
M A N N I N G

Peter Sbarski
FOREWORDS BY
Patrick Debois
Donald F. Ferguson

www.allitebooks.com

http://www.allitebooks.org

Serverless Architectures
on AWS

PETER SBARSKI

with Forewords by Patrick Debois
and Donald F. Ferguson

M A N N I N G
SHELTER ISLAND
www.allitebooks.com

http://www.allitebooks.org

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964
Email: orders@manning.com

©2017 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books
are printed on paper that is at least 15 percent recycled and processed without the use of
elemental chlorine.

Manning Publications Co. Development editor: Toni Arritola
20 Baldwin Road Technical development editor: Kostas Passadis
PO Box 761 Project editors: Kevin Sullivan and Janet Vail
Shelter Island, NY 11964 Copyeditor: Linda Recktenwald

Proofreader: Melody Dolab
Technical proofreader: David Fombella Pombal

Typesetter: Dottie Marsico
Cover designer: Marija Tudor

ISBN 9781617293825
Printed in the United States of America
1 2 3 4 5 6 7 8 9 10 – EBM – 22 21 20 19 18 17
www.allitebooks.com

http://www.manning.com
http://www.allitebooks.org

 To my mum and dad,
who always supported and encouraged my passion

for computing
www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

contents
foreword by Patrick Debois xi
foreword by Dr. Donald F. Ferguson xii
preface xv
acknowledgments xvii
about this book xix
about the author xxi
about the cover xxii

PART 1 FIRST STEPS...1

1 Going serverless 3
1.1 How we got to where we are 4

Service-oriented architecture and microservices 6
Software design 7

1.2 Principles of serverless architectures 9
Use a compute service to execute code on demand 9
Write single-purpose stateless functions 10 ■ Design push-based,
event-driven pipelines 10 ■ Create thicker, more powerful
front ends 10 ■ Embrace third-party services 12

1.3 Transitioning from a server to services 12
1.4 Serverless pros and cons 12

Decision drivers 12 ■ When to use serverless 14

1.5 Summary 15
v

www.allitebooks.com

http://www.allitebooks.org

CONTENTSvi
2 Architectures and patterns 16
2.1 Use cases 16

Application back end 17 ■ Data processing and
manipulation 17 ■ Real-time analytics 18 ■ Legacy API
proxy 18 ■ Scheduled services 18 ■ Bots and skills 19

2.2 Architectures 19
Compute as back end 19 ■ Legacy API proxy 24 ■ Hybrid 25
GraphQL 27 ■ Compute as glue 28 ■ Real-time processing 30

2.3 Patterns 31
Command pattern 32 ■ Messaging pattern 33 ■ Priority
queue pattern 34 ■ Fan-out pattern 35 ■ Pipes and filters
pattern 36

2.4 Summary 38

3 Building a serverless application 39
3.1 24-Hour Video 40

General requirements 41 ■ Amazon Web Services 42
Creating your first Lambda function 44 ■ Naming your
Lambda 46 ■ Testing locally 46 ■ Deploying to AWS 48
Connecting S3 to Lambda 50 ■ Testing in AWS 51
Looking at logs 52

3.2 Configuring Simple Notification Service 54
Connecting SNS to S3 54 ■ Getting email from SNS 57
Testing SNS 57

3.3 Setting video permissions 57
Creating the second function 57 ■ Configuring and
securing 58 ■ Testing the second function 59

3.4 Generating metadata 60
Creating the third function and FFprobe 60

3.5 Finishing touches 63
3.6 Exercises 64
3.7 Summary 65

4 Setting up your cloud 66
4.1 Security model and identity management 67

Creating and managing IAM users 67 ■ Creating groups 70
Creating roles 73 ■ Resources 74 ■ Permissions and
policies 74
www.allitebooks.com

http://www.allitebooks.org

CONTENTS vii
4.2 Logging and alerting 76
Setting up logging 77 ■ Log retention 78 ■ Filters, metrics,
and alarms 78 ■ Searching log data 80 ■ S3 and logging 80
More on alarms 81 ■ CloudTrail 85

4.3 Costs 87
Creating billing alerts 87 ■ Monitoring and optimizing
costs 88 ■ Using the Simple Monthly Calculator 89
Calculating Lambda and API Gateway costs 90

4.4 Exercises 92
4.5 Summary 93

PART 2 CORE IDEAS ..95

5 Authentication and authorization 97
5.1 Authentication in a serverless environment 98

A serverless approach 98 ■ Amazon Cognito 100 ■ Auth0 101

5.2 Adding authentication to 24-Hour Video 102
The plan 102 ■ Invoking Lambda directly 104
24-Hour Video website 104 ■ Auth0 configuration 106
Adding Auth0 to the website 108 ■ Testing Auth0
integration 113

5.3 Integration with AWS 114
User profile Lambda 115 ■ API Gateway 118
Mappings 121 ■ Invoking Lambda via API
Gateway 124 ■ Custom authorizer 125

5.4 Delegation tokens 129
Real-world examples 130 ■ Provisioning delegation tokens 130

5.5 Exercises 130
5.6 Summary 131

6 Lambda the orchestrator 133
6.1 Inside Lambda 133

Event models and sources 134 ■ Push and pull event
models 135 ■ Concurrent executions 136 ■ Container
reuse 137 ■ Cold and warm Lambda 137

6.2 Programming model 139
Function handler 139 ■ Event object 139 ■ Context
object 140 ■ Callback function 141 ■ Logging 142
www.allitebooks.com

http://www.allitebooks.org

CONTENTSviii
6.3 Versioning, aliases, and environment variables 142
Versioning 142 ■ Aliases 144 ■ Environment variables 146

6.4 Using the CLI 148
Invoking commands 148 ■ Creating and deploying
functions 149

6.5 Lambda patterns 151
Async waterfall 152 ■ Series and parallel 157 ■ Using
libraries 158 ■ Move logic to another file 161

6.6 Testing Lambda functions 161
Testing locally 161 ■ Writing tests 162 ■ Testing in
AWS 164

6.7 Exercises 166
6.8 Summary 166

7 API Gateway 168
7.1 API Gateway as the interface 169

Integration with AWS services 170 ■ Caching, throttling, and
logging 170 ■ Staging and versioning 171 ■ Scripting 171

7.2 Working with the API Gateway 171
The plan 173 ■ Creating the resource and method 174
Configuring method execution 177 ■ The Lambda
function 180 ■ Updating the website 184

7.3 Optimizing the gateway 187
Throttling 187 ■ Logging 189 ■ Caching 191

7.4 Stages and versions 194
Creating a stage variable 195 ■ Using stage variables 195
Versions 196

7.5 Exercises 198
7.6 Summary 198

PART 3 GROWING YOUR ARCHITECTURE....................199

8 Storage 201
8.1 Smarter storage 201

Versioning 202 ■ Hosting a static website 204 ■ Storage
classes 206 ■ Object lifecycle management 207 ■ Transfer
acceleration 209 ■ Event notifications 209
www.allitebooks.com

http://www.allitebooks.org

CONTENTS ix
8.2 Secure upload 211
Architecture 212 ■ Upload policy Lambda 213 ■ S3 CORS
configuration 218 ■ Uploading from the website 219

8.3 Restricting access to files 223
Removing public access 223 ■ Generating presigned URLs 224

8.4 Exercises 225
8.5 Summary 225

9 Database 227
9.1 Introduction to Firebase 228

Data structure 228 ■ Security rules 230

9.2 Adding Firebase to 24-Hour Video 230
Architecture 231 ■ Setting up Firebase 233 ■ Modifying
Transcode Video Lambda 234 ■ Transcode Video Firebase
Update 239 ■ Connecting Lambda 241 ■ Website 242
End-to-end testing 248

9.3 Securing access to files 248
Signed URL Lambda 249 ■ API Gateway settings 250
Updating the website again 251 ■ Improving
performance 251 ■ Improving Firebase security 254

9.4 Exercises 259
9.5 Summary 259

10 Going the last mile 260
10.1 Deployment and frameworks 260
10.2 Toward better microservices 261

Handling errors 264

10.3 Step Functions 266
Image-processing example 267

10.4 AWS Marketplace 272
10.5 Where from here 274

appendix A Services for your serverless architecture 277
appendix B Installation and setup 282
appendix C More about authentication and authorization 293
appendix D Lambda insider 299
appendix E Models and mapping 305
www.allitebooks.com

http://www.allitebooks.org

CONTENTSx
appendix F S3 event message structure 321
appendix G Serverless Framework and SAM 323

index 345

foreword
BY PATRICK DEBOIS, DEVOPS JEDI

FOUNDER OF DEVOPSDAYS

CTO, SMALL TOWN HEROES

Write programs that do one thing and do it well. Write programs designed to work
together. These are the core ideas of the Unix philosophy, first articulated by Unix
designer Ken Thompson. In recent years, companies like Google, Netflix, Uber, and
Airbnb have proven that in modern distributed systems you can easily replace the
word programs with the word services. The latest twist on this idea, serverless comput-
ing, is a manifestation of how the intelligent combination of hosted services and self-
managing infrastructure can result in significant improvements in development time
and operating cost.

 Serverless Architectures on AWS balances emerging serverless design patterns with a set
of practical, down-to-earth case studies, making it ideal for both beginners and
advanced practitioners. Serverless is a new discipline, and this author succeeds in cov-
ering a wide spectrum of topics without losing depth and focus. He writes with clear
passion, an eye for detail, and a treasure trove of knowledge to share.

 Serverless computing requires a shift in how you build software architectures, and
as with many paradigm shifts, you have to unlearn some of your habits. While being
enthusiastic about the new technology, the author goes to great lengths to point out
the benefits and limits of these new types of architectures. As a bonus, he gives insight
into his own journey running a real-life serverless-based architecture. His “put your
money where your mouth is” attitude shows the ultimate payoff of serverless, helping
your business to focus and succeed.
xi

foreword
BY DR. DONALD F. FERGUSON

CTO AND COFOUNDER, SEEKA TV
ADJUNCT PROFESSOR,

DEPARTMENT OF COMPUTER SCIENCE,
COLUMBIA UNIVERSITY

Many technologies have profoundly transformed application development, testing,
and delivery. Cloud computing and various forms of “as-a-service” are examples of
technologies that are redefining application development and delivery. Many teams
and projects struggle and sometimes fail when attempting to exploit new technology.
The primary reason for failure is applying the current application architecture and
programming model to a radically different technology. Well-designed, -imple-
mented, and -delivered cloud-spanning applications are radically different from tradi-
tional applications. Serverless Architectures on AWS does an excellent job of explaining
the new application architecture and provides detailed, practical guidance on how to
succeed.

 Infrastructure as a Service (IaaS), Software as a Service (SaaS) and Platform as a
Service (PaaS) are cloud versions of the on-premise application and infrastructure
architecture. The models deliver value but can never fully exploit the potential of the
cloud. SaaS provides semi-standard solutions to business problems but doesn’t enable
rapid development and deployment of more targeted applications. IaaS and PaaS
deliver resource usage efficiency but don’t eliminate the cost to configure and man-
age software server infrastructure. None of these models enable exploitation of the
xii

FOREWORD xiii
explosion in web-callable APIs that form the API economy. Serverless architectures are the
only architectures that eliminate the cost of server software and deliver the flexibility
to rapidly develop, deploy, and manage targeted, focused cloud applications.

 Part I—First Steps of this book provides the foundation for building serverless archi-
tecture. The section explains the new architecture’s essential features and benefits.
This includes a clear explanation of the technology’s pros and cons and guidance for
selection. Equally important, the section introduces architecture design patterns. Realizing
best practices through applying design patterns is the single most important factor in
the successful adoption of transformational computing technology. The section
explains the patterns within the context of a real solution that the author implemented
using serverless architectures: “Code rules and slides drool.” The author’s practical
experience and success are a primary reason for my recommending this book.

 People often mistakenly equate serverless with a specific technology; for example,
AWS Lambda functions. Serverless architecture is much broader and includes UI
design, publish/subscribe infrastructure, workflows/orchestration, active databases,
API gateways and management, and data services. In aggregate, these technologies
can be overwhelming. Serverless Architectures on AWS explains the contributing technol-
ogies’ roles and uses. The book also provides a detailed walkthrough on how to use
Amazon Web Services’ implementation of the technology through building a working
application. The initial cookbook and tutorial are core to being able to repeatably and
reliably use the technology.

 The data layer and security are two of the hardest architecture areas of any applica-
tion. Serverless Architectures on AWS has detailed sections on both topics. The material
explains the concepts (for example, authentication and authorization), positions the
concepts within application scenarios (for example, web applications), and provides
concrete, detailed examples of how to design and implement security and the data
layer. The details include examples using non-AWS technology like Auth0 and Google
Firebase.

 My company is building its solution using AWS and serverless architecture. In this
endeavor I’ve found this book and the author’s other material to be essential to our
progress. I teach advanced topics in computer science at Columbia University, where
the classes focus on internet applications and cloud-spanning applications. This
book’s material is a foundation for much of what I teach. My experience demonstrates
that Serverless Architectures on AWS is a pivotal book that’s crucial to exploitation of
cloud computing. The detailed information about AWS within the context of a real
application is priceless, and the concepts and patterns apply to any serverless solution
using any technology.

preface
The first time I heard about AWS Lambda was from Sam Kroonenburg. Lambda had
just been released, but Sam was already excited by its prospects. He told me about exe-
cution of functions in the cloud, the potential for automation within AWS, and devel-
opment of event-driven workflows. It was fascinating and full of endless potential. The
thought of being able to run my code without having to provision or look after infra-
structure seemed very cool and not a moment too soon. As a software engineer, I
always wanted to focus on architecture and code rather than infrastructure, opera-
tions, and system management. Here was my opportunity to do so with Amazon Web
Services.

 After some months, the API Gateway came out and solved one of the biggest prob-
lems with Lambda at the time. It became possible to invoke Lambda functions using
standard HTTP requests. The dream of creating fast, scalable back ends for applica-
tions without having to touch a server was happening right in front of us. The first
major serverless project I worked on, started by Sam Kroonenburg, was A Cloud Guru,
which grew into a large learning-management system. This platform, entirely server-
less, cost very little to run and allowed for quick iteration cycles. It was a lot of fun to
work on because we could focus on adding business value and new features without
having to worry about infrastructure management or complex operations, and the
platform could scale like crazy.

 While building A Cloud Guru, we also realized that being serverless wasn’t just
about running code in Lambda. It was also about using third-party services and prod-
ucts. We used a managed authentication service and a managed database that saved us
weeks, if not months, of development time. We identified aspects of our system that
were important but that we didn’t need to build, like payment processing and cus-
xv

PREFACExvi
tomer messaging. We found great third-party services that worked brilliantly with our
serverless back end and integrated them with the rest of our system.

 The third key component was, of course, selecting the right patterns and architec-
tures. We recognized that event-driven architectures were natural to serverless applica-
tions, and we worked to make our entire system event-driven. We thought about
security, reliability, and scalability, and how functions and back end services needed to
be composed to make the most of them.

 Having helped to build one of the first large-scale serverless applications and hav-
ing reviewed other serverless systems since then, one thing is clear to me: the combi-
nation of scalable cloud functions, reliable third-party services, and serverless
architectures and patterns is the next step in the evolution of cloud computing. Over
the next few years, we’ll see startups and established enterprises adopt the serverless
approach. It will help them innovate and move more quickly than their competition.
This book is a glimpse of what this future holds and an instruction manual for how to
get started today. I hope that you enjoy Serverless Architectures on AWS and join me on
this serverless journey.

acknowledgments
This book wouldn’t have been written without the encouragement, feedback, and sup-
port of my colleagues, peers, family, and friends. I’m lucky to have been surrounded
by talented people who lent me their ear and gave invaluable advice and opinion.

 I’m grateful to many people for helping me, but there are a few I’d like to mention
by name. First and foremost, I would like to thank my editor, Toni Arritola, who made
the writing of this book a great experience. Toni’s thoughtful feedback on the book’s
structure, language, and narrative was extraordinarily helpful. Her attention to detail,
ability to respond at all times of the day, and enthusiasm were—and remain—second
to none.

 Austen Collins, the creator of the Serverless Framework, made a major contribu-
tion to the book in the form of a section on the Serverless Framework. There’s no one
better to write about a framework than its creator, so I’m thankful to Austen for volun-
teering his time and effort. I hope that everyone who reads this book—and, in partic-
ular, reads Austen’s excellent treatise—spends time learning, understanding, and
adopting the Serverless Framework.

 I’d also like to thank Sam Kroonenburg, who introduced me to the serverless way
and helped with thoughtful feedback and review throughout the writing of this book.
Sam’s enthusiasm for AWS Lambda and ideas on architecture and design inspired me
to put pen to paper in the first place. Another special thank-you goes to Ryan Brown,
who read the book and gave detailed, blow-by-blow commentary and critique. This
book is far better for Ryan’s reading and careful and considered feedback.

 Additional thanks must go out to Donald Ferguson and Patrick Debois for writing
two very special forewords. Donald and Patrick have done a lot for software engineer-
ing and for the serverless community especially. I’m in awe of their accomplishments
and very thankful for their time and involvement.
xvii

ACKNOWLEDGMENTSxviii
 I’d like to thank a few others who gave me feedback and encouragement. These
people include Ryan Kroonenburg, Mike Chambers, John McKim, Adrian Cantrill,
Daniel Parker, Allan Brown, Nick Triantafillou, Drew Firment, Neil Walker, Alex
Mackey, and Ilia Mogilevsky. I’d like to thank Mike Stephens of Manning, Kostas Passa-
dis, and David Fombella Pombal for helping to bring this book to fruition. In addi-
tion, these acknowledgments wouldn’t be complete if I didn’t thank the Manning
reviewers who generously read and commented on the text during its development,
including Alain Couniot, Andy Wiesendanger, Colin Joyce, Craig Smith, Daniel
Vásquez, Diego Santiviago, John Huffman, Josiah Dykstra, Kent R. Spillner, Markus
Breuer, Saioa Picado Fernández, Sau Fai Fong, Sean Hull, and Vijaykumar Borkar.

 Finally, I’d like to thank my family, including my dad and brother, and all my other
relatives, for finding the inner strength to listen to me talk about the book at every
gathering. And I’d like to thank Durdana Masud, who helped me greatly throughout
my writing, starting with positive cheer and inspiration to looking at umpteen color
palettes in an effort to help me select colors for the original images used in the manu-
script. Thank you.

about this book
Whether you are a beginner or an expert, just starting out in IT or have years of expe-
rience, this book will take you on a journey through serverless architectures. You’ll
learn about key patterns, find out about the pros and cons of applying serverless
methodologies, and build your own serverless video-sharing website using AWS
Lambda, API Gateway, Elastic Transcoder, S3, Auth0, and Firebase. You’ll also learn a
lot about AWS and recommended frameworks for organizing and deploying your
serverless applications.

 This book is organized into three parts. The first takes you through basic serverless
principles and discusses key architectures and patterns. You begin building your first
event-driven pipeline using AWS Lambda and learn about key AWS services, like the
omnipresent and all-powerful Identity and Access Management service.

 The second part focuses on authentication and authorization, AWS Lambda, and
the API Gateway. All chapters in this part are important to understanding and building
serverless applications. After you read and work through them, you’ll have a thorough
grasp of the key technologies needed for serverless applications.

 The third part addresses those additional services and architectures needed to
build real-world applications. A key focus is file and data storage using S3 and Google’s
Firebase, respectively. The final chapter adds more information about some of the
techniques and services that you can apply to grow your serverless applications.

 At the end of the book, you’ll find seven appendixes that give you additional infor-
mation on various topics. The last appendix, for example, covers the Serverless Frame-
work and the Serverless Application Mode (SAM); you should definitely read through
and try the steps in this appendix.
xix

ABOUT THIS BOOKxx
 AWS and other services like Auth0 and Firebase evolve quickly, so don’t be sur-
prised if some of the screenshots or instructions are different by the time you read this
book. The fundamentals of serverless event-driven architectures remain the same, but
some of the minor things, such as button positioning or labels, may change over time.
This book is suitable for developers and solution architects who are new to AWS and
cloud computing, as well as for those who are veterans. My hope is that you’ll discover
a new way to build applications that is cheaper, more scalable, and heaps more fun!

Code conventions

This book provides many examples of code. These appear throughout the text and as
separate code listings. Code appears in a fixed-width font just like this, so you’ll
know when you see it.

Getting the source code

All of the source code used in the book is available on the Manning website
(https://manning.com/books/serverless-architectures-on-aws) or in my GitHub
repository (https://github.com/sbarski/serverless-architectures-aws). I love GitHub,
so if you’d like to contribute to the source code, please open a pull request. If you see
a problem, please file an issue.

Author online

Purchase of Serverless Architectures on AWS includes free access to a private web forum
run by Manning Publications where you can make comments about the book, ask
technical questions, and receive help from the lead author and from other users. To
access the forum and subscribe to it, point your web browser to www.manning.com/
books/serverless-architectures-on-aws. This page provides information on how to get
on the forum once you are registered, what kind of help is available, and the rules of
conduct on the forum.

 Manning’s commitment to our readers is to provide a venue where a meaningful
dialog between individual readers and between readers and the author can take place.
It is not a commitment to any specific amount of participation on the part of the
author, whose contribution to the forum remains voluntary (and unpaid). We suggest
you try asking the author some challenging questions lest his interest stray! The
Author Online forum and the archives of previous discussions will be accessible from
the publisher’s website as long as the book is in print.

https://manning.com/books/serverless-architectures-on-aws
https://github.com/sbarski/serverless-architectures-aws
www.manning.com/books/serverless-architectures-on-aws
www.manning.com/books/serverless-architectures-on-aws
www.manning.com/books/serverless-architectures-on-aws

about the author
PETER SBARSKI is Vice President of Engineering at A Cloud Guru
and the organizer of Serverlessconf, the world’s first conference
dedicated entirely to serverless architectures and technologies.
He enjoys running in-person workshops and writing an occa-
sional blog post on serverless architectures. Peter has an exten-
sive career working in IT and has led teams across large

enterprise solutions with a focus on web and AWS cloud technologies. His specialties
include back end architecture, microservices, and orchestration of systems.

 Peter holds a PhD in computer science from Monash University, Australia, and can
be followed on Twitter (@sbarski) and GitHub (https://github.com/sbarski).
xxi

https://github.com/sbarski

about the cover
The figure on the cover of Serverless Architectures on AWS is captioned “Man from
Stupno/Sisak, Croatia.” The illustration is taken from a reproduction of an album of
Croatian traditional costumes from the mid-nineteenth century by Nikola Arsenović,
published by the Ethnographic Museum in Split, Croatia, in 2003. The illustrations
were obtained from a helpful librarian at the Ethnographic Museum in Split, itself sit-
uated in the Roman core of the medieval center of the town: the ruins of Emperor
Diocletian’s retirement palace from around AD 304. The book includes finely colored
illustrations of figures from different regions of Croatia, accompanied by descriptions
of the costumes and of everyday life.

 Dress codes and lifestyles have changed over the last 200 years, and the diversity by
region, so rich at the time, has faded away. It’s now hard to tell apart the inhabitants of
different continents, let alone of different hamlets or towns separated by only a few
miles. Perhaps we have traded cultural diversity for a more varied personal life—cer-
tainly for a more varied and fast-paced technological life. Manning celebrates the
inventiveness and initiative of the computer business with book covers based on the
rich diversity of regional life of two centuries ago, brought back to life by illustrations
from old books and collections like this one.
xxii

Part 1

First steps

You’re now taking the first steps toward mastery of serverless architectures.
The first part of this book takes you through the concepts and introduces you to
the five principles of serverless architectures. You’ll learn about several useful
designs and architectures, and you’ll begin building your own media-transcoding
pipeline using Lambda, S3, and the Elastic Transcoder. Beginning with the third
chapter and continuing thereafter, you’ll find fun exercises to try in your spare
time. These exercises are optional but highly recommended, because they’ll
reinforce your knowledge and understanding of serverless technologies and
architectures.

Going serverless
If you ask software developers what software architecture is, you might get answers
ranging from “it’s a blueprint or a plan” to “a conceptual model” to “the big pic-
ture.” It’s undoubtedly true that architecture, or lack thereof, can make or break
software. Good architecture may help to scale a web or mobile application, and
poor architecture may cause serious issues that necessitate a costly rewrite. Under-
standing the implication of choice regarding architecture and being able to plan
ahead is paramount to creating effective, high-performing, and ultimately success-
ful software systems.

 This book is about how to go beyond traditional back-end architectures that
require you to interact with a server in some shape or form. It describes how to create

This chapter covers
 Traditional system and application architectures

 Key characteristics of serverless architectures
and their benefits

 How serverless architectures and microservices
fit into the picture

 Considerations when transitioning from server to
serverless
3

4 CHAPTER 1 Going serverless
serverless back ends that rely entirely on a compute service such as Amazon Web Services
(AWS) Lambda and an assortment of useful third-party APIs, services, and products. It
shows how to build the next generation of systems that can scale and handle demand-
ing computational requirements without having to provision or manage a single server.
Importantly, this book describes techniques that can help developers quickly deliver
products to market while maintaining a high level of quality and performance by using
services and architectures that today’s cloud has to offer.

 The first chapter of this book is about why we think serverless is a game changer
for software developers and solution architects. This chapter introduces key services
such as AWS Lambda and describes the principles of serverless architecture to help
you understand what makes a true serverless system.

1.1 How we got to where we are
If you look at systems powering most of today’s web-enabled software, you’ll see back-
end servers performing various forms of computation and client-side front ends pro-
viding an interface for users to operate via their browser, mobile, or desktop device.

 In a typical web application, the server accepts HTTP requests from the front end
and processes requests. Data might travel through numerous application layers
before being saved to a database. The back end, finally, generates a response—it
could be in the form of JSON or fully rendered markup—which is sent back to the cli-
ent (figure 1.1). Naturally, most systems are more complex once elements such as
load balancing, transactions, clustering, caching, messaging, and data redundancy
are taken into account. Most of this software requires servers running in data centers
or in the cloud that need to be managed, maintained, patched, and backed up.

 Provisioning, managing, and patching of servers is a time-consuming task that
often requires dedicated operations people. A non-trivial environment is hard to set
up and operate effectively. Infrastructure and hardware are necessary components of
any IT system, but they’re often also a distraction from what should be the core
focus—solving the business problem.

 Over the past few years, technologies such as platform as a service (PaaS) and contain-
ers have appeared as potential solutions to the headache of inconsistent infrastructure

What’s in a name?
Before we start, we should mention that the word serverless is a bit of a misnomer.
Whether you use a compute service such as AWS Lambda to execute your code, or
interact with an API, there are still servers running in the background. The difference
is that these servers are hidden from you. There’s no infrastructure for you to think
about and no way to tweak the underlying operating system. Someone else takes
care of the nitty-gritty details of infrastructure management, freeing your time for
other things. Serverless is about running code in a compute service and interacting
with services and APIs to get the job done.

5How we got to where we are
environments, conflicts, and server management overheard. PaaS is a form of cloud
computing that provides a platform for users to run their software while hiding some
of the underlying infrastructure. To make effective use of PaaS, developers need to
write software that targets the features and capabilities of the platform. Moving a legacy
application designed to run on a standalone server to a PaaS service often leads to
additional development effort because of the ephemeral nature of most PaaS imple-
mentations. Still, given a choice, many developers would understandably choose to use
PaaS rather than more traditional, more manual solutions thanks to reduced mainte-
nance and platform support requirements.

 Containerization is a way of isolating an application with its own environment. It’s
a lightweight alternative to full-blown virtualization. Containers are isolated and light-
weight but they need to be deployed to a server—whether in a public or private cloud
or onsite. They’re an excellent solution when dependencies are in play, but they have
their own housekeeping challenges and complexities. They’re not as easy as being
able to run code directly in the cloud.

 Finally, we make our way to Lambda, which is a compute service from Amazon Web
Services. Lambda can execute code in a massively parallelized way in response to
events. Lambda takes your code and runs it without any need to provision servers,
install software, deploy containers, or worry about low-level detail. AWS takes care of
provisioning and management of their Elastic Compute Cloud (EC2) servers that run
the actual code and provides a high-availability compute infrastructure—including
capacity provisioning and automated scaling—that the developer doesn’t need to
think about. The words serverless architectures refer to these new kinds of software archi-
tectures that don’t rely on direct access to a server to work. By taking Lambda and
making use of various powerful single-purpose APIs and web services, developers can
build loosely coupled, scalable, and efficient architectures quickly. Moving away from
servers and infrastructure concerns, as well as allowing the developer to primarily focus on code,
is the ultimate goal behind serverless.

1. User performs an action
that requires data from a
database to be displayed.

2. A request is formed
and sent from the client
to the web server.

3. The request is
processed and the
database is queried.

4. Data is retrieved.5. An appropriate response
is generated and sent back.

6. Information is displayed
to the user.

Application user Web client
(presentation tier)

Web server
(application tier)

Database
(data tier)

Figure 1.1 This is a basic request-response (client-server) message exchange pattern that most
developers are familiar with. There’s only one web server and one database in this figure. Most systems
are much more complex.

6 CHAPTER 1 Going serverless
1.1.1 Service-oriented architecture and microservices

Among system and application architectures, service-oriented architecture (SOA) has
a lot of name recognition among software developers. It’s an architecture that clearly
conceptualized the idea that a system can be composed of many independent services.
Much has been written about SOA, but it remains controversial and misunderstood
because developers often confuse design philosophy with specific implementation
and attributes.

 SOA doesn’t dictate the use of any particular technology. Instead, it encourages an
architectural approach in which developers create autonomous services that commu-
nicate via message passing and often have a schema or a contract that defines how
messages are created or exchanged. Service reusability and autonomy, composability,
granularity, and discoverability are all important principles associated with SOA.

 Microservices and serverless architectures are spiritual descendants of service-
oriented architecture. They retain many of the aforementioned principles and
ideas while attempting to address the complexity of old-fashioned service-oriented
architectures.

ON MICROSERVICES

There has been a recent trend to implement systems with microservices. Developers
tend to think of microservices as small, standalone, fully independent services built
around a particular business purpose or capability.

 Ideally, microservices should be easy to replace, with each service written in an
appropriate framework and language. The mere fact that microservices can be written
in different general-purpose or domain-specific languages (DSL) is a drawing card for
many developers. Benefits can be gained from using the right language or a special-
ized set of libraries for the job. Nevertheless, it can often be a trap, too. Having a mix
of languages and frameworks can be hard to support, and, without strict discipline,
can lead to confusion down the road.

 Each microservice can maintain state and store data. And if microservices are cor-
rectly decoupled, development teams can work and deploy microservices inde-
pendently of one another. On the other hand, eventual consistency, transaction
management, and complex error recovery can make things more difficult (especially
without a sound plan).

 It can be argued that serverless architecture embodies many principles from
microservices too. After all, depending on how you design the system, every compute
function could be considered to be its own standalone service. But you don’t need to
fully embrace the microservices mantra if you don’t want to.

 Serverless architectures give you the freedom to apply as few or as many microservice
principles as you would like without forcing you down a single path. This book shows
examples of architectures where parts of a monolithic system are re-implemented as
serverless architecture without applying all of the microservices tenets. It’s then up to
you to decide how far to take your architecture based on your requirements and prefer-
ence (chapter 10 has more to say on the issue of microservices and design).

7How we got to where we are
1.1.2 Software design

Software design has evolved from the days of code running on a mainframe to multi-
tier systems where the presentation, data, and application/logic tiers feature promi-
nently in many designs. Within each tier there may be multiple logical layers that deal
with particular aspects of functionality or domain. There are also cross-cutting compo-
nents, such as logging or exception-handling systems, that can span numerous layers.
The preference for layering is understandable. Layering allows developers to decou-
ple concerns and have more maintainable applications.

 But the converse can also be true. Having too many layers can lead to inefficiencies.
A small change can often cascade and cause the developer to modify every layer through-
out the system, costing considerable time and energy in implementation and testing.
The more layers there are, the more complex and unwieldy the system might become
over time. Figure 1.2 shows an example of a tiered architecture with multiple layers.

 Serverless architectures can help with the problem of layering and having to
update too many things. There’s room for developers to remove or minimize layering
by breaking the system into functions and allowing the front end to securely commu-
nicate with services and even the database directly, as shown in figure 1.3. All of this
can be done in an organized way to prevent spaghetti implementations and depen-
dency nightmares by clearly defining service boundaries, allowing Lambda functions
to be autonomous, and planning how functions and services will interact.

Application user

User interface components
Layering helps to
segregate concerns, but
more layers can also
make changes harder
and slower to implement.

Cross-cutting concerns
span numerous layers.
A good example of this is
logging, which can happen
at every layer.

Application tier

Cross-cutting
concerns

Presentation
tier

Data tier

Presentation logic

Client-side model

Client-side service layer

Application programming interface

Server-side service layer

Business/domain layer

Business entities/model

Data access/persistence layer

Exception m
anagem

ent

C
aching

Logging

C
om

m
unications

Security

Database File storage

Figure 1.2 A typical three-tier application is usually made up of presentation, application, and data
tiers. A tier may have multiple layers with specific responsibilities.
www.allitebooks.com

http://www.allitebooks.org

8 CHAPTER 1 Going serverless
A serverless approach doesn’t solve all problems, nor does it remove the underlying
intricacies of the system. But when implemented correctly it can provide opportuni-
ties to reduce, organize, and manage complexity. A well-planned serverless architec-
ture can make future changes easier, which is an important factor for any long-term
application. The next section and later chapters discuss the organization and orches-
tration of services in more detail.

Application userLambda functions can
communicate with other
AWS products and make
calls to non-AWS services.

Presentation
tier

Database

Lambda
function

Search
service

Lambda
function

Payment
service

API
gateway

Lambda
function

Notification
service

Lambda
function

Log
service

File
storage

Lambda
function

Analytics
service

Authentication
service

Reporting

Figure 1.3 In a serverless architecture there’s no single traditional back end. The front end
of the application communicates directly with services, the database, or compute functions
via an API gateway. Some services, however, must be hidden behind compute service
functions, where additional security measures and validation can take place.

Tiers vs. layers
There is confusion among some developers about the difference between layers and
tiers. A tier is a module boundary that exists to provide isolation between major com-
ponents of a system. A presentation tier that’s visible to the user is separate from
the application tier, which encompasses business logic. In turn, the data tier is
another separate system that can manage, persist, and provide access to data. Com-
ponents grouped in a tier can physically reside on different infrastructures.

9Principles of serverless architectures
1.2 Principles of serverless architectures
Here we define five principles of serverless architectures that describe how an ideal
serverless system should be built. Use these principles to help guide your decisions
when building serverless applications:

1 Use a compute service to execute code on demand (no servers).
2 Write single-purpose stateless functions.
3 Design push-based, event-driven pipelines.
4 Create thicker, more powerful front ends.
5 Embrace third-party services.

Let’s look at each of these principles in more detail.

1.2.1 Use a compute service to execute code on demand

Serverless architectures are a natural extension of ideas raised in SOA. In serverless
architecture all custom code is written and executed as isolated, independent, and
often granular functions that are run in a stateless compute service such as AWS
Lambda. Developers can write functions to carry out almost any common task, such
as reading and writing to a data source, calling out to other functions, and perform-
ing a calculation. In more complex cases, developers can set up more elaborate pipe-
lines and orchestrate invocations of multiple functions. There might be scenarios
where a server is still needed to do something. These cases, however, may be far and
few between, and as a developer you should avoid running and interacting with a
server if possible.

Layers are logical slices that carry out specific responsibilities in an application. Each
tier can have multiple layers within it that are responsible for different elements of
functionality such as domain services.

So, what is Lambda exactly?
AWS Lambda is a compute service that executes code written in JavaScript (node.js),
Python, C#, or Java on AWS infrastructure. Source code (JARs or DLLs in case of Java
or C#) is zipped up and deployed to an isolated container that has an allocation of
memory, disk space, and CPU. The combination of code, configuration, and depen-
dencies is typically referred to as a Lambda function. The Lambda runtime can invoke
a function multiple times in parallel. Lambda supports push and pull event models of
operation and integrates with a large number of AWS services. Chapter 6 covers
Lambda in more detail, including its event model, methods of invocation, and best
practice with regard to design. Note that Lambda isn’t the only game in town. Micro-
soft Azure Functions, IBM Bluemix, OpenWhisk, and Google Cloud Functions are other
compute services you might want to look at.

10 CHAPTER 1 Going serverless
1.2.2 Write single-purpose stateless functions

As a software engineer, you should try to design your functions with the single respon-
sibility principle (SRP) in mind. A function that does just one thing is more testable
and robust and leads to fewer bugs and unexpected side effects. By composing and
combining functions and services in a loose orchestration, you can build complex
back-end systems that are still understandable and easy to manage. A granular func-
tion with a well-defined interface is also more likely to be reused within a serverless
architecture.

 Code written for a compute service such as Lambda should be created in a stateless
style. It must not assume that local resources or processes will survive beyond the
immediate session (chapter 6 has more to say on this). Statelessness is powerful
because it allows the platform to quickly scale to handle an ever-changing number of
incoming events or requests.

1.2.3 Design push-based, event-driven pipelines

Serverless architectures can be built to serve any purpose. Systems can be built server-
less from scratch, or existing monolithic applications can be gradually reengineered
to take advantage of this architecture. The most flexible and powerful serverless
designs are event-driven. In chapter 3, for example, you’ll build an event-driven, push-
based pipeline to see how quickly you can put together a system to encode video to
different bitrates and formats. You’ll achieve this by connecting Amazon’s Simple
Storage Service (S3), Lambda, and Elastic Transcoder together (figure 1.4).

 Building event-driven, push-based systems will often reduce cost and complexity
(you won’t need to run extra code to poll for changes) and potentially make the over-
all user experience smoother. It goes without saying that although event-driven, push-
based models are a good goal, they might not be appropriate or achievable in all cir-
cumstances. Sometimes you’ll have to implement a Lambda function that polls the
event source or runs on a schedule. We’ll cover different event models and you’ll work
through examples in later chapters.

1.2.4 Create thicker, more powerful front ends

It’s important to remember that custom code running in Lambda should be quick to
execute. Functions that terminate sooner are cheaper because Lambda pricing is
based on the number of requests, the duration of execution, and the amount of allo-
cated memory. Having less to do in Lambda is cheaper. Moreover, building a rich
front end (in lieu of a complex back end) that can talk to third-party services directly
can be conducive to a better user experience. Fewer hops between online resources
and reduced latency will result in a better perception of performance and usability of
the application. In other words, you don’t have to route everything through a com-
pute service. Your front end may be able to communicate directly with a search pro-
vider, a database, or another useful API.

11Principles of serverless architectures
Digitally signed tokens can allow front ends to talk to disparate services, including
databases, in a secure manner. This is in contrast to traditional systems where all com-
munication flows through the back-end server.

 Not everything, however, can or should be done in the front end. There are secrets
that cannot be trusted to the client device. Processing a credit card or sending emails
to subscribers must be done only by a service that runs outside the end user’s control.
In this case, a compute service must be used to coordinate action, validate data, and
enforce security.

 The other important point to consider is consistency. If the front end is responsi-
ble for writing to multiple services and fails midway through, it can leave the system in
an inconsistent state. In this scenario, a Lambda function should be used because it
can be designed to gracefully handle errors and retry failed operations.

Upload new
video file

Create
transcode

job

Transcode
video

Save new
videos

Update
metadata

Dispatch
notification

Create
notification

Save
metadata to

database

1. Simple Storage Service.
Uploading a video to an
S3 bucket triggers an
event in AWS. A Lambda
function is wired up to
respond to events.

2. Lambda Function.
A Lambda function responds
to the event and creates an
Elastic Transcoder job to create
new videos from the source file.

3. Elastic Transcoder.
Transcoding service
executes the job and
encodes new videos.

4. Simple Storage Service.
The newly encoded videos are
saved to a new S3 bucket by
the Elastic Transcoder.
This triggers another event.

6. Database.
Metadata is saved
to the database.

5. Lambda Function.
A Lambda function
responds to the event
and creates metadata
about the videos that is
pushed to the database.

7. Lambda Function.
A change to the
database automatically
triggers a Lambda
function that creates
an email notification.

8. Notification Service.
Notification service
sends an email to
the user.

Figure 1.4 A push-based pipeline style of design works well with serverless architectures. In this
example a user uploads a video, which is transcoded to a different format.

12 CHAPTER 1 Going serverless
1.2.5 Embrace third-party services

Third-party services are welcome to join the show if they can provide value and reduce
custom code. It goes without saying, however, that when a third-party service is consid-
ered, factors such as price, capability, availability, documentation, and support must
be assessed. It’s far more useful for developers to spend time solving a problem
unique to their domain than re-creating functionality already implemented by some-
one else. Don’t build for the sake of building if viable third-party services and APIs are
available. Stand on the shoulders of giants to reach new heights. Appendix A has a
short list of Amazon Web Services and non-Amazon Web Services we’ve found useful.
We’ll look at most of those services in more detail as we move through the book.

1.3 Transitioning from a server to services
One advantage of the serverless approach is that existing applications can be gradu-
ally converted to serverless architecture. If a developer is faced with a monolithic code
base, they can gradually tease it apart and create Lambda functions that the applica-
tion can communicate with.

 The best approach is to initially create a prototype to test developer assumptions
about how the system would function if it was going to be partly or fully serverless.
Legacy systems tend to have interesting constraints that require creative solutions; and
as with any architectural refactors at a large scale, there are inevitably going to be
compromises. The system may end up being a hybrid—see figure 1.5—but it may be
better to have some of its components use Lambda and third-party services rather
than remain with an unchanged legacy architecture that no longer scales or that
requires expensive infrastructure to run.

 The transition from a legacy, server-based application to a scalable serverless archi-
tecture may take time to get right. It needs to be approached carefully and slowly, and
developers need to have a good test plan and a great DevOps strategy in place before
they begin.

1.4 Serverless pros and cons
There are advantages to implementing a system as fully or partially serverless, includ-
ing reduced cost and accelerated time to market. But you need to carefully consider
the road to serverless architecture in the context of the application being created.

1.4.1 Decision drivers

Serverless is not a silver bullet in all circumstances. It may not be appropriate for
latency-sensitive applications or software with specific service-level agreements (SLA).
Vendor lock-in can be an issue for enterprise and government clients, and decentral-
ization of services can be a challenge.

NOT FOR EVERYONE

Lambda runs in a public cloud, so mission-critical applications shouldn’t necessarily
be based on it. A banking system that performs high-volume transactions or a patient

13Serverless pros and cons
life-support system requires a higher level of performance and reliability than a public
cloud system can provide. It’s possible that organizations could employ dedicated
hardware or run private or hybrid clouds with their own compute services that might
meet serviceability and reliability requirements. In that case, these architectures could
be adopted.

SERVICE LEVELS

AWS has an SLA for some services but not for others, so that may be a factor in your
decision. For most systems, the reliability offered by AWS is sufficient, but some enter-
prise use cases may require additional guarantees. Non-AWS third-party services are in
the same boat. Some may have strong SLAs, whereas others may not have one at all.

CUSTOMIZATION

When it comes to Lambda, the efficiencies gained from having Amazon look after the
platform and scale functions come at the expense of being able to customize the oper-
ating system or tweak the underlying instance. You can modify the amount of RAM
allocated to a function and change timeouts, but that’s about it (see chapter 6 for
more information). Similarly, different third-party services will have varying levels of
customization and flexibility.

Lambda
function

Lambda
function

Lambda
function

IaaS

PaaS

Containers

Monolithic application
Lambda
function

Analytics
service

Payment
service

Notification
service

Search
service

A monolithic application
can be deconstructed
into Lambda functions,
third-party services, IaaS,
PaaS, and containers.

The combination of
technologies should depend
on your needs and constraints.
However, more technologies
require more overhead, time,
and energy.

Containers, PaaS, IaaS, Lambda functions, and services
can talk to one another. If you have designed a system
using a combination of the above technologies you must
consider how orchestration of events will take place.

Figure 1.5 Serverless architecture is not an all-or-nothing proposition. If you currently have
a monolithic application running on servers, you can begin to gradually extract components
and run them in isolated services or compute functions. You can decouple a monolithic
application into an assortment of infrastructure as a service (IaaS), PaaS, containers,
Lambda functions, and third-party services if it helps.

14 CHAPTER 1 Going serverless
VENDOR LOCK-IN
Vendor lock-in is another issue. If a developer decides to use third-party APIs and ser-
vices, including AWS, there’s a chance that architecture could become strongly coupled
to the platform being used. The implications of vendor lock-in and the risk of using
third-party services—including company viability, data sovereignty and privacy, cost,
support, documentation, and available feature set—need to be thoroughly considered.

DECENTRALIZATION

Moving from a monolithic approach to a more decentralized serverless approach
doesn’t automatically reduce the complexity of the underlying system either. The dis-
tributed nature of the solution can introduce its own challenges because of the need
to make remote rather than in-process calls and the need to handle failures and
latency across a network.

1.4.2 When to use serverless

Serverless architecture allows developers to focus on software design and code rather
than infrastructure. Scalability and high availability are easier to achieve, and the pric-
ing is often fairer because you pay only for what you use. Importantly with serverless,
you have a potential to reduce some of the complexity of the system by minimizing
the number of layers and amount of code you need.

NO MORE SERVERS

Tasks such as server configuration and management, patching, and maintenance are
taken care of by the vendor, which saves time and money. Amazon looks after the
health of its fleet of servers that power Lambda. If you don’t have specific require-
ments to manage or modify compute resources, then having Amazon or another ven-
dor look after them is a great solution. You’re responsible only for your own code,
leaving operational and administrative tasks to a different set of capable hands.

MANY USES

The statelessness and scalability of compute can be used to solve problems that bene-
fit from parallel processing. Back ends for CRUD applications, e-commerce, back-
office systems, complex web apps, and all kinds of mobile and desktop software can
be built quickly using serverless architectures. Tasks that used to take weeks can be
done in days or hours as long as the right combination of technologies is chosen. A
serverless approach can work exceptionally well for startups that want to innovate
and move quickly.

LOW COST

The traditional server-based architecture requires servers that don’t necessarily run at
full capacity all of the time. Scaling, even with automated systems, involves a new
server, which is often wasted until there’s a temporary upsurge in traffic or new data.
Serverless systems are much more granular with regard to scaling and are cost-
effective, especially when peak loads are uneven or unexpected. With Lambda you
only pay for what you use (chapter 4 shows how to calculate cost for Lambda and the
API Gateway).

15Summary
LESS CODE

We mentioned at the start of the chapter that serverless architecture provides an
opportunity to reduce some of the complexity and code in comparison to more tradi-
tional systems. There’s less need to have a multilayered back-end system, especially if
you allow the front end to do more work and talk to services (and the database)
directly.

SCALABLE AND FLEXIBLE

As a developer you don’t need to use serverless architecture to replace your entire
back end if you don’t want to or are unable to do so. You can use Lambda to solve spe-
cific problems, especially if they stand to benefit from parallelization. It goes without
saying that serverless systems can scale more easily than traditional systems. For exam-
ple, consider the following solutions:

 ConnectWise, an IT services company, uses Lambda to process inbound logs,
which has reduced their server maintenance needs from weeks to hours
(https://aws.amazon.com/solutions/case-studies/connectwise/).

 Netflix uses Lambda to automate validation of backup completions and auto-
mate the encoding process of media files (https://aws.amazon.com/solutions/
case-studies/netflix-and-aws-lambda/).

You can use Lambda for extract, transform, and load (ETL) jobs, real-time file process-
ing, and virtually anything else without having to touch your existing codebase. Just
write a function and run it.

1.5 Summary
The cloud has been and continues to be a game changer for IT infrastructure and
software development. Software developers need to think about the ways they can
maximize use of cloud platforms to gain a competitive advantage.

 Serverless architectures are the latest advance for developers and organizations to
think about, study, and adopt. This exciting new shift in architecture will grow quickly
as software developers embrace compute services such as AWS Lambda. And, in many
cases, serverless applications will be cheaper to run and faster to implement.

 There’s also a need to reduce complexity and costs associated with running infra-
structure and carrying out development of traditional software systems. The reduction
in cost and time spent on infrastructure maintenance and the benefits of scalability are
good reasons for organizations and developers to consider serverless architectures.

 In this chapter you learned what serverless architecture is, looked at its principles,
and saw how it compares to traditional architectures. In the next chapter, we’ll
explore important architectures and patterns, and we’ll discuss specific use cases
where serverless architectures were used to solve a problem.

https://aws.amazon.com/solutions/case-studies/connectwise/
https://aws.amazon.com/solutions/case-studies/netflix-and-aws-lambda/
https://aws.amazon.com/solutions/case-studies/netflix-and-aws-lambda/
https://aws.amazon.com/solutions/case-studies/netflix-and-aws-lambda/

Architectures and patterns
What are the use cases for serverless architectures, and what kinds of architectures
and patterns are useful? We’re often asked about use cases as people learn about a
serverless approach to the design of systems. We find that it’s helpful to look at how
others have applied technology and what kinds of use cases, designs, and architec-
tures they’ve produced. Our discussion will center on these use cases and sample
architectures. This chapter will give you a solid understanding of where serverless
architectures are a good fit and how to think about design of serverless systems.

2.1 Use cases
Serverless technologies and architectures can be used to build entire systems, cre-
ate isolated components, or implement specific, granular tasks. The scope for use
of serverless design is large, and one of its advantages is that it’s possible to use it
for small and large tasks alike. We’ve designed serverless systems that power web
and mobile applications for tens of thousands of users, and we’ve built simple sys-
tems to solve specific, minute problems. It’s worth remembering that serverless is
not just about running code in a compute service such as Lambda. It’s also about
using third-party services and APIs to cut down on the amount of work you must do.

This chapter covers
 Use cases for serverless architectures

 Examples of patterns and architectures
16

17Use cases
2.1.1 Application back end

In this book you’re going to build a back end for a media-sharing, YouTube-like appli-
cation. It will allow users to upload video files, transcode these files to different play-
able formats, and then allow other users to view them. You’ll construct an entirely
serverless back end for a fully featured web application with a database and a RESTful
API. And we’re going to show that serverless technologies are appropriate for building
scalable back ends for all kinds of web, mobile, and desktop applications.

 Technologies such as AWS Lambda are relatively new, but we’ve already seen large
serverless back ends that power entire businesses. Our serverless platform, called A
Cloud Guru (http://acloud.guru), supports many thousands of users collaborating in
real time and streaming hundreds of gigabytes of video. Another example is Instant
(http://instant.cm), which is a serverless content management system for static web-
sites. And yet another example is a hybrid-serverless system built by EPX Labs. We’ll
discuss all of these systems later in the chapter.

 Apart from web and mobile applications, serverless is a great fit for IoT applica-
tions. Amazon Web Services (AWS) has an IoT platform (https://aws.amazon.com/iot-
platform/how-it-works/) that combines the following:

 Authentication and authorization
 Communications gateway
 Registry (a way to assign a unique identity to each device)
 Device shadowing (persistent device state)
 A rules engine (a service to transform and route device messages to AWS services)

The rules engine, for example, can save files to Amazon’s Simple Storage Service (S3),
push data to an Amazon Simple Queue Service (SQS) queue, and invoke AWS Lambda
functions. Amazon’s IoT platform makes it easy to build scalable IoT back ends for
devices without having to run a server.

 A serverless application back end is appealing because it removes a lot of infra-
structure management, has granular and predictable billing (especially when a server-
less compute service such as Lambda is used), and can scale well to meet uneven
demand.

2.1.2 Data processing and manipulation

A common use for serverless technologies is data processing, conversion, manipula-
tion, and transcoding. We’ve seen Lambda functions built by other developers for pro-
cessing of CSV, JSON, and XML files; collation and aggregation of data; image resizing;
and format conversion. Lambda and AWS services are well suited for building event-
driven pipelines for data-processing tasks.

 In chapter 3, you’ll build the first part of your application, which is a powerful pipe-
line for converting videos from one format to another. This pipeline will set file per-
missions and generate metadata files. It will run only when a new video file is added to
a designated S3 bucket, meaning that you’ll pay only for execution of Lambda when

http://acloud.guru
http://instant.cm
https://aws.amazon.com/iot-platform/how-it-works/
https://aws.amazon.com/iot-platform/how-it-works/

18 CHAPTER 2 Architectures and patterns
there’s something to do and not while the system is idling. More broadly, however, we
find data processing to be an excellent use case for serverless technologies, especially
when we use a Lambda function in concert with other services.

2.1.3 Real-time analytics

Ingestion of data—such as logs, system events, transactions, or user clicks—can be
accomplished using services such as Amazon Kinesis Streams (see appendix A for
more information on Kinesis). Lambda functions can react to new records in a
stream, and can process, save, or discard data quickly. A Lambda function can be con-
figured to run when a specific number (batch size) of records is available for process-
ing, so that it doesn’t have to execute for every individual record added to the stream.

 Kinesis streams and Lambda functions are a good fit for applications that generate
a lot of data that needs to be analyzed, aggregated, and stored. When it comes to Kine-
sis, the number of functions spawned to process messages off a stream is the same as
the number of shards (therefore, there’s one Lambda function per shard). Further-
more, if a Lambda function fails to process a batch, it will retry. This can keep going
for up to 24 hours (which is how long Kinesis will keep data around before it expires)
if processing fails each time. But even with these little gotchas (which you now know),
the combination of Kinesis streams and Lambda is really powerful if you want to do
real-time processing and analytics.

2.1.4 Legacy API proxy

One innovative use case of the Amazon API Gateway and Lambda (which we’ve seen a
few times) is what we refer to as the legacy API proxy. Here, developers use API Gate-
way and Lambda to create a new API layer over legacy APIs and services to make them
easier to use. The API Gateway is used to create a RESTful interface, and Lambda func-
tions are used to transpose request/response and marshal data to formats that legacy
services understand. This approach makes legacy services easier to consume for mod-
ern clients that may not support older protocols and data formats.

2.1.5 Scheduled services

Lambda functions can run on a schedule, which makes them effective for repetitive
tasks like data backups, imports and exports, reminders, and alerts. We’ve seen devel-
opers use Lambda functions on a schedule to periodically ping their websites to see if
they’re online and send an email or a text message if they’re not. There are Lambda
blueprints available for this (a blueprint is a template with sample code that can be
selected when creating a new Lambda function). And we’ve seen developers write
Lambda functions to perform nightly downloads of files off their servers and send
daily account statements to users. Repetitive tasks such as file backup and file valida-
tion can also be done easily with Lambda thanks to the scheduling capability that you
can set and forget.

19Architectures
2.1.6 Bots and skills

Another popular use of Lambda functions and serverless technologies is to build bots
(a bot is an app or a script that runs automated tasks) for services such as Slack (a pop-
ular chat system—https://slack.com). A bot made for Slack can respond to com-
mands, carry out small tasks, and send reports and notifications. We, for example,
built a Slack bot in Lambda to report on the number of online sales made each day via
our education platform. And we’ve seen developers build bots for Telegram, Skype,
and Facebook’s messenger platform.

 Similarly, developers write Lambda functions to power Amazon Echo skills. Ama-
zon Echo is a hands-free speaker that responds to voice commands. Developers can
implement skills to extend Echo’s capabilities even further (a skill is essentially an app
that can respond to a person’s voice; for more information, see http://amzn.to/
2b5NMFj). You can write a skill to order a pizza or quiz yourself on geography. Ama-
zon Echo is driven entirely by voice, and skills are powered by Lambda.

2.2 Architectures
The two overarching architectures that we’ll discuss in this book are compute as back
end (that is, back ends for web and mobile applications) and compute as glue (pipelines
built to carry out workflows). These two architectures are complementary. It’s highly
likely that you’ll build and combine these architectures if you end up working on any
kind of real-world serverless system. Most of the architectures and patterns described
in this chapter are specializations and variations of these two to some extent.

2.2.1 Compute as back end

The compute-as-back-end architecture describes an approach where a serverless com-
pute service such as Lambda and third-party services are used to build a back end for
web, mobile, and desktop applications. You may note in figure 2.1 that the front end
links directly to the database and an authentication service. This is because there’s no
need to put every service behind an API Gateway if the front end can communicate
with them in a secure manner (for example, using delegation tokens; chapters 5 and 9
discuss this in more detail). One of the aims of this architecture is to allow the front
end to communicate with services, encompass custom logic in Lambda functions, and
provide uniform access to functions via a RESTful interface.

 In chapter 1, we described our principles of serverless architectures. Among them
we mentioned thicker front ends (principle 4) and encouraged the use of third-party
services (principle 5). These two principles are particularly relevant if you’re building
a serverless back end rather than event-driven pipelines. We find that good serverless
systems try to minimize the scope and the footprint of Lambda functions so that these
functions do only the bare minimum (call them nano functions, if you will) and primar-
ily focus on the tasks that must not be done in the front end because of privacy or
security concerns. Nevertheless, finding the right level of granularity for a function

https://slack.com
http://amzn.to/2b5NMFj
http://amzn.to/2b5NMFj
http://amzn.to/2b5NMFj

20 CHAPTER 2 Architectures and patterns
can be a challenging task. Make functions too granular and you’ll end up with a
sprawling back end, which can be painful to debug and maintain after a long time.
Ignore granularity and you’ll risk building mini-monoliths that nobody wants (one
helpful lesson we’ve learned is to try to minimize the number of data transformations
in a Lambda function to keep complexity under control).

A CLOUD GURU

A Cloud Guru (https://acloud.guru) is an online education platform for solution
architects, system administrators, and developers wanting to learn Amazon Web Ser-
vices. The core features of the platform include (streaming) video courses,
practice exams and quizzes, and real-time discussion forums. A Cloud Guru is also an
e-commerce platform that allows students to buy courses and watch them at their
leisure. Instructors who create courses for A Cloud Guru can upload videos directly to
an S3 bucket, which are immediately transcoded to a number of different formats
(1080p, 720p, HLS, WebM, and so on) and are made available for students to view.
The Cloud Guru platform uses Firebase as its primary client-facing database, which
allows clients to receive updates in near real time without refreshing or polling (Fire-
base uses web sockets to push updates to all connected devices at the same time). Fig-
ure 2.2 shows a cut down version of the architecture used by A Cloud Guru.

The client can, in a lot of cases,
communicate with services
directly rather than relaying
through the API Gateway.

The API Gateway creates a RESTful interface and hides
Lambda functions and other services behind it.
Lambda functions can carry out custom tasks and
communicate with other services.

Compute as back end

API
Gateway

Lambda
(save profile)

Lambda
(calculate

cost)

Lambda
(submit job)

Lambda
(process job)

File
storage

Database

Message
pipeline

Database

Authentication
service

Database

Search
service

Figure 2.1 This is a rather simple back-end architecture for storing, calculating, and retrieving data.
The front end can read directly from the database and securely communicate with different services.
It can also invoke Lambda functions through the API Gateway.

https://acloud.guru

21Architectures
Note the following about the Cloud Guru architecture given in figure 2.2:

 The front end is built using AngularJS and is hosted by Netlify (https://
netlify.com). You could use S3 and CloudFront (CloudFront is a global content
delivery network provided by AWS) instead of Netlify if you wanted to.

 Auth0 is used to provide registration and authentication facilities. It creates del-
egation tokens that allow the front end to directly and securely communicate
with other services such as Firebase.

 Firebase is the real-time database used by A Cloud Guru. Every client creates a
connection to Firebase using web sockets and receives updates from it in near
real time. This means that clients receive updates as they happen without hav-
ing to poll.

 Lecturers who create content for the platform can upload files (usually videos,
but they could be other types) straight to S3 buckets via their browser. For this
to work, the web application invokes a Lambda function (via the API Gateway)
to request the necessary upload credentials first. As soon as credentials are
retrieved, the client web application begins a file upload to S3 via HTTP. All of
this happens behind the scenes and is opaque to the user.

 Once a file is uploaded to S3, it automatically kicks off a chain of events (our
event-driven pipeline) that transcodes the video, saves new files in another

Forum questions and
answers are added to a
database and indexed
for search.

Students are given
permission to read files
from S3 via CloudFront.

Lecturers are given
permission to upload
to S3.

API
Gateway

Auth0
Netlify
(SPA)

Firebase CloudSearch S3
(file storage)

Lambda
(transcode

start)

S3
(file storage)

Lambda
(transcode

finish)
Firebase

CloudSearch

Media Transcoding Pipeline

Firebase

S3
(file storage)

CloudFront

Lambda
(forum

answer)

Lambda
(answer
submit)

Lambda
(read file)

Lambda
(upload file)

Figure 2.2 This is a simplified version of the Cloud Guru architecture. Current production architecture has
additional Lambda functions and services for performing payments, managing administration, gamification,
reporting, and analytics.

https://netlify.com
https://netlify.com
https://netlify.com

22 CHAPTER 2 Architectures and patterns
bucket, updates the database, and immediately makes transcoded videos avail-
able to other users. Throughout this book you’ll write a similar system and see
how it works in detail.

 To view videos, users are given permission by another Lambda function. Permis-
sions are valid for 24 hours, after which they must be renewed. Files are
accessed via CloudFront.

 Users can submit questions and answers to the forums. Questions, answers, and
comments are recorded in the database. This data is then sent for indexing to
AWS CloudSearch, which is a managed searching and indexing service from
AWS. This allows users to search and view questions, answers, and comments
that other people have written.

INSTANT

Instant (http://instant.cm) is a startup that helps website owners add content man-
agement facilities—including inline text editing and localization—to their static web-
sites. The founders, Marcel Panse and Sander Nagtegaal, describe it as instant content
management system. Instant works by adding a small JavaScript library to a website
and making a minor change to HTML. This allows developers and administrators to
edit text elements directly via the website’s user interface. Draft edits made to the text
are stored in DynamoDB (see appendix A on DynamoDB). The final, production ver-
sion of the text (that the end user sees) is served as a JSON file from an S3 bucket via
Amazon CloudFront (figure 2.3).

The JavaScript widget provided by Instant
allows you to log in to your account,
discard the current edit, or make it live.

With Instant you can edit the text of your
website and then have it published for
everyone else to see.

Figure 2.3 You can use Instant to add support for multiple languages, which makes it a powerful
service if you need to localize your website and don’t have a content management system.

http://instant.cm

23Architectures
A simplified version of the Instant architecture is shown in figure 2.4. Note the follow-
ing about the Instant architecture:

 (This is not shown in the diagram.) A JavaScript library must be added to a web-
site that wants to use Instant. Authentication is done via Google (with the user’s
own Google account) by clicking a widget that appears in the website at a spe-
cial URL (for example, yourwebsite.com/#edit). After successful authentication
with Google, the Instant JavaScript widget authenticates with AWS Cognito,
which provisions temporary AWS IAM credentials (see appendix A for informa-
tion on AWS Cognito).

 Route 53, Amazon’s Domain Name System (DNS) web service, is used to route
requests either to CloudFront or to the API Gateway. (See appendix A for more
information on Route 53.)

 As a user edits text on their website, the Instant widget sends changes to the API
Gateway, which invokes a Lambda function. This Lambda function saves drafts
to DynamoDB, along with relevant metadata.

 When the user decides to publish their edit (by selecting an option in the
Instant widget), data from DynamoDB is read and saved in S3 as a static JSON
file. This file is served from S3 via CloudFront. The Instant widget parses the
JSON file received from CloudFront and updates the text on the website for the
end user to see.

When text is
published, it is
pushed as a
JSON file to S3.

instant.cm

data.instant.cm

api.instant.cm

Draft versions are stored in DynamoDB.

Route 53
(DNS)

API
Gateway

CloudFront

CloudFront

S3 (data)

Lambda DynamoDB

S3 (website)

Figure 2.4 The Instant system uses AWS Lambda, API Gateway, DynamoDB, S3, CloudFront, and
Amazon Route 53 as its main components. The system scales to support many clients.

24 CHAPTER 2 Architectures and patterns
Marcel and Sander make a few points about their system:

The use of Lambda functions leads to an architecture of microservices quite naturally.
Every function is completely shielded from the rest of the code. It gets better: the same
Lambda function can fire in parallel in almost infinite numbers—and this is all done
completely automated.

In terms of cost, Marcel and Sander share the following:

With our serverless setup, we primarily pay for data transfer through CloudFront, a tiny
bit for storage and for each millisecond that our Lambda functions run. Since we know
on average what a new customer uses, we can calculate the costs per customer exactly.
That’s something we couldn’t do in the past, when multiple users were shared across the
same infrastructure.

Overall, Marcel and Sander find that adopting an entirely serverless approach has
been a winner for them primarily from the perspectives of operations, performance,
and cost.

2.2.2 Legacy API proxy

The legacy API proxy architecture is an innovative example of how serverless technol-
ogies can solve problems. As we mentioned in section 2.1.4, systems with outdated ser-
vices and APIs can be difficult to use in modern environments. They might not conform
to modern protocols or standards, which might make interoperability with current sys-
tems harder. One way to alleviate this problem is to use the API Gateway and Lambda
in front of those legacy services. The API Gateway and Lambda functions can transform
requests made by clients and invoke legacy services directly, as shown in figure 2.5.

Most legacy services will
require a Lambda function
to convert data and
correctly invoke them.

API
Gateway

Lambda
(convert/
invoke)

Lambda
(convert/
invoke)

Lambda
(convert/
invoke)

Legacy API

Legacy API

Legacy
service
(SOAP)

Legacy API

Legacy
service
(XML)

Figure 2.5 The API proxy architecture is used to build a modern API interface over old services and APIs.

25Architectures
The API Gateway can transform requests (to an extent) and issue requests against
other HTTP endpoints (see chapter 7). But it works only in a number of fairly basic
(and limited) use cases where only JSON transformation is needed. In more complex
scenarios, however, a Lambda function is needed to convert data, issue requests, and
process responses. Take a Simple Object Access Protocol (SOAP) service as an exam-
ple. You’d need to write a Lambda function to connect to a SOAP service and then
map responses to JSON. Thankfully, there are libraries that can take care of much of
the heavy lifting in a Lambda function (for example, there are SOAP clients that can
be downloaded from the npm registry for this purpose; see https://www.npmjs.com/
package/soap).

2.2.3 Hybrid

As we mentioned in chapter 1, serverless technologies and architectures are not an all-
or-nothing proposition. They can be adopted and used alongside traditional systems.
The hybrid approach may work especially well if a part of the existing infrastructure is
already in AWS. We’ve also seen adoption of serverless technologies and architectures
in organizations with developers initially creating standalone components (often to
do additional data processing, database backups, and basic alerting) and over time
integrating these components into their main systems; see figure 2.6.

Any legacy system can use functions and services. This
can allow you to slowly introduce serverless technologies
without disturbing too much of the world order.

API
Gateway

Load
balancer

Database

File
storage

Lambda
(calculate

cost)

Server Server

Lambda
(save

profile)

Lambda
function

Figure 2.6 The hybrid approach is useful if you have a legacy system that uses servers.

https://www.npmjs.com/package/soap
https://www.npmjs.com/package/soap
https://www.npmjs.com/package/soap

26 CHAPTER 2 Architectures and patterns
EFFICIENT HYBRID-SERVERLESS JOB-PROCESSING SYSTEM

EPX Labs (http://epxlabs.com) proudly state that the “future of IT Operations and
Application Development is less about servers and more about services.” They specialize
in serverless architectures, with one of their recent solutions being a hybrid serverless sys-
tem designed to carry out maintenance and management jobs on a distributed server-
based infrastructure running on Amazon’s Elastic Compute Cloud (EC2) (figure 2.7).

Evan Sinicin and Prachetas Prabhu of EPX Labs describe the system they had to work
with as a “multi-tenant Magento (https://magento.com) application running on mul-
tiple frontend servers. Magento requires certain processes to run on the servers such
as cache clearing and maintenance operations. Additionally, all site management
operations such as build, delete, and modify require a mix of on-server operations
(building out directory structures, modifying configuration files, etc.) as well as data-
base operations (creating new database, modifying data in database, and so on).”
Evan and Prachetas created a scalable serverless system to assist with these tasks.
Here’s how they describe how the system is built and the way it works:

 The system is broken into two parts: the engine, which is responsible for creat-
ing, dispatching, and managing jobs, and the task processors.

DynamoDB

SNS SNS
report

SNS
topics

Shared SNS

Lambda

Tasks Lambdas

Fanout SQS

VPC

Engine

Lambda

Lambda Lambda

MySQL

MySQL

SQS

SQS

SQS
EC2

EC2

EC2Lambda
creator

Lambda
scheduler

Lambda
reporter

Front end
and users

Fanout
SNS

Shared SQS

Figure 2.7 The Hybrid-Serverless Job-Processing System designed by EPX Labs

http://epxlabs.com
https://magento.com

27Architectures
 The engine consists of several Lambda functions fronted by the Simple Notifi-
cation Service (SNS—see appendix A for more information). Task processors
are a mix of Lambda and Python processes.

 A job is created by sending JSON data to the creator (part of the engine) via an
SNS topic. Each job is broken down into a set of discrete tasks. Tasks fall into
three categories:
– Individual server tasks—must be executed on all servers.
– Shared server tasks—must be executed by one server.
– Lambda tasks—executed by a Lambda function.

 Once created in DynamoDB, the job is sent to the scheduler, which identifies
the next task to be run and dispatches it. The scheduler dispatches the task
based on the type of task, either pinging a task Lambda via SNS or placing mes-
sages onto the shared or fan-out Simple Queue Service (SQS) queues (see sec-
tion 2.3 for more information on these patterns).

 Task execution on the servers is handled by custom-written Python services.
Two services run on each server; one polls the shared SQS queue for shared
server tasks and the other polls the individual server queue (specific to an EC2
instance). These services continually poll the SQS queues for incoming task
messages and execute them based on the contained information. To keep this
service stateless, all data required for processing is encapsulated in the
encrypted message.

 Each Lambda task corresponds to a discrete Lambda function fronted by an
SNS topic. Typically, Lambda tasks operate on the MySQL databases backing
Magento; therefore, they run in the virtual private cloud (VPC). To keep these
Lambda functions stateless, all data required for processing is encapsulated in
the encrypted message itself.

 Upon completion or failure, the task processors will report the success or fail-
ure to the engine by invoking the reporter Lambda via SNS. The reporter
Lambda will update the job in DynamoDB and invoke the scheduler to do any
cleanup (in the case of a failure) or dispatch the next task.

2.2.4 GraphQL

GraphQL (http://graphql.org) is a popular data query language developed by Face-
book in 2012 and released publicly in 2015. It was designed as an alternative to REST
(Representational State Transfer) because of REST’s perceived weaknesses (multiple
round-trips, over-fetching, and problems with versioning). GraphQL attempts to solve
these problems by providing a hierarchical, declarative way of performing queries
from a single end point (for example, api/graphql); see figure 2.8.

 GraphQL gives power to the client. Instead of specifying the structure of the
response on the server, it’s defined on the client (http://bit.ly/2aTjlh5). The client
can specify what properties and relationships to return. GraphQL aggregates data
www.allitebooks.com

http://graphql.org
http://bit.ly/2aTjlh5
http://www.allitebooks.org

28 CHAPTER 2 Architectures and patterns
from multiple sources and returns it to the client in a single round trip, which makes
it an efficient system for retrieving data. According to Facebook, GraphQL serves mil-
lions of requests per second from nearly 1,000 different versions of its application.

 In serverless architectures, GraphQL is usually hosted and run from a single
Lambda function, which can be connected to an API Gateway (there are also hosted
solutions of GraphQL like scaphold.io). GraphQL can query and write to multiple
data sources, such as DynamoDB tables, and assemble a response that matches the
request. A serverless GraphQL is a rather interesting approach you might want to look
at next time you need to design an interface for your API and query data. Check out
the following articles if you want to implement GraphQL in a serverless architecture:

 “A Serverless Blog leveraging GraphQL to offer a REST API with only 1 end-
point” (https://github.com/serverless/serverless-graphql-blog)

 “Serverless GraphQL” (http://bit.ly/2aN7Pc2)
 “Pokémon Go and GraphQL with AWS Lambda” (http://bit.ly/2aIhCud)

2.2.5 Compute as glue

The compute-as-glue architecture shown in figure 2.9 describes the idea that we can
use Lambda functions to create powerful execution pipelines and workflows. This
often involves using Lambda as glue between different services, coordinating and
invoking them. With this style of architecture, the focus of the developer is on the
design of their pipeline, coordination, and flow of data. The parallelism of serverless
compute services like Lambda helps to make these architectures appealing. The
example you’re going to build in this book uses this pattern to create an event-driven
pipeline that transcodes videos (chapter 3, in particular, focuses on creating pipelines
and applying this pattern to solve a complex task rather easily).

