
Spring Boot
Messaging

Messaging APIs for Enterprise and
Integration Solutions
—
Felipe Gutierrez

www.allitebooks.com

http://www.allitebooks.org

Spring Boot Messaging
Messaging APIs for Enterprise

and Integration Solutions

Felipe Gutierrez

www.allitebooks.com

http://www.allitebooks.org

Spring Boot Messaging: Messaging APIs for Enterprise and Integration Solutions

Felipe Gutierrez
Albuquerque, New Mexico, USA

ISBN-13 (pbk): 978-1-4842-1225-7 ISBN-13 (electronic): 978-1-4842-1224-0
DOI 10.1007/978-1-4842-1224-0

Library of Congress Control Number: 2017941320

Copyright © 2017 by Felipe Gutierrez

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director: Welmoed Spahr
Editorial Director: Todd Green
Acquisitions Editor: Steve Anglin
Development Editor: Matthew Moodie
Technical Reviewer: Manuel Jordan Elera
Coordinating Editor: Mark Powers
Copy Editor: Kezia Endsley
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global
Cover image designed by Freepik

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC
and the sole member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc).
SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book's product page, located at www.apress.com/9781484212257.
For more detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

www.allitebooks.com

mailto:orders-ny@springer-sbm.com
www.springeronline.com
mailto:rights@apress.com
http://www.apress.com/rights-permissions
http://www.apress.com/rights-permissions
http://www.apress.com/bulk-sales
www.apress.com/9781484212257
http://www.apress.com/source-code
http://www.allitebooks.org

To my daughter, Laura Gutierrez

www.allitebooks.com

http://www.allitebooks.org

v

Contents at a Glance

About the Author ��� xiii

About the Technical Reviewer ���xv

Acknowledgments ���xvii

 ■Chapter 1: Messaging �� 1

 ■Chapter 2: Spring Boot �� 7

 ■Chapter 3: Application Events ��� 17

 ■Chapter 4: JMS with Spring Boot �� 31

 ■Chapter 5: AMQP with Spring Boot �� 59

 ■Chapter 6: Messaging with Redis �� 81

 ■Chapter 7: Web Messaging �� 93

 ■Chapter 8: Messaging with Spring Integration �� 111

 ■Chapter 9: Messaging with Spring Cloud Stream �� 133

 ■Chapter 10: Reactive Messaging ��� 163

 ■Chapter 11: Microservices �� 179

Index ��� 193

www.allitebooks.com

http://www.allitebooks.org

vii

Contents

About the Author ��� xiii

About the Technical Reviewer ���xv

Acknowledgments ���xvii

 ■Chapter 1: Messaging �� 1

Messaging �� 1

Messaging Use Cases ��� 1

Messaging Models and Messaging Patterns �� 3

Messaging with Spring Framework ��� 5

Summary �� 5

 ■Chapter 2: Spring Boot �� 7

What Is Spring Boot? �� 7

Spring Boot’s Features ��� 7

Restful API with Spring Boot �� 8

The rest-api-demo Project �� 8

Running the Spring Boot Currency Web App��� 15

Deploying the Spring Boot Currency Web App �� 15

More About Spring Boot ��� 15

Summary �� 16

 ■Chapter 3: Application Events ��� 17

The Observer Pattern ��� 17

The Spring ApplicationEvent �� 18

Spring ApplicationListener ��� 19

www.allitebooks.com

http://www.allitebooks.org

■ Contents

viii

Rest API Currency Project ��� 20

Custom Events �� 23

Using Event Listeners with Annotations ��� 27

@EventListener �� 27

@TransactionalEventListener ��� 29

Summary �� 30

 ■Chapter 4: JMS with Spring Boot �� 31

JMS �� 31

JMS with Java �� 32

JMS with Spring Boot ��� 36

Producer ��� 36

Consumer ��� 38

Consumer with Annotations �� 42

Currency Project ��� 43

Reply-To �� 51

Topics ��� 54

Currency Project ��� 57

Summary �� 57

 ■Chapter 5: AMQP with Spring Boot �� 59

The AMQP Model �� 59

Exchanges, Bindings, and Queues �� 60

RabbitMQ �� 62

RabbitMQ with Spring Boot �� 62

Producer ��� 63

Consumer ��� 67

RPC ��� 70

Reply Management ��� 75

Flow Control�� 76

www.allitebooks.com

http://www.allitebooks.org

■ Contents

ix

More Features �� 78

Currency Project ��� 80

Summary �� 80

 ■Chapter 6: Messaging with Redis �� 81

Redis as a Message Broker �� 81

Publish/Subscribe Messaging with Redis �� 83

Subscriber �� 83

Publisher ��� 86

JSON Serialization �� 88

The Currency Project �� 92

Summary �� 92

 ■Chapter 7: Web Messaging �� 93

WebSockets �� 93

Using WebSockets with Spring �� 94

Low-Level WebSockets ��� 94

Using SockJS and STOMP �� 101

Using RabbitMQ as a STOMP Broker Relay �� 108

Currency Project ��� 109

Summary �� 110

 ■Chapter 8: Messaging with Spring Integration �� 111

Spring Integration Primer ��� 112

Programming Spring Integration �� 113

A Simple Spring Integration Example ��� 114

File Integration Example ��� 121

File and JDBC Integration Example �� 124

AMQP Integration Example ��� 128

Currency Exchange Project �� 131

Summary �� 131

www.allitebooks.com

http://www.allitebooks.org

■ Contents

x

 ■Chapter 9: Messaging with Spring Cloud Stream �� 133

Spring Cloud ��� 133

Spring Cloud Stream �� 134

Spring Cloud Stream Concepts ��� 135

Spring Cloud Stream Programming �� 136

cloud-stream-demo �� 139

Microservices ��� 154

Spring Cloud Stream App Starters ��� 160

source:http ��� 160

sink:log ��� 160

Currency Project ��� 162

What’s Next? �� 162

Summary �� 162

 ■Chapter 10: Reactive Messaging ��� 163

Reactive Programming ��� 163

RxJava �� 164

The rxjava-demo Project��� 164

Reactor ��� 170

The reactor-demo Project ��� 170

Spring 5: WebFlux Framework ��� 173

Programming Models ��� 173

Summary �� 178

 ■Chapter 11: Microservices �� 179

What Microservices Are ��� 179

The Twelve Factor Apps �� 180

www.allitebooks.com

http://www.allitebooks.org

■ Contents

xi

Spring Cloud Services �� 182

Spring Cloud Config Server �� 182

Service Registry ��� 184

Circuit Breaker �� 190

About Reactive Programming ��� 192

Summary �� 192

Index ��� 193

www.allitebooks.com

http://www.allitebooks.org

xiii

About the Author

Felipe Gutierrez is a solutions software architect, with bachelor’s
and master’s degrees in computer science from Instituto
Tecnologico y de Estudios Superiores de Monterrey Campus
Ciudad de Mexico. Gutierrez has over 20 years of IT experience
and has developed programs for companies in multiple vertical
industries, such as government, retail, healthcare, education,
and banking. Right now, he is currently working as a principal
technical instructor for Pivotal, specializing in Cloud Foundry,
Spring Framework, Spring Cloud Native Applications, Groovy,
and RabbitMQ, among other technologies. He has worked as a
solutions architect for big companies like Nokia, Apple, Redbox,
and Qualcomm, and others. He is also the author of Introducing
Spring Framework and Pro Spring Boot, published by Apress
Media, LLC.

xv

About the Technical Reviewer

Manuel Jordan Elera is an autodidactic developer and researcher
who enjoys learning new technologies for his own experiments and
creating new integrations.

Manuel won the Springy Award – Community Champion and
Spring Champion 2013. In his little free time, he reads the Bible
and composes music on his guitar. Manuel is known as dr_pompeii.
He has tech reviewed numerous books for Apress, including Pro
Spring, 4th Edition (2014), Practical Spring LDAP (2013), Pro JPA 2,
Second Edition (2013), and Pro Spring Security (2013).

Read his 13 detailed tutorials about many Spring technologies,
contact him through his blog at http://www.manueljordanelera.
blogspot.com, and follow him on his Twitter account, @dr_pompeii.

http://www.manueljordanelera.blogspot.com
http://www.manueljordanelera.blogspot.com

xvii

Acknowledgments

I would like to express all my gratitude to the Apress team—to Steve Anglin for accepting my
proposal, to Mark Powers for keeping me on track and for his patience with me, and to the rest of
the Apress team involved in this project. Thanks to everybody for making this possible.

Thanks to my technical reviewer, Manuel Jordan, for all the detail and effort in his reviews,
and the entire Spring team for creating this amazing technology.

Thanks to my wife Norma Castaneda for her love and support. Thanks to my girls—Laura,
Nayely, Ximena—and my baby Rodrigo! Thanks to my parents, Rocio Cruz and Felipe Gutierrez,
my brother Edgar Gerardo Gutierrez, and my sister-in-law Auristella Sanchez for her love and
support.

—Felipe Gutierrez

1© Felipe Gutierrez 2017
F. Gutierrez, Spring Boot Messaging, DOI 10.1007/978-1-4842-1224-0_1

CHAPTER 1

Messaging

Communication is a concept that has been around forever. Everything needs to communicate by
exchanging some kind of information, and yes, you read that right, I mean everything. If you think
about it, even the ads that you find on the side of a bus or in the grocery store are trying to tell or
sell you something, right?

In the computer world, devices (mouse, monitor, keyboard, etc.) communicate with each
other by exchanging bits of information. If we consider applications, then we are talking about
components, functions, classes, etc., that need to communicate with each other or expose some
functionality that can be reached through communication. We typically call this messaging.

Messaging
This section introduces some of the main concepts described in detail later, starting with
messaging and how it fits in the daily development cycle. Take a look at Figure 1-1.

A

CHANNEL

B

Figure 1-1. Messaging

Figure 1-1 shows a simple messaging process, whereby it communicates from point A to
point B through whatever media is possible. In this case, Figure 1-1 uses a channel, which could
be a simple function call, a socket connection, or an HTTP request. The main idea is to produce/
send a message to the consumer/receiver.

Messaging Use Cases
This section covers some of the most common messaging use cases. These uses cases are key to
understanding why messaging is so important:

•	 Delivery Guaranteed

•	 Developers need to make sure that the message they are sending
reaches its destination. If you are using a broker (a system that handles
connections, messages, and message delivery, synched or asynched),

Chapter 1 ■ Messaging

2

then the producer needs to know if the broker receives the message,
by some kind of acknowledgement. The consumer must do the same,
by acknowledging to the broker that the message was received. So this
particular use case is commonly used when critical messages are being
delivered, such as payments, stocks, or any other important information.

•	 Decoupled

•	 When dealing with software architecture, developers look for decoupled
components for easy integration, extensibility, and simple operation
and maintenance. But how can you achieve decoupling? Messaging is
part of the solution, because it allows you to think in your own business
domain, which is a bounded context. The information you produce/
send is your main concern, regardless of how the consumer/receiver
will implement its own business logic.

•	 Scalable and High Available

•	 Every time a system experiences high-request demands, it needs to
be scalable and not have a single point of failure. For these particular
scenarios, messaging is the solution, because multiple consumers/
receivers can keep up with the load and you can replicate the messages
across multiple system instances or brokers. That way, if one of your
instances/brokers is down, you are still in control.

•	 Asynchronous

•	 Applications must be very quick and be able to respond to a request as
soon as possible. In this case, time is the key factor. How can you achieve
this kind of speed when you know that processing the request will take
a lot of time and you have multiple clients? You can solve this issue by
using the previous use case solution (scalability and/or high availability),
but it will reach a point where it’s blocking requests. The solution is
asynchronous messaging—a fire and forget—where your producer/
sender sends messages and gets to their own business logic, leaving the
consumers/receivers to process the message on their own time.

•	 Interoperability

•	 An important factor when creating messaging systems is the ability to
produce/send a message and be able to understand that message when
consuming/receiving (maybe it’s a plain/text JSON or in XML format
or a serialized object). There have been many attempts over the past
decades to create interoperable systems. Nowadays, interoperability
is possible with new brokers like the one that implements the AMQP
protocol or even with simple RESTful APIs or WebSockets that,
regardless of the implementation, enable the producer and consumer
to interoperate seamlessly.

These use cases have been evolving into very well known messaging models and design
patterns, which are discussed in the next section.

Chapter 1 ■ Messaging

3

Messaging Models and Messaging Patterns
Some messaging models were established when messaging became a part of all systems. These
models, in my opinion, evolved into the creation of messaging design patterns.

Point-to-Point
A point-to-point model is a way to send a message to a queue (First In, First Out), whereby only
one receiver gets the message. See Figure 1-2.

SENDER QUEUE RECEIVER

Figure 1-2. Point-to-point model

PUBLISHER

SUBSCRIBER

TOPIC

SUBSCRIBER

Figure 1-3. Publish–subscribe model

The point-to-point model is also used as a message channel pattern, whereby instead of a
queue, you have a channel (which is a way to transport your message). It still guarantees that only
one receiver gets the message in the order it was sent.

You’ll see some examples later in the book about these models and patterns.

Publish-Subscribe
The publish-subscribe model describes a publisher that sends a message (a topic) to multiple
subscribers of that topic. Each subscriber will receive only one copy of the message. See Figure 1-3.

The publish-subscribe model is also used as a message channel pattern, whereby instead of a
topic, you have a channel that delivers a copy of the message to its subscribers.

These models are more related to the JMS (Java Messaging System) and are important to
understand because they form the basics of all enterprise systems.

Chapter 1 ■ Messaging

4

Messaging Patterns
A design pattern is a solution to a commonly known problem in the software design. By the same
token, messaging patterns attempt to solve problems with messaging designs.

You will learn about the implementation of the following patterns during the course of this
book, so I want to list them here with simple definitions to introduce them:

•	 Message type patterns: Describe different forms of messaging, such as string
(maybe plain text, JSON and/or XML), byte array, object, etc.

•	 Message channel patterns: Determine what kind of a transport (channel)
will be used to send a message and what kind of attributes it will have.
The idea here is that the producer and consumer know how to connect to
the transport (channel) and can send and receive the message. Possible
attributes of this transport include a
request-reply feature and a unidirectional channel, which you will learn
about very soon. One example of this pattern is the point-to-point channel.

•	 Routing patterns: Describe a way to send messages between producer and
consumers by providing a routing mechanism (filtering that’s dependent on
a set of conditions) in an integrated solution. That can be accomplished by
programming, or in some cases, the messaging system (the broker) can have
these capabilities (as with RabbitMQ).

•	 Service consumer patterns: Describe how the consumers will behave when
messages arrive, such as adding a transactional approach when processing
the message. There are frameworks that allow you to initiate this kind
of behavior (like the Spring Framework, which you do by adding the @
Transactional, a transaction-based abstraction).

•	 Contract patterns: Contracts between the producer and consumer to have
simple communications, such as when you do some REST calls, where you
call a JSON or XML message with some fields.

•	 Message construction patterns: Describe how a message is created so it
can travel within the messaging system. For example, you can create an
“envelope” that can have a body (the actual message) and some headers
(with a correlation ID or a sequence or maybe a reply address). With a
simple web request, you can add parameters or headers and the actual
message becomes the body of the request, making the whole request part
of the construction pattern. The HTTP protocol allows for that kind of
communication (messaging).

•	 Transformation patterns: Describe how to change the content of the
message within the messaging system. Think about a message that requires
some processing and needs to be enhanced on the fly, such as a content
enricher.

As you can see, these patterns not only describe the messaging process but some of them
describe how to handle some of the common use cases you saw earlier. Of course, there are a lot
more messaging patterns, and these are just a few that we are going to explore in this book.

Chapter 1 ■ Messaging

5

If you want more information, I recommend that you visit the Enterprise Integration Patterns
web site, http://www.enterpriseintegrationpatterns.com/. Also check out this must-read
book—Enterprise Integration Patterns: Designing, Building, and Deploying Messaging Solutions by
Gregor Hohpe and Bobby Woolf, from Addison-Wesley.

In the book, I cover some of these patterns using the Spring Integration module and various
messaging systems (brokers).

Messaging with Spring Framework
The Spring Framework is one of the most commonly used frameworks by the Java community.
The Spring Framework has enabled a simple and easy way to do messaging, by implementing
a template design pattern that can be used with any messaging system. It supports the JMS API
with the JmsTemplate, the AMQP with the RabbitTemplate, STOMP, and internal messaging with
events and listeners. Don’t worry, we will cover all of these later in book.

It’s worth mentioning that the Spring Integration project has been well accepted by the
community, and the core of the Spring Integration (messaging, channels, and other interfaces)
has been part of the Spring Core since version 4.0.

There are many good messaging frameworks out there. Some of them use pure Java, and
others depend on the Spring Framework. The Spring team has been working very hard to make it
even easier for its developers to use all the features, including concurrency, transactions, retries,
etc. To use other libraries, you have to implement them by hand using the same logic.

 ■ Note You can download the book’s source code from the apress site or you can clone it from this github
repository: https://github.com/felipeg48/spring-messaging.

Summary
This chapter introduced messaging and the messaging systems. You read about the basic concept
of messaging, whereby developers need to send information from one point to another.

The chapter reviewed some use cases, models, and patterns of messaging. The book
will cover them in more detail and use them via some of the best implementations out there,
including the Spring Framework and some of their modules, including Spring Integration, Spring
AMQP, and Spring Cloud Stream.

The next chapter includes a tour of Spring Boot, which is the next generation of creating
enterprise-ready Spring applications. Spring Boot is the base for all the modules you use in this book.

http://www.enterpriseintegrationpatterns.com/
https://github.com/felipeg48/spring-messaging

7© Felipe Gutierrez 2017
F. Gutierrez, Spring Boot Messaging, DOI 10.1007/978-1-4842-1224-0_2

CHAPTER 2

Spring Boot

I’ll start with a phrase that I wrote in another book: Spring Boot is a new chapter in creating
enterprise-ready applications with the Spring Framework.

Spring Boot does not replace the Spring Framework; you can see it as a new way to create
awesome applications with the framework used by the Java community.

In this chapter, I show you what Spring Boot is and how it works behind the scenes. You will
also see the power of Spring Boot with a small example. So why do we need to look at Spring Boot?
First of all, all the technologies that we are going to use, such as Spring Integration, Spring AMQP,
Spring Cloud Stream, and others, use Spring Boot as their base. All the examples in this book use
Spring Boot to create Spring apps. And of course, Spring Boot makes messaging even easier.

What Is Spring Boot?
To begin with, Spring Boot is an opinionated technology. What does that mean?

Spring Boot looks at the classpath and tries to determine what kind of application you are
trying to run. For example, if you have the spring-mvc modules in your classpath, Spring Boot
will wire up the WebApplicationInitializer and DispatcherServlet classes inside the Spring
container and will set up an embedded container (Tomcat by default), so you can run your
application without having to copy or deploy your application to a servlet container.

Spring Boot’s Features
Let’s look at the most important Spring Boot features:

•	 It can create standalone Spring applications. Based on its Maven or Gradle
plugin, you can create executable JARs or WARs.

•	 It has an opinionated technology based on the starter poms.

•	 Includes auto-configuration, which will configure your Spring application
without any XML or Java config classes.

•	 Includes embedded servlet containers for web apps (Tomcat, Jetty, or
Undertow).

•	 Includes production-ready features (non-functional requirements) that are
ready to use, such as metrics and health checks.

Chapter 2 ■ Spring Boot

8

•	 Spring Boot is not a plugin or a code generator (this means that Spring Boot
doesn’t create a file to be compiled).

•	 If you have an application or servlet container, you can deploy Spring Boot
as a WAR without making any changes.

•	 You can access all the Spring application events and listeners (something
that we will discuss in the next chapter).

This list is just a few features of what Spring Boot can offer; of course there are more. I recommend
my other book—Pro Spring Boot from Apress—if you need to know more about it. That book includes
more comprehensive and detailed sections about how Spring Boot works internally.

Restful API with Spring Boot
One of the important features of Spring Boot is that you can create executable JARs and run them
by just executing java -jar yourapp.jar. You can also create executable WARs (web archive)
that can run standalone (using the embedded container within the WAR) or deploy them to a
servlet container without chaining anything in your code.

This section shows you a Restful API that lists the currency and the rates based on the country
code. This project is a Spring Boot web application.

 ■ Note You can find a download link for all the source code at the http://www.apress.
com/9781484212257.

I’ll show you some code snippets of the application, so you have an idea of what Spring Boot
can do with very minimal code and no configuration files.

I’m assuming that you already have the code. I suggest that you use the STS (Spring Tool Suite),
which you can get from https://spring.io/tools/sts/all. I use this IDE because it has very nice
features for running Spring Boot, and all the figures that you see are based on this IDE, but you can
choose any IDE you like.

The rest-api-demo Project
This project is a Spring Boot web application that will expose Restful endpoints that will show a
country currency and the rates of other countries. This project is in the folder named ch02.

This project also uses the JPA (Java Persistence API) with an in-memory database (using the
H2 engine), AOP (Aspect-Oriented Programming). The exposed endpoints are listed in Table 2-1.

http://www.apress.com/9781484212257
http://www.apress.com/9781484212257
https://spring.io/tools/sts/all

Chapter 2 ■ Spring Boot

9

Listing 2-1 shows an example of the JSON response. You can use a base parameter for some
of the endpoints as well.

Listing 2-1. JSON Currency Response - /currency/latest

{
 "base": "USD",
 "date": "2016-09-22",
 "rates": [
 {
 "code": "EUR",
 "rate": 0.88857
 },
 {
 "code": "JPY",
 "rate": 102.17
 },
 {
 "code": "MXN",
 "rate": 19.232
 },
 {
 "code": "GBP",
 "rate": 0.75705
 }
]
}

Listing 2-1 shows you the result response by accessing the /currency/latest endpoint. It
shows the base currency, in this case the U.S. Dollar, and all the rates (currency) that you can get
from the other countries with 1 USD.

For a conversion, you request the endpoint /currency/{amount}/{base}/to/{code}.
Imagine you want to know how many Japanese Yens are equal to 10 USD. The request can be
done like this: /currency/10/usd/to/jpy. You should get the result shown in Listing 2-2.

Table 2-1. Restful Endpoints

Method Path Description

GET /currency/latest[?base=<code>] Shows the latest rates in JSON format. USD is
the default base.

GET /currency/{date}[?base=<code>] Shows the rates based on the date: yyyy-MM-
dd in JSON format.

GET /currency/{amount}/{base}/to/
{code}

Shows a conversion based on the amount,
base, and code.

POST /currency/new Adds new rates by date. The body should be
in JSON format.

Chapter 2 ■ Spring Boot

10

Listing 2-2. Conversion Response - /currency/10/usd/to/jpy

{
 "base": "USD",
 "code": "JPY",
 "amount": 10.0,
 "total": 1021.69995
}

Listing 2-2 shows you the result of the conversion endpoint. Let’s review the other files.

The pom.xml File
Open the pom.xml file and review its contents. Let’s review the tags and their meanings:

•	 The <packaging/> tag has the WAR value. When packaging this application,
it will generate a WAR that will be executable and deployable to any servlet
container.

<packaging>war</packaging>

•	 The <parent/> tag is the key for Spring Boot to work, because it has all the
dependencies and versions that you need in your application. It is based
on Maven’s BOM (Bill of Materials) feature. So, it is important that this
particular tag always be in your Spring Boot application.

<parent>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-parent</artifactId>
 <version>1.4.0.RELEASE</version>
 <relativePath /> <!-- lookup parent from repository -->
</parent>

•	 The <dependencies/> tag holds all the dependencies in the Spring Boot
application. When you choose the web dependency (using the command
line or the Spring starter), the spring-boot-web-starter dependency is
added to this pom. This is similar to when you selected the project as a WAR
type, whereby the spring-boot-starter-tomcat dependency was added.
By default, you always have the spring-boot-starter-test dependency.

<dependencies>
 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-web</artifactId>
 </dependency>

Chapter 2 ■ Spring Boot

11

 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-tomcat</artifactId>
 <scope>provided</scope>
 </dependency>
 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-data-jpa</artifactId>
 </dependency>
 <dependency>
 <groupId>com.h2database</groupId>
 <artifactId>h2</artifactId>
 <scope>runtime</scope>
 </dependency>
 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-aop</artifactId>
 </dependency>
 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-test</artifactId>
 <scope>test</scope>
 </dependency>
</dependencies>

Let’s take a moment to look at the <dependencies/> tag. If you are familiar with the
Maven way to create a project, you will figure this out by now, that there is a missing tag in the
<dependency/> tag. That’s right, the <version/> tag is missing. This version is not used any more
because the <parent/> tag definition includes all the versions and dependencies that you will use
in your web application.

Notice that spring-boot-starter-tomcat has the scope as provided, which means you can
create a runnable WAR (that you can run using java -jar <war-name>.war) and deploy it to any
servlet container.

Notice the naming convention that you use to create Spring Boot apps—every <groupId/>
tag is org.springframework.boot and the <artifactId/> tag is spring-boot-starter-
<technology>.

Why is this important? Remember that Spring Boot is an opinionated technology, so based on
this pom and the spring-boot-starter, it will recognize which application you are trying to run.

The Rate.java Class
This will be the domain class. It includes an annotation that defines it as an entity. This is because
this class will be persisted into the H2 engine (in-memory database). See Listing 2-3.

Chapter 2 ■ Spring Boot

12

Listing 2-3. src/main/java/com/apress/messaging/domain/Rate.java

@Entity
public class Rate {

 @Id
 private String code;
 private Float rate;

 @JsonIgnore
 @Temporal(TemporalType.DATE)
 private Date date;

 // Setters and Getters omitted.

}

Listing 2-3 shows you the domain class—here the @Entity and @Id annotations are being
used—and this is related to the JPA technology (Spring Data JPA). As you can see, it’s very basic.
Nothing too complicated.

The RateRepository.java Class
Next is the RateRepository interface, which is based on the Spring Data JPA technology, where
you need to extend from the JpaRepository<E,ID> and add the entity (domain) and the ID class
type (String, a serializable class) that will be used for persistence. See Listing 2-4.

Listing 2-4. src/main/java/com/apress/messaging/repository/RateRepository.java

@Repository
public interface RateRepository extends JpaRepository<Rate,String>{
 List<Rate> findByDate(Date date);
 Rate findByDateAndCode(Date date,String code);
}

Listing 2-4 shows you the RateRepository interface. You can see the @Repository annotation
(this is just a marker for the Spring container); the important part is that you need to extend from
the JpaRepository interface. This interface will implement all the CRUD (Create, Read, Update
and Delete) actions for you, so you don’t have to implement them. Two query methods are
defined—findByDate (looks for the rates that have that date) and findByDateAndCode (looks for
a specific date and code). What makes this interface special is that you can create a SQL query by
using the properties of the domain class. If you want to learn more about Spring Data JPA, go to
http://docs.spring.io/spring-data/jpa/docs/current/reference/html/.

http://docs.spring.io/spring-data/jpa/docs/current/reference/html/

Chapter 2 ■ Spring Boot

13

The CurrencyController.java Class
This class defines the REST endpoints. It uses the RateRepository interface through a service.
See Listing 2-5.

Listing 2-5. src/main/java/com/apress/messaging/controller/CurrencyController.java

@RestController
@RequestMapping("/currency")
public class CurrencyController {

 @Autowired
 CurrencyConversionService service;

 @RequestMapping("/latest")
 public ResponseEntity<CurrencyExchange> getLatest(@RequestParam(name="base",

defaultValue=CurrencyExchange.BASE_CODE)String base) throws Exception{
 //...
 }

 @RequestMapping("/{amount}/{base}/to/{code}")
 public ResponseEntity<CurrencyConversion> conversion(@PathVariable("amount")

Float amount,@PathVariable("base")String base,@PathVariable("code")String code)
throws Exception{

 //...
 }

 //More methods here...

}

Listing 2-5 shows you a snippet of the CurrencyController class, which uses the Spring MVC
@RestController, @RequestMapping, @RequestParam, and @PathVariable annotations. Every
response is based on the ResponseEntity class.

This is pure Spring MVC (not too much Spring Boot). If you want to know more about Spring
MVC, visit http://docs.spring.io/spring/docs/current/spring-framework-reference/
html/mvc.html.

Review this class and experiment with it.

The RestApiDemoApplication.java Class
This class is the main entry point of the web application. See Listing 2-6.

http://docs.spring.io/spring/docs/current/spring-framework-reference/html/mvc.html
http://docs.spring.io/spring/docs/current/spring-framework-reference/html/mvc.html

Chapter 2 ■ Spring Boot

14

Listing 2-6. src/main/java/com/apress/messaging/RestApiDemoApplication.java

@SpringBootApplication
public class RestApiDemoApplication {

 public static void main(String[] args) {
 SpringApplication.run(RestApiDemoApplication.class, args);
 }

 @Bean
 public CommandLineRunner data(RateRepository repository) {
 return (args) -> {
 repository.save(new Rate("EUR",0.88857F,new Date()));
 repository.save(new Rate("JPY",102.17F,new Date()));
 repository.save(new Rate("MXN",19.232F,new Date()));
 repository.save(new Rate("GBP",0.75705F,new Date()));
 };
 }
}

Listing 2-6 shows you the main class, where Spring Boot will bootstrap the application.
@SpringBootApplication is a required annotation for every Spring Boot app, because it will
trigger all the magic behind Spring Boot. This annotation will use the auto-configuration feature
to determine your app and the best configuration for it. In this case, because you have the
spring-boot-starter-web dependency (in your classpath through your pom.xml file), it will set
up all the necessary beans (like the DispatcherServlet) and the embedded servlet container
(Tomcat by default) to configure your web app.

Notice the @Bean, which returns a CommandLineRunner interface. This will be executed after
the Spring container is ready with all your beans, and it will use the RateRepository interface to
save the rate. You can see this as a way to initialize your database.

Other Files…
Of course, there are more classes, but the idea here is for you to experiment with them and see
what they do and how they are used in the project. Look at the CurrencyConversionService
class, which is used in the web controller.

If you want to see how the AOP is being used in this project, look at the CurrencyCodeAudit
class. It’s defining an around advice that will be executed only when an @ToUpper annotation is
found in a method. (You can get the code from this annotation in the book’s source code.) Why
do you need to use this aspect? Well, if you look at the conversion endpoint, you are expecting a
capital case (for the base and the code, /150/USD/to/JPY), but with this approach, you can ignore
it. Removing @ToUpper from the CurrencyConversionService methods, such as /150/usd/to/
jpy, doesn’t work, because it’s evaluating just the capital letters for the base and code. You instead
need to add extra code to support it.

Chapter 2 ■ Spring Boot

15

Running the Spring Boot Currency Web App
There are different ways to run a project like this. If you use the STS and import the project, you
can simply right-click the project’s name and choose Run As --> Spring Boot App, and that’s it!

If you want to run it using the command line, make sure you have Maven installed and execute:

$ mvn spring-boot:run

Then you can go to your browser and type http://localhost:8080/currency/latest and
you should get the same result as shown in Listing 2-1. You can also use the curl command:

$ curl http://localhost:8080/currency/latest

As you can see, you don’t need to create a WAR and deploy it to a container, because Spring
Boot comes with an embedded Tomcat container. This allows you to have portability.

Deploying the Spring Boot Currency Web App
If you want to deploy this code to a servlet container, you need to package this project. If you are
using the STS, you can right-click over the project and select Run As --> Maven Build. This will
bring up a dialog box. In the Goals field, enter Package and then check the Skip Test check box.
You can then click Run. This will create an executable and deployable way to the target directory.

If you are using the command line, you can execute:

$ mvn package -DskipTests=true

This will create the executable and deployable WAR in the target directory. You can execute
the WAR by running the following command:

$ java -jar target/rest-api-demo-0.0.1-SNAPSHOT.war

If you already have, for example, a Tomcat container, you can just drop the WAR file in the
webapps/ folder and run your container. Try to rename the war when you are copying/moving it.

$ cp target/rest-api-demo-0.0.1-SNAPSHOT.war /opt/tomcat/webapps/rest-api-demo.war
$ /opt/tomcat/bin/startup.sh

Then you can open your browser and go to http://localhost:8080/rest-api-demo/
currency/latest to get the same results.

More About Spring Boot
If you want to learn more about Spring Boot and its other useful features, I recommend my other
book, Pro Spring Boot from Apress. It takes a more in-depth approach to this technology, from
using the Spring Boot CLI through deploying it into the cloud.

Chapter 2 ■ Spring Boot

16

Summary
This chapter introduced Spring Boot, discussed some of its features, and explained how it works
with Spring MVC by creating a simple currency Restful application.

In the next chapter, you are going to start with the Spring Application events and listeners,
which is a way to do messaging by emitting and consuming messages through the Observer
pattern.

17© Felipe Gutierrez 2017
F. Gutierrez, Spring Boot Messaging, DOI 10.1007/978-1-4842-1224-0_3

CHAPTER 3

Application Events

This chapter covers how to use the observer pattern (behavioral pattern) as a way to send
messages to whoever needs them or whoever is listening. The chapter also shows how the Spring
Framework implements this pattern through its application events, which can be declared as a
simple interface implementation or by using specialized annotations.

The Observer Pattern
This particular pattern defines one-to-many dependencies between objects, so when one object
(the subject) change its state, it needs to inform the others (observers) about this change. Then
they can react to the change, as shown in Figure 3-1.

Registered with
Subject

Notifies about
state

Subject

Observer

Observer

Observer

Message / Event

Message / Event

Message / Event

Figure 3-1. The observer pattern

There are many ways to implement this design pattern. The Java SDK includes the java.util.
Observable class, which will set the change and notify the observers, as well as the java.util.
Observer interface, which will receive the notification through its update method.

Chapter 3 ■ appliCation events

18

The Spring Framework has a sophisticated way to use this observer pattern and the recent
versions (4.x) of Spring include even more improvements. They not only include this pattern
but also have multiple events that allow you to determine more about the internals of the Spring
container and to create your own events.

Remember that even though we are talking about the observer pattern and events, this is
simply a way to communicate between components using messaging through events.

The Spring ApplicationEvent
You will find that the Spring Framework exposes the abstract org.springframework.context.
ApplicationEvent class, which extends java.util.EventObject. The EventObject has an object
where the event initially occurred. See Figure 3-2.

Figure 3-2. The Spring ApplicationEvent hierarchy

Figure 3-2 shows you the ApplicationEvent hierarchy, and as you can see, this class is
extended by several events. It’s worth mentioning at least two important events:

•	 ApplicationContextEvent (belongs to the Spring Framework):
This is an abstract class where you have full access to the main central
interface, which provides the entire configuration for your application.
This class is also extended by the ContextClosed, ContextStartedEvent,
ContextRefreshedEvent, and ContextStoppedEvent events to give you
more details of the lifecycle of the Spring container.

