
www.allitebooks.com

http://www.allitebooks.org

TIBCO Spotfire –
A Comprehensive Primer

Create innovative enterprise-class informatics solutions
using TIBCO Spotfire

Michael Phillips

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

[FM-2]

TIBCO Spotfire – A Comprehensive Primer

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: February 2015

Production reference: 1130215

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78217-640-4

www.packtpub.com

www.allitebooks.com

www.packtpub.com
http://www.allitebooks.org

[FM-3]

Credits

Author
Michael Phillips

Reviewers
Andrew Berridge

Colin Gray

Sameer Sheth

Tommy O'Dell

Commissioning Editor
Amarabha Banerjee

Acquisition Editor
Subho Gupta

Content Development Editor
Anand Singh

Technical Editor
Ryan Kochery

Copy Editors
Pranjali Chury

Puja Lalwani

Nithya P.

Adithi Shetty

Project Coordinator
Akash Poojary

Proofreaders
Maria Gould

Kevin McGowan

Jonathan Todd

Indexer
Tejal Soni

Production Coordinator
Shantanu N. Zagade

Cover Work
Shantanu N. Zagade

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

[FM-5]

Foreword

Before I begin, I need to make a quick disclaimer: although I am a Spotfire
consultant working for TIBCO, this foreword and the rest of the book have been
written completely independently of TIBCO, and any views or opinions expressed
herein are my own and those of the author and do not represent TIBCO's official
policy or statements in any way.

I met Michael Phillips, the author of this book, during my first Spotfire consulting
engagement. Very quickly, we established an excellent working relationship and
were always bouncing ideas off each other as to how we could exploit Spotfire to
its fullest!

Spotfire is unique in the business intelligence market in the way that it supports
(and encourages) ad hoc data exploration and in the degree to which it is extensible
and customizable. Michael and I used these capabilities (and many other Spotfire
features) to deliver a first-class reporting, analytics, and data exploration system
during that consulting engagement. I believe the system we delivered was truly
innovative in its approach. It provided an unprecedented combination of data
analysis and free-form data exploration in a highly regulated environment. It guided
the users in their analysis, enabling them to monitor and report on clinical events
and findings, and yet allowed free-form exploration of the underlying data, enabling
the users to understand why the data was showing what it was. Critically, we also
allowed users to take action on the data from within Spotfire itself and monitor the
results of those actions over time.

In my experience as a Spotfire consultant, customers are passionate about the
technology. They quickly embrace the product and form centers of excellence and
Spotfire communities within their organization. The ease with which the platform
can be customized and extended, combined with the extensive range of built-in tools
and features, means that Spotfire analysts are always finding new ways to embrace
the technology and use it to deliver amazing value for their business. It never ceases
to amaze me every time I see how a new Spotfire analysis solves a critical problem
for a business. Michael's enthusiasm and desire to write a book about Spotfire
is another example of how customers and users become passionate fans of
the platform.

www.allitebooks.com

http://www.allitebooks.org

[FM-6]

This book is a comprehensive primer to Spotfire. It is a fresh approach to working
with Spotfire because it (uniquely, in my opinion) combines reference material with
practical how-to hints and tips and real-world experience and advice. Michael's
authoring style is vibrant and involving. It really feels like he is taking the reader
on a journey—right from the very start of working with Spotfire to the analytics,
best practices, and practical examples of how to construct powerful and flexible
visualization and reporting solutions.

Michael also covers some advanced topics that often don't get to see the light of
day. For example, he provides a comprehensive introduction to development using
IronPython, the scripting engine within Spotfire. In my experience, this is the single
most under-utilized part of Spotfire. It is very powerful, and yet, many people
choose not to exploit it. Using IronPython, you can configure visualizations, create
custom reports, write data to a database, and call out to external systems, to mention
just a few applications.

He also touches on statistical programming, predictive analytics, and event
analytics, providing a few practical examples in each case. Again, Michael's
unique approach means that these topics—often considered advanced and not
well-understood—are made accessible and understandable to the reader. After
reading this book, you will be a confident Spotfire user and report author, and
you will be more familiar with the terminology of data analytics and understand
where to go next to get further information.

Finally, all that remains for me to say is, enjoy the book! I hope you find it useful.

Andrew Berridge
Senior Industry Analytics Consultant, TIBCO Spotfire

www.allitebooks.com

http://www.allitebooks.org

[FM-7]

About the Author

Michael Phillips has worked with TIBCO Spotfire on a daily basis for the past
3 years, designing and building solutions for complex clinical informatics challenges.
He has a strong mix of scientific, business, and technical experience. Having gained
a PhD in biochemistry, Michael worked as a general science and medicine editor for
10 years, and also as an IT manager for 15 years, specializing over time in business
intelligence (almost 10 years now). He currently works as a clinical informatics
product manager in a dedicated innovation team at ICON plc, a large global clinical
research organization with a very strong product offering in clinical informatics.
His work spans a comprehensive range of activities from business, commercial,
and scientific analysis and strategy right through to the technical
work of building solutions in Spotfire.

He has a passion for business intelligence, particularly data visualization and
self-service data exploration. Although his IT experience is wide-ranging and he is
very comfortable with technology, he retains a strong business focus and believes
that self-service informatics is a difficult but absolutely essential challenge in today's
culture of "big data" and information on demand.

Many thanks to my friends and family for their support and
encouragement.

www.allitebooks.com

http://www.allitebooks.org

[FM-8]

About the Reviewers

Andrew Berridge is a senior Spotfire consultant. He currently works within a
team of dedicated industry analytics specialists within TIBCO. He has more than
three years' experience working with Spotfire full time, but he first touched a much
earlier version of the product back in 2000! After graduating with a first-class honors
degree in computer science from the University of Kent, he worked as a software
developer for a large pharmaceutical company for 13 years before moving to TIBCO.
During his time at the pharmaceutical company, he transitioned to a consulting role
by way of many projects and technologies. His final endeavor at the pharmaceutical
company was a data warehousing project, where he developed a solution
automatically to transform hundreds of widely different specified datasets from
clinical trials into a single, homogenized data warehouse for visualization in Spotfire.
Andrew is well versed in a wide range of programming languages, including C#,
Java, IronPython, JavaScript, and many others. Since joining TIBCO Software in 2011,
he has used the arsenal of tools and skills at his disposal to create innovative and
powerful business intelligence solutions for the most demanding of customers
and users.

Andrew is very grateful to Michael Phillips for his invitation to
work on this book. Working together with him in person and on
this excellent and informative book has been a very productive
partnership and always a pleasure.

Colin Gray has had 15 years of experience in data analysis and informatics,
and has worked in industries such as pharmaceuticals, environmental, and IT.
Throughout this time he has led data analysis projects and development methods
to make better use of data and communicate it better with others. To this end, he
has heavily employed web-based technologies and statistical packages. In more
recent years, Colin has focused on developing informatics and data analysis projects
through the use of the TIBCO Spotfire technology within the environmental sector.

www.allitebooks.com

http://www.allitebooks.org

[FM-9]

Sameer Sheth has been practicing as a senior business intelligence and data
warehousing consultant since 2004 with a proven track record of maturing business
intelligence and data management practices while conforming to evolving business
models, shifting priorities, demands, and timelines.

His primary focus has been on architectural design, development, and
implementation of enterprise performance management, business intelligence,
and data warehousing solutions across various domains, such as oil and gas, the
education sector, retail, the financial spectrum, health care, and airline industries.

Sameer has been a technical reviewer for a few books published by Packt Publishing,
such as IBM Cognos TM1 Developer's Certification Guide, IBM Cognos 10 Business
Intelligence, and IBM Cognos Business Intelligence 10.1 Dashboarding Cookbook. These
books were developed for a user to successfully understand, implement, and obtain
best return on investment on their business intelligence solution.

Tommy O'Dell is a Canadian electrical engineer turned statistician living in sunny
Perth, Western Australia. He works as a senior analyst in value-chain planning and
analysis for a large mining company. You can find him occasionally blogging about
his love of data at http://datalove.org/.

I'd like to thank Mandy, my wonderful and beautiful Aussie bride,
for her support and understanding while I work by day and pursue
my nerdy passions by night.

www.allitebooks.com

http://datalove.org/
http://www.allitebooks.org

[FM-10]

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub files
available? You can upgrade to the eBook version at www.PacktPub.com and as a print book
customer, you are entitled to a discount on the eBook copy. Get in touch with us at service@
packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a range
of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book library.
Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print, and bookmark content
• On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access PacktLib
today and view 9 entirely free books. Simply use your login credentials for immediate access.

Instant updates on new Packt books
Get notified! Find out when new books are published by following @PacktEnterprise on
Twitter or the Packt Enterprise Facebook page.

http://www.PacktPub.com
www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
mailto:service@packtpub.com
http://www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
http://www.packtpub.com/

Table of Contents
Preface 1
Chapter 1: Show Me the Data 7

Adding data to Spotfire from files 8
Importing a Microsoft Excel spreadsheet into Spotfire 9
Importing a text file into Spotfire 12
Importing other file types into Spotfire 13

Key data concept – basic row/column structure of a data table 13
Key data concept – data types 15
Using the inbuilt filters in Spotfire 16
Key data concept – data relationships 18
How to link data in Spotfire 19

How to relate two tables 20
Column matching 23

Connecting to a database 24
Using ODBC 24
How to set up an ODBC connection in Microsoft Windows 7 25
Using an ODBC connection in Spotfire 27

Key data concept – data queries 30
Anatomy of a SQL statement 30

Summary 31
Chapter 2: Visualize This! 33

Displaying information quickly in tabular form 34
Enriching your visualizations with color categorization 36
Visualizing categorical information using bar charts 38
Dividing a visualization across a trellis grid 42
Key Spotfire concept – marking 43

How to change the marking color 44
How to set the marking behavior of a visualization 45

Table of Contents

[ii]

Visualizing trends using line charts 49
Visualizing proportions using pie charts 51
Visualizing relationships using scatter plots 53
Visualizing hierarchical relationships using treemaps 61
Key Spotfire concept – filters 64
Enhancing tabular presentations using graphical tables 68
Summary 73

Chapter 3: Analyze That! 75
Framing your analysis using text areas 76
Key Spotfire concept – document properties 79
Increasing interactivity using property controls 81
Providing summary information at a glance 86
Customizing the filter panel 88
Getting details of marked items 90
Annotating data using tags and lists 90

Using lists 90
Using tags 93

Creating analysis snapshots using bookmarks 95
Summary 96

Chapter 4: The Big Wide World of Spotfire 99
An overview of Spotfire components and architecture 100
A quick guide to Administration Manager 101

Users 102
Groups and Licenses 104
Preferences 106

Using the Library Administration interface 106
Folder permissions 106
Import and Export 108

A quick tour of Information Designer 109
Data Source 110
Columns 110
Join 110
Filter 110
Procedure 111
Information Links 111

An overview of Spotfire Analyst (formerly Professional Client) 112
An overview of Spotfire Consumer (formerly web player) 114
An overview of Spotfire Business Author (new with Version 6.5) 115

Table of Contents

[iii]

Automating tasks using Automation Services 117
Running Automation Services jobs 118

An overview of system monitoring tools 118
Spotfire 6.5 119

Summary 121
Chapter 5: Source Data is Never Enough 123

Creating metrics using calculated columns 124
Basic metric 124
Dynamic metric 126

Using the Data Panel tool 130
Key data concept – dimensional hierarchies 130
Adding dimensionality to your data by defining hierarchies 131
Categorizing continuous numerical data using binning functions 132
Slicing and dicing data using hierarchy nodes 133

LastPeriods 135
Parent 135
PreviousPeriod 135
ParallelPeriod 136
NavigatePeriod 137
Intersect 138

Merging data from multiple sources 138
Insert columns 139
Insert rows 141

Key data concept – narrow tables versus wide tables 142
Transforming data structure through pivots and unpivots 143

Unpivot 143
Pivot 146

Using Spotfire's Information Designer 147
Building an information link to multiple source data tables 147
Building an information link that writes data back to a database 151

Optimizing complex data manipulations using in-database analytics 153
Selecting data for a data connection 154
Creating in-database views 155

Summary 158
Chapter 6: The World is Your Visualization 159

Applying custom expressions directly to visualization properties 160
Key Spotfire concept – difference between calculated columns
and custom expressions 161

Table of Contents

[iv]

Annotating visualizations with reference lines, fitted curves,
and error bars 163

Error bars 165
Defining color rules and organizing document color schemes 166
Slicing and dicing visualizations using hierarchy nodes 169
Mashing up data from different tables in a single visualization 174
How to create dynamic pivots using cross tables 175

Pivot aggregations 176
Cross tabulation 178

Visualizing categorical information and trends together
in combination charts 179
Visualizing statistical measures using box and whisker plots 182
Summarizing statistical measures using summary tables 186
Visualizing complex multidimensional data using heat maps 188

Heat maps 188
Dendrograms 190

Profiling your data using parallel coordinate plots 192
Exporting and publishing data and visualizations 196
Summary 198

Chapter 7: What's Your Location? 199
Creating background map layers 200
Key Spotfire concept: map chart layers 203
Key mapping concept – coordinate reference systems 204
Using automatic geocoding to accurately position locations from
your data on a map 204

Geocoding 205
Coordinate columns 207

Incorporating and using a feature layer 208
Geographic drill-down 210

Adding Web Map Service data to a map chart 213
Using the map chart for nongeographic spatial analysis 217
Summary 223

Chapter 8: The Secret Life of Python 225
Introduction to IronPython 226

Control structures 226
Libraries 227
Lists 227
Functions 227
Object orientation 227

Table of Contents

[v]

Overview of the Spotfire API 228
Some useful external libraries 229
Creating scripts 230
Referencing and manipulating the primary elements in
an analysis file 232

Pages 233
Example script 234

Visualizations 234
Example script 235

Properties 236
Example script 238

Data tables 239
Marking 239
Panels 240

How to manipulate visualization properties 240
Generic visualization properties 241

Example script 242
Axes properties 243

Example script 244
Visualization-specific properties 244
Cross table visualization 247
Table visualization 248

Script example 249
Trellising 249
Error bars 250
Reference lines and curves 251

Script example 253
How to manipulate color 253

Color by category 254
Example script 254

Color by rule 255
Example script 257

Gradient coloring 258
Coloring tables and cross tables 258

Example script 259
How to manipulate filters 259

Change a filter 260
Script example 261

Hide a filter group 262
Manipulating data already loaded into Spotfire 262

Reading a table 262
Example script 263

Table of Contents

[vi]

Marking and selecting data 264
Example script 1 264
Example script 2 265

Calculated columns 266
Example Script 266

How to add data to an analysis 267
Define a data source 267
Add a column to a table 269

Script example 270
Add rows to a table 271

Script example 271
Summary 272

Chapter 9: It's All About Self-service These Days 273
Building a guided analysis 274

Index page 275
Projections page 277
Department Performance page 280
History Arrows 283

Key data concept – metadata 284
Incorporating configurable business rules into your analysis 284

Example metadata table/spreadsheet 286
A metadata-driven self-service analytics case study 286

Metadata 288
Representative metadata content 288

Source data 289
Base template 290

KPI Page 290
IronPython scripts 291

Deployment page 292
Runtime scripts 294

Summary 296
Chapter 10: Beyond the Horizon 299

TIBCO Enterprise Runtime for R (TERR) 300
Data functions 300
Expression functions 301
Predictive modeling 301
Holt–Winters forecast 303

JavaScript 304
Mobile Metrics 306

Setting up KPI sets 307

Table of Contents

[vii]

Event analytics 307
TIBCO StreamBase 308
StreamBase and TERR 309
Contextual analysis and mobile metrics 309

Spotfire data connectors 310
Hadoop 310
Columnar databases 311
Online analytical processing 311
Teradata 312
Cisco information server 312

TIBCO Spotfire Advanced Data Services 312
Data delivery 313
Caching 313
Metadata modeling 314
Query engine 314

Summary 315
Index 317

Preface
Big data is not new, nor are data visualization and analysis. Around 5,000 years ago,
the Babylonians were using a symbolic number system and mathematical tables not
only to record and analyze mundane market information, but also to record and
process astronomical data to reach conclusions about the nature of the cosmos.

Technology has advanced considerably since the clay tablets of Babylonian times,
and more data is available then ever before, but data volume and complexity and
the techniques available to handle data are relative concepts. It has always been
challenging to derive insight and meaning from data, and it always will be.

TIBCO Spotfire is one of a handful of general-purpose analytics platforms that bring
data integration, transformation, analytics, and visualization together in a single,
enterprise-class development environment. The rich feature set and enterprise
architecture allow you to create simple, centralized dashboards from spreadsheets
or develop sophisticated self-service business intelligence frameworks that integrate
multiple "big data" sources or model specialized and varied data through advanced
analytics algorithms to develop and test new informatics hypotheses.

I have been working with Spotfire since 2011 to do all of the above in the field of
clinical research, where good data analysis and insight lead to healthier and longer
lives. I wrote this book to share my experience with you and give you a solid
grounding in the use of this amazing analytics product. I deliberately avoided using
any examples from my clinical background and instead chose to use more general,
and I hope interesting, examples to illustrate Spotfire's many capabilities.

Whether you want to do mundane business analysis or push the boundaries of data
science, this book is the beginning of your journey into Spotfire's panoramic analytics
landscape. Fasten your seatbelt if you wish but keep this chart at hand at all times!

Preface

[2]

What this book covers
Chapter 1, Show Me the Data, covers data access, starting with an Excel spreadsheet
and moving on to other data sources.

Chapter 2, Visualize This!, gets you to think about the visualization of information and
how to do this with Spotfire.

Chapter 3, Analyze That!, shows you how to quickly transform even simple analysis
into professional and powerful analytical toolkits through the addition of context
and input controls.

Chapter 4, The Big Wide World of Spotfire, looks at the main Spotfire platform
components and covers basic platform administration.

Chapter 5, Source Data is Never Enough, shows you how to use Spotfire's data tools
to transform your source data, when necessary, into a form that is more suitable for
your analysis needs.

Chapter 6, The World is Your Visualization, covers visualization types and advanced
visualization features not discussed in Chapter 2, Visualize This!.

Chapter 7, What's Your Location?, shows you how to use Spotfire's location analytics
capabilities to put geographic and other spatial context to your analysis.

Chapter 8, The Secret Life of Python, demystifies the Spotfire API and shows you how
to use IronPython to program visualization properties, data properties, and more.

Chapter 9, It's All About Self-service These Days, covers the topic of guided
analysis and presents a case study in the delivery of self-service business
intelligence frameworks.

Chapter 10, Beyond the Horizon, explores some optional and advanced Spotfire
components not covered elsewhere in this book: TIBCO Enterprise Runtime
for R, JavaScript, mobile metrics, event analytics, and advanced data services.

What you need for this book
To repeat the examples in the book exactly, you need a copy of TIBCO Spotfire
Professional 6.5 (also known as Spotfire Analyst), but you can follow many aspects
of the examples with older versions. You can download a 30-day trial of Spotfire
Analyst 6.5 from http://spotfire.tibco.com/tsc/excel/index.html. To repeat
the platform administration examples in Chapter 4, The Big Wide World of Spotfire, you
need to be an administrator in a TIBCO Spotfire Server installation.

http://spotfire.tibco.com/tsc/excel/index.html

Preface

[3]

You can download all the data and IronPython scripts used in the examples from
http://www.insidespotfire.com.

Who this book is for
If you are a business user or data professional who wants to learn how to use TIBCO
Spotfire to develop business intelligence (BI) and analytics solutions, this book is
for you. The book assumes no prior knowledge of Spotfire or even basic data and
visualization concepts. If you are a data novice, it will hold your hand through
those early tentative steps and give you the confidence and skills to become an
independent analytics practitioner with this powerful tool. If you are already a
skilled data analyst and wish to learn how to apply those skills through Spotfire, this
book will teach you the required Spotfire techniques but also challenge you to think
more deeply about how you can deliver insight in as agile a way as possible to your
BI community.

Conventions
In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "
The Spotfire.Dxp.Application namespace has a class called Visual "

A block of code is set as follows:

Get marked rows as a row selection
for marking in Document.Data.Markings:
 if marking.Name == "Marking":
 rowSelection = marking.GetSelection(dataTable)

When we wish to draw your attention to a particular part of a code block,
the relevant lines or items are set in bold:

ChangeDataTable
Declare libraries
Define the metadata table objects
Set up cursors for columns in MetadataKpis and MetadataBusinessRules

http://www.insidespotfire.com

Preface

[4]

Any command-line input or output is written as follows:

cp /usr/src/asterisk-addons/configs/cdr_mysql.conf.sample

 /etc/asterisk/cdr_mysql.conf

New terms and important words are shown in bold. Words that you see on the
screen, for example, in menus or dialog boxes, appear in the text like this: " Select
Unique values as the Color mode, which assigns one color to each region."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or might have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have
purchased from your account at http://www.packtpub.com. If you purchased
this book elsewhere, you can visit http://www.packtpub.com/support and
register to have the files e-mailed directly to you. You can also download code
from http://www.insidespotfire.com.

feedback@packtpub.com
www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com/support
http://www.insidespotfire.com

Preface

[5]

Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/
diagrams used in this book. The color images will help you better understand the
changes in the output. You can download this file from: http://www.packtpub.
com/sites/default/files/downloads/1234OT_ColorImages.pdf.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or
added to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

http://www.packtpub.com/sites/default/files/downloads/1234OT_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/1234OT_ColorImages.pdf
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

Show Me the Data
When you start Spotfire for the first time, your first task is to load some data. This
data can come from a file, a database, or even the clipboard. This chapter will show
you how to get started quickly with a Microsoft Excel spreadsheet and move on to
work with other data sources.

Data is at the heart of all analysis, and it's important that you know, not only how
to load data into Spotfire, but also how data works. If you handle a lot of data in
spreadsheet form, you will no doubt understand its content and meaning very well.
You might even have developed advanced and insightful representations of your
data. However, there is so much more you can do with Spotfire to improve the
handling of this subject matter.

Importing data into Spotfire is just the beginning. To progress into its rich analytic
world, you will have to become familiar with the relational database model. You
will have to learn some formal data concepts. We will therefore spend some time
taking a look at some basic database principles to set you on your way to advance
quickly beyond the limited world of the spreadsheet.

At the end of the chapter, you will have built a solid foundation to work through
the more visually exciting tutorials in this book, and indeed, for your future use
of Spotfire as an everyday analysis tool. What's more, you'll be very pleasantly
surprised at how easy it is to get started.

Before we begin, please read the preface if you haven't already done so. It contains
some important prerequisites for the examples we will cover in this and later
chapters. This chapter does not go into any detail about the Spotfire platform,
focusing instead on the manipulation and analysis of data. You should find this a
more rewarding and productive starting point. We will cover the TIBCO Spotfire
platform in detail in Chapter 4, The Big Wide World of Spotfire.

Show Me the Data

[8]

In this chapter, we will cover the following topics:

• Adding data to Spotfire from files
• Key data concept—basic row/column structure of a data table
• Key data concept—date types
• Using the inbuilt filters in Spotfire
• Key data concept—data relationships
• Linking data in Spotfire
• Connecting directly to a database
• Key data concept—data queries

Adding data to Spotfire from files
There are usually several ways to achieve the same result in Spotfire and, as you
learn to use the tool, you will develop your own preferences. When you launch
Spotfire, you will see all the main options to load data.

From the opening menu, you can use the Open File icon or the Add Data Tables
icon. If you look at the main menu bar, you'll notice the File option. If you select this
option, you should see the Open and Add Data Tables… options. Similarly, if you
look at the icon bar just below the main menu bar, you'll notice symbols to open a file
and add data tables. Hover your mouse over the icons and you will get a description
of their functions.

Chapter 1

[9]

Whether you want to use the menu options or the icons is a personal preference.
The difference between opening a file and adding a data table is important, however.

Opening a file means opening a datafile or a saved Spotfire analysis file and closing
any open Spotfire file in the process. Spotfire will prompt you to save your file before
you open the new file.

Adding a data table means adding data content to an open Spotfire analysis file,
keeping all its existing content. If you simply launched Spotfire, opening a file and
adding a data table amount to the same thing but, if you want to add additional data
tables, you must use the add data table option.

Importing a Microsoft Excel spreadsheet into
Spotfire
Let's open a Microsoft Excel spreadsheet in Spotfire.

The data used is BaseballPlayerData.xls, which you can download from
http://www.insidespotfire.com or copy from the TIBCO Spotfire professional
client installation directory (~TIBCO\Spotfire\#.#\Example Data\Baseball) on
your PC. The TIBCO file is in text form, so you will need to convert it to Microsoft
Excel first.

1. Start by clicking on the folder icon (on the far left in the previous screenshot).
2. You will be presented with a standard Open file dialog, allowing you to

navigate to the spreadsheet file.

http://www.insidespotfire.com

Show Me the Data

[10]

3. Spotfire will open a dialog window asking you to confirm or change key
aspects of the Microsoft Excel file.

4. The first thing to notice is the Worksheet selection dropdown at the very
top of the dialog window. Spotfire can only import one worksheet at a time.
There is only one sheet in our file, so we can ignore this option.

5. The next thing to notice is the preview of your data and its structure. Spotfire
will automatically detect and assign column headers and data types, but
you can change any of these settings. You can also tell Spotfire not to import
specific columns or rows.

6. We want to open the file with all defaults, so we're just going to click on
OK, but please do explore the dropdown options for columns and rows and
experiment with the settings. The core philosophy of Spotfire is discovery,
so start as you mean to continue and explore all the options.

7. Once you click on OK, Spotfire will import the spreadsheet, create a
new page in your analysis, and display the data as a visualization. The
type of visualization will depend on the default option you set under
Tools|Options|Document.

8. If the data is not displayed in tabular form, then first close the visualization
by clicking on X in the upper right-hand corner and then create a Table
visualization by clicking on the New Table icon in the Spotfire toolbar.

Chapter 1

[11]

After you import the data and set up the Table visualization, you should see
the following:

Take a look at the General tab in Data Table Properties, which you
will find under the main Edit menu. The default Store data option for
the table you loaded is Linked to source. This option means that the
data always remains in the source file and is pulled into memory by
Spotfire when the analysis file is opened or the data is refreshed (using
the Refresh Data button next to the table list). To make the analysis file
more portable, you can change the status to Embedded in analysis,
which means that the data resides in the analysis independent of the
original file. Refresh Data still works and updates the embedded data
with any changes made in the source file.

9. Save your analysis file by clicking on the disk icon or by selecting Save or
Save As in the File dropdown list. Name it BaseballPlayerData. We will be
returning to this file in future examples.

www.allitebooks.com

http://www.allitebooks.org

Show Me the Data

[12]

Importing a text file into Spotfire
Ready for another example? This time, we're going to import a text file into
Spotfire, which provides some useful options for structuring text files into a
more analyzable form.

1. Follow the exact same procedure as for the Microsoft Excel spreadsheet,
except this time we are going to open the data from a text file
(BaseballPlayerData.txt, which you can download from
http://www.insidespotfire.com).

2. Once again, you will be presented with an import dialog and data preview,
but this time you will be able to customize how the file is delimited, which
means how you want to separate the information into columns. You can also
change properties related to text encoding.

3. Spotfire has correctly detected the tab separator in the text. Simply accept the
defaults and click on OK to import the text into Spotfire.

The data will display exactly as it did with the Excel import. Compare Spotfire's
output with the raw file opened in Notepad.

http://www.insidespotfire.com

Chapter 1

[13]

Importing other file types into Spotfire
Spotfire can import data from other structured file types, such as Microsoft Access
(.mdb) and SAS (.sas). The basic process to open these files is no different than it is
for Microsoft Excel and text, except Spotfire uses the data structure embedded and
defined in these files and gives you control over which parts of the data to import.

Below is an example dialog for a SAS file. The three columns we don't want to
import are highlighted. The next step is to click on the < Remove button, after which
the columns will flip to the left-hand window. When we're happy with the selections,
we click on OK, and Spotfire will import a dataset based on the selections.

Key data concept – basic row/column
structure of a data table
If you already understand the difference between rows and columns, great! You can
skip this section. If you are not sure, then read on because your understanding of this
concept is essential for data analysis and report authoring.

The columns in the dataset represent how the information has been categorized.
They exist even if there is no data. Most people these days are familiar with
Microsoft Excel. When you start a new spreadsheet, one of the first things you
probably do is decide what types of information you are going to add; for example,
First Name, Last Name, and Department in a simple human resources spreadsheet.

Show Me the Data

[14]

Once you have structured your spreadsheet in this way with column headings, you
can begin to add the actual information, row by row. Your columns don't change
in number or description, but your rows grow and shrink in number, and changes
might be made to the information at any time.

One important distinction between data tables and spreadsheet workbooks is
the way in which almost everyone manipulates the visual layout of the rows in a
spreadsheet. You might, for instance, not repeat a department value until it changes;
you might merge cells to improve the look and feel. You cannot do this with data
tables. If the department column value for the first three rows is Marketing, then
Marketing must be repeated in each row.

Data content (the values in the cells) can change, but it is always filtered and
selected through references to the column names. For example, the request, show
me all the records for Marketing, might produce zero rows or several million rows,
depending on how many records the query finds with the word Marketing in the
Department column.

In a spreadsheet, it is easy to build calculations that reference any cell in the matrix.
If you want to make a calculation in a data table, such as sale amount - cost amount,
you can only do that across each row. You cannot subtract the cost amount in one
row from the sale amount in another. This is a key distinction between data tables
and spreadsheets. It might seem like a limitation in a data table, but the discipline of
that structural integrity ultimately allows you to create very powerful analyses, and
there are ways to change the structure of a data table into new forms to support a
particular calculation requirement.

Reports and visualizations are built around column names. For example, you might
want to create a simple sales by region visualization. What you are doing is putting
the sales column against the region column and asking the visualization engine to
populate the chart or graph with whatever row values are present beneath those
columns in the given data set.

Chapter 1

[15]

Key data concept – data types
Another key data concept that is important to mention at this point is that of data
type. This concept is equally important in spreadsheets; it's just that spreadsheets
don't generally force you to declare the data type, and they allow you to mix and
match data types under individual columns. In data tables, each column must
have a single data type for all the values in all rows.

So what does data type mean? There are, in essence, three types of data:

• Numbers
• Dates
• Text

They are defined as such because they have distinct properties. Numbers can be
used in calculations, and the vast array of mathematical functions and operators can
be brought to bear on them. Text can be parsed, concatenated, counted, and arranged
into categorical hierarchies. Dates have a special meaning and can be used in time
calculations and hierarchies (year>month>day, for example).

However, life is never simple, and there are several subtypes of these data types and
a few other special data types that you need to understand.

Spotfire uses 12 data types, and all data columns imported into Spotfire must be
put into one of these categories. The following table describes the ones you will
use the most. Please consult the TIBCO Spotfire documentation for a more
technical description.

Data Type Definition
Integer Numbers with no decimal places
Real Numbers with decimal places
Date Date with no time element
DateTime Date and time combined
String Text
Boolean Logical True or False

Show Me the Data

[16]

Using the inbuilt filters in Spotfire
Spotfire's inbuilt filters offer a very powerful and immediate way to start analyzing
your data. Every time you add a data table to an analysis file, Spotfire creates a filter
for each column. Just reflect on this for a minute: if we are going to try to filter or
screen our data in some way, we have to do so on the basis of the values in one or
more of the data table's categories. That is why a filter always corresponds to a table
column and its values to whatever data currently populates that column through the
rows, or records, in the table.

Let's take a look at the baseball data we loaded earlier in this chapter.

1. Open the Spotfire analysis file you saved earlier (BaseballPlayerData.dxp)
or reload the data if necessary.

2. Look at the Filters panel on the right-hand side of the analysis. If, for some
reason, there is no Filters panel, simply go to the View menu and select
Filters. Filters cannot be deleted in Spotfire. They can be hidden from view
and configured in custom ways, but the underlying filters always remain.

3. Each of the filters has a header that describes the associated column. The values
under each heading reflect the data found in the table's rows, so the filters can
be a useful way to explore the scope of the data. For example, there are only
two possible values under League—AL and NL—that's useful to know.

Chapter 1

[17]

4. You'll notice that the filters take different forms for the different columns.
That's because Spotfire chooses from a set of six filter types to best suit the
data that is found under each column. Some columns have a small set of
unique values, such as the League column, all the rows for which have either
AL or NL; the check-box filter type is ideal for this scenario. In contrast, the
Games Played column is numeric, with values ranging from 86 to 162, so a
slider filter is more appropriate.

5. Go to the filter for At Bats and move the left and right sliders until they
define a range between 500 and 550. If you double-click on the number,
you can type in a value and then simply hit the return or enter key to
move the slider precisely.

6. Go to the filter for Runs and move the left slider up to 80.
7. What we're looking at now is records for players who were at bat between

500 and 550 times and who scored 80 runs or more. If you use the table's
horizontal scrollbar, you can move through the columns until you find the
Player column to see the players in question.

8. Notice how the other filters have adjusted to reflect the values available for
the filtered dataset and how the row status at the bottom left of the analysis
window has changed to 12 of 278 rows.

Show Me the Data

[18]

9. Explore the filters yourself to get a feel of how they work and what is
possible. To reset all filters back to their default state, simply click on the
reset filter icon or select Reset All Filters from the Edit menu.

An important point to stress here is that we haven't removed any data from the
underlying table. Our visualization—in this case, a basic table listing—has changed
and lost some rows, but as you saw, when you reset the filtering, the visualization
adjusted dynamically and displayed the refreshed results. We will cover additional
aspects of filtering as the book progresses because it is central to
the way Spotfire works.

Key data concept – data relationships
Let's quickly review what we learned so far:

• We covered how data tables are structured
• We discussed how data tables differ from spreadsheet workbooks
• We know how to load a datafile into Spotfire

Now, we're going to explore one of the most powerful aspects of data tables: linking
or relating the information in two or more different tables. Building structural links
between data tables is at the heart of the relational database model that underpins
well-known databases, such as Oracle and Microsoft SQL Server. Spotfire is not a
relational database as such, but it uses relational principles and provides some table
relationship functionality.

If you think back to our discussion of rows and columns, you should be able to
conclude that the relationships between tables are defined at the column level. In
other words, if we have a table with a Department column, we might want to relate
it to another table that also has a Department column. In plain English, we're going
to say something like "relate these two tables based on the row values found under
their respective Department columns; if you select Marketing records from one table,
the relationship will be associated with any Marketing records in the other table."

Chapter 1

[19]

An instructive corollary of this relationship—and this is a very important concept
for you to grasp—is that the row values must match perfectly but the column names
can be completely different. You can define a relationship between a "Department"
column in one table and a "Dept" column in another. There is a limit, however,
to how much you can tell the relationship engine how to interpret the values.
For example, will Marketing, marketing, and MARKETING match? You have to
explicitly define such match rules.

How to link data in Spotfire
Let's see how table relations work in practice. First, we have to add some new data.

The data used here is BaseballPlayerData.xls and BaseballTeamData.xls,
which you can download from http://www.insidespotfire.com.