Only a single GraphQL Lambda function is needed
to query multiple data sources. It can be a viable
alternative to building a full RESTful interface.

API Gateway
/GraphQL

Lambda
(GraphQL)

Database

Database

Database

Database

Database

Figure 2.8 The GraphQL and Lambda architecture has become popular in the serverless community.

scaphold.io
https://github.com/serverless/serverless-graphql-blog
http://bit.ly/2aN7Pc2
http://bit.ly/2aIhCud

29Architectures
LISTHUB PROCESSING ENGINE

EPX Labs has built a system to process large real estate XML feeds (figure 2.10). Evan
Sinicin and Prachetas Prabhu say that the goal of their system is “to pull the feed, sep-
arate the large file into single XML documents, and process them in parallel. Process-
ing includes parsing, validation, hydration, and storing.”

Lambda
(create

thumbnail)

Notification
service
(SNS)

File
storage Database

File
storage (S3)

Lambda
(write log)

Log service
(CloudWatch)

Search
service

Notification
service
(SNS)

Lambda
(update)

Figure 2.9 The compute-as-glue architecture uses Lambda functions to connect different services
and APIs to achieve a task. In this pipeline, a simple image transformation results in a new file, an
update to a database, an update to a search service, and a new entry to a log service.

External data sources
(ListHub)

Lambda
(polling)

S3
(XML NoSQL

data store)

S3
(XML NoSQL
data store)

EC2 container
service (ECS)

S3
(RETS file

storage)

Simple queuing
service (SQS)

Lambda
(processing,

validation, CRUD)

External
media storage

Lambda
(copy media

to S3)

S3
(media)

Figure 2.10 EPX Labs has built a system to effortlessly process large (10 GB+) XML documents.

30 CHAPTER 2 Architectures and patterns
 They go on to describe how the system works in more detail:

 The system was designed to process a real estate listing XML feed. The feed is pro-
vided by ListHub as a massive (10 GB+) XML document with millions of nested
listings. This file is provided via S3 for direct download and processing. The list-
ings conform to the Real Estate Standards Organization (RETS) standard.

 ListHub does not have any sort of push capabilities, so the polling Lambda
checks the last-modified metadata of the S3 object to see if a new feed has been
posted. This usually occurs every 12 hours or so.

 Once a new feed has been published, the polling Lambda spins up an EC2 Con-
tainer Service (ECS) container to carry out the parsing of the massive file. ECS is
used because this process can take a long time (Lambda can run for a maxi-
mum of 5 minutes). The ECS container has a Clojure program that asynchro-
nously processes the feed file and places the parsed information into S3.

 EPX Labs uses S3 as a NoSQL store. Using an S3 PutObject event trigger, each
new XML listing placed into S3 triggers a Lambda that carries out the validation
and hydration processes. Another S3 bucket stores processed listing IDs (as
object keys). The validation Lambda can quickly verify that the listing hasn’t
been processed on a previous run by checking whether the ID/key already
exists.

 The validation Lambda also triggers the hydration Lambda (“Copy Media to S3
Lambda”). This Lambda copies assets such as pictures and videos to an S3
bucket so they can be displayed on the front end.

 The final step is to save the relevant, normalized listing data into the final data
store that serves the front end and other systems. To avoid overwhelming the
data store with writes, the listing data is put onto an SQS queue so it can be pro-
cessed at a rate the final data store can handle.

 Evan and Prachetas say that their approach yields a number of benefits, includ-
ing that they can use S3 as a cheap, high-performance, and scalable NoSQL
data store and that they can use Lambda to undertake massively concurrent
processing.

2.2.6 Real-time processing

As discussed in section 2.1.3, Amazon Kinesis Streams is a technology that can help
process and analyze large amounts of streaming data. This data can include logs,
events, transactions, social media feeds—virtually anything you can think of—as
shown in figure 2.11. It’s a good way to continuously collect data that may change over
time. Lambda is a perfect tool for Kinesis Streams because it scales automatically in
response to how much data there is to process.

31Patterns
With Kinesis Streams you can accomplish the following:

 Control how much data is passed into a Kinesis stream before a Lambda func-
tion is invoked and how data gets to Kinesis in the first place

 Put a Kinesis stream behind an API Gateway
 Push data to the stream directly from a client or have a Lambda function add

records to it

2.3 Patterns
Patterns are architectural solutions to problems in software design. They’re designed
to address common problems found in software development. They’re also an excel-
lent communications tool for developers working together on a solution. It’s far easier
to find an answer to a problem if everyone in the room understands which patterns
are applicable, how they work, their advantages, and their disadvantages. The patterns
presented in this section are useful for solving design problems in serverless architec-
tures. But these patterns aren’t exclusive to serverless. They were used in distributed
systems long before serverless technologies became viable. Apart from the patterns
presented in this chapter, we recommend that you become familiar with patterns
relating to authentication (see chapter 4 for a discussion of the federated identity pat-
tern), data management (CQRS, event sourcing, materialized views, sharding), and
error handling (retry pattern). Learning and applying these patterns will make you a
better software engineer, regardless of the platform you choose to use.

Kinesis Streams can ingest a lot of messages
that can be processed with Lambda functions.
Data-intensive applications that perform real-time
reporting and analytics can benefit from this architecture.

File
storage (S3)

Lambda
(retrieve

batch of 100)

Database

Lambda
(retrieve

batch of 50)

Kinesis
Streams

Kinesis
Streams

Events/Messages

Events/Messages

Figure 2.11 Lambda is a perfect tool to process data in near real time.

32 CHAPTER 2 Architectures and patterns
2.3.1 Command pattern

With the GraphQL architecture (section 2.2.4), we discussed the fact that a single end
point can be used to cater to different requests with different data (a single GraphQL
endpoint can accept any combination of fields from a client and create a response
that matches the request). The same idea can be applied more generally. You can
design a system in which a specific Lambda function controls and invokes other func-
tions. You can connect it to an API Gateway or invoke it manually and pass messages to
it to invoke other Lambda functions.

 In software engineering, the command pattern (figure 2.12) is used to “encapsu-
late a request as an object, thereby letting you parameterize clients with different
requests, queue or log requests, and support undoable operations” because of the
“need to issue requests to objects without knowing anything about the operation
being requested or the receiver of the request” (http://bit.ly/29ZaoWt). The com-
mand pattern allows you to decouple the caller of the operation from the entity that
carries out the required processing.

 In practice, this pattern can simplify the API Gateway implementation, because you
may not want or need to create a RESTful URI for every type of request. It can also make
versioning simpler. The command Lambda function could work with different versions
of your clients and invoke the right Lambda function that’s needed by the client.

WHEN TO USE THIS

This pattern is useful if you want to decouple the caller and the receiver. Having a way
to pass arguments as an object, and allowing clients to be parametrized with different
requests, can reduce coupling between components and help make the system more
extensible. Be aware of using this approach if you need to return a response to the API
Gateway. Adding another function will increase latency.

A command function is used to
invoke other functions and services.
It knows which functions to invoke
in response to data/events and how
to call those functions.

Lambda
function

Lambda
function

File
storage

Database

Lambda
function

Lambda
function

Lambda
function

(command)
API Gateway

Figure 2.12 The command pattern is used to invoke and control functions and services from a single
function.

http://bit.ly/29ZaoWt

33Patterns
2.3.2 Messaging pattern

Messaging patterns, shown in figure 2.13, are popular in distributed systems because
they allow developers to build scalable and robust systems by decoupling functions
and services from direct dependence on one another and allowing storage of
events/records/requests in a queue. The reliability comes from the fact that if the
consuming service goes offline, messages are retained in the queue and can still be
processed at a later time.

This pattern features a message queue with a sender that can post to the queue and a
receiver that can retrieve messages from the queue. In terms of implementation in
AWS, you can build this pattern on top of the Simple Queue Service. Unfortunately, at
the moment Lambda doesn’t integrate directly with SQS, so one approach to address-
ing this problem is to run a Lambda function on a schedule and let it check the queue
every so often.

 Depending on how the system is designed, a message queue can have a single
sender/receiver or multiple senders/receivers. SQS queues typically have one receiver
per queue. If you needed to have multiple consumers, a straightforward way to do it is
to introduce multiple queues into the system (figure 2.14). A strategy you could apply
is to combine SQS with Amazon SNS. SQS queues could subscribe to an SNS topic;
pushing a message to the topic would automatically push the message to all of the sub-
scribed queues.

 Kinesis Streams is an alternative to SQS, although it doesn’t have some features,
such as dead lettering of messages (http://amzn.to/2a3HJzH). Kinesis Streams inte-
grates with Lambda, provides an ordered sequence of records, and supports multiple
consumers.

Similar to the command pattern, there
is one function that reads messages off
a queue. It invokes appropriate Lambda
functions based on the message.

Lambda
function

Lambda
function

Lambda
function

Lambda
function

(dispatch)

Queue (SQS) /
stream (Kinesis)

Data source

Data source

Data source

Figure 2.13 The messaging pattern, and its many variations, are popular in distributed environments.

http://amzn.to/2a3HJzH

34 CHAPTER 2 Architectures and patterns
WHEN TO USE THIS

This is a popular pattern used to handle workloads and data processing. The queue
serves as a buffer, so if the consuming service crashes, data isn’t lost. It remains in the
queue until the service can restart and begin processing it again. A message queue can
make future changes easier, too, because there’s less coupling between functions. In
an environment that has a lot of data processing, messages, and requests, try to mini-
mize the number of functions that are directly dependent on other functions and use
the messaging pattern instead.

2.3.3 Priority queue pattern

A great benefit of using a platform such as AWS and serverless architectures is that
capacity planning and scalability are more of a concern for Amazon’s engineers than
for you. But in some cases, you may want to control how and when messages get dealt
with by your system. This is where you might need to have different queues, topics, or
streams to feed messages to your functions. Your system might go one step further and
have entirely different workflows for messages of different priority. Messages that need
immediate attention might go through a flow that expedites the process by using
more expensive services and APIs with more capacity. Messages that don’t need to be
processed quickly can go through a different workflow, as shown in figure 2.15.

 This pattern might involve the creation and use of entirely different SNS topics,
Kinesis Streams, SQS queues, Lambda functions, and even third-party services. Try to

Use multiple queues/streams to decouple
multiple components in your system.

Lambda
function

Lambda
function

Lambda
function

Lambda
function

(dispatch)

Queue (SQS) /
stream (Kinesis)

Lambda
function

Lambda
function

Lambda
function

(dispatch)

Queue #2 (SQS) /
stream #2 (Kinesis)

Data source

Data source

Data source

Figure 2.14 Your system may have multiple queues/streams and Lambda functions to process all
incoming data.

35Patterns
use this pattern sparingly, because additional components, dependencies, and work-
flows will result in more complexity.

WHEN TO USE THIS

This pattern works when you need to have a different priority on processing of mes-
sages. Your system can implement workflows and use different services and APIs to
cater to many types of needs and users (for example, paying versus nonpaying users).

2.3.4 Fan-out pattern

Fan-out is a type of messaging pattern that’s familiar to many users of AWS. Generally,
the fan-out pattern is used to push a message out to all listening/subscribed clients of
a particular queue or a message pipeline. In AWS, this pattern is usually implemented
using SNS topics that allow multiple subscribers to be invoked when a new message is
added to a topic. Take S3 as an example. When a new file is added to a bucket, S3 can
invoke a single Lambda function with information about the file. But what if you need
to invoke two, three, or more Lambda functions at the same time? The original func-
tion could be modified to invoke other functions (like the command pattern), but
that’s a lot of work if all you need is to run functions in parallel. The answer is to use
the fan-out pattern using SNS; see figure 2.16.

Messages with different priority can
be dealt with by different workflows
and different Lambda functions.

Lambda
function

Lambda
function

Lambda
function

Priority 1

Priority 2

Priority 3

Lambda
function

Lambda
function

Lambda
function

Lambda
function

Lambda
function Notification service (SNS) / Queue (SQS)

Notification service (SNS) / Queue (SQS)

Notification service (SNS) / Queue (SQS)

Notification service (SNS) / Queue (SQS)

Figure 2.15 The priority queue pattern is an evolution of the messaging pattern.

36 CHAPTER 2 Architectures and patterns
SNS topics are communications/messaging channels that can have multiple publish-
ers and subscribers (including Lambda functions). When a new message is added to a
topic, it forces invocation of all subscribers in parallel, thus causing the event to fan
out. Going back to the S3 example discussed earlier, instead of invoking a single-
message Lambda function, you can configure S3 to push a message onto an SNS topic
to invoke all subscribed functions at the same time. It’s an effective way to create
event-driven architectures and perform operations in parallel. You’ll implement this
yourself in chapter 3.

WHEN TO USE THIS

This pattern is useful if you need to invoke multiple Lambda functions at the same
time. An SNS topic will try and retry to invoke your Lambda functions if it fails to
deliver the message or if the function fails to execute. Furthermore, the fan-out pat-
tern can be used for more than just invocation of multiple Lambda functions. SNS top-
ics support other subscribers such as email and SQS queues. Adding a new message to
a topic can invoke Lambda functions, send an email, or push a message on to an SQS
queue, all at the same time.

2.3.5 Pipes and filters pattern

The purpose of the pipes and filters pattern is to decompose a complex processing task
into a series of manageable, discrete services organized in a pipeline (figure 2.17).
Components designed to transform data are traditionally referred to as filters, whereas

A message added to an SNS topic can force invocation
of multiple Lambda functions in parallel.

Lambda
function Database

Lambda
function

Lambda
function

Lambda
function

Lambda
function

Notification
service (SNS)

Lambda
function

Lambda
function

Lambda
function

Notification
service (SNS)

Figure 2.16 The fan-out pattern is useful because many AWS services (such as S3) can’t invoke
more than one Lambda function when an event takes place.

37Patterns
connectors that pass data from one component to the next component are referred to
as pipes. Serverless architecture lends itself well to this kind of pattern. This is useful for
all kinds of tasks where multiple steps are required to achieve a result.

 We recommend that every Lambda function be written as a granular service or a
task with the single-responsibility principle in mind. Inputs and outputs should be
clearly defined (that is, there should be a clear interface) and any side effects mini-
mized. Following this advice will allow you to create functions that can be reused in
pipelines and more broadly within your serverless system. You might notice that this
pattern is similar to the compute-as-glue architecture we described previously. The
compute-as-glue architecture is closely inspired by this pattern.

WHEN TO USE THIS

Whenever you have a complex task, try to break it down into a series of functions (a
pipeline) and apply the following rules:

 Make sure your function follows the single-responsibility principle.
 Make the function idempotent; that is, your function should always produce the

same output for given input.
 Clearly define an interface for the function. Make sure inputs and outputs are

clearly stated.
 Create a black box. The consumer of the function shouldn’t have to know how

it works, but it must know to use it and what kind of output to expect every
time.

Functions and services
are reused in pipelines.

Data source Lambda
function

Lambda
function

Notification
service (SNS)

Lambda
function

Database File
storage

Data source Lambda
function

Search
service

Lambda
function

Lambda
function

Figure 2.17 This pattern encourages the construction of pipelines to pass and transform data from its
destination (sink).

38 CHAPTER 2 Architectures and patterns
2.4 Summary
This chapter focused on use cases, architectures, and patterns. These are critical to
understand and consider before embarking on a journey to build your system. The
architectures we discussing include the following:

 Compute as back end
 Compute as glue
 Legacy API wrapper
 Hybrid
 GraphQL

 Real-time processing

In terms of patterns, we covered these:

 Command pattern
 Messaging pattern
 Priority queue pattern
 Fan-out pattern
 Pipes and filters pattern

Throughout the rest of this book, we’re going to apply elements we explored in this
chapter, with a particular focus on creating compute-as-back-end and compute-as-glue
architectures. In the next chapter, you’ll begin building your serverless applications by
implementing the compute-as-glue architecture and trying the fan-out pattern.

Building a
serverless application
To give you a thorough understanding of serverless architectures, you’re going to
build a serverless application. Specifically, you’ll build a video-sharing website, a
YouTube mini clone, which we’ll call 24-Hour Video. This application will have a
website with user registration and authentication capabilities. Your users will be
able to watch and upload videos. Any videos uploaded to the system will be
transcoded to different resolutions and bitrates so that people on different connec-
tions and devices will be able to watch them. You’ll use a number of AWS services to
build your application, including AWS Lambda, S3, Elastic Transcoder, SNS, and
non-AWS services such as Auth0 and Firebase. In this chapter, we’ll focus on build-
ing your serverless pipeline for transcoding uploaded videos.

This chapter covers
 Writing, testing, and deploying Lambda functions

 Creating a basic event-driven system for
transcoding videos

 Using AWS services such as Simple Storage
Service, Simple Notification Service, and the
Elastic Transcoder
39

40 CHAPTER 3 Building a serverless application
3.1 24-Hour Video
Before we jump in to the nitty-gritty of the chapter, let’s step ahead and look at what
you’re going to accomplish by the time you get to the final chapter. Figure 3.1 shows a
10,000-foot view of the major components you’re going to develop. These include a
transcoding pipeline, a website, and a custom API. At the end, you’ll also have a full-
fledged system with a database and a user system.

The website you’re going to build will look like figure 3.2. Videos uploaded by your
users will be shown on the main page. Your users will be able to click any video and
play it.

Authentication

Custom API

24-hour video: system components

Web application
Video upload

Video transcoder

Media storage

Video list database

Figure 3.1 These are the major components you’ll create as you work through the book.

Figure 3.2 The website you’ll build for 24-Hour Video

4124-Hour Video
The overall purpose of building 24-Hour Video throughout the book is threefold:

 To demonstrate how easy it is to create a serverless back end using AWS Lambda
and other services. Each chapter will add new functionality to 24-Hour Video.

 To implement and explore different serverless architectures and patterns. We’ll
also show you useful tips and tricks.

 To allow you to try exercises found at the end of every chapter. Several exercises
will assume that you’ve built 24-Hour Video and ask you to implement addi-
tional features or make changes. These exercises are great to test whether you
understand new concepts. They’re fun, too!

Before you begin, however, you need to set up your machine, install the necessary
tooling, and configure a few services in AWS. Details for that process are in appendix
B, “Installation and setup.” Go through appendix B first, and then come back here to
begin your adventure!

3.1.1 General requirements

You’re going to build an important part of your system in this chapter: an event-driven
pipeline that will take uploaded videos and encode them to different formats and
bitrates. 24-Hour Video will be an event-driven, push-based system where the workflow
to encode videos will be triggered automatically by an upload to an S3 bucket. Figure 3.3
shows the two main components you’re going to work on.

 A quick note about AWS costs: most of AWS services have a free tier. By following
the 24-Hour Video example, you should stay within the free tier of most services. Elas-
tic Transcoder, however, is likely to be the one that costs a little. Its free tier includes
20 minutes of SD output and 10 minutes of HD (720p or above) output per month (a
minute refers to the length of the source video, not transcoder execution time). As
usual, costs are dependent on the region where Elastic Transcoder is used. In the east-
ern part of the United States, for example, the price for 1 minute of HD output per

Create a serverless transcoding pipeline in AWS

Video transcoder

Media storage

Figure 3.3 The serverless transcoding pipeline will be your first challenge.

42 CHAPTER 3 Building a serverless application
month is $.03. This makes a 10-minute source file cost 30 cents to encode. Elastic
Transcoder pricing for other regions can be found at https://aws.amazon.com/elast-
ictranscoder/pricing/.

 The S3 free tier allows users to store 5 GB of data with standard storage, issue
20,000 GET requests and 2,000 PUT requests, and transfer 15 GB of data out each
month. Lambda provides a free tier with 1M free requests and 400,000 GB-seconds of
compute time. You should be well within the free tiers of those services with your basic
system.

 The following are the high-level requirements for 24-Hour Video:

 The transcoding process will convert uploaded source videos to three different
resolutions and bitrates: generic 720p, generic 1080p, and a web/YouTube/
Facebook–friendly 720p with a lower bitrate.

 There will be two S3 buckets. Source files will go into the upload bucket. Newly
transcoded files will be saved to the transcoded videos S3 bucket.

 The permissions of each transcoded file will be modified to make them publicly
viewable and downloadable.

 After each successful transcoding, you’ll be sent an email notification with
information about the file. This will be done using SNS.

 A small JSON file with video metadata will be created and placed alongside each
transcoded video. This metadata will contain basic information about the file,
such as its size, number of streams, and duration.

To make things simpler to manage, you’ll set up a build and deployment system using
the Node Package Manager (npm). You’ll want to do it as early as possible to have an
automated process for testing, packaging Lambda functions, and deploying them to
AWS. You will, however, temporarily set aside other developmental and operational
aspects such as versioning or deployment and come back to them later.

3.1.2 Amazon Web Services

To create your serverless back end, you’ll use several services provided by AWS. These
include S3 for storage of files, Elastic Transcoder for video conversion, SNS for notifi-
cations, and Lambda for running custom code and orchestrating key parts of the sys-
tem. Refer to appendix A for a short overview of these services. For the most part,
you’ll use the following AWS services:

 Lambda will handle parts of the system that require coordination or can’t be
done directly by other services. You’ll create three Lambda functions:

 The first Lambda function will create and submit Elastic Transcoder jobs. It will
trigger automatically whenever a file is uploaded to the upload bucket.

 The second function will run whenever a new, transcoded video appears in the
transcoded videos bucket. This function will change the file’s permissions so
that it becomes publicly accessible. This will allow your users to view and down-
load the new file.

https://aws.amazon.com/elastictranscoder/pricing/
https://aws.amazon.com/elastictranscoder/pricing/

4324-Hour Video
 The third function will also run in response to the creation of a new, transcoded
file. It will analyze the video, create a metadata file, and save it in S3.

 Elastic Transcoder will encode videos to different resolutions and bitrates.
Default encoding presets will alleviate the need to create custom profiles for the
transcoder.

 SNS will issue notifications when a transcoded file is placed in the transcoded
videos bucket. This notification will be used to send an email with information
about the file and invoke the last two Lambda functions.

Figure 3.4 shows a detailed flow of the proposed approach. Note that the only point
where a user needs to interact with the system is at the initial upload stage. This figure
and the architecture may look complex, but we’ll break the system into manageable
chunks and tackle them one by one.

This part is implemented
in section 3.4

This part is implemented
in section 3.3

This part is implemented
in section 3.1

Upload new
video file

Create
transcode

job

Transcode
video2. Trigger

Lambda
4. Submit

Job

1. S3 Bucket

13a. S3 Bucket

13b. S3 Bucket

15b. S3 Bucket

11a. Lambda

11b. Lambda

10a. Trigger
Lambda

10b. Trigger
Lambda

12a. Update

12b. Get Object from
S3 for analysis

14b. Persist
Metadata file

3. Lambda 5. Elastic Transcoder 7. S3 Bucket

8. Trigger SNS

9. SNS

10a. Send
email

6. Transcode

Save
transcoded

video

Update
object

permissions

Retrieve
object

Save
metadata file

Change
object

permission

Create
metadata file

This part is implemented
in section 3.2

Dispatch
notification

Figure 3.4 This back end is built with S3, SNS, Elastic Transcoder, and Lambda. This figure may seem
complex initially, but we’ll break it down, and you’ll build a scalable serverless system in no time at all.

44 CHAPTER 3 Building a serverless application
3.1.3 Creating your first Lambda function

Now that you’ve taken care of the setup and configuration details in appendix B, it’s
time to write the first Lambda function. In the same directory as package.json, which
you created during installation, create a new file named index.js and open it in your
favorite text editor. This file will contain the first function. The important thing to
know is that you must define a function handler, which will be invoked by the Lambda
runtime. The handler takes three parameters—event, context, and callback—and is
defined as follows:

exports.handler = function(event, context, callback){}

Your Lambda function will be invoked from S3 as soon as a new file is placed in a bucket.
Information about the uploaded video will be passed to the Lambda function via the
event object. It will include the bucket name and the key of the file being uploaded.
This function will then prepare a job for the Elastic Transcoder; it will specify the input
file and all possible outputs. Finally, it will submit the job and write a message to an Ama-
zon CloudWatch Log stream. Figure 3.5 visualizes this part of the process.

Listing 3.1 shows this function’s implementation; copy it into index.js. Don’t forget to
set PipelineId to the corresponding Elastic Transcoder pipeline you created earlier.
You can find the Pipeline ID (figure 3.6) in the Elastic Transcoder console by clicking
the magnifier button next to the pipeline you created in appendix B.

Upload new
video file

Create
transcode

job

Transcode
video2. Trigger

Lambda
4. Submit

job

1. S3 bucket 3. Lambda 5. Elastic Transcoder 7. S3 bucket

6. Transcode

Save
transcoded

video

Figure 3.5 The first Lambda function will react to an event in S3 and create an Elastic Transcoder job.

The Pipeline ID needs to be set in the
Transcode Video Lambda function.

Figure 3.6 You need to set the correct pipeline ID in the first Lambda function to create and
execute jobs.

4524-Hour Video

e

de/
SOURCE CODE AT YOUR FINGERTIPS Our GitHub repository at https://github
.com/sbarski/serverless-architectures-aws has all the code snippets and list-
ings you need for this book. So you don’t have to manually type anything
out—unless you really want to.

'use strict';

var AWS = require('aws-sdk');

var elasticTranscoder = new AWS.ElasticTranscoder({
region: 'us-east-1'
});

exports.handler = function(event, context, callback){
var key = event.Records[0].s3.object.key;

var sourceKey = decodeURIComponent(key.replace(/\+/g, " "));

var outputKey = sourceKey.split('.')[0];

console.log('key:', key, sourceKey, outputKey);

var params = {
PipelineId: '1451470066051-jscnci',
OutputKeyPrefix: outputKey + '/',
Input: {

Key: sourceKey
 },
 Outputs: [
 {

Key: outputKey + '-1080p' + '.mp4',
 PresetId: '1351620000001-000001'
 },
 {
 Key: outputKey + '-720p' + '.mp4',
 PresetId: '1351620000001-000010'

 },
 {

Key: outputKey + '-web-720p' + '.mp4',
PresetId: '1351620000001-100070'

 }
]};

Listing 3.1 Transcode video Lambda

The key uniquely identifies an object in the bucket.
It’s made up of the original filename and any
additional key name prefixes. This code isn’t
particularly safe. It doesn’t handle errors or
unexpected issues gracefully. Can you improve it?

S3 key names are URL-encoded. A filename “My Birthday
Video.mp4” is represented as “My+Birthday+ Video.mp4.”
You need to decode the key name to get the original filename
with spaces.

The extension of the original key isn’t
needed for new transcodings. The key

name can still be used in the naming of
your output videos.

Remember to change the
PipelineId to match the pipeline ID
of your Elastic Transcoder pipeline.

The Output Key Prefix creates a
logical hierarchy (folder) for your file

in the transcoded videos bucket.

System presets are used to specify th
output of the Elastic Transcoder. You
can create your own or select other
premade presets. To see a list of all
available premade presets go to
https://docs.aws.amazon.com/
elastictranscoder/latest/developergui
system-presets.html.

Generic 720p Elastic
Transcoder preset

Web-friendly 720p
Elastic Transcoder
preset

Generic
1080p
Elastic

Transcoder
preset

https://docs.aws.amazon.com/elastictranscoder/latest/developerguide/system-presets.html
https://docs.aws.amazon.com/elastictranscoder/latest/developerguide/system-presets.html
https://docs.aws.amazon.com/elastictranscoder/latest/developerguide/system-presets.html
https://github.com/sbarski/serverless-architectures-aws
https://github.com/sbarski/serverless-architectures-aws
https://github.com/sbarski/serverless-architectures-aws
https://docs.aws.amazon.com/elastictranscoder/latest/developerguide/system-presets.html

46 CHAPTER 3 Building a serverless application
 elasticTranscoder.createJob(params, function(error, data){
 if (error){

callback(error);
}

 });
};

3.1.4 Naming your Lambda

You can name the file containing your Lambda function something other than
index.js. If you do that, you’ll have to modify the handler value in Lambda’s configura-
tion panel in AWS to reflect the new name of the file. For example, if you decide to
name your file TranscodeVideo.js rather than index.js, you’ll have to modify the han-
dler to be TranscodeVideo.handler in the AWS console (figure 3.7).

3.1.5 Testing locally

Having copied the function from listing 3.1 into index.js, you can think about how to
test it locally on your machine. A way to do that is to simulate events and have the
function react to them. This means you have to invoke the function and pass three
parameters representing the context, event, and callback objects. The function will
execute as if it was running in Lambda, and you’ll see a result without having to
deploy it.

If Elastic Transcoder fails to create a
job, write the error to CloudWatch
via the callback function.

Remember to update the handler if
you rename your files at a later date.

Figure 3.7 The Lambda runtime needs to know the handler function to execute your code.

4724-Hour Video
 You can run Lambda functions locally using an npm module called run-local-
lambda. To install this module, execute the following command from a terminal win-
dow (make sure you’re in the function’s directory): npm install run-local-lambda
--save-dev.

NOTE This module allows you to invoke your Lambda function but it doesn’t
emulate Lambda’s environment. It doesn’t respect memory size or the CPU,
ephemeral local disk storage, or the operating system of real Lambda in AWS.

Modify package.json, as in the next listing, to change the test script. The test script will
invoke the function and pass the contents of event.json, a file you’re about to create,
as the event object. For more information about this npm module, including addi-
tional parameters and examples, see https://www.npmjs.com/package/run-local-
lambda.

"scripts": {
 "test": "run-local-lambda --file index.js –-event tests/event.json"
}

The test script requires an event.json file to function. This file must contain the speci-
fication of the event object that run-local-lambda will pass in to the Lambda function.
In the same directory as index.js, create a subdirectory called tests and then create a
file called event.json in it. Copy the next listing into event.json and save it.

{
 "Records":[
 {

"eventVersion":"2.0",
"eventSource":"aws:s3",
"awsRegion":"us-east-1",
"eventTime":"2016-12-11T00:00:00.000Z",
"eventName":"ObjectCreated:Put",
"userIdentity":{
"principalId":"A3MCB9FEJCFJSY"

},
"requestParameters":{
"sourceIPAddress":"127.0.0.1"

},
"responseElements":{
"x-amz-request-id":"3966C864F562A6A0",
"x-amz-id-2":"2radsa8X4nKpba7KbgVurmc7rwe/"

},
"s3":{

Listing 3.2 Test script

Listing 3.3 Simulating the event object

The test script uses the run-local-lambda npm module to run the Lambda function.
There are four optional parameters: --file, --event, --handler, and --timeout.

The S3 declaration is the most
important part of this file. This

is what the event object
structure looks like when S3
triggers a Lambda function.

https://www.npmjs.com/package/run-local-lambda
https://www.npmjs.com/package/run-local-lambda

48 CHAPTER 3 Building a serverless application
"s3SchemaVersion":"1.0",
"configurationId":"Video Upload",
"bucket":{
 "name":"serverless-video-upload",
 "ownerIdentity":{
 "principalId":"A3MCB9FEJCFJSY"
 },
 "arn":"arn:aws:s3:::serverless-video-upload"
},
"object":{
 "key":"my video.mp4",
 "size":2236480,
 "eTag":"ddb7a52094d2079a27ac44f83ca669e9",
 "sequencer": "005686091F4FFF1565"
}

}
 }
]
}

To execute the test, run npm test from a terminal window in the directory of the
function. If it works, you should see the values of key, sourceKey, and outputKey print
to the terminal.

 Having run the test script, you might see an error message with an AccessDenied-
Exception. That’s normal, because your user lambda-upload doesn’t have permissions
to create new Elastic Transcoder jobs. Once uploaded to AWS, your function will run
correctly because it will assume the identity and access management (IAM) role
defined in appendix B. One of the exercises at the end of this chapter will be to add a
policy to the IAM user (lambda-upload) to create Elastic Transcoder jobs from your
local system.

3.1.6 Deploying to AWS

You’re now ready to deploy the function to AWS. To do that, you need to modify package
.json to create predeploy and deploy scripts. The predeploy script creates a zip file of
the function. The deploy script then deploys the zip file to AWS. Note that if you’re a
Windows user, you won’t have the zip file, which is needed by the predeploy script,
installed by default. Please refer to appendix B and the sidebar “Zip and Windows” for
further information. Update package.json to include deploy and predeploy scripts, as
shown in the following listing.

In AWS these
parameters would be
your bucket name and
the key of the uploaded
object. For the
purposes of your local
test, you can set these
parameters to anything
you want.

The key is the name of
the file. For your test
you can set this to
anything you want.

4924-Hour Video
"scripts": {
 "test": "run-local-lambda --file index.js –-event tests/event.json",
 "deploy": "aws lambda update-function-code --function-name

➥arn:aws:lambda:us-east-1:038221756127:function:transcode-video

➥--zip-file fileb://Lambda-Deployment.zip",
"predeploy": "zip -r Lambda-Deployment.zip * -x *.zip *.json *.log"

}

For deployment to work, the --function-name parameter must match the name or
the ARN of the function. If you wish to use the ARN, follow these steps:

 In the AWS console click Lambda.
 Click transcode-video and copy the ARN of the function (figure 3.8).
 Open package.json and change the ARN value in the deploy script to the value

copied from the AWS console.

Listing 3.4 Predeploy and deploy scripts

The AWS CLI deploys your function code. There are
two main parameters. The --function-name
parameter requires the name of the function or its
ARN (it is bolded). The --zip-file parameter requires
the name of the zip file that contains the function.
The zip file is created by the predeploy script.

npm runs predeploy before it runs the deploy
script. The predeploy script creates a zip of the

function, local node modules, and any other files in
the current directory. You’re specifically excluding

zip, json, and log files from being zipped into the
deployment file because they’re not needed.

The ARN of the Lambda function

Figure 3.8 You need to copy the ARN of your Lambda function to package.json for the deployment
to work.

50 CHAPTER 3 Building a serverless application
ObjectCreated(All) is the event needed
to trigger your Lambda function.

You can optionally scope event invocations
for a single suffix such as mp4.

Set the Lambda function to invoke
when a new object is placed in the bucket.

Having updated the ARN value in the deploy script, execute npm run deploy from the
terminal. This will zip up the function and deploy it to AWS. If the deployment was
successful, you’ll see the current function configuration, including timeout and mem-
ory size, printed to the terminal (chapter 6 goes into more detail on function configu-
ration options and what all of this represents).

3.1.7 Connecting S3 to Lambda

The last step before you can test the function in AWS is to connect S3 to Lambda. You
need to configure S3 to raise an event and invoke a Lambda function whenever a new
file is added to the upload bucket (figure 3.9).

To configure S3, follow these steps:

1 Open the upload bucket (serverless-video-upload) in the AWS console,
select Properties, click Events, and click Add Notification.

2 Give your event a name, such as Video
Upload, and then under Events select
ObjectCreate (All).

3 Select Lambda Function from the Send
To drop-down. Finally, from the Lambda
drop-down select your transcode-video
function and click Save (figure 3.10).

Upload new
video file

Create
transcode

job

2. Trigger Lambda

1. S3 bucket 3. Lambda
Figure 3.9 S3 will trigger Lambda
when you add a new file to the bucket.

Figure 3.10 You need to configure S3 to
invoke the right Lambda function when you
add a new object to the bucket.

5124-Hour Video
3.1.8 Testing in AWS

To test the function in AWS, upload a video to the upload bucket. Follow these steps:

1 Click into the video upload bucket, and then select Upload (figure 3.11).
2 You’ll see an upload dialog appear on your screen. Click Add Files, select a file

from your computer, and click the Upload button. All other settings can be left
as they are.

Permissions error
If this is your first time connecting S3 to Lambda, you may see a permissions error.
If that happens, you'll need to use Lambda’s console to set up the event instead:

 In the AWS console click Lambda.
 Select the transcode-video function.
 Select the Triggers tab.
 Select Add trigger.
 Click on the box in the popup and select S3.
 Select the upload bucket and set event type as Object Created (All).
 Select Submit to finish.

Click Upload to bring up the dialog box.
You can drag and drop multiple files.

Figure 3.11 It’s better to upload a small file initially because it makes the upload and
transcoding a lot quicker.

52 CHAPTER 3 Building a serverless application
After a time, you should see three new videos in the transcoded videos bucket. These
files should appear in a folder rather than in the root of the bucket (figure 3.12).

3.1.9 Looking at logs

Having performed a test in the previous section, you should see three new files in the
transcoded videos bucket. But things may not always go as smoothly. In case of prob-
lems, such as new files not appearing, you can check two logs for errors. The first is a
Lambda log in CloudWatch. To see the log, do the following:

1 Choose Lambda in the AWS console and then click the function name.
2 Choose the Monitoring tab and then click View Logs in CloudWatch (figure 3.13).

The latest log stream should be at the top, but if it’s not, you can sort log streams by
date by clicking the Last Event Time column header. If you click into a log stream,
you’ll see log entries with more detail. Often, if you make an error, these logs will
reveal what happened. See chapter 4 for more information about CloudWatch and
logging.

An output folder will be created automatically for transcoded files.

Figure 3.12 Elastic Transcoder will generate three new files and place them in a folder in the
transcoded videos S3 bucket.

5324-Hour Video
If Lambda logs reveal nothing out of the ordinary, take a look at the Elastic
Transcoder logs:

1 Click Elastic Transcoder in the AWS console, then click Jobs, and select your
pipeline.

2 Click Search to see a recent list of jobs (figure 3.14). The Status column shows
whether the job was (successfully) completed or if there was an error. Click the
job to see more information about it.

Click the link to view logs. You can also
navigate to these logs via CloudWatch.

Figure 3.13 Logs and metrics are accessible from the Monitoring tab of each function in the
Lambda console.

The jobs list shows which Elastic Transcoder
jobs have succeeded and which have failed.

Click to review details
about the job.

Figure 3.14 The Elastic Transcoder job list can reveal if a job has failed. Failures can occur for a
variety of reasons, including the source file being deleted before the job started or a file with the same
name already present in the target bucket.

54 CHAPTER 3 Building a serverless application
3.2 Configuring Simple Notification Service
The next part of the job is to connect Simple Notification Service to your transcoded
videos bucket. After Elastic Transcoder saves a new file to this bucket, you need to
send an email and invoke two other Lambda functions to make the new file publicly
accessible and to create a JSON file with metadata.

 You’ll create an SNS topic and three subscriptions. One subscription will be used
for email and the other two will trigger Lambda functions (you’re implementing the
fan-out pattern described in chapter 2). The transcoded videos bucket will automat-
ically create event notifications as soon as new video appears and push a notification
to an SNS topic to kick-start this bit of the workflow. Figure 3.15 displays this part of
the system with the SNS topic in the middle and three subscribers consuming new
notifications.

3.2.1 Connecting SNS to S3

Create a new SNS topic by clicking SNS in the AWS console and then selecting Create
Topic. Give your topic a name such as transcoded-video-notifications.

 You need to connect S3 to SNS so that when a new object is added to the
transcoded videos bucket, an event is pushed to SNS. To achieve this, the SNS secu-
rity policy must be modified to allow communication with S3:

1 In the SNS console, click Topics and then click the ARN of your topic
(transcoded-video-notifications). The Topic Details view will appear.

2 Click the Other Topic Actions drop-down, select Edit Topic Policy, and then
click the Advanced View tab.

11a. Lambda

11b. Lambda

SNS notification

SNS notification

10a. Trigger
Lambda

10b. Trigger
Lambda

7. S3 bucket

9. SNS

8. Trigger
SNS

10a. Send
email

Save
transcoded

video

Change
object

permission

Create
metadata file

Dispatch
notification

Figure 3.15 To create multiple notifications, you need to use SNS. You can add multiple subscribers
and perform operations in parallel.

55Configuring Simple Notification Service
3 Scroll to the bottom of the policy until you see the Condition declaration. Replace
it with a new condition, as shown in listing 3.5. Click Update Policy to save.

Figure 3.16 shows what the updated policy looks like. Make sure to modify the
SourceArn to reflect the name of your bucket. It should be in the following form:
arn:aws:s3:*:*:<your bucket name>.

"Condition": {
 "ArnLike": {

"aws:SourceArn": "arn:aws:s3:*:*:serverless-video-transcoded"
 }
}

Listing 3.5 SNS condition

Change serverless-video-transcoded to the name
of your transcoded videos bucket for the access

policy to work correctly.

This condition allows an S3 bucket
(serverless-video-transcoded) to
interact with this SNS topic.

Figure 3.16 The resource policy for the SNS topic needs to be updated to work with S3. See chapter 4
for more information on security, policies, and permissions.

56 CHAPTER 3 Building a serverless application
Finally, connect S3 to SNS:

1 In the AWS console click S3 and open the transcoded videos bucket.
2 Click Properties and choose Events.
3 Click the Add Notification button.
4 Set a name for the event, such as “Transcoded Video.”
5 Enable the ObjectCreate (All) check box.
6 From the Send To drop-down, select SNS Topic.
7 From the SNS drop-down, select the SNS topic you created (transcoded-video-

notification).
8 You can optionally set a suffix such as mp4. If you do that, new event notifica-

tions will be created only for files that have an mp4 extension. If you decide to
tackle section 3.4, you’ll definitely have to come back and set the suffix to mp4
(figure 3.17).

9 Click Save.

If you get an error message such as, “Permissions on the destination topic do not allow
S3 to publish notifications from this bucket” when trying to save, double-check that
you copied listing 3.5 correctly. If you get stuck, have a look at http://amzn.to/
1pgkl4X for more helpful information.

Notifications will only be
raised for objects whose
keys end with the suffix.

Figure 3.17 S3 can post events to
SNS, which can fan out these
notifications to multiple subscribers.

http://amzn.to/1pgkl4X
http://amzn.to/1pgkl4X
http://amzn.to/1pgkl4X

57Setting video permissions
3.2.2 Getting email from SNS

One of your requirements is to get an email about each transcoded file. You have an
SNS topic that receives events from an S3 bucket whenever a new transcoded file is
saved in it. You need to create a new email subscription for the topic so that you can
begin receiving emails. In the SNS console, follow these steps:

1 Click Topics and then click the name of your SNS topic (transcoded-video-
notifications). The check box to the topic should be selected.

2 Click Actions, and select Subscribe to Topic. You should see a Create Subscrip-
tion dialog appear.

3 In the dialog select Email as the protocol and enter your email address as the
endpoint.

4 Click Create Subscription to save and exit the dialog.

SNS will immediately send a confirmation email, which you must activate to receive
further notifications. Going forward, you’ll receive an email whenever a file is added
to the bucket.

3.2.3 Testing SNS

To test if SNS is working, upload a video file to the upload bucket. You can also
rename an existing file in the bucket to trigger the workflow. You should receive an
email for each transcoded file.

3.3 Setting video permissions
The second Lambda function you create will make your newly transcoded files pub-
licly accessible. Figure 3.18 shows this part of the workflow. In chapter 8, we’ll look at
securing access to files using signed URLs, but for now your transcoded videos will be
available for everyone to play and download.

3.3.1 Creating the second function

First, create the second Lambda function in AWS the way you created the first one. This
time, though, name your function set-permissions. You can follow the instructions in
appendix B again. Then, on your system, create a copy of the directory containing the
first Lambda function. You’ll use this copy as a basis for the second function. Open
package.json and change all references of transcode-video to set-permissions.

11a. Lambda13a. S3 bucket

10a. Trigger Lambda12a. UpdateUpdate object
permissions

Change object
permission

Dispatch
notification

Figure 3.18 This part of the workflow modifies the access control list of the newly transcoded
video file to make it publicly accessible.

58 CHAPTER 3 Building a serverless application
Also, change the ARN in the deploy script to reflect the ARN of the new function cre-
ated in AWS.

 In the second Lambda function, you’ll need to perform two tasks:

1 Extract the bucket and key of the new video from the event object.
2 Set the access control list (ACL) attribute of the video to public-read to make

it publicly accessible.

The next listing shows a reference implementation for the second function. Copy it to
index.js, replacing anything that’s already there.

"use strict";

var AWS = require('aws-sdk');

var s3 = new AWS.S3();

exports.handler = function(event, context, callback){
 var message = JSON.parse(event.Records[0].Sns.Message);

 var sourceBucket = message.Records[0].s3.bucket.name;
 var sourceKey =

➥decodeURIComponent(message.Records[0].s3.object.key.replace(/\+/g, " "));

 var params = {
 Bucket: sourceBucket,
 Key: sourceKey,
 ACL: 'public-read'
 };

 s3.putObjectAcl(params, function(err, data){
if (err){
callback(err);

}

 });
};

3.3.2 Configuring and securing

Having copied over the second Lambda function to index.js, perform a deployment
using npm run deploy. Finally, you need to connect Lambda to SNS:

1 In the AWS console click SNS, select Topics, and then click the ARN of your topic
(transcoded-video-notifications).

2 Click the Create Subscription button and select AWS Lambda.
3 From the Endpoint drop-down, select the set-permissions Lambda function,

and click Create Subscription.

There’s still one more security issue: the role under which the Lambda function exe-
cutes has permissions only to download or upload new objects to the bucket. But this

Listing 3.6 Changing the ACL of an S3 object

The bucket name and the key are extracted
in a slightly different way than the first

function because the event originates from
SNS rather than directly from S3.

The goal of this function is
to set the right ACL;
‘public-read’ will make the
file publicly accessible.

59Setting video permissions
role doesn’t have permission to change the object ACL. You can fix this by creating a
new inline policy for the role (lambda-s3-execution-role) you’ve been using:

1 In the AWS console click IAM, select Roles, and click lambda-s3-execution-
role.

2 Expand Inline Policies, click the Click Here link, and select Policy Generator.
3 In the AWS Service drop-down, select Amazon S3 and then select PutObjectAcl

in Actions.
4 In the ARN textbox, type arn:aws:s3:::<your-bucket-name>/*, where <your-

bucket-name> is the name of your bucket for transcoded videos.
5 Click Add Statement, then click Next Step, and click Apply Policy to save.

SECURITY AND ROLES In a production environment, you should create sepa-
rate roles for your Lambda functions, especially if they’ll use different
resources and require different permissions.

3.3.3 Testing the second function

Having configured role permissions, you can test the second Lambda function by
uploading or renaming a video in the upload bucket. To see if the function has
worked, find any newly created file in the transcoded videos bucket, select it, and
click Permissions. You should see the second Grantee setting configured for Everyone
with the Open/Download check box selected (figure 3.19). You can now copy the
URL that’s given just above on that same page and share it with others.

 If something goes wrong with the Lambda function, look at CloudWatch logs for
the function. They might reveal clues as to what happened.

The Grantee must be set to AllUsers
and Object access set to Read.

Figure 3.19 Check if the Lambda function successfully updated the object ACL by looking at its
permissions in the S3 console.

60 CHAPTER 3 Building a serverless application
3.4 Generating metadata
The third Lambda function needs to create a JSON file with metadata about the video.
It should also save the metadata file next to the video. This Lambda function will be
invoked via SNS just like the one before it. The problem in this function is how to ana-
lyze the video and get the required metadata.

 FFmpeg is a command-line utility that records and converts video and audio. It has
several components, including the excellent FFprobe, which can be used to extract
media information. You’re going to use FFprobe to extract metadata and then save it
to a file. This section is slightly more advanced than other sections, but it’s also
optional. You’ll learn a lot by working through it, but you can skip it without affecting
what you do in other chapters.

3.4.1 Creating the third function and FFprobe

There are two ways to acquire FFprobe. The first way is to spin up a copy of EC2 with Ama-
zon Linux, grab the FFmpeg source code, and build FFprobe. If you do that, you’ll need
to create a static build of the utility. The second way is to find a static build of FFmpeg for
Linux (for example, https://www.johnvansickle.com/ffmpeg/) from a reputable source
or a distribution. If you decide to compile your own binaries, per the article “Running
Arbitrary Executables in AWS Lambda” (http://amzn.to/29yhvpD), ensure that they’re
either statically linked or built for the matching version of Amazon Linux. The current
version of Amazon Linux in use within AWS Lambda can always be found on the Sup-
ported Versions page (http://amzn.to/29w0c6W) of the Lambda docs.

 Having acquired a static copy of FFprobe, create the third Lambda function in the
AWS console, and name it extract-metadata. Set the role for this function to lambda-
s3-execution-role, timeout to 2 minutes, and memory to 256 MB. You can reduce
memory allocation and timeout at a later stage when everything works. On your sys-
tem, copy the second function and associated files into a new directory to create the
third function. Open package.json and change all occurrences of the old function
name (set-permissions) to the new one (extract-metadata). Make sure to update
the ARN in package.json, as well as to reflect the ARN of the new function.

 In the function directory, create a new subdirectory called bin. Copy your statically
built version of FFprobe into it. You’ll be pushing Lambda to the max with this func-
tion, so make sure to include only FFprobe and not the other components. The maxi-
mum deployment package size for Lambda is 50 MB, so including too many
unnecessary files may cause your deployment to fail.

 The third Lambda function works by copying the video from S3 to a /tmp direc-
tory on its local filesystem. It then executes FFprobe and collects the required infor-
mation. Finally, it creates a JSON file with the required data and saves it in the bucket
next to the file (figure 3.20). Lambda has a maximum disk capacity of 512 MB, so this
function won’t work if your videos are larger.

https://www.johnvansickle.com/ffmpeg/
http://amzn.to/29yhvpD
http://amzn.to/29w0c6W

61Generating metadata
Listing 3.7 shows an implementation of the third Lambda function. Replace the con-
tents of index.js with the code in the listing. Once you’ve finished, deploy the third
function to AWS.

"use strict";

var AWS = require('aws-sdk');
var exec = require('child_process').exec;
var fs = require('fs');

process.env['PATH'] = process.env['PATH'] + ':' +

➥process.env['LAMBDA_TASK_ROOT'];

var s3 = new AWS.S3();

function saveMetadataToS3(body, bucket, key, callback){
console.log('Saving metadata to s3');

Listing 3.7 Extracting metadata

11b. Lambda

13b. S3 bucket

10b. Trigger Lambda

12b. Get object from
S3 for analysis

Retrieve
object

15b. S3 bucket

Save
metadata file

Create
metadata file

14b. Persist
metadata file

Dispatch
notification

Lambda function will a) download
video from S3 to local filesystem,
b) analyse the video, and c) generate
and save metadata file.

Figure 3.20 The third Lambda function will retrieve an object from S3, run FFprobe, and save
metadata back to the bucket.

File permissions
Any script or program you wish to execute in Lambda must have the right (executable)
file permissions. Unfortunately, you can’t change file permissions directly in Lambda,
so it must be done on your computer before the function is deployed. If you use Linux
or Mac, it’s easy. Run chmod +x bin/ffprobe from a terminal command line (you
must be in the Lambda function’s directory). You can then deploy the function, and
FFprobe will work. If you’re on Windows, it’s trickier because it doesn’t come with the
chmod command. One way you can solve this problem is by spinning up an Amazon
Linux machine in AWS, copying FFprobe over, changing permissions, and then copy-
ing the file back.

62 CHAPTER 3 Building a serverless application
 s3.putObject({
Bucket: bucket,
Key: key,
Body: body

 }, function(error, data){
if (error){
 callback(error);
}

 });
}

function extractMetadata(sourceBucket, sourceKey, localFilename, callback){
 console.log('Extracting metadata');

 var cmd = 'bin/ffprobe -v quiet -print_format json

➥-show_format "/tmp/' + localFilename + '"';

exec(cmd, function(error, stdout, stderr){
if (error === null){
 var metadataKey = sourceKey.split('.')[0] + '.json';
 saveMetadataToS3(stdout, sourceBucket, metadataKey, callback);
} else {
 console.log(stderr);
 callback(error);
}

 });
}

function saveFileToFilesystem(sourceBucket, sourceKey, callback){
 console.log('Saving to filesystem');

 var localFilename = sourceKey.split('/').pop();
 var file = fs.createWriteStream('/tmp/' + localFilename);

 var stream = s3.getObject({Bucket: sourceBucket, Key:

➥sourceKey}).createReadStream().pipe(file);

stream.on('error', function(error){
callback(error);

 });

 stream.on('close', function(){
extractMetadata(sourceBucket, sourceKey, localFilename, callback);

 });
}

exports.handler = function(event, context, callback){
 var message = JSON.parse(event.Records[0].Sns.Message);

 var sourceBucket = message.Records[0].s3.bucket.name;
 var sourceKey =

➥decodeURIComponent(message.Records[0].s3.object.key.replace(/\+/g, " "));

 saveFileToFilesystem(sourceBucket, sourceKey, callback);
};

You need to copy FFprobe to the bin
directory for the command to execute.
Make sure that FFprobe has the right
permissions (chmod +x) to execute.

To open a read stream, the
createReadStream method requires the
path of the file. This stream can then be

piped to createWriteStream and used
to create a file on the local filesystem.

This function has three steps: it copies an object from S3
to the local filesystem (saveFileToFilesystem), extracts

metadata from the file (extractMetadata), and saves
metadata to a new file in S3 (saveMetadataToS3).

63Finishing touches
You may notice that the function in listing 3.7 has many callbacks. Having numerous
callbacks in a function that essentially carries out sequential operations makes it
harder to read and understand. Chapter 6 introduces a pattern called async waterfall
that makes composition of asynchronous operations easier to manage.

3.5 Finishing touches
The third Lambda function needs to subscribe to the SNS topic. Create a new sub-
scription for it just as you did for the second Lambda function:

1 In the AWS console click SNS, select Topics, and then click the ARN of your topic
(transcoded-video-notifications).

2 Click the Create Subscription button and select AWS Lambda.
3 In the Endpoint drop-down, select the extract-metadata Lambda function

and click Create Subscription.

Deploy the third function to AWS, and you’re now ready to run the whole process end
to end. Upload a video to the upload bucket; you should see JSON files created and
placed next to the video files in the transcoded videos bucket (figure 3.21).

There should be a metadata file next
to each video in the S3 bucket.

Figure 3.21 The full workflow should now be operational. If something doesn’t work, check
CloudWatch logs for clues about what went wrong.

64 CHAPTER 3 Building a serverless application
You might also see a few errors in CloudWatch if you didn’t set an mp4 suffix in the S3
event configuration back in section 3.2.1. If you didn’t set the suffix, your workflow
will trigger automatically whenever any new object is saved to the transcoded videos
bucket. When a JSON file is saved, the workflow runs again, except the extract-meta-
data function doesn’t know how to deal with a JSON file, which causes an error.

 To fix this problem, S3 needs to create notifications only for objects that end with
mp4 so that other types of files including JSON don’t trigger the workflow:

1 Open the transcoded videos bucket in S3, click Properties, click Events, and
edit the event notification.

2 In the Suffix textbox, type mp4, and save.

Of course, if you did this back in section 3.2.1, you don’t need to do it again.

3.6 Exercises
At the moment, 24-Hour Video is functional, but it has a number of limitations that
have been left for you to solve as an exercise. See you if you can implement a solution
for the following problems:

1 A file with more than one period in its name (for example, Lecture 1.1 – Pro-
gramming Paradigms.mp4) will produce transcoded files with truncated names.
Implement a fix so that filenames with multiple periods work.

2 Currently, any file uploaded to the upload bucket will trigger the workflow. The
Elastic Transcoder, however, will fail if it’s given invalid input (for example, a
file that’s not a video). Modify the first Lambda function to check the extension
of the uploaded file and submit only avi, mp4, or mov files to Elastic
Transcoder. Any invalid files should be deleted from the bucket.

3 The functions that you’ve written are somewhat unsafe. They don’t always
gracefully handle errors or invalid input. Go through each function and modify
it to do additional error checking and handling where you see fit.

4 The JSON metadata file is not publicly accessible. Modify the third Lambda
function to make the file publicly viewable, similar to the videos in the bucket.

5 The current system creates three similar transcoded videos. The main differ-
ence between them is the resolution and bitrate. To make the system more var-
ied, add support for HLS and webm formats.

6 The files in the upload bucket will remain there until you delete them. Come
up with a way to clean up the bucket automatically after 24 hours. You might
want to have a look at the Lifecycle options in S3 for ideas.

7 Running a Lambda function to create a metadata file for each transcoded file is
unnecessary if you care only about information that’s constant, such as the
length of the video. Modify the system to create a metadata file off the original
upload, and then save it next to the transcoded files in the transcoded videos
bucket.

65Summary
8 Videos uploaded to the upload bucket must have unique filenames for the sys-
tem to work properly. The Elastic Transcoder won’t create new files if another
file with the same name already exists in the transcoded videos bucket. Mod-
ify the first Lambda function to create transcoded videos with unique filenames.

9 The test that you’ve built for the first Lambda function won’t work because the
IAM user (lambda-upload) doesn’t have permissions to create Elastic
Transcoder jobs. In chapter 6 we’ll look at more robust ways of testing Lambda
functions, but for now, add the right permissions to the IAM user so that you
can create new jobs by running the test locally.

3.7 Summary
In this chapter, we covered the basics of creating a serverless back end, including the
following:

 IAM users and roles
 Storage and event notifications in S3

 Configuration and usage of the Elastic Transcoder
 Implementation of custom Lambda functions
 Testing and deployments using npm
 SNS and multiple subscriber workflows

In the next chapter, we’ll look at AWS security, logging, alerting, and billing in more
detail. This information is important to know to create secure serverless architecture,
to know where to look for answers when things go wrong, and to avoid unexpected
and unwelcome surprises on the monthly bill.

Setting up your cloud
Most of the architecture described in this book is built on top of AWS. This means you
need a clear understanding of AWS from the perspectives of security, logging, alert-
ing, and costs. It doesn’t matter whether you use Lambda alone or have a large mix
of services. Being able to configure security correctly, knowing where to look for logs,
and controlling cost are important. This chapter is designed so that you can under-
stand these concerns and learn where to look for important information in AWS.

 AWS security is a complex subject, but this chapter gives you an overview of the
difference between users and roles and shows you how to create policies. This
information is needed to configure a system in which services can communicate
effectively and securely.

 Logging and alerting are critical components of any system, serverless or tradi-
tional. They can help to surface serious events such as failing services or sudden
escalation of costs. When things go bad, you’ll be thankful that you have a robust
logging and alerting framework in place.

This chapter covers
 Security model and identity management in AWS

 Logging, alerting, and custom metrics

 Monitoring and estimating AWS costs
66

67Security model and identity management
 Cost is an important consideration when using a platform such as AWS and imple-
menting serverless architecture. It’s essential to understand the cost calculation of the
services you’re going to use. This is useful not only for avoiding bill shock but also for
predicting next month’s costs and beyond. We look at estimating the cost of services
and discuss strategies for tracking costs and keeping them under control.

 This chapter is not an exhaustive guide to AWS security, logging, and costs. If you
have further questions after reading this chapter, take a look at AWS documentation
(https://aws.amazon.com/documentation) and books such as Amazon Web Services in
Action by Andreas Wittig and Michael Wittig (Manning Publications, 2016).

4.1 Security model and identity management
In chapter 3 and appendix B, you created an Identity and Access Management (IAM)
user and a number of roles in order to use Lambda, S3, SNS, and Elastic Transcoder
and to perform deployments from your machine to AWS. You also modified a
resource-based policy in SNS and changed the access control list (ACL) of an object in
an S3 bucket. All of those actions are needed to meet security requirements of AWS. In
this section, you’ll learn about users, groups, roles, and policies in more detail.

4.1.1 Creating and managing IAM users

As you’ll recall, an IAM user is an entity in AWS that identifies a human user, an appli-
cation, or a service. A user normally has a set of credentials and permissions that can
be used to access resources and services across AWS. In appendix B, for example, you
created a user called lambda-upload to allow you to upload Lambda functions.

 An IAM user typically has a friendly name to help you identify the user and an Ama-
zon Resource Name (ARN) that uniquely identifies it across AWS. Figure 4.1 shows a
summary page and an ARN for a fictional user named Alfred. You can get to this sum-
mary in the AWS console by clicking IAM in the AWS console, clicking Users in the nav-
igation pane, and then clicking the name of the user you want to view.

 You can create IAM users to represent human users, applications, or services. IAM
users created to work on behalf of an application or a service sometimes are referred
to as service accounts. These types of IAM users can access AWS service APIs using an
access key. An access key for an IAM user can be generated when the user is initially
created, or you can create it later by clicking Users in the IAM console, clicking the
required user name, selecting Security Credentials, and then clicking the Create
Access Key button.

 The two components of an access key are the Access Key ID and the Secret Access
Key. The Access Key ID can be shared publicly, but the Secret Access Key must be kept
hidden. If the Secret Access Key is revealed, the whole key must be immediately invali-
dated and re-created. An IAM user can have, at most, two active access keys.

 If an IAM user is created for a real person, then that user should be assigned a pass-
word. This password will allow a human user to log into the AWS console and use ser-
vices and APIs directly.

https://aws.amazon.com/documentation

68 CHAPTER 4 Setting up your cloud
The Amazon Resource Name (ARN) of user Alfred

Figure 4.1 The IAM console shows metadata such as the ARN, groups, and creation time for every
IAM user in your account.

The Manage Password option is available for any IAM user.
Users with a password can log in to the AWS console.

Figure 4.2 IAM users have a number of options, including being able to set a password, change
access keys, and enable multifactor authentication.

69Security model and identity management
To create a password for an IAM user, follow these steps:

1 In the IAM console, click Users in the navigation pane.
2 Click the required username to open the user’s settings.
3 Click the Security Credentials tab and then click Manage Password (figure 4.2).
4 In the popup, choose whether to enable or disable console access, type in a new

custom password, or let the system autogenerate one. You can also force the
user to create a new password at the next sign-in (figure 4.3).

After a user is assigned a password, they can log into the AWS console by navigating to
https://<Account-ID>.signin.aws.amazon.com/console. To get the account ID, click
Support in the upper-right navigation bar, and then click Support Center. The
account ID (or account number) is shown at the top right of the console. You may
want to set up an alias for the account ID also, so that your users don’t have to remem-
ber it (for more information about aliases, see http://amzn.to/1MgvWvf).

Asking the user to set a new password is good practice,
as long as a good password policy is established.

Figure 4.3 Make sure to create a good password policy with a high degree of complexity if you allow
users to log into the AWS console. Password policy can be set up in Account Settings of the IAM console.

https://<Account-ID>.signin.aws.amazon.com/console
http://amzn.to/1MgvWvf

70 CHAPTER 4 Setting up your cloud
4.1.2 Creating groups

Groups represent a collection of IAM users. They provide an easy way to specify permis-
sions for multiple users at once. For example, you may want to create a group for devel-
opers or testers in your organization or have a group called Lambda to allow all
members of that group to execute Lambda functions. Amazon recommends using
groups to assign permissions to IAM users rather than defining permissions individually.

 Any user who joins a group inherits permissions assigned to the group. Similarly, if
a user leaves a group, the group’s permissions are removed from the user. Further-
more, groups can contain only users, not other groups or entities such as roles.

 AWS doesn’t provide a default group, but it’s easy to create a group if you need
one. As an example, you’ll create a group to allow multiple IAM users to upload
Lambda functions. This group may come in handy because you may want to set up a
continuous deployment pipeline to deploy your application. Best practice suggests
that you ought to create IAM users for different environments (staging, production,
and so on). If you add them to this group, they’ll have correct permissions to perform
deployments.

Multi-factor authentication
Multi-factor authentication (MFA) adds another layer of security by prompting users
to enter an authentication code from their MFA device when they try to sign into the
console (this is in addition to the usual username and password). It makes it more
difficult for an attacker to compromise an account. Any modern smartphone can act
as a virtual MFA appliance using an application such as Google Authenticator or AWS
Virtual MFA. It’s recommended that you enable MFA for any user who might use the
AWS console. You’ll find the option Assign MFA Device in the Security Credentials tab
when you click an IAM user in the console.

Temporary security credentials
At this time, there’s a limit of 5,000 users per AWS account, but you can raise the
limit if needed. An alternative to increasing the number of users is to use temporary
security credentials. These work similarly to IAM users but can be made to expire
after a preset time and can be generated dynamically. See Amazon’s online docu-
mentation at http://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_
temp.html for more information on temporary security credentials. You can find
more information about IAM users at http://docs.aws.amazon.com/IAM/latest/
UserGuide/id_users.html.

http://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/id_users.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/id_users.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/id_users.html

71Security model and identity management
1 Create the group in the IAM console by clicking Groups and then clicking Cre-
ate New Group.

2 Give the group a name, such as Lambda-DevOps, and click Next Step.
3 Do not attach any policies to the group. Click Next Step and then click Create

Group to save and exit.
4 Having performed the first three steps, you are returned to the Groups page.
5 Click Lambda-DevOps, make sure that the Permissions tab is selected, and then

expand the Inline Policies section. Click the Click Here link in the Inline Policy
section and select Custom Policy.

6 Set a name for the policy, such as Lambda-Upload-Policy, and copy the code
in the next listing to the policy document body.

{
 "Version": "2012-10-17",
 "Statement": [

{
 "Sid": "Stmt1451465505000",
 "Effect": "Allow",
 "Action": [

"lambda:GetFunction",
"lambda:UpdateFunctionCode",
"lambda:UpdateFunctionConfiguration"

],
 "Resource": [

"arn:aws:lambda:*"
]
}

]
}

7 Click Apply Policy to save and exit. If you review the group, it should be similar
to figure 4.4.

8 Find the original lambda-upload user and remove their inline policy.
9 Click the Groups tab and then click Add User to Groups. Select the lambda-

upload user from the list and click Add to Groups.
10 Click the Permissions tab. You should see a new inline policy called Lambda-

Upload-Policy, which you can view. If you decide to remove the policy later,
you’ll need to remove the user from the group. Figure 4.5 shows how you can
do that from the Groups tab.

11 Test the deployment of one of your functions as you learned to do in chapter 3.

Listing 4.1 Lambda Upload Policy

A Statement ID (Sid) is an
optional policy identifier that
you can set. It should be unique
within the policy but you can
make it up.

Allow three actions that can
get the required Lambda
function, update the
function code, and update
its configuration.

This policy applies to all
Lambda functions, as

indicated by the wildcard.

72 CHAPTER 4 Setting up your cloud
A group’s policy can be managed as if it were any regular
user or role. Managed and inline policies are allowed.

Figure 4.4 There should be one inline policy attached to this group. You can add additional managed
or inline policies to this group later.

Remove user from group

Figure 4.5 This user doesn’t have an inline or managed policy. One group policy applies, however.

73Security model and identity management
4.1.3 Creating roles

A role is a set of permissions that a user, application, or a service can assume for a
period of time. A role is not uniquely coupled to a specific user, nor does it have asso-
ciated credentials such as passwords or access keys. It’s designed to grant permissions
to a user or a service that typically doesn’t have access to the required resource. In
chapter 3, you created a role to allow Lambda functions to access S3. This is a com-
mon use case within AWS.

 Delegation is an important concept associated with roles. Put simply, delegation is
concerned with the granting of permissions to a third party to allow access to a partic-
ular resource. It involves establishing a trust relationship between a trusting account
that owns the resource and a trusted account that contains the users or applications that
need to access the resource. Figure 4.6 shows a role with a trust relationship established
for a service called CloudCheckr, which you can read more about in section 4.3.2.

 Federation is another concept that’s discussed often in the context of roles. Federa-
tion is the process of creating a trust relationship between an external identity pro-
vider such as Facebook, Google, or an enterprise identity system that supports
Security Assertion Markup Language (SAML) 2.0, and AWS. It enables users to log in
via one of those external identity providers and assume an IAM role with temporary
credentials.

An external ID prevents the confused
deputy problem, which is a form of
privilege escalation. It is needed if you
have configured access for a third party
to access your AWS account.

Trusted entities define which
entities are allowed to assume
the role.

Figure 4.6 This role grants CloudCheckr access to the AWS account to perform analysis of costs
and recommend improvements.

74 CHAPTER 4 Setting up your cloud
4.1.4 Resources

Permissions in AWS are either identity-based or resource-based. Identity-based permis-
sions specify what an IAM user or a role may do. Resource-based permissions specify
what an AWS resource, such as an S3 bucket or an SNS topic, is allowed to do or who
can have access to it. In chapter 3, you modified the policy of an SNS topic to allow it
to communicate with S3. That was an example of a resource-based policy that you had
to change to meet your requirements.

 A resource-based policy often specifies who has access to the given resource. This
allows trusted users to access the resource without having to assume a role. The AWS
user guide states: “cross-account access with a resource-based policy has an advantage
over a role. With a resource that is accessed through a resource-based policy, the user
still works in the trusted account and does not have to give up his or her user permis-
sions in place of the role permissions. In other words, the user continues to have
access to resources in the trusted account at the same time as he or she has access to
the resource in the trusting account” (http://docs.aws.amazon.com/IAM/latest/
UserGuide/id_roles_compare-resource-policies.html). Not all AWS services support
resource-based policies, however. Currently, the only services that do are S3 buckets,
SNS topics, SQS queues, Glacier vaults, OpsWorks stacks, and Lambda functions.

4.1.5 Permissions and policies

When you initially create an IAM user, it’s unable to access or do anything in your
account. You need to grant the user permissions by creating a policy that describes
what the user is allowed to do. The same goes for a new group or role. A new group or
a role needs to be assigned a policy to have any effect.

 The scope of any policy can vary. You can give your user or role administrator access
to the whole account or specify individual actions. It’s better to be granular and specify
only permissions that are needed to get the job done (least privilege access). Start with
a minimum set of permissions and add additional permissions only if necessary.

 There are two types of policies: managed and inline. Managed policies apply to
users, groups, and roles but not to resources. Managed policies are standalone. Some
managed policies are created and maintained by AWS. You also can also create and
maintain customer-managed policies. Managed policies are great for reusability and
change management. If you use a customer-managed policy and decide to modify it,
all changes are automatically applied to all IAM users, roles, and groups that the policy
is attached to. Managed policies allow for easier versioning and rollbacks.

 Inline policies are created and attached directly to a specific user, group, or role.
When an entity is deleted, the inline policies embedded within it are deleted also.
Resource-based policies are always inline. To add an inline or a managed policy, click
into the required user, group, or role and then click the Permissions tab. You can
attach, view, or detach a managed policy and similarly create, view, or remove an
inline policy.

 A policy is specified using JSON notation. The following listing shows a managed
AWSLambdaExecute policy.

http://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_compare-resource-policies.html

75Security model and identity management
{
 "Version":"2012-10-17",
 "Statement":[

{
 "Effect":"Allow",
 "Action": "logs:*",
 "Resource":"arn:aws:logs:*:*:*"

},
{
 "Effect":"Allow",
 "Action":[
 "s3:GetObject",
 "s3:PutObject"
],
 "Resource":"arn:aws:s3:::*"

}
]
}

Many IAM policies contain additional elements such as Principal, Sid, and Condition.
The Principal element specifies an IAM user, an account, or a service that’s allowed or
denied access to a resource. The Principal element isn’t used in policies that are
attached to IAM users or groups. Instead, they’re used in roles to specify who can
assume the role. They’re also common to resource-based policies. Statement ID (Sid)
is required in policies for certain AWS services, such as SNS. A condition allows you to
specify rules that dictate when a policy should apply. An example of a condition is pre-
sented in the next listing.

"Condition": {
 "DateLessThan": {

"aws:CurrentTime": "2016-10-12T12:00:00Z"
},
"IpAddress": {

"aws:SourceIp": "127.0.0.1"
}

 }

Listing 4.2 AWSLambdaExecute policy

Listing 4.3 Policy condition

Version specifies the policy language version. The current
version is 2012-10-17. If you’re creating a custom policy,
make sure to include the version and set it to 2012-10-17.

The statement array contains one or
more statements that specify the actual
permissions that make up the policy.

The Effect element is required and
specifies whether the statement allows or
denies access to the resource. The only two
available options are Allow and Deny.

The Action element, or an array, specifies the
specific actions on the resource that should
be allowed or denied. The use of a wildcard
(*) character is allowed; for example,
“Action”: “s3:*”.

The Resource element identifies the
object or objects that the statement
applies to. It can be specific or include a
wildcard to refer to multiple entities.

You can use a number of conditional elements. These
include DateEquals, DateLessThan, DateMoreThan,
StringEquals, StringLike, StringNotEquals, and ArnEquals.

The condition keys represent values that come from the request
issued by a user. Possible keys include SourceIp, CurrentTime,

Referer, SourceArn, userid, and username. The value can be either
a specific literal value such as “127.0.0.1” or a policy variable.

76 CHAPTER 4 Setting up your cloud
Amazon recommends using conditions, to the extent that is practical, for security.
The next listing, for example, shows an S3 bucket policy that forces content to be
served only over HTTPS/SSL. This policy refuses connections over unencrypted HTTP.