•	 SpringApplicationEvent (belongs to Spring Boot): This is also an abstract
class that contains all the information about the Spring Boot application
through the SpringApplication class. The SpringApplication class is used to
bootstrap and launch a Spring Boot application from a Java main method.

www.allitebooks.com

http://www.allitebooks.org

Chapter 3 ■ appliCation events

19

I chose these events because the project you are doing, the Rest API for currency exchanges,
uses them. More about this later in this chapter.

Spring ApplicationListener
Now, for every event, you should have a way to receive the message. The Spring Framework has a
main event listener. The org.springframework.context.ApplicationListener
<E extends ApplicationEvent> interface extends from the java.util.EventListener
(which is just a marker). The ApplicationListener is the main event listener for all the Spring
ApplicationContext events, which you read about in the previous section. See Figure 3-3.

Figure 3-3. ApplicationListener interface and hierarchy

Chapter 3 ■ appliCation events

20

Figure 3-3 shows the ApplicationListener hierarchy and all the event listeners you can use.
The Spring Framework will send the appropriate events on start, during runtime, and even upon
normal shutdown in your Spring application. They will be filtered when the listener is invoked to
match the event objects.

There are many use cases whereby you can use the ApplicationEvent or some of its
implementations to listen (using the ApplicationListener) for incoming messages and then act
on them. For example, in the Rest API currency project, discussed again in the next section, you
determine when a user hits some of the Rest endpoints, and you then have a statistical way to see
the traffic and recognize which endpoint is used more often.

Rest API Currency Project
Let’s go back to the project and apply this type of design pattern to it. By implementing only the
ApplicationListener of the ApplicationEvent type, the application will start listening for every
event that happens during the Spring container initialization and part of the Beans lifecycle.

Take a look a Listing 3-1, which shows that the RestApiEventsListener class is a Spring
component.

Listing 3-1. com.apress.messaging.listener.RestApiEventsListener.java

@Component
public class RestApiEventsListener implements ApplicationListener<ApplicationEvent>{

 public void onApplicationEvent(ApplicationEvent event) {

 }
}

Listing 3-1 shows you just part of the code where the RestApiEventsListener class
implements the ApplicationListener of the ApplicationEvent event. You must implement the
onApplicationEvent method that receives the ApplicationEvent as a parameter.

Again, one use case would be to determine how many times a Rest endpoint is being
accessed. Look at Figure 3-2, where the ApplicationEvent hierarchy is—you will notice that
there is a RequestHandledEvent and a ServletRequestHandledEvent that extends it. With the
ServletRequestHandledEvent class, you can get the URL (endpoint) that is being accessed and
create a counter for it. See Listing 3-2.

Listing 3-2. com.apress.messaging.listener.RestApiEventsListener.java

@Component
public class RestApiEventsListener implements ApplicationListener<ApplicationEvent>{

 private static final String LATEST = "/currency/latest";

 @Autowired
 private CounterService counterService;

 @Log(printParamsValues=true)
 public void onApplicationEvent(ApplicationEvent event) {

Chapter 3 ■ appliCation events

21

 if(event instanceof ServletRequestHandledEvent){
 if(((ServletRequestHandledEvent)event)
 .getRequestUrl().equals(LATEST)){
 counterService
 .increment("url.currency.latest.hits");
 }
 }
 }
}

Listing 3-2 shows a little more of the code. Let’s take a look at it:

•	 ServletRequestHandledEvent: This event is being published when there is a
request to an endpoint. This is part of the web framework. This event contains
all the web context information, which is why you can get the information
about the URL being accessed.

•	 CounterService: This interface belongs to the spring-boot-actuator
module, which allows you to have a metric by incrementing or decrementing
a tag/property. In this case, the tag is url.currency.latest.hits.

•	 @Log(printParamsValues=true): This is a custom annotation that will be
used as part of the before advice that logs all the information about the
method being called. You can see the code in the com.apress.messaging.
aop.CodeLogger.java class.

If you run the application, you will get some output generated from the @Log annotation
(see Figure 3-4), but if you visit the /currency/latest endpoint a few times (see Figure 3-5),
the application will start counting this endpoint as being accessed by using the CounterService
instance. Then you can access this metric from the /metrics endpoint and see that the url.
currency.latest.hits is being shown with the number of hits of that endpoint (see Figure 3-6).

Figure 3-4. Console logs after running the rest-api-events project

Chapter 3 ■ appliCation events

22

Figure 3-4 shows you some of the log output that you will see when running your application.
These logs are the messages that the Spring Framework sends as ApplicationEvent events.
Remember that this output is generated by the @Log annotation (a before AOP advice).

Figure 3-5 shows you some of the logs after accessing the /currency/latest endpoint a few
times. You can see that the ApplicationEvent is an instance of the ServletRequestedEvent,
which contains the requested URL.

Figure 3-5. Console logs after visiting the /currency/latest endpoint

Figure 3-6 shows you the /metrics endpoint (provided by the spring-boot-actuator
dependency). At the bottom of the figure, you can see the "counter.url.currency.latest.
hits":4 metric, which is updated by the CounterService instance (see Listing 3-2).

Chapter 3 ■ appliCation events

23

Custom Events
So far, you have seen a way to create listeners for any ApplicationEvent, but what about when
using custom events, ones that contain information about your domain object? This section
shows you how to create a custom event.

To create a custom event, you must extend from ApplicationEvent so it’s easy to publish it later.
Using the current project, imagine that you will send an event when there’s an error

(unchecked exception) during the call of any currency conversion. Maybe this will simply
log the cause and show the object that caused the exception. Let’s start by reviewing the
CurrencyConversionEvent class, as shown in Listing 3-3.

Figure 3-6. http://localhost:8080/metrics

Chapter 3 ■ appliCation events

24

Listing 3-3. com.apress.messaging.event.CurrencyConversionEvent.java

package com.apress.messaging.event;

import org.springframework.context.ApplicationEvent;
import com.apress.messaging.domain.CurrencyConversion;

public class CurrencyConversionEvent extends ApplicationEvent {

 private static final long serialVersionUID = -4481493963350551884L;
 private CurrencyConversion conversion;
 private String message;

 public CurrencyConversionEvent(Object source, CurrencyConversion conversion) {
 super(source);
 this.conversion = conversion;
 }

 public CurrencyConversionEvent(Object source, String message, CurrencyConversion
conversion) {

 super(source);
 this.message = message;
 this.conversion = conversion;
 }

 public CurrencyConversion getConversion(){
 return conversion;
 }

 public String getMessage(){
 return message;
 }
}

Listing 3-3 shows you a basic class that extends from ApplicationEvent and has two
constructors. Each constructor will call its parent (ApplicationEvent) to set the source, set the
current CurrencyConversion instance, and determine the message. In other words, you have the
information needed to determine the source of errors in any currency conversion call.

Next, let’s review the event listener that will receive the CurrencyConversionEvent. See
Listing 3-4.

Listing 3-4. com.apress.messaging.listener.CurrencyConversionEventListener.java

package com.apress.messaging.listener;

import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.context.ApplicationListener;
import org.springframework.stereotype.Component;
import com.apress.messaging.event.CurrencyConversionEvent;

Chapter 3 ■ appliCation events

25

@Component
public class CurrencyConversionEventListener implements ApplicationListener<Currency
ConversionEvent> {

 private static final String DASH_LINE = "===================================";
 private static final String NEXT_LINE = "\n";
 private static final Logger log = LoggerFactory.getLogger(CurrencyConversionEvent

Listener.class);

 @Override
 public void onApplicationEvent(CurrencyConversionEvent event) {
 Object obj = event.getSource();
 StringBuilder str = new StringBuilder(NEXT_LINE);
 str.append(DASH_LINE);
 str.append(NEXT_LINE);
 str.append(" Class: " + obj.getClass().getSimpleName());
 str.append(NEXT_LINE);
 str.append("Message: " + event.getMessage());
 str.append(NEXT_LINE);
 str.append(" Value: " + event.getConversion());
 str.append(NEXT_LINE);
 str.append(DASH_LINE);
 log.error(str.toString());
 }

}

Listing 3-4 shows you the listener that will receive all the CurrencyConversionEvent events.
This class implements the ApplicationListener of type CurrencyConversionEvent, and it needs
to implement the onApplicationEvent. As you can see, it is just logging the class, the message,
and the CurrencyConversion domain object.

Next, let’s see which class will be publishing the event when an error occurs. Let’s review our
CurrencyConversionService and the convertFromTo method, which has logic to get the currency
codes. See Listing 3-5.

Listing 3-5. com.apress.messaging.service.CurrencyConversionService.java

public CurrencyConversion convertFromTo(@ToUpper String base, @ToUpper String
code,Float amount) {
 Rate baseRate = new Rate(CurrencyExchange.BASE_CODE,1.0F,new Date());
 Rate codeRate = new Rate(CurrencyExchange.BASE_CODE,1.0F,new Date());

 if(!CurrencyExchange.BASE_CODE.equals(base))
 baseRate = repository.findByDateAndCode(new Date(), base);

 if(!CurrencyExchange.BASE_CODE.equals(code))
 codeRate = repository.findByDateAndCode(new Date(), code);

Chapter 3 ■ appliCation events

26

 if(null == codeRate || null == baseRate)
 throw new BadCodeRuntimeException("Bad Code Base, unknown code:

" + base, new CurrencyConversion(base,code,amount,-1F));

 return new CurrencyConversion(base,code,amount,(codeRate.getRate()/baseRate.
getRate()) * amount);

}

Listing 3-5 shows you the convertFromTo method, which is doing the conversion
by finding the rates based on the base and code variables. The if statement will throw
a BadCodeRuntimeException, which has a constructor that accepts a string and a
CurrencyConversion object. BadCodeRuntimeException is the unchecked exception that
extends from RuntimeException (you can review that in the source code).

When the exception is thrown, we must publish the CurrencyConversionEvent and the error
message, but adding this logic would mess up the code and soon we would have tangled, messy
code. We can instead create an AOP that uses this exception when it’s thrown. Listing 3-6 uses an
AOP to publish the CurrencyConversionEvent event after throwing the exception.

Listing 3-6. com.apress.messaging.aop.CurrencyConversionAudit.java

@Aspect
@Component
public class CurrencyConversionAudit {

 private ApplicationEventPublisher publisher;

 @Autowired
 public CurrencyConversionAudit(
 ApplicationEventPublisher publisher){
 this.publisher = publisher;
 }

 @Pointcut("execution(* com.apress.messaging.service.*Service.*(..))")
 public void exceptionPointcut() {}

 @AfterThrowing(pointcut="exceptionPointcut()",
 throwing="ex")
 public void badCodeException(JoinPoint jp,
 BadCodeRuntimeException ex){

 if(ex.getConversion()!=null){
 publisher.publishEvent(
 new CurrencyConversionEvent(
 jp.getTarget(),
 ex.getMessage(),
 ex.getConversion()));
 }
 }

}

Chapter 3 ■ appliCation events

27

Listing 3-6 shows you @AfterThrowing, which knows about the BadCodeRuntimeException
when it’s thrown, and then executes the code inside the method. As you can see, it uses the
ApplicationEventPublisher instance (which is being injected by the Spring Framework in the
class constructor) and the publishEvent method, which sends the information about the class
where the exception occurred, the message, and the CurrencyConversion object.

If you run the project and access /{amount}/{base}/to/{code} like this /1.0/usdx/to/mx,
you will get something similar to Figure 3-7.

Figure 3-7. Log error in the CurrencyConversionService

As you can see, creating custom events is really easy. Remember these simple rules to use a
custom event:

•	 Create an event class that extends from ApplicationEvent.

•	 Create an event listener class that implements the ApplicationListener of
your custom event and implement the onApplication method.

•	 Use the ApplicationEventPublisher class to publish your custom event.

Using Event Listeners with Annotations
So far we have seen how to use and implement the ApplicationListener of type
ApplicationEvent. This section shows you how to use some of the Spring-provided annotations
as an easy way to listen for events.

@EventListener
The @EventListener annotation is a helpful annotation that you can use directly in the method that
will handle the event. This means that there is no need to implement ApplicationListener anymore.

Listing 3-7 shows how you can use it.

Listing 3-7. com.apress.messaging.listener.RestAppListener.java

@Component
public class RestAppEventListener {

 @EventListener
 @Log(printParamsValues=true)
 public void restAppHandler(
 SpringApplicationEvent springApp){
 }
}

Chapter 3 ■ appliCation events

28

Listing 3-7 shows you the @EventListener annotation, which is applied to the
restAppHandler method. The Spring Framework will wire everything up so this listener receives
all the SpringApplicationEvent events. The SpringApplicationEvent is another event that
extends from the ApplicationEvent abstract class but contains information about the Spring
Boot application, like the arguments used in a command line, the banner, the resource loader, etc.

If you run the project, you will see something similar to Figure 3-8.

Figure 3-8. Logs of the RestAppEventListener

As you can see, the @EventListener annotation is simple to use. This annotation has even
more features:

•	 It supports conditions, so it can be executed only if the expression given is
true. For example:

@EventListener(condition = "#springApp.args.length > 1")

	 This snippet tells the listener to only use the events if the argument’s length
is greater than 1. If you replace the previous listener in Listing 3-7, you won’t
see the RestAppEventListener logs.

•	 You can listen for many events by passing an array of the event classes as the
default value. For example:

@EventListener({CurrencyEvent.class,
 CurrencyConversionEvent.class})
@Log(printParamsValues=true)
public void restAppHandler(ApplicationEvent appEvent){ }

	 This snippet listens for the CurrencyEvent and CurrencyConversion events
in the same method, which now gets an ApplicationEvent instance. Also
you can have no arguments and still listen for multiple events.

•	 When you have multiple events to listen to, you might want to prioritize
them. You can add the @Order annotation to the method to do so. For
example:

@EventListener
@Order(Ordered.HIGHEST_PRECEDENCE)
@Log(printParamsValues=true)
public void restAppHandler(SpringApplicationEvent springApp){
}

	 This snippet will be processed in the order of highest precedence.

Chapter 3 ■ appliCation events

29

•	 You can also process your event listeners in an asynchronous way, by adding
the @Async annotation. For example:

@EventListener
@Async
@Log(printParamsValues=true)
public void restAppHandler(SpringApplicationEvent springApp){
}

@TransactionalEventListener
The Spring Framework 4.2.x and above versions introduce an additional annotation that allows
you to listen for the transaction phase, such as a database transaction or any other transactions,
including messaging events.

Let’s start by using this annotation in the currency project. Look at the RateEventListener
class shown in Listing 3-8.

Listing 3-8. com.apress.messaging.listener.RateEventListener.java

@Component
public class RateEventListener {

 @TransactionalEventListener
 @Log(printParamsValues=true,
 callMethodWithNoParamsToString="getRate")
 public void processEvent(CurrencyEvent event){ }
}

Listing 3-8 shows you the RateEventListener class, which uses the @
TransactionalEventListener and processes the custom CurrencyEvent event (you can look at
the code in the com.apress.messaging.event package). The @TransactionalEventListener will
receive the events when a transactional channel is being established, either programmatically or
by using the @Transactional annotation.

If you look at the com.apress.messaging.service.CurrencyService.java class, you will see
the following code:

@Transactional
public void saveRate(Rate rate){
 repository.save(new
 Rate(rate.getCode(),
 rate.getRate(),
 rate.getDate()));
 publisher.publishEvent(new CurrencyEvent(this,rate));
}

This snippet shows the saveRate method, which is marked with the @Transactional
annotation. It will publish a CurrencyEvent when it’s done saving.

Chapter 3 ■ appliCation events

30

If you run the project you will see the logs about the RateEventListener several times. Take
a peek at the main app (RestApiEventsApplication.java); you will see rates being saved using
the CurrencyService instance and the logs of each transaction (after they are committed) by the
RateEventListener listener. See Figure 3-9.

Figure 3-9. RateEventListener logs

@TransactionalEventListener can listen for specific transaction phases. If you need to
listen for events during a phase, you can use it like so:

@TransactionalEventListener(
 phase = TransactionPhase.BEFORE_COMMIT)

you can have: BEFORE_COMMIT, AFTER_COMMIT (default), AFTER_ROLLBACK and AFTER_COMPLETION.

 ■ Note remember that you can get all the code from the apress site or directly from the Github repository:
http://www.apress.com/9781484212257

Summary
This chapter explained how the observer pattern works. It also covered the way the Spring
Framework uses this pattern to expose application events.

It showed you some use cases whereby you can listen for application events and use them to
count how many times an endpoint is being accessed by ServletRequestHandledEvent. It showed
you how to create your own custom events by extending the ApplicationEvent abstract class.

You learned about an easy way to listen for events by using annotations such as the
@EventListener. You also saw how to use the @TransactionalEventListener that is being
triggered when a transaction happens, during, before, or after commit and after a rollback.

The next chapter covers the Java Message Service API and how you can do messaging using it.

http://www.apress.com/9781484212257

31© Felipe Gutierrez 2017
F. Gutierrez, Spring Boot Messaging, DOI 10.1007/978-1-4842-1224-0_4

CHAPTER 4

JMS with Spring Boot

The Java Message Service (JMS) was announced in June 2001 with version 1.0.2b. It’s another
solution for sending messaging between two or more clients. It was considered part of a Message
Oriented Middleware (MOM) group of technologies at that time. The idea was to provide an API
for a recurrent problem, a producer-consumer use case that allowed loosely coupled, reliable,
and asynchronous components in a distributed environment.

This chapter starts with a simple project that will help you understand how the JMS clients
work and how to configure it with Spring Boot. Then we are going to use this knowledge to build
on the previous project, the currency REST API that now will be a receiver to save new rates. So,
let’s get started.

JMS
The JMS API provides two messaging models—point-to-point and publish-subscribe. Point-to-
point is where messages are delivered to a receiver, and the delivery is guaranteed to only one
consumer that is connected to a queue (see Figure 4-1).

SENDER QUEUE RECEIVER

Figure 4-1. The point-to-point messaging model

The publish-subscribe model is where a message is delivered to zero or more consumers
(normally called subscribers). The publisher creates a message topic for all the clients that want
to subscribe to it (see Figure 4-2).

Chapter 4 ■ JMS with Spring Boot

32

JMS is a required API that needs to be implemented. In order to use or create JMS
applications, you need to choose a provider (often called JMS server or broker) that will connect
and decouple your senders/publishers from your receivers/subscribers, a client that will
produce/send or receive/subscribe messages, a JMS message that contains the actual message
(payload), and a JMS queue for a point-to-point messaging or a topic for a publish-subscriber
scenario. We first talk more about the client.

JMS with Java
Let’s first see how can you create a point-to-point sender client in Java; see Listing 4-1.

Listing 4-1. Point-to-Point Sender Client Snippet Code

//Step 1. Create the Connection
InitialContext ctx = new InitialContext();
QueueConnectionFactory factory = (QueueConnectionFactory)ctx.
lookup("connectionFactory");
QueueConnection connection = factory.createQueueConnection();
connection.start();

//Step 2. Create a Queue Session
QueueSession session = connection.createQueueSession(false, Session.AUTO_ACKNOWLEDGE);

//Step 3. Get the Queue object
Queue queue =(Queue)ctx.lookup("myQueue");

//Step 4. Create the Sender
QueueSender sender = session.createSender(queue);

//Step 5. Create the Message
TextMessage msg = session.createTextMessage();
msg.setText("Hello World");

//Step 6. Send the Message
sender.send(msg);

PUBLISHER

SUBSCRIBER

TOPIC

SUBSCRIBER

Figure 4-2. The publish-subscribe messaging model

Chapter 4 ■ JMS with Spring Boot

33

As you can see in Listing 4-1, this process is very straightforward. There are only six steps
to send a text message. In Step 1, you need to know which connection process to use. Normally
you need to include the jndi.properties file in your code with some information about your
JMS provider; for example, if you use the Apache ActiveMQ, you need to specify its properties, as
shown in Listing 4-2 (jndi.properties).

Listing 4-2. jndi.properties for Apache ActiveMQ

Initial Context for the Apache ActiveMQ
java.naming.factory.initial=org.apache.activemq.jndi.ActiveMQInitialContextFactory

This property must be the same as the one declared in the ctx.lookup statement.
by default is: connectionFactory or ConnectionFactory
connectionFactoryNames = connectionFactory, queueConnectionFactory,
queueConnectionFactory

Memory Broker = vm://localhost
External Broker = tcp://hostname:61616
java.naming.provider.url=vm://localhost

Queue naming rules:
queue.[jndiName] = [physicalName]
queue.myQueue = apress.MyQueue

Topic naming rules:
topic.[jndiName] = [physicalName]
topic.myTopic = apress.MyTopic

Listing 4-2 shows the jndi.properties file that you need to include in every JMS application.
In this case, it’s using the Apache ActiveMQ settings and naming convention for the queues and topics.

Now, let’s take a look at the receiver, shown in Listing 4-3.

Listing 4-3. Point-to-Point Receiver Client Snippet Code

// Step 1. Create Connection
InitialContext ctx = new InitialContext();
QueueConnectionFactory factory = (QueueConnectionFactory)ctx.lookup("connectionFactory");
QueueConnection connection = factory.createQueueConnection();
connection.start();

// Step 2. Create Session
QueueSession session = connection.createQueueSession(false, Session.AUTO_ACKNOWLEDGE);

// Step 3. Get the Queue
Queue queue=(Queue)ctx.lookup("myQueue");

// Step 4. Create the Receiver
QueueReceiver receiver = session.createReceiver(queue);

Chapter 4 ■ JMS with Spring Boot

34

// Step 5. Create the Listener
MessageListener listener = new MessageListener() {

 @Override
 public void onMessage(Message message) {
 //Process the message here
 }
 };

// Step 6. Register the Listener
receiver.setMessageListener(listener);

Listing 4-3 shows you the six steps needed to create a consumer for a point-to-point message.
Of course, if you have this code in a separate project, you need to include jndi.properties as
well (see Listing 4-2).

If you want to use the publisher-subscriber messaging model, you can create your publisher
as shown in Listing 4-4.

Listing 4-4. Publisher-Subscriber Publisher Client

//Step 1. Create the Connection
InitialContext ctx = new InitialContext();
TopicConnectionFactory factory =(TopicConnectionFactory)ctx.lookup("connectionFactory");
TopicConnection connection=f.createTopicConnection();
connection.start();

//Step 2. Create a Topic Session
TopicSession session = connection.createTopicSession(false, Session.AUTO_ACKNOWLEDGE);

//Step 3. Get the Topic object
Topic topic = (Topic)ctx.lookup("myTopic");

//Step 4. Create the Sender
TopicPublisher publisher = session.createPublisher(topic);

//Step 5. Create the Message
TextMessage msg = session.createTextMessage();
msg.setText("Hello World");

//Step 6. Send the Message
publisher.publish(msg);

Listing 4-4 shows you the publisher code—a publisher-subscriber message model—that will
publish a simple text message to a topic named myTopic. Not too different from the point-to-point
model. How about the subscriber? See Listing 4-5.

Chapter 4 ■ JMS with Spring Boot

35

Listing 4-5. Publisher-Subscriber Subscriber Client

// Step 1. Create Connection
InitialContext ctx = new InitialContext();
TopicConnectionFactory factory = (TopicConnectionFactory)ctx.lookup("connectionFactory");
TopicConnection connection = factory.createTopicConnection();
connection.start();

// Step 2. Create Session
TopicSession session = connection.createTopicSession(false, Session.AUTO_ACKNOWLEDGE);

// Step 3. Get the Topic
Topic topic = (Topic)ctx.lookup("myTopic");

// Step 4. Create the Receiver
TopicSubscriber subscriber = session.createSubscriber(topic);

// Step 5. Create the Listener
MessageListener listener = new MessageListener() {

 @Override
 public void onMessage(Message message) {
 //Process the message here
 }
 };

// Step 6. Register the Listener
subscriber.setMessageListener(listener);

Listing 4-5 shows the publisher-subscriber messaging client; this client subscribes to the
topic named myTopic. You can run multiple clients with this code and each one will receive the
message from the publisher; again not too different from the point-to-point model. Of course, you
still need jndi.properties for these clients.

As you can see, both messaging model implementations are very straightforward. If you
take a closer look to any of the code, you will notice that in every case, the message sent is just
a text message, but what happens if you need to send something else? JMS supports different
message types:

•	 StreamMessage is a serialized stream object.

•	 MapMessage consists of a name/value pairs, like a hash table.

•	 TextMessage is a string.

•	 ObjectMessage is a serializable object.

•	 ByteMessage is a raw stream of bytes.

As homework, try to create some clients (point-to-point or publisher-subscribe models)
using these code snippets. The idea is to familiarize yourself on what you can do with this kind of
messaging.

Chapter 4 ■ JMS with Spring Boot

36

I’ve just given you a sneak peek on what you normally do with JMS without using an external
framework. I think there are a lot of steps just to do something simple.

JMS with Spring Boot
Chapter 2 showed you how Spring Boot knows about the application you are trying to run
because it’s an opinionated technology. Just by adding a spring-boot-starter pom, you tell
Spring Boot how to configure everything, right?

We are going to use Apache ActiveMQ in this example (you are welcome to use any other
broker; the code will be the same), which means that we can include the spring-boot-starter-
activemq dependency. By adding this dependency, Spring Boot will bring all the JMS and
ActiveMQ (JAR files) that we will need for the applications and it will auto-configure all the
necessary properties and extra configuration needed for the JMS client.

Remember all the steps that you needed to do in Java? These are not necessary with Spring Boot.

 ■ Note we are going to use more dependencies like aop to take care of some logging concerns. take a look
at the pom.xml file in the projects of these chapters.

We are going to work with the jms-sender project, which you can find in the book’s
source code. This project has a lot of the classes with some code commented out, and just by
uncommenting, it should work. Don’t worry, though, as I’ll guide you through the following
sections by explaining each snippet of code.

 ■ Note remember that you can get all the code from the apress site or directly from the github repository at
http://www.apress.com/9781484212257

Producer
Let’s start by reviewing the producer using Spring Boot. Open the com.apress.messaging.jms.
SimpleSender.java class. See Listing 4-6.

Listing 4-6. com.apress.messaging.jms.SimpleSender.java

@Component
public class SimpleSender {

 private JmsTemplate jmsTemplate;

 @Autowired
 public SimpleSender(JmsTemplate jmsTemplate){
 this.jmsTemplate = jmsTemplate;
 }

http://dx.doi.org/10.1007/978-1-4842-1224-0_2
http://www.apress.com/9781484212257

Chapter 4 ■ JMS with Spring Boot

37

 public void sendMessage(String destination,
 String message){
 this.jmsTemplate.convertAndSend(destination, message);
 }
}

Listing 4-6 shows you the simplest and easiest way to create a producer. Let’s analyze each part of
the code:

•	 @Component: This annotation, as you probably already know, marks the class
as a Spring bean, making it available at runtime.

•	 JmsTemplate: This is the most important piece of the client, because this
class will send a message (among other things) to the JMS provider/broker.

•	 @Autowired: This annotation is used in the class constructor to inject the
JmsTemplate bean (described before). You can even omit this annotation
and Spring will figure out that you need this dependency here.

•	 convertAndSend: The JmsTemplate instance has this method and it
converts the message. Because this is a string, it’s converted automatically
into a javax.jms.TextMessage and is sent to the destination, which is
normally a queue.

Before you run this part of the code, let’s examine the main application. Open the
com.apress.messaging.JmsSenderApplication.java class, as shown in Listing 4-7.

Listing 4-7. com.apress.messaging.JmsSenderApplication.java

@SpringBootApplication
public class JmsSenderApplication {

 public static void main(String[] args) {
 SpringApplication.run(JmsSenderApplication.class, args);
 }

 @Bean
 CommandLineRunner simple(JMSProperties props,
 SimpleSender sender){
 return args -> {
 sender.sendMessage(props.getQueue(), "Hello World");
 };
 }
}

Chapter 4 ■ JMS with Spring Boot

38

Listing 4-7 shows you the main application. Let’s consider each part:

•	 @SpringBootApplication: You already know this annotation. It’s the way
that Spring Boot identifying what type of application you are trying to run.

•	 simple(JMSProperties,SimpleSender): This method is executed when the
Spring container is ready to be used and will inject a JMSProperties and the
SimpleSender beans for its use.

•	 JMSProperties: This class is used as a properties holder that reads the
application.properties file and looks for the apress.jms.queue property
(in this case set to jms-sender). If you want to know more, you can read
more about it in the “Externalized Configuration” section in the Spring Boot
reference.

Now you are ready to run this. (You can run it using the command line with Maven:
$ mvn spring-boot:run or if you imported it into the STS, you can run it within the Boot
Dashboard.) Once you run it, you will see something similar to Figure 4-3.

Figure 4-3. JmsSenderApplication logs

Figure 4-3 shows you the logs once the application is running. The code is actually sending
the message "Hello World" to the jms-demo queue. This means that you will see the JMSAudit text
with some extra information. Where did I actually print this? Review the com.apress.messaging.
aop.JMSAudit.java class. This class is an Around advice that is normally used for logging
purposes. I know that for this example it’s too much, but it gives me more ways to explore AOP.

You can see that this client is sending a message, but where is it? You know that we are using
the spring-boot-starter-activemq dependency, but there doesn’t seem to be any broker
running. Where is it?

Remember that Spring Boot makes opinions based on your classpath dependencies, so by
knowing that you have the spring-boot-starter-activemq dependency, it will see if you already
have declared beans of type connectionFactory, session, sender, etc., so it can use them. If
Spring Boot doesn’t find anything, it will create all these by default and it will use the in-memory
provider (the URL is vm://localhost). That’s why there is no error at runtime and you can see
that the message is sent.

Consumer
Next, let’s look at the consumer. First I’ll show you the consumer that uses the javax.jms.
MessageListener interface (it’s the same as before, in the JMS with Java section) to see what is
needed to configure it. See Listing 4-8.

www.allitebooks.com

http://www.allitebooks.org

Chapter 4 ■ JMS with Spring Boot

39

Listing 4-8. com.apress.messaging.jms.QueueListener.java

@Component
public class QueueListener implements MessageListener {

 public void onMessage(Message message) {

 }
}

Listing 4-8 shows you the receiver that will listen for any messages in the queue (jms-demo).
Let’s review the code:

•	 @Component: If this is commented out, remove the // and add the right
imports. I suggest you use the STS and press Cmd+Shift+O on a Mac or
Ctrl+Shift+O on Windows. This annotation will mark the class as a Spring
bean, so it can be used in the configuration.

•	 MessageListener: This interface is necessary to receive JMS messages, and
it’s necessary to implement the onMessage method.

•	 onMessage(Message): This is necessary to implement the method, and it has
the actual message that is consumed from the queue.

As you can see, it’s very simple, but if you try it to run it, you will see the same result as before.
You’ll see just the log about sending the message. Why is this? Well, you must tell Spring Boot how
to use this listener, so take a look at Listing 4-9.

Listing 4-9. com.apress.messaging.config.JMSConfig.java

@Configuration
@EnableConfigurationProperties(JMSProperties.class)
public class JMSConfig {

 @Bean
 public DefaultMessageListenerContainer
 customMessageListenerContainer(
 ConnectionFactory connectionFactory,
 MessageListener queueListener,
 @Value("${apress.jms.queue}") final
 String destinationName){
 DefaultMessageListenerContainer listener = new
 DefaultMessageListenerContainer();
 listener.setConnectionFactory(connectionFactory);
 listener.setDestinationName(destinationName);
 listener.setMessageListener(queueListener);
 return listener;
 }
}

Chapter 4 ■ JMS with Spring Boot

40

Figure 4-4. Logs

Listing 4-9 shows you the configuration that you need to enable the QueueListener class.
Let’s review this class:

•	 @Configuration: This is a marker for the class to be taken as a Java config for
the Spring container, so everything here will be used to set up Spring.

•	 @EnableConfigurationProperties: Remember that we were using the
application.properties file to set the queue’s name? This particular
annotation will use the provided class (JMSProperties.class) as the
property holder, so you can set some properties in the application.
properties file. Later, you can get its value either by using @Value or by
using the JMSProperties instance bean and the getters.

•	 @Bean: This is a marker to create a bean of type
DefaultMessageListenerContainer in the Spring container.

•	 DefaultMessageListenerContainer: In this case, this is a return type
that will be taken as a Spring bean. It has all the necessary information
to determine the QueueListener class and what queue to consume from
(destinationName).

•	 ConnectionFactory: Spring will inject this instance and it will
auto-configure it using the defaults (unless you provide a custom
ConnectionFactory). In this case, it will use the in-memory provider/broker.

•	 MessageListener: Spring will inject the QueueListener class
(the receiver from Listing 4-8) so it can be used to set up the
DefaultMessageListenerContainer instance.

•	 @Value("${apress.jms.queue}"): This annotation will inject the
value "jms-demo" from the apress.jms.queue property that is in the
application.properties file into the destinationName parameter.

Then, the actual method will create the DefaultMessageListenerContainer and set all its
properties (connectionFactory, queueListener, and destinationName).

Now, if you run the application, you should get output similar to Figure 4-4.

Chapter 4 ■ JMS with Spring Boot

41

Figure 4-4 shows the onMessage method being called by consuming the message from the
queue (remember that these logs are produced by the AOP aspect). If you take a closer look at the
actual message, you should see something similar to this:

ActiveMQTextMessage {
 commandId = 5,
 responseRequired = true,
 messageId = ID:pivotal-es.local-64812,
 originalDestination = null,
 originalTransactionId = null,
 producerId = ID:pivotal-es.local-64812,
 destination = queue://jms-demo,
 transactionId = null,
 expiration = 0,
 timestamp = 1479394688357,
 arrival = 0,
 brokerInTime = 1479394688357,
 brokerOutTime = 1479394688362,
 correlationId = null,
 replyTo = null,
 persistent = true,
 type = null,
 priority = 4,
 groupID = null,
 groupSequence = 0,
 targetConsumerId = null,
 compressed = false,
 userID = null,
 content = null,
 marshalledProperties = null,
 dataStructure = null,
 redeliveryCounter = 0,
 size = 1046,
 properties = null,
 readOnlyProperties = true,
 readOnlyBody = true,
 droppable = false, j
 msXGroupFirstForConsumer = false,
 text = Hello World
}

As you can see, we are receiving an ActiveMQTextMessage that is an implementation around
the javax.jms.TextMessage interface. It’s important to know the destination property that points
to the jms-demo queue, the payload, and the text property with its Hello World value.