1. Open the baseball analysis file you've been working with.
2. We're now going to add a second data table to the analysis, so select

Add Data Tables… from the File menu.

http://www.insidespotfire.com

Show Me the Data

[20]

3. BaseballTeamData.xls is a Microsoft Excel spreadsheet derived from the
baseball player dataset and contains team-level information only. We'll
import it just like we did in the earlier examples, accepting the column
definition defaults as before. The only difference is that, this time, you will
add the table to an existing analysis. This datafile has one row for each team
and provides aggregated values (mainly averages) for all the individual
statistics provided by the player data table.

4. After you add the data table, Spotfire automatically adds a new page with
a default visualization.

How to relate two tables
A core feature of Spotfire is the seamless way in which you can interact with
multiple visualizations based on multiple data tables. Be patient, we will move
on to the visualization part soon, in Chapter 2, Visualize This!. First, you must learn
the key technique to link or relate different tables.

We are going to relate the player data table, where each row in the data represents
an individual baseball player, with the team data table, where each row represents
a baseball team. The obvious link is the team name, so that is how we will relate the
two tables. Once related, the single row for, say, team Detroit in table 2 will be linked
to the nine rows for team Detroit in table 1.

Data granularity is an important concept. One table here has a
finer granularity (player) than the other (team). Such tables can
be related through the lowest level of granularity that they
share—team, in this case.

Chapter 1

[21]

Table relations are defined in the analysis file's Data Table Properties.

1. From the Edit menu, select Data Table Properties. The dialog that opens
shows you all the tables currently loaded into your analysis file.

Show Me the Data

[22]

2. Navigate to the Relations tab and click on the Manage Relations button and
then the New button to get to the table relations dialog.

3. Select one table as the left data table and the other as the right table; it doesn't
matter which is which. Now you need to decide how these tables are related
by selecting the columns through which to connect them. Use the dropdown
lists in each case to select Team because that is the common link between
these two data tables.

4. If you want to define a more flexible matching rule, use the Left Method and
Right method dropdown. For example, you could select Upper in both cases.
This setting will ensure that the match is case insensitive. The data will not
change, and one table might still have Detroit and DETROIT in any given
row, but they will match the relationship because they will be converted to
all uppercase for matching purposes.

Chapter 1

[23]

5. Finally, click on OK in the New Relation dialog, click on OK in the Manage
Relations dialog, and click on OK in the Data Table Properties dialog,
noting as you do that both tables have been assigned the same color index,
indicating a defined relation.

6. You can edit a relation at any time by going back to the Manage Relations
dialog, selecting the relation of interest, and clicking on Edit.

7. If you need to relate two tables on the basis of more than one column,
simply add each relation pair one by one.

Column matching
Another way to relate data in Spotfire is column matching, which is used to
determine how multiple tables should be treated when used alongside each other
in the same visualization. Spotfire will automatically match columns with the same
name, regardless of whether you defined any relationship between the two tables.

You can override Spotfire or add new column matches by performing the
following steps.

1. Navigate to the Column Matches tab.
2. You will notice the three columns already matched by Spotfire.

Show Me the Data

[24]

3. You can select and delete any of these columns using the Delete button.
4. You can edit any of the matches or you can add a new match. Spotfire will

allow you to match any pair as long as they have the same data type. In the
screenshot, Team and Position have been selected as a potential match, which
doesn't actually make any sense. It does illustrate how important it is to
understand all aspects of your data, not just its structure but also the values.

Connecting to a database
Working with text files and spreadsheets can be very convenient but, sooner or later
you are going to want to work with databases, which offer many advantages such as
scale and centralization. If you want to build scalable, enterprise analytical solutions,
you will have to maintain your source data in a database or even distributed across
multiple databases. Spotfire provides many ways to connect to databases, and you
can retrieve data simultaneously from multiple databases and files.

Up to Version 3 of Spotfire, we had the option to connect to databases such as Oracle,
Microsoft SQL Server, and Microsoft Access using standard data connectors such as
ODBC, OleDB, Oracle client, and SqlClient. Explaining how these types of connectors
work is beyond the scope of this book. You will find detailed explanations on
the Internet.

They all require database-specific drivers, which you can think of as like an operating
system plugin. Many of these drivers come bundled with operating systems; some
you will have to download and install. Again, you will find lots of help on the
Internet. The best place to look is on the websites of the various database vendors.

They all require some form of connection string, which is just a way to tell the
driver the address of your database and the credentials you are using to connect.
Most databases will require authentication before you can connect and access their
data. The website http://www.connectionstrings.com is a good starting place.
Sometimes the entire connection string is pasted as a literal string into a single
configuration box; sometimes the individual elements of the connection string are
entered into fields in configuration form; it just depends on the connector.

Using ODBC
Open Database Connectivity (ODBC) is one of the easiest drivers to use. It might
not be perfect for all applications, but it's usually a reliable way to get started. As you
gain experience, you will use other options. It might also depend on the database(s)
you wish to connect to.

http://www.connectionstrings.com

Chapter 1

[25]

There are three important prerequisites before you start:

• The relevant ODBC driver must be installed on your machine.
• You must have local administrator rights to set up the ODBC connection.
• You must have connection details for the target database, including a

username and password to authenticate.

How to set up an ODBC connection in
Microsoft Windows 7

1. Open Control Panel and then Administrative Tools. If your control panel
is organized by theme, you'll have to go into System and Security and then
into Administrative Tools.

2. In Administrative Tools, open Data Sources (ODBC) and click on the
System DSN tab.

Show Me the Data

[26]

3. Click on the Add button to configure the connector, scrolling down the list of
drivers until you find the one you need. For this example, we're interested in
the Oracle driver.

4. Click on Finish to get to the business end of the configuration.

5. Data Source Name is entirely arbitrary; it is the reference you will use in
Spotfire. The Server configuration includes a hostname, which is simply
the name of the server hosting the database; a port, usually 1521; and a DB
service name, which you can get from the database administrator. Click on
OK to finish and return to the System DSN tab, where you will see your
entry. Make sure you click on OK to exit the ODBC administration tool.

Now you are ready to use this ODBC connection to retrieve data into Spotfire.

Chapter 1

[27]

Using an ODBC connection in Spotfire
Use the File menu or the Add Data Table icon to navigate to the add data table
dialog just as you did to add data from a file, except this time you are going to select
Database rather than File.

1. Click on Database to get the Open Database dialog. We're interested in
Odbc Data Provider, so select it and click on the Configure button.

Show Me the Data

[28]

2. Select the connection name you configured in the ODBC administrator.
You'll notice that a number of connectors are defined in the next screenshot,
including one called SpotfireDev. You will need to create one of your own
for a database to which you have access.

3. Click on OK to get back to the Open Database window; notice that Spotfire
has created a connection string. Click on OK to open the database. The
database will eventually open; it may take a little time if your network
connection is slow or the database is complex. You will see a hierarchical
organization of high-level containers, in each of which you should see data
tables and their constituent columns. It's not unlike navigating a folder
system on your computer.

Chapter 1

[29]

4. You will need to have some knowledge of the database and some idea of the
data you are looking for, but Spotfire will allow you to navigate the database
objects and select whole or partial tables to import. Spotfire will also generate
the SQL automatically, but you can customize and fine-tune the SQL, adding
a where clause, for example.

5. If you click on + next to one of the main objects, such as SPOTFIRE in the
example, the entry will expand to list all the tables in that schema. You
can then scroll down to a table of interest and expand further to view the
individual columns in the table.

6. When you are happy with the selections, give the import a name. This will
be the name of the table in Spotfire. The data will load just as the files did,
except the structure of the data (column headers and data types) will be
determined by the source database.

Downloading the example code
You can download the example code files for all Packt books you have
purchased from your account at http://www.packtpub.com. If you
purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed directly to you. You
can also download code from http://www.insidespotfire.com.

http://www.packtpub.com
http://www.insidespotfire.com

Show Me the Data

[30]

Key data concept – data queries
Our final data concept in this chapter is the idea of a data query, which is usually
achieved using some flavor of SQL, a standard language to interact with databases.
Although SQL varies a little from database to database, the basic syntax is fairly
consistent. If you don't already have experience using SQL and you want to develop
your data analysis skills, you will have to learn more about this key analytics tool.

When you work with text files and spreadsheets, the only practical way you can
manipulate large amounts of data is at the column level, removing entire columns
that you don't want. What if you want to manipulate the rows in a large dataset?
In a spreadsheet, you could of course, use filters to remove rows.

Overall, however, manipulating data in this way is more tedious and potentially
more error prone than using a single SQL statement. What if you want to involve
more than one table in your "filter"? You can also take advantage of the enormous
power of databases to handle large amounts of data and process complex queries.

Anatomy of a SQL statement
A basic SQL statement has just three elements, highlighted in the following code in
all caps:

SELECT column_name_1, column_name_2, …, column_name_n
FROM schema_name.data_table_name
WHERE condition

You need to provide a schema_name. Remember when we connected to a database,
we saw a set of logical containers into which the tables were organized. These are
examples of schemas. The terminology schema may mean slightly different things in
different databases, but most organize the tables into a set of logical containers, and
you need to prefix table names in your query with the container name using a dot to
separate the two elements.

Often, a database administrator will create what is known as a view. These are
pre-written, often quite complex, queries spanning multiple tables that define a
particular dataset. As an end user, you can use them just like tables.

If you have a complex data requirement that you feel is beyond your
SQL skills, talk to a database administrator or developer and get them
to create a view for you. You can then select from the view as though it
were a single table.

Chapter 1

[31]

The SELECT and FROM clauses are mandatory, but the WHERE condition is optional and
is just a logical expression to limit the data that is returned. For example:

WHERE column_name_1 = 'some text' AND column_name_2 > 4

If you want to include more than one table in your query, you will have to use what
is known as a join.

SELECT a.column_name_1, b.column_name_2, …, etc
FROM schema_name.data_table_name_1 a
JOIN schema_name.data_table_name_2 b on a.column_name_x = b.column_
name_y
WHERE condition

Note how the aliases a and b have been used for the two tables. Aliases can be
anything you like, but are usually short and make the statement easier to write
and read.

The JOIN statement ensures that you only return rows where the join condition
is true, as well as any other condition you defined. There are other types of
joins. The following link of the w3schools website provides a helpful tutorial:
http://www.w3schools.com/sql/sql_join.asp

Summary
You have a come a long way in this chapter, and you should be pleased with the
progress you have made. By now you should know how to add data to Spotfire
from text, spreadsheet, and data files; link data in Spotfire; and connect Spotfire to
a database.

We also covered Spotfire concepts like the inbuilt filters, data table properties, and
table relations and column matches in Spotfire

Finally, you picked up a lot of essential data concepts like the basic row/column
structure of a data table, different date types, data relationships, how to use ODBC,
and data queries using SQL.

I hope this chapter has not been too dull. It is very important that you understand
data sources, how to import data into Spotfire, and how to manipulate data. Even
the most ingenious visualization or collection of visualizations is only as good as the
underlying data. If you get the data part wrong or you can't get the data you want,
you are wasting your time, at best, and grossly misleading your analytics consumers,
at worst.

This chapter is just a basic foundation in data analysis, but it is sufficient and will
serve you well to explore the more visually compelling aspects of Spotfire. Let's go
straight to Chapter 2, Visualize This! and start visualizing!

www.allitebooks.com

http://www.w3schools.com/sql/sql_join.asp
http://www.allitebooks.org

Visualize This!
Human beings are fundamentally visual in the way they process information.
I think the invention of writing was as much about visually representing our
thoughts to others as it was about record keeping and accountancy. In the modern
world, we are bombarded with formalized visual representations of information,
from the ubiquitous opinion poll pie chart to clever and sophisticated infographics.
The website http://data-art.net/resources/history_of_vis.php provides
an informative and entertaining quick history of data visualization. If you want a
truly breathtaking demonstration of the power of data visualization, seek out Hans
Rosling's The best stats you've ever seen at http://ted.com.

In the last chapter, we spent time getting to know some of Spotfire's data capabilities.
It's important that you continue to think about data; how it's structured, how it's
related, and where it comes from. Building good visualizations requires visual
imagination, but it also requires data literacy.

This chapter is all about getting you to think about the visualization of information
and empowering you to use Spotfire to do so. Apart from learning the basic features
and properties of the various Spotfire visualization types, there is much more to learn
about the seamless interactivity that Spotfire allows you to build in to your analyses.

We will be taking a close look at 7 of the 16 visualization types provided by Spotfire,
but these 7 visualization types are the most commonly used.

In this chapter, we will cover the following topics:

• Displaying information quickly in tabular form
• Enriching your visualizations with color categorization
• Visualizing categorical information using bar charts
• Dividing a visualization across a trellis grid
• Key Spotfire concept—marking

http://data-art.net/resources/history_of_vis.php
http://ted.com

Visualize This!

[34]

• Visualizing trends using line charts
• Visualizing proportions using pie charts
• Visualizing relationships using scatter plots
• Visualizing hierarchical relationships using treemaps
• Key Spotfire concept—filters
• Enhancing tabular presentations using graphical tables

Now let's have some fun!

Displaying information quickly in
tabular form
While working through the data examples in the last chapter, we used the Spotfire
Table visualization, but now we're going to take a closer look. People will nearly
always want to see the "underlying data", the details behind any visualization you
create. The Table visualization meets this need.

It's very important not to confuse a table in the general data sense with
the Spotfire Table visualization; the underlying data table remains
immutable and complete in the background. The Table visualization is
a highly manipulatable view of the underlying data table and should be
treated as a visualization, not a data table.

The data used here is BaseballPlayerData.xls

Open the baseball analysis file from Chapter 1, Show Me the Data. If you didn't save it,
just open a new analysis file and import the baseball player data.

I wrote at the very beginning of Chapter 1, Show Me the Data, that there is always
more than one way to do the same thing in Spotfire, and this is particularly true for
the manipulation of visualizations. Let's start with some very quick manipulations:

1. First, insert a table visualization by going to the Insert menu, selecting
New Visualization, and then Table.

2. To move a column, left-click on the column name, hold, and drag it.
3. To sort by a column, left-click on the column name. To sort by more than one

column, left-click on the first column name and then press Shift + left-click on
the subsequent columns in order of sort precedence.

4. To widen or narrow a column, hover the mouse over the right-hand edge
of the column title until you see the cursor change to a two-way arrow,
and then click and drag it.

Chapter 2

[35]

These and other properties of the Table visualization are also accessed via
visualization properties. As you work through the various Spotfire visualizations,
you'll notice that some types have more options than others, but there are common
trends and an overall consistency in conventions.

Visualization properties can be opened in a number of ways:

• By right-clicking on the visualization, a table in this case,
and selecting Properties.

• By going to the Edit menu and selecting Visualization Properties.
• By clicking on the Visualization Properties icon, as shown in the following

screenshot, in the icon tray below the main menu bar.

It's beyond the scope of this book to explore every property and option.
The context-sensitive help provided by Spotfire is excellent and explains
all the options in glorious detail.

I'd like to highlight four important properties of the Table visualization:

• The General property allows you to change the table visualization title,
not the name of the underlying data table. It also allows you to hide the
title altogether.

Visualize This!

[36]

• The Data property allows you to switch the underlying data table, if you
have more than one table loaded into your analysis.

• The Columns property allows you to hide columns and order the columns
you do want to show.

• The Show/Hide Items property allows you to limit what is shown by a rule
you define, such as top five hitters. After clicking on the Add button, you
select the relevant column from a dropdown list, choose Rule type (Top), and
finally, choose Value for the rule (5). The resulting visualization will only
show the rows of data that meet the rule you defined.

Enriching your visualizations with color
categorization
Color is a strong feature in Spotfire and an important visualization tool, often
underestimated by report creators. It can be seen as merely a nice-to-have
customization, but paying attention to color can be the difference between creating
a stimulating and intuitive data visualization rather than an uninspiring and even
confusing corporate report. Take some pride and care in the visual aesthetics of your
analytics creations!

Chapter 2

[37]

Let's take a look at the color properties of the Table visualization.

1. Open the Table visualization properties again, select Colors, and then
Add the column Runs.

2. Now, you can play with a color gradient, adding points by clicking on the
Add Point button and customizing the colors. It's as easy as left-clicking on
any color box and then selecting from a prebuilt palette or going into a full
RGB selection dialog by choosing More Colors….

Visualize This!

[38]

3. The result is a heatmap type effect for runs scored, with yellow representing
low run totals, transitioning to green as the run total approaches the average
value in the data, and becoming blue for the highest run totals.

Visualizing categorical information using
bar charts
We saw how the Table visualization is perfect for showing and ordering detailed
information. It's quite similar to a spreadsheet. The Bar Chart visualization is very
good for visualizing categorical information, that is, where you have categories with
supporting hard numbers—sales by region, for example. The region is the category,
whereas the sales is the hard number or fact.

Bar charts are typically used to show a distribution. Depending on your data or your
analytic requirement, the bars can be ordered by value, placed side by side, stacked
on top of each other, or arranged vertically or horizontally.

There is a special case of the category and value combination and that is where you
want to plot the frequencies of a set of numerical values. This type of bar chart is
referred to as a histogram, and although it is number against number, it is still, in
essence, a distribution plot. It is very common in fact to transform the continuous
number range in such cases into a set of discrete bins or categories for the plot. For
example, you could take some demographic data and plot age as the category and the
number of people at that age as the value (the frequency) on a bar chart. The result,
for a general population, would approach a bell-shaped curve.

Chapter 2

[39]

Let's create a bar chart using the baseball data. The data we will use is
BaseballPlayerData.xls, which you can download from http://www.
insidespotfire.com.

1. Create a new page by right-clicking on any page tab and selecting New Page.
You can also select New Page from the Insert menu or click on the new page
icon in the icon bar below the main menu.

2. Create a Bar Chart visualization by left-clicking on the bar chart icon or by
selecting New Visualization and then Bar Chart from the Insert menu.

3. Spotfire will automatically create a default chart, that is, rarely exactly what
you want, so the next step is to configure the chart.

4. Two distributions might be interesting to look at: the distribution of home
runs across all the teams and the distribution of player salaries across all
the teams.

5. The axes are easy to change; simply use the axes selectors.

http://www.insidespotfire.com
http://www.insidespotfire.com

Visualize This!

[40]

6. If the bars are vertical, it means that the category—Team, in our case—
should be on the horizontal axis, with the value—Home Runs or Salary—
on the vertical axis, representing the height of the bars.

7. We're going to pick Home Runs from the vertical axis selector and then
an appropriate aggregation dropdown, which is highlighted in red in the
screenshot. Sum would be a valid option, but let's go with Avg (Average).
Similarly, select Team from the horizontal axis dropdown selector.

The vertical, or value, axis must be an aggregation because there
is more than one home run value for each category. You must
decide if you want a sum, an average, a minimum, and so on.

8. You can modify the visualization properties just as you did for the Table
visualization. Some of the options are the same; some are specific to the bar
chart. We're going to select the Sort bars by value option in the Appearance
property. This will order the bars in descending order of value. We're also
going to check the option Vertically under Scale labels | Show labels for
the Category Axis property.

9. There are two more actions to perform: create an identical bar chart except
with average salary as the value axis, and give each bar chart an appropriate
title (Visualization Properties|General|Title:).

To copy an existing visualization, simply right-click on it and select
Duplicate Visualization.

Chapter 2

[41]

We can now compare the distribution of home run average and salary average across
all the baseball teams, but there's a better way to do this in a single visualization
using color.

1. Close the salary distribution bar chart by left-clicking on X in the upper
right-hand corner of the visualization (X appears when you hover the mouse)
or right-clicking on the visualization and selecting Close.

2. Now, open the home run bar chart visualization properties, go to the Colors
property, and color by Avg(Salary).

3. Select a Gradient color mode, and add a median point by clicking on the
Add Point button and selecting Median from the dropdown list of options
on the added point.

Visualize This!

[42]

4. Finally, choose a suitable heat map range of colors; something like blue (min)
through pale yellow (median) through red (max).

You will still see the distribution of home runs across the baseball teams, but
now you will have a superimposed salary heat map. Texas and Cleveland
appear to be getting much more bang for their buck than the NY Yankees.

Dividing a visualization across a trellis
grid
Trellising, whereby you divide a series of visualizations into individual panels, is a
useful technique when you want to subdivide your analysis. In the example we've
been working with, we might, for instance, want to split the visualization by league.

1. Open the visualization properties for the home runs distribution bar chart
colored by salary and select the Trellis property.

Chapter 2

[43]

2. Go to Panels and split by League (use the dropdown column selector).

Spotfire allows you to build layers of information with even basic
visualizations such as the bar chart. In one chart, we see the home run
distribution by team, salary distribution by team, and breakdown
by league.

Key Spotfire concept – marking
It's time to introduce one of the most important Spotfire concepts, called marking,
which is central to the interactivity that makes Spotfire such a powerful analysis tool.
Marking refers to the action of selecting data in a visualization. Every element you
see is selectable, or markable, that is, a single row or multiple rows in a table, a single
bar or multiple bars in a bar chart.

You need to understand two aspects to marking. First, there is the visual effect, or
color(s) you see, when you mark (select) visualization elements. Second, there is the
behavior that follows marking: what happens to data and the display of data when
you mark something.

Visualize This!

[44]

How to change the marking color
From Spotfire v5.5 onward, you can choose, on a visualization-by-visualization basis,
two distinct visual effects for marking:

• Use a separate color for marked items: all marked items are uniformly
colored with the marking color, and all unmarked items retain their
existing color.

• Keep existing color attributes and fade out unmarked items: all marked items
keep their existing color, and all unmarked items also keep their existing
color but with a high degree of color fade applied, leaving the marked items
strongly highlighted.

The second option is not available in versions older than v5.5 but is the default
option in Versions 5.5 onward.

The setting is made in the visualization's Appearance property by checking or
unchecking the option Use separate color for marked items. The default color
when using a separate color for marked items is dark green, but this can be changed
by going to Edit|Document Properties|Markings|Edit. The new option has the
advantage of retaining any underlying coloring you defined, but you might not like
how the rest of the chart is washed out. Which approach you choose depends on
what information you think is critical for your particular situation.

When you create a new analysis, a default marking is created and applied to every
visualization you create by default. You can change the color of the marking in
Document Properties, which is found in the Edit menu. Just open Document
Properties, click on the Markings tab, select the marking, click on the Edit button,
and change the color.

Chapter 2

[45]

You can also create as many markings as you need, giving them convenient names
for reference purposes, but we'll just focus on using one for now.

How to set the marking behavior of
a visualization
Marking behavior depends fundamentally on data relationships. The data within
a single data table is intrinsically related; the data in separate data tables must be
explicitly related before you configure marking behavior for visualizations based on
separate datasets.

When you mark something in a visualization, five things can happen depending on
the data involved and how you configured your visualizations:

Conditions Behavior
Two visualizations with the same underlying
data table (they can be on different pages
in the analysis file) and the same marking
scheme applied.

Marking data on one visualization will
automatically mark the same data on
the other.

Two visualizations with related underlying
data tables and the same marking
scheme applied.

The same as the previous condition's
behavior, but subject to differences in
data granularity. For example, marking
a baseball team in one visualization will
mark all the team's players in another
visualization that is based on a more
detailed table related by team.

Two visualizations with the same or related
data tables where one has been configured
with data dependency on the marking in
the other.

Nothing will display in the marking-
dependent visualization other than what
is marked in the reference visualization.

Visualizations with unrelated underlying
data tables.

No marking interaction will occur, and
the visualizations will mark completely
independently of one another.

Two visualizations with the same underlying
data table or related data tables and with
different marking schemes applied.

Marking data on one visualization will not
show on the other because the marking
schemes are different.

Visualize This!

[46]

Here's how we set these behaviors:

1. Open the visualization properties of the bar chart we have been working
with and navigate to the Data property.

2. You'll notice that two settings refer to marking: Marking and Limit data
using markings.

3. Use the dropdown under Marking to select the marking to be used for the
visualization. Having no marking is an option. Visualizations with the same
marking will display synchronous selection, subject to the data relation
conditions described earlier.

4. The options under Limit data using markings determine how the
visualization will be limited to marking elsewhere in the analysis.
The default here is no dependency. If you select a marking, then the
visualization will only display data selected elsewhere with that marking.

It's not good to have the same marking for Marking and Limit data
using markings. If you are using the limit data setting, select no
marking, or create a second marking and select it under Marking.

Chapter 2

[47]

You're possibly a bit confused by now. Fortunately, marking is much harder to
describe than to use! Let's build a tangible example.

1. We'll start a new analysis, so close any analysis you have open
and create a new one, loading the player-level baseball data
(BaseballPlayerData.xls).

2. Add two bar charts and a table. You can rearrange the layout by left-clicking
on the title bar of a visualization, holding, and dragging it. Position the
visualizations any way you wish, but I would suggest placing the two bar
charts side by side, with the table below them spanning both.

Save your analysis file at this point and at regular intervals. It's
good behavior to save regularly as you build an analysis. It will
save you a lot of grief if your PC fails in any way. There is no
autosave function in Spotfire.

3. For the first bar chart, set the following visualization properties:

Property Value
General | Title Home Runs

Data | Marking Marking
Data | Limit data using markings Nothing checked
Appearance | Orientation Vertical bars
Appearance | Sort bars by value Check
Category Axis | Columns Team
Value Axis | Columns Avg(Home Runs)
Colors | Columns Avg(Salary)
Colors | Color mode Gradient

Add Point for median
Max = strong red; Median = pale
yellow; Min = strong blue

Labels | Show labels for Marked Rows
Labels | Types of labels | Complete
bar

Check

Visualize This!

[48]

4. For the second bar chart, set the following visualization properties:

Property Value
General | Title Roster

Data | Marking Marking
Data | Limit data using markings Nothing checked
Appearance | Orientation Horizontal bars
Appearance | Sort bars by value Check
Category Axis | Columns Team
Value Axis | Columns Count(Player Name)
Colors | Columns Position
Colors | Color mode Categorical

5. For the table, set the following visualization properties:

Property Value
General | Title Details

Data | Marking (None)
Data | Limit data using markings Check Marking

Columns Team, Player Name, Games
Played, Home Runs, Salary,
Position

Now start selecting visualization elements with your mouse. You can click on
elements such as bars or segments of bars, or you can click and drag a rectangular
block around multiple elements.

Chapter 2

[49]

When you select a bar on the Home Runs bar chart, the corresponding team bar
automatically selects the Roster bar chart, and details for all the players in that team
display in the Details table. When you select a bar segment on the Roster bar chart,
the corresponding team bar automatically selects on the Home Runs bar chart and
only players in the selected position for the team selected appear in the details.

There are some very useful additional functions associated with marking, and
you can access these by right-clicking on a marked item. They are Unmark, Invert,
Delete, Filter To, and Filer Out. You can also unmark by left-clicking on any blank
space in the visualization.

Play with this analysis file until you are comfortable with the marking concept
and functionality.

Visualizing trends using line charts
The Line Chart visualization is typically used to show trends, usually trends over
time, but any functional relationship will work; infant mortality rate versus GDP per
capita, for example. In many ways, the line chart is just what we would have called
a graph in science class, plotting y against x and connecting the dots.

Visualize This!

[50]

We need some new data to create a classic temporal line chart. I pulled some market
interest rate data for the Czech Republic, Sweden, and the United Kingdom from the
European Commission's Eurostat website. The plots illustrate the banking crisis that
hit Sweden in 1992 and the Czech currency crisis of May 1997.

1. Open the analysis file you've been working on or start a new analysis file,
and import the Excel file containing the data (MoneyMarketInterestRates.
xls, which you can download from http://www.insidespotfire.com).

2. Now create a new page in the analysis, and add a Line Chart visualization,
using either the Insert menu or the line chart icon in the icon tray.

3. You have a choice now. You can open the visualization properties and make
the necessary settings there, or you can use the dropdowns available directly
in the visualization. If you added the market interest rate data to an existing
analysis file containing baseball data, Spotfire would pick the baseball data
by default, and you would have to change the data table assigned to the
visualization. Depending on your visualization settings, you may have a
data table selector in the legend. If you don't, you can change the data table
through the visualization properties.

4. In either case, here are the settings you need to make:

Property Value
Date table MoneyMarketInterestRates
X-axis Time
Y-axis One-Month Rate
Line By Country
Color By Country

http://www.insidespotfire.com

Chapter 2

[51]

5. Explore some of the other properties, such as displaying markers. The data
has a monthly granularity, so you'll see a lot of markers. If you like the look,
you can also modify the width of the line and the size of the markers. The
settings in the visualization properties are all pretty obvious.

As an exercise, try creating a bar chart with the same data to show the trend. The
best I could do was to a trellis. I think line charts are simply much better at showing
trends, but sometimes the data or the purpose of your analysis can make a difference,
so always keep an open mind.

Visualize This!

[52]

Visualizing proportions using pie charts
The Pie Chart visualization is useful for showing simple proportions for a limited
number of variables. If you have four values to compare, then the familiar pie slices
can be a powerful visual aid. Increase to ten values of near-equal proportion, and
you lose the audience. The slices must also be mutually exclusive and add up to a
meaningful whole, such as 100 percent. The popular media are guilty of presenting
opinion poll pie charts that add up to more than 100 percent.

Also, because the proportions are determined by angles and triangular section areas,
people have difficulty accurately estimating the proportions, especially when they
are close. Therefore, pie charts are almost always labeled with numbers. There is
an excellent article at http://eagereyes.org/techniques/pie-charts on the
advantages and limitations of the pie chart.

Let's look at the pie chart in Spotfire.

The data we'll use here is BaseballPlayerData.xls, which you can download from
http://www.insidespotfire.com.

1. Create a new page in your analysis and add a Pie Chart visualization using
the Insert menu or the pie chart icon (I'll leave you to pick it out).

2. Use the baseball player data table, color the pie chart by position, and select
Sum(Runs) for the Size property. Sector percentage labels are shown by
default, but do explore the other label options.

3. Duplicate the pie chart, and change the Size property to Sum(Stolen Bases).
4. Finally, create two bar charts that replicate the two pie charts you

just created.

Which charts do you think provide the best visual insight into the data? Pay
particular attention to the total runs for Third Base (3B), Right Field (RF), Center
Field (CF), Left Field (LF), and Short Stop (SS), particularly if you remove the labels
from the pie chart. Is the stolen bases pie chart the better of the two pie charts? Why?

http://eagereyes.org/techniques/pie-charts
http://www.insidespotfire.com

Chapter 2

[53]

Visualizing relationships using scatter
plots
The Scatter Plot visualization, for me, is one of the most powerful and versatile
analytic tools in your visualization tool kit. The scatter plot's main strength is in the
exploration of relationships between variables, height and weight, for example. Using
just the x- and y-axes, you can conduct a simple two-dimensional analysis. However,
the color, shape, size, and trellis properties provided by Spotfire offer the potential to
increase the dimensionality of your analysis when it makes sense to do so.

Visualize This!

[54]

As well as visualizing the correlation (or lack of correlation) between two variables,
a scatter plot can reveal unusual and nonlinear trends, clusters, gaps, and, crucially,
outliers in the data.

Let's take another look at the baseball data. Remember we looked at run totals and
salary levels for the different teams using a bar chart, and we were able to get a
sense of how much value for money the different teams appeared to be getting.
The scatter plot allows you to take a more analytical look at such questions:
Is there any correlation between the salary paid and home runs achieved?

1. Return to the analysis file you've been working on or create a new analysis
file and import the player data.

2. Create a new page and insert a scatter plot, using either the New
Visualization option from the Insert menu or the scatter plot icon in the
toolbar just below the main menu. Spotfire will create a default visualization,
but it won't be the one we want and you'll need to change a few settings.

3. Like the other visualization types we looked at, you can open up the full
visualization properties dialog (Edit | Visualization Properties) for the
scatter plot and work your way through the options you need to configure or
you can work directly on the visualization for many of the properties, such as
axes, data table, marking, color, and others.

4. Try the following settings to begin with:

Property Value
Date table BaseballPlayerData
X-axis Salary
Y-axis Home Runs

This is the basic plot we want—Home Runs vs. Salary—but it's not quite
right because Spotfire has chosen a Color by setting (probably player
position), and each dot (or bubble) represents a single row in the table.
The granularity of the table is at the player level, so we are currently looking
at the correlation between individual player salaries and individual home
runs scored.

This initial plot is a perfectly valid analysis and shows a weak correlation
between salary paid and home runs scored, but it is a little noisy. It might be
better to remove the color for now and raise the granularity to the team level.

Chapter 2

[55]

5. Make some further settings as follows:

Property Value
Marker by Team
X-axis Sum(Salary)
Y-axis Sum(Home Runs)
Color by None (select Remove)
Labels Label By | UniqueConcatenate(Team)

Show labels for | Marked rows

6. In addition, to make the x-axis salary figures more readable, make the
following change to the Formatting property:

The plot resulting from these changes is a bit more coherent. Each spot now
represents a team, and the analysis looks at the total home run count for
each team against the total salaries paid by each team. There is a potential
nonlinear but positive correlation between salary and home runs, especially
if we discount a number of outlier teams (marked).

Visualize This!

[56]

Outliers can and should ultimately be identified using statistical methods,
but the scatter plot provides a quick, if subjective, way to look for trends and
outliers. You can make your own mind up as to whether too many teams are
discounted in the screenshot to highlight a perceived trend in the data.
The next step would be to perform a statistically robust analysis.

Marker by is an important property of scatter plots and allows
you to aggregate up to broader levels of granularity, assuming the
reference points are in the data. In our baseball example, we have
player, team, and league references. Note that the granularity of the
visualization is determined by the Marker by setting, whereas the
actual number of bubbles is affected by any Color by and Shape by
settings. If there are seven player positions, and you mark by team
and color by position, you will see up to seven bubbles per team.

Chapter 2

[57]

Let's increase the dimensionality of the analysis by configuring some more
settings: bubble size and color.

7. Make some further settings as follows:

Property Value
Size by Count(Player Name)
Color by League
Appearance Use separate color for marked items

After making the Size by setting, you might need to
manually adjust the size of the bubbles to create a pleasing
visual range. The relative sizes will always remain
proportionate to the Size by setting.

Visualize This!

[58]

The scatter plot now shows us two further pieces of information: how the
salary–home run correlation varies by league and by number of players in a
team. It's clear that the four highest salary rosters belong to American League
teams, three of them are achieving a reasonable return of home runs, and one
of them–LA Angels–is below the overall trend of home runs per dollar spent.
In this regard, the LA Angels could be considered an outlier, illustrating how
the definition and identification of outliers often depends on context and
data selection.

Chapter 2

[59]

Let's go into information overload now and add further detail for
player position.

8. Configure the Shape by property to shape by Position. You can customize
the shapes assigned to each position if you wish.

Visualize This!

[60]

The visualization resulting from these changes is very information dense, but it does
give you a picture of the potential correlation between team payroll and home runs
scored, broken down by position and player roster numbers. You can also continue
to identify individual teams by marking a point of interest and reviewing the
label displayed.

To make the picture a little clearer, configure the Trellis property to
split panels by Position.

Chapter 2

[61]

Visualizing hierarchical relationships
using treemaps
The treemap is a relatively recent invention (early 1990s) to visualize hierarchical
data in an easily perceptible proportionate way, making efficient use of space. Ben
Shneiderman's account of the development of the tree map (http://www.cs.umd.
edu/hcil/treemap-history/) shows how worthwhile it is to always look for new
ways to visualize data.