{
 "Version": "2012-10-17",
 "Id": "123",
 "Statement": [

{
 "Effect": "Deny",
 "Principal": "*",
 "Action": "s3:*",
 "Resource": "arn:aws:s3:::my-bucket/*",
 "Condition": {

"Bool": {
"aws:SecureTransport": false

}
 }
}

]
}

4.2 Logging and alerting
CloudWatch is an AWS component for monitoring resources and services running on
AWS, setting alarms based on a wide range of metrics, and viewing statistics on the per-
formance of your resources. When you begin to build your serverless system, you’re
likely to use logging more than any other feature of CloudWatch. It will help to track
and debug issues in Lambda functions, and it’s likely that you’ll rely it on for some
time. Its other features, however, will become important as your system matures and
goes to production. You’ll use CloudWatch to track metrics and set alarms for unex-
pected events.

 As with most services, AWS has a different pricing model for CloudWatch depend-
ing on the region. Assuming you’re using CloudWatch in the eastern United States
(northern Virginia), the price is $0.50 per GB of logs ingested and $0.03 per GB for
archiving logs per month. Alarms cost $0.10 per alarm per month, and custom metrics
are $0.50 per metric. The free tier in CloudWatch consists of 10 custom metrics, 10

Listing 4.4 Policy to enforce HTTPS/SSL

Multiple conditions
The AWS documentation at http://amzn.to/21UofNi states “If there are multiple con-
dition operators, or if there are multiple keys attached to a single condition operator,
the conditions are evaluated using a logical AND. If a single condition operator
includes multiple values for one key, that condition operator is evaluated using a log-
ical OR.” See http://amzn.to/21UofNi for great examples you can follow and a whole
heap of useful documentation.

This policy explicitly denies access
to s3 if the condition is met.

The condition is met when requests are not sent using SSL.
This forces the policy to block access to the bucket if a user

tries to access it over regular, unencrypted HTTP.

http://amzn.to/21UofNi
http://amzn.to/21UofNi

77Logging and alerting
alarms, 1,000 SNS email notifications per customer, 5 GB of data ingestion, and 5 GB of
archived storage per month.

 CloudTrail is an AWS service that records API calls. It records information such as
the identity of the API caller, the source IP address, and the event. This data is saved in
a log file in an S3 bucket. CloudTrail is an effective way to generate logs and gather
information about what AWS services are doing and who’s invoking them. For exam-
ple, you can use it to view the event that the Elastic Transcoder used to kick off a new
job or find who deleted a useful S3 bucket and when. CloudTrail supports a number of
AWS services including CloudSearch, DynamoDB, Kinesis, API Gateway, and Lambda,
and it can be configured to push logs straight to a CloudWatch log group.

 The free tier in CloudTrail allows you to create a free trail per region. For addi-
tional trails, however, the charge is $2.00 per 100,000 events recorded.

4.2.1 Setting up logging

The log section of CloudWatch can be accessed by clicking CloudWatch in the AWS
console and then clicking Logs in the navigation pane. You’re likely to see a set of log
groups already created that correspond to the three functions that you developed in
chapter 3. Click any of the log groups to see a list of log streams. Log streams contain
log events, which are the raw records of events that occurred. Every log event has a
timestamp and an event message. The cogwheel on the right side allows you to add
more columns to the default two-column view. You can choose to show columns with
creation time, the last event time, the first event time, and the ARN. Figure 4.7 shows
the main log view. In traditional architectures, developers or solution architects usu-
ally install log agents on their Elastic Compute Cloud (EC2) instances and use them to
log to CloudWatch. With serverless architecture, you don’t need to worry about provi-
sioning EC2 instances and installing agents. Lambda logs to CloudWatch automati-
cally, which can work out fairly well in practice, especially if you have a good logging
framework (we’ll talk more about it in chapter 6).

CloudWatch can expire log data automatically
after a preset period of time, or it can keep it
around forever.

The Actions menu has options to create
and delete log groups, export data, and
create subscriptions.

You can create metric filters using the
Actions menu, and you can use filters
to create custom alerts.

Create subscriptions, using the Actions
menu, to push log data straight to
Amazon Elasticsearch or Lambda.

Figure 4.7 You should see three log groups for the three Lambda functions previously created.
www.allitebooks.com

http://www.allitebooks.org

78 CHAPTER 4 Setting up your cloud
4.2.2 Log retention

The CloudWatch log data is stored indefinitely. It never expires. If you want Cloud-
Watch to delete logs automatically after a set period, you can configure it in the
CloudWatch console:

1 Click the Log page in the CloudWatch console, and in the Expire Events After
column, click Never Expires to change the retention period.

2 In the Edit Retention dialog, select the desired period. It can range from 1 day
to 10 years to Never Expire.

4.2.3 Filters, metrics, and alarms

Metric filters specify patterns that run against incoming log events. If there’s a match,
a CloudWatch metric is updated, which can then be used to produce a graph or create
an alarm.

 A metric filter contains the following important components:

 Pattern—Used to specify what term or phrase to look for in a log.
 Value—The value to publish to a metric. It can be a count or a specific term

extracted from the log.
 Metric name—The name of the CloudWatch metric that will contain the result as

specified by the value.
 Namespace—A grouping for related metrics.
 Filter name—The name of the filter.

You’re going to create a metric filter, a metric, and an alarm to help track how many
times a Lambda function exits abnormally because of an error:

1 In the CloudWatch console, click Log in the navigation pane and then select the
check box next to the log group called /aws/lambda/transcode-video. (This is
the log group that you created for the first Lambda function in chapter 3.)

2 Click the Create Metric Filter button to continue. In the Filter Pattern text box,
type Process exited before completing request.

3 You can now test the pattern if you have any log events that have shown this
error message before. You can look through existing log streams by using the
drop-down just below where you entered the pattern and then clicking the Test
Pattern button. See figure 4.8 for an example. Note that “Filters do not retroac-
tively filter data. Filters only publish the metric data points for events that hap-
pen after the filter was created” (http://amzn.to/1RFsxDo).

http://amzn.to/1RFsxDo

79Logging and alerting
4 Click Assign Metric and then give your filter a name and set metric details. The
metric namespace allows you to group related metrics together, so use some-
thing like LambdaErrors and then give your new metric a name such as Lambda-
ProcessExitErrorCount (figure 4.9).

5 Click Create Filter to create the metric filter.

You will see if the log stream has log
events that match the filter pattern.

Match log events
on terms, values,
or phrases.

Select from available log streams from the
drop-down. Oldest log streams are at the
top, and newer ones are at the bottom.

Figure 4.8 Filter patterns support wildcards and conditions. See the AWS guide at
http://amzn.to/1QLF8WW for more information on filter and pattern syntax.

http://amzn.to/1QLF8WW

80 CHAPTER 4 Setting up your cloud
Having created your metric, you can create an alarm for it. Section 4.2.6 explains how
to create alarms based on metrics.

4.2.4 Searching log data

You also can search log data in CloudWatch using the metric filter pattern syntax. To
search through existing log data, navigate to the Logs page and click the desired log
group. Click the Search Log Group button, and type a pattern in the Filter text box.
Optionally, you can set a date and time to restrict the scope of the search. If you want to do
a search within a particular log stream, you can click it first and then type your pattern.
For more information on filter and pattern syntax, go to http://amzn.to/1miUFTd.

4.2.5 S3 and logging

S3 is able to track access requests and log information separately from CloudWatch.
These logs are useful for auditing and attaining additional insights into who or what
service is accessing your buckets. S3 logs store information such as the bucket name,
request time and action, and response status.

24-Hour Video relies on S3 for storage of video files, and it’s likely that many sys-
tems using serverless architecture will use S3 also. Therefore, to learn how to activate
and use S3 logging, you’ll need to enable it for the first bucket you created back in
chapter 3:

1 In the S3 console, create a new bucket to store log files. Name this bucket
serverless-video-logs.

Click Create New Namespace to create a new namespace.
Future metrics will have this namespace available to them.

Figure 4.9 Grouping metrics under a namespace makes it easy to organize groups of metrics together.
You can access the namespace and view related metrics from the navigation pane in CloudWatch.

http://amzn.to/1miUFTd

81Logging and alerting
2 Click the first bucket you created in chapter 3, which would be serverless-
video-upload, and then select Properties:

3 Click Logging and enable the logging capability of the bucket.
4 From the Target Bucket drop-down, select the bucket that you created in step 1.
5 In the target prefix, type upload/ and save. Figure 4.10 shows this example.
6 To test the system, upload or rename an object in the first bucket. Logs may

take several hours to appear, so give them some time.

4.2.6 More on alarms

CloudWatch alarms monitor metrics, such as duration, errors, invocations, or throt-
tles, and perform an action, such as sending a message to SNS, when the number of
events goes over the established threshold in a given timeframe. An alarm has three
possible states:

 OK—The monitored metric is within the defined threshold.
 Insufficient Data—Not enough data available to determine state.
 Alarm—The metric is outside the bounds of the defined threshold and action

will be taken.

Setting the target prefix will create virtual folders in the S3 bucket.
This will help to organize and store multiple logs in the same bucket.

Figure 4.10 Logging for an S3 bucket can be enabled and disabled at any time. Enabling this option will
modify the ACL of the target bucket to give the Log Delivery group permission to write to the bucket.

82 CHAPTER 4 Setting up your cloud
Let’s create an alarm that triggers a notification for Lambda errors. This alarm sends
an email if three or more Lambda errors occur in a one-minute span:

1 Create an SNS topic called lambda-error-notifications and subscribe to it
with your email address.

2 In the AWS console, click SNS. Select Topics in the navigation pane and click the
Create New Topic button.

3 A dialog should appear onscreen asking for information about the topic. Set
the topic and display names to lambda-error-notifications. Click Create
Topic to save.

4 You will remain in the Topics list view after creating the topic, and your new
topic will appear in the list. Select the check box next to it and click Actions.

Only one metric can be
selected for an alarm.

Try changing the statistic and the period to see
how it affects the graph for the selected metric.

Statistic Period

Figure 4.11 Creating an alarm is a straightforward process. You can find in-depth information at
http://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/ConsoleAlarms.html.

http://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/ConsoleAlarms.html

83Logging and alerting
5 From the Actions menu select Subscribe to Topic. You’ll see another dialog
appear titled Create Subscription.

6 In the dialog, set Protocol to Email and type your email address in the endpoint
text box.

7 Click Create Subscription to save and close the dialog.
8 Remember to check your email and confirm the subscription.
9 In the CloudWatch console click Alarms and then click Create Alarm.

10 In the Alarm dialog click Lambda Metric, and then under the heading of
Lambda > Across All Functions, select the Errors check box. Figure 4.11 shows
this page in detail. Click Next to go to the second page.

11 The second page of this dialog is where you configure the threshold, the
period, and action (figure 4.12).

12 Type a name for the alarm, such as lambda-errors, and then set the threshold
to 3 or more errors for one consecutive period.

13 Change Period to 1 minute and then change Statistic to Sum.
14 Under Actions, select the SNS topic you created earlier from the second drop-

down.

Set the SNS topic and the email list in case the alarm needs to be raised.

Figure 4.12 To complete the creation of the alarm, set the number of occurrences in a consecutive
period to trigger the alarm and specify the resulting action.

84 CHAPTER 4 Setting up your cloud
15 Click Create Alarm to finalize the creation of the alarm.
16 Now you need to test the alarm to make sure it has been set up correctly:
17 Open Lambda in the AWS console and click the radio button next to any of the

functions you created in chapter 3.
18 From the Actions drop-down, select Test Function (figure 4.13).

19 You’ll see a list of test events to choose from. The first Hello World test is
enough to cause an error, so leave it selected and click Save and Test.

20 The test should cause an immediate error. The execution result should show
“Failed” and the error message should say “Process exited before completing
request” (figure 4.14).

Selecting the test function will give you a
range of event templates to choose from.

Figure 4.13 You can use the Test Function feature to test your Lambda functions directly in the AWS
console.

The execution result will be set to
failed if the function causes an error.

The log should help to diagnose and
troubleshoot failing Lambda functions.

Figure 4.14 The Lambda console shows whether the test succeeded or failed, the function’s log
output, and a useful summary of execution.

85Logging and alerting
21 Click the Test button three or four more times to make sure that there’s
enough data for the alarm.

22 Check your email, because you should receive a notification from CloudWatch.

4.2.7 CloudTrail

CloudTrail records API calls made across your account by users or services on behalf of
a user. It provides a convenient way to audit API calls and to help diagnose and trou-
bleshoot issues. CloudTrail introduces the concept of trails, which are configurations
that enable logging of APIs. There are two types of trails—one that applies to all
regions and one that applies to a single, specific region. You should enable CloudTrail
because it helps to understand what’s happening within the system when things go
wrong. Let’s walk through the steps to create a trail for your region:

1 Click CloudTrail in the AWS console, and then click Get Started Now.
2 Give your trail a name, such as 24-Hour-Video, and set Apply Trail to All

Regions to No.
3 Set Create a New S3 Bucket to No, and from the S3 Bucket drop-down list select

the bucket for logs (serverless-video-logs) you created earlier in section 4.2.5.
4 Click Advanced to have a look at additional options. You don’t need to set any-

thing, but you can enable SNS notifications and log file validations if you want
(figure 4.15).

The trail name cannot
contain spaces.

Creating a trail for each region can be time-
consuming. So you have an option to create
one trail for all regions at once.

You can add one additional log prefix.

Figure 4.15 Creating a new trail shouldn’t take long. The only two mandatory fields are the name
and the S3 bucket.

86 CHAPTER 4 Setting up your cloud
5 Click Turn On to save the trail and complete your configuration.
6 After the trail is created, you’re taken to a table that lists all trails for your

account across all regions. You created only one trail, so click it to inspect and
configure its options.

7 The one thing you need to configure is integration with CloudWatch, so do it
now:

8 In the Trail Configuration page, click Configure under the CloudWatch Logs
section.

9 Specify a new log group or leave the default value in the text box (figure 4.16).
10 Click Continue and then click Allow. Doing this creates a new role to allow

CloudTrail to issue required CloudWatch API calls.

The API Activity History page in CloudTrail shows create, modify, and delete API calls
executed over the past seven days. You can expand each event and then click the View

You can modify the trail to apply to all regions.

Creating a new log group will help to
isolate trail logs from other log streams.

Figure 4.16 Configure CloudWatch integration with CloudTrail. This allows you to create metrics
and alarms for the incoming trail log data.

87Costs
Event button to see more information. Events may take up to 15 minutes to appear.
Alternatively, you can inspect the S3 bucket for the full log of the API activity or look at
the appropriate log group created in CloudWatch.

4.3 Costs
Receiving an unpleasant surprise in the form of a large bill at the end of the month is
disappointing and stressful. CloudWatch can create billing alarms that send notifica-
tions if total charges for the month exceed a predefined threshold. This is useful not
only to avoid unexpectedly large bills but also to catch potential misconfigurations of
your system. For example, it’s easy to misconfigure a Lambda function and inadver-
tently allocate 1.5 GB of RAM to it. The function might not do anything useful except
wait for 15 seconds to receive a response from a database. In a very heavy-duty envi-
ronment, the system might perform 2 million invocations of the function a month,
costing a little over $743.00. The same function with 128 MB of RAM would cost
around $56.00 per month. If you perform cost calculations up front and have a sensi-
ble billing alarm, you’ll quickly realize that something is going on when billing alerts
begin to come through.

4.3.1 Creating billing alerts

Follow these steps to create a billing alert:

1 Enable billing alerts in the Billing and Cost Management console (figure 4.17).
2 In the main AWS console, click your name (or the name of the IAM user that’s

representing you) and then click My Billing Dashboard.
3 Click Preferences in the navigation pane and then enable the check box next to

Receive Billing Alerts.
4 Click Save Preferences.

Once enabled, the billing alert option cannot be disabled.

Figure 4.17 The Preferences page allows you to manage how invoices and billing reports are received.

88 CHAPTER 4 Setting up your cloud
5 Open the CloudWatch console and select Billing in the navigation pane.
6 Click the Create Alarm button and then click the Billing Metrics subheader.
7 Under Billing > Total Estimated Charge select the first check box (this is the

Estimated Charges metric). Selecting this option captures estimated charges
across all AWS services. You can, however, go granular and select specific services.

8 Click the Create Alarm button in the lower-right corner to open the Create
Alarm dialog.

9 This dialog is similar to the dialog you used in section 4.2.6. Set your spending
threshold and select an SNS topic for the delivery of notifications. You can,
optionally, click New list and enter an email address directly (figure 4.18).

4.3.2 Monitoring and optimizing costs

Services such as CloudCheckr (http://cloudcheckr.com) can help to track costs, send
alerts, and even suggest savings by analyzing services and resources in use. Cloud-
Checkr comprises several different AWS services, including S3, CloudSearch, SES, SNS,
and DynamoDB. It’s richer in features and easier to use than some of the standard
AWS features. It’s worth considering for its recommendations and daily notifications.

 AWS also has a service called Trusted Advisor that suggests improvements to perfor-
mance, fault tolerance, security, and cost optimization. Unfortunately, the free version

Clicking New List will allow you to enter an email address
directly, without having to select an SNS topic.

Figure 4.18 It’s good practice to create multiple billing alarms to keep you informed of ongoing costs.

http://cloudcheckr.com
http://cloudcheckr.com
http://cloudcheckr.com
http://cloudcheckr.com

89Costs
of Trusted Advisor is limited, so if you want to explore all of the features and recom-
mendations it has to offer, you must upgrade to a paid monthly plan or access it
through an AWS enterprise account.

 Cost Explorer (figure 4.19) is a useful, albeit high-level, reporting and analytics
tool built into AWS. You must activate it first by clicking your name (or the IAM user-
name) in the top-right corner of the AWS console, selecting My Billing Dashboard,
then clicking Cost Explorer from the navigation pane and enabling it. Cost Explorer
analyzes your costs for the current month and the past four months. It then creates a
forecast for the next three months. Initially, you may not see any information, because
it takes 24 hours for AWS to process data for the current month. Processing data for
previous months make take even longer. More information about Cost Explorer is
available at http://amzn.to/1KvN0g2.

4.3.3 Using the Simple Monthly Calculator

The Simple Monthly Calculator (http://calculator.s3.amazonaws.com/index.html) is
a web application developed by Amazon to help model costs for many of its services.
This tool allows you to select a service on the left side of the console and then enter
information related to the consumption of that particular resource to get an indica-
tive cost. Figure 4.20 shows a snippet of the Simple Monthly Calculator with an esti-
mated monthly cost of $650.00. That estimate is mainly of costs for S3, CloudFront,

There are four standard reports to choose from
but you can create your own reports too.

The forecast allows you to guesstimate and
assess possible costs well into the future.

Figure 4.19 The Cost Explorer tool allows you to review historical costs and estimate what future
costs may be.

http://amzn.to/1KvN0g2
http://calculator.s3.amazonaws.com/index.html

90 CHAPTER 4 Setting up your cloud
and the AWS support plan. It’s a complex tool and it’s not without usability issues, but
it can help with estimates.

 You can click Common Customer Samples on the right side of the console or enter
your own values to see estimates. If you take the Media Application customer sample,
something that could serve as a model for 24-Hour Video, it breaks down as follows:

 The S3 estimated cost is $9.01. It includes 300 GB storage, 200 PUT/COPY/
POST/LIST requests, 100 GET and other requests, 2 GB/month data transfer
out, and 10 GB/month data transfer in.

 The CloudFront estimated cost is $549.96. It includes 5000 GB/month data
transfer out with an average object size of 300 KB. The edge location traffic dis-
tribution is 30% for the United States and Europe, 15% for Japan, and 25% for
Hong Kong, Philippines, South Korea, Singapore, and Taiwan.

 The AWS business support plan is $100.00.

4.3.4 Calculating Lambda and API Gateway costs

The cost of running serverless architecture often can be a lot less than running tradi-
tional infrastructure. Naturally, the cost of each service you might use will be different,
but you can look at what it takes to run a serverless system with Lambda and the API
Gateway.

 Amazon’s pricing for Lambda (https://aws.amazon.com/lambda/pricing/) is
based on the number of requests, duration of execution, and the amount of memory

Estimate of the monthly bill adds up
individual service estimates to show
what the final figure may look like.

Select from a number of common customer
samples to see how the calculator works and
what the costs are.

Figure 4.20 The Simple Monthly Calculator is a great tool to work out the estimated costs in advance.
You can use these estimates to create billing alarms at a later stage.

https://aws.amazon.com/lambda/pricing/

91Costs
allocated to the function. The first million requests are free, with each subsequent
million charged at $0.20. Duration is based on how long the function takes to execute,
rounded up to the next 100 ms. Amazon charges in 100 ms increments while also tak-
ing into account the amount of memory reserved for the function.

 A function created with 1 GB of memory will cost $0.000001667 per 100ms of exe-
cution time, whereas a function created with 128 MB of memory will cost
$0.000000208 per 100 ms. Note that Amazon prices may differ depending on the
region and that they’re subject to change at any time.

 Amazon provides a perpetual free tier with 1 million free requests and 400,000
GB-seconds of compute time per month. This means that a user can perform a million
requests and spend an equivalent of 400,000 seconds running a function created with
1 GB of memory before they have to pay.

 As an example, consider a scenario where you have to run a 256 MB function 5
million times a month. The function executes for two seconds each time. The cost cal-
culation follows:

 Monthly request charge:

 The free tier provides 1 million requests, which means that there are only 4 mil-
lion billable requests (5M requests – 1M free requests = 4M requests).

 Each million is priced at $0.20, which makes the request charge $0.80 (4M
requests * $0.2/M = $0.80).

Monthly compute charge:

 The compute price for a function per GB-second is $0.00001667. The free tier
provides 400,000 GB-seconds free.

 In this scenario, the function runs for 10 ms (5M * 2 seconds).
 10M seconds at 256 MB of memory equates to 2,500,000 GB-seconds

(10,000,000 * 256 MB/1024 = 2,500,000).
 The total billable amount of GB-seconds for the month is 2,100,000 (2,500,000

GB-seconds – 400,000 free tier GB-seconds = 2,100,000).
 The compute charge is therefore $35.007 (2,100,000 GB-seconds * $0.00001667

= $35.007).

The total cost of running Lambda in this example is $35.807. The API Gateway pricing
is based on the number of API calls received and the amount of data transferred out of
AWS. In the eastern United States, Amazon charges $3.50 for each million API calls
received and $0.09/GB for the first 10 TB transferred out. Given the previous example
and assuming that monthly outbound data transfer is 100 GB a month, the API Gate-
way pricing is as follows:

 Monthly API charge:

 The free tier includes one million API calls per month but is valid for only 12 months.
Given that it’s not a perpetual free tier, it won’t be included in this calculation.

 The total API cost is $17.50 (5M requests * $3.50/M = $17.50).

92 CHAPTER 4 Setting up your cloud
Monthly data charge:

 The data charge is $9.00 (100 GB * $0.09/GB = $9).

The API Gateway cost in this example is $26.50. The total cost of Lambda and the API
Gateway is $62.307 per month. It’s worthwhile to attempt to model how many requests
and operations you may have to handle on an ongoing basis. If you expect 2M invoca-
tions of a Lambda function that uses only 128 MB of memory and runs for a second,
you’ll pay approximately $0.20 month. If you expect 2M invocations of a function with
512 MB of RAM that runs for 5 seconds, you’ll pay a little more than $75.00. With
Lambda, you have an opportunity to assess costs, plan ahead, and pay for only what
you actually use. Finally, don’t forget to factor in other services such as S3 or SNS, no
matter how insignificant their cost may seem to be.

4.4 Exercises
Having read about AWS Identity and Access Management, monitoring, logging, and
alerting and having implemented 24-Hour Video in chapter 3, try to complete the fol-
lowing exercises:

1 Create the Lambda-DevOps group as described previously in this chapter. Assign
the current Lambda-Upload IAM user to it. Then create two more users, Lambda-
Upload-Staging and Lambda-Upload-Production, and assign those two users to
Lambda-DevOps. Remember to save the access keys of the two new users in a
secure place.

2 Modify the bucket policy of the second bucket in 24-Hour Video, the video-
transcoded-bucket, to accept only SSL connections. The policy should reject
all non-SSL connections. See listing 4.4 for reference.

3 In CloudWatch, set the retention period of all log groups to 6 months.
4 Set up logging for the second bucket you created in chapter 3. Change the tar-

get prefix to transcoded/.
5 Set up a billing alarm to notify you if you’ve spent more than $100 in a month

and another alarm to notify if you’ve spent more than $500.00.
6 Create a trail in CloudTrail to monitor the account that hosts 24-Hour Video.

Serverless calculator
The online serverless calculator (http://serverlesscalc.com) is an easy-to-use tool
we built to help you model Lambda costs. All you need to do is specify the number of
Lambda executions per month, the estimated execution time, and the size (in mem-
ory) of your function. The calculator will immediately show you the monthly Lambda
charge, including request and compute cost breakdowns. Moreover, this tool will
allow you to compare Lambda costs to other similar serverless compute technologies
such as Azure Functions and IBM OpenWhisk.

http://serverlesscalc.com

93Summary
4.5 Summary
In this chapter, we covered a number of core concepts that you need to know to build
serverless architectures with AWS effectively. Security, logging, alerting, and cost con-
trols are not always exciting but are nearly always critical to the success of a system.
You learned about the following:

 Identity and Access Management in AWS including users, groups, roles, policies,
and permissions

 Using CloudWatch to review logs and create alarms based on custom metrics
 Enabling logging in S3
 Monitoring of ongoing costs using built-in alerting and services such as Cloud-

Checkr and Trusted Advisor
 Setting up CloudTrail to monitor API invocations of AWS services
 Estimating costs for Lambda and the API Gateway and using the Simple

Monthly Calculator

In the next chapter, you’ll learn about authentication and authorization in serverless
architectures. You’ll use Auth0 to build this capability and create a secure user system.
We’ll introduce the API Gateway and you’ll begin putting together a user interface for
24-Hour Video.

Part 2

Core Ideas

You’ve read through part 1 and now feel comfortable with some of the core
concepts and principles of serverless architectures. It’s time to go deeper and
look at authentication and authorization principles, as well as AWS Lambda and
API Gateway, in more detail. In the next few chapters, you’ll write Lambda func-
tions, configure a RESTful API, and even set up a website with user authentica-
tion. You’ll learn how quickly a single developer can put together a serverless
back end and how powerful serverless technologies can be.

Authentication
and authorization
One of the first questions we’re asked is usually about authentication and authori-
zation in a serverless environment. Without a server, how does one authenticate
users and secure access to resources? To help answer these questions, we introduce
an AWS service called Cognito and another (non-AWS) service called Auth0. We also
introduce the AWS API Gateway and show how to use it to create an API. We show
you how to secure this API using custom authorizers and connect it to Lambda
functions. Lastly, we show how to extend 24-Hour Video to provide sign-in, sign-
out, and user-profile facilities by combining features of Auth0, API Gateway, and
Lambda.

This chapter covers
 Authentication and authorization in serverless

architecture

 Auth0 as a central service for authentication

 JSON Web Tokens and delegation tokens

 AWS API Gateway and custom authorizers
97

98 CHAPTER 5 Authentication and authorization
5.1 Authentication in a serverless environment
In modern web and mobile applications, authentication and authorization can take a
number of forms. Allowing users to directly sign up with the application or sign in via
an enterprise directory is important. It can be equally important to allow users to
authenticate with a third-party identity provider (IdP) such as Google, Facebook, or
Twitter. You might ask how one implements and manages all the required authentica-
tion, authorization, user sign-up, and user validation concerns without a server. The
answer is by using services such as AWS Cognito and Auth0 and technologies such as
delegation tokens. Before we discuss these services and technologies in more detail,
you may want to look at appendix C. This appendix serves as a nice refresher on the
topics of authentication and authorization, OpenID, and OAuth 2.0.

5.1.1 A serverless approach

Authenticating a user and then authorizing access to needed services may seem like a
challenge without a server, but it isn’t difficult once you understand what’s possible:

 You can use services such as Cognito (https://aws.amazon.com/cognito) or
Auth0 (https://auth0.com) to help implement an authentication system.

 You can use tokens to exchange and verify user information between services.
In this chapter, you’ll use JSON Web Tokens (JWT). These tokens can encapsu-
late necessary information (claims) about the user. Your Lambda functions can
verify that a token is legitimate and then allow execution to continue if every-
thing is okay. You can even check the validity of a token in the API Gateway
before the relevant Lambda function is run (more on that in section 5.3).

 You can create delegation tokens using a Lambda function or Auth0. Delegation
tokens can be used to authorize direct access to services from the front end.

Figure 5.1 shows what a possible authentication and authorization architecture may
look like in a serverless application. The process of authentication is managed using
Auth0, which takes care of authentication and creation of delegation tokens needed
for direct authentication with other services. As you can see in the figure, the client
can access the database directly or send requests to a Lambda function that can access
the database using its own credentials. You have flexibility in choosing the best
approach for your system.

JSON Web Tokens
Throughout this chapter we’ll refer to JWT, which stands for JSON Web Token. The
Internet Engineering Task Force (IETF) describes JWT as a “compact, URL-safe means
of representing claims to be transferred between two parties. The claims in a JWT are
encoded as a JSON object that is used as the payload of a JSON Web Signature (JWS)
structure or as the plaintext of a JSON Web Encryption (JWE) structure, enabling the
claims to be digitally signed or integrity protected with a Message Authentication
Code (MAC) and/or encrypted” (http://bit.ly/1Spxog6). See the section on JWT in
appendix C to learn more.

https://aws.amazon.com/cognito
https://auth0.com
http://bit.ly/1Spxog6

99Authentication in a serverless environment
In chapter 1, we told you that in serverless architecture “the presentation tier of the
application communicates directly with services, the database, or compute functions
via an API gateway. Many services can be accessed directly by the front end. Some ser-
vices need to be hidden behind compute service functions where additional security
measures and validation can take place.” This description stands in contrast to many
traditional systems where communication often flows through a back end that coordi-
nates access to the database and services. So when designing your serverless system for
authentication and authorization, remember the following points:

 Use an established, industry-supported method for authentication and authori-
zation such as OpenID Connect and JWT.

 Make use of delegation tokens and allow the front end to communicate directly
with services (and the database) when it makes sense (that is, do this only when
an interruption to the client won’t place the system in an inconsistent state and
only if it’s secure to do so).

Identity
provider

Identity
provider

Identity
provider

Database

Lambda
function

Key
storage

Database

API
Gateway

Authentication
service

Client (web/mobile
application)

1. User logs in using an
authentication service
such as Auth0.

2. Authentication service returns a JSON
Web Token, which contains information
about the user. Client can request a
delegation token for a specific service
(for example, a database).

5. Lambda function retrieves
database credentials from a
third-party service used to
manage secrets.

6. Function writes to the
database using retrieved
credentials.

3. Client writes to the database. It
includes a delegation token (retrieved
in step 2) that authorizes this action.

4. Client sends a request to the
AWS API Gateway. It includes the
original JWT retrieved in step 2.

Figure 5.1 In a serverless architecture, you should let the client interact with services directly where it makes
sense.

100 CHAPTER 5 Authentication and authorization
5.1.2 Amazon Cognito

As a developer, you can build your own authentication and authorization system if you
wish to do so. OpenID Connect and OAuth 2.0 can help you support external identity
providers. Add a Lambda function, a database, and a sign-up/sign-in page, and you
can begin to authenticate users. But why build when someone else might have already
done it? Let’s look at existing services to see if they can reduce the amount of work
you would normally have to do.

 Amazon Cognito (https://aws.amazon.com/cognito) is a service from Amazon
that can help with authentication. You can use it to build an entire registration and
login system, and it can integrate with public identity providers or your own (existing)
authentication process.

 Authenticated and unauthenticated users going through Cognito are assigned an
IAM role/temporary credentials. This allows users to access resources and services in
AWS. Cognito can also save end-user data. This data can be synced and accessed across
different devices. Figure 5.2 shows how a user can authenticate with an identity pro-
vider and then get access to a database in AWS. Cognito acts as an intermediary (see
http://amzn.to/1SmsmPt for more information on Cognito authentication flows).

 Cognito is a great service but it has a number of limitations. Useful features such as
password reset require a bit of manual implementation and don’t have some of the
more advanced features such as log on via TouchID. Cognito is a great system but
there’s another alternative we should explore: a service called Auth0.

Delegation tokens
Later in the book, in chapter 9, we’re going to show how to use a JWT-based delega-
tion token to authorize access to your database and to other services. JWT is great,
but it’s not supported by all services everywhere. There will be times when you’ll have
to use signatures or temporary credentials instead. In this chapter (and beyond)
assume that delegation tokens are JSON Web Tokens. But if we use other ways of
granting temporary access to services, we’ll clearly mention it.

Making things easier in the long term
When building your serverless architecture, try to reduce the number of steps your
system has to take to perform an action. Allow your front end to communicate with
services directly if it’s secure and appropriate to do so. This will reduce latency and
make the system easier to manage.

Furthermore, don’t come up with your own way of performing authentication and
authorization. Try to adopt common protocols and specifications. You’re likely to inte-
grate with multiple third-party services and APIs that implement these as well. Secu-
rity is difficult, so if you follow tried-and-tested models for authentication and
authorization, you’re more likely to succeed.

https://aws.amazon.com/cognito
http://amzn.to/1SmsmPt

101Authentication in a serverless environment
5.1.3 Auth0

Auth0 (https://auth0.com) can be labeled a universal identity platform. It supports
custom user sign-up/sign-in with a username and a password, integrates with identity
providers that use OAuth 2.0 and OAuth 1.0, and connects to enterprise directories. It
also has advanced features such as multi-factor authentication and TouchID support.

 When a user authenticates with Auth0, the client application receives a JSON Web
Token. This token can be used in a Lambda function if it needs to identify the user, or
it can be used to request a delegation token (from Auth0) for another service. Auth0
integrates well with AWS. It can obtain temporary AWS credentials to securely access AWS
resources, so you don’t lose anything by using Auth0 instead of Cognito (for more infor-
mation about integration with AWS see https://auth0.com/docs/integrations/aws).

 Cognito and Auth0 are both very capable systems. You should explore the unique
features they offer and make an assessment based on the requirements of your pro-
ject. In the next section, we’ll explore how to handle user authentication in a server-
less application using Auth0 and JWT.

Identity
provider

Security
token

service

Cognito

Database

Client (web/mobile
application)

6. Use credentials to access a
database in AWS (via the AWS SDK).

5. STS grants AWS
credentials via Cognito.

4. Request and receive
AWS credentials (using
the Cognito ID and the
Identity Provider token).

3. Client writes to the
database. It includes
a delegation token
(retrieved in step 2)
that authorizes
this action.

1. Redirect user for
authentication
with a third-party
Identity Provider
(for example, Google).

2. Identity Provider
returns an ID token
on a successful
authentication.

Figure 5.2 The (enhanced) authentication flow with Cognito and a security token service (STS),
which grants temporary AWS credentials. Assume here that the client uses AWS SDK to invoke the
resource (that is, the database in this figure) directly.

https://auth0.com
https://auth0.com/docs/integrations/aws

102 CHAPTER 5 Authentication and authorization
5.2 Adding authentication to 24-Hour Video
In this section, you’re going to add sign-in/sign-out and user-profile features to
24-Hour Video. You’ll use Auth0 to handle user sign-up and authentication, and we’ll
show you how to secure access to Lambda functions. So far, we’ve focused only on build-
ing the 24-Hour Video back end and neglected the front end. You’re now going to build
an interface so that users can interact with the system (figure 5.3.)

Furthermore, we’ll introduce the AWS API Gateway in more detail. You can use this
AWS service to create an API between back-end services and the front end. The API
Gateway is covered in more detail in chapter 7, so feel free to jump to it if you need
further information or clarification as you follow this example.

5.2.1 The plan

The plan for adding an authentication/authorization system to 24-Hour Video is as
follows:

1 Create a basic website to serve as a user interface. It will have sign-in, sign-out,
and user-profile buttons. In later chapters, you’ll add additional capability to
this website such as video playback.

2 Register an application with Auth0 and integrate it with the website. Users
should be able to log in via Auth0 and receive a JSON Web Token that identifies
them.

3 Add an API Gateway to allow the website to invoke Lambda functions.
4 Create a user-profile Lambda function. This function will decode the user’s

JWT and invoke an Auth0 endpoint to get more information about the user. It
will then return this information to the website via the API Gateway. For the
moment, you don’t have a database, so there isn’t any additional information

Authentication

Setup for the web site and user authentication

Web application

Video transcoder

Media storage

Figure 5.3 In this chapter you’re going to add authentication and begin building your website.

103Adding authentication to 24-Hour Video
you can store about the user. But after chapter 9, you’ll have a database in
which you can save extra user information.

5 Configure the API Gateway to invoke the user-profile Lambda function using
an HTTP GET request.

6 Modify the API Gateway to perform JWT validation before the request hits an
integration endpoint (that is, before the request reaches your Lambda func-
tion). You’ll create a special Lambda function to validate your JWT and connect
it to the API Gateway as a custom authorizer to run on every request.

Figure 5.4 shows the authentication/authorization architecture you’re going to build
in steps 1–5. Step 6 is described in more detail in section 5.3.5.

Auth0

API Gateway Lambda
function

Client (web/mobile
application)

1. The user clicks
on a sign-in link.

2. Client application
launches the Auth0
log-in screen.

3. User authenticates
with Auth0.

Auth0 may authenticate the user
with a social Identity Provider such
as Google, Facebook, or Twitter.

Lambda function validates JWT and
generates a response. It can be a
positive or a negative response.

4. Auth0 sends back a JSON
Web Token (id_token) as well
as user profile information.

5. Client application
makes a request through
the API Gateway.

6. The API Gateway
passes the JWT to the
Lambda function.

7. The response from the
function is sent back.

8. API Gateway passes back
the response to the client.

Figure 5.4 The basic authentication/authorization flow with Auth0 and JWT that you’ll implement
for 24-Hour Video

104 CHAPTER 5 Authentication and authorization
5.2.2 Invoking Lambda directly

At this stage, you might ask, why can’t I get temporary AWS credentials and invoke
Lambda directly from the 24-Hour Video website? Why do I need an API Gateway at
all? Those are fair questions. You do have two ways of invoking Lambda functions.
One way is to use the SDK; the other is to go through an interface created by the API
Gateway. If you use the SDK approach, it would mean the following:

 The user would have to download a portion of the AWS SDK.
 24-Hour Video would become coupled to specific Lambda functions. Changing

these functions later could become painful and might require a redeployment
of the website.

 It would be harder to prevent a rogue user from abusing the system and invok-
ing Lambda thousands of times. With the API Gateway, you can throttle
requests, authorize requests, and even cache responses.

 The API Gateway allows you to design and build a uniform RESTful interface
that other clients can interact with using simple HTTP requests and standard
HTTP verbs.

When it comes to Lambda and a web application, creating a RESTful interface using
the API Gateway and putting your functions behind it is the way to go.

5.2.3 24-Hour Video website

If you’re building a large web application today, you might choose one of the available
single-page application (SPA) frameworks such as Angular or React. For the purposes
of this example, you’re going to create a website using Bootstrap and jQuery. The rea-
son for doing so is to allow you to focus on the serverless aspects of the system rather
than configuration and management of an SPA framework. If you wish to use your
favorite SPA rather than vanilla JavaScript and jQuery, feel free to do so. You’ll be able
to follow this example with a few minor tweaks. Figure 5.5 shows what this basic web-
site will look like initially.

 A quick way to create a skeleton website is to download the Bootstrap version of
the Initializr template (you can accept all default settings when downloading) from
http://initializr.com. Extract the download to a new directory such as 24-hour-video.
You’re going to make changes to this website and install additional packages. To help
manage dependencies and later to perform deployments, you’ll use npm as you did
for Lambda functions in chapter 3. Open a terminal window and do the following:

1 Change to the website directory and run npm init from it. Answer questions
from npm to create a package.json file.

2 You’ll need a web server to host your website. A good module you can use is
local-web-server. Run the following command from the terminal to install it:
npm install local-web-server --save-dev

3 Modify package.json to look like the following listing. It will allow you to run
npm start, which then launches the web server and hosts the website.

http://initializr.com

105Adding authentication to 24-Hour Video
{
 "name": "24-hour-video",
 "version": "1.0.0",
 "description": "The 24 Hour Video Website",
 "local-web-server": {

"port": 8100,
"forbid": "*.json"

 },
 "scripts": {

"start": "ws",
"test": "echo \"Error: no test specified\" && exit 1"

 },
 "author": "Peter Sbarski",
 "license": "BSD-2-Clause",
 "devDependencies": {
 "local-web-server": "^1.2.6"
 }
}

Run npm start from the terminal and open http://127.0.0.1:8100 in your web
browser to see the website.

Listing 5.1 Package.json for the website

The Sign In button is visible to all unauthenticated
users. Once a user logs in, the button is replaced
by Log Out and User Profile buttons.

Feel free to customize the website to reflect your creativity.

Figure 5.5 The Initializr Bootstrap template looks like this with an added Sign In button.

Port 8100 is unlikely to clash with
other open ports on your system,
but you can change it to anything
you want.

Running npm start will
launch the web server.

Your version number could be
different but that’s okay.
Everything should still work.

106 CHAPTER 5 Authentication and authorization
5.2.4 Auth0 configuration

Now you can integrate Auth0 with the website. Register a new account at
https://auth0.com. You’ll need to type in a preferred Auth0 account name, which
could be anything (for example, your organization or website name) and select a
region (choose US West). After creating the account, you might see an Authentication
Providers pop-up. In this pop-up you can choose the types of authentication to offer
to your users. They include standard username and password authentication, as well
as integration with Facebook, Google, Twitter, and Windows Live. You can configure
additional connections or remove the ones you’ve chosen later.

 You’ll start with a default app in Auth0 that you can use as a basis for 24-Hour
Video. You’ll be given an option to choose an application type (figure 5.6). Select Sin-
gle Page App and then select jQuery. You’ll be taken to a documentation page that
describes how to configure Auth0 for your website. You can always refer to this page
for additional information, and you should because Auth0 documentation is excel-
lent. For now, however, click the Settings tab that’s under the Default App heading.

Select Settings to configure the core
settings for your application.

You can choose Single Page App and then
jQuery to view excellent documentation.

Figure 5.6 Auth0 has a sparse and easy-to-use dashboard. We love it.

https://auth0.com

107Adding authentication to 24-Hour Video
 In the Settings tab you’ll need to configure a couple of options (figure 5.7):

1 From the Client Type drop-down select Single Page Application (if it’s not
already selected).

2 In Allowed Callback URLs type http://127.0.0.1:8100.
3 Click Save Changes at the bottom.

Auth0 will send responses to only the URLs that are specified in Allowed Callback
URLs. If you forget to specify your website URL there, Auth0 will show an error during
sign-in.

You should also look at Connections (on the left menu) to see which types of integra-
tions, such as database-driven, social, enterprise, or password-less, you could use. If
you click Social under Connections, you’ll see a list of third-party authentication pro-
viders that you can enable for your web application (figure 5.8).

 Having two or three social connections enabled is usually enough for most applica-
tions. Users will get confused and use multiple accounts to sign in to the system. When
that happens, you’ll get questions from people asking why their account is different or
why things are missing. It’s possible to link accounts together, but that’s outside the
scope of this chapter; see http://bit.ly/1PRKiRe if you need more information on how

This client secret will
be used later in a
Lambda function to
verify the authenticity
of the token.

Set the allowed
callback URLs. Auth0
will not send a
response otherwise.

Figure 5.7 Use the Auth0 Settings screen to get the client secret and set allowed callback URLs.

http://bit.ly/1PRKiRe

108 CHAPTER 5 Authentication and authorization
to do it. Note that the free Auth0 account supports only two social identity providers.
If you want to use more, you’ll have to go on a paid plan.

 If you decide to enable integration with a third-party identity provider such as Goo-
gle or GitHub, you’ll need to do a bit of configuration. When you click an identity
provider in Auth0, you’ll see the information, such as an API key, that needs to be
entered. Auth0 always provides a link to a page that explains how to obtain needed
keys, client IDs, and secrets (figure 5.9). For 24-Hour Video, make sure to enable and
configure at least one identity provider, such as Google or GitHub, to see how it
works. An exercise at the end of the chapter will ask you to do this.

5.2.5 Adding Auth0 to the website

In this section, you’ll connect the website to Auth0. The user will be able to register
and sign in to Auth0 and receive their JSON Web Token. This token will be stored in
the browser’s local storage and included in every subsequent request to the API Gate-
way. The user will also be able to sign out, which will remove the token from local stor-
age. Figure 5.10 shows this part of the workflow. Please be aware that in a real system,
including this token in every request isn’t a best practice. You should control where
the token is sent so that third parties don’t accidentally intercept it. An exercise at the
end of the chapter asks you to address this problem.

 Auth0 Lock is a free widget from Auth0 that provides a nice-looking sign-in/sign-
up dialog box. It simplifies the authentication flow and has a few interesting features

There are a lot of options but do not
enable too many social connections.
It may become hard for your users to
remember which accounts they have used.

Figure 5.8 Auth0 supports social, database, and enterprise connections.

109Adding authentication to 24-Hour Video
The Clients tab allows you to select which
of your clients (for example, 24-Hour Video)
can use this identity provider.

There is a helpful page for every identity
provider that shows how to get relevant
configuration information.

Figure 5.9 Auth0 has guides to help you find key information from third-party authentication providers.

Client (web/mobile
application)

1. The user clicks
on a sign-in link.

2. Client application
launches the Auth0
log-in screen.

3. User authenticates
with Auth0.

4. Auth0 sends back a JSON
Web Token (id_token) as well
as user profile information.

JWT will be stored in local storage and
it will be included in every subsequent
request in the Authorization header.

Database

Figure 5.10 Now that you’ve completed this section, your users will be able to sign into
and out of the website.

110 CHAPTER 5 Authentication and authorization
(for example, it can remember which identity provider the user used in a previous ses-
sion). You’re going to use this, so next we’ll look at the following:

 Adding Auth0 Lock to the website
 Adding sign-in, sign-out, and user profile buttons
 Adding a sprinkle of JavaScript to show the login dialog and save the JWT token

in local storage once the user authenticates

To add Auth0 Lock to the website, follow these steps:

1 Open index.html in your favorite HTML editor.
2 Add <script src="https://cdn.auth0.com/js/lock-9.min.js"></script>

above the line that says <script src="js/main.js"></script> (which is at the
bottom of the file).

3 To add buttons, remove the login form beginning with the line <form
class="navbar-form navbar-right" role="form"> and replace it with the
code in the next listing.

<div class="navbar-form navbar-right">
 <button id="user-profile" class="btn btn-default">

 </button>
 <button id="auth0-login" class="btn btn-success">Sign in</button>
 <button id="auth0-logout" class="btn btn-success">Sign Out</button>
</div>

You need to add JavaScript to wire up the buttons. Create the following two files in the
js directory of the website:

 user-controller.js
 config.js

Now add the following lines above <script src="js/main.js"></script> but below
<script src="https://cdn.auth0.com/js/lock-9.min.js"></script> in index.html:

<script src="js/user-controller.js"></script>
<script src="js/config.js"></script>

Copy the next listing to user-controller.js. This code is responsible for initializing
Auth0 Lock, wiring up click events for the buttons, storing the JWT in local storage,
and then including it in every subsequent request in the Authorization header.

Listing 5.2 Adding buttons to index.html

The profile picture will be
retrieved via Auth0.

These buttons will trigger the
click event in user-controller.js.

111Adding authentication to 24-Hour Video
var userController = {
 data: {
 auth0Lock: null,
 config: null
 },
 uiElements: {
 loginButton: null,
 logoutButton: null,
 profileButton: null,
 profileNameLabel: null,
 profileImage: null
 },
 init: function(config) {
 var that = this;

 this.uiElements.loginButton = $('#auth0-login');
 this.uiElements.logoutButton = $('#auth0-logout');
 this.uiElements.profileButton = $('#user-profile');
 this.uiElements.profileNameLabel = $('#profilename');
 this.uiElements.profileImage = $('#profilepicture');

 this.data.config = config;
 this.data.auth0Lock =

➥new Auth0Lock(config.auth0.clientId, config.auth0.domain);

 var idToken = localStorage.getItem('userToken');

 if (idToken) {
this.configureAuthenticatedRequests();
this.data.auth0Lock.getProfile(idToken, function(err, profile) {
if (err) {
 return alert('There was an error getting the profile: ' +

➥ err.message);
}
that.showUserAuthenticationDetails(profile);

});
 }

 this.wireEvents();
 },
 configureAuthenticatedRequests: function() {
 $.ajaxSetup({

'beforeSend': function(xhr) {
xhr.setRequestHeader('Authorization',

➥'Bearer ' + localStorage.getItem('userToken'));
}

 });
 },
 showUserAuthenticationDetails: function(profile) {
 var showAuthenticationElements = !!profile;

 if (showAuthenticationElements) {
this.uiElements.profileNameLabel.text(profile.nickname);
this.uiElements.profileImage.attr('src', profile.picture);

 }

Listing 5.3 Contents of user-controller.js

The Auth0 client ID
and domain will be set

in the config.js file.

If the user token
already exists, you

can try retrieving the
profile from Auth0.

This token will be sent
in the Authorization
header in all future
requests. Doing this
may be insecure, so in
section 5.5 we ask you
to fix it.

112 CHAPTER 5 Authentication and authorization
 this.uiElements.loginButton.toggle(!showAuthenticationElements);
 this.uiElements.logoutButton.toggle(showAuthenticationElements);
 this.uiElements.profileButton.toggle(showAuthenticationElements);
 },
 wireEvents: function() {
 var that = this;

 this.uiElements.loginButton.click(function(e) {
var params = {
authParams: {
 scope: 'openid email user_metadata picture'
}

};

that.data.auth0Lock.show(params, function(err, profile, token) {
if (err) {
 alert('There was an error');
} else {

 localStorage.setItem('userToken', token);
 that.configureAuthenticatedRequests();

 that.showUserAuthenticationDetails(profile);
}

});
 });

 this.uiElements.logoutButton.click(function(e) {
localStorage.removeItem('userToken');

that.uiElements.logoutButton.hide();
that.uiElements.profileButton.hide();
that.uiElements.loginButton.show();

 });
 }
}

Copy the code that follows to config.js. Remember to set the correct client ID and
Auth0 domain.

var configConstants = {
 auth0: {

domain: 'AUTH0-DOMAIN',
clientId: 'AUTH0-CLIENTID'

 }
};

Copy the code in the next listing to main.js.

 (function(){
 $(document).ready(function(){

userController.init(configConstants);
 });
 }());

Listing 5.4 Contents of config.js

Listing 5.5 Contents of main.js

Save the JWT
token to

browser’s
local storage.

Auth0 Lock will
display a dialog and

allow users to
register and log in.

Clicking Logout
removes the user’s
token from local
storage, makes the
Login button visible,
and hides the Profile
and Logout buttons.

The Auth0 domain and client ID can be obtained
from the Auth0 dashboard (figure 5.6).

Run the userController.init
function to wire up events
and set up Auth0.

113Adding authentication to 24-Hour Video
Finally, modify main.css (located in the css directory of the website) to have the styles
given in the following listing.

#auth0-logout {
 display: none;
}

#user-profile {
 display: none;
}

#profilepicture {
 height: 20px;
 width: 20px;

}

5.2.6 Testing Auth0 integration

To test Auth0 integration, check that the web server is running in the terminal. If it
isn’t, then run it by executing npm start. Open the page in the browser and click the
Sign In button. You should see the Auth0 Lock dialog (figure 5.11). Sign up right now
(note that you’re creating a new user for the 24-Hour Video app; this isn’t the same

Listing 5.6 Contents of main.css

If you haven’t configured a social provider
you will see a pop-up reminding you to set
API keys in social connections of Auth0.

Auth0 does password reset
email and account activation.

Figure 5.11 Auth0 Lock provides an easy-
to-use dialog box for your users to sign up.

114 CHAPTER 5 Authentication and authorization
user you used to sign up to Auth0 in the first place), and Auth0 should immediately
sign you in to your website. The JWT should be transmitted and saved in the browser’s
local storage (if you use Chrome, you can open Developer Tools, select Storage, click
Local Storage, click http://127.0.0.1:8000, and you’ll see the userToken). Click the
Sign Out button to log out and delete the JWT from local storage.

 Go back to the Auth0 dashboard and click Users. You’ll see all users registered with
the site. You can contact, block, delete, view location, or even sign in as a different
user. If you signed in successfully before, you should see your user details in the list.

 If something didn’t work and you couldn’t sign in, open your browser’s developer
tools and inspect the Console and Network tabs for any messages from Auth0. Double-
check that you set the Allowed Callback URL in Auth0 to be the URL of your website,
and check that you have the correct client ID and the domain.

5.3 Integration with AWS
Now you’re going to create a Lambda function that will accept the JWT from the web-
site, validate it, and then request more information about the user from Auth0. You
could issue a request to Auth0 straight from the browser and get information about
the user that way. You don’t need a Lambda function to do this, but this example is
designed to show how to deal with JWT in Lambda and, a little later, some of the code
will serve as a basis for your custom authorizer.

 As we mentioned earlier, there are two ways to invoke a Lambda function: using
the AWS SDK or via an API Gateway. We’ll go with the second option, so you need to
create an API Gateway. Your website will issue requests to an API Gateway resource and
include JWT in the Authorization header of the request. The API Gateway will capture
requests, route them to the Lambda function, and then send Lambda responses back
to the client. Figure 5.12 shows this part of the workflow.

 You’ll now work on the custom API (figure 5.13).

API Gateway

Client (web/mobile
application)

4. API Gateway returns
the response back to
the client.

3. Lambda generates a
response based on
whether JWT is validated.

2. The API Gateway passes the request
including JWT to the Lambda function.

1. Client application makes a
request to the API Gateway.

Lambda function has
the secret needed to
validate the signature
of the token.

Lambda
function

Figure 5.12 The website invokes a Lambda function via the API Gateway. The request includes JWT
in the Authorization header.

115Integration with AWS
5.3.1 User profile Lambda

Before implementing a user profile Lambda function, you should create a new IAM
role for it. You could reuse the role you created earlier (lambda-s3-execution-role),
but it has one too many permissions you don’t need. So let’s see how to make a new
one with fewer permissions:

1 Create a new role in the IAM console.
2 Name it api-gateway-lambda-exec-role.
3 In step 2 of the role-creation process, select AWS Lambda.
4 From the list of policies, select AWSLambdaBasicExecutionRole.
5 Click Create Role to save.

Having created a new role, you can focus on the Lambda function. This function will
do the following:

 Validate JSON Web Tokens.
 Invoke an Auth0 endpoint to retrieve information about the user.
 Send a response to the website.

Create the function in AWS right now:

1 Click Lambda in the AWS console.
2 Click the Create a Lambda Function button and select the Blank Function blue-

print.
3 Click Next on the Triggers screen.
4 Name the function user-profile.
5 Select api-gateway-lambda-exec-role from the Existing Role drop-down.
6 Leave all other settings as they are, and then save and create the function.

Authentication

Custom API

Create an API in the AWS cloud and authenticate calls

Web application

Video transcoder

Media storage

Figure 5.13 You’ll build and use your custom API throughout the next few chapters.

116 CHAPTER 5 Authentication and authorization
On your computer, set up the function:

1 Make a copy of one of the Lambda functions you worked on in chapter 3.
2 Change the name and any relevant metadata in package.json (remember to

update the function name or the ARN in the deploy script).
3 If you have the AWS SDK in the list of dependencies in package.json, you can

remove it because you won’t need it for this function.

You now need to add an npm module called jsonwebtoken. This module will help to
verify the integrity of the token and decode it.

 In a terminal window change to the directory of the function and run

npm install jsonwebtoken --save

Also, to make a request to Auth0 to retrieve user information, you’re going to use a
library called request. Install request by running npm install request --save from
the terminal. Your package.json should look similar to the next listing.

{
 "name": "user-profile",
 "version": "1.0.0",
 "description": "This Lambda function returns the current user-profile",
 "main": "index.js",
 "scripts": {
 "deploy": "aws lambda update-function-code

➥--function-name user-profile --zip-file fileb://Lambda-Deployment.zip",
"predeploy": "zip -r Lambda-Deployment.zip * -x *.zip *.json *.log"

 },
 "dependencies": {
 "jsonwebtoken": "^5.7.0",
 "request": "^2.69.0"
 },
 "author": "Peter Sbarski",
 "license": "BSD-2-Clause",
}

Open index.js and replace its contents with code in the next listing. This code is
responsible for validating and decoding the token. If it succeeds, it sends a request to
the tokeninfo endpoint provided by Auth0. The JWT is included in the body of the
request to Auth0. The tokeninfo endpoint returns information about the user, which
is then sent back to the website.

'use strict';

var jwt = require('jsonwebtoken');
var request = require('request');

exports.handler = function(event, context, callback){

Listing 5.7 Package.json for the user-profile Lambda function

Listing 5.8 Contents of the user-profile Lambda function

You can delete unused scripts (like the
test script) and dependencies if they

aren’t needed in this function.

Your version numbers
may be different.

117Integration with AWS

e
t
a
o
a
.

 if (!event.authToken) {
callback('Could not find authToken');
return;

 }

 var token = event.authToken.split(' ')[1];

 var secretBuffer =

➥ new Buffer(process.env.AUTH0_SECRET);
jwt.verify(token, secretBuffer, function(err, decoded){

if(err){
 console.log('Failed jwt verification: ', err,
 ➥'auth: ', event.authToken);
 callback('Authorization Failed');
 } else {

var body = {
 'id_token': token

};

var options = {
 url: 'https://'+ process.env.DOMAIN + '/tokeninfo',
 method: 'POST',
 json: true,
 body: body
};

request(options, function(error, response, body){
 if (!error && response.statusCode === 200) {
 callback(null, body);
 } else {
 callback(error);
 }
});
}

 })
};

Deploy the function to AWS by running npm run deploy from the terminal. Finally, you
need to create two environment variables for your Lambda function to store the Auth0

event.authToken needs to be
split because it contains the
word Bearer before the token.

The jsonwebtoken modul
can verify and decode a

the same time. It’s
useful utility if you need t

check the integrity of
token and extract claims

AUTH0_SECRET
and DOMAIN
are Lambda’s
environment
variables. You
can set and
modify these in
Lambda’s
console.

The request module is an excellent utility
for performing all kinds of requests. If the

error object is not null, you can assume
that the request succeeded and send back

its body via the API Gateway.

Environment variables
Environment variables are Lambda’s way of storing configuration settings, database
connections strings, and other useful information without having to embed them in
a function. Saving settings in environment variables is highly recommended because
it allows developers to update those settings without having to redeploy the function.
Environment variables can be changed independently and in isolation from the
function. The AWS platform makes environment variables available to the function
via process.env (for Node.js). Furthermore, environment variables can be encrypted
via KMS, which provides a good way to store important secrets. Chapter 6 has more
information on this useful feature.

118 CHAPTER 5 Authentication and authorization
domain and the Auth0 secret (figure 5.14). Listing 5.8 uses these two variables to verify
the token and issue a request to Auth0. To add these two variables, do the following:

1 Open Lambda in the AWS console and click the user-profile function.
2 At the bottom of the Code tab, you should see a section for environment variables.
3 Add a variable called DOMAIN followed by the Auth0 domain.
4 Add another variable called AUTH0_SECRET followed by the Auth0 secret. The

domain and the secret can be copied from Auth0 (figure 5.6). It’s easy to mix
up the Auth0 client ID and secret, so double-check that you’ve copied the right
value.

5 Click the Save button at the top to persist your settings.

5.3.2 API Gateway

You need to set up an API Gateway to accept requests from your website and invoke
the user-profile Lambda function. You also need to create a resource, add support
for a GET method, and enable cross-origin resource sharing (CORS):

1 In the AWS console, click API Gateway.
2 Type in a name for your API, such as 24-hour-video and, optionally, a descrip-

tion.
3 Click Create API to create your first API.

APIs in the Gateway are built around resources. Every resource can be combined with
an HTTP method such as HEAD, GET, POST, PUT, OPTIONS, PATCH, or DELETE.
You’re going to create a resource called user-profile and combine it with a GET
method. In the API you just created, follow these steps:

1 Click Actions and select Create Resource.
2 Type User Profile in the Resource Name field. The Resource Path field should

automatically fill in (figure 5.15).

Change the DOMAIN and AUTH0_SECRET to
reflect your own settings given in Auth0.

Figure 5.14 The DOMAIN and AUTH0_SECRET must be set for the Lambda function to run correctly.

119Integration with AWS
3 Click the Create Resource button to create and save the resource.
4 The left list should now show the /user-profile resource.
5 Make sure the resource is selected, and click Actions again.
6 Click Create Method to create a new GET method.
7 Under the /user-profile resource, click the drop-down and select GET (figure 5.16).
8 Click the check mark button to save.

We will have to enable CORS but don’t do it right now. You
will do it once you’ve created a GET method for this resource.

Figure 5.15 Creating a resource takes a few seconds in the API Gateway.

You have a choice of different
methods for your resource.
For the user-profile Lambda
function, select GET.

Figure 5.16 Select the GET method for the /user-profile resource. You’ll
use it to retrieve information about the user.

120 CHAPTER 5 Authentication and authorization
Having saved the GET method, you should immediately see the Integration Request
screen (figure 5.17):

1 Click the Lambda Function radio button.
2 Select your region (for example, us-east-1) from the Lambda Region drop-

down menu.
3 Type user-profile in the Lambda Function text box.
4 Click Save.
5 Click OK if you’re asked if it’s okay to add permissions to the Lambda function.

Next, you need to enable CORS:

1 Click the /user-profile resource.
2 Click Actions.
3 Select Enable CORS.
4 The CORS configuration screen can be left with the defaults. The Access-

Control-Allow-Origin field is set to a wildcard, which means that any other
domain/origin can send a request to your endpoint. This is fine for now, but
you’ll restrict it down the road, especially as you get ready to roll out staging
and production environments (figure 5.18).

5 Click Enable CORS and Replace Existing CORS Headers to save the configura-
tion.

6 Click Yes, and replace existing values in the confirmation box that pops up.

You can specify a Lambda
function version or an alias.

Figure 5.17 You need to set up this integration request before CORS can be enabled.

121Integration with AWS
5.3.3 Mappings

If you look at listing 5.8, you’ll see code that refers to event.authToken. This is the JWT
token passed in via the Authorization header from the website. To make this token
available in a Lambda function, you need to create a mapping in the API Gateway.

This mapping will extract the Authorization header and add it as an authToken to the
event object:

1 Click the GET method under the /user-profile resource.
2 Click Integration Request.
3 Expand Body Mapping Templates.
4 Click Add Mapping Template.
5 Type in application/json and click the check mark button.

Leaving this header set to * will make
the resource accessible from any origin.

Figure 5.18 CORS will enable you to access this API from your website.

Mapping templates
In listing 5.9 you’re creating a mapping using the Velocity Template Language (VTL).
This mapping extracts a value from the HTTP (method) request and makes it available
to your Lambda function (via a property called authToken on the event object). A map-
ping template transforms data from one format to another. See chapter 7 for more
information on mapping templates.

122 CHAPTER 5 Authentication and authorization
6 Select Yes, Secure This Integration if you see a dialog box titled Change
Passthrough Behavior.

7 In the Template box type in the code in the next listing.
8 Click Save once you’re finished (figure 5.19).

{
 "authToken" : "$input.params('Authorization')"
}

Listing 5.9 Mapping template for the token

Mapping takes elements out
of a request and makes them
available as properties on the
event object.

Figure 5.19 A mapping template can transform elements of a request to properties accessible via
the event object in a Lambda function.

123Integration with AWS
Finally, you need to deploy the API and get a URL to invoke from the website:

1 In the API Gateway, make sure your API is selected.
2 Click Actions.
3 Select Deploy API.
4 In the pop-up, select [New Stage].
5 Type dev as the Stage Name.
6 Click Deploy to provision the API (figure 5.20).

Lambda proxy integration
In figure 5.17, you might have noticed a check box labeled Use Lambda Proxy Inte-
gration. If you had enabled that check box, the incoming HTTP request—including all
headers, query string parameters, and the body—would have been mapped and
made available to the function via the event object automatically. This means that
you wouldn’t have had to create a mapping template as you did in listing 5.9 (the file-
name would be accessible from queryStringParameters on the event object). The
reason you didn’t do this is because we wanted to show you how to create a custom
mapping template and extract only the parameter you need (rather than passing the
entire HTTP request to the function). In many cases, proxy integration is very useful
and you’ll certainly use it as you progress through the chapters. See chapter 7 for a
more in-depth discussion on proxy integration versus manual mapping.

Create different stages such as dev,
test, and production for your API.

Figure 5.20 Every time you make changes to your API, remember to deploy them using the Deploy
API button. You can deploy to an existing stage or create a new one.

124 CHAPTER 5 Authentication and authorization
The next page you see will show the Invoke URL and a number of options (figure 5.21).
Copy the URL, because you’ll need it for the User Profile button.

5.3.4 Invoking Lambda via API Gateway

The final two steps are to update the Show Profile click handler and config.js to invoke
the Show Profile Lambda function via the API Gateway. Open user-controller.js in the
js folder of the 24-Hour Video website, and add the code shown in the next listing (right
after the logout click-handler definition).

this.uiElements.profileButton.click(function (e) {
 var url = that.data.config.apiBaseUrl + '/user-profile';

 $.get(url, function (data, status) {

Listing 5.10 The Show Profile click event handler

This URL is needed to send
requests to the API Gateway.

Figure 5.21 You can use the stage settings page to adjust other settings. We’ll cover these in more
detail in chapter 7.

125Integration with AWS
alert(JSON.stringify(data));
 })
});

Finally, update the contents of config.js to match the next listing. Once you’ve done
that, you can test the entire system.

var configConstants = {
 auth0: {

domain: 'AUTH0-DOMAIN',
clientId: 'AUTH0-CLIENTID'

 },
 apiBaseUrl: 'https://API-GATEWAY-URL/dev'
};

Check that the 24-Hour Video website is running. If it isn’t, run npm start from the
terminal (make sure you’re in the website’s directory) and sign in via Auth0. Click the
User Profile button. You should see an alert with the contents of the user’s profile in
Auth0.

5.3.5 Custom authorizer

API Gateway supports custom request authorizers. These are Lambda functions that
the API Gateway can use to authorize requests. A custom authorizer runs at the
method request stage—that is, before the request reaches the target back end. A cus-
tom authorizer can validate a bearer token and return a valid IAM policy, which autho-
rizes the request. If the returned policy is invalid, the request is not allowed to
continue. To prevent constant invocations of custom authorizers, policies along with
the incoming token are cached for an hour.

 The benefit of using a custom authorizer is that you can write a dedicated Lambda
function to validate the JWT (instead of doing it in every function you want to invoke).
Figure 5.22 shows what a modified request flow looks like when a custom authorizer is
introduced.

 You’re going to implement a custom authorizer now to see how it works. There are
three steps:

1 Create a new Lambda function in AWS.
2 Write a custom authorizer function and deploy it.
3 Change the method request settings in the API Gateway to use a custom autho-

rizer.

The first step is to create a regular Lambda function just as you did before:

1 Create a function in Lambda’s console.
2 Name this function custom-authorizer.

Listing 5.11 Updated config.js

The retrieved response from the API
Gateway must be stringified to be
displayed in an alert.

Update the domain and client ID to
match your Auth0 settings (figure 5.7).

Update the apiBaseUrl to match
the URL given in the API Gateway.

126 CHAPTER 5 Authentication and authorization
3 Assign the api-gateway-lambda-exec-role to it and save.
4 Make a copy of the user-profile Lambda function on your computer and

rename it to custom-authorizer.
5 Update the function name or the ARN in the deploy script in package.json.
6 Open index.js and replace it with the code in listing 5.12 (this function is refer-

enced from Amazon’s documentation at http://amzn.to/24Dli80). As you can
see, the code for this Lambda function is similar to that of the user-profile
function. The main difference is a new function called generatePolicy, which
returns an IAM policy that allows execution to continue.

'use strict';

var jwt = require('jsonwebtoken');

var generatePolicy = function(principalId, effect, resource) {
 var authResponse = {};
 authResponse.principalId = principalId;
 if (effect && resource) {

var policyDocument = {};
policyDocument.Version = '2012-10-17';
policyDocument.Statement = [];
var statementOne = {};
statementOne.Action = 'execute-api:Invoke';
statementOne.Effect = effect;
statementOne.Resource = resource;
policyDocument.Statement[0] = statementOne;

Listing 5.12 Custom authorizer

API Gateway

Failure. Access denied (403).

Success. Request is
allowed to continue.

Policy cache

Client (web/mobile
application)

1. Client application makes a
request to the API Gateway.

2. Context and token
are passed in.

3. IAM policy
is returned.

5. Policy and
token are cached.

4. Policy is evaluated. The custom authorizer
makes an evaluation and
either stops the request
or allows it to continue.

Lambda
function

Custom
authorizer

Figure 5.22 The custom authorizer is useful as a means of validating JWT for all Lambda functions
that are supposed to be secured.

The policy
stipulates
that the API
Gateway is
allowed to
invoke the
required
resource.

http://amzn.to/24Dli80

127Integration with AWS
authResponse.policyDocument = policyDocument;
 }
 return authResponse;
}

exports.handler = function(event, context, callback){
 if (!event.authorizationToken) {

callback('Could not find authToken');
return;

 }

 var token = event.authorizationToken.split(' ')[1];

 var secretBuffer = new Buffer(process.env.AUTH0_SECRET);
 jwt.verify(token, secretBuffer, function(err, decoded){

if(err){
 console.log('Failed jwt verification: ', err,

➥ 'auth: ', event.authorizationToken);

 callback('Authorization Failed');
} else {
 callback(null,

➥ generatePolicy('user', 'allow', event.methodArn));
}

 })
};

Deploy the function to AWS once you’ve implemented it. You also need to add the
AUTH0_SECRET as an environment variable to the function:

1 In the AWS console, choose Lambda and then choose the custom-authorizer
function.

2 In the Code tab, find the Environment Variable section.
3 Add AUTH0_SECRET as the key and your Auth0 secret as the value.
4 Click Save at the top of the page to persist your settings.

The final steps are to create a custom authorizer in the API Gateway and connect it to
the GET method you created previously:

1 In the API Gateway, choose the 24-Hour Video API.
2 Select Authorizers from the menu on the left.
3 You should see a New Custom Authorizer form on the right side. If you don’t

see it, click the Create drop-down and choose Custom authorizer.
4 Fill out the custom authorizer form (figure 5.23).

– Select your Lambda region (us-east-1).
– Set the Lambda function name, which is custom-authorizer.
– Set a name for your authorizer. It can be anything you want, like custom-

authorizer or authorization-check.
– Make sure that the Identity token source is set to method.request.header

.Authorization.

The auth0 secret is
accessed through an

environment variable
that you can set in
Lambda’s console.

If the token is
validated, the

function returns
a user policy

that allows the
invocation
of the API.

128 CHAPTER 5 Authentication and authorization
5 Click Create to create the custom authorizer.
6 Confirm that you want to allow API Gateway to invoke the custom-authorizer

function.
Now you can set your custom authorizer to invoke automatically whenever a GET
request to /user-profile is issued:

1 In the API Gateway, click Resources under 24-hour-video (the sidebar on the
left).

2 Click GET under /user-profile.
3 Click Method Request
4 Click the pencil button next to Authorization.
5 From the drop-down select your custom authorizer and save (figure 5.24).
6 Deploy the API again:

– Click Actions.
– Choose Deploy API.
– Select dev as the Deployment Stage.
– Choose Deploy.

To test the custom authorizer, make the User Profile button display when the user
isn’t logged in. To do that, open main.css and remove the style for #user-profile from
it. Also, delete your JWT from local storage and refresh the site. Click the User Profile
button. Your custom authorizer should reject the request. You can use this custom
authorizer for all Lambda functions down the road.

The role that the API
Gateway can use to
make requests to the
custom authorizer.

API Gateway can
attempt to validate
the token using a
regular expression
before the Lambda
function is invoked.

Figure 5.23 You can use the custom authorizer to implement various authorization strategies.
You can create multiple authorizers and connect them to methods in the API Gateway.