You might wonder if there is a simpler way to configure the listener. How can you determine
what to configure? Well, Spring Boot makes this even easier. You learn about this process in the
next section.

Chapter 4 ■ JMS with Spring Boot

42

Consumer with Annotations
The Spring Framework provides useful annotations for consuming messages, very similar to
ApplicationEvents and Streams. Spring Boot helps auto-configure these annotations, thereby
making it easier for the developer.

Let’s first review the com.apress.messagin.jms.AnnotatedReceiver.java class. See Listing 4-10.

Listing 4-10. com.apress.messagin.jms.AnnotatedReceiver.java

@Component
public class AnnotatedReceiver {

 @JmsListener(destination = "${apress.jms.queue}")
 public void processMessage(String content) {

 }

}

Listing 4-10 shows you the AnnotatedReceiver class that includes the @JmsListener annotation:

•	 @Component: Remember, this is a marker for Spring to enable this bean in the
Spring container.

•	 @JmsListener: This annotation is configured to create a message listener
using the destination specified by the SpEL (Spring Expression Language)
expression. In this case, it’s the apress.jms.queue property that has the
jms-demo value.

That’s it! Spring Boot will configure everything for you, so no more beans to declare a
message listener container.

 ■ Note Before you run this receiver, first comment out the bean definition
(DefaultMessageListenerContainer) in the JMSConfig class and the @Component in the
QueueListener class.

It’s now time to run this receiver (just remember to comment out the bean and listener,
because you don’t need them anymore). Once you run the application, you should have
something similar to Figure 4-5.

Chapter 4 ■ JMS with Spring Boot

43

Figure 4-5 shows you the logs after running the application. You can see that the method
that’s called is processMessage; this is the same message that was annotated by the @JmsListener
annotation.

Currency Project
Let’s talk about the currency project again. Imagine that you have a customer who wants to send
a more accurate rate, but can only send rate messages using JMS. This means that your currency
project needs to be a receiver, but the customer will need some kind of acknowledgement that
you received the rate message.

Let’s start by creating the sender client using the same jms-sender project. Review the
com.apress.messaging.jms.RateSender.java class shown in Listing 4-11.

Listing 4-11. com.apress.messaging.jms.RateSender.java

@Component
public class RateSender {

 private JmsTemplate jmsTemplate;

 @Autowired
 public RateSender(JmsTemplate jmsTemplate){
 this.jmsTemplate = jmsTemplate;
 }

 public void sendCurrency(String destination, Rate rate){
 this.jmsTemplate.convertAndSend(destination,rate);
 }
}

Figure 4-5. @JmsListener logs

Chapter 4 ■ JMS with Spring Boot

44

Listing 4-11 shows you the class you are going to use to send new Rate objects. As you can
see, it’s very similar to the SimpleSender class in Listing 4-6. The only difference is that instead
of sending a text (String) message, it’s now sending a Rate object. Take a look at the com.apress.
messaging.domain.Rate.java class in Listing 4-12.

Listing 4-12. com.apress.messaging.domain.Rate.java

public class Rate {

 private String code;
 private Float rate;
 private Date date;

 public Rate() { }

 public Rate(String base, Float rate, Date date) {
 super();
 this.code = base;
 this.rate = rate;
 this.date = date;
 }

 //Setters and Getter omitted.

}

Listing 4-12 shows you the Rate domain class that you have already seen in the currency
project, but remember that in previous chapter, we annotated it with @Entity and @Id as part of
the JPA persistence. This time it will just be simple, because there is no need to persist the rate.

If you try to run the app at this point, you will get an error that says something like:

Cannot convert object of type [com.apress.messaging.domain.Rate] to JMS message.
Supported message payloads are: String, byte array, Map<String,?>, Serializable object.

We can implement Serializable into the Rate class, but the currency project doesn’t have
that. Now, if you remember, the idea was to create a REST API that accepts the JSON format, so
let’s see how can we use JSON here.

Open the com.apress.messaging.config.JMSConfig.java class. See Listing 4-13.

Listing 4-13. com.apress.messaging.config.JMSConfig.java

@Configuration
@EnableConfigurationProperties(JMSProperties.class)
public class JMSConfig {

Chapter 4 ■ JMS with Spring Boot

45

 @Bean
 public MessageConverter jacksonJmsMessageConverter() {
 MappingJackson2MessageConverter converter = new
 MappingJackson2MessageConverter();
 converter.setTargetType(MessageType.TEXT);
 converter.setTypeIdPropertyName("_class_");
 return converter;
 }
}

Listing 4-13 shows you the configuration needed to expose the message in the JSON format.
Let’s review it:

•	 MessageConverter: This is an interface that specifies a converter between
Java objects and JMS messages. It exposes the toMessage and fromMessage
methods. The Spring Boot auto-configuration will wire everything up to use
this particular message converter.

•	 MappingJackson2MessageConverter: This class implements the
MessageConverter interface and adds more methods to help with the
conversion from/to JSON/object.

•	 setTargetType: This method is necessary to help the converter identify what
type is needed to convert from/to. In this case, we are sending a JSON in a String
format, which means that it will create a TextMessage object behind the scenes.

•	 setTypeIdPropertyName: This is an important setting, because it will drive
the way the mapping is done behind the scenes. This can be any value you
want. It’s just a simple identifier that will hold the qualified class name that
is being mapped.

That’s enough to run the application again, but first let’s see how the main app will look. See
Listing 4-14.

Listing 4-14. com.apress.messaging.JmsSenderApplication.java

@SpringBootApplication
public class JmsSenderApplication {

 public static void main(String[] args) {
 SpringApplication.run(JmsSenderApplication.class, args);
 }

 @Bean
 CommandLineRunner process(JMSProperties props,
 RateSender sender){
 return args -> {
 sender.sendCurrency(props.getRateQueue(),
 new Rate("EUR",0.88857F,new Date()));
 sender.sendCurrency(props.getRateQueue(),
 new Rate("JPY",102.17F,new Date()));

Chapter 4 ■ JMS with Spring Boot

46

 sender.sendCurrency(props.getRateQueue(),
 new Rate("MXN",19.232F,new Date()));
 sender.sendCurrency(props.getRateQueue(),
 new Rate("GBP",0.75705F,new Date()));
 };
 }
}

Listing 4-14 shows you the main app (just remember to comment out the previous code). As
you can see, it’s very simple. We are just sending the new Rate objects. If you run the application,
you should get the output shown in Figure 4-6.

Figure 4-6. Logs when JMS sends a rate object

Figure 4-6 shows you the logs without any errors. It’s saying that everything went well and
some rates were sent successfully. But this is not enough, because how can we guarantee that
actually is a JSON format?

Using a Remote Apache ActiveMQ Broker
Let’s use ActiveMQ as a remote broker. It will help us determine if the messages are actually going
over to the broker instead of using the in-memory provider.

Make sure you have ActiveMQ up and running (you need to download it from
http://activemq.apache.org/ and follow the installation instructions for your system). I used
ActiveMQ version 5.14.0, but you can use any version. Before you run the application again, you
need to make sure that it will be using the ActiveMQ broker that is running. Open the src/main/
resources /application.properties file and uncomment out all the spring.activemq.* and
the apress.jms.* properties. The result should look like Listing 4-15.

Listing 4-15. src/main/resources/application.properties

spring.activemq.broker-url=tcp://localhost:61616
spring.activemq.user=admin
spring.activemq.password=admin

#Apress Configuration
apress.jms.queue=jms-demo
apress.jms.rate-queue=rates

http://activemq.apache.org/
http://activemq.apache.org/

Chapter 4 ■ JMS with Spring Boot

47

Figure 4-7. ActiveMQ web console: http://localhost:8161/admin

Listing 4-15 shows the application.properties file where the remote ActiveMQ is declared
(in this case, it’s the local system), the default port is 61616, and the username and password are
set to admin. With these properties in place, Spring Boot will configure the connectionFactory
that will connect to the remote broker.

So, if you have the ActiveMQ broker running, you should be able to go to the
http://localhost:8161/admin URL in your browser and see the web page shown in Figure 4-7.

Chapter 4 ■ JMS with Spring Boot

48

Then you can execute the jms-demo application and select the queue from the web console to
see that the queue called rates has been created (this name was based on the apress.jms.rate-
queue property value). See Figure 4-8.

Figure 4-8. ActiveMQ Queues tab

Chapter 4 ■ JMS with Spring Boot

49

If you click the queue called rates, you should see the four messages that were sent to the
broker. See Figure 4-9.

Figure 4-9. ActiveMQ queue rate messages

Chapter 4 ■ JMS with Spring Boot

50

Click in any of the messages to see the content. See Figure 4-10.

Figure 4-10. ActiveMQ Queue --> Rates --> Message

Figure 4-10 shows you the actual message received by the broker. Take a look at the message
details; you will see something similar to this:

{"code":"EUR","rate":0.88857,"date":1479442794599}

The rate is sent by the jms-sender app. On the right, you can see a Properties legend where
the
class property ID has the value of the com.apress.messaging.domain.Rate class (remember
that this is important for the receiver as well, so it can convert back from JSON to object).

Now you know how to send objects that can be converted into JSON. Next, you need to
receive this message, right? The sender needs to receive some acknowledgement from the
receiver (it was part of the requirements) as well.

Chapter 4 ■ JMS with Spring Boot

51

Reply-To
Spring JMS provides a way to reply to another queue, kind of like having a response-request/RPC
model. You use it along with the listener, the @SendTo annotation.

In order to see this in action, we are going to work with the same jms-sender project.
Remember to disable some of the components. You do this by commenting out the @Component
annotations in all the listeners we have been working on.

Open the com.apress.message.jms.RateReplyReceiver.java class. See Listing 4-16.

Listing 4-16. com.apress.message.jms.RateReplyReceiver.java

@Component
public class RateReplyReceiver {

 @JmsListener(destination = "${apress.jms.rate-queue}")
 @SendTo("${apress.jms.rate-reply-queue}")
 public Message<String> processRate(Rate rate){
 //Process the Rate and return any significant value
 return MessageBuilder
 .withPayload("PROCCESSED")
 .setHeader("CODE", rate.getCode())
 .setHeader("RATE", rate.getRate())
 .setHeader("ID", UUID.randomUUID().toString())
 .setHeader("DATE",
 new SimpleDateFormat("yyyy-MM-dd")
 .format(new Date()))
 .build();
 }

}

Listing 4-16 shows you the RateReplyReceiver.java class and the @SendTo annotation,
which needs a value that will correspond to the reply-queue where the result message will be
sent. Let’s review it:

•	 @SendTo: This annotation will be the key to a reply. Make sure you still
have the @JmsListener annotation, meaning that this method will act as a
receiver and a sender. The method must have a return type. In this case, it
will use the apress.jms.rate-reply-queue value to set the reply queue. The
annotation value can be omitted if the main message has the JMSReplyTo
header set.

•	 Message<T>: This is an interface that is built on the Generics type and
provides useful getters, like getPayload and getHeaders. This is the preferred
way to send a message.

•	 MessageBuilder: This is a helper class that allows you to enhance the
message by allowing you to add more headers.

Chapter 4 ■ JMS with Spring Boot

52

Next let’s look again at the RateSender class. It not only will send the rate, but also will
be listening to the reply-queue. Remember that the requirement was to receive some kind of
acknowledgement from the receiver. See Listing 4-17.

Listing 4-17. com.apress.message.jms.RateSender.java

@Component
public class RateSender {

 private JmsTemplate jmsTemplate;

 @Autowired
 public RateSender(JmsTemplate jmsTemplate){
 this.jmsTemplate = jmsTemplate;
 }

 public void sendCurrency(String destination, Rate rate){
 this.jmsTemplate.convertAndSend(destination,rate);
 }

 @JmsListener(destination="${apress.jms.rate-reply-queue}")
 public void process(String body,@Header("CODE") String code){

 }
}

Listing 4-17 shows you the new RateSender class. As you can see, we are reusing the @
JmsListener and and new @Header annotation. Let’s review it:

•	 @JmsListener: You already know this annotation. The only difference is to
include the correct name of the reply-queue. In this case, it’s the apress.
jms.rate-reply-queue property value.

•	 @Header: This annotation will provide you with direct access to the header of
the Message<T>, and in this case it will be the rate code that was processed.
Spring JMS has more options: @Headers brings a java.util.Map object, @
Payload brings the actual payload, and @Valid turns on validation for your
payload.

Before you run this, make sure you have the ActiveMQ broker up and running.

Chapter 4 ■ JMS with Spring Boot

53

Figure 4-11. Logs with the reply-to queue

If you run the application you should have not only the sender, but also the receiver and the
reply logs. See Figure 4-11.

You can take a look at the ActiveMQ web console and see that the reply-rate queue was
created. See Figure 4-12.

Chapter 4 ■ JMS with Spring Boot

54

Now you know how to create a reply-to and have a kind of RPC mechanism for your
applications.

Topics
This section discusses the next JMS messaging model, the publisher-subscriber or topics. This
model has publishers that send messages to a topic and these topics can be from zero for multiple
subscribers that will get a copy of the message. You need to think of this like a newspaper or a
magazine subscription. You subscribe (to a particular interest—a topic) to receive a newspaper or
magazine from the publisher.

This section continues with the jms-sender project, which will be the publisher. It also opens
a new project within this chapter, the jms-topic-subscriber project. It’s similar in structure to
jms-sender.

In jms-sender, we are going to use the same RateSender.java and the main entry point
where we send the rates, but there is one small change. Open the src/main/resources/
application.properties file. It should look like Listing 4-18.

Figure 4-12. Queues showing the reply-rate queue

Chapter 4 ■ JMS with Spring Boot

55

Listing 4-18. src/main/resources/application.properties

Spring Web
spring.main.web-environment=false

#Default ActiveMQ properties
spring.activemq.broker-url=tcp://localhost:61616
spring.activemq.user=admin
spring.activemq.password=admin

#Apress Configuration
apress.jms.queue=jms-demo
apress.jms.rate-queue=rates
apress.jms.rate-reply-queue=reply-rate

#Enable Topic Messaging
spring.jms.pub-sub-domain=true

#Apress Topic Configuration
apress.jms.topic=rate-topic

Listing 4-18 shows the application.properties file, which has one particular property, the
spring.jms.pub-sub-domain. This property by default is false, thereby making your producer
send messages to a queue. When it’s set to true, the producer (publisher) will send the message
to a topic. This also applies to the listeners. If you set this property to true, the listeners will
become subscribers of the topic.

Look at the last property as well. We are simply defining the name of the topic where all the
subscribers will be listening.

You can now open and review the com.apress.messaging.jms.RateTopicReceiver.java
class from the jms-topic-subscriber project and see that it’s the same code (except for the name
of the destination). In this project, you need to have the same application.properties file with
the spring.jms.pub-sub-domain set to true (just make sure it has this property).

Now it’s time to run the jms-topic-subscriber project. Before you run the jms-demo project,
look at the Topics section of the ActiveMQ web console, as shown in Figure 4-13.

Chapter 4 ■ JMS with Spring Boot

56

Figure 4-13 shows that a topic called rates was created and there is a one consumer. Next,
run the jms-sender project to see whether the rates are sent to the topic. Take a look at the jms-
topic-subscriber project logs; you should see that you are consuming from the rates topic.

As an experiment, you can run multiple instances of the jms-topic-subscriber project (this
is easy if you are using the STS and the Boot Dashboard) and verify that each one of them gets a
copy of the rate. See Figure 4-14.

Figure 4-13. The Topics section of the ActiveMQ web console

Chapter 4 ■ JMS with Spring Boot

57

Figure 4-14. STS Boot Dashboard running two instances of the jms-topic-subscriber project

Currency Project
What do we need to do in order to use the currency project and start listening for new rates from
other clients? The solution is already in the rest-api-jms project. This is what you need to do:

•	 Make sure you have the application.properties, spring.activemq.*, and
rate.jms.* properties enabled.

•	 Review the RateJmsReceiver class and comment/uncomment out the
listener you want to use (we have the simple listener and the listener with
the reply-to).

•	 Review the RateJmsConfiguration class that has the JSON converter.

As homework, try to make it run. Remember that you will need to have the ActiveMQ broker
up and running. Also, as an extra step, try to make this project topic-aware.

Summary
This chapter showed you how to use Spring Boot to send and receive messages using the JMS
technology.

You saw the different JMS messaging models and what developers need to do to send or
receive messages.

With Spring Boot, you saw how easy is to set up a JMS client and how, with simple annotation,
you can have a functional application that uses JMS as a messaging system. Even though you just saw
how to use Apache ActiveMQ as the broker, the same programming can be applied to HornetQ,
IBM MQ, etc., just by providing the correct properties (connection factories and message
listeners) in the application.properties file.

The next chapter discusses a different way to do messaging, using the Advance Messaging
Queuing Protocol—AMQP.

59© Felipe Gutierrez 2017
F. Gutierrez, Spring Boot Messaging, DOI 10.1007/978-1-4842-1224-0_5

CHAPTER 5

AMQP with Spring Boot

This chapter talks about the Advanced Messaging Queuing Protocol (AMQP), which is an
agnostic message protocol. You’ll learn how to use the Spring AMQP module, which will talk to
a RabbitMQ broker. RabbitMQ is one of the most commonly used brokers around the globe and
this is because it’s easy to install and use. The best part is that it’s open source.

AMQP comes from the financial sector and was created in 2003 by JPMorgan Chase. More
companies then worked around it to enhance this new way to do messaging. Rabbit Technologies
implemented AMQP with the Erlang programming language, and that’s how RabbitMQ was born.
Years later, VMware/Pivotal acquired it.

We are going to continue with some important definitions that will help you understand
more about AMQP and RabbitMQ. This chapter uses the amqp-demo and rest-api-amqp projects.
This chapter has all the code related to the amqp-demo and I’ll let you dig into the rest-api-amqp
project to complete the main requirement, which is to receive new rates from RabbitMQ and send
them to interested consumers.

 ■ Note It’s important to have the RabbitMQ server up and running for this chapter. You can download it from
http://www.rabbitmq.com/download.html. Make sure you have at least the rabbitmq_management
plugin installed, as it enables a web UI management for RabbitMQ. Once you have this set up, you can open
your browser and point to http://localhost:15672 using guest as the username and password. More
info about this web UI plugin can be found at http://www.rabbitmq.com/management.html.

The AMQP Model
This section covers the AMQP 0.9.1 model. Right now, this particular version is the most common.

The AMQP model is made up of messages that are published to exchanges. These exchanges
distribute the messages to queues based on bindings (rules). The consumers then fetch/pull
messages from these queues. See Figure 5-1.

http://www.rabbitmq.com/download.html
http://www.rabbitmq.com/management.html

ChapteR 5 ■ aMQp wIth SpRIng BOOt

60

You are going to see that normally as producer or consumer, you are required to create a
connection to the broker and then use a channel (main transport) to publish a message to an
exchange or consume a message from the queue. In other words, the AMQP protocol specifies
multiplexed connections through channels.

The AMQP model has different features that allow the developer a lot of flexibility at the
time of creating messaging applications. These features include message attributes (content-
type, encoding, routing key, delivery mode, etc.), message acknowledgements, message
rejection, message re-queue, multiplexed connection (channels), virtual hosts (to host isolated
environments), multiple clients, and routing capabilities, among others.

Exchanges, Bindings, and Queues
These keywords are also known as AMQP entities. Let’s define these entities (remember that all
this is still part of the AMQP model):

•	 Exchanges: Entities where the producer sends messages. The exchange will
use bindings to route the messages to the correct queue. The exchanges
have the following properties: name, durability (can be durable or
transient), auto-delete (the exchange is deleted when all the queues have
finished using it), and arguments (hash map, broker dependent).

•	 Bindings: The rules that connect an exchange with another exchange or a
queue. This is a string value.

•	 Queue: Store the messages (in memory or on disk) until they are consumed
by applications. The queues have properties like name, durable (survive
to a broker restart), exclusive (used by only one connection, which means
the queue will be deleted when the connection is closed), auto-delete (the
queue is deleted when the last consumer unsubscribes) and arguments
(hash map, broker dependent).

The AMQP model provides four types of exchanges:

•	 Direct exchange: A one-to-one relationship with a queue through its
binding. There is a default exchange that is a direct exchange type that uses
the queue’s name as a routing key for its binding.

Figure 5-1. The AMQP model

ChapteR 5 ■ aMQp wIth SpRIng BOOt

61

•	 Fanout exchange: This exchange will copy a message for every queue bound
to it. You must think as a broadcast; it’s very similar to the publish/subscribe
pattern (topic).

•	 Topic exchange: This exchange is similar to the direct exchange, the only
difference being that it accepts wildcards (regex) for the routing keys by
using the * (can substitute exactly one word) and # (can substitute zero or
more words) options.

•	 Headers exchange: This exchange will do the routing by comparing multiple
headers. You have to indicate if you want the headers to match exactly
by adding the x-match:all (header: key) or match any of the headers by
adding the x-match:any (header: key) to the same message header.

Figure 5-2 illustrates these exchange types.

Figure 5-2. Exchange types

This little introduction is enough to get started with RabbitMQ and learn how to use it.

ChapteR 5 ■ aMQp wIth SpRIng BOOt

62

RabbitMQ
RabbitMQ is an open source broker that implements the AMQP model (from version 0.8.x to
the 1.0 version of the AMQP model). RabbitMQ is written in the Erlang programming language,
making it flexible and robust.

Here are some of its features:

•	 Distributed nodes

•	 Cluster ready

•	 Plugin based; the most important plugins are:

•	 Federation

•	 Shovel

•	 Consistent hash

•	 Community plugins

•	 Data/state replication with full ACID (Atomicity, Consistency, Isolation,
Durability)

•	 Reliable and scalable out of the box: Federation and Shovel

•	 High availability with mirror queues

•	 Multi-protocol:

•	 AMQP

•	 MQTT

•	 STOMP

•	 SMTP

•	 XMPP

•	 Web console and Rest API (for monitoring and administration)

•	 Secure: SSL and LDAP

•	 Multiple client libraries: Java, .NET, Ruby, Erlang, Python, Clojure, PHP,
JavaScript, etc.

We could write an entire book defining every feature available, but what I want to do is give
you a sense of what RabbitMQ can do. (If you need more info, you can get it at http://www.
rabbitmq.com/features.html.) So, let’s start using it by creating clients.

RabbitMQ with Spring Boot
Spring Boot relies on the Spring’s spring-amqp project to do all the heavy lifting to connect,
publish, consume, and manage the RabbitMQ broker. The spring-amqp project has been one of
the most used modules in messaging application.

http://www.rabbitmq.com/features.html
http://www.rabbitmq.com/features.html

ChapteR 5 ■ aMQp wIth SpRIng BOOt

63

So, why do we need Spring Boot? Remember that Spring Boot is an opinionated runtime
and it will help us configure what we need from the spring-amqp module by facilitating some
properties that we can add to our application.properties file or by using a @Configuration
class to override some of these opinions.

The spring-amqp project uses the known template pattern that exposes a RabbitTemplate
class that allows us to publish and consume messages, among other tasks. It also provides easy-
to-use message listeners that connect to the queues and consume messages. If you are worried
about threading, transactions, reconnection (in case of failure), management, etc., you are
covered with spring-amqp.

Producer
Let’s start by using a simple producer. The ampq-demo project has everything you need to get
started. Open the project and start with the simple producer shown in Listing 5-1.

Listing 5-1. com.apress.messaging.amqp.Producer

@Component
public class Producer {

 private RabbitTemplate template;

 @Autowired
 public Producer(RabbitTemplate template){
 this.template = template;
 }

 public void sendMessage(String exchange,
 String routingKey, String message){
 this.template.convertAndSend(exchange,
 routingKey, message);
 }
}

Listing 5-1 shows a simple amqp producer. Let’s analyze the important parts of the code:

•	 @Component: This is a marker from the Spring framework that will recognize
this class as a Spring Bean so you can use it in the application. You will see
this in action in the main application next.

•	 RabbitTemplate: This is one of the main classes from the Spring AMQP
module that brings a lot of functionality to interact with RabbitMQ, like
send, receive, and do admin tasks in RabbitMQ. In this example, it’s used
to convert and send a message to the broker. Remember that, in order to
interact with RabbitMQ, you must open a connection and create a channel
(from that connection) and then send the message to the exchange. This
setup will be handled by the RabbitTemplate instance.

ChapteR 5 ■ aMQp wIth SpRIng BOOt

64

•	 convertAndSend: This method will convert the message to the right type (into a
byte array) and will send it to the RabbitMQ broker. This particular method has
three parameters. The first one is the name of the exchange (where the message
will be sent through the channel), the second parameter is the routing key (the
binding rule that will route the message to the right queue), and the message,
which in this case is just a string.

As you can see, this is a very simple producer. It’s worth mentioning that the RabbitTemplate
class has a variety of overload methods that help you send, listen, use custom converters, and do
specialized tasks (you will read more about this later).

Next, let’s see how can we use this producer. Open the AmqpDemoApplication.java class
shown in Listing 5-2.

Listing 5-2. com.apress.messaging.AmqpDemoApplication.java

@SpringBootApplication
public class AmqpDemoApplication {

 public static void main(String[] args) {
 SpringApplication.run(AmqpDemoApplication.class, args);
 }

 @Bean
 CommandLineRunner simple(
 @Value("${apress.amqp.exchange:}")String exchange,
 @Value("${apress.amqp.queue}")String routingKey,
 Producer producer){
 return args -> {
 producer.sendMessage(
 exchange,
 routingKey, "HELLO AMQP!");
 };
 }
}

Listing 5-2 shows you the main Spring Boot application. Let’s review the code:

•	 @Bean CommandLineRunner: You are already familiar with this annotation
and interface. It will be executed when the Spring container has initialized
all the beans and is ready to be used.

•	 @Value("${apress.amqp.exchange:}"): This annotation evaluates the
properties (through application.properties, command-line arguments,
or environment variables) that include the apress.amqp.exchange key. If it’s
not found, it will use just an empty string, which is the : after the exchange.

ChapteR 5 ■ aMQp wIth SpRIng BOOt

65

•	 @Value("${apress.amqp.queue}"): This annotation will evaluate the
properties (through the application.properties, command-line
arguments, or environment variables) that include the apress.amqp.
queue key. This key is mandatory, so you will find it in the src/resources/
application.properties file with the
spring-boot-queue value.

•	 Producer: This is the simple producer class (shown in Listing 5-1). As you
can see, we are using the sendMessage method to send the exchange’s name,
the routing key, and the "HELLO AMQP!" message.

Before you test it, you need to make sure that your RabbitMQ broker is up and running. You
also have to set up your exchange, binding, and the queue, although you don’t need to do this
here because the amqp-demo project already has this configuration set up this for you. Take a look
at the AMQPConfig.java class shown in Listing 5-3.

Listing 5-3. com.apress.messaging.config.AMQPConfig.java

@Configuration
@EnableConfigurationProperties(AMQPProperties.class)
public class AMQPConfig {
 @Bean
 public Queue queue(
 @Value("${apress.amqp.queue}")String queueName){
 return new Queue(queueName,false);
 }
}

Listing 5-3 shows you the AMQPConfig that defines the following:

•	 @EnableConfigurationProperties: This will declare a custom properties
that will have the prefix: apress.amqp.*. That’s why we can use the apress.
amqp.queue or apress.amqp.exchange keys.

•	 @Bean Queue: This is the important part where programmatically we are
declaring the queue that (in this case) will be created by returning a new
instance of the
Queue class.

•	 @Value("${apress.amqp.queue}"): This annotation will evaluate the
key apress.amqp.queue that is defined in the src/main/resources/
application.properties that has the spring-boot-queue value.

I think this configuration is very straightforward, but if you think about it, it looks like we are
missing the Exchange declaration and the binding that routes to the queue. Well, every time you
create a queue in RabbitMQ, it’s bound to a default exchange (normally just declared as an empty
string) and the routing key happens to be the name of the queue. As you can see, we are passing
the name of the queue as the routing key to the producer instance.

You can now run the application and see in the RabbitMQ Management Console that the spring-
boot-queue was created and has one message. The output is shown in Figure 5-3.

ChapteR 5 ■ aMQp wIth SpRIng BOOt

66

Figure 5-3 shows you the logs. In the amqp-demo project, you will find the com.apress.
messaging.aop.AMQPAudit.java class. It’s an Around advice that will log the Producer method
call. See Figure 5-4.

Figure 5-4. RabbitMQ Management Console (http://localhost:15672/#/queues): spring-boot-queue

Figure 5-3. Producer logs

ChapteR 5 ■ aMQp wIth SpRIng BOOt

67

Figure 5-4 shows you the RabbitMQ Management Console, where you can see that the queue
was created and the message was sent.

Do you know how are we connecting to the RabbitMQ broker? What happens if I have a remote
server and I need to specify where to connect, passing an IP or maybe a username or password?

Spring Boot will figure this out, because Spring Boot is an opinionated runtime and it will find
the spring-boot-starter-amqp dependencies in the classpath and will ask if you already have a
ConnectionFactory (that will connect to the RabbitMQ) with all the necessary information about
the broker. If you do not, it will attempt to use the default settings and look for the local broker.

If you want to specify a remote broker, you do so by providing the spring.rabbitmq.*
properties in the src/main/resources/application.properties file. This is enough to connect
to a remote RabbitMQ.

Consumer
Now, let’s talk about how we consume the message that we sent using the producer. Open the
Consumer.java class shown in Listing 5-4

Listing 5-4. com.apress.messaging.amqp.Consumer.java

@Component
public class Consumer implements MessageListener{

 public void onMessage(Message message) {

 }
}

Listing 5-4 shows you the simplest consumer code. This is an asynchronous consumer that
implements a org.springframework.amqp.core.MessageListener interface and the onMessage
method. This method will receive the message as an org.springframework.amqp.core.Message
instance. In order to use this consumer, you need to provide Spring Boot with some useful
configuration settings. Open the AMQPConfig java class. See Listing 5-5.

Listing 5-5. com.apress.messaging.config.AMQPConfig.java

@Configuration
@EnableConfigurationProperties(AMQPProperties.class)
public class AMQPConfig {
 @Bean
 public Queue queue(
 @Value("${apress.amqp.queue}")String queueName){
 return new Queue(queueName,false);
 }

ChapteR 5 ■ aMQp wIth SpRIng BOOt

68

 @Bean
 public SimpleMessageListenerContainer
 container(ConnectionFactory connectionFactory,
 MessageListener consumer,
 @Value("${apress.amqp.queue}")String queueName) {

 SimpleMessageListenerContainer container = new
 SimpleMessageListenerContainer();
 container.setConnectionFactory(connectionFactory);
 container.setQueueNames(queueName);
 container.setMessageListener(consumer);
 return container;
 }
}

Listing 5-5 shows you the augmented AMQPConfig class (from listing 5-3), where we have the
following:

•	 SimpleMessageListenerContainer: This class creates a message listener
container that will listen to the queue for any messages. This class needs
to be set up with a connection factory, a message listener handler, and the
name of the queue(s). As you can see, this is a bean that we need to return to
initiate the message listener container.

•	 ConnectionFactory: This interface is mandatory for the SimpleMessage
ListenerContainer class, because it’s the one that knows about the
RabbitMQ broker (host, username, password, vhost, etc.). It’s important to
know that this connection factory is being wired up by Spring Boot, either
by using the default settings (no configuration at all) or by specifying its
properties in the application.properties file with the spring.rabbitmq.*
properties. You can also declare your own ConnectionFactory as a bean (by
declaring the @Bean in a method).

•	 MessageListener: As you can see, this is one of the parameters of the
method container (consumer), and Spring will register the com.apress.
messaging.amqp.Consumer class as a handler. It’s then used when calling the
container.setMessageListener method.

Note that we are using the queueName, which is being wired up by Spring Boot by using the
apress.amqp.queue property.

That’s pretty much it. You now have a complete producer and consumer. You can run the
program and see the logs shown in Figure 5-5.

ChapteR 5 ■ aMQp wIth SpRIng BOOt

69

Figure 5-5 shows you the logs of the consumer. Note that the method that’s called is
onMessage and it’s represented by the org.springframework.amqp.core.Message instance.

Consumer Using Annotations
Wait a minute! I told you Spring Boot does this easier, right? In the current example, we needed to
register our container and implement the MessageListener interface. The good thing is that the
Spring AMQP provides a way to use annotations and, with the help of Spring Boot, everything is
configured the right way.

Go to your AMQPConfig class and remove the container method. It should look like Listing 5-3.
Open the com.apress.messaging.amqp.AnnotatedConsumer class; it should look like Listing 5-6.

Listing 5-6. com.apress.messaging.amqp.AnnotatedConsumer.java

@Component
public class AnnotatedConsumer {

 @RabbitListener(queues="${apress.amqp.queue}")
 public void process(String message){

 }
}

Listing 5-6 shows you how to create a consumer without creating a container, simply by
adding the @RabbitListener annotation. Spring AMQP will create the container for you, and it
will wire everything up with Spring Boot’s help. As you can see, it uses queues as the parameter
and it’s using the apress.amqp.queue property. See also that the method receives a String (and
not a Message object). You can use your own object, which would require an extra step. Don’t
worry, as we are going to do this in later sections.

Figure 5-5. Consumer logs

ChapteR 5 ■ aMQp wIth SpRIng BOOt

70

You can now run the project and you should get something similar to Figure 5-6.

Figure 5-6. Consumer with the @RabbitListener annotation

As you can see, it’s very simple to create a producer and consumer with just a few lines of
code. Next, let’s review how can we create and use an RPC model.

RPC
The Remote Procedure Call (RPC) model was one of the many use cases back in the 60s, when
distributed computing was a challenge (it still is). The RPC model is considered a request-
response protocol, where you have a client that starts a process by sending a request message to
a remote server to execute one or several tasks. Then the remote server sends a response to the
client so it can continue with the process. See Figure 5-7.

Client Server
request

response

Figure 5-7. Simple RPC model

Creating an RPC messaging model in Spring Boot is very easy. Remember that Spring Boot
relies on the Spring AMQP module so you don’t have to configure the RabbitMQ broker. The Spring
AMQP will take care of that. Let’s review the code so you get a better picture of what’s going on.

Open the com.apress.messaging.amqp.RpcClient class. It should look like Listing 5-7.

