the boundaries for the filter.
Tile the area of the filter with the curve image. This will become the bump map.
This tiled area is the input to the <feDiffuseLighting> element, which is
illuminated with a pale yellow light, as specified by the lighting-color
attribute.
The surfaceScale attribute tells the height of the surface for an alpha value of
1. (More generally, it’s the factor by which the alpha value is multiplied.)
diffuseConstant is a multiplicative factor that is used in determining the final
RGB values of a pixel. It must have a value greater than or equal to 0; its default
value is 1. The brighter your lighting-color, the smaller this number should
be (unless you like having your picture washed out).
The result of this filter will be named diffuseOutput.
This example uses a point light source, which means a source that radiates light
in all directions. It is positioned at the left center of the area we wish to illuminate,
and it is 50 units in front of the screen. The farther you set the light away from
the object, the more evenly the object is illuminated. In this example, the light
is up close and personal to get the greatest possible effect.
The end of the <feDiffuseLighting> element.
<feComposite>’s in operator clips the filter’s output to the boundaries of the
source graphic (the circle).
Finally, <feBlend> in screen mode, which tends to lighten the input, creates the
final part of the filter.
Activate the filter on the desired object to produce Figure 11-19.

The input to this filter is a four-color graphic, but only the alpha
channel is used. However, when I (David) inserted a
<feColorMatrix type="luminanceToAlpha"> and used its output as
the input to the filter, I did not get the desired effect. Remember that
luminanceToAlpha converts black areas (zero luminance) to com‐
plete transparency (zero alpha). That leaves no difference in alpha
levels between the black squiggle pattern and the transparent empty
background, and therefore no texture for the lighting effects.

176 | Chapter 11: Filters



Figure 11-19. Result of applying diffuse lighting filter

Specular Lighting
Specular lighting, on the other hand, gives highlights rather than illumination.
Example 11-10 shows how this works.

Example 11-10. Specular lighting with a distant light
<defs>
  <path id="curve" d="M 0 0 Q 5 20 10 10 T 20 20"
   style="stroke: black; fill: none;"/>    

  <filter id="spec-light" color-interpolation-filters="sRGB"
    x="0" y="0" width="100%" height="100%">     

    <feImage xlink:href="#curve" result="tile"
        width="20" height="20"/>     

    <feTile in="tile" result="tile"/>

    <feSpecularLighting in="tile"     
        lighting-color="#ffffcc"
        surfaceScale="1"      
        specularConstant="1"     
        specularExponent="4"      
        result="specularOutput">     
        <feDistantLight elevation="25" azimuth="0"/>     
    </feSpecularLighting>     

    <feComposite in="specularOutput" in2="SourceGraphic"
        operator="in" result="specularOutput"/>     

    <feComposite in="specularOutput" in2="SourceGraphic"
        operator="arithmetic" k1="0" k2="1" k3="1" k4="0"/>     
  </filter>
</defs>

<circle id="green-light" cx="50" cy="50" r="50"
  style="fill: #060; filter: url(#spec-light)"/>   

As in the previous example, define the curve.
The only difference between this and the previous example is the filter name.
As in the previous example, this section tiles the curve.

Lighting Effects | 177



Starts the definition of the <feSpecularLighting> filter and specifies the
lighting-color to be a pale yellow light.
The surfaceScale attribute tells the height of the surface for an alpha value of
1. (Specifically, it’s the factor by which the alpha value is multiplied.)
specularConstant is a multiplicative factor used in determining the final RGB
values of a pixel. It must have a value greater than or equal to 0; its default value
is 1. The brighter your lighting-color, the smaller this number should be. The
effect of this number is also moderated by the specularExponent attribute.
specularExponent is another factor used in determining the final RGB values
of a pixel. This attribute must have a value from 1 to 128; the default value is 1.
The larger this number, the more “shiny” the result.
The result of this filter will be named specularOutput.
This example uses a distant light source, one which is so far away from the image
that its light hits all parts of the image at the same angle. Instead of specifying
the position of the light source, you specify the angle that the light is coming
from.
The elevation and azimuth attributes let you specify the angle in three
dimensions. Specifically, elevation gives the angle of light above the plane of
the screen: elevation="0" is light shining flat across the image, while
elevation="90" is light shining straight down.

The azimuth specifies the angle within the plane; when elevation is 0,
azimuth="0" specifies light coming from the right of the image (more generally,
the positive end of the x-axis); azimuth="90" is from the bottom (positive end
of the y-axis), azimuth="180" is from the left, and azimuth="270" is from the
top.

The end of the <feSpecularLighting> element. Note that the input to this filter
was an alpha channel; the output contains both alpha and color information
(unlike <feDiffuseLighting>, which always produces an opaque result).
Use <feComposite>’s in operator to clip the filter’s output to the boundaries of
the source graphic (the circle).
Finally, use <feComposite> with the arithmetic operator to do a straight
addition of the lighting and the source graphic.
Activate the filter on the circle, producing the highlighting relief effect in
Figure 11-20.

178 | Chapter 11: Filters



Figure 11-20. Result of applying specular lighting filter

An excellent tutorial on lighting effects in three dimensions is
available. We’re working in only two dimensions, but much of the
information is applicable.

A third type of light source, <feSpotLight>, is specified with these attributes: x, y, and
z, the location of the spotlight (default value is 0); pointsAtX, pointsAtY, and
pointsAtZ, the place the spotlight is pointing at (default value is 0);
specularExponent, a value that controls the focus for the light source (default value is
1); and limitingConeAngle, which restricts the region where the light is projected. This
is the angle between the spotlight axis and the cone. Thus, if you want a 30-degree spread
for the entire cone, specify the angle as 15. (The default value is to allow unlimited
spread.)

Accessing the Background
In addition to the SourceGraphic and SourceAlpha filter inputs, a filtered object may
access the part of the image that has already been rendered onto the canvas when you
invoke a filter. These parts are called BackgroundImage (not BackgroundGraphic) and
BackgroundAlpha. In order to access these inputs, the filtered object must be within a
container element that has set the enable-background attribute to the value new.
Example 11-11 performs a Gaussian blur on the background image.

Example 11-11. Accessing the background image
<defs>
  <filter id="blur-background">   
    <feGaussianBlur in="BackgroundImage" stdDeviation="2" result="blur" />
    <feComposite in="blur" in2="SourceGraphic" operator="in" />
    <feOffset dx="4" dy="4" result="offsetBlur"/>
  </filter>
</defs>

<g enable-background="new">     
  <rect x="0" y="0" width="60" height="60"
    style="fill: lightblue; stroke: blue; stroke-width:10" />    
  <circle cx="40" cy="40" r="30"

Accessing the Background | 179

http://www.webreference.com/3d/lesson12/


    style="fill: #fff; filter: url(#blur-background);" />   
</g>

This is similar to the blur filter used for drop shadows, except the input is now
the BackgroundImage rather than the SourceAlpha.
Because <g> is a container element, it is a perfect candidate for placing the
enable-background. All the children of this element will have access to the
background image and alpha.
The rectangle is drawn onto the canvas and into a background buffer.
The circle does not display directly; the filter blurs the background image (which
does not include the circle) and composites in the SourceGraphic. Figure 11-21
shows the result.

As of the time of writing, no web browser implements
enable-background or the BackgroundImage and BackgroundAlpha
inputs. If you use those inputs in a filter in a browser that does not
support them, the filter will not return anything—meaning that the
filtered part of your graphic will disappear.
An alternative is to separate out the background into its own <g>
element and use <feImage> to import it into your filter. Adapting
Example 11-11 in this way results in the following code:

<defs>
  <filter id="blur-background">
    <feImage xlink:href="#background" result="bg"/>
    <feGaussianBlur in="bg" stdDeviation="2" result="blur" />
    <feComposite in="blur" in2="SourceGraphic" operator="in" />
    <feOffset dx="4" dy="4" result="offsetBlur"/>
  </filter>
</defs>

<g id="background">
  <rect x="0" y="0" width="60" height="60"
    style="fill: lightblue; stroke: blue; stroke-width:10" />
</g>
<circle cx="40" cy="40" r="30"
    style="fill: #fff; filter: url(#blur-background);" />

The result is the same as Figure 11-21 in browsers that support the
use of SVG fragments for <feImage> (it currently does not work in
Mozilla Firefox).

180 | Chapter 11: Filters



Figure 11-21. Result of accessing background image

The <feMorphology> Element
The <feMorphology> element lets you “thin” or “thicken” a graphic. You specify an
operator with a value of erode to thin or dilate to thicken a graphic. The radius
attribute tells us how much the lines are to be thickened or thinned. It’s ordinarily applied
to alpha channels. Example 11-12 erodes and dilates a simple line drawing. As you see
in Figure 11-22, erosion can wreak havoc on a drawing that has thin lines to begin with.

Example 11-12. Thickening and thinning with feMorphology
http://oreillymedia.github.io/svg-essentials-examples/ch11/fe_morphology.html
<defs>
  <g id="cat" stroke-width="2">
      <!-- drawing of a cat -->
  </g>

  <filter id="erode1">
    <feMorphology operator="erode" radius="1"/>
  </filter>

  <filter id="dilate2">
    <feMorphology operator="dilate" radius="2"/>
  </filter>
</defs>

<use xlink:href="#cat"/>
<text x="75" y="170" style="text-anchor: middle;">Normal</text>

<use xlink:href="#cat" transform="translate(150,0)"
    style="filter: url(#erode1);"/>
<text x="225" y="170" style="text-anchor: middle;">Erode 1</text>

<use xlink:href="#cat" transform="translate(300,0)"
    style="filter: url(#dilate2);"/>
<text x="375" y="170" style="text-anchor: middle;">Dilate 2</text>

The <feMorphology> Element | 181

http://oreillymedia.github.io/svg-essentials-examples/ch11/fe_morphology.html


Figure 11-22. Result of using feMorphology

The <feConvolveMatrix> Element
The <feConvolveMatrix> element lets you calculate a pixel’s new value in terms of the
values of its neighboring pixels. This filter lets you do effects such as blurring, sharp‐
ening, embossing, and beveling. It works by combining a pixel with its neighboring
pixels to produce a resulting pixel value. Imagine a pixel P and its eight neighboring
pixels (the usual case that is used with this filter):

A  B  C
D  P  E
F  G  H

You then specify a list of nine numbers in the kernelMatrix attribute. These numbers
tell how much to multiply each pixel by. These products will be added up. The sum
could well come out to be greater than 1 (if all the factors are positive, for example), so,
to even the intensity, the result is divided by the total of the factors. Let’s say you specify
these nine numbers (spaced out to show them as a matrix):

<feConvolveMatrix kernelMatrix="
   0  1  2
   3  4  5
   6  7  8"/>

The new value of pixel P will then be as follows:

P' = ((0*A) + (1*B) + (2*C) +
     (3*D) + (4*P) + (5*E) +
     (6*F) + (7*G) + (8*H)) / ( 0 + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8)

The exception is if all your matrix values sum to 0; in this case, no division is performed.

You can also specify a bias property, which shifts the output range of the filter by adding
the specified offset value to each pixel. The bias is added after the division, but before
the result is clamped to the 0–1 allowable range.

182 | Chapter 11: Filters



2. Filters containing <feConvolveMatrix> elements caused rendering errors when tested in Apache Batik ver‐
sion 1.7; the example works as expected when it was tested in web browsers.

Example 11-13 achieves the embossing effect shown in Figure 11-23 by taking the upper-
left neighbor minus the lower-right neighbor of each pixel.2 The bias of 0.5 is added
after the kernelMatrix summation and division is applied. The bias causes pixels with
identical top-left and bottom-right neighbors to be displayed as gray (versus black
without a bias shift). Pixels where the top-left neighbor is brighter than the bottom-left
neighbor display in dark colors, while pixels where the bottom-left neighbor is brighter
display in bright colors. As a result, diagonal edges are highlighted as if the image were
raised up and lit from the side. The transparent background pixels are considered to
have a color of black.

The default behavior of <feConvolveMatrix> is to apply the calculations to all the
channels, including alpha. With that setting, only the edges of each shape—the ones for
which the upper-left neighbors have a higher alpha value than the (transparent back‐
ground) lower-right neighbors—would be displayed. In order to apply calculations only
to the red, green, and blue values, we specified preserveAlpha as true; the default value
is false.

Example 11-13. Embossing with feConvolveMatrix
<defs>
  <filter id="emboss">
    <feConvolveMatrix
      preserveAlpha="true"
      kernelMatrix="1 0 0 0 0 0 0 0 -1"
      bias="0.5"/>
  </filter>

  <g id="flower">
    <!-- flower graphic goes here -->
  </g>
</defs>

<use xlink:href="#flower" style="filter: url(#emboss);"/>

Figure 11-23. Result of using feConvolveMatrix

The <feConvolveMatrix> Element | 183



Although the default matrix size is three columns by three rows, you can specify any
size you want with the order attribute. If you specify order="4", then the matrix will
require sixteen numbers (4 by 4) in the kernelMatrix attribute. A matrix with three
columns and two rows would be specified by order="3 2" and would require six num‐
bers. The larger your kernel matrix, the more computation is required to produce the
result.

For a pixel in the middle of a graphic, the neighbors are easy to identify. What do you
do with the pixels on the edges of the graphic? Who are their neighbors? This decision
is made by the setting you give the edgeMode attribute. If you set its value to be duplicate
(the default), then <feConvolveMatrix> duplicates the edge values in the required di‐
rection to produce a neighbor. The value wrap wraps around to the opposite side to find
a neighbor. For example, the neighbor above a pixel at the top is the pixel at the bottom,
and the neighbor to the left of a pixel at the left edge is the corresponding pixel at the
right edge. This behavior is useful if the image being modified will be used as a repeating
tile. The value of none will provide a transparent black pixel (red, green, blue, and alpha
values of zero) for any missing neighbors.

All the possibilities from <feConvolveMatrix> can’t possibly be described here. Ex‐
periment with the online example and see what you can come up with:

http://oreillymedia.github.io/svg-essentials-examples/ch11/convolve.html

The <feDisplacementMap> Element
This fascinating filter uses the color values of its second input to decide how far to move
the pixels in the first input. You specify which color channel should be used to affect
the x-coordinate of a pixel with the xChannelSelector attribute; the yChannelSelector
attribute specifies the color channel used to affect the y-coordinate. The legal values for
these selectors are "R", "G", "B", and "A" (for the alpha channel). You must specify how
far to displace pixels; the scale attribute gives the appropriate scaling factor. If you don’t
specify this attribute, the filter won’t do anything.

Example 11-14 creates a gradient rectangle as the second input. The displacement factor
will be set to 10, the red channel will be used as an x offset, and the green channel will
be used as a y offset. Figure 11-24 shows the result of applying this displacement to the
flower.

Example 11-14. Using a gradient as a displacement map
<defs>
  <linearGradient id="gradient">
    <stop offset="0" style="stop-color: #ff0000;" />
    <stop offset="0.5" style="stop-color: #00ff00;"/>
    <stop offset="1" style="stop-color: #000000;"/>
  </linearGradient>

184 | Chapter 11: Filters

http://oreillymedia.github.io/svg-essentials-examples/ch11/convolve.html


  <rect id="rectangle" x="0" y="0" width="100" height="200"
    style="fill: url(#gradient);"/>

  <filter id="displace">
    <feImage xlink:href="#rectangle" result="grad"/>

    <feDisplacementMap
      scale="10"
      xChannelSelector="R"
      yChannelSelector="G"
      in="SourceGraphic" in2="grad"/>
  </filter>
  <g id="flower">
    <!-- flower graphic goes here -->
  </g>
</defs>

<use xlink:href="#flower" style="filter: url(#displace);"/>

Figure 11-24. Result of using feDisplacementMap

It’s possible to use the same graphic for both inputs. This means a graphic’s displacement
is controlled by its own coloration. This effect, as written in Example 11-15 and displayed
in Figure 11-25, can be quite eccentric.

Example 11-15. Using a graphic as its own displacement map
<defs>
<filter id="self-displace">
  <feDisplacementMap
    scale="10"
    xChannelSelector="R"
    yChannelSelector="G"
    in="SourceGraphic" in2="SourceGraphic"/>
</filter>

<g id="flower">
  <!-- flower graphic goes here -->
</g>
</defs>

The <feDisplacementMap> Element | 185



<use xlink:href="#flower" style="filter: url(#self-displace);"/>

Figure 11-25. Same graphic used as both inputs to feDisplacementMap

The <feTurbulence> Element
The <feTurbulence> element lets you produce artificial textures for effects like marble,
clouds, etc. by using equations developed by Ken Perlin.This is referred to as Perlin
noise. You specify these attributes:
type

One of turbulence or fractalNoise. Fractal noise is smoother in appearance.

baseFrequency

The larger the number you give as the value for this attribute, the more quickly
colors change in the result. This number must be greater than 0 and should be less
than 1. You may also give two numbers for this attribute; the first will be the fre‐
quency in the x direction, and the second will be the frequency in the y direction.

numOctaves

This is the number of noise functions that should be added together when gener‐
ating the final result. The larger this number, the more fine-grained the texture. The
default value is 1.

seed

The starting value for the random number generator this filter uses. The default
value is 0; change it to get some variety in the result.

Figure 11-26 is a screenshot of an SVG file showing various values of the first three of
these attributes.

186 | Chapter 11: Filters

http://freespace.virgin.net/hugo.elias/models/m_perlin.htm
http://freespace.virgin.net/hugo.elias/models/m_perlin.htm


Figure 11-26. Various values of feTurbulence attributes

The online example allows you to experiment with all three parameters:

http://oreillymedia.github.io/svg-essentials-examples/ch11/turbulence.html

Filter Reference Summary
The <filter> element contains a series of filter primitives, each of which takes one or
more inputs and provides a single result for use with other filters. The result of the last
filter in the series is rendered into the final graphic. You specify the dimensions of the
canvas to which the filter applies with the x, y, width, and height attributes. Use
filterUnits to specify the units used to define the filter region, and primitiveUnits
to specify the coordinate system for the various length values within the filter primitives.

Table 11-1 presents a filter reference summary. Each of the filter primitive elements has
an in attribute that gives the source for the primitive, and may also specify an x, y,
width, and height.

Table 11-1. Filter reference summary
Element Attributes

<feBlend> in2="second source"

mode="normal" | "multiply" | "screen" | "darken" | "lighten"

(default is normal)

<feColorMatrix> type="matrix" | "saturate" | "hueRotate" |

"luminanceToAlpha"

values="matrix values" | "saturation value (0-1)" |
"rotate degrees"

<feComponentTransfer> Container for <feFuncR>, <feFuncG>, <feFuncB>, and <feFuncA> elements

Filter Reference Summary | 187

http://oreillymedia.github.io/svg-essentials-examples/ch11/turbulence.html


Element Attributes

<feFuncX> type="identity" | "table" | "discrete" | "linear" | "gamma"

tableValues="intervals for table, steps for discrete"

slope="linear slope"

intercept="linear intercept"

amplitude="gamma amplitude"

exponent="gamma exponent"

offset="gamma offset"

<feComposite> in2="second source"

operator="over" | "in" | "out" | "atop" | "xor" |

"arithmetic"

The following attributes are used with arithmetic (any attributes that are not specified
have a default value of 0):
k1="factor for in1*in2"

k2="factor for in1"

k3="factor for in2"

k4="additive offset"

<feConvolveMatrix> order="columns rows" (default 3 by 3)
kernel="values"

bias="offset value"

<feDiffuseLighting> Container for a light source element
surfaceScale="height" (default 1)
diffuseConstant="factor" (must be non-negative; default 1)

<feDisplacementMap> scale="displacement factor" (default 0)
xChannelSelector="R" | "G" | "B" | "A"

yChannelSelector="R" | "G" | "B" | "A"

in2="second input"

<feFlood> flood-color="color specification"

flood-opacity="value (0-1)"

<feGaussianBlur> stdDeviation="blur spread" (larger is blurrier; default 0)

<feImage> xlink:href="image source"

<feMerge> Container for <feMergeNode> elements

<feMergeNode> in="intermediate result"

<feMorphology> operator="erode" | "dilate"

radius="x-radius y-radius"

radius="radius"

<feOffset> dx="x offset" (default 0)
dy="y offset" (default 0)

<feSpecularLighting> Container for a light source element
surfaceScale="height" (default 1)
specularConstant="factor" (must be non-negative; default 1)
specularExponent="exponent" (range 1-128; default 1)

<feTile> Tiles the in layer

188 | Chapter 11: Filters



Element Attributes

<feTurbulence> type="turbulence" | "fractalNoise"

baseFrequency="x-frequency y-frequency"

baseFrequency="frequency"

numOctaves="integer"

seed="number"

<feDistantLight> azimuth="degrees" (default 0)
elevation="degrees" (default 0)

<fePointLight> x="coordinate" (default 0)
y="coordinate" (default 0)
z="coordinate" (default 0)

<feSpotLight> x="coordinate" (default 0)
y="coordinate" (default 0)
z="coordinate" (default 0)
pointsAtX="coordinate" (default 0)
pointsAtY="coordinate" (default 0)
pointsAtZ="coordinate" (default 0)
specularConstant="focus control" (default 1)
limitingConeAngle="degrees"

Filter Reference Summary | 189





CHAPTER 12

Animating SVG

Up to this point, all the images you have seen are static images; once constructed, they
never change. In this chapter, we will examine two of three methods of making graphic
images move. The first method, SMIL-based animation, should be used for movement
that is a fundamental part of what the graphic represents, and for which the motion can
be defined ahead of time. CSS animations should be used for stylistic effects and simple
feedback (like highlighting an element on focus/hover). Scripting should be used for
more complex interaction, and it is covered in Chapter 13.

In Chapter 11, we suggested that filters should be used as a means to enhance a graphic’s
message, not as an end in themselves. This suggestion is even more crucial with ani‐
mation. Drunk with the power of animation, you will be tempted to turn your every
graphic into an all-dancing, all-singing, Broadway spectacular. As long as your goal is
experimentation, this is fine. If your goal is to convey a message, however, nothing is
worse than gratuitous use or overuse of animation. Let me state this clearly: nobody
except the company CEO is interested in repeated viewing of a spinning, flashing, color-
changing, strobe-lit version of the company logo.

In this chapter, the message is the animation, so most of the examples will be remarkably
free of any content while, of course, avoiding gratuitous and overwrought animation as
much as possible.

Internet Explorer browsers (through version 11, the latest at the time
of writing) do not support either the SMIL-based animation or CSS
animation applied to SVG elements. There are JavaScript-based sol‐
utions such as SMILscript and FakeSMILe that can convert SMIL-
based animation into scripted animation for Internet Explorer.

191

http://schepers.cc/svg/smilscript/
http://leunen.me/fakesmile/


Animation Basics
The animation features of SVG are based on the World Wide Web Consortium’s
Synchronized Multimedia Integration Language Level 3 (SMIL3) specification. In this
system, you specify the starting and ending values of the attribute, color, motion, or
transformation you wish to animate; the time at which the animation should begin; and
the duration of the animation. Example 12-1 gives the basic code.

Example 12-1. The incredible shrinking rectangle
http://oreillymedia.github.io/svg-essentials-examples/ch12/simple_animation.html
<rect x="10" y="10" width="200" height="20" stroke="black" fill="none">
  <animate
    attributeName="width"
    attributeType="XML"
    from="200" to="20"
    begin="0s" dur="5s"
    fill="freeze" />
</rect>

The first thing to notice is that the <rect> element is no longer an empty element; the
animation is contained within the element.

The <animate> element specifies the following:

• The attributeName whose value should change over time; in this case, width.
• The attributeType. The width attribute is an XML attribute. The other common

value of attributeType is CSS, indicating that the property you want to change is
a CSS property. If you omit this specification, the default value of auto is used; it
searches through CSS properties first and then XML attributes.

• The starting (from) and ending (to) values for the attribute. In this example, the
starting value is 200, and the ending value is 20. The from value is optional; if you
leave it out, the starting value is whatever was specified in the parent element.There
is also a by attribute, which you may use instead of to; it is an offset added to the
starting from value; the result is the ending value.

• The beginning and duration times for the animation. In this example, time is meas‐
ured in seconds, specified by the s after the number. Other ways to define time are
described in the next section, “How Time Is Measured” on page 194.

• What to do when the animation finishes. In this example, after the 5-second dura‐
tion, the attribute will “freeze” at the to value. This is the SMIL fill attribute, which
tells the animation engine how to fill up the remaining time. Don’t confuse it with
SVG’s fill attribute, which tells SVG how to paint an object. If you remove this

192 | Chapter 12: Animating SVG

http://www.w3.org/TR/SMIL3/
http://oreillymedia.github.io/svg-essentials-examples/ch12/simple_animation.html


line, the default value (remove) will return the width attribute to its original value
of 200 after the 5-second animation has finished.

Figures 12-1 and 12-2 show the beginning and ending stages of the animation. They
can’t do justice to the actual effect, so we strongly recommend you try it out within your
browser.

Figure 12-1. Beginning of animation

Figure 12-2. Ending of animation

Example 12-2 is a bit more ambitious. It starts with a 20 by 20 green square that will
grow to 250 by 200 over the space of 8 seconds. For the first 3 seconds, the opacity of
the green will increase, and then decrease for the next 3 seconds. Note that fill-opacity
is referred to with attributeType="CSS" because it was set in a style.

Example 12-2. Multiple animations on a single object
http://oreillymedia.github.io/svg-essentials-examples/ch12/multiple_animation.html
<rect x="10" y="10" width="20" height="20"
  style="stroke: black; fill: green; style: fill-opacity: 0.25;">
  <animate attributeName="width" attributeType="XML"
    from="20" to="200" begin="0s" dur="8s" fill="freeze"/>
  <animate attributeName="height" attributeType="XML"
    from="20" to="150" begin="0s" dur="8s" fill="freeze"/>
  <animate attributeName="fill-opacity" attributeType="CSS"
    from="0.25" to="1" begin="0s" dur="3s" fill="freeze"/>
  <animate attributeName="fill-opacity" attributeType="CSS"
    from="1" to="0.25" begin="3s" dur="3s" fill="freeze"/>
</rect>

The last simple example, Example 12-3, animates a square and a circle. The square will
expand from 20 by 20 to 120 by 120 over the space of 8 seconds. Two seconds after the
beginning of the animation, the circle’s radius will start expanding from 20 to 50 over
the space of four seconds. Figure 12-3 shows a combined screenshot of the animation
at four times: 0 seconds, when the animation begins; 2 seconds, when the circle starts
to grow; 6 seconds, when the circle finishes growing; and 8 seconds, when the animation
is finished.

Animation Basics | 193

http://oreillymedia.github.io/svg-essentials-examples/ch12/multiple_animation.html


Example 12-3. Simple animation of multiple objects
http://oreillymedia.github.io/svg-essentials-examples/ch12/multiple_animation2.html
<rect x="10" y="10" width="20" height="20"
  style="stroke: black; fill: #cfc;">
  <animate attributeName="width" attributeType="XML"
     begin="0s" dur="8s" from="20" to="120" fill="freeze"/>
  <animate attributeName="height" attributeType="XML"
     begin="0s" dur="8s" from="20" to="120" fill="freeze"/>
</rect>

<circle cx="70" cy="70" r="20"
  style="fill: #ccf; stroke: black;">
  <animate attributeName="r" attributeType="XML"
    begin="2s" dur="4s" from="20" to="50" fill="freeze"/>
</circle>

Figure 12-3. Stages of multiobject animation

How Time Is Measured
SVG’s animation clock starts ticking when the SVG has finished loading, and it stops
ticking when the user leaves the page. You may specify a beginning or duration for a
particular animation segment as a numeric value in one of these ways:

• A full clock value in hours, minutes, and seconds (1:20:23).
• A partial clock value in minutes and seconds (02:15).
• A time value followed by an abbreviation that is one of h (hours), min (minutes), s

(seconds), or ms (milliseconds), for example, dur="3.5s" begin="1min". You may
not put any whitespace between the value and the unit.

If no unit is specified, the default is seconds.

Synchronizing Animation
Instead of defining each animation’s start time as the document loading time, you can
tie an animation’s beginning time to the beginning or end of another animation.

194 | Chapter 12: Animating SVG

http://oreillymedia.github.io/svg-essentials-examples/ch12/multiple_animation2.html


Example 12-4 animates two circles; the second one will start expanding as soon as the
first one has stopped shrinking. Figure 12-4 shows the important stages of the
animation.

Example 12-4. Synchronization of animations
<circle cx="60" cy="60" r="30" style="fill: #f9f; stroke: gray;">
  <animate id="c1" attributeName="r" attributeType="XML"
    begin="0s" dur="4s" from="30" to="10" fill="freeze"/>
</circle>

<circle cx="120" cy="60" r="10" style="fill: #9f9; stroke: gray;">
  <animate attributeName="r" attributeType="XML"
    begin="c1.end" dur="4s" from="10" to="30" fill="freeze"/>
</circle>

Figure 12-4. Stages of synchronized animations

It is also possible to add an offset to a synchronization. To make an animation start 2
seconds after another animation, you would use a construction of the form
begin="otherAnim.end+2s". (You may add whitespace around the plus sign.) In
Example 12-5, the second circle begins to grow 1 1/4 seconds after the first circle begins
shrinking.

Example 12-5. Synchronization of animations with offsets
http://oreillymedia.github.io/svg-essentials-examples/ch12/sync_with_offset.html
<circle cx="60" cy="60" r="30" style="fill: #f9f; stroke: gray;">
  <animate id="c1" attributeName="r" attributeType="XML"
    begin="0s" dur="4s" from="30" to="10" fill="freeze"/>
</circle>

<circle cx="120" cy="60" r="10" style="fill: #9f9; stroke: gray;">
  <animate attributeName="r" attributeType="XML"
    begin="c1.begin+1.25s" dur="4s" from="10" to="30" fill="freeze"/>
</circle>

Now that you know about synchronizing animations, we can introduce the end at‐
tribute, which sets an end time for an animation. This is not a substitute for the dur
attribute! The following animation will start 6 seconds after the page loads. It will last
for 12 seconds or until an animation named otherAnim ends, whichever comes first:

Synchronizing Animation | 195

http://oreillymedia.github.io/svg-essentials-examples/ch12/sync_with_offset.html


<animate attributeName="width" attributeType="XML"
  begin="6s" dur="12s" end="otherAnim.end"
  from="10" to="100" fill="freeze"/>

You can, of course, set the value of end to a specific time; this is useful for halting an
animation partway through so you can see if everything is in the right place. This is how
we were able to create Figure 12-3. The following animation starts at 5 seconds and
should last for 10 seconds, but is halted 9 seconds after the document loads (4 seconds
after the animation starts). The animation is stopped 40% of the way through, so the
width will freeze at a value of 140 (40% of the distance from 100 to 200):

<animate attributeName="width" attributeType="XML"
    begin="5s" dur="10s" end="9s"
    from="100" to="200" fill="freeze"/>

Repeated Action
The animations so far occur exactly once; fill is set to freeze to keep the final stage
of the animation. If you want to have the object return to its pre-animation state, omit
the attribute. (This is equivalent to setting fill to the default value of remove.)

Two other attributes allow you to repeat an animation. The first of them,
repeatCount, is set to an integer value telling how many times you want a particular
animation to repeat. The second, repeatDur, is set to a time telling how long the repe‐
tition should last. If you want an animation to repeat until the user leaves the page, set
either repeatCount or repeatDur to the value indefinite. You will usually use only
one of the two, not both. If you do specify both repeatCount and repeatDur, the one
that specifies the end time that occurs first will be used.

The animation in Example 12-6 shows two circles. The upper circle moves from left to
right in two repetitions of 5 seconds each. The second circle moves from right to left
for a total of 8 seconds.

Example 12-6. Example of repeated animation
http://oreillymedia.github.io/svg-essentials-examples/ch12/repeated_action.html
<circle cx="60" cy="60" r="30" style="fill: none; stroke: red;">
  <animate attributeName="cx" attributeType="XML"
    begin="0s" dur="5s" repeatCount="2"
    from="60" to="260" fill="freeze"/>
</circle>

<circle cx="260" cy="90" r="30" style="fill: #ccf; stroke: black;">
  <animate attributeName="cx" attributeType="XML"
    begin="0s" dur="5s" repeatDur="8s"
    from="260" to="60" fill="freeze"/>
</circle>

196 | Chapter 12: Animating SVG

http://oreillymedia.github.io/svg-essentials-examples/ch12/repeated_action.html


1. The color change is affected by the color-interpolation property, as described in “Defining the Color
Space” on page 169. The default interpolation, sRGB, usually produces pleasant results.

Just as it is possible to synchronize an animation with the beginning or ending of another
animation, you can tie the start of one animation to the start of a specific repetition of
another animation. You give the first animation an id, and then set the begin of the
second animation to id.repeat(count), where count is a number beginning at 0 for
the first repetition. Example 12-7 shows an upper circle moving from left to right three
times, requiring 5 seconds for each repetition. The lower square will go right to left only
once, and will not begin until halfway through the second repetition.

Example 12-7. Synchronizing an animation with a repetition
http://oreillymedia.github.io/svg-essentials-examples/ch12/sync_repetition.html
<circle cx="60" cy="60" r="15"
  style="fill: none; stroke: red;">
  <animate id="circleAnim" attributeName="cx" attributeType="XML"
    begin="0s" dur="5s" repeatCount="3"
    from="60" to="260" fill="freeze"/>
</circle>

<rect x="230" y="80" width="30" height="30"
  style="fill: #ccf; stroke: black;">
  <animate attributeName="x" attributeType="XML"
    begin="circleAnim.repeat(1)+2.5s" dur="5s"
    from="230" to="30" fill="freeze"/>
</rect>

Animating Complex Attributes
Animation is not limited to simple numbers and lengths. You can animate nearly any
attribute or style where you can calculate a smooth transition between two values.

To animate a color, simply make the from and to attributes valid color values, as de‐
scribed in Chapter 4, in “Stroke Color” on page 41. The color is treated as a vector of
three numbers for the calculations; the R, G, and B values will each transition from their
value in one color to the other.1 Example 12-8 animates the fill and stroke colors of a
circle, changing the fill from light yellow to red, and the gray outline to blue. Both
animations start 2 seconds after the page loads; this gives you time to see the original
colors.

Example 12-8. Example of animating color
http://oreillymedia.github.io/svg-essentials-examples/ch12/animate_color.html
<circle cx="60" cy="60" r="30"
        style="fill: #ff9; stroke: gray; stroke-width: 10;">

Animating Complex Attributes | 197

http://oreillymedia.github.io/svg-essentials-examples/ch12/sync_repetition.html
http://oreillymedia.github.io/svg-essentials-examples/ch12/animate_color.html


  <animate attributeName="fill"
    begin="2s" dur="4s" from="#ff9" to="red" fill="freeze"/>
  <animate attributeName="stroke"
    begin="2s" dur="4s" from="gray" to="blue" fill="freeze"/>
</circle>

You can also animate attributes that are lists of numbers, so long as the number of
numbers in the list does not change; each value in the list is transitioned separately. That
means you can animate path data or a polygon’s points, so long as you maintain the
number of points and the types of path segments; Example 12-9 shows animations of
both a <polygon> and a <path>.

Example 12-9. Example of animating path and polygon
http://oreillymedia.github.io/svg-essentials-examples/ch12/animate_path_poly.html
<polygon points="30 30 70 30 90 70 10 70"
  style="fill:#fcc; stroke:black">
  <animate id="animation"
    attributeName="points"
    attributeType="XML"
    to="50 30 70 50 50 90 30 50"
    begin="0s" dur="5s" fill="freeze" />
</polygon>

<path d="M15 50 Q 40 15, 50 50, 65 32, 100 40"
  style="fill:none; stroke: black" transform="translate(0,50)">
  <animate attributeName="d"
    attributeType="XML"
    to="M50 15 Q 15 40, 50 50, 32 65, 40 100"
    begin="0s" dur="5s" fill="freeze"/>
</path>

Specifying Multiple Values
All the animation elements presented so far give a starting (from or default) value and
an ending (to) value, and let the computer calculate how to get from one to the other.
It is possible to give specific intermediary values for an animation, allowing a single
<animate> element to define complex sequences of changes. Instead of animating the
color in Example 12-8 from light yellow to red, you can give a semicolon-separated list
of values that the animation will use over the duration. Example 12-10 shows a circle
that animates color using values of light yellow, light blue, pink, and light green.

Example 12-10. Animating color by specific values
http://oreillymedia.github.io/svg-essentials-examples/ch12/animating_values.html
<circle cx="50" cy="50" r="30"
  style="fill: #ff9; stroke:black;">
  <animate attributeName="fill"

198 | Chapter 12: Animating SVG

http://oreillymedia.github.io/svg-essentials-examples/ch12/animate_path_poly.html
http://oreillymedia.github.io/svg-essentials-examples/ch12/animating_values.html


    begin="2s" dur="4s" values="#ff9;#99f;#f99;#9f9"
    fill="freeze"/>
</circle>

The values attribute can also be used to make repeating animations alternate back and
forth between two values, using the format values="start; end; start;".

Timing of Multistage Animations
When an animation has multiple values, the duration of the animation (the dur at‐
tribute) is the time it takes to cycle through all the values. By default, the duration of
the animation is divided into equal time periods for each transition. Example 12-10 used
four color values, so there are three color transitions; the total duration is 4 seconds, so
each transition lasts 4/3 of a second.

The keyTimes attribute allows you to divide the duration in other ways. The format of
keyTimes is also a semicolon-separated list, and it must have the same number of entries
as values. The first entry is always 0 and the last is always 1; the intermediary times are
expressed as decimal numbers between 0 and 1, representing the proportion of the
animation duration that should pass by the time the corresponding value is reached.

More options for controlling timing are created with the calcMode attribute. There are
four possible values for calcMode:
paced

The SVG viewer will calculate the distance between subsequent values and divide
up the duration so that the rate of change is constant (any keyTimes attribute will
be ignored). Paced animation mode works with colors and simple numbers or
lengths, but is not possible for lists of points or path data.

linear

The default for <animate> elements; each transition will proceed at a steady pace,
but the time alotted to each transition is equal (if keyTimes aren’t specified) or is
determined by keyTimes.

discrete

The animation will jump from one value to the next without transitioning. If you
animate a property that doesn’t support transitions (like font-family), discrete
mode will be used automatically.

spline

The animation will accelerate and decelerate according to the values of the
keySplines attribute; you can read more about it in the SVG specifications.

Timing of Multistage Animations | 199

http://www.w3.org/TR/SVG11/animate.html#KeySplinesAttribute


The <set> Element
All of these animations have modified values over time. Sometimes, particularly for
non-numeric attributes or properties that can’t transition, you simply want to change
the value at a chosen point in the animation sequence.

For example, you might want an initially invisible text item to become visible at a certain
time; there’s no real need for both a from and to. Thus, SVG has the convenient short‐
hand of the <set> element, which needs only a to attribute and the proper timing
information. Example 12-11 shrinks a circle down to 0, then reveals text 1/2 second
after the circle is gone.

Example 12-11. Example of set element
http://oreillymedia.github.io/svg-essentials-examples/ch12/animation_set.html
<circle cx="60" cy="60" r="30" style="fill: #ff9; stroke: gray;">
  <animate id="c1" attributeName="r" attributeType="XML"
    begin="0s" dur="4s" from="30" to="0" fill="freeze"/>
</circle>

<text text-anchor="middle" x="60" y="60" style="visibility: hidden;">
  <set attributeName="visibility" attributeType="CSS"
    to="visible" begin="4.5s" dur="1s" fill="freeze"/>
  All gone!
</text>

The <animateTransform> Element
The <animate> element doesn’t work with rotate, translate, scale, or skew transforma‐
tions because they’re all “wrapped up” inside the transform attribute. This is where the
<animateTransform> element comes to the rescue. You set its attributeName to
transform. The type attribute’s value then specifies the transformation whose values
should change (one of translate, scale, rotate, skewX, or skewY). The from and to
values are specified as appropriate for the transform you’re animating. As of this writing,
most implementations currently support only <animateTransform> on the XML
transform attribute rather than the CSS3 transformations.