129Delegation tokens
5.4 Delegation tokens
Delegation tokens are designed to make integration between services easier. So far,
you’ve taken a JSON Web Token supplied by Auth0 and sent it across to AWS where it
was verified and decoded by a Lambda function. You had to write a little bit of code to
do that. Delegation tokens are created for specific services that know how to decode
these tokens and extract claims or information. In effect, delegation tokens are tokens
created by one service to call another service or API.

You can create and set a different authorizer
for every method, but in most cases a single
custom authorizer will do.

Figure 5.24 Custom authorizers are a good way to authorize requests coming via the API Gateway.

401 Unauthorized
If you’ve successfully signed in to the 24-Hour Video website and then refreshed after
a long period of time, you might see an error message that says, “There was an error
getting the profile: 401: Unauthorized.” This could be because the JWT cached in your
browser has expired. Sign on to your website again and everything should work again
(the message will no longer appear). The default JWT expiration is 36,000 seconds
(10 hours), but you can override it in Auth0 or you can choose to implement refresh
tokens if you’re up for a challenge (http://bit.ly/2jxbjPg).

http://bit.ly/2jxbjPg

130 CHAPTER 5 Authentication and authorization
5.4.1 Real-world examples

Firebase is a real-time streaming database that we’ll look at in chapter 9. It supports
delegation tokens. If a request from a client comes with a delegation token, Firebase
knows how to verify it without you having to do anything (or write any code).

 To add support for a Firebase delegation token, you need to generate a secret key
in Firebase and add it to Auth0. Then your website can request a delegation token
from Auth0, which is signed by the secret key from Firebase. Any subsequent request
made to Firebase can be sent with the delegation token, which Firebase knows how to
decrypt (because it provided the secret key in the first place). In chapter 9, we’ll show
you how to provision a delegation token for Firebase in more detail. Similarly, you can
set up Auth0 to enable delegated authentication with AWS by setting up a SAML pro-
vider and configuring one or more roles.

5.4.2 Provisioning delegation tokens

When it comes to Auth0, to get a delegation token you need to configure an add-on
for the service you wish to use and then request the token via the /delegation end-
point. If you wish to integrate with a service such as Firebase or use a delegation token
with AWS, you’ll need to enable the appropriate add-on in Auth0 (figure 5.25).

 Every add-on has different configuration requirements, so you’ll need to consult rel-
evant Auth0 documentation to find out what’s needed. To set up delegated authentica-
tion between Auth0 and AWS, refer to https://auth0.com/docs/aws-api-setup. Another
great example is described in https://auth0.com/docs/integrations/aws-api-gateway.

5.5 Exercises
Try to do the following exercises to confirm your understanding of concepts pre-
sented in this chapter:

1 Create a Lambda function (user-profile-update) for updating a user’s per-
sonal profile. Assume that you can access the first name, last name, email
address, and userId on the event object. Because you don’t have a database yet,
this function doesn’t need to persist this information, but you can log it to
CloudWatch.

2 Create a POST method for the /user-profile resource in the API Gateway. This
method should invoke the user-profile-update function and pass in the user’s
information. It should use the custom authorizer developed in section 5.3.5.

3 Create a page in the 24-Hour Video website to allow signed-in users to update
their first name, last name, and email address. This information should be sub-
mitted to the user-profile-update function via the API Gateway.

4 In listing 5.3, you set the token to be included in every request using $.ajax-
Setup. If your website makes a request to an external party, your token might be
stolen. Think of a way to make the system more secure by including the token
only when the website issues requests against the API Gateway.

https://auth0.com/docs/integrations/aws-api-gateway
https://auth0.com/docs/aws-api-setup

131Summary
5 Modify the user-profile Lambda function to no longer validate the JSON Web
Token. This validation isn’t needed because of the custom authorizer. The func-
tion should still request user information from the Auth0 tokeninfo endpoint.

6 Add an additional social identity provider to your Auth0 app such as Yahoo,
LinkedIn, or Windows Live.

7 The Auth0 JWT token stored in the browser’s local storage will expire after a
certain time. This may result in an error message shown to the user when the
website is refreshed. Figure out a way to suppress the error message and auto-
matically delete expired tokens.

5.6 Summary
In this chapter, we looked at how to enable authentication and authorization in a
serverless application. We looked at how services can communicate directly with the
client and checked out JSON Web Tokens. We also introduced Auth0, a service that
takes care of many authentication and authorization concerns, and we discussed how
delegation tokens can be used across different services. Finally, we stepped through an
example where you did the following:

Enable addons to provision delegation
tokens for supported services and APIs.

Figure 5.25 Use delegation tokens to reduce the need for more Lambda functions.

132 CHAPTER 5 Authentication and authorization
 Developed a website for 24-Hour Video
 Created an Auth0 app and added sign-in/out functionality to the website
 Developed a Lambda function to return user profile information
 Implemented an API Gateway and created a custom authorizer that decodes

JWT

In the next chapter, we’ll look at Lambda functions in much more detail. We’ll con-
sider advanced use cases, see how to use patterns to help implement concise functions
without a large number of callbacks, and discuss ways to improve the performance of
Lambda-based systems.

Lambda the orchestrator
If there’s one thing you take away from this book, it should be an understanding
that a compute service such as Lambda is the heart of serverless architecture. You
used Lambda in chapters 3 and 5, so you have a feel for it already. This chapter
explores Lambda in more detail. It looks at core concepts and investigates design
of functions. We explain features such as versioning and aliases and go over import-
ant design patterns such as async waterfall. We also continue to add features to
24-Hour Video as we turn it into a full-fledged application.

6.1 Inside Lambda
Serverless compute services like Lambda are as big a shift for cloud computing as
S3 was for cloud storage. If you think about it, the two are similar. S3 deals in objects
for storage. You provide an object and S3 stores it. You don’t know how, you don’t

This chapter covers
 Invocation types and programming models

 Versioning, aliases, and environment variables

 Usage of the CLI

 Development practices

 Testing of Lambda functions
133

134 CHAPTER 6 Lambda the orchestrator
know where, and you don’t really care. There are no drives to concern yourself with
and no such thing as disk space. You can’t over-provision or under-provision storage
capacity in S3.

 Likewise, with Lambda you provide function code; Lambda executes it on
demand. You don’t know how and you don’t know where. There are no virtual
machines to concern yourself with, and there are no such things as server farm capac-
ity, too many idling servers, not enough servers to meet demand, or scaling groups.
You can’t over-provision or under-provision execution capacity in Lambda. It’s just
what you want it to be and Amazon charges you only for the time it executes. This is
why Lambda and similar serverless compute services such as Azure Functions, Google
Cloud Functions, and IBM OpenWhisk are as big a shift forward for compute as S3 was
for storage (http://bit.ly/2jQnlGB).

6.1.1 Event models and sources

Lambda is a serverless compute service that can execute code in response to the fol-
lowing:

 Events raised in AWS

 HTTP requests arriving through the API Gateway
 API calls made using the AWS SDK

 Manual user invocation via the AWS console

Lambda functions can also run on a schedule, which makes them suitable for repeat-
able tasks such as backups or system health checks. Lambda supports functions writ-
ten in four languages: JavaScript (Node.js), Python, C#, and Java. You’ve been using
JavaScript so far, but there’s no reason why you couldn’t use one of the other lan-
guages. They’re all first-class citizens.

Function as a service
Some people prefer to use the acronym FaaS (function as a service) to describe tech-
nologies like Lambda. In fact, they prefer not to use the term serverless at all. They
feel that it’s not accurate enough and that it needs to be constantly explained. In this
book, we’ve been using the term serverless not as a synonym for Lambda but as a
descriptor for an approach that encourages you to use a compute service, use third-
party services and APIs, and employ powerful patterns and architectures (such as
having thick front ends that talk directly to services using delegation tokens). There-
fore, we say that serverless is an umbrella term that encompasses FaaS and that
FaaS is just one aspect (albeit a very important one) of what serverless technologies
and architectures have to offer.

http://bit.ly/2jQnlGB

135Inside Lambda
6.1.2 Push and pull event models

Lambda’s event-based invocation is quite interesting. It has two modes: push and pull.
In a push model, a service (such as S3) publishes its event to Lambda and directly
invokes your function. Figure 6.1 shows what this looks like.

The two ways to invoke a Lambda function
Lambda supports two invocation types: Event and RequestResponse.

Event invocation takes place when an event (such as a file being created in S3) trig-
gers a Lambda function. You saw event invocations in chapter 3 when you used S3
and SNS to invoke Lambda. Event invocation is asynchronous. A Lambda function
that executes because of an event doesn’t send a response back to the event
source.

The other model is RequestResponse. It comes into play when Lambda is used with
the API Gateway, invoked via the AWS console, or called with the CLI. Request-
Response forces Lambda to execute the function synchronously and return the
response to the caller. You used RequestResponse in chapter 5 when you integrated
the API Gateway with the user-profile Lambda function. Note that if you invoke a
function via the SDK/CLI, you can choose whether to use Event or RequestResponse
invocation.

3. S3 invokes a Lambda function
based on the event source mapping
stored in the bucket’s configuration.

5. Lambda carries out
the action it has been
programmed to do.

1. Application uploads
a file to an S3 Bucket.

2. S3 detects that a new
object has been created.

4. Lambda function is invoked. It receives
an event object (passed to the handler
function), which contains information
about the file and the bucket.

Upload
new file

Send
notification

Event source
mapping

Save file to
new bucket

Update
database

LambdaS3 bucket

Push Model

Figure 6.1 Except for stream-based services, which are Amazon Kinesis Streams and DynamoDB, all
other AWS services use the push model of operation.

136 CHAPTER 6 Lambda the orchestrator
In a pull model, Lambda’s runtime polls a streaming event source (such as a DynamoDB
stream or a Kinesis stream) and invokes your function when needed. Figure 6.2 shows
what this looks like.

 In both models, an event source mapping describes how an event source is associated
with a Lambda function. One subtle difference between push and pull is this: “With
the pull model, you maintain the mappings in AWS Lambda by creating event source
mappings using the relevant AWS Lambda API. With the push model, the event
sources maintain the mapping and you use the APIs provided by the event sources to
maintain the mapping” (http://amzn.to/1Xb78FV).

6.1.3 Concurrent executions

AWS has a cap of 100 concurrent executions across all functions within a region (per
account). This cap, however, can be lifted by asking Amazon. The company says that
the limit is there to protect developers “from costs due to potential runaway or recur-
sive functions during initial development and testing” (http://amzn.to/29nORER).
The number of concurrent executions is calculated differently depending on whether
the event source is stream-based (that is, if the event source is Kinesis Streams or a
DynamoDB stream) or not.

STREAM-BASED EVENT SOURCE

In a stream-based event source, function invocation concurrency is equal to the num-
ber of active shards. If, for example, there are 10 shards, there will be 10 Lambda
functions executing concurrently. Lambda functions process records off shards in the

3. Lambda runtime knows which function to invoke based
on the event source mapping stored in Lambda. Record
information is passed as the event object to the handler.

1. Application adds a
record to a Kinesis stream.

2. The Lambda runtime
polls the stream and invokes
a Lambda function when it
detects a new record.

4. Lambda carries out the action
it has been programmed to do.

Push record
to Kinesis

Kinesis
streams

Send
notification

Event source
mapping

Save file to
new bucket

Update
database

Lambda

Pull Model

Figure 6.2 The pull model applies to Amazon Kinesis Streams and DynamoDB streams only.

http://amzn.to/1Xb78FV
http://amzn.to/29nORER

137Inside Lambda
order in which they arrive. If a function encounters an error processing a record, it
retries until it succeeds or the record expires, before going on to the next one.

NON-STREAM-BASED EVENT SOURCE

Amazon proposes a simple formula for estimating the number of concurrent invoca-
tions for non-stream event sources:

events (or requests) per second x function duration

A simple example is an S3 bucket that publishes 10 events per second with the func-
tion taking an average of three seconds to run, which equates to 30 concurrent execu-
tions (http://amzn.to/29nORER). If a Lambda function is throttled and continues to
be invoked synchronously, Lambda will respond with a 429 error. It’s then up to the
event source (for example, your application) to try invoking the function again. If a
function was invoked asynchronously, AWS will automatically retry the throttled event
for up to six hours with delays in between every invocation (http://amzn.to/29c7Bar).

6.1.4 Container reuse

Lambda functions execute in a container (sandbox), which provides isolation from
other functions and an allocation of resources such as memory, disk space, and CPU.
Container reuse is important to understand for more advanced uses of Lambda.
When a function is instantiated for the first time, a new container is initialized and the
code for the function is loaded (we say that the function is cold when this is done for
the first time). If a function is rerun (within a certain period), Lambda may reuse the
same container and skip the initialization process (we say that the function is now
warm), thus making it available to execute code quicker.

 Tim Wagner, the general manager of Lambda at AWS (http://amzn.to/237CWCk),
makes an important point: “Remember, you can’t depend on a container being
reused, since it’s Lambda’s prerogative to create a new one instead.” This means that
every time you run a function, you should assume that you have a new container. But
if you use the /tmp folder or touch the filesystem in other ways, your files or changes
from the previous invocation may still be there. We’ve experienced this many times. If
it happens to you, you’ll have to clean the /tmp directory manually.

 Another important detail is what Wagner calls the freeze/thaw cycle. You can run a
function and launch a background thread or a process. When the function finishes
executing, the background process will become frozen. Lambda may reuse the con-
tainer the next time you invoke the function and thaw the background process, thus
resuming its execution. The background process will continue to run as though noth-
ing happened. Keep this in mind if you decide to run background processes.

6.1.5 Cold and warm Lambda

Here’s an experiment. Create any simple Hello World function in the AWS console and
run it. You can easily do this by using the hello-world blueprint and then clicking the
Test button in the console. Have a look at the duration in the summary in the bottom-
left corner (figure 6.3).

http://amzn.to/29nORER
http://amzn.to/29c7Bar
http://amzn.to/237CWCk

138 CHAPTER 6 Lambda the orchestrator
Then run the test again and look at the duration in the summary (figure 6.4).

If you compare the duration of both executions, you’ll see that the time it takes to run
a function for the first time is a lot longer than running it a second time. This is the
result of the container reuse we described in the previous section. The first time the
function is run (when it’s cold), the container needs to be created and the environ-
ment needs to be initialized. A lengthy initialization time may be especially noticeable
in complex functions that have multiple dependencies. Reusing a container and run-
ning a function again is almost always much quicker.

 You should try to reduce cold starts (when a function hasn’t been run for a long
time and needs to fully initialize) to make the application appear more responsive. If
you experience many cold starts, you can try a few steps to increase performance:

The duration when the function is cold.

Figure 6.3 The time it takes to run a cold function is nearly 90 ms.

The duration when the function is warm.

Figure 6.4 A warm function runs much quicker than a cold one.

139Programming model
1 Schedule the function (using scheduled events) to run periodically to keep it
warm (http://amzn.to/29AZsuX).

2 Move initialization and setup code out of the event handler. If the container is
warm, this code won’t run.

3 Increase the amount of memory allocated to the Lambda function. The CPU share
is (proportionally) based on the amount of memory allocated to the function. AWS
gives an example: “If you allocate 256 MB to your Lambda function, it will receive
twice the CPU share than if you allocated 128 MB” (http://amzn.to/23aFKif). The
more memory and CPU share the function has, the quicker it will initialize.

4 Reduce as much of your code as possible. Remove unnecessary modules and
requires() import statements. Fewer modules to include and initialize will
help startup performance.

5 Experiment with other languages. Java has the longest cold start. This may
change in the future, but if you notice long cold starts using Java, try one of the
other languages.

6.2 Programming model
We touched on Lambda’s programming model back in chapter 3. Let’s look at it now
in more detail from the perspective of the Node.js 4.3 runtime you’ve been using.
These are the important elements to consider:

 Function handler
 Callback function
 Context object
 Event object
 Logging

6.2.1 Function handler

You’ve seen that the function handler is what the Lambda runtime calls to run your
function. It’s the entry point. Lambda passes in the event data to the handler function
as the first parameter, a context object as the second parameter, and a callback object
as the third. The syntax for the function handler is as follows:

exports.handler = function(event, context, callback) { //code }

The callback object is optional and is used if you want to return information to the
caller of the function or log an error. Over the next three sections we’ll describe
event, context, and callback parameters in more detail.

6.2.2 Event object

You already saw the event object in action when you invoked Lambda functions in pre-
vious chapters. The event object contains information about the event and the source
that triggered the Lambda function. It’s just a JSON object with an arbitrary number
of properties that are specified by the event source.

http://amzn.to/23aFKif
http://amzn.to/29AZsuX

140 CHAPTER 6 Lambda the orchestrator
 You can look at sample event objects in Lambda’s console by following this process:

1 Click into a Lambda function.
2 Click Actions.
3 Select Configure Test Event.
4 Select a template from the Sample Event Template drop-down (figure 6.5).

If you invoke a Lambda function via the AWS console, via the CLI, or through an API
Gateway, you can create your own event object and customize the way it is structured.

6.2.3 Context object

The context object provides a number of useful properties for getting information
about Lambda’s runtime. You can call a number of methods on the context object,
such as done(), succeed(), and fail(). These methods were important in the Node.js
0.1 version of the Lambda runtime but aren’t needed in the Node.js 4.3 version. You
can review appendix D if you want to know what these are. The other method on the
context object that you might find useful is getRemainingTimeInMillis(). Calling this
method returns the approximate remaining execution time. This function is valuable

Select from a list of available event templates
to see what the event object will look like when
Lambda is invoked by different AWS services.

Figure 6.5 The available event templates provided through the AWS console. You can customize a
template or create your own from scratch.

http://amzn.to/2jeCOfR
http://amzn.to/2jeCOfR

141Programming model
if you need to check how much time is left before a timeout (a Lambda function can
run for a maximum of five minutes).

 The context object also has these useful properties:

 functionName—Returns the name of the Lambda function currently executing.
 functionVersion—The function version that is executing.
 invokedFunctionArn—The ARN used to invoke the function.
 memoryLimitInMB—The configured memory limit of the function.
 awsRequestId—The AWS request ID.
 logGroupName—The CloudWatch log group to which the function will write.
 logStreamName—The CloudWatch log stream to which the function will write.
 identity—The Amazon Cognito identity if available.
 clientContext—Information about client application and device when

invoked via the AWS Mobile SDK. It can contain additional information such as
platform version, make, model, and locale.

See http://amzn.to/1UK9eib for more information about the methods and proper-
ties available via the context object.

6.2.4 Callback function

The callback function is an optional third parameter in the handler function. It’s used
to return information to the caller in the RequestResponse invocation type, such as
when a function is invoked via the API Gateway. The syntax for using the callback
object is as follows:

callback(Error error, Object result)

The Error parameter is optional and is used when you want to specify information
about a failed execution. The second parameter, also optional, is used to provide
information to the caller when the function succeeds. Note that you need to pass null
as the first parameter if you’re going to specify the second parameter and there’s no
error. The following are examples of valid uses of callback:

 callback(null, "Success");

 callback("Error");

 callback(); //This is the same as callback(null);

You don’t need to specify any parameters in the callback if you don’t want to return
information to the caller. You don’t even need to add callback() to your code if you
don’t want to return a response or log an error. Lambda will call it for you implicitly if
you don’t include it in your code. For more information on using the callback function,
see the section titled “Using the Callback Parameter” at http://amzn.to/1NeqXM5.

http://bit.ly/2k70Zge
http://bit.ly/2k70Zge
http://bit.ly/2k70Zge
http://bit.ly/2k70Zge
http://amzn.to/1UK9eib
http://amzn.to/1NeqXM5

142 CHAPTER 6 Lambda the orchestrator
6.2.5 Logging

Logging to CloudWatch can be done using console.log("message"). The other sup-
ported ways of logging are console.error(), console.warn(), and console.info(),
but there’s no real distinction between them in terms of CloudWatch. If you invoke a
Lambda function programmatically (see section 6.4 for more on this), you can add a
LogType parameter to receive the last 4 KB of log data (it’s returned in the x-amz-log-
results header of the response). The callback function will also log to a CloudWatch
log stream if you provide a non-null value as the first parameter. At the end of the day,
we highly recommend that you adopt a proper logging framework that will manage
alert levels and log objects (for example, have a look at log at http://bit.ly/1VHIxuA).

6.3 Versioning, aliases, and environment variables
When Lambda was originally released, it didn’t have support for versioning, aliases, or
environment variables. But it’s now hard to imagine building and running a real pro-
duction system without these features.

6.3.1 Versioning

Versioning allows developers to create new versions of functions without overwriting
previous ones. Once a new version of a function is published, the old version can still
be accessed but it can’t be changed. Importantly, each version of a function has its
own unique ARN, and each version can be invoked. To create a new version of a func-
tion, follow these steps:

1 Open the Lambda console in AWS and click a function.
2 Choose Actions and choose Publish New Version.
3 Type a description in the dialog box. This description will be added to the ver-

sion you’re about to create.
4 Choose Publish to close the dialog box.

If you click the Qualifiers drop-down and then select the Versions tab, you’ll see all
current versions of the function (figure 6.6). The most recent version is always identi-
fied as $LATEST. If you don’t specify a version number when invoking a function, this
is the function that’s invoked.

 Your next question might be how to invoke a specific version of a function. That
depends on where you’re trying to invoke the function from. If it’s the API Gateway,
you can specify the function name and version with a colon in between, as you can see
in figure 6.7 (for example, my-special-function:3).

http://bit.ly/1VHIxuA

143Versioning, aliases, and environment variables
Click the Qualifiers
drop-down to see
versions and aliases.

The $LATEST
version is editable.

An old version is
not editable but
it can be invoked.

Figure 6.6 Versions are easy to create and invoke through the console and the CLI.

Set the API Gateway to
invoke a specific version
of the function.

Figure 6.7 Setting the right version of the Lambda function to invoke is trivial in the API Gateway. If
you don’t specify a version, the API Gateway will invoke the $LATEST version.

144 CHAPTER 6 Lambda the orchestrator
If it’s S3, you can specify the function ARN, which, as we mentioned before, is unique
for every version of the function (figure 6.8).

6.3.2 Aliases

An alias is a pointer or a shortcut to a specific version of a Lambda function. It has an
ARN just like a function, and it can be mapped to point to any function (or version)
but not to another alias. Having an alias makes things easier when you need to switch
from one version of a function to another. Imagine the following scenario:

 You have three versions of a function:
 Version 1 is in production.
 Version 2 is being tested in a staging/UAT environment.
 $LATEST is the current development version.
 You’ve finished testing function version 2 and want to promote it to production.

Select Add Lambda
function ARN from
the drop-down.

If you need to specify a
specific version of the
function to invoke, you
will need to set the ARN.

Figure 6.8 S3 uses the ARN to invoke the right version of the function. You can look up the ARN
in Lambda’s console.

145Versioning, aliases, and environment variables
 You’d have to update every event source that references function 1 (the current
production) to reference function 2. This isn’t ideal because it may mean a
redeployment of your code and multiple updates throughout your system.

With an alias, this scenario becomes into easier to manage:

1 Create three aliases called dev, staging, and production.
2 Assign the right alias to the right version of the function:

– The production alias points to version 1.
– The staging alias points to version 2.
– The dev alias points to $LATEST.

3 Configure event sources to point to an alias instead of a specific version of a
function.

Whenever you need to update the system to use a new version of a function, change
the alias to point to that new version instead (figure 6.9). Event sources remain igno-
rant of the fact that an alias now points to a new version of a function and continue to
operate as normal.

Production alias points to version 1 of the function

Lambda
version

$LATEST

Alias
dev

Lambda
version 2

Alias
staging

Lambda
version 1

Alias
production

Production alias is updated to point to version 2 of the function

Lambda
version

$LATEST

Alias
dev

Lambda
version 2

Lambda
version 1

Alias
staging

Alias
production

Figure 6.9 Initially an alias called production points to version 1 of a Lambda function. After
an update, it’s remapped to point to version 2. The staging alias is also remapped to point to
the $LATEST version of the function.

146 CHAPTER 6 Lambda the orchestrator
To create an alias for a function, follow these steps:

1 Choose Lambda in the AWS console and choose any function.
2 Choose Actions.
3 Choose Create alias.
4 In the dialog box enter a name for the alias, such as dev or production, a descrip-

tion, and select the version that the alias should point to.
5 Choose Submit to create the alias and close the dialog box.

To view aliases for a function, use the Qualifiers drop-down, just as you did with versions
(figure 6.10). A tab in the drop-down allows you to switch the view between versions and
aliases. To delete an alias, choose Actions and select Delete Alias. Doing this deletes the
alias and any related event source mappings that point to it. Everything else, including
function versions, is left intact.

6.3.3 Environment variables

You already saw environment variables in chapter 5 when you created the user-
profile Lambda function. Environment variables are key-value pairs, which can be
set using the Lambda console, CLI, or the SDK. They can be referenced by the func-
tion’s source code and accessed during function execution.

 By using environment variables for settings and secrets, you’ll avoid having to bake
this information into the function’s code. And you’ll be able to change variables

Aliases and
versions can be
viewed at a glance
in the drop-down.

Switch an alias to
point to a different
version of a function
at any time.

Figure 6.10 You can switch between aliases and versions in the sidebar.

147Versioning, aliases, and environment variables
without having to modify and redeploy the function. Environment variables work with
function versioning, which we’ve discussed in this section. A development version of a
function can use a variable that points to the connection string of a development data-
base. The same environment variable can point to the production version of a database
for the production version of the function.

BASIC USAGE

Figure 6.11 shows a part of the Lambda console (the Code tab) where you can set
environment variables. You may notice that in this book we uppercase the names
(keys) of environment variables (for example, UPLOAD_BUCKET). We chose to follow
this convention. You don’t have to uppercase environment variable names if you don’t
like that.

You can set environment variables using the AWS CLI. The CreateFunction and
UpdateFunctionConfiguration APIs allow you to do that (more on these APIs in the
next section).

NOTE Some environment variable key names are reserved. You can’t, for
example, set a key called AWS_REGION or AWS_ACCESS_KEY. To see a full list of
reserved variables, have a look at this page: http://amzn.to/2jDCgBa.

Environment variables can be accessed through process.env (for Node.js functions).
If you wanted to print the value of the UPLOAD_BUCKET variable shown in figure 6.11,
you’d add the following line to your function:

console.log(process.env.UPLOAD_BUCKET);

ENCRYPTION

For sensitive data, you can choose to encrypt environment variables. You can do it in the
console by enabling the Enable Encryption Helpers check box (figure 6.12). The first

Enable this check box to help encrypt
your environment variables. Key Value

Figure 6.11 The key must start with a letter and contain only letters, numbers, and underscores.
Values don’t have such restrictions, but at the time of this writing you shouldn’t use commas in
them. You’d have to either use a different delimiter or encrypt the value.

http://amzn.to/2jDCgBa

148 CHAPTER 6 Lambda the orchestrator
time you enable it, you’ll get a chance to create an encryption key using the AWS Key
Management Service (KMS). You’ll then have this key available for encryption across all
Lambda functions (in each region). You can, of course, create multiple keys too.

 Having created a key, you’ll be able to encrypt all or some of the variables. In the
console, you’ll see a button labeled Encrypt next to each environment variable. Use
this button to encrypt the variable. The value will be immediately replaced with an
encrypted string. You’ll also see a button called Code. You can click this button to get
a snippet of code that shows how to decrypt the variable within the function.

Our advice is to use environment variables for settings and secrets whenever you can.
Don’t bake these into your function. Use what the platform offers you and you’ll find
life to be a lot easier.

6.4 Using the CLI
So far, you’ve primarily used the AWS console to create and configure Lambda func-
tions. It’s likely, though, that you’ll have to use the CLI at some point to create, update,
configure, and delete functions, especially if you start thinking about automation.

6.4.1 Invoking commands

If you followed chapter 3, you installed the AWS CLI (http://amzn.to/1XCoTOC).
The CLI allows you to issue commands in the following form:

aws lambda <function-name> <command-options>

These are the encrypted
environment variable.

Enable the check box to select the
encryption key and see the Encrypt
and Code buttons.

Click this to get a snippet of the code
that will show you how to decrypt the
variable in your function.

Figure 6.12 Use encryption whenever you’re handling sensitive data.

http://amzn.to/1XCoTOC

149Using the CLI
The page at https://docs.aws.amazon.com/cli/latest/reference/lambda/index.html
describes available CLI commands. Let’s take delete alias (delete-alias) as an exam-
ple. It has a few optional parameters, but at its core it’s as simple as running the fol-
lowing (where the --name flag is the name of the alias):

aws lambda delete-alias --function-name return-response --name production

Remember that if you invoke CLI commands, you must also have the right IAM secu-
rity configured. If you were to try running the delete alias command right now, you’d
receive an error message, such as “Client error (AccessDeniedException) occurred
when calling the DeleteAlias operation.” To make it work you’d need to add the
DeleteAlias permission to the user’s list of permissions.

6.4.2 Creating and deploying functions

In chapters 3 and 5 you deployed functions to AWS using the UpdateFunctionCode
API. You did it by adding the following script to package.json:

aws lambda update-function-code --function-name arn:aws:lambda:

➥us-east-1:038221756127:function:transcode-video --zip-file

➥fileb://Lambda-Deployment.zip

But you had to create the function initially in the AWS console before you could use
update-function-code. That’s a manual step and doesn’t fit with your ethos of com-
plete automation. How would you go about creating and deploying a function entirely
from the command line? Let’s step through an exercise to see how it’s done.

 First, you need to update the lambda-upload user to IAM user to allow you to cre-
ate functions. Back in chapter 4, you created a group called Lambda-DevOps and
assigned the user lambda-upload to it. Now you need to edit the group’s policy and
add a new permission:

1 In the IAM console, open Groups.
2 Click the Lambda-Upload-Policy group.
3 Select the Permissions tab if it’s not already selected.
4 In the Inline Policies section, click Edit Policy on the right of the policy name.
5 Add lambda:CreateFunction to the Action array (figure 6.13).
6 Click Apply Policy to save.

You should also double-check that the user lambda-upload is in the Lambda-Upload-
Policy group:

1 Click the Users tab in the Lambda-Upload-Policy group.
2 Check to see if the lambda-upload user is listed in the table.
3 If the user isn’t listed, click the Add Users to Group button, find lambda-upload

in the list, put a checkmark next to the user, and then click the Add Users button.

https://docs.aws.amazon.com/cli/latest/reference/lambda/index.html

150 CHAPTER 6 Lambda the orchestrator
To create a function using the CLI, you need to provide a zip file with the source of the
function or point to an S3 bucket that has the source. It’s easy to create a function
locally and zip it up:

1 Create a file named index.js.
2 Copy the contents of the following listing to the file.
3 Zip the file to create index.zip.

'use strict';

exports.handler = function(event, context, callback) {
 callback(null, 'Serverless Architectures on AWS');
};

In the same directory as the zip file of the function, run the command given in the next
listing (remember to update the role ARN; it should be the ARN of your own lambda-
s3-execution-role). Take a look in the Lambda’s console to make sure it’s there.

aws lambda create-function --function-name cli-function --handler
index.handler --memory-size 128 --runtime nodejs4.3 --role
arn:aws:iam::038221756127:role/lambda-s3-execution-role --timeout 3 --
zip-file fileb://index.zip --publish

Listing 6.1 Basic function

Listing 6.2 Working example of the create-function command

Add CreateFunction to the Action
array. The user will be allowed to
create a new function.

Figure 6.13 A simple update to the policy will allow the user to create functions.

This function doesn’t do
anything useful or
interesting, but it’s
enough to test whether
you can create functions
from the command line.

151Lambda patterns

.

This next listing shows a subset of the syntax you used with the create-function com-
mand, together with an explanation of each of the options. (Lambda supports many
more settings and flags than shown in listing 6.3; refer to http://amzn.to/2jeCOfR if
you want to see all of the options.)

aws lambda create-function
 --function-name <value>
 --handler <value>
 --memory-size <value>
 --runtime <value>
 --role <value>
 --timeout <value>
 --zip-file <value>
 -–publish

Naturally, there are many other useful functions to invoke, including these:

 delete-function to delete a function (http://amzn.to/2jdefz4)
 create-alias to create an alias (http://amzn.to/2jde9rh)
 invoke to invoke a function using the RequestResponse or Event invocation

type (http://amzn.to/2jYhui7)
 publish-version to publish a new version of a function (http://amzn.to/

2jdsCDm)
 list-functions, list-aliases, list-versions-by-function to list functions,

aliases, and versions, respectively

6.5 Lambda patterns
If you’re using JavaScript (Node.js) to write your Lambda functions, you’ll have to
deal with asynchronous callbacks. You’ve already seen these in action in chapter 3 and
especially in the third Lambda function that you created in that chapter. Having mul-
tiple callbacks is frustrating and complex because following the logic of the program
becomes difficult. If your function naturally leads to a series of sequential steps, you
can adopt an async waterfall pattern and reduce the complexity of managing multiple
asynchronous callbacks.

Listing 6.3 Syntax for the create-function command

The function name. Spaces in
the name are not allowed.

The version of the runtime. It could be
nodejs4.3, nodejs4.3-edge, nodejs6.10, java8,
dotnetcore1.0, or python2.7.

The role ARN that the function will run under. You
can use the same ARN as in the previous chapters

The timeout measured
in seconds

The location of the file on
the local filesystem. Prefix
the location with fileb://.

You can use --publish or --no-publish to tell Lambda
whether to publish the function immediately.

http://amzn.to/2jeCOfR
http://amzn.to/2jYhui7
http://amzn.to/2jdefz4
http://amzn.to/2jde9rh
http://amzn.to/2jdsCDm
http://amzn.to/2jdsCDm
http://amzn.to/2jdsCDm

152 CHAPTER 6 Lambda the orchestrator
6.5.1 Async waterfall

Async (http://bit.ly/23RfWVe) is a JavaScript library that can be installed as an npm
module. It has several powerful features, one of them being support for the waterfall
pattern. This pattern allows you to run a set of functions one after another, passing
the result of one function into the next one using a callback function. If one of the
functions passes an error into the callback, the execution of the waterfall is stopped,
and the next task is not invoked (figure 6.14).

The following listing shows a general example of an async waterfall pattern (this list-
ing is adopted from an example given in http://bit.ly/1WaSNui).

async.waterfall([
 function(callback) {
 callback(null, 'Peter', 'Sam');
 },
 function(arg1, arg2, callback) {
 callback(null, 'Serverless');

Listing 6.4 Async waterfall example

Not the only game in town
Async waterfall is a good pattern, but it’s by no means the only way you can deal with
callback hell. ES6 supports promises, generators, and yields (http://bit.ly/
2k70Zge), which you can use with Node.js 4.3 and Lambda. You could even try using
ES7 features—like async/await and transpiling your code down to promise chains—
but that could make debugging harder. In other words, read the next section and think
about whether the async waterfall pattern is right for you. In many cases, especially
if you’re dealing with legacy code that hasn’t been ported to Node.js 4+, knowing and
applying a pattern like this is a good idea.

Value 1 and 2 are passed from
Function A to Function B

Value 3 is passed from
Function B to Function C

Value 4 is passed from Function C
to the optional callback

Function A
Value 1 Value 2

Function B
Value 3

Function C
Value 4

Final Callback

Figure 6.14 The async waterfall pattern allows you to invoke and pass results from one
function to another. It makes handling of asynchronous methods easier than using callbacks.

arg1 equals ‘Peter’ and arg2 equals ‘Sam’.

http://bit.ly/23RfWVe
http://bit.ly/1WaSNui
http://bit.ly/2k70Zge
http://bit.ly/2k70Zge
http://bit.ly/2k70Zge

153Lambda patterns
 },
 function(arg1, callback) {
 callback(null, 'Done');
 }
], function (err, result) {
 if (err) {

console.log(err);
 } else {

console.log(result);
 }
});

In listing 6.4, take note of the callback function, which is used often. This function
must be called on the completion of each task. The first parameter in the callback rep-
resents an error. If there’s no error, use a null. The other parameters can be whatever
you want. They’re passed on to the next task.

 This callback function is similar to the callback you’ve already seen in Lambda.
You must not confuse the two callback functions, however, so we recommend naming
the callback used in async waterfall to something else (such as next).

24-HOUR VIDEO LIST

As a clone of YouTube, 24-Hour Video needs to list videos that users can click and
view. You don’t have a database at the moment to store URLs to your videos, but you
can create a Lambda function to make a list of files in the S3 bucket. This function can
be invoked via the API Gateway, and it can return a list of URLs to your videos. You can
use async waterfall for this example because you need to take a few steps in series.

BASICS SETUP

Create a new function on your system and name it get-video-list. Here’s how to do
this:

1 Copy one of the previous functions (such as transcode-video) to a new folder
and name it get-video-list.

2 Remove all contents in index.js.
3 Update package.json to resemble the next listing. The bolded text is what you

need to add or modify from your existing file.

{
 "name": "get-video-list",
 "version": "1.0.0",
 "description": "This Lambda function will list

➥ videos available in an S3 bucket",
"main": "index.js",
"scripts": {

"create": "aws lambda create-function --function-name get-video-list

➥ --handler index.handler --memory-size 128 --runtime nodejs4.3

➥ --role arn:aws:iam::038221756127:role/lambda-s3-execution-role

➥ --timeout 3 --publish --zip-file fileb://Lambda-Deployment.zip",

Listing 6.5 Package.json for the get-video-list function

arg1 equals ‘Serverless’.

This is the optional and
final callback function. In
here, result is ‘Done’.

You’ve added a create script to
create the function straight

from the command line.
Remember to update the ARN

to match the ARN of your role.

154 CHAPTER 6 Lambda the orchestrator
"deploy": "aws lambda update-function-code --function-name get-video-list

➥ --zip-file fileb://Lambda-Deployment.zip",
"precreate": "zip -r Lambda-Deployment.zip * -x *.zip *.json *.log",
"predeploy": "zip -r Lambda-Deployment.zip * -x *.zip *.json *.log"

},
"dependencies": {

 "aws-sdk": "^2.3.2"
 },
 "author": "Peter Sbarski",
 "license": "BSD-2-Clause",
 "devDependencies": {
 "run-local-lambda": "^1.1.0"
 }
}

Add the async module using npm. In the terminal, change to the directory of the
function and run the following:

npm install async --save

You should also run npm install to make sure that the AWS SDK is installed. If you
look at package.json, there should be two dependencies: async and aws-sdk.

 Now (if you followed section 6.4.2) you can create the required Lambda function
in AWS using the command npm run create. If you skipped over section 6.4.2, you’ll
have to create the get-video-list function in the AWS console yourself.

IMPLEMENTATION

This function has a fairly simple implementation, as shown in listing 6.6. Notably, it
doesn’t take into account some scenarios, such as what happens when there are many
files in the S3 bucket (the S3 listObjects operation returns up to 1000 objects in the
bucket). The function is also not very efficient. But it’s a good temporary measure
until we introduce a proper database, and it’s a good way to show how the waterfall
pattern is used.

'use strict';

var AWS = require('aws-sdk');
var async = require('async');

var s3 = new AWS.S3();

function createBucketParams(next) {
 var params = {
 Bucket: process.env.BUCKET,
 EncodingType: 'url'
 };

 next(null, params);
}

function getVideosFromBucket(params, next) {
 s3.listObjects(params, function(err, data){

Listing 6.6 The get-video-list function

You added a precreate script too. It
runs right before the create

function to generate the zip file.

The createBucketParams
function creates configuration
for the S3 listObjects function.

The getVideosFromBucket
function uses the S3 SDK to
get a list of objects from the
specified bucket.

155Lambda patterns
 if (err) {
next(err);

 } else {
next(null, data);

 }
 });
}

function createList(data, next) {
 var urls = [];
 for (var i = 0; i < data.Contents.length; i++) {
 var file = data.Contents[i];

 if (file.Key && file.Key.substr(-3, 3) === 'mp4') {
urls.push(file);

 }
 }

 var result = {
 baseUrl: process.env.BASE_URL,
 bucket: process.env.BUCKET,
 urls: urls
 }

 next(null, result);
}

exports.handler = function(event, context, callback){
 async.waterfall([createBucketParams, getVideosFromBucket, createList],
 function (err, result) {

if (err) {
callback(err);

} else {
callback(null, result);

}
 });
};

Deploy the function by executing npm run deploy from the directory of the function.

ENVIRONMENT VARIABLES

The code in listing 6.6 uses two environment variables: BUCKET and BASE_URL. The
BUCKET variable is the name of the second S3 bucket with transcoded files. BASE_URL is
a base address for S3 buckets, which is https://s3.amazonaws.com. You must add these
two variables for the function to work. In the Lambda console, click the get-video-
list function, and add these two environment variables at the bottom of the Code tab
(figure 6.15).

The createList function loops
through the data and creates
an array of objects that are
suitable for watching.

Objects that have an
extension of mp4 are
the only ones added to
the url array (objects
with a .json, .webm, or
.hls extension are
ignored).

The Lambda callback returns the
list of URLs together with the
baseUrl and the bucket name.

156 CHAPTER 6 Lambda the orchestrator
TESTING

The simplest way to test this function is to jump into the AWS console, click Lambda,
and then click get-video-list. From there click the Test button. If you get the Input
Test Event dialog, click Save And Test to proceed. You should see a list of URLs (if you
have mp4s in the bucket) under the Execution Result heading toward the bottom of
the page (figure 6.16).

Remember to change the S3 bucket name to the
bucket that you have created. This is the second
S3 bucket that holds transcoded video files.

Figure 6.15 You must add the BUCKET and BASE_URL environment variables for the function to run.

The bucket name and the URLs are provided
in the response so your client doesn’t need
to know anything about the back end setup.

Figure 6.16 You can preview the response in the AWS console, making it easy to test your Lambda
function.

157Lambda patterns
6.5.2 Series and parallel

In addition to waterfall, the async library supports series and parallel patterns of exe-
cution. The series pattern is similar to waterfall; it invokes a series of functions one by
one. Values (results) are passed into the optional callback function at the very end
once the series has finished (figure 6.17).

The parallel pattern is used to run functions in parallel without waiting for other func-
tions to finish. Once all functions have completed, the results are passed into the
optional (final) callback (figure 6.18).

Invoking functions from the command line
The AWS CLI can invoke Lambda functions from the command line. It supports both
invocation types, RequestResponse and Event. The syntax for the command can be
found in http://amzn.to/269Z2U2. If you decide to try a synchronous Request-
Response invocation, you need to provide at least two parameters: the function name
and the output file that will contain the response from the function.

To invoke the get-video-list function, you need to run the following from your
terminal:

aws lambda invoke --function-name get-video-list output.txt

Remember to grant the right permission (lambda:InvokeFunction) to your IAM user if
you decide to use this.

Results from functions A, B,
and C are passed in to the
optional callback.

Function A
Value 1 Value 2

Function B
Value 3

Function C
Value 4

Optional Callback

Figure 6.17 The async series pattern can help if you have a series of independent
calculations and then get all the results at the end.

http://amzn.to/269Z2U2

158 CHAPTER 6 Lambda the orchestrator
6.5.3 Using libraries

This advice is a given for most developers. Identify code that’s repeated in multiple
Lambda functions and move it to another file so that this code is written only once
(the Don’t Repeat Yourself principle). You can import your libraries using node’s
require().

 Let’s see how to practice what we preach and build a library for sending emails
using Amazon’s Simple Email Service (SES). You can use it to send email when a user
uploads a new video or as a way to enable messaging between users. There are two
ways you can include this library with the rest of your code:

 You can build a module, deploy it to npm, and then use npm install --save to
add it. It may take a little more overhead, but it’s a good way to manage depen-
dencies and libraries. If having your code publicly available isn’t what you want,
there’s a way to set up and use a private npm repository (see http://bit.ly/
1MOsyIF).

 Another approach is to create a lib directory and place your libraries there.
Every function can reference the lib directory and import what’s needed. This
approach may work perfectly well for small applications but it has major disad-
vantages. Maintaining, sharing, and using different versions of the library will
become difficult once you begin to grow. Having two or more versions of the
library can become problematic as you try to remember which version goes
where. So use this approach sparingly, for experiments or for very simple sys-
tems. Go with a proper package management system such as npm if you decide
to build anything substantial.

We’ll go with the second method in this example, but as part of an exercise later on,
we’ll ask you to create an npm module for your library, deploy it to the npm reposi-
tory, and then install it using npm install.

Functions A, B, and C execute in
parallel. Their results are passed
in to the optional callback.

Function A

Value 1 Value 2

Function B

Value 3

Function C

Value 4

Optional callback

Figure 6.18 The parallel pattern allows functions to execute at the same time and pass
their results to the optional callback function at the end.

http://bit.ly/1MOsyIF
http://bit.ly/1MOsyIF
http://bit.ly/1MOsyIF

159Lambda patterns
GET THE CODE

Create a directory called lib for your library. In this directory make a file called
email.js and copy the following listing into it.

'use strict';

var AWS = require('aws-sdk');
var async = require('async');
var SES = new AWS.SES();

function createMessage(toList, fromEmail, subject, message, next) {
 var params = ({
 Source: fromEmail,
 Destination: { ToAddresses: toList },
 Message: {
 Subject: {

Data: subject
 },
 Body: {

Text: {
Data: message

}
 }
 }
 });

 next(null, params);
}

function dispatch(params, next) {
 SES.sendEmail(params, function(err, data){
 if (err) {
 next(err);
 } else {
 next(null, data);
 }
 })
}

function send(toList, fromEmail, subject, message) {
 async.waterfall([createMessage.bind(this, toList,

➥ fromEmail, subject, message), dispatch],
function (err, result) {
if (err) {

 console.log('Error sending email', err);
 } else {
 console.log('Email Sent Successfully', result);
 }
 });
};

module.exports = {
 send: send
};

Listing 6.7 Adding email support

You’re using the SES service
to send email so you need to
include it in your library.

Now that you’re familiar with the async
waterfall pattern, you should try using it

where it fits. The bind method call allows you
to pass arguments into the createMessage

function and run it in the correct context (so
that async passes in the callback function).

module.exports is the object returned when
you use require(). This makes the send
function available to other functions to invoke.

160 CHAPTER 6 Lambda the orchestrator
The code in listing 6.7 has a function called send, which can be invoked by external
code. It takes four parameters: an array of receiver emails, the sender’s own email, a
subject, and a message. To use this library in your Lambda functions, follow these
steps:

1 Copy the file (email.js) over to the directory of the function.
2 Use require() to load the library in the function:

var email = require('email');

3 Invoke send and pass the required parameters to it:
email.send(['receiver@example.com'], 'sender@example.com', 'Subject',
'Body');

You will have noticed that in this library you imported async but didn’t bother to run
npm install. This is because the library you created will be shipped with a Lambda
function that will hopefully have the right npm modules, including async, installed.
To be on the safe side, however, you could write a package.json for this library and npm
install needed dependencies. In fact, you should do this if you decide to build
libraries properly.

 Here are a few notes about sending email using SES:

 The role used to execute the function and send email needs to have the
ses:SendEmail permission to execute correctly:

 Create a new role or modify an existing one that you wish to use for the function.
 Add a new inline policy and select Policy Generator.
 From the AWS Service drop-down, select Amazon SES.
 From the Action drop-down, select SendEmail and SendRawEmail.
 Click the Add Statement button.
 Then proceed to apply the policy and exit.
 The from email address needs to be verified in the SES console before email

can be sent (figure 6.19). To do it, click SES in the AWS console, click Email
Addresses, and click Verify a New Email Address. Follow the wizard to verify
your email.

You must verify the sender email
address before you can use it.

Figure 6.19 Basic email sending is easy via SES. Try to move code and features that are used often
(such as email sending) into libraries.

161Testing Lambda functions
6.5.4 Move logic to another file

Building on advice in the previous section, we recommend moving all of your
domain/business logic to a different file/library. Your Lambda handler should be a
thin wrapper that executes code stored in another file. Having the bulk of your logic
in a separate file will lead to an implementation that’s more testable and is much
more decoupled from Lambda. If one day you decide to move away from Lambda,
you’ll find it easier to port your code to a new serverless compute service.

6.6 Testing Lambda functions
There are two main ways you can test a Lambda function. You can run tests locally (or
during continuous integration/deployment) and you can test the function once it’s
deployed to AWS.

 Back in chapter 3, you installed an npm module called run-local-lambda. That
package allowed you to invoke a Lambda function locally on the computer and pass in
an event, a context, and a callback function. Going forward, however, you need to set
up a much more rigorous and robust system for executing tests. You need to have a
way to mock dependencies, spy on variables and functions, and manage setup and
teardown procedures. This section looks at how to put together a good approach to
testing.

6.6.1 Testing locally

Let’s look at how to test Lambda functions on your computer (later, you’ll make these
tests run as part of your continuous integration/deployment pipeline). To make this
more interesting, you’ll write tests for the get-video-list function you created in
section 6.5.3. You’ll use Mocha, Chai, Sinon, and rewire to help you write and run
your tests.

 In your terminal, change to the directory of the function you created in section 6.5.3
and run the following npm install commands to download the required components:

 npm install mocha –g

Mocha (http://bit.ly/1VKV1lY) is a JavaScript test framework.

 npm install chai --save-dev

Chai (http://bit.ly/1pu2xmq) is a test-driven development/behavior-driven
development assertion library.

 npm install sinon --save-dev

Sinon (http://bit.ly/1NIhN5q) is a mocking framework. It provides spies, stubs,
and mocks.

 npm install rewire --save-dev

Rewire (http://bit.ly/1YNPj05) is a framework for monkey-patching and over-
riding dependencies for Node.js unit tests.

http://bit.ly/1VKV1lY
http://bit.ly/1pu2xmq
http://bit.ly/1NIhN5q
http://bit.ly/1YNPj05

162 CHAPTER 6 Lambda the orchestrator
We should note that Lambda functions are no different from any other regular
Node.js application. You can use a different JavaScript framework or assertion library
if you prefer.

6.6.2 Writing tests

Having installed the modules, create a new subdirectory called test. In this subdirec-
tory create a file called test.js and open it in your favorite text editor. Copy the next
listing into this file.

var chai = require('chai');
var sinon = require('sinon');
var rewire = require('rewire');
var expect = chai.expect;
var assert = chai.assert;

var sampleData = {
 Contents: [
 {
 Key: 'file1.mp4',
 bucket: 'my-bucket'
 },
 {
 Key: 'file2.mp4',
 bucket: 'my-bucket'
 }
]
}

describe('LambdaFunction', function(){
 var listObjectsStub, callbackSpy, module;

 describe('#execute', function() {
 before(function(done){
 listObjectsStub = sinon.stub().yields(null, sampleData);
 callbackSpy = sinon.spy();

 var callback = function(error, result) {
callbackSpy.apply(null, arguments);

 done();
 }

 module = getModule(listObjectsStub);
 module.handler(null, null, callback);
 })

 it('should run our function once', function(){
 expect(callbackSpy).has.been.calledOnce;
 })0

Listing 6.8 Tests for the get-video-list function

This data is provided to the
caller when the S3 listObjects()
function is invoked.

A spy watches a function
or a variable and reports

on what it does. This is the
callback

function that
the Lambda
function will

invoke at the
end of its run.

Invoke the handler
to run the Lambda
function.

done() needs to be invoked to tell
Mocha that the test has finished.

The getModule() call gets a monkey-
patched version of your Lambda function.

This test looks at the spy to
check that it has been invoked
only once (hence, the callback
function was invoked once).

163Testing Lambda functions
 it('should have correct results', function(){
 var result = {

"baseUrl": "https://s3.amazonaws.com",
"bucket": "serverless-video-transcoded",
"urls": [
{
"Key": sampleData.Contents[0].Key,
"bucket": "my-bucket"
},
{
"Key": sampleData.Contents[1].Key,
"bucket": "my-bucket"
}

]
}

 assert.deepEqual(callbackSpy.args, [[null, result]]);
 })
 })
})

function getModule(listObjects) {
 var rewired = rewire('../index.js');

 rewired.__set__({
 's3': { listObjects: listObjects }
 });

 return rewired;
}

Having implemented listing 6.8, run mocha from the directory of the function. You
should see output similar to figure 6.20.

This is additional test data that
we think the output from the
Lambda function will match.

Compare the output from the
Lambda function to the test data

to make sure they match.

Rewire is used to patch your Lambda
function so that when S3 listObjects()
is called, you return your stub and
the data prepared earlier instead.

You will see how many tests have passed
and failed after running mocha.

Figure 6.20 You can run tests locally and as part of your continuous deployment pipeline.

164 CHAPTER 6 Lambda the orchestrator
 Let’s do a quick review of what happens in your test file:

 You import Chai, Sinon, and rewire and create a sampleData data object that
has test data.

 The before hook creates stubs and spies and calls the getModule function to
get a copy of your Lambda function. You use rewire to monkey-patch your
Lambda function so that when a request to S3 is made (s3.listObjects()) you
return a list of objects defined previously in your test file.

 You declare two tests. Both tests check your spy. The first test checks that
Lambda’s callback function was invoked only once. The second test checks that
the arguments passed into Lambda’s callback function are what you expect.
The second test is a great way to check that a response from a Lambda function
is valid in a RequestResponse invocation.

Testing is a broad and complex subject that will take time to master and get right.
Thankfully, testing Lambda functions is straightforward compared to more complex
Node.js applications. If you want another example, similar to the one you just com-
pleted, have a look at http://bit.ly/1MQc4zO.

 Our recommendation is to write tests for each Lambda function you create. Once
you have a template for wiring up and mocking dependencies (and you can begin by
taking listing 6.8 and repurposing it for your needs), creating new tests should
become relatively easy.

6.6.3 Testing in AWS

You’ve written a number of wonderful tests on your system and deployed a function to
AWS. It’s a good idea to test your function in AWS to make sure that it works as you
expect. An obvious way to do it is to click the Test button in the console and provide
an event for your function to consume. Luckily, there’s an even better way to do test-
ing using the unit and load test harness blueprint provided by AWS. This blueprint cre-
ates a Lambda function for you that can invoke a Lambda function you wish to test
and record the results in a DynamoDB table.

 Tim Wagner originally wrote about this in a blog post (http://amzn.to/1Nq37Nx)
titled “A Simple Serverless Test Harness using AWS Lambda.” You can configure this
test harness as follows:

1 Create a new role called lambda-dynamo and add an inline policy to it. Add
lambda:InvokeFunction and dynamodb:PutItem actions to that policy. For the
lambda:InvokeFunction action, set the ARN as arn:aws:lambda:*:*:*.

2 Create a new table in DynamoDB and name it unit-test-results. Set the Partition
Key to testId. Accept all other default settings.

3 In the Lambda’s console, click Create a Lambda Function and search for
lambda-test-harness among the available blueprints (figure 6.21).

4 Create a new function from the lambda-test-harness blueprint.
5 Set lambda-dynamo as the role for the function and leave the timeout on one

minute.

http://bit.ly/1MQc4zO
http://amzn.to/1Nq37Nx

165Testing Lambda functions
To correctly run the lambda-test-harness function, you need to create an event
object that describes a test configuration and pass it to the test harness function. The
next listing shows an example test configuration for the get-video-list function you
developed earlier in this chapter. Note that the event is empty because get-video-
list doesn’t use it during execution.

{

 "operation": "unit",

 "function": "get-video-list",

 "resultsTable": "unit-test-results",

 "testId": "MyTestRun",

 "event":{}

}

To run the test harness function, click the Test button in the AWS console (assuming
you have the function open) and type the configuration from listing 6.9 into the input
test event dialog. Then click Save and Test.

 Look at the unit-test-results table in DynamoDB for information after executing
the function to see the results. To perform a load test, modify the configuration
slightly by changing the operation from unit to load and setting a desired number of
iterations. The next listing shows a configuration you can use to execute the function
50 times.

Listing 6.9 Example unit test configuration

This is the blueprint you need
to test your other functions.

Figure 6.21 Look through the various blueprints on offer. Some of them will give you ideas, and
others might save you time.

The type of test you want to run: unit or load
The function you wish to test
The table to store results

The ID of the test that will be saved to the database

166 CHAPTER 6 Lambda the orchestrator
{
 "operation": "load",
 "iterations": 50,
 "function": "get-video-list",
 "resultsTable": "unit-test-results",
 "testId": "MyTestRun",
 "event":{}
}

Having a mix of tests to run in your local environment and in AWS will give you confi-
dence to make changes and improvements. Don’t neglect testing, and do it from the
very start.

6.7 Exercises
You learned a lot about Lambda in this chapter, but there’s no better way to test your
knowledge than trying a few exercises. See if you can do the following:

1 Create a Lambda function to check if a given string is a palindrome. Your func-
tion should get the string via an environment variable.

2 Implement the email-sending library given in section 6.5.3 and include it in the
transcode-video Lambda function. Modify the transcode-video function to
send you an email whenever a new transcoding job is created.

3 Package the email-sending library as an npm module and deploy it to the npm
repository (see http://bit.ly/1r6heOf for more information on how to do this).
When it’s deployed, install it into a Lambda function of your choice using npm
install <your-module> --save. Update the Lambda function so that it sends
email and test it.

4 Create a new Lambda function to send yourself an email every 24 hours. Can
you automate it?

5 Add a breaking test to the tests you implemented in section 6.6.2 and run mocha
to see what it looks like. Either fix this test or remove it before you proceed to
the next question.

6 Write a test for each of the Lambda functions you created in chapters 3 and 5.
7 Create a unit and load-test harness in AWS to test existing Lambda functions.

Create a new Lambda function that triggers when new DynamoDB records are
inserted and sends you an email with the results of those records.

6.8 Summary
A compute service such as Lambda is the heart of serverless architecture. It’s the glue
that holds everything together. It can serve as a back end for your application or act as
a coordinator between other services in your system. In this chapter, we looked at the
following:

Listing 6.10 Example load test configuration

In this case you want to run load tests.
The number of times you want to run your function

http://bit.ly/1r6heOf

167Summary
 Lambda’s core principles including invocation types and event models
 Programming model
 Versioning, aliases, and environment variables
 Usage of the CLI

 Patterns such as async waterfall and creation of libraries
 Testing of Lambda functions locally and in AWS

In the next chapter, we’ll look at the API Gateway and discuss how to create robust
back ends for web and mobile applications.

API Gateway
Serverless architectures are versatile. You can use them to build an entire back end
or glue a few services together to solve a specific task. Building a proper back end
requires the development of an application programming interface (API) that sits
between the client and back-end services. In AWS, the API Gateway is this key AWS
service that allows developers to create a RESTful API.

 This chapter takes a look at the API Gateway. We examine the fundamental
activities that go into building an API and discuss features such as staging and ver-
sioning, as well as caching, logging, and throttling of requests. You’ll also continue
to add new functionality to 24-Hour Video such as the ability to list videos facili-
tated by the API Gateway. Note that API Gateway is a service with many features that
can’t all be addressed in a single chapter of a book. We recommend reading this
chapter and then building a sample API, playing with different features, and read-
ing through the official documentation. Like most of AWS, API Gateway is a rapidly
developing service, so don’t be surprised if you see one or two new features not dis-
cussed here.

This chapter covers
 Creation and management of API Gateway

resources and methods

 Lambda Proxy integration

 API Gateway caching, throttling, and logging
168

169API Gateway as the interface
7.1 API Gateway as the interface
Think of the API Gateway as an interface (figure 7.1) between back-end services
(including Lambda) and client applications (web, mobile, or desktop).

 We’ve mentioned before that your front-end application should communicate with
services directly. But there are many cases where this isn’t possible or desirable in
terms of security or privacy. You should perform some actions only from a back-end
service. For example, sending an email to all users should be done via a Lambda func-
tion. You shouldn’t do it from the front end because it would involve loading every
user’s email address into another user’s browser. That’s a serious security and privacy
issue and a quick way to lose your customers. So don’t trust the user’s browser and
don’t perform any sensitive operations in it. The browser is also a bad environment
for performing operations that may leave your system in a bad state. Have you seen
those websites that say “Do not close this window until the operation has finished”?
Avoid building systems like that. They’re too brittle. Instead, run operations from a
back-end Lambda function, and flag the UI when the operation is completed.

 An API Gateway is an example of technology that makes serverless applications eas-
ier to build and maintain than their traditional server-based counterparts. In a more
traditional system you might need to provision EC2 instances, configure load balanc-
ing using Elastic Load Balancer (ELB), and maintain software on each server. The API
Gateway removes the need to do all that. You can use it to define an API and connect it

The API Gateway can
integrate with Lambda
functions, or act as a
proxy for other HTTP
end points and AWS
services.

Presentation tier

Service #1Authentication
service

Service #2

Service #3

Service #4

API Gateway

Lambda
function

HTTP
end point

Notification
service

Lambda
function

Lambda
function

Figure 7.1 The API Gateway is needed, especially for web applications, to establish an interface for
back-end services.

170 CHAPTER 7 API Gateway
to services in minutes. In us-east-1, the API Gateway cost is $3.50 per million API calls
received, which makes it affordable for many applications. Let’s look now at a few
important features of the API Gateway in more detail.

7.1.1 Integration with AWS services

Back in chapter 5, you connected an API Gateway to a user-profile Lambda func-
tion. You did this so that your website could request information about the user from
a Lambda function. Those with keen eyesight would have noticed that Lambda was
one of four options. The other three were HTTP Proxy, AWS Service Proxy, and Mock
Integration, which are briefly described here.

HTTP PROXY

The HTTP Proxy can forward requests to other HTTP endpoints. Standard HTTP
methods (HEAD, POST, PUT, GET, PATCH, DELETE, and OPTIONS) are supported. The
HTTP Proxy is particularly useful if you have to build an interface in front of a legacy
API or transform/modify the request before it reaches the desired endpoint.

AWS SERVICE PROXY

The AWS Service Proxy can call through to AWS services directly rather than through a
Lambda function. Each method (for example, GET) is mapped to a specific action in
a desired AWS service, such as adding an item to a DynamoDB table directly. It’s much
quicker to proxy straight to DynamoDB than to create a Lambda function that can
write to a table. Service Proxy is a great option for basic use cases (such as list, add,
and remove) and it works across a wide range of AWS services. But in more advanced
use cases (especially those that need logic), you’ll still have to write a function.

MOCK INTEGRATION

The Mock Integration option is used to generate a response from the API Gateway
without having to integrate with another service. It’s used in cases such as when a
preflight cross-origin resource sharing (CORS) request is issued and the response is
predefined in the API Gateway.

7.1.2 Caching, throttling, and logging

It wouldn’t be a useful service if the API Gateway didn’t have facilities for caching, throt-
tling, encryption, and logging. Section 7.3 deals with these concerns in more detail.
Caching can help to reduce latency and alleviate the load on the back end by returning
results computed earlier. But caching isn’t easy, so you must take care to get it right.

 Throttling reduces the number of calls to the API using a token bucket algorithm.
You can use it to restrict the number of invocations per second to prevent your back
end from being hammered with requests. Finally, logging allows CloudWatch to
capture what’s happening to the API. It can capture the full incoming request and out-
going response and track information such as cache hits and misses.

171Working with the API Gateway
7.1.3 Staging and versioning

Staging and versioning are features that you’ve already used. A stage is an environment
for your API. You can have up to 10 stages per API (and 60 APIs per account), and it’s
entirely up to you how to set them up. We prefer to create stages for development,
user acceptance testing, and production environments. Sometimes we create stages
for individual developers. Each stage can be configured separately and use stage vari-
ables to invoke different endpoints (that is, you can configure different stages to
invoke different Lambda functions or HTTP endpoints).

 Each time an API is deployed it creates a version. You can go back to previous ver-
sions if you make a mistake, making rollbacks rather easy. Different stages can refer-
ence different versions of the API, making it flexible enough to support different
versions of your application.

7.1.4 Scripting

Configuring the API Gateway manually (using the AWS console) is fine while you’re
learning how to use it. But it isn’t a sustainable or robust way to work in the long term.
Luckily, you can script an entire API using Swagger, which is a popular format for
defining APIs (http://swagger.io). Your existing API can be exported to Swagger, and
Swagger definitions can be imported as new APIs.

7.2 Working with the API Gateway
In chapter 5, you provisioned a new API for 24-Hour Video. You might recall that an
API is made out of resources (which are entities like user) that can be accessed
through a resource path (for example, /api/user). Each resource can have one or
more operations defined against it, represented by HTTP verbs such as GET, DELETE,
or POST (figure 7.2).

Operations on resources are defined
by HTTP verbs such as GET.

Resources define the
structure of the API.

Figure 7.2 Resources and methods make up the API. You can see the API at a glance in the API
Gateway console.

http://swagger.io

172 CHAPTER 7 API Gateway
In this section, you’re going to add a new resource and method to the API Gateway,
connect it to a Lambda function, and learn how to use Lambda proxy integration. Fig-
ure 7.3 shows which component of the 24-Hour Video system you’ll be working on in
this chapter.

CREATING A NEW API
If you didn’t create an API in chapter 5, you’ll have to do it now. To create an API,
choose the API Gateway in the AWS console and then click the Create API button. Leave
the New API radio button selected, and enter an API name (such as 24-hour-video)
and an optional description. Click Create API to finalize your choice (figure 7.4).

Authentication

Custom API

Create an API in the AWS cloud and authenticate calls.

Web application

Video transcoder

Media storage

Video upload

Video list database

Figure 7.3 In this chapter you’re going to build the bulk of your API and explore the features API
Gateway has to offer.

Set a name for your API. Spaces are allowed
but the name cannot exceed 1024 characters.

Figure 7.4 Creating a new API takes less than 30 seconds. There is a limit of 60 APIs per AWS account.

173Working with the API Gateway
7.2.1 The plan

In chapter 6, you created a Lambda function to return a list of videos in your S3
bucket. It would be good to show these videos on your website. You want the user to
open the site and see a list of videos they can play—just as they would on YouTube. For
this to work, your website needs to issue a request to the get-video-list Lambda
function via the API Gateway.

 You’re going to create a resource called Videos and add a GET method to it, which
you’ll use to request and receive the list of videos. When you finish working through
this chapter, your implementation of 24-Hour Video will look similar to figure 7.5. To
make things a little more interesting, you’ll add an optional URL query parameter
called encoding. You’ll use this parameter to return videos of a specific encoding (for
example, 720p or 1080p).

 Be forewarned: having a Lambda function and an API Gateway to return a list of
videos is what you have to do for now because you don’t have a database. In chapter 9,
we’ll show you an alternative way of retrieving video URLs straight from the database
without having to use the API Gateway or Lambda.

HTML5 Video tag is used to render videos and display controls. All modern browsers support the
HTML5 Video tag and the MPEG-4/H.264 video format so you shouldn’t have problems playing video.

Figure 7.5 Your 24-Hour Video website will play videos once you’ve completed this section.

174 CHAPTER 7 API Gateway
7.2.2 Creating the resource and method

In the API Gateway, choose the 24-hour-video API you created earlier. Then follow
these steps to create a resource called Videos (figure 7.6):

1 Choose the Actions drop-down menu.
2 Select Create Resource.
3 Set the Resource Name to Videos. The Resource Path should be /videos. Note

that your resource paths must not conflict. In the future, you won’t be able to
create another resource called /videos unless you delete this one.

4 Do not select Configure as Proxy Resource or Enable API Gateway CORS at this
stage.

5 Click Create Resource.

Resource Path must not have any spaces.

Figure 7.6 Create a resource through the Actions drop-down menu. Resource Paths must not clash.

Proxy resource and CORS
When you create a resource in the API Gateway, there’s an option called Configure
as Proxy Resource (figure 7.6). Enabling this option creates a proxy resource with a
“greedy” path variable that looks like {proxy+}. A greedy path variable represents any
child resource under a parent resource. For example, if you had a path /video/
{proxy+} you could issue requests to /video/abc, /video/xyz, or any other endpoint
starting with /video/. All of those requests would be routed to the {proxy+} resource
automatically (it’s essentially a wildcard for paths). The + symbol tells the API Gate-
way to capture all requests on the matched resource (https://docs.aws.amazon
.com/apigateway/latest/developerguide/api-gateway-set-up-simple-proxy.html#api-
gateway-proxy-resource).

https://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-set-up-simple-proxy.html#api-gateway-proxy-resource
https://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-set-up-simple-proxy.html#api-gateway-proxy-resource
https://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-set-up-simple-proxy.html#api-gateway-proxy-resource
https://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-set-up-simple-proxy.html#api-gateway-proxy-resource

175Working with the API Gateway
ADDING A METHOD

Having created the resource, you can create a method for it:

1 Choose the Videos resource in the Resources sidebar.
2 Choose Actions and choose Create Method.
3 A small drop-down box should appear under Videos. Choose it and select GET.

Choose the round check mark button to confirm.

INTEGRATING WITH LAMBDA

You should now see integration setup for the GET method. You’re going to configure
it to invoke your Lambda function:

1 Select the Lambda Function radio button.
2 Check Use Lambda Proxy Integration. We’ll discuss what this option does in the

next section.
3 Pick us-east-1 from the Lambda Region drop-down.

Enabling the Configure as Proxy Resource option also creates an ANY method under
the resource. The ANY method allows the client to use any HTTP method (GET, POST,
and so on) to access the resource. But you don’t have to use the ANY resource if you
don’t want to. You can still create individual methods like GET and POST.

Finally, you can choose a Lambda function proxy or an HTTP proxy as the integration
type. We’ll discuss Lambda proxy and HTTP proxy integration shortly. When should
you enable the Configure as Proxy Resource option? The answer is only if you have a
specific reason or a use case for it. Our suggestion is to try to build mature RESTful
APIs whenever possible (https://martinfowler.com/articles/richardsonMaturityModel
.html) and to resort to Configure as Proxy Resource only when you have to. One final
note: the greedy path variable, the ANY method, and proxy integrations are separate
features and can be used independently from each other. We’ll show how to use
Lambda proxy integration in this chapter but leave greedy path variables and the ANY
method for you to experiment with.

Yet another option you can turn on when creating a resource is Enable API Gateway
CORS. It’s safe to enable it during the creation of the resource. It creates an OPTIONS
method that’s needed for CORS. If you use Lambda or HTTP proxy integration (as you
will in this chapter), then everything is set up for you automatically. The option gen-
erates the OPTIONS method, and any additional CORS headers can be set in the
Lambda function (as you’ll shortly see).

But if you end up mapping requests/responses individually, then you need to run
Enable CORS from the Actions drop-down every time you create a new method. Run-
ning Enable CORS adds a necessary CORS header to Method Response, which you
need in this case. We’ve also noticed that using Enable API Gateway CORS during
resource creation generates a slightly more permissive OPTIONS method (but you can
tweak it after the fact). Feel free to enable that check box, but don’t forget about the
Enable CORS option from the Actions drop-down menu.

https://martinfowler.com/articles/richardsonMaturityModel.html

176 CHAPTER 7 API Gateway
4 Type get-video-list in the Lambda Function text box. As we said in chapter
6, we highly recommend that you use an alias when integrating with a function.
An alias will help to switch between different versions of your function without
having to reconfigure the event sources. Your alias should point to the $LATEST
version of the get-video-list Lambda function. To use an alias, type get-
video-list:dev into the Lambda Function text box, where dev is the name of
the alias (figure 7.7).

5 Click Save.
6 Click OK in the popup window, and click OK again to confirm.

You should always use an alias with an API Gateway.
It will make changes easier to manage.

Figure 7.7 The API Gateway was designed to easily integrate with a Lambda function. It doesn’t
take long to do.

Lambda Proxy Integration
Lambda Proxy Integration is an option that will make life easier when using API Gate-
way and Lambda together. If you enable it, API Gateway will map every request to
JSON and pass it to Lambda as the event object. In the Lambda function you’ll be
able to retrieve query string parameters, headers, stage variables, path parameters,
request context, and the body from it.

Without enabling Lambda Proxy Integration, you’ll have to create a mapping template
in the Integration Request section of API Gateway and decide how to map the HTTP
request to JSON yourself. And you’d likely have to create an Integration Response
mapping if you were to pass information back to the client. Before Lambda Proxy Inte-
gration was added, users were forced to map requests and responses manually,
which was a source of consternation, especially with more complex mappings.

177Working with the API Gateway
ADDING CORS
You now have a resource and a GET method. You need to enable CORS to allow your
clients to access the API. For the moment, you’re going to allow any client from any
origin to issue GET requests against /videos. As you move to create staging and pro-
duction versions of the site, you’re going to lock down the origin, so that only your
website can access the API. To enable CORS, do the following:

1 Choose the Videos resource in the Resources sidebar.
2 Choose Actions.
3 Choose Enable CORS.
4 Leave all settings as they are and click Enable CORS and Replace Existing CORS

Headers.
5 You will see a pop-up confirming changes. Click Yes, Replace Existing Value to

finish.