In just a few quick steps, you can create a Treemap visualization with Spotfire and
add the additional dimension of color to the visualization. A good example of the
use of a treemap is the visualization of international gross domestic product (GDP)
figures. We're going to take figures published by the World Bank for 2013 (http://
data.worldbank.org/data-catalog/GDP-ranking-table), with some added
regional classification, and plot them as a treemap. You can download the data file
you need, GDP_Data.csv, from http://www.insidespotfire.com.

1. Import the GDP data into your analysis.
2. Create a new page and insert a Treemap visualization using either the New

Visualization option from the Insert menu or the treemap icon in the toolbar
just below the main menu.

Spotfire will create a default visualization, but as usual, you'll need to change
a few settings to get the configuration you want.

http://www.cs.umd.edu/hcil/treemap-history/
http://www.cs.umd.edu/hcil/treemap-history/
http://data.worldbank.org/data-catalog/GDP-ranking-table
http://data.worldbank.org/data-catalog/GDP-ranking-table
http://www.insidespotfire.com

Visualize This!

[62]

3. The Treemap visualization has three key properties: Hierarchy, Size, and
Color. The hierarchy determines the main structure of the treemap and is
defined as a series of columns with some hierarchical relationship. The levels
in the hierarchy of the treemap are represented as rectangles containing other
rectangles. We're going to add region and country as our hierarchy for the
GDP example:

The order in which you add the columns will determine the order of the hierarchy.
You can add more levels, if they exist in the data, by simply clicking on the
dropdown arrow to the far right of the Hierarchy column selection.

The next step is to define how the rectangles in the hierarchy should be sized.
The Size property is the factor or quantity you are interested in visualizing; in our
example, this is the GDP values for each country, contained in the column GDP
USD Million. You must also select an aggregation function. In our example, there
is only one GDP value for each country, so the aggregation method is irrelevant; but
you still have to pick a method. We'll just go with Sum(GDP USD Million). If there
was more than one GDP value per country—different years, for example—then the
aggregation method becomes more important: would we want to look at the total or
average GDP over the time period, for example?

Chapter 2

[63]

The final property is Colors, which is optional but can add either a more visually
compelling representation of the treemap hierarchy or an extra dimension of
information. Simply select the column to color in the Colors property. We're going
to use region. Again, an aggregation method is required; the standard aggregation
to handle a string variable such as Region is UniqueConcatenate, which essentially
extracts a unique list of values from the column to which it is applied. Select Unique
values as the Color mode, which assigns one color to each region.

The result is, I hope you agree, a very striking and compact comparison of GDP
across the world. The relative proportions of the rectangles provide a clear
comparison of economic activity, and the hierarchical arrangement organizes the
information in a geographically relevant way. Compare the results with what you
could achieve (or not as the case may be) with a pie or bar chart. I'll leave that as an
exercise for you to try.

Visualize This!

[64]

If you click on a hierarchy descriptor, such as South America, the treemap will zoom
in to that region for a closer look:

Key Spotfire concept – filters
You should have noticed by now the filter panel on the right-hand side of each
page. By default, every column, or variable, in the data tables in the analysis file is
represented in the filter panel by a filter. Each of those filters contains every value in
the data for the respective column.

Chapter 2

[65]

There are six filter types to cover the range and extent of the data that can
be encountered.

Filter Type Good for
Range filter Allows you to filter a range of values. Very good for columns with

large, continuous sets of numerical data or dates.
Item filter Like the range filter, it uses a slider, allowing you to select one

value at a time, including All and None. Can be used for small and
medium lists of text values or discrete number sets (integers rather
than decimals).

Check box filter Allows you to select one or multiple values by checking or
unchecking a box. Good for relatively small sets of text values or
integer number sets.

Radio button filter Similar to the check box filter, but restricts the selection to a
single value. Good for relatively small sets of text values or
integer number sets.

Text filter Allows you to enter a string of text and finds matches in the data as
you type. Good for large sets of text values.

List box filter A bit like a text filter except you see a full list of all possible values,
which you can select (one or multiple) or limit using a search string.
Good for small or large sets of text values.

When you filter something on one page in Spotfire, the filter is applied to all pages
in your analysis because, as we saw with marking, Spotfire is designed to be
consistently interactive across your analysis, not just on individual pages.

Visualize This!

[66]

Like marking, however, you can define multiple filtering schemes to isolate filter
behavior on individual pages or across groups of pages if you so wish. To use
multiple filtering schemes, first go to Document Properties and create a new filtering
scheme, giving it any name you like. Then, check the Show filtering scheme menu
in Filters panel option. You will now be able to choose which filtering scheme to use
on each page from a dropdown at the top of the filter panel.

You can apply filters by going to the filter panel and making the desired selection(s),
but you can also filter directly on visualizations through the marking functionality.
The filtering scheme principle still applies, with a given filter action applying across
all pages with the same filtering scheme.

Let's look at the scatter plot we created to explore the possible correlation between
the salary bill and the home run count of American baseball teams.

Chapter 2

[67]

Mark the outlier teams we identified before, and then right-click on the marked
section and select Filter Out.

The result is to filter out all rows in the underlying data for the marked teams:

Visualize This!

[68]

The visualization has readjusted. The key principle to grasp, however, is that any
other visualizations in your analysis based on or related to the same data will also
now be similarly filtered.

To reset all filters, click on the reset filter icon or select Reset All Filters from the
Edit menu.

You can, of course, also manually set any combination of filters using the filter panel.
Try filtering out each of the two leagues in turn by unchecking them in the filter
panel. Does one show a stronger correlation between salary and home run count
than the other?

Enhancing tabular presentations using
graphical tables
The Graphical Table visualization is an enhanced version of the Table visualization
that allows you to pack a lot more visual information into the presentation.
Alongside regular table columns, you can add sparklines, calculated values,
conditional icons, and bullet graphs.

Sparklines are miniature line charts. You could, for example, create a graphical table
of countries with a sparkline showing the interest rate in each country over time.

Calculated values are simply calculations, usually involving aggregation of the
data. For example, we could list our baseball teams and provide a column for total
runs scored.

Chapter 2

[69]

Conditional icons such as upward and downward arrows can be associated with a
rule such as above or below average.

Bullet graphs are a miniature representation of how one variable compares to
another. The vertical bar represents variable 1, a target perhaps; the horizontal line
represents variable 2; and the color shading can be configured to represent points of
interest, such as percentages.

Let's work through an example to see how a graphical table is configured.

The data we use here is BaseballPlayerData.xls, which you can download from
http://www.insidespotfire.com.

1. Open an analysis file with the baseball data already loaded or create a new
analysis file and load the data.

2. Create a new page, and insert a Graphical Table visualization (use the Insert
menu or click on the graphical table icon below the main menu).

http://www.insidespotfire.com

Visualize This!

[70]

3. Although a graphical table is presented in table form, it has axes. For the
Rows axis, you select the data columns you want to include, and for the
Columns axis, you define the graphical table elements you want to use. If
you include multiple rows, Spotfire will nest the columns you select and
apply the graphical table elements to the deepest level.

4. Select Team for the rows axis.
5. We're now going to define four columns, or graphical elements, by selecting

from the Add dropdown in the Columns section of the Axes property.
6. We're going to use the graphical table to analyze the ratio of stolen bases

to home runs across all the teams. Let's start with a simple calculated value
to aggregate the number of stolen bases for each team (remember that the
rows in our data are at the player level). Select Calculated Value from the
dropdown selection.

Chapter 2

[71]

7. You will now be presented with Calculated Value Settings. The Values
property should be selected by default. Under Calculate values using,
select the Stolen Bases column and the aggregation method, Sum. There is
an option to add color rules to the calculated value, but we're not going to
define any.

8. Before you click on Close, select the General property and give the
calculated value an appropriate name, such as Stolen Bases. Now
click on Close.

9. Next, we're going to add a conditional icon, so select Icon from the Add
dropdown list. This time, the conditional icon settings will open.

10. We're interested in the Icons property, and we're going to add some
rules. First, under Calculate icons using, select Sum(Stolen Bases).
Second, delete any existing default rules. Third, add rules for less than
average and greater than or equal to average, selecting a down and up
arrow, respectively. Finally, give the graphical element a suitable name,
such as Above/Below Average.

Visualize This!

[72]

11. We'll complete the graphical table with a bullet graph, so select Bullet
Graph from the Add dropdown selection. When the bullet graph settings
dialog opens, we're going to configure the Bullet Graphs and Color
Ranges properties.

12. Under the Bullet Graphs property, select Sum(Stolen Bases) for the
Calculate values using setting, and Sum(Home Runs) for the Calculate
comparative values using setting. The former defines the horizontal bar
of the bullet graph, the latter defines the vertical line.

13. Under the Color Ranges property, check the box next to Show color ranges,
select a suitable color for the default Current ranges and their limits setting,
and add a second color range by clicking on the Add button. Right-click on
the column selection dropdown that appears, select Custom Expression…
and enter the expression Sum(Stolen Bases) * 0.75. Experiment with the
colors to get a pleasing combination.

14. Give the bullet graph a suitable name, such as Stolen Bases versus Home
Runs.

Chapter 2

[73]

15. If you wish, you can add a further calculated value for home runs. The final
result is an information-rich and visually appealing table.

I'll leave you to explore the sparkline element. It's just a matter of selecting a suitable
x- and y-axis for the sparkline from the data table.

Summary
This chapter has taught you how to use a good cross-section of Spotfire
visualizations and highlighted where their analytical strengths lie. You should now
be able to build and configure the various visualization types but also, if you haven't
already thought about such things, gained some insight into the science and art of
data visualization.

You saw how the Table visualization is an easy and traditional way to display
detailed information in tabular form; how the Bar Chart visualization is excellent
for visualizing categorical information, such as distributions; how the Line Chart
visualization is ideal for analyzing trends; usually, in time, but not necessarily; and
how the Pie Chart visualization is good for visualizing simple proportions, but how
it does have its limitations.

Visualize This!

[74]

The versatility and power of the Scatter Plot visualization for analyzing relationships
and providing multiple levels of presentation through its color, shape, size, and
trellis properties should be clear to you. You should appreciate the Tree Map
visualization's ability to compare the relative proportions of the elements in a
hierarchy in a very compact and visually intuitive way. You should already be
thinking of how to apply the Graphical Table visualization to create information-rich
and visually appealing tabular presentations.

You learned how to enrich your visualizations with color categorization and divide
a visualization across a trellis grid. This chapter introduced you to the key Spotfire
concepts of marking and filters.

With the previous chapter and the current one under your belt, you should now
be ready to begin using Spotfire to build your own analyses. Import some data
that means something to you into a Spotfire analysis file, and experiment with the
visualizations covered in this chapter. Explore the properties we haven't covered,
and use the inline help to guide you. It is an excellent reference library.

In the next chapter, you will learn how to enhance the visualizations you build
with controls, context, and collaboration tools. These additional techniques and
functionality will allow you to develop rough, ad hoc analyses, and visualizations
into professional analytic dashboards and applications for use by a wider audience.

Analyze That!
The first two chapters showed you how to work with data and create visualizations.
This chapter is all about adding context and input controls to your Spotfire analyses.
It will show you how to quickly transform even simple analyses into professional
and powerful analytical toolkits that you can share with others or even develop for
large enterprise audiences. You will learn how to annotate your analyses and add
input controls that allow you and others to do "what if" explorations.

You can spend a lot of time shaping and modeling your data, and building cool,
insightful visualizations. To realize the full benefit of all your hard work, especially
if you intend to share your analysis with anyone, it's really worth spending some
extra time considering how the analysis is presented and how easy it is for you
and others to change options and parameters.

Even the most static dashboard-style report will usually benefit from the inclusion
of some form of user-definable parameters, and a visually appealing and well
annotated analysis will draw people in and encourage engagement. Visualization
titles, information and instructions, and good overall layout and organization are
essential design principles.

There are two quotations from the late Steve Jobs, the former CEO of Apple, that I
particularly like, and they are very relevant to the philosophy of this chapter:

Design is not just what it looks like and feels like. Design is how it works.

Details matter, it's worth waiting to get it right.

In this chapter, we will cover the following topics:

• Framing your analysis using text areas
• Key Spotfire concept—document properties.
• Increasing interactivity using property controls

Analyze That!

[76]

• Providing summary information at a glance
• Customizing the filter panel
• Getting details of marked items
• Annotating data using tags and lists
• Creating analysis snapshots using bookmarks

At the end of this chapter you will be ready to share your work and collaborate.

Framing your analysis using text areas
Spotfire's Text Area, though not strictly speaking a visualization, is as important
as any of the visualizations on your analysis page. In terms of insertion on the page
and maneuvering within the layout, the text area behaves in exactly the same way as
a visualization, so treat it as one.

In its simplest form, the text area can be used to add some text to support your
analysis: a title and brief description or some usage instructions. You can enter
text plainly or take advantage of the text area's underlying HTML base for more
sophisticated presentations. If you don't know much about HTML, the W3Schools
website (http://www.w3schools.com/html/) is an excellent starting point. It's
not that difficult to pick up some basic techniques.

However, the text area is much more than just a text area. In it, you can embed input
fields, dropdown menu controls, images, URLs to external content, action buttons,
filters, and even those visualization elements that are available to graphical tables
such as conditional icons, calculated values, bullet graphs, and sparklines.

Let's start with a simple example using data from BaseballPlayerData.xls,
which you can download from http://www.insidespotfire.com.

1. If you saved the scatter plot analysis of the baseball data, open it now or
else just reload the baseball player data into a new analysis file and rebuild
the scatter plot. You want to plot Sum(Runs) against Sum(Salary) and set
the marker by property to Team.

http://www.w3schools.com/html/
http://www.insidespotfire.com

Chapter 3

[77]

2. Now, insert a new text area in exactly the same way as inserting a
visualization. In the Insert menu, there is a separate entry for New Text
Area, or you can click on the text area icon in the tool bar just below the
main menu.

3. When you insert the text area, Spotfire will place it on top of the scatter plot
across the width of the page. We want to move it to the side, so left-click
the text area title bar, hold and drag into position. Resize by moving the
cursor over the vertical line between the text area and the scatter plot until
it changes to a vertical line with two arrows. Then simply click and drag to
narrow the text area and widen the scatter plot.

4. Right-click anywhere inside the text area and select Edit Text Area. You can
simply begin to type text using the dropdown formatting options to change
the font or general styling.

Analyze That!

[78]

5. If you like, you can change the title of the text area or hide it by right-clicking
anywhere in the text area, selecting Properties, and unchecking the Show
title bar option.

6. If you're interested in exploring the HTML functionality, right-click on
the text area and select Edit HTML. You'll see how Spotfire has already
formatted your text using HTML tags.

7. You might like to include a major league baseball logo. Simply click on
the insert image icon and navigate to a suitable saved image.

8. To size the image for the text area, you can use a graphics editor before you
put the image into Spotfire, but it's probably easier to just edit the HTML
tag once the image is in Spotfire. Just right-click on the text area, select Edit
HTML, and change the size of the image.

The HTML code generated by Spotfire after you embed the image will look
something like this:
<P><IMG border=0 src="ba17552a139f4ab1
9780f67db1e0dd6c.png"></P>
<P>Major League Baseball Stats</
FONT></P>
<P>Analysis of correlation between runs achieved and salaries
paid</P>

Change the IMG tag to include height and width values (in pixels). You might
need to experiment to get the size and proportions right:

<P><IMG border=0 src="ba17552a139f4ab1
9780f67db1e0dd6c.png" height="100" width="150"></
P>

Chapter 3

[79]

<P>Major League Baseball Stats</
FONT></P>
<P>Analysis of correlation between runs achieved and salaries
paid</P>

When you add the height and width dimensions to the IMG tag, use
the save icon at the top of Spotfire's HTML editor to see the effect of
your changes and continue editing if necessary. When you're happy
with the result, close the editor.

Key Spotfire concept – document
properties
Before we continue exploring the text area, you need to understand an important
Spotfire concept—the document property. Document properties are key to the use
of user inputs and other controls. As we'll see shortly, you can create new document
properties in the course of creating controls, but you can also access all document
properties directly, creating new ones and editing existing ones through the main
document properties dialog.

Analyze That!

[80]

You'll find document properties under the Edit menu options. Select Document
Properties and then the Properties tab.

Don't worry about the Script button for now and stick to the New and Edit buttons.
When creating a new property, you need to enter the following details:

• Property name: You must give the property a unique name with no
spaces. You cannot change this once the property has been created,
but you can delete the property and start again.

• Data type: You must choose a data type from the dropdown list.
You cannot change this once the property has been created.

• Description: This is optional and only required for information purposes.
You can change it later.

• Value: This is optional for strings, but you'll need to enter an initial
value for numbers. It can be changed as often as you like after the property
has been created. This is kind of central to how you use document properties
in your analysis.

Chapter 3

[81]

Once a document property exists, you can use it as the basis for an input control
or reference it directly in a visualization. A dollar sign and braces are used when
referencing a document property, for example, ${ExampleDocumentProperty}.
This is a very useful functionality, as we are about to see.

Increasing interactivity using property
controls
There will be many occasions when you will want to give yourself or a wider
audience the ability to quickly change the parameters affecting a visualization.
The main filter panel and the marking functionality of Spotfire provide quick and
powerful routes for interactivity and analysis, but they don't facilitate the same
level of customization you can achieve with a text area control. Lets look at how
useful property controls can be:

1. There are seven different property controls, ranging from simple labels
to more complex multiline list boxes. You insert them by first entering the
edit mode in a text area, as we did when writing simple text and embedding
the image, and then using the dropdown list under the Insert Property
Control icon. This control will insert wherever you have placed
the cursor. You can also embed controls directly in the HTML editor.

www.allitebooks.com

http://www.allitebooks.org

Analyze That!

[82]

2. Let's start by creating a simple control to allow you to quickly select color
by options for your scatter plot. Choose Drop-down list from the Insert
Property Control options. After you select the control type, you will be
presented with a standard document property dialog.

3. Create a new property, give it a meaningful name, and make it a string
data type. Let's call the property SalaryAnalysisColorBy.

Chapter 3

[83]

Document properties cannot have spaces or special characters such
as underscores. When naming properties, it's good practice to use
what's known as UpperCamelCase, concatenating the words you
want to use and starting each with a capital letter. Try to cultivate a
logical and consistent approach to naming properties such that the
name is self-explanatory.

4. Now we need to configure the control, and there are two fundamental
ways to do this: provide the control with fixed values or use some form of
lookup in the data. These options are found under the Set property value
through: dropdown list. We're just going to define some fixed values.

5. When you select Fixed values, a Settings panel will open to allow you to
define the Display Names and Values you want to include. The display
name is the text you want the user to see in the text area; it can be anything
you like. The value you define will be assigned to the property control when
the user selects the corresponding display name text. Ensure that you keep
the data type consistent: if the document property is defined as an integer,
the value must be an integer. Simply double-click on the display name or
value box to begin entering details. Also, check the box next to Include
(None) alternative if you want to include a None option.

You should now understand the dynamic nature of document
property values and see their potential for facilitating custom
user inputs.

Analyze That!

[84]

6. Click on OK to save your changes and return to the text area. You can always
edit the control by right-clicking on it and selecting Edit Control; you must
first be in edit mode in the text area.

7. Click outside the text area to exit the edit mode, and explore the control you
have created. Apart from changing through the options you have selected,
you won't see any obvious effects because we still have one more thing to
do to link the control to the visualization. Before we do this, try making
some selections in the new dropdown control and then opening the
document properties to see how the value changes.

8. To link the control to your visualization, you need to apply the property you
have set up in the text area to the relevant visualization property. First, select
a value other than None in the control dropdown. Then open the visualization
properties for the scatter plot, and navigate to the Colors panel.

9. Under the Columns item, right-click on the dropdown selector, select the
Set from property… option, and choose SalaryAnalysisColorBy. Spotfire
will assume that the value you defined in the control is a valid column name,
and it will automatically wrap that value in square brackets. It will also pick
what it thinks is the most appropriate color mode and assign some colors
randomly. You can change any of these settings.

10. Right-click on the dropdown selector under Columns again but this
time select Custom Expression…. You will see exactly how Spotfire has
configured the visualization element—color in this case—to the property
you have defined and exposed as an input control in the text area,
essentially binding the property to the visualization element.
<$esc(${SalaryAnalysisColorBy})>

Spotfire uses $esc(…) to enclose a value with square brackets, but you
can actually use a square bracket directly if you find it easier. For example,
you could change the earlier expression to
<[${SalaryAnalysisColorBy}]>

The angle brackets designate the value as categorical, as distinct
from continuous.

Text values are treated as categorical information by Spotfire. They are
always enclosed by angle brackets in expressions and have different
visualization behavior characteristics to numbers, which are treated
as continuous information and are not enclosed by angle brackets. For
example, you cannot define a gradient of color for a categorical variable.

Chapter 3

[85]

11. Click on Close to exit the color configuration, and try changing the options in
the text area control now. You should see the visualizations change according
to your selections.

As a final exercise, insert some descriptive text above the control and think about
how you would allow the user to dynamically change the trellis configuration.
Almost everything in the visualization can be bound to a property control, so
give this some thought too.

You could create an independent trellis by control or bind the color
by the property you've already created by navigating to Trellis |
Panels | Split by setting.

When you have finished the exercise, you should have something like the
following screenshot:

You can format the appearance of the control by right-clicking on
the control in the text area edit mode and selecting Format Control.

Analyze That!

[86]

Providing summary information at a
glance
You might want to provide summary information but not in a full-blown
visualization. The text area allows you to mix calculated values, conditional icons,
bullet graphs, and sparklines with other text area elements. Furthermore, you can
use the full range of formatting options, including HTML.

The use of these summary elements in the text area is not much different from their
use in the Graphical Table visualization. You insert them using the Insert Dynamic
Item dropdown list.

Once inserted, you configure the dynamic graphical elements in exactly the same
way as in a graphical table, specifying the source data table, columns, and any rules
you want to define. You can additionally do some visual formatting through the
Format Control… dialog.

It's important to understand that any summary visualizations used in a
text area represent all data in the source you specify. This is unlike the
graphical table, where they can be combined with aggregated categories,
such as team in our baseball examples. Therefore, the application of rules
is limited. For example, a top 5 rule doesn't make sense when there are
no elements to rank, just a total.

Let's take a closer look using a couple of calculated values in our baseball
salary analysis:

1. Add two calculated value dynamic graphical elements to the text area.
Insert the following text above the first one: Average cost per run.
Insert the following text above the second element: Cost per run for
selected teams.

Chapter 3

[87]

2. Configure the first calculated value by right-clicking on the Calculate values
using: dropdown in the Values setting and selecting Custom Expression….

3. In the dialog that opens, enter the following expression under Expression:
Sum([Salary]) / Sum([Runs])

Optionally, enter Cost Per Run for Display name: (it's not that important in
this instance, but it does mean that Cost Per Run will be displayed when the
mouse hovers on the calculated value). Click on OK to save the expression
and click on OK again to save the settings to the calculated value.

4. Now, format the output for currency display (just as we did for the scatter
plot configuration in Chapter 2, Visualize This!).

5. Configure the second calculated value in exactly the same way except
make one additional setting under Data to make the display dependent on
marking in the main visualization. You need to check Marking under the
Limit data using markings: setting. This means that the calculation will only
be performed on teams you mark in the visualization.

Analyze That!

[88]

You now have two totals: a static average cost per run across all teams in major league
baseball and a dynamic cost per run linked to marking in the main visualization.

Customizing the filter panel
We had a look at filtering in Chapter 2, Visualize This!, where we covered the use of
multiple filtering schemes. There are additional configurations you can make
to customize the filter panel on each page.

The first is fairly simple. If you haven't worked it out already, you can change the
filter type by right-clicking on any filter and selecting from the options available.
Depending on the values in the column, some filter types might not be available.

You can hide any filter by right-clicking on the filter and selecting Hide Filter. Each
data table has its own set of filters, and you can hide the entire set by right-clicking
on the data table name at the top of the filter set and selecting Hide Data Table.

You can do more detailed customizations by right-clicking anywhere on the filter
panel and selecting Organize Filters…. When you do so, a new window opens
allowing you to hide, rearrange, and group the filters any way you want.

If you create a filter group, you can move individual filters into the group by selecting
and then moving them up or down the list until they fall into the group. In the
following example, five groups have been created and three unwanted filters have
been hidden:

Chapter 3

[89]

The result in the filter panel is a more coherent and logical organization. You can
now apply that exact organization to any other page by right-clicking anywhere
on the filter panel, selecting Apply Filter Organization…, and then selecting the
desired pages.

Analyze That!

[90]

Getting details of marked items
In Chapter 2, Visualize This!, you learned how to create a detailed visualization that was
dependent on the marking in other visualizations. Spotfire also provides a standard
Details-on-Demand panel that does something similar. This panel might appear by
default on every page, depending on settings. You can always add it by selecting
Details-on-Demand from the View menu or clicking on the details-on-demand icon
in the icon tray.

You configure the details-on-demand panel very much like a Table visualization,
selecting the columns you want to display and their order. The one significant
difference is the ability to switch the column orientation between horizontal and
vertical. A vertical orientation is the traditional table layout of columns and rows
and is the best option when multiple rows are selected. A horizontal orientation
can work well for single-row selections.

Annotating data using tags and lists
You should now be comfortable with Spotfire's dynamic and interactive marking
and filtering functionality, which allows you to mark and filter items of interest
and look for relationships, signals, and trends in your analysis on the fly. What
if you want to create more long-lasting selections or share your findings with
others? Lists and Tags can help you to capture detailed analysis scenarios.

Using lists
Lists provide a mechanism for saving marking selections that persist from session
to session in any analysis file you open or create. You can mark some points in
your visualizations, save the markings to a list, and then recall the marking in a
future session at the click of a button. You can maintain multiple lists and you can
add new marking selections to your lists. Obviously, if you try to use a list created
for one data table on a completely different table, nothing will happen: you can't
mark an apple variety in a table of orange varieties.

Let's try using lists with our salary analysis page using the following steps:

1. First, you have to make lists visible by selecting Lists from the View
menu or clicking on the lists icon in the icon tray.

You can move panels such as the filter panel, the details-on-demand
panel, and the lists panel around the page like any visualization or
you can float them on top of the page by clicking on the pin in the
top right-hand corner of the panel.

Chapter 3

[91]

2. Now it's just a matter of marking the points of interest, right-clicking on
the marked items, selecting Marked Rows, and then selecting New List from
Marked…. You'll be prompted to give the list a name, and then you'll see it
appear in the lists panel with a number in brackets to indicate the number
of items in the list.

3. You can add further items to the list by selecting it in the lists panel, marking
some new items, right-clicking on them, selecting Marked Rows, and then
selecting Add Marked to List.

4. To remove an item from a list, you have to select the list, remark the item in
question, select Marked Rows, and then select Remove Marked from List.

5. There is one other way to create a list and that is through Venn logic on
two or more existing lists. Click on the Venn diagram icon in the lists panel
header, select the lists you want to use, and then choose the logic you want
to use from the three options provided.

6. You could create a list of teams with high run cost by identifying all teams
with a run cost greater than $75,000, marking them, and adding them to a
new list. You could then block select all the NL teams and create a list for
them. Now, if you want a new list of high run-cost NL teams, choose an
intersecting Venn logic. The result is a list with the only NL team with
a run cost greater than $75,000.

Analyze That!

[92]

We can see the list of teams in the next screenshot:

So you've created some lists, now what? First, they will still be there the next time
you open any analysis file or start a new analysis. Second, you can double-click on
a list item or select it and choose Mark Items and you're right back to the marking
selection you found interesting.

For example, if you had to do an extended analysis over time, you could identify
and save a shortlist of notable data points to a list through multiple sessions, or you
could reappraise your analysis following a data update to see if any new items need
to be added to the list.

When you are finished using the lists panel, you can safely hide it
without losing any of the lists you have created. Simply reclick on Lists
in the View menu or reclick on the lists icon. Reselect it when you want
to use it again.

It's important to note that lists are personal to your client installation, and you cannot
share them with others. That's where tags come in.

Chapter 3

[93]

Using tags
Tags are similar in concept to lists but differ in two important respects. First, they
do not persist from session to session and may only be used in the analysis file in
which they are created. Second, the main use of tags is that they create new columns
to represent the selections you have defined, and you can filter on those columns just
like any other column. In this way, you can share tags with others. They become part
of the analysis file once it is saved.

Let's take a look at the salary analysis page to see how we might use tags:

1. First, you have to make the tags panel visible by selecting Tags from
the View menu or clicking on the tags icon in the icon tray.

2. In the tags panel, you will see a list of all the tables present in your analysis
file. Select the baseball player data table and either right-click and select New
Tag Collection… or simply click on the corresponding icon just below the tag
panel header. Give the collection a name (Salary Analysis, for example).
This is the name Spotfire will assign to the new column in your data.

3. Now, select the tag collection you have just created and either right-click and
select New Tag… or click on the corresponding icon. Give the tag a name
(High run cost, for example). This will be the object we populate with our
selections. You should notice that Spotfire automatically created an Untagged
tag in the collection you created. This is a default tag to represent all untagged
rows in the data table. It starts with all rows and then decreases as you tag
items, which are naturally removed from the untagged group.

4. Return to your visualization and select the items that are of interest to
you. This is where you can begin to use tags and lists together. Instead of
reselecting all the teams with high run cost, use the list you have already
created to select them.

5. When the items are marked, return to the tags panel and either right-click
on the tag you created and select Attach Tag to Marked Rows… or click
on the corresponding icon at the top of the Tags panel.

Analyze That!

[94]

You have now created a new column in your table with values corresponding to the
tags you have created within the respective tag collection. To help you understand
better what you have created, take a look at the filter panel. You will see a new
entry called Salary Analysis in which you will see the values High Run Cost and
Untagged. You can now filter on those values. Try it.

Now, create a Table visualization of the data table and take a look at the new
column and how it relates to the teams. What do you think would happen if you
created a new tag in Salary Analysis and tried to attach it to the LA Angels? Do
the experiment.

You can delete individual tags or tag collections by simply right-clicking and
selecting Delete Tag or Delete Tag Collection, respectively. To remove an item
from a tag (to essentially untag that item), select it in a visualization, right-click
on the tag, and select Remove Tag from Marked Rows.

There's one more thing we need to cover and that is the creation of tag collections
directly from a list. In the exercise where we created the high run cost tag, we went
through the process of creating the tag and selecting records using a list, but there
is a much quicker way to create a tag collection if a list has already been created:

1. Delete the Salary Analysis tag collection.
2. Go to the lists panel, right-click on the High Run Cost list, and select

Create Tag Collection.
3. Now return to the tags panel, and you should find a new tag collection

and the tag you need. The only remaining task is to rename the collection
(right-click and select Edit Tag Collection…, and give it a new name).

Chapter 3

[95]

Creating analysis snapshots using
bookmarks
We've seen how lists and tags can help you remember, or snapshot, particular
analytical positions. What if the snapshot you want to save is more complex and
entails a set of filters, markings, and other customizations? In short, you've spent
some time exploring some data and arriving at a particular scenario and you either
want to share it with others or simply save it for yourself to return to later.

Bookmarks allow you to do just this, capturing specific rows you have marked,
the page and visualizations you are looking at, any filtering that you have applied,
information about visualization properties (such as the column selected to color by),
and any custom property values you have used on the active page.

Let's look at an example.

1. We'll stay on the Salary Analysis page, and we'll opt to color by League,
filter by High Run Cost, and mark the NY Yankees.

2. Now make the bookmarks panel visible by selecting Bookmarks from the
View menu or clicking on the bookmarks icon.

3. Click on the Add Bookmark icon in the bookmarks panel; Spotfire will
create the bookmark and name it, date it, and assign your username to it.
You can rename the bookmark using the drop-down options next to it.

Analyze That!

[96]

4. Now reset all your filters and markings, change the color by selection, and
move to a different page.

5. Call up the bookmarks panel (if it's still not visible), and double-click on the
bookmark you just created. The analysis you were looking at a few moments
ago should reform in every detail.

By default, bookmarks are created as Private Bookmarks for your personal use only.
Later in this book, when we take a look at the Spotfire library and web player, we will
return to the topic of Public Bookmarks, which you can share with a wider audience.

By default, a bookmark will capture all possible attributes of your analysis, but you
can customize the bookmark using Apply Bookmark Special from the bookmark
dropdown selection. This functionality allows you to check for the inclusion of none
or all of the following options: Page Layout and Visualizations, Active Page, Active
Visualization, Filter Settings, Filter Organization, Markings, and Properties.

Summary
In this chapter, we've started to build some structure around our analyses. We've
progressed from simple sets of visualizations to collections framed by descriptive
information and property controls. Now, you and the potential consumers of your
analysis can change key underlying parameters and even the detailed configuration
of visualizations using some simple dropdowns.

You have learned how to use the versatile text area to embed descriptive information,
user inputs, and dynamic, data-driven summary information. You have also learned
how to customize the filter panel, get details of marked items on demand, annotate
data using tags and lists, and create bookmarks of an analytic scenario you wish
to capture.

You are well on your way to creating guided analyses and dashboards. These first
three chapters have given you a solid understanding of how to get some relevant
data into Spotfire, build some visualizations of that data, and enable end users to
interact with and customize the analysis. Spotfire is fundamentally an exploration
tool, and it's important that you keep exploring and expanding the concepts you are
learning. Be curious!

Chapter 3

[97]

There is still much to learn, and the next three chapters will take a deeper look at
the concepts and techniques covered in the first three chapters. Chapter 4, The Big
Wide World of Spotfire, will present an overview of the Spotfire system architecture
and show you how Spotfire can be used as an enterprise as well as a personal
analytics tool. We will return to analytics in Chapter 5, Source Data is Never Enough,
with a look at some of Spotfire's advanced data manipulation tools. Chapter 6, The
World is Your Visualization, will look at advanced visualization features and some
visualization types we haven't encountered yet.

The Big Wide World
of Spotfire

It's time to take a break from the world of analysis and visualization and learn
something about the Spotfire environment. So far, the focus has been on the detailed
work of the analyst, or report author, but Spotfire is much more than an analysis tool
for individuals; it is an enterprise application with multiple components. Although
you can use the Spotfire Professional Client in an independent, offline mode, you need
to log in to the Spotfire system to access the full enterprise functionality of the product.
There is also a desktop-only version of Spotfire called TIBCO Spotfire Desktop, which
has no enterprise or server-side component. This chapter has no direct relevance for
users of TIBCO Spotfire Desktop.

You will find comprehensive architecture and administration documents
online (https://docs.tibco.com/), but this chapter will introduce the main
components of the Spotfire analytics framework. You will learn about the main
Spotfire administration tasks, how to distribute dashboards and analytic toolkits
to a wider audience, how to monitor the use and performance of the system, and
how to automate repetitive tasks.