Example 12-12 stretches a rectangle from normal scale to a scale of four times in the
horizontal direction and two times in the vertical direction. Note that the rectangle is
centered around the origin so it doesn’t move as it scales; it is inside a <g> so it can be
translated to a more convenient location. Figure 12-5 shows the beginning and end of
the animation.

200 | Chapter 12: Animating SVG

http://oreillymedia.github.io/svg-essentials-examples/ch12/animation_set.html


Example 12-12. Example of animateTransform
http://oreillymedia.github.io/svg-essentials-examples/ch12/animate_transform.html
<g transform="translate(100,60)">
  <rect x="-10" y="-10" width="20" height="20"
    style="fill: #ff9; stroke: black;">
    <animateTransform attributeType="XML"
      attributeName="transform" type="scale"
      from="1" to="4 2"
      begin="0s" dur="4s" fill="freeze"/>
  </rect>
</g>

Figure 12-5. animateTransform—before and after

If you intend to animate more than one transformation, you must use the additive
attribute. The default value of additive is replace, which replaces the specified trans‐
formation in the object being animated. This won’t work in a series of transformations,
because the second animation would override the first one. By setting additive to
sum, SVG will accumulate the transformations. Example 12-13 stretches and rotates the
rectangle. The before and after pictures are in Figure 12-6.

Example 12-13. Example of multiple animateTransform elements
http://oreillymedia.github.io/svg-essentials-examples/ch12/additive_transform.html
<rect x="-10" y="-10" width="20" height="20"
  style="fill: #ff9; stroke: black;">
  <animateTransform attributeName="transform" attributeType="XML"
    type="scale" from="1" to="4 2"
    additive="sum" begin="0s" dur="4s" fill="freeze"/>
  <animateTransform attributeName="transform" attributeType="XML"
    type="rotate" from="0" to="45"
    additive="sum" begin="0s" dur="4s" fill="freeze"/>
</rect>

Figure 12-6. Multiple animateTransforms—before and after

The <animateTransform> Element | 201

http://oreillymedia.github.io/svg-essentials-examples/ch12/animate_transform.html
http://oreillymedia.github.io/svg-essentials-examples/ch12/additive_transform.html


You can also use additive="sum" to combine the effects of anima‐
tion elements that control numerical and color attributes. If the ani‐
mations are specified using to, adding them together causes subse‐
quent animations to use the current value of the previous animation
as their starting-point. If the animations use the by attribute to de‐
fine their effects, or use both from and to, then the final value will be
the sum of all the individual changes.

The <animateMotion> Element
You can cause an object to animate along a straight-line path by using translate with
the <animateTransform> element. However, if you wanted to move the object in a more
complicated pattern, you would need an extended series of transform animations timed
to start one after another. The <animateMotion> element makes it easier to animate an
object along an arbitrary path, whether a straight line or a series of overlapping loops.

If you want to use <animateMotion> for straight-line motion, you simply set the from
and to attributes, assigning them each a pair of (x,y) coordinates. The coordinates
specify the position where the (0,0) point of the shape’s coordinate system will be moved,
similar to how translate(x,y) works. Example 12-14 moves a grouped circle and
rectangle from (0,0) to (60,30).

Example 12-14. Animation along a linear path
http://oreillymedia.github.io/svg-essentials-examples/ch12/linear_animateMotion.html
<g>
  <rect x="0" y="0" width="30" height="30" style="fill: #ccc;"/>
  <circle cx="30" cy="30" r="15" style="fill: #cfc; stroke: green;"/>
  <animateMotion from="0,0" to="60,30" dur="4s" fill="freeze"/>
</g>

Multiple points can be specified with values, but the motion will still be a series of
straight lines. If you want a more complex path to follow, use the path attribute instead;
its value is in the same format as the d attribute in the <path> element. Example 12-15,
adapted from the SVG specification, animates a triangle along a cubic Bézier curve path.

Example 12-15. Animation along a complex path
http://oreillymedia.github.io/svg-essentials-examples/ch12/
complex_animate_motion.html
<!-- show the path along which the triangle will move -->
<path d="M50,125 C 100,25 150,225, 200, 125"
  style="fill: none; stroke: blue;"/>

<!-- Triangle to be moved along the motion path.
   It is defined with an upright orientation with the base of

202 | Chapter 12: Animating SVG

http://oreillymedia.github.io/svg-essentials-examples/ch12/linear_animateMotion.html
http://oreillymedia.github.io/svg-essentials-examples/ch12/complex_animate_motion.html
http://oreillymedia.github.io/svg-essentials-examples/ch12/complex_animate_motion.html


   the triangle centered horizontally just above the origin. -->
<path d="M-10,-3 L10,-3 L0,-25z" style="fill: yellow; stroke: red;">
  <animateMotion
    path="M50,125 C 100,25 150,225, 200, 125"
    dur="6s" fill="freeze"/>
</path>

As you can see in Figure 12-7, the triangle stays upright throughout its entire path.

Figure 12-7. animateMotion along a complex path

If you would prefer that the object tilt so its x-axis is always parallel to the slope of the
path, just add the rotate attribute with a value of auto to the <animateMotion> element.
Example 12-16 shows the SVG, and Figure 12-8 shows screenshots taken at various
stages of the animation.

Example 12-16. Animation along a complex path with auto-rotation
http://oreillymedia.github.io/svg-essentials-examples/ch12/
animate_motion_rotate.html
<!-- show the path along which the triangle will move -->
<path d="M50,125 C 100,25 150,225, 200, 125"
  style="fill: none; stroke: blue;"/>

<!-- Triangle to be moved along the motion path.
   It is defined with an upright orientation with the base of
   the triangle centered horizontally just above the origin. -->
<path d="M-10,-3 L10,-3 L0,-25z" style="fill: yellow; stroke: red;" >
  <animateMotion
    path="M50,125 C 100,25 150,225, 200, 125"
    rotate="auto"
    dur="6s" fill="freeze"/>
</path>

Put simply, when you leave off the rotate attribute, you get the default value of 0, and
the object acts like a hot-air balloon floating along the path. If you set rotate to auto,
the object acts like a car on a roller coaster, tilting up and down as the path does.

The <animateMotion> Element | 203

http://oreillymedia.github.io/svg-essentials-examples/ch12/animate_motion_rotate.html
http://oreillymedia.github.io/svg-essentials-examples/ch12/animate_motion_rotate.html


2. There’s one exception to the distance rule for paced <animateMotion>: if your path has any moveto com‐
mands, these are counted as zero distance, meaning your object will immediately jump from the end of one
subpath to the beginning of the next.

You can also set rotate to a numeric value, which will set the rotation of the object
throughout the animation. Thus, if you wanted an object rotated 45 degrees no matter
what direction the path took, you’d use rotate="45".

Figure 12-8. animateMotion along a complex path with auto-rotation

Example 12-16 drew the path in blue so it was visible, and then duplicated the path in
the <animateMotion> element. You can avoid this duplication by adding an <mpath>
element within the <animateMotion> element. The <mpath> will contain an xlink:href
attribute that references the path you want to use. This also comes in handy when you
have one path you wish to use to animate multiple objects. Here’s the preceding example,
rewritten as Example 12-17, using <mpath>.

Example 12-17. Motion along a complex path using mpath
<path id="cubicCurve" d="M50,125 C 100,25 150,225, 200, 125"
  style="fill: none; stroke: blue;"/>

<path d="M-10,-3 L10,-3 L0,-25z" style="fill: yellow; stroke: red;" >
  <animateMotion dur="6s" rotate="auto" fill="freeze">
    <mpath xlink:href="#cubicCurve"/>
  </animateMotion>
</path>

Specifying Key Points and Times for Motion
In Example 12-16, the triangle moved at a steady pace. This paced animation is the
default for <animateMotion> (equivalent to calcMode="paced"); the amount of time it
takes to move between subsequent points is directly proportional to the distance be‐
tween them.2

In “Timing of Multistage Animations” on page 199, we introduced the keyTimes at‐
tribute, which can be used to control the rate an animation transitions between different
values. You can use keyTimes for motion animation too, but if you’re using a path instead

204 | Chapter 12: Animating SVG



of a values list to define the motion, you need to specify key points along the path using
(you guessed it) the keyPoints attribute.

Like keyTimes, keyPoints is a semicolon-separated list of decimal numbers. Each point
represents how far along the path the object should have moved at the corresponding
entry in the keyTimes list. Just as keyTimes ranges from 0 (beginning of animation) to
1 (end of animation), keyPoints ranges from 0 (beginning of the path) to 1 (end of the
path). Example 12-18 shows the triangle moving more slowly as it goes uphill.

Although keyTimes must be given in order from 0 to 1, keyPoints may start or end in
the middle of the path and go in either direction. However, the keyPoints and keyTimes
lists must have the same number of entries, and you must set calcMode="linear" (or
"spline", but that’s beyond the scope of this book).

Example 12-18. Variable speed motion along a path using keyPoints and keyTimes
http://oreillymedia.github.io/svg-essentials-examples/ch12/key_points.html
<path d="M-10,-3 L10,-3 L0,-25z" style="fill: yellow; stroke: red;" >
  <animateMotion
    path="M50,125 C 100,25 150,225, 200, 125"
    rotate="auto"
    keyPoints="0;0.2;0.8;1"
    keyTimes="0;0.33;0.66;1"
    calcMode="linear"
    dur="6s" fill="freeze"/>
</path>

Animating SVG with CSS
Modern browsers allow you to animate both HTML and SVG elements with CSS. This
is a two-stage process. In the first stage, you select the element you want to animate and
set the properties of the animation as a whole. In the second stage, you say which prop‐
erties of the selected element are to change, and at what stages of the animation; these
are defined in a @keyframes specifier.

Consider the following task: display a green star that fades to a white interior as its
border becomes thicker; the effect is that the color is being “drained” into the border.
Here is the SVG for the star:

<svg width="200" height="200" viewBox="0 0 200 200">
  <defs>
    <g id="starDef">
      <path d="M 38.042 -12.361 9.405 -12.944 -0.000 -40.000
        -9.405 -12.944 -38.042 -12.361 -15.217 4.944
        -23.511 32.361 0.000 16.000 23.511 32.361 15.217 4.944 Z"/>
    </g>
  </defs>

Animating SVG with CSS | 205

http://oreillymedia.github.io/svg-essentials-examples/ch12/key_points.html


  <use id="star" class="starStyle" xlink:href="#starDef"
    transform="translate(100, 100)"
    style="fill: #008000; stroke: #008000"/>
</svg>

Animation Properties
These are properties you’ll set in the CSS for the element being animated:

• animation-name is the name of @keyframes specifier.
• animation-duration determines how long the animation should last; this is a

number followed by a time unit as described in “How Time Is Measured” on page
194.

• animation-timing-function tells how intermediate values are calculated (e.g.,
should an animation ease in or out, or work in discrete steps).

• animation-iteration-count tells how many times to repeat an animation, with
infinite looping continuously.

• animation-direction determines whether an animation should go in a forward
or reverse direction, and whether it should alternate between the two or not.

• animation-play-state can be set to running or paused.
• animation-delay tells how long to wait to start the animation after the style is

applied.
• animation-fill-mode tells what properties to use when the animation is not exe‐

cuting. This can be forwards (applies properties for the time the animation ended),
backwards (applies properties for the time the animation began), or both.

In order to use these properties in a WebKit-based browser, you must,
as of this writing, prefix them with -webkit-; thus, for example,
-webkit-animation-name or -webkit-animation-duration.

Example 12-19 shows the CSS to set up the star animation. It will be repeated four times,
with 2 seconds per iteration.

Example 12-19. CSS setup for animation
.starStyle {
  animation-name: starAnim;
  animation-duration: 2s;
  animation-iteration-count: 4;
  animation-direction: alternate;
  animation-timing-function: ease;

206 | Chapter 12: Animating SVG



  animation-play-state: running;
}

Setting Animation Key Frames
You set the properties to change at each stage of the animation by using the @keyframes
media type, followed by the name of the animation being controlled. Inside the
@keyframes, you list keyframe selectors, which are percentages that tell when properties
should change. For each of those selectors, list the properties and values that the ani‐
mation should take on. Example 12-20 shows the key frames for the star animation. For
WebKit-based browsers, use @-webkit-keyframes. Figure 12-9 shows three stages of
the animation.

Example 12-20. Key frame specification in CSS
http://oreillymedia.github.io/svg-essentials-examples/ch12/svg_css_anim1.html
@keyframes starAnim {
  0% {
    fill-opacity: 1.0;
    stroke-width: 0;
  }

  100% {
    fill-opacity: 0;
    stroke-width: 6;
  }
}

You can use from and to as synonyms for 0% and 100%.

Figure 12-9. Animation at beginning, middle, and end

Animating Movement with CSS
If you want to use pure CSS to animate movement, you can’t use the transform at‐
tribute. Instead, you have to use CSS styles to translate, rotate, and scale your SVG.

Animating SVG with CSS | 207

http://oreillymedia.github.io/svg-essentials-examples/ch12/svg_css_anim1.html


Luckily, the CSS transform property’s value looks very much like the SVG transform
attribute, though there are differences, as noted in “CSS Transformations and SVG” on
page 83. If, for example, you want an SVG element to be translated to (100,50), scaled
by a factor of 1.5, and then rotated 90 degrees, the property would be as follows:

transform: translate(100px, 50px) scale(1.5) rotate(90deg);

Example 12-21 shows the key frames required for making the star move upward and
rotate, and then descend to its starting point. Because the 100% key frame doesn’t specify
a translate, the star will return to its original position (specified in the SVG). This is
why the 50% and 80% key frames, in addition to the 20% key frame, must specify the
translate so that the star does not move vertically during that portion of the
animation.

Example 12-21. Specifying transformations in CSS
@keyframes starAnim  {
  0% {
    fill-opacity: 1.0;
    stroke-width: 0;
  }

  20% {
    transform: translate(100px, 50px)
  }

  50% {
    transform: translate(100px, 50px) rotate(180deg)
  }

  80% {
    transform: translate(100px, 50px) rotate(360deg)
  }

  100% {
    fill-opacity: 0.0;
    stroke-width: 6;
  }
}

Create your own keyframes, and experiment with the timing properties, with the online
example:

http://oreillymedia.github.io/svg-essentials-examples/ch12/svg_css_anim2.html

At the time of this writing, browsers tend to be buggy and inconsis‐
tent when applying CSS animations and transitions to SVG graph‐
ics that are duplicated by <use> elements.

208 | Chapter 12: Animating SVG

http://oreillymedia.github.io/svg-essentials-examples/ch12/svg_css_anim2.html


CHAPTER 13

Adding Interactivity

To this point, you, the author of the SVG document, have made all the decisions about
a graphic. You decide what a static image should look like, and if there are any anima‐
tions, you decide when they start and stop. In this chapter, you will see how to hand
some of that control over to the person who is viewing your document.

The lowest level of interactivity is declarative interactivity—animation or other style
changes created by telling the browser what should happen under certain situations,
without directly controlling the effect with a script. SVG provides a limited set of built-
in interactive states.

Using Links in SVG
The easiest sort of interactivity to provide is linking, accomplished with the <a> ele‐
ment. By enclosing a graphic in this element, it becomes active; when clicked, you go
to the URL specified in the xlink:href attribute. You can link to another SVG file or,
depending upon your environment, a web page. In Example 13-1, clicking the word
“Cat” will link to an SVG drawing of a cat; clicking the red, green, and blue shapes will
link to the World Wide Web Consortium’s SVG page. All the items within the second
link are individually linked to the same destination, not the entire bounding box. When
you test this example and move the cursor between the shapes, you will see that those
areas do not respond to clicks.

Example 13-1. Links in SVG
http://oreillymedia.github.io/svg-essentials-examples/ch13/svg_link.svg
<a xlink:href="cat.svg">
  <text x="100" y="30" style="font-size: 12pt;">Cat</text>
</a>

<a xlink:href="http://www.w3.org/SVG/">

209

http://oreillymedia.github.io/svg-essentials-examples/ch13/svg_link.svg


1. The Apache Batik SVG viewer, version 1.7, does not support CSS pseudoclass selectors.

  <circle cx="50" cy="70" r="20" style="fill: red;"/>
  <rect x="75" y="50" width="40" height="40" style="fill: green;"/>
  <path d="M120 90, 140 50, 160 90 Z" style="fill: blue;"/>
</a>

In the <use> element, xlink:href specifies a resource that becomes part of your graphic,
as described in “The <use> Element” on page 63. For the <a> element, the xlink:href
attribute specifies a different resource to jump to.

Links in HTML are recognizable by color and underlining effects. Figure 13-1 shows
the results of Example 13-1; there’s nothing to tell you that the graphics are actually
linked, unless you notice the change of the cursor from an arrow to a “hand” icon.
Keyboard users have the same difficulty: some browsers outline elements if they have
keyboard focus, but others do not. You can use CSS pseudoclasses to give users some
feedback about the interactive elements of your graphic. Like a CSS class, a pseudo‐
class is used to apply styles to select instances of an element; unlike true classes, they are
applied automatically, not assigned in the class attribute.1

Figure 13-1. A hyperlinked SVG, the results of Example 13-1

The :hover pseudoclass applies when the main mouse pointer is over an element, while
the :focus pseudoclass applies when an element has the keyboard focus. You can often
use the same styles for both element:hover and element:focus, because both indicate
the potential for user action.

Example 13-2 uses the same graphics as Example 13-1, but now the links give feedback
when they are hovered or focused. The text will become bold and underlined, and the
shapes will get a light blue border.

Example 13-2. Links in SVG highlighted with CSS
http://oreillymedia.github.io/svg-essentials-examples/ch13/svg_css_link.svg
<style type="text/css"><![CDATA[

    a.words:hover, a.words:focus {
       text-decoration: underline;
       font-weight:bold;
    }

210 | Chapter 13: Adding Interactivity

http://oreillymedia.github.io/svg-essentials-examples/ch13/svg_css_link.svg


    a.shapes:hover, a.shapes:focus {
       stroke: #66f;
       stroke-width: 2;
       outline: none; /* override default focus formatting */
    }
    ]]>

  </style>

  <a class="words" xlink:href="cat.svg">
    <text x="100" y="30" style="font-size: 12pt;">Cat</text>
  </a>

  <a class="shapes" xlink:href="http://www.w3.org/SVG/">
    <circle cx="50" cy="70" r="20" style="fill: red;"/>
    <rect x="75" y="50" width="40" height="40" style="fill: green;"/>
    <path d="M120 90, 140 50, 160 90 Z" style="fill: blue;"/>
  </a>

Controlling CSS Animations
What if you wanted more dynamic user feedback? CSS animations are defined as style
properties, so they can also be controlled by pseudoclasses. Example 13-3 starts an
animation when you hover the mouse over the shapes.

Example 13-3. Animating a link with :hover
http://oreillymedia.github.io/svg-essentials-examples/ch13/anim_css_link.svg
<style type="text/css"><![CDATA[

  a.animatedLink {
    animation-name: animKeys;
    animation-iteration-count: infinite;
    animation-duration: 0.5s;
    animation-direction: alternate;
    animation-play-state: paused;
  }

  a.animatedLink:hover {
    animation-play-state: running;
  }

  @keyframes animKeys {
    0% {fill-opacity: 1.0;}
    100% {fill-opacity: 0.5;}
  }
  ]]>

  </style>

<a class="animatedLink" xlink:href="http://www.w3.org/SVG/">
  <circle cx="50" cy="70" r="20" style="fill: red;"/>

Controlling CSS Animations | 211

http://oreillymedia.github.io/svg-essentials-examples/ch13/anim_css_link.svg


2. If you’re familiar with JavaScript event handling, you’ll recognize that the event names are the same as used
in DOM event handling. If you’re not familiar with JavaScript and DOM events, keep reading.

  <rect x="75" y="50" width="40" height="40" style="fill: green;"/>
  <path d="M120 90, 140 50, 160 90 Z" style="fill: blue;"/>
</a>

The example isn’t a great demonstration of user design: if you move the mouse out of
the link area while the animation is going on, it simply pauses but doesn’t revert back
to full opacity. If you’re interested in CSS animations, the latest draft specifications
describe all the possibilities.

User-Triggered SMIL Animations
CSS animations are limited in what sort of changes they can create and what sort of
events they can respond to. If you are using SMIL animation elements in your SVG, you
can use an alternative format for the begin and end attributes to declare that they should
respond to user actions.

The format for an interactive animation timing attribute is elementID.eventName. The
element referenced in the ID does not have to be the same element that is being animated.

Interaction using the SMIL begin and end attributes is event based: once an animation
is started, it will continue until the duration of the animation is complete or an ending
event occurs. In contrast, interaction using CSS pseudoclasses is state based: the style
or animation is only applied for so long as the state is true. For example, the CSS
#myElement:hover pseudoclass selector describes the state of the element with ID
myElement when the mouse pointer is over it; to define an animation to occur
during the same period, you would set the animation attributes
begin="myElement.mouseover" and end="myElement.mouseout".2

For greater control, you can optionally add a time offset, of the form
elementID.eventName + offset. The offset is specified in the same format as for other
SMIL animation timing attributes (see “How Time Is Measured” on page 194, in Chap‐
ter 12), with a unit like 1.5min or as a stopwatch time like 01:30. You could even use a
negative time offset, but since there is no such thing as Psychic Vector Graphics, the
animation won’t actually start before the event occurs. Instead, as soon as the event
occurs the computer will skip the first part of the animation (which “should” have oc‐
curred before the event) and continue on with the rest of the animation.

Example 13-4 creates a trapezoid and a button. When you click the button, the trapezoid
rotates 360 degrees. Screenshots, before and after a click, are shown in Figure 13-2.

212 | Chapter 13: Adding Interactivity

http://www.w3.org/TR/css3-animations/


Figure 13-2. Screenshot of two stages of scripting with animation

Example 13-4. Interactive Animation
http://oreillymedia.github.io/svg-essentials-examples/ch13/smil_event_animation.svg
<g id="button">     
  <rect x="10" y="10" width="40" height="20" rx="4" ry="4"
    style="fill: #ddd;"/>
  <text x="30" y="25"
    style="text-anchor: middle; font-size: 8pt">Start</text>
</g>

<g transform="translate(100, 60)">
  <path d="M-25 -15, 0 -15, 25 15, -25 15 Z"
    style="stroke: gray; fill: #699;">

    <animateTransform id="trapezoid" attributeName="transform"
      type="rotate" from="0" to="360"
      begin="button.click"
      dur="6s"/>   
  </path>
</g>

The start button is a simple rounded rectangle with text. The entire group gets
the id.
Instead of giving the begin time for the animation in terms of seconds, we begin
whenever a click event is detected on the button object.

It is often easier to design the SVG first and add the scripting later.
One advantage of this method is that you can see if the base draw‐
ing looks good before you start making it react to events.

Scripting SVG
The next step up from these declarative animations—and it’s a big step—is scripting.
You can write a program in ECMAScript to interact with an SVG graphic. (ECMAScript
is the standardized version of what is commonly called JavaScript, as defined by ECMA,
an organization formerly known as the European Computer Manufacturer’s

Scripting SVG | 213

http://oreillymedia.github.io/svg-essentials-examples/ch13/smil_event_animation.svg


3. Most browsers also allow you get or set CSS properties using the form element.style.propertyName or
element.style["property-name"]. However, this isn’t part of the CSS object model standards and isn’t
supported in some other SVG viewers, or even consistently between browsers.

Association.) If you’re new to ECMA/JavaScript—or programming in general—you’ll
want to read Appendix C.

As the SVG viewer reads the markup in an SVG document, it creates a tree of nodes,
which are objects in memory that correspond to the structure and content of the mark‐
up. This is the Document Object Model, and it is accessible to your scripts.

The first thing you need to do in order to deal with the DOM is to access the nodes.
The main function you will probably use to deal with the DOM is
document.getElementById(idString). This function takes a string that is the id of an
SVG element and returns a reference to that element’s node in the DOM. If you want
all of the elements in a document that have a particular tag name (the tag name is the
“svg” in <svg> or “rect” in <rect>), you can use another document method,
getElementsByTagName(name); this returns an array of nodes.

Once you have an element’s node, you can:

• Read its attributes by calling element.getAttribute(attributeName), which re‐
turns the attribute value as a string.

• Change an attribute’s value by calling element.setAttribute(name, newValue);
if the attribute with the given name does not exist, it will be created.

• Remove attributes by calling element.removeAttribute(name).

You could modify inline styles using element.setAttribute("style",

newStyleValue), but this overwrites all styles on the element. Instead, you can work
with the element.style property. Use:

• element.style.getPropertyValue(propertyName) to access a specific style,
• element.style.setProperty(propertyName, newValue, priority) to change it

(priority is usually null, but could be “important”), and
• element.style.removeProperty(propertyName) to delete it.

If you do want to set all styles at once, then you can directly modify
element.style.cssText, which is a string representation of all the styles in
property-name: value format.3

If you need to access or modify the text content of any node, use the
element.textContent property. When you read this property, it returns the

214 | Chapter 13: Adding Interactivity

http://www.w3.org/TR/cssom/


4. If you’re familiar with using the .innerHTML property to modify the combined text and markup of all de‐
scendants of an element, be warned that this property is only defined in the specifications for nodes of type
HTMLElement, and many browsers and SVG viewers do not support it on SVG elements.

concatenated text of all of the node’s descendants. If you set it, you will replace any
descendant nodes with a single text block.4

Example 13-5 uses these functions to access the attributes of an SVG element, display
them in text format, and modify an attribute. (This isn’t interactive, but bear with us;
we’re building suspense in the plot line.)

Example 13-5. Accessing SVG with the DOM
http://oreillymedia.github.io/svg-essentials-examples/ch13/basic_dom_example.svg
<svg width="300" height="100" viewBox="0 0 300 100"
  xmlns="http://www.w3.org/2000/svg"
  xmlns:xlink="http://www.w3.org/1999/xlink">

  <title>Accessing Content in SVG</title>

  <rect id="rectangle" x="10" y="20" width="30" height="40"
    style="stroke:gray; fill: #ff9; stroke-width:3"/> 
  <text  id="output" x="10" y="80" style="font-size:9pt"></text>

  <script type="application/ecmascript">
  // <![CDATA[ 
    var txt = document.getElementById("output"); 
    var r = document.getElementById("rectangle");
    var msg =  r.getAttribute("x") + ", " + 
      r.getAttribute("y") + " " +
      r.style.getPropertyValue("stroke") + " " +
      r.style.getPropertyValue("fill");
    r.setAttribute("height", "30"); 
    txt.textContent= msg; 
    // ]]>
  </script>
</svg>

In order to easily access an element from a script, give it a unique id.
The <![CDATA[ is used to ensure that any stray < or > signs are not interpreted
as markup.
Select elements from the document by id, and save the results in variables.
The results of getAttribute() and style.getPropertyValue() are strings;
these are concatenated together with + to create the message string.
This changes the height of the rectangle to convert it to a square.
Finally, set the content of the <text> element to display the attributes.

Scripting SVG | 215

http://oreillymedia.github.io/svg-essentials-examples/ch13/basic_dom_example.svg


The script in Example 13-5 is included in the SVG file after the <rect>
and <text> elements that it uses. This ensures that the elements ex‐
ist in the DOM before the script is run.

Events: An Overview
Interaction occurs when graphic objects respond to events. There are several categories
of events. The text for many of these descriptions comes directly from the World Wide
Web Consortium’s specification.
User interface events

The focusIn and focusOut events occur when an element receives or loses focus,
such as selecting or unselecting text. The activate element occurs when an element
is activated through a mouse click or keypress.

Mouse events
The mousedown and mouseup events occur when a pointing device button is pressed
or released on an element. If the screen location for these events is the same, then
a click event is generated.

The mouseover, mousemove, and mouseout events occur when the pointing device
is moved over an element, moved while over an element, and moved away from an
element.

Mutation events
The SVG viewer will generate events when the DOM changes (by another script);
for example, DOMNodeInserted occurs when a node has been added as a child of
another node; DOMAttrModified occurs when an attribute has been modified on a
node. This book will not cover these events in detail.

Document events
The SVGLoad event is triggered when the SVG viewer has fully parsed a document
and is ready to act upon it (e.g., display it on a device). SVGUnload occurs when a
document is removed from a window. SVGAbort occurs when page loading is stop‐
ped before loading completes; SVGError occurs when an element does not load
properly or an error occurs during script execution.

The SVGResize, SVGScroll, and SVGZoom events occur when the viewer changes the
document in the way that the name suggests.

Animation events
The SVG viewer generates beginEvent, endEvent, and repeatEvent when an ani‐
mation element begins, ends, or repeats; repeatEvent is not generated for the first
iteration.

216 | Chapter 13: Adding Interactivity

http://www.w3.org/TR/SVG/interact.html#SVGEvents
http://www.w3.org/TR/SVG/interact.html#SVGEvents


5. This is a very simplistic definition. See the DOM Events specification for the full details.

Key events
There are no events built into SVG for keypresses, but some viewers may support
nonstandard keydown and keyup events.

Listening for and Responding to Events
To allow an object to respond to an event, you must first tell the object to listen for the
event. You do this by calling the addEventListener() function. This function has two
required arguments. The first is a string with the name of the type of event you want to
listen for. The second argument is the name of a function that will handle the event. An
optional third argument is a boolean that tells whether you want to respond to the event
when the viewer is passing the event down the DOM hierarchy from parent elements
to children to find the specific target (“capture” stage). A value of false (the usual)
causes your listener to wait to handle the event until after any child elements have dealt
with it; this is the “bubbling” stage, as events float to the top of the DOM tree.5

The function that handles the event takes one argument: an event object that contains
information about the event that triggered the call. The most important property of the
event object is the target property, which is the object to which the event was dis‐
patched. Other important event properties are clientX and clientY, which give the
coordinates at which the event occurred relative to the DOM implementation’s client
area, which is the area occupied by the entire .svg file or web page.

Example 13-6 adds listeners for the mouseover, mouseout, and click events to a cir‐
cle. Moving the mouse in and out of the circle will cause its radius to grow or shrink;
clicking the mouse will increase or decrease the circle’s stroke width.

Example 13-6. Adding mouse movement listeners
http://oreillymedia.github.io/svg-essentials-examples/ch13/simple_event.svg
  <circle id="circle" cx="50" cy="50" r="20"
    style="fill: #ff9; stroke:black; stroke-width: 1"/>

  <script type="application/ecmascript"><![CDATA[

    function grow(evt) {
      var obj = evt.target;
      obj.setAttribute("r", "30");
    }

    function shrink(evt) {
      this.setAttribute("r", "20");
    }

Scripting SVG | 217

http://www.w3.org/TR/DOM-Level-3-Events/#event-flow
http://oreillymedia.github.io/svg-essentials-examples/ch13/simple_event.svg


    function reStroke(evt) {
      var w = evt.target.style.getPropertyValue("stroke-width");
      w = 4 - parseFloat(w); /* toggle between 1 and 3 */
      evt.target.style.setProperty("stroke-width", w, null);
    }

    var c = document.getElementById("circle");
    c.addEventListener("mouseover", grow);
    c.addEventListener("mouseout", shrink);
    c.addEventListener("click", reStroke);
    // ]]>

  </script>

The first event handler, grow(), uses evt.target to access the element that received the
event, and stores it in a separate variable. The second event handler, shrink(), uses the
reserved word this to refer to the element that is attached to the event listener (which
in this case, but not always, is the same as the event target). The last event handler,
reStroke(), again uses evt.target, but without the use of a temporary variable.

While we could have used c instead of evt.target (because it is the only element with
a listener), this would have been a terrible idea, because you will often need to attach
the same event handler to many different targets, as in the next example.

Changing Attributes of Multiple Objects
Sometimes you will want an event that occurs on object A to affect attributes of both
object A and some other object B. Example 13-7 presents possibly the world’s crudest
example of SVGcommerce. Figure 13-3 shows a T-shirt whose size changes as the user
clicks each labeled button. The currently selected size button is highlighted in light
yellow.

218 | Chapter 13: Adding Interactivity



Figure 13-3. Screenshots of different selections

Example 13-7. Changing multiple objects in a script
http://oreillymedia.github.io/svg-essentials-examples/ch13/shirt1.svg

The XML code:
<svg width="400" height="250" viewBox="0 0 400 250"
  xmlns="http://www.w3.org/2000/svg"
  xmlns:xlink="http://www.w3.org/1999/xlink"
  onload="init(evt)"> 

  <defs>
    <style type="text/css" > <![CDATA[
      /* style rules will go here */
    ]]></style>
    <script type="application/ecmascript"> <![CDATA[
      /* script will go here */
    ]]></script>

    <path id="shirt-outline"
      d="M -6 -30 -32 -19 -25.5 -13 -22 -14 -22 30 23 30
        23 -14 26.5 -13 33 -19 7 -30
        A 6.5 6 0 0 1 -6 -30"/> 
  </defs>

  <g id="shirt" >
    <use xlink:href="#shirt-outline" x="0" y="0"/>
  </g>

  <g id="scale0" >
    <rect x="100" y="10" width="30" height="30" />
    <text x="115" y="30">S</text>
  </g>

  <g id="scale1" class="selected"> 
    <rect x="140" y="10" width="30" height="30" />
    <text x="155" y="30">M</text>
  </g>

Scripting SVG | 219

http://oreillymedia.github.io/svg-essentials-examples/ch13/shirt1.svg


  <g id="scale2" >
    <rect x="180" y="10" width="30" height="30" />
    <text x="195" y="30">L</text>
  </g>
</svg>

As soon as the document finishes loading, the SVGLoad event occurs, and the
onload handler will call the init function, passing it the event information. Many
scripts will use this event handler to make sure all their variables are set up
properly. This allows you to put the <script> before the SVG elements to be
manipulated. Attributes of the form oneventname can be used to listen to many
events, but are discouraged (in favor of addEventListener()) because they mix
your scripting functionality with your XML structure; document loading is an
exception.
The shirt outline is centered at (0, 0), so that it will scale from the center, and is
then positioned with transformations in the script.
The medium button is selected initially.

The styles:
    svg { /* default values */
       stroke: black;
       fill: white;
    }
    g.selected rect {
       fill: #ffc; /* light yellow */
    }
    text {
       stroke: none;
       fill:black;
       text-anchor: middle;
    }

The “selected” class is used to indicate which size option is active, by filling the button
in light yellow.

The script:
    var scaleChoice = 1;  
    var scaleFactor = [1.25, 1.5, 1.75];

    function init(evt) { 
      var obj;
      for (var i = 0; i < 3; i++) {
        obj = document.getElementById("scale" + i);
        obj.addEventListener("click", clickButton, false);
      }
      transformShirt();
    }

220 | Chapter 13: Adding Interactivity



    function clickButton(evt) {
      var choice = evt.target.parentNode; 
      var name = choice.getAttribute("id");
      var old = document.getElementById("scale" + scaleChoice);
      old.removeAttribute("class"); 
      choice.setAttribute("class", "selected");

      scaleChoice = parseInt(name[name.length - 1]); 
      transformShirt();
    }

    function transformShirt() { 
      var factor = scaleFactor[scaleChoice];
      var obj = document.getElementById("shirt");
      obj.setAttribute("transform",
        "translate(150, 150) " +
        "scale(" + factor + ")");
      obj.setAttribute("stroke-width",
        1 / factor);
    }

This script works by keeping track of which button (S, M, or L) has been chosen,
and indexing into the corresponding entry in the scaleFactor array. The default
is index number one, medium.
The init() function gets each rectangle-and-text <g> and tells it to listen for a
click event. The function then displays the shirt at its current size.
A click could occur on either the text or the interior of the rectangle. Using
parentNode puts the <g> object into variable choice.
Remove the “selected” class from the button <g> corresponding to the previously
selected size, and add it to the newly selected <g>.
Extract the number at the end of the button group’s id; this is the new
scaleChoice. It’s stored in a global variable, accessible by the transformShirt()
function.
The shirt is resized and positioned by setting its transform attribute. The stroke
width is rescaled by the inverse factor, so that it appears to stay the same when
the shirt is scaled up and down.

Dragging Objects
Let us expand this example by adding “sliders” that can be dragged to set the color of
the shirt, as shown in Figure 13-4.

Scripting SVG | 221



Figure 13-4. Screenshot of color sliders

You can experiment with the slider in the online example:

http://oreillymedia.github.io/svg-essentials-examples/ch13/drag_objects.svg

This script needs some more global variables. The first of these, slideChoice, tells which
slider (0, 1, or 2) is currently being dragged; its initial value is -1, meaning no slider is
active. The script also uses an array called rgb to hold the percent of red, green, and
blue; the initial values are all 100, because the shirt is initially white:

var slideChoice = -1;
var rgb = [100, 100, 100];

Next, draw the sliders themselves. The color bar and the slide indicator are drawn on a
white background, and they are grouped together. The id attribute goes on the indicator
<line> element, because its y-coordinate will be changing. The event handlers will be
attached to the enclosing <g> element. The group will then capture the mouse events
that happen on any of its child elements (this is why we drew the white rectangle; the
mouse will still track even if you drag outside the colored bar):

  <g id="sliderGroup0" transform="translate( 230, 10 )">
    <rect x="-10" y="-5" width="40" height="110"/>
    <rect x="5" y="0" width="10" height="100" style="fill: red;"/>
    <line id="slide0" class="slider"
      x1="0" y1="0" x2="20" y2="0" />
  </g>

  <g id="sliderGroup1" transform="translate( 280, 10 )">
    <rect x="-10" y="-5" width="40" height="110"/>
    <rect x="5" y="0" width="10" height="100" style="fill: green;"/>
    <line id="slide1" class="slider"
      x1="0" y1="0" x2="20" y2="0" />
  </g>

  <g id="sliderGroup2" transform="translate( 330, 10 )">
    <rect x="-10" y="-5" width="40" height="110"/>
    <rect x="5" y="0" width="10" height="100" style="fill: blue;"/>
    <line id="slide2" class="slider"

222 | Chapter 13: Adding Interactivity

http://oreillymedia.github.io/svg-essentials-examples/ch13/drag_objects.svg


      x1="0" y1="0" x2="20" y2="0" />
  </g>

New style rules handle everything except for the slider-specific colors:

    line.slider {
       stroke: gray;
       stroke-width: 2;
    }

In the init() function, add three event listeners to each slider group:

obj = document.getElementById("sliderGroup" + i);
obj.addEventListener("mousedown", startColorDrag, false);
obj.addEventListener("mousemove", doColorDrag, false);
obj.addEventListener("mouseup", endColorDrag, false);

The corresponding functions are as follows.

function startColorDrag(evt) { 
  var sliderId = evt.target.parentNode.getAttribute("id");
  endColorDrag( evt );
  slideChoice = parseInt(sliderId[sliderId.length - 1]);
}

function endColorDrag(evt) { 
  slideChoice = -1;
}

function doColorDrag(evt) { 
  var sliderId = evt.target.parentNode.getAttribute("id");
  chosen = parseInt(sliderId[sliderId.length - 1]);

  if (slideChoice >= 0 && slideChoice == chosen) {  

    var obj = evt.target; 
    var pos = evt.clientY - 10;
    if (pos < 0) { pos = 0; }
    if (pos > 100) { pos = 100; }

    obj = document.getElementById("slide" + slideChoice); 
    obj.setAttribute("y1", pos);
    obj.setAttribute("y2", pos);

    rgb[slideChoice] = 100-pos; 

    var colorStr = "rgb(" + rgb[0] + "%," +  
      rgb[1] + "%," + rgb[2] + "%)";
    obj = document.getElementById("shirt");
    obj.style.setProperty("fill", colorStr, null);
  }
}

Scripting SVG | 223



6. Other values for pointer-events let you respond to an object’s events in the filled areas only (fill), outline
areas only (stroke), or the fill and outline together (painted), whether visible or not. Corresponding at‐
tribute values of visibleFill, visibleStroke, and visiblePainted take the object’s visibility into account
as well.

startColorDrag(evt) is called on mousedown. It stops dragging the current
slider (if any) and sets the current slider to the one specified (0 = red, 1 = green,
2 = blue).
endColorDrag(evt) is called on mouseup or by other functions. It sets the slider
choice to -1, indicating that no slider is being dragged. No access to the event is
needed for this function.
doColorDrag(evt) is called on mousemove. It uses both the event’s target
property (to determine which slider is being dragged) and the clientY property
to determine the mouse position relative to the top of the SVG.
Check that a slider is active and that the event is on the chosen slider.
Get the slider indicator line object, and the mouse position (adjusted by the
position of the top of the color bar). Clamp the position values to the range 0–
100.
Move the slider line to the new mouse position.
Calculate the new color value for this slider.
Compile the color values into rgb() notation and change the shirt’s color
accordingly.