7.2.3 Configuring method execution

If you select the GET method of your videos resource, you’ll see a page similar to fig-
ure 7.8. This page has the following configuration sections that can be accessed:

Lambda Proxy Integration makes things simpler, and in most cases you’ll find it’s the
preferred option. There are cases, however, where you might want to create a specific
mapping template (as you did in chapter 5). A mapping can help to produce a succinct
and targeted integration payload as needed by the function (as opposed to passing
the full request with proxy integration).

If you choose HTTP Request Integration, you’ll get an option similar to Lambda Proxy
Integration called Use Http Proxy Integration. If you enable this option, your request
will be proxied in its entirety to the specified HTTP endpoint. If you don’t enable the
option, you’ll be able to specify a mapping and create a new request payload yourself.

CORS security
Security is important to get right. Nothing will take the shine off your newly designed
serverless system than someone compromising your security. Remember that in a
real-world setting you’ll need to restrict CORS to your domain rather than leave it wide
open. If you use Lambda proxy integration, then CORS settings must be set in the
response created by the Lambda function. If you manually map requests and
responses, then you can set CORS settings in the integration response of the
method.

178 CHAPTER 7 API Gateway
B Method Request defines the public interface (header and body) for this com-
bination of resource and method.

C Integration Request defines the back end integration (for example, which
Lambda function to invoke). We’ve enabled Lambda proxy integration, which
automatically maps and passes HTTP request elements to the Lambda function
(via the event object). Lambda proxy integration is convenient, but you could
have defined a mapping yourself if you wanted to (see appendix E).

D Integration Response defines how data is mapped into a format expected by
the caller of the API. Because you’re using Lambda proxy integration, there’s
nothing that needs to be done here.

E Method Response defines the public interface that includes headers and the
body of the request. Because you’re using Lambda proxy integration, you
don’t need to do anything here. But if you look at appendix E, you’ll see how
Method Response could come in useful.

METHOD REQUEST

Click Method Request to access its configuration. You can do a number of things here,
but they aren’t relevant right now because you’re using Lambda proxy integration. If
you wish to find out what some of these settings do, refer to appendix E. The only
option that’s applicable at this stage is the custom authorizer. You must set it to

B C

E D

Figure 7.8 The Method Execution screen for the GET method. From here, you can define what goes
into the method/integration request and response.

179Working with the API Gateway
authenticate requests to this GET method. To do this, click the pen icon next to
Authorization and select your custom authorizer from the list (remember, you created
this authorizer in chapter 5). Figure 7.9 shows what this screen looks like.

Proxy integration vs. manual mapping
Here’s where things get interesting. In this chapter we’ll show you how to create an
API using Lambda proxy integration. But what if you want to do the same thing without
using Lambda proxy integration? What if you want to write a mapping and have gran-
ular control over what’s available to the Lambda function via the event object? Under-
standing mappings and models is useful, so we’ve added appendix E, which explains
how to implement an API without Lambda proxy integration. In the appendix we show
how to configure integration request and response. We also introduce you to the
Velocity Template Language (VTL) and show how to use regular expressions to create
HTTP status codes in the API Gateway. We think you’ll end up using Lambda proxy
integration most of the time, but appendix E serves as a great guide if you wish to
understand mappings or want more precise control over the payloads produced by
the API Gateway.

Set a custom authorizer to secure your API.

Figure 7.9 The Method Request page defines the interface and settings that the caller of
the API must respect and provide.

180 CHAPTER 7 API Gateway
 Anytime you make a change to the API Gateway, it must be redeployed. If you for-
get to do this, you won’t see any of your modifications. To perform a deployment, do
the following:

1 Make sure that the Resources section of your API is selected.
2 Click the Actions drop-down button.
3 Select Deploy API and select a deployment stage (dev) from the drop-down.
4 If you don’t yet have a deployment stage, create a new one, and make sure to

call it dev.
5 Click Deploy to finish.

7.2.4 The Lambda function

The API Gateway side of things is mostly done. The Gateway proxies the HTTP request
to the Lambda function, which becomes available to it via the event object. The func-
tion can extract useful information like the body of the request, the headers, and query
string parameters. At the end, the function must create a specially formed response that
the API Gateway can pass back to the client. If this response doesn’t follow the pre-
scribed format, API Gateway will return a 502 Bad Gateway error to the client.

INPUT FORMAT

The following listing shows what an event parameter looks like when API Gateway
invokes a Lambda function. The example given here is a basic GET request with a
query string parameter called encoding. Note that some parts of this listing have been
condensed or slightly modified for brevity.

{
 resource: '/videos',
 path: '/videos',
 httpMethod: 'GET',
 headers: {

Listing 7.1 The input event parameter

Resource path
Path parameters
The incoming request’s method name
The incoming request’s headers

Accept: '*/*',
'Accept-Encoding': 'gzip, deflate, sdch, br',
'Accept-Language': 'en-US,en;q=0.8',
Authorization: 'Bearer eyJ0eXK...',
'Cache-Control': 'no-cache',
'CloudFront-Forwarded-Proto': 'https',
'CloudFront-Is-Desktop-Viewer': 'true',
'CloudFront-Is-Mobile-Viewer': 'false',
'CloudFront-Is-SmartTV-Viewer': 'false',
'CloudFront-Is-Tablet-Viewer': 'false',
'CloudFront-Viewer-Country': 'AU',
DNT: '1',
Host: 'bl5mn437o0.execute-api.us-east-1.amazonaws.com',
Origin: 'http://127.0.0.1:8100',
Pragma: 'no-cache',
Referer: 'http://127.0.0.1:8100/',

181Working with the API Gateway
'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_12_2)

➥AppleWebKit/537.36 (KHTML, like Gecko) Chrome/55.0.2883.95

➥Safari/537.36',
Via: '1.1 2d7b0cb3d.cloudfront.net (CloudFront)',
'X-Amz-Cf-Id': 'nbCkMUXzJFGVwkCGg7om97rzrS6n',
'X-Forwarded-For': '1.128.0.0, 120.147.162.170, 54.239.202.81',
'X-Forwarded-Port': '443',
'X-Forwarded-Proto': 'https'

 },
 queryStringParameters: {

encoding: '720p'
 },
 pathParameters: null,
 stageVariables: {

function: 'get-video-list-dev'
 },
 requestContext: {

accountId: '038221756127',
resourceId: 'e3r6ou',
stage: 'dev',
requestId: '534bcd23-e536-11e6-805c-b1e540fbf5c7',
identity: {
 cognitoIdentityPoolId: null,
 accountId: null,
 cognitoIdentityId: null,
 caller: null,
 apiKey: null,
 sourceIp: '121.147.161.171',
 accessKey: null,
 cognitoAuthenticationType: null,
 cognitoAuthenticationProvider: null,
 userArn: null,
 userAgent: 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_12_2)

➥]AppleWebKit/537.36 (KHTML, like Gecko) Chrome/55.0.2883.95

➥Safari/537.36',
user: null

},
resourcePath: '/videos',
httpMethod: 'GET',
apiId: 'tlzyo7a7o9'

 },
 body: null,
 isBase64Encoded: false

OUTPUT FORMAT

A Lambda function must return a response, via the callback function, that matches
the JSON format given in the next listing. If the format isn’t followed, the API Gateway
will return a 502 Bad Gateway response (https://docs.aws.amazon.com/apigateway/
latest/developerguide/api-gateway-set-up-simple-proxy.html).

Any available query
string parameters

Any relevant API Gateway
stage variables

Request context including
available identity information

The body of the
request as JSON

https://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-set-up-simple-proxy.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-set-up-simple-proxy.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-set-up-simple-proxy.html

182 CHAPTER 7 API Gateway
{
 "statusCode": httpStatusCode,
 "headers": { "headerName": "headerValue", ... },
 "body": "..."
}

LAMBDA IMPLEMENTATION

You implemented the get-video-list Lambda function in chapter 6. Now you need
to update this function to work with the API Gateway. The next listing shows an
updated implementation that accounts for the API Gateway and Lambda proxy inte-
gration. Replace the implementation of the existing function with the code given in
the listing and deploy the function to AWS.

'use strict';

var AWS = require('aws-sdk');
var async = require('async');

var s3 = new AWS.S3();

function createErrorResponse(code, message, encoding) {
 var response = {
 'statusCode': code,
 'headers' : {'Access-Control-Allow-Origin' : '*'},
 'body' : JSON.stringify({'code': code, 'messsage' : message, 'encoding' :

➥encoding})
}

 return response;
}

function createSuccessResponse(result) {
 var response = {
 'statusCode': 200,
 'headers' : {'Access-Control-Allow-Origin' : '*'},
 'body' : JSON.stringify(result)
 }

 return response;
}

function createBucketParams(next) {
 var params = {
 Bucket: process.env.BUCKET
 };

 next(null, params);
}

Listing 7.2 Lambda output format

Listing 7.3 Get video list Lambda function

This function creates a response with an HTTP
status code of 404 or 500 if no videos have
been found or another error occurred.

The Access-Control-Allow-Origin header
must be included in the response.

Remember that in a production version
of this code you’d need to restrict this

header to your domain.

This function creates a
response if videos were
found. It also sets an
HTTP status code of
200 (OK).

183Working with the API Gateway
function getVideosFromBucket(params, next) {
 s3.listObjects(params, function(err, data){
 if (err) {

next(err);
 } else {

next(null, data);
 }
 });
}

function createList(encoding, data, next) {
 var files = [];
 for (var i = 0; i < data.Contents.length; i++) {
 var file = data.Contents[i];

 if (encoding) {
var type = file.Key.substr(file.Key.lastIndexOf('-') + 1);
if (type !== encoding + '.mp4') {
continue;

}
 } else {

if (file.Key.slice(-4) !== '.mp4') {
continue;

}
 }

 files.push({
'filename': file.Key,
'eTag': file.ETag.replace(/"/g,""),
'size': file.Size

 });
 }

 var result = {
 domain: process.env.BASE_URL,
 bucket: process.env.BUCKET,
 files: files
 }

 next(null, result)
}

exports.handler = function(event, context, callback){
 var encoding = null;

 if (event.queryStringParameters && event.queryStringParameters.encoding) {
 encoding = decodeURIComponent(event.queryStringParameters.encoding);
 }

 async.waterfall([createBucketParams, getVideosFromBucket,

➥async.apply(createList, encoding)],
function (err, result) {

if (err) {
callback(null, createErrorResponse(500, err, encoding));

} else {
if (result.files.length > 0) {
 callback(null, createSuccessResponse(result));

You’re allowing an optional
encoding parameter to help

retrieve specific files (such as
720p versions of your videos). If

the encoding parameter isn’t
provided, all (mp4) files in the

transcoded video bucket are
returned in the response. The
way files are selected here is
brittle because the filename

has to have a specific
structure. An exercise at

the end will ask you to
come up with a better

way to do this.

The replace function
removes an extra set of
double quotes from ETag.

184 CHAPTER 7 API Gateway
} else {
 callback(null, createErrorResponse(404, 'No files were found',

➥encoding));
}

}
 });
};

You’ll notice in listing 7.3 that you always invoke callback(null, response) even
when you want to return an error to the client. The first parameter to the callback
function is null although you’re dealing with an error state from the user’s perspec-
tive. Why is that? This is because from Lambda’s perspective everything is correct. The
function itself didn’t fail. The second parameter is the response and whether it needs
to inform the client if there’s an issue. Luckily you can also set an HTTP status code
that the API Gateway will send with the response. If you need to send back a 400 or 500
HTTP status code, that’s easy to do by tweaking the payload and changing the status-
Code parameter to whatever you want. If you forget to put a null as the first parameter
in the callback, your client will get a 502 response. Having updated the implementa-
tion of the get-video-list Lambda function, deploy it to AWS.

TESTING IN THE API GATEWAY

You can do a quick test in the API Gateway to check that everything is right. In the
Method Execution window for the GET method (figure 7.8), click Test in the client
rectangle. In the Query Strings text box enter encoding=720p and click Test. If you
have any transcoded files ending with -720p.mp4, you should see them listed under
Response Body (figure 7.10). If you don’t have any 720p files, you should see a
response body that states that “No files were found” with an HTTP status code of 404.
If you leave the Query String text box empty, then the response body will contain a list
of all mp4 files in your transcoded videos bucket.

7.2.5 Updating the website

You’ve done all this work with the API Gateway and Lambda, but there’s one last thing
to do. You need to update your 24-Hour Video website, which you began in chapter 5,
to show videos. You’re going to change the front page to show videos that users have
uploaded when the page loads. Also, you’re going to use the HTML5 video tag to play
videos. All the latest versions of major browsers support it.

185Working with the API Gateway
To update the site, open index.html in your favorite text editor and remove the entire
section of the code (near the bottom) that begins with <div class="container"> and
ends with </div>. In the place of that div, copy the contents of the following listing.

 <div class="container" id="video-list-container">
 <div id="video-template" class="col-md-6 col">

<div class="video-card">
<video width="100%" height="100%" controls>
 <source type="video/mp4"> Your browser does not support the video

➥tag.
</video>

</div>
 </div>
 <div id="video-list" class="row">
 </div>
 </div>

Listing 7.4 The website index.html

Set your query string.

Click Test to see output
on the right-hand side.

Figure 7.10 A successful test of the Lambda function and the API Gateway

You’ll clone this div for
every video that you
have to display.

The copies of the div that
contains the video will be
prepended to the container.

186 CHAPTER 7 API Gateway

The api
should b

your c
Check t

corr
match

you hav
API G
Next, you need to implement code that will issue a GET request against your API
Gateway and populate the front page with the videos. To do this, create a file called
video-controller.js in the js directory of the website and copy the contents of the next
listing to it.

var videoController = {
 data: {

config: null
 },
 uiElements: {

videoCardTemplate: null,
videoList: null,
loadingIndicator: null

 },
 init: function(config) {

this.uiElements.videoCardTemplate = $('#video-template');
this.uiElements.videoList = $('#video-list');

this.data.config = config;

this.getVideoList();
 },
 getVideoList: function() {

var that = this;
var url = this.data.config.apiBaseUrl + '/videos';

$.get(url, function(data, status){
 that.updateVideoFrontpage(data);
});

 },
 updateVideoFrontpage: function(data) {

var baseUrl = data.domain;
var bucket = data.bucket;

for (var i = 0; i < data.files.length; i++){
 var video = data.files[i];

 var clone = this.uiElements.videoCardTemplate.clone().attr('id',

➥'video-' + i);

clone.find('source')
.attr('src', baseUrl + '/' + bucket + '/' + video.filename);

 this.uiElements.videoList.prepend(clone);
}

 }
}

Listing 7.5 The website video controller

BaseUrl
e set in
onfig.js.
hat it is
ect and
es what
e in the
ateway.

You’re only handling the happy case, which won’t
work in case of an error. You should also be
checking for different response codes, especially
now that you can control response codes yourself.
One of the questions at the end of this chapter
will ask you to handle error conditions.

For each video returned from the API
Gateway, you’ll clone the video card

template, set the video source, and add it
to the video list on the front page.

187Optimizing the gateway
Another file that needs to be changed is main.js in the js directory. Replace the con-
tents of this file with the following code.

(function(){
 $(document).ready(function(){

userController.init(configConstants);
videoController.init(configConstants);

 });
}());

Finally, add <script src="js/video-controller.js"></script> above <script
src="js/user-controller.js"></script> in index.html and save the file. You’re
finally in a position to see what the website looks like. From the command line, run
npm run start to launch the website. If you’ve uploaded any videos, they should
appear after a short wait. If you haven’t uploaded any videos, you can do it now and
then refresh. If you’re not seeing any videos after a short wait, look at your browser’s
console to investigate what’s going on.

7.3 Optimizing the gateway
In section 7.1, we briefly listed some of the features of the API Gateway, including
caching and throttling. Let’s look at these in more detail because they’ll come in
handy as you build your serverless architecture. You can find all of the options we
mention in this section in the Settings tab of the Stage Editor. To get to the Settings
tab, take these steps:

1 Choose Stages under the 24-Hour Video API.
2 Select dev from the list of stages.

7.3.1 Throttling

Let’s talk about throttling first, and specifically about rate and burst limit. The rate is
the average number of times the API Gateway will allow a method to be called per sec-
ond. The burst limit is the maximum number of times the gateway will allow the method
to be called. API Gateway sets the “steady-state request rate to 1000 requests per second
(rps) and allows bursts of up to 2000 rps across all APIs, stages, and methods within an
AWS account” (https://docs.aws.amazon.com/apigateway/latest/developerguide/api-
gateway-request-throttling.html).

 These defaults can be increased if you ask Amazon. The throttling feature prevents
denial-of-service attacks by disallowing additional HTTP requests above the set thresh-
old. You can see how it works by lowering the request rate and putting together a
quick Lambda function that will fire off a few hundred requests in rapid succession.

 To see how it works for yourself, do the following:

1 Click the Enable Throttling check box.
2 Change the Rate and Burst limits to 5.
3 Click Save (figure 7.11).

Listing 7.6 The website video controller

videoController.init(configConst
ants) will run the getVideoList
function and load your videos.

https://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-request-throttling.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-request-throttling.html

188 CHAPTER 7 API Gateway
Having set a limit, create a new Lambda function and paste the contents of the next
listing into it. This function is based on the https-request blueprint you can select
when creating a new function.

'use strict';

let https = require('https');

function makeRequests(event, iteration, callback){

 const req = https.request(event.options, (res) => {
let body = '';
console.log('Status:', res.statusCode);
res.setEncoding('utf8');
res.on('data', (chunk) => body += chunk);
res.on('end', () => {

console.log('Successfully processed HTTPS response, iteration: ',

➥iteration);

if (res.headers['content-type'] === 'application/json') {
console.log(JSON.parse(body));

 }

Listing 7.7 The denial-of-service Lambda function

Average and burst limit throttling is easy to set
but if you need to increase limits contact Amazon.

Figure 7.11 Set the throttling limits and click Save. You can rest assured that if you get a denial-of-
service attack, it won’t cost you much.

Execute a common request and
log the status code as well as

the body of the response.

189Optimizing the gateway
});
 });

 return req;
}

exports.handler = (event, context, callback) => {
 for (var i = 0; i < 200; i++) {

var req = makeRequests(event, i, callback);
req.end();

 }
};

To run the function, click Test and paste the contents of the next listing as the event.
Change the hostname to the hostname of your API and click Save and Test.

{
 "options": {
 "hostname":"bd54gbf734.execute-api.us-east-1.amazonaws.com",
 "path":"/dev/videos",
 "method": "GET"
 },
 "data": ""
}

The test may take a few seconds to run, but you can scroll down the page to see the
results under Log Output. Not all of the results will be captured there, so you can
choose the logs link next to the Execution Result heading. If you scroll through the
log, you’ll see that most requests did not succeed. After you’ve finished testing, don’t
forget to set the Rate and Burst limits back to more sensible numbers or uncheck
Enable Throttling.

7.3.2 Logging

We strongly recommend that you enable CloudWatch Logs and CloudWatch Metrics for
your API. To do this, you need to have an IAM role that has permissions to write to Cloud-
Watch and you need to specify the ARN of this role in the API Gateway. Create a new role,
call it api-gateway-log in the IAM console, and attach a policy called AmazonAPIGateway-
PushToCloudWatchLogs to it (figure 7.12). Write down the ARN of the role.

Listing 7.8 The denial-of-service Lambda function

200 requests will be made
against your API in a rapid
succession. This is enough to
test whether throttling works.

Disable your custom authorizer
If you’ve enabled a custom authorizer for the /videos GET method, you should tem-
porarily disable it to run this test. In Resources, click GET under /videos, select
Method Execution, and then set the Authorization drop-down to NONE. Deploy the API
for the change to take effect. Don’t forget to set your custom authorizer back once
you’ve finished the throttle test.

Change the hostname to
point to your API Gateway.

190 CHAPTER 7 API Gateway
To finish, you need to configure the API Gateway:

1 Choose Settings at the bottom left of the API Gateway screen.
2 Copy the role ARN into the CloudWatch log role ARN text box and click Save.
3 Go back to the Stage Editor and enable logging by choosing the check boxes

next to Enable CloudWatch Logs and Enable Detailed CloudWatch Metrics (fig-
ure 7.13).

4 Optionally, you can also turn on full logging of request/response data, but for
now leave it disabled. Don’t forget to click Save Changes.

To check that everything has been correctly set up, follow these steps:

1 Open CloudWatch in the AWS console.
2 Choose Logs and look for a log group called /aws/apigateway/welcome.
3 Choose that log group and click the first log stream.
4 You should see a message similar to “Cloudwatch logs enabled for API Gateway.”

As you begin using your API Gateway, logs will begin to appear in CloudWatch. In fact,
these logs will help you in the next section.

The AmazonAPIGatewayPushToCloudWatchLogs
is the only policy you need to attach to a role to
enable logging in the API Gateway.

Figure 7.12 The API Gateway requires you to create and manually assign a role.

191Optimizing the gateway
7.3.3 Caching

The AWS documentation (https://docs.aws.amazon.com/apigateway/latest/developerguide/
api-gateway-caching.html) has a great section on caching. Caching can increase the
performance of your API by returning a result without calling your back-end service.
Enabling cache is easy, but you also have to know when to invalidate the cache so that
your clients are not served stale results. It also costs money.

 An API Gateway cache can be as small as 0.5 GB and as large as 237 GB. Amazon
charges per hour for a cache and the price depends on the size of the cache. As an
example, 0.5 GB is $0.020 per hour, whereas 237GB is $3.800 per hour. You can find the
pricing table at https://aws.amazon.com/api-gateway/pricing/.

You can select from two
Log levels: Error and Info.

CloudWatch Metrics will capture
information on API calls, latency,
and errors.

Figure 7.13 Always turn on logging for your API Gateway. You never know when you’ll need it.

Caching is a hard problem
There’s a common saying that there are two hard things in computer science: cache
invalidation, naming things, and off-by-one errors. Caching is hard to get right regard-
less of the system, so it will always take a bit of tweaking and experimenting the first
time you do it.

https://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-caching.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-caching.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-caching.html
https://aws.amazon.com/api-gateway/pricing/

192 CHAPTER 7 API Gateway
To enable caching for your API, choose Enable API Cache in the Stage Editor (figure 7.14).
 What difference does caching make? It all depends on how long the endpoint

(such as your Lambda function) normally takes to run. As a quick and dirty test, we
ran 500 requests against our get-video-list API with and without caching. Without
caching, the overall execution time was around 30,000 to 31,000 ms. With caching,
the duration was around 15,000 ms. Your mileage will vary, but for heavy-duty systems,
caching will make a difference. You can see the results for yourself, including duration
and memory consumption, in figure 7.15.

 There are some helpful things you should know about caching (if you want to know
the details refer to https://docs.aws.amazon.com/apigateway/latest/developerguide/
api-gateway-caching.html):

 To verify that caching is functioning you can look at the CacheHitCount and
CacheHitMiss in CloudWatch.

 You can override caching for individual methods. In fact, you can override
throttling and CloudWatch settings for each individual method (figure 7.16):
– Choose Stages in the API Gateway and expand your API.
– Choose the desired method and then select Override This Method.
– Change the settings for CloudWatch, caching, and throttling for this specific

method.

More capacity will give better
performance but also cost more.
Changing capacity invalidates
current cache.

The API will cache response from
the endpoint for the specified
time-to-live period (in seconds).

Figure 7.14 Enabling an API cache is easy, but don’t forget that it isn’t free. The default TTL for a
cache is 300 seconds, and the maximum is 3600 seconds.

https://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-caching.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-caching.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-caching.html

193Optimizing the gateway
Duration without caching. Max memory used is higher at 97 MB.

Duration with caching. Max memory used is lower at 85 MB.

Figure 7.15 In this scenario, caching makes a big difference in terms of performance and cost (the
Lambda function executing requests runs for half the time, which is cheaper).

Enable this radio button to override CloudWatch, caching,
and throttling settings for a specific resource and method.

Figure 7.16 Having more granular control over methods can be helpful.

194 CHAPTER 7 API Gateway
 When a cache has been created, it can be flushed/invalidated in the Stage Edi-
tor by clicking the Flush Entire Cache button (figure 7.17).

 It’s possible to cache a response based on custom headers, URL paths, and
query strings. For example, a request with a query string /videos?userId=
peter can have a different cached response to /videos?userId=sam.

 A client can also be configured to invalidate specific cache entries by sending a
request with the Cache-Control: max-age=0 header. You’ll have to set an
InvalidateCache policy to prevent just any client from invalidating your cache.

 You can control how unauthorized requests to invalidate a cache are handled
ranging from a 403 (unauthorized) response to a warning.

7.4 Stages and versions
We’ve briefly mentioned stages with regard to the API Gateway but haven’t explored
what they are. To refresh your memory, a stage is an environment for your API. You
can have stages to represent development, UAT, production, and anything else you
want. You can have a stage for each developer if you need to. APIs can be deployed to
different stages and each can have its own unique URL.

 One of the nice things about stages is that they support stage variables, which are
key/value pairs. These act as environment variables. They can be used in mapping
templates and passed to Lambda functions, HTTP and AWS integration URIs, or in

Clicking this button will invalidate
the entire cache for the stage.

Figure 7.17 The entire cache can be invalidated with a click of a button if you need to do so.

195Stages and versions
AWS integration credentials. You can configure different stages of the same API to
invoke different Lambda functions or pass the value of a stage variable to another
HTTP endpoint.

7.4.1 Creating a stage variable

To create a stage variable (figure 7.18), do this:

1 Choose the Stage Variables tab in the Stage Editor.
2 Choose Add Stage. Type in a name and a value, and click the check mark but-

ton to save.

Each stage maintains its individual variables. If you need to have a variable called
function available in three stages, you must create it individually three times.

7.4.2 Using stage variables

A stage variable can be referenced in a mapping template or in place of a Lambda
function name or an HTTP integration URI. It takes the form of stageVariables
.<variable_name>. Often you’ll have to surround the stage variable with $ and {} as
per the shorthand notation for references in the Velocity Template Language (see
appendix E for more information). The following is an example that works in our
case because we created a stage variable called function in the previous section:

${stageVariables.function}

You can create up to 10 stages for each API.

Add a variable specific to each stage.

Figure 7.18 Remember to add variables to each stage that references them.

196 CHAPTER 7 API Gateway
If you wanted to reference this stage variable in place of a Lambda function name in
the integration request, you could do it directly (figure 7.19).

 Figure 7.20 shows a real example from the production system we discussed in
chapter 2 (A Cloud Guru). This system has API Gateway stages such as production, uat
(user acceptance test), and development. Lambda functions have aliases such as
serverless-join:production and serverless-join:uat. Using a stage variable in
the API Gateway allows it to invoke the right Lambda function when the appropriate
URI is invoked (for example, myapi/staging and myapi/production).

7.4.3 Versions

If you want to roll back to a previous deployment of your API, you can do it via the
Deployment History tab in the Stage Editor. Every deployment you make has a
date/time stamp (and a description if you entered one) to help you identify earlier
revisions. You can select a different version (figure 7.21) and click the Change Deploy-
ment button at the bottom of the page to go to a different version. This is a useful fea-
ture if you make a mistake and need to go back a version while you figure out what
went wrong.

You can set a Lambda function via a stage variable.
Remember to make sure that the API Gateway has
required permissions to invoke the function.

Figure 7.19 Stage variables can be set manually in the AWS console, created using the CLI, or
specified in a Swagger definition.

197Stages and versions
This stage variable is set to “production” for the production
stage; “UAT” for the UAT stage, and so on. It is used to invoke
the right Lambda function for the given stage.

Figure 7.20 Stage variables are indispensable if your API Gateway has multiple stages that need to
integrate with different Lambda functions or endpoints.

Select a different version and scroll down the page to click
Change Deployment button for the change to take effect.

Figure 7.21 Reverting to an earlier version of the API is easy and is one of the excellent features
of the API Gateway.

198 CHAPTER 7 API Gateway
7.5 Exercises
In this chapter, we covered a lot of the functionality that the API Gateway offers. Try to
complete the following exercises to reinforce your knowledge:

1 In section 7.2 you implemented the get-video-list function using Lambda
proxy integration. Read appendix E and implement it again using manual map-
ping. Create a new resource (such as /videos-manual) so that you don’t have to
get rid of the existing /videos resource.

2 In listing 7.5 you created and populated video-controller.js. At the moment the
logic in the controller will load every video. But the code also supports the
encoding parameter, which can return specific encodings. Modify the GET
request in listing 7.5 to return only 720p videos.

3 The get-video-list function can be brittle if you want to return videos with a
particular encoding. Objects have to have the encoding (for example, 720p)
specified as part of the filename to work. This can break if you rename the file
in the S3 bucket. Think of a different, more robust way to implement this. You
should be able to rename objects in S3 and still retrieve files based on their
encoding.

4 Create a new Lambda function to allow the user to change the name of a file in
an S3 bucket. The user should be able to supply the existing path to the file and
a new key (filename). Create a resource and a POST method and connect it to
the Lambda function. Modify the 24-Hour Video user interface to allow the
user to rename any video.

5 Create and configure two new stages: staging and production. Deploy your API
to these new stages.

6 Perform a rollback of one of your deployments to get a feel for what it’s like.

7.6 Summary
In this chapter we looked at the API Gateway, including how to

 Create a resource and configure a GET method
 Use Lambda proxy integration
 Return a response from a Lambda function via the API Gateway
 Use throttling and caching and turn on logging
 Create and use stage variables

In the next chapter you’ll look at storage in more detail. You’ll see how to upload files
directly to an S3 bucket and use a Lambda function to grant the uploader the permis-
sions to do so. You’ll also take a look at securing access to files and generating pre-
signed URLs.

Part 3

Growing your Architecture

You’ve smashed through parts 1 and 2 but you’re still hungry for more. I
understand. Thankfully, this part is designed to give you a lot to chew on. File
and data storage are critical, so you need to understand how those work in a
serverless application. Then you also need to revisit important concepts such as
microservices, think about error handling in a distributed architecture, and
investigate other AWS services like step functions. Finally, it’s important to read
the appendixes that follow the last chapter. Check out appendix G especially,
because you’ll need that information to learn how to script and deploy your
serverless applications.

 This final part is about combining and coalescing everything you’ve learned
and moving even further. You’ll learn how to grow your serverless architecture
and firmly establish yourself on the path to serverless mastery.

Storage
Many applications and systems that you create need to store files. These may be
profile images, documents uploaded by a user, or artifacts generated by the system.
Some files are temporary and transient, whereas other files must be kept for a long
time. A reliable service for storing files is Amazon’s Simple Storage Service (S3). It
was Amazon’s first available web service, launched in March 2006, and it has been
a cornerstone AWS service ever since. In this chapter, we’ll explore S3 in more
detail. We’ll look at features such as versioning, storage classes, and transfer accel-
eration. And you’ll continue to work on 24-Hour Video by adding new storage-
related features.

8.1 Smarter storage
You’ve been working with S3 since chapter 3 but haven’t had a proper, in-depth
look at it. Apart from basic file storage, S3 has many great features. These include

This chapter covers
 S3 features such as versioning, hosting, and

transfer acceleration

 Direct uploads of files from a browser to S3

 Creation and use of signed URLs
201

202 CHAPTER 8 Storage
versioning, hosting of static websites, storage classes, cross-region replication, and
requester-pays buckets. Let’s explore some of the more compelling features of S3 and
see how they’re useful.

MORE INFORMATION ON S3 If you ever need a thorough guide to S3, Amazon’s
documentation is a great reference. Check out https://docs.aws.amazon
.com/AmazonS3/latest/dev/Welcome.html for good walkthroughs and
examples of how S3 works.

8.1.1 Versioning

Up until now you’ve been using S3 as a basic storage mechanism for files (or objects,
as S3 refers to them). Back in chapter 3 you created two S3 buckets to store videos.
One of the buckets was for users uploading files. The other bucket was for transcoded
files. This was simple and practical, but it also meant that you could overwrite and lose
existing files. Luckily, S3 has an optional feature that allows it to keep copies of all ver-
sions of every object. This means that you can overwrite an object and then go back to
previous versions of that object at any time. It’s powerful and completely automatic.
We’ve been thankful for versioning when we’ve accidentally deleted files and had to
restore them.

 Buckets don’t have versioning enabled by default, so it must be turned on. And
once versioning is enabled, it can’t be turned off in that bucket, only suspended.
Thus, a bucket can be in only one of the following three possible states:

 Unversioned (default)
 Versioning enabled
 Versioning suspended

As expected, the cost of using S3 goes up when versioning is used. But you can remove
versions you no longer need so that you’re not billed for the files you don’t want to
keep. S3 Object Lifecycle Rules (see section 8.1.4) and versioning can help to auto-
mate removal and archival of old versions. For example, you can set up an S3 bucket
to work like an operating system trash can (that is, you can set up a rule to delete old
files from the bucket after a period of time, such as 30 days).

USING VERSIONING

To enable versioning, follow these steps:

1 In the AWS console, click into a bucket in S3 and then click Properties.
2 Click Versioning.
3 Choose Enable Versioning, and then click Save.

You can now overwrite, delete, and then recover older versions of an object yourself:

1 Upload a few files to your bucket and then replace a file that you already have
in the bucket.

https://docs.aws.amazon.com/AmazonS3/latest/dev/Welcome.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/Welcome.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/Welcome.html

203Smarter storage
2 At the time of writing, versioning was best managed using the old S3 console. To
access the old S3 console, click the S3 service in AWS, and then choose the
Switch to the Old Console button.

3 In the old S3 console click a bucket that has versioning enabled.
4 Click the Show button next to Versions and review the available files you can

download.
5 Right-click next to the version of the file you want to download (figure 8.1).
6 You can also delete a file. You will see it marked with a delete marker. If you

click the Hide button next to Versions, deleted files and markers will disappear.
Every versioned object in S3 has a unique version ID. As you can see from figure 8.1,
you can have many objects with the same key but different IDs (see the second-to-last
column in the diagram). If you decide to retrieve a version programmatically, you
need to know its ID. The version ID isn’t hard to get using the AWS SDK or the REST

Right-click any version in
the list to download it.

Version ID

This file has been deleted, as
shown by the delete marker.

Choose Show to see different versions of your
files, including those that are deleted.

Figure 8.1 All versions of a file in a versioned S3 bucket can be accessed programmatically or through
the console.

204 CHAPTER 8 Storage
API. You can retrieve all objects and their version IDs or retrieve the version ID for a
given key. You’ll also get other useful metadata such as the object’s LastModified date.
Once you know the version ID, it’s easy to download the file. If, for example, you were
retrieving an image using the REST API, you could issue a GET request to /my-image
.jpg?versionId=L4kqtJlcpXroDTDmpUMLUo HTTP/1.1 to get it.

8.1.2 Hosting a static website

Static website hosting is a popular use case for S3 buckets. S3 doesn’t support server-
side code (that is, code that needs to execute on a server), but it can serve static web-
site content like HTML, CSS, images, and JavaScript files. S3 is an effective way to host
static websites because it’s quick and cheap to set up. After static website hosting is
enabled, content in the bucket becomes accessible to web browsers via an endpoint
provided by S3.

ENABLING STATIC WEBSITE HOSTING

Let’s walk through the process to see how to enable static website hosting and allow
you to serve HTML from the bucket:

1 Click into a bucket in S3 and then select Properties.
2 Click Static Website Hosting.
3 Choose Use This Bucket to Host a Website.
4 In the Index Document text box, type the name of your index file (for exam-

ple, index.html).
5 Note the endpoint (this is how you will access your website) and choose Save

(figure 8.2).

Why A Cloud Guru moved away from S3
A Cloud Guru (https://acloud.guru) initially hosted its static website on S3. The web-
site built on AngularJS worked well except in cases of certain web crawlers. The team
discovered that rendering of rich-media snippets of the website on Facebook, Slack,
and other platforms didn’t work. This was because crawlers used by those platforms
couldn’t run JavaScript. A Cloud Guru needed to serve a rendered, static HTML ver-
sion of the website that those crawlers could parse. Unfortunately, with S3 and Cloud-
Front that couldn’t be done. There was no way to prerender and serve an HTML
version of the site to Facebook and then another (JavaScript-driven) version to every-
one else. In the end, A Cloud Guru chose to move to Netlify (a static website-hosting
service) to solve its problem.

Netlify integrates with a service called prerender.io. Prerender.io can execute Java-
Script and create a static HTML page. This HTML page can then be served to crawlers
while normal users continue to use the regular SPA website. Netlify (https://www
.netlify.com) is a great little service that’s worth checking out.

https://www.netlify.com
https://www.netlify.com
https://www.netlify.com

205Smarter storage
Next, you need to set up a bucket policy to grant everyone access to the objects in the
bucket:

1 In the bucket click Permissions.
2 Click the drop-down that says Access Control List and select Bucket Policy.
3 Copy the following listing into the text box and click Save.

{
 "Version": "2012-10-17",
 "Statement": [

{
 "Sid": "PublicRead",
 "Effect": "Allow",
 "Principal": "*",

Listing 8.1 Permission policy

This is the endpoint you will
use to access your website.

You must enter the name of your
index document to be able to save.

You can optionally provide the filename
of your custom error document.

Figure 8.2 S3 static website hosting is a cheap and easy way to run your website.

206 CHAPTER 8 Storage
 "Action": [
"s3:GetObject"

],
 "Resource": [

"arn:aws:s3:::BUCKET-NAME/*"
]
}

]
}

To test whether static website hosting works, upload an HTML file to the bucket (make
sure it’s named index.html) and open the bucket’s endpoint in a web browser. You
can go one step further: copy the 24-Hour Video website to the bucket and try to open
it (in fact, this is one of the exercises at the end of this chapter).

8.1.3 Storage classes

Moving away from versioning, we think it’s fair to say that different data has different
storage requirements. Some data, such as logs, may need to be kept for a long time
but accessed infrequently. Other kinds of data may need to be accessed frequently but
may not need the same kind of storage reliability. Luckily, S3 has something for every-
one because it supports four kinds of storage classes with different levels of redun-
dancy, access characteristics, and pricing (https://docs.aws.amazon.com/AmazonS3/
latest/dev/storage-class-intro.html):

 Standard
 Standard_IA (infrequent access)
 Glacier
 Reduced Redundancy

We’ll discuss these in more detail, but first a note about pricing. Pricing is a combina-
tion of factors such as the storage class, location (region) of the files, and the quan-
tity of data stored. For this example, we’ll simplify our requirements and assume the
following:

 The free usage tier is ignored altogether.
 Files are stored in the US East region.
 You’re not storing more than 1 TB.

Change BUCKET-NAME to
the name of your bucket.

Domains
You can buy a domain name and use Amazon’s Route 53 as the DNS provider for the
domain. If you do this, be aware of a few gotchas. For example, the name of your bucket
must match the name of your domain. So if your domain is www.google.com, the
bucket must also be called www.google.com. Consult the following step-by-step guide
if you want to set up a custom domain with your S3 bucket: https://docs.aws
.amazon.com/AmazonS3/latest/dev/website-hosting-custom-domain-walkthrough.html.

https://docs.aws.amazon.com/AmazonS3/latest/dev/website-hosting-custom-domain-walkthrough.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/website-hosting-custom-domain-walkthrough.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/website-hosting-custom-domain-walkthrough.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/storage-class-intro.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/storage-class-intro.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/storage-class-intro.html

207Smarter storage
If your requirements are different, you can always check the S3 pricing page for more
detail (https://aws.amazon.com/s3/pricing/). Also, note that apart from storage, S3
charges for requests and data transfers.

STANDARD

This is the default storage class in S3. It’s set automatically on any object you create or
upload (if you don’t specify a different class yourself). This class is designed for fre-
quent access to data. The cost is $0.0300 per GB for the first TB of data (per month).
This class, as well as Standard_IA and Glacier classes, has a durability rating of
99.999999999%.

STANDARD_IA
This class is designed for less frequently accessed data. Amazon recommends using
this class for backups and older data that requires quick retrieval when needed. The
request pricing is higher for Standard_IA than for Standard ($0.01 per 10,000
requests for Standard_IA versus $0.004 per 10,000 requests for Standard). The storage
cost, however, is less at $0.0125 per GB for the first TB of data (per month).

GLACIER

The Glacier storage class is designed for infrequent access to data and where retrieval
can take three to five hours. It’s the best option for data such as backups that don’t
require real-time access. The Glacier storage class uses the Amazon Glacier service,
but objects are still managed from the S3 console. It’s important to note that objects
can’t be created with the Glacier class from the get-go. They can only be transitioned
to Glacier using lifecycle management rules (see section 8.1.4). Glacier storage is
charged at $0.007 per GB for the first TB of data (per month).

REDUCED REDUNDANCY
The fourth class is Reduced Redundancy storage (RRS), which is designed to be
cheaper and with less redundancy than other classes. This class has a durability rating
of 99.99% (as opposed to all other classes that are designed for a durability rating of
99.999999999%). Amazon recommends using this storage class for data that can be
easily re-created (for example, use the Standard storage class for original images
uploaded by users and use RRS for autogenerated thumbnails). Naturally, RRS costs
are lower. The price for storage is $0.0240 per GB for the first TB (per month).

8.1.4 Object lifecycle management

Lifecycle management is a great feature of S3 that can be used to define what happens
to an object over its lifetime. In essence, you can set up rules to do the following:

 Move an object to a cheaper, less frequently accessed storage class (Stan-
dard_IA).

 Archive objects using the Glacier storage class (which will reduce storage costs
even further but prevent you from having real-time access to your files).

 Permanently delete an object.
 End and clean up incomplete multipart uploads.

https://aws.amazon.com/s3/pricing/

208 CHAPTER 8 Storage
Every rule requires you to enter a time period (in days from the creation of the file)
after which it takes an effect. You can, for example, set up a rule to archive an object
to Glacier class storage 20 days after it has been created.

CONFIGURE LIFECYCLE MANAGEMENT

To set up lifecyle management for your objects, follow these steps:

1 Open a bucket and choose Lifecycle.
2 Click the Add Lifecycle Rule button.
3 Enter a rule name such as file archival and click Next.
4 Click the Current Version check box.
5 From the drop-down box select Transition to Amazon Glacier After and in the

Days after Object Creation text box enter 30 (figure 8.3).

You can configure rules if your
bucket is versioned too.

Figure 8.3 You can create multiple lifecycle rules if you need to support complex scenarios.

209Smarter storage
6 Click Next and again select the Current Version check box.
7 Enter 60 in to the Expire Current Version of Object text box.
8 Check Clean Up Incomplete Multipart Upload and leave it on 7 days.
9 Click Next and then click Save.

If you ever want to disable or edit a rule at a later stage, you can do it later in the Life-
cycle section of the bucket.

8.1.5 Transfer acceleration

Transfer acceleration is a feature of S3 that allows it to upload and transfer files more
quickly than normal using Amazon’s CloudFront distributed edge locations. Amazon
recommends using transfer acceleration in cases where users from all over the world
need to upload data to a centralized bucket (this could be a use case for 24-Hour
Video) or transfer gigabytes (or terabytes) of data across continents (https://docs.aws
.amazon.com/AmazonS3/latest/dev/transfer-acceleration.html). You can use the
speed comparison tool (figure 8.4) to see what effect enabling transfer acceleration
would have for you (http://s3-accelerate-speedtest.s3-accelerate.amazonaws.com/en/
accelerate-speed-comparsion.html). The pricing for data transfer (in and out) ranges
from $0.04/GB to $0.08/GB, depending on which CloudFront edge location is used to
accelerate the transfer.

ENABLING TRANSFER ACCELERATION

To enable S3 bucket transfer acceleration using the AWS console, follow these steps:

1 Open a bucket and choose Properties.
2 Click Transfer Acceleration under Advanced Settings.
3 Click Enable and then choose Save. You should immediately see a new end-

point created for you to use. If you want to get the performance benefits, you
must use this URL.

You can suspend transfer acceleration by choosing the Suspend option at any time. You
can also enable transfer acceleration using the AWS SDK or the CLI. Refer to https://
docs.aws.amazon.com/AmazonS3/latest/dev/transfer-acceleration-examples.html for
more information.

8.1.6 Event notifications

We first used S3 event notifications all the way back in chapter 3 when we connected
Lambda and then SNS to a bucket. The purpose of event notifications is to receive
notifications when the following events take place in a bucket:

 A new object is created using PUT, POST, COPY, or on CompleteMultiPartUpload
 An object is deleted or (in case of versioning) a delete marker is created
 A Reduced Redundancy Storage (RRS) object is lost

https://docs.aws.amazon.com/AmazonS3/latest/dev/transfer-acceleration-examples.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/transfer-acceleration-examples.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/transfer-acceleration-examples.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/transfer-acceleration.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/transfer-acceleration.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/transfer-acceleration.html
http://s3-accelerate-speedtest.s3-accelerate.amazonaws.com/en/accelerate-speed-comparsion.html
http://s3-accelerate-speedtest.s3-accelerate.amazonaws.com/en/accelerate-speed-comparsion.html
http://s3-accelerate-speedtest.s3-accelerate.amazonaws.com/en/accelerate-speed-comparsion.html

210 CHAPTER 8 Storage
S3 can publish events to the following destinations (the bucket and the target must be
in the same region):

 Simple Notification Service
 Simple Queue Service
 Lambda

You might remember to grant S3 permissions to post messages to SNS topics and SQS
queues. You worked on an IAM policy for SNS and S3 permissions in chapter 3, but we
haven’t looked at how to do it with SQS. The following listing shows an example policy
that you’d need to attach to an SQS queue if you decided to use it as a destination for

S3 accelerated transfer upload speedStandard S3 upload speed.

Using S3 Accelerated Transfer is always a little
faster than a standard upload on our connection.

Figure 8.4 Transfer acceleration can help if your users are uploading files from all over the world.

211Secure upload
S3 events. Naturally, S3 must also be given permission to invoke Lambda functions, but
if you use the S3 console, it will be done for you automatically.

{
 "Version": "2008-10-17",
 "Id": "MyID",
 "Statement": [
 {
 "Sid": "ExampleID",
 "Effect": "Allow",
 "Principal": {

"AWS": "*"
 },
 "Action": [
 "SQS:SendMessage"
],
 "Resource": "SQS-ARN",
 "Condition": {

"ArnLike": {
"aws:SourceArn":

"arn:aws:s3:*:*:YOUR_BUCKET_NAME"
 }
 }
 }
]
}

You can find more information on S3 events, including examples and IAM policies, at
https://docs.aws.amazon.com/AmazonS3/latest/dev/NotificationHowTo.html.

8.2 Secure upload
So far, you’ve been uploading your videos directly to a bucket using the S3 console
when you wanted to test 24-Hour Video. But that’s not going to work for your end
users. They need an interface to be able to upload their files to the 24-Hour Video
website. You also don’t want just anyone (that is, anonymous users) to upload files.
Only registered, authenticated users should be allowed to do this. In this section,
you’re going to work on adding secure upload functionality to 24-Hour Video. Your

Listing 8.2 SQS policy

Explicitly allow the
SendMessage SQS action.

Change YOUR_BUCKET_NAME
to the name of your bucket as
appropriate.

Event message structure
S3 events are important to understand if you use S3 and Lambda (or SNS or SQS)
together. S3 events are a JSON message with a specific format that describes the
bucket and the object. We briefly looked at the S3 event message structure in chap-
ter 3 (section 3.1.4) when you tested the transcode-video function locally. Appen-
dix F provides a more detailed overview of the event message structure, which you
might find useful going forward.

https://docs.aws.amazon.com/AmazonS3/latest/dev/NotificationHowTo.html

212 CHAPTER 8 Storage
end users will be able to click a button on the website, select a file, and upload it to an
S3 bucket. Figure 8.5 shows which component of your architecture you’ll be working
on in this section.

8.2.1 Architecture

To upload a file from a user’s browser to a bucket in a secure, authenticated fashion,
you need the following:

 A security policy that contains relevant information and conditions about the
upload (such as the name of the upload bucket)

 An HMAC signature constructed using a secret access key of the resource owner
(that is, an IAM user) who has permissions to create new files

 The access key ID of the IAM user whose secret key was used to generate the
signature

 The file you want to upload

To get started, you’re going to create a Lambda function. This function will validate
the user and generate a policy and a signature needed to upload the file to S3. This
information will be sent back to the browser. Upon receiving this information, the
user's browser will begin an upload to a bucket using HTTP POST. All this will be invis-
ible to the end user because they’ll just select a file and upload. Figure 8.6 shows this
flow in full.

 You could do it differently and use Auth0 to provide you with temporary AWS cre-
dentials and then use the AWS JavaScript SDK to upload the file. It’s a viable way of
doing things (https://github.com/auth0-samples/auth0-s3-sample) but we wanted to
write a Lambda function to show you how to generate a policy and upload using a sim-
ple POST request. Having a Lambda function will also give you more opportunities to

Authentication

Custom API

Enable browser-based uploads of video files to S3

Web application
Video upload

Video transcoder

Media storage

Video list database

Figure 8.5 Video uploading is a core feature of 24-Hour Video. Without it, your users wouldn’t be able
to upload their videos.

https://github.com/auth0-samples/auth0-s3-sample

213Secure upload
do interesting things later on (such as logging attempts to request credentials, updat-
ing a database, and sending a notification to an administrator).

8.2.2 Upload policy Lambda

Here are the steps you need to carry out to get everything working:

1 Create an IAM user whose credentials you’ll use to generate a signature. This
signature (and the accompanying security policy) will be needed to successfully
upload a file to S3.

2 Implement and deploy a Lambda function. This function will generate the sig-
nature and the security policy.

3 Connect your Lambda function to the API Gateway.
4 Update the S3 Cross-Origin Resource Sharing (CORS) configuration. This

needs to be done in order to upload files from a browser to a bucket.
5 Update the 24-Hour Video website to allow users to select and upload files.

This process is seamless to the user. From their perspective, the file begins to upload
after a short wait at the start (while the policy and the signature are retrieved).

1. The user chooses
to upload the file.

4. The upload process begins.
The file along with the policy and
the signature are sent over to S3.

2. Custom authorizer
validates that the
user is legitimate.

3. Lambda function creates
a policy and a signature that
S3 will accept.

5. The transcoding process kicks off as soon as
the file is successfully uploaded to the bucket.

Transcoding pipeline

Custom
authorizer

Notification
service

Lambda
(generate

upload creds)

API
Gateway

Figure 8.6 The upload process is transparent to the end user, but behind the scenes a small amount
of orchestration takes place.

214 CHAPTER 8 Storage
IAM USER

The IAM user you’re going to create will have the permissions needed to upload files
to S3. If you don’t give this user the right permissions, uploads will fail. Create a new
IAM user in the IAM console as per normal (refer back to chapter 4 for more informa-
tion on creating IAM users if you need help) and name the user upload-s3. Make sure
to save the user’s access and secret keys in a secure place. You’ll need them later. From
here follow these steps:

1 Make sure the upload-s3 user is opened in the IAM console.
2 Choose Add Inline Policy at the bottom of the Permissions tab.
3 Choose Custom Policy and click Select.
4 Set the name of the policy as upload-policy.
5 Copy the code in the next listing to the policy document body.
6 Choose Apply Policy to save and exit.

{
 "Version": "2012-10-17",
 "Statement": [

{
 "Effect": "Allow",
 "Action": [

"s3:ListBucket"
],
 "Resource": [

"arn:aws:s3:::YOUR_UPLOAD_BUCKET_NAME"
]
},
{
 "Effect": "Allow",
 "Action": [

"s3:PutObject"
],
 "Resource": [

"arn:aws:s3:::YOUR_UPLOAD_BUCKET_NAME/*"
]
}

]
}

LAMBDA FUNCTION

The only parameter that this Lambda function takes is the name of the file the user
wants to upload. The output from this function is the following:

 The policy document.
 A keyed-hash message authentication code (HMAC) signature.
 A new key for the object (you’ll add a prefix to the filename to avoid potential

clashes from other users uploading files with the same name).

Listing 8.3 Upload policy

Set the name of
your upload
bucket instead of
YOUR_UPLOAD_
BUCKET_NAME.

215Secure upload
 The IAM user’s access key ID. (This key needs to be included when the policy
document is uploaded to S3; the key is public so it can be shared without
adversely affecting security.)

 Upload URL.

All of this information is needed to upload a file to S3.
 Clone one of the other Lambda functions you’ve written previously on your com-

puter and rename it to get-upload-policy. Update package.json as you see fit
(you’ll have to update the ARN or the function name in the deployment script if you
want to deploy the function from the terminal). Also, update dependencies to match
the following listing. Remember to run npm install from the terminal to install these
dependencies.

"dependencies": {
 "async": "^2.0.0",
 "aws-sdk": "^2.3.2",
 "crypto": "0.0.3",
}

Having updated package.json, copy the next listing to index.js.

'use strict';

var AWS = require('aws-sdk');
var async = require('async');
var crypto = require('crypto');

var s3 = new AWS.S3();

function createErrorResponse(code, message) {
 var response = {
 'statusCode': code,
 'headers' : {'Access-Control-Allow-Origin' : '*'},
 'body' : JSON.stringify({'message' : message})
 }

 return response;
}

function createSuccessResponse(message) {
 var response = {
 'statusCode': 200,
 'headers' : {'Access-Control-Allow-Origin' : '*'},
 'body' : JSON.stringify(message)
 }

Listing 8.4 Lambda dependencies

Listing 8.5 Get upload policy Lambda

This dependency will allow you to use async
waterfall in the Lambda function.

The AWS-SDK is needed only for local
testing. Lambda’s runtime provides
it automatically.

Crypto is used to create the
signature from the policy document.

216 CHAPTER 8 Storage
 return response;
}

function base64encode (value) {
 return new Buffer(value).toString('base64');
}

function generateExpirationDate() {
 var currentDate = new Date();
 currentDate = currentDate.setDate(currentDate.getDate() + 1);
 return new Date(currentDate).toISOString();
}

function generatePolicyDocument(filename, next) {
 var directory = crypto.randomBytes(20).toString('hex');
 var key = directory + '/' + filename;
 var expiration = generateExpirationDate();

 var policy = {
'expiration' : expiration,
'conditions': [
 {key: key},
 {bucket: process.env.UPLOAD_BUCKET},
 {acl: 'private'},
 ['starts-with', '$Content-Type', '']

]
 };

 next(null, key, policy);
}

function encode(key, policy, next) {
 var encoding = base64encode(JSON.stringify(policy))

➥.replace('\n','');
next(null, key, policy, encoding);

}

function sign(key, policy, encoding, next) {
 var signature = crypto.createHmac('sha1',

➥process.env.SECRET_ACCESS_KEY)

➥.update(encoding).digest('base64');
next(null, key, policy, encoding, signature);

}

exports.handler = function(event, context, callback){
 var filename = null;

 if (event.queryStringParameters &&

➥event.queryStringParameters.filename) {
filename = decodeURIComponent(event.queryStringParameters.filename);

 } else {
 callback(null, createErrorResponse(500,

➥'Filename must be provided'));
return;

The base64encode function converts a
given buffer (which is a stringified policy
document) to its base64 representation.

The generateExpirationDate function
creates a date that’s one day into the
future. This is when the policy will
expire. Uploads after this date won’t
work. Expiration date policy must be
set in the ISO 8601 UTC date format.

The generatePolicyDocument
function creates the policy

document, which is effectively
a JSON structure with

conditions as key/value pairs.

Note something interesting here:
you’re adding a prefix (a random
hex string) to the filename to
create a new key to avoid clashes
between files with the same
filename in the bucket.

Specify the condition the S3
access control list must meet.

The encode function
converts the policy to its
base64 representation.

The sign function creates an
HMAC signature out of the
policy using the IAM user’s
secret key.

The filename of the file
the user wants to upload
will be passed in from
the client, via the API
Gateway, to the function.

217Secure upload
 }

 async.waterfall([async.apply(generatePolicyDocument, filename),

➥ encode, sign],
function (err, key, policy, encoding, signature) {

if (err) {
 callback(null, createErrorResponse(500, err));

} else {
 var result =
 {
 signature: signature,
 encoded_policy: encoding,
 access_key: process.env.ACCESS_KEY,
 upload_url: process.env.UPLOAD_URI + '/'

➥ + process.env.UPLOAD_BUCKET,
key: key

 }

 callback(null, createSuccessResponse(result));
}

 }
)
};

Create a new blank function in the AWS console (you can always refer to appendix B for
information on how to create a Lambda function) and name it get-upload-policy.
Assign the lambda-s3-execution-role role to the function. You should have that role
from chapter 3. Deploy the function from your computer to AWS (you can run npm run
deploy from the terminal, but make sure to set the right ARN in package.json).

 Finally, you need to set the right environment variables for the get-upload-
policy to work. In the AWS console, open the get-upload-policy Lambda function
and add four environment variables at the bottom. These variables should be your
upload bucket (UPLOAD_BUCKET), the access key of the upload-s3 user you created
(ACCESS_KEY), the secret access key of that user (SECRET_ACCESS_KEY), and the S3
upload URL (UPLOAD_URI). Figure 8.7 shows what this looks like.

Async waterfall is the
pattern that’s applied in
the handler function.
You saw this function in
chapter 6 (it allows each
function to pass the
results in to the next
function). At the end,
the function returns the
policy, the signature,
and a few other
properties to the caller.

You can choose to encrypt the access key and
the secret access key for added security.

Figure 8.7 Remember to update environment variables to your specific settings.

218 CHAPTER 8 Storage
API GATEWAY

It’s time to turn to the API Gateway. You need to create an endpoint that will invoke
the Lambda function you just created:

1 Choose API Gateway in the console and click 24-hour-video API.
2 Make sure Resources is selected and choose Actions.
3 Select Create Resource from the menu and name it s3-policy-document.
4 Choose Create Resource to save.
5 Make sure that s3-policy-document is selected under Resources.
6 Choose Actions and select Create Method.
7 From the drop-down box under the resource name, select GET and click the

check mark button to save.
8 In the screen that immediately appears

– Select the Lambda Function radio button.
– Check Use Lambda Proxy Integration.
– Set us-east-1 as the Lambda Region.
– Type get-upload-policy into the Lambda function text box.
– Choose Save and click OK in the dialog box that appears.

9 Finally, you need to enable CORS:
– Choose Actions and select Enable CORS.
– Choose Enable CORS and replace existing CORS headers.
– Click Yes, Replace Existing Values.

You care about security so you should enable your custom authorizer for this method
(you might remember that a custom authorizer is a special-function Lambda function
that’s called by the API Gateway to authorize the incoming request):

 Choose GET under /s3-policy-document in Resources.
 Choose Method Request.
 Click the edit icon next to Authorization.
 Select your custom authorizer.
 Click the check mark icon to save.
 Choose Method Execution to return to the main screen.

Finally, deploy the API Gateway (click Deploy API under Actions) to make your
changes live. The AWS Lambda and API Gateway side of things are done, but there’s
one more thing left do in AWS. You need to update the upload bucket CORS configu-
ration to make sure that POST uploads are allowed.

8.2.3 S3 CORS configuration

The default S3 CORS configuration won’t allow POST uploads to take place. That’s the
default set by AWS. It’s easy to change, though. Click into your upload bucket and fol-
low these steps:

219Secure upload
1 Click Permissions.
2 From the drop-down below, select CORS Configuration.
3 Copy the following code to the configuration text box.
4 Choose Save.

<?xml version="1.0" encoding="UTF-8"?>
<CORSConfiguration xmlns="http://s3.amazonaws.com/doc/2006-03-01/">
 <CORSRule>

<AllowedOrigin>*</AllowedOrigin>
<AllowedHeader>*</AllowedHeader>
<AllowedMethod>POST</AllowedMethod>
<MaxAgeSeconds>3000</MaxAgeSeconds>

 </CORSRule>
</CORSConfiguration>

Now you can move on to your website.

8.2.4 Uploading from the website

You’re going to add a new file called upload-controller.js to the 24-Hour Video web-
site. Create this file in the js folder and copy listing 8.7 to it. The purpose of this file is
to do the following:

 Allow the user to select a file to upload
 Invoke the Lambda function to retrieve the policy and the signature
 Upload the file to S3

var uploadController = {
 data: {

config: null
 },
 uiElements: {

uploadButton: null
 },
 init: function (configConstants) {

this.data.config = configConstants;
this.uiElements.uploadButton = $('#upload');
this.uiElements.uploadButtonContainer = $('#upload-video-button');
this.uiElements.uploadProgressBar = $('#upload-progress');

this.wireEvents();
 },
 wireEvents: function () {

var that = this;

Listing 8.6 S3 CORS configuration

Listing 8.7 Upload controller implementation

The AllowedHeader element specifies which headers are
allowed. Every header listed in Access-Control-Request-
Headers (during the preflight request) must match an
AllowedHeader for the request to succeed.

POST is the only HTTP method
you’re allowing. If you had a GET
method in your configuration,
you can remove it.

220 CHAPTER 8 Storage

jQ
p

POS
uploa
need
this.uiElements.uploadButton.on('change', function (result) {
 var file = $('#upload').get(0).files[0];
 var requestDocumentUrl =

➥ that.data.config.apiBaseUrl +

➥ '/s3-policy-document?filename=' +

➥ encodeURI(file.name);

 $.get(requestDocumentUrl, function (data, status) {
that.upload(file, data, that)

 });
});

 },
 upload: function (file, data, that) {

this.uiElements.uploadButtonContainer.hide();
this.uiElements.uploadProgressBar.show();
this.uiElements.uploadProgressBar.

➥ find('.progress-bar').css('width', '0');

var fd = new FormData();
fd.append('key', data.key)
fd.append('acl', 'private');
fd.append('Content-Type', file.type);
fd.append('AWSAccessKeyId', data.access_key);
fd.append('policy', data.encoded_policy)
fd.append('signature', data.signature);
fd.append('file', file, file.name);

 $.ajax({
 url: data.upload_url,
 type: 'POST',
 data: fd,
 processData: false,
 contentType: false,

 xhr: this.progress,
 beforeSend: function (req) {

 req.setRequestHeader('Authorization', '');
 }
 }).done(function (response) {
 that.uiElements.uploadButtonContainer.show();
 that.uiElements.uploadProgressBar.hide();
 alert('Uploaded Finished');

}).fail(function (response) {
 that.uiElements.uploadButtonContainer.show();
 that.uiElements.uploadProgressBar.hide();
 alert('Failed to upload');
})

 },
 progress: function () {

var xhr = $.ajaxSettings.xhr();
xhr.upload.onprogress = function (evt) {
 var percentage = evt.loaded / evt.total * 100;

The requestDocumentUrl contains the URL to the API Gateway
endpoint you’ve created. Remember to apply encodeURI to
any query string parameters.

You first issue a request
to a Lambda function to
get the policy, signature,
and other properties.
When the response
comes back, you invoke
the upload function to
upload the actual file.

This creates a FormData
object to which you can
easily append key/value
pairs with the data you
need to supply. The end
result of using this
FormData object will be an
HTML form with the
multipart/form-data
encoding type.uery is used to

erform an Ajax
T request and
d the file. You
to set the URL
and form data.

There’s no need
to supply the
Authorization

bearer token in
this request, so

remove it.

There is a progress
bar on the main page
which will gradually
update as the file
upload takes place.

221Secure upload
 $('#upload-progress').find('.progress-bar')

➥.css('width', percentage + '%');
};
return xhr;

 }
}

Open index.html and add the line <script src="js/upload-controller.js"></script>

above <script src="js/config.js"></script> to include the new file in the web-
site. Finally, below the line that says <div class="container" id="video-list-
container">, copy the contents of the next listing, which contains HTML for an
upload button and an upload progress bar.

<input id="upload" type="file" name="file">

<div class="progress" id="upload-progress">
 <div class="progress-bar progress-bar-info progress-bar-striped"

➥role="progressbar" aria-valuemin="0" aria-valuemax="100">
 </div>
</div>

Edit main.js to include uploadController.init(configConstants); under video-
Controller.init(configConstants); and modify main.css in the css directory and
include the contents of the following listing at the bottom of the file.

#upload-video-button {
 display: none;
 margin-bottom: 30px;
}

.btn-file {
 position: relative;
 overflow: hidden;
}

.btn-file input[type=file] {
 position: absolute;
 top: 0;
 right: 0;
 min-width: 100%;
 min-height: 100%;
 font-size: 100px;
 text-align: right;
 filter: alpha(opacity=0);
 opacity: 0;
 outline: none;
 background: white;

Listing 8.8 Index.html

Listing 8.9 Website CSS

The file upload button

File upload
progress bar

If the user isn’t authenticated, the upload
button and the progress bar are hidden.
They’re shown only when the user logs in
to the system.

222 CHAPTER 8 Storage
 cursor: inherit;
 display: block;
}

#upload-progress {
 display: none;
}

#video-list-container {
 text-align: center;
 padding: 30px 0 30px;
}

.progress {
 background: #1a1a1a;
 margin-top: 6px;
 margin-bottom: 36px;
}

There’s one more step. You need to modify user-controller.js to do the following:

 Show an upload button only after the user has logged in
 Hide the upload button and the progress bar when the user logs out
 Hide the upload button while a file is uploading and the progress bar is shown

In user-controller.js make the following edits:

 Add uploadButton: null under profileImage: null.
 Add this.uiElements.uploadButton = $('#upload-video-button'); under

this.uiElements.profileImage = $('#profilepicture');.
 Add this.uiElements.uploadButton.css('display', 'inline-block'); under

this.uiElements.profileImage.attr('src', profile.picture);.
 Add that.uiElements.uploadButton.hide(); under that.uiElements.profile-

Button.hide();.

TAKING IT FOR A SPIN

Start the web server by running npm start from the terminal (in the website’s directory).
Open the website in a browser and log in. You should see a blue button appear in the
middle of the page. Click this button and upload the file. If you have the web browser’s
developer tools opened, you can inspect requests. You’ll see that first there is a request to
/s3-policy-document followed by a multipart POST upload to S3 (figure 8.8).

 You might notice something odd if you inspect the transcoded bucket at this time.
The key of newly uploaded files will look like this: <guid>/file/<guid>/file.mp4
instead of <guid>/file.mp4. That’s a little bit puzzling until you look at the
transcode-video Lambda function you implemented in chapter 3. This function sets
an OutputPrefix, which prepends a prefix and is the cause of your problem. You
needed an output prefix originally when you uploaded files directly to S3. Now you’re
creating a prefix manually in the upload-policy Lambda function, so you don’t
need to do it twice. Remove the line OutputKeyPrefix: outputKey + '/', from the
transcode-video Lambda function and redeploy it. That will fix the annoyance.

If the user isn’t authenticated, the upload
button and the progress bar are hidden.
They’re shown only when the user logs in
to the system.

223Restricting access to files
8.3 Restricting access to files
So far you’ve made your transcoded video files public. But what if you want to secure
these videos and make them available only to authenticated users? You might decide
to charge for videos (bandwidth isn’t free!) where only users who have registered and
paid have access to files. To implement such a system, you need to do two things:

 Disable anonymous/public access to video files in the transcoded bucket.
 Generate presigned, time-limited URLs for authorized users that they can use to

access videos.

8.3.1 Removing public access

To restrict public access to files, you need to remove the bucket policy you already
have. In the transcoded bucket, do the following:

1 Click Permissions.
2 From the drop-down below, select Bucket Policy.
3 Click Delete to remove the policy.

You may also remember that you have a set-permissions Lambda function that
changes permissions on the video (you created that function in chapter 3). You can

POST upload to S3 Request to get credentials
Response from the
/s3-policy-document endpoint

Figure 8.8 The upload to S3 is quick, but you can enable transfer acceleration to make it even faster.

224 CHAPTER 8 Storage
remove that Lambda function or, better yet, disconnect it from SNS (it’s invoked from
the transcoded-video-notifications SNS topic). Remove the subscription from SNS
now.

 Furthermore, you’ll need to change the permission for each video to make sure
that it can’t be publicly accessed. To do this you need to do the following:

1 Click each video in the S3 bucket.
2 Select Permissions.
3 If there is an AllUsers grantee, click it and deselect all check box options.
4 Click Save. The AllUsers grantee should disappear from the list.

If you try refreshing 24-Hour Video now, you’ll see that every request for a video will
come back as Forbidden, with a 403 status code.

8.3.2 Generating presigned URLs

The second step is to generate presigned URLs to allow users to access videos without
hitting the 403 status code. You’re going to modify the get-video-list function to
generate these presigned URLs and then return them to the client. Having this capa-
bility allows you to add additional functionality to 24-Hour Video. For example, you
can put the get-video-list function behind a custom authorizer and force users to
log in before they can retrieve videos. And once you have a database, you can imple-
ment features like private videos, subscriptions, and lists. With presigned URLs, you
can control who gets access to which videos and for how long.

VIDEO LISTING

Let’s first update the video-listing Lambda function to generate presigned URLs and
return them. Replace the line urls.push(file); in the createList function with the
code in the next listing.

var params = {Bucket: process.env.BUCKET, Key: file.Key};
var url = s3.getSignedUrl('getObject', params);

files.push({
 'filename': url,
 'eTag': file.ETag.replace(/"/g,""),
 'size': file.Size
});

WEBSITE

Modify video-controller.js in 24-Hour Video and replace the line

clone.find('source').attr('src',baseUrl + '/' + bucket + '/' + video.filename);

with

clone.find('source').attr('src', video.filename);

Listing 8.10 Video listing Lambda

Generate a presigned URL
using the AWS S3 SDK.

225Summary
Refresh the website (make sure the web server is running) to see the videos again. You
may have noticed that now you’re passing back the full URL rather than an S3 key as
before. It’s also important to keep in mind that the default expiration for presigned
URLs is 15 minutes. After 15 minutes your users would have to refresh to get new
URLs. You can control the expiration by adding an Expires property to params (it’s
specified as an integer in seconds). The following would make the URL valid for 30
minutes:

var params = {Bucket: config.BUCKET, Key: file.Key, Expires: 18000}

8.4 Exercises
In this chapter we covered useful S3 features and implemented video uploads for 24-
Hour Video. Try to complete the following exercises to reinforce your knowledge:

1 Enable transfer acceleration for the upload bucket and modify the rest of the
implementation to work with the new endpoint.

2 Implement object lifecycle management to clean up the upload bucket. Set up
a rule to remove files that are five days old.

3 The upload credentials are valid for a day. That’s probably way too long.
Change credentials to be valid for two hours instead.

4 Create a new bucket in S3 and enable static website hosting. Copy the 24-Hour
Video website to it and make it accessible over the internet. You’ll have to make
changes to Auth0 and to config.js to make everything work.

5 At the moment, presigned URLs will expire after 15 minutes (which is the
default). Change the expiry to 24 hours instead.

6 Modify the implementation of 24-Hour Video website so that the get-video
Lambda function is called when the user logs in. Unauthenticated users should
see the main site with a message prompting them to register to view videos.

7 In listing 8.6 you used a wildcard for AllowedHeader in the bucket’s CORS con-
figuration. Instead of using a wildcard, specify the headers your system requires
for the upload to work.

8 Think of a way to have public and private videos. The next chapter will have a
few clues for you.

9 In section 8.3.1 you had to manually go through each video and change permis-
sion settings. Write a new Lambda function to enumerate the bucket, find all
videos, and update their permissions.

8.5 Summary
In this chapter, we explored S3 and you added a new feature to 24-Hour Video. The S3
features we covered in section 8.1 are useful for managing files. You learned about the
following:

 Different types of storage classes
 Versioning

226 CHAPTER 8 Storage
 Transfer acceleration
 Hosting of static websites
 Object lifecycle rules
 Event notifications

You can use this knowledge to effectively manage your storage service. We also showed
how to upload files directly from a user’s web browser and how to generate presigned
URLs. In the next chapter, we’ll introduce Firebase. This real-time streaming database
can be a powerful addition to your serverless application. You’ll also work to complete
24-Hour Video by adding this last piece of the puzzle.

Database
Most applications need to store data and, in most cases, a database is a common-
sense solution. In this chapter we introduce Firebase as our database of choice.
Firebase is a NoSQL database that has great features such as real-time streaming
using WebSockets, offline capabilities, and a declarative security model. Firebase is
great for quickly getting started, it scales well, and it’s immediately familiar to any-
one who understands JSON.

 As with most things in software development, the choice of a database should
depend on your requirements. If your application is going to work with relational
data, use a relational database. In a scenario where a NoSQL approach is appropri-
ate but some structure is needed, a document database such as MongoDB or
CouchDB might be more useful. If a scalable key/value store and fast lookups are
important, then Firebase is a good option. And for some applications, a graph data-
base might suit better than anything else. The best advice we can give is to look at
your requirements, assess available options, and decide based on what’s a good fit
for your domain and application. There’s no best database or even database type
for serverless architectures. Everything depends on your goals and requirements.