Although many readers of this book will not be Spotfire administrators, it's
useful for you to have a good sense of how the platform is administered and,
more importantly, how best to use the Spotfire architecture to deliver good analysis
to your customers. Distributing your work to the enterprise is a logical stepping
point from the last chapter, in which we began to explore mechanisms for guided
analysis and collaboration.

https://docs.tibco.com/

The Big Wide World of Spotfire

[100]

In this chapter, we will cover the following topics:

• An overview of Spotfire components and architecture
• A quick guide to Administration Manager
• Using the Library Administration interface
• A quick tour of Information Designer
• An overview of Spotfire Analyst (formerly known as Professional Client)
• An overview of Spotfire Consumer (formerly known as Web Player)
• An overview of Spotfire Business Author (new with Version 6.5)
• Automating tasks using Automation Services
• An overview of system monitoring tools

An overview of Spotfire components and
architecture
Spotfire has five core components:

• Spotfire Server: The spotfire Server is the hub of the Spotfire system. It handles
user logins and the configuration of accounts, licenses, and other system
preferences; it can connect users to external data sources; and it hosts and
controls access to the Spotfire library, which is stored in the Spotfire Database.

• Spotfire Database: The Spotfire database stores all the account
administration and configuration information needed to make Spotfire
work. It also stores the Spotfire library, which looks to the user like a
hierarchical file system for organizing and store analysis files but is in fact
a set of database BLOBs (binary large objects). The Spotfire Database can be
built in Oracle or Microsoft SQL Server.

• Spotfire Web Player: The Spotfire web player is a web application installed
in the Microsoft Internet Information Services (IIS) web server. It delivers
analysis files that are saved in the Spotfire library to users via a web browser,
which is the general mechanism through which Spotfire users consume reports
and analytics solutions. As of Spotfire Version 6.5, the web player has been
renamed Spotfire Consumer. There is also a new web product called Spotfire
Business Author, which offers limited report authoring via the web player.

• Spotfire Automation Services: Spotfire Automation Services is a tool for
automating certain Spotfire tasks into jobs that can be run on demand or to
a schedule.

Chapter 4

[101]

• Spotfire Client: The Spotfire Client is a desktop installation that provides
access to the report authoring functionality of the product according to the
licenses granted to the user. Clients can be used in offline mode, but it is
necessary to log in to the Spotfire server to save material to and retrieve
material from the Spotfire library. An enterprise license provides nothing more
than the equivalent of web player access and no report authoring is possible.
A professional license provides full access to Spotfire's rich functionality, which
now includes TIBCO Enterprise Runtime for R (TERR), an enterprise-class
implementation of the R statistical programming language. As of Spotfire
Version 6.5, the professional client has been renamed Spotfire Analyst.

Three additional optional Spotfire components are worth mentioning:

• Spotfire Advanced Data Services: Spotfire Advanced Data Services delivers
third-party data to Spotfire as prebuilt, reusable views.

• Spotfire Statistics Services: Spotfire Statistics Services delivers the results
of S+ and R models to Spotfire for visualization from a central location.

• Spotfire Desktop: Spotfire Desktop is a completely standalone implementation
of Spotfire that does not require any servers and is targeted at analysts who
essentially work offline all the time. It has the full analytic power of the
main product.

A quick guide to Administration Manager
Administration Manager is a tool available only to Spotfire administrators to control
how each Spotfire user uses the system and its components. It is accessed through
the Tools menu. The number of Spotfire administrators in an organization
is normally very small. This section is included to give you some sense of how
Spotfire is administered at an enterprise level.

Spotfire, like many other computer systems, allows you to organize users into
groups and those groups into hierarchies of groups. Groups are used to organize
users into categories of a common purpose, which could be to do with functionality
or with access to particular data.

Spotfire uses the concept of a license to define functional granularity within the
system. The term can be confusing. It is related at a high level to the product licenses
purchased for a given Spotfire implementation, such as Spotfire Consumer and
Spotfire Analyst licenses. However, it also refers to elements of functionality that fall
under those product licenses. For example, a Spotfire administrator can restrict the
visualization types available to a group of users who otherwise have full Spotfire
Analyst licenses.

The Big Wide World of Spotfire

[102]

Using the Users tab of Administration Manager, an administrator can perform the
following steps:

• View the group membership and licenses of an individual user
• Change the group membership of an individual user

The management of user accounts and passwords and the
authentication of login events can be enabled in a variety of ways in
Spotfire. Account management can be handled solely within Spotfire
or delegated to another authority such as Microsoft Active Directory,
which is used to manage and authenticate users in an enterprise
Windows environment. It's beyond the scope of this book to explore
this aspect of user administration.

Using the Groups and Licenses tab, an administrator can perform the
following steps:

• Create groups
• Assign users to groups
• Assign licenses to groups

Using the Preferences tab, an administrator can:

• assign configuration preferences to groups

Users
To look up the current assignment of groups and licenses to an individual user,
you need to do the following (assuming you are logged in as an administrator):

1. Open the Users tab in Administration Manager, enter a search string for
the user of interest using the asterisk symbol as a wildcard, and click on
Search. All users matching the search string will appear in the left-hand
window; select the one of interest.

Chapter 4

[103]

2. The Properties tab shows the user's group membership. To make a change,
click on the Edit button. You will be presented with a simple dialog that allows
you to add available groups to or remove groups from the user's profile.

3. The New User and Delete User options may not be available, depending
on how user authentication has been set up in your system.

4. The Licenses tab shows the user's licenses, which cannot be changed from
this dialog; you need to move to the Groups and Licenses tab to do that.

The Big Wide World of Spotfire

[104]

Groups and Licenses
As an exercise in creating new groups, assigning users to groups, and assigning
licenses to groups, let's work through the following scenario:

1. Open the Groups and Licenses tab in Administration Manager, and click
on the New Group button. Create the groups Marketing Department and
Finance Department. You want to create these groups as top-level groups,
not as part of a hierarchy.

2. Now select the group Marketing Department, and create a new group as
a member of this group. Name it Marketing Librarians. Create a second
group called Marketing Spotfire Consumers. Do the same for the Finance
Department group. The screenshot shows what you should have when you
are finished.

Chapter 4

[105]

3. Select the group Finance Department, switch to the Licenses tab, and click
on the Edit button.

4. Check the TIBCO Spotfire Web Player and TIBCO Spotfire Enterprise
Player checkboxes under the Enabled column. Click on OK to save the
changes. Repeat for the group Marketing Department.

All groups within Finance Department and Marketing
Department will inherit the licenses you have granted.

5. Now select the group, Finance Librarians, click on the licenses tab Edit
button, expand the TIBCO Spotfire Administrator license by clicking on the
plus symbol next to it and check the Library Administration option, but not
the Administration option. Click on OK to save the changes, and repeat for
Marketing Librarians.

6. Select the subgroups you created, and in turn, select the Properties tab and
click on Edit Members to add users to each group.

The Big Wide World of Spotfire

[106]

We created containers for two different departments, each with a report consumer
group and a more privileged library administration group. We will use these groups
to assign privileges at the user level.

Preferences
The preferences tab allows a Spotfire administrator to assign default settings and
preferences for visualizations to any or all user groups. Examples would be the
default font for labels and the marker shape for scatter plots. Users can, however,
override these preferences.

Using the Library Administration
interface
The Library Administration interface is a tool available only to full administrators
or users who have been granted the TIBCO Spotfire Library Administration license.
It is accessed through the Tools menu.

The Spotfire library is a repository of analysis files arranged in a folder-like hierarchy
for distribution to the enterprise. It can be accessed from both Spotfire desktop clients
and the Spotfire web player. Although all the items in the library are actually stored
in the Spotfire Database, the library works very much like a Windows file system.

The Library Administration interface allows a library administrator to create folders
and hierarchies of folders; move and copy analysis files between folders; and, most
importantly, control who has access to each folder.

There is a special, built-in group called Library Administrator, and members of
this group have full control of the entire library. If you want to delegate control to
only parts of the library, along departmental lines, for example, you must create a
separate group and grant it a TIBCO Spotfire Library Administration license. This
is what we did while exploring the Administration Manager tool. You can then
restrict the access of this group to certain folders in the library, effectively making
those users departmental-level library administrators.

Folder permissions
Let's continue with our finance and marketing department scenario.

1. Open Library Administration from the Tools menu (assuming you
are logged in as a member of either the Administrator or Library
Administrator groups).

Chapter 4

[107]

2. Click on New Folder to create a new folder and call it Finance; do the
same for Marketing. You can give the folders descriptions if you wish,
but it's not essential.

3. Select the newly created Finance folder and click on the Edit link next
to Permissions for Selected Folder. The dialog that opens allows you
to decide which users or user groups can access the contents of the folder
to various degrees of privilege.

The built-in groups Administrator and Library
Administrator implicitly have full control over all library
folders, irrespective of any permissions set explicitly.

Uncheck Inherit permissions from parent folder if you want
to start a new inheritance hierarchy. Otherwise, you will not
be able to remove, for example, the Everyone group, which is
applied to the root of the library by default.

The Big Wide World of Spotfire

[108]

4. Search for the finance department groups, select Finance Spotfire
Consumers and add it to the Browse + Access panel, and select
Finance Librarians and add it to the Full Control panel. Remove
all other groups from the permissions windows.

5. Do the same for the marketing department folders, and then remove
the Everyone group from all other root folders.

For security reasons, I would recommend removing the Everyone
group from all root folder permissions and only adding the group
back on a case-by-case basis, if ever.

With this setup, when finance department users log in, they will only see their
departmental folder and any subfolders to which they have been granted permission.
Although finance librarians have the elevated privilege of library administration,
they too will only see the department folder. The difference is that they will be able
to create new folders under that folder and control which groups and users have
access and at which level. The control of user accounts and group membership
remains with the Administrator group.

Import and Export
As a library administrator, you can also import and export individual files or
entire folders with all their subfolders.

To export, select the folder or file of interest and click on the Export button.
The selection will be exported as a zip file to a file directory location that is
predetermined by a configuration setting on the Spotfire Server. The default
location is the installation directory of the Spotfire Server, but it is possible to
set up a network share and use that as a more communal area.

All items in the library have an underlying unique identifier called a
globally unique identifier (GUID), which is retained when exported.

To import, click on the Import button and browse to the exported package, which
must be in the configured import/export directory. When importing a package
back into the library, it's possible that either the name or the GUID (globally unique
identifier) of an object in the import package is identical to an existing item at the
target location. You must choose one of three following rules to resolve any conflicts:

• Automatically assign a new name or GUID to imported item: A "(2)" is
appended to the name of the imported item, and it is given a new GUID.

Chapter 4

[109]

• Replace existing item: The imported item assumes the name and/or GUID
of the target item.

• Keep existing item: The item is not imported.

The same rules are used when simply copying or moving items around the library,
except there is no potential GUID conflict in such cases, just a potential name conflict.
When importing and exporting between multiple server environments, it's good
practice to use Replace existing item because it ensures that any Spotfire analysis files
that use the items imported to the library will continue to work without modification.

A quick tour of Information Designer
Information Designer is accessed from the Tools menu, but it is only available to users
who have been granted a TIBCO Spotfire Information Modeler license. It is a tool for
setting up data sources and building information links, which are essentially database
queries that allow you to import a customized data view into Spotfire as a data table.

When you open Information Designer, you will be immediately struck by its
similarity to the library you have just been looking at. That's because it is the
library; it's just that Information Designer offers you specialized options to create
data sources and information links. All of these objects are nevertheless stored in
library folders.

It's important that you give some consideration to how you organize information
link folders and how you determine access to them. The Access privilege you saw
as a library folder permissions option gives users access to information links but
does not allow the users to see the folder or its contents.

Information Designer allows you to create seven information modeling objects,
as well as folders to contain those objects. A library administrator can move and
reorganize these items in the library. These objects are interdependent, and some
must be created in advance of others.

The Big Wide World of Spotfire

[110]

Data Source
Let's start with Data Source. You must clearly define a data source(s) before you start
trying to define columns or information links. When you click on Data Source, Spotfire
asks you for the database type and a connection URL. If you don't know how to define
the connection URL, you will need to consult the database administrator or other
relevant documentation for the database in question. You will also need a username
and password for the database. The task is very similar to the one we covered in
Chapter 1, Show Me the Data, to connect to databases.

Columns
The next thing you will want to do is click on Column or Multiple Columns to select
the columns in the data source you need for an information link. This step is quite
straightforward: you navigate through a connected data source, select the column(s)
you want to use, and save it for later use. You should create folders to group the
columns you select so you can find them easily for future information links. There's
no need to create multiple copies of any column.

Join
If you need to select columns from multiple tables, you'll need to define the
relationship between those tables by defining and saving the necessary join
statement(s). When you select Join from the New dropdown, Spotfire will
expect you to first select two columns, one from each of the tables you wish to
relate. Then, you will have to decide what type of join is appropriate: an inner
join (return rows only where both columns match) or an outer join (return all
rows from one table, including nulls, and only the matching rows from the other).

If the tables are related uniquely through more than one pair of columns, define
all the pairs necessary to define the relation. Once you've finished, save the joins
to a suitable folder and give them logical names you will understand later.

Filter
You can use a filter element to predefine a filter on the data that is returned by an
information link. Filter elements are defined similarly to column elements except you
include a filter expression. You then add the filter as an element to an information link.

Chapter 4

[111]

Procedure
A procedure is a piece of code that is defined in in the source database and runs
there. You will find procedures in the data source schema represented as cog-wheel
icons. Once you define a procedure as an information element, it can be added to
an information link's elements section. Information links don't just return columns,
therefore, they can be used to trigger procedures in the source database, the results
of which may or may not be the return of data to Spotfire.

Information Links
Once you have defined and saved all the elements you require (most often columns
and joins), you are ready to build the information link. This is the object you will
invoke to, for example, import data into an analysis. The difference between an
information link and the direct database connection we explored in Chapter 1, Show
Me the Data, is that an information link is available for reuse by anyone who is given
access to the library folder containing it.

Information links have nine sections, although only the main elements section is
essential, and for basic information links, you will probably just define elements
and joins.

The Big Wide World of Spotfire

[112]

The purpose of each information link section is described in the following table:

Elements The section where you add predefined columns, filters,
or procedure elements.

Join path The section where you add predefined join elements.
Description Optional description of the information link.
Filters An alternative to predefined filters but works in much the same way.
Prompts Prompts can be added to allow the user to input a value or range for a

column(s) in the information link.
Conditioning Conditioning has two components: eliminating the return of duplicate

rows by the information link (equivalent to a DISTINCT statement in SQL)
and doing a pivot transformation.

Parameters Parameters are very much like prompts, except they are defined directly in
the information link SQL and are intended to be handled by scripts.

Properties Allows you to add a custom property to the imported data table.
Caching Caching options for the information link. The default is no caching.

When you define an information link using these information modeling tools,
Spotfire creates the equivalent SQL statement, which you can read and modify by
clicking on the SQL button.

An overview of Spotfire Analyst (formerly
Professional Client)
Spotfire Professional Client, now referred to as Spotfire Analyst, is a desktop
client installation that provides, depending on the licenses assigned to a user by
a Spotfire administrator, the full functionality of the Spotfire platform. From the
professional client, you can build analyses; access Administration Manager, Library
Administration, and Information Designer; access advanced analytics functions; and
complete other data management tasks. It is what we have been using to work through
the examples in the book so far. TIBCO Spotfire Desktop provides similar functionality
to the professional client, but without the administration and server tasks.

To use a Spotfire professional client, you need to log in at least once to a Spotfire
server. This process authenticates you, determines the licenses that have been
assigned to you, and provides any software updates that have been deployed to
the server. Thereafter, you can choose to log in or work offline. Depending on the
server configuration, you may have to log in periodically to reauthenticate. If you
wish to open an analysis file from or save an analysis file to the Spotfire library,
you will obviously have to log in to the server first.

Chapter 4

[113]

You can configure a lot of default options through the Options item under the Tools
menu. Any settings you make here will persist from session to session and override
any preference settings assigned to your user group by the administrator. These
options can save you a lot of time and frustration if you have strong preferences for
certain details in your analyses and don't wish to make the changes every time you
start a new file.

One very useful feature of the Options panel is the Fonts section. Any changes you
make here can be applied across the current analysis by clicking on the Apply to
Document… button, which can be particularly useful to refine the presentation of
text areas.

A special case of the professional client is the enterprise player. The installation
is exactly the same, and you have the same software installed on your desktop.
However, because the Spotfire administrator has only given you a TIBCO Spotfire
Enterprise Player license, you cannot create any analyses or visualizations. You are
restricted to opening files from the library and interacting with them as designed by
the analysis author. It is equivalent in functionality to the web player, although it is
possible to assign an administrator or library administrator license to an enterprise
player for support personnel who do not need the full analytical functionality of the
professional client.

The Big Wide World of Spotfire

[114]

An overview of Spotfire Consumer
(formerly web player)
The web player is the standard platform to deliver Spotfire analyses to a wider
audience. An analysis author can, in principle, share analyses with others using
just the professional client and enterprise player, but it's not a very efficient
delivery mechanism for a large audience.

The Spotfire web player server is installed in Microsoft IIS and is linked to the
Spotfire server for user authentication purposes and, critically, for access to the
Spotfire library. Analysts working with a professional client can save their analysis
files to the library, where they can be controlled by a combination of user/group
administration and library administration, and then served to consumers through
the web player.

To access the web player, a user needs to open a standard web browser, enter the
URL for the Spotfire web player, log in, navigate the library, and open the analysis
file of interest. The standard URL for the web player is http://<server name>/
SpotfireWeb. The web player interface looks and behaves very much like the
professional client, but with some notable differences.

If a member of the finance department logs in to the web player, he or she can
browse the library, but can only see finance department files.

If the user opens the Baseball Example file that has been saved to the Finance folder,
he or she will see the familiar visualizations we have been working on. The main
difference is the inability to select the visualization properties dialog or change any
of the visualization properties directly on the page, as we could do in the client.
However, all the other interactivity works exactly as in the client.

Chapter 4

[115]

The icons in the top right-hand corner allow you to toggle the appearance of any
collaboration panels created by the author, apply and add bookmarks, toggle the
appearance of the filter details-on-demand panels, and access a menu of further
items, including export to PDF and Microsoft PowerPoint. Bookmarks can be added
as "private" for your own reference only or "public" for use by anyone with access to
the analysis file in question.

You should see now how useful those text area controls are. Without them, the user
would not be able to change the color by properties of the plot.

An overview of Spotfire Business Author
(new with Version 6.5)
Spotfire Business Author is an enhanced version of the web player that allows
web users to make changes to visualizations and create new visualizations through
a web browser. The functionality is not as extensive as it is in the professional client,
but it does open up a more enterprise-friendly approach to report building.

The Big Wide World of Spotfire

[116]

This implementation is served from the standard Spotfire web player server, and
it is made available to users through a new license called TIBCO Spotfire Business
Author. If this license is assigned to the finance department group and a member
of that group reopens the Baseball Example file in the web player, he or she will
see a slightly different interface.

There is now an Edit button alongside the other icons in the top right-hand corner.
If you click on this button, you get access to the properties of visualizations in the
analysis and acquire the ability to create a limited number of new visualizations.

Chapter 4

[117]

Automating tasks using Automation
Services
Automation Services is a very useful tool for automating certain Spotfire tasks. The
license to use Automation Services can be given to any user, but it's most likely to be
used by someone responsible for the maintenance of a set of analysis files. It's probably
not a tool that an analyst would use in the course of analysis creation or design.

The Automation Services Job Builder is found under the Tools menu, and you use
this job builder to create an Automation Services job. Out of the box, 14 tasks are
available to add to a job. Custom tasks can be created using the software developer kit
(SDK), but this is an advanced topic for Spotfire developers with programming skills.

You can see from the list that the job builder offers a diverse range of tasks. Some
are more backend administration tasks, such as importing and exporting library
items or setting data source credentials; others help to provide updates to people,
such as e-mailing them with a message and including images from an analysis file,
a web player link to the file, or even an embedded analysis file.

When you select a task to add, a dialog window for that task opens to allow you
to enter the relevant details. As you add tasks, they build up as a list in the job
builder's window. You can remove individual tasks at any time, and you can
move them up and down the order.

The Big Wide World of Spotfire

[118]

When your job is complete, you use the job builder's File menu to save the job as an
XML file. This XML file can be edited directly, but it can also be opened in the job
builder for editing, and that's an easier and safer way to make changes to a job.

Running Automation Services jobs
You can run a job directly from the job builder by selecting Execute on Server from
the job builder's Tools menu, but to take full advantage of the power of Automation
Services, you will want to run jobs on a schedule. To do this, you will have to use
a third-party scheduler, such as Microsoft Windows Task Scheduler. To run your
Spotfire jobs, you need an executable file called Spotfire.Dxp.Automation.
ClientJobSender.exe. You'll find this file in the Automation Services installation
directory on the Automation Services server. You can run it from there or copy it to
a more convenient location.

Automation Services is a web application, and each instance is linked to a specific
Spotfire server instance and, therefore, a specific Spotfire library. When running an
Automation Services job, you must provide the URL for the Automation Services
instance you want your job to run against. The final piece you need to run an
Automation Services job is, of course, the XML file you saved from the job builder.

An example Automation Services job syntax is as follows:

Spotfire.Dxp.Automation.ClientJobSender.exe http://
myAutomationServerName/SpotfireAutomation/JobExecutor.asmx C:\myJobs\job.
xml

To schedule the job, simply add that instruction to a batch file and schedule the batch
file to run.

An overview of system monitoring tools
All versions of Spotfire create logs that can be analyzed, but Version 6.5 provides
some new visual system monitoring tools. We'll take a quick look at the traditional
logs and then move on to look at the new functionality in Version 6.5.

Chapter 4

[119]

Spotfire server administrators can view the system logs via the administration
console (http://<Spotfire server name>/Spotfire); a server admin account
is needed to log in to the console, which also provides software deployment tools,
so it may be tightly controlled by your IT department. Under Open Logs and
Diagnostics, you'll find a Server Log Files tab, where you can set debug levels,
view the extensive system logs produced by Spotfire, and export details to a file.
You can also copy the logs directly from their location in the Spotfire installation
directory on the server.

Spotfire logs import into analysis files with a well-formatted structure, and a simple
Table visualization can be a very powerful way to interrogate a log file. Beyond that,
you can develop further log visualizations and analysis tools using Spotfire Analyst.

Spotfire 6.5
In an enterprise setting, the Spotfire web player is a key component that administrators
want to monitor. It is the place where most users access analysis files and interact with
them. Spotfire 6.5 provides logs directly through the web player, and you can export
the logs to a preconfigured Spotfire DXP file for a detailed analysis.

The Big Wide World of Spotfire

[120]

This functionality is accessed directly from the web player as Diagnostics under
Tools, so a regular Spotfire administrator can access it without the need to gain
access to the Spotfire servers.

The default Web Player Monitoring view is the Open Analysis subtab, which
provides a summary of the current activity on the web player, showing active
users and some useful status information. You can view some useful performance
counters, and you can also view the raw web server log and get information on
the status and specifications of the main Spotfire components.

A really cool feature is the Export Monitoring Logs and Analysis tool, which you
will find by switching to the Logging subtab on the Web Player Monitoring page.
It exports a preconfigured dxp file with a snapshot of the log data. You can open
this dxp file in a Spotfire client and access a rich suite of prebuilt visualizations.
Also, because the export includes the log files, you can customize the dxp file for
your own purposes and continue using the logs provided by the tool.

The dxp file includes very useful Glossary and Columns and Help & Configuration
pages, which explain how to use the dxp file, including instructions on how to set
up the analysis file to show real-time data from the server.

Chapter 4

[121]

Summary
This chapter has provided a whistle-stop tour of the Spotfire landscape, giving you
a sense of the different parts of the system and how they work together. We looked
briefly at the main Spotfire components and took quick tours of Administration
Manager, Library Administration, Information Designer, Spotfire Analyst (formerly
known as Professional Client), Spotfire Consumer (formerly known as Web Player),
Spotfire Business Author (new with Version 6.5), Automation Services, and system
monitoring tools.

Many of the items we looked at require some level of admin or specialist access,
and many of you will not be Spotfire administrators. Nevertheless, I think it's
useful for you to have a good sense of how the platform is administered and, more
importantly, how best to use the Spotfire architecture to deliver a good analysis to
your customers. The inline help files in the Spotfire client are always the best starting
place for information about the product's tools and features, and the TIBCO website
(https://docs.tibco.com/) provides more detailed documents on all the topics
covered in this chapter.

In the next two chapters, we are going to explore some more advanced data
analysis and visualization techniques.

https://docs.tibco.com/

Source Data is Never Enough
Any analysis, no matter how clever or imaginative, is only as good as the underlying
data. Chapter 1, Show Me the Data, got you started with data; this chapter will take
you through some more advanced concepts and techniques. It will show you how to
use Spotfire's data tools to transform your source data, when necessary, into a form
that is more suitable for your analysis needs.

It's always good practice to do as much heavy lifting as possible in source systems and
data warehouses before you import data into a front-end analysis tool such as Spotfire.
If you need to combine data from multiple tables, ask a database administrator or
modeler to create a view in the database and use that view as your data source. If you
need to combine data from multiple data sources, ask an extract transform load (ETL)
developer to create the necessary integration scripts and stage the data you need in
a form convenient for your analysis needs. What's more, following Spotfire 5.0, it's
possible to pass complex queries to a database to process at the source and then work
with the results that come back. This is an efficient use of database resources.

All that said, however, as a creative analyst and data explorer, you will always
have a need to modify and transform data after it arrives in Spotfire, and Spotfire
is a great tool for doing so. It's actually pretty good at manipulating data, and it
gives you lots of flexibility to reach the analytic insight you seek. If you can't wait
for an IT development team to build the exact source specification you require,
Spotfire provides a powerful suite of data tools that allow you to freely experiment
with data transformation and manipulation to achieve more independently. It can
also help you to develop a data specification for long-term and robust enterprise
implementations that do require formal IT development.

In this chapter, we will cover the following topics:

• Creating metrics using calculated columns
• Using the Data Panel tool
• Key data concept—dimensional hierarchies

Source Data is Never Enough

[124]

• Adding dimensionality to your data by defining hierarchies
• Categorizing continuous numerical data using binning functions
• Slicing and dicing data using hierarchy nodes
• Merging data from multiple sources
• Key data concept—narrow tables versus wide tables
• Transforming data structure through pivots and unpivots
• Using Spotfire's Information Designer
• Optimizing complex data manipulations using in-database analytics

Creating metrics using calculated
columns
Probably the most fundamental and useful data manipulation tool provided by
Spotfire is the ability to create calculated columns in imported data tables. A
calculated column is created by writing an expression that references other columns
in the table, documents property values, and values that you supply, or hard code.
The expression can be a simple piece of arithmetic, such as dividing one column
by another to get a proportion, or a more complex piece of conditional logic. Once
created, a calculated column can be used exactly like any other column.

Basic metric
Let's work through an example by looking at two key metrics of batting performance
in baseball: the on base percentage (OBP), which is essentially how often a batter
reaches base, and the walk-to-strikeout ratio (BB/K), which is a measure of a hitter's
plate discipline.

The data we will use here is BaseballPlayerData.xls, which you can download
from http://www.insidespotfire.com.

1. Create a new analysis file and import the baseball player data.
2. The OBP for each player is already included in the data, but we're going to

recalculate it from scratch. Go to Column Properties in the Edit menu. From
here, you can select the data table you want to work with and you can see all
the columns in the table. You'll notice that Column Type for each column is
Imported, meaning it comes from the data source.

http://www.insidespotfire.com

Chapter 5

[125]

3. Select Calculated Column… from the Insert dropdown to open the
calculated column dialog. Double-click on Walks from the Available
columns window and notice how it appears in the Expression window. Type
the division operator / after [Walks] and then double-click on Strike Outs in
the Available columns window. Finish by providing a suitable name for the
new column in the Column name input box.

Source Data is Never Enough

[126]

4. Follow the same process to create the OBP calculation, which is as follows:

([Hits] + [Walks] + [Hit By Pitch]) / ([At Bats] + [Walks] + [Hit
By Pitch] + [Sacrifice Flies])

Be sure to click on OK to exit the Insert Calculated Column
dialog and again to exit the Column Properties dialog.

You have now created two simple calculated columns, and they will appear in
the column properties list as Calculated under Column Type, indicating that you
created them and they are not from the source data.

Dynamic metric
Now we'll try something a little more complicated. You're going to create a
calculated column that changes dynamically depending on what you select
in a text area dropdown list.

1. Using the same process we followed in Chapter 3, Analyze That!, create a
text area and then a dropdown control called TeamName. In the examples of
Chapter 3, Analyze That!, you selected Fixed values under Set property value
through; this time, select Unique values in column and then select Team as
Column. This will create a dropdown of team names.

2. Reopen Column Properties and create a calculated column with the
following expression:
If([Team]="${TeamName}",[Player Name])

This expression states that, if a row in the data has a team value
corresponding to the team selected in the control property TeamName, then
give this row in the calculated column the corresponding [Player Name]
value; otherwise, leave it empty. Name the column SelectedTeamPlayer.

Chapter 5

[127]

After you create the calculated column, create a Table
visualization and explore how the calculated column values
change as you select different teams in the dropdown box.

3. Create a list box control in the text area, call it PlayerName, and set it to
populate through unique values in the column [SelectedTeamPlayer].

4. Create a calculated column with the following expression:

If([Player Name]="${PlayerName}",[Player Name])

Name the column Selected Player.

What you have built now is a way to select a team from a list to get a list of players in
that team, so you can select an individual player in the team and use that selection to
drive a set of visualizations. We have three more columns to be created to bring the
example together.

1. Create a calculated column called On Base Percentage (OBP) with the
following expression:
If([Player Name]="${PlayerName}",[OBP])

2. Create a calculated column called Walks per Strikeout (BB/K) with the
following expression:
If([Player Name]="${PlayerName}",[BB/K])

These two calculated columns will only return values for the player
selected in the dropdown list. Again, I would recommend creating a
table visualization to explore the dynamics.

3. Create a calculated column called Quadrant with the following expression:

case
when ([OBP]<=Percentile([OBP],50)) and ([BB/
K]<=Percentile([BB/K],50)) then "Banjo Hitter"
when ([OBP]<=Percentile([OBP],50)) and ([BB/
K]>Percentile([BB/K],50)) then "Patient Hitter"
when ([OBP]>Percentile([OBP],50)) and ([BB/
K]<=Percentile([BB/K],50)) then "Solid Hitter"
when ([OBP]>Percentile([OBP],50)) and ([BB/
K]>Percentile([BB/K],50)) then "Top Performer"
end

Source Data is Never Enough

[128]

For the last column, we are using a case expression to build a more complex piece
of logic than a simple If expression. You can nest "If" statements, but the syntax
becomes very difficult to read, whereas a case statement is relatively easy to
follow. We are also using the function Percentile, the value below which a
defined percentage of the data values fall. The 50th percentile is the median.

With this expression, we are categorizing players into one of the four categories,
based on which OBP–BB/K quadrant they fall into.

You will find excellent explanations and examples of all the expression
elements you can use in Spotfire under the Function window in the Insert
Calculated Column dialog. You can also search by typing some hint text.

Chapter 5

[129]

Now, create two visualizations:

• A bar chart with the calculated columns [On Base Percentage (OBP)] and
[Walks per Strikeout (BB/K)] as the value axis columns and (Column
Names) as the category axis and trellis by [Active Player] to provide a
convenient title to the chart.

• A scatter plot with the calculated columns [OBP] and [BB/K] as the x- and
y-axes, respectively; marker by (Row Number): color by the calculated
column [Quadrant], and label by [Player Name].

When you select a player in the text area dropdown, the bar chart shows you only
that player's OBP and BB/K stats. The scatter plot shows you the picture for all
players, with the percentile quadrants color coded. When you select a bar in the bar
chart, you can see how the selected player compares with the others. You could also
add a details table below the bar chart.

Source Data is Never Enough

[130]

Using the Data Panel tool
The Data Panel tool, which you can toggle on and off by selecting Data in the View
menu or clicking on the corresponding icon in the icon tray, is very useful to work with
data on an analysis page. It gives you an overview of all the columns in all the tables
currently loaded in the analysis file and the relationships between those tables. If you
click and drag a column onto any visualization, you will get a set of context-sensitive
options, such as Color by that column in the visualization.

Key data concept – dimensional
hierarchies
Data will often contain intrinsic dimensionality. The most common example is a
date. Dates are usually entered as single values, such as 12-May-2005, but if you
think about it, there is an intrinsic dimensional hierarchy you might find useful
when building visualizations: year > month > day, for example, but also year > quarter
> month > day. Include time and you have additional dimensions.

Independent data attributes, or columns, can also be arranged in a hierarchy.
A common example is geography (region > country > province > city). The order of
the hierarchy can vary depending on your exact needs for a given situation. Do you
want to arrange your music collection as artist > year > album > song or year > artist >
album > song?

You won't always need to use dimensional hierarchies, but they can be a useful and
powerful way to navigate your data.

Chapter 5

[131]

Adding dimensionality to your data by
defining hierarchies
Spotfire makes it easy for you to use hierarchies. First, whenever you select a date
column for visualization, Spotfire offers you a set of prebuilt hierarchy options,
including hierarchy sets and individual hierarchy elements.

If you select a hierarchy set for a visualization axis, the user is presented with a
convenient slider to select which level of the hierarchy he or she wishes to view
on that axis. The visualization adjusts dynamically.

Source Data is Never Enough

[132]

You can also build your own date hierarchies or any other hierarchy you need
by selecting the columns that define the hierarchy. You do this from the same
dialog Column Properties window, where you build calculated columns. The only
difference is you select Hierarchy… from the Insert dropdown and then select the
columns or date elements you want to add to the hierarchy in the desired order
and give the hierarchy a name. Once created, the hierarchy can be used as a regular
column in visualizations.

It's important to understand that although a hierarchy column will always give
you a slider when applied to a visualization axis, allowing the user to change the
granularity of the axis from, say, league to team to player in the case of the baseball
data, you need to ensure that other visualization properties support the dynamic
nature of the slider. The other axis must be an aggregation (such as sum, min, or avg)
that rolls up the data, and, in the case of a scatter plot, the Marker By property must
be set to (Column Names) or (None).

Categorizing continuous numerical data
using binning functions
The final way in which you can create custom columns in Spotfire is through
binning. Just as for calculated and hierarchy columns, you create binned columns
using the Insert drop-down in Column Properties, selecting the option Binned
Column…. A binned column is just a way to turn a continuous set of values, usually
numeric but not always, into a set of more discrete values or bins. Age would be a
typical case. You might prefer, when using a bar chart to show an age distribution,
to plot a series of boundaries, such as < 20, 20–30, 30–40, 40–50, 50–60, 60–70, and
>70, rather than a continuous set of individual ages.

The Binned Column… dialog offers five methods for binning data, and each of these
methods corresponds to a function that you can later edit using the expression editor:

• You can set specific limits by using the following expressions:
BinBySpecificLimits([column name], value 1, value 2, …, value n)

This method allows you to explicitly define each bin boundary; any
values below or above your minimum and maximum values are placed
automatically into bins as well.

Chapter 5

[133]

• You can set a specific number of bins with even intervals by using the
following expressions:
BinByEvenIntervals([column name], number of bins)

This method allows you to focus on the number of bins and not worry about
the distribution of values.