There’s only one minor point to take care of—the document will respond to an
onmouseup only if it occurs within the slider area. So, if you click the mouse on the red
color bar, drag the mouse down to the shirt, then release the mouse button, the docu‐
ment will be unaware of it. When you then move the mouse over the red slider again,
it will still follow the mouse. To solve this problem, we insert a transparent rectangle
that completely covers the viewport, and it responds to a mouseup event by calling
stopColorDrag. It will be the first, and therefore bottom-most object in the graphic. To
make the rectangle as unobtrusive as possible, it will be set to style="fill: none;".
“But wait,” you interject. “A transparent area cannot respond to an event!” No, ordinarily
it can’t, but you can set the pointer-events attribute to visible, meaning that an object
can respond to events as long as it is visible, no matter what its opacity:6

<rect id="eventCatcher" x="0" y="0" width="400" height="300"
  style="fill: none;" pointer-events="visible" />

The init() function is modified to add the appropriate event listener:

document.getElementById("eventCatcher").
  addEventListener("mouseup", endColorDrag, false);

224 | Chapter 13: Adding Interactivity



Interacting with an HTML Page
There are two ways to put interactive SVG into an HTML document, as described in
Chapter 2. If you have a small amount of SVG, just put it directly into the HTML. If you
have a large SVG graphic, you can include it by using the <object> element. The fol‐
lowing markup shows how you would do this for the preceding SVG example:

<object id="externalShirt" data="shirt_interact.svg"
  type="image/svg+xml">
  <p>Alas, your browser does not support SVG.</p>
</object>

The relevant attributes are the data source for the graphic (a URL—in this case, a relative
pathname) and the type attribute, which will be image/svg+xml. The HTML between
the opening and closing <object> tags is only displayed if the object cannot be loaded.
You can now add code to the SVG script and the HTML page’s script so they can com‐
municate with one another; the id attribute will come into play for that.

The web page will have a form that lets users type in the red, green, and blue percentages.
The values they enter will be reflected in the sliders. If users adjust the sliders, the values
in the form fields will be updated accordingly.

Here is the HTML document, with references to the (as yet unwritten) updateSVG()
function. This function will take the input field number and the value currently within
the input field as its arguments:

<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
  <meta http-equiv="content-type" content="text/html; charset=utf-8">
  <title>SVG and HTML</title>
  <style type="text/css">
    /* make form entries begin on a new line */
    label {display: block;}
    h1 {font-size: 125%;}
  </style>
  <script type="text/javascript">
    /* script goes here */
  </script>
</head>

<body>
<h1>SVG and HTML</h1>
<div style="text-align:center">
  <object id="shirt" data="shirt_interact.svg"
    type="image/svg+xml">
    <p>Alas, your browser cannot load this SVG file.</p>
  </object>

  <form id="rgbForm">

Scripting SVG | 225



    <label>Red: <input id="fld0" type="text" size="5" value="100"
      onchange="updateSVG(0, this.value)" />% </label>
    <label>Green: <input id="fld1" type="text" size="5" value="100"
      onchange="updateSVG(1, this.value)" />% </label>
    <label>Blue: <input id="fld2" type="text" size="5" value="100"
      onchange="updateSVG(2, this.value)" />%</label>
  </form>
</div>
</body>
</html>

In the interest of keeping the code sample short, we’ve used poor
coding style and mixed our script in with our HTML. The attribute
onchange="updateSVG(0, this.value)" is equivalent to adding a
listener for the <input> element’s change event, and setting it to run
the command updateSVG(0, this.value).

Here is the script that goes into the head of the HTML document. Function updateSVG
checks to see that the input value is an integer (it will discard any decimal part), and, if
so, calls function setShirtColor. This is actually a reference to a function that exists in
the SVG document, and it will be the SVG document’s responsibility to connect the
function to this HTML reference. (You will see this happen later in the chapter.)

Function updateHTMLField will be called from the SVG document’s script. It will receive
a form field number and a percent value, which it will display in the appropriate form
field:

function updateSVG(which, amount) {
  amount = parseInt(amount);
  if (!isNaN(amount) && window.setShirtColor) {
    window.setShirtColor(which, amount);
  }
}

function updateHTMLField(which, percent) {
  document.getElementById("fld" + which).value = percent;
}

Now you have to modify the SVG document. There are now two ways to set shirt color
—from the slider and from the HTML. Thus, the first task is to separate the setting of
the shirt color from the slider dragging. The modified doColorDrag(evt) function de‐
tects the active slider and calculates the position of the slider, but it then calls a new
svgSetShirtColor function to implement the change:

function doColorDrag(evt) {
  if (slideChoice >= 0) {
    var sliderId = evt.target.parentNode.getAttribute("id");
    chosen = parseInt(sliderId[sliderId.length - 1]);
    if (slideChoice == chosen) {

226 | Chapter 13: Adding Interactivity



      svgSetShirtColor(slideChoice, 100 - (evt.clientY - 10));
    }
  }
}

Function svgSetShirtColor will do what the remainder of doColorDrag used to do,
with two major differences. It uses the slider number it is given as the first parameter,
not the global slideChoice variable. Also, it takes the percentage as its second param‐
eter. These are the sort of changes you have to make when you decide to modularize
simple code that was written for an ad hoc example:

function svgSetShirtColor(which, percent) {
  var obj;
  var colorStr;
  var newText;

  if (percent < 0) { percent = 0; } 
  if (percent > 100) { percent = 100; }

  obj = document.getElementById("slide" + which); 
  obj.setAttribute("y1", 100 - percent);
  obj.setAttribute("y2", 100 - percent);
  rgb[which] = percent;

  colorStr = "rgb(" + rgb[0] + "%," + 
    rgb[1] + "%," + rgb[2] + "%)";
  obj = document.getElementById("shirt");
  obj.style.setProperty("fill", colorStr, null);
}

You still have to check that the percent value is within the correct range.
The slider line is moved, to the new position.
The color-changing code is the same.

Now, use the reserved word parent in the init function to connect the SVG document’s
svgSetShirtColor function to the HTML page’s setShirtColor reference. This works
because when one document is embedded in another, the parent global variable in the
child document will be a reference to the other document’s window object. As
setShirtColor will be a property of the window in which the web page is running, the
HTML document will be able to access it. The following code accomplishes the HTML
to SVG communication. Before using the parent variable, it tests to confirm that the
parent object exists (meaning that the SVG is actually embedded in another document):

function init( evt ) {
  // add event listeners
  if (parent) {
        parent.setShirtColor = svgSetShirtColor;
   }

Scripting SVG | 227



  transformShirt();
}

The last step is to communicate from SVG back to HTML if the user decides to choose
colors with the slider. Rather than continuously update the HTML fields, we made the
design decision to update the HTML when the mouse drag stops. Add the boldface code
to function endColorDrag. If a slider was being moved, this sends the slider number
and its value back to the updateHTMLField function in the parent web browser window
(if it exists):

function endColorDrag( ) {

  if (slideChoice >= 0) {
    if (parent)
      parent.updateHTMLField(slideChoice, rgb[slideChoice]);
  }

  // In any case, nobody's being dragged now
  slideChoice = -1;
}

The result is shown in Figure 13-5; the screenshot has been edited to eliminate unnec‐
essary whitespace.

Figure 13-5. Screenshot of HTML and SVG interaction

Try it out yourself online:

http://oreillymedia.github.io/svg-essentials-examples/ch13/shirt_interact.html

228 | Chapter 13: Adding Interactivity

http://oreillymedia.github.io/svg-essentials-examples/ch13/shirt_interact.html


Creating New Elements
In addition to modifying the attributes of existing elements, a script can also create new
elements. The next addition we will make to the shirt example is the ability to add rings
to the shirt in a bull’s-eye pattern. Figure 13-6 shows the result, which we’re sure will
soon be a hugely popular fashion.

Figure 13-6. Screenshots of different selections

You can create your own designs with the online example:

http://oreillymedia.github.io/svg-essentials-examples/ch13/shirt_create.html

The HTML has to be modified to add a new form field for specifying the number of
rings:

<label>Rings: <input id="nRings" type="text" size="3" value="0"
  onchange="createRings(this.value)" /></label>

The SVG lives in an external document, and the script in the HTML file needs a way to
access it. In the previous section, the script in the SVG file used parent to access the
environment where the HTML scripts were running. In this example, the HTML script
will use the <object> element’s getSVGDocument() method to directly access—and then
modify—the SVG DOM. The SVG file is the same as in the previous section.

To establish the connection with the SVG document, an initialization function is called
on the web page’s <body> when the entire page has loaded:

<body onload="init()">

The init() function accesses the SVG document and stores it in a global variable:

Scripting SVG | 229

http://oreillymedia.github.io/svg-essentials-examples/ch13/shirt_create.html


var svgDoc;

function init() {
  var obj = document.getElementById("shirt");
  svgDoc = obj.getSVGDocument();
}

With the stage set, the function createRings() in the HTML page’s script can add and
remove elements in the SVG document, as shown in Example 13-8.

Example 13-8. JavaScript code to create elements
function createRings(nRings) {
  var shirt = svgDoc.getElementById("shirt"); 
  var rings = shirt.getElementsByTagName("circle"); 
  var i;
  var radius;
  var circle;

  for (i = rings.length - 1; i >= 0; i--) { 
    shirt.removeChild(rings[i]);
  }

  /* Pin the range to 0-5 */
  if (nRings < 0) { nRings = 0; }
  else if (nRings > 5) { nRings = 5; }

  radius = nRings * 4;
  for (i = 0; i < nRings * 2; i++) {
    circle = svgDoc.createElementNS("http://www.w3.org/2000/svg",  
      "circle");
    circle.setAttribute("cx", "0");
    circle.setAttribute("cy", "0");
    circle.setAttribute("r", radius);

    if (i % 2 == 0) { 
        circle.style.cssText = "fill:black; stroke:none";
    }
    else {
        circle.style.cssText = "fill:white; stroke:none;";
    }
    shirt.appendChild(circle); 
    radius -= 2;
  }
}

Get the <g> from the SVG document
Retrieve all the <circle> elements in that group.
Remove all the rings (in reverse order) by calling removeChild(nodeToRemove)
on the parent <g> stored in the shirt variable.

230 | Chapter 13: Adding Interactivity



The element that is being created is part of an SVG document, so you must create
an element in the namespace (NS) for SVG. Note that you define the namespace
using the namespace URL string, not a prefix.
The assigned style alternates for even and odd numbered rings. Because we’re
setting multiple styles on a new, unstyled element, we set them as a block using
element.style.cssText.
Finally, append the newly created <circle> element and reduce the radius in
preparation for the next circle by calling addChild(newNode) on the shirt
group. The new nodes will be inserted in the DOM in the order they are added,
largest to smallest, so the smaller circles will be drawn on top of the
larger ones.

Scripting SVG | 231





CHAPTER 14

Using the SVG DOM

The methods and properties used in the scripting examples in Chapter 13—creating
and selecting elements, getting and setting styles and attributes—are part of the Docu‐
ment Object Model (DOM) specification, and are not unique to SVG. The SVG 1.1
specifications define numerous additional methods to make it easier to work with the
two-dimensional graphical layout of SVG. These methods allow you to figure out exactly
where your text or path elements have been drawn, control the timing of your animation
elements, and convert between transformed coordinate systems.

Determining the Value of Element Attributes
In “Scripting SVG” on page 213, we used getAttribute and setAttribute to access
element attributes. Those methods treat the attributes as simple strings, without wor‐
rying about what they represent. If you need to calculate the difference in width between
an element with width="10em" and an element with width="100px", you would need
to extract the numbers from the strings, find out the font size, and convert the meas‐
urements.

To make things easier, SVG element objects have properties representing the key at‐
tributes for that element type. An SVGCircleElement object, which represents a
<circle> in your SVG code, has properties cx, cy, and r. An SVGRectElement (a <rect>
in markup) has properties x, y, width, and height.

These properties don’t store simple numbers, however. In most cases, the properties
each contain two subproperties: baseVal and animVal. The animVal object is read-only,
and is updated as an object is animated, so it always gives the current displayed state of
the attribute.

Equally important, the baseVal and animVal subproperties are themselves complex data
objects designed to make it easy to deal with attributes specified in different units. For

233



lengths and angles, baseVal.value and animVal.value always contain the value of the
property in user units (degrees for angles), regardless of what unit was used to set the
attribute. The baseVal and animVal objects also have methods to convert between units.

Example 14-1 shows different ways of accessing information about the x- and y-radii
of an animated ellipse. The output is shown in Figure 14-1 (the exact output will depend
on the default font size of your system).

Figure 14-1. Screenshot of animation with baseVal and animVal

Example 14-1. Using the baseVal and animVal properties
http://oreillymedia.github.io/svg-essentials-examples/ch14/baseval_animval.svg

Animation markup
<ellipse id="el" cx="50%" cy="20" rx="40%" ry="1em">
    <animate id="animation" attributeName="rx" to="20%"
             begin="indefinite" dur="2s" fill="freeze"/>
</ellipse>

Markup for text output
<text y="3em">
    <tspan x="1em" dy="1.5em">getAttribute("rx"):</tspan>
        <tspan x="50%" id="getRx"/>
    <tspan x="1em" dy="1.5em">getAttribute("ry"):</tspan>
        <tspan x="50%" id="getRy"/>
    <tspan x="1em" dy="1.5em">rx.baseVal.value:</tspan>
        <tspan x="50%" id="rxBase"/>
    <tspan x="1em" dy="1.5em">ry.baseVal.value:</tspan>
        <tspan x="50%" id="ryBase"/>
    <tspan x="1em" dy="1.5em">rx.baseVal.valueAsString:</tspan>
        <tspan x="50%" id="rxBaseString"/>

234 | Chapter 14: Using the SVG DOM

http://oreillymedia.github.io/svg-essentials-examples/ch14/baseval_animval.svg


    <tspan x="1em" dy="1.5em">ry.baseVal.valueInSpecifiedUnits:</tspan>
        <tspan x="50%" id="ryBaseUnits"/>

    <tspan style="font-weight:bold;" x="1em" dy="2.5em">After
        rx.baseVal.convertToSpecifiedUnits():</tspan>
    <tspan x="1em" dy="1.5em">rx.baseVal.valueAsString:</tspan>
        <tspan x="50%" id="rxBaseUnits"/>

    <tspan style="font-weight:bold;" x="1em" dy="2.5em">After
        approx. 1 second of animation:</tspan>
    <tspan x="1em" dy="1.5em">rx.animVal.value:</tspan>
        <tspan x="50%" id="rxAnim"/>
    <tspan x="1em" dy="1.5em">ry.animVal.value:</tspan>
        <tspan x="50%" id="ryAnim"/>
</text>

Script
var doc = document;
var el = doc.getElementById("el"); 
doc.getElementById("getRx").textContent = el.getAttribute("rx"); 
doc.getElementById("getRy").textContent = el.getAttribute("ry");
doc.getElementById("rxBase").textContent = el.rx.baseVal.value; 
doc.getElementById("ryBase").textContent = el.ry.baseVal.value;
doc.getElementById("rxBaseString").textContent =
 el.rx.baseVal.valueAsString; 
doc.getElementById("ryBaseUnits").textContent =
 el.ry.baseVal.valueInSpecifiedUnits; 

el.rx.baseVal.convertToSpecifiedUnits(SVGLength.SVG_LENGTHTYPE_EMS); 
doc.getElementById("rxBaseUnits").textContent =
  el.rx.baseVal.valueAsString;

var animate = doc.getElementById("animation"); 
try {
  animate.beginElement(); //start the animation
} catch(e){/* catch exception if animation not supported */}
setTimeout(getAnimatedValue, 1000); 

function getAnimatedValue() { 
  try {
    animate.endElement(); //freeze the animation
  } catch(e){}
  doc.getElementById("rxAnim").textContent = el.rx.animVal.value;
  doc.getElementById("ryAnim").textContent = el.ry.animVal.value;
}

el is the "SVGEllipseElement object” representing the ellipse in the markup.
el.getAttribute("rx") returns the string value of the attribute with the units
used in the markup.
el.rx.baseVal.value is the rx value converted to a number in user units.

Determining the Value of Element Attributes | 235



el.rx.baseVal.valueAsString is the complete string, with units.
el.ry.baseVal.valueInSpecifiedUnits is the value of the attribute as a
number, but in the units used when the attribute was set.
The convertToSpecifiedUnits(unitConstant) method can be used to convert
the value to any unit you choose (in this case, ems). The method doesn’t return
anything directly, but the data object’s valueAsString and
valueInSpecifiedUnits properties will be changed. The value property (which
is always in user units) isn’t affected.
The markup defines an animation element that modifies the rx attribute of the
ellipse, but which has begin="indefinite", preventing it from starting
automatically. Instead, we start it by calling the beginElement() method. The
method is put in a try/catch block to avoid errors in browsers that don’t support
animation.
The setTimeout() function call tells the computer to wait 1 second (1000ms),
and then run the getAnimatedValue function.
getAnimatedValue() halts the animation with animate.endElement(), then
queries the animVal properties for each attribute. Although ry is not being
animated, ry.animVal still exists; it is exactly equal to ry.baseVal.

The rx and ry properties used in Example 14-1 are both instances of
SVGAnimatedLength objects. To describe different types of geometrical data, SVG de‐
fines a variety of custom objects. Table 14-1 lists some of the most important objects
and what you can do with them.

236 | Chapter 14: Using the SVG DOM



Ta
bl

e 1
4-

1.
 S

VG
 D

at
a 

O
bj

ec
ts

Ob
je

ct
 N

am
e

De
sc

rip
tio

n
Pr

op
er

tie
s a

nd
 M

et
ho

ds

SV
GL
en
gt
h

A l
en

gt
h w

ith
 un

its
. T

he
 un

its
 ar

e d
efi

ne
d a

s c
on

sta
nt

s o
f

th
e f

or
m

 S
VG
Le
ng
th
.S
VG
_L
EN
GT
HT
YP
E_
un
it

,
wh

er
e u

nit
 is

 on
e o

f N
UM
BE
R

 (f
or

 us
er

 un
its

),
PE
RC
EN
TA
GE

, E
MS

 (e
m

 un
its

), E
XS

 (e
x u

nit
s),

 P
X,

 C
M,

MM
, I
N,

 P
T,

 P
C.

Pr
op

er
tie

s:
un
it
Ty
pe

on
e o

f t
he

 co
ns

ta
nt

s d
efi

nin
g a

llo
we

d u
nit

s;
va
lu
e th

e l
en

gt
h 

in
 us

er
 un

its
;

va
lu
eI
nS
pe
ci
fi
ed
Un
it
s

th
e l

en
gt

h 
in

 u
ni
tT
yp
e

 un
its

;
va
lu
eA
sS
tr
in
g

th
e v

alu
e a

nd
 un

its
 to

ge
th

er
 as

 a 
str

ing
.

M
et

ho
ds

:
ne
wV
al
ue
Sp
ec
if
ie
dU
ni
ts
(

 u
ni
tT
yp
e,

 v
al
ue
In
Sp
ec
if
ie
dU
ni
ts
)

se
ts 

th
e v

alu
e a

nd
 th

e u
nit

s;
co
nv
er
tT
oS
pe
ci
fi
ed
Un
it
s(

 u
ni
tT
yp
e

 )
ch

an
ge

 th
e u

nit
 ty

pe
, w

hil
e m

ain
ta

ini
ng

 th
e s

am
e v

alu
e i

n 
us

er
 un

its
.

SV
GA
ng
le

An
 an

gle
 w

ith
 un

its
. T

he
 un

it 
co

ns
ta

nt
s a

re
 of

 th
e f

or
m

SV
GA
ng
le
.S
VG
_A
NG
LE
TY
PE
_u

ni
t,

 w
he

re
 un

it 
is

on
e o

f U
NS
PE
CI
FI
ED

 (d
eg

re
es

 by
 de

fau
lt)

 D
EG

, R
AD

,
or

 G
RA
D.

Sa
m

e a
s f

or
 S
VG
Le
ng
th

.

SV
GR
ec
t

A 
re

cta
ng

lul
ar

 ar
ea

 in
 us

er
 co

or
din

at
es

. T
he

 SV
GR

ec
t

ob
jec

t i
s n

ot
 th

e s
am

e a
s a

 <
re
ct
>

 el
em

en
t (

wh
ich

 is
re

pr
es

en
te

d b
y t

he
 S
VG
Re
ct
El
em
en
t

 in
te

rfa
ce

).

Pr
op

er
tie

s:
x,

 y
, w
id
th

 an
d h

ei
gh
t

all
 nu

m
be

rs 
in

 us
er

 co
or

din
at

es
.

Determining the Value of Element Attributes | 237



Ob
je

ct
 N

am
e

De
sc

rip
tio

n
Pr

op
er

tie
s a

nd
 M

et
ho

ds

SV
GP
oi
nt

A 
po

int
 in

 us
er

 sp
ac

e.
Pr

op
er

tie
s:

x,
 y

bo
th

 nu
m

be
rs 

in
 us

er
 co

or
din

at
es

.

M
et

ho
d:

ma
tr
ix
Tr
an
sf
or
m(
ma
tr
ix
)

re
tu

rn
s t

he
 va

lue
 of

 th
e p

oin
t t

ra
ns

fo
rm

ed
 by

 th
e g

ive
n 

m
at

rix
, w

hic
h 

m
us

t b
e a

n
SV
GM
at
ri
x

 ob
jec

t.

SV
GM
at
ri
x

A 
m

at
rix

 in
 th

e f
or

m
 us

ed
 fo

r t
ra

ns
fo

rm
at

ion
s, 

as
de

scr
ibe

d i
n 

Ap
pe

nd
ix 

D.
Pr

op
er

tie
s:

a,
b,
c,
d,
e,
f

all
 nu

m
be

rs,
 re

pr
es

en
tin

g t
he

 va
ria

ble
 va

lue
s o

f t
he

 m
at

rix
 in

 to
p-

to
-b

ot
to

m
, le

ft-
to

-ri
gh

t
or

de
r.

M
et

ho
ds

:
mu
lt
ip
ly
(s
ec
on
dM
at
ri
x)

re
tu

rn
s a

 m
at

rix
 eq

ua
l t

o t
he

 tw
o m

at
rix

es
 m

ult
ipl

ied
 to

ge
th

er
;

in
ve
rs
e(
)

cre
at

es
 th

e i
nv

er
t m

at
rix

 if
 po

ssi
ble

, o
r t

hr
ow

s a
n 

ex
ce

pt
ion

 if
 th

e m
at

rix
 is

 no
t i

nv
er

ta
ble

(fo
r e

xa
m

ple
 if

 it
 re

pr
es

en
ts 

a s
ca
le
(0
)

 op
er

at
ion

);
tr
an
sl
at
e(

x,
 y
),

 s
ca
le
(s
ca
le
Fa
ct
or
),

 s
ca
le
No
nU
ni
fo
rm
(s
ca
le
Fa
ct
or
X,

sc
al
eF
ac
to
rY
),

 r
ot
at
e(
an
gl
e)

, r
ot
at
eF
ro
mV
ec
to
r(
x,

 y
),

 f
li
pX
()

, f
li

pY
()

, s
ke
wX
(a
ng
le
),

 s
ke
wY
(a
ng
le
)

re
tu

rn
s a

 ne
w 

m
at

rix
 th

at
 is

 th
is 

m
at

rix
 m

ult
ipl

ied
 by

 th
e s

pe
cif

ied
 tr

an
sfo

rm
at

ion
;

ro
ta
te
Fr
om
V
ec
to
r

 ca
lcu

lat
es

 th
e a

ng
le 

re
qu

ire
d t

o r
ot

at
e t

he
 x-

ax
is 

to
 al

ign
 w

ith
 th

at
ve

cto
r; 
fl
ip
X

 an
d f

li
pY

 ar
e e

qu
iva

len
t t

o s
ca

lin
g b

y a
n 

x o
r y

 fa
cto

r o
f -

1.

238 | Chapter 14: Using the SVG DOM



Ob
je

ct
 N

am
e

De
sc

rip
tio

n
Pr

op
er

tie
s a

nd
 M

et
ho

ds

SV
GT
ra
ns
fo
rm

A s
ing

le 
tra

ns
fo

rm
at

ion
 co

m
m

an
d.

 Th
e t

yp
e o

f c
om

m
an

d
is 

de
fin

ed
 as

 a 
co

ns
ta

nt
 of

 th
e f

or
m

SV
G_
TR
AN
SF
OR
M_
ty
pe

, w
he

re
 ty

pe
 is

 on
e o

f
MA
TR
IX

, T
RA
NS
LA
TE

, S
CA
LE

, R
OT
AT
E,

 S
KE
WX

 or
SK
EW
Y.

Pr
op

er
tie

s:
ty
pe

on
e o

f t
he

 ty
pe

 co
ns

ta
nt

s;
ma
tr
ix th

e S
VG
Ma
tr
ix

 ob
jec

t r
ep

re
se

nt
ing

 th
is 

tra
ns

fo
rm

at
ion

;
an
gl
e th

e a
ng

le 
of

 ro
ta

tio
n 

or
 sk

ew
 in

 de
gr

ee
s, 

if 
ap

pli
ca

ble
, o

r z
er

o.

M
et

ho
ds

:
se
tM
at
ri
x(
ma
tr
ix
),

 s
et
Tr
an
sl
at
e(
x,

 y
),

 s
et
Sc
al
e(
sc
al
eF
ac
to
rX
,

 s
ca
le

Fa
ct
or
Y)

, s
et
Ro
ta
te
(a
ng
le
,

 c
x,

 c
y)

, s
et
Sk
ew
X(
an
gl
e)

, s
et
Sk
ew
Y(
an
gl
e)

ch
an

ge
 th

is 
SV
GT
ra
ns
fo
rm

 ob
jec

t t
o t

he
 sp

ec
ifi

ed
 tr

an
sfo

rm
at

ion
.

SV
GT
ra
ns
fo
rm
Li
s
t

A 
lis

t o
f t

ra
ns

fo
rm

at
ion

s (
SV
GT
ra
ns

fo
rm

 ob
jec

ts)
, in

th
e o

rd
er

 th
ey

 w
ou

ld
 be

 sp
ec

ifi
ed

 in
 a 
tr
an
sf
or
m

at
tri

bu
te

. In
 ad

dit
ion

 to
 th

e s
pe

cif
ic 

m
et

ho
ds

 fo
r

tra
ns

fo
rm

 lis
ts,

 th
es

e o
bje

cts
 al

so
 im

ple
m

en
t t

he
nu
mb
er
Of
It
em
s

 pr
op

er
ty

 an
d a

ll t
he

 m
et

ho
ds

de
scr

ibe
d b

elo
w 

fo
r g

en
er

ic 
lis

ts.

M
et

ho
ds

:
cr
ea
te
SV
GT
ra
ns
fo
rm
Fr
om
Ma
tr
ix
(m
at
ri
x)

cre
at

e a
 ne

w 
SV
GT
ra
ns
fo
rm

 ob
jec

t f
ro

m
 an

 S
VG
Ma
tr
ix

 ob
jec

t;
co
ns
ol
id
at
e(
)

co
m

bin
e a

ll t
he

 tr
an

sfo
rm

at
ion

s i
n 

th
is 

lis
t i

nt
o a

 si
ng

le 
m

at
rix

 tr
an

sfo
rm

at
ion

, a
nd

 th
en

re
tu

rn
 th

at
 S
VG
Tr
an
sf
or
m

 ob
jec

t.

Determining the Value of Element Attributes | 239



Ob
je

ct
 N

am
e

De
sc

rip
tio

n
Pr

op
er

tie
s a

nd
 M

et
ho

ds

SV
GX
xx
Li
st

Fo
r a

ny
 da

ta
 ty

pe
 th

at
 m

igh
t b

e u
se

d i
n a

 lis
t o

r a
n a

rra
y

(a
nd

 m
os

t a
nim

at
ed

 da
ta

 ty
pe

s),
 th

er
e i

s a
SV
GD
at
at
yp
eL
is
t.

 M
os

t J
av

as
cri

pt
im

ple
m

en
ta

tio
ns

 of
 th

e S
VG

 DO
M

 us
e a

rra
ys

 to
 re

pr
es

en
t

th
es

e l
ist

s, 
so

 yo
u m

ay
 al

so
 be

 ab
le 

to
 us

e a
rra

y n
ot

at
ion

to
 se

t o
r r

et
rie

ve
 it

em
s.

Pr
op

er
ty

:
nu
mb
er
Of
It
em
s

th
e l

en
gt

h 
of

 th
e l

ist
.

M
et

ho
ds

:
cl
ea
r(
)

re
m

ov
es

 al
l e

lem
en

ts 
fro

m
 th

e l
ist

;
in
it
ia
li
ze
(n
ew
It
em
)

cle
ar

s a
ll e

xis
tin

g i
te

m
s f

ro
m

 th
e l

ist
, s

o t
ha

t i
t o

nl
y c

on
ta

ins
 th

e o
ne

 ne
w 

ite
m

;
ge
tI
te
m(
in
de
x)

ac
ce

sse
s t

he
 lis

t i
te

m
 at

 in
de

x (
th

e f
irs

t i
nd

ex
 is

 0
);

in
se
rt
It
em
Be
fo
re
(n
ew
It
em
,

 i
nd
ex
),

 r
ep
la
ce
It
em
(n
ew

It
em
,

 i
nd
ex
),

 r
e

mo
ve
It
em
(i
nd
ex
),

 a
pp
en
dI
te
m(
ne
wI
te
m)

se
lf-

ex
pla

na
to

ry
 m

et
ho

ds
 fo

r m
od

ify
ing

 th
e l

ist
.

SV
GA
ni
ma
te

dX
xx

Fo
r n

ea
rly

 ev
er

y d
at

a t
yp

e, 
th

er
e i

s a
n

SV
GA
ni
ma
te
dD
at
at
yp
e

 in
te

rfa
ce

, w
hic

h 
is 

us
ed

 as
th

e v
alu

e o
f a

 pr
op

er
ty

 re
pr

es
en

tin
g a

n 
an

im
at

ab
le

at
tri

bu
te

. F
or

 ex
am

ple
, t

he
 c
x

 pr
op

er
ty

 of
 an

SV
GC
ir
cl
eE
le
me
nt

 ob
jec

t i
s a

n
SV
GA
ni
ma
te
dL
en
gt
h

 ob
jec

t, 
wh

ile
 a 
tr
an
sf
or
m

pr
op

er
ty

 is
 of

 ty
pe

 S
VG
An
im
at
ed
Tr
an
sf
or
mL
is
t.

Pr
op

er
tie

s:
ba
se
Va
l

an
 ob

jec
t c

on
ta

ini
ng

 th
e o

ffi
cia

l v
alu

e o
f t

he
 at

tri
bu

te
 or

 pr
op

er
ty

;
an
im
Va
l

a r
ea

d-
on

ly 
ob

jec
t c

on
ta

ini
ng

 th
e c

ur
re

nt
 di

sp
lay

ed
 va

lue
 of

 th
e a

ttr
ibu

te
 or

 pr
op

er
ty,

 af
te

r
ad

jus
tin

g f
or

 an
im

at
ion

.

240 | Chapter 14: Using the SVG DOM



SVG Interface Methods
Sometimes when scripting SVG, you want to calculate a geometric property that isn’t
defined directly by an attribute. For example, you might want to draw a rectangle around
a text label that will fit neatly, regardless of what font is used for the text. Or you might
want to find out where you are in the timing cycle of an animation at the time the
JavaScript code is run. Other times, you might want to manipulate part of a complex
attribute: one curve segment within a path, or one command within a transform
attribute.

There are a variety of useful properties and methods that can be called on element objects
—the objects returned by document.getElementById(id)—to perform these sorts of
calculations and manipulations. The specifications define these in terms of interfaces,
descriptions of common functionality that are implemented by specific object types.

Table 14-2 lists some of the interface features available for the elements described in this
book. The list is not exhaustive, but it should get you started.

SVG Interface Methods | 241



Ta
bl

e 1
4-

2.
 In

te
rfa

ce
s f

or
 S

VG
 el

em
en

ts

Ap
pl

ies
 to

M
et

ho
d 

or
 p

ro
pe

rty
Re

su
lt

SV
GE
le
me
nt

(a
ny

 el
em

en
t i

n 
th

e S
VG

na
m

es
pa

ce
)

.o
wn
er
SV
GE
le
me
nt
()

Re
tu

rn
s a

 re
fer

en
ce

 to
 th

e n
ea

re
st 

an
ce

sto
r <
sv
g>

 in
 th

e h
ier

ar
ch

y; 
re

tu
rn

s n
ull

 if
 ca

lle
d o

n 
a t

op
-

lev
el 

SV
G 

ele
m

en
t.

.v
ie
wp
or
tE
le
me
nt
()

Re
tu

rn
s a

 re
fer

en
ce

 to
 th

e <
sv
g>

, <
pa
tt
er
n>

, <
sy
mb
ol
>,

 or
 <
ma
rk
er
>

 el
em

en
t t

ha
t

es
ta

bli
sh

es
 th

e v
iew

po
rt 

fo
r t

his
 el

em
en

t.

SV
GL
oc
at
ab
le

(a
ny

 el
em

en
t t

ha
t t

ak
es

 up
co

or
din

at
e s

pa
ce

 or
 ta

ke
s a

tra
ns

fo
rm

 at
tri

bu
te

: g
ra

ph
ics

ele
m

en
ts,

 <
g>

 or
 <
sv
g>

)

.n
ea
re
st
Vi
ew
po
rt

El
em
en
t

Th
e <

sv
g>

, <
pa
tt
er
n>

, <
sy
mb
ol
>,

 or
 <
ma
rk
er
>

 el
em

en
t t

ha
t e

sta
bli

sh
es

 th
e v

iew
po

rt 
fo

r
th

is 
ele

m
en

t.

.f
ar
th
es
tV
ie
wp
or
tE
le
me
nt

Th
e t

op
-le

ve
l <
sv
g>

 el
em

en
t t

ha
t c

on
ta

ins
 th

is 
ele

m
en

t.

.g
et
BB
ox
()

Re
tu

rn
s t

he
 ob

jec
t b

ou
nd

ing
 bo

x a
s a

n S
VG
Re
ct

 ob
jec

t w
ith

 pr
op

er
tie

s x
, y

, w
id
th

, a
nd

 h
ei
gh
t,

re
pr

es
en

tin
g t

he
 co

or
din

at
es

 an
d e

xt
en

t o
f th

e s
m

all
es

t r
ec

ta
ng

le 
in

 th
e c

ur
re

nt
 us

er
 co

or
din

at
e s

ys
te

m
th

at
 ca

n c
on

ta
in

 th
e g

ra
ph

ic.
 Th

e b
ou

nd
ing

 bo
x i

s n
ot

 af
fec

te
d b

y s
tro

ke
 w

idt
h,

 cl
ipp

ing
, m

as
kin

g, 
or

fil
te

r e
ffe

cts
.

 
.g
et
CT
M(
)

Re
tu

rn
s a

 cu
m

ula
tiv

e t
ra

ns
fo

rm
at

ion
 m

at
rix

, a
n 
SV
GM
at
ri
x

 ob
jec

t r
ep

re
se

nt
ing

 th
e n

et
tra

ns
fo

rm
at

ion
 fr

om
 th

e c
oo

rd
ina

te
 sy

ste
m

 of
 th

is 
ele

m
en

t t
o t

he
 co

or
din

at
e s

ys
te

m
 of

 th
e

ne
ar
es
tV
ie
wp
or
tE
le
me
nt

.

 
.g
et
Sc
re
en
CT
M(
)

Re
tu

rn
s a

 cu
m

ula
tiv

e t
ra

ns
fo

rm
at

ion
 m

at
rix

 to
 co

nv
er

t fr
om

 th
e u

se
r c

oo
rd

ina
te

 sy
ste

m
 of

 th
is e

lem
en

t
to

 th
e “

scr
ee

n”
 or

 cl
ien

t c
oo

rd
ina

te
s u

se
d t

o r
ep

re
se

nt
 po

int
s o

n t
he

 ro
ot

-le
ve

l d
oc

um
en

t. T
his

 m
et

ho
d

is 
us

efu
l in

 ev
en

t h
an

dle
rs 

wh
en

 co
nv

er
tin

g b
et

we
en

 m
ou

se
/p

oin
te

r c
oo

rd
ina

te
s a

nd
 th

e c
oo

rd
ina

te
sy

ste
m

 of
 yo

ur
 gr

ap
hic

s.

 
.g
et
Tr
an
sf
or
mT
oE
le
me
nt
(

SV
GE
le
me
nt
)

Re
tu

rn
s a

n 
SV
GM
at
ri
x

 re
pr

es
en

tin
g t

he
 ne

t t
ra

ns
fo

rm
at

ion
s r

eq
uir

ed
 to

 co
nv

er
t b

et
we

en
 th

e
co

or
din

at
e s

ys
te

m
 fo

r t
his

 el
em

en
t a

nd
 th

e c
oo

rd
ina

te
 sy

ste
m

 fo
r t

he
 ot

he
r e

lem
en

t.

SV
GT
ra
ns
fo
rm
ab
le

(a
ny

 el
em

en
t t

ha
t c

an
 ta

ke
 a

tr
an
sf
or
m

 at
tri

bu
te

)

.t
ra
ns
fo
rm

Th
e S

VG
An
im
at
ed
Tr
an
sf
or
mL
is
t

 re
pr

es
en

tin
g t

he
 ba

se
 an

d a
nim

at
ed

 va
lue

s o
f t

he
tra

ns
fo

rm
at

ion
s d

efi
ne

d o
n 

th
is 

ele
m

en
t.

242 | Chapter 14: Using the SVG DOM



Ap
pl

ies
 to

M
et

ho
d 

or
 p

ro
pe

rty
Re

su
lt

SV
GS
ty
la
bl
e

(a
ny

 el
em

en
t t

ha
t c

an
 ta

ke
 a

st
yl
e

 at
tri

bu
te

)

.s
ty
le

A C
SS
St
yl
eD
ec
la
ra
ti
on

 ob
jec

t re
pr

es
en

tin
g a

ny
 in

lin
e s

ty
les

 se
t o

n t
his

 el
em

en
t. S

ee
 “S

cri
pt

ing
SV

G”
 on

 pa
ge

 21
3 i

n 
Ch

ap
te

r 1
3 f

or
 m

et
ho

ds
 of

 th
e s

ty
le

 ob
jec

t.