ChapteR 5 ■ aMQp wIth SpRIng BOOt

71

Listing 5-7. com.apress.messaging.amqp.RpcClient.java

@Component
public class RpcClient {

 private RabbitTemplate template;

 @Autowired
 public RpcClient(RabbitTemplate template) {
 this.template = template;
 }

 public Object sendMessage(String exchange,
 String routingKey, String message) {
 Object response =
 this.template
 .convertSendAndReceive(exchange, routingKey, message);
 return response;
 }
}

Listing 5-7 shows you the RpcClient class, and if you compare it to Listing 5-1 (the
Producer class), you will notice that there is only one difference—the template method being
called. In this example, we are using the convertSendAndReceive method, which accepts
three parameters—an exchange name, the routing key, and the message. It returns an object
(the return will normally be wrapped into it as an org.springframework.amqp.core.Message
instance). Of course, you can find more overloaded methods from this signature, but for now,
we are going to make it as simple as possible.

Next, let’s take a look at the server. Open the com.apress.messaging.amqp.RpcServer
class. See Listing 5-8.

Listing 5-8. com.apress.messaging.amqp.RpcServer.java

@Component
public class RpcServer {

 @RabbitListener(queues="${apress.amqp.queue}")
 public Message<String> process(String message){

 //More Processing here...

 return MessageBuilder
 .withPayload("PROCESSED:OK")
 .setHeader("PROCESSED", new
 SimpleDateFormat("yyyy-MM-dd")
 .format(new Date()))
 .setHeader("CODE", UUID.randomUUID().toString())
 .build();
 }
}

ChapteR 5 ■ aMQp wIth SpRIng BOOt

72

Listing 5-8 shows you the RpcServer class. Let’s see what is new and different from the other
versions:

•	 @RabbitListener: You are already familiar with this annotation. It will
create a message listener container and it will be listening for any incoming
messages from the apress.amqp.queue queue (remember that this is a
property specified in the application.properties file).

•	 Message<String>: If you want to enhance your message, this is what you
need to return, because it gives you a way to use headers. In this example,
we are using a string type message.

•	 MessageBuilder: This is a helper class that allows you to build a new
message, add/copy headers, and more. As you can see, we are just creating
a new message with a payload set to PROCESSED:OK and adding several
headers.

If you take a closer look at Listing 5-8, you will notice that the process method handler returns
a Message of type String, and because of that, the Spring AMQP uses the RabbitMQ’s direct
reply-to feature. That feature allows us to connect the server to the client for a response without
creating a reply-queue (this has been a feature since version 3.4.x of the RabbitMQ broker).

You don’t need to worry about any correlation data, because Spring AMQP will create it for
you. You also have a way to customize it or create your own correlation data.

Now, let’s take a look at the main application. Open your com.apress.messaging.
AmqpDemoApplication class; it should look like Listing 5-9.

Listing 5-9. com.apress.messaging.AmqpDemoApplication.java

@SpringBootApplication
public class AmqpDemoApplication {

 public static void main(String[] args) {
 SpringApplication.run(AmqpDemoApplication.class, args);
 }

 @Bean
 CommandLineRunner
 simple(@Value("${apress.amqp.exchange:}")String exchange,
 @Value("${apress.amqp.queue}")String routingKey,
 RpcClient client){
 return args -> {
 Object result = client
 .sendMessage(exchange,
 routingKey,
 "HELLO AMQP/RPC!");
 assert result!=null;
 };
 }
}

ChapteR 5 ■ aMQp wIth SpRIng BOOt

73

Listing 5-9 shows the main app where you are only using the RpcClient.
Before you run the RPC example, make sure you don’t have another listener using the

same queue.
By running the app, you should get something similar to Figure 5-8.

Figure 5-8. RPC model logs

Sometimes you will need to have more control over the RPC. Maybe you want to have a fixed
queue that is used to do the reply, for example. For that, you need to add some configuration to
the application. See Listing 5-10.

Listing 5-10. com.apress.messaging.config.AMQPConfig.java

@Configuration
@EnableConfigurationProperties(AMQPProperties.class)
public class AMQPConfig {

@Configuration
@EnableConfigurationProperties(AMQPProperties.class)
public class AMQPConfig {

 @Autowired
 ConnectionFactory connectionFactory;

 @Value("${apress.amqp.reply-queue}")
 String replyQueueName;

ChapteR 5 ■ aMQp wIth SpRIng BOOt

74

 @Bean
 public RabbitTemplate fixedReplyQueueRabbitTemplate() {
 RabbitTemplate template = new
 RabbitTemplate(connectionFactory);
 template.setReplyAddress(replyQueueName);
 template.setReplyTimeout(60000L);
 return template;
 }

 @Bean
 public SimpleMessageListenerContainer
 replyListenerContainer() {

 SimpleMessageListenerContainer container = new
 SimpleMessageListenerContainer();

 container.setConnectionFactory(connectionFactory);
 container.setQueues(replyQueue());
 container.setMessageListener(
 fixedReplyQueueRabbitTemplate());
 return container;
 }

 @Bean
 public Queue replyQueue(){
 return new Queue(replyQueueName,false);
 }

 @Bean
 public Queue queue(
 @Value("${apress.amqp.queue}")String queueName){
 return new Queue(queueName,false);
 }
}

Listing 5-10 shows you how to set up a fixed queue that will be used by the server to
reply to the client request, and the client will be listening to. The important part here is the
RabbitTemplate, which will configure the reply-to queue by using the setReplyAddress
method. It’s also necessary to use the same template as the listener in order to listen for responses
from the server (this is accomplished by setting the listener container to setMessageListener).

 ■ Note the RabbitMQ Java client (https://www.rabbitmq.com/java-client.html) provides out-
of-the-box RpC client/server classes, but you still need to deal with reconnections, transactions, etc., which is
something that Spring aMQp does for you.

https://www.rabbitmq.com/java-client.html

ChapteR 5 ■ aMQp wIth SpRIng BOOt

75

Reply Management
One of the cool things about using Spring AMQP is that it has some really nice features. For
example, you can create an actual reply-to scenario using an exchange and a routing key. In other
words, you send a message without waiting for a response (kind of a fire and forget) and you reply
to a specific exchange/queue that will have another flow.

Spring AMQP includes the @SendTo annotation, whereby you can send your reply to an
exchange or to a queue. Open the com.apress.messaging.amqp.ReplyToService class shown in
Listing 5-11.

Listing 5-11. com.apress.messaging.amqp.ReplyToService.java

@Component
public class ReplyToService {

 @RabbitListener(queues="${apress.amqp.queue}")
 @SendTo("${apress.amqp.reply-exchange-queue}")
 public Message<String> replyToProcess(String message){

 //More Processing here...

 return MessageBuilder
 .withPayload("PROCESSED:OK")
 .setHeader("PROCESSED", new
 SimpleDateFormat("yyyy-MM-dd")
 .format(new Date()))
 .setHeader("CODE", UUID.randomUUID().toString())
 .build();
 }

}

Listing 5-11 shows the @SendTo annotation. As you can see, the replyToProcess method is
also annotated with @RabbitListener. This means that it will be listening to a queue (provided by
the apress.amqp.queue property value). The important part here is that it will return a message
that will be sent to the exchange/routing-key (provided by the apress.amqp.reply-exchange-
queue property value) as a reply-to mechanism by the @SendTo annotation.

You can use the Producer class to send the message (see Listing 5-2), but before you run this
example, you need to do the following using the RabbitMQ Web Console:

•	 Create a direct exchange called my-exchange

•	 Create a queue (using any name you want)

•	 Bind my-exchange to the queue you just created using the my-reply-rk
routing key

Of course, you can also create this programmatically (may be as homework?).
Now you are ready to experiment with this. Run the example and you should have a message

in the queue you have created. As you can see, you have another way to do reply-to and create
another flow.

ChapteR 5 ■ aMQp wIth SpRIng BOOt

76

Flow Control
Flow control is one of the best features of RabbitMQ. It will reduce the speed of connections of the
publishers that are sending messages that can’t be consumed fast enough.

RabbitMQ will normally reduce the speed and sometimes it will block the connections,
preventing them from flooding. It’s good to know about this feature because you can use it to
determine where your bottleneck is. Either you increase the number of concurrent consumers
to the queue or you review the customer’s code to determine why it’s taking too long to process a
message.

So, how easy is it to find these bottlenecks? One way to find them is to monitor your
RabbitMQ console and see if you are triggering the flow control mechanism. You can determine
this by checking the status of the Connections or Channels tabs, They are normally yellow and say
“Flow Control”. However, there is an easier way. RabbitMQ send events that allow you to react to
flow control and complete a shutdown.

Blocking/Unblocking Events
Spring AMQP provides a mechanism for attaching the Block, Unblock, and the Shutdown events.
You can find the code in the com.apress.messaging.config.AMQConfig class.

If you want to listen for the Block or Unblock events, just add the following code to your
configuration, the BlockedListener event:

@Bean
public RabbitTemplate rabbitTemplate(ConnectionFactory
 connectionFactory){
 RabbitTemplate template = new
 RabbitTemplate(connectionFactory);
 template.execute(new ChannelCallback<Object>() {

 public Object
 doInRabbit(Channel channel) throws Exception {

 channel.getConnection().addBlockedListener(
 new BlockedListener() {

 public void handleUnblocked()
 throws IOException{
 // Resume business logic
 }

 public void handleBlocked(String reason)
 throws IOException {
 // FlowControl -> Logic to handle block
 }
 });

ChapteR 5 ■ aMQp wIth SpRIng BOOt

77

 return null;
 }

 });
 return template;
}

If you only want to listen for a failure or a Rabbit shutdown, you can use the following code,
the ShutdownListener event:

@Bean
public RabbitTemplate rabbitTemplate(
 ConnectionFactory connectionFactory){
 RabbitTemplate template = new
 RabbitTemplate(connectionFactory);
 template.execute(new ChannelCallback<Object>() {

 public Object doInRabbit(Channel channel)
 throws Exception {

 channel.getConnection()
 .addShutdownListener(new ShutdownListener() {

 public void shutdownCompleted(
 ShutdownSignalException cause) {
 // Process the shutdown
 }
 });

 return null;
 }
 });
 return template;
}

You can have only one RabbitTemplate and add the BlockedListener and
ShutdownListener to the same code.

ChapteR 5 ■ aMQp wIth SpRIng BOOt

78

More Features
There are a lot of features exposed by the Spring AMQP module, and it would take a whole book
just to explain each one of them. I point out some of them in this section:

•	 Transactions: The Spring AMQP allows you to use the @Transactional
annotation in your code, so by adding this annotation, the Spring AMQP
module sets the channels in transaction mode. It then can do the commit
or rollback, depending on the case. You can also specify the transaction
manager you want to use by defining a bean:

@Transactional
public void processInvoice() {
 String incoming = rabbitTemplate.receiveAndConvert();
 // Do some more database processing...
 String reply = reviewInvoice(incoming);
 rabbitTemplate.convertAndSend(reply);
}

•	 Multi-Listeners: Spring AMQP version 1.5.0 and above adds a new way to
have one class that processes multiple listeners depending of the type of
message (if needed). Take a look at the MultiListenerService code. You
can add the methods the
@Payload, @Header, and @Headers annotations if you need to.

@Component
@RabbitListener(id="multi", queues = "${apress.amqp.queue}")
public class MultiListenerService {

 @RabbitHandler
 @SendTo("${apress.amqp.reply-exchange-queue}")
 public Order processInvoice(Invoice invoice) {
 Order order = new Order();

 //Process Invoice here...

 order.setInvoice(invoice);
 return order;
 }

 @RabbitHandler
 public Order processInvoiceWithTax(
 InvoiceWithTax invoiceWithTax) {
 Order order = new Order();

 //Process Invoice with Tax here...

 return order;
 }

ChapteR 5 ■ aMQp wIth SpRIng BOOt

79

 @RabbitHandler
 public String itemProcess(
 @Header("amqp_receivedRoutingKey") String routingKey,
 @Payload Item item) {
 //Some Process here...
 return "{\"message\": \"OK\"}";
 }

}

•	 Retries: Sometimes you will get an error, either by processing the message or
by the broker, and you will need to retry at the consumer level. You need to
use this feature for that scenario:

// Retry for the consumer,
// normally this needs to be set in the container:
// container.setAdviceChain(new Advice[] { interceptor() });
//
@Bean
public StatefulRetryOperationsInterceptor interceptor() {
 return RetryInterceptorBuilder.stateful()
 .maxAttempts(3)
 .backOffOptions(1000, 2.0, 10000)
 .build();
}

•	 Or this:

@Bean
RetryOperationsInterceptor interceptor(
 RabbitTemplate template,
 @Value("${apress.amqp.error-exchange:}")String errorExchange,
 @Value("${apress.amqp.error-routing-key}")String
 errorExchangeRoutingKey) {
 return RetryInterceptorBuilder.stateless()
 .maxAttempts(3)
 .recoverer(
 new RepublishMessageRecoverer(template, errorExchange,
 errorExchangeRoutingKey))
 .build();
}

There are more. Take a look at the Spring AMQP project reference to learn more about these
awesome features.

ChapteR 5 ■ aMQp wIth SpRIng BOOt

80

Currency Project
You can continue with the currency project and add the necessary logic to provide a way to
consume messages about the different market currency rates. You can review all the code; it’s
ready to go.

Use the demo to send the rate messages (the demo has all necessary code at
http://projects.spring.io/spring-amqp/).

Summary
This chapter discussed the AMQP model and explained the difference between exchanges,
bindings, and queues. It reviewed some simple examples that illustrated the way to create
producers and consumers.

You saw some amazing features of the Spring AMQP module and how Spring Boot helps you
with the configuration.

One of the benefits of using Spring messaging is that every Spring technology uses the same
concept. The way we send messages (producers); the use of the template pattern (JmsTemplate,
RabbitTemplate, etc.); the way we create the listeners (consumers) using interfaces (by
implementing a MessageListener) or annotations (like @JmsListener, @RabbitListener,
@SendTo, and very soon you will see the @StreamListener); the way to access the message
structure directly with annotations (like @Payload, @Header, etc.)—they are all similar in
construction.

Remember that this is just a tiny bit of what you can do with Spring AMQP, and I would need
to write an entire book on Spring AMQP to show you every single feature. You now have the
minimum knowledge needed to create awesome AMQP apps.

The next chapter covers publisher/subscriber messaging, but this time using Redis as the
main messaging engine.

http://projects.spring.io/spring-amqp/

81© Felipe Gutierrez 2017
F. Gutierrez, Spring Boot Messaging, DOI 10.1007/978-1-4842-1224-0_6

CHAPTER 6

Messaging with Redis

This chapter shows you how to use Redis (REmote DIctionary Server) as a message broker with
Spring Boot. Redis is an in-memory data structure store that is used as a database, cache, and
message broker. It not only stores key-value pairs, but also can be used to store complex data
types such as hashes, lists, sets, sorted sets, bitmaps, hyperlogs, and geospatial indexes.

Spring Boot uses the Spring Data module and in particular the Redis one. In other words, in
order to use Redis in your project, you must add the spring-boot-starter-redis dependency to
your pom.xml file or to Gradle. You will then have all the necessary dependencies to connect to a
Redis server.

Redis as a Message Broker
Redis not only provides a way to store data structures, but also implements the publish/subscribe
messaging paradigm. Previous chapters explained this paradigm with JMS.

The important part here shows you how to interact with Redis and enable the message
broker. Redis has the knowledge of a channel, where a message will be sent by the publisher. It
will be consumed by subscribers that are interested in one or more of the channels. As you can
see, the channel keyword is used in Redis. The channels in Redis are the topics in the JMS world.

Redis has several commands that allow you to interact with the publish/subscribe feature:

•	 SUBSCRIBE: Tells Redis to subscribe to a particular channel or channels. For
example:

127.0.0.1:6379> SUBSCRIBE spring-boot-chat

	 You can subscribe to multiple channels at once by listing them separated by
spaces.

•	 UNSUBSCRIBE: Unsubscribes from a channel. This command doesn’t require
a parameter.

•	 PUBLISH: Publishes a message by specifying the channels (as first parameter)
and the actual message. For example:

127.0.0.1:6379> PUBLISH spring-boot-chat "Hi there"

Chapter 6 ■ Messaging with redis

82

•	 PSUBSCRIBE: This command is the same as SUBSCRIBE, but accepts a pattern
for multiple channels. For example:

127.0.0.1:6379> PSUBSCRIBE currency.*

	 This example will subscribe to any channel that starts with currency, such
as currency.us, currency.asia.jp, currency.eu.gb, and so on.

•	 PUNSUBSCRIBE: Unsubscribes using pattern matching. For example:

127.0.0.1:6379> PUNSUBSCRIBE currency.asia.*

•	 PING: Returns a PONG if no argument is provided. Normally you use this to
test if the connections are still alive.

Just to give it a try, make sure you have Redis installed and it’s up and running. (You can
download it from https://redis.io/download.) Open a new terminal window and use the
redis-cli command to interact with Redis. See Figure 6-1.

Figure 6-1. Redis interaction with the publish/subscribe commands

Figure 6-1 shows you a simple way to interact with Redis and determine how easy it is to
subscribe and publish a message.

This chapter does not talk about Redis clustering or about sentinels, sharding, and so forth.
It covers messaging. Many customers use Redis extensively as a messaging broker and as a web
session management tool for real-time data analysis. The chapter starts by using Spring Boot and
Redis for messaging.

https://redis.io/download

Chapter 6 ■ Messaging with redis

83

Publish/Subscribe Messaging with Redis
As mentioned, Spring Boot will use the power of Spring Data Redis, which is very similar to the
Spring JMS, which you are familiar with. Spring Boot will configure the necessary components,
such as the connection, the database to use (the 0 index DB by default), cluster nodes if any, the
pool, the sentinel, the timeouts, etc. Remember simply adding spring-boot-starter-redis
enables the Redis auto-configuration.

The Spring Data Redis module has two main areas for messaging—the production or
publication and the consumption or subscription of messages. For message publication, it uses
the RedisTemplate<K,V> class (it use the template design pattern) and for subscription, it has
a dedicated asynchronous message listener container (an MDP—message-driven pojo). For
synchronous messages, it uses a RedisConnection interface contract. The following sections
cover only the asynchronous subscription.

In this chapter, we are going to work with two projects: redis-demo and rest-api-redis. The
redis-demo project has all the necessary code to complete and complement the currency project.

Subscriber
As a Redis subscriber you can subscribe to one or multiple channels (or topics) by using a fixed
name or by using pattern matching. The Spring Data Redis module offers a way to do low-level
subscriptions via the RedisConnection. This includes the subscribe and pSubscribe methods.

A low-level subscription needs a way to deal with connections and thread
management for simple listeners. Now imagine having multiple listeners. You might think
it would be a hassle to implement this functionality, but Spring Data Redis includes the
RedisMessageListenerContainer class, which does all the heavy lifting and supports the
message-driven pojos (MDPs). In other words, you can create your own class and method to
receive the message and process it. This means that you need to use the MessageListenerAdapter
class in order to use this feature. Don’t worry too much, this is what I’m going to show you next.

Open the redis-demo project and review the com.apress.messaging.config.RedisConfig
class, shown in Listing 6-1.

Listing 6-1. com.apress.messaging.config.RedisConfig.java

@Configuration
@EnableConfigurationProperties(SimpleRedisProperties.class)
public class RedisConfig {

 @Bean
 public RedisMessageListenerContainer
 container(RedisConnectionFactory connectionFactory,
 MessageListenerAdapter listenerAdapter,
 @Value("${apress.redis.topic}") String topic) {

 RedisMessageListenerContainer container = new
 RedisMessageListenerContainer();
 container.setConnectionFactory(connectionFactory);
 container.addMessageListener(listenerAdapter,
 new PatternTopic(topic));

Chapter 6 ■ Messaging with redis

84

 return container;
 }

 @Bean
 MessageListenerAdapter listenerAdapter(
 Subscriber subscriber) {
 return new MessageListenerAdapter(subscriber);
 }
}

Listing 6-1 shows you the configuration that we are going to use in order to subscribe to a
channel. Let’s see the code in more detail:

•	 RedisMessageListenerContainer: This is a class that does all the heavy
lifting and acts as a message listener container that will receive messages
from the Redis channel (topic). You need to set the connection factory and
the message listener that will process the message received. Remember
that this listener container is responsible for all the threading and message
dispatching.

•	 RedisConnectionFactory: This interface is necessary for the
RedisMessageListenerContainer and it holds all the information about the
Redis connections. Because it is part of the method, Spring will auto-wire
this, so you don’t need to create it by hand. Behind the scenes, Spring Boot
takes care of this configuration for you.

•	 MessageListenerAdapter: This class is an adapter that delegates
the incoming message to a declared class that is complaint with
MessageListener signatures. You can see that this is being set by calling
the container.addMessageListener method and passing as parameters
the subscriber (listenerAdapter - MessageListenerAdapter) and topic
(PatternTopic) where it will subscribe.

•	 PatternTopic: This is a class and is one of the parameters that the message
listener needs. It normally holds the name of the topic or the name pattern
that will be used to subscribe to the right channel.

Next, let’s look at the Subscriber class. Open the com.apress.messaging.redis.Subscriber
class, as shown in Listing 6-2.

Listing 6-2. com.apress.messaging.redis.Subscriber.java

@Component
public class Subscriber {

 public void handleMessage(String message){
 // Process message here ...
 }

}

Chapter 6 ■ Messaging with redis

85

Listing 6-2 shows you the Subscriber class with only one required method (handleMessage).
The Subscriber class is an adapter for a message delegation. In other words, MessageListenerAdapter
is compliant with the following signatures:

void handleMessage(String message);
void handleMessage(Map message);
void handleMessage(byte[] message);
void handleMessage(Serializable message);

//You can get the channel or the pattern used
void handleMessage(Serializable message, String channel);
void handleMessage(byte[] bytes, String pattern);

//You can have your own object
void handleMessage(MyOwnDomainObject obj);

There may be times when your adapter class will have more methods that do extra processing
or are being called from the outside. In these cases, you can let the MessageListenerAdapter class
know what method you want to use by adding an extra parameter in its constructor. For example:

@Component
public class Subscriber {

 public void shipping(Order order){
 // Process order here ...
 }

 //This method is used as listener for Redis topics
 public void processTicket(String message){
 // Process message here ...
 }

 // ... more methods

}

// RedisConfig.java
@Bean
MessageListenerAdapter listenerAdapter(Subscriber subscriber) {
 return new MessageListenerAdapter(subscriber,"processTicket");
}

Add the name of the method that you will use for processing the incoming message from the
Redis topic to the constructor; in this example, that’s the processTicket method.

As you can see, the benefit of using a MessageListenerAdapter is that you have no
dependencies in your POJO class, making your application more extensible.

Chapter 6 ■ Messaging with redis

86

Publisher
This section covers publishing messages to the channels (topics). To publish a message in
Redis, you have two options. You can use the low-level RedisConnection class or the high-level
RedisTemplate class (remember, it’s very similar to JmsTemplate and RabbitTemplate). Both
interfaces provide the publish method connection.publish(msg,channel). You must determine
the channel (the topic) as well.

The benefit of using RedisTemplate is that you have a way to define serialization/deserialization
strategies. This method hides the complexity of calling raw methods and is thread-safe.

Let’s jump into the code. Open the com.apress.messaging.RedisDemoApplication class
shown in Listing 6-3.

Listing 6-3. com.apress.messaging.RedisDemoApplication.java

@SpringBootApplication
public class RedisDemoApplication {

 public static void main(String[] args) {
 SpringApplication.run(RedisDemoApplication.class, args);
 }

 @Bean
 CommandLineRunner sendMessage(StringRedisTemplate template,
 @Value("${apress.redis.topic}")String topic){
 return args -> {
 template.convertAndSend(topic,
 "Hello Redis with Spring Boot!");
 };
 }
}

Listing 6-3 shows the main application class. As you know, once Spring Boot finalizes the
auto-configuration, it will execute the sendMessage method. This method will auto-wire the
StringRedisTemplate and the topic with the provided values in the application.properties
file with the apress.redis.topic=spring-boot-chat key. Then it will use the template to send a
message, by using the template.convertAndSend method that accepts the topic and the message
as its parameters.

You normally need to use the RedisTemplate, but in this case, we are using the
StringRedisTemplate. We do this because RedisTemplate is defined as RedisTemplate<K,V>
where the K is the Redis key type (normally a string) and the V is the Redis value type (it will be the
message). Then, StringRedisTemplate is a subclass that uses the string. In other words, it is like
creating a RedisTemplate<String,String> object.

What is interesting here is that StringRedisTemplate defines multiple string serializers for
different operations that apply to different data structures, such as the Set and Hash key/values.

Now, if you run the project (remember to have the redis-server up and running), you will
see the subscriber logs shown in Figures 6-2, 6-3, and 6-4.

Chapter 6 ■ Messaging with redis

87

Figure 6-2. Project logs

Figure 6-3. The redis-cli monitor command

Figure 6-2 shows you the logs. The RedisAudit class that has an Around AOP advice
generates those logs. As you can see, it’s using the Subscriber class (listener adapter) and the
handleMessage method that received the string message.

Figure 6-3 shows the terminal with the Redis client. The monitor is shown before executing
the code, just to determine if Redis accepts the messages. As you can see, Redis is showing the
commands executed in the redis-server—in this case, PSUBSCRIBE and PUBLISH and of course a
PING command to check out the connections between the client and the server.

Chapter 6 ■ Messaging with redis

88

Figure 6-4 shows you another terminal window, where we subscribe to the spring-boot-chat
channel/topic. After running the project, it will print the message. This is another way to make sure
your redis-server is running and you can have multiple subscribers to a channel/topic.

Figure 6-4. redis-cli subscribe

JSON Serialization
Now, going back to serialization/deserialization, recall that we are working with the JSON format.
What do you need to do to make the publisher/subscribe use JSON and serialize/deserialize it
into a custom object back and forth?

If you follow the same idea from the previous modules (JMS and RabbitMQ), answering this
question is easier because you can apply the same concepts here.

Let’s start by modifying the RedisConfig class, as shown in Listing 6-4.

Listing 6-4. com.apress.messaging.config.RedisConfig.java

@Configuration
@EnableConfigurationProperties(SimpleRedisProperties.class)
public class RedisConfig {

 @Bean
 public RedisMessageListenerContainer container(
 RedisConnectionFactory connectionFactory,
 MessageListenerAdapter rateListenerAdapter,
 @Value("${apress.redis.rate}") String topic) {

Chapter 6 ■ Messaging with redis

89

 RedisMessageListenerContainer container =
 new RedisMessageListenerContainer();
 container.setConnectionFactory(connectionFactory);
container.addMessageListener(rateListenerAdapter,
 new PatternTopic(topic));
 return container;
 }

 @Bean
 MessageListenerAdapter rateListenerAdapter(
 RateSubscriber subscriber) {
 MessageListenerAdapter messageListenerAdapter =
 new MessageListenerAdapter(subscriber);
 messageListenerAdapter.setSerializer(
 new Jackson2JsonRedisSerializer<>(Rate.class));
 return messageListenerAdapter;
 }

 @Bean
 RedisTemplate<String, Rate>
 redisTemplate(RedisConnectionFactory connectionFactory){

 RedisTemplate<String,Rate> redisTemplate =
 new RedisTemplate<String,Rate>();
 redisTemplate.setConnectionFactory(connectionFactory);
 redisTemplate.setDefaultSerializer(
 new Jackson2JsonRedisSerializer<>(Rate.class));
 redisTemplate.afterPropertiesSet();
 return redisTemplate;
 }
}

Listing 6-4 shows you the modified RedisConfig class. Comparing it to the previous version,
what is the difference? The RedisMessageListenerContainer bean is the same, except that now
we are also using the rateListenerAdapter bean. Let’s review this listing:

•	 MessageListenerAdapter: This is the same as before, but here we are setting
a new class adapter, in this case the RateSubscriber. It’s important to note
that we are setting a serializer by calling the setSerializer method and
we are instantiating a Jackson2JsonRedisSerializer object using the Rate
class as an object mapper.

•	 RedisTemplate<String,Rate>: As you can see, we are defining this
bean to return a RedisTemplate, where the key is a string and the value
is the Rate class. Note also that we are setting a serializer by calling the
setDefaultSerializer method and we are using the same class as before,
Jackson2JsonRedisSerializer.

Look at the RateSubscriber class, shown in Listing 6-5.

www.allitebooks.com

http://www.allitebooks.org

Chapter 6 ■ Messaging with redis

90

Listing 6-5. com.apress.messaging.redis.RateSubscriber.java

@Component
public class RateSubscriber {

 public void handleMessage(Rate rate){
 // Process message here ...
 }
}

Listing 6-5 shows you the RateSubscriber class. Nothing has changed from the previous
example. The handleMessage method will receive a Rate message. Now, let’s look at the publisher,
shown in Listing 6-6.

Listing 6-6. com.apress.messaging.RedisDemoApplication.java

@SpringBootApplication
public class RedisDemoApplication {

 public static void main(String[] args) {
 SpringApplication.run(RedisDemoApplication.class, args);
 }

 @Bean
 CommandLineRunner sendRateMessage(
 RedisTemplate<String, Rate> template,
 @Value("${apress.redis.rate}")String topic){

 return args -> {
 template.convertAndSend(topic,
 new Rate("MX",21.17F,new Date()));
 };
 }
}

Listing 6-6 shows you the main application. Compare this class to the previous version; what
changed? We are using the RedisTemplate class and using the Rate as the value. We are also
using the Rate class as a message by creating a new rate.

Now you can run your project and see the logs. See Figures 6-5, 6-6, and 6-7.
Figure 6-5 shows you the logs where the RateSubscriber is processing the message. Remember,

behind the scenes, a serialization/deserialization is happening in order to get the object.

Chapter 6 ■ Messaging with redis

91

Figure 6-6. redis-cli monitor

Figure 6-5. RateSubscriber logs

Figure 6-6 shows you a terminal with a Redis client monitor. The idea is to see that the published
method is a string in a JSON format, which means that the Jackson2JsonRedisSerializer
performed the serialization of the Rate class.

Figure 6-7 shows you a terminal with a subscriber to the currency-rate channel/topic. Note
that this subscriber received the Rate message as a JSON string format.

Chapter 6 ■ Messaging with redis

92

If you compare these results with the previous Spring modules (JMS and AMQP), you’ll see that
we are doing the same thing. Even though this Spring Data Redis module doesn’t have annotations
to simplify the publish/subscribe pattern, it’s easy to get this up and running in no time.

The Currency Project
You now have all the necessary information to complete the currency project. Take a look at the
RateRedisSubscriber, RateRedisConfig, and the RateRedisProperties classes to start. You can
reuse the demo project to publish messages to the channel/topic.

 ■ Note remember that it’s important to have the redis-server up and running before you run the
currency project.

Summary
This chapter talked about the publish/subscribe messaging pattern and showed that Redis
provides this functionality out-of-the-box. It’s very easy to use. The chapter showed you how
Spring Boot helps configure your publisher and subscriber with ease, simply by adding spring-
boot-starter-redis.

You saw how to publish and listen for incoming messages and you saw that the Spring Data
Redis module uses very a similar way as a publisher and subscriber by using the RedisTemplate
(the same behavior as the Spring JMS and Spring AMQP modules).

Even though this chapter is short, it gives you a starting point for using Redis as an in-memory
message broker.

The next chapter covers WebSockets, which is another way to do messaging using Spring Boot.

Figure 6-7. redis-cli subscriber

93© Felipe Gutierrez 2017
F. Gutierrez, Spring Boot Messaging, DOI 10.1007/978-1-4842-1224-0_7

CHAPTER 7

Web Messaging

This chapter covers WebSockets with Spring Boot and describes how this technology can help
you implement messaging across apps or even across multiple instances of the same application.

When talking about web applications, we can say that REST is another way to do messaging,
and it is. In this chapter, we are going to focus on a stateful way of communicating, which is what
WebSockets brings to the table.

WebSockets
WebSockets is a protocol that enables two-way communication, and it’s normally used in web
browsers. This protocol starts by using a handshake (normally a HTTP request) and then sends a
basic message frame (a protocol switch) over TCP. The idea of the WebSockets is to avoid multiple
HTTP connections like the AJAX (XMLHttpRequest) or the iframe and the long polling. See Figure 7-1.

Client Server

Handshake (HTTP Upgrade)

connection opened / protocol switch

Bidirectional Messages

open and persistent connection

One side closes channel

connection closed

Tim
e

Figure 7-1. TCP/WebSockets

Chapter 7 ■ Web Messaging

94

Using WebSockets with Spring
Before we get into how to use WebSockets with Spring Boot, it’s important to know that not all the
browsers support this technology. Visit http://caniuse.com/websockets to find out which
browsers are WebSockets-ready.

The Spring Framework version 4 includes a new spring-websocket module that supports
WebSockets; it’s also compatible with the Java specification JSR-356. This module also has
fallback options that simulate the WebSockets API when necessary (remember that not all
the browsers support WebSockets). It uses the SockJS protocol for this task. You can get more
information about it at https://github.com/sockjs/sockjs-protocol.

It’s also worth mentioning that after the initial handshake (the HTTP, where we use SockJS),
the communications switch to a TCP connection (meaning that you are sending just a stream
of bytes—either text or binary). Therefore, you can use any type of messaging architecture, like
async or event-driven messaging. At this level, you can use sub-protocols like STOMP (Simple/
Streaming Text Oriented Message Protocol), which allows you to have a better messaging format
that the client and server can understand. See Figure 7-2.

Client Server

SockJS

STOMP
Client

Handshake (HTTP Upgrade)

Spring
WebSocket

Communication over
WebSocket

Spring Boot

Figure 7-2. WebSockets with Spring

Figure 7-2 shows how to implement WebSockets using Spring and the components needed
on the client side.

Low-Level WebSockets
Before we jump into the fallback options (SockJS) and sub-protocols (STOMP), let’s see how can
we use Spring Boot with a low-level WebSockets.

In the book’s source code, go to the Chapter 7 and open the two projects (you can import
them into your favorite IDE or use any text editor). In the following section, we are going to work
with the websocket-demo project.

Let’s start by analyzing the configuration. In order to use low-level WebSockets communications,
we need to implement the org.springframework.web.socket.config.annotation.
WebSocketConfigurer interface. Open the com.apress.messaging.config.LlWebSocketConfig
class, as shown in Listing 7-1.

http://caniuse.com/websockets#_top
https://github.com/sockjs/sockjs-protocol
http://dx.doi.org/10.1007/978-1-4842-1224-0_7

Chapter 7 ■ Web Messaging

95

Listing 7-1. com.apress.messaging.config.LlWebSocketConfig.java

@Configuration
@EnableWebSocket
public class LlWebSocketConfig implements WebSocketConfigurer{

 LlWebSocketHandler handler;

 public LlWebSocketConfig(LlWebSocketHandler handler){
 this.handler = handler;
 }

 @Override
 public void registerWebSocketHandlers(
 WebSocketHandlerRegistry registry) {
 registry.addHandler(this.handler, "/llws");
 }

}

Listing 7-1 shows you the configuration needed to enable WebSockets in Spring. Remember,
the way we are configuring this class is to have a low-level WebSockets communication. Let’s
review the components that are used:

•	 @EnableWebSocket: This is necessary to enable and configure WebSockets
requests.