• You can set a specific number of bins with an even distribution of unique
values using the following expressions:
BinByEvenDistribution([column name], number of bins)

This method allows you to focus on the distribution of values, still dividing
the values into bins, but telling Spotfire to create the bin boundaries to
equalize the distribution.

• You can set the bins based on the standard deviation using the
following expressions:
BinByStdDev([column name], scaling factor 1 * SD, scaling factor 2
* SD, …, scaling factor n * SD)

This method is similar to the specific limits method except you refer to a
scaled list of standard deviation values.

• You can set the bins based on substrings in text values using the
following expressions:

BinBySubstring([column name], number of characters from beginning
or end of string)

This method allows you to categorize string values into bins based on a
defined number of characters from the beginning (positive number) or end
(negative number) of a string.

Slicing and dicing data using hierarchy
nodes
Spotfire provides a set of OVER functions to allow you to aggregate data over the
nodes of a hierarchy, usually a date hierarchy but not necessarily. At its simplest
level, the OVER function is a means to define at what granularity you wish to
aggregate a value. For example, you could create the following calculated
column in the baseball data:

Avg([Hits]) OVER [Team]

Source Data is Never Enough

[134]

The result would be the average number of hits achieved by the players in each team.
As each team has more than one row in the data, the lowest granularity of which is a
player, you will end up with the following result:

The OVER function has some more advanced and challenging methods. On their
own, these methods may not initially seem particularly useful to you and may even
be a little hard to understand. However, they become very powerful when used
in expressions.

In Chapter 1, Show Me the Data, when considering the key data concept of rows
and columns, we saw that you cannot subtract a value in one row from a value in
another. In other words, you cannot build expressions that cross the row boundary.
The OVER function, with its suite of methods, allows you to overcome this limitation
because it gives you a means to reference the values at different nodes in a hierarchy
in the same expression. For example, it allows you to subtract the sales figure for this
month from the sales figure for the same month last year. The sales figures are the
nodes in a date-based hierarchy.

There are 14 OVER methods, and the in-line help in the Spotfire client provides
details and examples for each. The Functions panel in the Insert Calculated Column
dialog also provides basic descriptions and syntax. The help files in Spotfire for the
OVER function tend to focus on custom expressions, rather than calculated columns.
We will cover custom expressions in Chapter 6, The World is Your Visualization.

Here we will cover some of the more interesting and challenging OVER methods
using the market interest rate data we used in Chapter 2, Visualize This!, for the line
chart example, but this time using just the Sweden data. In the following sections,
"Agg" refers to an aggregation method such as average or sum, "column" contains
the value to be aggregated, and "hierarchy" is the hierarchy to navigate.

For these examples, we are using the Year-Month and Year hierarchies created on
the Date column.

Chapter 5

[135]

LastPeriods
Agg(column) OVER LastPeriods(n, hierarchy)

The LastPeriods method allows you to apply an aggregation over the current node
and n – 1 previous node in the hierarchy. It can be used, for example, to calculate a
three-month moving average:

[Moving Average]
Avg([One-Month Rate]) OVER (LastPeriods(3,[Hierarchy.Year-Month]))

Parent
Agg(column) OVER Parent(hierarchy)

The Parent method allows you to specify the parent of the current node in
a hierarchy. If there is no parent, then all rows are included. In itself, it's not
immediately useful, but we'll see how essential it is in the next section.

PreviousPeriod
Agg(column) OVER PreviousPeriod(hierarchy)

The PreviousPeriod method allows you to populate the rows for one node/period
of the hierarchy with an aggregation on the previous node/period. In itself, this
displacement is not particularly interesting, but if we use it in a calculation, we can
determine changes in value from one period to another. For example, say we'd like
to see the difference between the average interest rate for one year and the average
interest rate for the previous year, we would use the following expression:

[Delta]
Avg([One-Month Rate]) OVER (Parent([Hierarchy.Year-Month])) -
Avg([One-Month Rate]) OVER (PreviousPeriod(Parent([Hierarchy.Year
-Month])))

Source Data is Never Enough

[136]

We are calculating the average for the parent node (year in our hierarchy) of the
current row and subtracting the average for the parent node in the previous
period (year).

ParallelPeriod
Agg(column) OVER ParallelPeriod(hierarchy)

What if we want to compare values across parallel periods, such as a month-on-month
analysis for this year's figures against last year's? For example, how does June this year
compare with June last year. That's where the ParallelPeriod method can help. It
allows us to get a value in a previous period at the same level in the current period.
Note that it can only go up one level to define the period, for example:

[Month-On-Month Difference]
[One-Month Rate] - Sum([One-Month Rate]) OVER
(ParallelPeriod([Hierarchy.Year-Month]))

Here, we take the current interest rate value and subtract the interest rate value for
the same month last year.

Chapter 5

[137]

You're probably thinking, what exactly is the difference between PreviousPeriod
and ParallelPeriod? PreviousPeriod is simply the previous period in the same node,
whereas ParallelPeriod traverses the hierarchy to a parallel node.

NavigatePeriod
Agg(column) OVER NavigatePeriod(hierarchy, node/period name, period
displacement, period level for aggregation)

The NavigatePeriod method allows you to specify the period level, or node, you
want to use; how much, if any, you want to move forward or backward; and the
level at which you want to aggregate, zero being the top level, incrementing by one
for each level into the hierarchy. For example, in the following expression:

Avg([One-Month Rate]) OVER (NavigatePeriod([Hierarchy.Year
-Month],"Year",1,0))

Source Data is Never Enough

[138]

Year specifies the period, the 1 calls for a displacement by one period forward, and
the 0 specifies the year as the aggregation period. This expression is equivalent to
the NextPeriod construction:

Avg([One-Month Rate]) OVER (NextPeriod([Hierarchy.Year-Month]))

Say we have daily interest rate figures, a Year-Month-Day hierarchy, and are looking
at the row for Day 1, Month 1, Year 1. Then, the following results will be returned by
a NavigatePeriod call for the average rate:

"Year",1,0 "Year",1,1 "Year",2,1
Average for Year 2 Average for Month 1, Year 2 Average for Month 1, Year 3

Intersect
Agg(column) OVER Intersect(hierarchy)

The Intersect method finds the intersection, or common values for two or more
hierarchies. This method is best used in conjunction with other OVER methods. For
example, imagine we have monthly market interest rate data for countries across
multiple regions, and we defined region-country and year-month hierarchies. The
following expression returns the lowest interest rate for each region for each year:

Min([One-Month Rate]) OVER (Intersect(Parent([Hierarchy.Region
-Country]),Parent([Hierarchy.Year-Month])))

Merging data from multiple sources
It is best practice to transform your data, including merging from multiple sources,
before it arrives in your analysis tool. However, you might not have this facility or
access to good data integration tools, or perhaps you just want to explore something
quickly to follow an analytical hunch. Spotfire provides some easy-to-use and
powerful data merging tools.

When merging data into an existing data table, the first thing you have to decide is
whether you are adding new columns or new rows. Then, you must define how the
data sets are related. If you are adding new columns of data, you must define the key
columns in each table that link the two data sets uniquely for the columns you add. If
you are adding new rows of data, you must match or map the column names.

Chapter 5

[139]

When defining key columns and mapping columns, the names used in the two tables
can be different as long as you know that their values and data types are equivalent.

Let's work through some examples to make things a bit clearer.

Insert columns
For this example, we will use two copies of the baseball data: one with all the original
columns minus the player position and one with just league, team, player name,
and position.

The data used here is BaseballPlayerDataNoPosition.xls and
BaseballPlayerDataPositions.xls, which you can download from
http://www.insidespotfire.com.

1. Start by loading the first file, BaseballPlayerDataNoPosition.xls,
into Spotfire.

2. Now select Columns… under the Insert menu, and when the insert columns
dialog opens, use the Select button next to Add columns from: to select the
File... option. Navigate to the file BaseballPlayerPositions.xls.

3. You'll get a preview of the table, just as you do when importing a table. Click
on OK to accept the table structure.

http://www.insidespotfire.com

Source Data is Never Enough

[140]

4. We don't need to do any transformations, so just click on Next >.
5. In the next dialog, you will define how the two tables are related by matching

all relevant columns. Select Player Name in each panel, and click on Match
Selected. The columns will move to the Matched columns: panel.

There is no need to match Team or League because Player Name uniquely
relates both tables.

6. Click on Next >, and when the column selection dialog opens, check Position
and select a join method (we're just going to use the default left outer join).
Click on Finish.

Leave Team and League unchecked because they are already present in our current
data table; if we checked them, we would create duplicate columns.

The [Position] column has been added to the "no positions" table, with values
correctly matched to each player.

Chapter 5

[141]

Insert rows
For this example, we will use a copy of the baseball player data with 80
rows removed and a file containing just those 80 rows. The data used here is
BaseballPlayerDataTruncated.xls and BaseballPlayerDataNewRows.xls,
which you can download from http://www.insidespotfire.com.

The process to insert rows is almost identical to that of inserting columns, except you
start by selecting Rows… under the Insert menu. You go through the same dialogs,
but, when you reach the column-matching section, this time you want to match all
the columns belonging to the data you want to add. Spotfire gives you a Match All
Possible button to automatically match columns with the same name, but you can
match manually if you know two columns with different names are nevertheless
the same attribute. For example, one table might have a column called "Player" and
the other might have a column called "Player Name," but you know that both tables
contain the same category of information: player name.

http://www.insidespotfire.com

Source Data is Never Enough

[142]

There is no join definition to add rows because we are not trying to match the table
structures, just add more rows under the matched columns. If the new table has
additional columns, you can add these, but obviously (at least I hope it's obvious),
those columns will only contain values in the added rows, not in any existing rows
in the data.

Key data concept – narrow tables versus
wide tables
Data tables are row-by-column matrices, and obviously they can range in size from
one row by one column to many rows by many columns. You might have come
across the colloquial expressions narrow table and wide table, or even narrow long
table and wide short table. These concepts refer to the number of columns in the
table, but not in a literal sense.

They refer to the fundamental way in which the data is structured or categorized
in a table. In a basic narrow table, a list of categories is contained under a single
column and a second column lists values associated with each of those categories:
just two columns, but potentially many rows. In reality, there may be other
reference columns, but the basic concept holds: one column containing all values
across categories. In a basic wide table, each category gets its own column and the
associated values appear under it: potentially a lot of columns and as few as one row.

Consider the GDP data we used for the treemap example in Chapter 2, Visualize This!.
The table we used was a narrow table:

As a wide table, it would look very different:

Chapter 5

[143]

Each type of structure has its advantages. Narrow tables are good for associating
attributes. For example, it's trivial to add full country name and region columns to
the narrow table alongside the GDP data but not really possible in the wide table. On
the other hand, if we want to do row-level calculations, such as a ratio, it's easier if
our figures are in a single row in a wide format. If we want to be able to plot the GDP
for one country against another over time, we need to have each GDP series under a
separate column in a wide format.

Transforming data structure through
pivots and unpivots
You can use pivot and unpivot transformations to change narrow tables into wide
tables and vice versa. You can also use a pivot to permanently reduce the granularity
of a data table by summing up to a higher level.

Take a look at the baseball player data. What sort of table do you think it is? It has
columns for player name and team and then individual columns for a range of
standard baseball statistics, with each statistic getting its own column. This was
very convenient when we wanted to calculate the walk-to-strikeout ratio.

Unpivot
Let's see what happens when we unpivot the baseball player data table.

The data used here is BaseballPlayerData.xls, which you can download from
http://www.insidespotfire.com.

1. Load the baseball data into an analysis file.
2. Open the Add Data Tables dialog and using the Add dropdown, select the

baseball player data From Current Analysis. So far, we've been adding data
from external sources, but it's also possible to copy an internal table and
transform it in the process.

http://www.insidespotfire.com

Source Data is Never Enough

[144]

3. Don't click on OK yet. Give the table a new name in the Name: setting.
Expand the Show transformations section if it's not visible, select Unpivot
from the Transformations: dropdown, and click on Add.

4. When the Unpivot Data dialog opens, add Team, League, and Player Name
as Columns to pass through. Add Games Played, At Bats, Runs, Doubles,
Triples, and Home Runs as Columns to transform. We could add all the
statistics, but let's stick to those few to illustrate the principle.

5. Under Category column name, type Statistics Category; under Value
column name, type Statistic. Notice how the preview window changes as
you make changes.

Chapter 5

[145]

6. When you are finished, click on OK and then again to complete
the transformation.

Inspect your new table. What form is it in now?

Source Data is Never Enough

[146]

Pivot
Now, we'll try to reverse the unpivot and recreate the multiple statistics columns.
We'll also reduce the granularity as an additional option.

1. Once again, open the Add Data Tables... dialog, but this time, choose the
unpivot table you just created.

2. Give the new table a name, select Pivot from the Transformations:
dropdown, and click on Add.

3. When the Pivot Data dialog opens, make the following settings:
 ° Add League and Team as row identifiers
 ° Add Statistics Category as a column title
 ° Add Statistic as a value and choose Sum as the aggregation method
 ° Change the column naming pattern to just %C

Chapter 5

[147]

To familiarize yourself with the column naming setting, play around with
the patterns and watch how the preview changes.

4. Click on OK and then again to complete the transformation.

Inspect the resulting table. You have added back in the individual statistics columns,
as in the original table, and removed the player level of granularity, aggregating up
to the team level by summing the statistics.

If we had included all the statistics in the pivot transformation, we would
have had to look carefully at the aggregation method in each case. Sum
is appropriate for some, but Avg would be required for others, such as
Batting Average. Having selected different aggregation methods, we
might have included the method in the column name pattern, such as
%M(%C) to yield Aggregation Method(Statistic Category).

Using Spotfire's Information Designer
In Chapter 4, The Big Wide World of Spotfire, we started looking at Information
Designer and the elements needed to create an information link. We're going to
take a closer look now and build an example, not just of how an information link
can be used to extract data, but also to write data from Spotfire to a database. To use
Information Designer, you must have a reasonable command of SQL and relational
database principles, although Spotfire will do a lot of the work for you and try to
make the process user friendly by building the SQL query step by step.

Building an information link to multiple
source data tables
For this example, we're going to build an information link to Spotfire's own database
to extract information on the assignment of Spotfire licenses to users. You will need
access to the Spotfire database to follow this example exactly. If you don't have
access to the Spotfire database, try doing something similar with a database to which
you do have access.

1. Launch Spotfire and open Information Designer from the Tools menu.

Source Data is Never Enough

[148]

Remember that you must log in to a Spotfire Server to
access Information Designer because information links and
their elements are always stored in the library for reuse by
anyone who has access to them.

2. Start by creating a new folder to hold the elements you'll create. Select Folder
from the New dropdown, and create a folder called Information Links.
In this folder, create subfolders called Columns and Joins.

3. Define the columns you need by selecting Multiple Columns from the New
dropdown. When the configuration window opens, select the Data Sources
tab, expand the SPOTFIRE schema, and look for a table called GROUPS.

4. We just want the column GROUP_NAME, so select it and click on Add to
add it to the list of column elements on the right.

5. Repeat the selection process for the following columns: CUSTOMIZED_
LICENSES.LICENSE_NAME and USERS.USER_NAME.

Chapter 5

[149]

In SQL queries, database objects such as tables are referenced
in the database schema using a dot nomenclature in the same
way you would use slashes to reference a folder or file in a
Microsoft Windows environment.

6. Click on the Create Columns button to save your selections to the Columns
folder you created in step 2.

Don't click on Close unless you want to exit Information
Designer. To close individual element configurations, click on X
in the top-right corner.

7. Because we want to use columns from multiple tables, we need to tell
Spotfire how those tables are related or joined. From the New dropdown,
select Join.

8. We're going to create three pairs of column joins, selecting columns from the
database schema just like we did when creating column elements, except this
time we only select two columns per join. We also need to specify the join
type, and we will use a simple inner join in each case.

Source Data is Never Enough

[150]

9. The first join is between GROUPS.GROUP_ID and CUSTOMIZED_LICENSES.
GROUP_ID.

10. Complete each join by clicking on Save and saving the join definition to the
Joins folder you created in step 2. Give the join an intuitive name such as
GROUPS.GROUP_ID inner join CUSTOMIZED_LICENSES.GROUP_ID. The
remaining joins you need to create are:

 ° GROUPS.GROUP_ID inner join GROUP_MEMBERS.GROUP_ID

 ° USERS.USER_ID inner join GROUP_MEMBERS.MEMBER_USER_ID

11. The final step is to build the information link. Select Information Link from
the New dropdown, and add the columns folder you created to the Elements
section and the three joins to the Join path section. Click on Save and give
the information link a name such as License Assignments.

Chapter 5

[151]

To view your results, add the information link you just created as a data table or
click on the Open Data button to retrieve the data from the information link you
just created.

Building an information link that writes data
back to a database
You need to be very careful when writing data back to a database. I wouldn't advise
writing any data to the Spotfire tables we used in that previous example; you could
seriously damage the Spotfire installation. To illustrate write-back, we're going
to use a table created specially for that purpose and populate it with some basic
information. After first creating an information link to that table, just as we did in the
previous example, we're ready to enable write-back through that information link.

You select the information link in Information Designer and click on Edit. When the
familiar configuration window opens, click on SQL to open the SQL editor. In the
screenshot, you will see the SQL select query that Spotfire built based on the column
selections. We want to add a SQL insert statement, so we click on the Pre-Updates
button and enter an insert statement.

Source Data is Never Enough

[152]

It's best to use the syntax style used by Spotfire in the select statement, so copy and
paste as needed.

The screenshot shows the insert statement entered in the Pre-Updates window:

The question marks in front of DataIndex and MyData (those labels can be any
text) tell Spotfire that these are prompt parameters that will be assigned values
programmatically. To create an elegant write-back function, you would incorporate
those parameters into a script, but for now, we can test the write-back by simply
adding the information link as a data table. When you do this, Spotfire asks for values
for the parameters, each in turn, and the values you enter are inserted into the data
table. For example, you could enter 2 as the index and Second Entry as the data.

Chapter 5

[153]

When the data table appears in Spotfire, the insert statement has already been
executed, showing us the new row that has just been inserted.

This is a very crude example, but it illustrates the principle. You can use the SQL
update and delete statements to complete the range of write-back operations.

Optimizing complex data manipulations
using in-database analytics
Following Spotfire 5.0, it has been possible to push data calculations and
aggregations to the source system, facilitating the handling of data volumes too
large to fit into the primary memory and take advantage of the power of the source
database. When using this in-database (in-db) analytic functionality, you access only
a selected or aggregated set of data.

When a visualization is configured to use an in-db connection, every time a change
is made to the visualization's data-dependent properties, a new query is sent to the
external data source and a new table of aggregated data is returned.

The use of in-db data, as opposed to in-memory data, does introduce limitations.
For example, automatic date and time hierarchies are not available. Consult the
in-line help on working with in-database data for a full list of constraints.

Source Data is Never Enough

[154]

So, how do you use in-db analytics? You start by adding a data connection, as
distinct from a data table. Spotfire 6.5 can connect to a wide range of data systems,
including Microsoft SQL Server, Oracle, Cloudera Hive, HP Vertica, and Teradata.
To open a data connection, you need the relevant data connector, which you must
obtain from the provider and install on your client machine.

You can add a data connection from the Add Data Tables dialog by selecting an
available item under Connection To. You can also open Shared Connection in
Library that has been saved there using Manage Data Connections in the Tool menu.

You can set up your connection in three basic ways:

• Simply add a collection of tables you want to use
• Create a view across a number of tables by defining the relations

between them
• Create a view using a piece of custom code

Selecting data for a data connection
After connecting to a data source, you can navigate the schema and add the tables
or views you want. However, there is an extremely useful function that allows you
to select a table that interests you and then click on the button Add Related Tables,
which will find all the related tables in the source and add them automatically for you.

Chapter 5

[155]

This is particularly useful if you are connecting to a star schema, a popular data
warehousing data mart organization consisting of a fact table referenced to a set of
dimension tables (date, geography, and other descriptive attributes).

Creating in-database views
You can just work with a set of tables in a data connection and use them to build
visualizations, but you can also create data views, which are essentially virtual tables.
One way to do this is to select a table of interest and then define its relationships with
other tables. The tables are then combined into a single view of the data. First, select
a table.

Source Data is Never Enough

[156]

Then, select New Relation… to define how it is related to another table.

When you finish building the table relations, you can select which columns are to be
made available to Spotfire in the view you created.

To fine-tune in-db views even more and get the source system to do data calculations
and aggregations at source, you can write a custom query. Right next to the Relations
dropdown in the Views in Connection window, where we defined table relations for
a view, there is a Custom Query dropdown. When you select New Query, a dialog
opens to allow you to write a query in a language that is supported by the target
database. For Oracle or Microsoft SQL Server, this would be SQL. The query you
write could be very simple, or it could use advanced functionality.

Chapter 5

[157]

The point is that the query runs in the source database and returns the results,
not the underlying data, to Spotfire for visualization.

When you verify and save the query, the view is created with the name you gave
the query, and you can add it to the list of objects to pass to Spotfire in that saved
data connection. The view will appear in Spotfire as a table of sales by country. Any
changes to values in the source system will be reflected in Spotfire. You can also
customize the data caching settings.

When working with in-db data, use the data panel. It will not only give
you a good overview of the data, views, and underlying relationships,
it will allow you to create filters by simply dragging columns to the
filter panel.

Source Data is Never Enough

[158]

Summary
In this chapter, we delved a bit deeper into the world of data analysis. Even if you
are only using Spotfire as a conventional visualization tool with well-modeled and
standardized data, you will inevitably need to do a little data manipulation to get
the visualization analysis right.

You learned some essential techniques for shaping and fine-tuning the data you
import into Spotfire for more creative and versatile analysis. You've learned how
to create metrics using calculated columns and how to use calculated columns to
condition your data. You should also have a good grounding in data hierarchies
and the access they give you to more complex calculations on groups of rows.

Moving beyond basic visualization building, you have explored Spotfire's built-
in ETL (extract, load, transform) techniques and learned how to merge data rows
and columns from multiple sources and create and manipulate narrow and wide
tables through pivot and unpivot operations. You have used Spotfire's Information
Designer to build custom queries into a data source and write-back data to a
data source.

Finally, you have had a quick peek at the potential of in-database analytics, through
which calculations and aggregations on large volumes of data can be delegated to
powerful source systems.

Spotfire's versatile and comprehensive suite of data modeling tools offers maximum
flexibility. It can be used to support the data discovery needs of an individual
analyst, it can also support an enterprise business intelligence deployment on top
of a data warehouse, and it can help an experienced analyst create sophisticated
guided analysis of large data collections for small and enterprise-wide audiences.

I hope you're ready for some more visualization techniques because that's where
we're headed in the next chapter.

The World is Your
Visualization

For the routine analysis you want to do, you might be content with tables, bar
charts, and scatter plots, but we've already seen how more specialized types of
visualizations can suit certain situations. A basic visualization, such as points on a
graph, may adequately represent the core information you wish to convey, but there
is a lot more to visualization than core properties such as x- and y-coordinates. The
use of color is important, as is the addition of reference lines and points. Try to be a
communicator, not just a data analyst, and ensure that you use (and know how to
use) all the elements available to you to turn a visualization into a story that makes
instant sense to the target audience you have in mind. That can be a challenging
objective, but always aim for it.

In Chapter 2, Visualize This!, we looked at some of the most common visualization
techniques. In this chapter, you will learn how to use additional visualization types
provided by Spotfire to achieve specific types of analyses. You will also learn how to
use some of the more advanced features of the visualization types you learned about
in Chapter 2.

In Chapter 5, Source Data is Never Enough, we spent some time looking at calculated
columns and hierarchy nodes at the data level. The same techniques can be used in a
more dynamic way directly on visualization elements such as axes, and we're going
to take a look at that functionality in this chapter.

The World is Your Visualization

[160]

In this chapter, we will cover the following topics:

• Applying custom expressions directly to visualization properties
• Key Spotfire concept—difference between calculated columns and

custom expressions
• Annotating visualizations with reference lines, fitted curves, and error bars
• Defining color rules and organizing document color schemes
• Slicing and dicing visualizations using hierarchy nodes
• Mashing up data from different tables in a single visualization
• Creating dynamic pivots using cross tables
• Visualizing categorical information and trends together in

combination charts
• Visualizing statistical measures using box and whisker plots
• Summarizing statistical measures using summary tables
• Visualizing complex multidimensional data using heat maps
• Profiling data using parallel coordinate plots
• Exporting and publishing data and visualizations

Applying custom expressions directly to
visualization properties
The Insert Calculated Column dialog that you learned about in the last chapter can
also be opened directly on any visualization property that references data. If you
right-click on an axis or color Columns property, for example, you'll see the option
Custom Expression…. If you select Custom Expression… a dialog called Custom
Expression will open to give you access to the same expression builder you saw in
the Calculated Column dialog.

Apart from allowing you to apply a custom expression for a visualization property,
the custom expression dialog provides a very important aesthetic tool: the ability to
change the display label of the property. For example, let's return to a scatter plot
we created in Chapter 2, Visualize This!, where we plotted Sum([Home Runs]) against
Sum([Salary)]. Those axis labels, though accurate, might be off-putting or even
hard to understand for your audience. It might seem trivial, but changing the y-axis
label, or name, to Home Runs and the x-axis label to Salary Bill could make a big
difference to the ease with which your audience assimilates the information.

Chapter 6

[161]

The more complex your expression becomes, the more important it is to pay
attention to the label you use. Always be sure to choose a label that accurately
describes the metric, and focus on the information you are trying to convey.
This process can even help you devise the metric in the first place.

Key Spotfire concept – difference
between calculated columns and custom
expressions
When you enter an expression in the calculated column dialog, you create a new
column in the data. This column behaves like any other column, and its values
remain static, fixed by the expression you have defined. If you apply a filter to the
columns used in the underlying expression, the calculated values will not change.
For example, if you create a column in the baseball data for the sum of home runs by
league, it will have two values, one for each league. If you now filter out some AL
teams, the AL total will remain the total for all AL teams.

The World is Your Visualization

[162]

If you want the outcome of an expression to respond to filtering on its component
columns, you need to use a custom expression directly on a visualization property.
The outcome of custom expressions does change in response to filtering. For
example, if you create a custom expression for the sum of home runs by league on
an axis and then filter out some teams, the sum will change. In the next example,
the data is filtered to include only three teams. The left-hand scatter plot is using a
calculated column, Sum([Home Runs]) OVER ([League]). The right-hand scatter
plot is using a custom expression, Sum([Home Runs]).

Another important consideration when using custom expressions is understanding
the granularity of the visualization: the level of detail each marker or visual element
represents. When you define "sum of home runs", is that per team or per league? The
answer depends on how you configure the axes, markers, and other elements (such
as color) on the visualization.

Chapter 6

[163]

Annotating visualizations with reference
lines, fitted curves, and error bars
Adding horizontal and vertical lines to a visualization to indicate limits or
boundaries can significantly enhance the information you wish to convey. Take,
for example, the batting performance visualization we created in Chapter 5, Source
Data is Never Enough. We colored by quadrant, and we can further enhance that
visualization by adding appropriate reference lines.

1. Open the scatter plot's visualization properties and select Lines & Curves.
You can use any pre-existing vertical and horizontal lines or select from the
drop-down list provided by the Add button.

The World is Your Visualization

[164]

2. Check the boxes next to Vertical Line: 0.00 and Horizontal Line: 0.00, and
edit each to change the Line position to "Median." You can also change the
color and thickness of the lines if you wish, using the Appearance settings.

The result of this reference line configuration is the appearance of horizontal and
vertical lines corresponding to the color boundaries of the four quadrants we defined
for the plot. This example has important and instructive limitations. The median
lines respond to filtering because they work just like custom expressions on the
visualization, whereas the quadrant colors do not respond to filtering because they
are derived from median values set in a calculated column. The configuration only
works when no filters are applied.

You can add straight-line fits or more complex curve fits to a visualization using the
same dialog. The only difference is that you select the fitted curve you require from
the Add drop-down list.

Chapter 6

[165]

To be meaningful, a fitted curve should be supported by
some underlying hypothesis or model. Do you expect a linear
relationship between the two variables you are plotting? Always
challenge such assumptions by exploring real-world relationships
as well as patterns in the data. Be particularly careful when using
nonlinear fits: a high-order polynomial curve will closely fit the
quirkiest data patterns, but the result will not really tell you
anything meaningful about the real-world relationship between
the variables concerned. For that you need a more specific
equation that actually models something that can be tested.

Error bars
Error bars are used to illustrate the precision of a set of observations or
measurements; and by precision, I mean the repeatability of a measurement.
The tighter the precision, the more confidence you have that the average of your
measurements is accurate to the true value.

For example, say you are a meteorological enthusiast who measures the temperature
every hour, every day, and you want to plot the average daytime temperature over
time. You could just plot the average or you could include error bars to indicate the
range in your measurements.

Take, for example, hourly temperature data for a city over an entire year (one source
of such data is the United States' National Climatic Data Center (http://www.ncdc.
noaa.gov/cdo-web). You could do a straight plot of average monthly temperature
against month and also use a calculated column to define a nominal daytime dataset
and plot those temperatures against month.

You can use the DatePart function to define the daytime dataset.
For example:

If((DatePart("hour",[Date Time])>7) and
(DatePart("hour",[Date Time])<18),[Date Time])

In each case, you could include error bars to represent the standard deviation in the
data (all those hourly measurements). To configure the error bars, you need to:

• Open the visualization properties and select the Error Bars property
• Set the upper and lower errors by defining a suitable expression, such as

StdDev([Temperature]) in each case

http://www.ncdc.noaa.gov/cdo-web
http://www.ncdc.noaa.gov/cdo-web

The World is Your Visualization

[166]

It's pretty typical to use some statistical function of the relevant axis variable to
define an error bar. You can also choose the color of the error bar or just keep the
color the same as the marker.

For the sake of argument, say we want a profile of the average daytime temperatures
in New York City by month. Without knowing how the data is configured, the
second plot might give you more confidence that it is a truer representation of
daytime temperatures than the first due to the tighter error bars.

Defining color rules and organizing
document color schemes
We've used color to good effect in the examples we've looked at so far in the
book. Now, let's take a closer look at color rules and schemes. Let's use the batting
performance analysis file we built in Chapter 5, Source Data is Never Enough, and add
come color rules.

Chapter 6

[167]

1. Open the scatter plot's visualization properties and select the Colors
property. We've already assigned colors to the four quadrants. Save this color
classification as Document Color Scheme using the drop-down button next
to the setting One Scale per:. You can call it something meaningful, such
as Quadrants.

2. Now open the table's visualization properties and select the Colors property.
The Color scheme groupings: window will initially be empty, but you can
add items using the Add drop-down, which will show only the columns
actually being used in this particular table. Add the Quadrant and Runs
columns, which you'll notice are added as color groups.

You can edit a group to change its name and add more
columns, where, for example, the rule you want to define
applies to more than one column. All columns in a group
must have the same data type.

The World is Your Visualization

[168]

3. Select the Quadrant group, configure Color mode as Unique values, and
use the same drop-down you used to save the Quadrants document color
scheme to select that scheme. When asked, apply Colors matched to values.
This action will ensure that the coloring in the scatter plot and table is
consistent, and it will save you the task of reconfiguring the Quadrant
colors individually in the table.

The alternative apply color scheme option, Colors only, can be
used to apply a saved color scheme to a completely different
set of values. Spotfire will use the colors in the scheme and only
those colors, applying them randomly to the new values.

4. Now, add some rules for the Runs group. I precalculated the 25th, 50th,
75th, and maximum run totals for the dataset, and we're going to use those
intervals to divide the players into four groups: <46, 46–61, 62–78, and >78.
Color the lowest interval the same as the bottom-left quadrant, the second
interval the same as the upper-left quadrant, the third interval the same
as the bottom-right quadrant, and the fourth interval the same as the
upper-right quadrant. For completeness, save this color scheme as Runs.

The table should now show you a fairly tight correlation in color between the
quadrant classification of a player and his accumulated runs, although some
players will buck the trend.

Chapter 6

[169]

For example, Rafael Palmeiro is in the Top Performer quadrant but has a mediocre
run total, whereas Brian Roberts' run total matches his Top Performer rating.

Slicing and dicing visualizations using
hierarchy nodes
We spent some time in the last chapter looking at hierarchy nodes and the use of the
OVER function. We're now going to look at the use of the OVER function in custom
expressions, where it becomes a more dynamic tool. There are also some additional
syntax options.

To recap, a familiar hierarchy is implicit in every date, which we can break
down into nodes, the most basic set of nodes being Year>Month>Day. The OVER
methods allow us to reference nodes across the normal row structure of the data,
such as comparing a value for 03-Feb-2013 with 03-Feb-2012, as shown in the
following figure:

Also, just to remind you, the OVER function can always be used without an explicit
method to simply aggregate a value over some hierarchical quality in the data,
and you don't have to formally define the hierarchy in this case. An example in the
baseball data would be AVG([Runs]) OVER [Team].

The World is Your Visualization

[170]

You can use OVER methods in a custom expression just as we did in calculated
columns, except you need to reference a column-based visualization property
directly, and the column must have categorical, not continuous, values. The exact
syntax varies from visualization to visualization, but the general form is Axis.Axis_
Name, where Axis Name could be "X" or "Color."

Visualization Property Axis Name Comment
X-Axis Axis.X Axis.Columns in Cross Tables
Y-Axis Axis.Y Axis.Rows in Cross Tables
Color Axis.Color
Trellis Axis.Rows; Axis.Columns;

Axis.Pages; Axis.Panels
Line Axis.Line Visualizations with line by

options
Shape Axis.Shape Scatter Plot only
Marker Axis.Marker Scatter Plot only
Hierarchy Axis.Hierarchy Treemap only

Let's look at some examples using the Market Interest Rate data for Sweden.
We're going to build an analysis page that allows you to explore some of the key
OVER methods.

Load up the Market Interest Rate data (MarketInterestRatesSweden.xlsx) for
Sweden, and create the following elements:

Element Property Values
Tag Tag Collection Year Subset

Tag 2010-14
Data for years 2010-14 only
Remaining data is untagged

Text area 1 Drop-down
AggregationPeriod

Integer values 1, 3, 6, 9, and 12

Drop-down
AverageCumulative

Display Name: Average
Value: Avg([One-Month Rate]) OVER (LastPe
riods(${AggregationPeriod},[Axis.X])) as
[${AggregationPeriod}-Month Moving Average]

Display Name: Cumulative
Value: Sum([One-Month Rate]) OVER (LastPe
riods(${AggregationPeriod},[Axis.X])) as
[${AggregationPeriod}-Month Cumulative Sum]

Chapter 6

[171]

Element Property Values
Text area 2 Drop-down

OverMethod
Display Name: Next
Value: Next
Display Name: Previous
Value: Previous
Display Name: ParallelPeriod
Value: ParallelPeriod

Filter Year Subset
Scatter Plot X-Axis [Year-Month] (hierarchy)

Y-Axis ${AverageCumulative}
Bar Chart Category Axis [Year-Month] (hierarchy)

Value Axis Sum([One-Month Rate]) - Sum([One-Month
Rate]) OVER (${OverMethod}([Axis.X])) as
[Difference ${OverMethod}]

The layout should be scatter plot above bar chart, with text area 1 next to the scatter
plot and text area 2 next to the bar chart.