SV
GS
VG
El
em
en
t

(<
sv

g>
)

.s
us
pe
nd
Re
dr
aw
(

ma
xW
ai
tT
im
eI
nM
il
li
se
co
nd
s)

Te
lls

 th
e b

ro
ws

er
 to

 ho
ld

 of
f o

n r
ed

ra
wi

ng
 th

e g
ra

ph
ic 

fo
r t

he
 sp

ec
ifi

ed
 w

ait
 ti

m
e (

m
ax

 on
e m

inu
te

).
Us

efu
l if

 yo
u a

re
 go

ing
 to

 be
 m

ak
ing

 a 
lot

 of
 ch

an
ge

s a
nd

 yo
u w

an
t t

he
m

 al
l t

o a
pp

ly 
at

 on
ce

. T
he

m
et

ho
d r

et
ur

ns
 an

 ID
 nu

m
be

r w
hic

h 
yo

u c
an

 th
en

 pa
ss

 to
 u
ns
us
pe
nd
Re
dr
aw

 fu
nc

tio
n.

.u
ns
us
pe
nd
Re
dr
aw

(s
us
pe
nd
ID
)

Ca
nc

els
 th

e s
pe

cif
ic 
su
sp
en
dR
ed
ra
w

 ca
ll a

sso
cia

te
d w

ith
 th

e I
D 

va
lue

.

.u
ns
us
pe
nd
Re
dr
aw

Al
l(
)

Ca
nc

els
 al

l s
us
pe
nd
Re
dr
aw

 ca
lls

 on
 th

e S
VG

, c
au

sin
g t

he
 gr

ap
hic

 to
 re

fre
sh

 ag
ain

.

 
.p
au
se
An
im
at
io
ns

()
Pa

us
es

 th
e t

im
e c

loc
k f

or
 al

l S
M

IL 
an

im
at

ion
s w

ith
in

 th
e S

VG
.

 
.u
np
au
se
An
im
at
io
ns
()

Re
su

m
es

 th
e t

im
e c

loc
k f

or
 al

l S
M

IL 
an

im
at

ion
s w

ith
in

 th
e S

VG
.

 
.a
ni

ma
ti
on
sP
au
se
d(
)

Re
tu

rn
s t

ru
e o

r f
als

e, 
de

pe
nd

ing
 on

 w
he

th
er

 an
im

at
ion

s h
av

e b
ee

n p
au

se
d u

sin
g t

he
 ab

ov
e m

et
ho

ds
.

 
.g
et
Cu
rr
en
tT
im
e(
)

Re
tu

rn
s t

he
 va

lue
 of

 th
e t

im
e c

loc
k u

se
d f

or
 SM

IL 
an

im
at

ion
s. 

No
rm

all
y, 

th
is 

is 
th

e n
um

be
r o

f s
ec

on
ds

sin
ce

 th
e d

oc
um

en
t w

as
 lo

ad
ed

, b
ut

 it 
ca

n b
e a

ffe
cte

d b
y p

au
sin

g o
r u

np
au

sin
g a

nim
at

ion
s o

r s
et

tin
g

th
e t

im
e d

ire
ctl

y.

 
.s
et
Cu
rr
en
tT
im
e(
ti
me
In
Se
co
nd
s

)

Se
ts 

th
e S

M
IL 

tim
e c

loc
k t

o t
he

 sp
ec

ifi
ed

 va
lue

, a
ffe

cti
ng

 al
l a

nim
at

ion
s

 
.g
et
In
te
rs
ec
ti
on
Li
st
(

re
ct
an
gl
e,

 r
ef
er
en
ce
El
em
en
t)

Re
tu

rn
s a

 lis
t o

f e
lem

en
ts 

th
at

 (a
) o

ve
rla

p t
he

 sp
ec

ifi
ed

 re
cta

ng
le 

(a
n S

VG
Re
ct

 ob
jec

t) 
ba

se
d o

n t
he

cu
rre

nt
 <
sv
g>

 el
em

en
t’s

 co
or

din
at

e s
ys

te
m

, a
nd

 th
at

 (b
) a

re
 ch

ild
re

n o
f t

he
 re

fer
en

ce
 el

em
en

t. 
On

ly
pa

rts
 of

 th
e e

lem
en

t t
ha

t a
re

 se
ns

iti
ve

 to
 po

int
er

 ev
en

ts 
(b

as
ed

 on
 th

e p
oi
nt
er
-e
ve
nt
s

 pr
op

er
ty,

by
 de

fau
lt a

ny
 vi

sib
le 

pa
int

ed
 ar

ea
s) 

ar
e c

on
sid

er
ed

 w
he

n d
et

er
m

ini
ng

 ov
er

lap
. T

he
 re

fer
en

ce
 el

em
en

t
ca

n 
be

 nu
ll, 

in
 w

hic
h 

ca
se

 al
l c

hil
dr

en
 of

 th
is 
<s
vg
>

 ar
e i

nc
lud

ed
.a

 
.g
et
En
cl
os
ur
eL
is
t(

 r
ec
ta
ng
le
,

re
fe
re
nc
eE
le
me
nt
)

Sim
ila

r t
o g

et
In
te
rs
ec
ti
on
Li
st
()

, e
xc

ep
t t

ha
t i

t o
nl

y r
et

ur
ns

 el
em

en
ts 

th
at

 ar
e e

nt
ire

ly
wi

th
in

 th
e r

ec
ta

ng
le

SVG Interface Methods | 243



Ap
pl

ies
 to

M
et

ho
d 

or
 p

ro
pe

rty
Re

su
lt

 
.c
he
ck
In
te
rs
ec
ti
on
(e
le
me
nt
,

re
ct
an
gl
e)

Re
tu

rn
s t
ru
e

 or
 f
al
se

, d
ep

en
din

g o
n w

he
th

er
 th

e g
ive

n e
lem

en
t i

nt
er

se
cts

 th
e g

ive
n S

VG
Re
ct

ob
jec

t, 
in

 th
is 
<s
vg
>

 el
em

en
t’s

 co
or

din
at

e s
ys

te
m

.

 
.c
he
ck
En
cl
os
ur
e(
el
em
en
t,

re
ct
an
gl
e)

Re
tu

rn
s t

ru
e

 or
 f
al
se

, d
ep

en
din

g o
n 

wh
et

he
r t

he
 gi

ve
n 

ele
m

en
t i

s c
om

ple
te

ly 
co

nt
ain

ed
 in

 th
e

giv
en

 S
VG
Re
ct

 ob
jec

t, 
in

 th
is 
<s
vg
>

 el
em

en
t’s

 co
or

din
at

e s
ys

te
m

.

 
.c
re
at
eS

VG
Xx
x(
)

Th
e S

VG
SV
GE
le
me
nt

 su
pp

or
ts 

m
et

ho
ds

 to
 cr

ea
te

 ne
w 

ins
ta

nc
es

 of
 ea

ch
 of

 th
e d

at
a o

bje
ct 

ty
pe

s
(S
VG
Po
in
t,

 S
VG
An
g
le

, S
VG
Ma
tr
ix

, e
tc.

) f
ro

m
 Ta

ble
 14

-1
. T

he
 m

et
ho

ds
 do

n’t
 ta

ke
 an

y
pa

ra
m

et
er

s; 
th

e r
es

ult
ing

 ob
jec

ts 
ar

e i
nit

ial
ize

d w
ith

 th
eir

 pr
op

er
tie

s s
et

 to
 0 

(e
xc

ep
t f

or
cr
ea
te
SV
GM
at
ri
x(
),

 w
hic

h 
re

tu
rn

s a
n 

ide
nt

ity
 m

at
rix

).

SV
GU
se
El
em
en
t

(<
us
e>

)
.i
ns
ta
nc
eR
oo
t

Co
nt

ain
s t

he
 to

p-
lev

el 
no

de
 of

 a 
sh

ad
ow

 D
OM

 tr
ee

 re
pr

es
en

tin
g t

he
 gr

ap
hic

s d
ra

wn
 by

 th
e <

us
e>

ele
m

en
t. 

Th
e e

lem
en

ts 
in

 th
e s

ha
do

w 
DO

M
 (S
VG
El
em
en
tI
ns
ta
nc
e

 ob
jec

ts)
 ha

ve
 lim

ite
d

fu
nc

tio
n:

 yo
u c

an
no

t m
an

ipu
lat

e a
ttr

ibu
te

s o
r s

ty
les

 di
re

ctl
y, 

bu
t t

he
y c

an
 be

 ta
rg

et
s o

f u
se

r e
ve

nt
s.

Ea
ch

 S
VG
El
em
en
tI
n
st
an
ce

 ha
s a

 c
or
re
sp
on
di
ng
El
em
en
t

 at
tri

bu
te

 th
at

 lin
ks

 to
 th

e
so

ur
ce

 gr
ap

hic
s e

lem
en

t t
ha

t i
t d

up
lic

at
es

, a
nd

 a 
co
rr
es
po
nd
in
gU
se
El
em
en
t

 pr
op

er
ty

 th
at

lin
ks

 ba
ck

 to
 th

e <
us
e
>

 el
em

en
t.b

SV
GP
at
hE
le
me
nt

(<
pa
th
>)

.g
et
To
ta
lL
en
gt
h(
)

Re
tu

rn
s t

he
 co

m
pu

te
d l

en
gt

h,
 in

 us
er

 un
its

, o
f t

he
 en

tir
e p

at
h (

no
t c

ou
nt

ing
 an

y m
ov

e-
to

 co
m

m
an

ds
).

Th
is 

va
lue

 m
ay

 no
t b

e e
xa

ctl
y t

he
 sa

m
e i

n e
ve

ry
 ag

en
t b

ec
au

se
 ap

pr
ox

im
at

ion
s m

ay
 be

 us
ed

 fo
r s

om
e

cu
rv

es
.

.g
et
Po
in
tA
tL
en
gt

h(
di
st
an
ce
)

Re
tu

rn
s a

n S
VG
Po
in
t

 ob
jec

t w
ith

 pr
op

er
tie

s x
 an

d y
, r

ep
re

se
nt

ing
 th

e c
oo

rd
ina

te
s o

f t
he

 po
int

 on
th

e p
at

h 
th

at
 is

 d
is
ta
nc
e

 us
er

 un
its

 fr
om

 th
e s

ta
rt,

 us
ing

 th
e s

am
e m

et
ho

d o
f c

alc
ula

tin
g p

at
h

len
gt

h 
as

 fo
r g
et
To
ta
lL
en
gt
h(
).

244 | Chapter 14: Using the SVG DOM



Ap
pl

ies
 to

M
et

ho
d 

or
 p

ro
pe

rty
Re

su
lt

SV
GP
at
hD
at
a

(<
pa
th
>

 el
em

en
ts 

an
d a

ny
 ot

he
r

ele
m

en
ts 

th
at

 su
pp

or
t a

 pa
th

 da
ta

at
tri

bu
te

, s
uc

h 
as

<a
ni
ma
te
Mo
ti
on
>

 el
em

en
ts)

.p
at

hS
eg
Li
st

Co
nt

ain
s a

 lis
t o

f o
bje

ct 
re

pr
es

en
tin

g e
ac

h 
se

gm
en

t o
f t

he
 pa

th
. T

he
 lis

t c
an

 th
en

 be
 m

od
ifi

ed
 or

qu
er

ied
 in

 an
 ob

jec
t-o

rie
nt

ed
 m

an
ne

r; 
se

e t
he

 SV
G 

sp
ec

ifi
ca

tio
ns

 fo
r m

et
ho

ds
. T

he
 p
at
hS
eg
Li
st

pr
op

er
ty

 re
tu

rn
s t

he
 pa

th
 co

rre
sp

on
din

g t
o t

he
 ac

tu
al 
d

 at
tri

bu
te

 va
lue

; u
se

 th
e

an
im
at
ed
Pa
th
Se
gL
is
t

 pr
op

er
ty

 to
 ac

ce
ss

 th
e c

ur
re

nt
 st

at
e o

f t
he

 pa
th

 in
 ca

se
 th

e d
 at

tri
bu

te
is 

be
ing

 an
im

at
ed

.

.n
or
ma
li
ze
dP
at
hS
eg
Li
st

A 
sim

pli
fie

d v
er

sio
n 

of
 th

e p
at

h 
se

gm
en

t l
ist

, w
he

re
 ea

ch
 se

gm
en

t h
as

 be
en

 co
nv

er
te

d t
o e

ith
er

 a
m

ov
e, 

lin
e-

to
, c

ub
ic 

cu
rv

e, 
or

 cl
os

e p
at

h 
co

m
m

an
d i

n 
ab

so
lut

e c
oo

rd
ina

te
s. 

Th
er

e i
s a

lso
 an

an
im
at
ed
No
rm
al
iz
ed
Pa
th
Se
gL
is
t

 pr
op

er
ty.

SV
GA
ni
ma
te

dP
oi
nt
s

(<
po
ly
go
n>

 an
d <

po
ly
li
ne
>

ele
m

en
ts)

.p
oi
nt
s

Re
tu

rn
s t

he
 po

int
s a

sso
cia

te
d w

ith
 th

is 
ele

m
en

t a
s a

n 
SV
GP
oi
nt
Li
st

. T
he

 pr
op

er
ty

an
im
at
ed
Po
in
ts

 is
 si

m
ila

r b
ut

 is
 up

da
te

d w
he

n 
th

e p
oin

ts 
at

tri
bu

te
 is

 an
im

at
ed

.

SV
GT
ex
tC
on
te
nt
El
em
en
t

(a
ny

 te
xt

 el
em

en
t, 

inc
lud

ing
<t
ex
t>

, <
ts
pa
n>

, a
nd

<t
ex
tP
at
h>

)

.g
et
Nu
mb
er
Of
Ch
ar
s(
)

Re
tu

rn
s t

he
 to

ta
l n

um
be

r o
f c

ha
ra

cte
rs 

in
 th

is 
ele

m
en

t, i
nc

lud
ing

 te
xt

 in
 al

l c
hil

d <
ts
pa
n>

 el
em

en
ts.

M
ult

iby
te

 un
ico

de
 ch

ar
ac

te
rs 

ar
e c

ou
nt

ed
 ac

co
rd

ing
 to

 th
e n

um
be

r o
f U

TF
-1

6 c
ha

ra
cte

rs 
re

qu
ire

d t
o

re
pr

es
en

t t
he

m
.

.g
et
Co
mp
ut
ed
Te
xt
Le
ng
th
()

Re
tu

rn
s t

he
 le

ng
th

, in
 us

er
 co

or
din

at
e u

nit
s, 

re
qu

ire
d t

o w
rit

e o
ut

 th
e t

ex
t a

fte
r a

pp
lyi

ng
 al

l C
SS

pr
op

er
tie

s a
nd

 d
x

 an
d d

y
 at

tri
bu

te
s. 

Do
es

 no
t i

nc
lud

e a
ny

 ad
jus

tm
en

ts 
m

ad
e b

as
ed

 on
 a

te
xt
Le
ng
th

 at
tri

bu
te

.

.g
et
Su
bS
tr
in
gL
en
gt
h(
ch
ar
Nu
m,

nC
ha
rs
)

Re
tu

rn
s t

he
 co

m
pu

te
d t

ex
t l

en
gt

h 
fo

r a
 su

bs
tri

ng
 of

 th
e t

ex
t, 

sta
rti

ng
 w

ith
 th

e c
ha

ra
cte

r t
ha

t i
s

ch
ar
Nu
m

 nu
m

be
r o

f c
ha

ra
cte

rs 
int

o t
he

 te
xt

 (t
he

 fir
st 

ch
ar

ac
te

r i
s n

um
be

re
d 0

), 
an

d c
on

tin
uin

g f
or

nC
ha
rs

 or
 un

til
 th

e e
nd

 of
 th

e t
ex

t, 
wh

ich
ev

er
 co

m
es

 fir
st.

 
.g
et
St
ar
tP
os
it
io
nO
fC
ha
r(

ch
ar
Nu
m)

Re
tu

rn
s a

n 
SV
GP
oi
nt

 ob
jec

t w
ith

 pr
op

er
tie

s x
 an

d y
, r

ep
re

se
nt

ing
 th

e p
os

iti
on

 of
 th

e s
pe

cif
ied

ch
ar

ac
te

r w
ith

in
 us

er
 co

or
din

at
e s

pa
ce

. H
ow

 th
e c

ha
ra

cte
r i

s d
ra

wn
 re

lat
ive

 to
 th

is 
po

int
 de

pe
nd

s o
n

th
e w

rit
ing

 m
od

e (
ve

rti
ca

l o
r h

or
izo

nt
al,

 le
ft-

to
-ri

gh
t o

r r
igh

t-t
o-

lef
t) 

an
d t

he
 ba

se
lin

e-
ali

gn
m

en
t

pr
op

er
ty.

 Fo
r d

efa
ult

 pr
op

er
tie

s o
n 

lef
t-t

o-
rig

ht
 te

xt
, t

he
 po

int
 w

ill 
be

 w
he

re
 th

e l
ef

t e
dg

e o
f t

he
ch

ar
ac

te
r i

nt
er

ce
pt

s t
he

 ba
se

lin
e.

SVG Interface Methods | 245

http://www.w3.org/TR/SVG11/paths.html#DOMInterfaces


Ap
pl

ies
 to

M
et

ho
d 

or
 p

ro
pe

rty
Re

su
lt

 
.g
et
En
dP
os
it
io
nO
fC
ha
r(
ch
ar
Nu
m

)

Sim
ila

r t
o g

et
St
ar
tP
os
it
io
nO
fC
ha
r

 bu
t r

et
ur

ns
 th

e p
oin

t w
he

re
 th

e b
as

eli
ne

 m
ee

ts 
th

e e
nd

ed
ge

 of
 th

e c
ha

ra
cte

r.

 
.g
et
Ex
te
nt
Of
Ch
ar
(c
ha
rN
um
)

Re
tu

rn
s a

n S
VG
Re
ct

 ob
jec

t, 
sim

ila
r t

o g
et
BB
ox
()

, e
xc

ep
t t

ha
t i

t o
nl

y r
ep

re
se

nt
s t

he
 bo

un
da

rie
s

fo
r a

 si
ng

le 
ch

ar
ac

te
r.

 
.g
et
Ro
ta
ti
on
Of
Ch
ar
(c
ha
rN
um
)

Re
tu

rn
s t

he
 ro

ta
tio

n v
alu

e (
an

gle
 in

 de
gr

ee
s) 

fo
r t

he
 sp

ec
ifi

ed
 ch

ar
ac

te
r, a

fte
r t

ak
ing

 in
to

 co
ns

ide
ra

tio
n

an
y r

ot
at
e

 at
tri

bu
te

 an
d a

ny
 ro

ta
tio

n 
fro

m
 te

xt
 on

 a 
pa

th
, b

ut
 no

t i
nc

lud
ing

 an
y t

ra
ns

fo
rm

at
ion

of
 th

e c
oo

rd
ina

te
 sy

ste
m

.

 
.g
et
Ch
ar
Nu
mA
tP
os
it
io
n(
po
in
t)

Re
tu

rn
s t

he
 in

de
x n

um
be

r f
or

 th
e c

ha
ra

cte
r t

ha
t i

nc
lud

es
 th

e s
pe

cif
ied

 po
int

, o
r r

et
ur

ns
 -1

 if
 no

ch
ar

ac
te

rs 
in

 th
e s

tri
ng

 co
nt

ain
 th

at
 po

int
. T

he
 po

int
 is

 sp
ec

ifi
ed

 as
 an

 S
VG
Po
in
t

 ob
jec

t, 
eit

he
r o

ne
re

tu
rn

ed
 fr

om
 an

ot
he

r i
nt

er
fac

e m
et

ho
d,

 or
 on

e c
re

at
ed

 by
 ca

llin
g c

r
ea
te
SV
GP
oi
nt
()

 on
 an

<s
vg
>

 el
em

en
t a

nd
 th

en
 se

tti
ng

 th
e r

et
ur

ne
d o

bje
ct’

s x
 an

d y
 pr

op
er

tie
s.

El
em
en
tT
i
me
Co
nt
ro
l

 an
d

SV
GA
ni
ma
ti
on
El
em
en
t

(a
ny

 of
 th

e S
VG

 an
im

at
ion

ele
m

en
ts:

 <
an
im
at
e>

, <
se
t>

,
<a
ni
ma
te
Tr
an
sf
or
m>

, a
nd

<a
ni
ma
te
Mo
ti
on
>)

c

.t
ar
ge
tE
le
me
nt

Th
e S

VG
El
em
en
t

 th
at

 th
is 

an
im

at
ion

 el
em

en
t m

od
ifi

es
.

.b
eg
in
El
em
en
t(
)

St
ar

t t
he

 sp
ec

ifi
ed

 an
im

at
ion

 im
m

ed
iat

ely
, if

 it
 is

n’t
 pr

ev
en

te
d b

y a
 r
es
ta
rt

 at
tri

bu
te

 of
 n
ev
er

or
 w
he
nN
ot
Ac
ti
ve

.

.b
eg
in
El
em
en
tA
t(
of
fs
et
)

St
ar

t t
he

 sp
ec

ifi
ed

 an
im

at
ion

 af
te

r o
ffs

et
 nu

m
be

r o
f s

ec
on

ds
; if

 of
fse

t i
s n

eg
at

ive
, t

he
 an

im
at

ion
 w

ill
sta

rt 
im

m
ed

iat
ely

 bu
t b

e c
alc

ula
te

d a
s i

f i
t h

ad
 st

ar
te

d t
ha

t m
an

y s
ec

on
ds

 pr
ev

iou
sly

.

 
.e
nd
El
em
en
t(
)

En
d t

he
 cu

rre
nt

 ru
n 

of
 th

e a
nim

at
ion

 (i
nc

lud
ing

 al
l r

ep
ea

ts)
 im

m
ed

iat
ely

.

 
.e
nd
El
em
en
tA
t(
of

fs
et
)

En
d t

he
 an

im
at

ion
 af

te
r o

ffs
et

 nu
m

be
r o

f s
ec

on
ds

.

 
.g
et
St
ar
tT
im
e(
)

If 
th

e a
nim

at
ion

 is
 ru

nn
ing

, r
et

ur
ns

 th
e s

ta
rt 

tim
e a

t w
hic

h 
it 

be
ga

n,
 in

 se
co

nd
s r

ela
tiv

e t
o t

he
 ti

m
e

clo
ck

 fo
r t

he
 SV

G.
 If 

th
e a

nim
at

ion
 is 

wa
iti

ng
 to

 be
gin

, re
tu

rn
s t

he
 tim

e a
t w

hic
h i

t w
ill 

be
gin

. O
th

er
wi

se
,

th
ro

ws
 an

 ex
ce

pt
ion

.

 
.g
et
Cu
rr
en
tT
im
e(
)

Re
tu

rn
s t

he
 ti

m
e i

n s
ec

on
ds

 of
 th

e a
nim

at
ion

 ti
m

e c
loc

k f
or

 th
e S

VG
 th

at
 th

is 
ele

m
en

t i
s p

ar
t o

f, t
he

sa
m

e a
s c

all
ing

 g
et
Cu
rr
en
tT
im
e(
)

 on
 th

at
 SV

G.

246 | Chapter 14: Using the SVG DOM



Ap
pl

ies
 to

M
et

ho
d 

or
 p

ro
pe

rty
Re

su
lt

 
.g
et
Si
mp
le
Du
ra
ti
on
()

Re
tu

rn
s t

he
 nu

m
be

r o
f s

ec
on

ds
 fo

r t
he

 du
ra

tio
n o

f e
ac

h c
yc

le 
of

 th
e a

nim
at

ion
 (t

he
 va

lue
 of

 th
e d

ur

at
tri

bu
te

); 
th

ro
ws

 an
 ex

ce
pt

ion
 if

 th
e d

ur
at

ion
 is

 un
de

fin
ed

.

a At
 th

e t
im

e o
f w

rit
ing

, F
ire

fo
x (

ve
rsi

on
 30

) d
oe

s n
ot

 su
pp

or
t t

he
 m

et
ho

ds
 g
et
In
te
rs
ec
ti
on
Li
st

, g
et
En
cl
os
ur
eL
is
t,

 c
he
ck
In
te
rs
ec
ti
on

, o
r

ch
ec
kE
nc
lo
su
re

.
b 

Fir
efo

x (
as

 of
 ve

rsi
on

 30
) a

lso
 do

es
 no

t m
ak

e t
he

 sh
ad

ow
 D

OM
 tr

ee
 of

 a 
<u
se
>

 el
em

en
t a

cce
ssi

ble
 to

 sc
rip

ts,
 an

d d
oe

s n
ot

 im
ple

m
en

t t
he

 S
VG
El
em
en
tI
ns
ta
nc
e

 in
te

rfa
ce

.
c No

ne
 of

 th
e a

nim
at

ion
-re

lat
ed

 pr
op

er
tie

s a
nd

 m
et

ho
ds

 ar
e i

m
ple

m
en

te
d i

n 
In

te
rn

et
 Ex

plo
re

r (
ve

rsi
on

 11
), 

wh
ich

 do
es

 no
t s

up
po

rt 
SM

IL 
an

im
at

ion
. T

he
 A

pa
ch

e B
at

ik 
SV

G 
vie

we
r,

ve
rsi

on
 1.

7,
 th

ro
ws

 er
ro

rs 
wh

en
 us

ing
 b
eg
in
El
em
en
t

 an
d b

eg
in
El
em
en
tA
t.

SVG Interface Methods | 247



Constructing SVG with ECMAScript/JavaScript
The next example is a simple analog clock, as shown in Figure 14-2; Example 14-2 gives
the SVG code.

Figure 14-2. Analog clock

Example 14-2. SVG for a basic analog clock
<svg xmlns="http://www.w3.org/2000/svg"
    id="clock" width="250" height="250" viewBox="0 0 250 250">
<title>SVG Analog Clock</title>

<circle id="face" cx="125" cy="125" r="100"
        style="fill: white; stroke: black"/>
<g id="ticks" transform="translate(125,125)">
    <path d="M95,0 L100,-5 L100,5 Z" transform="rotate(30)"  />
    <path d="M95,0 L100,-5 L100,5 Z" transform="rotate(60)"  />
    <path d="M95,0 L100,-5 L100,5 Z" transform="rotate(90)"  />
    <path d="M95,0 L100,-5 L100,5 Z" transform="rotate(120)" />
    <path d="M95,0 L100,-5 L100,5 Z" transform="rotate(150)" />
    <path d="M95,0 L100,-5 L100,5 Z" transform="rotate(180)" />
    <path d="M95,0 L100,-5 L100,5 Z" transform="rotate(210)" />
    <path d="M95,0 L100,-5 L100,5 Z" transform="rotate(240)" />
    <path d="M95,0 L100,-5 L100,5 Z" transform="rotate(270)" />
    <path d="M95,0 L100,-5 L100,5 Z" transform="rotate(300)" />
    <path d="M95,0 L100,-5 L100,5 Z" transform="rotate(330)" />
    <path d="M95,0 L100,-5 L100,5 Z" transform="rotate(360)" />
</g>

<g id="hands" style="stroke: black;
                     stroke-width: 5px;
                     stroke-linecap: round;">
  <path id="hour" d="M125,125 L125,75"
        transform="rotate(0, 125, 125)"/>
  <path id="minute" d="M125,125 L125,45"
        transform="rotate(0, 125, 125)"/>
  <path id="second" d="M125,125 L125,30"

248 | Chapter 14: Using the SVG DOM



        transform="rotate(0, 125, 125)"
        style="stroke: red; stroke-width: 2px" />
</g>
<circle id="knob" r="6" cx="125" cy="125" style="fill: #333;"/>
</svg>

The code isn’t particularly complicated, but it is rather redundant. Each of the 12 hour-
marker elements has nearly the exact same syntax, just a different rotation attribute.
You could use <use> elements to avoid repeating the path data, but it really wouldn’t
simplify things very much. If you wanted to add numbers for the hours, you’d have 12
<text> elements, too. And if you wanted to add minute markers, you’d need 60 separate
elements for the marks.

In programming, whenever you’re doing the same thing many times, you really ought
to be using a loop or function to do it. In “Creating New Elements” on page 229 in
Chapter 13, JavaScript was used to create an arbitrary number of SVG elements based
on user input. The same methods can also be used to create the initial graphic, and they
can be especially helpful if your graphic is repetitive and geometrical.

Example 14-3 creates the same output as the previous one in an SVG viewer that sup‐
ports JavaScript. It uses both the basic DOM methods and the SVG DOM features
introduced in this chapter. The <svg> contains only two markup elements: a <title>
and a <script>.

Example 14-3. Basic analog clock created with ECMAScript
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"
  "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
<svg xmlns="http://www.w3.org/2000/svg"
    id="clock" width="250" height="250" viewBox="0 0 250 250"
     onload="init()" >
<title>Scripted Analog Clock</title>

<script type="application/ecmascript"> <![CDATA[

  /* the <svg> object that will contain the drawing */
  var clock; 

  function init() { 
    /* select the empty <svg> */
    clock = document.getElementById("clock");
    var svgns = clock.namespaceURI,
        doc   = document;

    clock.suspendRedraw(1000); 

    /* create the clock face */ 
    var face = doc.createElementNS(svgns, "circle");
    face.cx.baseVal.value = 125;
    face.cy.baseVal.value = 125;

Constructing SVG with ECMAScript/JavaScript | 249



    face.r.baseVal.value = 100;
    face.style.cssText = "fill: white; stroke: black";
    clock.appendChild( face );

    /* create a group for the ticks */
    var ticks = clock.appendChild(
          doc.createElementNS(svgns, "g") );
    ticks.setAttribute("transform", "translate(125,125)" );

    /* create the tick marks */
    var tickMark;
    for (var i = 1; i <= 12; i++) { 
      tickMark = doc.createElementNS(svgns, "path");
      tickMark.setAttribute( "d",
                              "M95,0 L100,-5 L100,5 Z" );
      tickMark.setAttribute( "transform",
                              "rotate(" + (30*i) + ")" );
      ticks.appendChild( tickMark );
    }

    /* create the hands */
    var hands = clock.appendChild(
                    doc.createElementNS(svgns, "g") );
    hands.style.cssText =
      "stroke: black; stroke-width:5px; stroke-linecap: round;";

    var hourHand = hands.appendChild(
                    doc.createElementNS(svgns, "path") );
    hourHand.id = "hour";
    hourHand.setAttribute("d", "M125,125 L125,75"); 
    hourHand.setAttribute("transform", "rotate(0, 125, 125)");

    /* similar code for minute and second hands
      omitted to save space */

    /* add the center knob */ 
    var knob = doc.createElementNS(svgns, "circle");
    knob.setAttribute("cx", "125");
    knob.setAttribute("cy", "125");
    knob.setAttribute("r", "6");
    knob.style.setProperty("fill", "#333", null);
    clock.appendChild( knob );

    clock.unsuspendRedrawAll(); 
  }

  // ]]>

</script>
</svg>

250 | Chapter 14: Using the SVG DOM



The script declares a global variable to hold the <svg> element; the bulk of the
code, however, is in an initialization function (init()), which will run when the
SVG loads.
The init() function starts by selecting the <svg> element. It also declares
convenience variables; accessing the .namespaceURI property on any existing
SVG element is a good way to avoid retyping the URL each time you create a
new element.
Although not required, suspending drawing updates on your SVG before
making a lot of DOM changes can improve performance in some viewers.
The clock face <circle> is created, styles and attributes are set using SVG DOM
properties, and then it is added to the SVG.
Here’s the magic of looping. The for loop runs the same code 12 times to create
each hour marker, and calculates the rotation angle for each. Note that for
initializing complex attributes like d or transform, passing a string to
setAttribute() is generally easier than manipulating the complex DOM
objects that represent the values.
The clock hands are initialized pointing to midnight, with zero-rotation
transformation attributes to make it easier to later change the rotation.
For comparison with the face circle, the knob <circle> is initialized using setter
methods instead of DOM properties. It still requires six lines of code.
Don’t forget to cancel any suspendRedraw() calls when you’re finished building
the DOM!

Using scripting shortened the code required to make the tick-marks, but it considerably
increased the amount of code required to draw simple elements like the circles for the
clock face and knob. This is the main reason why JavaScript libraries like Snap.svg are
so popular; they have shortcut functions for the most common operations, like creating
elements and setting attributes.

We’ll get to that in a moment, but until we get to a discussion of libraries (the easy way
to do it), we’ll continue to draw the clock face using plain SVG. After all, there’s a more
pressing issue: our clock doesn’t tell time.

Animation via Scripting
One option to get the clock ticking is to use <animateTransform> elements on the
hands. You can set the second hand to rotate 360 degrees every minute, the minute hand

Animation via Scripting | 251



1. The SMIL specifications do define a format for synchronizing the start time of animations with the system
clock, but it isn’t implemented in most browsers or SVG viewers.

to rotate 360 degrees every hour, and the hour hand to rotate 360 degrees every 12 hours.
What <animateTransform> cannot do is get the hands to show the correct time.1

There are other things animation elements can’t do easily. They can’t keep track of past
user events and change the way they respond to new events accordingly. If your ani‐
mation relies on logic, data, or complex user interactions, it makes more sense to control
it from a script (with the other application functionality) than to try to define it in the
XML (the document structure).

To create an animation with JavaScript, you repeatedly modify the attribute or style
property to change it from the starting value to the ending value. If you’re just starting
out in programming, you might think that you could create a loop to continually update
the attributes by wrapping the update code in a while(true) block.

This would ensure your clock is always up-to-date, but we wouldn’t recommend it. The
while(true) technique is akin to constantly looking at your watch and asking, “Is it
time yet?” It gives you no time to sleep or do anything else. In an SVG script, it gives
the computer no chance to attend to other tasks.

It takes your computer only a tiny fraction of a millisecond to run through a simple loop
like the one in the preceding script; each increment of the clock hands will be essentially
meaningless. In comparison, most film and video consists of images that are updated
30–60 times per second. That speed is called the frame rate of the video, and it is sufficient
to convince your eyes that you’re watching smooth motion.

Computer displays have a frame rate, too. As content changes, part or all of the display
will be updated to match. However, the effective frame rate of the computer display
depends on how much other work the computer is doing in the background. If you bog
down the computer with endless loops, it won’t have time to repaint the screen, and
your animation will become slow and choppy, regardless of how often you update the
attributes.

To persuade your computer to create smooth animations, you have to be polite. By
calling the method requestAnimationFrame(animationfunction), you are effectively
saying, “Computer, next time you’re ready to repaint the screen, please run this function
first.” The function will be passed a timestamp value, which will be the same for all
functions being called for a given frame, allowing you to coordinate multiple animation
functions. (The timestamp is based on the document time clock, not the system clock,
so we won’t be using it to set the time.)

If the last line of your animation function also calls requestAnimationFrame and passes
itself as the function to run, then it will be called as often as the computer can draw the
material to the screen, allowing you to create a smooth animation without exhausting

252 | Chapter 14: Using the SVG DOM



2. You may have heard of a programming technique called recursion, which happens when a function calls itself.
This is not recursion, because your function calls requestAnimationFrame(), not itself.

your computer’s resources.2 Importantly, if the window that contains this script is
currently minimized or hidden, then the function won’t be called at all until there is
something visible to animate.

Mimicking requestAnimationFrame with setTimeout
The requestAnimationFrame() method is a relatively new addition to the DOM spec‐
ifications, and is not supported in older browsers or Batik. To allow your script to run
smoothly, you can test whether the function exists, and create a substitute method if it
doesn’t, as shown here. The substitute method makes use of the
setTimeout(function,waitTime) method, which tells the computer to run your func‐
tion after the specified waitTime (in milliseconds). This code should go at the very
beginning of your <script>:

if (!window.requestAnimationFrame) { 

  window.requestAnimationFrame = function(animationFunction) { 

    function wrapperFunction() { 
      animationFunction(Date.now());
    }

    setTimeout(wrapperFunction, 30); 
  }
}

If a requestAnimationFrame method doesn’t exist…
Create your own function and save it as the requestAnimationFrame property
of the global object. Your new function must accept an animation callback
function as a parameter.
Take the passed-in animation function, and wrap it in a function that can be
run without parameters. The wrapper function calls the animation function with
a timestamp value as a parameter. The timestamp returned by Date.now() is
just the system timestamp as an integer.
The setTimeout method calls the animation function when the computer is
free, but no sooner than 30 milliseconds, which works out as approximately 33
frames per second.

The setTimeout() function is not as polite as requestAnimationFrame(), because it
doesn’t adjust for anything else your computer might be doing, and it will run regardless
of whether the animation will be visible. This sample code also does not replace all the

Animation via Scripting | 253



functionality of requestAnimationFrame(); specifically, it does not synchronize mul‐
tiple animation calls, synchronize with the SMIL animation clock, or provide a way to
cancel an animation frame request. Nonetheless, with a sensible wait time, it should
provide acceptably smooth animation for simple programs. Just insert it at the top of
your script (or in its own script tag at the top of your file).

Example 14-4 presents the code for updating the clock’s hands, the polite way, using
requestAnimationFrame().

Example 14-4. Animating your scripted SVG clock
Global variables
/* references to the SVGPathElements for the clock hands */
var hourHand,
    minuteHand,
    secondHand;
/* references to SVGTransform object that rotates each hand*/
var secondTransform,
    minuteTransform,
    hourTransform;
/* time conversion constants */
var secPerMinute  = 60,
    secPerHour    = 60*60,
    secPer12Hours = 60*60*12;

Variable initialization (in the init() function)
function init() {
  /*
    Access the SVGPathElements for the clock hands
  */
  hourHand = document.getElementById("hour");
  minuteHand = document.getElementById("minute");
  secondHand = document.getElementById("second");

  /* Access the SVGTransform objects that represent
     the current rotate(0, 125, 125) transform on each hand:
  */
  secondTransform = secondHand.transform.baseVal.getItem(0);
  minuteTransform = minuteHand.transform.baseVal.getItem(0);
  hourTransform   = hourHand.transform.baseVal.getItem(0);
  updateClock(); /* start the clock going */
}

updateClock function
function updateClock() {
    /* get the system time */ 
    var date = new Date();
    /* calculate the number of seconds since midnight */
    var time = date.getMilliseconds()/1000 +

254 | Chapter 14: Using the SVG DOM



               date.getSeconds() +
               date.getMinutes()*60 +
               date.getHours()*60*60; 

    /* calculate the rotation angles */ 
    var s = 360*( time % secPerMinute )/secPerMinute,
        m = 360*( time % secPerHour )/secPerHour,
        h = 360*( time % secPer12Hours )/secPer12Hours;

    /* use SVGTransform.setRotate(angle, cx, cy)
       to update the rotation angle:
    */
    secondTransform.setRotate( s, 125, 125); 
    minuteTransform.setRotate( m, 125, 125);
    hourTransform.setRotate( h, 125, 125);

    window.requestAnimationFrame( updateClock ); 
    // repeat for the next frame
}

The constructor new Date() returns the local system date and time (with
precision of thousandths of a second) as a JavaScript object.
The date.getPart() functions return part of the date as an integer. Using these
methods, the time of day is calculated as the number of seconds since midnight.
Using the predefined constants, the rotational position of each clock hand (in
number of degrees past midnight) is calculated. The % is the modulus operator,
which returns the remainder part of integer division.
In the initialization function, we access the first (and only) item in the
SVGTransformList in the baseVal of each hand’s transform attribute, and store
that SVGTransform object in a variable. At each update, we directly change the
rotation of each transform. By modifying the objects directly, instead of using
setAttribute, we skip the time required for the browser to parse the attribute
string.
The final line of updateClock uses requestAnimationFrame to schedule itself to
be run again the next time the screen refreshes.