•	 WebSocketConfigurer: This is an interface that defines callback methods to
configure the WebSockets request handling. Normally you are required to
implement the registerWebSocketHandlers method.

•	 registerWebSocketHandlers: This method needs to be implemented by
adding the handlers that will be used for the WebSockets processing request.
In this method, we are registering a handler (LlWebSocketHandler) instance
and passing the endpoint used for the handshake and communication.

•	 WebSocketHandlerRegistry: This an interface used to register
a WebSocketHandler implementation. We are going to use a
TextWebSocketHandler implementation and look at its code in the next
section.

As you can see, it’s very simple to configure a low-level WebSockets using Spring. Next, let’s
open the com.apress.messaging.web.socket.LlWebSocketHandler class. See Listing 7-2.

Chapter 7 ■ Web Messaging

96

Listing 7-2. com.apress.messaging.web.socket.LlWebSocketHandler.java

@Component
public class LlWebSocketHandler extends TextWebSocketHandler{

 @Override
 public void afterConnectionEstablished(
 WebSocketSession session) throws Exception {
 super.afterConnectionEstablished(session);
 }

 @Override
 protected void handleTextMessage(
 WebSocketSession session, TextMessage message)
 throws Exception {
 System.out.println(">>>> " + message);
 }
}

Listing 7-2 shows you the WebSockets handler we are going to use to receive messages from
the client. Let’s examine this class:

•	 TextWebSocketHandler: This is a concrete class that implements the
WebSocketHandler interface through the AbstractWebSocketHandler
class. This implementation is for processing text messages only. We
are going to override two methods: afterConnectionEstablished and
handleTextMessage.

•	 afterConnectionEstablished: This method is called when the client
successfully connects using the WebSockets protocol. In this method, you
can use the WebSocketSession instance to send or receive messages. For
now, we are going to use its default behavior, but we will see more in the logs
(through the AOP WebSocketsAudit class).

•	 handledTextMessage: This method receives a WebSocketSession (that
we are going to use later) and a TextMessage instance. The TextMessage
instance manages the stream of bytes and converts them into a string.

So far, we have implemented the server side, but what about the client? Normally, you will
have a web page to do the client’s job.

Open the src/main/resources/static/llws.html file, as shown in Listing 7-3.

Listing 7-3. Snippet of llws.html

<script>

$(function(){

 var connection = new
 WebSocket('ws://localhost:8080/llws');

Chapter 7 ■ Web Messaging

97

 connection.onopen = function () {
 console.log('Connected...');
 };

 connection.onmessage = function(event){
 console.log('>>>>> ' + event.data);
 var json = JSON.parse(event.data);
 $("#output").append(""
 + json.user
 + ": "
 + json.message
 + "
");
 };

 connection.onclose = function(event){
 $("#output").append("CONNECTION: CLOSED");
 };

 $("#send").click(function(){
 var message = {}
 message["user"] = $("#user").val();
 message["message"] = $("#message").val();

 connection.send(JSON.stringify(message));
 });

});

</script>

Listing 7-3 shows just the JavaScript snippet of the important code, which I explain next:

•	 WebSocket: This is part of the JavaScript engine and it will connect to the
specified URI. Note that the schema is ws and that we are using the /llws
endpoint, which we specified in the configuration class (see Listing 7-1).

•	 onopen: This is a callback function that is executed when the connection
is established with the server. Note that we are only logging a string to the
console.

•	 onmessage: This is a callback function that is executed when a message is
received from the server. In this case, we are parsing an event.data into a
JSON object.

•	 onclose: This is a callback function that is executed when the connection is
closed or is lost with the server.

•	 $.click/send: This is a callback function that is attached to the Send
button, and it’s called when the button is clicked. Here we are using the send
method, which will send a JSON string of the message object.

Chapter 7 ■ Web Messaging

98

Next, let’s run the websocket-demo project; after it starts, open a browser and go to
http://localhost:8080/llws.html. You should see something similar to Figure 7-3.

Figure 7-4. The websocket-demo project logs

Figure 7-3. http://localhost:8080/llws.html

After you go to llws.html in your browser, take a look at the application logs. You should see
something similar to Figure 7-4.

Chapter 7 ■ Web Messaging

99

Figure 7-5. Browser’s console

Figure 7-4 shows you the logs, whereby the afterConnectionEstablished is being called
from the LlWebSocketHandler class. This means that the client was successfully connected to the
server. You can also take a look at the browser’s developer console to see the logs displaying the
string Connected... . See Figure 7-5.

Figure 7-6. websocket-demo project logs after clicking Send

Next, you can send a message by modifying the user and message inputs from the llws.html
page and clicking the Send button. After clicking the Send button, you should see something
similar to Figure 7-6.

Figure 7-6 shows you the logs after sending the message as well as the print out from the
handleTextMessage method.

This example shows you how to send a message from the client to the server. Now, let’s do a
response, an echo, from the server. You need to add something to handleTextMessage to handle
the reply.

Modify handleTextMessage to look like the following:

@Override
public void handleTextMessage(
 WebSocketSession session,
 TextMessage message) throws Exception {

 System.out.println(">>>> " + message);

 session.sendMessage(message);
}

As you can see, we are using the session instance to call sendMessage, which means that we
are going to reply using the same session of the connected client.

Restart the websocket-demo project and refresh the llws.html page. Then send a message by
filling out the user and message inputs. You should see the response in the Echo Messages from
the Server panel, as shown in Figure 7-7. Note that if you are using the STS, you only need to wait
until the project restarts itself; this is possible thanks to the spring-boot-devtools.

Chapter 7 ■ Web Messaging

100

If you stop the application, you will see something like Figure 7-8 in the Echo Messages from
the Server panel.

Figure 7-8. Closed connection

Figure 7-7. Echo server response

Chapter 7 ■ Web Messaging

101

As you can see, it’s very simple to create low-level WebSockets applications. What happens if
you need to send a message from a Spring application? In other words, your app needs to be the
client. You can add the following code to your application (see Listing 7-4).

Listing 7-4. WebSockets Client—Snippet of the WebSocketDemoApplication Class

StandardWebSocketClient client = new StandardWebSocketClient();
ListenableFuture<WebSocketSession> future =
 client.doHandshake(handler,
 new WebSocketHttpHeaders(),
 new URI("ws://localhost:8080/ws-server"));
WebSocketSession session = future.get();
WebSocketMessage<String> message =
 new TextMessage("Hello there...");
session.sendMessage(message);

Listing 7-4 shows a snippet of what you need to add if you want to create a WebSockets
client (instead of HTML web pages). Here we are using StandardWebSocketClient (a low-level
WebSockets protocol) and it’s manually doing the handshake. It passes the handler some headers
and the URI where you will connect. (Note that you can use the previous handler or create
your own, and you then can implement the afterConnectionEstablished to check if you were
successfully connected.) Then you get a WebSocketSession instance and can send the message.

You can see that using the WebSockets client with Spring classes is a straightforward
implementation. Next, let’s start using the fallback options with SockJS and the STOMP sub-
protocol.

Using SockJS and STOMP
Why do we need to use SockJS and STOMP? Remember that not all the browsers support
WebSockets and normally the client and the server must agree on how they will handle messages.
Of course, that is not the right way to message, because we want to have a decoupling scenario,
where the client is not tied to the server.

SockJS helps emulate WebSockets and performs the initial handshake. Then, by using
STOMP, we can reply in an interoperable wire format that allows us to use multiple brokers that
support this protocol.

Chat Room Application
We are going to continue using the websocket-demo project, but we are going to work with
different files and classes. This example creates a chat room, which is a very common use of the
WebSockets technology.

First, let’s see how to configure the project will use SockJS and STOMP. Open the
com.apress.messaging.config.WebSocketConfig class. See Listing 7-5.

Chapter 7 ■ Web Messaging

102

Listing 7-5. com.apress.messaging.config.WebSocketConfig.java

@Configuration
@EnableWebSocketMessageBroker
@EnableConfigurationProperties(SimpleWebSocketsProperties.class)
public class WebSocketsConfig extends
 AbstractWebSocketMessageBrokerConfigurer {

 SimpleWebSocketsProperties props;

 public WebSocketsConfig(SimpleWebSocketsProperties props){
 this.props = props;
 }

 @Override
 public void registerStompEndpoints(
 StompEndpointRegistry registry) {
 registry.addEndpoint(props.getEndpoint()).withSockJS();
 }

 @Override
 public void configureMessageBroker(
 MessageBrokerRegistry config) {
 config.enableSimpleBroker(props.getTopic());
 config.setApplicationDestinationPrefixes(
 props.getAppDestinationPrefix());
 }
}

Listing 7-5 shows you the configuration needed to use WebSockets with SocksJS and STOMP.
Let’s review it:

•	 @EnableWebSocketMessageBroker: This annotation is required to enable
broker-backend messaging over WebSockets using a higher-level messaging
sub-protocols (SockJS/STOMP).

•	 AbstractWebSocketMessageBrokerConfigurer: This class implements the
WebSocketMessageBrokerConfigurer to configure message handling with
simple messaging protocols like STOMP from WebSockets clients.

•	 registerStompEndpoints: This method is called to register STOMP
endpoints, mapping each to a specific URL and configuring the SockJS
fallback options.

•	 StompEndpointRegistry: This is a contract for registering STOMP over
WebSockets endpoints. It provides a fluent API to build the registry.

•	 withSockJS: This method will enable the SockJS fallback options required
for the handshake.

Chapter 7 ■ Web Messaging

103

•	 configureMessageBroker: This method is called to configure the message
broker options. In this case we are using the MessageBrokerRegistry.

•	 MessageBrokerRegistry: This instance will help configure all the broker
options. We are using enableSimpleBroker, which accepts one or more
prefixes to filter destinations targeting the broker. This will be used together
with the annotated methods that have the @SendTo annotation. We are also
using the setApplicationDestinationPrefixes to configure one or more
prefixes to filter destination targeting the application annotated methods. In
other words, it will look for methods that are annotated with @MessageMapping.

You can see that we need to add an endpoint, a broker, and prefix paths to configure
WebSockets using SockJS and STOMP. Take a look at Figure 7-9.

Client Server

SockJS /stomp-endpoint

/my-app

/topic

Spring WebSocket

STOMP: Send

STOMP: Subscribe

Communication over
WebSocket

Handshake (HTTP Upgrade)

Figure 7-9. Client/server WebSockets using SockJS and STOMP

Figure 7-9 shows you a general picture of what the communication will be between the client
and the server. Next, open the com.apress.messaging.controller.SimpleController class. See
Listing 7-6.

Listing 7-6. com.apress.messaging.controller.SimpleController.java

@Controller
public class SimpleController {

 @MessageMapping("${apress.ws.mapping}")
 @SendTo("/topic/chat-room")
 public ChatMessage chatRoom(ChatMessage message) {
 return message;
 }
}

Chapter 7 ■ Web Messaging

104

Listing 7-6 shows you the receiver and sender by using new annotations. Remember that
the project now will run a chat room, so different clients can connect and receive message from
other users:

•	 @MessageMapping: This annotation has to do with the application prefixes,
meaning that the client needs to send a message to prefix + mapping.
In our case, this is /my-app/chat-room. This annotation is supported by
methods of the @Controller classes, and the value can be treated as an
ant-style, slash-separated, and path patterns. With this annotation, you have
other annotations that can be used as method parameters, including
@Payload, @Header, @Headers, @DestinationVariable, and java.security.
Principal.

•	 @SendTo: You already know this annotation; it’s the same one we used in the
JMS and RabbitMQ chapters. In this case, this annotation is used to send a
message to any other destination.

Even though we didn’t use the @SubscribeMapping, you can use it in a @Controller
annotated class, in a method that you want to use to handle incoming messages. This will
normally be useful when you need to get a copy of the response by the @SendTo.

Another utility class that we didn’t use is SimpleMessagingTemplate. It can be used to send
messages. For example:

@Controller
public class AnotherController {

 private SimpMessagingTemplate template;

 @Autowired
 public AnotherController(SimpMessagingTemplate template) {
 this.template = template;
 }

 @RequestMapping(path="/rate/new", method=POST)
 public void newRates(Rate rate) {
 this.template.convertAndSend("/topic/new-rate", rate);
 }

}

As you can see, it’s very simple to implement the subscriber/publisher model using the
WebSockets technology. AnotherController acts as a client as well by sending a message
(ChatMessage).

Next, let’s see another client. Open the src/main/resources/static/sockjs-stomp.html
page. See Listing 7-7.

Chapter 7 ■ Web Messaging

105

Listing 7-7. Snippet of sockjs-stomp.html

$(function(){
 var socket =
 new SockJS('http://localhost:8080/stomp-endpoint');
 var stompClient = Stomp.over(socket);

 stompClient.connect({}, function (frame) {
 console.log('Connected: ' + frame);

 stompClient.subscribe('/topic/chat-room',
 function (data) {
 console.log('>>>>> ' + data);
 var json = JSON.parse(data.body);
 $("#output")
 .append(""
 + json.user
 + ": "
 + json.message
 + "
");
 });

 });

 $("#send").click(function(){
 var chatMessage = {}
 chatMessage["user"] = $("#user").val();
 chatMessage["message"] = $("#message").val();

 stompClient.send(
 "/my-app/chat-room",
 {},
 JSON.stringify(chatMessage));
 });
 });

Listing 7-7 shows you the JavaScript client. Let’s analyze it:

•	 SockJS: This is a JavaScript library that emulates the WebSockets protocol.
This object is connecting to the /stomp endpoint that was specified on the
server side. For more information about this library, visit http://sockjs.
org/.

•	 STOMP: This is a JavaScript library that uses the WebSockets protocol and
normally will require the SockJS object. For more information, visit http://
jmesnil.net/stomp-websocket/doc/.

•	 connect: This is a callback that will be called when the connection is
established with the server.

http://sockjs.org/
http://sockjs.org/
http://jmesnil.net/stomp-websocket/doc/
http://jmesnil.net/stomp-websocket/doc/

Chapter 7 ■ Web Messaging

106

Figure 7-10. Browser’s console log

•	 subscribe: This is a callback that will be called when there is a message at
the subscribed destination.

•	 send: This method will send a message to the destination provided.

This is a very simple way to use SockJS and STOMP in a JavaScript client. Now you are ready
to run the websockets-demo project.

 ■ Note before you run the websocket-demo project in this section, make sure that the
LlWebSocketConfig class is disabled (by commenting it out of the @Configuration and
@EnableWebSocket annotations).

Run the project and open a browser. Go to the http://localhost:8080/sockjs-stomp.html
web page. You will see something similar to the previous example. If you are curious, you can go to
the browser’s developer console and see the console logs. See Figure 7-10.

Figure 7-10 shows you the connection logs. Now open a second browser window and visit
the same URL. The idea is to emulate two clients communicating. Next, send some messages and
look at the results. See Figures 7-11 and 7-12.

Chapter 7 ■ Web Messaging

107

Figure 7-11. Two browser clients

Figure 7-12. Application logs

Figure 7-11 shows two clients sending messages through WebSockets using SockJS and STOMP.
Figure 7-12 shows the SimpleController logs and the ChatMessage is being handled by the

chatRoom method (this happened because of the @MessageMapping and @SendTo annotations).
That’s how you create a chat room very easily with Spring Boot and the spring-websocket

module.
Question: How can you create a SockJS client using Spring? Imagine that you need to

send a message to a remote WebSockets connection using STOMP. Look at the code in the
WebSocketsDemoApplication class, which is commented out. You will see how to use the
SockJSClient and WebSocketsStompClient classes there.

Chapter 7 ■ Web Messaging

108

Using RabbitMQ as a STOMP Broker Relay
Have you wondered what would happen if your application needed more support, being more
scalable? Well, one solution is to add several Spring Boot apps that have the WebSockets broker
enabled and then add a load balancer in front of them. The problem is getting high availability,
because you need to add the logic and behavior for the apps, so that, if one is down, the others
keep responding to the clients.

The good news is that the spring-websocket module has a way to use an external relay:
RabbitMQ. RabbitMQ includes the STOMP protocol as a plugin. It also includes real full high
availability and an easy way to set up a cluster.

Follow these steps to add RabbitMQ as a STOMP relay to your application:

 1. Make sure to enable the RabbitMQ STOMP plugin:

$ rabbitmq-plugins enable rabbitmq_stomp
$ rabbitmq-plugins enable rabbitmq_web_stomp

 2. Add the following dependencies to your pom.xml file.

<dependency>
 <groupId>io.projectreactor</groupId>
 <artifactId>reactor-core</artifactId>
</dependency>
<dependency>
 <groupId>io.projectreactor</groupId>
 <artifactId>reactor-net</artifactId>
</dependency>
<dependency>
 <groupId>io.netty</groupId>
 <artifactId>netty-all</artifactId>
 <version>4.1.8.Final</version>
</dependency>

 3. Configure the WebSocketsConfig class similar to the following code:

@Override
public void configureMessageBroker(
 MessageBrokerRegistry config) {

 config.setApplicationDestinationPrefixes(
 props.getAppDestinationPrefix());

 config.enableStompBrokerRelay(
 "/topic", "/queue").setRelayPort(61613);

}

Chapter 7 ■ Web Messaging

109

What is different from the previous version is that now in the configureMessageBroker
method you are configuring the enableStompBrokerRelay (using /topic and /queue) and adding
the STOMP port with the setRelayPort method (with the value of 61613, the RabbitMQ’s STOMP
port).

And that’s it. You can now use RabbitMQ as a broker relay. Before you run the project, make
sure the RabbitMQ broker is up and running. Then you can run the project and use the same
sockjs-stomp.html web page. The important part here is to keep an eye on the RabbitMQ console
to see connections and queues.

Currency Project
Take a look at the rest-api-websockets project. You will find the RateWebSocketsConfig class,
which is very similar to the other project. The idea is that the currency project has a simple
WebSockets broker, which will accept any client connection through the WebSockets protocol.

Every time there is a new rate posted, it will send a message to the client’s subscribe to the /
rate/new endpoint. Take a look at this:

•	 RateWebSocketsConfig: This class has the configuration needed for
WebSockets messaging.

•	 CurrencyController: This class in the addNewRates method has the
following statement:

webSocket.convertAndSend("/rate/new", currencyExchange);

•	 src/main/resources/public/index-ws.html: This web page has the code
that defines the client that connects to the server. Take a look; it’s very
straightforward.

To test it, you just add a simple post to the command line:

$ curl -i -X POST -H "Content-Type: application/json" -H "Accept: application/json"
-d '{"base":"USD","date":"2017-02-15","rates":[{"code":"EUR","rate":0.82857,
"date":"2017-02-15"},{"code":"JPY","rate":105.17,"date":"2017-02-15"},
{"code":"MXN","rate":22.232,"date":"2017-02-15"},
{"code":"GBP","rate":0.75705,"date":"2017-02-16"}]}' localhost:8080/currency/new

You can also use any other REST client, such as POSTMAN: https://www.getpostman.com/.
After posting the new rate, you will see the Rates in the panel, as shown in Figure 7-13.

https://www.getpostman.com/

Chapter 7 ■ Web Messaging

110

Figure 7-13. Currency exchange through WebSockets

Summary
This chapter discussed WebSockets messaging using the spring-websocket module and Spring
Boot.

You learned how the WebSockets uses an HTTP handshake and then switches to TCP
connections. You saw examples of how to create a low-level server/client.

You saw how to use the SockJS and STOMP to facilitate communication for doing async or
event-driven messaging. You also learned how to configure RabbitMQ and use it as a STOMP
relay. You saw some code in the currency exchange project that sends new rates for any client that
connects to this service.

The next chapter shows you how to integrate your code with multiple technologies using the
Spring Integration module.

111© Felipe Gutierrez 2017
F. Gutierrez, Spring Boot Messaging, DOI 10.1007/978-1-4842-1224-0_8

CHAPTER 8

Messaging with Spring Integration

This chapter covers one of the best integration frameworks for the Java community, the Spring
Integration module. It’s of course based on the Spring Framework.

If we look at software development and business needs as a developer or an architect, we
are always looking at how to integrate internal and external components and systems into our
architecture. We need components that are fully functional, highly available, and easy to maintain
and enhance.

The main uses cases that developers and architects face include:

•	 Creating a system that reliably transfers and analyzes files. Most applications
need to read information from a file and process it. Developers need to
create robust file systems that save and read data but can also share it and
deal with large file sizes.

•	 Using data in a shared environment. Multiple clients (systems or users)
need to have access to the same database or the same table and perform
operations on them and deal with inconsistency, duplication, and more.

•	 Having remote access to different systems is always challenging, from
executing remote procedures to sending information. We always want to have
this access in real time and in a synchronous way. We must get a response as
fast as possible without forgetting that the remote system always needs to be
reachable. In other words, the system must be fault tolerant and have high
availability.

•	 Messaging is an important use case that we always want for any system,
from a basic internal call to a billions of messages per second sent to remote
brokers. We typically handle messaging in a asynchronous way, so we need
to deal with concurrency, multi-threading, speed (network latency), high
availability, fault tolerance, and more.

How can developers implement all of these use cases? About 14 years ago, two software
engineers named Gregor Hohpe and Bobby Woolf wrote the seminal book Enterprise Integration
Patterns: Designing, Building and Deploying Messaging Solutions, published by Addison-
Wesley. This book exposes all the messaging patterns needed to solve these use cases. The book
also provides a better understanding of how systems interconnect and work, and how—with
application architecture, object-oriented design, and message-oriented design—you can create a
robust integration system. I highly recommend you read it.

Chapter 8 ■ Messaging with spring integration

112

The following sections show you some of these patterns using the Spring Integration module
from the Spring Framework.

Spring Integration Primer
Spring Integration is a simple model for implementing enterprise integration solutions, because
it facilitates asynchronous and message-driven design within a Spring Boot application. It
implements the Enterprise Integration patterns for creating enterprise, robust, and portable
integration solutions.

You can use the Spring Integration module to create components that are loosely coupled for
modularity and testability. It helps enforce the separation of concerns between your business and
integration logic.

Spring Integration exposes these main components:

•	 Message: This is a generic wrapper for any Java object. It consists of headers
and a payload. The headers normally have important information like IDs,
timestamps, correlation IDs, and return addresses. You can add your own
information to be used with your business logic. The payload can be any type
of data, from an array of bytes, strings, and custom objects—anything. You
can find its definition in the spring-messaging module, which is in the org.
springframework.messaging package.

public interface Message<T> {
 T getPayload();
 MessageHeaders getHeaders();
}

As you can see, there is nothing to fancy in the Message definition.

•	 Message Channel: You can see a message channel as a pipes and filters
architecture, very similar to the command you use in a UNIX system. To
use the message channel, you need to have producers and consumers. The
producer sends the message to the message channel, where a consumer
receives it. See Figure 8-1.

Producer
send(Message)

Message
Channel

receive()
Consumer

Figure 8-1. Message channel

This message channel can follow the messaging patterns discussed in
previous chapters—the point-to-point and publish/subscribe models.
Spring Integration offers several message channels, including pollable
channels (allow you to have buffered messages within a queue) or
subscribable channels for the consumers.

Chapter 8 ■ Messaging with spring integration

113

•	 Message Endpoint: A message endpoint is like a filter that will connect the
application code to the messaging framework. Most of these endpoints are
part of the Enterprise Integration patterns’ implementations:

•	 Filter: A message filter determines when a message should be passed to
the output channel.

•	 Transformer: A message transformer modifies the content or structure
of a message and passes it to the output channel.

•	 Router: A message router decides what to do and where to send the
message based on rules. These rules can be in the headers or even in
the same payload. This message router has many patterns that can be
applied, and I’ll show you at least one of them.

•	 Splitter: A message splitter will accept a message (input channel) and
split and return new multiple messages (output channel).

•	 Service Activator: This is an endpoint that acts as a service by receiving
a message (input channel) and processing it. It can end the flow of
the integration, return the same message, or send a new one (output
channel).

•	 Aggregator: This message endpoint will receive multiple messages
(input channel). It will combine the messages into a new single message
(based on a release strategy) and it will send the new message out
(output channel).

•	 Channel Adapters: This is a particular endpoint that connects a message
channel to other systems or transports. Spring Integration offers you
inbound and outbound adapters. When you need a response, it offers a
gateway adapter. You will see that these are the most commonly used. If
your solution is looking to connect to RabbitMQ, JMS, FTP, a file system,
HTTP, or any other technology, Spring Integration already has the
adapter to connect to it without you having to code a client.

It would take a whole new book to describe everything about Spring Integration and each
message (message patterns), messaging channels, adapters, and more. If you are interested in this
technology, I recommend my Pro Spring Integration book from Apress http://www.apress.com/
us/book/9781430233459.

The next section describes some of these components and patterns, which should be enough
to get you started.

Programming Spring Integration
With Spring Integration, you have several ways configure all the components (Message, Message
Channel, and Message Endpoints). You can do it using XML, Java Config classes, annotations, and
the new Integration DSL. So far, there is no book that covers DSL (Domain Specific Language),
which is that’s why I focus a little more on it.

http://www.apress.com/us/book/9781430233459
http://www.apress.com/us/book/9781430233459

Chapter 8 ■ Messaging with spring integration

114

We start with a simple example, just to show what you need to have and do to start with
Spring Integration. In the book’s source code, open the si-demo project from the Chapter 8 folder.
This project includes all the examples found in this chapter.

A Simple Spring Integration Example

Using DSL
We are going to start with the configuration class. Open the com.apress.messsaging.config.
SpiSimpleConfiguration class. See Listing 8-1.

Listing 8-1. com.apress.messsaging.config.SpiSimpleConfiguration.java

@Configuration
public class SpiSimpleConfiguration {

 @Bean
 public IntegrationFlow simpleFlow(){
 return IntegrationFlows
 .from(MessageChannels.direct("input"))
 .filter("World"::equals)
 .transform("Hello "::concat)
 .handle(System.out::println)
 .get();
 }
}

Listing 8-1 shows a basic example. This example receives a message from the input channel,
filters this message only if it equals the string "World", and then transforms the message by
concatenating the string "Hello" and the message "World". It then prints it to the console. All of
this is called integration flow. Let’s take a deeper look inside:

•	 IntegrationFlow: This is the way we expose the DSL as a bean (this must
have a
@Bean annotation). This class is a factory for the IntegrationFlowBuilder
and defines the flow of the integration. It registers all the components like
Message Channels, endpoints, etc.

•	 IntegrationFlows: This class exposes a fluent API that helps build the
integration flow. It’s easy to incorporate any endpoints like transform, filter,
handle, split, aggregate, route, and bridge. With these endpoints, you can
use any Java 8 (and above) Lambda expressions as arguments.

•	 from: This is an overloaded method where you normally pass the
MessageSource. In this case, we are passing a direct channel named input.

•	 filter: This is an overloaded method that will populate a MessageFilter.
The MessageFilter delegates to a MessageSelector that will send the
message to the filter’s output channel only if the selector accepts the
Message.

http://dx.doi.org/10.1007/978-1-4842-1224-0_8

Chapter 8 ■ Messaging with spring integration

115

•	 transform: This method can receive a Lambda expression, but actually
receives a GenericTransformer<S,T>, where S is the source and T is the type
that it will be converted to. Here, we can use out-of-the-box transformers,
including ObjectToJsonTransformer, FileToStringTransformer, etc. In
this example, we are just using the contact method from the String class.

•	 handle: This is an overloaded method that populates a
ServiceActivatingHandler. Normally we can use a POJO (Plain Old Java
Object), which allows us to receive the message and return a new message
or trigger another call. This is a useful endpoint that we are going to see in
this chapter and in the next one as a service activator endpoint.

Don’t worry too much if this looks different from what you have done in the past for integration
solutions; you will get more comfortable as you see more examples and it will get easier.

Next, let’s look at the main application, so we can run this example. Open the com.apress.
messaging.SpiDemoApplication class. See Listing 8-2.

Listing 8-2. com.apress.messaging.SpiDemoApplication.java

@EnableIntegration
@SpringBootApplication
public class SpiDemoApplication {

 public static void main(String[] args) {
 new SpringApplicationBuilder(SpiDemoApplication.class)
 .web(false)
 .run(args);
 }

 @Bean
 CommandLineRunner process(MessageChannel input){
 return args -> {
 input.send(MessageBuilder.withPayload("World").build());
 };
 }
}

Listing 8-2 shows you the main application. Here we are using a new annotation, @
EnableIntegration, which will set up all the Spring Integration beans that we need for our flow.
This annotation registers different beans like errorChannel, LoggingHandler, taskScheduler,
and more. These beans complement our flow in an integration solution. This annotation is
necessary when using a Java configuration, annotations, and DSL in a Spring Boot application.

Note that I added a different way to run a Spring Boot application by using the
SpringApplicationBuilder class. If you look at the pom.xml file, you will find that the spring-
boot-starter-web dependency is there, meaning that this is a web application. With this
example, we don’t need the whole embedded server, which is why it’s a .web(false) statement.

In the process method, we are requesting a MessageChannel to be injected. Then we use
MessageBuilder (a fluent API class), which helps create a message with a payload World.

Chapter 8 ■ Messaging with spring integration

116

Remember that in Listing 8-1 we used the .from(MessageChannels.direct("input"))
statement? This statement will create the message channel “input”. This is the channel we are
using to send the message to. If you run the application, you should have something similar to
Figure 8-2.

Figure 8-2 shows the logs. You should have a print out. Remember that a message is just
about headers and payload, which is why we get a GenericMessage class. The final message is
"Hello World" and there are some headers that include the ID and the timestamp.

Using XML
Next, let’s try the same example using XML and learn how to configure the integration flow. Open
the src/main/resources/META-INF/spring/integration/spi-context.xml file. See Listing 8-3.

Listing 8-3. src/main/resources/META-INF/spring/integration/spi-context.xml

<int:channel id="input" />

<int:filter input-channel="input"
 expression="payload.equals('World')"
 output-channel="filter" />
<int:channel id="filter" />

<int:transformer input-channel="filter"
 expression="'Hello '.concat(payload)"
 output-channel="log" />

<int:channel id="log" />

<int:logging-channel-adapter channel="log" />

Listing 8-3 shows how to configure the integration flow for XML. I think it’s very straightforward.
If you are using a STS (Spring Tool Suite) IDE, you can use one of its features, such as the
drag-and-drop panel for Spring Integration flows (Integration-Graph). See Figure 8-3.

Figure 8-2. SpiDemoApplication logs

Chapter 8 ■ Messaging with spring integration

117

Figure 8-3. Spring Integration-Graph panel

Figure 8-3 shows the Integration-Graph panel, where you can create your flows graphically,
by dragging and dropping components from the left section. As you can see, there are Channels,
Routing, Transformation, Endpoints, and more. Figure 8-3 is actually a translation of the XML. In
other words, you can start doing the XML and if you switch to the Integration-Graph, it will show
you what you have so far. You can also use this feature to switch to the source, and you will have
the XML. A very cool way to create flows, don’t you think?

To run this example, you have to comment out the @Configuration annotation from Listing
8-1 (or any other @Component annotation files). Then, the main app (SpiDemoApplication.java)
must look like Listing 8-4.

Listing 8-4. com.apress.messaging.SpiDemoApplication.java

@ImportResource({"META-INF/spring/integration/spi-context.xml"})
@EnableIntegration
@SpringBootApplication
public class SpiDemoApplication {

 public static void main(String[] args) {
 new SpringApplicationBuilder(SpiDemoApplication.class)
 .web(false)
 .run(args);
 }

 @Bean
 CommandLineRunner process(MessageChannel input){
 return args -> {
 input.send(MessageBuilder.withPayload("World").build());
 };
 }
}

Chapter 8 ■ Messaging with spring integration

118

Listing 8-4 shows the new version. What changed? We simply added the @ImportResource
annotation. This will tell Spring Boot that there is a configuration file that needs to be processed.
If you run it (remember to comment out @Configuration from the SpiSimpleConfiguration
class), it will print "Hello World" in the logs (by the LoggingHandler class). See Figure 8-4.

Figure 8-4. Application logs showing Hello World

Using Annotations
Spring Integration includes integration annotations that help you use POJO classes, so that you
can add more business logic to your flow and have a little more control.

Open the com.apress.messaging.config.SimpleAnnotationConfiguration class. See
Listing 8-5.

Listing 8-5. com.apress.messaging.config.SimpleAnnotationConfiguration.java

@Configuration
public class SimpleAnnotationConfiguration {

 @Bean
 public MessageChannel input(){
 return new DirectChannel();
 }

 @Bean
 public MessageChannel toTransform(){
 return new DirectChannel();
 }

 @Bean
 public MessageChannel toLog(){
 return new DirectChannel();
 }
}

@MessageEndpoint
class SimpleFilter {
 @Filter(inputChannel="input",outputChannel="toTransform")
 public boolean process(String message){
 return "World".equals(message);
 }
}

Chapter 8 ■ Messaging with spring integration

119

@MessageEndpoint
class SimpleTransformer{
 @Transformer(inputChannel="toTransform",outputChannel="toLog")
 public String process(String message){
 return "Hello ".concat(message);
 }
}

@MessageEndpoint
class SimpleServiceActivator{
 @ServiceActivator(inputChannel="toLog")
 public void process(String message){

 }
}

Listing 8-5 shows you the same flow, now using the integration annotations. Let’s look at
it in detail:

•	 MessageChannel: This is an interface that defines methods for sending
messages.

•	 DirectChannel: This is a message channel that invokes a single subscriber
for each message sent. This is normally used when you don’t require a
message queue.

•	 @MessageEndpoint: This is a useful annotation that marks a class as an
endpoint.

•	 @Filter: This annotation marks a method to perform the functionality of a
message filter. Normally you need to return a Boolean value.

•	 @Transformer: This annotation marks a method to perform the functionality
of transforming a message, its header, or the payload.

•	 @ServiceActivator: This annotation marks a method as being capable
of handling a message. In this example, we just ended the flow. You will
see some output from this method thanks to the AOP logs included in this
example.

To run this example, just comment out the @ImportResource annotation from the main class
and that’s it. You should have logs similar to what’s shown in Figure 8-5.