Let's start with the selections Average, 1 (for months to aggregate over), and Next.

The World is Your Visualization

[172]

The scatter plot is showing the monthly interest timeline because we have chosen to
take the average each month (aggregate setting = 1), which means taking every point.
The effective expression in this case is:

Avg([One-Month Rate]) OVER (LastPeriods(1,[Axis.X])) as [1-Month
Moving Average]

Note how the "1" in the y-axis label is populated dynamically from the document
property AggregationPeriod. Recall the expression we used:

Avg([One-Month Rate]) OVER (LastPeriods(${AggregationPeriod},[Axis
.X])) as [${AggregationPeriod}-Month Moving Average]

The bar chart category axis hierarchy slider is set to the year level to make the
plot more readable. There is too much information at a monthly level. This plot is
showing how the current period (year) compares with the next, plotting the relative
ups and downs in the cumulative interest paid each year. The effective expression in
this case is:

Sum([One-Month Rate]) - Sum([One-Month Rate]) OVER (Next([Axis.X])) as
[Difference Next]

Remember that, like the scatter plot expression, this expression is being built
dynamically based on the selections made in the text area. Look closely at the
expressions we used to build the visualizations.

Now let's change the aggregation level for the scatter plot to 12 and the bar chart
OVER method to Previous.

Chapter 6

[173]

Notice how the interest timeline is much smoother now. That's because we are
spreading the average interest rate over a running 12-month period. Notice too how
the bar chart has changed to reflect a backward, rather than forward, comparison.

Finally, change the scatter plot aggregation mode to Cumulative, change the bar
chart OVER method to ParallelPeriod, move the category axis hierarchy level to
the month level, and uncheck the "Untagged" filter checkbox.

You're now looking at the running 12-month cumulative interest paid on the scatter
plot for the years 2010–13. Meanwhile, the bar chart is showing you how the interest
paid in each month compares with the interest paid in the same month in the
previous year:

Sum([One-Month Rate]) - Sum([One-Month Rate]) OVER
(ParallelPeriod([Axis.X])) as [Difference ParallelPeriod]

The World is Your Visualization

[174]

We've only touched the surface of the power and versatility of OVER methods, but
I hope I've given you a good foundation for further exploration. Understanding this
function and using it effectively can save you a lot of trouble trying to transform data
to facilitate cross-row calculations.

To help you further, the aggregation selection drop-down for each axis provides
prebuilt expression shortcuts. You first select a column, then, from the aggregation
drop-down, the expression shortcut you require, and finally the parameters relevant
to the chosen expression.

Mashing up data from different tables in
a single visualization
Spotfire allows you to combine data from multiple tables in the same visualization
and automatically matches any columns with the same name and data type. You can
also manually match columns with different names or data types that you know to
be equivalent.

If the columns that you want to use from the two data tables match, then the
operation is very easy: you pick the columns you want from the table you want. For
example, say you have an analysis file with two tables, one containing the column
[Player Name] and some player statistics, the other containing the column [Player
Name] and some background information such as team and salary. With [Player
Name] set on the category axis of a bar chart, you can then mix any columns you
want on the value axis.

Chapter 6

[175]

Even if there is no matching column but you know that a column is a unique
category across two data tables, you can use it. For example, even though the column
[Team] is present only in one table, it can be used to color a bar chart built on the
other table. Be aware, however, that if a player has appeared for more than one team,
he will show up twice, and the values will be inaccurate. Alex Gonzalez has played
for Florida and Tampa Bay, scoring 45 and 47 runs, respectively. In a data mash-up,
he shows up as scoring 92 runs for both sides. Be very careful when you mash
up data.

How to create dynamic pivots using
cross tables
We're going to spend the rest of this chapter covering most of the remaining
visualization types in Spotfire, starting with the Cross Table. In Chapter 5, Source
Data is Never Enough, we looked at data pivoting, and we've also seen an example of
pivoting in the graphical table, where we tabulated a high-level category—baseball
team—and aggregated some values against it from the player level.

The World is Your Visualization

[176]

The Cross table is a dedicated and feature-rich visualization tool to do these
types of pivots without the need to transform any data. The cross table does the
transformation for you on the fly. There are two main reasons to use a cross table:

• Rolling up, or aggregating, data values to a category in tabular form (you
could perhaps think of it as a tabular bar chart)

• Creating a cross tabulation, or matrix, of values to help you find interactions
or relationships between variables

Pivot aggregations
Let's look at an example of the aggregation use case.

1. Load up the baseball data (BaseballPlayerData.xls), and create a new
Cross Table visualization from the Insert menu or the icon tray. As usual,
the initial visualization properties chosen by Spotfire are unlikely to suit us.

2. Open the cross table's visualization properties, and select the Axes property.
You'll notice there are three possible axes: Horizontal, Vertical, and Cell
values. We don't need the horizontal axis for this example, so remove all data
columns from it by right-clicking on the axis selector and selecting Remove.
The horizontal axis of a cross table represents columns in the display (not to
be confused with columns in the data).

3. The vertical axis represents rows in the display (not to be confused with rows
in the data), and we're going to select League, Team, and Player Name, in
that order.

4. The cell values axis represents the aggregations or expressions you want
to assign to the rows you selected in the vertical axis. We're going to define
Sum(Runs) and Avg(Batting Average).

If you are entering multiple columns, right-click on the
cell values column selector and click on Select Columns.
You will be able to move multiple columns back and forth
more easily and block-assign the different aggregation
methods you want to use.

5. Now select the Appearance property, and check the Grand total for columns
checkbox. Select the Column Subtotals property, and check Show subtotals
for League and Team.

Chapter 6

[177]

6. You now have a cross table that breaks down the total runs scored and the
batting average by league, team, and player.

7. To improve the look of the table, remove the Axis Selectors by unchecking
them in the visualization options panel (top-right corner).

The cross table Appearance property provides you with options to show row- and
column-level "grand totals." It is important to understand that these are not so
much "totals" as "aggregations." For example, if your column is an average, then
the "grand total" for the column is actually a "grand average." Sometimes, the grand
aggregation is meaningless. For example, it is simply not possible to express a correct
grand aggregation across columns with different aggregation methods (sum, count,
average, and so on). In such cases, you should always hide the grand total.

The World is Your Visualization

[178]

Cross tabulation
The other main use of a cross table is for, well, cross tabulation. For the batting
performance analysis example we worked up in Chapter 5, Source Data is Never
Enough, we created a column called Quadrant, which classified players into one of
four categories. We're going to use a cross table to look at the breakdown of those
categories and a few other statistics across each league.

1. Create a new cross table. This time assign League to the vertical axis, and
assign Quadrant and (Column Names) to the horizontal axis.

2. Assign the following aggregations to the cell values axis:
Count() and Sum([Win Shares])
You can add as many additional aggregations as you wish.

You can improve the display if you include an as clause.
The entire custom expression is:

Count() as [Players], Sum([Win Shares]) as
[Win Shares]

3. Finally, uncheck Grand total for columns in the Appearance property.

The result is a cross tabulation of our quadrant category by league, combined with
some supporting metrics.

You can also add color to a cross table through the use of color rules. As an exercise,
apply a heat map coloring to the Win Shares metric, assigning dark blue to the
lowest values, red to the highest values, and gray to intermediate values.

Hint: Use the median as an inflexion point.

Chapter 6

[179]

Visualizing categorical information and
trends together in combination charts
The Combination Chart visualization combines bar and line charts in one plot,
allowing you to visualize categorical information and trends alongside one another.
It might be viable to plot multiple lines or multiple bars, side-by-side, and that is
indeed possible to do with a combination chart, but the contrast in visualization type
can often provide a more striking comparison.

The Pareto chart, named after Vilfredo Pareto, and used extensively in Lean Six
Sigma, is a classic example of a combination chart, where individual values are
represented in descending order by bars, and the cumulative total is represented
by a line. Let's construct a Pareto chart using the data file ParetoData.xlsx, which
you can download from http://www.insidespotfire.com.

We are going to use some fictitious results for a survey asking why a website would
drop down on search engine rankings. The results consist of nine, ranked reasons
and a corresponding citation count. After loading this data into Spotfire, we can
create a Pareto chart in no time by following these steps:

1. As a prerequisite, create a Rank-Reason hierarchy to put the reasons in order
of importance. We'll use this hierarchy to create a cumulative sum using an
OVER function.

http://www.insidespotfire.com

The World is Your Visualization

[180]

2. Now create a Combination chart through the Insert menu or by clicking on
the combination chart icon. Open the chart's visualization properties, and set
the x-axis to the hierarchy, Rank-Reason, and add two custom expressions
to the y-axis: Sum([Citations]) as [Citations] and Sum([Citations])
OVER AllPrevious([Axis.X]) as [Cumulative Sum]. When you make
this setting, you will get an error message to the effect that you need to use
(Column Names) on the x-axis or to series or trellis by it.

3. Select the Series property, and configure the Series by: setting to (Column
Names). You'll notice that the two y-axis entries you have made are now
represented as bar charts. Change the Cumulative Sum entry to a line type.
You can also change the colors assigned to each series.

4. In the Appearance property, you can sort the x-axis by values (we don't need
to because the rank value takes care of the sorting for us), the bar width, the
line weight, whether you want to show markers on the line, and how large
you want the markers to be.

5. The only thing left to do is insert a horizontal line equal to the 80 percent
level of citations. Go to the Lines & Curves property, check the Horizontal
Line entry, and edit it to be a custom expression: 0.8*Max([Y]). Give
the line a custom name (80%) and make that label display on the chart by
clicking the Label & Tooltip… button in the Lines & Curves property and
checking Label for Curve name.

Chapter 6

[181]

The chart visualizes the Pareto principle, or the 80/20 rule: ignore anything beyond
the point at which the cumulative sum crosses the 80 percent line and focus on the
things before that point. It's basically the law of diminishing returns.

The World is Your Visualization

[182]

Visualizing statistical measures using
box and whisker plots
The Box Plot visualization is a convenient graphical tool for displaying descriptive
statistical measures such as median, mean, and quartile. We have to look at some
statistical theory now because the main reason for using a box plot is to show
statistical measures, and it's important that you understand the basic principles.
In broad terms, statistical analysis may be divided between parametric and
nonparametric approaches.

Parametric statistics are based on an assumption that the data falls into some known
probability distribution, and they make inferences about the parameters of that
distribution. They can provide good accuracy and precision and, therefore, good
statistical power, but they are not robust because they depend on assumptions about
distribution. The mean (what people commonly refer to as the average) and standard
deviation are parametric statistical measures.

Nonparametric statistics make no assumptions about the probability distribution
of the data and, therefore, have less intrinsic statistical power than parametric
approaches, but they provide a very robust way of looking at data, especially when
you work with new, unfamiliar data and want to find some pattern in it. "Median"
and "quartile" are nonparametric statistical measures.

Check out the website Math is Fun to read more about normal and
skewed data distributions (http://www.mathsisfun.com/data/
standard-normal-distribution.html and http://www.
mathsisfun.com/data/skewness.html).

The box plot provides a functional and visual representation of the distribution
of values in a dataset, primarily along nonparametric lines. If the data is perfectly
normally distributed under a bell curve, then the median equals the mean. Height
distribution in the general population would be a classic example. If the data is
skewed to the left or right with a long tail, then the median will be closer to the
center of the distribution and may represent a better measure of central tendency
than the mean, which will be more strongly influenced by that long tail. This
introduces the idea of outlying data or data fences: we might be interested in the
outliers or we might want to exclude them. This is what makes nonparametric
analysis more robust than parametric analysis.

http://www.mathsisfun.com/data/standard-normal-distribution.html
http://www.mathsisfun.com/data/standard-normal-distribution.html
http://www.mathsisfun.com/data/skewness.html
http://www.mathsisfun.com/data/skewness.html

Chapter 6

[183]

Let's look at the baseball data. In Chapter 3, Analyze That!, we attempted to analyze
the runs achieved by a team against the salaries paid out, and we used a scatter plot
to visually demarcate the data. Our eye was drawn to patterns in the data, and we
arbitrarily chose a pattern and dismissed the remaining points as "outliers." Let's take
a more statistically robust look at the same analysis using a box plot.

The data used here is BaseballPlayerData.xls.

1. Open the salary analysis page or recreate it, and add a box plot alongside the
scatter plot using the Insert menu or icon tray.

2. Configure the box plot axes by right-clicking on the x-axis selector and
selecting Remove (we could create separate bars for another variable such
as League, but let's just look at the total picture) and adding the following
custom expression to the y-axis:

Sum([Runs]) OVER ([Team]) / Sum([Salary]) OVER ([Team])

This expression reflects the scatter plot, which shows total runs against salary
paid by team.

There are four quartiles, which divide the data into groups
of approximately equal observations. Q1, Q2, Q3, and Q4 are
equivalent to the 25th, 50th, 75th and 100th percentiles, respectively.
Q2 is also referred to as the median. A percentile is a reference point
at which that percentage of the total values in the data falls. For
example, 25 percent of the data fall at or below the 25th percentile.

The World is Your Visualization

[184]

The "box" of the plot is the interquartile range and represents the core 50 percent
of the data. The whiskers fence the two tails according to established statistical
conventions (Spotfire's inline help on the box plot and on statistical measures will
give you more detail). The outliers are beyond those tail fences.

So what does all this mean for our analysis?

The outlier is a single team: Cleveland. You can see this by selecting the outlier and
observing the corresponding marking on the scatter plot. If you select the box, you'll
see a core group of teams highlighted on the scatter plot. Statistically, the remaining
teams are the outlying data, which demonstrates very well the difference between
statistical analysis and visual bias. Filter to the marked items to see how the "core"
teams plot on their own.

However, you can interact with the box plot in the opposite direction by selecting
what we originally identified as outliers on the scatter plot and seeing where they
appear on the box plot. It's interesting that these teams are all in the upper portion
of the data distribution, so perhaps there is some justification for our visual bias. To
explore this issue further, you would need to find some other variable or rationale to
explain why this group of seven teams appears to outperform the other teams.

Chapter 6

[185]

There is one final twist—now that our attention has been drawn to this upper portion
of the data, we can confirm its full extent using the box plot. Box plots are marked
in blocks, not individual items. If you select the upper portion (everything above
the median), you'll find a few more teams marked on the scatter plot. I would put
all those teams in group A for comparison with the remaining teams, group B, if I
wanted to analyze this pattern further. It's important to stress that this is just data
exploration and that the patterns, statistical or visual, that we perceive might have
no explanation or rationale in the real world. You should hypothesize, gather more
information, and test.

A hypothesis is a proposed explanation (or a theory in
common language) for some phenomenon based on limited
data or insight. To have any worth, a hypothesis must predict
something that you can test against further observations or
data. Your findings may lead to the rejection, confirmation, or
refinement of the hypothesis.

The World is Your Visualization

[186]

Summarizing statistical measures using
summary tables
Let's continue the statistical theme with something a little lighter: the Summary
Table visualization, which is a simple tabular representation of statistical
information. The configuration is straightforward. First, you need to select the
columns in the data you want to report on; these will appear as rows in the table.
Then you select from a comprehensive list of statistical measures you want to apply
to those columns; these will appear as columns in the summary table. It's really a
form of pivoting with a statistical focus.

We'll use the baseball data as a convenient example. Load up the baseball data and
add a summary table using the Insert menu or by clicking on the summary table icon
in the icon tray. Select some columns and statistical measures. I selected the ones you
can see in the screenshot. That's pretty much it. There are no coloring or formatting
options. You can sort it if it makes sense.

The key thing to understand here is what the statistics mean, and that depends on
the granularity of the data. Our data is at a player level, so Sum(Runs) is the total
runs scored by all players; Avg(Runs) is the mean runs scored by players; and so on.
You can add subsets if you want to break down the analysis, by league, for example,
in the following manner:

1. Open the summary table's visualization properties, and select the
Subsets property.

2. Add two separate custom expressions through the Add | Custom
Expression… dialog, editing the expression and giving it a nice
display name:

[League] = "AL"
[League] = "NL"

Chapter 6

[187]

Subset custom expressions must evaluate as true or false.

The result is a breakdown by league.

The World is Your Visualization

[188]

Visualizing complex multidimensional
data using heat maps
The Heat Map visualization is actually two visualizations in one. At a basic level, it is
a simple heat map, which we will get to shortly; at a more advanced level, it is also a
dendrogram, or tree-structured graph.

Heat maps
A heat map is very similar in concept to a cross table, or even just a spreadsheet, except
instead of numbers, each cell is configured to display a color that reflects an underlying
number. It provides a very intuitive representation of the relative values of complex
multidimensional data. Compare the following pictures of monthly temperatures for
a selection of American states. They are identical, except that one shows the actual
temperatures in °C and the other shows a heat map to represent the temperatures.
Which visualization do you think conveys the temperature pattern better?

The second visualization is as follows:

Let's look at how to configure a heat map in Spotfire. For this exercise, we're going to
use hourly normal temperature data downloaded from the United States' National
Climatic Data Center (http://www.ncdc.noaa.gov/cdo-web). This data, which was
collected across almost 10,000 stations for the period 1981–2010, is not immediately
usable. The temperatures (in Fahrenheit) have been entered as strings without
decimal points and include flags, the station ID is given but not its location or name,
and the data is in a wide format, with a column for each hour of the day, which
makes it difficult to manipulate those temperature strings into numbers and convert
to °C (which is how I like to look at temperature).

http://www.ncdc.noaa.gov/cdo-web

Chapter 6

[189]

We need to download some additional information to cross-reference the station IDs
to station names and states; we have to unpivot the data into a long skinny form,
with a single temperature column and multiple rows for the hours of the day; and
finally, we have to manipulate the temperature strings to get them into numbers
we can use. All this is mentioned in passing to illustrate the importance of data
manipulation and transformation in the task of creating visualizations. Fortunately,
you won't need to do any of this, and the final dataset (HourlyTemperatures.txt),
which has more than two million rows, is available for download from http://www.
insidespotfire.com.

1. Load the temperature data into an analysis file and insert a new Heat
Map visualization.

2. Open the heat map's visualization properties and configure the three axes:
Cell Values, X-axis, and Y-axis. You configure these axes pretty much the
same way as you would a cross table. The x- and y-axes are the variables
that will frame the heat map, with the x-axis representing the horizontal axis
(the columns) and the y-axis the vertical axis (the rows). The cell values are
the numbers that will determine the colors in the map. We are going to use
the hierarchy Month-Day-Hour as the x-axis and State as the y-axis. The cell
values will be the average temperature.

3. Turn now to the Colors property. The default setting is to color by the cell
values and apply a blue-gray-red gradient, but you can reconfigure this any
way you like.

4. Set the Month-Day-Hour hierarchy slider to Month, and that's pretty much it.

http://www.insidespotfire.com
http://www.insidespotfire.com

The World is Your Visualization

[190]

The result is the representation of a lot of data in a pretty coherent pattern of color.
You can clearly see seasonal patterns and differences between states. If you slide the
hierarchy down to the hour level, filter to a particular day (21 June, for example), and
zoom in on a few states, you can visualize different diurnal patterns too. Georgia
gets as hot as Guam during the day but cools down more at night.

Dendrograms
A dendrogram is a tree-structured graph that can be added to a heat map to show
hierarchical clustering. Spotfire offers a suite of clustering methods, distance
measures, and other settings, including the option to import a dendrogram from
a previous cluster calculation. It's beyond the scope of this book to explore these
options, but the inline help in Spotfire is comprehensive.

We'll use the default settings to illustrate the power and analytical beauty of a
good dendrogram:

1. Open the visualization properties of the heat map you've already created,
and select the Dendrograms property.

2. We're going to do a row-based clustering analysis on the states, so select
Row dendrogram in the Settings for: dropdown and check the Show row
dendrogram Checkbox. If you want to verify or explore the settings for the
Calculated hierarchical clustering, click on the Settings... button.

3. Click on the Update button next to the Row Dendrogram selection.

Chapter 6

[191]

When you return to the heat map, you should see a very different picture, with
the states organized into a hierarchical cluster. You can navigate this hierarchy by
selecting individual nodes. You'll need a zoom slider to zoom in on areas of interest.

The World is Your Visualization

[192]

There is a major early fork in the hierarchy, and if we take a close look at this hot
fork, we can see how easy it is to navigate the dendrogram. We can select the next
bifurcation in the tree that separates Florida and Hawaii from hotter U.S. territories.

The dendrogram is a useful tool for data mining and the discovery of patterns in
large datasets, and Spotfire provides a rich suite of options for doing this type
of analysis.

Profiling your data using parallel
coordinate plots
The Parallel Coordinate Plot visualization is used to compare a set of potentially
diverse and unrelated properties that can nevertheless be attached to a themed
series. A typical example would be comparing the specifications of a selection of
desktop computers. The properties can be anything from keyboard color to processor
speed, but they all apply to each PC in our selection.

The columns in a parallel coordinate plot are the properties we want to include,
and their values, whether numbers or text, are normalized based on the value for
numbers and an inferred value for strings based on natural string ordering. This
normalization is the key to a parallel coordinate plot because it allows us to compare
quantitative and qualitative information in the same plot. For example, if you include
keyboard color and price in a comparison of 10 PCs, the color furthest down the sort
order would be assigned the value of 100 percent, as would the highest price. The
columns are plotted on the x-axis, and a line is created for each item in the series,
showing how it compares with other items at each property point.

Chapter 6

[193]

This type of plot is probably not appropriate for a high-level, executive presentation.
It is fundamentally an interactive visualization for finding patterns in multivariate
data. It might look like a line chart, but there is no sequence or independent variable,
nor timeline. In the very simple PC example, you could choose a color and then see
the prices available or choose a price and see the colors available. The line running
from color 0% (Black) to cost 100% (700) is not a trend, it's just two unrelated
comparison points.

Let's now work through a more substantial example to demonstrate the
configuration and use of a parallel coordinate plot. Anyone can download consumer
price index data (harmonized indices of consumer prices) from the European
Commission's Eurostat website (http://epp.eurostat.ec.europa.eu/portal/
page/portal/eurostat/home/). The data for mid-2014 shows price increases
relative to prices in 2005 across 12 categories. You will need to model several
downloaded datasets to create data columns for country, the 12 price
index categories, and geographical and Eurozone classifications. Fortunately,
the final datasets (eurostatHICP.xlsx) is available for download from
http://www.insidespotfire.com.

1. Load the data into a new analysis file; create two pivots, one to provide a list
by geographical classification and one for the Eurozone classification. Relate
these pivots back to the main table.

2. Add a parallel coordinate plot using the Insert menu or icon tray, and open
the plot's visualization properties.

3. Go to the Columns property, and select the 12 price categories as columns,
leaving behind Country, Geographical Classification, and Eurozone
Classification.

4. Go to the Colors property, and select Country as the column to color by.
The Line By property should be left as (Row Number).

http://epp.eurostat.ec.europa.eu/portal/page/portal/eurostat/home/
http://epp.eurostat.ec.europa.eu/portal/page/portal/eurostat/home/
http://www.insidespotfire.com

The World is Your Visualization

[194]

5. Add three Table visualizations alongside the main plot: one for the main
EurostatHICP table but showing only the country, one for the geographical
pivot, and one for the Eurozone pivot. We will use these tables to interact
with the parallel coordinate plot.

You can see why this plot is not really suitable as a general or intuitive visualization.
We can see that a lot of countries have experienced an increase in health prices, and
we can perhaps discern a reasonably coherent bunch of countries toward the bottom
of the plot, but that's about as much as you can glean through simple inspection.

However, we can interact with the plot using the left-hand tables to select items of
interest, either individual countries or one of the classifications we've created. Select
Eurozone in the Eurozone list. You can see that the Eurozone countries show a fairly
consistent pattern except for Latvia and Estonia (the two green lines), which have
experienced relatively higher price increases in certain categories than the rest of
the zone.

Chapter 6

[195]

If you add in the other Baltic state, Lithuania, which is not in the Eurozone, you see
a common Baltic pattern. Interestingly, it's also evident that the Baltic countries have
experienced the lowest inflation in communication costs in the entire dataset, which
includes some non-EU countries and the U.S.

The World is Your Visualization

[196]

We could go on in this vein exploring patterns in the data. To communicate your
findings to a general audience, you would probably create a guided, interactive
dashboard and some companion visualizations to present your conclusions.

Exporting and publishing data and
visualizations
There are many benefits in delivering Spotfire analyses to end users with direct
access to the application, but this might not always be possible and you will need
to export data or visualizations for consumption outside the tool. Users of the web
player (Spotfire Consumer) might also want to export data for further analysis or
copy visualizations into a report document.

Let's deal with that last requirement first. The Export dropdown in the web player
menu provides a number of options:

1. Export the active visualization as an image.
2. If the active visualization is a Table, Cross Table, or Summary Table, export

the data as an ASP.NET Web Handler (ASHX) file, which can be opened with
Microsoft Excel or a text editor. Only the data displayed in the Table, Cross
Table, or Summary Table visualization will be exported, not the entire
data table.

Chapter 6

[197]

3. Select PDF or Microsoft PowerPoint for further options.

The World is Your Visualization

[198]

All of these options are available from the professional client via the
File | Export options. In addition, you can export an entire data table from
the client, independently of any visualization, and you can choose to export
the data in one of four basic formats:

• Tab-separated text file
• TIBCO Spotfire Text Data Format (includes header information)
• TIBCO Spotfire Binary Data Format (faithful copy for export to another

Spotfire file)
• Microsoft Excel

Summary
In this chapter, we have completed the tour of Spotfire visualizations that we began
in Chapter 2, Visualize This!. You've covered quite a lot in this chapter, learning
how to use the Cross Table to create dynamic pivots and cross tabulations; the
Combination Chart to superimpose categorical information and trends; the Box
Plot to create a statistically rigorous plot that retains full interactivity with other
visualizations; the Summary Table for easy display of descriptive statistics; the Heat
Map and its companion, dendrogram hierarchical clustering engine, as powerful
tools for visualizing complex multidimensional data; and the Parallel Coordinate
Plot as a good tool for exploring patterns in multidimensional data.

You've learned how to apply custom expressions directly to visualization properties
and how to slice and dice visualizations using hierarchy nodes, understanding in the
process the difference between calculated columns and custom expressions.

You've learned how to annotate visualizations with reference lines, fitted curves, and
error bars; how to define color rules and organize document color schemes; and how
to mash up data from different tables in a single visualization.

You've also learned how to export and publish data and visualizations for
consumption outside Spotfire.

There are only two visualization types we haven't covered: the 3D scatter plot,
which, apart from the z-axis, is exactly like a 2D scatter plot; and the map chart,
which requires an entire chapter to itself, and is where we are headed in the
next chapter.

What's Your Location?
The first six chapters of this book have shown you how powerful data visualization
can be. You should understand by now the insight a bar chart or a scatter plot can
add to a tabular representation of data.

Spatial analytics is a relatively new area of data visualization. We are all used to
using geographic information systems (GIS) like Google Maps. It is much easier
to give directions using an interactive map than using text instructions, and the
language is universal. Moreover, this concept can be explored to create analytics
contexts that are simply not possible with traditional tables and charts. If you stretch
your imagination just a little, you will also quickly realize that you don't have to
confine your analysis to geographic locations. Any spatial context—a silicon chip,
an MRI scan, a baseball field—can be mapped and combined with other data to do
spatial analytics.

The world of business intelligence lags behind popular culture, and spatial analytics
is actually not mainstream yet. It is a technically challenging and complex form of
analysis, but TIBCO has committed a lot of development time to making Spotfire a
very accessible and state-of-the-art spatial analytics tool. The challenge has shifted to
your imagination.

In this chapter, we will take a close look at the Map Chart visualization, which needs
a chapter to itself. You will learn how to use Spotfire's spatial analytics capabilities
to overlay data on images and multi-layered maps, putting spatial and geographic
contexts on your analyses. Along the way, you will learn some important GIS
concepts such as coordinate reference systems and geocoding. The map chart is a
complex visualization to work with, but it is also probably the most intuitive because
it connects directly with our inherent spatial awareness. This is as close as it gets to
representing data in a native human form.

What's Your Location?

[200]

In this chapter, we will cover the following topics:

• Creating background map layers
• Key Spotfire concept—map chart layers
• Key mapping concept—coordinate reference systems
• Using automatic geocoding to accurately position locations from your data

on a map
• Incorporating and using a feature layer
• Adding Web Map Service data to a map chart
• Using the map chart for nongeographic spatial analysis

Creating background map layers
As of Version 6.0, Spotfire comes with a tile-based web map supplied by TIBCO
GeoAnalytics (http://geoanalytics.tibco.com/). This background map layer is
created as a default base layer whenever you create a Map Chart visualization, but
you must be connected to the Internet to access the full depth of the layer. Using a
familiar zoom slider and hand tool, you can move quickly from a global view to a
street map of a city, such as Mumbai, India, as shown in the following screenshot:

http://geoanalytics.tibco.com/

Chapter 7

[201]

You can configure the level of cartographic detail in the map layer to include
borders, labels, and roads, or you can build separate layers for each type of
information and overlay them one on top of the other, allowing the user to choose
which ones to show or hide.

Creating a map is very easy. First, load any small dataset containing some simple
text values into a new analysis file. You need to have some nominal data in the
analysis file before you can create any visualization. Next, create a map chart just
like any other visualization, using the Insert menu or the map chart icon. Spotfire
will create the map layer automatically, and you can begin zooming and exploring.
There's not much you can do analytically, but for now take a look at the Standard
map Settings tab to see how they change the presentation, as shown in the
following screenshot:

What's Your Location?

[202]

Change the map to a Basic map, and add three map layers using the Add dropdown,
making one a Labels map, one a Roads map, and the third a Borders map.

You now have four map layers that you can show or hide to reveal increasing or
decreasing levels of detail.

Pay attention to the ordering of the layers. The order will determine
which elements appear to the front or toward the back. You can move the
layers forward or backward in the map chart Layers property page.

Chapter 7

[203]

Key Spotfire concept: map chart layers
As you've just seen, Spotfire's standard map is always available as a background
Map Layer, and you've seen how it can be divided into sub layers of detail. The map
chart has four other types of layers to extend the range of spatial visualizations you
can create.

The Marker Layer and Feature Layer are derived from datasets, and one marker
or feature layer can be designated as the map chart's interactive layer. You can
also change the interactive layer designation dynamically in the chart. Because
they are linked to data, the markers on interactive marker layers and the features
on interactive feature layers behave like other interactive elements in Spotfire and
respond to marking and filtering.

The Image Layer and Web Map Service (WMS) Layer are linked to noninteractive
content and their elements cannot be marked or filtered. WMS layers can be base
maps or map composites that include geographically relevant information such as
population density or forest cover. The Map Layer is also linked to noninteractive
content and cannot be marked or filtered. The visibility of all layers can be changed
at any time using the Layers control, provided it is enabled in the map chart's
Appearance property Show layers control in visualization.

What's Your Location?

[204]

Key mapping concept – coordinate
reference systems
Coordinate reference systems are used to project the three-dimensional Earth onto
two-dimensional maps. There are many such models for expressing locations on
Earth in a coordinate system. Spotfire supports more than 3,000 of them, but the
geocoding data tables provided by Spotfire are expressed in the coordinate reference
system EPSG:4326-WGS84, which we will use for all the geographic examples in this
chapter. You don't need a coordinate reference system for plotting and layering data
on two-dimensional images.

Using automatic geocoding to accurately
position locations from your data on
a map
So, we have a map, but we'd like to start superimposing our own data onto it. Let's
plot the location of the weather stations we used in Chapter 6, The World is Your
Visualization, for the heat map example, and let's plot them at different levels of
detail, with and without geocoding:

1. Load the station inventory data (stationInventory.xlsx) into an analysis
file, and create a map chart. You can download the data from http://www.
insidespotfire.com as a Microsoft Excel or CSV file.

2. Spotfire will automatically create a Map Layer, as we have seen already,
and it will add the station inventory data as a Marker Layer. To configure the
marker layer, open the map chart's visualization properties, select the Layers
property, select stationInventory, and click on Settings.

3. On the Marker Layer Settings page that opens, select Positioning. There
are two ways to position your markers on the map: Geocoding and
Coordinate columns.

4. If you want to check the coordinate reference system, go to Layers | Settings
| Data. The default EPSG:4326-WGS84 suits our purposes well.

http://www.insidespotfire.com
http://www.insidespotfire.com

Chapter 7

[205]

A set of default geocoding hierarchies is provided with TIBCO Spotfire
Server as a ZIP file. A library administrator can import this file into the
library and make the geocoding files available to users (instructions can
be found in TIBCO's server installation documentation). You can also load
these geocoding files manually into an analysis file, or you can provide
a third-party file. To do any geocoding, you must have a geocoding file
from some source.

Geocoding
Geocoding is in essence a way of matching a value, such as a city name or a country,
to map coordinates. It can also extend to describing the geographic shape of the
value as follows:

1. To apply geocoding to the station data, check the box next to Geocoding
and use the Geocode by dropdown to select the STATE column in the
stationInventory table as shown in the following screenshot:

What's Your Location?

[206]

2. If you are logged into the Spotfire server and if you have access to the default
geocoding hierarchies provided by Spotfire, all you have to do now is to
click on Auto-match. Spotfire will find the most suitable hierarchy file for
you, based on the values in the column you chose, import this file into your
analysis, and match the column you've selected in the data with the column
in the geocoding file. There is a Canadian province in the stationInventory
data, so Spotfire should load a North American provinces geocoding table,
even though the column is called STATE.

3. If you don't have access to the default geocoding hierarchies, you can
download the file North American Provinces.sbdf from http://www.
insidespotfire.com and load this into the analysis file.

4. You can click on Edit Column Matches… to match the columns yourself.
You can also add any geocoding file you wish, either from the library or from
an external source, such as a file or a database, using the Add dropdown.

The marker layer behaves like a scatter plot; in this plot, you must
decide which column in the data the markers are going to represent.
In our example, this could be stations or states. The marker by level
will be set automatically to the column you select for geocoding.

5. Apart from the position, you can also configure the color, size, and shape of the
markers. Try coloring the markers by elevation, one of the station attributes in
the data, using a traditional altitude scale. Because you aggregate the station
data to the state level, you should select Avg(ELEV). You could also choose
to size the markers by Count(ELEV), which is equivalent to a station count in
each state, as shown in the following screenshot:

http://www.insidespotfire.com
http://www.insidespotfire.com

Chapter 7

[207]

6. The result is not particularly exciting, giving you one marker for each state
colored by the average station elevation in the state. However, it shows you
how easy it is to geocode your data and superimpose it on a base map, as
shown in the following screenshot:

Coordinate columns
1. Now, let's do something a little more interesting. Because the station

inventory data has latitude and longitude coordinates, Spotfire assigns these
automatically as coordinate columns. If Spotfire doesn't automatically assign
any latitude and longitude columns, you can easily select them yourself
by checking the Coordinate columns option and using the X-column
(longitude) and Y-column (latitude) dropdowns to select the columns.