The animation cycle is started by the updateClock() call at the end of the initialization
function. The initialization function is called by adding an onload="init()" attribute
to the opening <svg> tag. The final, working clock can be seen on the book’s website:

http://oreillymedia.github.io/svg-essentials-examples/ch14/animated_clock_js.svg

Animation via Scripting | 255

http://oreillymedia.github.io/svg-essentials-examples/ch14/animated_clock_js.svg


Using JavaScript Libraries
In Example 14-3, we created the entire clock by constructing each element “by hand”
with JavaScript calls. As we noted at the time, building elements this way can be painfully
slow. There must be a better way, and, indeed, there is. You can use free, open source
JavaScript libraries such as D3.js, Raphaël, or Snap.svg to simplify the task. These li‐
braries are all just external script files as far as the web browser is concerned. For you,
however, they are collections of useful functions that you can “borrow” from as needed.

Which library to use depends on your needs. D3.js is “a JavaScript library for manipu‐
lating documents based on data.” It is best for manipulating sets of similar elements all
at once, defining their attributes, styles, and reaction to events according to a corre‐
sponding value in a data array. If you wanted, for example, a highly interactive bar chart,
D3.js would be an excellent choice.

Raphaël and Snap.svg are more-generic libraries with a goal of making it easy to modify
or create animated graphics. Raphaël is compatible with older browsers, converting your
graphics commands to forms they understand. Snap, created by the Adobe Web Plat‐
form team, is designed for modern browsers and uses SVG exclusively. This example
will use Snap.

All three libraries work by wrapping the DOM element objects in their own custom
objects, which have additional properties and methods for you to use. In Snap, the <svg>
element that holds your graphic is wrapped up in a Paper object. Snap provides function
calls that let you add graphics elements to the paper, modify their attributes, and handle
events that occur in them.

There are numerous JavaScript libraries available designed to work
with HTML. Be cautious about using them for SVG. It’s not only that
they do not have any methods for specifically dealing with graph‐
ics; even basic tasks can become problematic if the library is not
aware of XML namespaces. For example, the popular JQuery li‐
brary does not (at the time of writing) have any way of creating new
elements in the SVG namespace; if you ask JQuery to make you a
circle, it will return an HTMLUnknownElement object. In contrast,
SVG-aware libraries like D3 and Snap recognize the SVG element
names and will know that circle means SVGCircleElement.

Here is the XML for a Snap-based version of the animated clock:

<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"
  "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
<svg xmlns="http://www.w3.org/2000/svg"
     xmlns:xlink="http://www.w3.org/1999/xlink"
     id="clock" width="250" height="250" viewBox="0 0 250 250"
     onload="init()" >

256 | Chapter 14: Using the SVG DOM

http://d3js.org
http://raphaeljs.com
http://snapsvg.io


  <title>Snap.svg Analog Clock</title>

  <script type="application/ecmascript"
          xlink:href="snap.svg-min.js"></script>
  <script type="application/ecmascript">

  /* Initialization and update functions go here */

  </script>
</svg>

The first <script> element brings in the Snap library. We’re hosting the source code
directly on our server in a minified form, meaning that the code has been processed to
remove whitespace and comments and shorten variable names. The minified version
of Snap.svg v0.3.0 is a 72 KB file, without file compression. In other words, downloading
the Snap library uses up about the same bandwidth for your web page’s visitors as
downloading a moderately complex PNG diagram.

To use an external library in an HTML file, use the attribute src for the file URL, and
be sure to include both an opening and closing tag; empty script elements will not work
in older browsers.

The second script will follow the same structure as the previous examples, with an
init() function to draw the clock and an updateClock() to get it ticking.

If you’re trying out these examples yourself, be sure you’re using the
latest version of snap.svg-min.js. The library was initially designed
to modify inline SVG code within an HTML page, and versions prior
to 0.3.0 had bugs when run in standalone SVG files.

Example 14-5 presents the Snap script to draw the clock. It follows the same structure
(and creates the same graphic) as Example 14-3, but demonstrates many of Snap’s
shortcut methods.

Example 14-5. Drawing a basic analog clock with Snap.svg
/* the Paper object where the clock is drawn */
var clock;
/* references to the Snap Elements for the clock hands */
var hourHand,
    minuteHand,
    secondHand;  

/* time conversion constants */
var secPerMinute  = 60,
    secPerHour    = 60*60,
    secPer12Hours = 60*60*12;

function init() { 

Using JavaScript Libraries | 257

https://github.com/adobe-webplatform/Snap.svg/issues/88


  /* select the empty <svg> as a snap Paper object */
  clock = Snap("#clock");

  /* create the clock face */ 
  var face = clock.circle(125, 125, 100);
  face.attr({fill: "white", stroke: "black"});

  /* create a group for the ticks */
  var ticks = clock.g();
  ticks.transform("t125,125"); 

  var tickMark;
  for (var i = 1; i <= 12; i++) { 
    tickMark = clock.path("M95,0 L100,-5 L100,5 Z");
    tickMark.transform("rotate("+ (30*i) + ")");
    ticks.add(tickMark);
  }

  /* create the hands */
  hourHand = clock.path("M125,125 L125,75");
  minuteHand = clock.path("M125,125 L125,45");
  secondHand = clock.path("M125,125 L125,30");

  var hands = clock.g(hourHand, minuteHand, secondHand);  
  hands.attr({stroke: "black",
              "stroke-width": 5, 
              "stroke-linecap": "round"});
  secondHand.attr({stroke: "red", strokeWidth: "2px"});

  /* add the center knob */
  clock.circle(125, 125, 6).attr({fill: "#333"}); 

  updateClock(); 
}

function updateClock()
{
  /* adjust the hands */
}

The global variable names are the same, but their content will differ; clock will
be a Snap Paper object, and the variables for the hands will point to the Snap-
wrapped elements.
In the init() function, the Snap(selector) method creates the Paper object
containing the <svg> identified by the query string (in CSS selector format). An
alternative version of the function, Snap(width, height) will create a new SVG
of the specified dimensions.

258 | Chapter 14: Using the SVG DOM



Paper.circle(cx,cy,r) creates a <circle> with the given center coordinates
and radius, and adds it to the SVG. The Snap-wrapped circle element is assigned
to a variable so that we can change its attributes on the next line. The
Element.attr(attrValues) function sets multiple attributes at once, given in
JavaScript object notation. (We’re using presentation attributes because, as of
v0.3.0, Snap doesn’t have a shorthand way to set inline styles.)
An empty <g> element, ticks, is created with Paper.g(). The transform
attribute could be set with ticks.attr(), but there’s a Snap shorthand method
for this common task. There’s also a shorthand notation for the transformation
commands: "t125,125" is short for "translate(125,125)".
The for loop creates the hour marks with Paper.path(pathData); they are then
moved into the <g> with the command ticks.add(tickMark). Just to show it
can be done, the transform attribute is set with standard SVG notation.
The clock hands are created, and then grouped together all in one line: the
Paper.g(Element, Element, …) both creates the group and moves the specified
elements into it.
When using JavaScript object notation to set attributes that have a hyphen (-)
in the name, you either quote the name ("stroke-width") or convert it to camel
case form (strokeWidth).
Because the Snap methods that create elements also return those elements, you
can chain multiple method calls together with dot notation.
As before, the last line of the initialization function is a call to updateClock().

If you load this file into your browser, you will see that it looks exactly the same as
Figure 14-2. The preceding SVG does what Example 14-3 did, but in a much more
readable fashion.

The only task remaining is to get our Snap-ified SVG clock working again. Example 14-6
gives the code. Instead of animating the motion ourselves with
requestAnimationFrame, we let Snap’s Element.animate() function handle the move‐
ment. It uses requestAnimationFrame behind the scenes and, for old browsers, defines
its own substitute method that coordinates multiple animation calls.

Element.animate() has two required and two optional parameters:

• An attributes object (in the same form as Element.attr()), giving the final value
for each attribute in the animation.

• A duration in milliseconds indicating how long the animation should take to reach
the final value.

Using JavaScript Libraries | 259



• Optionally, a function defining the rate of change of the attribute over the course
of the duration (an easing function). The Snap source code defines a number of
functions you can use as properties of Snap’s mina object: mina.easeinout will give
you smooth acceleration and deceleration, while mina.bounce will hit the final value
quickly, and then bounce back a few times before settling down. For steady motion
throughout the duration, use mina.linear.

• Optionally, a callback function that will run when the animation is complete. This
can be used to cause the animation to repeat indefinitely.

Example 14-6. Animating a clock with Snap.svg
function updateClock()
{
    /* get the system time */ 
    var date = new Date();
    /* calculate the number of seconds since midnight */
    var time = date.getMilliseconds()/1000 +
               date.getSeconds() +
               date.getMinutes()*60 +
               date.getHours()*60*60;

    /* calculate the rotation angles */
    var s = 360*( time % secPerMinute)/secPerMinute,
        m = 360*( time % secPerHour )/secPerHour,
        h = 360*( time % secPer12Hours )/secPer12Hours;

    secondHand.transform("r" + s +",125,125"); 
    minuteHand.transform("r" + m +",125,125");
    hourHand.transform("r" + h +",125,125");

   secondHand.animate({transform: "r" + [s + 360, 125, 125]}, 
                      60000, mina.linear);
   minuteHand.animate({transform: "r" + [m + 6, 125, 125]},
                      60000, mina.linear);
   hourHand.animate({transform: "r" + [h + 0.5, 125, 125]},
                      60000, mina.linear, updateClock); 
}

The calculations are the same as in Example 14-4.
Snap shorthand functions and transformation notation are used to set the time.
The animate calls get the clock ticking. The first parameter to each animate
function gives the position of the hand in 1 minute’s time; the second hand turns
360 degrees, the minute hand moves 6 degrees, while the hour hand moves half
a degree. The second parameter indicates that the animation should take 60,000
milliseconds (1 minute) to run, and the third parameter sets the animation to
move at a steady (linear) rate.

260 | Chapter 14: Using the SVG DOM



When the minute is up, the callback parameter passed to the final animate
function causes updateClock() to be run again. This resynchronizes the
animated clock with the system clock, and triggers another minute’s worth of
animated motion. Note that only one of the animate functions needs the
callback, as running updateClock will restart all three.

You can see the clock in action online:

http://oreillymedia.github.io/svg-essentials-examples/ch14/snap_animated_clock.svg

Event Handling in Snap
Using a library like Snap also makes event handling much easier. The following example,
which uses Snap in an HTML page, is very simple: it displays a circle and a button. You
can drag the circle, and clicking the button returns the circle to the center.

The main Snap functions you need for this script are Snap(), click(), and drag(). The
Snap() function takes a string in the form #idName and returns the corresponding el‐
ement as an object that wraps a DOM element with extra functionality . Once you have
an element, you can use its click() and drag() functions to have that element respond
to the appropriate events.

Example 14-7 shows the necessary HTML.

Example 14-7. HTML for Snap events example
<html xml:lang="en" lang="en"
    xmlns="http://www.w3.org/1999/xhtml">
<head>
  <title>Click and Drag Events in Snap</title>
  <meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
  <script type="text/javascript" src="snap.svg-min.js"></script>
  <script type="text/javascript">
    function init() {
    }
  </script>
</head>

<body onload="init()">
  <h1>Click and Drag Events in Snap</h1>

<div style="text-align:center">
  <svg width="200" height="200" viewBox="0 0 200 200"
    xmlns="http://www.w3.org/2000/svg"
    xmlns:xlink="http://www.w3.org/1999/xlink">

    <circle id="circle" cx="100" cy="100" r="30"
      style="fill:#663399; stroke: black"/>

Event Handling in Snap | 261

http://oreillymedia.github.io/svg-essentials-examples/ch14/snap_animated_clock.svg


    <rect id="button" x="60" y="170"
        rx="5" ry="5" width="80" height="25"
        style="stroke:black; fill:#ddd; cursor:pointer"/>
    <text id="buttonText" x="100" y="187" class="buttonText"
      style="fill:black; stroke:none;
      font-family: sans-serif; font-size: 12pt;
      text-anchor:middle; cursor:pointer">Reset</text>
  </svg>
  </div>
</body>
</html>

Clicking Objects
To set a click handler, call a Snap element’s click() function and pass it the name of
the function that handles the click. Here is the code you need to insert in order to handle
a click on the button and its text:

function init() {
  Snap("#button").click(resetFcn);
  Snap("#buttonText").click(resetFcn);
}

function resetFcn(evt) {
  Snap("#circle").attr({cx: 100, cy: 100});
}

The handler function gets the triggering event as its parameter, but in this case, the
resetFcn() function doesn’t need to use it. If you try the code at this point, nothing will
appear to happen, as the circle is already at the center of the drawing. Change the value
of either cx or cy to see that the handler is really working.

Dragging Objects
Now that the button is handled, you can add drag handling to the circle. The drag()
method has three arguments: the name of a function to handle moving, the name of a
function to handle the drag start, and the name of a function to handle the drag end.

The drag start function takes three parameters: the starting x postion, the starting y
position, and the DOM event object that triggered the start.

The drag end function takes only one parameter: the DOM event object at the end of
the drag.

The drag move function has five parameters:

• dx, the shift in x from the start point
• dy, the shift in y from the start point

262 | Chapter 14: Using the SVG DOM



• x, the x position of the mouse
• y, the y position of the mouse
• event, the DOM event for the mouse movement

You will need to remember where the circle’s starting point is:

var startX = 100;
var startY = 100;

Here is the code you need to add to init() to assign the drag handlers to the circle:

Snap("#circle").drag(dragMove, dragStart, dragEnd);

And here are those functions (in logical order of start, move, end):

function dragStart(x, y, evt) {
  // figure out where the circle currently is
  startX = parseInt(Snap("#circle").attr("cx"), 10);
  startY = parseInt(Snap("#circle").attr("cy"), 10);
}

function dragMove(dx, dy, x, y, evt) {
  Snap("#circle").attr({cx: (startX + dx), cy: (startY + dy)});
}

function dragEnd(evt) {
  // no action required
}

Figure 14-3 shows the result, edited to save vertical space.

Figure 14-3. Screenshot of circle being dragged

To click and drag it yourself, test out the online interactive version:

http://oreillymedia.github.io/svg-essentials-examples/ch14/snap_events.html

These examples are only the very minimum of what you can do with the Snap library.
For much more sophisticated examples, go to the website and see the demos. D3, Snap,
and Raphaël are not the only SVG libraries out there, but they all have one thing in
common: they make it easy for you to use JavaScript to create and manipulate SVG
dynamically. 

Event Handling in Snap | 263

http://oreillymedia.github.io/svg-essentials-examples/ch14/snap_events.html




CHAPTER 15

Generating SVG

The previous chapters have described the major features of SVG. All the examples have
been relatively modest and have been written in an ordinary text editor. For graphics
of any great complexity, though, few people will write SVG from scratch. Let’s face it:
almost nobody does this by hand. Instead, graphic designers will use some sort of
graphic tool that outputs SVG, and programmers will take existing raw data and convert
it to SVG with a script.

If you’re dealing with a graphic program’s output that is already in SVG format, you can
sit back and relax; all the heavy lifting has been done for you. If you ever take a look at
the SVG that it generated, it may be hard to read. Some programs, for example, may not
use groups (the <g> element) efficiently or they may not optimize paths. When you use
these programs, you are trading off the ease of generating SVG for the absolute control
you have when you write the entire file by hand. Hopefully, with a better understanding
of what’s going on “under the hood,” you will be better able to write code to adapt and
interact with the graphics program’s output.

Generating SVG code from a data file is a trickier topic. The possibilities will depend
on what type of data you have to start with and what type of programming languages
you can work with.

One option for generating SVG is to build up an SVG document object model using the
methods presented in Chapter 14. D3.js, which we alluded to briefly in “Using JavaScript
Libraries” on page 256, is specifically designed for using data files to dynamically build
SVG charts and graphs in the web browser. Scott Murray’s Interactive Data Visualization
for the Web (O’Reilly) is a good introduction for beginners. There are also many good
tutorials by the library’s original author, Mike Bostock, and others listed on the project’s
wiki page.

A different approach to dynamically generating an SVG file is to piece together the
markup using the string manipulation and file-writing methods of your favorite

265

http://d3js.org
http://shop.oreilly.com/product/0636920026938.do
http://shop.oreilly.com/product/0636920026938.do
https://github.com/mbostock/d3/wiki/Tutorials
https://github.com/mbostock/d3/wiki/Tutorials


programming language. The first section of this chapter outlines how you could use a
custom program to convert geographical mapping data that’s not in an XML format to
an SVG file.

If your data is already in XML format, you may just need to extract the pertinent data
and plug it into an SVG framework. In such a case, you can use tools that implement
Extensible Stylesheet Language Transformations (XSLT). XSLT is an XML syntax for
defining how to convert one XML file into another. The second part of this chapter
shows how to use XSLT to convert an XML-formatted aeronautical weather report to
SVG.

Converting Custom Data to SVG
If anyone lives a life that revolves around graphics display, it’s a mapmaker. Cartogra‐
phers are finding XML markup in general and SVG in particular to be excellent vehicles
for putting data into a portable format. At present, though, much of the data that is
currently available is in custom or proprietary formats.

One such proprietary format was developed by Environmental Systems Research In‐
stitute for use by their ArcInfo Geographic Information System. Data created in this
system can be exported in an ASCII ungenerate form. Such a file contains a series of
polygon descriptions, followed by a line with the word END on it. Each polygon starts
with a line that consists of an integer polygon identification number and the x- and y-
coordinates of the polygon’s centroid. This line is followed by the x- and y-coordinates
of the polygon’s vertices, one vertex per line. A line with the word END on it marks the
end of the polygon. Here is a sample file:

         1      -0.122432044171565E+03       0.378635608621089E+02
      -0.122418712172884E+03       0.378527169597E+02
      -0.122434402770255E+03       0.378524342437443E+02
      -0.122443301934511E+03       0.378554484803880E+02
      -0.122446316168374E+03       0.378610463416856E+02
      -0.122438565286068E+03       0.378683666259093E+02
      -0.122418712172884E+03       0.378527169591107E+02
END
         2      -122.36                      37.82
      -122.378                     37.826
      -122.377                     37.831
      -122.370                     37.832
      -122.378                     378.826
END
END

Converting such a file to SVG is a simple task of inserting the coordinates into the points
attribute of <polygon> elements. The only twist is that ARC/INFO stores data in Car‐
tesian coordinates, so we will have to flip the y-coordinates upside-down. The program

266 | Chapter 15: Generating SVG



we’ll describe will take two parameters: the input-file name and the desired width of the
resulting SVG graphic in pixels.

In addition to those parameters, we’re going to need a few global variables to keep track
of the data:

• lineBuffer, an array of tokens from parsing each line of the file into whitespace-
separated words and numbers.

• singlePolygon, an array of coordinates for the current polygon.
• polygonList, an array of points strings for all the polygons.
• minX, minY, maxX, maxY, numbers representing the extreme coordinates observed so

far in each direction. The minimum variables should be initialized to equal positive
Infinity (or the maximum number possible in the programming language), and the
maximum variables to negative Infinity. That way, any finite number compared to
them will become the new maximum or minimum.

The following algorithm assumes that you have a way of reading the input file one line
at a time, and printing the results to an output stream or file. The exact ways to do so
will depend on your programming language, but nearly every language can do both:

1. Create a utility subroutine that grabs one token at a time from the input file:
function get_token()
{
  if ( lineBuffer is empty ) // out of data?
  {
    read the next line from input-file;
    get rid of leading and trailing whitespace;
    split on whitespace to create an array of tokens;
    put into lineBuffer;
  }
  remove first item in lineBuffer and return it
}

2. The main program (after validating and storing the input parameters and initial‐
izing the other variables), uses nested loops to process the data file. The outer loop
handles the start and end of each polygon, and the inner loop processes the pairs
of coordinates. Each polygon starts with an index number and ends with the token
END. The file as a whole also ends with an additional END. Read an index number,
initialize singlePolygon as a coordinate array, read coordinates until you reach
END, add that coordinate array to the polygonList, and then repeat unless the next
token is also END:

open input-file;

while ((polygonNumber = get_token()) is not "END" )
{

Converting Custom Data to SVG | 267



  singlePolygon = empty list;

  while ((xCoord = get_token()) is not "END" )
  {
    yCoord = get_token();
    append (xCoord, yCoord) to singlePolygon;

    // keep track of minimum and maximum coordinates
    minX = min(xCoord, minX);
    maxX = max(xCoord, maxX);
    minY = min(yCoord, minY);
    maxY = max(yCoord, maxY);
  }
  append singlePolygon to polygonList;
}

close input-file ;

3. After processing the input file, polygonList is an array of arrays of coordinate pairs,
and minX, minY, maxX, and maxY hold the largest and smallest coordinates in each
dimension. But before you can start building your SVG, you need to determine an
appropriate scale to fit the x-range of the data into the pixel width requested by the
user. Initialize additional variables to keep track of the input and output
dimensions:

deltaX = maxX - minX;
deltaY = maxY - minY;
scale = width / deltaX;
height = deltaY * scale;
height = int(height + 0.5); // round up to integer

4. The SVG file itself is constructed by printing markup to a file, substituting in the
values from the data:

open output;

print the following to output, replacing variables in {}
with their values:

  <!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"
  "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">

  <svg width=" {width} " height=" {height} "
    viewBox="0 0 {deltaX}  {deltaY} "
    xmlns="http://www.w3.org/2000/svg">
  <title>Map constructed from {input-file} </title>
  <g style="fill: none; stroke: black;">

5. Process the data arrays to create polygon objects:
polygonNumber = 1;
foreach singlePolygon in polygonList
{

268 | Chapter 15: Generating SVG



  print ' <polyline id="poly {polygonNumber} " points=" ';
  remove first set of coordinates in singlePolygon;

  n = 0; //coordinate index
  foreach coordinate in singlePolygon
  {
    if (n % 2 == 1)    // y-coordinate
    {
      coordinate = (maxY - coordinate); // invert y coords
    }
    else
    {
      coordinate = (coordinate - minX);
    }
    print the coordinate followed by a space;
  }

  // To avoid long lines, place only 8 coordinates per line
    n = (n + 1) % 8;
    if (n == 0) { print a newline }
  }
  print ' /> ';    // close off the polyline
  polygonNumber++;
}

6. Close off open tags and close the file:
print ' </g>\n</svg>\n ';
close output;

This pseudocode algorithm is a simplified version of a real program written in Perl.
Running the Perl program with the data for the state of Michigan with an output width
of 250 pixels produces Figure 15-1. Michigan was chosen because it requires several
polygons to draw, and its outline is more visually interesting than that of, say, Colorado.
This data came from the US Census Bureau Cartographic Boundary Files website.

Figure 15-1. Conversion from ARC/INFO ungenerate to SVG

Converting Custom Data to SVG | 269



Using XSLT to Convert XML Data to SVG
If your data is in XML format, then Extensible Stylesheet Language Transformations
(XSLT) may be your best choice for doing the conversion to SVG.

Defining the Task
This example uses XSLT to extract information from an XML file and insert it into an
SVG file. The source data is a weather report that is retrieved from http://w1.weath‐
er.gov/xml/current_obs/NNNN.xml, where NNNN represents a four-letter weather
station identifier. It is formatted as a Weather Observation Markup Format (OMF)
document, according to the National Oceanic and Atmospheric Organization’s defini‐
tion of the data format. Here is some sample data (edited for length) from station KSJC:

<current_observation version="1.0">
  <credit>NOAA's National Weather Service</credit>
  <credit_URL>http://weather.gov/</credit_URL>
  <location>San Jose International Airport, CA</location>
  <station_id>KSJC</station_id>
  <latitude>37.37</latitude>
  <longitude>-121.93</longitude>
  <observation_time>Last Updated on Jul 15 2014, 7:53 am PDT
    </observation_time>
  <observation_time_rfc822>Tue, 15 Jul 2014 07:53:00 -0700
    </observation_time_rfc822>
  <weather>Overcast</weather>
  <temperature_string>62.0 F (16.7 C)</temperature_string>
  <temp_f>62.0</temp_f>
  <temp_c>16.7</temp_c>
  <wind_string>West at 5.8 MPH (5 KT)</wind_string>
  <wind_dir>West</wind_dir>
  <wind_degrees>290</wind_degrees>
  <wind_mph>5.8</wind_mph>
  <visibility_mi>10.00</visibility_mi>
  <copyright_url>http://weather.gov/disclaimer.html</copyright_url>
</current_observation>

The objective is to extract the reporting station, the date and time, temperature, wind
speed and direction, and visibility from the report. The data will be filled into the graphic
template of Figure 15-2.

270 | Chapter 15: Generating SVG

http://www.nws.noaa.gov/view/current_observation.xsd
http://www.nws.noaa.gov/view/current_observation.xsd


Figure 15-2. Graphic weather template

The elements we’re interested in are listed here, along with the plan for displaying them
in the final graphic:
<observation_time_rfc822>

In the final graphic, the date and time will be represented in text, and the time will
also be shown on an analog clock. The color of the clock face will be light yellow to
indicate hours between 6 a.m. and 6 p.m., and light blue for evening and night hours.

<station_id>

The reporting station’s call letters. The final graphic will represent this as text.

<temp_c>

The air temperature in degrees Celsius. This will be displayed by coloring in the
thermometer to the appropriate level. If the temperature is greater than 0, the col‐
oring will be red; if less than or equal to 0, it will be blue.

<wind_degrees>

The direction is measured in degrees; 0 indicates wind blowing from true north,
and 270 indicates wind from the west. This will be represented by a line on the
compass.

<wind_mph>

The wind speed is expressed in miles per hour, which will be converted to meters
per second.

<wind_gust_mph>

If there are wind gusts, this element will give the speed in miles per hour, which will
also be converted to meters per second.

<visibility_mi>

Surface visibility in miles, which will be converted to kilometers. The final graphic
will represent this by filling in a horizontal bar. Any visibility above 40 kilometers
will be presumed to be unlimited.

Using XSLT to Convert XML Data to SVG | 271



How XSLT Works
To convert an OMF source file to its destination SVG format, we will create a list of
specifications that tells which elements and attributes in OMF are of interest. These
specifications will then detail what SVG elements to generate whenever the processor
encounters an item of interest. If you were asking a human to do the transformation by
hand, you could write out an English language description:

1. Begin a new SVG document by typing this:
<!DOCTYPE svg PUBLIC "-//W3C/DTD SVG 1.0//EN",
 "http://www.w3.org/TR/2001/REC-SVG-20010904/DTD/svg10.dtd">

2. Go through the source document. As you find each element, look for instructions
on how to process it.

3. To process the <current_observation> element, add the following code to your
file, and then process any child elements as specified in comments:

<svg viewBox="0 0 350 200" height="200" width="350">
    <!-- process any child elements from <current_observation> -->
</svg>

4. To process a <station_id> element, add this code and fill in the blanks:
<text font-size="10pt" x="10" y="20">
    <!-- fill in the value of the element's content -->
</text>

5. To process a <temp_c> element, use its content when following the instructions for
“how to draw a thermometer.”

6. To process a <wind_dir> element, use its contents as you follow the instructions
for “how to draw a wind compass.”

Similarly, for each other element type, you would indicate where to find the instructions
to follow. Then you’d have supplemental instructions like these:

• To draw a thermometer:
— Calculate the height of the bar as 50 minus the value you got from the caller.
— Determine the appropriate color (red or blue) based on whether or not the value

is greater than 0.
— Insert those values where you see the italicized text in the following:

<path
  d = "M 25 height 25 90
  A 10 10 0 1 0 35 90
  L 35 height Z"
  style="stroke: none; fill: color ;"/>
<path

272 | Chapter 15: Generating SVG



  d= "M 25 0 25 90 A 10 10 0 1 0 35 90 L 35 0 Z"
  style="stroke: black; fill: none;"/>

There would be equally detailed instructions for “how to draw a wind compass” and all
the other elements.

Rather than writing the specifications in English and handing them to a human to
perform, you write the specifications in the XSLT markup format. You can then hand
the XSLT file, along with the XML file, to an XLST processor, and it will process elements
and fill in the blanks to produce an output SVG file.

Here is a quick English-to-XSLT translation guide:

English XSLT

Create an output document of a given type <xsl:output method="xml"
  doctype-public="..." doctype-system="...">

Process an element element <xsl:template match="element">
  <!-- output to produce -->
</xsl:template>

Process any items within the current element <xsl:apply-templates select="items"/>

Fill in the value of an item <xsl:value-of select="item"/>

Use the value of an item as a variable named var <xsl:variable name="var">
  <!-- instructions to produce item's value -->
</xsl:variable>

Call another template named some-name, and give it
a parameter with some-value

<xsl:call-template name="some-name">
  <xsl:with-param name="parameter"
    select="some-value"/>
</xsl:call-template>

Add the following content if the data passes a test <xsl:if test="some-test">
   <!-- content -->
</xsl:if>

Add content if data passes a test; otherwise, add other
content

<xsl:choose>
   <xsl:when test="some-test">
      <!-- content -->
   </xsl:when>
   <xsl:otherwise>
      <!-- other content -->
   </xsl:otherwise>
 </xsl:choose>

Developing an XSL Stylesheet
We’ll add details as we proceed, but this is more than enough to start. The XSLT file
begins like this, and, for the purposes of this example, is stored in a file named
weather.xsl:

Using XSLT to Convert XML Data to SVG | 273



<xsl:stylesheet version="1.0"
  xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
  xmlns:xlink="http://www.w3.org/1999/xlink"
  xmlns="http://www.w3.org/2000/svg">

<xsl:output method="xml" indent="yes"
  doctype-public="-//W3C//DTD SVG 1.0//EN"
  doctype-system=
    "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd"/>    

<xsl:template match="current_observation">     
<svg width="350" height="200" viewBox="0 0 350 200"
  xmlns="http://www.w3.org/2000/svg">
  <g style="font-family: sans-serif">

  <!-- Process all child elements -->
  <xsl:apply-templates />     
  </g>
</svg>
</xsl:template>

The <xsl:output> specifies that the output will be an XML file and that it should
be indented nicely. It also generates the appropriate <!DOCTYPE …> instruction.
<xsl:template> directs the XSLT processor to generate the specified output
whenever it encounters a <current_observation> element. This template will
be called only once, because there’s only one such element in the source
document. It creates the outermost <svg> element and a <g> element for
later use.
After outputting the <svg> and <g>, <xsl:apply-templates> directs the
processor to find any child elements and generate whatever is specified by their
<xsl:template> elements.

This is the markup to process the station_id element:

<xsl:template match="station_id">
 <text font-size="10pt" x="10" y="20">
    <xsl:value-of select="."/>
  </text>
</xsl:template>

The <xsl:value-of> inserts the value of the selected item. In this case, the . means “the
current element.”

274 | Chapter 15: Generating SVG



So far, this example uses only element names as the values of a match
or select. In reality, you can put any XPath expression as a value.
XPath is a notation that lets you select parts of an XML document
with extreme precision. For example, while processing an XHTML
document, you could select only the odd <td> elements that are with‐
in <tr> elements that have a title attribute.

While it would be possible to output all the relevant SVG for the temperature within
one <xsl:template>, a modular approach is easier to read and maintain. XSLT lets you
create templates that act somewhat like functions; they don’t correspond to any element
in the source document, but you may explicitly call them by name and pass parameters
to them. Here is the code to draw the thermometer:

<xsl:template match="temp_c">
  <xsl:call-template name="draw-thermometer">
    <xsl:with-param name="t" select="."/>
  </xsl:call-template>
</xsl:template>

If the value of a parameter is an attribute value or the content of an element, the easiest
way to set it is with a select. Another way to set the value is to put the content between
a beginning and ending tag.

Now you can write the template for draw-thermometer. The passed-in parameter de‐
termines the height to fill the thermometer and whether the thermometer should be
filled with red or blue. Let’s build this up in stages. First, extract the parameter and draw
the parts that are static:

<xsl:template name="draw-thermometer">
  <xsl:param name="t" select="0"/>
  <g id="thermometer" transform="translate(10, 40)">
    <path id="thermometer-path" stroke="black" fill="none"
      d= "M 25 0 25 90 A 10 10 0 1 0 35 90 L 35 0 Z"/>

    <g id="thermometer-text" font-size="8pt" font-family="sans-serif">
      <text x="20" y="95" text-anchor="end">-40</text>
      <text x="20" y="55" text-anchor="end">0</text>
      <text x="20" y="5" text-anchor="end">50</text>
      <text x="10" y="110" text-anchor="end">C</text>
      <text x="40" y="95">-40</text>
      <text x="40" y="55">32</text>
      <text x="40" y="5">120</text>
      <text x="50" y="110">F</text>
      <text x="30" y="130" text-anchor="middle">Temp.</text>
  </g>
</g>
</xsl:template>

Using XSLT to Convert XML Data to SVG | 275



The <xsl:param> element lets you provide a default value (in this case, 0) if no parameter
is passed in.

Next, add the code to display the temperature as text. If there was no temperature
present, display the value N/A. Notice that the parameter name is t, but to access its
contents, you must say $t. This code goes inside the <g id="thermometer-text">:

<text x="30" y="145" text-anchor="middle">
  <xsl:choose>
    <xsl:when test="$t != ''">
      <xsl:value-of select="round($t)"/>&#176;C /
      <xsl:value-of select="round($t div 5 * 9 + 32)"/>&#176;F
    </xsl:when>
    <xsl:otherwise>N/A</xsl:otherwise>
  </xsl:choose>
</text>

The text is set conditionally with the <xsl:choose> element, which contains one or
more <xsl:when> elements. The first one whose test succeeds is the one whose output
goes into the final document. The <xsl:otherwise> element is a catch-all in case all the
preceding tests fail.

The formula for conversion of Celsius to Fahrenheit uses div for
division; this is because the forward slash is already used in XPath to
separate levels of element nesting.

The next step is to fill the thermometer. This should be done only if the value of the t
parameter is not the empty string. The following code uses <xsl:variable> to create
a variable named tint and sets its value to either red or blue, depending on whether
the temperature is above 0 degrees Celsius or not. Variables in XSL are single-
assignment. Every time the template is called, the variable is set to an initial value, but
for the duration of the template, it cannot be changed further. Place this after the closing
</g> tag of the thermometer-text group:

<xsl:if test="$t != ''">
  <xsl:variable name="tint">
  <xsl:choose>
    <xsl:when test="$t &gt; 0">red</xsl:when>
    <xsl:otherwise>blue</xsl:otherwise>
  </xsl:choose>
  </xsl:variable>
  <!-- remainder of code -->
</xsl:if>

276 | Chapter 15: Generating SVG



Again, the code uses <xsl:choose> to conditionally set the variable. The test uses the
entity reference &gt; for a greater-than symbol to avoid problems with some XSLT
processors; if you ever want to produce a less-than symbol, it must be written as &lt;.

Here is the remainder of the code for filling the thermometer:

<!-- "fill" the thermometer by drawing a solid
  rectangle and clipping it to the shape of
  the thermometer -->
<xsl:variable name="h">
  <xsl:choose>
    <xsl:when test="$t &lt; -55">
      <xsl:value-of select="105"/>
    </xsl:when>
    <xsl:when test="$t &gt; 50">
      <xsl:value-of select="0"/>
    </xsl:when>
    <xsl:otherwise>
      <xsl:value-of select="50 - $t"/>
    </xsl:otherwise>
  </xsl:choose>
</xsl:variable>

<clipPath id="thermoclip">
  <use xlink:href="#thermometer-path"/>
</clipPath>
<path d="M 10 {$h} h40 V 120 h-40 Z"
  fill="{$tint}" clip-path="url(#thermoclip)"/>

The <xsl:choose> in the preceding code has two <xsl:when> clauses; they limit the
height of the “mercury” in case temperatures go above or below the thermometer’s
limits. The <xsl:otherwise> clause sets the height for all other in-range temperatures.

When referring to parameters or variables in the values of attributes of the output
document, as in the final <path> element, you must enclose them with curly braces.

This would be a good time to test the transformation so far. Before you can test, you
have to add an empty template to handle text nodes. XSLT processors are set up with
default templates to ensure that they will visit all the elements and text in the source
document. The default behavior is to send the text within elements directly to the des‐
tination document. In this transformation, you want to throw away any text that you
don’t specifically want to process, so there’s an empty template for text nodes; they will
not appear in the SVG file. Finally, you need the closing </xsl:stylesheet> tag:

<xsl:template match="text()"/>

</xsl:stylesheet>

Invoke your XSLT processor on the XML file that contains the weather report. The
resulting graphic, Figure 15-3, shows the station name and the thermometer. If you

Using XSLT to Convert XML Data to SVG | 277



don’t have a standalone XSLT processor, you can add the following lines at the top of
the XML file:

<?xml version="1.0"?>
<?xml-stylesheet type="text/xsl" href="weather.xsl"?>

Then open the file in your browser, and it will do the transformation for you.

Figure 15-3. XSL-generated SVG file showing thermometer

You have seen that XSLT can do simple arithmetic; it can also do a reasonable amount
of string manipulation. Here is the XSLT to display the day and time. It uses the
substring function to extract the necessary information.

<xsl:template match="observation_time_rfc822">
  <xsl:variable name="time" select="."/> 

  <text font-size="10pt" x="345" y="20" text-anchor="end">
    <xsl:value-of select="substring($time, 6, 11)"/> 
  </text>

  <xsl:call-template name="draw-time-and-clock"> 
    <xsl:with-param name="hour"
      select="number(substring($time, 18, 2))"/>
    <xsl:with-param name="minute"
      select="number(substring($time, 21, 2))"/>
  </xsl:call-template>
</xsl:template>

For convenience, store the string in a variable rather than having to do many
<xsl:value-of>s.
The substring() function needs the string, starting character index, and
number of characters to extract. The first character of the string is index number
1, not 0, as in many other programming languages.
Pass the hour and minute to a named template to do the heavy lifting. The
number() function converts its string parameter to a true numeric value.

278 | Chapter 15: Generating SVG



And here is the template that draws the clock face and displays the time as text (the only
new construct here is the format-number() function):

<xsl:template name="draw-time-and-clock">
  <xsl:param name="hour">0</xsl:param>
  <xsl:param name="minute">0</xsl:param>

  <!-- clock face is light yellow from 6 a.m. to 6 p.m.,
       otherwise light blue -->
  <xsl:variable name="tint">
    <xsl:choose>
      <xsl:when test="$hour &gt;= 6 and $hour &lt; 18"
           >#ffffcc</xsl:when>
      <xsl:otherwise>#ccccff</xsl:otherwise>
    </xsl:choose>
  </xsl:variable>

  <!-- calculate angles for hour and minute hand
    of analog clock -->
  <xsl:variable name="hourAngle"
    select="(30 * ($hour mod 12 + $minute div 60)) - 90"/>
  <xsl:variable name="minuteAngle"
    select="($minute * 6) - 90"/>

  <text font-size="10pt" x="345" y="40" text-anchor="end">
    <xsl:value-of select="format-number($hour,00)"/> 
    <xsl:text>:</xsl:text> 
    <xsl:value-of select="format-number($minute,00)"/>
  </text>
  <g id="clock" transform="translate(255, 30)">
    <circle cx="20" cy="20" r="20" fill="{$tint}"
            stroke="black"/>
    <line transform="rotate({$minuteAngle}, 20, 20)"
      x1="20" y1="20" x2="38" y2="20" stroke="black"/>
    <line transform="rotate({$hourAngle}, 20, 20)"
      x1="20" y1="20" x2="33" y2="20" stroke="black"/>
  </g>
</xsl:template>

The format-number($hour,00) ensures that the output will have a leading zero
if it is less than two digits long.
The <xsl:text> element places its contents, which must be pure text, into the
output document verbatim. Using <xsl:text> helps avoid problems with
whitespace; if I had not used it, the newline and indentation would have made
its way into the resultant SVG <text> element, which would have produced extra
space around the colon in the final graphic.