Chapter 8 ■ Messaging with spring integration

120

Figure 8-5 shows you the logs for each step where the configuration exposes the filter, the
transformer, and the service activator endpoints. I used separate classes here, but of course you
can use only one and expose all your methods with their own annotations.

Figure 8-5. Application logs for this example

Chapter 8 ■ Messaging with spring integration

121

Using Java Config
Using Java Config is very similar to what you just did, so you can simply change the last part of the
flow. Comment out the SimpleServiceActivator message endpoint and add the following code
to the end of the SimpleAnnotationConfiguration class:

@Bean
@ServiceActivator(inputChannel = "toLog")
public LoggingHandler logging() {
 LoggingHandler adapter = new
 LoggingHandler(LoggingHandler.Level.INFO);
 adapter.setLoggerName("SIMPLE_LOGGER");
 adapter.setLogExpressionString
 ("headers.id + ': ' + payload");
 return adapter;
}

This code will create a LoggingHandler (this is the same object that the XML will generate
from the logging-channel-adapter tag). It will log the SIMPLE_LOGGER message with the header’s
ID and the payload, in this case the "Hello World" message. Now try to send different words and
see if the filter works, or try to change the transformer.

I know that this is a trivial example, but it should give you an idea of how Spring Integration
works and how it can be configured. Clients often ask whether they can mix configurations.
Absolutely! You are going to see examples of that very soon.

File Integration Example
Next, let’s see how can you can integrate file reading, which is a very common task of integration
systems. Remember that this is one of the most common use cases. Start by opening the com.
apress.messaging.config.SpiFileConfiguration class. It should look like Listing 8-6.

Listing 8-6. com.apress.messaging.config.SpiFileConfiguration.java

@Configuration
@EnableConfigurationProperties(SpiProperties.class)
public class SpiFileConfigutation {

 private SpiProperties props;
 private PersonConverter personConverter;

 public SpiFileConfigutation(SpiProperties props,
 PersonConverter personConverter){
 this.props = props;
 this.personConverter = personConverter;
 }

Chapter 8 ■ Messaging with spring integration

122

 @Bean
 public IntegrationFlow fileFlow(){
 return IntegrationFlows
 .from(Files.inboundAdapter(new File
 (this.props.getDirectory())
 .preventDuplicates(true)
 .patternFilter(
 this.props.getFilePattern()),
 e -> e.poller(Pollers.fixedDelay(5000L)))
 .split(Files.splitter().markers())
 .filter(p -> !(p instanceof FileSplitter.FileMarker))
 .transform(Transformers.converter(personConverter))
 .handle("simpleMessageHandler","process")
 .get();
 }
}

Listing 8-6 shows you the integration flow we are going to use in this example. This flow reads
a file’s contents (from the file system), converts the content into an object (in this case into a
Person object), and handles the message for any extra logic. Let’s analyze this process in detail:

•	 from: This is an overloaded method where you normally pass
the MessageSource. In this case, we are passing two values—
the Files.inboundAdapter and a Consumer that receives a
SourcePollingChannelAdapterSpec. In this case, we are using a Lambda
expression to poll the file system for new files every five seconds, by using
the Pollers class.

•	 Files: This is a protocol adapter that works out of the box. You just need to
configure it. This adapter is used to pick up files from the file system. The
Files class belongs to the Spring Integration Java DSL and provides several
useful methods:

•	 inboundAdapter: This adapter includes a fluent API that returns a
FileInboundChannelAdapterSpec that has methods like the following:

•	 preventDuplicates: You can avoid reading the same file more than
once by setting this to true.

•	 patternFilter: This will help look for files have a certain name
pattern.

In this example, we just read from the directory (from the apress.
spi.directory property value) and the name based on the pattern
(from the apress.spi.file-pattern property value), both from the
SpiProperties class.

•	 split: This method call indicates that the parameter (it could be a bean,
service, handler, etc.) can split into a single message or message payload
and produce multiple messages or payloads. In this case, we are using a
FileMarker that delimits the file data when there is a sequential file process.

Chapter 8 ■ Messaging with spring integration

123

•	 filter: Because we are using markers to see each message start and end,
we will receive the content of the file as a FileMarker start, then the actual
content, and finally the FileMarker end. That’s why we are saying, just pass
me the payload or content, not the marker.

•	 transform: Here we are using a Transformers class that transforms a message.
Here we are using a custom converter, which you can look at the code in the
com.apress.messaging.integration.PersonConverter.java class.

•	 handle: Here we are using a class that will handle the message by passing as
the first parameter the name of the bean (simpleMessageHandler) and the
method that will take care of the process (process; you can look at the code
in the com.apress.messaging.integration.SimpleMessageHandler.java
class). The SimpleMessageHandler class is just a POJO marked with the
@Component annotation.

 ■ Note the spring integration Java DsL currently supports the following protocol adapter classes:
Amqp, Jms, Files, Sftp, Ftp, Http, Kafka, Mail, Scripts, and Feed. these classes are in the org.
springframework.integration.dsl.* package.

To run the code, just add the following code to your main class. We are going to comment out
some of the past statements. It should look like this code:

@EnableIntegration
@SpringBootApplication
public class SpiDemoApplication {

 public static void main(String[] args) {
 new SpringApplicationBuilder(SpiDemoApplication.class)
 .web(false)
 .run(args);
 }
}

Before you run this example, make sure you have the contacts.txt file, which contains the
name, date of birth, phone, e-mail, and friends (a Boolean type to identify if this person is a friend)
data. Once you run it, you should have something similar to the output shown in Figure 8-6.

Chapter 8 ■ Messaging with spring integration

124

As you can see, this is a very simple way to use integration with files, by reading its content
and doing business logic with the data.

Remember that previously I told you that you can mix some of the ways you configure
Spring Integration? What do you need to do if you want to use an annotation to handle the
message? You can use the @ServiceActivator annotation as part of the configuration (in the
SpiFileConfiguration class):

@ServiceActivator(inputChannel="input")
public void process(Person message){

}

To use this service activator method, you need to change the flow. Just replace this line:

handle("simpleMessageHandler","process")

With this one:

.channel("input")

If you rerun the example, you will get the same results. Note that there is no input channel
defined. The best part is that Spring Integration figures out that you need this channel and creates
one behind the scenes for you.

File and JDBC Integration Example
Following the previous example, this example shows how to save the content directly into a
database, which is also a common integration use case. Open the com.apress.messaging.
config.SpiFileToJdbcConfiguration class shown in Listing 8-7.

Figure 8-6. Application logs

Chapter 8 ■ Messaging with spring integration

125

Listing 8-7. com.apress.messaging.config.SpiFileToJdbcConfiguration.java

@Configuration
@EnableConfigurationProperties(SpiProperties.class)
public class SpiFileToJdbcConfiguration {

 private SpiProperties props;
 private PersonConverter personConverter;

 public SpiFileToJdbcConfigutation(
 SpiProperties props,
 PersonConverter personConverter){
 this.props = props;
 this.personConverter = personConverter;
 }

 @Bean
 public IntegrationFlow fileToJdbcFlow(){
 return IntegrationFlows
 .from(Files.inboundAdapter(
 new File(this.props.getDirectory()))
 .preventDuplicates(true)
 .patternFilter(
 this.props.getFilePattern()),
 e -> e.poller(Pollers.fixedDelay(5000L)))

 .split(Files.splitter().markers())
 .filter(p -> !(p instanceof FileSplitter.FileMarker))
 .transform(Transformers.converter(personConverter))
 .filter("payload.isFriend()")
 .channel("input")
 .get();
 }
}

Listing 8-7 shows you the new integration flow that will read the same contacts.txt file.
After it is transformed into a Person object, we add an extra filter, where only the Person that is a
friend will persist into the database. If you take a look after the filter is applied, we are sending it
to another channel, called input.

Remember that you can mix ways of programming your integration flows. While writing this
book, we had version v1.2.1.RELEASE of the Spring Integration Java DSL and, so far, the Spring
Integration team hasn’t implemented the JDBC protocol adapter. But don’t worry, we are going
to use XML to save this information to the database. Open the src/main/resources/META-INF/
spring/integration/spi-file-to-jdbc.xml file. See Listing 8-8.

Chapter 8 ■ Messaging with spring integration

126

Listing 8-8. The spi-file-to-jdbc.xml File

<int-jdbc:outbound-channel-adapter
 data-source="dataSource"
 channel="input"
 query="insert into person (first,last,dob,phone,email,friend)
 values (:payload.first, :payload.last, :payload.dob, :payload.

phone, :payload.email, :payload.friend)"
 />

Listing 8-8 shows the XML configuration. Let’s analyze it:

•	 <int-jdbc:outbound-channel-adapter/>: This is a JDBC protocol adapter,
and this tag is used for all the outgoing JDBC operations. It has different
attributes:

•	 data-source: This attribute references a DataSource. The DataSource
includes all the necessary information about the database you want
to connect to, including the URL, username, password, and driver. In
this case, we are referencing a bean named dataSource, but where is
this bean defined? That’s the beauty of Spring Boot, you don’t need to
declare it. If you look at the pom.xml file, you will find that one of these
dependencies is the H2 database engine. This means that Spring Boot
(because it’s an opinionated runtime) will configure the H2 (in-memory
database) as the default database.

•	 channel: This attribute is the input channel where the message is
coming from. In this case, it’s a Person object.

•	 query: This attribute is SQL statement that will be executed when the
Person object arrives, and if you take a closer look, we are referencing
the Person object as the payload.

Next, let’s see how we are going to add this configuration to the integration flow. You already
know how. Open the com.apress.messaging.SpiDemoApplication class. See Listing 8-9.

Listing 8-9. com.apress.messaging.SpiDemoApplication.java

@ImportResource("META-INF/spring/integration/spi-file-to-jdbc.xml")
@EnableIntegration
@SpringBootApplication
public class SpiDemoApplication {

 public static void main(String[] args) {
 new SpringApplicationBuilder(SpiDemoApplication.class)
 .web(true)
 .run(args);
 }
}

Chapter 8 ■ Messaging with spring integration

127

Figure 8-7. The /h2-console endpoint

Listing 8-9 shows you version of the main application, and as you knew already, we need to
use the @ImportResource annotation to include the XML configuration. This time we are going
to enable the web, because the H2 engine provides the /h2-console mapping so that we can take a
peek at the database and tables.

If you run the application, you will see the usual logs. Take a look at the http://
localhost:8080/h2-console in your browser. See Figures 8-7 and 8-8.

Chapter 8 ■ Messaging with spring integration

128

Figure 8-7 shows the /h2-console endpoint. Spring Boot creates testdb by default and in
memory, which is why you have the URL as jdbc:h2:mem:testdb.

Figure 8-8 shows the Person table. If you run the SELECT * FROM PERSON SQL statement, you
will get that result. You now have only the people from the contacts.txt that are friends (just
remember the extra filter we added to the flow).

One question remains: How did Spring Boot tell the H2 engine to create the table called
Person? Well, at some point we need to give Spring Boot a little help. If Spring Boot finds in the
classpath a file with the name data.sql or schema.sql, it will try to process these files. In the
project, you will find the schema.sql file, which defines the table.

AMQP Integration Example
Remember in a previous chapter, we created a producer and consumer using RabbitMQ. In
this section, I show you how to use the AMQP protocol adapters from Spring Integration. These
adapters are already acting as a producer and consumer. If you need to create a messaging system

Figure 8-8. The /h2-console, table, and query view

Chapter 8 ■ Messaging with spring integration

129

that involves AMQP, you can use these adapters and they will give you all the flexibility to build
a production-ready integration solution. The next example uses the Rate domain object to send
rates to the queue.

Open the com.apress.messaging.config.RateConfig class. See Listing 8-10.

Listing 8-10. com.apress.messaging.config.RateConfig.java

@Configuration
@EnableConfigurationProperties(SpiProperties.class)
public class RateConfig {

 @Bean
 public RabbitTemplate rabbitTemplate(
 ConnectionFactory connectionFactory){
 RabbitTemplate template = new
 RabbitTemplate(connectionFactory);
 template.setMessageConverter(
 new Jackson2JsonMessageConverter());
 return template;
 }

 @Bean
 public Queue rateQueue(@Value("${apress.spi.queue}")
 String queue){
 return new Queue(queue,true);
 }

 @Bean
 public MessageChannel amqpChannel() {
 return MessageChannels.direct().get();
 }

 @Bean
 public IntegrationFlow rateFlow(
 RabbitTemplate rabbitTemplate, @Value("${apress.spi.exchange:}") String
exchange,
 @Value("${apress.spi.queue}") String queue){

 return IntegrationFlows
 .from("amqpChannel")
 .handle(Amqp
 .outboundAdapter(rabbitTemplate)
 .exchangeName(exchange)
 .routingKey(queue))
 .get();
 }
}

Chapter 8 ■ Messaging with spring integration

130

Listing 8-10 shows you the RateConfig class, where we define the integration flow. First,
note the familiar objects (Java Config for RabbitMQ), like the RabbitTemplate that sets the
Jackson2JsonMessageConverter and the queue creation.

The way the amqpChannel bean is created is new. I’m using the MessageChannels (note the s
at the end of the class), which provides a fluent API for channel creation. In this case, it’s creating
a direct channel.

In the integration flow, I’m using the Amqp (class) protocol adapter. In this case, because
we are going to send messages, the outboundAdapter is being used. This adapter will receive
the rabbitTemplate, the exchange name, and the routing key. The producer is the Amqp.
outboundAdapter protocol adapter.

AMQP Producer
Before you run this example, remember that RabbitMQ needs to be up and running. In your main
application, add the following code:

@Bean
CommandLineRunner processRate(MessageChannel amqpChannel){
 return args -> {
 amqpChannel.send(
 MessageBuilder.withPayload(new Rate("EUR",0.88857F,new Date())).

build());

 amqpChannel.send(
 MessageBuilder.withPayload(new Rate("JPY",102.17F,new Date())).

build());

 amqpChannel.send(
 MessageBuilder.withPayload(new Rate("MXN",19.232F,new Date())).

build());

 amqpChannel.send(
 MessageBuilder.withPayload(new Rate("GBP",0.75705F,new Date())).

build());
 };
}

You can see from this snippet that we are using the amqpChannel and sending the Rate as a
message. If you run it, take a look at your RabbitMQ Web Console and see the four messages in
JSON format sitting in the spi.rate queue.

Chapter 8 ■ Messaging with spring integration

131

AMQP Consumer
If you need a consumer, you will use inboundAdapter. You can use the following code in the
RateConfig class:

@Bean IntegrationFlow incomingRateFlow(
 ConnectionFactory connectionFactory,
 @Value("${apress.spi.queue}") String queue){
 return IntegrationFlows
 .from(Amqp.inboundAdapter(connectionFactory,queue)
 .messageConverter(new Jackson2JsonMessageConverter()))
 .handle("simpleMessageHandler","process")
 .get();
}

This code shows you the consumer, where the Amqp.inboundAdapter is used, by passing the
connectionFactory, queue, the converter, and its handle by the simpleMessageHandler bean.

 ■ Note if you wondering about the ConnectionFactory reference, remember that spring Boot will
configure this automatically. if you want to connect to a remote server, just add the spring.rabbitmq.*
properties in the application.properties file.

Currency Exchange Project
Based on what you learned in the previous sections, imagine that the currency exchange project
will start receiving new rates through a file and then will send them to a RabbitMQ queue and to
a processed file at the same time. How can you implement this feature? You need a way to send a
message to two recipients.

Try to solve this issue without looking at the code. The rest-api-si project contains the
solutions. You can see the code in the RateSpiConfig and the RateServiceActivator classes. A
hint: I used the recipient list pattern. For writing out to a file, if I used the Files.inboundAdapter,
what would I use for writing files out?

Summary
This chapter covered Enterprise Integration patterns and discussed how the Spring Integration
module gives you all the necessary components to create enterprise-ready and integration
solutions using Spring Boot.

It showed you the different ways of programming Spring Integration with Spring Boot. It
also showed you how to combine XML, Java Config, and annotations to create an integrated
application.

Why is Spring Integration important? The next chapter shows that the Spring Cloud Stream
technology is based on Spring Integration and it’s an even easier way to use all these components.

133© Felipe Gutierrez 2017
F. Gutierrez, Spring Boot Messaging, DOI 10.1007/978-1-4842-1224-0_9

CHAPTER 9

Messaging with Spring
Cloud Stream

So far you have seen all the messaging techniques that are available. Using the Spring Framework
and Spring Boot makes it easy for developers and architects to create robust messaging solutions.
This chapter takes a new step forward and enters into the new Cloud Native Application
Development.

This chapter covers Spring Cloud Stream and how this new technology can help you write
message-driven microservices applications.

Spring Cloud
Before I start talking about Spring Cloud Stream internals and usage, let’s consider its umbrella
project: Spring Cloud.

Spring Cloud is a set of tools that allows developers to create applications that use the
common patterns in distributed systems, from configuration management, to service discovery,
circuit breakers, smart routing, micro-proxy, control bus, global locks, distributed sessions,
service-to-service calls, distributed messaging and much more. These distributed patterns are
also covered in the microservices chapter.

Based on Spring Cloud, we have several projects, including Spring Cloud Config, Spring
Cloud Netflix, Spring Cloud Bus, Spring Cloud for Cloud Foundry, Spring Cloud Cluster, Spring
Cloud Stream, Spring Cloud Stream App Starters, and more.

If you want to start right away with any of these technologies, you need three things in your
pom.xml file:

•	 Add the <parent/> tag with the spring-boot-starter-parent. For example:

<parent>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-parent</artifactId>
 <version>1.4.4.RELEASE</version>
</parent>

Chapter 9 ■ Messaging with spring Cloud streaM

134

•	 Add the <dependencyManagement/> tag with a GA release. For example:

<dependencyManagement>
 <dependencies>
 <dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-dependencies</artifactId>
 <version>Camden.SR5</version>
 <type>pom</type>
 <scope>import</scope>
 </dependency>
 </dependencies>
</dependencyManagement>

•	 Add the technologies you want to use in the <dependencies/> tag. For
example:

<dependencies>
 <dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-starter-stream-rabbit</artifactId>
 </dependency>

 <!—MORE Technologies here -->

</dependencies>

If you take a deep look into the pom.xml file of a Spring Cloud annotation, you will see that the
name convention is now spring-cloud-starter-<technology to use>. Also note that we added
a dependency management tag that allows us to deal with all transitive dependencies and library
version management.

Spring Cloud Stream
It’s time to talk about Spring Cloud Stream. This is the focus here because we are talking about
messaging in this book and also because Spring Cloud Stream is a lightweight messaging-driven
microservices framework. It’s based on Spring Integration and Spring Boot (providing the
opinionated runtime for easy configuration), which means that you can create enterprise-ready
messaging and integration solution applications with ease. It provides a simple declarative model
for sending and receiving messages using either RabbitMQ or Apache Kafka.

I think one of the most important features of the Spring Cloud Stream is the decoupling of
messaging between producers and consumers, by creating bindings that can be used out of the
box. In other words, you don’t need to add broker-specific code to your application for producing
or consuming messages. You just add the required binding (I’ll explain this later) dependencies
to your application and Spring Cloud Stream will take care of the messaging connectivity and
communication.

The next section describes the main components of the Spring Cloud Stream.

Chapter 9 ■ Messaging with spring Cloud streaM

135

Spring Cloud Stream Concepts
Let’s look at the main components of the Spring Cloud Stream:

•	 Application model: The application model is just a middleware-neutral core,
which means that the application will communicate using input and output
channels to external brokers (as a way of transporting messages) through
binder implementations.

•	 Binder abstraction: Spring Cloud Stream provides at this moment the Kafka
and RabbitMQ binder implementations. This abstraction makes it possible
for Spring Cloud Stream apps to connect to the middleware. But, how does
this abstraction know about the destinations? It can dynamically choose at
runtime the destinations based on channels. Normally we need to provide
this through the application.properties file as spring.cloud.stream.
bindings.[input|ouput].destination properties.
I’ll discuss this when we look at the examples.

•	 Persistent publish/subscribe: The application communication will be
through the well-known publish/subscribe model. If Kafka were used, it
would follow its own topic/subscriber model, and if RabbitMQ were used, it
would create a topic exchange and the necessary bindings for each queue.
This model reduces any complexity of producer and consumer.

•	 Consumer groups: You will find out that your consumers will need to be
able to scale up at some point. Scalability can be done using the concept of
a consumer group (this is similar to the Kafka consumer groups feature),
where you can have multiple consumers in a group for a load-balancing
scenario. This makes the scale needs very easy to set up.

•	 Partitioning support: Spring Cloud Stream support data partition, which
allows multiple producers to send data to multiple consumers and ensure
that common data is processed by the same consumer instances. This is a
benefit for performance and consistency of data.

•	 Binder API: Spring Cloud Stream provides an API interface. It’s actually a
binder SPI (Service Provider Interface) where you can extend the core by
modifying the original code, so it’s easy to implement a specific binder, such
as JMS, WebSockets, etc.

This section covers about the programming model and the binders. If you want to know more
about the other concepts, you can take a look at the Spring Cloud Stream reference. The idea is
just to show you how to start creating event-driven microservices with Spring Cloud Stream. To
show you what we are going to cover, take a look at Figure 9-1.

Chapter 9 ■ Messaging with spring Cloud streaM

136

Spring Cloud Stream Programming
Following Figure 9-1, consider what would you need to create a Spring Cloud Stream app:

•	 <dependencyManagement/>: You need to add this tag with the latest Spring
Cloud library dependencies.

•	 Binder: You need to choose what kind of a binder you will need:

•	 Kafka: If you choose Kafka as your binder, you need to add the following
dependency:

<dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-starter-stream-kafka</artifactId>
</dependency>

•	 RabbitMQ: If you choose RabbitMQ as your binder, you need to add the
following dependency:

<dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-starter-stream-rabbit</artifactId>
</dependency>

You must also have Kafka or RabbitMQ up and running. You can even
use both at the same time. You can configure them in the application.
properties or application.yml files.

Spring Cloud Stream
Application

MiddlewareBinder

inputs

outputs

Figure 9-1. Spring Cloud Stream application

Chapter 9 ■ Messaging with spring Cloud streaM

137

•	 @EnableBinding: This is a Spring Boot application, so just by adding
@EnableBinding you can convert the app into a Spring Cloud Stream.

The following sections show you how to send and receive messages from one application to
another using RabbitMQ as transport layer without knowing any specifics about the brokers API
or how to configure the producer or consumer messages.

Spring Cloud Stream uses channels (input/output) as a mechanism to send and receive
messages. A Spring Cloud Stream application can have any number of channels, and it defines
two annotations: @Input and @Output. These annotations help to identify consumers from
producers. Normally a SubscribableChannel class will be marked with @Input annotation and a
MessageChannel class will be marked with @Output. They listen for incoming messages and send
outgoing messages, respectively.

The SubscribableChannel and MessageChannel interfaces should be well known to you from
the Spring Integration chapter. Remember that I told you that Spring Cloud Stream is based on
Spring Integration.

If you don’t want to deal directly with these channels and annotations, Spring Cloud Stream
simplifies this by adding three interfaces that cover the most common messaging use cases:
source, processor, and sink. Behind the scenes, these interfaces have the right channels (input/
output) your application needs:

•	 Source: A source is used in an application where you are ingesting data
from an external system (by listening into a queue, a REST call, file system,
database query, etc.) and sending it through an output channel. This is the
actual interface from Spring Cloud Stream:

public interface Source {

 String OUTPUT = "output";

 @Output(Source.OUTPUT)
 MessageChannel output();

}

•	 Processor: You can use a processor in an application when you want to start
listening from the input channel for new incoming messages, process the
message received (enhancements, transformations, etc.), and send a new
message to the output channel. This is the actual interface from Spring
Cloud Stream:

public interface Processor extends Source, Sink {

}

•	 Sink: You can use a sink application when you want to start listening from
the input channel for new incoming messages, do some processing, and
then end the flow (saving data, firing a task, logging into the console, etc.).
This is the actual interface from Spring Cloud Stream:

Chapter 9 ■ Messaging with spring Cloud streaM

138

source

output input

sink

Spring Cloud
Stream

Application

Spring Cloud
Stream

Application

Rabbit
Binder

Figure 9-2. Source to sink model

source

output outputinput input

sinkprocessor

Spring Cloud
Stream

Application

Rabbit
Binder

Rabbit
Binder

Spring Cloud
Stream

Application

Spring Cloud
Stream

Application

Figure 9-3. Source to processor to sink model

public interface Sink {

 String INPUT = "input";

 @Input(Sink.INPUT)
 SubscribableChannel input();

}

Figures 9-2 and 9-3 show the models we are going to start working on.

Chapter 9 ■ Messaging with spring Cloud streaM

139

You can get all the examples from the book’s source code. This chapter includes several
examples. Let’s get started and see some code.

cloud-stream-demo
The purpose of this project is to show how to create a source and send a message through its
output channel, a processor, and how to receive and send messages from the input and output
channels, respectively. You’ll also create a sink and learn how to receive messages from the input
channel. Practically, I’m showing what Figure 9-3 illustrates, but considering each Stream app
one at a time.

Right now the communication between these application is manual, meaning that we
need to do some steps in between, and this is because I want you to learn how each of these
applications works. In the next section, you are going to see how the whole flow works.

Source
We are going to start by defining a source. Remember that this component has an output
channel. Open the com.apress.messaging.cloud.stream.SimpleSource class. It should look
like Listing 9-1.

Listing 9-1. com.apress.messaging.cloud.stream.SimpleSource.java

@EnableBinding(Source.class)
public class SimpleSource {

 private SimpleDateFormat simpleDate =
 new SimpleDateFormat("HH:mm:ss");

 @Bean
 @InboundChannelAdapter(channel=Source.OUTPUT)
 public MessageSource<String> simpleText(){

 return () -> MessageBuilder
 .withPayload("Hello at " +
 simpleDate.format(new Date()))
 .build();
 }
}

Listing 9-1 shows you the simplest Source stream application you can have. Let’s take a look:

•	 @EnableBinding: This annotation will enable this class as a Spring Cloud
Stream application, and it will enable the necessary configuration for
sending or receiving messages through the provided binder.

•	 Source: This interface marks the Spring Cloud Stream app as a source
stream. It will create the necessary channels; in this case the output channel
that will be used to send messages to the provided binder.

Chapter 9 ■ Messaging with spring Cloud streaM

140

•	 @InboundChannelAdapter: This annotation is part of the Spring Integration
framework. It simply polls over the simpleText method every second. This
means that a new message will be sent every second. You can change the
frequency and the number of messages by adding a poller and modifying the
default settings. For example:

@InboundChannelAdapter(value = Source.OUTPUT, poller = @Poller
(fixedDelay = "5000", maxMessagesPerPoll = "3"))

The important part of this declaration is the channel, where in this case
it’s pointing to Source.OUTPUT. This means that it will use the output
channel (MessageChannel output()).

•	 MessageSource: This is an interface that sends a Message<T>, which is a
wrapper that has payload and headers.

•	 MessageBuilder: You are already familiar with this class, which sends a
MessageSource type. In this case, we are sending "Hello at – Date" as a
string message.

Before you run the example, make sure you have RabbitMQ up and running. Next, run the
example. You might not see too much, but there is something going on behind the scenes. Follow
these steps:

 1. Open RabbitMQ Web Management in a browser. Go to http://
localhost:15672. The username and password are guest. Go to the
Exchanges tab, as shown in Figure 9-4.

Chapter 9 ■ Messaging with spring Cloud streaM

141

Note that an output (a topic exchange) was created and the message rate
is 1.0/s.

 2. Next, you’ll create a queue so you can bind this exchange to it. Go to the
Queues tab and create a new queue named my-queue. See Figure 9-5.

Figure 9-4. The Exchanges tab in RabbitMQ

Chapter 9 ■ Messaging with spring Cloud streaM

142

 3. Once the queue is created, it appears in the list. Next, click the my-queue
queue, go to the Bindings section, and add the binding. See Figure 9-6
for the proper values.

Figure 9-5. The Queues tab of RabbitMQ

Chapter 9 ■ Messaging with spring Cloud streaM

143

Fill out the From Exchange field with the value output (this is the name
of the exchange) and the Routing Key field with the value #. This will
allow any message to get into the my-queue queue.

 4. A few seconds after you bind the output exchange to the my-queue
queue, you will start seeing several messages. Open the Overview panel
shown in Figure 9-7.

Figure 9-6. The Bindings tab of RabbitMQ

Chapter 9 ■ Messaging with spring Cloud streaM

144

Figure 9-7. The Overview tab of RabbitMQ

 5. Let’s review a message by opening the Get Messages panel. You can get
any number of messages and view their contents. See Figure 9-8.

Chapter 9 ■ Messaging with spring Cloud streaM

145

After you choose several messages, take a look at the payload. You will
have a message every second. Note also that the message has properties,
such as the headers with the contentType: text/plain and the
delivery_mode: 2 (this means the messages are being persisted). This is
how Spring Cloud Stream and its binder connect to RabbitMQ to publish
messages.

Figure 9-8. Getting messages from RabbitMQ

Chapter 9 ■ Messaging with spring Cloud streaM

146

Processor
This example uses a listener for the channel input (where all incoming messages arrive). It will get a
string message and will convert it to uppercase, then it will send the string to the output channel.

Open the com.apress.messaging.cloud.stream.SimpleProcessor class. It should look like
Listing 9-2.

Listing 9-2. com.apress.messaging.cloud.stream.SimpleProcessor.java

@EnableBinding(Processor.class)
public class SimpleProcessor {

 @StreamListener(Processor.INPUT)
 @SendTo(Processor.OUTPUT)
 public String transformToUpperCase(String message) {
 return message.toUpperCase();
 }
}

Listing 9-2 shows you a simple processor stream. Let’s review it:

•	 @EnableBinding: This annotation will enable this class as a Spring Cloud
Stream application, and it will enable the necessary configuration for
sending or receiving messages through the provided binder.

•	 Processor: This interface marks the Spring Cloud Stream app as a processor
stream. It will create the necessary channels. In this case, it creates the input
channel (for listening for new incoming messages) and output channel (for
sending messages to the provided binder).

•	 @StreamListener: This annotation is part of the Spring Cloud Stream
framework and it’s very similar to @RabbitListener and @JmsListener.
It will listen for new incoming messages in the Processor.INPUT channel
(SubscribableChannel input()).

•	 @SendTo: You already know this annotation; it’s the same one we used in
previous chapters. Its task is the same and you can see it as a reply or just
as a producer. It will send a message to the Processor.OUTPUT channel
(MessageChannel output()).

This is a trivial, but good, example of what you can do with a processor stream. Before you
run it, make sure to comment out the @EnableBinding annotation from the SimpleSource class
and to delete the output exchange and the my-queue queue.

Run the example. Again, the application is not doing too much, but let’s go to the RabbitMQ
Web Management.

 1. Go to your browser and visit the http://localhost:15672 site
(username and password are guest). Click on the Exchanges tab, and
you will see the same output exchange and a new input exchange being
created. Remember that the processor stream will use the input and
output channels. See Figure 9-9.

Chapter 9 ■ Messaging with spring Cloud streaM

147

Note that there is no longer any message rates in any of the new
exchanges.

 2. Next, go to the Queues tab. Notice that a new queue was created, called
input.anonymous, and it includes random text. See Figure 9-10.

Figure 9-9. Exchanges tab of RabbitMQ

Chapter 9 ■ Messaging with spring Cloud streaM

148

Practically that’s it; the SimpleProcessor stream created the output exchange and the
input.anonymous.* queue, which means that the stream is connected to the binder, in this case
RabbitMQ. So you might wonder how to send a message. There are different ways to do it, and
one is to emulate a message using the RabbitMQ. You can also send them programmatically. The
following sections show both methods.

We are going to create a queue named my-queue and bind it to the output, which is very
similar to what you did in the source stream example.

 1. Go to the Queues tab and create a queue named my-queue. Bind it to
the output exchange with a routing key #. This is similar to Steps 2 and
3 from the source stream. Note that input.anonymous.* queue has a
binding to the input exchange.

Figure 9-10. The Queues tab of RabbitMQ

Chapter 9 ■ Messaging with spring Cloud streaM

149

Figure 9-11. Publishing a message from RabbitMQ

 2. Now we are going to send a message using the input exchange. Go to
the Exchanges tab and click on the input exchange. Select the Publish
Message panel. Add to the Payload field this text: this is just a test.
See Figure 9-11.

Then click the Publish Message button. A message saying Message
Published should appear.

 3. Next, take a look at the logs. You should see something similar to what’s
shown in Figure 9-12.

Chapter 9 ■ Messaging with spring Cloud streaM

150

Wait a minute! It seems that we are getting some array, which is not being converted to
uppercase. If you analyze the code, those are ASCII codes, yet nothing happens. This is because
the input channel receives the text that was converted (by RabbitMQ) as an array of bytes. We can
fix this.

 4. Before we fix this, purge the queue of messages by clicking the Purge
button at the end of the queue page. You now start with an empty queue.

 5. Go back to the Input exchange. Now we are going to pass the header that
has content_type: text/plain, so that RabbitMQ doesn’t change it to a
byte array. See Figure 9-14.

If you look at the my-queue queue and get the message, you should have
practically the same result. See Figure 9-13.

Figure 9-13. Getting the messages from RabbitMQ

Figure 9-12. Application logs

Chapter 9 ■ Messaging with spring Cloud streaM

151

Figure 9-14. Changing to text/plain in RabbitMQ

Publish the message and take a look at the logs. The processor now
returns THIS IS JUST A TEST.

Chapter 9 ■ Messaging with spring Cloud streaM

152

What would happen if you wanted to set another content type, like a Java object, JSON object,
or XML object? It would be a hassle to modify this at the RabbitMQ level. There should be another
way, and there is! This is just an example of trying to send a message and see the behavior of the
processor stream; in real life you would never use RabbitMQ like this. You would use it only to
monitor message rates, but that’s it.

So, in order to use a content type, you must add a property to the application.properties
(or application.yml) file that allows you to convert any message to the type specified. In this
case, you use the following property:

spring.cloud.stream.bindings.input.content-type=text/plain

The key here is the input property. Note that we pass the content-type. If you do the change
and restart the app, you can now send a message (in lowercase) without any header or property
and you should have the text in uppercase (in the logs and in the my-queue queue).

I mentioned that you can send messages programmatically. You can do that by adding this
functionality to your main class. See Listing 9-3.