What's Your Location?

[208]

2. Repeat the steps you followed to create the state-level map, except use the
latitude and longitude coordinates and select STATION_NAME as the
marker by column. There are so many stations in the dataset; the result is
effectively a topographical map of the United States:

Incorporating and using a feature layer
Feature layers use "shapefiles" to represent features such as countries, rivers, and
cities as vector-based polygons, lines, or points. Shapefiles are usually embedded as
binary objects in a geocoding table, where they are linked to topological information
such as map coordinates. The polygons, lines, and points can be filled with color and
behave like markers in a map chart, allowing you to select a state outline, for example.

It is possible to manipulate and create shapefiles using a variety of free and paid
software, but more often than not you will use a precompiled geocoded table
with the shapes embedded. There are many free online sources for downloading
shapefiles. The geocoding tables provided with Spotfire also include shapes in a
column called Geometry.

Let's add a feature layer to our weather station map chart, and you'll quickly
see how useful they can be. The datasets you need for this example are
StationHourlyTemperature.sbdf, stationInventory.xlsx, and USA
States.sbdf:

1. Import the datasets and the Spotfire geocoding table USA States into the
analysis file.

Chapter 7

[209]

2. Add a new map chart using the standard map, and, using the Layers | Add
dropdown options, and add the USA States data table as a Feature Layer.
The result should be a map of the United States with the shapes of individual
states outlined. You should also be able to select individual states by clicking
anywhere within the outline.

3. We'll color the states by the average temperature, as recorded in the hourly
temperature data. Open the map chart's visualization properties, select
Layers, then USA States, then Settings, and finally Geocoding. Set the
Geocode by setting to State.

4. Now, select the Colors setting, and use the Columns dropdown to select
Temperature C from StationHourlyTemperatures; set the aggregation to Avg.

5. Set the Color mode to Gradient and define a nice heat spectrum for the
temperature range by adding some points to the gradient and choosing
colors ranging from blue at the lowest temperatures to red at the highest.
Save the color scheme as a Document Color Scheme... for future use.

What's Your Location?

[210]

Always choose colors to suit the data, experimenting with the
selections until you are happy with the result. Temperature
gradients will differ from one dataset to another.

You should now have a map of the United States with each state outlined and
selectable and colored by the average temperature for that state, which will look
like the following image:

Geographic drill-down
Now, we're going to create a more detailed, state-level view of the individual
stations on a second map chart based on marking (state selection) in the more
global view as follows:

1. First, we need to create some table relationships. Open Data Table Properties
from the Edit menu, select the Relations tab, and click on the Manage
Relations… button. Create a new relation between StationInventory and
StationHourlyTemperature based on STNID = STNID. Create a new
relation between StationInventory and USA States based on STATE = State.

2. Duplicate the map chart you have just created by right-clicking on the chart
and selecting Duplicate Visualization.

3. Open the Layers property of the second map chart and add StationInventory
as a Marker Layer. Select StationInventory in the Interactive layer:
dropdown.

Chapter 7

[211]

4. In the layer's Settings, make the following entries:

Positioning Coordinate columns using LONG and LAT
Marker by: STNID
Colors stationHourlyTemperatures.AVG(Temperature C), and reuse the

temperature document color scheme you saved for the main map.
Size by: None, and move the Marker size: slider until you have a size you

like.
Label by: STATION_NAME, with Show labels for marked rows only.

5. The StationHourlyTemperature data table is not complete, and most of
the stations in StationInventory have no corresponding temperature data.
For the purposes of our example, we should hide the stations that have no
data. To do this, open the Show/Hide Items setting and add a rule to show
stationHourlyTemperatures.AVG(Temperature C) with a value greater than
-8. This setting will remove all the "empty" stations from the map and make it
easier to read.

What's Your Location?

[212]

That's the basic setup complete, but there are a few more things we need to fine-tune
to get the map working the way we want to use it as a drill-down as follows:

1. First, because the different layers cover each other and we would like to
clearly see place names on the map layer alongside station markers on the
StationInventory layer, we need to add a second map layer containing just
labels and we need to move this layer right to the front. Add the layer from
the Layers property, Add drop-down, and select Labels as the map type. Use
the Move Forward button to move this new layer to the top of the layers list.

2. Second, we want this second map to respond to selections on the main map;
so, open the layer settings for StationInventory, select the Data setting, and
check Marking under Data limiting | Limit data using markings:. Remove
any marking under Marking:. Do the same for the USA States layer.

3. Third, we want the map to zoom in automatically to the selected state. Select
the Appearance property of the map chart and check the Auto-zoom option.
Now, go into the StationInventory layer settings and ensure that Include in
auto-zoom is checked in the Appearance setting. Open the USA States layer
settings and ensure that Include in auto-zoom is not checked. If we didn't
make this last setting, the larger states would zoom out too much and we
would lose some map detail.

4. We want to make sure that we just see the state border, and not the solid
polygon shape. To achieve this, go to Layers | USA States | Settings
| Appearance and move the Layer transparency slider to the far right.
While you are on this property page, make the polygon border color more
pronounced (red, for example) and heavier (a thickness of 2 works well).

That's it! If you select a state on the main map, the second map should zoom in
on this state, showing you the location of weather stations colored by the average
temperature. Name this page Temperature Profile; we'll be developing it further
in a later example.

Chapter 7

[213]

As an exercise, create a further drill-down based on station selection on the detailed
view to get individual station details. It doesn't have to be a map; it could be a table
or another visualization, such as a bar chart of average monthly temperatures for the
selected station.

Adding Web Map Service data to a map
chart
WMS is an Open Geospatial Consortium protocol for delivering geo-referenced
map images over the Internet. There are many public WMS servers. The free
ones are mostly provided by government agencies and research and educational
organizations. Spatineo (http://www.spatineo.com/), a commercial spatial web
services monitor, provides a free, searchable list of WMS resources, as does Skylab
Mobilesystems (http://www.skylab-mobilesystems.com/en/wms_serverlist.
html). The US government's open Data Catalog (http://geo.data.gov/) is a good
resource for US-specific WMS links. However, there are lots of other lists; just search
for WMS servers.

http://www.spatineo.com/
http://www.skylab-mobilesystems.com/en/wms_serverlist.html
http://www.skylab-mobilesystems.com/en/wms_serverlist.html
http://geo.data.gov/

What's Your Location?

[214]

When you find a WMS server of interest, you want the WMS URL so you can paste
it into a Spotfire map chart WMS layer setting. Not all the WMS links you find will
work. Sometimes, the server will be down or no longer available.

Most WMS streams have multiple layers of information. Spotfire will show you
the available layers, and you can choose which ones to include in your map. It's
important to understand that you are streaming GIS data into your map chart from
an external server, and you are dependent on the availability of this server and also
on the form the WMS information takes. Also, just to reiterate, you cannot interact
with WMS layers like you can with a feature layer.

Let's work through an example to see how WMS data works in a Spotfire map chart,
as follows:

1. Open the visualization properties of the detailed map chart in the
Temperature Profile page you created in the last example, select the Layers
property, and add a WMS layer using the Add dropdown. Spotfire will
require a URL for the map. Paste or type the URL http://nowcoast.noaa.
gov/wms/com.esri.wms.Esrimap/obs?service=wms&version=1.1.1&requ
est=GetCapabilities, and click on the Update button.

2. Assuming the link is valid and you are connected to the Internet, Spotfire will
retrieve a collection of sublayers from the WMS server. Feel free to experiment
with these sublayers, adding them across and removing them to see what
appears on the map chart. Let's try Weather Radar Mosaic as an example.

http://nowcoast.noaa.gov/wms/com.esri.wms.Esrimap/obs?service=wms&version=1.1.1&request=GetCapabilities
http://nowcoast.noaa.gov/wms/com.esri.wms.Esrimap/obs?service=wms&version=1.1.1&request=GetCapabilities
http://nowcoast.noaa.gov/wms/com.esri.wms.Esrimap/obs?service=wms&version=1.1.1&request=GetCapabilities

Chapter 7

[215]

3. While still in the WMS Layer Settings, select General, and rename the layer
appropriately: something like Weather Radar WMS.

The result is a WMS layer you can turn on and off with the layers control.

Add a second WMS layer, this time using the URL http://webservices.
nationalatlas.gov/wms/1million?SERVICE=WMS&REQUEST=GetCapabilities
and selecting the sublayer 1 Million Scale - Tree Canopy 100 Meter Resolution. If
you display the map chart legend with the Tree Canopy layer selected, you'll see a
key for the underlying tree canopy. This key is provided by the WMS server.

http://webservices.nationalatlas.gov/wms/1million?SERVICE=WMS&REQUEST=GetCapabilities
http://webservices.nationalatlas.gov/wms/1million?SERVICE=WMS&REQUEST=GetCapabilities

What's Your Location?

[216]

You won't find any meaningful key for the weather radar feed. Different WMS
streams have different degrees of presentation quality.

Chapter 7

[217]

Using the map chart for nongeographic
spatial analysis
The map chart can be used for any form of spatial analysis. For a simple application,
all you need is a base image and some coordinate data. Think of the base image as
the map layer and the coordinate data as a marker layer. With the right software,
you could create relevant shapefiles and use them as a feature layer.

The base image could be a process diagram, a semiconductor wafer, an
immunoassay plate, or a baseball field. It can be an image of anything of interest
to you that is stable and fixed in time and upon which you can reliably plot data
markers, which will be the variable part of your analysis. The markers could be
process stage timings, semiconductor wafer failures, immunoassay well results,
or stats for different baseball positions. The markers can be numbers, colors,
or even mini pie charts.

There are a number of stages to creating a spatial visualization:

• Create or obtain a suitable image.
• Map out the image's coordinate space so you know where to place markers.

This stage takes a little trial and error.
• Link the coordinates you define in stage 2 with some relevant data.

The default coordinate space for your image is its dimensions in pixels, so this gives
you the maximum x- and y-coordinates. You can quickly build x- and y-reference
axes using a spreadsheet and then load the coordinates with the image to help
you map out the points of interest. We'll work through an example to illustrate the
process from start to finish.

Consider a fictitious workflow for a website change process. The process map can be
created using Microsoft Visio, or any suitable workflow software, and then saved as
an image file. We can also create some fictitious process time data for this workflow,
and we'll be using this data in the example.

What's Your Location?

[218]

The dataset (WebPageProcess.xlsx) and image (ChangeProcess.png) can be
downloaded from http://www.insidespotfire.com.

Let's get all this into Spotfire as follows:

1. Create a new map chart, select the Layers property, and remove any layers
created by Spotfire, including the base map.

2. While still on the Layers property, use the Add dropdown to add a new
Image Layer. When the Image Layer Settings window opens, simply browse
to the image you want to import, which is ChangeProcess.png in our case.
Once you've selected the image, close the dialog, select the map chart's
Appearance property, and set the Coordinate reference system to None.

3. You should now see the process image but, to make it useful, we need to add
a marker layer. The first step is to map out the coordinates and, to do this,
we'll load up the reference axes I talked about and add the data as a marker
layer. Add the dataset coordinateMatrix.xlsx to the analysis file, and
then add this as a marker layer to the map chart. Make sure the coordinate
reference system of the layer is set to None. Make the following settings:

http://www.insidespotfire.com

Chapter 7

[219]

Positioning Coordinate columns set to x and y
Size by None
Shape A cross
Label by Custom expression:

Concatenate([x] & "," & [y])

and Show labels for: All
Marker by [Marker]

You can use this layer to assign coordinates to the elements in the process flow that
we want to assign data to and interact with. Once this activity is complete, you can
hide the matrix or just discard it.

The final stage in creating an interactive spatial visualization is the plotting of the
data. We're going to use the following dataset:

x y Average
Elapsed Time

Target Elapsed
Time

Average Process
Time

What's Your Location?

[220]

The table includes the x- and y-coordinates that we worked out for the process
elements plus some elapsed and process times. In the real world, you would
collect this data and feed it to the visualization on a periodic basis. To complete
the workflow analysis, execute the following steps:

1. Load the example data, WebPageProcess.xls, into the analysis file.
2. Now, add two calculated columns to the table:

Total Elapsed Time: Sum([Average Elapsed Time])
Percent Elapsed Time: [Average Elapsed Time] / [Total
Elapsed Time]

Format the [Percent Elapsed Time] column as Percentage (Column
Properties | Formatting).

3. Open the map chart's visualization properties, select the Layers property,
and add the data table as a new marker layer, remembering to set the
coordinate reference system to none.

4. Make the following settings to the new layer:

Positioning Coordinate columns set to x and y
Colors [Percent Elapsed Time]; Color mode: Segments, with three segments

(0–10, 10–20, and 20–33)
Size by None, but use the Marker size: slider to fit the markers to the image
Shape A square
Marker by [Activity]

You have now superimposed a marker layer on the process flow image, and you can
see which steps are taking the most time, and you can interact with these steps.

Chapter 7

[221]

As an exercise, add to the visualization as follows:

• Use a calculated column to define a KPI (key performance indicator) for each
activity (see Chapter 5, Source Data is Never Enough)

• Create a dropdown control to allow the user to choose whether to color by
elapsed time, process time, or KPI (see Chapter 3, Analyze That!)

What's Your Location?

[222]

• Add two bar charts dependent on marking in the map chart to show the
actual versus KPI target and elapsed versus process time (see Chapter 2,
Visualize This!)

To maintain color scheme consistency across multiple user selections,
save the color scheme as a Document Color Scheme, go to Column
Properties | Properties, edit DefaultContinuousColorScheme or
DefaultCategoricalColorScheme, and add the color scheme name (case
sensitive) to the property. This will ensure that the color scheme is always
applied to this column. If you don't set this property, Spotfire will not
retain the scheme and apply a new, random, set of colors each time the
user changes the selection.

This is the sort of analysis a Lean Six Sigma practitioner or anyone interested in the
process improvement might perform. The beauty of the Spotfire map chart is that, as
long as the process flow stays the same, it can be quickly analyzed against different
data points and metrics.

Chapter 7

[223]

Summary
In this chapter, we have taken a close look at the Spotfire map chart, which allows
you to plot your data in a spatial context and to create interactive marker layers and
feature layers, as well as reference maps, WMS, and image layers.

You have learned how to create a background map layer, how to use automatic
geocoding to accurately position locations from your data on a map, how to
incorporate and use a feature layer, how to add WMS data to a map chart, and
how to use the map chart for nongeographic spatial analysis.

Geographically oriented location analytics is an obvious application of the map
chart for most people. I hope the last section of the chapter on nongeographic
spatial analysis made you think about the potential of plotting data against
other spatial contexts and pictures that make immediate sense to you and to
your analysis audience.

The Secret Life of Python
One of Spotfire's most powerful features is the access the platform gives frontend
users to its application programming interface (API) through the programming
language IronPython. API programming is typically the preserve of IT developers
and usually occurs deep beneath the hood. Spotfire has made the API very accessible
to all report developers and has integrated this into the everyday use of the platform.
It's comparable to the use of VBA in Microsoft Excel.

To write API scripts, you need some programming experience and you also need
to know how to use Spotfire's library of properties and methods, which is where
this chapter will help you. Despite online reference documents and examples, it is a
serious challenge to figure out how to do even quite simple tasks with the Spotfire
API. This, unfortunately, is the downside of this otherwise wonderful facility. In this
one chapter, you will learn things that might take you a year to figure out unaided,
depending on your programming experience.

Even a basic use of API scripts will greatly enhance your ability to build professional
analytics solutions. At the end of this chapter, you will see Spotfire in a whole new
light, appreciating its potential to address the most complex informatics challenges
and, in the hands of a skilled-up analyst, deliver intuitive self-service frameworks for
others to use.

In this chapter, we will cover the following topics:

• Introduction to IronPython
• Overview of the Spotfire API
• Some useful .NET assemblies
• Creating scripts
• Referencing and manipulating the primary elements in an analysis file
• Manipulating visualization properties

The Secret Life of Python

[226]

• Manipulating color
• Manipulating filters
• Manipulating data already loaded into Spotfire
• Adding data to an analysis

Introduction to IronPython
Spotfire API scripts are written in IronPython. Python is a portable, object-oriented,
interactive programming language that can interface with many system calls
and libraries. IronPython is an implementation of Python that targets Microsoft's
.NET Framework. It is beyond the scope of this book to provide a tutorial on
Python. Please visit https://www.python.org and http://ironpython.net for
comprehensive guides to the language. This section will give you a quick orientation,
which should be enough to get you started with scripting, and you will get used to
the syntax as we work through examples in this chapter. You will also need at least a
rudimentary knowledge of programming concepts.

Control structures
All programming languages need to delineate the beginning and end of control
structures such as conditional segments and iteration loops. Python does this using
tabbed indents and colons. The opening statement of a control structure ends with
a colon, and the next line of code is indented by a one-tab stop. If the structure
deepens, the code indents by a further tab stop; if it comes back to a previous level,
the code comes back to the corresponding indent:

if x == 1 then:
 if y == 1 then:
 # do action
 if y == 2 then:
 # do other action
if x == 2 then:
 # etc.

There are no end statements or punctuation marks, which does take a bit of getting
used to.

The Python control structures are limited to the following:

• if … elif … else

• for … in

• for … in range()

• try … exception

https://www.python.org
http://ironpython.net

Chapter 8

[227]

Comments are flagged using a hash symbol (#).

Libraries
To use a library, including a Spotfire library, you have to declare it at the beginning
of the script: from library namespace import class.

Lists
You can build a list in Python by enclosing the elements in square brackets and
separating them with commas. The system Array class includes an Add method for
adding items to a list:

from System import Array
myList = ["element 1","element 2"]
myList.Add("element 3")

Lists can contain any variable type, but you cannot mix different variable types in the
same list.

Functions
Functions are declared with the word def, followed by the function name and a list
of parameters, followed by the function's statements. A return statement is optional.
Functions can be used like subroutines to repeat a common piece of code:

def function name(parameter1, parameter2, …):

Object orientation
The depth and power of Python scripts are enabled by object-oriented programming,
which is basically as simple as taking an object and either applying a method to it or
getting or setting one of its properties. A dot notation is used to join the object to the
property or method:

Result = Object.Property/Method

A list is an example of a simple object, and one of the methods available is Add,
which adds an element to the list. An object can be as complex as an entire
visualization, with all its associated properties and methods. Methods will often
require you to provide additional parameters, usually enclosed by brackets.

The Secret Life of Python

[228]

Being aware of an object's existence, knowing how to reference this object, and
knowing how to use its properties and methods are the keys to writing Spotfire
IronPython scripts.

Overview of the Spotfire API
In essence, the Spotfire API is a collection of objects, methods, and properties that
can be manipulated to do just about anything in a script that you would otherwise
do through the graphical user interface. One notable exception is the creation and
manipulation of text area property controls. You can create document properties and
change their values through the API, but you cannot build or otherwise interact with
the controls that are embedded in the text area.

It's also important to stress that the API contains a lot of material that even an
advanced script writer will never need. This chapter will distill the API down to the
essentials a typical script writer needs. The API is divided into primary namespaces,
and the ones we will cover in this chapter are as follows:

• Spotfire.Dxp.Application

• Spotfire.Dxp.Application.Filters

• Spotfire.Dxp.Application.Visuals

• Spotfire.Dxp.Application.Visuals.ConditionalColoring

• Spotfire.Dxp.Application.Visuals.FittingModels

• Spotfire.Dxp.Data

• Spotfire.Dxp.Data.Import

Each of these namespaces contains a suite of classes, each with its own set of
properties and methods. These classes are essentially the objects you need to
manipulate to achieve something in a script. There is a lot of interdependency
between the classes, including across namespaces, and often you need to reference
one class through another.

For example, the Spotfire.Dxp.Application namespace has a class called Visual,
one of the properties of which is Title. This property allows you to get or set the
title of a visualization. However, to actually reference a particular visualization (to
access this title property), you first need to reference the visualization's page, which
is done through the Spotfire.Dxp.Application class Page, and to get the page,
you have to use the Spotfire.Dxp.Application class Document.

Chapter 8

[229]

Some properties, such as Spotfire.Dxp.Application.Visual.Title, are very easy
to use: it's just a text value and you can get this by assigning it to a variable or set
it by making it equal to a string variable or a value. Other properties expect a more
complex type, often the property of some other class. Some properties are read-only
(get), but there is sometimes a way to set these properties through alternative routes.

The API is a complex web of dependent classes, properties, and methods, but the
succeeding sections will chart functional paths through this web for you and give
you lots of practical working script examples. There is just one more item to get out
of the way first, and that's the Microsoft .NET Framework.

Some useful external libraries
Sometimes, you need to import methods from IronPython or the Microsoft .NET
Framework to help your script. The following table describes some libraries that you
will find useful:

import clr clr (common language runtime) is an
IronPython module that provides some
basic .NET functionalities, such as string
methods

import re Import this library if you want to use
regular expressions

from System.Collections.Generic
import Dictionary

Use this library to create dictionary
objects, which are useful to store an
indexed list

from System.Drawing import Color Use this library to define your own
custom colors

from System.Drawing import Font Use this library to manipulate fonts
from System import Guid Import this library if you want to

reference system global unique
identifiers (GUID)

from System import
Array,String,Object

Use this library to get access to .NET
array, string, and object methods

Microsoft provides a complete navigable guide to the .NET Framework class library
at http://msdn.microsoft.com/en-us/library/w0x726c2%28v=vs.110%29.aspx.

http://msdn.microsoft.com/en-us/library/w0x726c2%28v=vs.110%29.aspx

The Secret Life of Python

[230]

Creating scripts
You use scripts by creating a button or an action link in a text area and typing the
script code that you want to run whenever that button or link is clicked. As of
Spotfire v6.5, you can also attach scripts to text area property controls and set them
to execute whenever the underlying document property value changes. You must
have a Script Author license to write scripts. Ask your Spotfire administrator to grant
you the Script Author license if you don't have it.

1. Edit any text area, and click on the Insert Action Control icon:

2. Choose Button or Link, enter the text you want to display on the button or
link under Display text:, select the Script icon, and click on New… to begin
writing your script.

Chapter 8

[231]

3. Give the script a name, and simply type (or paste) the script you want to run
into the script area. You can run the script on the spot by clicking the Run
Script button, or you can save the script by simply clicking OK until you
are back at the text area. From there, clicking the button or link will run
the script.

The Secret Life of Python

[232]

You can attach parameters (with associated values) to a script by clicking on the Add
button next to the Script parameters: box on the Edit Script page.

The parameter can be 1 of 14 types, but you will most often probably use String,
Integer, and Real. The name you give the parameter, which must be a valid Python
identifier (no spaces and a restriction on special characters), can be referenced
directly in the script. Whatever value it is assigned will be available to the script.
You can also link a parameter to a document, table, or column property or build a
custom expression to calculate a value from a data table.

Referencing and manipulating the
primary elements in an analysis file
No matter what you want to do with a Python script, you have to start with basic
references. The analysis file is referred to as a Document in the API, and the
Spotfire.Dxp.Application Document class and some classes in the Spotfire.
Dxp.Data namespace provide the means for referencing what could be called the
primary elements: pages, visualizations, properties, panels (such as filter schemes),
markings, and data tables. Generally, you can directly reference an active element or
iterate through the Document to find an element of interest, based on its name, for
example. In some cases, you can reference an element directly based on some unique
attribute, such as its name.

Chapter 8

[233]

The important thing to understand is that you need to have a reference or a handle
on an object such as a visualization before you can manipulate the more detailed
properties of this object. For clarity, we will follow an important convention in
the properties and methods tables presented in this chapter: objects and variables
that you need to obtain or provide will be in italics, whereas literal property and
method names from the Spotfire API will not. The example scripts should make the
distinction very clear.

Please also understand the importance of indentation in Python if you are
transcribing the scripts to try them out. You can download all the scripts from
http://www.insidespotfire.com.

General note: this chapter does not provide any instructions for
setting up the analysis files in which to run the example scripts. You
will need to set up your own files, with data and visualizations that
mean something to you, to try the scripts for yourself. The examples
are nevertheless designed to be straightforward and easy to apply.

Let's start with pages.

Pages
A single page is a page object; all the pages together is a page collection.

Action Property or Method
Get or set the active (current) page Document.ActivePageReference

Get all pages (page collection) Document.Pages

Useful page properties
Get or set the page title pageObject.Title

pageObject could be, for example, Document.
ActivePageReference

Useful page methods
Duplicate a page AddDuplicate(pageObject)
Add a new page AddNew(Page Name)

Page Name is just the plain text name of the page.
Remove a page by reference Remove(pageObject)
Reference a page based on position Item[Position]

Position is an integer index (0, 1, 2, … n). The first
page in the analysis file is position 0.

http://www.insidespotfire.com

The Secret Life of Python

[234]

Example script
Find the page "Primary Elements", duplicate it, and then put the focus back on
Primary Elements by (re)making it the active page:

DuplicatePage

Iterate over all pages in document to get a reference
to the page titled "Primary Elements"
for page in Document.Pages:
 if page.Title == "Primary Elements":
 Document.Pages.AddDuplicate(page)
 Document.ActivePageReference = Document.Pages.Item[0]

Here are three important principles that will recur in most scripts:

• Some methods and properties only work on collections (Document.Pages),
whereas others refer directly to individual objects (page.Title).

• In condition statements, the equals symbol must be repeated (==, not =).
It's like the difference between saying is equal to and equals, respectively, the
latter being a variable value assignment, such as myVariable = "value".

• It's good practice to always include the script name at the beginning of the
script and annotate the script with explanatory comments (# symbol).

Visualizations
Visualizations are referenced through their occurrence on a particular page:

for page in Document.Pages:
 for visualization in page.Visuals:

You identify the visualization of interest by iterating the loop; visualization can then
be used as your visualization object reference.

Action Property or Method

Useful visualization properties
Get or set the
visualization
title

visualizationObject.Title

Show or
hide the
visualization
title

visualizationObject.ShowTitle
True or False

Chapter 8

[235]

Action Property or Method
Get or set the
visualization
type

visualizationObject.TypeId
The visualization TypeId is a VisualTypeIdentifier, and you must use the
VisualTypeIdentifiers enumeration when working with this property

VisualTypeIdentifiers enumeration
VisualTypeIdentifiers.BarChart

VisualTypeIdentifiers.BoxPlot

VisualTypeIdentifiers.BulletGraphMiniatureVisualization

VisualTypeIdentifiers.
CalculatedValueMiniatureVisualization

VisualTypeIdentifiers.CombinationChart

VisualTypeIdentifiers.CrossTable

VisualTypeIdentifiers.GraphicalTable

VisualTypeIdentifiers.HeatMap

VisualTypeIdentifiers.HtmlTextArea

VisualTypeIdentifiers.LineChart

VisualTypeIdentifiers.MapChart

VisualTypeIdentifiers.ParallelCoordinatePlot

VisualTypeIdentifiers.PieChart

VisualTypeIdentifiers.ScatterPlot

VisualTypeIdentifiers.ScatterPlot3D

VisualTypeIdentifiers.SparklineMiniatureVisualization

VisualTypeIdentifiers.SummaryTable

VisualTypeIdentifiers.Table

VisualTypeIdentifiers.Treemap

Example script
Find "Visualization 1" on the active page, check if it's a scatter plot, and if it is,
change it to a bar chart and change its name to "Visualization 2". Do the reverse if the
visualization is a bar chart called Visualization 2:

ChangeVisualizationType

Import Visuals namespace to get access to
VisualTypeIdentifiers enumeration
from Spotfire.Dxp.Application.Visuals import *

Iterate over all visualizations on the active page to
get a reference to the target visualization
for visualization in Document.ActivePageReference.Visuals:

The Secret Life of Python

[236]

If the visualization is called "Visualization 1" and
is a scatter plot, change it to a bar chart and change its name.
 if visualization.Title == "Visualization 1" and visualization.TypeId
== VisualTypeIdentifiers.ScatterPlot:
 visualization.TypeId = VisualTypeIdentifiers.BarChart
 visualization.Title = "Visualization 2"

If the visualization is called "Visualization 2" and
is a bar chart, change it to a scatter plot and change its name.
 elif visualization.Title == "Visualization 2" and visualization.
TypeId == VisualTypeIdentifiers.BarChart:
 visualization.TypeId = VisualTypeIdentifiers.ScatterPlot
 visualization.Title = "Visualization 1"

Properties
There are three types of properties in an analysis file:

• Document properties (Document)
• Column properties (Column)
• Data table properties (Table)

Properties are manipulated using the Spotfire.Dxp.Data DataProperty and
DataPropertyRegistry classes, which are initially accessed through Document.
Data.Properties. We're going to focus first on document properties because they
are the easiest to manipulate and the property type you are most likely to want to
manipulate. We'll look at column properties later on in this chapter. We're not going
to look at table properties because they are rarely used.

To add a new property, you must first create a prototype using the DataProperty
class and then add it as an instantiated property using the DataPropertyRegistry
class.

Action Property or Method
DataProperty class

Create property
prototype

CreateCustomPrototype(Property Name, DataType,
DataPropertyAttributes)

Property Name is a text value you supply for the property
name. It must be unique and have no spaces or special
characters.
DataType is an enumeration, as is DataPropertyAttributes.

Chapter 8

[237]

Action Property or Method
DataType enumeration

DataType.Binary

DataType.Boolean

DataType.Currency

DataType.Date

DataType.DateTime

DataType.Integer

DataType.LongInteger

DataType.Real

DataType.Single

DataType.String

DataType.Time

DataType.TimeSpan

DataPropertyAttributes enumeration
(There are other attributes, but these are the important ones.)

Make the property
editable

DataPropertyAttributes.IsEditable

Make the property an
array

DataPropertyAttributes.IsListValued

Include the property in
the analysis file

DataPropertyAttributes.IsPersistent

Ensure the property
can be copied to objects
derived from the
container

DataPropertyAttributes.IsPropagated

Make the property
visible

DataPropertyAttributes.IsVisible

DataPropertyRegistry class
Instantiate a prototype AddProperty(DataPropertyClass, prototypeReference)

DataPropertyClass is an enumeration with three
possible values: DataPropertyClass.Document,
DataPropertyClass. Column, or DataPropertyClass.
Table.

Remove a property RemoveProperty(DataPropertyRegistry,
DataPropertyClass, Property Name)
Spotfire expects a DataPropertyRegistry reference
for the first parameter. This is simply Document.Data.
Properties

The Secret Life of Python

[238]

Action Property or Method
Get or set the value of a
document property

Document.Properties[Property Name]

Example script
Create a new document property called NewProperty and give it the value 10:

CreateDocumentProperty

Import Data namespace to get access to the required classes
from Spotfire.Dxp.Data import *

Remove any existing property called "NewProperty"
try:
 DataPropertyRegistry.RemoveProperty(Document.Data.Properties,
DataPropertyClass.Document, "NewProperty")
except:
 pass # i.e., do nothing if the property does not exist

Create a property prototype
propertyPrototype = DataProperty.CreateCustomPrototype("NewPro
perty", 0, DataType.Integer, DataPropertyAttributes.IsVisible
| DataPropertyAttributes.IsEditable | DataPropertyAttributes.
IsPersistent | DataPropertyAttributes.IsPropagated)

Instantiate the prototype
Document.Data.Properties.AddProperty(DataPropertyClass.Document,
propertyPrototype)
Document.Properties["NewProperty"] = 10

Check the property's attributes
documentProperty = DataPropertyRegistry.GetProperty(Document.Data.
Properties, DataPropertyClass.Document, "NewProperty")
print documentProperty.Attributes

Chapter 8

[239]

The Python print command is very useful for debugging scripts. If you
run the script directly from the script window, any print statements you
include will execute in the script's output window.

Data tables
We will be looking more closely at data tables later on in this chapter. For now, let's
just look at how you reference a data table. It's very straightforward:

dataTable = Document.Data.Tables.TryGetValue(Name of the data table)
[1]

The 1 in square brackets at the end is important because the Document.Data.
Tables.TryGetValue method returns a tuple, which is a type of list. The first item in
the TryGetValue tuple is always a Boolean value indicating whether the table exists.
The second item in the tuple is the actual data table reference (if the table exists). In
Python, tuples are parsed using a number in a square bracket to indicate the item
you want.

Marking
Markings are referenced through the Spotfire.Dxp.Data DataManager and
DataMarkingSelection classes, through which you can reference markings for
selection purposes and change marking names and colors.

Action Property or Method
Reference a marking for marking in Document.Data.Markings:

Get or set a marking
name

marking.Name

Get or set a marking
color

marking.Color
You must use the System.Drawing library for color and use
either Color.FromArgb(Integer) or
Color.FromName(.NET color name)

The Secret Life of Python

[240]

Panels
The Document.Pages class has direct reference methods for filter and details-on-
demand panels. All panels can be referenced by first getting the panel collection. We
will look at filters in more detail later on in this chapter. We won't be looking at other
panel types.

Action Property or Method
Reference the filter panel
on a page

filterPanel = page.FilterPanel
As already explained, page must be the Document.
ActivePageReference or found through iteration over the
Document.Pages collection.

Reference the details-on-
demand panel on a page

dodPanel = page.DetailsOnDemandPanel

Get a panel through the
page's panel collection

for panel in page.Panels:
 panelObject = panel

The panel here is the PanelCollection class, and it can be
manipulated through this class's methods. We will cover this
further when we look at filters in detail.

How to manipulate visualization
properties
There are many reasons why you might want to manipulate visualization properties,
not least to provide a more dynamic experience for the user. Visualization properties
are manipulated using the Spotfire.Dxp.Application.Visuals namespace. This
namespace is very large and includes some generic classes for manipulating items
such as axes and then specific classes for each visualization type. Regardless of
which class you wish to use, you must first find a visualization's object reference, as
described in the previous main section. To recap:

for page in Document.Pages:
 for visualization in page.Visuals:

Only when you have identified the visualization you are interested in (by name
or type usually) are you ready to use the methods and properties in Spotfire.Dxp.
Application.Visuals.

Chapter 8

[241]

The next step is to "convert" the visualization object identified using the Spotfire.
Dxp.Application Documents class into a visual content object. This is achieved
as follows:

visualContentObject = visualization.As[VisualContent]()

It is this visualContentObject you use for all visualization manipulations, and not
the visualization object we used to set the visualization's title or type.

Casting the visualization object as a generic visual content works for
most operations. You can also cast to a specific visual content type; an
example would be visualContentObject = visualization.
As[ScatterPlot](). However, specific casting is usually unnecessary,
even for operations that are restricted to a single visualization type.

Generic visualization properties
Some properties are common to all visualizations. The object in every case is the
visualContentObject reference described in the previous section.

Action Property or Method
Get or set the
visualization's data table

visualContentObject.Data.DataTableReference
Will return or must be set to a data table object. If you change
a visualization's data table, you need to pay attention to all the
table-dependent properties individually. We will cover this in
a later section.

Get or set the
visualization's
description

visualContentObject.Description

Get or set the legend's
font properties

visualContentObject.Legend.Font
To set the font, you need to import the Font class from
System.Drawing (see the example described later on).

Show or hide individual
legend items

visualContentObject.Legend.Items
You need to iterate through the legend items collection to
access each item individually. You can use the item Title
property to identify individual items.