Here is the markup to draw the wind speed indicator:

Using XSLT to Convert XML Data to SVG | 279



<xsl:template match="wind_degrees">
  <xsl:call-template name="draw-wind">
    <xsl:with-param name="dir" select="number(.)"/>
    <xsl:with-param name="speed"
      select="number(../wind_mph) * 1609.344 div 3600"/> 
    <xsl:with-param name="gust"
      select="number(following-sibling::wind_gust_mph) *
        1609.344 div 3600"/>
  </xsl:call-template>
</xsl:template>

<xsl:template name="draw-wind">
  <xsl:param name="dir">0</xsl:param>
  <xsl:param name="speed">0</xsl:param>
  <xsl:param name="gust">0</xsl:param>

  <g id="compass" font-size="8pt" font-family="sans-serif"
    transform="translate(110, 70)">
    <circle cx="40" cy="40" r="30" stroke="black" fill="none"/>
    <!-- tick marks at cardinal directions -->
    <path stroke="black" fill="none"
      d= "M 40 10 L 40 14
      M 70 40 L 66 40
      M 40 70 L 40 66
      M 10 40 L 14 40"/>
    <xsl:if test="$speed &gt;= 0">
      <path d="M 40 40 h 25"
        fill="none" stroke="black"
        transform="rotate({$dir - 90},40,40)"/> 
    </xsl:if>
    <text x="40" y="9" text-anchor="middle">N</text>
    <text x="73" y="44">E</text>
    <text x="40" y="80" text-anchor="middle">S</text>
    <text x="8" y="44" text-anchor="end">W</text>
    <text x="40" y="100" text-anchor="middle">Wind (m/sec)</text>
    <text x="40" y="115" text-anchor="middle"> 
      <xsl:choose>
        <xsl:when test="$speed &gt;= 0">
          <xsl:value-of select="format-number($speed, 0.)"/>
        </xsl:when>
        <xsl:otherwise>N/A</xsl:otherwise>
      </xsl:choose>
      <xsl:if test="$gust &gt; 0">
        <xsl:text> - </xsl:text>
        <xsl:value-of select="format-number($gust, 0.)"/>
      </xsl:if>
    </text>
  </g>
</xsl:template>

280 | Chapter 15: Generating SVG



Here is a more complex XPath expression. .. means “this node’s parent,”
so ../wind_mph will find all the <wind_mph> elements that are children of the
parent of the <wind_degree> element (in this XML file, there is only one such
element). The expression that gets the wind gust (if any) uses the more verbose
following-sibling:: specification.
The NOAA specification says that a true north wind is 360 degrees, with 0
degrees implying no wind. You have to subtract 90 degrees, because “north” is
–90 degrees in SVG.
This logic for displaying the wind speed (and gusts) as text works even if there
is no <wind_mph> or <wind_gust_mph> element in the weather report. When a
nonexistent element’s content is converted to a number, the result is NaN (Not a
Number). When you do any comparison with NaN, the result is always false.
Thus, if there is no <wind_mph>, the resulting text is N/A, and when there is no
<wind_gust_mph>, the dash and second number are never output.

Here are the XSLT commands to draw the visibility bar. The first template converts the
visibility to kilometers as it passes it to the second template. The visibility bar is 100
pixels wide, so any visibility greater than 40 km is set to 100; anything less is scaled:

<xsl:template match="visibility_mi">
  <xsl:call-template name="draw-visibility">
    <xsl:with-param name="v" select="number(.) * 1.609344"/> 
  </xsl:call-template>
</xsl:template>

<xsl:template name="draw-visibility">
  <xsl:param name="v">0</xsl:param>
  <g id="visbar" transform="translate(220,110)"
    font-size="8pt" text-anchor="middle">

  <!-- fill in the rectangle if there is a visibility value -->
  <xsl:if test="$v &gt;= 0">
    <xsl:variable name="width"> 
      <xsl:choose>
      <xsl:when test="$v &gt; 40">100</xsl:when>
      <xsl:otherwise>
        <xsl:value-of select="$v * 100.0 div 40.0"/>
      </xsl:otherwise>
      </xsl:choose>
    </xsl:variable>
    <rect style="fill:green; stroke:none;"
      x="0" y="0" width="{$width}" height="20"/>
  </xsl:if>

  <rect x="0" y="0" width="100" height="20"
        style="stroke:black; fill:none"/>

Using XSLT to Convert XML Data to SVG | 281



  <path fill="none" stroke="black"
    d="M 25 20 L 25 25 M 50 20 L 50 25 M 75 20 L 75 25"/>

  <text x="0" y="35">0</text>
  <text x="25" y="35">10</text>
  <text x="50" y="35">20</text>
  <text x="75" y="35">30</text>
  <text x="100" y="35">40+</text>
  <text x="50" y="60">
    Visibility (km)
  </text>
  <text x="50" y="75">
    <xsl:choose>
       <xsl:when test="$v &gt;= 0">
         <xsl:value-of select="format-number($v,'0.###')"/> 
      </xsl:when>
      <xsl:otherwise>N/A</xsl:otherwise>
    </xsl:choose>
  </text>
</g>
</xsl:template>

The first template passes the visibility, converted to kilometers, to the next
template.
The visibility bar is 100 pixels wide. Visibility greater than 40 km is set to 100;
anything less than that is scaled to 100 pixels.
This format string will print a leading zero before the decimal point and three
digits after the decimal point.

Putting this all together produces Figure 15-4.

This is only a small sample of what you can do with XSLT. For more information, get
XSLT by Doug Tidwell (O’Reilly). Chapter 9 of that marvelous book also contains an
example of using XSLT to generate SVG from an XML file. If you’re serious about ma‐
nipulating XML, you would be well advised to have that book on your shelf. 

282 | Chapter 15: Generating SVG

http://shop.oreilly.com/product/9780596527211.do


Figure 15-4. XSLT-generated SVG file showing complete data

Using XSLT to Convert XML Data to SVG | 283





APPENDIX A

The XML You Need for SVG

The purpose of this appendix is to introduce you to XML. A knowledge of XML is
essential if you wish to write SVG documents directly rather than having them generated
by some graphics utility.

If you’re already acquainted with XML, you don’t need to read this appendix. If not,
read on. The general overview of XML given in this appendix should be more than
sufficient to enable you to work with the SVG documents that you will create. For further
information about XML, the O’Reilly books Learning XML by Erik T. Ray and XML in
a Nutshell by Elliotte Rusty Harold and W. Scott Means are invaluable guides.

Note that this appendix makes frequent reference to the formal XML 1.0 specification,
which can be used for further investigation of topics that fall outside the scope of SVG.
Readers are also directed to Tim Bray’s “Annotated XML Specification”, which provides
an illuminating explanation of the XML 1.0 specification, and Norm Walsh’s technical
introduction to XML.

You may have noticed that these are not recent publications. Don’t be surprised; XML
is a solid, long-established standard.

What Is XML?
XML, the Extensible Markup Language, is an Internet-friendly format for data and
documents, invented by the World Wide Web Consortium (W3C). The Markup denotes
a way of expressing the structure of a document within the document itself. XML has
its roots in a markup language called SGML (Standard Generalized Markup Language),
which is used in publishing and shares this heritage with HTML. XML was created to
do for machine-readable documents on the Web what HTML did for human-readable
documents—that is, provide a commonly agreed-upon syntax so that processing the
underlying format becomes a commodity and documents are made accessible to
all users.

285

http://bit.ly/Learning_XML_2e
http://bit.ly/XML_ina_Nutshell_3e
http://bit.ly/XML_ina_Nutshell_3e
http://www.xml.com/axml/testaxml.htm
http://www.xml.com/pub/a/98/10/guide0.html
http://www.xml.com/pub/a/98/10/guide0.html


1. To clarify XML’s relationship with SGML: XML is an SGML subset. By contrast, HTML is an SGML applica‐
tion. SVG uses XML to express its operations and thus is an XML application.

Unlike HTML, though, XML comes with very little predefined. HTML developers are
accustomed both to the notion of using angle brackets < > for denoting elements (i.e.,
syntax), and also to the set of element names themselves (i.e., head, body, etc.). XML
shares only the former feature, the notion of using angle brackets for denoting elements.
Unlike HTML, XML has no predefined elements, but is merely a set of rules that lets
you write other languages like HTML.1 Because XML defines so little, it is easy for
everyone to agree to use the XML syntax, and then to build applications on top of it. It’s
like agreeing to use a particular alphabet and set of punctuation symbols, but not saying
which language to use. However, if you’re coming to XML from an HTML background,
then prepare yourself for the shock of having to choose what to call your tags!

Knowing that XML’s roots lie with SGML should help you understand some of XML’s
features and design decisions. Note that, although SGML is essentially a document-
centric technology, XML’s functionality also extends to data-centric applications, in‐
cluding SVG. Commonly, data-centric applications do not need all the flexibility and
expressiveness that XML provides and limit themselves to employing only a subset of
XML’s functionality.

Anatomy of an XML Document
The best way to explain how an XML document is composed is to present one. The
following example shows an XML document you might use to describe authors:

<?xml version="1.0" encoding="us-ascii"?>
<authors>
    <person id="lear">
        <name>Edward Lear</name>
        <nationality>British</nationality>
    </person>
    <person id="asimov">
        <name>Isaac Asimov</name>
        <nationality>American</nationality>
    </person>
    <person id="mysteryperson"/>
</authors>

The first line of the document is known as the XML declaration. This tells a processing
application which version of XML you are using (the version indicator is mandatory)
and which character encoding you have used for the document. In the previous example,
the document is encoded in ASCII. (The significance of character encoding is covered
later in this chapter.) If the XML declaration is omitted, a processor will make certain
assumptions about your document. In particular, it will expect it to be encoded in
UTF-8, an encoding of the Unicode character set. However, it is best to use the XML

286 | Appendix A: The XML You Need for SVG



declaration wherever possible, both to avoid confusion over the character encoding and
to indicate to processors which version of XML you’re using.

Elements and Attributes
The second line of the example begins an element, which has been named authors. The
contents of that element include everything between the right angle bracket (>) in
<authors> and the left angle bracket (<) in </authors>. The actual syntactic constructs
<authors> and </authors> are often referred to as the element start tag and end tag,
respectively. Do not confuse tags with elements! Note that elements may include other
elements, as well as text. An XML document must contain exactly one root element,
which contains all other content within the document. The name of the root element
defines the type of the XML document.

Elements that contain both text and other elements simultaneously are classified as
mixed content. The SVG <text> element is such an element; it can contain text and
<tspan> elements.

The sample authors document uses elements named person to describe the authors
themselves. Each person element has an attribute named id. Unlike elements, attributes
can contain only textual content. Their values must be surrounded by quotes. Either
single quotes (') or double quotes (") may be used, as long as you use the same kind of
closing quote as the opening one.

Within XML documents, attributes are frequently used for metadata (i.e., data about
data)—describing properties of the element’s contents. This is the case in our example,
where id contains a unique identifier for the person being described.

As far as XML is concerned, it does not matter in what order attributes are presented
in the element start tag. For example, these two elements contain exactly the same in‐
formation as far as an XML 1.0 conformant processing application is concerned:

<animal name="dog" legs="4"/>
<animal legs="4" name="dog"/>

On the other hand, the information presented to an application by an XML processor
on reading the following two lines will be different for each animal element because the
ordering of elements is significant:

<animal><name>dog</name><legs>4</legs></animal>
<animal><legs>4</legs><name>dog</name></animal>

XML treats a set of attributes like a bunch of stuff in a bag—there is no implicit ordering
—while elements are treated like items on a list, where ordering matters.

New XML developers frequently ask when it is best to use attributes to represent in‐
formation and when it is best to use elements. As you can see from the authors example,

Anatomy of an XML Document | 287



2. Actually, a name may also contain a colon, but the colon is used to delimit a namespace prefix and is not
available for arbitrary use. For more information, see Tim Bray’s “XML Namespaces by Example.”

if order is important to you, then elements are a good choice. In general, there is no
hard-and-fast “best practice” for choosing whether to use attributes or elements.

The final author described in our document has no information available. All we know
about this person is his or her ID, mysteryperson. The document uses the XML shortcut
syntax for an empty element. The following is a reasonable alternative:

<person id="mysteryperson"></person>

Name Syntax
XML 1.0 has certain rules about element and attribute names. In particular:

• Names are case-sensitive: e.g., <person/> is not the same as <Person/>.
• Names beginning with xml (in any permutation of uppercase or lowercase) are

reserved for use by XML 1.0 and its companion specifications.
• A name must start with a letter or an underscore, not a digit, and may continue

with any letter, digit, underscore, or period.2

A precise description of names can be found in section 2.3 of the XML 1.0 specifica‐
tion. The rules for names in XML 1.1 are slightly different, primarily with regard to
Unicode characters. SVG uses the XML 1.0 rules.

Well-Formed
An XML document that conforms to the rules of XML syntax is known as well-
formed. At its most basic level, well-formedness means that elements should be properly
matched, and all opened elements should be closed. A formal definition of well-
formedness can be found in section 2.1 of the XML 1.0 specification. Table A-1 shows
some XML documents that are not well-formed.

288 | Appendix A: The XML You Need for SVG

http://www.xml.com/pub/a/1999/01/namespaces.html
http://www.w3.org/TR/REC-xml/#sec-common-syn
http://www.w3.org/TR/REC-xml/#sec-common-syn
http://www.w3.org/TR/REC-xml/#sec-well-formed


3. A discussion of processing instructions (PIs) is outside the scope of this book. For more information on PIs,
see section 2.6 of the XML 1.0 specification, at http://www.w3.org/TR/REC-xml#sec-pi.

Table A-1. Examples of poorly formed XML documents
Document Reason why it’s not well-formed

<foo>
  <bar>
  </foo>
</bar>

The elements are not properly nested because foo is closed while inside its child
element bar.

<foo>
  <bar>
</foo>

The bar element was not closed before its parent, foo, was closed.

<foo baz>
</foo>

The baz attribute has no value. While this is permissible in HTML (e.g.,
<table border>), it is forbidden in XML.

<foo baz=23>
</foo>

The baz attribute value, 23, has no surrounding quotes. Unlike HTML, all attribute
values must be quoted in XML.

Comments
As in HTML, it is possible to include comments within XML documents. XML com‐
ments are intended to be read only by people. With HTML, developers have occasionally
employed comments to add application-specific functionality. For example, the server-
side include functionality of most web servers uses instructions embedded in HTML
comments. XML provides other means of indicating application-processing instruc‐
tions,3 so comments should not be used for any purpose other than those for which they
were intended.

The start of a comment is indicated with <!--, and the end of the comment with -->.
Any sequence of characters, aside from the string --, may appear within a comment.

Comments tend to be used more in XML documents intended for human consumption
than those intended for machine consumption. The <desc> and <title> elements in
SVG obviate much of the need for comments.

Entity References
Another feature of XML that is occasionally useful when writing SVG documents is the
mechanism for escaping characters.

Because some characters have special significance in XML, there needs to be a way to
represent them. For example, in some cases the < symbol might really be intended to
mean less than rather than to signal the start of an element name. Clearly, just inserting

Anatomy of an XML Document | 289

http://www.w3.org/TR/REC-xml#sec-pi


the character without any escaping mechanism would result in a poorly formed docu‐
ment because a processing application would assume you were starting another element.
Another instance of this problem is needing to include both double quotes and single
quotes simultaneously in an attribute’s value. Here’s an example that illustrates both
these difficulties:

<badDoc>
  <para>
    I'd really like to use the < character
  </para>
  <note title="On the proper 'use' of the " character"/>
</badDoc>

XML avoids this problem by the use of the predefined entity reference. The word enti‐
ty in the context of XML simply means a unit of content. The term entity reference means
just that, a symbolic way of referring to a certain unit of content. XML predefines entities
for the following symbols: left angle bracket (<), right angle bracket (>), apostrophe ('),
double quote ("), and ampersand (&).

An entity reference is introduced with an ampersand (&), which is followed by a name
(using the word name in its formal sense, as defined by the XML 1.0 specification), and
terminated with a semicolon (;). Table A-2 shows how the five predefined entities can
be used within an XML document.

Table A-2. Predefined entity references in XML 1.0
Literal character Entity reference

< &lt;

> &gt;

' &apos;

" &quot;

& &amp;

Here’s the problematic document revised to use entity references:

<badDoc>
  <para>
    I'd really like to use the &lt; character
  </para>
  <note title="On the proper &apos;use&apos;
                of the &quot; character"/>
</badDoc>

Being able to use the predefined entities is all you need for SVG; in general, entities are
provided as a convenience for human-created XML. XML 1.0 allows you to define your
own entities and use entity references as “shortcuts” in your document. Section 4 of the
XML 1.0 specification describes the use of entities.

290 | Appendix A: The XML You Need for SVG

http://www.w3.org/TR/REC-xml/#sec-physical-struct
http://www.w3.org/TR/REC-xml/#sec-physical-struct


4. You can obtain charts of all these characters online by visiting http://www.unicode.org/charts/.

5. An octet is a string of 8 binary digits, or bits. A byte is commonly, but not always, considered the same thing
as an octet.

Character References
You are likely to find character references in the context of SVG documents. Character
references allow you to denote a character by its numeric position in the Unicode char‐
acter set (this position is known as its code point). Table A-3 contains a few examples
that illustrate the syntax.

Table A-3. Example character references in UTF-8
Actual character Character reference

1 &#49;

A &#65;

Ñ &#xD1;

® &#xAE;

Note that the code point can be expressed in decimal or, with the use of x as a prefix, in
hexadecimal.

Character Encodings
The subject of character encodings is frequently a mysterious one for developers. Most
code tends to be written for one computing platform and, normally, to run within one
organization. Although the Internet is changing things quickly, most of us have never
had cause to think too deeply about internationalization.

XML, designed to be an Internet-friendly syntax for information exchange, has inter‐
nationalization at its very core. One of the basic requirements for XML processors is
that they support the Unicode standard character encoding. Unicode attempts to in‐
clude the requirements of all the world’s languages within one character set. Conse‐
quently, it is very large!

Unicode Encoding Schemes
Unicode 3.0 has over 57,700 code points, each of which corresponds to a character.4 If
one were to express a Unicode string by using the position of each character in the
character set as its encoding (in the same way as ASCII does), expressing the whole
range of characters would require four octets5 for each character. Clearly, if a document
is written in 100 percent American English, it will be four times larger than required—

Character Encodings | 291

http://www.unicode.org/charts/


all the characters in ASCII fitting into a 7-bit representation. This places a strain both
on storage space and on memory requirements for processing applications.

Fortunately, two encoding schemes for Unicode alleviate this problem: UTF-8 and
UTF-16. As you might guess from their names, applications can process documents in
these encodings in 8- or 16-bit segments at a time. When code points are required in a
document that cannot be represented by one chunk, a bit pattern is used that indicates
that the following chunk is required to calculate the desired code point. In UTF-8, this
is denoted by the most significant bit of the first octet being set to 1.

This scheme means that UTF-8 is a highly efficient encoding for representing languages
using Latin alphabets, such as English. All of the ASCII character set is represented
natively in UTF-8—an ASCII-only document and its equivalent in UTF-8 are byte-for-
byte identical.

This knowledge will also help you debug encoding errors. One frequent error arises
because of the fact that ASCII is a proper subset of UTF-8—programmers get used to
this fact and produce UTF-8 documents, but use them as if they were ASCII. Things
start to go awry when the XML parser processes a document containing, for example,
characters such as Á. Because this character cannot be represented using only one octet
in UTF-8, this produces a two-octet sequence in the output document; in a non-Unicode
viewer or text editor, it looks like a couple of characters of garbage.

Other Character Encodings
Unicode, in the context of computing history, is a relatively new invention. Native op‐
erating system support for Unicode is by no means universal. For instance, older systems
like Windows 95 and 98 do not have it.

XML 1.0 allows a document to be encoded in any character set registered with the
Internet Assigned Numbers Authority (IANA). European documents are commonly
encoded in one of the ISO Latin character sets, such as ISO-8859-1. Japanese documents
commonly use Shift-JIS, and Chinese documents use GB2312 and Big 5.

A full list of registered character sets is maintained by the Internet Assigned
Numbers Authority (IANA).

XML processors are not required by the XML 1.0 specification to support any more
than UTF-8 and UTF-16, but most commonly support other encodings, such as US-
ASCII and ISO-8859-1. Although most SVG transactions are currently conducted in
ASCII (or the ASCII subset of UTF-8), there is nothing to stop SVG documents from
containing, say, Korean text. You will, however, probably have to dig into the encoding
support of your computing platform to find out if it is possible for you to use alternative
encodings.

292 | Appendix A: The XML You Need for SVG

http://www.iana.org/assignments/character-sets/character-sets.xhtml
http://www.iana.org/assignments/character-sets/character-sets.xhtml


Validity
In addition to well-formedness, XML 1.0 offers another level of verification, called
validity. To explain why validity is important, let’s take a simple example. Imagine you
invented a simple XML format for your friends’ telephone numbers:

<phonebook>
  <person>
    <name>Albert Smith</name>
    <number>123-456-7890</number>
  </person>
  <person>
    <name>Bertrand Jones</name>
    <number>456-123-9876</number>
  </person>
</phonebook>

Based on your format, you also construct a program to display and search your phone
numbers. This program turns out to be so useful, you share it with your friends. How‐
ever, your friends aren’t so hot on detail as you are, and try to feed your program this
phone book file with a <phone> element instead of a <number> element:

<phonebook>
  <person>
    <name>Melanie Green</name>
    <phone>123-456-7893</phone>
  </person>
</phonebook>

Note that, although this file is perfectly well-formed, it doesn’t fit the format you pre‐
scribed for the phone book, and you find you need to change your program to cope
with this situation. If your friends had used number as you did to denote the phone
number, and not phone, there wouldn’t have been a problem. However, as it is, this
second file is not a valid phone book document.

For validity to be a useful general concept, you need a machine-readable way of saying
what a valid document is; that is, which elements and attributes must be present and in
what order. XML 1.0 achieves this by introducing document type definitions (DTDs).
For the purposes of SVG, you don’t need to know much about DTDs. Rest assured that
SVG does have a DTD, and it spells out in detail exactly which combinations of elements
and attributes make up a valid document.

Document Type Definitions (DTDs)
The purpose of a DTD is to express the allowed elements and attributes in a certain
document type and to constrain the order in which they must appear within that docu‐
ment type. A DTD contains declarations defining the element types and attribute lists.
A DTD may span more than one file, and the SVG 1.1 specification uses a modularized

Validity | 293



6. See http://www.docbook.org.

DTD spread over more than a dozen files. However, the mechanism for including one
file inside another—parameter entities—is outside the scope of this book. It is common
to mistakenly conflate element and element types. The distinction is that an element is
the actual instance of the structure as found in an XML document, whereas the element
type is the kind of element that the instance is.

Putting It Together
What is important to you is knowing how to link a document to its defining DTD. This
is done with a document type declaration <!DOCTYPE …>, inserted at the beginning of
the XML document, after the XML declaration in our fictitious example:

<?xml version="1.0" encoding="us-ascii"?>
<!DOCTYPE authors SYSTEM "http://example.com/authors.dtd">
<authors>
  <person id="lear">
    <name>Edward Lear</name>
    <nationality>British</nationality>
  </person>
  <person id="asimov">
    <name>Isaac Asimov</name>
    <nationality>American</nationality>
  </person>
  <person id="mysteryperson"/>
</authors>

This example assumes the DTD file has been placed on a web server at example.com.
Note that the document type declaration specifies the root element of the document,
not the DTD itself. You could use the same DTD to define person, name, or nationali‐
ty as the root element of a valid document. Certain DTDs, such as the DocBook DTD
for technical documentation,6 use this feature to good effect, allowing you to provide
the same DTD for multiple document types.

A validating XML processor is obliged to check the input document against its DTD. If
it does not validate, the document is rejected. To return to the phone book example, if
your application validated its input files against a phone book DTD, you would have
been spared the problems of debugging your program and correcting your friend’s XML
because your application would have rejected the document as being invalid. Some of
the programs that read SVG files have a validating XML processor built into them to
assure they have valid input (and to keep you honest!). The kinds of XML processors
that are available are discussed in “Tools for Processing XML” on page 295.

294 | Appendix A: The XML You Need for SVG

http://www.docbook.org


XML Namespaces
XML 1.0 lets developers create their own elements and attributes, but this leaves open
the potential for overlapping names. <title> may mean the name of a book in one
context, but it may mean the prefix for a person’s name (Ms., Dr., etc.) in a different
context. The Namespaces in XML specification provides a mechanism developers can
use to identify particular vocabularies using Uniform Resource Identifiers (URIs).

SVG uses the URI http://www.w3.org/2000/svg for its namespace. The URI is just an
identifier—opening that page in a web browser reveals some links to the SVG, XML 1.0,
and Namespaces in XML specifications. Programs processing documents with multiple
vocabularies can use the namespaces to figure out which vocabulary they are handling
at any given point in a document.

SVG applies the namespace in the root element of SVG documents:

<svg xmlns="http://www.w3.org/2000/svg" width="100" height="100">
....
</svg>

The xmlns attribute, which defines the namespace, is actually provided as a default value
by the SVG DTD. However, some browsers will not render an SVG document if you
don’t use the namespace explicitly. (If the namespace does appear, it must have the exact
value shown earlier.) The namespace declaration applies to all of the elements contained
by the element in which the declaration appears, including the containing element. This
means that the element named svg is in the namespace
http://www.w3.org/2000/svg.

SVG uses the “default namespace” for its content, using the SVG element names without
any prefix. Namespaces can also be applied using prefixes, as shown here:

<svgns:svg xmlns:svgns="http://www.w3.org/2000/svg"
    width="100" height="100">
....
</svgns:svg>

In this case, the namespace URI http://www.w3.org/2000/svg would apply to all ele‐
ments using a prefix of svgns. The SVG 1.0 DTD won’t validate against such documents.

Namespaces are very simple on the surface but are a well-known field of combat in XML
arcana. For more information on namespaces, see XML in a Nutshell or Learning
XML (both O’Reilly).

Tools for Processing XML
Many parsers exist for using XML with many different programming languages. Most
are freely available, the majority being open source.

XML Namespaces | 295

http://www.w3.org/TR/REC-xml-names/
http://www.w3.org/2000/svg


Selecting a Parser
An XML parser typically takes the form of a library of code that you interface with your
own program. The SVG program hands the XML over to the parser, and it hands back
information about the contents of the XML document. Typically, parsers do this either
via events or via a Document Object Model (DOM).

With event-based parsing, the parser calls a function in your program whenever a parse
event is encountered. Parse events include things like finding the start of an element,
the end of an element, or a comment. Most Java event-based parsers follow a standard
API called SAX, which is also implemented for other languages such as Python and Perl.

DOM-based parsers work in a markedly different way. They consume the entire XML
input document and hand back a tree-like data structure that the SVG software can
interrogate and alter. The DOM is a W3C standard with its own documentation.

As XML matures, hybrid techniques that give the best of both worlds are emerging. If
you’re interested in finding out what’s available and what’s new for your favorite pro‐
gramming language, keep an eye on the following online sources:
XML.com Resource Guide

http://www.xml.com/resourceguide/

Free XML Tools Guide
http://www.garshol.priv.no/download/xmltools/

XSLT Processors
Many XML applications involve transforming one XML document into another XML
document or into HTML. The W3C has defined a special language called XSLT for
doing transformations. XSLT processors are becoming available for all major program‐
ming platforms.

XSLT works by using a stylesheet, which contains templates that describe how to trans‐
form elements from an XML document. These templates typically specify what XML
to output in response to a particular element or attribute. Using a W3C technology
called XPath gives you the flexibility to say not only “do this for every person element,”
but to give instructions as complex as “do this for the third person element whose name
attribute is Fred.”

Because of this flexibility, some applications have sprung up for XSLT that aren’t really
transformation applications at all, but take advantage of the ability to trigger actions on
certain element patterns and sequencers. Combined with XSLT’s ability to execute cus‐
tom code via extension functions, the XPath language has enabled applications such as
document indexing to be driven by an XSLT processor. You can see a brief introduction
to XSLT in Chapter 15.

296 | Appendix A: The XML You Need for SVG

http://www.megginson.com/downloads/SAX/
http://www.megginson.com/downloads/SAX/
http://www.w3.org/DOM/
http://www.xml.com/resourceguide/
http://www.garshol.priv.no/download/xmltools/


The W3C specifications for XSLT and XPath can be found at http://w3.org/TR/xslt and
http://w3.org/TR/xpath, respectively.

Tools for Processing XML | 297

http://w3.org/TR/xslt
http://w3.org/TR/xpath




APPENDIX B

Introduction to Stylesheets

As mentioned in Chapter 5, some attributes of SVG elements control the element’s
geometry. An example of one such attribute would be the cx (center x) attribute of a
<circle>. Other attributes, such as fill, control the element’s presentation. Stylesheets
provide a way for you to separate the presentation from the geometric structure; this
lets you control the visual display of many different SVG elements (and even documents)
by changing one stylesheet referenced by all the documents.

Anatomy of a Style
A style is a specification of a visual property for an element and the value that you would
like that property to have. The property name and the value are separated by a colon.
For example, to say that you want the stroke color for some element to be blue, the
appropriate style specifier would be stroke: blue.

To specify multiple properties in a style, you separate the specifiers with semicolons.
The following style specifier sets the stroke color to red, the stroke width to three pixels,
and the fill color to a light blue. The last property-value pair is followed by a semicolon.
This is not necessary, but is done to give the style a more consistent look.

stroke: red; stroke-width: 3px; fill: #ccccff;

Inline Styles: The style Attribute
Once you have determined the visual properties you’d like, you must select the element
or elements to which they apply. The simplest way to apply a style specification to a
single element is to make that specification the value of a style attribute. So, if you want
the preceding specification to apply to a particular <circle> in your document, you
write this:

299



<circle cx="50" cy="40" r="12"
    style="stroke: red; stroke-width: 3px; fill: #ccccff;"/>

Internal Stylesheets
If you want the style specification to apply to all <circle> elements in a single document,
add an internal stylesheet. A stylesheet consists of selectors (the names of the elements
you want to affect) and the style specifications for those selectors. The style specification
is enclosed in curly braces. The following applies styles to <circle> and <rect>
elements:

<style type="text/css"><![CDATA[
  circle {
    stroke: red; stroke-width: 3px;
    fill: #ccccff;
  }
  rect { fill: gray; stroke: black; }
]]></style>

When you put a <style> element into an SVG document, you should enclose its con‐
tents within <![CDATA[ and ]]>. This notation tells XML parsers that the contents are
pure character data and should not, under any circumstances, be treated as information
for XML to parse.

Because this stylesheet is within a document, it applies to that document alone. If you
have many documents, all of whose circles and rectangles appear as specified in the
preceding example, take the specifiers, without the <style> or <![CDATA[ tags, and put
them into a separate file named myStyle.css. In each SVG document, insert the following
processing instruction:

<?xml-stylesheet href="myStyle.css" type="text/css"?>

Then, at a later point, if you decide that all rectangles should be filled with a light green
and outlined in dark green, you can simply change the specification in myStyle.css to
read as follows:

rect {fill: #ccffcc; stroke: #006600;}

and all your documents, once redisplayed, will have green rectangles instead of gray
rectangles.

Style Selector Classes
The preceding stylesheet affects all <rect> and <circle> elements. Let’s say, though,
that you want only some circles in your documents to be styled. Write your stylesheet
with a class specifier as follows, where the dot after circle indicates that the following
identifier is a class name:

300 | Appendix B: Introduction to Stylesheets



circle.special {
  stroke: red; stroke-width: 3px;
  fill: #ccccff;
}

If, in your SVG document, you had the following elements, the first circle would show
up as the default (black fill, no stroke), and the second would take on the style attributes
as its class name matches the class identifier in the stylesheet:

<circle cx="40" cy="40" r="20"/>
<circle cx="60" cy="20" r="10" class="special"/>

It is possible to specify a generic class that can apply to any element. Presume that several
different graphic objects serve as warning symbols. You would like them to have a yellow
fill and a red border. You could write this selector, which consists only of a class name
and its style specifier:

.warning { fill: yellow; stroke: red; }

This generic class may now be applied to any SVG element. In the following example,
both the rectangle and triangle will have yellow interiors and red outlines:

<rect class="warning" x="5" y="10" width="20" height="30"/>
<polygon class="warning" points="40 40, 40 60, 60 50"/>

The class attribute may contain the names of several classes separated by whitespace;
their combined properties will be applied to the element in question. The following
markup adds a generic class named seeThrough for translucency to the previous ex‐
ample and then applies both classes to the polygon:

<svg width="100" height="100" viewBox="0 0 100 100">
  <style type="text/css"><![CDATA[
    .warning { fill: yellow; stroke: red; }
    .seeThrough { fill-opacity: 0.25; stroke-opacity: 0.5; }
  ]]></style>
  <rect class="warning" x="5" y="10" width="20" height="30"/>
  <polygon class="warning seeThrough" points="40 40, 40 60, 60 50"/>
</svg>

Using CSS with SVG
The question then becomes: which attributes in SVG elements can also be specified in
a stylesheet? Table B-1 is a list of the properties you may use in a stylesheet, the valid
values (with default value shown in boldface where appropriate), and the elements to

Using CSS with SVG | 301



1. Copyright © 2001 World Wide Web Consortium (Massachusetts Institute of Technology, Institut National
de Recherche en Informatique et en Automatique, Keio University). All Rights Reserved. http://www.w3.org/
Consortium/Legal/.

which they may be applied. It is a modified version of the property index from the SVG
specification.1

The value of fill and stroke is a paint value, which is one of the following:

• none

• currentColor

• A color specification, as described in “Stroke Color” on page 41
• A construction of the form url(…) that refers to a gradient or pattern

You can specify fallback paint options, in case there is an error loading a gradient or
pattern; the options are given in a whitespace-separated list starting with the preferred
value.

302 | Appendix B: Introduction to Stylesheets

http://www.w3.org/Consortium/Legal/
http://www.w3.org/Consortium/Legal/
http://www.w3.org/TR/SVG/
http://www.w3.org/TR/SVG/


Ta
bl

e B
-1

. C
SS

 p
ro

pe
rty

 ta
bl

e f
or

 S
VG

Na
m

e
Va

lu
es

Ap
pl

ie
s t

o

al
ig
nm
en
t-
ba
se
li
ne

au
to

 | b
as
el
in
e

 | b
ef
or
e-
ed
ge

 | t
ex
t-
be
fo
re
-e
dg
e

 |
mi
dd
le

 | a
ft
er
-e
dg
e

 | t
ex
t-
af
te
r-
ed
ge

 | i
de
og
ra
ph
ic

 |
al
ph
ab
et
ic

 | h
an
gi
ng

 | m
at
he
ma
ti
ca

l

<t
sp
an
>,

 <
tr
ef
>,

 <
al
tG
ly
ph
>,

 <
te
xt
Pa
th
>

ba
se
li
ne
-s
hi
ft

ba
se
li
ne

 | s
ub

 | s
up
er

 | p
er
ce
nt
ag
e

 | l
en
gt
h

<t
sp
an
>,

 <
tr
ef
>,

 <
al
tG
ly
ph
>,

 <
te
xt

Pa
th
>

 el
em

en
ts

cl
ip
-p
at
h

ur
i

Co
nt

ain
er

 el
em

en
ts 

an
d g

ra
ph

ics
 el

em
en

ts

cl
ip

-r
ul
e

no
nz
er
o

 | e
ve
no
dd

 | c
la
ss
=n
ox
re
f

Gr
ap

hic
s e

lem
en

ts 
wi

th
in

 a 
<c
li
pP
a
th
>

 el
em

en
t

co
lo
r

co
lo
r

Us
ed

 to
 pr

ov
ide

 a 
po

te
nt

ial
 in

dir
ec

t v
alu

e (
cu
rr
en
tC
ol
or

) f
or

fi
ll

, s
tr
ok
e,

 s
to
p-
co
lo
r,

 f
lo
od
-c
ol
or

, a
nd

li
gh
ti
ng
-c
ol
or

co
lo
r-
in
te
rp
ol
at
io
n

au
to

 | s
RG
B

 | l
in
ea
rR
GB

Co
nt

ain
er

 el
em

en
ts,

 gr
ap

hic
s e

lem
en

ts,
 an

d <
an
im
at
eC
ol
or
>

co
lo
r-
in
te
rp
ol
at
io
n-
fi
lt
er
s

au
to

 | s
RG
B

 | l
in
ea
rR
GB

Fil
te

r p
rim

iti
ve

s

co
lo
r-
pr
of
il
e

au
to

 | s
RG
B

 | n
am
e

 | u
ri

<i
ma
ge
>

 el
em

en
ts 

th
at

 re
fer

 to
 ra

ste
r i

m
ag

es

co
lo
r-
re
nd
er
in
g

au
to

 | o
pt
im
iz
eS
pe
ed

 | o
pt
im
iz
eQ
ua
li
ty

Co
nt

ain
er

 el
em

en
ts,

 gr
ap

hic
s e

lem
en

ts 
an

d <
an
im
at
eC
ol
or
>

cu
rs
or

ur
i

 | a
ut
o

 | c
ro
ss
ha

ir
 | d
ef
au
lt

 | p
oi
nt
er

 | m
ov
e

 | e
-r
es
iz
e

| n
e-
re
si
ze

 | n
w-
re
si
ze

 | n
-r
es
iz
e

 | s
e-
re
si
ze

 |
sw
-r
es
iz
e

 | s
-r
es
iz
e

 | w
-r
es
iz
e

 | t
ex
t

 | w
ai
t

 | h
el
p

Co
nt

ain
er

 el
em

en
ts 

an
d g

ra
ph

ics
 el

em
en

ts

di
re
ct
io
n

lt
r

 | r
tl

<t
ex
t>

, <
ts
pa
n>

, <
tr
ef
>,

 an
d <

te
xt
Pa
th
>

 el
em

en
ts

Using CSS with SVG | 303



Na
m

e
Va

lu
es

Ap
pl

ie
s t

o

di
sp

la
y

in
li
ne

 | b
lo
ck

 | l
is
t-
it
em

 | r
un
-i
n

 | c
om
pa
ct

 | m
ar
ke
r

 |
ta
bl
e

 | i
nl
in
e-

ta
bl
e

 | t
ab
le
-r
ow
-g
ro
up

 |
ta
bl
e-
he
ad
er
-g

ro
up

 | t
ab
le
-f
oo
te
r-
gr
ou
p

 | t
ab
le
-r
ow

| t
ab
le
-c
ol
um
n-
gr
ou
p

 | t
ab
le
-c
ol
um
n

 | t
ab
le
-c
el
l

 |
ta
bl
e-
ca
pt
io
n

 | n
on
e

<s
vg
>,

 <
g>

, <
sw
it
ch
>,

 <
a>

, <
fo

re
ig
nO
bj
ec
t>

, g
ra

ph
ics

ele
m

en
ts 

(in
clu

din
g t

he
 <t

ex
t>

 el
em

en
t),

 an
d t

ex
t s

ub
ele

m
en

ts 
(i.

e.,
<t
sp
an
>

, <
tr
ef
>,

 <
al
tG
ly
ph
>,

 <
te
xt
Pa
th
>

). 
Al

l v
alu

es
ex

ce
pt

 n
on
e

 ar
e t

re
at

ed
 th

e s
am

e f
or

 el
em

en
ts 

in
 an

 SV
G,

 en
ab

lin
g

dis
pla

y o
f t

he
 gr

ap
hic

.