This chapter covers
 Fundamentals of Firebase

 Using Firebase in a serverless application
227

228 CHAPTER 9 Database
9.1 Introduction to Firebase
Firebase is a platform developed by Google that’s a collection of products such as a
database and services for authentication, messaging, storage, and hosting. The prod-
ucts that make up the overall Firebase platform are interesting and useful, but we
focus on the database in this chapter. The Firebase database is a real-time, schemaless,
cloud-hosted NoSQL solution (from here on, when we refer to Firebase, we mean the
database and not the entire platform). Firebase can sync data to clients over HTTP
(using WebSockets), which is where the real-time aspect comes in, and synchronize
data if a client goes offline and then back online. Firebase stores data as JSON, which
makes it simple to understand and edit. Nevertheless, simplicity introduces limita-
tions. Firebase isn’t flexible when it comes to structuring and querying data. There
can be a lot of redundancy, which is a natural side effect of a database that’s essentially
denormalized by default.

9.1.1 Data structure

Let’s discuss how data is stored in Firebase. As we’ve mentioned, Firebase stores data
as JSON objects. Data is stored as nodes with associated keys that can be specified by
you or generated by the database (you’re always working with key/value pairs). The
main advice that we can give you is to flatten and denormalize your data as much as
possible. Figure 9.1 shows an example of a Firebase database and what the data struc-
ture looks like.

 The Firebase guide to structuring the database (https://firebase.google
.com/docs/database/web/structure-data) gives a few helpful hints that include the
following:

 Avoid nesting data. The database supports the nesting of data that’s 32 levels
deep. But retrieving data from a location in the database retrieves all of its child
nodes too. Furthermore, if your security rules grant read/write access to a par-
ticular location, all of the children get the same rights automatically.

 Flatten and denormalize data as much as possible. This will introduce repetition and
redundancy into your data but will make retrieval simpler and faster.

 In scenarios where many-to-many relationships are required, it’s better to store the relation-
ship of the entities on both ends. This duplicates data and requires two updates if
the relationship changes. Firebase gives an example, which we’ve slightly modi-
fied in the following listing, to illustrate this concept.

{
 "users": {
 "psbarski" : {

"name" : "Peter Sbarski",
"groups" : {

Listing 9.1 Many-to-many relationship

https://firebase.google.com/docs/database/web/structure-data
https://firebase.google.com/docs/database/web/structure-data
https://firebase.google.com/docs/database/web/structure-data

229Introduction to Firebase
"serverlessheroes": true,
"acloudguru" : true

}
 }
 },
 "groups" : {
 "serverlessheroes" : {

"name" : "Serverless Heroes",
"members" : {
 "psbarski" : true,
 "acollins" : true,
 "skroonenburg" : true
}

 }
 }
}

Users belong to groups and groups have
multiple users. This many-to-many
relationship is specified explicitly in
Firebase. If the relationship changes,
two writes/updates to the database are
needed. See https://firebase.google.com/
docs/database/web/structure-data for
more information and examples.

The root of the tree Data is stored in nodes that have a key

Figure 9.1 This is an example database structure from the A Cloud Guru database, which is a large
online learning management system.

https://firebase.google.com/docs/database/web/structure-data
https://firebase.google.com/docs/database/web/structure-data

230 CHAPTER 9 Database
9.1.2 Security rules

The Firebase Database Rules define when, and by whom, data can be read and writ-
ten, how data is structured, and what indexes should exist. We’ll start with security and
describe the four main types of rules (you can find much more information at
https://firebase.google.com/docs/database/security/):

 .read & .write—Describes if and when data is allowed to be read and/or writ-
ten by users. These rules cascade, which means that read access granted to /abc/
will automatically extend to /abc/123/ and /abc/123/xyz/ unless they’re spe-
cifically overridden.

 .validate—Describes what a correctly formatted value looks like. Unlike .read
and .write rules, .validate rules do not cascade and must evaluate to true to
succeed.

 .indexOn—Specifies an index to support ordering and querying.

There are predefined variables that can be used in rules. These include the following:

 now—The current time in milliseconds since Linux epoch
 root—The root of the database
 newData—New data being written
 data—Current data (before a new operation takes place)
 auth—Content of an authenticated user’s token
 $ (variables)—A wildcard used to represent IDs and dynamic keys

An example of a Firebase validation rule is as follows.

"$answer_id": {
 ".validate": "newData.isNumber() && (newData.val() == -1 || newData.val() == 1)"
}

The rule in listing 9.2 is fairly simple, but it’s indicative of the types of rules you can
write to read, write, and validate data. A more detailed guide on security rules is avail-
able at https://firebase.google.com/docs/database/security/securing-data.

9.2 Adding Firebase to 24-Hour Video
You’re going to integrate Firebase into 24-Hour Video and use it to store information
about videos uploaded by users. We chose Firebase because you don’t need a rela-
tional database for your application. Real-time streaming updates also make for a
great user experience. You can bind Firebase to your user interface and have your UI
update automatically whenever data in Firebase changes.

Listing 9.2 Firebase validation rule

This rule validates that the new data being
written is a number and is either -1 or 1.

https://firebase.google.com/docs/database/security/securing-data
https://firebase.google.com/docs/database/security/

231Adding Firebase to 24-Hour Video
24-Hour Video will interact with the database in the following ways:

 Your website will read names of video files from Firebase. This will allow you to
create a full URL to the video by prepending the S3 domain. The get-video-list
function will no longer be needed.

 Whenever a user uploads a video, the existing transcode-video Lambda func-
tion will write to Firebase to indicate that a new video is being processed. That
will allow you to show a nice spinner animation on your website to indicate that
a video is coming.

 After a video is transcoded, you’ll run a new Lambda function to update Fire-
base with the necessary information, such as the S3 key of the transcoded file.
This will close the loop and allow the website to show and play the new video.

Figure 9.2 shows how the component you’re about to implement fits into the greater
feature.

9.2.1 Architecture

Let’s discuss the architecture you’re about to build. At the end of this chapter you’ll
have finished the event-driven pipeline that you began building all the way back in
chapter 3. The user will be able to upload a video, get a visual indication that a video is
being processed, and then see the new video after it has been transcoded. Firebase
will be used to push updates to the website, which will enable you to build a nice user
experience. Figure 9.3 shows this flow.

Authentication

Custom API

Connect Firebase to list videos

Web application

Video transcoder

Media storage

Video upload

Video list database

Figure 9.2 You’re going to implement the last major component of your system by adding Firebase.

232 CHAPTER 9 Database
The plan for this chapter will then be as follows:

1 Create a Firebase account and a database.
2 Create a new Lambda function to save video metadata to Firebase (you’ll also

need to modify the SNS topic you created in chapter 3 to invoke this function).
3 Update the transcode-video function to save placeholder information to Fire-

base (so that you can show the user that a video is transcoding).
4 Update the website to access Firebase. If you implemented presigned URLs in

chapter 9, you’ll need to invoke this function to get the URLs for your videos
after getting the relevant data (that is, the S3 key) out of the database. If you
didn’t implement secure URLs in the previous chapter, then you can store
direct URLs to your videos in Firebase.

In chapter 8 we discussed ways of securing access to files, and at the end of that chap-
ter you implemented a way to generate signed URLs. We’re going to ignore signed
URLs for a moment to get the database going. Later in this chapter we’ll look at signed
URLs and how to make everything work with Firebase. If you have existing videos that
you’ve been testing with, make sure that they’re publicly accessible/viewable in S3
(you basically need to undo what you did in section 8.3.1). That will be enough to
complete this section.

Firebase is updated twice:
1. When a video is about to be transcoded.
2. When transcoding has finished and there is a new video users can watch.

Save data
13. Video metadata 11. Trigger Lambda

9. Push
notification

to SNS

8. S3 bucket

7. Transcode

6. Update
Firebase

14. Update
client

4. Submit job

5. Elastic
Transcoder

2. Trigger Lambda

3. Lambda1. S3 bucket

Firebase 12. Lambda 10. SNS

Write Video
information
to Firebase

Dispatch
notification

Save
transcoded

video

Upload new
video file

Create
transcode

job

Transcode
video

Figure 9.3 This is a modification of the architecture you began in chapter 3.

233Adding Firebase to 24-Hour Video
9.2.2 Setting up Firebase

Go ahead and set up a Firebase account and a Firebase database now:

1 Open https://firebase.google.com and create a new account.
2 Having registered your account, go into the main console and choose Create

New Project.
3 In the pop-up window, specify a name for your project (such as 24-hour-video)

and select your region. Then choose Create Project.
4 Firebase has numerous interesting products apart from its database (figure 9.4).

But for now, choose Database from the menu on the left.
5 You’ll see that you have an empty database. That’s okay; you’ll add some data

later. For now, take note of the database URL (figure 9.5). You’ll need it.

Choose Database to set up your Firebase database.

A database is just one of the products offered by Firebase. There is also storage, hosting of web apps,
crash reporting, notifications, analytics and other services. A lot of the services are aimed at mobile
(iOS & Android) development.

Figure 9.4 Firebase is not just a database service. It offers many other services to choose from.

https://firebase.google.com and create a new account

234 CHAPTER 9 Database
The 24-Hour Video website will access Firebase directly to read from it. For now, to
make things easier, you’ll allow your website to do it without authenticating with Fire-
base. Later in the chapter you’ll secure read access:

1 In the same Database console as before, select Rules from the top menu.
2 Copy the security rules given in the following listing into the Security Rules text

box.
3 Choose Publish when you’ve finished.

{
 "rules": {
 ".read": "true",
 ".write": "auth != null"
 }
}

9.2.3 Modifying Transcode Video Lambda

Imagine yourself as a user uploading a video through your 24-Hour Video website. As
a user, you’d want to know if your video uploaded successfully and if or when it was
available for playback. If, for whatever reason, the video wasn’t ready for playback
(because of transcoding), you’d want an indication (such as a message or a loading

Listing 9.3 Firebase rules

The database URL you need to need to remember.

Figure 9.5 You’ll access the database from the 24-Hour Video website via this URL.

Anyone will be able to read
data from the database.

Any entity writing to the database
still needs to be authenticated.

235Adding Firebase to 24-Hour Video
animation) to tell you so. You can achieve these requirements by showing a progress
bar while the file is being uploaded to S3 and then showing an animated placeholder
image to indicate that the upload is being processed or transcoded. As soon as the
video has finished processing, you can take off the placeholder and show the video.

 The progress bar is easy; you can write a small amount of code to monitor the
upload and gradually fill it in. The placeholder image is also straightforward. You’ll
modify the transcode-video Lambda function to write to Firebase and insert a place-
holder record whenever a new video is sent to the Elastic Transcoder. Your website will
respond to this placeholder record and show a shiny animation. Finally, you’ll create a
new function to remove the placeholder record from the database and insert the S3
key of the transcoded video (when it’s ready). Right now, however, let’s look at the
transcode-video Lambda function and the changes you need to make to it.

FIREBASE SECURITY

To insert a placeholder record, the transcode-video function will write to Firebase,
so it needs to be able to authenticate with it. To do this you’re going to create and use
a service account. A service account belongs to the application rather than any individual
user (https://developers.google.com/identity/protocols/OAuth2ServiceAccount), which
makes it perfect for use in Lambda:

1 In the Firebase console, click the Settings button, which looks like a cogwheel.
2 Select Permissions from the popup.
3 Choose Service Accounts from the menu on the left.
4 Choose Create Service Account.
5 In the Create Service Account popup, set the service name to be lambda and

select Editor as the project role from the Roles drop-down.
6 You should also check Furnish a New Private Key. Leave the Key Type set to

JSON (figure 9.6).
7 Click Create, and save the generated private key somewhere safe on your computer.

TRANSCODE VIDEO FUNCTION

You have the private key for the service account in Firebase, so now you can update
the transcode-video function. First, prepare the function to work with Firebase:

1 Copy the private key (that is, the generated JSON file) to the directory of your
transcode-video function. This private key will be referenced by your code.

2 The Firebase npm package must be added to the function. To do this, in your
terminal navigate to the transcode-video function directory and run npm
install firebase --save.

3 Open package.json and modify the predeploy line to be "predeploy": "zip -r
Lambda-Deployment.zip * -x *.zip *.log". You’ve removed the *.json exten-
sion because you now need JSON files to be included in the zip. Previously, the
predeploy script would skip over all JSON files.

https://developers.google.com/identity/protocols/OAuth2ServiceAccount

236 CHAPTER 9 Database
4 Jump into the AWS console, open Lambda, and click your function. You need to
set four environment variables for the function to work: Elastic Transcoder region
(ELASTIC_TRANSCODER_REGION), Elastic Transcoder pipeline ID (ELASTIC_
TRANSCODER_PIPELINE_ID), the filename of the private key (SERVICE_ACCOUNT),
and the database URL (DATABASE_URL). Previously the Elastic Transcoder region
and pipeline ID were specified directly in the transcode-video function, but
now that you’ve learned about environment variables, it’s better to use them
instead (figure 9.7).

This private key will need to be deployed
together with the Lambda function.

Figure 9.6 The service account will be used by the Lambda function to write to Firebase.

237Adding Firebase to 24-Hour Video
Now it’s finally time to update index.js with the new implementation of your function.
Overwrite your existing implementation of the transcode-video function with what’s
shown in the next listing.

'use strict';

var AWS = require('aws-sdk');
var firebase = require('firebase');

var elasticTranscoder = new AWS.ElasticTranscoder({
 region: process.env.ELASTIC_TRANSCODER_REGION
});

firebase.initializeApp({
 serviceAccount: process.env.SERVICE_ACCOUNT,
 databaseURL: process.env.DATABASE_URL
});

function pushVideoEntryToFirebase(key, callback) {
 console.log('Adding video entry to firebase at key:', key);

 var database = firebase.database().ref();

 database.child('videos').child(key)
.set({
 transcoding: true
})
.then(function () {
 callback(null, 'Video record saved to firebase');
})

Listing 9.4 Updated transcode-video function

The Firebase URL that
you saved earlier
(see figure 9.4).

The service account should be
the name of the (private key)
file generated by Firebase.

Replace this with the pipeline
ID you created in appendix B.

The Elastic Transcoder region
is going to be us-east-1 if you
followed appendix B.

Figure 9.7 You must set and save the environment variables for the function to perform correctly.

The firebase.initializeApp
needs to be run to correctly
initialize and authenticate
with Firebase.

The pushVideoEntryToFirebase
function will only run if the
Elastic Transcoder job was
submitted successfully. This
function will create an entry in
the database with a key called
transcoding set to true.

This returns the root of
the JSON tree in Firebase.

238 CHAPTER 9 Database

p

.catch(function (err) {
 callback(err);
});

}

exports.handler = function (event, context, callback) {
 context.callbackWaitsForEmptyEventLoop = false;

 var key = event.Records[0].s3.object.key;

 var sourceKey = decodeURIComponent(key.replace(/\+/g, ' '));

 var outputKey = sourceKey.split('.')[0];

 var uniqueVideoKey = outputKey.split('/')[0];

 var params = {
PipelineId: process.env.ELASTIC_TRANSCODER_PIPELINE_ID,
Input: {
 Key: sourceKey
},
Outputs: [
 {

Key: outputKey + '-720p' + '.mp4',
PresetId: '1351620000001-000010'

 }
]

 };

 elasticTranscoder.createJob(params, function (error, data) {
if (error) {
 console.log('Error creating elastic transcoder job.');
 callback(error);
 return;
}

console.log('Elastic transcoder job created successfully');
pushVideoEntryToFirebase(uniqueVideoKey, callback);

 });
};

Note the following interesting details about the code in listing 9.4:

 At the top of the handler function is the following line: context.callback-
WaitsForEmptyEventLoop = false;. This property needs to be set to false to
immediately suspend the Lambda function as soon as your callback is invoked.
Normally you don’t need to do this, but you have a special case here because
you’re using Firebase. After you write to Firebase, it will open a connection,
which may keep the Lambda function alive until its timeout. This is bad not
only because it’ll cost more to run this function but also because the Lambda
runtime will see this timeout as an error and try to invoke the function again. It
will rinse and repeat three times, sowing more confusion. So don’t forget to set
this property to false when you use Firebase.

It’s important to set
this flag to false
because you want to
suspend the function
as soon as you invoke
a callback.

You’ll
roduce only
one output
for now to

keep things
a bit easier. This Elastic Transcoder

preset produces a generic
720p. As an exercise,
move this preset to an
environment variable.

The transcoding job started, so
make a record in Firebase that

the UI can show right away.

239Adding Firebase to 24-Hour Video
 The function pushVideoEntryToFirebase will create a key called processing
with a value set to true. This function takes a parameter called key, which is a
GUID isolated from the key name of the S3 object. This is the GUID that was gen-
erated by the get-upload-policy function you created in chapter 9.

Having implemented the function, deploy it to AWS (remember to run npm run deploy
from the terminal), run the website, and upload a video file. You should be able to
inspect the Firebase console and see a new entry added to it, as shown in figure 9.8.

9.2.4 Transcode Video Firebase Update

Having updated the transcode-video function, you need to create a new Lambda
function to run after the transcoding process has finished. This Lambda function will
write information about the newly transcoded file to Firebase:

1 Make a copy of the Transcode Video function and rename it to Transcode
Video Firebase Update.

2 Create a new Lambda function in AWS and name it transcode-video-firebase-
update. Set its timeout for 10 seconds.

3 Update package.json in Transcode Video Firebase Update to account for the
new Lambda function created in AWS and run npm install.

A flag to show that the
 video under the current
key is transcoding.

A key generated to
uniquely identify videos.

This node represents a collection of objects (videos).

Figure 9.8 Your database has a simple hierarchical structure.

240 CHAPTER 9 Database
4 Remember to update the ARN in package.json to reflect the ARN of your new
function in AWS.

5 In the Lambda console, click the transcode-video-firebase-update function
and add the following environment variables: your database URL, the filename
of the private key generated by Firebase, the full path to the transcoded videos
S3 bucket, and the bucket’s region (figure 9.9).

6 Make sure that the Firebase private key is also in the directory of the function.
7 Overwrite index.js with the contents of listing 9.5.

'use strict';

var AWS = require('aws-sdk');
var firebase = require('firebase');

firebase.initializeApp({
 serviceAccount: process.env.SERVICE_ACCOUNT,
 databaseURL: process.env.DATABASE_URL
});

exports.handler = function(event, context, callback){
 context.callbackWaitsForEmptyEventLoop = false;

 var message = JSON.parse(event.Records[0].Sns.Message);

 var key = message.Records[0].s3.object.key;
 var bucket = message.Records[0].s3.bucket.name;

Listing 9.5 Transcode video Firebase update

The Firebase URL that
you saved earlier
(see figure 9.4).

The URL to the transcoded
videos bucket. It should be
https://s3.amazonaws.com/
YOUR_BUCKET_NAME

The service account should be
the name of the (private key)
file generated by Firebase.

The bucket region should
be us-east-1 if you followed
appendix B.

Figure 9.9 Check that your environment variables are copied across correctly and saved.

This Lambda
function will be
invoked using
SNS; hence you
need to unpack it.

241Adding Firebase to 24-Hour Video
 var sourceKey = decodeURIComponent(key.replace(/\+/g, ' '));

 var uniqueVideoKey = sourceKey.split('/')[0];

 var database = firebase.database().ref();

 database.child('videos').child(uniqueVideoKey).set({
transcoding: false,
key: key,
bucket: process.env.S3

 }).catch(function(err) {
callback(err);

 });
};

The Transcode Video Update function is similar to the function you implemented in
the previous section. Its purpose is only to update Firebase to set the transcoding key
to false and set the S3 key of the video that was newly created. You can now deploy
the function to AWS.

9.2.5 Connecting Lambda

The Transcode Video Firebase Update function is implemented, but you need a way to
invoke it when a video lands in the transcoded S3 bucket. If you completed chapter 3,
you have an SNS topic called transcoded-video-notification. Add the Transcode
Video Firebase Update function as a subscriber to the topic (figure 9.10).

The transcoding flag needs
to be set to false to indicate

that the transcoding process
has finished and the user can

now view the file.

Select the right Lambda ARN and
click Create Subscription.

Figure 9.10 Create a subscription for the transcoded-video-notification topic and set
the Lambda function.

242 CHAPTER 9 Database
If you didn’t implement that SNS topic, you’ll need to wire up the bucket to invoke the
function directly. You’ll also have to modify the implementation of the function to
parse an S3 event rather than an event coming from SNS.

RUNNING A TEST

You can now run a simple test to see if your workflow is working. Upload a new video
file via the 24-Hour Video website and then take a peek at the Firebase console. At
first you should see an entry similar to figure 9.8. But after a while (the time will
depend on the size of your video), you should see an entry resembling one of the
records in figure 9.11. (That is, your entry will have a bucket, a key, and a transcoding
flag set to false.)

9.2.6 Website

Finally, you need to update the 24-Hour Video website. You’ll make sure that the web-
site binds to your database and is always up to date through the magic of WebSockets.
To make the user experience a bit nicer, once a user uploads a file, you’ll show a spin-
ner to indicate that the file is being processed. As soon as transcoding is done, you’ll
hide the spinner and show the actual video. As you’re binding to Firebase, it might
take a second or two to establish a connection, load data, and display everything
onscreen. Instead of having the user look at a blank screen, you’ll show another spin-
ner image to indicate that the bulk of the data is loading.

The key and the bucket will be set by the new Lambda
 function. The transcoding key will be set to false.

Figure 9.11 If everything has been implemented correctly, you’ll see Firebase update records in real
time right in the console.

243Adding Firebase to 24-Hour Video
SPINNERS

You need to create two spinner images. One spinner image will be used the first time a
user hits the website to show that data is loading. The other spinner image will be used
in place of a video while it’s being transcoded. Let’s get these spinners sorted first:

1 In the main website directory find a folder called img. Create this folder if it
doesn’t exist.

2 Go to http://loading.io and download any spinner or loading image you like to
the img folder. Grab the SVG version and name the file loading-indicator.svg.
This will be the spinner image that appears when the user first loads the website.

3 Repeat the previous step, but this time grab a different image. Save it to the img
folder and name it transcoding-indicator.svg. This is the spinner image that will
appear each time the user uploads a new video.

4 To add the website-loading image, open index.html and add the contents of
the following listing above this line: <div id="video-template" class="col-
md-6 col">.

<object id="loading-indicator" type="image/svg+xml" data="img/loading-

➥indicator.svg">
Your browser does not support SVG

</object>

5 To add the transcoding spinner image, open index.html and replace the <div
id="video-template" class="col-sm-4 col"> block with the code in the next
listing.

<div id="video-template" class="col-sm-4 col">
 <div class="video-card">

 <div class="transcoding-indicator">
 <object type="image/svg+xml" data="img/transcoding-indicator.svg">

 Your browser does not support SVG
 </object>

 </div>
 <video width="100%" height="100%">

 <source type="video/mp4">
 Your browser does not support the video tag.

 </video>
 </div>

</div>

You need to add a touch of CSS magic to make things look nice. Open main.css and
copy the contents of the next listing to the very end of the file.

Listing 9.6 Loading placeholder image in index.html

Listing 9.7 Transcoder placeholder image in index.html

If you upload multiple
videos, you’ll see multiple
loader images at the same
time. It looks quite nice.

http://loading.io

244 CHAPTER 9 Database
#loading-indicator {
 margin: 90px auto;
 display: block;
}

.transcoding-indicator object {
 margin-top: 30px;
}

body {
 background: #1e1e1e;
}

CONFIG

To connect to Firebase you’ll need the API key and the database URL. The easiest way
to get them is to log into the Firebase console, click your project, and then click the
button labeled Add Firebase to Your Web App. You should see a pop-up that looks sim-
ilar to figure 9.12.

Listing 9.8 Updated CSS

The storageBucket and messagingSenderId
aren’t needed for 24-Hour Video.

Figure 9.12 Firebase helpfully gives you the required configuration information. You can get similar
config information if you’re building an iOS or Android app.

245Adding Firebase to 24-Hour Video

es
Open config.js in your website, create a new object called firebase within config-
Constants, and copy the apiKey and databaseURL from the pop-up. Your config
should look similar to the following.

var configConstants = {
 auth0: {

 domain: 'serverless.auth0.com',
 clientId: 'r8PQy2Qdr91xU3KTGQ01e598bwee8LQr'

 },
 firebase: {

 apiKey: 'AIzaS4df5hnFVDlg-5g5gbxhcIWO6uLPpsE8K2E',
 databaseURL: 'https://hour-video-d500.firebaseio.com'

 },
 apiBaseUrl: 'https://tlzyo7a719.execute-api.us-east-1.amazonaws.com/dev'

};

It would also be useful to add the Firebase library to your website. In the pop-up that
you opened earlier, there should be a line similar to <script src="https://www

.gstatic.com/firebasejs/3.4.0/firebase.js"></script>. Copy that line into
index.html just above <script src="js/user-controller.js"></script>.

VIDEO CONTROLLER

You need to replace your video controller because you’re now going to be binding to
Firebase. You’ll implement the following functions in the new video controller:

 init—Function to initialize the controller as usual
 addVideoToScreen—Function to add an HTML5 video element to the UI

 updateVideoOnScreen—Function responsible for showing and hiding the
placeholder image

 getElementForVideo—Helper function to get the video ID
 connectToFirebase—Function that will initialize a connection to Firebase and

update the UI when data in Firebase changes

Copy the contents of the next listing to video-controller.js, completely replacing
what’s already there.

var videoController = {
 data: {

config: null
 },
 uiElements: {

videoCardTemplate: null,
videoList: null,
loadingIndicator: null

 },

Listing 9.9 Updated config.js

Listing 9.10 Update video controller

apiKey and
databaseURL are the
only two new properti
added from Firebase.
Make sure to update
these to what was
provided by Firebase.

The apiBaseUrl should point
to your API Gateway API.

246 CHAPTER 9 Database

Se

vi
 init: function (config) {
this.uiElements.videoCardTemplate = $('#video-template');
this.uiElements.videoList = $('#video-list');
this.uiElements.loadingIndicator = $('#loading-indicator');

this.data.config = config;

this.connectToFirebase();
 },
 addVideoToScreen: function (videoId, videoObj) {

var newVideoElement = this.uiElements.videoCardTemplate.

➥clone().attr('id', videoId);

newVideoElement.click(function() {
 var video = newVideoElement.find('video').get(0);

 if (newVideoElement.is('.video-playing')) {
video.pause();
$(video).removeAttr('controls');

 }
 else {

$(video).attr('controls', '');
video.play();

 }

 newVideoElement.toggleClass('video-playing');

});

this.updateVideoOnScreen(newVideoElement, videoObj);

this.uiElements.videoList.prepend(newVideoElement);
 },
 updateVideoOnScreen: function(videoElement, videoObj) {

if (!videoObj)
{
 return;
}

if (videoObj.transcoding) {
 videoElement.find('video').hide();
 videoElement.find('.transcoding-indicator').show();
} else {
 videoElement.find('video').show();
 videoElement.find('.transcoding-indicator').hide();
}

 videoElement.find('video').attr('src',

➥ videoObj.bucket + '/' + videoObj.key);
},
getElementForVideo: function(videoId) {

return $('#' + videoId);
 },
 connectToFirebase: function () {

var that = this;

firebase.initializeApp(this.data.config.firebase);

If the user has
clicked the video,
play it or pause it

depending on state.

If the video is currently
transcoding, hide the video and
show the placeholder image.

t the video
URL on the
deo HTML5

element.

Initialize a
connection to
Firebase.

247Adding Firebase to 24-Hour Video
var isConnectedRef = firebase.database().ref('.info/connected');

var nodeRef = firebase.database().ref('videos');

 isConnectedRef.on('value', function(snap) {
 if (snap.val() === true) {
 that.uiElements.loadingIndicator.hide();
 }
});

 nodeRef
 .on('child_added', function (childSnapshot) {
 that.uiElements.loadingIndicator.hide();

 that.addVideoToScreen(childSnapshot.key,
 ➥childSnapshot.val());

 });

nodeRef
 .on('child_changed', function (childSnapshot) {

that.updateVideoOnScreen(that.getElementForVideo

➥(childSnapshot.key), childSnapshot.val());
 });

}
};

The videoController function updates the UI whenever a record (child) is added or
updated in Firebase. The code that you’ve added responds to events from Firebase
and makes changes. Because it uses WebSockets, you don’t need to poll for changes.
They’re pushed to your website as they happen. One thing that’s missing from the
implementation is a way to handle deletions in Firebase. When a record is deleted
from Firebase, you should immediately update the UI to remove the video. This can
be done using the child_removed event and implemented in the similar fashion as
child_added and child_changed. One of the exercises at the end of this chapter asks
you to implement it.

 Another interesting bit of code in listing 9.10 has to do with detecting the connec-
tion state of your application. The /.info/connected is a special Boolean flag pro-
vided by Firebase that you can inspect to see if you have a connection to the database
or not. It’s a useful flag that can allow you to detect if your client goes offline (or
comes back online) and carry out compensating actions. In this example, if the client
goes offline, you might want to show a message in the UI to say that the connection
has been lost and it’s likely that the client won’t be able to access any videos.

The /.info/connected is a special
location that can tell you whether
you’re connected to Firebase.

Get the reference to the videos
node in your database.

This block of code
hides the loading
spinner once you

detect that a
connection to

Firebase exists.

This closure is
run each time

a new child
(movie) is

added to the
database.

This closure is run when a change is made to an existing
record (for example, a video has finished going through
the transcoding process and is now available).

Update the video object on
screen with the new video

details from Firebase.

248 CHAPTER 9 Database
9.2.7 End-to-end testing

You’re now in a good position to test 24-Hour Video end to end. The first thing you
should see when running the website is a spinner that disappears a few moments after
a connection to Firebase is established. Then you can begin uploading videos (if you
don’t have any already). You should see a placeholder image for each video uploaded
with an associated spinner until the transcoding process is completed and the video is
available for viewing (figure 9.13).

9.3 Securing access to files
In chapter 8, we discussed how to secure access to files and create presigned URLs. In
order to get Firebase working, we ignored that aspect of the system. It’s now time to
have a look at it. You’re going to add one more step to your process. You’ll issue an
HTTP request to retrieve presigned URLs once data from Firebase has been read. This
will introduce a bit of latency, but that’s a tradeoff you have to have. Figure 9.14 shows
what you’re going to do.

This placeholder image pulsates while we wait for the video to become available.

Figure 9.13 The 24-Hour Video website is finally starting to come together. Nearly all the major
features have been implemented.

249Securing access to files
Note that you could architect this differently. The 24-Hour Video website could issue a
request to an HTTP endpoint that could query Firebase and return a list of signed
URLs. There’s nothing wrong with that approach and it could work just as well. But we
wanted to illustrate the real-time nature of the database and show how the interface
could respond in near real time to data changes made within it.

 One other thing that you might want to do (if you didn’t do it in chapter 8) is stop
the set-permissions Lambda function from being run. This Lambda function, which
you created in chapter 3, sets permissions on video files to make them publicly accessi-
ble. It gets invoked by an SNS message that’s created when a new function is added to
the second (transcoded files) bucket. To disable this function, do the following:

1 Find it in the Lambda console.
2 Select Triggers from the tab menu.
3 Click Disable next to the SNS configuration and then click Disable in the popup

menu.

If you now happen to upload a new video file via the 24-Hour Video website, it won’t
be playable. If you open your browser’s developer tools, you’ll see HTTP requests for
video files return with a 403 (Forbidden) status request code.

9.3.1 Signed URL Lambda

In chapter 8 you modified the get-video-list function to return a list of presigned
URLs. This function used to enumerate the S3 bucket and then return a list of URLs.
You don’t need to enumerate the bucket anymore because you have Firebase, so you’ll

The process of retrieving
data from Firebase and
then getting presigned URLs
happens behind the scenes.
The end-user doesn’t see
any of this.

Load data

Initalize

4. Firebase

2. Firebase

6. Lambda5. Trigger
Lambda

3. Retrieve data

1. Establish
connection

7. Play Video

8. S3 bucket

Get
presigned

URLs
Send

video data

Figure 9.14 We’ve introduced one additional step to get presigned URLs
after data from Firebase has been loaded.

250 CHAPTER 9 Database
create a new function called get-signed-url just to generate and return signed URLs
for your videos. This function will take a parameter, which is the S3 key of the file, and
return a signed URL.

 To implement this function, make a copy of the get-video-list Lambda function
from chapter 8 and name it get-signed-url. Then erase the existing index.js and
copy the contents of the following listing into it. Remember to update package.json to
reflect the name of the new function and its ARN.

'use strict';

var AWS = require('aws-sdk');
var s3 = new AWS.S3();

exports.handler = function(event, context, callback){
 s3.getSignedUrl('getObject', {Bucket: process.env.BUCKET, Key:

➥event.queryStringParameters.key, Expires: 900},

➥function(err, url) {
if (err) {
callback(err);

} else {

var response = {
 'statusCode': 200,
 'headers' : {'Access-Control-Allow-Origin':'*'},
 'body' : JSON.stringify({'url': url})
}

callback(null, response);
}

 });
}

This function doesn’t need any specific settings apart from one environment variable.
Create a variable called BUCKET and set it to the name of your S3 bucket with transcoded
files. Deploy the function from your computer to AWS. The Lambda function that you
just created is fairly simple. It accepts a key, which is the filename of the file in the
bucket, and generates a signed URL that it returns. Because you’re using Lambda proxy
integration with API Gateway, you need to create a response message that includes the
HTTP status code, required HTTP headers, and the body of the response.

9.3.2 API Gateway settings

Your 24-Hour Video website will invoke an endpoint that will pass the key of the S3
object to the Lambda function and return a signed URL in the response. To do this in
the API Gateway, follow these steps:

1 Select your 24-Hour Video API.
2 Create a new resource and name it signed-url.

Listing 9.11 The get-signed-url Lambda function

The getSignedUrl is an
asynchronous function that will
generate a signed URL. You
previously used it in chapter 8.

Remember to update CORS and not leave it
open for everyone once you move past this

example. You can store the allowed origin as
an environment variable.

251Securing access to files

3 Select Enable API Gateways CORS.
4 Click Create Resource.

Having created the resource, make sure it’s selected and create a GET method under
it. Check that Lambda Function is selected and that Use Lambda Proxy Integration is
checked. Choose your Lambda region from the drop-down and, finally, set the get-
signed-url Lambda function. Deploy the function once everything is ready.

9.3.3 Updating the website again

Now you have to update your website yet again. As your website loads data from Fire-
base and you get information about each video, you need to invoke the get-signed-
url Lambda function to get the signed URL. Replace the updateVideoOnScreen func-
tion with the implementation given in the next listing.

updateVideoOnScreen: function(videoElement, videoObj) {
 if (!videoObj){

return;
 }

 if (videoObj.transcoding) {
videoElement.find('video').hide();
videoElement.find('.transcoding-indicator').show();

 } else {
videoElement.find('video').show();
videoElement.find('.transcoding-indicator').hide();

var getSignedUrl = this.data.config.apiBaseUrl

➥+ '/signed-url?key=' + encodeURI(videoObj.key);

$.get(getSignedUrl, function(data, result) {
 if (result === 'success' && data.url) {
 videoElement.find('video').attr('src', data.url);
 }
})

 }
}

If you run the website and refresh the page, you should see the videos appear on the
page. You can play them again by clicking each one.

9.3.4 Improving performance

The code in the listing works, but it’s terribly inefficient because your website has to
issue a request to get a signed URL for every video. It might be okay if you have five
videos, but it won’t scale if you have thousands of videos and thousands of clients.
They will cause a denial-of-service (DoS) attack on your API Gateway until it starts
refusing connections (your clients will see a 429 Too many requests response).

 How would you solve this problem? One way would be to make the system get a
signed URL only when a user clicks a video. This may result in a slight delay, but it’s

Listing 9.12 Getting secure URLs

The URL you need
to invoke to get
the signed URL for
the video

If the result is success, assign the
signed URL to the video element.

252 CHAPTER 9 Database
not a bad option. If the user isn’t allowed to get the video, they could be redirected to
a login or signup page. Still, this may not be very efficient if the user is clicking many
videos. Another option is to request a whole batch of signed URLs once when the
main page loads and then request additional signed URLs on demand.

 Listing 9.13 shows a modified get-signed-url function that takes an array of keys
(passed into the function in the body of the request) and generates an array of objects
that contain signed URLs. This function iterates through an array of keys using
async.forEachOf, which encapsulates the asynchronous invocation of the get-
signed-url function. When all signed URLs are generated, they’re returned in the
response to the call. The async.forEachOf function is part of the async framework
that we discussed at length in chapter 6.

'use strict';

var AWS = require('aws-sdk');
var async = require('async');

var s3 = new AWS.S3();

exports.handler = function(event, context, callback){
 var body = JSON.parse(event.body);
 var urls = [];

 async.forEachOf(body, function(video, index, next) {
s3.getSignedUrl('getObject', {Bucket: process.env.BUCKET,

➥Key: video.key, Expires: 9000}, function(err, url) {
if (err) {
 console.log('Error generating signed URL for', video.key);
 next(err);
} else {
 urls.push({firebaseId: video.firebaseId, url: url});
 next();
}

});

 }, function (err) {
if (err) {
console.log('Could not generate signed URLs');
callback(err);

} else {
console.log('Successfully generated URLs');

var response = {
 'statusCode': 200,
 'headers' : {'Access-Control-Allow-Origin':'*'},
 'body' : JSON.stringify({'urls': urls})
}

Listing 9.13 Updated get-signed-url function

The body of the request object contains keys that
you need to sign. JSON.parse() parses a JSON string
and produces a JSON object that you can work with.

Asynchronously iterate through all
keys in the body. The third parameter

of the forEachOf function is invoked
when all iterated functions have

finished or an error occurred.

253Securing access to files
callback(null, response);
}

 });
}

The function given in listing 9.13 is designed to be invoked via an API Gateway using
Lambda proxy integration. It also expects that the necessary keys are passed in to the
function in the body of the request. The body would need to look like the example
given in the next listing. You’re passing in the Firebase ID and the key of the file in S3.
The Firebase ID is needed so that you can later match the returned signed URL to its
entry in Firebase if you need to.

[{"firebaseId":"0b18db4cbb4eca1a","key":"0b18db4cbb4eca1a/video-720p.mp4"},
{"firebaseId":"38b8c18c85ec686f","key":"38b8c18c85ec686f/video2-720p.mp4"},
{"firebaseId":"6ef3d6668780538e","key":"6ef3d6668780538e/video3_2mb-720p.mp4"},
{"firebaseId":"7b58d16bf1a1af6aa1","key":"7b58d16bf1a1af6aa1/video4-720p.mp4"}]

To generate the required request and its body, refer to the following listing, which
shows the kind of function you can implement in the 24-Hour Video website.

nodeRef
 .on('child_added', function (childSnapshot) {

that.getSignedUrls(childSnapshot.val());
});

getSignedUrls: function(videoObjs) {
 if (videoObjs) {
 var objectMap = $.map(videoObjs, function (video, firebaseId) {

return {firebaseId: firebaseId, key: video.key};
 })

 var getSignedUrl = this.data.config.apiBaseUrl + '/signed-url';

 $.post(getSignedUrl, JSON.stringify(objectMap),

➥function(data, status){
if (status === 'success') {
//iterate through the response and add videos to the page

}
else {
//handle error

}
 });
 }
}

Listing 9.14 The body of the batch get-signed-urls request

Listing 9.15 24-Hour Video get-Signed-Urls

Using jQuery map you can translate an array of
objects coming from Firebase to a new array of
items that you can send to the Lambda function.

A regular POST request is made with the
help of jQuery. The body of the request is
a stringified map of keys you just created.

The response should contain an
array of Firebase IDs and signed

URLs. You can iterate through these
and add videos to the page.If the POST request returns with an

error, it needs to be handled.

254 CHAPTER 9 Database
An exercise at the end of this chapter will ask you to finish the implementation of the
batched retrieval of presigned URLs. You’ll need to finish the implementation in list-
ing 9.15 to get everything working.

9.3.5 Improving Firebase security

If you’ve been following along and implementing everything we’ve been discussing—
including presigned URLs—you should have a reasonably robust and secure system.
There’s one problem. If you look back at listing 9.3, you’ll see that your Firebase secu-
rity rule allows any authenticated user to read from Firebase. In some instances, that
might be a reasonable thing to do, especially if you’re building a public system. But
you want to force your users to log in before they can view videos (and generate pre-
signed URLs), which is why you should lock down Firebase so that only authenticated
users can read from it.

 First, lock down the rules:

1 In Firebase’s console find and open your database.
2 Select Rules from the top menu.
3 Copy the security rules given in the next listing into the Security Rules text box.
4 Choose Publish once you’ve finished.

{
 "rules": {
 ".read": "auth != null",
 ".write": "auth != null"
 }
}

Having implemented the new rule, refresh your website. Nothing should come up,
because you’re not allowed to read without authenticating. Next, you’ll use Auth0 to
issue a custom delegation token whenever a user signs in. This token will be sent to
Firebase and used to authenticate the user there.

HELLO AUTH0
Open Auth0 and click Clients. Then, next to your app (that is, 24 Hour Video), click
Addon. Click the big Firebase button. You should see a popup that explains how to
configure the integration between Firebase and Auth0. We’re using SDK Version 3, so
you should follow those instructions. The first thing you need to do is configure a
JSON service in Firebase:

1 Open Firebase and select your project.
2 Click the settings cog and select Permissions.
3 Choose Service Accounts from the sidebar.
4 Click Create Service Account.

Listing 9.16 Firebase rules

Now you’re going to secure reads
so that your users have to log in
before they can use the website.

255Securing access to files
5 In the Service Account Name type auth0.
6 From the Role drop-down select Project and then Viewer.
7 Click Furnish a New Private Key.
8 Make sure JSON is selected as the key type.
9 Choose Create and save the resulting file to your computer as auth0-key.json.

You may have already noticed that you did something similar in section 9.2.3, so it
should be relatively easy. Remember that Auth0 pop-up you saw when you clicked the
big Firebase button? Go back to that pop-up and follow these steps:

1 Choose the Settings tab.
2 Select Use SDK v3+ Tokens.
3 Copy the private_key, private_key_id, and client_email from auth0-

key.json into the appropriate text boxes in the pop-up (figure 9.15).
4 Click Save when finished, close the pop-up, and remember to enable Firebase

in the main Addons page (if you haven’t done so already—figure 9.16).

This is represented
by client_email.

This is represented
by private_key.

This is represented
by private_key_id in
the private key file
generated by Firebase.

Figure 9.15 The values for this settings page can be obtained from the auth0-key.json file you
generated earlier.

256 CHAPTER 9 Database
DELEGATION TOKEN

Auth0 provides a delegation token endpoint, which you can use to retrieve a delega-
tion token for Firebase. The process involves your user logging in first and then
requesting a Firebase token. Then, using this Firebase token, you can authenticate
with Firebase and get the required data. Remember that JavaScript is asynchronous,
so you should use either promises or, better yet, a finite-state machine library to make
sure things are done in the correct order. Make sure you do the following:

1 Perform user authentication with Auth0 first.
2 Retrieve the Firebase delegation token from Auth0.
3 Authenticate with Firebase using the delegation token.
4 Retrieve data from Firebase and display it to the user.

The full implementation and the changes that you need to make to the 24-Hour
Video website are too numerous to be published on these pages. Nevertheless, the
most important code listings are given next. These should show you how to imple-
ment everything. If you want to see a complete implementation, please look at the
source code provided with this book.

Firebase is the newest
addition to the family.

Figure 9.16 Don’t forget to enable Firebase on the main Addons configuration page.

257Securing access to files

to
n.

r.

.

MAKING WEBSITE CHANGES

To get the delegation token for Firebase, you need to request it from Auth0 after log-
ging in. Listing 9.17 shows source code for a function that retrieves and saves the Fire-
base delegation token after a user successfully logs in to Auth0. This function should
go into user-controller.js. To help find the right parameters and values for your sys-
tem, log in to Auth0 and go to https://auth0.com/docs/api/authentication. Scroll
down to Delegated Authentication and expand the section that describes how to
obtain a delegation token. This section will help you find the right parameters and
even perform a test by issuing a request to the /delegation endpoint.

getFirebaseToken: function(token){
 var that = this;
 var config = this.data.config.auth0;

 var url = 'https://' + config.domain + '/delegation';

 var data = {
id_token: token,
scope: config.scope,
api_type: config.api_type,
grant_type: config.grant_type,
target: config.target,
client_id: config.clientId

 }

 $.post(url, data, function(data, status) {
if (status === 'success') {
localStorage.setItem('firebaseToken', data.id_token);
that.authentication.resolve();

} else {
console.log('Could not get retrieve firebase delegation token',

➥data, status);
that.authentication.fail();

}
 }, 'json');
 }

Listing 9.17 Get Firebase token

The JWT token that identifies the user. This token
is retrieved when the user logs in to Auth0.

The scope parameter
specifies what attributes
include in the issued toke
You can set it to openid.

The api_type
should be set to
firebase.

The grant_type should be set to
urn:ietf:params:oauth:grant-type:jwt-beare

The client_id identifies the requesting app. It looks
something like r8PQy2Qdr91xU3KTGQ01e598bwee8MQr.
You can grab it from the clients page after logging in to
Auth0.com.

The target parameter identifies the
API endpoint in Auth0. This is
usually the same as the client_id.

You’re using deferred objects to
allow you to return and resolve

promises at a later stage.

Save the firebase token to
local storage for later use

https://auth0.com/docs/api/authentication

258 CHAPTER 9 Database
To make listing 9.17 work, you’d need to make other changes to user-controller.js,
video-controller.js, and config.js. You may have also gleaned from listing 9.17 that
you’re using deferred objects (see this line, for example: that.authentication
.resolve()). The reason for using deferred objects is that you want to run code that
only other code successfully resolves. The next listing shows the new implementation
of main.js, which waits for userController.init to successfully resolve before it runs
the init functions for videoController and uploadController.

(function(){
 $(document).ready(function(){
 userController.init(configConstants)

.then(function() {
 videoController.init(configConstants);
 uploadController.init(configConstants);

}
);
 });
}());

The user-controller.js file also now has a deferredAuthentication function whose
purpose is to check whether the right user tokens are stored in local storage and then
react accordingly (that is, resolving successfully or trying to get the right token from
Auth0 and Firebase). The init function invokes the deferredAuthentication func-
tion when it finishes its own execution (see the following listing).

deferredAuthentication: function() {
 var that = this;
 this.authentication = $.Deferred();

 var idToken = localStorage.getItem('userToken');

 if (idToken) {
 this.configureAuthenticatedRequests();
 this.data.auth0Lock.getProfile(idToken, function(err, profile) {

if (err) {
return alert('There was an error getting the profile: ' +

➥err.message);
}
that.showUserAuthenticationDetails(profile);

 });

 var firebaseToken = localStorage.getItem('firebaseToken');

 if (firebaseToken) {
this.authentication.resolve();

 } else {
this.getFirebaseToken(idToken);

Listing 9.18 The main.js file

Listing 9.19 The deferredAuthentication function

The init function of
userController resolves
a deferred object. When
that resolves
successfully, the other
init functions can run.

Check if the Auth0 and Firebase
JWT tokens are in local storage

and try to load them.

If the Firebase token isn’t found but
the Auth0 authentication token
exists, invoke the getFirebaseToken
function implemented in listing 9.17.

259Summary
 }
 }

 return this.authentication;
}

Refer to the code provided with this book (or look at https://github.com/sbarski/
serverless-architectures-aws) for other miscellaneous code changes you need to imple-
ment to make everything work. Or, better yet, treat it as an exercise and figure out the
remaining code changes yourself. At the end, you should have a working website that
requires you to log in before all videos are loaded and displayed. On log out, all videos
should be removed from the interface.

9.4 Exercises
Try the following exercises to further cement your understanding of Firebase and
serverless architectures:

1 The connectToFirebase function in the video controller reacts to child_added
and child_changed events. Add support for child_removed to automatically
remove a video from the user interface when a related record is deleted from
Firebase.

2 You can currently detect when the client makes a connection to Firebase. The
bit of code that’s responsible for it is in the video controller. Update the video
controller to display a message on the UI if the client goes offline or loses con-
nection. The message should say that the client is offline.

3 Finish the implementation you began in section 9.3.4 so that you have pre-
signed URLs working with Firebase.

4 Explore the products that the Firebase platform has to offer. How do these dif-
fer from similar AWS services?

5 Explore security rules and indexes in more detail. In which cases can you use
indexes, and what kind of security rules can you introduce to make your 24-
Hour Video database even more secure?

9.5 Summary
In this chapter, you learned about Firebase. You implemented Firebase with 24-Hour
Video and saw how to read/write to it from a website and from a Lambda function.
Firebase is a great database for driving a user interface, and it works well if your infor-
mation storage and reporting needs aren’t complex. Firebase is fast, and its real-time
streaming and offline capabilities are very useful. Its support for delegation tokens
makes it straightforward to use in a serverless architecture. In the next chapter, we’ll
wrap up our book and look at what you’ve been able to achieve and how you can take
your architecture further.

This function returns a deferred object,
which is, in turn, returned by the init
function to the code executing in main.js.

https://github.com/sbarski/serverless-architectures-aws
https://github.com/sbarski/serverless-architectures-aws
https://github.com/sbarski/serverless-architectures-aws

Going the last mile
Serverless is an approach to development of software that encourages developers to
use a compute service to execute code, make use of third-party services, and apply
certain patterns and practices. A serverless approach to the design of software
allows developers to move more quickly and focus on solving their core problem
instead of managing infrastructure or worrying about issues such as autoscaling
groups. We’ve been discussing serverless throughout the book, but there are a few
points we didn’t touch on. In this last chapter we’re going to discuss microservices,
construction of state machines, and monetization opportunities for serverless APIs
on AWS.

10.1 Deployment and frameworks
Two important subjects that we haven’t yet covered are deployment and frame-
works. In chapter 6, you implemented a way to deploy Lambda functions using
npm, and in chapter 7 we discussed using Swagger to create your API Gateway. But

This chapter covers
 Deployment and frameworks

 Microservices with Lambda

 State machines and AWS Step Functions

 Monetizing APIs on AWS Marketplace
260

261Toward better microservices
we know you can do better and that you need a framework for organizing, connecting,
and deploying everything in concert. Going forward, you should be able to script your
serverless application and deploy it from a continuous integration (CI) server, or even
from a developer’s machine, at the push of a button. If you can’t do that and your way
of deployment is manual, you’re not going to enjoy building serverless applications.
Go for automation every time you can, and your future self will thank you for it.

 Appendix G introduces the Serverless Framework and the Serverless Application
Model (SAM). Serverless Framework is a CLI tool written in node.js that can help you
script and deploy serverless applications to AWS. It is developed by an independent
startup called Serverless, Inc. and supported by an ever-growing community of open
source contributors. One of the best features of the Serverless Framework is its plugin
system that allows anyone to add new features.

 SAM is an extension (a transform) to CloudFormation that provides a way to easily
define Lambda functions, API Gateway APIs, and DynamoDB tables and then deploy
them using CloudFormation. It’s developed by AWS as a means of making organiza-
tion and deployment of serverless apps easier.

 The only note we might add here is that if your serverless application is contained
within AWS, you can use Serverless Framework or SAM to automate nearly everything.
But if you use external services such as Firebase or Auth0, your frameworks aren’t
likely to support them. So you may have to think about additional ways of automating
and scripting your system if you end up using non-AWS services.

10.2 Toward better microservices
You created the sample application, 24-Hour Video, with a set of services built on
Lambda. Your application can scale thanks to Lambda, Firebase, Auth0, and other ser-
vices. It can be argued, however, that what you built isn’t a true microservices architec-
ture. This is because all of your services share the same database. In a pure
microservices architecture, each service would have its own data storage mechanism
and be entirely decoupled and independent of other microservices.

 Software engineering is often a game of trade-offs. What you’ve implemented in
this book also has its pros and cons. The advantage is that for an application of its size,
there’s one database to manage. You don’t need to think about synchronizing data
and eventual consistency. The architecture is easy to understand and relatively easy to
debug. But if you were building a truly large, distributed application, you might con-
sider implementing a traditional microservices approach.

 As we’ve mentioned, in a pure microservices architecture each service has its own
data store. There’s an advantage to doing this. A change in the database schema of
one microservice won’t affect another service. Development teams can own individual
microservices, implement, deploy, and move more quickly. Another benefit is that
developers can choose the right database and storage mechanism for each microser-
vice depending on its requirements. One service might use a NoSQL database
whereas another might use a relational data store. Being able to choose the right tool
for the job and the right database to fit the data model can be a big benefit.

262 CHAPTER 10 Going the last mile
 It goes without saying that moving to a true microservices architecture introduces
its own challenges. There needs to be a way to synchronize data and roll back from
errors. Eventual consistency needs to be handled and concurrent updates reconciled.
You may want to consider implementing event sourcing (https://martinfowler.com/
eaaDev/EventSourcing.html) too. But these challenges need to be solved if teams
wish to benefit from microservices. Our recommendation is to think deeply about
whether a microservices approach is right for your application. If you’re building a
large, distributed application, then it may very well be. But if you’re building a small,
constrained application, then it may not be worth the trouble.

Figures 10.1 and 10.2 show two different examples of microservices architectures
where each service has its own data store.

 Note that in figure 10.1 services are coupled to each other. The Checkout service
must be aware of other services to invoke them. It must also wait for their responses
before it can terminate. If you’re building microservices and have a tight coupling
between them (that is, if a service has to issue synchronous API calls and wait for
responses), you might want to rethink your approach. A tight coupling between
microservices may put restrictions on how quickly they can be developed and
deployed.

What is eventual consistency?
You might be familiar with the Domain Name System (DNS). DNS resolves human-
readable hostnames such as www.google.com to IP addresses. When a change
needs to be made to DNS, it may take time to propagate because authoritative name
servers need to be updated and caching DNS servers need to be refreshed. Some
clients may get the most recent data more quickly than others, but in the end, all cli-
ents will get the same result (the system will have converged). DNS is an example of
an eventually consistent system. Eventually all requests will get the same data.

DynamoDB is another example. AWS states that “an eventually consistent read might
not reflect the results of a recently completed write. Consistency across all copies of
data is usually reached within a second. Repeating a read after a short time should
return the updated data.” It is, however, possible to turn on strong read consistency
in DynamoDB if the application needs it. There’s a difference between DNS and
DynamoDB in that DNS as a caching system provides no guarantees for monotonic
reads, whereas DynamoDB does (a monotonic read guarantees that once a new
value has been returned, the old value will never be read again).

Understanding eventual consistency is key to understanding distributed systems and
how to build microservices architecture. If you’re building a distributed application
with multiple microservices and data stores, you’ll end up dealing with a situation
where some services have more recent data than others. But if the system has been
architected correctly, everything should ultimately converge and all services should
have the same, consistent data after a time.

https://martinfowler.com/eaaDev/EventSourcing.html
https://martinfowler.com/eaaDev/EventSourcing.html
https://martinfowler.com/eaaDev/EventSourcing.html

263Toward better microservices
In an eCommerce example,
an API request may be issued
directly to a checkout service.

Services are coupled to one another.
The Checkout service must know
about other services to successfully
complete the purchase.

Checkout
service

Payment
service

Customer
service

Product
service

API
Gateway

Relational
database

NoSQL
database

Relational
database

Relational
database

Relational
database

Figure 10.1 Microservices have their own databases. But in this example, services have
a coupling via synchronous API calls.

In an eCommerce example,
an API request may be issued
directly to a Checkout service.

The Checkout service may persist
information about the purchase to
its own database and then push a
 record to a Kinesis stream.

Checkout
service Kinesis

Payment
service

Customer
service

API
Gateway

Microservices may respond to
the records in the Kinesis stream
and act on them. Services may
respond and process messages
in a different order each time.

Product
service

Relational
database

NoSQL
database

Relational
database

Relational
database

Relational
database

Figure 10.2 Microservices have their own data stores. Three of the microservices subscribe to a
Kinesis stream and consume messages off it. They don’t need to have direct knowledge of each other.

264 CHAPTER 10 Going the last mile
 Figure 10.2 shows a more decoupled approach where a Kinesis stream is used as a
message-delivery mechanism. In this example, services don’t need to know about each
other, but they must subscribe to a messaging system like Kinesis Streams to receive
events or messages. Working on services in this scenario becomes easier because teams
can develop and release microservices independently. On the other hand, in this sce-
nario fault recovery and error handling may be trickier. If one message successfully
updates the database in one service but fails at another, how do you roll back? How do
you handle a situation if data goes out of sync between services?

10.2.1 Handling errors

Look back at figures 10.1 and 10.2 and imagine a situation where a customer bought a
product. A transaction is carried out, but unfortunately the customer microservice
experiences a catastrophic failure (it goes down). The transaction must be aborted
and changes to any other services and databases rolled back. The system must be able
to automatically recover, especially if other services have already updated their data in
an assumption that the overall transaction will succeed. In figure 10.1, the overarch-
ing Checkout service may be able to handle the issue. It could invoke services it talks
to and get them to roll back. But what about in figure 10.2? There’s no overarching
service in charge of the transaction. Everything is distributed.

 One way you could try to solve this problem is by creating an error-handling micros-
ervice. This service could notify or roll back other services in case of an issue. Every
service in your architecture would need a way to notify the error-handling service and
have a way to pass in the right contextual information (about what has happened) to
it. Figure 10.3 shows a sample architecture that includes an error-handling service.

 As figure 10.3 shows, the error-handling service can read messages from an SNS
topic and then force other services to roll back or carry out compensating actions.
The exact behavior of the error-handling service is up to you.

DEAD LETTER QUEUE

Lambda supports the concept of dead let-
ter queues (DLQ), which can help you
recover from failures. Lambda can auto-
matically push a message to a DLQ, which
can be an SNS topic or an SQS queue,
whenever it fails to successfully process an
event (and the default number of retries
has been carried out). You can write
another Lambda function to read messages
from this SNS topic/SQS queue and carry
out the relevant compensating actions,
send alerts, and so on. If you refer back to
figure 10.3, you’ll see that the SNS error
topic can be replaced by the DLQ managed

DLQ at work
So you’ve enabled DLQ; you should
know the following: DLQ is not sup-
ported when the event source is a
DynamoDB table, a Kinesis stream,
or an API Gateway resource request
integration. It works, however,
when a function is asynchronously
invoked (as can be done with S3 or
SNS). If you wanted to make it work
with an architecture similar to the
one in figure 10.3, you’d have to
use an SNS topic instead of a Kine-
sis stream as the main messaging
transport system.

265Toward better microservices
by AWS. You’ll then only need to write the error-handling service to process messages
from a DLQ.

 The combination of a DLQ and Lambda offers a robust approach for handling
errors. This is because a function can fail in a number of ways. It can crash because of
a programming bug or a timeout or because the callback function was invoked with
an error. Any of these outcomes would push a message to the DLQ without the devel-
oper having to do anything. DLQ can be enabled in the Advanced Settings section of
the Lambda console (figure 10.4) or when a Lambda function is created.

 Our advice is to make use of DLQ as much as possible because it’s natively supported
by Lambda and doesn’t require additional programming effort. Before DLQ was sup-
ported by Lambda, developers had to write their own implementation, which was much
more brittle and unreliable, especially when functions crashed. If you use DLQ, remem-
ber to write a function to process messages from the DLQ topic/queue and, at the very
least, send a notification to the administrator that something has failed.

There is an error in our
Customer Service. An error
message is pushed to an SNS
topic which is processed by
the Error Handling Service.

Checkout
service

1. Message pushed
to Kinesis

2. Customer
service has

an issue
2. Product

service
updated

2. Payment
service
updated

3. Product
service rollback

3. Payment service rollback

Error!

Kinesis

SNS (error topic)

Payment
service

API
Gateway

Product
service

Relational
database

NoSQL
database

Relational
database

Relational
database

Error Handling
service

Relational
database

Customer
service

Relational
database

Figure 10.3 An error-handling service is used to roll back operations that take place in
services if something fails.

266 CHAPTER 10 Going the last mile
ACTIVE MONITORING

An active monitor or a watchdog service is a supervisor in a system. It can detect and
proactively address problems. Your microservices can periodically send data to your
active monitor with information about their state (or your watchdog can ping and
monitor services itself).

 A watchdog can carry out compensating actions if it determines that something
has gone wrong. One example of this is data synchronization. It may be worth check-
ing from time to time that data across different services is consistent. We recommend
this if you end up dealing with numerous databases in a microservices architecture. If
your watchdog determines that one database is out of sync with another, it can carry
out corrective action by synchronizing across databases or alerting the administrator.
Obviously, you don’t want to end up in this type of situation, but you need to think of
and prepare for these kinds of things in large, distributed systems.

10.3 Step Functions
Step Functions is an AWS service for creating and coordinating workflows. Step Func-
tions can be thought of as a state machine with a set of states and transitions. Each
step (or state) can be a Lambda function, code running on an EC2, or even something
executing in your own infrastructure. The Step Functions service triggers each step

You can select SNS or SQS as the DLQ Resource.
Having done that, you can select a topic or a queue.

Figure 10.4 DLQ is straightforward to enable. You’ll need to create an SNS topic or an SQS queue for it.

267Step Functions
and retries if there’s an error. It can activate steps sequentially or in parallel, have
choice states, catch failures, and pause between executions of steps. Step Functions is
a great way to define workflows and have a system that manages it for you, including
state and error handling. It’s far easier to use it and to debug than if you had to define
complex workflows with Lambda yourself. The pricing for Step Functions is based on
the number of state transitions. The first 4,000 state transitions are free each month,
with the next 1,000 state transitions priced at $0.025. It goes without saying that if you
end up using services (such as Lambda) with Steps Functions, you’ll have to pay for
those services as well.

10.3.1 Image-processing example

A basic example is an image-processing system. Let’s say you need to take an image,
make a bunch of copies, and then manipulate those copies in interesting ways. Imag-
ine you want to do the following:

 Add a border to one copy.
 Make another one black and white.
 Create a thumbnail out of the third copy.

Finally, you’d want to receive a notification, such as an email, when all the operations
were successfully carried out. Think about it: how you would do it with Lambda alone?
You could write one giant function that would do the image-manipulation work and
then send an email at the end. That works, but goes against the single-responsibility
principle we mentioned in chapter 1. Furthermore, combining so many actions would
make the function run longer. And if you had to add more features later, the function
would become more difficult to manage. Another approach would be to write an indi-
vidual function for each transformation and then send a notification at the end. You’d
need a database or some other data storage mechanism to keep track of which trans-
formations were done. Otherwise, you wouldn’t know when all the functions were fin-
ished to send an email. The point here is that this problem is solvable with Lambda
(and possibly other services), but Step Functions makes this sort of task easier to
implement and maintain.

LAMBDA FUNCTIONS FIRST

Let’s look at how you’d design a basic Step Functions system that would satisfy the
requirements of the example:

1 First, you’d need to create a Lambda function to execute your Step Functions
state machine. You’d need to configure an S3 event to trigger this function,
which would, in turn, run the state machine.

2 Next, you’d need to create the three Lambda functions to do image transforma-
tions. Each function would download the file from S3 to its local temporary stor-
age, make needed changes, and then upload the new version back to S3. Each
image-transformation function would also execute the callback function and
pass in the name of the new file as the second parameter.

268 CHAPTER 10 Going the last mile
3 You’d also need to create an end state (Send Notification) function. This func-
tion would be invoked after the other three functions successfully completed
their work. It would send an email using the Simple Email Service.

Figure 10.5 shows how these functions should be composed. The Start and the End
labels in the diagram define where the Step Functions state machine begins and ends.
The interesting part about it is the last Lambda function (Send Notification function).
This function should execute only if the other three functions finish and terminate
successfully. The fact that the Send Notification function will be invoked only if the
other three functions succeed is important because it means that you don’t need to
maintain state. You don’t need a database and don’t need to manually keep track of
successful/failed executions.

 Before moving on to the next step, go into the AWS console and create the neces-
sary functions we just described. You don’t need to implement them immediately, but
you need to create them so that you can reference their ARNs in your state machine.

CREATING STEP FUNCTIONS

To create a Step Functions state machine, find the Step Functions icon in the AWS
console and click it. You can create your first state machine by clicking the blue Get
Started button in the middle of the screen. In the Create State Machine screen, give

This function will kick off the
Step Functions state machine.

The Send Notification function will
receive output from the transform
functions as an array.

The Send Notification functions will
send a notification using SES to the
user informing that the transformation
has finished.

Transform
function #1

Transform
function #2

Execute
workflow
function

Send
Notification

function

Simple
Email

Service

S3 bucket Start

End

Transform
function #3

Figure 10.5 This is the design of the system in the AWS console, where you’ll see a diagram
representing your state machine.

269Step Functions
your state machine a name. You’ll also see blueprints designed to start you off. You
can choose one and then continue to modify it in the code window.

 Listing 10.1 shows an example of a state machine that matches your requirements.
Copy and paste the listing to the code window in the console and then click the
refresh button in the preview window to see an updated graph. This graph shows your
state machine. If you make a mistake in your code (which is called the Amazon States
Language), the graph will appear broken. Once you’re satisfied with the state
machine, click Create State Machine. You’ll see a pop-up that will allow you to select
or create an IAM role. Click the drop-down, select the role automatically provided for
you, and then click OK.

{
 "Comment": "Using Amazon States Language using a

➥ parallel state to execute three branches at the same time",
"StartAt": "Parallel",
"States": {

 "Parallel": {
"Type": "Parallel",
"Next": "Final State",
"Branches": [
{
 "StartAt": "Transform 1",
 "States": {
 "Transform 1": {

"Type": "Task",
"Resource": "<TRANSFORM FUNCTION 1 ARN>",
"End": true

 }
 }
},
{
 "StartAt": "Transform 2",
 "States": {
 "Transform 2": {

"Type": "Task",
"Resource": "<TRANSFORM FUNCTION 2 ARN>",
"End": true

 }
 }
},
{
 "StartAt": "Transform 3",
 "States": {
 "Transform 3": {

"Type": "Task",
"Resource": "<TRANSFORM FUNCTION 3 ARN>",
"End": true

 }
 }
}

Listing 10.1 Amazon States Language

Substitute with
the ARN of the
tree transform
functions you
created earlier.

270 CHAPTER 10 Going the last mile
]
 },
 "Final State": {

"Type": "Task",
"Resource": "<SEND NOTIFICATION FUNCTION ARN>",
"End": true

 }
 }
}

RUNNING STEP FUNCTIONS

If you completed the steps outlined in the previous section, you’ll end up on a screen
from which you can run the state machine. You can choose the New Execution button
to trigger an execution immediately. If you run an execution and it succeeds, it will
look something like figure 10.6.

CONNECTING EVERYTHING ELSE

Having created a state machine in Step Functions, you still have a bit left to do. You
need to create an S3 bucket, configure Simple Email Service, and write the actual
Lambda functions. These are left for you as an exercise, but it’s worth having a discus-
sion about the Execute Workflow function. This is the function that executes your
state machine after being triggered by an S3 event (it’s also the only function in your

Substitute with the
ARN of the Send
Notification function.

Review the input and the output
of the state machine using tabs.

The graph is a useful visualization of the system
(especially as it becomes more complex).

Figure 10.6 A successful execution of Step Functions. There’s a bit of detail to explore for both
successes and failures.

271Step Functions
system that’s outside your state machine; see figure 10.5). The following code snippet
does most of what you want. Note the params object in the listing. It specifies the ARN
of the state machine you’ve created and the input parameters. These input parame-
ters should be the bucket name and the object key.

var AWS = require('aws-sdk');
var stepFunctions = new AWS.StepFunctions();

var params = {
stateMachineArn: '<STATE MACHINE ARN>',
input: "{'bucket':'serverless-image-transform', 'key':'image.png'}",
name: 'MyTest'

 };

 stepFunctions.startExecution(params, function(err, data) {
if (err) {
callback(err);

}
else {
callback(null, 'Step Functions executionARN: ' + data.executionArn);

}
 });

The startExecution function call in listing 10.2 is asynchronous. Your state machine
could run for a long time, so the Lambda function can’t wait for a result. You could,
however, periodically enquire about the state of execution using executionArn
returned by startExecution. The next listing shows the snippet of code that you
could use to do it.

var AWS = require('aws-sdk');
var stepFunctions = new AWS.StepFunctions();

var params = {
 executionArn: '<STATE MACHINE EXECUTION ARN>'
};

stepFunctions.describeExecution(params, function(err, data) {
 if (err) console.log(err, err.stack);
 else console.log(data);
}

As we noted earlier, the Send Notification function will run only when the three trans-
formation functions have finished. The event object for the Send Notification func-
tion will contain an array of values. These values are whatever the other three

Listing 10.2 Executing the Step Functions state machine

Listing 10.3 Describing execution with Step Functions

The ARN of the state machine
created in the previous step

The input to the
state machine: the
bucket and the key

The executionArn parameter can be used
to check on ongoing or finished executions.

A label
(or name)

for the
execution

Replace with the state
machine execution ARN
given by the startExecution
function in listing 10.2.

Describes the state of the execution,
including if it’s finished and what the

final output might be

272 CHAPTER 10 Going the last mile
functions pass to their callbacks. You could, for example, pass the key and the bucket
of the transformed file in to the callback of each of the functions: callback(null,
{'bucket': 'my-bucket', 'key': 'thumbnail.png'}). In the Send Notification func-
tion, you could extract the bucket names and object keys from the array and send
them via SES.

WHAT’S NEXT WITH STEP FUNCTIONS

We’ve covered only the bare minimum when it comes to Step Functions. We’ve
described how to build a simple parallel state machine, but you can do more with
retry failure and catch failure, choice states, and wait states. We haven’t discussed
activities and how to connect Step Functions to code running on your own machine.
If you’re interested in learning more, look at the AWS documentation on Step Func-
tions (https://aws.amazon.com/documentation/step-functions/) and check out the
Amazon States Language, which will help you understand and quickly put together
awesome state machines (https://states-language.net/spec.html).

10.4 AWS Marketplace
Among many interesting announcements made by AWS at the end of 2016 were the
announcements about the integration of the API Gateway with the AWS Marketplace
(https://aws.amazon.com/marketplace). Namely, AWS made a decision to allow peo-
ple to monetize and sell their APIs on its online Marketplace. The idea is simple: build
an API using the API Gateway, submit it to the Marketplace, and, if approved, earn
money from it. AWS handles bill calculation and collection and then pays you on a reg-
ular basis. The API you build with the API Gateway can be anything you want, but AWS
needs to approve it before it can be sold on the Marketplace. You can also make your
API entirely serverless by combining API Gateway with Lambda (or other AWS ser-
vices), or you can combine the API with your on-premises infrastructure or code run-
ning on EC2. The design and implementation are entirely up to you.

 If you want to sell your API on the Marketplace, here are the high-level steps you’ll
need to carry out:

1 Create your API using API Gateway and any other products or services. You’re
not restricted to using AWS only. If you want to use Google’s Vision API or IBM’s
Document Conversion Service, go ahead and use it.

2 Deploy the API and create usage plans. Usage plans allow you to set different
limits and quotas. You can use this to create different subscription plans for
your users.

3 Create and configure a developer portal for your users. This portal will list
usage plans and allow your users to sign up for your service. When users sign
up, your platform should create an API key for them.

4 Create an SaaS product in the AWS Marketplace and get it approved.

https://aws.amazon.com/documentation/step-functions/
https://states-language.net/spec.html
https://aws.amazon.com/marketplace

273AWS Marketplace
5 Integrate your AWS Marketplace product with the developer portal. The SaaS
Seller Integration Guide (https://s3.amazonaws.com/awsmp-loadforms/SaaS+
Seller+Integration+Guide.pdf) details how to do it.

6 Launch your API and start earning a profit.

To make things easier to set up, AWS has published a sample developer portal on
GitHub (https://github.com/awslabs/aws-api-gateway-developer-portal). You can
clone this repository and use it to spin up the required Lambda functions, API Gate-
way, Cognito user pools, S3 buckets, and the website. This is easy to do because every-
thing is automated and the instructions are provided in the repository. These
instructions also describe how to configure the AWS Marketplace to work with the
developer portal. Figure 10.7 shows what the sample developer portal looks like after
your user has registered and logged in. You can, of course, customize the developer
portal or come up with your own.