Listing 9-3. com.apress.messaging.CloudStreamDemoApplication.java

@SpringBootApplication
public class CloudStreamDemoApplication {

 public static void main(String[] args) {
 SpringApplication.run(
 CloudStreamDemoApplication.class, args);
 }

Figure 9-15. The text is now uppercase

 6. Finally, take a look at the my-queue queue and get the message. You
should see the text converted to uppercase, as shown in Figure 9-15.

Chapter 9 ■ Messaging with spring Cloud streaM

153

 @Bean
 CommandLineRunner sourceSender(MessageChannel input){
 return args ->{
 input
 .send(MessageBuilder
 .withPayload("hello world")
 .build());
 };
 }
}

If you run the application, HELLO WORLD in uppercase appears in the logs and in the my-queue
queue. As you can see, we are using a method that you already know from the Spring Integration,
the MessageChannel interface. What is interesting here is that Spring knows what channel to
inject. Remember that the @Processor annotation exposes the input channel.

Sink
The Sink stream will create an input channel to listen for new incoming messages. Open the
com.apress.messaging.cloud.stream.SimpleSink class. See Listing 9-4.

Listing 9-4. com.apress.messaging.cloud.stream.SimpleSink.java

@EnableBinding(Sink.class)
public class SimpleSink {

 @StreamListener(Sink.INPUT)
 public void process(String message){

 }

}

Listing 9-4 shows you a Sink stream, and you already know about the annotations. The
@EnableBinding will convert this class to a Source stream and it will listen for new incoming message
through @StreamListener and the Sink.INPUT channel. The Sink.INPUT will create an input channel
(SubscribableChannel input()).

If you use the same Listing 9-3 and run the application, take a look at the RabbitMQ
management. You will see the input exchange and the input.anonymous.* bound to each other.
At the log levels, should you have something similar to Figure 9-16.

Chapter 9 ■ Messaging with spring Cloud streaM

154

Remember, the Sink stream will do some extra work with the message it received, but it will
end the flow.

What I explained so far doesn’t do too much, because I wanted you to understand how this
works internally first. Now, let’s consider a real-life scenario, where we actually create a complete
flow and see how the streams communicate with each other without going into the RabbitMQ
management.

Microservices
Even though there is a chapter dedicated to microservices, this section touches on this new way to
create scalable and highly available applications using this new concept. The most important part
is to be able to communicate between streams using messaging. You should consider each stream
(each source, processor, and sink) as a microservice.

Example Features
This list includes some of the features (requirements) needed for this example. This is a complete
flow that will allow us to print movie tickets. Here are the requirements:

•	 All persons are received in CSV format in the contacts.txt file.

•	 Each person includes first name, last name, date of birth, phone, e-mail, and
friend fields. The Friend field is a Boolean that indicates if this is a friend or
not.

•	 After reading the contacts.txt file, the example must process each person
and then create a movie ticket using the following rules:

•	 If the person is a friend, he or she gets free popcorn.

•	 If the person is a friend, the movie is free; otherwise, the cost is $15.75.

•	 Set an expiration date for the movie tickets. They are valid for a week.

•	 Movie tickets must be sent to a queue in JSON format, so it’s easy for other
clients to read them.

•	 Optional. Create a queue for friends and non-friends.

Figure 9-16. Application logs

Chapter 9 ■ Messaging with spring Cloud streaM

155

For this flow, I created three separate projects: cloud-stream-source-demo, cloud-stream-
processor-demo, and cloud-stream-sink-demo. Each one needs to run separate and must start
in the following order: sink, processor, and last source.

The next sections explain the main code of these three projects.

cloud-stream-source-demo
Open the com.apress.messaging.cloud.stream.PersonFileSource class. See Listing 9-5.

Listing 9-5. com.apress.messaging.cloud.stream.PersonFileSource.java

@EnableBinding(Source.class)
public class PersonFileSource {

 private PersonFileProperties props;
 private PersonConverter personConverter;

 public PersonFileSource(
 PersonFileProperties props,
 PersonConverter personConverter){
 this.props = props;
 this.personConverter = personConverter;
 }

 @Bean
 public IntegrationFlow fileFlow(){
 return IntegrationFlows
 .from(Files.inboundAdapter(
 new File(this.props.getDirectory()))
 .preventDuplicates(true)
 .patternFilter(this.props.getNamePattern()),
 e -> e.poller(Pollers.fixedDelay(5000L)))
 .split(Files.splitter().markers())
 .filter(p -> !(p instanceof FileSplitter.FileMarker))
 .transform(Transformers.converter(personConverter))
 .channel(Source.OUTPUT)
 .get();
 }
}

Listing 9-5 shows the source stream. Note that it uses the IntegrationFlow class to create
the File reading, a small transformation into a Person object. It’s then sent to the Source.OUTPUT
channel.

Next, open application.properties. See Listing 9-6.

Chapter 9 ■ Messaging with spring Cloud streaM

156

Listing 9-6. src/main/resources/application.properties

server.port=${port:8081}

spring.cloud.stream.bindings.output.destination=person

apress.stream.file.directory=.
apress.stream.file.name-pattern=*.txt

Listing 9-6 shows you the application.properties file. As you can see, it start in port 8081 if
the port argument is not specified at runtime. What is important here is the output.destination
allows us to create a channel named person. Why is this necessary? Remember that the streams
(source, processor, and sink) use the same name of the channels. If we don’t change the
destination, no files will be processed. If we start with the source, the source needs to send to the
output, but the processor also has an output, so which channel will be used? There is a conflict
here. That’s why we need to add the destination. Once you run this example, it will become clear.

cloud-stream-processor-demo
Open the com.apress.messaging.cloud.stream.PersonTicketProcessor class. See Listing 9-7.

Listing 9-7. com.apress.messaging.cloud.stream.PersonTicket.java

@EnableBinding(Processor.class)
public class PersonTicketProcessor {

 private List<String> movieTitles =
 Arrays.asList("Dead Pool 2"
 ,"The Incredibles 2"
 ,"Avatar 2","Tarzan 2"
 ,"Cars 3");
 private Random rand = new Random();

 @StreamListener(Processor.INPUT)
 @SendTo(Processor.OUTPUT)
 public Ticket process(Person person) {
 Ticket ticket = new Ticket();
 ticket.setPerson(person);
 ticket.setMovieTitle(
 movieTitles.get(
 rand.nextInt(movieTitles.size())));
 ticket.setFreePopcorn(person.isFriend());
 ticket.setCost(person.isFriend() ? 0.0f: 15.75f);
 ticket.setValidUntil(
 new DateTime(new Date()).plusWeeks(1).toDate());

 return ticket;
 }

}

Chapter 9 ■ Messaging with spring Cloud streaM

157

Listing 9-7 shows you the processor stream. As you can see, nothing is new. We are receiving
a person, but we are returning a ticket, and of course we are doing the logic based on the
requirements.

Next, open the application.properties file. See Listing 9-8.

Listing 9-8. src/main/resources/application.properties

server.port=${port:8082}

spring.cloud.stream.bindings.input.destination=person
spring.cloud.stream.bindings.output.destination=tickets

spring.cloud.stream.bindings.output.content-type=application/json

spring.jackson.date-format=yyyy-MM-dd

Listing 9-8 shows the application.properties file. Remember that the processor stream has
input and output channels, so we need to rename them by adding the destination to each one.
The input channel will be named person and the output will be named tickets.

Recall that one of the requirements is to have the ticket in JSON format, which is why we add
the content-type as application/json. This will convert the ticket using the Jackson library into
JSON format. Finally, we add a better date format.

cloud-stream-sink-demo
Open the com.apress.messaging.cloud.stream.TicketSink class. See Listing 9-9.

Listing 9-9. com.apress.messaging.cloud.stream.TicketSink.java

@EnableBinding(Sink.class)
public class TicketSink {

 @Bean
 public IntegrationFlow toAmqp(
 RabbitTemplate rabbitTemplate,
 @Value("${ticket.exchange:}") String exchange,
 @Value("${ticket.queue}") String queue){
 return IntegrationFlows
 .from(Sink.INPUT)
 .handle(
 Amqp
 .outboundAdapter(rabbitTemplate)
 .exchangeName(exchange)
 .routingKey(queue))
 .get();
 }

Chapter 9 ■ Messaging with spring Cloud streaM

158

source

person person tickets tickets

Movie Tickets

contacts.txt

sinkprocessor

cloud-stream
source-demo

cloud-stream
processor-demo

cloud-stream
sink-demo

Rabbit
Binder

Rabbit
Binder

Figure 9-17. Example flow

 @Bean
 public Queue rateQueue(
 @Value("${ticket.queue}") String queue){
 return new Queue(queue,true);
 }
}

Listing 9-9 shows you the Sink source. You know all the code, as it uses the @
EnableBinding(Sink.class) to make a Spring Cloud Stream app that will create an input channel
to receive a message. It also uses the IntegrationFlow class, which will send the incoming
message to the specified queue.

Next, open the application.properties file. See Listing 9-10.

Listing 9-10. src/main/resources/application.properties

server.port=${port:8083}

spring.cloud.stream.bindings.input.destination=tickets

ticket.queue=processed.tickets

Listing 9-10 shows you the application.properties file. Again, the input channel will be
renamed tickets, and the queue is named processed.tickets, where the Sink stream will send
the JSON message. Before you run each project, look at Figure 9-17.

Figure 9-17 shows you the whole configuration. Notice why we need to change the channel
names. I provided a small contacts.txt file in the source stream, so you should good to go. If you
are using STS IDE, try to run it in this order: sink, processor, source. This is because you want to
make sure the processor and sink are listening. Once they run, you should have the exchanges
and queues created, as well as the messages. See Figures 9-18 (for the exchanges), 9-19 (for the
queues), and 9-20 (for the ticket).

Chapter 9 ■ Messaging with spring Cloud streaM

159

Figure 9-18. Exchanges (person, tickets)

Figure 9-20. The processed.tickets message

Figure 9-19. Queues (person, tickets, and processed.tickets)

Chapter 9 ■ Messaging with spring Cloud streaM

160

Congratulations! You created a data-driven microservices solution with Spring Cloud Stream.
Imagine what you can do with this technology.

Before we continue, did you realize that we are missing an optional feature—a dynamic
routing? Don’t worry, you will create it in the currency project!

Spring Cloud Stream App Starters
What about if I tell you that we could avoid creating the previous example and just use the Spring
Cloud Stream app starters?

The Spring Cloud Stream provides out-of-the-box applications starters that run. The Spring
Cloud team already implemented around 52 applications that you can just download, configure,
and execute. These application starters are divided by source, processor, and sink model:

•	 Source: file, ftp, gemfire, gemfire-cq, http, jdbc, jms, load-generator,
loggregator, mail, mongodb, rabbit, s3, sftp, syslog, tcp, tcp-client, time,
trigger, triggertask, and twitterstream

•	 Processor: bridge, filter, groovy-filter, groovy-transform, httpclient, pmml,
scriptable-transform, splitter, tcp-client, and transform

•	 Sink: aggregate-counter, cassandra, counter, field-value-counter, file, ftp,
gemfire, gpfdist, hdfs, hdfs-dataset, jdbc, log, rabbit, redis-pubsub, router,
s3, sftp, task-launcher-local, task-launcher-yarn, tcp, throughput, and
websocket

So, let’s create an example using the source:http and the sink:log. I added the necessary
JARs in this chapter in the folder ch09/app-starters. You will find a subfolder for each JAR and a
start.sh script.

source:http
Open a terminal and execute the start.sh script from the http subfolder. Or you can execute the
following command:

java -jar http-source-rabbit-1.1.2.RELEASE.jar --spring.cloud.stream.bindings.
output.destination=simple-demo

Note that we are passing some arguments about the destination. Of course, you can create
an application.properties file and put it into the same directory with this property. The
source:http JAR will run in the 8080 port.

sink:log
Open a new terminal and execute the start.sh script from the log subfolder. Or you can execute
the following command:

java -jar log-sink-rabbit-1.1.1.RELEASE.jar --spring.cloud.stream.bindings.input.
destination=simple-demo --server.port=8081

Chapter 9 ■ Messaging with spring Cloud streaM

161

Note that we are passing the same arguments as the source:http, but in this case for the
input channel and it’s running in the 8081 port.

Now you are ready to test. Use the cURL command to post a message (Windows users can use
POSTMAN(https://www.getpostman.com/). For example:

$ curl -X POST -d "Hello Spring Cloud Starter Apps" localhost:8080

The sink:log log prints out a byte array, right? Try this new command:

$ curl -X POST -d "Hello Spring Cloud Starter Apps" localhost:8080 -H "Content-Type:
text/plain"

You should get the message Hello Spring Cloud Starter Apps. See Figure 9-21.

Figure 9-21. source:http | sink:log

 ■ Note You can get the latest release of the app starters at http://repo.spring.io/libs-release/
org/springframework/cloud/stream/app/.

If you want to use the other Spring Cloud Stream Application Starters and see their
configurations, you can take a look at http://docs.spring.io/spring-cloud-stream-app-
starters/docs/Avogadro.SR1/reference/html/ for reference.

https://www.getpostman.com/
http://repo.spring.io/libs-release/org/springframework/cloud/stream/app/
http://repo.spring.io/libs-release/org/springframework/cloud/stream/app/
http://docs.spring.io/spring-cloud-stream-app-starters/docs/Avogadro.SR1/reference/html/
http://docs.spring.io/spring-cloud-stream-app-starters/docs/Avogadro.SR1/reference/html/

Chapter 9 ■ Messaging with spring Cloud streaM

162

Currency Project
For the currency project, imagine you will get several rates from a source and, based on the rate’s
code, you need to send this rate to the right consumer. In other words, if you send a rate from JPY,
it will choose the destination JPY to send it. This is similar to the dynamic routing that you want to
have for the microservices example.

Take a look in the rest-api-cloud-stream project, the com.apress.messaging.cloud.
stream.RateProcessor class for a dynamic routing. Also look at the com.apress.messaging.
RestApiCloudStreamApplication class (the main class), as it has a new way to send messages
using the Source stream.

What’s Next?
Based on what I showed you, think about what would happen if one of the microservices went
down. Would your entire flow be down? How can you solve the point of failure and add high
availability? How can you orchestrate all these microservices? How can you avoid zero downtime?

The good thing is that Spring Cloud Stream is the base of Spring Cloud Data Flow technology.
Spring Cloud Data Flow is an orchestration service for composable microservice applications
that live in a cloud environment, and it is very useful for real-time data analytics and Big Data
solutions.

The benefit of using Spring Cloud Data Flow is that this technology is supported by Cloud
Foundry, Apache Mesos, Kubernetes, and Apache Yarn. Spring Cloud Data Flow relies on these
technologies to orchestrate register, creation, deployment, and tasks over a cloud infrastructure,
plus it’s compatible with Spring Cloud Services (something that I’ll talk in the microservices
chapter).

The recommendation here is to look at this awesome technology. You will be confortable
learning that, because it’s all about Spring Cloud Stream.

Summary
This chapter showed you how easy you can create simple Stream applications with Spring Cloud
Stream and Spring Boot. Simply by using the @EnableBinding annotation and the binder, you can
create message-driven solutions.

I also showed you that Spring Cloud Stream has application starters that can be used just by
adding the appropriate configuration.

The next chapter discusses a new trending technology, reactive frameworks. In this case, we
cover the Spring Reactor project for creating non-blocking applications on the JVM based on the
Reactive Stream specification.

163© Felipe Gutierrez 2017
F. Gutierrez, Spring Boot Messaging, DOI 10.1007/978-1-4842-1224-0_10

CHAPTER 10

Reactive Messaging

Nowadays the practice of being reactive is at the top of all IT companies’ goals. There are also
related terms that we are hearing often, such as reactive programming, functional reactive
programming, and reactive streams. Even though there are different, what we are seeing here
is a change to how we are tackling data consumption, concurrency, asynchronous events, high
performance, and distributed computing.

This chapter discusses reactive programming and messaging. This is not a new topic. Several
years ago, Microsoft released the C# Reactive extensions (in a formal way) and JavaScript was
gaining momentum in being reactive to events. Not only that, this concept has been around since
the 60s, when programmers wanted to interconnect hardware.

Let’s start by learning more about reactive programming and what is good for. Later, you learn
what kind of frameworks will help you with this new micro-event reactive architecture.

Reactive Programming
Reactive programming is a way to deal asynchronously with event data streams (in a non-blocking
form) that change over time. It’s a way to react to their changing behavior.

Reactive programming is good for the following use cases:

•	 Spreadsheets/cells: When you open your spreadsheet application, have you
imagined how it works internally? Every cell can have other cell dependencies,
so any new change in one needs to be reflected in the others—this is being
reactive to change. Also imagine your matrix when you are doing Calculus
or Algebra computations. How can you react to a value in a particular matrix
cell? Normally, you start dealing with event-driven architectures.

•	 High concurrent messaging: Messaging in my opinion is the most critical
part of every system. The idea of sending a few thousand or even millions
of messages per second has been always the goal. Being able to process
all these messages and consume them concurrently (synchronously and
asynchronously) has also been a challenge.

•	 External service calls: Nowadays devices (cell phones, tablets, sensors, etc.)
require a lot of information with a single swipe, gesture, or click. Their
backend services need to collect data from different services (local or
remote) and aggregate information into a single response. They become
very chatty and sometimes very slow. Reactive programing is a good fit here.

Chapter 10 ■ reaCtive Messaging

164

•	 Async processing: This has been a dangerous territory for many developers,
because every time we start thinking about async processes, we need to
think about threads, callbacks, concurrency, orchestration, and more. With
reactive programming, we are almost there.

Most of the solutions to these use cases involve creating libraries with non-blocking I/O, like
event-machine (from the Ruby programming language), which worked and performed very well.

Java and its new java.util.concurrent package expose the Future/CompletableFuture
interfaces. Map-Reduce and Fork-Join help in parallel processing with Big Data scenarios. Actor
Models expose concurrency in a natural way, one of the important implementations is in the Akka
framework.

Reactive programming is the next step in creating a system that is responsive, resilient,
elastic, and of course message-driven in a asynchronous way, allowing flow control and
applying back-pressure when necessary. All of these features are provided with non-blocking
communication. In contrast with Java 8 streams or Iterable/Iterator, which are just pull-
based, reactive programming is push-based. In other words, reactive programming deals with
synchronous/pull and asynchronous/push concepts.

It’s time to focus on the implementation. The following sections use two main modules or
libraries: RxJava and Reactor. Then we cover the new upcoming release of Spring Framework 5
and its WebFlux module.

 ■ Note this chapter contains five projects that we are going to use in the following sections: rxjava-demo,
reactor-demo, web-emitter, spring-web-flux, and spring-web-flux-reactive.

RxJava
RxJava came from Netflix (called ReactiveX; see http://reactivex.io) and is a library for
composing asynchronous and event-based programs by using observable sequences. It extends
the observer pattern and supports sequences of data. It removes the complexity of threading,
synchronization, thread safety, concurrent data structures, and non-blocking I/O by providing a
simple API.

RxJava provides a collection of operators that can filter, select, transform, combine, and
compose observables, allowing for a better and more efficient execution and composition. It
exposes several classes like Observable, which we are going to see in the example code.

The rxjava-demo Project
Open the com.apress.messaging.RxJavaDemoApplication class. See Listing 10-1.

Listing 10-1. com.apress.messaging.RxJavaDemoApplication.java

@SpringBootApplication
public class RxJavaDemoApplication {

 private static final Logger log =
 LoggerFactory.getLogger(RxJavaDemoApplication.class);

http://reactivex.io/

Chapter 10 ■ reaCtive Messaging

165

 public static void main(String[] args){
 log.info("Demo Steam Application");
 new SpringApplicationBuilder(RxJavaDemoApplication.class)
 .web(false)
 .run(args);
 }

 @Bean
 CommandLineRunner rxJava(ExchangeService service){
 return args -> {
 log.info("RxJava >> Observable");
 Observable<Exchange> exchange =
 service.getExchangeRates();
 exchange.subscribe(System.out::println);

 };
}

Listing 10-1 shows you the main application where a basic Observable instance is being defined:

•	 Observable<Exchange>: Here we are using the Observable class that
supports not just the emission of single scalar values (like Java 8 Future), but
also supports sequences of values or even infinite streams. In this case, it
supports an Exchange class that contains the rates.

•	 subscribe: The Observable class has some similarities to its Java cousin
Iterable (normally doing a pull when invoking the next() method over it).
In this case, we are going to do a push, by calling subscribe. This subscriber
will receive all the messages (the exchange rates) and print them out.

The Observable type adds something that’s missing from the observer pattern: the ability for
the producer to tell the consumer that there is no more data available by signaling the observer
(subscriber) using the onCompleted method, and the ability for the producer to let know the
consumer that there has been an error, by signaling the observer (subscriber) using the onError
method.

Next, let’s see an Observable that will push data on to the subscriber. Open the com.apress.
messaging.service.ExchangeService class. See Listing 10-2.

Listing 10-2. com.apress.messaging.service.ExchangeService.java

@Service
public class ExchangeService {
 private static final Logger log =
 LoggerFactory.getLogger(ExchangeService.class);
 private Exchange exchange;

 ExchangeService() {
 SortedMap<String, Float> rates =
 new TreeMap<String, Float>() {

Chapter 10 ■ reaCtive Messaging

166

 {
 put("EUR", 0.942013F);
 put("JPY", 114.75440909F);
 put("MXN", 19.598225F);
 put("GPB", 0.819626F);
 }
 };
 exchange = new Exchange(rates, new Date());
 }

 public Observable<Exchange> getExchangeRates() {
 return Observable.unsafeCreate(subscriber -> {

 while(!subscriber.isUnsubscribed()) {

 try {
 Float factor =
 (new Random().nextFloat() * 2 - 1) / 10F;
 subscriber.onNext(
 new Exchange(exchange
 .getRates()
 .entrySet()
 .stream()
 .collect(
 Collectors.toMap(
 entry ->
 entry.getKey(),

 entry -> entry.getValue()
 * factor + entry.getValue(),
 (v1, v2) -> {
 throw new RuntimeException(String.format("Duplicate key for

values %s
 and %s", v1, v2));
 }, TreeMap::new)), new Date()));

 if (new Random().nextInt(100) > 90)
 throw new Exception(
 "Some values are getting too high!!");
 sleep(1000);

 } catch (Exception ex){
 log.error(ex.getMessage());
 }
 }
 });

 }

Chapter 10 ■ reaCtive Messaging

167

 private void sleep(int ms) {
 try {
 Thread.sleep(ms);
 } catch (Exception ex) {}
 }

}

Listing 10-2 shows you the service. The observable will push an exchange rate every second.
Take a moment to analyze the code, and then we can analyze it together:

•	 Observable.unsafeCreate: This will return an observable that executes the
given OnSubscribe action for each Subscriber (see Listing 10-1). With this
observable, you can execute onError(Throwable) when an error occurs
or onCompleted() when there is no more data. One of the important parts
here is subscriber.isUnsubscribee() in the while statement. Here we are
determining whether we have more subscribers. We are going to see this in
the next examples.

•	 subscriber.onNext: This provides the observer (subscriber) with a new
item (the exchange rate) to the observer. This method call is pushing the
values to the subscriber. See Listing 10-1.

This particular service will send an exchange rate every second (see the sleep statement).
The exchange rate varies because a factor is applied to it to emulate real scenarios in the money
exchange world.

If you run the application, you should get something similar to Figure 10-1.

Figure 10-1. Application logs

Figure 10-1 shows you the logs of your first reactive application. Next, let’s modify the main
class and add a subscriber implementation. See Listing 10-3.

Listing 10-3. com.apress.messaging.RxJavaDemoApplication.java

@SpringBootApplication
public class RxJavaDemoApplication {

 private static final Logger log =
 LoggerFactory.getLogger(RxJavaDemoApplication.class);

Chapter 10 ■ reaCtive Messaging

168

 public static void main(String[] args){
 log.info("Demo Steam Application");
 new SpringApplicationBuilder(RxJavaDemoApplication.class)

 .web(false)
 .run(args);

 }

 @Bean
 CommandLineRunner rxJava(ExchangeService service){
 return args -> {

 Observable<Exchange> observableExchange =
 service.getExchangeRates();
 observableExchange.subscribe(new Subscriber<Exchange>(){

 @Override
 public void onCompleted() {
 log.info("EXCHANGE COMPLETED!!");
 }

 @Override
 public void onError(Throwable t) {
 log.error("EXCHANGE IS SKYROCKETING... >> " +
 t.getMessage());
 unsubscribe();
 }

 @Override
 public void onNext(Exchange ex) {
 log.info(ex.toString());

 if(ex.getRates().get("JPY").floatValue() >
 125.0F){
 log.warn(">>> JPY rate is now to high: " +
 ex.getRates().get("JPY")
 .floatValue() + ", is time to quit. Bye.");
 unsubscribe();
 }
 }
 });

 };
 }
}

Chapter 10 ■ reaCtive Messaging

169

Listing 10-3 shows you a more complete example. In this case, we are not just doing reference
methods (System.out::println), but are creating a new Subscriber<Exchange> and overriding
some methods:

•	 Subscriber<Exchange>: This is an abstract class that provides a way to
receive
push-based notifications from Observables and permits manual
unsubscribing from these Observables.

•	 onError: This method notifies the observer that the Observable has an error
condition.

•	 onCompleted: This method notifies the observer that the Observable has
finished sending push-based notifications.

•	 onNext: This method provides to the observer with a new item (in this
case, a new exchange rate) to observe. Note in this method that there
is an unsubscribe() call that will set the flag so the Observable in the
subscriber.isUnsubscribed() evaluates to true and will end the while
statement.

If you run the application, you should see something similar to Figure 10-2.

Figure 10-2. Logs

Figure 10-2 shows the logs after running the application. Note that the JPY rate triggered the
unsubscribe() call, which means the Observable will stop sending push-based exchange rates.

Note that I included more code in the book’s source that I don’t cover here, and I want you
to experiment with it. Take a moment to analyze what is going on. I added an example on how to
interact with a fixed number of push-based exchange rates.

So far these examples are running in the same main thread, but there is a way to use
multithreading. Take at look at code where you can use your own thread pool with an
ExecutorService class. For example:

ExecutorService executorService =
 Executors.newFixedThreadPool(100);

Observable<Exchange> observableExchange =
 service.getExchangeRates();

Chapter 10 ■ reaCtive Messaging

170

observableExchange
 .take(10)
 .subscribeOn(
 Schedulers
 .from(executorService))
 .forEach(ex -> { log.info(ex.toString()); });

RxJava right now is up to version 2.x and it changed some of the signatures. You can check for
changes at https://github.com/ReactiveX/RxJava/wiki/What’s-different-in-2.0.

Reactor
Reactor (from the Spring Framework team) is a fully mature and non-blocking reactive
programming foundation for the JVM. It plays along with all the Java 8 functional APIs
(CompletableFuture, Stream, and Duration), offers two composable asynchronous sequences
APIs (Flux—N elements and Mono—0 or 1 elements), and implements the Reactive Extension
specifications.

You can get more information about Reactor at http://projectreactor.io/. Let’s start with
the code.

The reactor-demo Project
This project is very similar to what we saw with RxJava, but this time, instead of Observable, we
are going to see Flux. Open the com.apress.messaging.ReactorDemoApplication class. See
Listing 10-4.

Listing 10-4. com.apress.messaging.ReactorDemoApplication.java

@SpringBootApplication
public class ReactorDemoApplication {

 private static final Logger log =
 LoggerFactory
 .getLogger(ReactorDemoApplication.class);

 public static void main(String[] args) throws IOException {
 SpringApplication.run
 (ReactorDemoApplication.class, args);
 System.in.read();
 }

 @Bean
 CommandLineRunner reactorFlux(ExchangeService service){
 return args -> {

https://github.com/ReactiveX/RxJava/wiki/What’s-different-in-2.0
http://projectreactor.io/

Chapter 10 ■ reaCtive Messaging

171

 log.info("Reactor >> Flux");
 Flux<Exchange> fluxExchange =
 service.getExchangeRates();
 fluxExchange.subscribe(ex -> log.info(ex.toString()));
 }
 }
}

Listing 10-4 shows you the Reactor way, using Flux and the subscribe method call for
push-based data streams. Flux represents a reactive sequence of 0..N items (in this case, the
exchange rates).

Behind the scenes, Flux is described as Flux<T> and implements a Publisher<T> interface.
This interface is a provider of a unbounded number of sequenced elements, and it publishes
them according to the demand from its subscribers. A publisher can serve multiple subscribers
(Subscriber<T> interface) in a dynamically way at various points in time.

Let’s take a look at the service. Open the com.apress.messaging.service.ExchangeService
class. See Listing 10-5.

Listing 10-5. com.apress.messaging.service.ExchangeService.java

@Service
public class ExchangeService {
 private static final Logger log =
 LoggerFactory.getLogger(ExchangeService.class);
 private Exchange exchange;

 ExchangeService() {
 log.info(">>> Exchange Service created.");
 @SuppressWarnings({ "serial" })
 SortedMap<String, Float> rates =
 new TreeMap<String, Float>() {
 {
 put("EUR", 0.942013F);
 put("JPY", 114.75440909F);
 put("MXN", 19.598225F);
 put("GPB", 0.819626F);
 }
 };
 exchange = new Exchange(rates, new Date());
 }

 public Flux<Exchange> getExchangeRates(){
 return Flux.create(sink -> {
 while(true){
 Float factor =
 (new Random().nextFloat() * 2 - 1) / 10F;

Chapter 10 ■ reaCtive Messaging

172

 sink.next(
 new Exchange(
 exchange
 .getRates()
 .entrySet()
 .stream()
 .collect(
 Collectors.toMap(

entry -> entry.getKey(),
entry -> entry.getValue() * factor + entry.getValue(),
 (v1, v2) -> {
 throw new RuntimeException(
String.format("Duplicate key for values %s and %s", v1, v2));
 }, TreeMap::new)), new Date()));

 sleep(1000);

 if(factor > 0.095F)
 sink.complete();
 }
 });
 }

 private void sleep(int ms) {
 try {
 Thread.sleep(ms);
 } catch (Exception ex) { }
 }
}

Listing 10-5 shows you Subscriber using Flux<Exchange> by calling the create method. This
method receives a Consumer<? Super FluxSink<T>>. This consumer is just a simple call that
needs to be executed. The parameter needs to be a FluxSink<T> type interface. This interface is a
wrapper API around a downstream subscriber and sends any number of signals followed by zero
or at least one onError or onComplete.

If you run the application, you should see something similar to Figure 10-3.

Figure 10-3. Logs

Chapter 10 ■ reaCtive Messaging

173

What is the difference between using RxJava and Reactor? Reactor supports functional
programming, schedulers, low latency, and the Lambda pipeline approach. One of the greatest
benefits of Reactor is that it supports all the HTTP MVC types from Spring, which is a streaming
functionality (Server Sent Events—SSE) out of the box.

I added more examples to the project. You just need to enable them and then run, experiment,
and play with them.

Spring 5: WebFlux Framework
Spring 5 has many of new features, including support for JDK 9. One of its major features is the
Functional Web Framework or WebFlux, which is based on Reactor.

The Servlet 3.1 specification was capable of non-blocking I/O, but not as well as you might
think. The rest of the Servlet API is still an imperative style and can’t be used in a reactive,
non-blocking stack.

The Spring team includes the spring-webflux module to add a new functional programming
model to web applications. Together with spring-mvc, you can have a reactive stack web
framework. The spring-webflux module also has a reactive WebClient that is a non-blocking
alternative to the RestTemplate class, which allows you to deal with asynchronous and streaming
scenarios. See Figure 10-4.

@Controller, @RequestMapping

spring-webmvc

Servlet API

Servlet Container

RouterFunctions

spring-webflux

HTTP / Reactive Streams

Tomcat, Jetty, Netty, Undertow

Figure 10-4. Spring WebFlux

Programming Models
Spring WebFlux has two programming models: annotation-based and functional-based.

Annotation-Based Programming Model
You can use the same well-known annotations from the spring-webmvc module; the main difference
is that the core is now non-blocking and operates on the reactive ServerHttpRequest and
ServerHttpResponse responses (instead of the HttpServletRequest and HttpServletResponse
responses).

Open the spring-web-flux-reactive project and then open the com.apress.messaging.
controller.ReactiveController class. See Listing 10-6.

Chapter 10 ■ reaCtive Messaging

174

Listing 10-6. com.apress.messaging.controller.ReactiveController.java

@RestController
public class ReactiveController {

 SubscribableChannel personChannel;
 PersonRepository repo;

 public ReactiveController(SubscribableChannel
 personChannel, PersonRepository repo){
 this.personChannel = personChannel;
 this.repo = repo;
 }

 @GetMapping("/person")
 Flux<Person> list() {
 return Flux.fromStream(this.repo.getAll());
 }

 @GetMapping("/person/{id}")
 Mono<Person> findById(@PathVariable String id) {
 return Mono.just(this.repo.findOne(id));
 }

 @GetMapping(value="/person-watcher",
 produces=MediaType.TEXT_EVENT_STREAM_VALUE)
 public Flux<Person> log4Person(){
 return Flux.create(sink -> {
 MessageHandler handler = message ->
 sink.next((Person) message.getPayload());
 personChannel.subscribe(handler);
 sink.setCancellation(() ->
 personChannel.unsubscribe(handler));
 });

 }

 @PostMapping(value="/person", consumes =
 {MediaType.APPLICATION_JSON_VALUE})
 public void createPerson(@RequestBody Person person){
 if(person != null && person.getName() != null){
 repo.save(person);
 personChannel
 .send(MessageBuilder.withPayload(person).build());
 }
 }

}

Chapter 10 ■ reaCtive Messaging

175

Listing 10-6 shows you the annotation you have seen from Spring MVC, but now they
are based on Reactive streams. Analyze the code and note that we are using the Reactor
programming model—the Flux and Mono reactive classes.

Even though I am not going to talk in detail about the Server Sent Events (SSE) technology,
spring-webflux brings this technology just by producing the TEXT_EVENT_STREAM_VALUE content-
type. The SSE is a way to send messages from the server to a web page (via push notifications).

 ■ Note the web-emitter project contains an example of an sse. sse was included in spring 4.2, so this is
not a new technology. it’s been around a couple of years. the browsers are the ones that need to implement the
way to receive notifications.

Functional-Based Programming Model
You can use functional programming to configure all the requests and responses from the server.
You define RouterFunctions, HandlerFunctions, and a server.

RouterFunctions, HandlerFunctions, and Server

Spring WebFlux includes several reactive classes and concepts that make it even easier to model
the web requests and responses:

•	 HandlerFunctions: All the requests are handled by a HandlerFunction<T>,
which takes the ServerRequest and returns a Mono<ServerResponse>.