do
mi
na
nt
-b
as
el
in
e

au
to

 | u
se
-s
cr
ip
t

 | n
o-
ch
an
ge

 | r
es
et
-s
iz
e

 | a
lp
ha
be
ti
c

| h
an
gi
ng

 | i
de
og
ra
ph
ic

 | m
at
he
ma
ti
ca
l

 | c
en
tr
al

 | m
id
dl
e

| t
ex
t-
af
te
r-
ed

ge
 | t

ex
t-
be
fo
re
-e
d
ge

 | t
ex
t-
to
p

 |
te
xt
-b
ot
to
m

Te
xt

 co
nt

en
t e

lem
en

ts

en
ab
le
-b
ac
kg
ro
un
d

ac
cu
mu
la
te

 | n
ew

 
[

 x
 
y
 
wi
dt
h
 
he
ig
ht

 ]
Co

nt
ain

er
 el

em
en

ts

fi
ll

Se
e d

es
cri

pt
ion

 of
 p
ai
nt

 at
 en

d o
f t

ab
le 

fo
r p

os
sib

le 
va

lue
s; 

th
e d

efa
ult

is 
bl

ac
k

Sh
ap

es
 an

d t
ex

t c
on

te
nt

 el
em

en
ts

fi
ll
-o
pa
ci
ty

op
ac
it
y-
va
lu
e

 (d
efa

ult
 1

)
Sh

ap
es

 an
d t

ex
t c

on
te

nt
 el

em
en

ts

fi
ll
-r
ul
e

no
nz
er
o

 | e
ve
no
dd

Sh
ap

es
 an

d t
ex

t c
on

te
nt

 el
em

en
ts

fi
lt
er

ur
i

 | n
on
e

Co
nt

ain
er

 el
em

en
ts 

an
d g

ra
ph

ics
 el

em
en

ts

fl
oo
d-
co
lo
r

cu
rr
en
tC

ol
or

 | c
ol
or

 
sp
ec
if
ie
r

 (d
efa

ult
 b
la
ck

)
<f
eF
lo
od
>

 el
em

en
ts

fl
oo
d-
op
ac
it

y
al
ph
av
al
ue

 (d
efa

ult
 1

)
<f
eF
lo
od
>

 el
em

en
ts

fo
nt

fo
nt
-s
ty
le

, f
on

t-
va
ri
an
t,

 f
on
t-
we
ig
ht

, f
on
t-
si
ze

li
ne
-h
ei
gh
t,

 f
on

t-
fa
mi
ly

 | c
ap
ti
on

 | i
co
n

 | m
en
u

 |
me
ss
ag
e-
bo
x

 | s
ma
ll
-c
ap
ti
on

 | s
ta
tu
s-
ba
r

Te
xt

 co
nt

en
t e

lem
en

ts

fo
nt
-f
am
il
y

se
rie

s o
f f
am
il
y-
na
me

 or
 g
en
er
ic
-f
am
il
y

Te
xt

 co
nt

en
t e

lem
en

ts

fo
nt
-s
iz
e

ab
so
lu
te
-s
iz
e

 | r
el
at
iv
e-
si
ze

 | l
en

gt
h

 | p
er
ce
nt
ag
e

Te
xt

 co
nt

en
t e

lem
en

ts

304 | Appendix B: Introduction to Stylesheets



Na
m

e
Va

lu
es

Ap
pl

ie
s t

o

fo
nt

-s
iz
e-
ad
ju
st

nu
mb
er

 | n
on
e

Te
xt

 co
nt

en
t e

lem
en

ts

fo
nt
-s
tr
et
ch

no
rm
al

 | w
id
er

 | n
ar
ro
we
r

 | u
lt
ra
-c
on
de
ns
ed

 |
ex
tr
a-
co
nd
en
se
d

 | c
on
de
ns
ed

 | s
em
i-
co
nd
en
se
d

 |
se
mi
-e
xp
an
de
d

 | e
xp
an
de
d

 | e
xt
ra
-e
xp
an
de
d

 |
ul
tr
a-
ex
pa
nd
ed

Te
xt

 co
nt

en
t e

lem
en

ts

fo
nt
-s
ty
le

no
rm
al

 | i
ta
li
c

 | o
bl
iq
ue

Te
xt

 co
nt

en
t e

lem
en

ts

fo
nt
-v
ar
ia
nt

no
rm
al

 | s
ma
ll
-c
ap
s

Te
xt

 co
nt

en
t e

lem
en

ts

fo
nt
-w
ei
gh
t

no
rm
al

 | b
ol
d

 | b
ol
de
r

 | l
ig
ht
er

 | 1
00

 | 2
00

 | 3
00

 | 4
00

 | 5
00

| 6
00

 | 7
00

 | 8
00

 | 9
00

Te
xt

 co
nt

en
t e

lem
en

ts

gl
yp
h-
or
ie
nt

at
io
n-
ho
ri
zo
nt
al

an
gl
e

 (d
efa

ult
 0
de
g)

Te
xt

 co
nt

en
t e

lem
en

ts

gl
yp
h-
or
ie
nt
at
io
n
-v
er
ti
ca
l

au
to

 | a
ng
le

Te
xt

 co
nt

en
t e

lem
en

ts

im
ag
e-
re
nd
er
in
g

au
to

 | o
pt
im
iz
eS
pe
ed

 | o
pt
im
iz
eQ
ua
li
ty

Im
ag

es

ke
rn
in
g

au
to

 | l
en
gt
h

Te
xt

 co
nt

en
t e

lem
en

ts

le
tt
er
-s
pa
ci

ng
no
rm
al

 | l
en
gt
h

Te
xt

 co
nt

en
t e

lem
en

ts

li
gh
ti
ng
-c
ol
or

cu
rr
en
tC
ol
or

 | c
ol
or

 
sp
ec
if
ic
at
io
n

 (d
efa

ult
 w
hi
te

)
<f
eD
if
fu
se
Li
gh
ti
ng
>

 an
d <

fe
Sp
ec
ul
ar
Li
gh
ti
ng
>

ele
m

en
ts

ma
rk
er

, m
ar
ke

r-
en
d,

 m
ar
ke
r-
mi
d,

ma
rk
er
-s
ta
rt

no
ne

 | u
ri

<p
at
h>

, <
li
ne
>,

 <
po
ly
li
ne
>,

 an
d <

po
ly
go
n>

 el
em

en
ts

ma
sk

ur
i

 | n
on
e

Co
nt

ain
er

 el
em

en
ts 

an
d g

ra
ph

ics
 el

em
en

ts

op
ac
it
y

al
ph
av
al
ue

 (d
efa

ult
 1

)
Co

nt
ain

er
 el

em
en

ts 
an

d g
ra

ph
ics

 el
em

en
ts

Using CSS with SVG | 305



Na
m

e
Va

lu
es

Ap
pl

ie
s t

o

ov
er

fl
ow

vi
si
bl
e

 | h
id
de
n

 | s
cr
ol
l

 | a
ut
o

Ele
m

en
ts 

th
at

 es
ta

bli
sh

 a 
ne

w 
vie

wp
or

t, 
<p
at

te
rn
>

 el
em

en
ts,

 an
d

<m
ar
ke
r>

 el
em

en
ts

po
in
te
r-
ev
en
ts

vi
si
bl
eP
ai
nt
ed

 | v
is
ib
le
Fi
ll

 | v
is
ib
le
St
ro
ke

 |
vi
si
bl
e

 | p
ai
nt
ed

 | f
il
l

 | s
tr
ok
e

 | a
ll

 | n
on
e

Gr
ap

hic
s e

lem
en

ts

sh
ap
e-
re
nd
er
in
g

au
to

 | o
pt
im
iz
eS
pe
ed

 | c
ri
sp
Ed
ge
s

 |
ge
om
et
ri
cP
re
ci
si
on

Sh
ap

es

st
op
-c
ol
or

cu
rr
en
tC
ol
or

 | c
ol
or

 
sp
ec
if
ic
at
io

n
 (d

efa
ult

 b
la
ck

)
<s
to
p>

 el
em

en
ts

st
op
-o
pa
ci
ty

al
ph
av
al
ue

 (d
efa

ult
 1

)
<
st
op
>

 el
em

en
ts

st
ro
ke

Se
e d

es
cri

pt
ion

 of
 p
ai
nt

 at
 en

d o
f t

ab
le 

fo
r p

os
sib

le 
va

lue
s; 

th
e d

efa
ult

is 
no

ne
Sh

ap
es

 an
d t

ex
t c

on
te

nt
 el

em
en

ts

st
ro
ke
-d
as
ha
rr
ay

no
ne

 | d
as
ha
rr
ay

Sh
ap

es
 an

d t
ex

t c
on

te
nt

 el
em

en
ts

st
ro
ke
-d
as
ho
ff
se
t

da
sh
of
fs
et

 (d
efa

ult
 0

)
Sh

ap
es

 an
d t

ex
t c

on
te

nt
 el

em
en

ts

st
ro
ke
-l
in
ec
ap

bu
tt

 | r
ou
nd

 | s
qu
ar
e

Sh
ap

es
 an

d t
ex

t c
on

te
nt

 el
em

en
ts

st
ro
ke
-l
in
ej
oi
n

mi
te
r

 | r
ou
nd

 | b
ev
el

Sh
ap

es
 an

d t
ex

t c
on

te
nt

 el
em

en
ts

st
ro
ke
-m
it
er
li
mi
t

mi
te
rl
im
it

 (d
efa

ult
 4

)
Sh

ap
es

 an
d t

ex
t c

on
te

nt
 el

em
en

ts

st
ro
ke
-o
pa
ci
ty

op
ac
it
y-
va
lu
e

 (d
efa

ult
 1

)
Sh

ap
es

 an
d t

ex
t c

on
te

nt
 el

em
en

ts

st
ro
ke
-w
id
th

wi
dt
h

 (d
efa

ult
 1

)
Sh

ap
es

 an
d t

ex
t c

on
te

nt
 el

em
en

ts

te
xt
-a
nc
ho
r

st
ar
t

 | m
id
dl
e

 | e
nd

Te
xt

 co
nt

en
t e

lem
en

ts

te
xt
-d
ec
or
at
io
n

no
ne

 | u
nd
er
li
ne

 | o
ve
rl
in
e

 | l
in
e-
th
ro
ug
h

 | b
li
nk

Te
xt

 co
nt

en
t e

lem
en

ts

306 | Appendix B: Introduction to Stylesheets



Na
m

e
Va

lu
es

Ap
pl

ie
s t

o

te
xt

-r
en
de
ri
ng

au
to

 | o
pt
im
iz
eS
pe
ed

 | o
pt
im
iz
eL
eg
ib
il
it
y

 |
ge
om
et
ri
cP
re
ci

si
on

<t
ex
t>

 el
em

en
ts

un
ic
od
e-
bi
di

no
rm
al

 | e
mb
ed

 | b
id
i-
ov
er
ri
de

Te
xt

 co
nt

en
t e

lem
en

ts

vi
si
bi
li
ty

vi
si
bl
e

 | h
id
de
n

 | c
ol
la
ps
e

Gr
ap

hic
s e

lem
en

ts 
(in

clu
din

g t
he

 <
te
x
t>

 el
em

en
t) 

an
d t

ex
t s

ub
-

ele
m

en
ts 

(i.
e.,

 <
ts
pa
n>

, <
tr
ef
>,

 <
al
tG
ly
ph
>,

 <
te
xt
Pa
th
>,

an
d <

a>
)

wo
rd
-s
pa
ci
ng

no
rm
al

 | l
en
gt
h

Te
xt

 co
nt

en
t e

lem
en

ts

wr
it
in
g-
mo
de

lr
-t
b

 | r
l-
tb

 | t
b-
rl

 | l
r

 | r
l

 | t
b

<t
ex
t>

 el
em

en
ts

Using CSS with SVG | 307



308 | Appendix B: Introduction to Stylesheets



1. Unlike the actual practice of Santería and voudon, which are much more complex and not inherently evil.

APPENDIX C

Programming Concepts

Many graphic designers want to use the scripting capability of SVG as described in
Chapter 13. If they’re not familiar with programming, they tend to practice what might
be called voodoo scripting. In the popular-culture stereotype,1 voodoo works by reciting
a mysterious spell and hoping that your enemies die horribly. Voodoo scripting works
by copying someone else’s mysterious script into your SVG document and hoping that
your document continues to live. We’re under no illusion (nor even a spell) that reading
this brief, purposely oversimplified summary will turn you into a master programmer.
Our goal is simply to introduce enough of the elementary programming concepts to
remove some of the mystery from the scripts that you copy and modify. The particular
programming language that we will discuss in this appendix is called ECMAScript; it is
the standardized version of the JavaScript language. The concepts used in ECMAScript
are common to many other programming languages.

Constants
A constant is a fancy word for a number or string of characters that never changes.
Examples are 2, 2.71828, "message", and 'communication'. The last two are called
string constants. In ECMAScript, you can use either single or double quotes to mark the
boundaries of a string. This is good if you ever need to write things like
"O'Reilly Media" or 'There is no "there" there.'

You will sometimes see the two Boolean constants true and false, which are used for
yes-or-no situations.

309



Variables
A variable is a block of memory reserved to hold some value that may change from time
to time. You can think of it as a mailbox with a name on it; the mailbox holds a slip of
paper with information written on it. Let’s say you need to keep track of the current
width of a rectangle and need to store a changeable message; in ECMAScript you define
these variables like this:

var currentWidth;
var message;

You may visualize them as shown in Figure C-1.

Figure C-1. Two empty variables

Variables defined this way have nothing in their “mailbox”; the technical term is that
these variables contain the undefined value. Variable names must start with a letter or
an underscore and can contain only letters, digits, and underscores. They are case sen‐
sitive, so width, Width, and WIDTH are names of three different variables.

Assignment and Operators
You can put a value into a variable by using an assignment statement, which starts with
a variable name, an equal sign, and the value. Examples:

currentWidth = 32;
message = "I love SVG.";

You can read these as “set the value of currentWidth equal to 32” and “set the value of
message equal to "I love SVG."” In reality, this statement works from right to left;
whatever is on the righthand side of the equal sign is placed into the variable on the
lefthand side. Note that all our ECMAScript statements end with a semicolon. There
are cases where you don’t need one, but we’d rather have the semicolon and not need it
than need it and not have it. Figure C-2 shows the “after” picture for these assignments.

Figure C-2. Two assigned variables

310 | Appendix C: Programming Concepts



Actually, we told you a small lie a few sentences ago. Whatever the righthand side of the
equal sign works out to goes into the variable on the lefthand side. This lets us do math‐
ematical operations, as in the following code:

var info;     
info = 7 + 2;     
info = 7 * 2;    
info = info + 1;     
info = "door";     
info = info + "bell"     

Create an empty variable named info.
info will now contain the value 9 (7 plus 2). You use the minus sign (-) for
subtraction.
The asterisk is used for multiplication, because the multiplication symbol is too
easily confused with the letter x. info will contain 14 (7 times 2). The previous
value of 9 will be discarded. You use the forward slash (/) for division.
This is illegal in high school algebra, but not in ECMAScript. Start with the
righthand side of the equal sign: take the current value of info, which is 14, and
add 1 to it. The righthand side works out to 15. This result goes into the variable
on the left side of the equal, which just happens to be info. At the end of this
statement, info will contain the value 15.
This takes the string "door" and puts it into info. In ECMAScript, a variable
can hold any sort of information at any time.
This takes the current value of info, which is "door", and “adds” (appends) the
string constant "bell" to the end of it. The resulting value is the word
"doorbell", which goes back into info on the left side of the equal sign. The
plus sign is the only operator that works with strings; you can’t subtract, multiply,
or divide them. Be careful when mixing addition and string concatenation:
"The answer is " + 2 + 2 produces "The answer is 22";
"The answer is " + (2 + 2) produces "The answer is 4"

You can define a variable and set its initial value all in one fell swoop. This is called
initializing a variable. You can have more than one operation on the righthand side of
the equal sign. In the following code, an empty variable named celsius is created, then
a variable named fahrenheit with value 212, and then the Fahrenheit temperature is
converted to Celsius:

var celsius;
var fahrenheit = 212;
celsius = ((fahrenheit - 32) / 9 ) * 5;

Assignment and Operators | 311



2. This is not done to be contrary; it’s because programs often use a mathematical formula to select the relevant
item. These formulas are invariably easier when you start counting at zero.

Arrays
An array is an ordered collection of data, indexed by number. We compared a simple
variable to a mailbox (send mail to the “Smith Residence”). An array is like a set of
numbered apartment mailboxes (send mail to the “A-List Apartments, #12”). The only
difference is that array index numbers start at 0 rather than 1.2 Here’s a declaration of
an array of radius sizes for circles. This form initializes the array. The second statement
sets the value of the last element of the array to 9. You access one of the “slots” of an
array by putting its index number in square brackets. Figure C-3 shows the results after
the code has finished:

var radiusSizes = [8.5, 6.4, 12.2, 7];
radiusSizes[3] = 9;

Figure C-3. Depiction of an array

Comments
Comments provide a way to document your programs so that other people can figure
out what you did. There are two kinds of comments in ECMAScript. If you place two
forward slashes in a row (//), they and everything to the end of that line are considered
to be a comment. If you want a multiline comment, start with /* and end with */ as
shown here:

var interest;   // this is accumulated on a daily basis
var rate;       // expressed as a decimal; 75% is a rate of 0.75

/* Figure out the payment amount given a principal
   of $10,000 and 180 monthly payments. */

Conditional Statements
Ordinarily, your program statements are carried out in the order in which they ap‐
pear. Sometimes you may want to do different calculations depending upon some con‐
dition. You use the if statement to do this. Here’s a calculation for wages that depends
upon the number of hours worked. We presume that all the var statements have been
set up appropriately:

312 | Appendix C: Programming Concepts



3. There are also the === and !== operators; when you use them, Boolean values and strings containing
numbers won’t automatically be converted into numbers when compared against a number.

if (hours <= 40)     
{
  pay = hours * rate;     
}
else     
{
  pay = 40 * rate + (hours - 40) * rate * 1.5;     
}

The expression in the parentheses is called the condition. It always asks a yes-
or-no question. In this case, the question is “is the value of the hours variable
less than or equal to 40?” Other comparison operations are less than (<), greater
than (>) greater than or equal (>=), equal (==), and not equal (!=).3 Note that
asking if two things are equal to each other requires two equal signs, not one!
If the answer to the question is yes, then the program will do everything between
the opening and closing braces { and }…
…otherwise (else)…
…do everything between the other set of curly braces. The curly braces are used
to signify that one or more statements should be grouped together, much in the
way that XML opening and closing tags tell where content begins and ends.

Repeated Actions
Sometimes you want to repeat an action a specific number of times (“fill 10 2-liter
containers from a large water tank”). You use a for loop to do the first sort of task. It’s
called a loop because, if you were to draw arrows representing the path the computer
takes through your program, they would form a loop as the program repeated the ac‐
tions. Here’s the container-filling scenario translated into ECMAScript, with variables
for the water tank and the containers presumed to be defined. The loop body, that is,
the actions you want repeated, are enclosed in curly braces:

var i;              // a counter variable
for (i = 0;         // start counting at zero
     i < 10;        // up to (but not including) 10
     i++)           // add one to the count at every repetition
{
  container[i] = 2;                // fill container number "i"
  waterTank = waterTank - 2;  // take 2 liters out of the tank
}

Repeated Actions | 313



Other times, you want to repeat an action as long as some condition is true (“keep filling
2-liter containers from a large water tank as long as there is any water left”). For this,
you use a while loop:

i = 0;                          // start with container number zero
while ( waterTank > 0 )         // while there is water left
{
  container[i] = 2;                // fill container number "i"
  waterTank = waterTank - 2;  // take 2 liters out of the tank
  i = i + 1;                  // move on to the next container
}

Functions
You can accomplish some surprisingly sophisticated tasks with this small number of
programming concepts. You collect sets of ECMAScript statements designed to perform
a specific task into functions. Think of a function as a recipe card that gives a list of
ingredients and instructions which, when followed, create a specific dish. A function
starts with the keyword function followed by the function name. The name should be
indicative of the task that it does, and it follows the same rules that variable names do.
Following the function name, in parentheses, are the parameters of the function. A
parameter is extra information that the function needs when it does its task. Consider
this imaginary recipe:

Korean Kimch’i Surprise
Take 100 grams of kimch’i per serving, 25 grams of ko-ju-jang red pepper paste per
serving, and 50 grams of mushrooms per serving. Mix well. Serve.

Before you can make the recipe, you have to supply some extra information—the num‐
ber of servings you intend to make. Our script might look like this:

function makeKimchiSurprise(numberOfServings)
{
  var kimchi = 100 * numberOfServings;
  var kojujang = 25 * numberOfServings;
  var mushrooms = 50 * numberOfServings;
  var surprise = kimchi + kojujang + mushrooms;
}

This is only the definition of the function. It does absolutely nothing until it is invoked,
or called on. (You may have hundreds of recipe cards in a file box at home. They just sit
there, inactive, until someone asks you to pull one card out and perform the cooking
tasks.) You will often call a function as the result of an event. In the following example,
a click on the blue rectangle will call the function. The number 5 in the parentheses will
fill in the “extra information” required by the numberOfServings parameter:

<rect x="10" y="10" width="100" height="30" style="fill: blue;"
  onclick="makeKimchiSurprise( 5 )" />

314 | Appendix C: Programming Concepts



Even if the function doesn’t need any parameters, you still have to put
the parentheses after its name in order to call it. Without the paren‐
theses, area is just another object to be utilized. Unlike other lan‐
guages, ECMAScript doesn’t let you declare both a variable area and
a function area() in the same namespace.

Functions can also call other functions. For example, a function that calculates com‐
pound interest might need to call upon another function that determines whether a year
is a leap year or not. A parameter lets the interest function tell the leap year function
what year it’s interested in. The return statement will let the leap year function com‐
municate its result back to the caller. This allows you to modularize a program into
generally useful building blocks. In cooking terms, the makeHollandaiseSauce() func‐
tion can be called from the makeEggsBenedict() function as well as from
makeChickenFlorentine().

Objects, Properties, and Methods
Take a power supply with its on-off switch, a plastic dial, a lever with a spring, and a
metal chassis with rectangular slots and coils of wire in it. Put all these parts together,
and you get a toaster.

Each of these parts is an object. Some of them have characteristics that are of interest:
the power supply has a voltage of 110 or 220 volts, the chassis has a color and a number
of slots, and the dial has a minimum and maximum setting. (The lever has no interesting
characteristics.)

You do actions with each of these objects: you push the lever down or pop it up, you
insert bread into the slots, you turn the power supply on or off, and you turn the dial
to the desired setting.

Let’s take this toaster into the world of ECMAScript. Now the mailboxes can hold many
slips of paper, each representing different data properties of the object. Simple data types
(like numbers or strings) are written down on the slip of paper directly. More complex
data types require their own “mailboxes” to hold all the information, so the “slip of
paper” contains information on where to find the full object (a pointer to the data); as
a consequence, multiple variables can reference the same object. A mailbox can also
hold a set of instructions (functions, like our recipe cards) so that they can perform
actions. When a variable is inside another mailbox, we call the inner variable a proper‐
ty. When a function is inside a mailbox, we call it a method. The diagram for the toaster
looks like Figure C-4.

Objects, Properties, and Methods | 315



4. If you insist upon reading left to right, adapt the suggestion for reading path names made by Elizabeth Castro
in her book, Visual Quickstart Guide to HTML for the World Wide Web: read the period as “contains.” Then
toaster.powerSupply.voltage = 220; is read as “the toaster contains a power supply, which contains a
voltage. Set that voltage to 220.”

Figure C-4. The object diagram for a toaster

This is a very flexible way of modeling a toaster, but it’s introduced a problem. To set
the toaster’s color or voltage or to pop out the bread, you can’t just say things like this:

color = "gold";
voltage = 220;
popUp();

The color property is nested inside the toaster variable, the voltage really belongs to
the powerSupply inside the toaster, and it’s the toaster’s lever that does the popUp
function. For these reasons, you must say:

toaster.color = "gold";
toaster.powerSupply.voltage = 220;
toaster.lever.popUp();

These are easy to figure out if you read them from right to left and say “of ” whenever
you see a period: “Put gold into the color of the toaster.” “Put 220 into the voltage of the
power supply of the toaster.” “Call the pop up method of the lever of the toaster.”4 Think
of this as the grown-up version of nested objects and methods that you learned as a
child: “This is the dog that chased the cat that killed the rat that ate the malt that lay in
the house that Jack built.”

By using objects to model the behavior of a toaster, you’ve built a “Toaster Object Model.”
Similarly, there is a Document Object Model (DOM) that lets ECMAScript access a
document’s properties and invoke its methods. Almost all of your access to an SVG

316 | Appendix C: Programming Concepts



document will be through methods that begin with the word set or get. To set the
radius of a <circle> element with an id of wheel, you might write
svgDocument.getElementById("wheel").setAttribute("r", 3). In some cases, you
will use properties. For example, if you receive a mouse click event and want to find its
x-coordinate, you would write evt.clientX.

The SVG Document Object Model is actually a superset of the XML
Document Object Model; once you learn to manipulate the struc‐
ture of an SVG document, you can immediately apply that knowl‐
edge to other XML documents, so the time you spend in learning the
DOM will be amply repaid.

What, Not How
We’ve given you an overview of the what of programming, which can serve as a base
for reading programs that other people have written and making sense of them (the
programs, not the people). How you define a task and lay out the programming steps
to solve it is another problem altogether, and far beyond the scope of this book. If you
enjoy solving crossword puzzles or brain teasers, or just solving problems in general,
you may well enjoy writing programs. If you would like to go in depth with JavaScript,
we recommend JavaScript: The Definitive Guide, 6th Edition by David Flanagan
(O’Reilly). 

What, Not How | 317

http://bit.ly/javascript-tdg-6e




APPENDIX D

Matrix Algebra

Matrix algebra is a branch of mathematics that defines operations on matrices, which
are series of numbers arranged in rows and columns. In addition to its many uses in
science and engineering, matrix algebra makes the computations for graphic operations
very efficient. The purpose of this appendix is to introduce you to the fundamental
concepts of matrix algebra that SVG uses “behind the scenes.”

Matrix Terminology
We describe a matrix by its number of rows and columns. Figure D-1 displays a matrix
that arranges a series of daily temperatures over a two-week period into two rows of
seven columns each. This matrix is called a 2-by-7 matrix. Matrices are enclosed in
square brackets when written.

Figure D-1. 2-by-7 matrix of daily temperatures

Here are some other terms that you may encounter when dealing with matrix operations:
a square matrix is a matrix with the same number of rows as columns. A vector is a
matrix with only one row, and a column vector is a matrix with only one column. The
individual numbers in a matrix are called entries, and the technical term for a plain
number is a scalar. Now you can bring these sure-fire conversation stoppers to the next
party you attend.

Applying the concept of a matrix to SVG, you might express a set of x- and y-coordinates
as a 2-by-1 matrix. This isn’t the way we’ll ultimately end up representing coordinates,

319



but it’s a good place to start, as it’s easy to understand. In this representation, the point
(3,5) is expressed as shown in Figure D-2.

Figure D-2. Coordinates expressed as a matrix

Matrix Addition
The easiest matrix operation is addition. To add two matrices, you add their corre‐
sponding elements. This, of course, requires that your matrices have exactly the same
number of rows and columns. Figure D-3 shows the addition of two matrices, each 3
by 2.

Figure D-3. Addition of two 3-by-2 matrices

You can see that the translate transformation in SVG could be accomplished easily by
matrix addition. For example, the matrix addition in Figure D-4 would implement
transform="translate(7, 2)" for any point (x,y).

Figure D-4. Simple method to translate coordinates

The order in which you add matrices doesn’t matter. Mathematicians say that matrix
addition is commutative (A + B = B + A). It is also associative; given three matrices A,
B, and C: (A + B) + C is the same as A + (B + C). There is such a thing as matrix
subtraction; just subtract the corresponding elements of the two matrices. Just as with
regular subtraction, matrix subtraction is not commutative.

Matrix Multiplication
You may be thinking that matrix multiplication works in a similar manner, and that’s
how you can do a scale() transformation. Unfortunately, the easy way doesn’t work
this time. Matrix multiplication is significantly more complicated than matrix addition.

320 | Appendix D: Matrix Algebra



In the first examples that follow, this complexity appears to be needless. Later in this
appendix, you’ll see that the usefulness of matrix multiplication far outweighs its
difficulty.

In order to multiply two matrices, the number of columns of the first matrix must equal
the number of rows of the second matrix. Such matrices are called compatible. This
means you can multiply a 3-by-5 matrix times a 5-by-4 matrix, but not a 3-by-5 matrix
times a 3-by-2 matrix. The matrices in Figure D-5 are compatible and can be multiplied.

Figure D-5. Two matrices to be multiplied

The resulting matrix will have the same number of rows as the first matrix, and the same
number of columns as the second matrix. Thus, the example’s 2-by-3 matrix times the
3-by-2 matrix will result in a 2-by-2 matrix.

The entry that will go in row one, column one of the result matrix is the dot product of
the first row of the first matrix and the first column of the second matrix. Dot product
is a fancy way of saying “add up the products of the corresponding entries in a row and
column” as shown in Figure D-6.

Figure D-6. First entry in multiplied matrices

To find the quantity to place in row two, column one (the lower left) of the result matrix,
take the dot product of row two in the first matrix and column one in the second matrix,
as shown in Figure D-7.

Figure D-7. Second entry in multiplied matrices

Calculating the remaining items produces the result shown in Figure D-8.

Matrix Multiplication | 321



Figure D-8. Completed multiplication of matrices

Given this information, you can now use matrix multiplication to express the calcula‐
tions needed to scale a point (x,y) by a factor of 3 horizontally and a factor of 1.5 vertically.
The transformation matrix will have to have two rows and two columns so it is com‐
patible with the two-row by one-column coordinates, as shown in Figure D-9.

Figure D-9. Simple scaling by multiplying matrices

Unlike multiplication of single numbers, matrix multiplication is not
commutative. If two matrices, A and B, aren’t square matrices, then
A·B won’t have the same number of rows and columns as B·A (if
they’re even compatible in both directions). Even if A and B are both
3-by-3 square matrices, there’s no guarantee that A times B will result
in the same answer as B times A. In fact, they’ll come out equal in
only a very few special cases.

There is another limited form of multiplication: multiplying a matrix by a scalar (a plain
number) will multiply every item in the matrix by the scalar, as shown in Figure D-10.
We didn’t mention this in conjunction with scaling, because this construct scales uni‐
formly, and SVG scaling isn’t always the same horizontally and vertically.

Figure D-10. Multiplying a scalar by a matrix

There is no such thing as matrix division per se. There is a construct called a matrix
inverse, which is analogous to the reciprocal of a number; if you multiply matrix A times
B times the inverse of B, the result is simply A. Another way of describing an invert
matrix is that the inverse of B is the matrix that, when multiplied by B, creates an identity
matrix. An identity matrix is a square matrix with values of 1 along the diagonal and
values of 0 in every other position; multiplying by an identity matrix does not change
the original matrix.

322 | Appendix D: Matrix Algebra



In SVG, inverse matrix calculations are used for converting between coordinate systems,
where it is necessary to calculate the reverse of a transformation. Not all matrix trans‐
formations are invertable, however; if the original transformation resulted in the loss
of information about one or more dimensions of the matrix, no subsequent multipli‐
cation can re-create it. While multiplying by the identity matrix is analagous to multi‐
plying a number by 1, multiplying by a noninvertable matrix is analagous to multiplying
a number by 0. And just like trying to divide by 0, trying to invert a noninvertable matrix
will cause your processor to throw an error.

How SVG Uses Matrix Algebra for Transformations
The approach we’ve taken to translation and scaling works, but it’s not ideal. For in‐
stance, if you want to translate a point and then scale it, you need to do one matrix
addition and then a matrix multiplication. SVG uses a clever trick to represent coordi‐
nates and transformation matrices so you can do scaling and translation all with one
operation. First, it adds a third value, which is always equal to 1, to the coordinate matrix.
This means that the point (3,5) will be represented as shown in Figure D-11.

Figure D-11. SVG representation of a coordinate

SVG uses a 3-by-3 matrix, again set up with extra zeros and ones, to specify the trans‐
formation. Figure D-12 shows a matrix that translates a point by a horizontal distance
of tx and a vertical distance of ty.

Figure D-12. SVG representation of translation

Figure D-13 shows a transformation matrix that will scale a point by a factor of sx in
the horizontal direction and sy in the vertical direction.

How SVG Uses Matrix Algebra for Transformations | 323



Figure D-13. SVG representation of scaling

What this buys you is a consistent notation; all the transformations, including rotation
and skewing, can be represented with 3-by-3 matrices. Furthermore, because everything
is 3-by-3, you can construct a chain of transformations by multiplying those matrices
together; they’re guaranteed to be compatible. For example, to do a translation followed
by a scaling, you multiply the matrices in that order (see Figure D-14).

Figure D-14. Translation followed by scaling

Again, it seems as if this is needlessly complicating matters. In order to transform the
point (3,5), you now need two matrix multiplications. To transform another point would
require two more multiplications. Given a <path> element with several hundred points,
this could run into some serious computing time.

Here’s where SVG does something clever: it multiplies the first two matrices together,
and stores that result, as shown in Figure D-15.

Figure D-15. Result of multiplying translation and scaling matrices

This “pre-multiplied” matrix now embodies both of the transformations. By multiplying
this new matrix times a coordinate point’s matrix, the translation and scaling occurs
with a single matrix multiplication (see Figure D-16). Now conversion of a hundred
points would require only 100 multiplications, not 200.

Figure D-16. Result of premultiplying translation and scaling matrices

324 | Appendix D: Matrix Algebra



If you had to do a translation followed by a rotation followed by a scale, you’d create
three 3-by-3 matrices; one to do the translation, one to do the rotation, and one to do
the scaling. You’d multiply them all together (in that order), and the resulting matrix
would embody all the calculations needed to do all three transformations.

As mentioned in “Matrix Multiplication” on page 320, matrix multi‐
plication is not commutative. If you change the order of the trans‐
formation matrices, you get a different result. This is the mathemat‐
ics behind the fact that the sequence of transformations makes a
difference in the resulting graphic, as described in Chapter 6, in “Se‐
quences of Transformations” on page 74.

This, then, is the power of matrix algebra; it lets you combine the information about as
many transformations as you want into one single 3-by-3 matrix, thus dramatically
reducing the amount of calculation necessary to transform points. The matrices in
Figure D-17 are the ones used to specify a rotation by an angle a, a skew along the x-
axis of ax, and a skew along the y-axis of ay.

Figure D-17. Rotate, skew x, and skew y transformation matrices

You can use the matrix(a, b, c, d, e, f) transformation to specify six numbers that
fill in the entries in the transformation matrix; the relationship of the numbers to the
matrix is shown in Figure D-18.

Figure D-18. Generic transformation matrix

SVG also uses matrix algebra quite heavily in the calculations associated with filters,
which are described in Chapter 11. There, a pixel’s red, green, blue, and alpha (opaque‐
ness) values are described as a matrix with five rows and one column. It also adds a fifth
row so that a 5-by-5 transformation matrix can add a constant amount to any of the
values as well as multiply them by any desired factor. The economies of scale we get by
pre-multiplying coordinate transformation matrices work equally well when pre-
multiplying pixel manipulation matrices.

How SVG Uses Matrix Algebra for Transformations | 325



The <feColorMatrix> filter, described in Chapter 11 in “The <feColorMatrix> Ele‐
ment” on page 160, lets you specify all 20 values. Thus, this markup:

<feColorMatrix type="matrix"
  values=
   "a0  a1  a2  a3  a4
    a5  a6  a7  a8  a9
    a10 a11 a12 a13 a14
    a15 a16 a17 a18 a19"/>

would be placed in the pixel transformation matrix, as shown in Figure D-19.

Figure D-19. Color transformation matrix

326 | Appendix D: Matrix Algebra



APPENDIX E

Creating Fonts

The fonts built into the system that renders your SVG documents will take care of the
vast majority of your needs. Sometimes, though, you will want to use a custom font. It
is possible to create a font for use with SVG from scratch. In brief, you use a <font>
element tag to describe the origin and default width of the font’s glyphs. Inside the
<font> is the <font-face> element, which has an immense number of attributes that
describe the font’s dimensions in excessive detail. Table E-1 summarizes some of the
more useful attributes. You can see them all in detail in the SVG specification.

The SVG font specification was intended to allow designers to create accessible logos
and graphics. Search engines and screen readers would understand the text as a sequence
of characters, but the design could be completely customized and would look the same
on every system. At the time of writing, this ideal has not yet been realized, because two
major web browsers (Internet Explorer and Firefox) have not implemented SVG fonts.
If you create a custom SVG font, there are web services that can convert it to other font
formats for use with these browsers.

Table E-1. font-face attributes
font-family A list of font family names

font-style Values of normal, italic, or oblique.

font-variant normal or small-caps.

font-weight normal, bold, or a number from 100 to 900 in steps of 100.

font-stretch Indicates the condensed or expanded nature of the face relative
to others in its font family. Possible prefixes for condensed or
expanded are ultra-, extra-, and semi-.

font-size all, suitable for most scalable fonts, or if a font is designed for a
restricted range of sizes, a list of lengths (such as 18pt).

unicode-range The range of Unicode characters covered by this font, in the form
Ustart-end.

327

http://www.w3.org/TR/SVG/fonts.html


font-family A list of font family names

units-per-em Coordinate units for the em square. This establishes a coordinate
system for the font. The following are all measured in these units.

cap-height Height of uppercase glyphs.

x-height Height of lowercase glyphs.

accent-height Distance from the origin to the top of accent characters.

ascent Maximum unaccented height of the font.

descent Maximum unaccented depth of the font.

widths A list of widths for the glyph corresponding to each character.

bbox The maximal bounding box for the font; a box in which the largest
character will fit.

underline-position Ideal position of an underline.

underline-thickness Ideal thickness of an underline.

Following the <font-face> are <glyph> elements, which contain path descriptions for
each of the glyphs you wish to have in your font.

While it is possible to create fonts from scratch, it’s a lot of work, and often a duplication
of effort, as the glyphs you need may be in an already-existing font. If you already have
a TrueType font with the desired glyphs, you are in luck. The quadratic Bézier curves
used in TrueType can be easily converted to SVG glyphs. Just be sure to include the
standard TrueType font as a fallback option (as a web font or as a reference to a local
font name) for web browsers that don’t support SVG fonts.

The ttf2svg Utility
The Apache Batik project has created a utility that will convert your TrueType fonts to
SVG. The following summary is adapted from the Batik project’s documentation (copy‐
right 2013 The Apache Software Foundation. All rights reserved).

If you are using the Batik binary distribution, type the following at the command line:

java -jar batik-ttf2svg.jar [options]

If you are using the Batik developer distribution, type the following at the
command line:

build ttf2svg [options]

In both cases, the options are the same (these options will all go on the same line when
typed at the command line; they are placed on separate lines here for ease of reading):

ttf-path
[-l range-being]
[-h range-end]
[-ascii]

328 | Appendix E: Creating Fonts



[id id]
[-o output-path]
[-testcard]

The options have the following meanings:
ttf-path

Specifies the TrueType font file that contains the characters to be converted.

-l range-begin 
-h range-end

The low and high value of the range of characters to be converted to SVG (ASCII
or Unicode values).

-ascii

Forces usage of the ASCII character map.

-id id

Specifies the value for the id attribute of the generated <font> element.

-o output-path

Specifies the path for the generated SVG font file. If not specified, output goes to
the Java console.

-testcard

Specifies that a set of SVG <text> elements should be appended to the SVG font
file to visualize and test the characters in the SVG font. This provides an easy way
to validate the generated SVG font file visually.

For example, to convert characters 48 to 57, that is, the characters 0 to 9, in myFont.ttf
into their SVG equivalent in the mySVGFont.svg file, appending a test card so that the
font can be visualized easily, you would use this command:

java -jar batik-ttf2svg.jar /usr/home/myFont.ttf -l 48 -h 57
   -id MySVGFont -o mySVGFont.svg -testcard

Make sure you have the right to embed a font before you embed it
in an SVG file. TrueType font files contain a flag that defines the
“embeddability” of a font, and there are tools for checking that flag.