 Another useful and in-depth guide to selling an API on the AWS Marketplace can be
found in the official AWS documentation (https://docs.aws.amazon.com/apigateway/
latest/developerguide/sell-api-as-saas-on-aws-marketplace.html). We’re excited about
the AWS Marketplace because everyone has an equal opportunity to build fantastic
serverless SaaS products and make them available to the entire world. Let us know if
you end up building a product and putting it on the AWS Marketplace.

The API key created for your user.

Users can review and learn more about
the API your product provides.

Figure 10.7 The sample developer portal provided by AWS is awesome for getting started quickly.

https://docs.aws.amazon.com/apigateway/latest/developerguide/sell-api-as-saas-on-aws-marketplace.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/sell-api-as-saas-on-aws-marketplace.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/sell-api-as-saas-on-aws-marketplace.html
https://s3.amazonaws.com/awsmp-loadforms/SaaS+Seller+Integration+Guide.pdf
https://s3.amazonaws.com/awsmp-loadforms/SaaS+Seller+Integration+Guide.pdf
https://s3.amazonaws.com/awsmp-loadforms/SaaS+Seller+Integration+Guide.pdf
https://github.com/awslabs/aws-api-gateway-developer-portal

274 CHAPTER 10 Going the last mile
10.5 Where from here
We have good news for you! You’ve made it to the very end. We hope that you’re
proud of the journey you’ve made. You learned about serverless architectures and pat-
terns; discovered services such as AWS Lambda, API Gateway, Auth0, and Firebase; and
put together a fully working video-sharing website with security and a transcoding
pipeline. You’ve had to read up on many different technologies, practices, and pat-
terns. There’s a lot to absorb and learn in this book, especially if this is your first expo-
sure to serverless technologies and architectures. We find that the best way to learn is
by doing, so take the 24-Hour Video system you’ve built and add new features to it.
And if you do build something, reach out to us and tell us what you’ve done.

Advanced 24-Hour Video exercises
If you’ve completed the 24-Hour Video video-sharing website discussed in this book,
here are some additional exercises you can try:

 Style the website to make it attractive for your users. Make sure that mes-
sages and warnings make sense and that users have a clear idea of what to
do.

 Add a form to allow your users to edit and save their public information. This
information may include a nickname and a picture. Put a link to the user’s
public profile next to the videos they’ve uploaded.

 Allow users to publish and unpublish videos they have uploaded, and allow
them to set titles and short descriptions on their videos.

 Add an email notification system so that users know when their videos have
been uploaded and published/unpublished (if you’ve implemented the previ-
ous exercise).

 Implement a view tracker to record how many views each video has had.
 Allow the user to specify which videos are private and which are public. Public

videos can be viewed by anyone. Private videos require other users to log in
before they can watch.

 Modify the Elastic Transcoder to create thumbnails of each video. Allow users
to select one of the thumbnails and then use it to represent a video.

 Add an internal messaging system so that users can talk to each other. Users
should get a notification from the system that they’ve received a message
from another user and log in to the website to view messages.

 Add a tagging system so that users can tag videos with related keywords (for
example, adventure, action, comedy, drama, and so on).

 Allow users to delete videos entirely.
 Add a search system to allow users to search for videos. It should search

across titles, descriptions, and tags if these have been implemented.
 Create SAM templates for the functions you developed while reading this

book.

275Where from here
Technology changes quickly, so it’s great to have a few sites to go to for recent news
and information. The website https://serverless.zone features a great collection of
blogs regarding serverless architectures that you might find interesting. The same
goes for the blog on A Cloud Guru (https://read.acloud.guru/serverless/) and the
blog on the Serverless Framework website (https://serverless.com/blog). We also sug-
gest keeping an eye on Serverlessconf (https://serverlessconf.io), which is the world’s
only conference dedicated exclusively to serverless technologies and architectures.
Serverlessconf takes place all over the world and is a great place to meet organizations
and individuals interested in advancing serverless architectures.

 We hope you’ve enjoyed the book and learned something from it. Serverless archi-
tectures and technologies are still new, but awareness is growing rapidly. Over the next
few years, you’ll see many organizations, small and large, embrace serverless technolo-
gies to move quickly and reduce costs. And you’ll see millions of startups built entirely
on serverless technologies and architectures. This space is still new, so this is your
opportunity to get in and to make a difference. You can become the next thought
leader, the next big serverless innovator. We’re excited by the opportunities and the
potential, and we’ll continue to observe how serverless technology matures and evolves
over the coming years. This is the end of this book, but the beginning of an exciting
serverless journey for all of us. Thank you for reading Serverless Architectures on AWS.

https://serverless.zone
https://read.acloud.guru/serverless/
https://serverless.com/blog
https://serverlessconf.io

appendix A
Services for your

serverless architecture

AWS has an array of services that you can use for building serverless architectures.
Lambda is a key service, but other services can be very useful, if not essential, for
solving certain problems. There are many excellent non-AWS services too, which
you should consider when putting together your architecture. The following is a
sample of services that we’ve found useful, but it’s not an exhaustive list. This book
describes and shows how to use these services, and many others, to create robust
serverless architectures. You can use this list as a quick reference if you find that we
refer to a service somewhere in the book and you need a quick refresher on what
it’s all about.

This appendix covers
 Useful services for serverless architecture

 Products and services appropriate for source
control and DevOps
277

278 APPENDIX A Services for your serverless architecture
A.1 API Gateway
The Amazon API Gateway is a service that you can use to create an API layer between
the front-end and back-end services. The lifecycle management of the API Gateway
allows multiple versions of the API to be run at the same time, and it supports multiple
release stages such as development, staging, and production. API Gateway also comes
with useful features like caching and throttling of requests.

 The API is defined around resources and methods. A resource is a logical entity
such as a user or product. A method is a combination of an HTTP verb, such as GET,
POST, PUT, or DELETE, and the resource path. The API Gateway integrates with
Lambda and, as you’ll see in chapter 7, makes moving data in and out of Lambda
straightforward. API Gateway can also connect to various AWS services via an AWS ser-
vice proxy and forward requests to regular HTTP endpoints.

A.2 Simple Notification Service
Amazon Simple Notification Service (SNS) is a scalable pub-sub service designed to
deliver messages. Producers or publishers create and send messages to a topic. Sub-
scribers or consumers subscribe to a topic and receive messages over one of the sup-
ported protocols. SNS stores messages across multiple servers and data centers for
redundancy and guarantees at-least-once delivery. At-least-once delivery stipulates that
a message will be delivered at least once to a subscriber but, on rare occasions due to
the distributed nature of SNS, it may be delivered multiple times.

 In cases when a message can’t be delivered by SNS to HTTP endpoints, it can be
configured to retry deliveries at a later time. SNS can also retry failed deliveries to
Lambda in cases where throttling is applied. SNS supports message payloads of up to
256 KB.

A.3 Simple Storage Service
Simple Storage Service (S3) is Amazon’s scalable storage solution. Data in S3 is stored
redundantly across multiple facilities and servers. The event notifications system
allows S3 to send events to SNS, SQS, or Lambda when objects are created or deleted.
S3 is secure by default, with only owners having access to the resources they create, but
it’s possible to set more granular and flexible access permissions using access control
lists and bucket policies.

 S3 uses the concept of buckets and objects. Buckets are high-level directories or con-
tainers for objects. Objects are a combination of data, metadata, and a key. A key is a
unique identifier for an object in a bucket. S3 also supports the concept of a folder as a
means of grouping objects in the S3 console. Folders work by using key name prefixes.
A forward slash character “/” in the key name delineates a folder. For example, an
object with the key name documents/personal/myfile.txt is represented as a folder
called documents, containing a folder called personal, containing the file myfile.txt in
the S3 console.

279APPENDIX A Services for your serverless architecture
A.4 Simple Queue Service
Simple Queue Service (SQS) is Amazon’s distributed and fault-tolerant queuing ser-
vice. It ensures at-least-once delivery of messages similar to SNS and supports message
payloads of up to 256 KB. SQS allows multiple publishers and consumers to interact
with the same queue, and it has a built-in message lifecycle that automatically expires
and deletes messages after a preset retention period. As with most AWS products,
there are access controls to help control access to the queue. SQS integrates with SNS
to automatically receive and queue messages.

A.5 Simple Email Service
Simple Email Service (SES) is a service designed to send and receive email. SES han-
dles email-receiving operations such as scanning for spam and viruses and rejection of
email from untrusted sources. Incoming email can be delivered to an S3 bucket, or
used to invoke a Lambda notification or create an SNS notification. These actions can
be configured as part of the receipt rule, which tells SES what to do with the email
once it arrives.

 Sending emails with SES is straightforward but there are limits, which are in place
to regulate the rate and the number of messages being sent out. SES will automatically
increase the quota as long as high-quality email, and not spam, is being sent.

A.6 Relational Database Service and DynamoDB
Amazon Relational Database Service (RDS) is a web service that helps with the setup
and operation of a relational database in the AWS infrastructure. RDS supports the
Amazon Aurora, MySQL, MariaDB, Oracle, MS-SQL, and PostgreSQL database
engines. It takes care of routine tasks such as provisioning, backup, patching, recovery,
repair, and failure detection. Monitoring and metrics, database snapshots, and multi-
ple availability zone (AZ) support are provided out of the box. RDS uses SNS to deliver
notifications when an event occurs. This makes it easy to respond to database events
such as creation, deletion, failover, recovery, and restoration when they happen.

 DynamoDB is Amazon’s NoSQL solution. Tables, items, and attributes are
Dynamo’s main concepts. A table stores a collection of items. An item is made up of a
collection of attributes. Each attribute is a simple piece of data such as a person’s
name or phone number. Every item is uniquely identifiable. Lambda integrates with
DynamoDB tables and can be triggered by a table update.

A.7 CloudSearch
CloudSearch is a search solution from AWS that supports structured data and plain
text. CloudSearch takes snippets of data as JSON or XML and generates an index that
can be queried. This service supports Boolean, prefix, range, and full-text search, as
well as faceting, highlighting, and autocomplete. Every document provided to Cloud-
Search is supplied with an ID, generated by the user, that makes the document

280 APPENDIX A Services for your serverless architecture
uniquely identifiable. Search requests can be carried out using GET requests. Results
can be returned as JSON or XML, and they can be sorted and paginated and include
useful metadata such as a relevance score.

A.8 Elastic Transcoder
Elastic Transcoder is an AWS service for transcoding media to other formats, resolu-
tions, and bitrates. This service is useful if you need to have versions of your media
playable on different devices. Elastic Transcoder comes with a number of presets, or
templates, that define how a video should be transcoded. And, if needed, you can cre-
ate your own.

 Elastic Transcoder integrates with S3 and SNS, which it uses for notifications when
a job is completed or an error condition is raised. Elastic Transcoder has additional
features such as watermarking, transcoding of captions, and digital rights manage-
ment support.

A.9 Kinesis Streams
Kinesis Streams is a service for real-time processing of streaming big data. It’s typically
used for quick log and data intake, metrics, analytics, and reporting. It’s different
from SQS in that Amazon recommends that Kinesis Streams be used primarily for
streaming big data, whereas SQS is used as a reliable hosted queue, especially if more
fine-grained control over messages, such as visibility timeouts or individual delays, is
required.

 In Kinesis Streams, shards specify the throughput capacity of a stream. The num-
ber of shards needs to be stipulated when the stream is created, but resharding is pos-
sible if throughput needs to be increased or reduced. In comparison, SQS makes
scaling much more transparent. Lambda can integrate with Kinesis to read batches of
records from a stream as soon as they’re detected.

A.10 Cognito
Amazon Cognito is an identity management service. It integrates with public identity
providers such as Google, Facebook, Twitter, and Amazon or with your own system.
Cognito supports user pools, which allow you to create your own user directory. This
allows you to register and authenticate users without having to run a separate user
database and authentication service. Cognito supports synchronization of user appli-
cation data across different devices and has offline support that allows mobile devices
to function even when there’s no internet access.

A.11 Auth0
Auth0 is a non-AWS identity management product that has a few features that Cognito
doesn’t. Auth0 integrates with more than 30 identity providers, including Google,
Facebook, Twitter, Amazon, LinkedIn, and Windows Live. It provides a way to register
new users through the use of its own user database, without having to integrate with
an identity provider. In addition, it has a facility to import users from other databases.

281APPENDIX A Services for your serverless architecture
 As expected, Auth0 supports standard industry protocols including SAML, OpenID
Connect, OAuth 2.0, OAuth 1.0, and JSON Web Token. It’s dead simple to integrate
with AWS Identity and Access Management and with Cognito.

A.12 Firebase
Firebase (owned by Google) is a company and also a suite of interesting products.
One of the products that we particularly like is its NoSQL real-time database. Data in
Firebase is stored as JSON. One of the nice things about Firebase is its real-time syn-
chronization. It allows all connected users to receive updates as soon as they happen.
Firebase can be accessed through a REST API and through client libraries, which are
available for different languages and platforms. Firebase also has services for static
hosting of files and authentication of users.

A.13 Other services
The list of services provided in this section is a short sample of the different products
you can use to build your application. There are many more services, including those
provided by large cloud-focused companies such as Google and Microsoft and smaller,
independent companies like Auth0.

 There are also auxiliary services that you need to be aware of. These can help you
be more efficient and build software faster, improve performance, or achieve other
goals. When building software, consider the following products and services:

 Content delivery networks (CDN) such as CloudFront
 DNS management (Route 53)
 Caching (ElastiCache)
 Source control (GitHub)
 Continuous integration and deployment (Travis CI)

For every service suggestion, you can find alternatives that may be just as good or even
better, depending on your circumstances. We urge you to do more research and
explore the various services that are currently available.

appendix B
Installation and setup

The purpose of this appendix is to help you set up your machine, environment,
and AWS for the 24-Hour Video example that begins in chapter 3. 24-Hour Video
will be referred to and improved throughout the book, so we highly recommend
that you try to implement it to get a better understanding of serverless architecture.

 Before you begin, there are two main prerequisites: a computer running Mac
OSX, Linux, or Windows and a working internet connection. We’ll take care of
everything else as we journey through the book.

This appendix covers
 Identity and Access Management setup in AWS

 Creation of S3 buckets, Lambda functions, and
Elastic Transcoder in AWS

 Local system setup and installation of the Node
package manager

 Creation of package.json for a Lambda function
282

283APPENDIX B Installation and setup
B.1 Preparing your system
In this appendix you’re going to set up services in AWS and install software on your
computer. Here’s what you’ll install on your machine:

 Node.js and its package manager (npm) to help manage Lambda functions and
keep track of dependencies.

 AWS Command Line Interface (CLI) to help perform deployments.
 If you’re a Windows user, you may also have to install a utility (such as Gnu-

Win32) to create zip files out of Lambda functions to help with deployment.

In AWS you’ll create the following:

 Identity and Access Management user and role
 S3 buckets to store video files
 The first Lambda function
 Elastic Transcoder pipeline to help encode videos

In chapter 3 and beyond you’ll add additional Lambda functions and AWS services
and install other npm modules to help with testing and development. This appendix
may seem lengthy, but it explains a number of things that will help you throughout
the book. If you’ve already used AWS, you’ll be able to whiz through it quickly.

B.2 Setting up an IAM user and CLI
To begin, you need to have an AWS account, which you can create at https://aws.amazon
.com. After your account is created, download and install the appropriate version of the
AWS CLI for your system from http://docs.aws.amazon.com/cli/latest/userguide
/installing.html. There are different ways to install the CLI, including an MSI installer if
you’re on Windows, via Pip (a Python-based tool), or via a bundled installer if you’re
on Mac or Linux. You’ll also need to install Node.js. You can download it from
https://nodejs.org/en/download/. The Node Package Manager (npm) comes bun-
dled with Node.js.

 The first action you need to do in AWS is create an Identity and Access Manage-
ment (IAM) user. This user’s security policy and credentials will be used to authorize
deployment of Lambda functions from your computer straight to AWS. To create the
user and set up correct permissions, follow these steps:

1 In the AWS console, click IAM (Identity and Access Management), click Users,
and then click Add user.

2 Give your new IAM user a name such as lambda-upload and select the Program-
matic access check box (figure B.1). Selecting this check box will allow you to
generate the access key ID and the secret access key (you’ll need these keys for
aws configure in a few steps).

3 Click Next: Permissions to proceed.
4 Don’t select anything in the Set Permissions for lambda-upload screen and click

Next: Review to proceed.

https://aws.amazon.com
https://aws.amazon.com
https://aws.amazon.com
http://docs.aws.amazon.com/cli/latest/userguide/installing.html
http://docs.aws.amazon.com/cli/latest/userguide/installing.html
http://docs.aws.amazon.com/cli/latest/userguide/installing.html
https://nodejs.org/en/download/

284 APPENDIX B Installation and setup
5 On the final screen you’ll see a message saying that the user has no permissions.
That’s okay for now. You’ll address this later. Click Create User to finish the setup.

6 You should now see a table with the username, the access key ID, and the secret
access key. You can also download a CSV file with these keys. Download it now to
retain a copy of the keys on your computer, and click Close to exit (figure B.2).

7 Run aws configure from a terminal on your system. The AWS CLI will prompt
for user credentials. Enter the access and secret keys generated for lambda-
upload in the previous step.

8 You’ll also be prompted to enter a region. Lambda may not be available in all
regions, so choose a region where it is offered, such as us-east-1. We recom-
mend that you use the same region for all services in your system (you’ll find
that it’s cheaper). We recommend N. Virginia (us-east-1), and we’ll assume for
the duration of this appendix that you’re using that region too.

9 There will be one more prompt asking you to select the default output format.
Set it as json and finish the configuration.

B.3 Setting user permissions
You need to grant user lambda-upload permission to deploy Lambda functions. This
includes creating a new inline policy, specifying permissions to allow function deploy-
ments, and attaching this policy to the IAM user:

1 In the IAM console, click Users, and click lambda-upload. You should land on
the Permissions tab.

2 Click Add Inline Policy to create the first policy for your user (figure B.3).

Enable Programmatic
access to generate the
access key ID and the
secret access key.

Figure B.1 Creating a new IAM user is straightforward using the IAM console.

285APPENDIX B Installation and setup
Click Show to see the
secret access key.

Download the CSV file with
keys to your computer.

Figure B.2 Remember to save the access key ID and the secret access key. You won’t be able to
get the secret access key again once you close this window.

Click Show to see the secret access key.

Figure B.3 You’ll begin by adding a new inline policy.

286 APPENDIX B Installation and setup
3 From the Inline Policy Options screen, select Policy Generator and then select
AWS Lambda from the AWS Service drop-down.

4 From the Action drop-down choose the following three actions:
– GetFunction
– UpdateFunctionCode
– UpdateFunctionConfiguration

5 In the Amazon Resource Name (ARN) text box enter arn:aws:lambda:* and
then click Add Statement (figure B.4).

6 The Next Step button should become enabled, so click it to proceed to the Review
Policy screen. Click Apply Policy to save and go back to the Summary screen.

B.4 Making new S3 buckets
Next, you need to create two buckets in S3. The first bucket will serve as the upload
bucket for new videos. The second bucket will contain transcoded videos put there by
the Elastic Transcoder. All users of S3 share the same bucket namespace, which means
that you have to come up with bucket names that are not in use. For this example,
we’ll assume that the first bucket is named serverless-video-upload and the second
bucket is named serverless-video-transcoded.

Specify the ARN that the
permission applies to.

Multiple statements can
be added to the policy.

Select from a list of
available AWS services.

Possible actions for the selected
service will be listed here.

Figure B.4 The Policy Generator can help you to identify and select the necessary permissions for
your users and roles. The policy must have at least one statement before you can save it.

287APPENDIX B Installation and setup
To create a bucket, in the AWS console click S3 and then click Create Bucket. Type in
a name for the bucket and choose US East (N. Virginia) as the region (figure B.5). Con-
tinue clicking through the wizard (you don’t need to specify any additional options)
until you get to the end. Your bucket should immediately appear in the console.

Bucket names
Bucket names must be unique throughout the S3 global resource space. We’ve
already taken serverless-video-upload and serverless-video-transcoded, so
you’ll need to come up with different names. We suggest adding your initials (or a
random string of characters) to these bucket names to help identify them throughout
the book (for example, serverless-video-upload-ps and serverless-video-
transcoded-ps).

If the bucket name is
taken, AWS will show
an error message.

Set the right region
to reduce costs and
minimize latency.
Your Lambda functions
should be in the
same region.

Figure B.5 Create two buckets from the S3 console. One must be for uploads. The other one will
store transcoded videos. Bucket names are globally unique, so you’ll have to come up with your own,
new names.

New console vs. old console
There’s a chance that when you click on S3 you’ll see the old console, which doesn’t
look as nice as figure B.5. You can switch to the new console by clicking the Opt In
link on the right side. This book assumes that you’re using the new console unless
we explicitly mention or ask you to switch to the old one.

288 APPENDIX B Installation and setup
B.5 Creating an IAM role
Now you need to create an IAM role for your future Lambda functions. This role will
allow functions to interact with S3 and the Elastic Transcoder. You’ll add two policies
to this role: AWSLambdaExecute and AmazonElasticTranscoderJobsSubmitter. The
AWSLambdaExecute policy allows Lambda to interact with S3 and CloudWatch. Cloud-
Watch is an AWS service used for collecting log files, tracking metrics, and setting
alarms. The AmazonElasticTranscoderJobsSubmitter policy allows Lambda to sub-
mit a new transcoding job to the Elastic Transcoder:

1 In the AWS console, click IAM, and then click Roles.
2 Click Create New Role and name it lambda-s3-execution-role. Click Next

Step to proceed to Role Type selection.
3 Under the AWS Service Roles click AWS Lambda and then select the following

two policies:
– AWSLambdaExecute

– AmazonElasticTranscoderJobsSubmitter

4 Click Next Step to attach both policies to the role, and then click Create Role to
save.

5 You’ll be taken back to the role summary page. Click lambda-s3-execution-
role again to see the two attached policies (figure B.6).

Two policies have been added to the role.
Permissions are embedded within policies.

Policies can be viewed, detached
(removed), or simulated.

Figure B.6 Two managed policies are needed for the lambda-s3-execution-role to access
S3 and create Elastic Transcoder jobs.

289APPENDIX B Installation and setup
B.6 Preparing for Lambda
It’s finally time to create the first Lambda function, although we’re not going to provide
an implementation for it just yet. We’ll provide the implementation in chapter 3. The
plan, however, is for this function to be responsible for kicking off an Elastic Transcoder
job when a new file is added to the upload (serverless-video-upload) bucket:

1 In the AWS console, click Lambda, and then click Create a Lambda Function.
2 Select the Blank Function blueprint.
3 On the Configure Triggers screen click Next. You’ll configure a trigger at a later time.
4 Name the function transcode-video and make sure that Node.js 4.3 is selected

in the Runtime drop-down.
5 Leave the Lambda function code as it is. If you delete this code, you won’t be

able to save (figure B.7).
6 Under Role select Choose an Existing Role and then in Existing Role select

lambda-s3-execution-role.
7 Leave all Advanced settings as they are. Click Next to go the Review screen, and

from there choose Create Function to finish.

Lambda works with
Java, Python and C#
in addition to Node.js.

Text must be entered
in to the body of the
function or a zip file
uploaded to create
a function.

Leave this function code
for now. You will replace
it later anyway.

You must create and
assign a role for the
function to have access
to required resources.

Figure B.7 A Lambda function can be created without specifying the implementation. You can deploy
the completed function at a later stage.

290 APPENDIX B Installation and setup
B.7 Configuring Elastic Transcoder
Finally, you need to set up an Elastic Transcoder pipeline to perform video transcod-
ing to different formats and bitrates:

1 In the AWS console click Elastic Transcoder and then click Create a New Pipeline.
2 Give your pipeline a name, such as 24 Hour Video, and specify the input

bucket, which in our case is the upload bucket (serverless-video-upload).
3 Leave the IAM role as it is. Elastic Transcoder creates a default IAM role auto-

matically.
4 Under Configuration for Amazon S3 Bucket for Transcoded Files and Playlists,

specify the transcoded videos bucket, which in our case is serverless-video-
transcoded. The Storage Class can be set to Standard.

5 You’re not generating thumbnails but you should still select a bucket and a stor-
age class. Use the second, transcoded videos bucket for it again (figure B.8).

6 Click Create Pipeline to save.

You will be able to create
a role for the account
from this screen.

Set the output buckets
for the transcoded files
and thumbnails.

Figure B.8 Elastic Transcoder requires you to enter S3 bucket names for input, output, and thumbnails.

291APPENDIX B Installation and setup
B.8 Setting up npm
Lambda functions can be written and then copied to AWS by hand, but that’s not a sus-
tainable way of managing development and performing deployments. You’ll use npm
to help test, package, and deploy functions to AWS automatically. If you prefer to use a
task runner such as Grunt or Gulp in lieu of working with npm directly, you can, of
course, instrument your environment to use one of those tools instead. But you’ll use
npm because it’s capable of doing everything you need it to do and you won’t need to
worry about another utility.

 Create a directory, such as transcode-video, for the first Lambda function. Open it
in a terminal window, and run npm init transcode-video. You can accept defaults
for all of the questions from npm init as long as you modify the package.json file to
look like listing B.1. Open package.json in your favorite text editor and make sure to
pay special attention to the dependencies section. If you’re using Windows, read the
information about zipping in the sidebar titled “Zip and Windows.”

After you’ve updated package.json to look like listing B.1, run npm install from the
terminal to download and install the required dependency, which is the AWS SDK.
The Lambda execution environment provides the AWS SDK (as well as ImageMagick)
so you don’t need to include it with the function when it’s deployed. But you’ll add it
now because in chapter 3 you’ll run and test the function locally and that will require
the use of the SDK.

Zip and Windows
One important point to note is that in chapter 3 (and beyond) you’re going to create
zip files. You’ll need to zip up Lambda functions (and their dependencies) to deploy
them to AWS. In package.json you’ll write a special predeploy script that will use the
zip command to do this.

If you’re using Linux or Mac, you should have zip preinstalled so you don’t need to do
anything. Windows users, however, may need to install zip, or a similar tool, them-
selves. One option is to download and install GnuWin32 zip from http://gnuwin32
.sourceforge.net/packages/zip.htm. You’ll need to add the path for zip.exe to the
Path system variable. See http://www.computerhope.com/issues/ch000549.htm
for more information on how to set path and environment variables in Windows.

If you happen to have another file archiver, such as 7zip, you can try to use it instead.
Make sure that it runs from the command line and change any zip parameter values
in package.json that might be different for the tool you’re using.

Another option is to find a zip archiver package in the npm registry, install it as a dev
dependency, and use it instead. If you’re on Windows this is your challenge!

http://gnuwin32.sourceforge.net/packages/zip.htm
http://gnuwin32.sourceforge.net/packages/zip.htm
http://gnuwin32.sourceforge.net/packages/zip.htm
http://www.computerhope.com/issues/ch000549.htm

292 APPENDIX B Installation and setup
{
 "name": "transcode-video",
 "version": "1.0.0",
 "description": "Transcode Video Function",
 "main": "index.js",
 "scripts": {

"test": "echo \"Error: no test specified\" && exit 1"
 },
 "dependencies": {

"aws-sdk": "latest"
 },
 "author": "Peter Sbarski",
 "license": "BSD-2-Clause"
}

This is it for installation and configuration in appendix B. You can jump back to chap-
ter 3 to begin putting together 24-Hour Video.

Listing B.1 Transcode video package.json

There is one main dependency,
which is the AWS SDK.

appendix C
More about authentication

and authorization

This appendix serves as a short refresher on authentication and authorization. It
describes the OAuth 2.0 flow process, the OpenID Connect protocol, and the inner
workings of JSON Web Tokens.

C.1 Basics of authentication and authorization
In simple web and mobile applications, the back-end server is usually responsible
for the authentication and authorization of users. A password authentication
scheme may work as follows (figure C.1):

This appendix covers
 Basics of authentication and authorization

 OAuth 2.0 flow

 JSON Web Tokens
293

294 APPENDIX C More about authentication and authorization
1 A user enters a username and password in a mobile application or a website.
2 The user’s credentials are sent to the server. The application looks up the user

in a database and validates the submitted password.
3 If validation succeeds, the server returns a cookie or a token with, optionally,

embedded claims about the user. Claims are assertions about a user, which may
include the user’s unique identifier, role, email address, or any other useful or
relevant information. If validation fails, the user is notified and prompted to
reenter credentials.

4 Subsequent requests to the server are sent with the cookie or token provided
by the server earlier. The system may inspect the cookie or the token for
embedded claims, which can include the user’s role or arbitrary information
needed to decide whether the user can perform an action. Alternatively, the
system can look up the user’s role in a database to grant authorization to per-
form an action.

In more complex scenarios additional systems or steps may be involved. OpenID, for
example, is an open standard authentication protocol designed to allow users to
authenticate via a third-party service (an OpenID identity provider) instead of having
to develop a custom sign-in system. OpenID Connect adds an authentication layer on
top of OAuth 2.0. A protocol like OpenID Connect is needed to enforce security and
bridge the gap between authentication and authorization. Although it might seem
that OAuth 2.0 could be used for authorization as well as authentication, it would be a
mistake to assume that. Having an authorization system without an authentication
component could lead to attackers gaining improper access to resources. Figure C.2
shows what an OpenID Connect flow looks like.

The user enters
a username
and a password.

Credentials are sent
to the server.

Subsequent requests are sent with the token which
is checked for validity. Claims, if any, are extracted.

Client (web/mobile
application)

3. Response (including token).1. Username and password.

2. Login.

4. Request (including token).

Server

Figure C.1 This simple cookie/token forms authentication flow is familiar to all developers.

295APPENDIX C More about authentication and authorization
1. The user initiates
the flow by clicking
on a sign-in link.

3. The resource owner authenticates with the identity provider.
The client application never sees the resource owner’s credentials.

Client application doesn’t have access to the resource
owner’s credentials. Conversely, the authorization code
is never provided to the resource owner’s user agent.

2. Client application
redirects the user to
the identity provider.

4. The identity provider
returns an authorization
code to the client.

5. The client application
uses supplied authorization
code to obtain an access
token and an ID token.

Resource owner

Client application
(relying party)

Identity provider

Resource provider

Figure C.2 OpenID Connect is an authentication protocol based on OAuth 2.0. It’s widely supported
in the industry and is used by services such as Auth0.

Authentication vs. authorization
What’s the difference between authentication and authorization? Authentication is
the process of verifying who the user is; for example, confirming that user Bob is who
he represents himself to be. Authorization is about verifying what the user is allowed
to do. Is Bob allowed to view this page? Is Bob allowed to delete a database record?
Authentication and authorization are independent concepts (authenticated and non-
authenticated users can be authorized to do different things) but are often linked in
discussions about security.

OpenID is mainly concerned with authentication. OAuth is mainly about authorization.
OpenID Connect is an extension of OAuth 2.0 designed to bring authentication and
authorization together. For a more detailed explanation, see https://oauth.net/
articles/authentication/.

https://oauth.net/articles/authentication/
https://oauth.net/articles/authentication/
https://oauth.net/articles/authentication/

296 APPENDIX C More about authentication and authorization
C.2 JSON Web Token
JSON Web Token (https://tools.ietf.org/html/rfc7519) is an open standard used to
transport claims between parties. These tokens have properties that make them useful
in serverless systems:

 JWT is URL-safe by design. Tokens can be passed in the body of the request or in
the URL query.

 JWT is compact and self-contained.
 JWT can be digitally signed to guarantee integrity and encrypted to guarantee

confidentiality.
 JWT is an open standard and the tokens are easy to create and parse. Libraries

are available for JavaScript and other languages.

OAuth 2.0 grant types
The OAuth 2.0 specification (https://tools.ietf.org/html/rfc6749), which is used by
OpenID Connect, defines four different grant types for different authorization scenarios:

 Authorization code for applications running on a web server including server-
side rendered web apps: This is a common grant type that implements three-
legged OAuth. If you’ve used GitHub, Google, Facebook, or another identity
provider to sign in to a website or application, then you’ve experienced it.
In an authorization code grant, an authorization server—or the IdP—acts as
an intermediary between the client (that is, the website or application that the
user wants to log on to) and the resource owner (that is, the user). When the
user signs in to the authorization server, they’re redirected to the client with
an authorization code, which the client captures and exchanges with the autho-
rization server for an access token. A client can then access a resource server
with the access token and retrieve protected resources.

 Implicit for mobile or browser-based JavaScript-only apps that can’t be trusted
with maintaining client secrets: The implicit grant type is a simplified variation
of the authorization code flow. As before, the user is redirected to the authori-
zation server to sign in, but instead of the server returning an authentication
code, the client is immediately sent an access token. The implicit grant type
is needed for the class of applications where the client is unable to store
secrets. But there are security implications to using the implicit grant type. It
should be used as a second choice when the authorization code grant type is
unavailable.

 Resource owner credentials for directly logging in to a client with a username
and password: This is similar to the type of authentication shown in figure
C.1. A resource owner provides credentials directly to the client, which
exchanges them for an access token.

 Client credentials for accessing resources outside any user’s specific context:
This grant type is useful for machine-to-machine authorization where the cli-
ent uses its own credentials as an authorization grant.

https://tools.ietf.org/html/rfc6749
https://tools.ietf.org/html/rfc7519

297APPENDIX C More about authentication and authorization
Claims are encoded in JWT as a JSON object and are sent as a JSON Web Signature
(JWS) or JSON Web Encryption (JWE) structure. The JWS payload is digitally signed by
the entity creating the token to prevent tampering. The JWT spec defines support for
symmetric and asymmetric signing algorithms. Tokens created with an asymmetric
signing algorithm can be verified using a public key on a client. Naturally, JWT signed
with a symmetric algorithm requires the secret signing key to validate the signature.
These can’t be exposed to clients, but you can use them in a Lambda function to vali-
date the token.

 It’s also important to note that in JWS the claims (payload) portion is not
encrypted in any way. It’s only Base64-encoded so it can be trivially inspected and
read. Do not send any sensitive information in it. JWE, on the other hand, encrypts the
content of the message instead of digitally signing it. It’s possible to encrypt the JWT
claims and then embed them in a JWS if you want to enforce confidentiality and integ-
rity at the same time.

 JWT consists of three segments: header, body, and signature. Figure C.3 shows what
a JWT token looks like and points out how to identify each segment.

The header of JWT is composed of two parts: the declaring type (JWT) and the hash-
ing algorithm. The payload consists of JWT claims. There’s a set of reserved claims
that, although not mandatory, is useful to have. Auth0, for example, includes the fol-
lowing minimum subset of claims in every token:

 iss—Issuer of the token
 sub—Subject of the token
 aud—Audience expected to consume the token
 exp—Expiration time
 iat—Issued-at timestamp

Finally, the signature is used to verify the integrity of the token. Typical JWT imple-
mentations support signature computation using HMAC with the SHA-256 cryp-
tographic hash function (HS256) or RSA with SHA-256 (RS256).

Signature
(HMAC & SHA256)

Payload
(base 64 encoded)

Header
(base 64 encoded)

header = {
"alg": “HS256”,

“typ": "JWT"
}

payload = {
"sub": "1234567890",
"name": “Peter Sbarski"

}

unsigned_token =
encodeBase64(header) + “.” +
encodeBase64(payload)

signature = HMACSHA256(secretkey,
unsigned_token)

eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJzdWIiOiIxMjM0NTY3ODkwIiwibmFtZSI6IlBldGVyIFNiYXJza2kifQ.URLrBWoAq5B88u1OmEUB-UDMzQLrgKLZBcgSLJVnLmQ

Figure C.3 The JWT structure is composed of three segments separated by a period.

298 APPENDIX C More about authentication and authorization
 The website jwt.io has an interactive debugger (figure C.4) for testing whether you
have correctly generated your symmetric or asymmetric JWT. It also lists available
libraries for token signing/verification for different languages and platforms.

Test if you properly encoded your JWT by pasting
in the token and setting the secret key.

This debugger also supports the
(asymmetric) RS256 algorithm.

Figure C.4 The jwt.io debugger allows you to test your JSON Web Tokens. You can change the
payload and the header to see how the token changes.

appendix D
Lambda insider

Chapter 6 focuses on AWS Lambda, but it’s a rather vast topic, so we had to omit
some things. This appendix covers information not included in chapter 6, such as
information about Lambda’s execution environment, inherent limitations, and
older runtimes.

D.1 Execution environment
At the time we wrote this appendix, Lambda ran on Amazon Linux with kernel ver-
sion 4.1.17-22.30.amzn1.x86-24. If you’re like us, you might be interested in peek-
ing under the hood and exploring the environment that Lambda has to offer.
Luckily, we can get a bit of understanding of what’s under the covers by running
shell commands. To try this yourself, do the following:

This appendix covers
 Execution environment

 Lambda’s limitations

 Older runtimes
299

300 APPENDIX D Lambda insider
1 Open the Lambda console, and click Create a Lambda Function.
2 In the Blueprint Selection screen, type node-exec. That should filter the avail-

able blueprint functions to just one function named node-exec.
3 Click the node-exec function.
4 Click Next on the Configure Triggers screen.
5 Give your new function a name (for example, run-command).
6 In the Role section, select an existing role or create a new one. Your function

will not interact with other AWS resources, so it can take on a basic role.
7 Click the Next button and then click Create Function.

You can now run this function and pass in commands you want the function to execute:

1 Make sure you’re looking at the run-command function in the console, click
Actions, and click Configure Test Event.

2 The event object needs to have a key called cmd and the command to execute.
The following listing shows an example of an event object that will execute
ls -al. You can replace ls -al with any shell command you wish to execute.

{
 "cmd" : "ls -al"
}

Table D.1 shows the output if you run a few common commands.

Listing D.1 Event object to run the ls command

Table D.1 System and environmental information for your container

Command Purpose Abbreviated output

uname -a Prints system informa-
tion.

Linux ip-10-0-95-167 4.1.17-22.30.amzn1.x86_64 #1
SMP Fri Feb 5 23:44:22 UTC 2016 x86_64 x86_64
x86_64 GNU/Linux

pwd Prints the current work-
ing directory.

/var/task

ls -al Lists the contents of
current directory.

drwxr-xr-x 2 slicer 497 4096 Apr 4 10:10 .
drwxr-xr-x 20 root root 4096 Apr 4 09:04 ..
-rw-rw-r-- 1 slicer 497 478 Apr 4 10:09 index.js

env Prints shell and environ-
mental variables.

AWS_SESSION_TOKEN=FQoDYXd...

AWS_LAMBDA_LOG_GROUP_NAME=/aws/lambda/run2

LAMBDA_TASK_ROOT=/var/task

LD_LIBRARY_PATH=/usr/local/lib64/node-
v4.3.x/lib:/lib64:/usr/lib64:/var/runtime:/var/ru
ntime/lib:/var/task:/var/task/lib

AWS_LAMBDA_LOG_STREAM_NAME=2017/01/23/[$LATEST]a6
5f9e2f349d4e9a8c9e193b0e175e78

301APPENDIX D Lambda insider
env
(continued)

AWS_LAMBDA_FUNCTION_NAME=run_command

PATH=/usr/local/lib64/node-
v4.3.x/bin:/usr/local/bin:/usr/bin/:/bin

AWS_DEFAULT_REGION=us-east-1

PWD=/var/task

AWS_SECRET_ACCESS_KEY=G9zLllGtxmL4...

LAMBDA_RUNTIME_DIR=/var/runtime

LANG=en_US.UTF-8

NODE_PATH=/var/runtime:/var/task:/var/runtime/
node_modules

AWS_REGION=us-east-1

AWS_ACCESS_KEY_ID=ASIAIKGQE5YIXTNE54JQ

SHLVL=1

AWS_LAMBDA_FUNCTION_MEMORY_SIZE=128

_=/usr/bin/env

cat
/proc/cpuinfo

Prints the type of pro-
cessor used by the sys-
tem.

processor : 0
vendor_id : GenuineIntel
cpu family : 6
model : 63
model name : Intel(R) Xeon(R) CPU E5-2666
v3 @ 2.90GHz
stepping : 2
microcode : 0x36
cpu MHz : 2900.074
cache size : 25600 KB
physical id : 0
siblings : 2
core id : 0
cpu cores : 1
apicid : 0
initial apicid : 0
fpu : yes
fpu_exception : yes
cpuid level : 13
wp : yes
flags : fpu vme de pse tsc msr pae
mce cx8 apic sep mtrr pge mca cmov pat pse36
clflush mmx fxsr sse sse2 ht syscall nx pdpe1gb
rdtscp lm constant_tsc rep_good nopl xtopology
eagerfpu pni pclmulqdq ssse3 fma cx16 pcid sse4_1
sse4_2 x2apic movbe popcnt tsc_deadline_timer aes
xsave avx f16c rdrand hypervisor lahf_lm abm
fsgsbase bmi1 avx2 smep bmi2 erms invpcid xsaveopt
bogomips : 5800.14
clflush size : 64

Table D.1 System and environmental information for your container (continued)

Command Purpose Abbreviated output

302 APPENDIX D Lambda insider
cat
/proc/cpuinfo
(continued)

cache_alignment : 64
address sizes : 46 bits physical, 48 bits
virtual

processor : 1
vendor_id : GenuineIntel
cpu family : 6
model : 63
model name : Intel(R) Xeon(R) CPU E5-2666
v3 @ 2.90GHz
stepping : 2
microcode : 0x36
cpu MHz : 2900.074
cache size : 25600 KB
physical id : 0
siblings : 2
core id : 0
cpu cores : 1
apicid : 1
initial apicid : 1
fpu : yes
fpu_exception : yes
cpuid level : 13
wp : yes
flags : fpu vme de pse tsc msr pae
mce cx8 apic sep mtrr pge mca cmov pat pse36
clflush mmx fxsr sse sse2 ht syscall nx pdpe1gb
rdtscp lm constant_tsc rep_good nopl xtopology
eagerfpu pni pclmulqdq ssse3 fma cx16 pcid sse4_1
sse4_2 x2apic movbe popcnt tsc_deadline_timer aes
xsave avx f16c rdrand hypervisor lahf_lm abm
fsgsbase bmi1 avx2 smep bmi2 erms invpcid
xsaveopt
bogomips : 5800.14
clflush size : 64
cache_alignment : 64
address sizes : 46 bits physical, 48 bits
virtual

ls
/var/runtime/
node_modules

Lists included NodeJS
modules. You do not
need to provide these
modules with your
function.

awslambda
aws-sdk
dynamodb-doc
imagemagick

Table D.1 System and environmental information for your container (continued)

Command Purpose Abbreviated output

303APPENDIX D Lambda insider
D.2 Limitations
Lambda executes code and scales automatically. It can handle thousands of requests
per second. As with any system, however, there are limitations to think about. Table D.2
summarizes these. You can find the original AWS documentation related to Lambda’s
limits at https://docs.aws.amazon.com/lambda/latest/dg/limits.html.

D.3 Working with older runtimes
AWS initially released Lambda, which used Node.js 0.10.42. That version of Lambda
didn’t support the callback function. Instead, methods (succeed, fail, and done)
available via the context object allowed the developer to cleanly terminate the func-
tion and return data to the caller. If you happen to come across a version of a Lambda
function that uses the old Node.js 0.10.42 runtime, here’s what you need to know to
use it correctly.

 To properly terminate a Lambda function, you need to invoke one of the follow-
ing three methods (this is different from the Node.js 4.3 or 6.10 versions where you
can use callback):

 context.succeed(Object result)

 context.fail(Error error)

 context.done(Error error, Object result)

Table D.2 Lambda limits

What is it? Default limit Explanation

Ephemeral disk capacity (/tmp space) 512 MB The total disk capacity you can use for
temporary files

Number of file descriptors 1024 Maximum number of files that can be
opened by the function

Number of processes and threads
(combined total)

1024 Maximum number of threads and pro-
cesses that can be spawned by the
function

Maximum execution duration per
request

300 seconds The maximum number of seconds the
function can execute for before it’s killed
by the runtime

Invoke request body payload size
(RequestResponse)

6 MB The maximum size of the request when
the function is invoked using the AWS
SDK, the API Gateway, or the console

Invoke request body payload size
(Event)

128 K The maximum size of the request when
the function is invoked by an event in
AWS

Invoke response body payload size
(RequestResponse)

6 MB The maximum size of the response when
the function is invoked using the AWS
SDK, API Gateway, or the console

https://docs.aws.amazon.com/lambda/latest/dg/limits.html

304 APPENDIX D Lambda insider
You must always terminate the function using a succeed, fail, or done function. If you
don’t do that, your function may continue to run even after you think it’s finished.

D.3.1 Succeed

The context.succeed(Object result) method is called to indicate that the function
has successfully finished execution. The result parameter is optional (you can use
context.succeed() or context.succeed(null)), but it must be compatible with
JSON.stringify if you decide to include it.

 In case of a RequestResponse invocation type, calling this method will return an
HTTP status 200 (OK). The body of the response will be set to the stringified version of
result.

D.3.2 Fail

The context.fail(Error error) method is called to indicate that the function failed.
Calling this function raises a handled exception. The error parameter is optional (you
can leave it out or use a null). In the case of RequestResponse, if this parameter is
provided, Lambda will try to stringify it and include it as the response body. It will set
the HTTP status code to 400 (Bad Request) and also log the first 256 KB of the error
object to CloudWatch.

D.3.3 Done

Finally, there’s the context.done(Error error, Object result) method. This
method can be used in lieu of the succeed and fail methods. The error and result
parameters are optional. If a non-null value is provided for the error parameter, this
function is treated the same way as context.fail(error). If the error parameter is
null, then the function is treated as a context.succeed(result) method.

appendix E
Models and mapping

Chapter 7 gives you a thorough look at the API Gateway. In that chapter you get to
create a resource and a GET method, connect it to a Lambda function, and use
Lambda proxy integration. Lambda proxy integration makes it straightforward to
invoke a Lambda function via the API Gateway and to return a response. Most of
the logic takes place in the function, with the Gateway proxying the request to the
function and the response to the client.

 The API Gateway doesn’t force you to use Lambda proxy integration, however.
You can decide how to transform requests and responses within the Gateway and
have more control over what goes out of the Gateway. This appendix gives you
information about how to implement models and mappings and teaches you other
tips and tricks not covered in chapter 7.

This appendix covers
 API Gateway models and mapping
305

306 APPENDIX E Models and mapping
E.1 Get video list
If you implemented the get-video-list function in chapter 7, this is an alternative
way of showing how to do the same thing without proxy integration. To get started,
we’ll assume that you’ve created the /videos resource and a GET method. You can
begin following this appendix instead of section 7.2.3. There’s one important point to
mention here, though: if you enabled Lambda proxy integration when creating the
GET method, you must now turn it off. To do this, click the GET method under the
/videos resource, and then click Integration Request. Make sure to unselect Use
HTTP Proxy Integration if it’s selected.

E.1.1 GET method

We’re going to take things step by step, because there are more elements to configure
in the API Gateway than if you were using proxy integration. Right now, click the GET
method under /videos to see the Method Execution view.

METHOD REQUEST

The first step is to update the settings in your method request. Choose Method
Request from the Method Execution view to access its configuration. You can do a
number of things here:

 Set authorization settings, including the custom authorizer as you did in chapter 5.
 Add support for a URL query string parameter.
 Add support for a custom HTTP request header.
 Add support for a request model. This is used for non-GET method types, so

you can ignore it for now.

Your get-video-list function doesn’t take any parameters at the moment, but let’s
imagine that it can take an optional encoding. It needs to return a list of videos spe-
cific for that encoding (for example, just 720p videos if encoding is set to 720p). If
encoding is not specified, then the function will return all videos just as it does now.
Let’s also say that the encoding is supplied via the URL. Here’s how you’d set it up:

1 Expand URL Query String Parameters.
2 Choose Add Query String.
3 Type encoding and click the round checkmark button to save.
4 Don’t enable caching yet because you need to think through your cache-

invalidation strategy first. Enabling this Caching check box will create a specific
cache key when caching is enabled for the stage (figure E.1).

INTEGRATION REQUEST

Integration Request is the next page you need to step through. You’ve already config-
ured the Lambda function to invoke. All that’s left to do is configure the body map-
ping template. This mapping template tells the API Gateway how to transform the
request, including elements such as headers and query strings, into a format the con-
suming service can understand. Our example has a URL query string called encoding.

307APPENDIX E Models and mapping
You might want to map it to a property called encoding on the event object that your
Lambda function can access:

1 Access Integration Request from the Method Execution window.
2 Expand Body Mapping Templates.
3 Choose Add Mapping Template.
4 Type application/json into the Content-Type text box and click the check-

mark button to save.
5 Click Yes, Secure This Integration if a dialog presents asking to change pass-

through behavior.
6 On the right side, you should see an edit box in which you can specify the map-

ping. To map encoding to be available via the event object, copy the contents
of listing E.1 to the text box and choose Save. The “Payload mapping” sidebar

Set whether an API key needs to be included
in the request to allow it to continue. API keys
can be added in the API Gateway console.

Caching can be enabled for a set of different
parameters including URL paths and query
strings. Cache invalidation needs to be
thought through if you enable it.

Custom request headers can be
specified here and then referenced
in the Integration Request.

Figure E.1 The Method Request page defines the interface and settings that the caller of the API must
respect and provide.

308 APPENDIX E Models and mapping
and AWS documentation (https://docs.aws.amazon.com/apigateway/latest/
developerguide/api-gateway-mapping-template-reference.html) describe map-
ping in greater detail.

{
"encoding" :
"$input.params('encoding')"

}

API Gateway offers a shortcut so you don’t need to specify values individually. This
might be useful if you have numerous parameters and don’t want to maintain a com-
plex mapping.

 In the drop-down box next to Generate Template, select Method Request
Passthrough. The API Gateway will set a template for you that maps “all parameters
including path, querystring, header, stage variables, and context…” (https://docs

Listing E.1 Mapping URL query string

The $input.params('encoding') method looks
at the path, the query string, and the header
value for a property called encoding.

Payload mapping
The API Gateway API Request and Response Payload-Mapping Template Reference
(https://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-
mapping-template-reference.html) is full of interesting tidbits. Not only can you
extract values from the request (including those from the path, query string, or
header), but you can also do quite a bit more; for example:

 $input.body returns the raw payload as a string.
 $input.json(value) evaluates a JSONPath expression and returns the

result as a JSON string.
 $input.params() returns a map of all request parameters.

You also have access to the $context variable, which has a lot of useful information
about the API call. You have information about the identity of the caller (if it’s pro-
vided), the HTTP method, and the gateway deployment stage from which the API call
is originating.

Finally, you have access to the $util variable, which contains a few useful utility
functions:

 $util.escapeJavaScript() escapes characters in a string (using Java-
Script string rules).

 $util.parseJson() takes a stringified JSON representation and produces a
JSON object.

 $util.urlEncode() and $util.urlDecode() convert a string to and from
application/x-www-form-urlencoded format.

 $util.base64Encode() and $util.base64Decode() encode and decode
base64-encoded data.

https://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-mapping-template-reference.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-mapping-template-reference.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-mapping-template-reference.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-mapping-template-reference.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-mapping-template-reference.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-mapping-template-reference.html

309APPENDIX E Models and mapping
.aws.amazon.com/apigateway/latest/developerguide/api-gateway-mapping-template-
reference.html; see figure E.2).

 In most cases, however, you should craft your own mapping and not pass every-
thing through to the endpoint. We did it in this example to show you the syntax,
methods, and parameters that you can apply.

If you use Method Request Passthrough to get all parameters passed to the integration
point, you can review what it looks like by logging the event object using CloudWatch.
The following listing shows some of the properties you can access.

{
 'body-json': '{}',
 params: {

path: {},
querystring: {
 encoding: 'some-encoding'
},
header: {}

 },
 'stage-variables': {},

Listing E.2 Method Request Passthrough

This template will map every parameter
but it’s also less efficient.

Figure E.2 The easy way is to map everything. It will add extra parameters that you may not
necessarily need to the event object. You might notice that this is similar to what you get when using
Lambda proxy integration.

Properties such as header,
path, and body-json will be
populated if they exist and are
specified via Method Request.

https://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-mapping-template-reference.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-mapping-template-reference.html

310 APPENDIX E Models and mapping
 context: {
'account-id': '038221756127',
'api-id': 'tlzyo7a7o9',
'api-key': 'test-invoke-api-key',
'authorizer-principal-id': '',
caller: '038221756127',
'cognito-authentication-provider': '',
'cognito-authentication-type': '',
'cognito-identity-id': '',
'cognito-identity-pool-id': '',
'http-method': 'GET',
stage: 'test-invoke-stage',
'source-ip': 'test-invoke-source-ip',
user: '038221756127',
'user-agent': 'Apache-HttpClient/4.3.4 (java 1.5)',
'user-arn': 'arn:aws:iam::038221756127:root',
'request-id': 'test-invoke-request',
'resource-id': 'e3r6ou',
'resource-path': '/videos'

 }
}

INTERMISSION–LET’S DO A TEST

You’ve now configured Integration Request and Method Request. That’s enough for
you to do a test, so take a breather and check if you’re on the right track.

 In the Method Execution page, choose Test on the left side. You’ll be taken to a
page from which you can execute a test against your GET method. If you’ve defined the
encoding query string, you’ll see a text box in which you can enter a value to test it. For
the moment, it does nothing, so you can leave it alone. Instead, click the Test button at
the bottom of the page. You’ll see a response body on the right side (figure E.3).

INTEGRATION RESPONSE

It’s now time to look at the response that will be sent back to the client. As you begin
using the API Gateway more and more, you might come across a scenario where the
client expects data in a different format than what the API Gateway receives from its
integration point. If you have complete control over the client, then it may be okay.
You can modify the client and make it handle the response. But what if you don’t have
control over the client? Luckily, the API Gateway has the ability to transform one
schema to another. You already saw glimpses of this when you configured the Integra-
tion Request. But what you did was pretty ad hoc. To build a more-solid system, you
can define a model (or a schema) and build a robust mapping template to transform
data from one format to another.

 If you look at the current response from the API Gateway (figure E.3), you’ll see an
object with two properties (baseUrl and bucket) and an array of URLs. Each URL has
five properties (Key, LastModified, Etag, Size, and StorageClass). Let’s come up

The context reveals much
(potentially) useful information,
such as the resource-path and
http-method.

311APPENDIX E Models and mapping
with a different schema that reduces the amount of data you need to send back to the
client and makes things a little more obvious. Here’s what you want to do:

 Rename baseUrl to domain.
 Rename URLs as files.
 Rename Key to filename.
 Remove LastModified (you already have an ETag) and StorageClass.

First, you need to create a model in the API Gateway:

1 Choose Models on the right side under 24-Hour Video.
2 Click the Create button.
3 Enter a model name such as GetVideoList.
4 Set Content Type to application/json, and enter a description if you wish (fig-

ure E.4).

The response from the Lambda
function is immediately shown.

Figure E.3 The test page is an excellent tool for testing whether your API has been
correctly configured.

312 APPENDIX E Models and mapping

M

a

i
c

API Gateway uses JSON Schema (http://json-schema.org/) to define the expected for-
mat. If your schema conforms to JSON Schema v4 (http://json-schema.org/latest/
json-schema-core.html), everything should work. You can always check if your schema
is correct by running it through the online JSON Schema Validator (http://www
.jsonschemavalidator.net/). For now, copy the schema from the next listing to the
Model Schema editor and click Create Model.

{
 "$schema": "http://json-schema.org/draft-04/schema#",
 "title": "GetVideoList",
 "description": "A schema for consuming information on available videos",
 "type": "object",
 "properties": {

"domain": {
 "description": "The unique identifier for a product",
 "type": "string"
},
"bucket": {
 "description": "Name of the product",
 "type": "string"
},
"files": {
 "type": "array",
 "items": {

"type": "object",
"properties": {

"filename": {

Listing E.3 GetVideoList JSON Schema

You can create as many models as
you wish to use across your API.

Figure E.4 Models, which use JSON Schema, define the output format for your data.

ost of the
properties
re optional

but are
typically

ncluded by
onvention.

Some things are mandatory, and the API Gateway
won’t let you save if you don’t form your schema
correctly. For example, if you define “type” as an
array, you must also have “items” defined.

http://json-schema.org/
http://json-schema.org/latest/json-schema-core.html
http://json-schema.org/latest/json-schema-core.html
http://json-schema.org/latest/json-schema-core.html
http://www.jsonschemavalidator.net/
http://www.jsonschemavalidator.net/
http://www.jsonschemavalidator.net/

313APPENDIX E Models and mapping
"type": "string"
},
"eTag": {

"type": "string"
},
"size": {

"type": "integer",
"minimum": 0

}
}

 }
}

 },
 "required": ["domain", "bucket"]
}

After creating the schema, follow these steps to modify Integration Response:

1 Choose Resources under 24-Hour Video.
2 Choose GET under /videos.
3 Choose Integration Response.
4 Expand the response type (it should be the one with the Method response sta-

tus of 200) and then expand Body Mapping Templates.
5 Choose application/json and then from the Generate Template drop-down

select GetVideoList. The text box below the drop-down should autopopulate
with a bit of code. Update this code to make it work with your model (refer to
listing E.4 and see figure E.5).

6 Click Save when you’ve finished.

One thing to be aware of: API Gateway supports JSONPath notation and Velocity Tem-
plate Language (VTL), so your mapping templates can have loops and logic. See
https://velocity.apache.org/engine/devel/vtl-reference.html for more information
about VTL and what you can do with it, and see http://goessner.net/articles/JsonPath/
for more information about JSONPath.

#set($inputRoot = $input.path('$'))
{
 "domain" : "$inputRoot.baseUrl",
 "bucket" : "$inputRoot.bucket",
 "files" : [
 #foreach($elem in $inputRoot.urls)

{
"filename" : "$elem.Key",
"eTag" : $elem.ETag,
"size" : "$elem.Size"

}
 #if($foreach.hasNext),#end
 #end
]
}

Listing E.4 Body Mapping Template

$inputRoot is the root object of the
original data (JSON object).

API Gateway uses the Velocity
Template Language, so
programming language
constructs such as foreach
and if are supported.

https://velocity.apache.org/engine/devel/vtl-reference.html
http://goessner.net/articles/JsonPath/

314 APPENDIX E Models and mapping
Now that the mapping template has been implemented, you can retest your GET
method to see if you get a different response from it. Go back to the main Method
Execution window and click Test. Click the Test button and look at the response body.
It should look similar to figure E.6.

E.1.2 Handling errors

So far we’ve only considered the happy path for your GET method. We’ve assumed
that the GET method will always succeed and return a response with an HTTP status
code of 200 and a response body with a list of your videos. But what if this isn’t always
the case? What if your Lambda function throws an error or encounters an unexpected
result? It would be useful to return a different HTTP status code and a different body
so that your client could handle it appropriately.

 Let’s see how you can handle happy and unhappy cases by extending your get-
video-list Lambda function further. Remember that encoding parameter you
included in the previous section? You’re now going to use it. Consider the following
requirements:

 If encoding is valid but you don’t have any videos for that encoding, the GET
method will return a 404 (Not Found) HTTP status code.

 If encoding isn’t provided, then you’ll continue to do what you’ve done before
and return all videos with a 200 (OK) HTTP status code.

 If there is any other kind of error, you’ll return a 500 (Internal Server Error)
HTTP status code and the error message.

The Body Mapping Template can transform one schema to another.
This is useful especially if you have no control over your client.

Figure E.5 Templates can be applied to an Integration Response and to an Integration Request.

315APPENDIX E Models and mapping
You’re also going to configure the API Gateway to return the appropriate HTTP code
and a response body based on what the Lambda function returns via its callback.
You’ll configure Method Response and Integration Response to make it happen. This
is how it will work:

 In the API Gateway, Method Response will be configured to handle new HTTP
status codes, such as 200, 404, and 500.

 Integration Response will extract the response from Lambda and decide which
HTTP status code to set.

UPDATING THE LAMBDA FUNCTION

You’re going to update the Lambda function to return an appropriate response when
things go bad. When things go right, you’ll use your callback to return the list of files
as per normal. That will generate a 200 HTTP status response code. When things go
bad, however, you’ll generate and return an object with three properties: status code,
message, and the encoding parameter. In the API Gateway, you’ll write a regex to
match on the status code and assign the right HTTP status to the response. You’ll also
extract the message and the encoding parameter and add it to the response. To do
this, you’ll create a new mapping template. It will override the existing mapping tem-
plate that you use for the happy case.

The response should match the
GetVideoList model we defined earlier.

Figure E.6 The response from the API should be different when the new model is implemented.

316 APPENDIX E Models and mapping
Open index.js of the get-video-list function in your favorite text editor and replace
the implementation with the following code.

'use strict';

var AWS = require('aws-sdk');
var async = require('async');

var s3 = new AWS.S3();

function createErrorResponse(code, message, encoding) {
 var result = {
 code: code,
 message: message,
 encoding: encoding
 };

 return JSON.stringify(result);
}

function createBucketParams(next) {
 var params = {
 Bucket: process.env.BUCKET
 };

 next(null, params);
}

function getVideosFromBucket(params, next) {
 s3.listObjects(params, function(err, data){
 if (err) {

next(err);
 } else {

next(null, data);
 }
 });
}

function createList(encoding, data, next) {
 var files = [];
 for (var i = 0; i < data.Contents.length; i++) {
 var file = data.Contents[i];

 if (encoding) {
var type = file.Key.substr(file.Key.lastIndexOf('-') + 1);
if (type !== encoding + '.mp4') {

Listing E.5 get-video-list function

Regex
The regex in the API Gateway works only if you return an error via a callback. You have to use
callback(result) if you want your error conditions to work. If you use callback(null,
result), the API Gateway will ignore your regex and always choose the default response
and template (which is 200 unless you change it).

This rather simple function
returns a stringified version of
your error response object. It
will be used in the API Gateway.

In chapter 3 you appended the
type of the encoding to the

end of the name (for example,
myfile-720p.mp4). Now you

can check whether the
requested encoding matches

the end of the filename.

317APPENDIX E Models and mapping
continue;
}

 } else {
if (file.Key.slice(-4) !== '.mp4') {
continue;

}
 }

 files.push(file);
 }

 var result = {
 baseUrl: process.env.BASE_URL,
 bucket: process.env.BUCKET,
 urls: files
 }

 next(null, result)
}

exports.handler = function(event, context, callback){
 var encoding = null;

 if (event.encoding) {
 encoding = decodeURIComponent(event.encoding);
 }

 async.waterfall([createBucketParams, getVideosFromBucket,

➥async.apply(createList, encoding)],
function (err, result) {

if (err) {
callback(createErrorResponse(500, err, event.encoding));

} else {
if (result.urls.length > 0) {
 callback(null, result);
} else {
 callback(createErrorResponse(404, 'no files for the given encoding

➥were found', event.encoding));
}

}
 });
};

Having implemented the function, deploy it to AWS by running npm run deploy from
the command line.

CONFIGURING THE METHOD RESPONSE

You’re going to configure method response first. Choose Method Response in the
Method Execution page and add two new responses:

 404
 500

Your page should look like figure E.7.

If the requested encoding
doesn’t match what’s in the
filename, you can skip the file
and go to the next one.

If encoding wasn’t supplied,
then you make a list of all
files ending with mp4.

318 APPENDIX E Models and mapping
CONFIGURING THE INTEGRATION RESPONSE

Now you can configure the integration response. In the Method Execution page,
choose Integration Response. Here you need to add three responses. You’ll write a
simple regex to inspect the output from the Lambda function. Then, based on the
result, you’ll set the right method response status. To do this, follow these steps:

1 Choose Add Integration Response.
2 Type .*"code":404.* in the Lambda Error Regex column.
3 Select 400 from the drop-down below and choose Save.
4 Choose Add Integration Response again.
5 Type .*"code":500.* in the Lambda Error Regex column.
6 This time select 500 from the drop-down and choose Save.

You should now see a view similar to figure E.8.
 You’ve created the regex to match on the output from the Lambda function. Take

.*"code":404.*, for example: the string "code":404 looks for an occurrence of that
specific text in the response from the Lambda function. The characters .* allow any
other text to precede and follow "code":404. If you don’t include .*, your regex will
expect only "code":404 in the response.

 Expand each of the new response types you’ve created and repeat the following for
each response:

1 Expand Body Mapping Templates.
2 Choose Add Mapping Template.
3 Type application/json and click the checkmark button to save.
4 Copy the mapping template from the next listing to the template edit box.
5 Click Save.

Add all the HTTP status codes your API needs. You can
customise headers and response body for each status code.

Figure E.7 Don’t rely on a single (200) HTTP status code. Add as many status codes as your system
needs.

319APPENDIX E Models and mapping
#set ($message = $util.parseJson($input.path('$.errorMessage')))
{
 "code" : "$message.code",
 "message" : $message.message,
 "encoding" : "$message.encoding"
}

You now have a way to control exactly what the API Gateway returns when there’s an
error. Note that you can modify response header mappings for each response code.
You can access them above Body Mapping Templates.

TESTING STATUS CODES

You can test whether the new status codes work straight from the API Gateway. Click
back to Method Execution and click Test. Type 2160p in the Encoding Query String
text box and click Test. After the test runs, look on the right side of the page. You
should see Status set to 404 and a response body based on the mapping template you
set up in listing E.6.

E.1.3 Deploying API Gateway

Having configured your GET method, you need to deploy it:

1 In the API Gateway, choose Resources under the 24-hour-video API.
2 Choose Actions.
3 Choose Deploy API.

Listing E.6 Mapping template for the error conditions

Click Add integration response to add
a new HTTP status code mapping.

Figure E.8 Setting a new integration response requires only a regex and a method response status.
You can customize header mapping and body mapping templates for each response.

Create a JSON object from the errorMessage property.
This property is always added by Lambda. It contains the
stringified representation of the error object generated
by the createErrorResponse function in listing E.5.

The properties from the error response
object are now available and accessible.
They can be mapped to the response.

320 APPENDIX E Models and mapping
4 You should see a dialog video with a Deployment Stage label and a drop-down.
5 From the drop-down select Dev:

If you can’t choose Dev from the drop-down, it means that you didn’t create a
stage back in chapter 5. That’s not hard to fix. Simply choose [New Stage] and
type in dev as the stage name (figure E.9).

6 Click Deploy.

You’ve now learned how to use models and mapping templates to exercise greater
control over the API Gateway. Jump back to chapter 7 and carry on from section 7.2.5.

Select [New Stage] if the dev deployment stage
is missing from the list.

Figure E.9 API Deployment via the console is a quick operation.

appendix F
S3 event message structure

If you use S3 with Lambda, you need to understand the S3 event message structure
for the purpose of extracting needed information from the message. This appen-
dix describes the structure of the event message, so that you’re aware of the avail-
able properties and their expected values.

F.1 S3 structure
The following listing shows an example S3 event message after an object has been
added to a bucket. This example is adapted from https://docs.aws.amazon.com/
AmazonS3/latest/dev/notification-content-structure.html.

{
 "Records":[
 {

"eventVersion":"2.0",

This appendix covers
 S3 event message structure

Listing F.1 S3 Event message structure

Top-level structure is an array of objects.
321

https://docs.aws.amazon.com/AmazonS3/latest/dev/notification-content-structure.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/notification-content-structure.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/notification-content-structure.html

322 APPENDIX F S3 event message structure
 "eventSource":"aws:s3",
 "awsRegion":"us-east-1",
 "eventTime":"1970-01-01T00:00:00.000Z",
 "eventName":"ObjectCreated:Put",
 "userIdentity":{

 "principalId":"AIDAJDPLRKLG7UEXAMPLE"
 },
 "requestParameters":{
 "sourceIPAddress":"127.0.0.1"
 },
 "responseElements":{
 "x-amz-request-id":"C3D13FE58DE4C810"
 },
 "s3":{
 "s3SchemaVersion":"1.0",
 "configurationID":"configRule",
 "bucket":{

"name":"MY_BUCKET",
"ownerIdentity":{

"principalId":"A3NL1KOZZKExample"
},
"arn":"arn:aws:s3:::MY_BUCKET_ARN"

 },
 "object":{

"key":"HappyFace.jpg",
"size":1024,
"eTag":"d41d8cd98f00b204e9800998ecf8427e",
"versionId":"096fKKXTRTtl3on89fVO.nfljtsv6qko",
"sequencer":"0055AED6DCD90281E5"

 }
 }

}
]
}

F.2 A few things to remember
 The key of the object is encoded. For example, the file hello world.jpg is

encoded to hello+world.jpg.
 Event notifications are not guaranteed to arrive in order, but you can use the

sequencer to determine which event came later (a greater hex value indicates
that the sequence came later).

Time specified in the
ISO-8601 format

User who caused the event

IP address where the request originated

Bucket notification configuration ID

Owner of the bucket

Bucket ARN

Key of the object

Object version
(if versioning
is enabled)The sequencer used

to determine the
order of events

appendix G
Serverless Framework

and SAM

Automation and continuous delivery are important if you’re building anything on
a cloud platform such as AWS. If you take a serverless approach, it becomes even
more critical because you end up having more services, more functions, and more
things to configure. You need to be able to script your entire application, run tests,
and deploy it automatically. The only time you should deploy Lambda functions
manually or self-configure API Gateway is while you learn. But once you begin work-
ing on real serverless applications, you need to be able to script everything and
have a repeatable, automated, and robust way of provisioning your system. In this
appendix, we introduce Serverless Framework and the Serverless Application
Model (SAM) to help you organize and deploy serverless applications.

This appendix covers
 An overview of the Serverless Framework 1.x

 An overview of the Serverless Application Model
323

324 APPENDIX G Serverless Framework and SAM
 Serverless Framework is an all-encompassing tool that can help to define, test, and
deploy serverless applications to AWS. It’s supported by a full-time team at Serverless,
Inc., and a number of open source contributors from all over the world. It’s a tool
that’s used with great success by many companies worldwide to manage their server-
less applications.

 SAM is an extension to CloudFormation, developed by AWS. It allows users to script
their Lambda, API Gateway, and DynamoDB tables using a simple syntax and then
deploy using CloudFormation commands and know-how that they already have.

G.1 Serverless Framework
The Serverless Framework (https://serverless.com) is an MIT open source framework
that’s actively developed and maintained by a full-time team. At its essence, it allows
users to define a serverless application—including Lambda functions and API Gateway
APIs—and then deploy it using a command-line interface (CLI). It helps you organize
and structure serverless applications, which is of great benefit as you begin to build
larger systems, and it’s fully extensible via its plugin system.

G.1.1 Installation

Serverless Framework is a Node.js CLI tool, so the first thing you need to do is to
install Node.js on your machine. Refer to appendix B for instructions on installation
of Node.js.

NOTE Serverless Framework runs on Node.js v4 or higher, so make sure you
pick a recent Node.js version.

You can verify that Node.js is installed successfully by running the command node
--version in a terminal window. You should see the corresponding Node.js version
number printed out. Next, open your terminal and run npm install -g serverless to
install Serverless Framework. When the installation process completes, you can verify
that Serverless Framework is installed successfully by running the command serverless
from your terminal.

CREDENTIALS

The Serverless Framework needs access to your AWS account so that it can create and
manage resources on your behalf. To let the Serverless Framework access your AWS
account, you’re going to create an IAM user with admin access, which can configure
the services in your AWS account. This IAM user will have its own set of AWS access keys.

NOTE Normally in a production environment, we’d recommend reducing
the permissions of the IAM user that the Framework uses. Unfortunately, the
Framework’s functionality is growing so fast that we don’t yet have a list or a
finite set of permissions it needs. Consider using a separate AWS account in
the interim if you can’t get permission to your organization’s primary AWS
accounts.

325APPENDIX G Serverless Framework and SAM
Follow these steps:

1 Create or log in to your Amazon Web Services account and go to the Identity &
Access Management (IAM) page.

2 Click Users, and then on Create New Users, enter a name, like serverless-
admin, in the first field to remind you that this user is the Framework.

3 Select Programmatic Access and click Next: Permissions.
4 Select Attach Existing Policies Directly and search for “AdministratorAccess.”

Select the administrator access policy and click Next: Review.
5 Click Create User.
6 On the next page, you’ll see the access key ID and the secret access key. Save

them to a temporary file. You can also download a CSV file with the keys. Click
Close when finished.

You can configure the Serverless Framework to use your AWS API key and secret key
using this command from a terminal:

serverless config credentials --provider aws --key [ACCESS_KEY] --secret

➥[SECRET_KEY]

AWS credentials
Running serverless config credentials --provider will store the credentials
under a default AWS profile at the following location in your computer: ~/.aws/
credentials. If you followed our previous chapters, you might already have keys for
the lambda-upload user in the credentials file. Running the previous command will
overwrite your existing keys.