•	 RouterFunctions: All the incoming requests are routed to handler functions
with a RouterFunction<T>, which takes a ServerRequest and returns a
Mono<HandlerFunction> type.

•	 Server: A new server needs to be configured in order to take the new
RouterFunctions and Handlers.

The spring-web-flux project contains all the code you are going to need in this section.
Start by opening the configuration that contains all the RouterFunctions. Open the

com.apress.messaging.config.ServerConfig class. See Listing 10-7.

Listing 10-7. com.apress.messaging.config.ServerConfig.java

@Configuration
public class ServerConfig {

 PersonHandler handler;
 ServerConfig(PersonHandler handler){
 this.handler = handler;
 }

Chapter 10 ■ reaCtive Messaging

176

 @Bean
 RouterFunction<ServerResponse> router(){
 return RouterFunctions
 .route(GET("/persons/{id}")
 .and(accept(APPLICATION_JSON)), handler::findById)
 .andRoute(GET("/persons")
 .and(accept(APPLICATION_JSON)), handler::findAll)
 .andRoute(GET("/personwatcher")
 .and(accept(APPLICATION_JSON)),
 handler::newPersonLog)
 .andRoute(POST("/persons")
 .and(accept(APPLICATION_JSON)), handler::createPerson);
 }

 @Bean
 HttpServer httpServer(
 RouterFunction<ServerResponse> router){
 HttpHandler httpHandler =
 RouterFunctions.toHttpHandler(router);
 ReactorHttpHandlerAdapter adapter = new
 ReactorHttpHandlerAdapter(httpHandler);
 HttpServer server =
 HttpServer.create("localhost", 8080);
 server.newHandler(adapter).block();
 return server;
 }
}

Listing 10-7 shows you the functional programming required to configure the new reactive
web stack, by creating the RouterFunctions. You can think of it as a new way to create web
controllers. Note that we are defining routes and handlers.

Listing 10-7 shows you how to configure a server. In this example, the Netty server is being
configured. Note how HttpHandler and ReactorHttpHandler are being used.

Next, open the com.apress.messaging.handler.PersonHandler class. See Listing 10-8.

Listing 10-8. com.apress.messaging.handler.PersonHandler.java

@Component
public class PersonHandler {
 PersonRepository repo;
 EmitterProcessor<Person> stream =
 EmitterProcessor.<Person>create().connect();

 PersonHandler(PersonRepository repo) {
 this.repo = repo;
 }

Chapter 10 ■ reaCtive Messaging

177

 public Mono<ServerResponse>
 findAll(ServerRequest request) {
 Flux<Person> people =
 Flux.fromStream(this.repo.getAll());
 return
 ServerResponse
 .ok()
 .contentType(APPLICATION_JSON)
 .body(people, Person.class);
 }

 public Mono<ServerResponse>
 findById(ServerRequest request) {
 String personId = request.pathVariable("id");
 Mono<ServerResponse> notFound =
 ServerResponse.notFound().build();
 Mono<Person> personMono =
 Mono.just(this.repo.findOne(personId));

 return personMono
 .then(person ->
 ServerResponse
 .ok()
 .contentType(APPLICATION_JSON)
 .body(fromObject(person)))
 .otherwiseIfEmpty(notFound);
 }

 public Mono<ServerResponse>
 createPerson(ServerRequest request) {
 Mono<Person> person =
 request.bodyToMono(Person.class);
 return ServerResponse
 .ok()
 .build(person.doOnNext(p -> {
 this.repo.save(p);
 this.stream.onNext(p);
 }).then());
 }

 public Mono<ServerResponse>
 newPersonLog(ServerRequest request){
 Mono<Person> personMono = stream.doOnNext(person -> {
 System.out.println(">>>> [Person created] " + person);
 })
 .next()
 .subscribe();

Chapter 10 ■ reaCtive Messaging

178

 personMono.block();
 return personMono
 .then(person ->
 ServerResponse
 .ok()
 .contentType(APPLICATION_JSON)
 .body(fromObject(person)));
 }
}

Listing 10-8 shows the handler that will be used for each router function. Note that every
method receives the ServerRequest as a parameter and returns a Mono<ServerResponse>.

 ■ Note to run the spring-web-flux-reactive and spring-web-flux projects, you need to have the
Mongo server up and running.

Summary
This chapter introduced reactive programming, including discussing what it’s good for and what
we can do with it. There is a lot of reactive programming right now and a lot to explain, and this
chapter is just a start.

You saw two modules/libraries—RxJava (from Netflix) and Reactor (from the Spring
Framework team). You also saw a sneak peek of what is coming in a few weeks with Spring 5 and
the Functional Web: WebFlux.

In the next chapter, we are going to talk about microservices and you’ll learn how you can
apply all that you have learned so far in the book to your microservices-based projects.

179© Felipe Gutierrez 2017
F. Gutierrez, Spring Boot Messaging, DOI 10.1007/978-1-4842-1224-0_11

CHAPTER 11

Microservices

This chapter discusses the Microservices architecture and covers the changes that you need to
make in order to get into a cloud-native application design using microservices. It also covers how
messaging is an important key for success.

What Microservices Are
Microservices are not new; they have been around since the creation of UNIX. UNIX has many
small programs (called commands) that do various tasks and can communicate with each other
to create even better solutions. How do they do this?

If you are an experienced UNIX programmer, you already know the answer. The way these
commands communicate is through pipes, |, which allow UNIX to pass information to the next
available program or command. For example:

ls -al | grep Aug | grep -v '200[456]' | more

If you now start thinking about your own systems and applications, how can you do
the same? Can you create small domain-based applications that communicate with other
applications?

Microservices have gained a lot of enthusiasm among architects, developers and ops teams,
but why do we need them? I think time is an essential part of the puzzle, because applications
need to be fast, resilient, highly available, and scalable, all the while with high performance.

•	 Speed: You need to deliver faster than your competitors. You can use
microservices that help you deliver faster in time-to-market scenarios.

•	 Safety: You need to maintain stability, availability, and durability in whole
development cycle, through monitoring, isolation, tolerance, and auto-
recovery practices. Start thinking about continuing delivery and integration.

•	 Scalability: Vertical scaling (that is, buying more hardware) doesn’t scale
well. Use commodity hardware, reuse what you have and scale horizontally,
and create multiple instances of the same application. Use containers to
help you scale.

•	 Mobility: Prepare to support multiple devices, from any location at any time.
Mobile devices connect to the Internet, not only for social media, emails,
and chats, but also for monitoring houses, engines, and more.

Chapter 11 ■ MiCroserviCes

180

Everything seems to make sense, right? But I haven’t explained how a microservice can
communicate with multiple other microservices. Messaging is the key! Many companies use
RESTful APIs to communicate with other systems or programs, even legacy systems, by creating
decorators, translators or facades, but you have more options for communication, including HTTP,
TCP (Web Socket, AMQP), Reactive Streams, and more.

The basic guides for creating microservices in a simple way are called the twelve-factor app
principles.

The Twelve Factor Apps
To outline what you need to create a cloud-native architecture, the engineers at Heroku (see
https://www.heroku.com/) have identified patterns that have become the twelve-factor application
guide (see https://12factor.net/). This guide shows you how an application (a single unit) needs
to be architected. It focuses on declarative configuration, being stateless, and being deployment
independent. In other words, your applications need to be fast, safe, and scalable.

Here’s a summary of the twelve-factor application guide:

•	 Codebase: One codebase tracked in VCS, many deploys. One app has
a single codebase and it’s tracked by a version control system like Git,
Subversion, Mercurial, etc. You can do many deployments (from the
same codebase) to the development, testing, staging, and production
environments.

•	 Dependencies: Explicitly declare and isolate dependencies. Sometimes your
environments won’t have Internet connections (if it’s a private system), so
you need to think about packaging your dependencies (jars, gems, shared
libraries, etc.). If you have an internal repository of libraries, you can declare
manifest-like poms, gemfiles, bundles, etc. Never assume that you will have
everything in your final environment.

•	 Configuration: Store the config in the environment. You shouldn’t hardcode
anything that varies. Use the environment variables or a configuration server.

•	 Backing services: Treat backing services as attached resources. Connect to
services via URLs or the configuration.

•	 Build, release, run: Strictly separate build and run stages. Related to CI/CD
(Continuous Integration, Continuous Delivery).

•	 Processes: Execute the app as one or more stateless processes. Processes
should not store internal states. Share nothing. Any necessary state should
be considered a backing service.

•	 Port binding: Export services via port binding. Your application is a self-
container, and these apps are exposed via port binding. An application can
become another app service.

•	 Concurrency: Scale out via the process model. Scale by adding more
application instances. Individual processes are free to multithread.

https://www.heroku.com/
https://12factor.net/

Chapter 11 ■ MiCroserviCes

181

•	 Disposability: Maximize robustness with fast startup and graceful shutdown.
Processes should be disposable (remember they are stateless) and fault tolerant.

•	 Environment parity: Keep the development, staging, and production
environments as similar as possible. In other words, take a look at the OS
you install, and the frameworks, runtimes, or libraries versions you use.
They must be the same on each environment. This is a result of high quality
and ensures continuous delivery.

•	 Logs: Treat logs as event streams. Your apps should write to stdout. Logs are
streams of aggregated, time-ordered events.

•	 Admin processes: Run admin and management tasks as one-off processes.
Run admin processes on the platform: DB migrations, one-time scripts, etc.

Some programmers think that you need to have a cloud infrastructure in place to use
microservices, but in my opinion, you don’t need this. If you follow these principles, you will
be ready to compete with bigger companies. When you are ready to move or switch to a better
infrastructure, you are already there.

If you want to start creating microservices and follow these twelve-factor principles, it’s not
enough for a single or small team to create everything from scratch. You’ll face several changes:

•	 Cultural: We need to move away from people silos and start creating
cross-functional teams. They work better and are dedicated to solving
one-domain business scenarios. Start thinking about continuous delivery,
decentralize the decision-making, and look for team autonomy.

•	 Organizational: Create business capability teams that are cross-functional.
These teams have autonomy to make their own decisions. Create the
platform team operations, which should also be cross-functional.

•	 Technical: Get away from building monolith apps and get into microservice
architectures. Think about bounded contexts. Follow some of the principles
and practices of domain-driven design. Start by using containerization, to
gain the isolation, scalability, and high performance of your app, then look
for service integrations that give you control over distribution. See Figure 11-1.

Monolith

MVC

Service A Service B Service C

HTML

Data Layer

Microservice A

Microservice B

Cassandra

Rest API

Rest API

Microservice C

MongoDB
Microservices

MySQL

AMQP

Figure 11-1. Monolith approach versus using microservices

Chapter 11 ■ MiCroserviCes

182

Spring Cloud Services
Spring Cloud Services are a set of tools/frameworks that develops microservice architectures
easily, quickly, and safely. This section covers the most common Spring Cloud services: Spring
Cloud Config, Service Registry, and Circuit Breaker.

Spring Cloud Config Server
The Config Server is an externalized application configuration service that gives you a central
place to manage your application’s external properties across environments. See Figure 11-2.

Git Repository Config Server
2. source

3. pull App A

App C

App B

1. push

Figure 11-2. Config Server

You can use the Config Server during the development phase or with your pipeline (continuous
delivery). You can manage every environment in a centralized way to access the common external
configuration, without repackaging or redeploying.

Cloud Config Server
To use the Config Server, this is what you need to do:

 1. In your pom.xml file, you need to use the following <dependency/> and
the <dependencyManagement/> tags:

...
<dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-config-server</artifactId>
</dependency>
...

<dependencyManagement>
 <dependencies>
 <dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-dependencies</artifactId>
 <version>Camden.SR6</version>
 <type>pom</type>

Chapter 11 ■ MiCroserviCes

183

 <scope>import</scope>
 </dependency>
 </dependencies>
</dependencyManagement>

At the time of this book writing, the version was Camdem.SR6. To keep
updated, take a look at the main web project found at http://projects.
spring.io/spring-cloud/.

 2. Add @EnableConfigServer:

@SpringBootApplication
@EnableConfigServer
public class ConfigServerDemoApplication {

 public static void main(String[] args) {
 SpringApplication.run(
 ConfigServerDemoApplication.class, args);
 }
}

@EnableConfigServer will create the Config Server that will get the latest
values from GitHub and process the request from the clients.

 3. Add the application.properties (or application.yml) file where the
Git repository is located by providing the URI.

Default port
server.port=8888

Spring Config Server
spring.cloud.config.server.git.uri=https://github.com/<github-username>
/your-repo-app-config.git

That’s it; you don’t need anything else. You can now run the Config Server. You can take a
look at the config-server-demo project.

Cloud Config Client
To connect to the Cloud Config Server, you need to do the following:

 1. Add the <dependency/> and the <dependencyManagement/> tags to your
pom.xml file:

...
<dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-starter-config</artifactId>
</dependency>

http://projects.spring.io/spring-cloud/
http://projects.spring.io/spring-cloud/

Chapter 11 ■ MiCroserviCes

184

...
<dependencyManagement>
 <dependencies>
 <dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-dependencies</artifactId>
 <version>Camden.SR6</version>
 <type>pom</type>
 <scope>import</scope>
 </dependency>
 </dependencies>
</dependencyManagement>

That’s it. You can now use any property like you are used to doing, either using a regular
@Value("${hello-world-message}") or via @ConfigurationProperties. You can get a
complete example in the config-client-demo project.

I think this is very straightforward solution. If you need more in-depth references, visit the
http://projects.spring.io/spring-cloud/ web site.

Service Registry
The Service Registry provides the implementation of the Service Discovery pattern. This pattern is
one of the most important features of the microservice architecture. See Figure 11-3.

Service B
Service Registry

Service A Client

1. register

3. connect

2. discover

Figure 11-3. Service Registry

When a client registers to the Service Registry, it provides metadata about itself like its host
and port number. It also keeps sending heartbeats to the Service Registry. The Service Registry
has everything in memory.

http://projects.spring.io/spring-cloud/

Chapter 11 ■ MiCroserviCes

185

Service Registry: Eureka Server
In order to use the Service Registry (the Eureka server), you need to do the following:

 1. Add the <dependency/> and the <dependencyManagement/> tags to your
pom.xml file:

<dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-starter-eureka-server</artifactId>
</dependency>
...
<dependencyManagement>
 <dependencies>
 <dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-dependencies</artifactId>
 <version>Camden.SR6</version>
 <type>pom</type>
 <scope>import</scope>
 </dependency>
 </dependencies>
</dependencyManagement>

 2. Add @EnableEurekaServer to your application:

@SpringBootApplication
@EnableEurekaServer
public class ServiceRegistryDemoApplication {

 public static void main(String[] args) {
 SpringApplication.run(
 ServiceRegistryDemoApplication.class, args);
 }
}

@EnableEurekaServer calls up a web page. You can look at
http://localhost:8761/ in your browser, as shown in Figure 11-4.

Chapter 11 ■ MiCroserviCes

186

 3. Add the following properties to application.properties (or
application.yml):

Default Server Port
server.port=8761

Eureka Configuration
eureka.instance.hostname=localhost
eureka.client.register-with-eureka=false
eureka.client.fetch-registry=false
eureka.client.service-url.defaultZone=http://${eureka.instance.
hostname}:${server.port}/eureka/

That’s it; you don’t need anything else. You can take a look at the service-registry-server-
demo project and run it. It will run in the 8761 port.

Figure 11-4. The Eureka server at http://localhost:8761

Chapter 11 ■ MiCroserviCes

187

Registering a Service Application with the Eureka Server
To register an application, follow these steps:

 1. Add the <dependency/> and the <dependencyManagement/> tags to your
pom.xml file:

<dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-starter-eureka</artifactId>
</dependency>
...
<dependencyManagement>
 <dependencies>
 <dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-dependencies</artifactId>
 <version>Camden.SR6</version>
 <type>pom</type>
 <scope>import</scope>
 </dependency>
 </dependencies>
</dependencyManagement>

 2. Add @EnableDiscoveryClient to your application:

@RestController
@SpringBootApplication
@EnableDiscoveryClient
public class ServiceRegistryServiceDemoApplication {

 public static void main(String[] args) {
 SpringApplication.run(
 ServiceRegistryServiceDemoApplication.class, args);
 }

 @GetMapping("/message")
 public String getMessage(){
 return "Hello World from a Service Discovery";
 }
}

This annotation will talk to the Eureka server automatically (the default port
is 8761).

Chapter 11 ■ MiCroserviCes

188

 3. Add the following properties to application.properties (or
application.yml):

#Server Port
server.port=8181

#Application Name
spring.application.name=simple-service

It’s important to include the application name because that’s how it will
get discovered.

You can look at the service-registry-service-demo project. If you run the application,
you should see the name SIMPLE-SERVICE listed in the Eureka server. See Figure 11-5.

Figure 11-5. The Eureka discovery

Chapter 11 ■ MiCroserviCes

189

Accessing the Service Through a Client Application
In order to access the application, follow these steps:

 1. Add the <dependency/> and the <dependencyManagement/> tags to your
pom.xml file:

<dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-starter-eureka</artifactId>
</dependency>
...
<dependencyManagement>
 <dependencies>
 <dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-dependencies</artifactId>
 <version>Camden.SR6</version>
 <type>pom</type>
 <scope>import</scope>
 </dependency>
 </dependencies>
</dependencyManagement>

 2. Use the EurekaClient class and the RestTemplate (in these examples) to
get the service.

@RestController
@SpringBootApplication
public class ServiceRegistryClientDemoApplication {
 private static Logger log =
 LoggerFactory.getLogger(
 ServiceRegistryClientDemoApplication.class);

 public static void main(String[] args) {
 SpringApplication.run(
 ServiceRegistryClientDemoApplication.class, args);
 }

 private EurekaClient discoveryClient;
 private RestTemplate restTemplate = new RestTemplate();

 ServiceRegistryClientDemoApplication(
 EurekaClient discoveryClient){
 this.discoveryClient = discoveryClient;
 }

Chapter 11 ■ MiCroserviCes

190

 @GetMapping("/")
 public String getMessageFromRemoteServer(){
 return
 restTemplate.getForObject(
 fetchServiceUrl() + "/message", String.class);
 }

 private String fetchServiceUrl() {
 InstanceInfo instance = discoveryClient
 .getNextServerFromEureka("SIMPLE-SERVICE", false);
 String serviceUrl = instance.getHomePageUrl();
 log.info(">>> Accessing: " + serviceUrl);
 return serviceUrl;
 }

}

You can look at the service-registry-client-demo project. Here, the EurekaClient uses
the getNextServerFromEureka method, passing the name of the service, in this case SIMPLE-
SERVICE. (That’s why it’s important to have an application name in the service.) It does this get a
InstanceInfo instance where you can get the actual URL, port, etc., of the service.

Using the Eureka server and the Eureka discovery clients is pretty straightforward. Of course,
this is just a simple example, but you can create multiple instances and use a ribbon (a client-side
load balancer) together with the Eureka server. If you need more information about it, visit
http://projects.spring.io/spring-cloud/.

Circuit Breaker
This is an implementation of the Circuit Breaker pattern, which prevents cascading failures and
provides a fallback behavior until the failing service returns to a normal state. See Figure 11-6.

Closed Open

Half Open

attempt
reset

trip breaker

reset

trip breaker

Figure 11-6. Circuit Breaker pattern

http://projects.spring.io/spring-cloud/

Chapter 11 ■ MiCroserviCes

191

When you apply a circuit breaker to a service, it watches for failing calls. If these failures reach
certain thresholds (which can be set programmatically), the circuit breaker opens and redirects
the calls to the specified fallback operation. This gives the failing service time to recover. This
pattern implementation is based on Netflix’s Hystrix, and the Spring Cloud team enables this
feature through annotations. See the following code:

@RestController
@SpringBootApplication
@EnableCircuitBreaker
public class CircuitBreakerServiceDemoApplication {

 public static void main(String[] args) {
 SpringApplication.run(
 CircuitBreakerServiceDemoApplication.class, args);
 }

 @Autowired
 private RestTemplate restTemplate;

 @LoadBalanced
 @Bean
 RestTemplate restTemplate() {
 return new RestTemplate();
 }

 @GetMapping("/")
 public String getMessageFromRemoteServer(){
 return this.getMessage();
 }

 @HystrixCommand(fallbackMethod = "defaultMessage")
 public String getMessage(){
 return restTemplate
 .getForObject("http://simple-service" + "/message", String.class);
 }

 public String defaultMessage(){
 return "Nothing here";
 }

}

As you can see from this code, it’s very simple to use the Circuit Breaker pattern. You just add
@EnableCircuitBreaker and @HystrixCommand, passing the fallback method as a parameter. If
the service you try to use is not available, it will use the defaultMessage method instead until the
service is back up and running.

The Hystrix dashboard can help you monitor your services and get metrics from them.
You need to add the spring-boot-actuator and spring-cloud-starter-hystrix-dashboard
dependencies to use the dashboard. If you need more information about getting this dashboard,
visit http://projects.spring.io/spring-cloud/.

http://projects.spring.io/spring-cloud/

Chapter 11 ■ MiCroserviCes

192

I know there are more services than the Spring Cloud project offers, but those will be for
another book. You have now the tools you need to create microservice solutions.

About Reactive Programming
So far I’ve showed you some Spring services that can be used to meet some of the twelve-factor
guidelines and to move toward microservice architectures. This section explains where reactive
programming fits in to all of this.

Remember that one of the most important features of microservices is the ability to
communicate with other microservices, including with legacy systems. Imagine for a moment
that your microservice app requires access to several systems at once, and you already have a
client that makes several calls to aggregate everything. At some point, this app becomes very
chatty (via network latency, concurrency, blocking, etc.) and you don’t have only one client
making this kind of request. You now have millions of requests. How do you deal with this?

That’s where reactive programming enters. It solves this problem using a particular pattern,
called an API Gateway.

Observable<MarketExchangeRates> details = Observable.zip(
 localService.getExchangeRates("usd"),
 yahooFinancialService.getGlobalRates("mxn","jpy"),
 googleFinancialService.getEuropeExchangeRates(),
 (local, yahoo, google) -> {
 MarketExchangeRates exchangeRates = new
 MarketExchangeRates();
 exchangeRates.setLocalMarket(local.getRates());
 exchangeRates.setEurope(google.getRates({"eur","gpb"}));
 exchangeRates.setGlobal(yahoo.getRate());
 return exchangeRates;
 }
);

You can see from the previous code that you can do several tasks in parallel and can avoid
resource issues like network hops and latency, concurrency, and blocking. Keep in mind that
every service like yahooFinacialService can have a Service Config, can be registered itself to a
Service Registry, and can expose default methods in the case of a failure (a circuit breaker).

Summary
This chapter covered the microservices architecture and the challenges you need to face to design
native cloud applications.

You learned how Spring Cloud services can help you create fast and easy native cloud
applications with the power of Spring Boot, all through messaging. Now you have a better
understanding why messaging is important for every architecture and integration solution.

193© Felipe Gutierrez 2017
F. Gutierrez, Spring Boot Messaging, DOI 10.1007/978-1-4842-1224-0

��������� A
Actor Models, 164
Admin processes, 181
Advanced Messaging Queuing Protocol

(AMQP)
bindings, 60
blocking/unblocking

events, 76–77
consumer, 131
exchanges, 59–60
integration example, 128, 130
multi-listeners, 78–79
producer, 130
queue, 60
RabbitMQ (see RabbitMQ)
retries, 79
transactions, 78
types of exchanges, 60–61

Aggregator, 113
Annotation-based programming

model, 173–175
Apache ActiveMQ

application.properties, 47
jms-demo application, 49
queue, 49
remote broker, 46–50
reply to, 51–57

RateSender, 52
topics, 55–56

Apache Kafka, 134–135
API binder, 135
API Gateway, 192
Application model, 135–136
Aspect-Oriented Programming (AOP), 8
Asynchronous messaging, 2
Async processing, 164

��������� B
Bill of Materials (BOM), 10
Blocking/unblocking events, 76–77
Broker, 1

��������� C
Channel adapters, 113
Circuit breaker pattern, 190–191
Contract patterns, 4
Create, Read, Update and Delete (CRUD), 12
CurrencyController.java class, 13

��������� D
Data-source, 126
Direct exchange, 60
Domain Specific Language (DSL), 114–116

��������� E
Enterprise Integration Patterns: Designing,

Building and Deploying Messaging
Solutions (book), 111

Eureka server
register service application, 187–188
steps, 185–186

@EventListener annotation, 27–28

��������� F, G
Fanout exchange, 61
File integration, 124–128
Functional-based programming model

HandlerFunctions, 175
RouterFunctions, 175
server, 175

Index

■ INDEX

194

��������� H
HandlerFunctions, 175
Headers exchange, 61
Hystrix dashboard, 191

��������� I
Integration flow, 114

��������� J, K, L
Java Config, 121
Java Message Service (JMS)

annotations, 42
Apache ActiveMQbroker (see Apache

ActiveMQ)
consumer, 38–41
currency project, 43–46
jndi.properties, 33
point-to-point messaging (see Point-to-

point messaging model)
point-to-point receiver, 33–34
producer, 36–38
publish-subscribe messaging (see

Publish-subscribe messaging model)
rest-api-jms, 57

Java Persistence API (JPA), 8
JDBC integration, 124–128
JSON serialization, 88–92

��������� M, N
Message channel patterns, 4
Message-driven pojos (MDPs), 83
Message/messaging

asynchronous, 2
channel, 112
construction patterns, 4
decoupled, 2
delivery method, 1
endpoint, 113

aggregator, 113
channel adapters, 113
filter, 113
router, 113
service activator, 113
splitter, 113
transformer, 113

high availability, 2
interoperability, 2

models, 3–5
overview, 1
patterns, 4–5
publication, 83
scalable, 2
Spring Framework, 5
Spring Integration, 112
synchronous, 83
type patterns, 4

Microservices, 133–134, 162
cloud-stream-processor-demo, 156–157
cloud-stream-sink-demo, 157–159
cloud-stream-source-demo, 155–156
example, 154
mobility, 179
monolith approach vs., 181
safety, 179
scalability, 179
speed, 179

Multiple clients, 111

��������� O
Observer pattern, 17–18

Spring Framework, 18
Opinionated technology, 7, 11

��������� P, Q
PING command, 82, 87
Plain Old Java Object (POJO), 115
Point-to-point messaging

model, 3, 31–32, 112
pom.xml file, 10–11
Port binding, 180
PSUBSCRIBE currency

command, 82
Publisher commands, 81–82
Publish-subscribe messaging

model, 3, 32, 34–35, 112, 135

��������� R
RabbitMQ, 113, 128, 130–131

annotations, 69–70
consumer, 67–68
features, 62
flow control, 76
producer, 63–65, 67
reply management, 75
RPC (see Remote Procedure Call (RPC))

■ INDEX

195

RabbitMQ Web Management
processor

application logs, 150
changing to text/plain, 151
exchanges tab, 147
publish message, 149
queues tab, 148
uppercase, 152

source
bindings tab, 143
exchanges tab, 141
messages, 145
overview tab, 144
queues tab, 142

Rate.java Class, 11
RateRepository.java Class, 12
Reactive programming, 163, 192

async processing, 164
external service calls, 163
high concurrent messaging, 163
reactor, 170

ReactiveX, 164
reactor-demo project, 170–172
REmote DIctionary Server (Redis)

-cli monitor/subscriber, 91
commands, 81–82
message broker, 81–82
publisher commands, 81–82, 86, 88
subscriber commands, 81–85

Remote Procedure Call (RPC)
application, 72
configuration, 73–74
request-response

protocol, 70
RpcClient, 71
RpcServer, 72

Rest API currency project
console logs, 21–22
custom events, 23–24, 26–27
URL, 22

RestApiDemoApplication.java Class, 13
rest-api-demo project, 8–9
Restful API

endpoints, 9
Spring Boot, 8

RouterFunctions, 175
Routing patterns, 4
RxJava

-demo project, 164–165, 167, 169–170
vs. reactor, 173

��������� S
Scale, 180
Server Sent Events (SSE)

technology, 175
Service activator, 113
Service calls, external, 163
Service consumer patterns, 4
Service Provider Interface (SPI), 135
Service Registry

access application, 189–190
Eureka server, 185–186, 188

Simple messaging process, 1
Simple/Streaming Text Oriented Message

Protocol (STOMP), 94
AnotherController, 104
application, 107
browser’s developer console, 106
configuration, 102–103
RabbitMQ, 108–109

Sink model, 137–138, 153–154, 160
SockJS, 101
Spreadsheets/cells, 163
Spring 5

WebFlux framework
annotation-based programming

model, 173–175
functional-based programming

model, 175–176, 178
Spring ApplicationEvent

events, 18–19
hierarchy, 18

Spring ApplicationListener, 19–20
Spring Boot

features, 7–8
Restful API, 8

Spring Boot Currency Web App
deploy, 15
run, 15

Spring Cloud services
Config Server

client, 183–184
cloud, 182–183
Service Registry, 184–186, 188

Spring Cloud Stream
application model, 135–136
applications starters, 160–161
binder abstraction, 135
binder API, 135
consumer groups, 135

■ INDEX

196

features, 134
partitioning support, 135
pom.xml file, 133–134
processor, 137, 146–150, 152–153
projects, 133
publish/subscribe model, 135
RabbitMQ Web Management, 134, 136,

140–145
sink model, 137–138
source, 137, 139, 141–145

Spring Data Redis module
publisher, 86, 88
subscriber, 83–85

Spring Framework, 5
Spring Integration module

annotations, 118, 120
file integration, 121–124
integration annotations, 119
Java Config, 121
primer

message, 112
message channel, 112
message endpoint, 113

usingDSL (see Domain Specific
Language (DSL))

XML, 116, 118
Spring Tool Suite (STS), 8, 15, 116
StringRedisTemplate class, 86
Subscribe model, 135
Subscriber commands

code, 84
MDPs, 83
Redis interaction with, 82

Synchronous messages, 83

��������� T
TCP, 93
Topic exchange, 61
@TransactionalEventListener, 29–30
Transformation patterns, 4
Twelve factor apps

admin processes, 181
backing services, 180

build, release, run, 180
codebase, 180
concurrency, 180
configuration, 180
cultural, 181
dependencies, 180
disposability, 181
environment parity, 181
logs, 181
organizational, 181
port binding, 180
processes, 180
technical, 181

��������� U, V
UNIX, 179

��������� W
Web archive (WARs), 7–8, 10
WebFlux framework

annotation-based programming
model, 173–175

functional-based programming
model, 175–176, 178

WebSockets
CurrencyController, 109
currency exchange, 110
low-level

application, 101
browser’s developer console, 99
components, 95
configuration, 95
handler, 96
snippet, 96–97

RateWebSocketsConfig, 109
STOMP, 94
TCP, 93

��������� X, Y, Z
XML, 116, 118

channel, 126
data-source, 126
query, 126

Spring Cloud Stream (cont.)

	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Chapter 1: Messaging
	Messaging
	Messaging Use Cases
	Messaging Models and Messaging Patterns
	Point-to-Point
	Publish-Subscribe
	Messaging Patterns

	Messaging with Spring Framework
	Summary

	Chapter 2: Spring Boot
	What Is Spring Boot?
	Spring Boot’s Features

	Restful API with Spring Boot
	The rest-api-demo Project
	The pom.xml File
	The Rate.java Class
	The RateRepository.java Class
	The CurrencyController.java Class
	The RestApiDemoApplication.java Class
	Other Files…

	Running the Spring Boot Currency Web App
	Deploying the Spring Boot Currency Web App

	More About Spring Boot
	Summary

	Chapter 3: Application Events
	The Observer Pattern
	The Spring ApplicationEvent
	Spring ApplicationListener
	Rest API Currency Project
	Custom Events

	Using Event Listeners with Annotations
	@EventListener
	@TransactionalEventListener

	Summary

	Chapter 4: JMS with Spring Boot
	JMS
	JMS with Java

	JMS with Spring Boot
	Producer
	Consumer
	Consumer with Annotations
	Currency Project
	Using a Remote Apache ActiveMQ Broker

	Reply-To
	Topics

	Currency Project
	Summary

	Chapter 5: AMQP with Spring Boot
	The AMQP Model
	Exchanges, Bindings, and Queues

	RabbitMQ
	RabbitMQ with Spring Boot
	Producer
	Consumer
	Consumer Using Annotations

	RPC
	Reply Management
	Flow Control
	Blocking/Unblocking Events

	More Features
	Currency Project
	Summary

	Chapter 6: Messaging with Redis
	Redis as a Message Broker
	Publish/Subscribe Messaging with Redis
	Subscriber
	Publisher
	JSON Serialization

	The Currency Project
	Summary

	Chapter 7: Web Messaging
	WebSockets
	Using WebSockets with Spring
	Low-Level WebSockets
	Using SockJS and STOMP
	Chat Room Application

	Using RabbitMQ as a STOMP Broker Relay
	Currency Project
	Summary

	Chapter 8: Messaging with Spring Integration
	Spring Integration Primer
	Programming Spring Integration
	A Simple Spring Integration Example
	Using DSL
	Using XML
	Using Annotations
	Using Java Config

	File Integration Example
	File and JDBC Integration Example
	AMQP Integration Example
	AMQP Producer
	AMQP Consumer

	Currency Exchange Project
	Summary

	Chapter 9: Messaging with Spring Cloud Stream
	Spring Cloud
	Spring Cloud Stream
	Spring Cloud Stream Concepts

	Spring Cloud Stream Programming
	cloud-stream-demo
	Source
	Processor
	Sink

	Microservices
	Example Features
	cloud-stream-source-demo
	cloud-stream-processor-demo
	cloud-stream-sink-demo

	Spring Cloud Stream App Starters
	source:http
	sink:log

	Currency Project
	What’s Next?
	Summary

	Chapter 10: Reactive Messaging
	Reactive Programming
	RxJava
	The rxjava-demo Project

	Reactor
	The reactor-demo Project

	Spring 5: WebFlux Framework
	Programming Models
	Annotation-Based Programming Model
	Functional-Based Programming Model
	RouterFunctions, HandlerFunctions, and Server

	Summary

	Chapter 11: Microservices
	What Microservices Are
	The Twelve Factor Apps
	Spring Cloud Services
	Spring Cloud Config Server
	Cloud Config Server
	Cloud Config Client

	Service Registry
	Service Registry: Eureka Server
	Registering a Service Application with the Eureka Server
	Accessing the Service Through a Client Application

	Circuit Breaker

	About Reactive Programming
	Summary

	Index