The ttf2svg Utility | 329





APPENDIX F

Converting Arcs to Different Formats

Converting from Center and Angles to SVG
The following JavaScript code converts an arc specified in center-and-angles format to
a form suitable for placing into an SVG <path>:

/*
  Convert an elliptical arc based around a central point
  to an elliptical arc parameterized for SVG.

  Parameters are:
    center x coordinate
    center y coordinate
    x-radius of ellipse
    y-radius of ellipse
    beginning angle of arc in degrees
    arc extent in degrees
    x-axis rotation angle in degrees

  Return value is an array containing:
    x-coordinate of beginning of arc
    y-coordinate of beginning of arc
    x-radius of ellipse
    y-radius of ellipse
    x-axis rotation angle in degrees
    large-arc-flag as defined in SVG specification
    sweep-flag  as defined in SVG specification
    x-coordinate of endpoint of arc
    y-coordinate of endpoint of arc
*/

function centeredToSVG(cx, cy, rx, ry, theta, delta, phi)
{
  var endTheta, phiRad;
  var x0, y0, x1, y1, largeArc, sweep;

331



  /*
    Convert angles to radians. I need a separate variable for phi as
    radians, because I must preserve phi in degrees for the
    return value.
  */
  theta = theta * Math.PI / 180.0;
  endTheta = (theta + delta) * Math.PI / 180.0;
  phiRad = phi * Math.PI / 180.0;

  /*
    Figure out the coordinates of the beginning and ending points
  */
  x0 = cx + Math.cos(phiRad) * rx * Math.cos(theta) +
    Math.sin(-phiRad) * ry * Math.sin(theta);

  y0 = cy + Math.sin(phiRad) * rx * Math.cos(theta) +
    Math.cos(phiRad) * ry * Math.sin(theta);

  x1 = cx + Math.cos(phiRad) * rx * Math.cos(endTheta) +
    Math.sin(-phiRad) * ry * Math.sin(endTheta);

  y2 = cy + Math.sin(phiRad) * rx * Math.cos(endTheta) +
    Math.cos(phiRad) * ry * Math.sin(endTheta);

  largeArc = (delta > 180) ? 1 : 0;
  sweep = (delta > 0) ? 1 : 0;

  return [x0, y0, rx, ry, phi, largeArc, sweep, x1, y1];
}

Converting from SVG to Center and Angles
The following code, adapted from the Apache Batik project, converts an SVG-style arc
to a center-and-angles format:

/*
  Convert an elliptical arc specified as SVG path parameters
  to an arc based around a central point.

  Parameters are:
    x-coordinate of beginning of arc
    y-coordinate of beginning of arc
    x-radius of ellipse
    y-radius of ellipse
    x-axis rotation angle in degrees
    large-arc-flag as defined in SVG specification
    sweep-flag  as defined in SVG specification
    x-coordinate of endpoint of arc
    y-coordinate of endpoint of arc

  Return value is an array containing:

332 | Appendix F: Converting Arcs to Different Formats



    center x coordinate
    center y coordinate
    x-radius of ellipse
    y-radius of ellipse
    beginning angle of arc in degrees
    arc extent in degrees
    x-axis rotation angle in degrees
*/

function convertArc(x0, y0, rx, ry, xAngle, largeArcFlag,
  sweepFlag, x, y)
{
  // Step 1: compute half the distance between the current
  // and final point.
  var dx2 = (x0 - x) / 2.0;
  var dy2 = (y0 - y) / 2.0;

  // convert angle from degrees to radians
  var xAngle = Math.PI * (xAngle % 360.0) / 180.0;
  var cosXAngle = Math.cos(xAngle);
  var sinXAngle = Math.sin(xAngle);

  // Compute x1, y1
  var x1 = (cosXAngle * dx2 + sinXAngle * dy2);
  var y1 = (-sinXAngle * dx2 + cosXAngle * dy2);

  // Ensure radii are large enough
  rx = Math.abs(rx);
  ry = Math.abs(ry);
  var rxSq = rx * rx;
  var rySq = ry * ry;
  var x1Sq = x1 * x1;
  var y1Sq = y1 * y1;

  var radiiCheck = x1Sq / rxSq + y1Sq / rySq
  if (radiiCheck > 1) {
    rx = Math.sqrt(radiiCheck) * rx;
    ry = Math.sqrt(radiiCheck) * ry;
    rxSq = rx * rx;
    rySq = ry * ry;
  }

  // Step 2: Compute (cx1, cy1)
  var sign = (largeArcFlag == sweepFlag) ? -1 : 1;
  var sq = ((rxSq * rySq) - (rxSq * y1Sq) - (rySq * x1Sq)) /
    ((rxSq * y1Sq) + (rySq * x1Sq));
  sq = (sq < 0) ? 0 : sq;
  var coef = (sign * Math.sqrt(sq));
  var cx1 = coef * ((rx * y1) / ry);
  var cy1 = coef * -((ry * x1) / rx);

  // Step 3 : Compute (cx, cy) from (cx1, cy1)

Converting from SVG to Center and Angles | 333



  var sx2 = (x0 + x) / 2.0;
  var sy2 = (y0 + y) / 2.0;
  var cx = sx2 + (cosXAngle * cx1 - sinXAngle * cy1);
  var cy = sy2 + (sinXAngle * cx1 + cosXAngle * cy1);

  // Step 4 : Compute the angleStart and the angleExtent
  var ux = (x1 - cx1) / rx;
  var uy = (y1 - cy1) / ry;
  var vx = (-x1 - cx1) / rx;
  var vy = (-y1 - cy1) / ry;
  var p, n;
  // Compute the angle start
  n = Math.sqrt((ux * ux) + (uy * uy));
  p = ux; // (1 * ux) + (0 * uy)
  sign = (uy < 0) ? -1.0 : 1.0;
  var angleStart = 180.0 * (sign * Math.acos(p / n)) / Math.PI;

  // Compute the angle extent
  n = Math.sqrt((ux * ux + uy * uy) * (vx * vx + vy * vy));
  p = ux * vx + uy * vy;
  sign = (ux * vy - uy * vx < 0) ? -1.0 : 1.0;
  var angleExtent = 180.0 * (sign * Math.acos(p / n)) / Math.PI;
  if(!sweepFlag && angleExtent > 0)
  {
    angleExtent -= 360.0;
  }
  else if (sweepFlag && angleExtent < 0)
  {
    angleExtent += 360.0;
  }
  angleExtent %= 360;
  angleStart %= 360;

  return( [cx, cy, rx, ry, angleStart, angleExtent, xAngle] );
}

334 | Appendix F: Converting Arcs to Different Formats



We’d like to hear your suggestions for improving our indexes. Send email to index@oreilly.com.

Index

Symbols
@keyframes CSS rule, 205, 207

A
a element, 209
A or a command (elliptical arcs), 91
absolute versus relative path notation, 88
addEventListener function, 217
additive attribute, animation elements, 201

combining effects controlling numerical and
color attributes, 202

aliasing, 41
(see also anti-aliasing)

alignment
specifying for preserveAspectRatio, 33–36
text, 129

alpha value
changing with feColorMatrix element, 160
determining for masks, 149
feConvolveMatrix filter and, 183
final, interaction with color and opacity in

masks, 151
for rgba/hsla color functions, 43
luminanceToAlpha filter preset, 162
SourceAlpha filter input, 157

animate element, 192
(see also SMIL animation)

animateMotion element, 202
animation along a complex path, 202
animation along a linear path, 202
rotate attribute, 203–204
specifying key points and times for motion,

204
using mpath, 204

animateTransform element, 200
animation, 191

(see also CSS; JavaScript/ECMAScript; SMIL
animation)

basics, 192
frame rate, 252
via scripting, 251–256

animation events (SMIL), 216
animVal and baseVal properties, 233
anti-aliasing, 4, 41
Apache Software Foundation Batik project, xii
application, SVG as, 18
arcs, 90–93

converting to different formats, 93, 331–334
from center and angles to SVG, 331
from SVG to center and angles, 332

path syntax, 91
arrays, in JavaScript, 312
ascent, in typography, 126
aspect ratio, preserving, 32

(see also preserveAspectRatio attribute)
assignment, 310

335



attributeName, animation elements, 192
attributes

accessing and changing using the DOM,
214, 218, 233

in XML markup, 287
presentation, 7, 60

(see also styles)
attributeType, animation elements, 192

B
background-image style, 17
background-position style, 18
background-size style, 18
BackgroundAlpha filter input, 179
BackgroundImage filter input, 179
baseline, 126
baseline-shift style, 132
baseVal and animVal properties, 233
Batik SVG viewer, xii
Bézier curves, 93–99

animation along a cubic Bézier curve path,
202

bidirectional text, 134
bitmaps, 1

temporary, filter operations on, 156
blanks, SVG handling of, 141
border-radius style (HTML), compared with

rectangle corner radius attributes, 47
brightness, changing with feComponentTrans‐

fer, 164
browsers (see web browsers)
bump map, in lighting filters, 175

C
C or c command (cubic Bézier curves), 97
CAD (Computer Assisted Drafting) programs, 3
calcMode attribute, animation elements, 199
cap-height, 126
Cartesian coordinates, converting from, 76, 266
character encodings, 291

other than Unicode, 292
character references, 291
characters, defined, 125
circles, 6, 47

SVGCircleElement object and <circle> ele‐
ment, 233

class attribute, 301

classes (CSS), 300
(see also pseudoclasses)

click events, 216, 217
click handler in Snap.svg, 262
in user-triggered SMIL animations, 212–213

clientX and clientY event properties, 217
clip-path style, 145
clipPath element, 145

basic shapes, path elements, or text elements
in, 146

clipPathUnits attribute, 147
clipping area, 145
clipping graphics, 145–149
closepath command, 86–88, 88
code point, in character encodings, 291
color, 41, 54
color style, 42
colors

animating, 197, 198
changing with feColorMatrix, 160–163
CSS3 color specification, 42
defining the color space, 169
fill color, 45, 303
gradients, 113–122
interaction with opacity and final alpha val‐

ue in masks, 151
mask color values and transparency, 149
masking with opaque colors, 150
stroke color, 41, 303

comments
in ECMAScript, 312
in XML, 289

conditional statements, in scripting, 312
(see also switch element)

constants, 309
coordinate system, transforming, 9, 69–84

converting from Cartesian coordinates, 76
reference summary of transformations in

SVG, 83
rotate transformation, 78
scale transformation, 71
scaling around a center point, 81
sequences of transformations, 74
skewX and skewY transformations, 81
translate transformation, 69

coordinates, 27–38
absolute or relative, moveto and lineto com‐

mands, 88
default user coordinates, using, 28

336 | Index



nested systems of, 36
preserving aspect ratio, 32
specifying for lines, 39
specifying user coordinates for a viewport,

27, 30
CSS, 299

animating SVG with, 205–208
animating movement, 207
animation properties, 206
controlling using pseudoclasses, 211
setting animation key frames, 207

attributeType for animation elements, 192
CSS3 color specification, 42
properties

for img element in a web page, 17
for svg element inline in (X)HTML, 22
for text, 127
SVG file as value of, 17
table of properties and values for SVG,

301
pseudoclasses, 210
transformations and SVG, 83, 200

CSS sprites, 18
cubic Bézier curves, 96
currentColor keyword, 42

D
d (data) attribute, path element, 85
dashed lines, 44
data objects in SVG DOM, table of, 236
declarative interactivity, 209
defer specifier (preserveAspectRatio, 68
defs element, 63
desc element, 6
descent, in typography, 126
diffuse lighting, 175
document events, 216
document object

getElementById function, 214
getElementsByTagName function, 214

document structure, 57–68
basic, in SVG, 6
grouping and referencing objects, 61–68
structure and presentation, 7, 57
using styles with SVG, 58–61

Document Type Definitions (DTD), 293
DOM (Document Object Model), 214

accessing SVG with, 215
DOM-based XML parsers, 296

events, 217
compared with CSS pseudoclasses, 212
in Snap.svg, 261
to control SMIL animation, 212–213

mutation events, 216
SVG DOM methods and properties, 233–

263
animVal and baseVal properties, 233
constructing SVG with ECMAScript/

JavaScript, 248
data objects and methods, table of, 236
determining value of element attributes,

233
SVG interface methods, 241
with JavaScript libraries, 256

dragging objects, 221, 262
drop shadow, creating, 156–159
DTD (Document Type Definitions), 293
dur (duration) attribute, animation elements,

199

E
ECMAScript, 213

(see also JavaScript/ECMAScript)
elements

creating new, with scripts, 229
reference tables

basic shapes, 53
DOM interfaces, 241
filters, 187
path commands, 99

XML, 287
ellipses, 48
elliptical (see arcs)
embed element, 19
embossing effect, using feConvolveMatrix, 183
enable-background attribute, 179
end attribute, animation elements, 195
entity references (XML), 290
escaping characters, 289
event-based interaction, 212
events, 216

categories of, 216
compared with CSS pseudoclasses, 212
event handling in Snap, 261

clicking objects, 262
dragging objects, 262

listening for and responding to, 217, 223
to control SMIL animation, 212–213

Index | 337



ex-height, 126
examples in this book, about, xii
Extensible Stylesheet Language Formatting Ob‐

jects (see XSL-FO files)

F
feBlend filter, 172
feColorMatrix filter, 160–163
feComponentTransfer filter, 164–169

gamma adjustment with, 165
feComposite filter, 169, 178
feConvolveMatrix filter, 182

embossing effect, 183
feDiffuseLighting filter, 175
feDisplacementMap filter, 184
feFlood and feTile filters, 173
feFuncR, feFuncG, feFuncB, and feFuncA ele‐

ments, 164
feGaussianBlur filter, 157
feImage filter, 163, 180
feMerge filter, 169
feMergeNode element, 158, 169
feMorphology filter, 181
feSpecularLighting filter, 177
feSpotLight filter, 179
feTurbulence filter, 186
files, external

for patterns and gradients, 123
for stylesheets, 59
for SVG fonts, 137
in SVGs inserted in web pages, 15, 18
with use element, 65

fill attribute, animation elements, 196
fill characteristics, table of, 55
fill style

for text, 126
specifying color, 7, 45
using gradients, 113–122
using patterns, 107–113
with polyline element, 51

fill-opacity style, 45, 55
fill-rule style

for paths, 100
for polygons with intersecting lines, 49

filters, 155–189
accessing the background, 179
creating a drop shadow, 156

establishing filter’s bounds, 156

storing, chaining, and merging filter re‐
sults, 158

using feGaussianBlur, 157
creating a glowing shadow, 159
how they work, 155
lighting effects, 174

diffuse lighting, 175
specular lighting, 177

reference summary, 187
resolution of, 156

filterUnits attribute, 157
Flash, 3
focal point (radial gradients), 119
:focus pseudoclass, 210
font-face element, 137, 327

attributes for (table), 327
font-face-name element, 138
font-face-src element, 138
font-family style, 127

matching value in external font file, 137
font-size style, 127
font-style style, 128
font-weight style, 128
fonts

creating, 327–329
defined, 126
font family and font size for text label, 12
using a custom font, 137

for loop, 313
foreign objects, instream-foreign-object element

in XSL-FO, 25
foreignObject element, 20
frame rate, 252
functions, 314

G
g element (group), 8, 61
generating SVG, 265–282

converting custom data to SVG, 266–270
using XSLT to convert XML data to SVG,

270–282
getSVGDocument function, 229
glyph-orientation-vertical style, 133
glyphs, 125
gradients, 113–122

color values between gradient stops, 169
linear, 113

establishing a transition line, 115
spreadMethod attribute, 116

338 | Index



stop element, 113
radial, 118

spreadMethod attribute, 120
transition limits for, 118
using as a mask, 153

reference summary, 121
transforming, 122
using as a displacement map, 184

gradientTransform attribute, 122
gradientUnits attribute, 116, 120, 122
graphics programs, drawing Bézier curves, 94
graphics systems, raster versus vector, 1–3
grouping, 8, 61

transforming the group, 73
using symbol element, 66
within defs element, 63
within use element, 63

H
H or h command (horizontal lines), 88
horizontal lineto command, 88
:hover pseudoclass, 210
hsl and hsla color functions, 43
HTML (see HTML)

handling of whitespace, 142
inline SVG in, 22
inline SVG in HTML5, 22
interacting with embedded SVG, 225–229
SVG foreign object containing XHTML text,

20

I
icons within a single image file, 18
image element, 67
images

feImage filter, 163
masking, 152

img element, including SVG in, 16
inline styles, 58, 299

modifying, 214
stylesheets versus, 60

inline SVG, in XHTML or HTML5, 22–25
instream-foreign-object element, 25
interactivity, adding, 209–231

controlling CSS animations, 211
scripting SVG, 213–231
user-triggered SMIL animation, 212
using links in SVG, 209

interfaces for SVG elements, 241
internationalization, text and, 134–138
Internet media types, 18

J
JavaScript/ECMAScript, 213–231

animation with, 251–256
animVal property, 233
requestAnimationFrame function, 252
using Snap.svg, 259

attributes, accessing and changing, 214, 218
creating new elements, 229
dragging objects, 221
events

listening for and responding to, 217
overview, 216

interacting with an HTML page, 225–229
getSVGDocument function, 229

programming concepts, 309–317
styles, accessing and modifying, 214
using code libraries, 256–261

K
key events, 217
key frames, setting for animation, 207
keyPoints attribute, animateMotion element,

205
keyTimes attribute

animateMotion element, 204
timing of multistage animations, 199

L
L or l command (lineto) (see lineto command)
languages

switching, 135
Unicode and bidirectional text, 134

letter-spacing style, 128, 133
lighting effects, 174

diffuse lighting, 175
specular lighting, 177

line caps and joins, 52
line element, 8, 39

stroke characteristics, 40–45
linear gradients, 113

establishing a transition line, 115
using spreadMethod attribute, 116

specifying stop-opacity, 114

Index | 339



stop element in, 113
linear RGB color space, 169
lineto command, 85

horizontal and vertical lineto commands, 88
multiple pairs of coordinates after, 89
relative coordinates, 88

links in SVG, 209
highlighting with SVG pseudoclasses, 210,

211
loops, 313

M
M or m command (moveto), 88
marker element, 100–105

marker-end style, 102
marker-mid style, 102
marker-start style, 101
orient attribute, 103
setting viewBox and preserveAspectRatio to

control display, 104
markerUnits attribute, marker element, 104
mask element, 149
mask style, 150
maskContentUnits attribute, 149
masking graphics, 149–154
maskUnits attribute, 149
matrix algebra, 319–326

matrix multiplication, 320
matrix terminology, 319
use by SVG for transformations, 323

measurement units
explicit use of, 29
specifying for the viewport, 27

meet specifier (preserveAspectRatio), 34
metadata, 287
methods, of JavaScript/ECMAScript objects,

315
MIME types, 18
mouse events, 216

adding mouse movement listeners, 217
moveto command, 85

multiple pairs of coordinates after, 89
relative coordinates, 88

mpath element, using in animateMotion ele‐
ment, 204

mutation events, DOM, 216

N
namespaces, 10, 295
nested markers, 105
nested patterns, 112
newlines, SVG handling of, 141
nodes, 214
none specifier (preserveAspectRatio), 36
notational shortcuts (paths), 89
number function, XSLT, 278

O
object element, HTML, 18, 225

embed element versus, 19
objectBoundingBox units

stroke and, 123
with clipPathUnits, 147
with filterUnits, 157
with gradientUnits, 116, 122
with maskContentUnits, 149
with maskUnits, 149
with patternContentUnits, 110
with patternUnits, 108
with primitiveUnits, 157

objects, in scripting, 315
object interfaces for SVG elements, 233, 242
SVG data objects (table), 236

offset attribute, stop element, 113
opacity

fill-opacity style, 45
interaction between color, opacity, and final

alpha value in masks, 151
stop-opacity style, gradient stops, 114
stroke-opacity style, 43

operators, in JavaScript/ECMAScript, 311
orient attribute, marker element, 103
origin (coordinate system), 28

rotation around, 79
overflow style, 148

P
paced animation, 204
parsers (XML), 296
path element, 85
paths, 11, 85–105

animating, 198
Bézier curves, 93–99
clipping to, 145

340 | Index



closepath command, 86
converting from other arc formats, 93
elliptical arcs, 90
filling, 100
for a pattern tile, 107
key points for animateMotion element, 205
lineto command, 85
marker element, 100–105
moveto command, 85
reference summary of commands, 99
relative moveto and lineto, 88
shortcuts, 88

horizontal and vertical lineto commands,
88

notational shortcuts, 89
text on, 138

patternContentUnits attribute, 110
patterns, 107–113

nested, 112
tiles, 107
transforming, 122

patternTransform attribute, 122
patternUnits attribute, 108
pluginspage attribute, embed element, 19
points attribute, polygon and polyline elements,

48, 51, 51
poly-Bézier curve, 95
polygon element, 48–51

animating, 198
ArcInfo Geographic Information in, 266
having intersecting lines, filling, 49

polyline element, 10, 51, 89
PostScript, 3
presentation

as attributes, 60
versus structure, 7, 57

preserveAspectRatio attribute
default value, 34
defer specifier, 68
meet specifier, 34
none specifier, 36
slice specifier, 35
specifying alignment, 33
using to scale a pattern, 111
with marker element, 104

preserveAspectRation attribute
defer specifier, 68

primitives, filter, 156
primitiveUnits attribute, filter element, 157

programming concepts, 309–317
arrays, 312
assignment and operators, 310
comments, 312
conditional statements, 312
constants, 309
functions, 314
objects, properties, and methods, 315
repeated actions, 313
variables, 310

properties
CSS property table for SVG, 302
of JavaScript/ECMAScript objects, 316
of SVG element objects, 233

pseudoclasses, 210–212

Q
Q or q command (quadratic Bézier curves), 95
quadratic Bézier curves, 94

R
radialGradient element, 118

establishing transition limits for, 118
spreadMethod attribute, 120
using as a mask, 153

raster graphics, 1
and filter effects, 155
scalability, lack of, 4
uses of, 2

rectangles, 45–47
default attributes, 46
rounded, 46
SVGRectElement object, 233
using explicit units, 30

referencing external files (see files, exteral)
relative coordinates, in path commands, 88
repeated actions, in JavaScript/ECMAScript,

313
repeated animations, 196

alternating between two values, 199
requestAnimationFrame function, 252
requiredExtensions attribute, 21
requiredFeatures attribute, 21
reusing graphics with use element, 63

using defs element, 63
using symbol element, 66

rgb color function, 41
rgba color function, 43

Index | 341



rotate transformation, 78

S
S or s command (smooth cubic Bézier curve),

98
scale transformations, 9, 71

scale followed by translate, 75
scaling around a center point, 81
translate followed by scale, 75
when converting from Cartesian coordi‐

nates, 78
scripts (see JavaScript/ECMAScript)
set element, 200
setTimeout function, 253
shape-rendering style, 41
shapes

basic, 6, 39–55
circles, 7
circles and ellipses, 47
line caps and joins, 52
lines, 8, 39–45
paths, 11
polygon element, 48–51
polyline element, 10, 51
rectangles, 45–47
summary table, 53–55

in clipPath element, 146
transformation applied to, 74

skewX and skewY transformations, 81
slice specifier (preserveAspectRatio), 35
SMIL animation, 192–205

animate element, 192
animateMotion element, 202–204
animateTransform element, 200
animation events, 216
beginning and ending of, 193
complex attributes, 197
key points and times for motion, 204
key times and calculation, 199
multiple animations on an object, 193
multiple values, 198
repeated action, 196
set element, 200
synchronizing, 194
time measurement, 194
user-triggered, 212–213

SMIL3 specifiation, 192
smooth cubic curve command, 98
smooth quadratic curve command, 95

Snap.svg library (JavaScript), 256
animate function and easing options, 259
drawing graphics, 257
event handling in, 261

clicking objects, 262
dragging objects, 262

including the library script, 256
Paper object, 256, 258

specular lighting, 177
spotlight filter, 179
spreadMethod attribute, 116, 122

for linear gradients, 116
for radial gradients, 120

sprites, CSS image, 18
src attribute, img element, 16
standard RGB (sRGB) color space, 169
startOffset attribute, textPath element, 140
state-based interaction, 212
stop element, 113
stop-color attribute, 113
stop-opacity style, 114
stroke characteristics, table of, 54
stroke style

for rectangles, 45
for text, 126
path closure and, 87
position relative to shape coordinates, 46
scale transformations and, 72

nonuniform scaling, 73
specifying color, 7, 41
using gradients and patterns, 123

stroke-dasharray style, 44
stroke-linecap style, 52
stroke-linejoin style, 52
stroke-miterlimit style, 53
stroke-opacity style, 43
stroke-width style, 40

scaling transformations and, 81
structure (see document structure)
style attribute, 7, 299
styles, 58–61, 299

font family and font size for text, 12
inline, 58, 299
presentation attributes versus, 7, 60
table of style properties for SVG, 301
text, changing with tspan element, 130

stylesheets, 299–308
classes as style selectors, 300
external, 59

342 | Index



inline styles versus, 60
internal, 58, 300
XSLT stylesheet, 273

subscripts and superscripts
using baseline-shift with tspan element, 132
using dy attribute of tspan, 130

SVG
defined, 1
role of, 5
scalability of vector graphics, 3

svg element, 6
viewBox attribute, 30
width and height attributes, 27
xmlns:xlink attribute, 10

SVGAngle object, 237
SVGAnimatedLength object, 236, 240
SVGCircleElement object, 233
SVGEllipseElement object, 235
SVGLength object, 237
SVGMatrix object, 238
SVGPoint object, 238
SVGRect object, 237
SVGRectElement object, 233
SVGTransform object, 239
SVGTransformList object, 239
switch element, 20, 135
symbol element, 66
synchronization of animations, 194

with repetition, 197
Synchronized Multimedia Integration Language

(see SMIL animation)
systemLanguage attribute, 21, 135

T
T or t command (smooth quadratic curves), 95
tabs, SVG handling of, 141
target property, events, 217
text, 125–143

adding to a graphic, 12, 142–143
alignment, 129
CSS styles and values for, 127
drop shadow applied to, 159
glowing shadow for, 159
in vector versus raster graphics, 2
internationalization, 134

custom font, 137
switching languages with switch element,

135
Unicode and bidirectionality, 134

lengthAdjust attribute, 132
modifying text content of a node, 214
on a path, 138
overview, 126
terminology, 125
text elements in clipPath element, 146
textLength attribute, 132
tspan element, 129

(see also tspan element)
vertical, 133
whitespace and, 141

text element, 12
text-anchor style, 129, 140
text-decoration style, 128
textPath element, 138

referencing a path element in, 138
startOffset attribute, 140

this keyword, 218
tiles, 107

(see also patterns)
feTile filter, 173
spacing in patterns, 108

time measurement for animation, 194, 212
timing of animations, 199
title element, 6
transform style (see transformations, CSS)
transformations, 9, 69

(see also coordinate system, transforming)
animateTransform element, 200
converting from Cartesian coordinates, 76
CSS, 83, 207
matrix used for, 238
of patterns and gradients, 122
rotate transformation, 78
scale transformation, 71
sequences of, 74
skewX and skewY transformations, 81
summary table, 83
use of matrix algebra by SVG for, 323

transition limits, in gradients
and spreadMethod attribute, 116
for radial gradients, 118
transition line for linear gradients, 115

translate transformation, 9, 69
in Cartesian coordinates conversion, 78
scale followed by translate, 75
translate followed by scale, 75
using CSS, 208

transparency (see alpha value; opacity)

Index | 343



transparent specifier (CSS3), 43
tspan element, 129

rotate attribute, 131
using absolute positioning with, 130
using baseline-shift, 132
using multiple values for dx, dy, and rotate

attributes, 131
vertical positioning with dy attribute, 130

ttf2svg utility, 328
type attribute, object element, 18

U
Unicode, 134

code points, 291
encoding schemes, 291

use element, 63
height and width attributes, 66
including SVG file with, 65
moving a graphic with, 69
transform attribute, 69
xlink:href attribute, 210

user interface events, 216
userSpaceOnUse setting

for clipPathUnits, 148
for filterUnits, 157
for gradientUnits, 116, 120, 122
for markerUnits, 104
for maskContentUnits, 149
for maskUnits, 149
for patternContentUnits, 110
for patternUnits, 109
for primitiveUnits, 157

V
V or v command (vertical lines), 89
validity (XML), 293
values attribute, animation elements, 198
variables, 310

assigning values to, 310
vector graphics, 2

scalability, 3
uses of, 3

vertical lineto command, 88
viewBox attribute

clipping content to, 148
marker element, 104
svg element, 30
using to scale a pattern, 111

viewport, 27
aspect ratio, 32
clipping area, 145
clipping content to, 148
nested, 37
possible declarations, 28
specifying user coordinates for, 30

W
web browsers

and SVG used as an image, 16
background filter inputs and, 180
file types, determining support for, 18
foreign object support, 20
Internet Explorer and SVG animation, 191
support for SVG as images, 17
SVG fonts and, 138
SVG support, 6

web pages, using SVG in, 15–25
foreign objects in SVG, 20
including SVG in an img element, 16
inline SVG in (X)HTML, 22–25
SVG as an application, 18
SVG files as CSS property values, 17
SVG in other XML applications, 25

well-formed XML, 288
while loop, 314
whitespace

in path commands, 90
SVG handling of, in text, 141

word-spacing style, 128
World Wide Web Consortium Recommenda‐

tion (SVG), 5
writing-mode style, 133

X
xlink:href attribute

a element, 209
feImage element, 164
image element, 67
linearGradient and radialGradient elements,

115
mpath element, 204
textPath element, 138
use element, 63

XML, 285–297
attributeType in animation elements, 192,

200

344 | Index



character encodings, 291
character references, 291
comments, 289
defined, 285
document structure, 286

for SVG graphic, 6
Document Type Definitions (DTDs), 293
elements and attributes, 287
entity references, 289
linking a document to its DTD, 294
name syntax, 288
namespaces, 6, 10, 295
parsers, 296
SVG as XML application, 5
SVG in other XML documents, 25
validity, 293
well-formed, 288
XML declaration, 286

xml:space attribute, 141
xmlns attribute, 295

svg element, 6
xmlns:xlink attribute, 10
XPath, 275, 276, 281, 296
XSL-FO files, xi

SVG in, 25
XSLT (Extensible Stylesheet Language Transfor‐

mations), 266
converting XML data to SVG, 270–282

how XSLT works, 272
objectives, 270
stylesheet structure, 273

processors, 296

Z
Z command (closepath), 86

Index | 345



About the Authors
J. David Eisenberg is a programmer and instructor living in San Jose, California. David
has a talent for teaching and explaining. He has developed courses for HTML and CSS,
JavaScript, XML, and Perl. He teaches computer and information technology courses
at Evergreen Valley College in San Jose. He has also developed online courses providing
introductory tutorials for Korean, Modern Greek, and Russian. David has been devel‐
oping education software since 1975, when he worked with the Modern Foreign Lan‐
guage project at the University of Illinois to develop computer-assisted instruction on
the PLATO system. He is coauthor of Introducing Elixir. When not programming, David
enjoys digital photography, caring for a feral cat colony at work, and riding his bicycle.

Amelia Bellamy-Royds is a freelance writer specializing in scientific and technical
communication. She helps promote web standards and design through participation in
online communities such as Web Platform Docs, Stack Exchange and Codepen. Her
interest in SVG stems from work in data visualization and builds upon the programming
fundamentals she learned while earning a BSc in bioinformatics. A policy research job
for the Canadian Library of Parliament convinced her that she was more interested in
discussing the big-picture applications of scientific research than doing the laboratory
work herself, leading to graduate studies in journalism. She currently lives in Edmonton,
Alberta. If she isn’t at a computer, she’s probably digging in her vegetable garden or out
enjoying live music.

Colophon
The animal on the cover of SVG Essentials is a great argus pheasant (Argusianus ar‐
gus). This pheasant can be found in Malaysia, Thailand, Sumatra, and Borneo, where it
lives in tropical rainforests. The males have blue faces, black crowns, and short crests;
their underparts are mottled brown. The iridescent spots on their wings and tail feathers
aid in attracting females. Female argus pheasants are smaller than males and lack their
ornate plumage.

The great argus pheasant’s wings can continue to grow into the bird’s sixth year. Its tail
feathers are the longest of all birds, measuring up to 5.7 feet. Some cultures use these
feathers in their headdresses.

Many of the animals on O’Reilly covers are endangered; all of them are important to
the world. To learn more about how you can help, go to animals.oreilly.com.

The cover image is a 19th-century engraving from the Dover Pictorial Archive. The
cover fonts are URW Typewriter and Guardian Sans. The text font is Adobe Minion
Pro; the heading font is Adobe Myriad Condensed; and the code font is Dalton Maag’s
Ubuntu Mono.

http://animals.oreilly.com

	Cover
	Copyright
	Table of Contents
	Preface
	Who Should Read This Book?
	Who Should Not Read This Book?
	If You’re Still Reading This…
	About the Examples
	Organization of This Book
	Conventions Used in This Book
	Safari® Books Online
	How to Contact Us
	Acknowledgments for the First Edition
	Acknowledgments for the Second Edition

	Chapter 1. Getting Started
	Graphics Systems
	Raster Graphics
	Vector Graphics
	Uses of Raster Graphics
	Uses of Vector Graphics

	Scalability
	SVG’s Role
	Creating an SVG Graphic
	Document Structure
	Basic Shapes
	Specifying Styles as Attributes
	Grouping Graphic Objects
	Transforming the Coordinate System
	Other Basic Shapes
	Paths
	Text


	Chapter 2. Using SVG in Web Pages
	SVG as an Image
	Including SVG in an <img> Element
	Including SVG in CSS

	SVG as an Application
	SVG Markup in a Mixed Document
	Foreign Objects in SVG
	Inline SVG in XHTML or HTML5
	SVG in Other XML Applications


	Chapter 3. Coordinates
	The Viewport
	Using Default User Coordinates
	Specifying User Coordinates for a Viewport
	Preserving Aspect Ratio
	Specifying Alignment for preserveAspectRatio
	Using the meet Specifier
	Using the slice Specifier
	Using the none Specifier

	Nested Systems of Coordinates

	Chapter 4. Basic Shapes
	Lines
	Stroke Characteristics
	stroke-width
	Stroke Color
	stroke-opacity
	stroke-dasharray Attribute

	Rectangles
	Rounded Rectangles

	Circles and Ellipses
	The <polygon> Element
	Filling Polygons That Have Intersecting Lines

	The <polyline> Element
	Line Caps and Joins
	Basic Shapes Reference Summary
	Shape Elements
	Specifying Colors
	Stroke and Fill Characteristics


	Chapter 5. Document Structure
	Structure and Presentation
	Using Styles with SVG
	Inline Styles
	Internal Stylesheets
	External Stylesheets
	Presentation Attributes

	Grouping and Referencing Objects
	The <g> Element
	The <use> Element
	The <defs> Element
	The <symbol> Element
	The <image> Element


	Chapter 6. Transforming the Coordinate System
	The translate Transformation
	The scale Transformation
	Sequences of Transformations
	Technique: Converting from Cartesian Coordinates
	The rotate Transformation
	Technique: Scaling Around a Center Point
	The skewX and skewY Transformations
	Transformation Reference Summary
	CSS Transformations and SVG

	Chapter 7. Paths
	moveto, lineto, and closepath
	Relative moveto and lineto
	Path Shortcuts
	The Horizontal lineto and Vertical lineto Commands
	Notational Shortcuts for a Path

	Elliptical Arc
	Converting from Other Arc Formats
	Bézier Curves
	Quadratic Bézier Curves
	Cubic Bézier Curves

	Path Reference Summary
	Paths and Filling
	The <marker> element
	Marker Miscellanea

	Chapter 8. Patterns and Gradients
	Patterns
	patternUnits
	patternContentUnits
	Nested Patterns

	Gradients
	The linearGradient Element
	The radialGradient Element
	Gradient Reference Summary

	Transforming Patterns and Gradients

	Chapter 9. Text
	Text Terminology
	Simple Attributes and Properties of the <text> Element
	Text Alignment
	The <tspan> Element
	Setting textLength
	Vertical Text
	Internationalization and Text
	Unicode and Bidirectionality
	The <switch> Element
	Using a Custom Font

	Text on a Path
	Whitespace and Text
	Case Study: Adding Text to a Graphic

	Chapter 10. Clipping and Masking
	Clipping to a Path
	Masking
	Case Study: Masking a Graphic

	Chapter 11. Filters
	How Filters Work
	Creating a Drop Shadow
	Establishing the Filter’s Bounds
	Using <feGaussianBlur> for a Drop Shadow
	Storing, Chaining, and Merging Filter Results

	Creating a Glowing Shadow
	The <feColorMatrix> Element
	More About the <feColorMatrix> Element

	The <feImage> Filter
	The <feComponentTransfer> Filter
	The <feComposite> Filter
	The <feBlend> Filter
	The <feFlood> and <feTile> Filters
	Lighting Effects
	Diffuse Lighting
	Specular Lighting

	Accessing the Background
	The <feMorphology> Element
	The <feConvolveMatrix> Element
	The <feDisplacementMap> Element
	The <feTurbulence> Element
	Filter Reference Summary

	Chapter 12. Animating SVG
	Animation Basics
	How Time Is Measured
	Synchronizing Animation
	Repeated Action
	Animating Complex Attributes
	Specifying Multiple Values
	Timing of Multistage Animations
	The <set> Element
	The <animateTransform> Element
	The <animateMotion> Element
	Specifying Key Points and Times for Motion
	Animating SVG with CSS
	Animation Properties
	Setting Animation Key Frames
	Animating Movement with CSS


	Chapter 13. Adding Interactivity
	Using Links in SVG
	Controlling CSS Animations
	User-Triggered SMIL Animations
	Scripting SVG
	Events: An Overview
	Listening for and Responding to Events
	Changing Attributes of Multiple Objects
	Dragging Objects
	Interacting with an HTML Page
	Creating New Elements


	Chapter 14. Using the SVG DOM
	Determining the Value of Element Attributes
	SVG Interface Methods
	Constructing SVG with ECMAScript/JavaScript
	Animation via Scripting
	Using JavaScript Libraries
	Event Handling in Snap
	Clicking Objects
	Dragging Objects


	Chapter 15. Generating SVG
	Converting Custom Data to SVG
	Using XSLT to Convert XML Data to SVG
	Defining the Task
	How XSLT Works
	Developing an XSL Stylesheet


	Appendix A. The XML You Need for SVG
	What Is XML?
	Anatomy of an XML Document
	Elements and Attributes
	Name Syntax
	Well-Formed
	Comments
	Entity References
	Character References

	Character Encodings
	Unicode Encoding Schemes
	Other Character Encodings

	Validity
	Document Type Definitions (DTDs)
	Putting It Together

	XML Namespaces
	Tools for Processing XML
	Selecting a Parser
	XSLT Processors


	Appendix B. Introduction to Stylesheets
	Anatomy of a Style
	Inline Styles: The style Attribute
	Internal Stylesheets
	Style Selector Classes
	Using CSS with SVG

	Appendix C. Programming Concepts
	Constants
	Variables
	Assignment and Operators
	Arrays
	Comments
	Conditional Statements
	Repeated Actions
	Functions
	Objects, Properties, and Methods
	What, Not How

	Appendix D. Matrix Algebra
	Matrix Terminology
	Matrix Addition
	Matrix Multiplication
	How SVG Uses Matrix Algebra for Transformations

	Appendix E. Creating Fonts
	The ttf2svg Utility

	Appendix F. Converting Arcs to Different Formats
	Converting from Center and Angles to SVG
	Converting from SVG to Center and Angles

	Index
	About the Authors


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