There are two ways you can deal with this: instead of overwriting your lambda-upload
keys, you can either add AdministratorAccess permissions to the lambda-upload
user or add multiple credentials to ~/.aws/credentials, like so:

[default]
aws_access_key_id=[ACCESS_KEY]
aws_secret_access_key=[SECRET_KEY]

[serverless]
aws_access_key_id=[ACCESS_KEY]
aws_secret_access_key=[SECRET_KEY]

Then add a profile setting to your provider configuration in serverless.yml:

service: new-service
provider:
name: aws
 runtime: nodejs4.3
 profile: serverless

326 APPENDIX G Serverless Framework and SAM
SERVICES

A service is the Framework’s unit of organization. You can think of it as a project
(though you can have multiple services for a single project or application). A service is
where you define your functions, the events that trigger them, and the resource your
functions use, all in a single file called serverless.yml, as shown in the following listing.

service: users

functions:
 usersCreate:
 events:

- http: post users/create
 usersDelete:
 events:

- http: delete users/delete

resource:

The point of a service is to keep your functions and all of their dependencies together
in one unit. When you deploy with the Framework by running serverless deploy,
everything in serverless.yml is deployed at once.

PLUGINS

You can overwrite or extend the functionality of the Framework using plugins. Every
serverless.yml can contain a plugins: property, which features the plugins the service
uses (see the following listing).

plugins:
- serverless-offline
- serverless-secrets

G.1.2 Beginning Serverless Framework

As we’ve mentioned, in the Serverless Framework, a service is like a project. It’s where
you define your AWS Lambda functions, the events that trigger them, and any AWS
infrastructure resource they require.

ORGANIZATION

In the beginning of an application, many people use a single service to define all of
the functions, events, and resource for that project, as shown in the next listing.

myApp/
 serverless.yml

Listing G.1 Service—serverless.yml

Listing G.2 Plugins—serverless.yml

Listing G.3 Your application

Your functions

The events that trigger
these functions

The resource your functions use. Raw
AWS CloudFormation syntax goes here.

You can find a list of available plugins at
https://github.com/serverless/serverless#v1-plugins.

Contains all functions, events,
and infrastructure resource

https://github.com/serverless/serverless#v1-plugins

327APPENDIX G Serverless Framework and SAM
But as your application grows, you can break it out into multiple services. Some peo-
ple organize their services by workflows or data models and group the functions
related to those workflows and data models together in the service, as shown here.

users/
 serverless.yml
posts/
 serverless.yml
comments/
 serverless.yml

This makes sense because related functions usually use common infrastructure
resources, and you want to keep those functions and resources together as a single
unit of deployment for better organization and separation of concerns.

CREATION

To create a service, use the create command. You must also pass in a runtime (for
example, node.js or Python) that you want to write the service in. You can also pass in
a path to create a directory and autoname your service:

serverless create --template aws-nodejs --path myService

The following runtimes are available in the Serverless Framework for AWS Lambda:

 aws-nodejs
 aws-python
 aws-java-gradle
 aws-java-maven
 aws-scala-sbt

SCAFFOLDING

You’ll see the following files in your working directory:

 serverless.yml
 handler.js

Each service configuration is managed in the serverless.yml file. The main responsibil-
ities of this file are as follows:

Listing G.4 Your application

Contains functions for
users, posts, and
comments in separate files

Getting help
You can run serverless to see a list of available commands and then run the com-
mand serverless <command-name> --help to get more information about each
command. Considerable information about the Framework is also available online at
https://serverless.com/framework/docs/.

https://serverless.com/framework/docs/

328 APPENDIX G Serverless Framework and SAM
 Declare a serverless service
 Define one or multiple functions in the service
 Define the provider the service will be deployed to (and the runtime if provided).
 Define custom plugins to be used
 Define events that trigger each function to execute (for example, HTTP

requests)
 Define a set of resources (for example, 1 AWS CloudFormation stack) required

by the functions in this service
 Allow events listed in the events section to automatically create the resource

required for the event upon deployment
 Allow flexible configuration using Serverless variables

You can see the name of the service, the provider configuration, and the first function
inside the functions definition, which points to the handler.js file. Any further service
configuration will be done in this file, as shown in the following listing.

service: users

provider:
 name: aws
 runtime: nodejs4.3
 memorySize: 512

functions:
 usersCreate:
 handler: index.create
 events:

- http:
path: users/create

 method: post
 usersDelete:
 handler: index.delete
 events:

- http:
path: users/delete

 method: delete

resource:
 Resource:
 usersTable:

Type: AWS::DynamoDB::Table
Properties:

TableName: usersTable
AttributeDefinitions:
- AttributeName: email

AttributeType: S
KeySchema:
- AttributeName: email

KeyType: HASH
ProvisionedThroughput:

Listing G.5 A more complete serverless.yml example

A function

The events that trigger this function

A function

The events that trigger this function

The resources your functions use.
Raw AWS CloudFormation goes here.

329APPENDIX G Serverless Framework and SAM
 ReadCapacityUnits: 1
 WriteCapacityUnits: 1

Every serverless.yml translates to a single AWS CloudFormation template, and a Cloud-
Formation stack is created from that resulting CloudFormation template. The handler.js
file contains your function code. The function definition in serverless.yml will point to
this handler.js file and the function will be exported here.

LOCAL AND REMOTE DEVELOPMENT

The Serverless Framework offers a command to run your AWS Lambda functions on
AWS Lambda after they’ve been uploaded. Additionally, the Framework allows you to
run your AWS Lambda functions locally via a powerful emulator, so you don’t have to
re-upload your functions every time you want to run your code. You can do this by
running a few commands.

 This command runs your functions locally:

serverless invoke local --function myFunction

This command runs your functions remotely:

serverless invoke --function myFunction

You can pass data into both commands via the following options:

--path lib/data.json
--data "hello world"
--data '{"a":"bar"}'

You can also pass data in from standard input:

node dataGenerator.js | serverless invoke local --function functionName

G.1.3 Using the Serverless Framework

The Serverless Framework was designed to provision your AWS Lambda functions,
events, and infrastructure resources safely and quickly. It does this via a couple of
methods designed for different types of deployments.

DEPLOY ALL

The following command is the main way of doing deployments with the Serverless
Framework:

serverless deploy

Use this command when you’ve updated your function, event, or resource configura-
tion in serverless.yml and you want to deploy that change (or multiple changes at the
same time) to Amazon Web Services. The Serverless Framework translates all syntax in
serverless.yml to a single AWS CloudFormation template. By depending on Cloud-
Formation for deployments, users of the Serverless Framework get the safety and reli-
ability of CloudFormation. At a high level, these steps take place when the serverless
deploy command is run:

330 APPENDIX G Serverless Framework and SAM
1 An AWS CloudFormation template is created from your serverless.yml.
2 If a stack has not yet been created, it’s created with no resource except an S3

bucket, which will store zip files of your function code.
3 The code of your functions is then packaged into zip files.
4 Zip files of your functions’ code are uploaded to your code S3 bucket.
5 Any IAM roles, functions, events, and resources are added to the AWS Cloud-

Formation template.
6 The CloudFormation stack is updated with the new CloudFormation template.

Use serverless deploy in your CI/CD systems because it’s the safest method of
deployment. You can print the progress during the deployment if you use verbose
mode, as follows:

serverless deploy --verbose

This method defaults to dev stage and us-east-1 region. But you can change the
default stage and region in your serverless.yml file by setting the stage and region
properties inside a provider object, as the following example shows.

service: service-name
provider:
 name: aws
 stage: beta
 region: us-west-2

You can also deploy to different stages and regions by passing in flags, as shown in the
following command:

serverless deploy --stage production --region eu-central-1

DEPLOY FUNCTION

The serverless deploy function method doesn’t touch your AWS CloudFormation
stack. Instead, it overwrites the zip file of the current function on AWS. This method is
much faster than running vanilla serverless deploy, because it doesn’t rely on
CloudFormation:

serverless deploy function --function myFunction

The Framework packages the targeted AWS Lambda function into a zip file. That zip
file is uploaded to your S3 bucket using the same name as the previous function,
which the CloudFormation stack is pointing to. Use this when you’re developing and
want to test on AWS, because it’s much faster. During development, people often run
this command several times, as opposed to serverless deploy, which is run only
when larger infrastructure provisioning is required.

Listing G.6 Regions and stages

The stage and region for
your configuration

331APPENDIX G Serverless Framework and SAM
G.1.4 Packaging

Sometimes you might like to have more control over your function artifacts and how
they’re packaged. You can use the package and exclude configuration for this.

EXCLUDE/INCLUDE

Exclude allows you to define globs that will be excluded from the resulting artifact.
If you want to include files, you can use a glob pattern prefixed with !, such as
!re-include-me/**. Serverless will run the glob patterns in order. For example, the
next listing shows how to exclude all node_modules but then re-include a specific
module (in this case, node-fetch).

package:
 exclude:

- node_modules/**
- "!node_modules/node-fetch/**"

ARTIFACT

For complete control over the packaging process, you can specify your own zip file for
your service. Serverless won’t zip your service if it’s configured, so include and
exclude will be ignored. An example of this is shown in the next listing.

service: my-service
package:
 include:

- lib
- functions

 exclude:
- tmp
- .git

 artifact: path/to/my-artifact.zip

PACKAGING FUNCTIONS SEPARATELY

If you want even more control over your functions during deployment, you can config-
ure them to be packaged independently. This allows you to optimize the way they’re
deployed. To enable individual packaging, set individually to true in the service-
wide packaging settings. Then, for every function, you can use the same include/
exclude/artifact config options as you can service-wide. The include/exclude
options will be merged with the service-wide options to create one include/exclude
config per function during packaging (see the following listing).

service: my-service
package:
 individually: true

Listing G.7 Exclude

Listing G.8 Artifact

Listing G.9 Packaging functions separately

The node-fetch folder is included
but all other folders in
node_modules are excluded.

Specify a path to a zip file on
your own system. If your own
artifact is specified, include and
exclude options are ignored.

332 APPENDIX G Serverless Framework and SAM
 exclude:
- excluded-by-default.json

functions:
 hello:
 handler: handler.hello
 package:
 include:

- excluded-by-default.json
 world:
 handler: handler.hello
 package:

exclude:
- event.json

G.1.5 Testing

Testing a serverless architecture can be challenging for several reasons, including the
following:

 Your architecture is highly dependent on multiple third-party services, which
require their own tests.

 Those third-party services are cloud-based services and are inherently tricky to
test locally.

 Asynchronous, event-driven workflows are especially complicated to emulate
and test.

Because of these issues, we suggest the following testing strategy:

 Write your business logic in a way that separates it from AWS Lambda’s API.
 Write unit tests to verify that the business logic is working well.
 Write integration tests to verify integrations with other services (for example,

AWS services) are working correctly.

EXAMPLE

Let’s take a simple Node.js function as an example. The responsibility of this function
is to save a user into a database and send a welcome email. See the following listing for
the implementation.

const db = require('db').connect();
const mailer = require('mailer');

module.exports.saveUser = (event, context, callback) => {
 const user = {
 email: event.email,
 created_at: Date.now()
 }

 db.saveUser(user, function (err) {
 if (err) {

callback(err);
 } else {

Listing G.10 The mailer function

You’re including this file so it
will be in the final package of
this function only.

This is a basic, made-up example in
which you save a user to an imaginary
database and send a welcome email.

333APPENDIX G Serverless Framework and SAM
mailer.sendWelcomeEmail(event.email);
callback();

 }
 });
};

There are two main problems with this function:

 The business logic isn’t separated from the third-party services it uses, making it
hard to test. An example of this is that the business logic is dependent on how
AWS Lambda passes in data (the event object).

 Testing this function requires running a DB instance and mail server.

First, the business logic should be separated. A side benefit of this is that it will matter
less whether the logic is running in AWS Lambda, Google Cloud Functions, or a tradi-
tional HTTP server. You’ll separate the business logic first, as shown in the next listing.

class Users {
 constructor(db, mailer) {
 this.db = db;
 this.mailer = mailer;
 }

 save(email, callback) {
 const user = {

email: email,
created_at: Date.now()

 }

 this.db.saveUser(user, function (err) {
if (err) {

callback(err);
} else {

this.mailer.sendWelcomeEmail(email);
callback();

}
 });
 }
}

The Users class is separate and more easily testable, and it doesn’t require running
any of the external services. Instead of real DB and mailer objects, you can pass mocks
and assert if saveUser and sendWelcomeEmail have been called with proper argu-
ments. You should have as many unit tests as possible and run them on every code
change. Of course, passing unit tests doesn’t mean your function is working as
expected. That’s why you also need integration tests. After extracting all of the busi-
ness logic to a separate module, all that’s left is a simple handler function, as shown in
the next listing.

Listing G.11 Mailer function business logic

Note that you’re passing in the callback
function from the handler. You don’t
need to pass anything back to the
handler, thus making the flow of
information simpler.

334 APPENDIX G Serverless Framework and SAM
const db = require('db').connect();
const mailer = require('mailer');
const users = require('users')(db, mailer);

module.exports.saveUser = (event, context, callback) => {
 users.save(event.email, callback);
};

The code in listing G.12 is responsible for setting up dependencies, injecting them,
and calling business logic functions. This code will be changed less often. To make
sure the function is working as expected, integration tests should be run against the
deployed function. They should invoke the function (serverless invoke) with the
fixture email address, check if the user is actually saved to the DB, and check if email
was received.

G.1.6 Plugins

A plugin is custom JavaScript code that creates new, or extends existing, commands
within the Serverless Framework. The Serverless Framework’s architecture is merely a
group of plugins that are provided in the core. If you (or your organization) have a
specific workflow, you can install a prewritten plugin or write a plugin to customize
the Framework to your needs. External plugins are written exactly the same way as the
core plugins.

INSTALLING PLUGINS

External plugins are added on a per-service basis and are not applied globally. Make
sure you’re in your service’s root directory; then install the corresponding plugin with
the help of npm by running the following command:

npm install --save custom-serverless-plugin

You need to tell Serverless that you want to use the plugin inside your service. You do
this by adding the name of the plugin to the plugins section in the serverless.yml file,
as shown in the following listing. The custom section in the serverless.yml file is the
place where you can add necessary configurations for your plugins (the plugins
author or documentation will tell you if you need to add anything there).

plugins:
- custom-serverless-plugin

custom:
customkey: customvalue

Listing G.12 Mailer handler function

Listing G.13 Adding plugins

The only
responsibility of
the handler is to
invoke the save
function.

335APPENDIX G Serverless Framework and SAM
LOAD ORDER

Keep in mind that the order in which you define your plugins matters. Serverless first
loads all the core plugins and then the custom plugins in the order in which you’ve
defined them, as shown in the following listing.

serverless.yml

plugins:
- plugin1
- plugin2

WRITING PLUGINS

These are the three concepts you need to know when authoring plugins:

 Command—CLI configuration, commands, subcommands, options
 LifecycleEvent—An event that happen sequentially when the command is run
 Hook—Code that runs when a LifecycleEvent takes place during a command

A command can be called by a user (for example, serverless deploy); it has no logic,
but simply defines the CLI configuration (for example, command, subcommands, and
parameters) and the lifecycle events for the command. Every command defines its
own lifecycle events, as shown in the next listing.

'use strict';

class MyPlugin {
 constructor() {
 this.commands = {
 deploy: {
 lifecycleEvents: [

'resource',
'functions'

]
 },
 };
 }
}

module.exports = MyPlugin;

Listing G.15 lists two events. But for each event, additional before and after events are
created. Therefore, the following six lifecycle events exist in that example:

 before:deploy:resource
 deploy:resource
 after:deploy:resource
 before:deploy:functions

Listing G.14 Load order

Listing G.15 Creating a serverless plugin

Plugin 1 is loaded
before plugin 2

336 APPENDIX G Serverless Framework and SAM
 deploy:functions
 after:deploy:functions

The name of the command in front of a lifecycle event is used for hooks. A hook
binds code to any lifecycle event from any command, as the next listing shows.

'use strict';

class Deploy {
 constructor() {
 this.commands = {
 deploy: {
 lifecycleEvents: [

'resource',
'functions'

]
 },
 };

 this.hooks = {
 'before:deploy:resource': this.beforeDeployResources,
 'deploy:resource': this.deployResources,
 'after:deploy:functions': this.afterDeployFunctions
 };
 }

 beforeDeployResources() {
 console.log('Before Deploy Resource');
 }

 deployResources() {
 console.log('Deploy Resource');
 }

 afterDeployFunctions() {
 console.log('After Deploy functions');
 }
}

module.exports = Deploy;

Each command can have multiple options. Options are passed in with a double dash
(--) like this:

serverless function deploy --function functionName

Option shortcuts are passed in with a single dash (-) like this:

serverless function deploy -f functionName

The options object will be passed in as the second parameter to the constructor of
your plugin. In it, you can optionally add a shortcut property, as well as a required

Listing G.16 Hooks in a serverless plugin

337APPENDIX G Serverless Framework and SAM
property. The Framework will return an error if a required option is not included, as
shown in the following listing.

'use strict';

class Deploy {
 constructor(serverless, options) {
 this.serverless = serverless;
 this.options = options;

 this.commands = {
deploy: {

lifecycleEvents: [
 'functions'
],
options: {
 function: {
 usage: 'Specify the function you want to deploy

➥(for example, "--function myFunction")',
shortcut: 'f',
required: true

 }
}

},
 };

 this.hooks = {
'deploy:functions': this.deployFunction.bind(this)

 }
 }

 deployFunction() {
 console.log('Deploying function: ', this.options.function);
 }
}

module.exports = Deploy;

The serverless instance that enables access to global service config during runtime is
passed in as the first parameter to the plugin constructor, shown in the next listing.

'use strict';

class MyPlugin {
 constructor(serverless, options) {
 this.serverless = serverless;
 this.options = options;

 this.commands = {
log: {

lifecycleEvents: [
 'serverless'

Listing G.17 Options in a plugin

Listing G.18 Accessing the global service config

338 APPENDIX G Serverless Framework and SAM
],
},

 };

 this.hooks = {
'log:serverless': this.logServerless.bind(this)

 }
 }

 logServerless() {
 console.log('Serverless instance: ', this.serverless);
 }
}

module.exports = MyPlugin;

Command names need to be unique. If you load two commands and both want to
specify the same command (for example, you have an integrated command deploy
and an external command also wants to use deploy), the Serverless CLI will print an
error and exit. If you want to have your own deploy command, you need to name it
something different, like myCompanyDeploy, so it doesn’t clash with existing plugins.

G.1.7 Examples

Here are a few examples with the Serverless Framework that you can try for yourself.

REST API
In this example, you’re going to create a simple REST API with a single HTTP endpoint
using the Serverless Framework. The following serverless.yml (listing G.19) will deploy
a single AWS Lambda function, create an AWS API Gateway REST API with an HTTP
endpoint, and then connect the two. Listing G.20 shows the implementation of the
Lambda function. You can deploy this easily with the serverless deploy command.

service: serverless-simple-http-endpoint

provider:
 name: aws
 runtime: nodejs4.3

functions:
 currentTime:
 handler: handler.endpoint
 events:

- http:
path: ping

 method: get

'use strict';

module.exports.endpoint = (event, context, callback) => {

Listing G.19 Simple REST API—serverless.yml

Listing G.20 Simple REST API—handler.js

339APPENDIX G Serverless Framework and SAM
 const response = {
 statusCode: 200,
 body: JSON.stringify({

message: 'Hello,

➥the current time is ${new Date().toTimeString()}.'
 }),
 };

 callback(null, response);
};

IOT EVENT

This example demonstrates how to set up an IoT rule on the AWS IoT platform to
send events to a Lambda function. You can use this to react to any IoT events with an
AWS Lambda function. You can deploy this easily with the serverless deploy com-
mand. The following listing shows the implementation for serverless.yml, and listing
G.22 shows the Lambda function.

service: aws-node-iot-event

provider:
 name: aws
 runtime: nodejs4.3

functions:
 log:
 handler: handler.log
 events:

- iot:
sql: "SELECT * FROM 'mybutton'"

module.exports.log = (event, context, callback) => {
 console.log(event);
 callback(null, {});
};

SCHEDULED

Listing G.23 is an example of an AWS Lambda function that runs on a schedule like a
cron job. You can deploy this easily with the serverless deploy command. This list-
ing shows the implementation of the serverless.yml file, whereas listing G.24 shows the
implementation of the function.

service: scheduled-cron-example

provider:
 name: aws
 runtime: nodejs4.3

Listing G.21 IoT Event—serverless.yml

Listing G.22 IoT event—handler.js

Listing G.23 Scheduled—serverless.yml

340 APPENDIX G Serverless Framework and SAM
functions:
 cron:
 handler: handler.run
 events:

- schedule: rate(1 minute)
 secondCron:
 handler: handler.run
 events:

- schedule: cron(0/2 * ? * MON-FRI *)

module.exports.run = (event, context) => {
 const time = new Date();
 console.log(`Your cron function "${context.functionName}" ran at ${time}`);
};

AMAZON ALEXA SKILL

The following example demonstrates how to create your own Alexa skill using AWS
Lambda. First, you need to register your skill in the Amazon Alexa Developer Portal
(https://developer.amazon.com/edw/home.html). To do this, you need to define the
available intents and then connect them to a Lambda function (https://developer
.amazon.com/public/solutions/alexa/alexa-skills-kit/getting-started-guide). You can
define and update this Lambda function with Serverless and deploy with the serverless
deploy command. The following listing shows the implementation of serverless.yml,
and listing G.26 shows the implementation of the function written in Python.

service: aws-python-alexa-skill

provider:
 name: aws
 runtime: python2.7

functions:
 luckyNumber:
 handler: handler.lucky_number
 events:

- alexaSkill

import random

def parseInt(value):
 try:

return int(value)
 except ValueError:

return 100

Listing G.24 Scheduled—handler.js

Listing G.25 Alexa skill—serverless.yml

Listing G.26 Alexa skill—handler.py

Invoke Lambda
function every minute.

Invoke Lambda function
every second minute from
Monday through Friday.

https://developer.amazon.com/edw/home.html
https://developer.amazon.com/public/solutions/alexa/alexa-skills-kit/getting-started-guide
https://developer.amazon.com/public/solutions/alexa/alexa-skills-kit/getting-started-guide
https://developer.amazon.com/public/solutions/alexa/alexa-skills-kit/getting-started-guide

341APPENDIX G Serverless Framework and SAM
def lucky_number(event, context):
 print(event)
 upperLimitDict = event['request']['intent']['slots']['UpperLimit']
 upperLimit = None
 if 'value' in upperLimitDict:

upperLimit = parseInt(upperLimitDict['value'])
 else:

upperLimit = 100

 number = random.randint(0, upperLimit)
 response = {

'version': '1.0',
'response': {
 'outputSpeech': {

'type': 'PlainText',
'text': 'Your lucky number is ' + str(number),

 }
}

 }

 return response

G.2 Serverless Application Model
AWS CloudFormation (https://aws.amazon.com/cloudformation) is an AWS service
that allows you to create and provision AWS resources and services like EC2, S3,
DynamoDB, and Lambda. You define resources in a text file called a template, and
CloudFormation creates and deploys them for you. CloudFormation helps you deal
with dependencies and the order in which resources are provisioned. It’s a core tool
for automation of infrastructure within AWS and something serious solution architects
and infrastructure gurus can’t do without. And, frankly, without scripting and automat-
ing infrastructure, you’re not using AWS to its full potential anyway. CloudFormation,
or its third-party alternative tool called Terraform (https://www.terraform.io), is some-
thing you should know.

 It turns out, however, that defining serverless applications made with Lambda, API
Gateway, and DynamoDB can be complex and time-consuming if you do it directly in
CloudFormation. It’s understandable, too: CloudFormation is older than Lambda and
API Gateway and wasn’t designed and optimized for serverless applications. Thank-
fully, the team responsible for Lambda and API Gateway saw this and came up with the
Serverless Application Model (SAM).

 SAM (https://aws.amazon.com/about-aws/whats-new/2016/11/introducing-the-
aws-serverless-application-model/) allows you to use a simpler syntax to define server-
less applications. CloudFormation can process a SAM template and transform it to stan-
dard CloudFormation syntax (something the Serverless Framework does too). It’s
amazing to see how elegant and succinct SAM is, compared with regular Cloud-
Formation templates (https://docs.aws.amazon.com/AWSCloudFormation/latest/
UserGuide/transform-section-structure.html). We encourage you to take a good look
at SAM if you’re going to automate your infrastructure and use CloudFormation. Use
the simpler model and your future self will thank you for it.

This function chooses a
random number between 0

and 100 and then uses speech
output to say what it is.

https://aws.amazon.com/cloudformation
https://www.terraform.io
https://aws.amazon.com/about-aws/whats-new/2016/11/introducing-the-aws-serverless-application-model/
https://aws.amazon.com/about-aws/whats-new/2016/11/introducing-the-aws-serverless-application-model/
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/transform-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/transform-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/transform-section-structure.html

342 APPENDIX G Serverless Framework and SAM
G.2.1 Getting started

To begin writing a SAM template, create a new JSON or YAML CloudFormation template
with an AWSTemplateFormatVersion at the top. First, you need to include a transform
statement at the root of the template (under the template format version). The trans-
form tells CloudFormation which version of SAM is used and how to process the tem-
plate. The transform section for JSON templates must be Transform: AWS::Serverless-
2016-10-31, and for YAML it must be "Transform" : "AWS::Serverless-2016-10-31".

 If a transform isn’t specified, CloudFormation won’t know how to process
SAM (https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/transform-
section-structure.html). The current SAM specification (https://github.com/awslabs/
serverless-application-model) defines three overarching resource types that can be
used within a SAM template:

 AWS::Serverless::Function (Lambda function)
 AWS::Serverless::Api (API Gateway)
 AWS::Serverless::SimpleTable (DynamoDB table)

The specification also defines a number of event source types for Lambda including
S3, SNS, Kinesis, DynamoDB, API Gateway, a CloudWatch event, and more. And it
allows you to specify additional properties such as environment variables for a func-
tion. Let’s get into a quick example right now to see how SAM and CloudFormation
can help you script and deploy Lambda functions. It’s important to note that SAM may
have limitations at this stage. At the time of writing, for example, an existing S3 bucket
couldn’t be specified as an event source. The bucket would have to be created in the
template to be used as an event source for Lambda. By the time you read this
book, SAM will have been improved, so take a look at https://github.com/awslabs/
serverless-application-model before you begin.

G.2.2 Example with SAM

To work through this exercise, you must have the AWS CLI installed on your computer.
If you don’t have it installed, refer to appendix B for more details. You’ll be invoking
CLI commands so your IAM user (it’s lambda-upload if you’ve been following the
24-Hour Video application) needs the right permissions for CloudFormation. The
user must have permissions to interact with CloudFormation and S3 for artifact
uploads and additional permissions to do what CloudFormation is trying to accom-
plish. The setup of these permissions is outside the scope of this appendix, but we
encourage you to go to https://aws.amazon.com/cloudformation/aws-cloudforma-
tion-articles-and-tutorials/ for tutorials and examples. If you just want to experiment
and learn, you can give lambda-upload full administrator rights (you might have done
it while going through the previous section already), but don’t forget to revoke them
as soon as you’ve finished.

 Assuming you have the CLI installed and lambda-upload has the right permissions,
in a new directory create a file called index.js. This will be the Lambda function you’re

https://aws.amazon.com/cloudformation/aws-cloudformation-articles-and-tutorials/
https://aws.amazon.com/cloudformation/aws-cloudformation-articles-and-tutorials/
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/transform-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/transform-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/transform-section-structure.html
https://github.com/awslabs/serverless-application-model
https://github.com/awslabs/serverless-application-model
https://github.com/awslabs/serverless-application-model
https://github.com/awslabs/serverless-application-model
https://github.com/awslabs/serverless-application-model
https://github.com/awslabs/serverless-application-model

343APPENDIX G Serverless Framework and SAM
going to deploy using SAM. Copy the following code to this file. The Lambda function
itself is trivial. It retrieves an environment variable called HELLO_SAM and then uses it
as a parameter to the callback function.

exports.handler = function(event, context, callback) {
 var message = process.env.HELLO_SAM;
 callback(null, message);
}

In the same folder as index.js, create a new file called sam_template.yaml and copy
the next listing to it.

AWSTemplateFormatVersion: '2010-09-09'
Transform: AWS::Serverless-2016-10-31
Resources:
 SamFunctionTest:
 Type: AWS::Serverless::Function
 Properties:

Handler: index.handler
Runtime: nodejs4.3
CodeUri: function.zip
Timeout: 25
Environment:
Variables:
 HELLO_SAM: Hello World and Sam!

Open the directory that contains your Lambda function and zip index.js into an
archive called function.zip. Make sure you call it function.zip because this is what your
SAM template specifies. You also need to create an S3 bucket that will contain artifacts
like the Lambda function, which CloudFormation will deploy. Jump into the S3 con-
sole and create a new bucket in N. Virginia (us-east-1). Call this bucket something
akin to serverless-artifacts (your name will have to be unique). Jump back into
the console and run the command given in the next listing.

aws cloudformation package

➥ --template-file sam_template.yaml

➥ --output-template-file sam_processed.yaml

➥ --s3-bucket serverless-artefacts

Listing G.27 Basic Lambda function

Listing G.28 SAM template

Listing G.29 CloudFormation package

Retrieves the environment
variable HELLO_SAM

You must include the transform
statement for CloudFormation to
know that it’s a SAM template.

SamFunctionTest will become a part of
the function name in Lambda. You can
change it to anything you want.

In this example you’re creating only
one resource type, which is a
function. The other two types are
API and SimpleTable.

The zipped archive with your function. It should be
located in the same directory as this template file.

An environment variable you’ll create
during deployment. Remember that
environment variables don’t support
commas, so don’t put one there.

The template file you
created in listing G.28

The package command will generate a new
template, sam_processed.yaml, for you and
place it in the current directory.

You must specify the S3 bucket you
created. The name of your bucket will be

different, so don’t forget to change it.

344 APPENDIX G Serverless Framework and SAM
The CloudFormation package command carries out two important actions. It uploads
your zip file with the Lambda function to S3 and creates a new template that points to
the uploaded file. Now you can execute the CloudFormation deploy command to cre-
ate your Lambda function. Here’s the command you need to run from the terminal.

aws cloudformation deploy

➥ --template-file sam_processed.yaml

➥ --stack-name serverless-upload-stackB

➥ --capabilities CAPABILITY_IAM

If everything goes well you should see a message in the terminal window that your
stack was successfully created/updated. You can jump into the Lambda console and
take a look at your new function. Don’t forget to check that the environment variable
was created too. If you want to learn more about SAM, check out https://aws.amazon
.com/blogs/compute/introducing-simplified-serverless-application-deplyoment-and-
management/ and https://docs.aws.amazon.com/lambda/latest/dg/serverless-deploy-
wt.html for further information and examples.

G.3 Summary
Serverless Framework and SAM are tools you can use to organize and deploy your
serverless applications. At this stage, Serverless Framework is a more fully featured sys-
tem with many useful plugins and a strong community. If you choose it, you won’t go
wrong. But that doesn’t mean that you shouldn’t keep an eye on SAM. The mere fact
that it is supported by AWS means a lot, so watch it as it grows and matures.

 The one thing you might have noticed is that we haven’t addressed non-AWS ser-
vices. Supporting hybrid environments is difficult, and neither Serverless Framework
nor SAM will be of much help (although Serverless Framework is moving quickly to
support multiple vendors and compute offerings such as Azure Functions, Open-
Whisk, and Google Cloud Functions). For now, however, you’ll either have to stay
entirely within AWS or do extra work (which may involve additional scripting) if you
wish to support non-AWS services.

Listing G.30 CloudFormation deploy

You must specify the new template
file created by the package
command in listing G.29.

Substitute your own
CloudFormation stack name here.

The capabilities flag allows CloudFormation to
create required IAM resources, including roles,
on your behalf. If you don’t specify this flag, you
may get an InsufficientCapabilities error.

https://aws.amazon.com/blogs/compute/introducing-simplified-serverless-application-deplyoment-and-management/
https://aws.amazon.com/blogs/compute/introducing-simplified-serverless-application-deplyoment-and-management/
https://aws.amazon.com/blogs/compute/introducing-simplified-serverless-application-deplyoment-and-management/
https://aws.amazon.com/blogs/compute/introducing-simplified-serverless-application-deplyoment-and-management/
https://docs.aws.amazon.com/lambda/latest/dg/serverless-deploy-wt.html
https://docs.aws.amazon.com/lambda/latest/dg/serverless-deploy-wt.html
https://docs.aws.amazon.com/lambda/latest/dg/serverless-deploy-wt.html

index

Symbols

-- (double dash) 336
/ (forward slash

character) 278

Numerics

24-Hour Video
adding Auth0 to website

108–113
adding Firebase to 230–248

architecture 231–232
connecting Lambda

241–242
end-to-end testing 248
modifying Transcode

Video Lambda
234–239

setup 233–234
Transcode Video update

239–241
websites 242–247

Auth0 configuration
106–108

AWS 42–43
checking logs 52–53
connecting S3 to Lambda

50
creating Lambda functions

44–45
deploying to AWS 48–50
general requirements

41–42
invoking Lambda directly

104
naming Lambda functions

46

plan 102–103
testing Auth0

integration 113–114
testing in AWS 51–52
testing locally 46–48
video list 153

basic setup 153–154
environment variables

155
implementation 154–155
testing 156

website 104–105
502 Bad Gateway error 180

A

A Cloud Guru 17, 204
acceleration, transfer 209
access

public, removing 223–224
to files, restricting 223–225

generating presigned
URLs 224–225

removing public access
223–224

to files, securing 248–259
API Gateway settings

250–251
improving Firebase

security 254–259
improving performance

251–254
signed URL Lambda

249–250
updating websites 251

Access Key ID 67

AccessDeniedException
message 48

ACL (access control list) 58,
67

active monitoring 266
addVideoToScreen function

245
$.ajaxSetup 130
alarms 78–84
alerts 76–87

alarms 81–84
billing, creating 87–88
filters and 78–80
metrics and 78–80

aliases 142–144, 146–148
AllUsers grantee 224
Amazon CloudFront 22
Amazon CloudWatch Log

stream 44
Amazon Cognito 100
Amazon Echo 19
Amazon Kinesis Streams 18,

30, 33
Amazon Resource Name.

See ARN
Amazon States Language 269
Amazon Web Services. See AWS
AmazonAPIGatewayPushTo-

CloudWatchLogs 189
AmazonElasticTranscoder-

JobsSubmitter policy
288

analytics, real-time 18
Angular 104
ANY method 175
API Gateway 118–120, 168,

171–198, 278
adding method 175
345

346 INDEX
API Gateway (continued)
as interface 169–171

caching 170
integration with AWS 170
logging 170
scripting 171
staging 171
throttling 170
versioning 171

configuring method
execution 177–180

costs of 90–92
creating methods 174–177

adding CORS 177
integrating with Lambda

function 175–176
creating new APIs 172
creating resources 174–177

adding CORS 177
integrating with Lambda

function 175–176
deploying 319–320
invoking Lambda via

124–125
Lambda function 180–184

implementation of
182–184

input format 180
output format 181
testing in API Gateway 184

optimizing 187–194
caching 191–194
logging 189–190
throttling 187–189

settings 250–251
stages 194–196

creating stage variables
195

using stage variables
195–196

testing Lambda function in
184

updating websites 184–187
upload policy 218
versions 194, 196

api-gateway-lambda-exec-role
115, 126

APIs (application program
interfaces) 172

application back end 17
applications. See serverless

applications
architectures 19–31, 212–213

compute as back end 19–24
Cloud Guru 20–22
Instant 22–24

compute as glue 28–30
GraphQL 27–28
hybrids 25–27
legacy API proxy 24
of Firebase 231–232
real-time processing 30–31

ARN (Amazon Resource
Name) 67, 286

async series pattern 157
async waterfall patterns

152–156
24-hour video, video list 153
overview 63

async.forEachOf function 252
Auth0 platform

adding to websites 108–113
configuration of 106–108
testing integration of

113–114
AUTH0_SECRET variable 118
authentication 97–132, 293–

298
adding to 24-Hour Video

102–114
adding Auth0 to website

108–113
Auth0 configuration

106–108
invoking Lambda directly

104
plan 102–103
testing Auth0 integration

113–114
website 104–105

basics of 293–294
in serverless environments

98–101
Amazon Cognito 100
Auth0 platform 101
overview 98–99

JSON Web Token 296–298
authentication flows, Cognito

100
authorization 97–132

delegation tokens 129–130
examples of 130
provisioning 130

integration with AWS
114–128

API Gateway 118–120
custom authorizer 125–128
invoking Lambda via API

Gateway 124–125
mappings 121–124
user profile Lambda

115–118

authorization code grant 296
authorizers, custom 125–128
autonomous functions 7
auxiliary services 281
AWS (Amazon Web Service)

deploying to 48–50
execution environments

299–300
integration with 114–128,

170
API Gateway 118–120
AWS Service Proxy 170
custom authorizers

125–128
HTTP Proxy 170
invoking Lambda via API

Gateway 124–125
mappings 121–124
Mock Integration 170
user profile Lambda

115–118
limitations of 303
Marketplace 272–273
overview 4, 17, 42–43
testing in 51–52
testing Lambda functions in

164–166
working with older runtimes

303–304
done method 304
fail method 304
succeed method 304

AWS Cognito 22
aws configure command 284
AWS console 67
AWS Service Proxy 170
AWS_ACCESS_KEY 147
AWSLambdaBasicExecution-

Role 115
AWSLambdaExecute policy 74,

288
AWS_REGION KEY 147
awsRequestId property 141
AZ (availability zone) 279

B

back end, of applications 17
BASE_URL variable 155
billing alerts, creating 87–88
blueprints 18
body segment, JWT 297
bots 19
BUCKET variable 155, 250

347INDEX
buckets
creating new in S3 286–287
overview 278

building serverless applications
60–64

burst limit 187

C

caching 170, 191–194
calculating data 20
callback function 141, 153, 303
CDN (content delivery

networks) 281
child_removed event 247
chmod command 61
CI (continuous integration)

server 261
claims 98
classes, storage 206–207
CLI (Command Line

Interface) 148–151,
283, 324

creating functions 149–151
deploying functions 149–151
installing 283–284
invoking commands

148–149
client credentials 296
clientContext property 141
Cloud Guru 20–22
CloudCheckr 73, 88
CloudFormation template 261,

329
CloudFront, Amazon 22
clouds

alerting 76–87
alarms 81–84
filters and 78–80
metrics and 78–80

costs 87–92
creating billing alerts

87–88
monitoring 88–89
optimizing 88–89
running API Gateway

90–92
running Lambda 90–92
using Simple Monthly

Calculator to estimate
89–90

identity management 67–76
creating groups 70–71
creating roles 73

permissions 74–76
policies 74–76
resources 74

logging 76–87
CloudTrail 84–87
log retention 78
S3 and 80–81
searching log data 80
setting up 77

security models 67–76
creating groups 70–71
creating roles 73
permissions 74–76
policies 74–76
resources 74

setting up 66–93
CloudSearch 77, 279–280
CloudTrail 77, 84, 86–87
CloudWatch 52, 64, 76, 87
cmd key 300
Cognito. See Amazon Cognito
cold functions 137
Command Line Interface.

See CLI
command line, invoking func-

tions from 157
command patterns 32
commands, invoking 148–149
compute as back end 19–24

Cloud Guru 20–22
Instant 22–24

compute as glue 28–30
compute services 9
concurrent executions 136–137

non-stream-based event
sources 137

stream-based event sources
136–137

condition operators 76
config, for Firebase 244–245
config.js file 112
configConstants 245
Configure as Proxy Resource

option 174
configuring

Auth0 platform 106–108
Elastic Transcoder 290
Lambda functions 58–59
method execution 177–180
SNS 54–57

connecting 54–56
getting email from 57
testing 57

connectToFirebase function
245

ConnectWise 15
console.error() method 142
console.info() method 142
console.warn() method 142
containerization 5
containers, reusing 137
content delivery networks.

See CDN
context objects 140–141
$context variable 308
continuous integration server.

See CI
converged systems 262
CORS (Cross-Origin Resource

Sharing)
adding 177
overview 48, 118, 213

Cost Explorer tool 89
costs

monitoring 88–89
of clouds 87–92

creating billing alerts
87–88

monitoring 88–89
optimizing 88–89
running API Gateway

90–92
running Lambda 90–92
using Simple Monthly

Calculator to estimate
89–90

optimizing 88–89
create-alias command 151
create-function command 151
CreateFunction API 147
createList function 224
Cross-Origin Resource Shar-

ing. See CORS
css directory 221
custom authorizers 125–128,

189, 218

D

data tiers 7
data, manipulating and

processing 17–18
databases 227–259

Firebase 228–248
architecture of 231–232
connecting Lambda

241–242
data structure 228
end-to-end testing 248

348 INDEX
databases, Firebase (continued)
modifying Transcode

Video Lambda
234–239

security rules 230
setup 233–234
Transcode Video

update 239–241
with websites 242–247

securing access to files
248–259

API Gateway settings
250–251

improving Firebase
security 254–259

improving performance
251–254

signed URL Lambda
249–250

updating websites 251
dead letter queue. See DLQ
deferredAuthentication

function 258
delegation tokens 98, 100,

129–130, 256
delete alias command 149
delete marker 203
DELETE method 118
delete-function command 151
denormalizing data 228
deploy command 344
deploy script 48
deploying

functions 149–151
to AWS 48–50

deployment 260–261
dev dependency 291
digitally signed tokens 11
disadvantages of serverless

architectures 12–15
decentralization 14
lack of customization 13
service levels 13
type of applications 12–13
vendor lock-in 14

DLQ (dead letter queue)
264–265

DNS (Domain Name System)
22, 262

DOMAIN variable 118
domains 206
Don’t Repeat Yourself principle

158
done() method 140, 304
double dash (--) 336

DSL (domain-specific
languages) 6

DynamoDB 22, 24, 279
dynamodb:PutItem action 164

E

e-commerce platforms 20
EC2 (Elastic Compute Cloud)

5, 25, 77
Echo, Amazon 19
ECS container 30
Elastic Transcoder 39, 41–44,

48, 52–54, 64–65, 280
ELB (Elastic Load Balancer)

169
email support 159
email, from SNS 57
enabling static website hosting

204–206
encoding parameter 173
encoding property 307
encoding videos 43
encryption, of environment

variables 147–148
endpoints, GraphQL 32
engines, processing 30
environment variables 117,

142–148
basic usage of 147
encryption of 147–148

environments, execution in
AWS Lambda 299–300

EPX Labs 25–27, 30
Error parameter 141
error-handling microservice

264
errors 264–266

active monitoring 266
DLQ 264–265
handling with GET video

list 314, 319
configuring Integration

Response 318–319
configuring Method

Response 317
testing status codes 319
updating Lambda

function 315–317
Etag property 310
ETL (extract, transform, and

load) jobs 15
Event invocation 135
event messages

overview 211

Simple Storage Service
321–322

event models
pull 135–136
push 135–136

event notifications 209–211
event objects 139–140
event source mapping 136
event sources 134
event.authToken 121
event.json file 47
eventual consistency 262
Execute Workflow function

270
extract-metadata function 60,

63

F

FaaS (function as a service)
134

fail() method 140, 304
fan-out patterns 35–36
Federation 73
FFmpeg 60
FFprobe 60–63
files

permissions 61
processing 15
restricting access to 223–225

generating presigned
URLs 224–225

removing public access
223–224

securing access to 248–259
API Gateway settings

250–251
improving Firebase

security 254–259
improving performance

251–254
signed URL Lambda

249–250
updating websites 251

filters 78–80
Firebase 21, 228–248, 281

architecture 231–232
connecting Lambda 241–242
data structure 228
delegation token 130
end-to-end testing 248
modifying Transcode Video

Lambda 234–239
Firebase security 235

349INDEX
Firebase, modifying Transcode
Video Lambda
(continued)

Transcode Video function
235–239

security 235, 254–259
Auth0 254–255
delegation token 256
making website changes

257–259
rules 230

setup 233–234
update with Transcode Video

239–241
with websites 242–247

config 244–245
spinners 243
video controller 245–247

folders 278
forward slash character 278
frameworks 104, 260–261
freeze/thaw cycle 137
front ends, creating 10–11
function as a service. See FaaS
function handler 139
function variable 195
function-name parameter 49
functionName property 141
functions

callback 141
creating 149–151
deploying 149–151
invoking from command

line 157
Lambda

configuring 58–59
creating 44–45, 57–58, 60–

63, 289
naming 46
securing 58–59
testing 59, 161–166

writing 10
functionVersion property 141

G

generatePolicy function 126
generating

metadata 60–63
creating Lambda functions

60–63
FFprobe and 60–63

presigned URLs 224–225
video listing 224
websites 224–225

GET video list 306–320
GET method 306–314

integration request
306–309

integration response
310–314

intermission -let’s do test
310

method request 306
handling errors 314–319

configuring Integration
Response 318–319

configuring Method
Response 317

testing status codes 319
updating Lambda function

315–317
get-signed-url function 250–252
get-upload-policy function 215,

217, 239
get-video-list function 153–155,

157, 161, 231, 249–250,
306, 316

getElementForVideo function
245

GetFunction action 286
getModule function 164
getRemainingTimeInMillis()

method 140
GitHub 45
Glacier storage class 207
grant types 296
GraphQL 27–28
greedy path variable 174
groups, creating 70–71

H

HEAD method 118
header segment, JWT 297
HELLO_SAM variable 343
history of serverless

architectures 4–8
microservices 6
SOA 6
software design 7–8

HMAC (hash message authenti-
cation code) 214

hosting, static websites
204–206

HTTP GET request 103
HTTP Proxy 170
hybrids 25–27
hydration Lambda 30

I

IaaS (infrastructure as a
service) 13

IAM (Identity and Access
Management) 283

console 68
creating roles 288
creating users 283–284
upload policy 214

identity management 67–76
creating groups 70–71
creating roles 73
permissions 74–76
policies 74–76
resources 74

identity property 141
IdP (identity provider) 98
IETF (Internet Engineering

Task Force) 98
images, processing with Step

Functions 267, 270–
272

creating Step Functions
268–269

Lambda functions 267–268
running Step Functions 270

implicit grant 296
include/exclude options 331
index.html file 110
index.js file 46
individual server tasks 27
init function 245, 258–259
Initializr template 104
inline policies 74
input, format with Lambda

function 180
installation 282–292

CLI 283–284
npm 291–292
preparing systems 283

Instant 17, 22–24
Insufficient Data state, alarms

81
Integration Response,

configuring 318–319
integration, with AWS 170

AWS Service Proxy 170
HTTP Proxy 170
Mock Integration 170

interfaces, API Gateway as
169–171

caching 170
integration with AWS 170
logging 170

350 INDEX
interfaces, API Gateway as
(continued)

scripting 171
staging 171
throttling 170
versioning 171

InvalidateCache policy 194
invocation types 135
invoke command 151
invokedFunctionArn property

141
invoking

commands 148–149
functions from command

line 157
Lambda 104, 124–125

IoT platform, AWS 17

J

JSON Web Token 296–298
JWE (JSON Web Encryption)

297
JWS (JSON Web Signature) 98,

297
JWT (JSON Web Token) 98

K

Key property 310
keys 278
Kinesis Streams 18, 30, 33, 280
KMS (Key Management

Service) 148

L

Lambda 139–167
aliases 142–144, 146–148
cold 137–139
concurrent executions

136–137
non-stream-based event

source 137
stream-based event source

136–137
connecting 241–242
connecting to S3 50
costs of 90–92
environment variables

142–148
basic usage of 147
encryption of 147–148

event models 134
pull 135–136

push 135–136
event sources 134
functions 180–184, 267–268

configuring 58–59
creating 44–45, 57–58, 60–

63, 289
implementation of

182–184
input format 180
integrating with API

Gateway 175–176
naming 46
output format 181
overview 7
securing 58–59
testing 161–166
testing in API Gateway 184
updating 315–317
upload policy 214–217

invoking directly 104
invoking via API Gateway

124–125
patterns 151–161

async waterfall 152–156
moving logic to another

file 161
parallel 157
series 157
using libraries 158–160

programming model
139–142

callback function 141
context objects 140–141
event objects 139–140
function handler 139
logging 142

reusing containers 137
signed URL 249–250
Transcode Video, modifying

234–239
upload policy 213

API Gateway 218
IAM user 214
Lambda function 214–217

user profiles 115–118
using CLI with 148–151

creating functions
149–151

deploying functions
149–151

invoking commands
148–149

versioning 142, 144–148
warm 137–139

Lambda Proxy Integration 123,
176

Lambda-DevOps group 149
lambda-error-notifications 82
lambda-s3-execution-role

function 60, 115, 217,
288

lambda-test-harness function
165

lambda-upload 48, 67
Lambda-Upload-Policy group

71, 149
lambda:InvokeFunction action

164
LastModified property 310
$LATEST version 142, 144–145
layers 8
legacy API proxy 18, 24
libraries 158–160
lifecycle management 207–209
lifecycle rules 208
list-aliases command 151
list-functions command 151
list-versions-by-function

command 151
ListHub processing engine

29–30
listObjects operation, S3 154
logging 76–87, 142, 170,

189–190
checking logs 52–53
CloudTrail 84–87
log retention 78
S3 and 80–81
searching log data 80
setting up 77

logGroupName property 141
logic, moving to another

file 161
logStreamName property 141
LogType parameter 142

M

MAC (Message Authentication
Code) 98

Magento 25
main.css file 113
main.js file 112, 221
managed policies 74
manipulating data 17–18
manual mapping 179
mapping 305–320

deploying API Gateway
319–320

GET video list 306–320
GET method 306–314

351INDEX
mapping, GET video list
(continued)

handling errors 314–319
integration request

306–309
integration response

310–314, 318–319
intermission -let's do test

310
Lambda function 315–317
method request 306
Method Response 317
status codes 319

overview 121–124
mapping templates 121
memoryLimitInMB property

141
message exchange pattern 5
messages, of Simple Storage

Service 321–322
messaging patterns 33–34
metadata

extracting 61
generating 60–63

creating Lambda functions
60–63

FFprobe and 60–63
method execution, configuring

177–180
Method Request 178–180
Method Response, configuring

317
method.request.header

.Authorization 127
methods 174–177

adding 175
adding CORS 177
integrating with Lambda

function 175–176
See also method execution

metric filters 78
metrics 78–80
MFA (multi-factor

authentication) 70
microservices, handling errors

264–266
active monitoring 266
DLQ 264–265

misconfigurations 87
Mock Integration 170
models 305–320

deploying API Gateway
319–320

GET video list 306–320
GET method 306–314

handling errors 314–319
integration request

306–309
integration response

310–314, 318–319
intermission -let's do test

310
Lambda function 315–317
method request 306
Method Response 317
status codes 319

monitoring, active 266
mp4 extension 56
multiple condition operators

76
MySQL databases 27

N

Nagtegaal, Sander 22
naming Lambda functions 46
nano functions 20
nesting data 228
Netflix 15
Netlify 21, 204
new console 287
node --version command 324
node-exec function 300
non-stream-based event sources

137
notifications, event 209–211
npm (node package manager)

42, 283
installing 291–292
setup 291–292

npm init command 104, 291
npm init transcode-video

command 291
npm install command 158,

161, 215, 291
npm run create command 154
npm run deploy command 50,

58, 117, 155
npm start command 105, 113
npm test command 48

O

objects
lifecycle management

207–209
overview 278

OK state, alarms 81
OpenID Connect 293–296

optimizing API Gateway
187–194

caching 191–194
logging 189–190
throttling 187–189

OPTIONS method 118, 175
output, format with Lambda

function 181
outputKey 48
OutputKeyPrefix 222

P

PaaS (platform as a service) 4
package command 344
package.json file 47–49, 104,

291
Panse, Marcel 22
parallel patterns 157
PATCH method 118
patterns 31–38, 151–161

async waterfall 152–156
command 32
fan-out 35–36
messaging 33
moving logic to another file

161
parallel 157
pipes and filters 36–38
priority queue 34–35
series 157
using libraries 158–160

payload mapping 308
performance, improving file

access security 251–254
permissions

overview 74–76
setting for users 284–286
video, setting 57–59

Pip 283
PipelineId 44
pipelines

designing 10
overview 19, 41

pipes and filters patterns 36–38
plugins: property 326
policies 74–76
POST method 118
Prabhu, Prachetas 25
predeploy script 48
prerender.io 204
presigned URLs, generating

224–225
video listing 224
website 224–225

352 INDEX
Principal element, IAM policies
75

priority queue patterns 34–35
private npm repository 158
process.env 147
processing engines, ListHub 30
programming model 139–142

callback function 141
context object 140–141
event object 139–140
function handler 139
logging 142

proxies, legacy API 18
public acces, removing

223–224
publish-version command 151
pull models 135–136
push models 135–136
push-based pipeline style 11
pushVideoEntryToFirebase

function 239
PUT method 118

Q

queryStringParameters 123

R

RDS (Relational Database
Service) 279

React framework 104
real-time processing 30–31
Reduced Redundancy storage.

See RRS
regex 316, 318
RequestResponse invocation

135, 157
require() method 158, 160
requires() method 139
resource owner credentials 296
resource-based policies 74
resources 174–177

adding CORS 177
integrating with Lambda

function 175–176
REST (Representational State

Transfer) 18–19, 27
restricting access to files

223–225
generating presigned URLs

224–225
removing public access

223–224

retrieving data 20
RETS (Real Estate Standards

Organization) 30
reusing containers 137
roles, creating 73, 288
RRS (Reduced Redundancy

storage) 207, 209
rules, Firebase security 230
run-command function 300
run-local-lambda module 47,

161
runtimes, of AWS Lambda

303–304
done method 304
fail method 304
succeed method 304

S

S3 (Simple Storage Service)
10, 17, 201–211, 278

connecting to Lambda 50
creating new buckets

286–287
Cross-Origin Resource

Storage 218–219
event notifications 209–211
free tier 42
hosting static websites

204–206
listObjects operation 154
logging and 80–81
object lifecycle management

207–209
storage classes 206–207

Glacier 207
RRS 207
Standard 207
Standard_IA 207

structure of 321–322
transfer acceleration 209
versioning, using 202–204

s3-policy-document 218
SAM (Serverless Application

Model) 261
SAML (Security Assertion

Markup Language) 73
sam_template.yaml file 343
saveUser function 333
scheduled services 18
scripting 171
Secret Access Key 67
secure uploads 211–222

architecture 212–213

S3 CORS configuration
218–219

upload policy Lambda 213
API Gateway 218
IAM user 214
Lambda function 214–217

uploading from websites
219–222

securing Lambda functions
58–59

security
CORS 177
Firebase rules 230
SNS policy 54

security credentials 70
security models 67–76

creating groups 70–71
creating roles 73
permissions 74–76
policies 74–76
resources 74

security token service. See STS
send function 160
Send Notification function

268, 270–271
sendWelcomeEmail function

333
series patterns 157
serverless applications, building

24-Hour Video 40–53
configuring SNS 54–57
generating metadata 60–63
setting video permissions

57–59
serverless architectures 3, 5–15

advantages of 12, 14–15
flexibility 15
less code 15
low cost 14
multifunctionality 14
scalability 15
vendors maintain servers

14
disadvantages of 12–15

decentralization 14
lack of customization 13
service levels 13
type of applications 12–13
vendor lock-in 14

history of 4–8
microservices 6
SOA 6
software design 7–8

principles of 9–12
creating front ends 10–11

353INDEX
serverless architectures, princi-
ples of (continued)

designing pipelines 10
using compute service 9
using third-party services

12
writing functions 10

transitioning to 12
serverless calculator 92
serverless deploy command

326, 329, 339–340
serverless environments

98–101
Amazon Cognito 100
Auth0 platform 101
overview 98–99

Serverless Framework and SAM
323–344

Serverless Application Model
341–344

example with SAM
342–344

getting started 342
Serverless Framework

324–340
beginning Serverless

Framework 326–327,
329

examples 338–340
installation 324–326
packaging 331
plugins 334–335, 338
testing 332–334
using Serverless

Framework 329–330
serverless invoke function 334
serverless transcoding pipeline

41
serverless-video-logs bucket 80,

85
serverless-video-transcoded

bucket 286, 290
serverless-video-upload bucket

81, 286, 289–290
Serverlessconf 275
service account 235
service-level agreements.

See SLA
service-oriented architecture.

See SOA
SES (Simple Email Service)

158, 279
ses:SendEmail permission 160
set-permissions function

57–58, 60, 223, 249

Settings screen, Auth0 107
setup 282–292

configuring Elastic
Transcoder 290

creating IAM roles 288
creating IAM users 283–284
creating Lambda functions

289
creating new S3 buckets

286–287
npm 291–292
preparing systems 283
user permissions 284–286

shared server tasks 27
Show Profile function 124
Sid (Statement ID), IAM

policies 75
signature segment, JWT 297
signed tokens 11
Simple Email Service. See SES
Simple Monthly Calculator

89–90
Simple Notification Service.

See SNS
Simple Object Access Protocol.

See SOAP
Simple Queue Service. See SQS
Simple Storage Service. See S3
single condition operator 76
single responsibility principle.

See SRP
single-page application. See SPA
Sinicin, Evan 25
Size property 310
skills 19
SLA (service-level agreements)

12
Slack chat system 19
SNS (Simple Notification

Service) 27, 278
configuring 54–57
connecting 54–56
getting email from 57
testing 57

SOA (service-oriented
architecture) 6

SOAP (Simple Object Access
Protocol) 24

software design 7–8
sourceKey 48
SPA (single-page application)

104
spinners, with Firebase 243
SQS (Simple Queue Service)

17, 27, 33, 279

SRP (single responsibility
principle) 10

stages, in API Gateway 194–196
creating stage variables 195
using stage variables

195–196
staging 171
Standard storage class 207
Standard_IA storage class 207
startExecution function 271
static websites, hosting 204–206
status codes, testing 319
statusCode parameter 184
Step Functions 266–272

creating 268–269
further resources 272
processing images 267–268,

270–272
running 270

storage 201–226
restricting access to files

223–225
generating presigned

URLs 224–225
removing public access

223–224
S3 201–211

event notifications
209–211

hosting static websites
204–206

object lifecycle
management 207–209

storage classes 206–207
transfer acceleration 209
versioning 202–204

secure uploads 211–222
architecture 212–213
S3 CORS configuration

218–219
upload policy Lambda 213
uploading from website

219–222
storage classes 206–207
StorageClass property 310
storing data 20
stream-based event sources

136–137
structure

of Firebase 228
of Simple Storage Service

321–322
STS (security token service)

101
succeed() method 140, 304

354 INDEX
T

templates, mapping 121
temporary security credentials

70
Terraform 341
Test Function feature, AWS

console 84
testing

Firebase 248
integration of Auth0

113–114
Lambda 242
Lambda functions 161–166

in AWS 164–166
locally 161–162
writing tests 162–164

locally 46–48
SNS 57
to AWS 51–52

third-party services 12
three-tier application 7
throttling 170, 187–189
tiers 8
tokeninfo endpoint 131
tokens

delegation 129–130, 256
examples of 130
provisioning 130

overview 11
Transcode Video

Firebase update 239–241
Lambda, modifying 234–239

transcode-video function 50,
211, 222, 231–232, 235–
237, 239, 289

transcoded videos bucket 43,
52, 54, 59, 63

transcoded-video-notifications
63, 224, 241

TranscodeVideo.js file 46
transcoding pipeline 41
transfer acceleration 209
transitioning to serverless

architectures 12

U

update-function-code 149
UpdateFunctionCode action

286
UpdateFunctionConfiguration

action 286
UpdateFunctionConfiguration

API 147

updateVideoOnScreen
function 245, 251

updating websites 184–187
upload policy, Lambda

API Gateway 218
IAM user 214
Lambda function 214–217

upload-policy function 222
upload-s3 user 214
UPLOAD_BUCKET variable

147
uploadController function 258
uploads, secure 211–222

architecture 212–213
S3 CORS configuration

218–219
upload policy Lambda 213
uploading from websites

219–222
URL Lambda, signed 249–250
URLs, generating presigned

224–225
use cases 16–19

application back end 17
bots 19
data manipulation 17–18
data processing 17–18
legacy API proxy 18
real-time analytics 18
scheduled services 18
skills 19

user profiles, Lambda 115–118
user-controller.js file 110, 124
user-profile function 102, 115,

118, 126, 146
userController.init 258
users

creating in IAM 283–284
setting permissions 284–286

Users class 333
$util variable 308
$util.base64Decode() function

308
$util.base64Encode() function

308
$util.escapeJavaScript()

function 308
$util.parseJson() function 308
$util.urlDecode() function 308
$util.urlEncode() function 308

V

variables, environment
142–148

basic usage of 147

encryption of 147–148
versioning 142, 144–148, 171,

202–204
versions, in API Gateway 194,

196
video controllers, with Firebase

245–247
video permissions, setting

57–59
creating Lambda functions

57–58
securing Lambda functions

58–59
testing Lambda functions 59

video uploading 212
videoController function 247,

258
videos, encoding 43
VPC (virtual private cloud) 27
VTL (Velocity Template

Language) 121, 313

W

warm functions 137
websites 224–225

adding Auth0 to 108–113
static, hosting 204–206
updating 184–187, 251
uploading from 219–222
with Firebase 242–247

changes for security
257–259

config 244–245
spinners 243
video controllers 245–247

wildcards 79

X

x-amz-log-results header 142

Y

YTL (Velocity Template
Language) 179

Z

zip command 291

Peter Sbarski

T
here’s a shift underway toward serverless cloud architec-
tures. With the release of serverless computer technologies
such as AWS Lambda, developers are now building en-

tirely serverless platforms at scale. In these new architectures,
traditional back-end servers are replaced with cloud functions
acting as discrete single-purpose services. By composing and
combining these serverless cloud functions together in a loose
orchestration and adopting useful third-party services, devel-
opers can create powerful yet easy-to-understand applications.

Serverless Architectures on AWS teaches you how to build,
secure, and manage serverless architectures that can power
the most demanding web and mobile apps. You’ll get going
quickly with this book’s ready-made real-world examples, code
snippets, diagrams, and descriptions of architectures that can
be readily applied. By the end, you’ll be able to architect and
build your own serverless applications on AWS.

What’s Inside
● First steps with serverless computing
● Important patterns and architectures
● Writing AWS Lambda functions and using the

API Gateway
● Composing serverless applications using key services

like Auth0 and Firebase
● Securing, deploying, and managing serverless architectures

Peter Sbarski is a well-known AWS expert, VP of engineering
at A Cloud Guru, and head of Serverlessconf.

To download their free eBook in PDF, ePub, and Kindle formats,
owners of this book should visit

www.manning.com/books/serverless-architectures-on-aws

$44.99 / Can $59.99 [INCLUDING eBOOK]

Serverless Architectures on AWS

CLOUD/WEB DEVELOPMENT

M A N N I N G

“Written with clear passion,
an eye for detail, and a

treasure trove of
 knowledge to share.”—From the Foreword by

Patrick Debois
Founder of devopsdays

“A pivotal book that is
crucial to the exploitation of

cloud computing.”—From the Foreword by
Dr. Donald F. Ferguson

Columbia University

“I wish every technical book
was as well written and

 easy to read!”—Kent R. Spillner, DRW

“Don’t go serverless without
this book ... not only to
read once, but to have as

a reference for the future.”—Diego Santiviago
Amazon Web Services

SEE INSERT

	Severless Architectures on AWS
	contents
	foreword
	foreword
	preface
	acknowledgments
	about this book
	Code conventions
	Getting the source code
	Author online

	about the author
	about the cover
	Part 1 First steps
	1 Going serverless
	1.1 How we got to where we are
	1.1.1 Service-oriented architecture and microservices
	1.1.2 Software design

	1.2 Principles of serverless architectures
	1.2.1 Use a compute service to execute code on demand
	1.2.2 Write single-purpose stateless functions
	1.2.3 Design push-based, event-driven pipelines
	1.2.4 Create thicker, more powerful front ends
	1.2.5 Embrace third-party services

	1.3 Transitioning from a server to services
	1.4 Serverless pros and cons
	1.4.1 Decision drivers
	1.4.2 When to use serverless

	1.5 Summary

	2 Architectures and patterns
	2.1 Use cases
	2.1.1 Application back end
	2.1.2 Data processing and manipulation
	2.1.3 Real-time analytics
	2.1.4 Legacy API proxy
	2.1.5 Scheduled services
	2.1.6 Bots and skills

	2.2 Architectures
	2.2.1 Compute as back end
	2.2.2 Legacy API proxy
	2.2.3 Hybrid
	2.2.4 GraphQL
	2.2.5 Compute as glue
	2.2.6 Real-time processing

	2.3 Patterns
	2.3.1 Command pattern
	2.3.2 Messaging pattern
	2.3.3 Priority queue pattern
	2.3.4 Fan-out pattern
	2.3.5 Pipes and filters pattern

	2.4 Summary

	3 Building a serverless application
	3.1 24-Hour Video
	3.1.1 General requirements
	3.1.2 Amazon Web Services
	3.1.3 Creating your first Lambda function
	3.1.4 Naming your Lambda
	3.1.5 Testing locally
	3.1.6 Deploying to AWS
	3.1.7 Connecting S3 to Lambda
	3.1.8 Testing in AWS
	3.1.9 Looking at logs

	3.2 Configuring Simple Notification Service
	3.2.1 Connecting SNS to S3
	3.2.2 Getting email from SNS
	3.2.3 Testing SNS

	3.3 Setting video permissions
	3.3.1 Creating the second function
	3.3.2 Configuring and securing
	3.3.3 Testing the second function

	3.4 Generating metadata
	3.4.1 Creating the third function and FFprobe

	3.5 Finishing touches
	3.6 Exercises
	3.7 Summary

	4 Setting up your cloud
	4.1 Security model and identity management
	4.1.1 Creating and managing IAM users
	4.1.2 Creating groups
	4.1.3 Creating roles
	4.1.4 Resources
	4.1.5 Permissions and policies

	4.2 Logging and alerting
	4.2.1 Setting up logging
	4.2.2 Log retention
	4.2.3 Filters, metrics, and alarms
	4.2.4 Searching log data
	4.2.5 S3 and logging
	4.2.6 More on alarms
	4.2.7 CloudTrail

	4.3 Costs
	4.3.1 Creating billing alerts
	4.3.2 Monitoring and optimizing costs
	4.3.3 Using the Simple Monthly Calculator
	4.3.4 Calculating Lambda and API Gateway costs

	4.4 Exercises
	4.5 Summary

	Part 2 Core Ideas
	5 Authentication and authorization
	5.1 Authentication in a serverless environment
	5.1.1 A serverless approach
	5.1.2 Amazon Cognito
	5.1.3 Auth0

	5.2 Adding authentication to 24-Hour Video
	5.2.1 The plan
	5.2.2 Invoking Lambda directly
	5.2.3 24-Hour Video website
	5.2.4 Auth0 configuration
	5.2.5 Adding Auth0 to the website
	5.2.6 Testing Auth0 integration

	5.3 Integration with AWS
	5.3.1 User profile Lambda
	5.3.2 API Gateway
	5.3.3 Mappings
	5.3.4 Invoking Lambda via API Gateway
	5.3.5 Custom authorizer

	5.4 Delegation tokens
	5.4.1 Real-world examples
	5.4.2 Provisioning delegation tokens

	5.5 Exercises
	5.6 Summary

	6 Lambda the orchestrator
	6.1 Inside Lambda
	6.1.1 Event models and sources
	6.1.2 Push and pull event models
	6.1.3 Concurrent executions
	6.1.4 Container reuse
	6.1.5 Cold and warm Lambda

	6.2 Programming model
	6.2.1 Function handler
	6.2.2 Event object
	6.2.3 Context object
	6.2.4 Callback function
	6.2.5 Logging

	6.3 Versioning, aliases, and environment variables
	6.3.1 Versioning
	6.3.2 Aliases
	6.3.3 Environment variables

	6.4 Using the CLI
	6.4.1 Invoking commands
	6.4.2 Creating and deploying functions

	6.5 Lambda patterns
	6.5.1 Async waterfall
	6.5.2 Series and parallel
	6.5.3 Using libraries
	6.5.4 Move logic to another file

	6.6 Testing Lambda functions
	6.6.1 Testing locally
	6.6.2 Writing tests
	6.6.3 Testing in AWS

	6.7 Exercises
	6.8 Summary

	7 API Gateway
	7.1 API Gateway as the interface
	7.1.1 Integration with AWS services
	7.1.2 Caching, throttling, and logging
	7.1.3 Staging and versioning
	7.1.4 Scripting

	7.2 Working with the API Gateway
	7.2.1 The plan
	7.2.2 Creating the resource and method
	7.2.3 Configuring method execution
	7.2.4 The Lambda function
	7.2.5 Updating the website

	7.3 Optimizing the gateway
	7.3.1 Throttling
	7.3.2 Logging
	7.3.3 Caching

	7.4 Stages and versions
	7.4.1 Creating a stage variable
	7.4.2 Using stage variables
	7.4.3 Versions

	7.5 Exercises
	7.6 Summary

	Part 3 Growing your Architecture
	8 Storage
	8.1 Smarter storage
	8.1.1 Versioning
	8.1.2 Hosting a static website
	8.1.3 Storage classes
	8.1.4 Object lifecycle management
	8.1.5 Transfer acceleration
	8.1.6 Event notifications

	8.2 Secure upload
	8.2.1 Architecture
	8.2.2 Upload policy Lambda
	8.2.3 S3 CORS configuration
	8.2.4 Uploading from the website

	8.3 Restricting access to files
	8.3.1 Removing public access
	8.3.2 Generating presigned URLs

	8.4 Exercises
	8.5 Summary

	9 Database
	9.1 Introduction to Firebase
	9.1.1 Data structure
	9.1.2 Security rules

	9.2 Adding Firebase to 24-Hour Video
	9.2.1 Architecture
	9.2.2 Setting up Firebase
	9.2.3 Modifying Transcode Video Lambda
	9.2.4 Transcode Video Firebase Update
	9.2.5 Connecting Lambda
	9.2.6 Website
	9.2.7 End-to-end testing

	9.3 Securing access to files
	9.3.1 Signed URL Lambda
	9.3.2 API Gateway settings
	9.3.3 Updating the website again
	9.3.4 Improving performance
	9.3.5 Improving Firebase security

	9.4 Exercises
	9.5 Summary

	10 Going the last mile
	10.1 Deployment and frameworks
	10.2 Toward better microservices
	10.2.1 Handling errors

	10.3 Step Functions
	10.3.1 Image-processing example

	10.4 AWS Marketplace
	10.5 Where from here

	Appendix A Services for your serverless architecture
	A.1 API Gateway
	A.2 Simple Notification Service
	A.3 Simple Storage Service
	A.4 Simple Queue Service
	A.5 Simple Email Service
	A.6 Relational Database Service and DynamoDB
	A.7 CloudSearch
	A.8 Elastic Transcoder
	A.9 Kinesis Streams
	A.10 Cognito
	A.11 Auth0
	A.12 Firebase
	A.13 Other services

	Appendix B Installation and setup
	B.1 Preparing your system
	B.2 Setting up an IAM user and CLI
	B.3 Setting user permissions
	B.4 Making new S3 buckets
	B.5 Creating an IAM role
	B.6 Preparing for Lambda
	B.7 Configuring Elastic Transcoder
	B.8 Setting up npm

	Appendix C More about authentication and authorization
	C.1 Basics of authentication and authorization
	C.2 JSON Web Token

	Appendix D Lambda insider
	D.1 Execution environment
	D.2 Limitations
	D.3 Working with older runtimes
	D.3.1 Succeed
	D.3.2 Fail
	D.3.3 Done

	Appendix E Models and mapping
	E.1 Get video list
	E.1.1 GET method
	E.1.2 Handling errors
	E.1.3 Deploying API Gateway

	Appendix F S3 event message structure
	F.1 S3 structure
	F.2 A few things to remember

	Appendix G Serverless Framework and SAM
	G.1 Serverless Framework
	G.1.1 Installation
	G.1.2 Beginning Serverless Framework
	G.1.3 Using the Serverless Framework
	G.1.4 Packaging
	G.1.5 Testing
	G.1.6 Plugins
	G.1.7 Examples

	G.2 Serverless Application Model
	G.2.1 Getting started
	G.2.2 Example with SAM

	G.3 Summary

	index
	Symbols
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