Show or hide a
visualization's legend

visualContentObject.Legend.Visible

The Secret Life of Python

[242]

Example script
Change the underlying data table for a visualization, change the legend font, and
hide some legend items.

Please note: where the script refers to:

ChangeDataAndLegend

Import Visuals namespace
from Spotfire.Dxp.Application.Visuals import *
Import Font from System.Drawing to manipulate fonts
from System.Drawing import Font

Change the data table to stationInventory2
for visualization in Document.ActivePageReference.Visuals:
 if visualization.TypeId == VisualTypeIdentifiers.ScatterPlot:
 visualContentObject = visualization.As[VisualContent]()
 newDataTable = Document.Data.Tables.
TryGetValue("stationInventory2")[1]
 visualContentObject.Data.DataTableReference = newDataTable

Show the legend item Data table and hide the rest
for legendItem in visualContentObject.Legend.Items:
 if legendItem.Title == "Data table":
 legendItem.Visible = True
 else:
 legendItem.Visible = False

Change the legend font size
newFont = Font("Arial", 10)
visualContentObject.Legend.Font = newFont

To explore collections, use a loop and the Python command print.
For example:

for legendItem in visualContentObject.Legend.Items:
 print legendItem.Title

Chapter 8

[243]

Axes properties
All visualizations have axes except for the Table and Summary Table visualizations,
and there are some general axes properties that can be manipulated through the
Spotfire.Dxp.Application.Visuals Axis class and related classes. The main
reference point is still visualContentObject, and although the class is referred
to generically as Axis, it is always more specific when actually used (XAxis, for
example). Other axis classes are indicated in the following table:

Action Property or Method
Get or set the font of
an axis label

visualContentObject.Axis.Scale.Font
Expects a System.Drawing Font.

Get or set the label
orientation of an axis

visualContentObject.Axis.Scale.LabelOrientation
Expects the LabelOrientation enumeration, which
has two values: LabelOrientation.Horizontal and
LabelOrientation.Vertical.

Show or hide axis
labels

visualContentObject.Axis.ShowLabels

Show or hide a scale visualContentObject.Axis.Scale.Visible
Show or hide a
manual zoom slider

visualContentObject.Axis.ManualZoom
Doesn't apply to the cross table.

Show or hide an axis
selector

visualContentObject.Axis.ShowAxisSelector

Get or set an axis
expression

visualContentObject.Axis.Expression
Axis here is one of the following related classes:

• XAxis

• YAxis

• ZAxis (3D scatter plot)

• ColorAxis

• HierarchyAxis

• MarkerByAxis

• SizeAxis

• ShapeAxis

Doesn't apply to the cross table.

The Secret Life of Python

[244]

Example script
Change the y-axis and marker by expressions on a scatter plot, hide the x-axis scale
selector, and make the x-axis label orientation vertical:

AxisProperties
from Spotfire.Dxp.Application.Visuals import *

Get the visualization reference
for visualization in Document.ActivePageReference.Visuals:
 if visualization.Title == "ELEV vs. STATE":
 visualContentObject = visualization.As[VisualContent]()

Change the y-axis and marker by expressions
visualContentObject.YAxis.Expression = "Avg([ELEV])"
visualContentObject.MarkerByAxis.Expression = "<[STATE]>"

Hide the x-axis selector and make the labels vertical
visualContentObject.XAxis.ShowAxisSelector = False
visualContentObject.XAxis.Scale.LabelOrientation = LabelOrientation.
Vertical

Visualization-specific properties
Space does not permit the detailed coverage of every property for every visualization
type, but the following table will give you a good head start and orientation. The
reference point in each case is, as usual, visualContentObject:

At this point, you might care to take a look at the online API reference:
https://docs.tibco.com/pub/doc_remote/spotfire/6.5.0/
api/Index.aspx.

Action Property or Method
Scatter Plot

Get or set the Label
By expression

visualContentObject.LabelColumn

Get or set the font
used for labels

visualContentObject.LabelFont
Expects a System.Drawing Font.

Show or hide labels visualContentObject.LabelVisibility
Expects the LabelVisibility.enumeration, which can have one
of three values: LabelVisibility.None, LabelVisibility.
All, or LabelVisibility.Marked.

https://docs.tibco.com/pub/doc_remote/spotfire/6.5.0/api/Index.aspx
https://docs.tibco.com/pub/doc_remote/spotfire/6.5.0/api/Index.aspx

Chapter 8

[245]

Action Property or Method
Get or set the amount
of X jitter

visualContentObject.XJitter
Expects a number between 0 and 0.5.

Get or set the amount
of Y jitter

visualContentObject.YJitter
Expects a number between 0 and 0.5.

Bar Chart
Set whether bars
should be 100% or
stacked

visualContentObject.HundredPercentBars
True or False.

Determine whether
complete bar should
be labeled

visualContentObject.LabelCompleteBar
True or False.

Get or set label font visualContentObject.LabelFont
Expects a System.Drawing Font.

Get or set label
orientation

visualContentObject.LabelOrientation
Expects the LabelOrientation enumeration, which
has two values: LabelOrientation.Horizontal and
LabelOrientation.Vertical.

Get or set percentage
decimal digits

visualContentObject.LabelPercentageDecimalDigits

Determine whether
bar segments are
labeled

visualContentObject.LabelSegments
True or False.

Determine how labels
should be made
visible

visualContentObject.LabelVisibility
Expects the LabelVisibility.enumeration, which can have one
of three values: LabelVisibility.None, LabelVisibility.
All, or LabelVisibility.Marked.

Get or set the bar
orientation

visualContentObject.Orientation
Expects the BarChartOrientation enumeration, which
has two values: BarChartOrientation.Horizontal and
BarChartOrientation.Vertical.

Get or set label
format

visualContentObject.SegmentLabelInformationType
Expects the LabelInformationType enumeration, which
has two values: LabelInformationType.Value and
LabelInformationType.Percentage.

Determine whether
bars are sorted by
value

visualContentObject.SortedBars
True or False.

The Secret Life of Python

[246]

Action Property or Method
Get or set the stack
mode: None, Stack or
Stack100Percent

visualContentObject.StackMode
Expects the StackMode enumeration, which has three values:
StackMode.None, StackMode.Stack or StackMode.
Stack100Percent.

Box Plot
Get or set the box
width

visualContentObject.BoxWidth
Range 0–100.

Get or set the relative
marker size

visualContentObject.MarkerSize

Determine whether
to superimpose a
distribution

visualContentObject.ShowDistribution
True or False.

Get or set the color of
a reference point

visualContentObject.ReferencePoints.Color
Need to iterate through ReferencePoints to find a specific
item, and need System.Drawing to assign a color:
from System.Drawing import Color
for item in visual.ReferencePoints:
 if item.MethodName == "Median":
 item.Color = Color.Black

Get or set the line
style of a reference
point

visualContentObject.ReferencePoints.LineStyle
Need to iterate through ReferencePoints to find a specific
item, and need the LineStyle enumeration to define the style:
LineStyle.Single, LineStyle.Dot, LineStyle.Dash, and
LineStyle.Double.

Determine whether
an individual marker
is shown

visualContentObject.ReferencePoints.Visible
True or False.
Need to iterate through ReferencePoints to find a specific
item.

Determine whether
a statistics table is
shown

visualContentObject.Table.Visible
True or False.

Get or set the table
font

visualContentObject.Table.Font
Expects a System.Drawing font.

Set the measures
shown in the
statistics table

visualContentObject.Table.Measures.Add(Measure)
Expects a string description of measure, such as "Median".

Chapter 8

[247]

Action Property or Method
Line Chart

Get or set the
LineByAxis
expression

visualContentObject.LineByAxis.Expression

Get or set the line
width

visualContentObject.LineWidth

Get or set the marker
size

visualContentObject.MarkerSize

Determine whether
line labels are shown

visualContentObject.ShowLineLabels
True or False.

Determine whether
marker labels are
shown

visualContentObject.ShowMarkerLabels
True or False.

Determine whether
markers are shown

visualContentObject.ShowMarkers
True or False.

Cross table visualization
The cross table behaves a bit like an axis visualization, but it does have some table-
specific properties.

Action Property or Method
Get or set the width
of the table cells

visualContentObject.CellWidth

Define the header of
the cross table

visualContentObject.ColumnAxis.Expression

Define the cell values
of the cross table

visualContentObject.MeasureAxis.Expression

Show or hide column
grand totals

visualContentObject.ShowColumnGrandTotal
True or False.

Show or hide column
subtotals

visualContentObject.ShowColumnSubtotals
True or False.

Show or hide row
grand totals

visualContentObject.ShowRowGrandTotal
True or False.

Define the rows of the
cross table

visualContentObject.RowAxis.Expression

The Secret Life of Python

[248]

Action Property or Method
Get or set the font
used in the table
(rows, headers, and
cell values)

visualContentObject.TableFont
Expects a System.Drawing font.

Table visualization
The table visualization is quite different to axes-based visualizations and has its own
set of properties to exploit. The main reference point is still visualContentObject.

Action Property or Method
Get or set the number
of columns to freeze
for scrolling (left or
right)

visualContentObject.FrozenCount

Get or set the number
of rows to include in
the table header

visualContentObject.HeaderHeight
Expects a number between 1 and 20.

Clear any sorted
columns

visualContentObject.SortedColumns.Clear()

Get or set the table
font

visualContentObject.TableFont
Expects a System.Drawing font.

Get or set the table
header font

visualContentObject.TableHeaderFont
Expects a System.Drawing font.

Add a data column to
the display

visualContentObject.TableColumns.Add(dataColumn)
The data column must be referenced as Data.
DataTableReference.Columns["Column Name"]

Clear all columns
from the table

visualContentObject.TableColumns.Clear()

Remove a named
column from the
display

visualContentObject.TableColumns.Remove(dataColumn)
The data column must be referenced as Data.
DataTableReference.Columns[Column Name]

Chapter 8

[249]

Script example
Set up a table to show only certain columns:

SetupTable

from Spotfire.Dxp.Application.Visuals import *

Get the visualization reference
for visualization in Document.ActivePageReference.Visuals:
 if visualization.TypeId == VisualTypeIdentifiers.Table:
 visualContentObject = visualization.As[VisualContent]()

Clear existing columns
visualContentObject.SortedColumns.Clear()
visualContentObject.TableColumns.Clear()

Define columns to add
columnList = []
columnList.Add("STATE")
columnList.Add("STATION_NAME")
columnList.Add("ELEV")

Add columns to table
for column in columnList:
 visualContentObject.TableColumns.Add(visualContentObject.Data.
DataTableReference.Columns[column])

Trellising
Trellising can be changed through the Spotfire.Dxp.Application.Visuals
Trellis class, again referencing the visualContentObject.

Action Property or Method
Get or set trellising in
a column layout

visualContentObject.Trellis.ColumnAxis.Expression

Get or set the font of
the trellis header

visualContentObject.Trellis.HeaderFont
Expects a System.Drawing font.

Get or set the number
of columns when in
Panels mode

visualContentObject.Trellis.ManualColumnCount

The Secret Life of Python

[250]

Action Property or Method
Determine whether
the layout is manual
or automatic

visualContentObject.Trellis.ManualLayout
True or False.

Get or set the number
of rows when in
Panels mode

visualContentObject.Trellis.ManualRowCount

Get or set trellising in
a page layout

visualContentObject.Trellis.PageAxis.Expression

Get or set trellising in
a panel layout

visualContentObject.Trellis.PanelAxis.Expression

Get or set trellising in
a row layout

visualContentObject.Trellis.RowAxis.Expression

Get or set the trellis
mode

visualContentObject.Trellis.TrellisMode
Expects the TrellisMode enumeration, which can have one
of two values: TrellisMode.Panels or TrellisMode.
RowsColumns.

Error bars
Error bars may be used on scatter plots, bar charts, and line charts. They can be
manipulated using the Spotfire.Dxp.Application.Visuals ErrorBars class,
referencing the axis and visualContentObject.

Action Property or Method
Determine whether
error bars are enabled

visualContentObject.Axis.ErrorBars.Enabled
True or False.

Determine whether
to color the error bars
with the marker color

visualContentObject.Axis.ErrorBars.UseMarkerColor
True or False.

Get or set the
fixed color used
for drawing
error bars when
UseMarkerColor is
False

visualContentObject.Axis.ErrorBars.FixedColor
Expects a System.Drawing color definition.

Determine whether
the axis range is
extended to cover all
error bars

visualContentObject.Axis.ErrorBars.IncludeInAxisRange
True or False.

Chapter 8

[251]

Action Property or Method
Get or set the lower
expression

visualContentObject.Axis.ErrorBars.LowerExpression

Get or set the upper
expression

visualContentObject.Axis.ErrorBars.UpperExpression

Reference lines and curves
Reference lines and curves may be used on scatter plots, bar charts, line charts,
combination charts, and box plots. They can be set up and configured using
the Spotfire.Dxp.Application.Visuals.FittingModels namespace
classes FittingModelCollection, ReferenceLineFittingModel,
and ReferenceCurveFittingModel.The main reference point is still
visualContentObject.

Action Property or Method
Creating new curves (FittingModelCollection)
Add a new curve
by providing an
expression for f(x)

visualContentObject.FittingModels.AddCurve(Expression)
Expression is a string.

Add a new curve
by providing an
expression for f(x)
using columns in a data
table

visualContentObject.FittingModels.AddCurve(
DataTableObject, Expression)

Expression is a string.

Add a new horizontal
line

visualContentObject.FittingModels.
AddHorizontalLine(Expression)
Expression is a string.

Add a new horizontal
line using columns in a
data table

visualContentObject.AddHorizontalLine(DataTableObje
ct, Expression)
Expression is a string.

Add a new vertical line visualContentObject.FittingModels.
AddVerticalLine(Expression)
Expression is a string.

Add a new vertical line
using columns in a data
table

visualContentObject.FittingModels.AddVerticalLine(
DataTableObject, Expression)
Expression is a string.

Clear all lines visualContentObject.FittingModels.Clear()

The Secret Life of Python

[252]

Action Property or Method
Manipulating existing curves (ReferenceLineFittingModel and
ReferenceCurveFittingModel)
Before manipulating the properties of a curve, you need to get the ReferenceCurve
object, which is the reference point for the properties listed as follows:
for item in visualContentObject.FittingModels:

 referenceCurveObject = item.Line (or item.Curve)

Get or set the color of
the reference line/curve

referenceCurveObject.Color
Expects a System.Drawing color definition.

Get or set the custom
display name of the
reference line/curve

referenceCurveObject.CustomDisplayName

Determine whether the
reference line/curve
name and expression
should be displayed as a
label or tooltip

referenceCurveObject.Details
To get at individual properties, you have to iterate over the
collection. For example,
for item in referenceCurveObject.Details:
 if item.Name == "Value":
 item.ShowInLabel = False
 item.ShowInTooltip = True

Get the display name of
the reference line/curve

referenceCurveObject.DisplayName

Get the expression that
defines the reference
curve

referenceCurveObject.Expression

Determine whether
the reference line/
curve is rendered in the
background

referenceCurveObject.IsBackground
True or False.

Get or set the line style
of the reference line/
curve

referenceCurveObject.LineStyle
Expects the LineStyle enumeration: LineStyle.Single,
LineStyle.Dot, LineStyle.Dash, and LineStyle.
Double.

Get or set the width of
the reference line/curve

referenceCurveObject.Width

Determine whether the
line/curve is visible

referenceCurveObject.Visible
True or False.

Chapter 8

[253]

Script example
Add a red, dashed horizontal reference line to a bar chart, give it a custom name, and
display this name as a label:

AddHorizontalLine

from Spotfire.Dxp.Application.Visuals import *
from Spotfire.Dxp.Application.Visuals.FittingModels import *
from System.Drawing import Color

Get the visualization reference
for visualization in Document.ActivePageReference.Visuals:
 if visualization.Title == "Elevation by Latitude":
 visualContentObject = visualization.As[VisualContent]()

dataTable = Document.Data.Tables.TryGetValue("stationInventory1")[1]

Clear any existing lines and then add new line
visualContentObject.FittingModels.Clear()
referenceLine = visualContentObject.FittingModels.
AddHorizontalLine(dataTable, "[Average Elevation]")

Style the new line
referenceLine.Line.Color = Color.Red
referenceLine.Line.CustomDisplayName = "Average Elevation"
referenceLine.Line.LineStyle = LineStyle.Dash
referenceLine.Line.Width = 2
referenceLine.Line.Visible = True

Notice how a reference to the new curve is obtained at the point
of addition by setting the variable referenceLine equal to
the method used to create the line.

How to manipulate color
Color can be applied to a visualization in one of three fundamentally different ways:

• Category
• Rule
• Gradient

The Secret Life of Python

[254]

The use of these different approaches is constrained by visualization type, data type,
and whether the data is categorical or continuous in nature. At a scripting level, the
color is also handled differently for tables and cross tables, but let's start with the
other visualizations: those with axes.

Color by category
Color by category is simply handled using the Spotfire.Dxp.Application.
Visuals ColorAxis class we've already encountered. This class has a property
called Coloring, to which we can apply a categorical color rule. As usual, the main
reference object is visualContentObject.

Action Property or Method
Create a new
categorical color rule

colorRule = visualContentObject.ColorAxis.Coloring.
AddCategoricalColorRule()

Add values to the
color rule

colorRule.Item[Value] = Color
Value can be whatever you want but should match the anticipated
values in the data column to which the categorical coloring will be
applied.
Color can be
Color.FromArgb(Integer)
Color.FromName(.NET color name)

If the values you assign to the coloring match any values returned by the column
assigned to the visualization's color axis, they will be colored as defined in your
script. In this way, you can anticipate column values that will appear in the dataset
and predefine the colors you want to assign to them. You cannot assign colors to
future values any other way in Spotfire.

Example script
Define colors for the values in a region column used on a color axis:

SetRegionColor

from Spotfire.Dxp.Application.Visuals import *
from System.Drawing import Color

Chapter 8

[255]

Get the visualization reference
for visualization in Document.ActivePageReference.Visuals:
 if visualization.Title == "GDP By Region":
 visualContentObject = visualization.As[VisualContent]()

Set up the coloring
visualContentObject.ColorAxis.Coloring.Clear()
colorRule = visualContentObject.ColorAxis.Coloring.
AddCategoricalColorRule()

Set the color values
colorRule.Item["Asia"] = Color.FromName("Blue")
colorRule.Item["Europe"] = Color.FromName("CadetBlue")
colorRule.Item["North America"] = Color.FromName("DarkOliveGreen")
colorRule.Item["South America"] = Color.FromName("Gold")
colorRule.Item["Africa"] = Color.FromName("IndianRed")
colorRule.Item["Oceania"] = Color.FromName("Violet")

Color by rule
Color rules can be applied to string and numerical values. There are 5 color rules
(string rules) for string values and 10 color rules (threshold, range, and top/bottom
rules) for numerical values. Boolean expressions can be used for either.

The Spotfire.Dxp.Application.Visuals.ConditionalColoring Coloring
class provides methods to assign colors to values using these rules. If none of the
rules match, then the DefaultColor or EmptyColor will be used. These colors can
also be defined.

The Secret Life of Python

[256]

The main reference point is visualContentObject.ColorAxis.Coloring. You simply
add each rule individually directly to the color axis coloring. In all cases, Color
must be defined using System.Drawing as Color.FromArgb(Integer) or Color.
FromName(.NET color name).

Action Property or Method
String rules

Add a string rule visualContentObject.ColorAxis.Coloring.AddStringColo
rRule(StringComparisonOperator, ConditionValue,
Color)

StringComparisonOperator is an enumeration with the following
values:
StringComparisonOperator.Equal

StringComparisonOperator.NotEqual

StringComparisonOperator.StartsWith

StringComparisonOperator.EndsWith

StringComparisonOperator.Contains

ConditionValue requires the method CreateLiteral
ConditionValue.CreateLiteral(Value)

Threshold rules
Add a threshold
rule

visualContentObject.ColorAxis.Coloring.AddThresholdCol
orRule(StringComparisonOperator, ConditionValue,
Color)

StringComparisonOperator enumeration:
StringComparisonOperator.Equal

StringComparisonOperator.NotEqual

StringComparisonOperator.Greater

StringComparisonOperator.GreaterOrEqual

StringComparisonOperator.Less

StringComparisonOperator.LessOrEqual

Range Rules
Add a range rule visualContentObject.ColorAxis.Coloring.

AddRangeRule(ConditionValue, ConditionValue,
Color)

ConditionValue requires the method CreateLiteral
ConditionValue.CreateLiteral(Value)

Chapter 8

[257]

Action Property or Method
Top and bottom rules

Add a bottom N
rule

visualContentObject.ColorAxis.Coloring.AddBottomNRule(
Integer, Color)

Add a top N rule visualContentObject.ColorAxis.Coloring.AddTopNRule(
Integer, Color)

Boolean expressions
Add a Boolean
expression rule

visualContentObject.ColorAxis.Coloring.
AddExpressionRule(Boolean Expression, Color)

General properties and methods
Clear all rules visualContentObject.ColorAxis.Coloring.Clear()
Get or set the
default color

visualContentObject.ColorAxis.Coloring.DefaultColor
If setting the color, you need to use System.Drawing (just as for
color rules)

Get or set the
"empty" color

visualContentObject.ColorAxis.Coloring.EmptyColor
If setting the color, you need to use System.Drawing (just as for
color rules)

Determine whether
a coloring should be
evaluated per trellis
panel

visualContentObject.ColorAxis.Coloring.
EvaluatePerTrellis

True or False

Example script
Set the color for the top 5 values in a color by column:

ColorTop5

from Spotfire.Dxp.Application.Visuals import *
from Spotfire.Dxp.Application.Visuals.ConditionalColoring import *
from System.Drawing import Color

Get the visualization reference
for visualization in Document.ActivePageReference.Visuals:
 if visualization.Title == "GDP By Country":
 visualContentObject = visualization.As[VisualContent]()

Clear any existing coloring
visualContentObject.ColorAxis.Coloring.Clear()

Add the color rule
visualContentObject.ColorAxis.Coloring.AddTopNRule(5, Color.
FromName("Red"))

The Secret Life of Python

[258]

Gradient coloring
Axes with continuous data (numbers that have not been categorized) can be colored
using a gradient, usually with defined segments. Continuous coloring is handled
very much like categorical coloring, except you start with a continuous color rule and
then add the intervals you require using the Spotfire.Dxp.Application.Visuals.
ConditionalColoring ColorBreakpointCollection class.

Action Property or Method
Add a new
continuous color rule

colorRule = visualContentObject.ColorAxis.Coloring.
AddContinuousColorRule()

Get or set the interval
mode

colorRule.IntervalMode
IntervalMode is enumerated as IntervalMode.Segments or
IntervalMode.Gradient

Add a breakpoint colorRule.Breakpoints.Add(ConditionValue, Color)
ConditionValue is an enumeration with the following values:
ConditionValue.MinValue

ConditionValue.MaxValue

ConditionValue.AverageValue

ConditionValue.MedianValue

ConditionValue.CreateLiteralValue(Value)
ConditionValue.CreatePercentValue(Value)
ConditionValue.CreateExpression(Expression)

Clear all breakpoints colorRule.Breakpoints.Clear()

Coloring tables and cross tables
Tables and cross tables are handled a little differently to other visualizations. You
first create a coloring entity through the Colorings property of the visualization;
then, you map the coloring to a column(s); and finally, you define the rules and
colors according to your preferred color mode using the same methods used for
other visualizations.

Action Property or Method
Create a new
coloring entity

coloring = visualContentObject.Colorings.AddNew(Rule
Name)

Map a color rule to
a column

visualContentObject.Colorings.
AddMapping(CategoryKey(Column Name), coloring)

Clear all coloring visualContentObject.Colorings.Clear()

Chapter 8

[259]

Example script
Apply a color gradient to a table:

ColorTable

from Spotfire.Dxp.Application.Visuals import *
from Spotfire.Dxp.Application.Visuals.ConditionalColoring import *
from System.Drawing import Color

Get the visualization reference
for visualization in Document.ActivePageReference.Visuals:
 if visualization.Title == "GDP_Data":
 visualContentObject = visualization.As[VisualContent]()

Clear existing coloring
visualContentObject.Colorings.Clear()

Add the coloring entity
coloring = visualContentObject.Colorings.AddNew("GDP Gradient")

Map the column
visualContentObject.Colorings.AddMapping(CategoryKey("GDP (USD
million)"), coloring)

Add the gradient and intervals
colorRule = coloring.AddContinuousColorRule()
colorRule.IntervalMode = IntervalMode.Gradient
colorRule.Breakpoints.Add(ConditionValue.MinValue, Color.
FromName("SlateBlue"))
colorRule.Breakpoints.Add(ConditionValue.MaxValue, Color.
FromName("Red"))
colorRule.Breakpoints.Add(ConditionValue.MedianValue, Color.
FromName("Silver"))

How to manipulate filters
There are many ways in which filters can be manipulated in scripts, from the display
of the filter panel, through how a filtering collection is organized, to the settings for
an individual filter. Space does not permit a complete coverage of all the possible
properties and methods, but we will look closely at filter settings.

The Secret Life of Python

[260]

No matter how you want to manipulate filters, you must traverse the hierarchy of
filter objects: filter panel | filtering collection (data table) | filter setting (column).
In an earlier section, we covered the filter panel object, which is accessed via the
Spotfire.Dxp.Application PanelCollection class. With this reference to hand,
we can move into the Spotfire.Dxp.Application.Filters namespace.

Action Property or Method
Get a filtering scheme
reference

filteringScheme = filterPanel.
FilteringSchemeReference

Get a filter collection filterCollection = filteringScheme[dataTable]
dataTable must be a data table object

Get an individual
filter

filter = filterCollection[Column Name]
Column Name is a string.

Change a filter
What can you do with these objects? You can use the filter object to change a filter
setting, but you need to take account of the filter type, of which there are six:
Range, Item, Check Box, Radio Button, Text, and List Box. There is also a Check Box
Hierarchy type for hierarchy columns. Each filter type has its own class of properties
and methods. Once you have the filter item, you must cast it as whatever filter type it
is before you can manipulate it. You can also change the filter type first.

Action Property or Method
Get or set the filter
type

filter.TypeId
TypeId is enumerated by FilterTypeIdentifiers, which can
have the following values:
FilterTypeIdentifiers.RangeFilter,
FilterTypeIdentifiers.Itemfilter,
FilterTypeIdentifiers.CheckBoxFilter,
FilterTypeIdentifiers.RadioButtonfilter,
FilterTypeIdentifiers.TextFilter,
FilterTypeIdentifiers.ListBoxFilter,
FilterTypeIdentifiers.CheckBoxHierarchyFilter

Cast a filter item. filterObject = filter.As[Filter Type]()
Filter Type is one of the following:
RangeFilter, Itemfilter, CheckBoxFilter,
RadioButtonfilter, TextFilter, ListBoxFilter,
CheckBoxHierarchyFilter

Reset a filter filterObject.Reset()

Chapter 8

[261]

Action Property or Method
Set a range filter filterObject.ValueRange = ValueRange(Start Value, End

Value)
Set an item filter filterObject.Value = Value
Set a check box
filter.

filterObject.Check(Value)
filterObject.Uncheck(Value)
Unfortunately, you can only check or uncheck one item at a time,
and so you need to use a loop to check or uncheck multiple values.

Set a radio button
filter

filterObject.Value = Value

Set a text filter filterObject.Value = Value
Set a list filter filterObject.IncludeAllValues = False

filterObject.SetSelection([Value 1, Value 2, … Value n])
You need this statement to remove the "All values" selection before
you make your desired selections.

Script example
Set a list box filter to two values:

ChangeFilterSetting

from Spotfire.Dxp.Application.Filters import *

Get filtering scheme reference
filterPanel = Document.ActivePageReference.FilterPanel
filteringScheme = filterPanel.FilteringSchemeReference

Get filter collection
dataTable = Document.Data.Tables.TryGetValue("GDP_Data")[1]
filterCollection = filteringScheme[dataTable]

Get filter and cast it
filter = filterCollection["Region"]
filterObject = filter.As[ListBoxFilter]()

Reset the filter and change the setting
filterObject.Reset()
filterObject.IncludeAllValues = False
filterObject.SetSelection(["Oceania", "Africa"])

The Secret Life of Python

[262]

Hide a filter group
Before we leave filters, I just want to give you a useful snippet. You can hide or
show, expand or collapse filter groups by manipulating the FilterPanel TableGroups
property. The following script shows only the filters you want on a page:

HideFilters

from Spotfire.Dxp.Application.Filters import *

filterPanel = Document.ActivePageReference.FilterPanel
for group in filterPanel.TableGroups:
 if group.Name == "GDP_Data":
 group.Visible = True
 if group.Expanded == True:
 group.Expanded = False
 else:
 group.Visible = False

Manipulating data already loaded into
Spotfire
There are many ways to manipulate the data in an analysis file using the Spotfire.
Dxp.Data namespace, but the three most common activities are navigating a table
to look up values, marking/selecting data, and creating and changing calculated
columns. These are the three areas we're going to cover in this section.

Reading a table
The ability to read a data table using a script is a very useful tool, allowing you, for
example, to drive actions based on the values in a metadata table. It's also very easy
to do. You just need to define cursors for the columns you want to read and then
iterate through the table's rows, inspecting the values of these cursors as you go. The
data table object is the key to this activity; so, just to recap, you get a data table object
as follows:

dataTable = Document.Data.Tables.TryGetValue(Name of data table)[1]

Chapter 8

[263]

Action Property or Method
Define a string
cursor

DataValueCursor.CreateFormatted(dataTable.
Columns[Column Name])

Define a numeric
cursor

DataValueCursor.CreateNumeric(dataTable.Columns[Column
Name])

Get the rows in a
table

dataTable.GetRows(Cursor1, Cursor2, … Cursor3)
To make this method meaningful, you need to iterate:
for row in dataTable.GetRows(Cursor1, Cursor2, … Cursor3):

Get the current
value of a cursor

cursor.CurrentValue

Example script
Provide the user with a search box to look up values in a table. The search box is
referenced in the script through a document property:

ReadTable

from Spotfire.Dxp.Data import *

Define data table and cursors
dataTable = Document.Data.Tables.TryGetValue("GDP_Data")[1]
countryCursor = DataValueCursor.CreateFormatted(dataTable.
Columns["Country Name"])
gdpCursor = DataValueCursor.CreateNumeric(dataTable.Columns["GDP (USD
million)"])

Read the table
for row in dataTable.GetRows(countryCursor, gdpCursor):
 # Use Trim() method to remove any spaces
 if countryCursor.CurrentValue.Trim() == Document.
Properties["SearchTerm"].Trim():
 Document.Properties["Gdp"] = gdpCursor.CurrentValue
 Document.Properties["SearchResult"] = ""
 # Exit the loop if a match is found
 break
 else:
 Document.Properties["Gdp"] = 0.0
 Document.Properties["SearchResult"] = "Not Found"

The Secret Life of Python

[264]

Marking and selecting data
Marking appears to the user as a very visual activity and one that is closely
associated with a visualization, but it is in fact always a data operation. When
you mark something in a visualization, you are actually marking the rows in
the underlying data table. Using a script, you can select specific rows in a table
independent of marking, which is not something you can do using the graphical user
interface. You can also choose whether you want to apply a selection to a marking.

The Spotfire.Dxp.Data DataTable class provides a method for selecting data, and
the RowSelection class allows you to turn this selection into a transferable index
set, which is essentially a series of zeros and ones for each row in the table, a one
meaning selected. The DataMarkingSelection class provides methods to turn data
selections into markings or vice versa.

Action Property or Method
Select rows in a
data table using a
Boolean expression

rowSelection = dataTable.Select(Expression)
dataTable is a data table object; the expression must be a Spotfire
expression that yields a Boolean value

Get the index for a
row

row.Index
The row object is obtained by iterating through the rows of a table,
as we saw in the previous section

Get the index set for
a row selection

selectedIndexSet = rowSelection.AsIndexSet()

Get the index value
in an index set

selectedIndexSet[n]
.
This is just a standard Python string parsing, where n could be row.
Index

Mark selected rows marking.SetSelection(rowSelection, dataTable)
Recall that the marking is obtained through Document.Data.
Markings.

Get marked rows as
an index set

selectedIndexSet = marking.GetSelection(dataTable)

Example script 1
Find values in a data table and mark the corresponding row(s):

SelectRows

from Spotfire.Dxp.Data import *

Define data table

Chapter 8

[265]

dataTable = Document.Data.Tables.TryGetValue("GDP_Data")[1]

Make a selection by expression
rowSelection = dataTable.Select("[Country Name] = 'Ireland' or
[Country Name] = 'India'")

Mark rows
for marking in Document.Data.Markings:
 if marking.Name == "Marking":
 marking.SetSelection(rowSelection, dataTable)

Example script 2
Get marked rows and the corresponding data values. Use a text area control and
corresponding document property to display the results:

GetMarkedRows

from Spotfire.Dxp.Data import *

dataTable = Document.Data.Tables.TryGetValue("GDP_Data")[1]

Get marked rows as a row selection
for marking in Document.Data.Markings:
 if marking.Name == "Marking":
 rowSelection = marking.GetSelection(dataTable)

Cast rowSelection as an index set
selectedIndexSet = rowSelection.AsIndexSet()

Define a cursor
countryCursor = DataValueCursor.CreateFormatted(dataTable.
Columns["Country Name"])

Read the table and map the selected index set
resultString = ""
for row in dataTable.GetRows(countryCursor):
 if selectedIndexSet[row.Index] == 1:
 if resultString == "":
 resultString = countryCursor.CurrentValue
 else:
 resultString = resultString + ", " + countryCursor.CurrentValue

Document.Properties["SelectedCountries"] = resultString

The Secret Life of Python

[266]

Calculated columns
It can be very useful to build or change a calculated column using a script. It
gives you the option, for example, of creating metrics on the fly based on business
rules provided through a metadata table. Calculated columns can be created
from scratch using the Spotfire.Dxp.Data DataColumnCollection class, and
the existing calculated columns can be changed using the Spotfire.Dxp.Data
CalculatedColumn class.

Action Property or Method
Add a calculated
column.

dataTable.Columns.AddCalculatedColumn(Column Name,
Expression)

Cast a column
as a calculated
column. This step is
necessary to use the
CalculatedColumn
class.

calculatedColumn = dataTable.Columns[Column Name].
As[CalculatedColumn]()

Change the
expression for an
existing calculated
column.

calculatedColumn.Expression

Example Script
Add a new calculated column, or if this already exists, change its expression:

AddChangeCalculatedColumn

from Spotfire.Dxp.Data import *

dataTable = Document.Data.Tables.TryGetValue("GDP_Data")[1]

Define expression for calculated column
calculatedColumnExpression = "If([GDP (USD million)]>= Avg([GDP (USD
million)]), 'Above average', 'Below Average')"

Determine whether the column already exists
createColumn = True
for column in dataTable.Columns:
 if column.Name == "GDP Comparison":
 createColumn = False
 break

Chapter 8

[267]

if createColumn == True:
 dataTable.Columns.AddCalculatedColumn("GDP Comparison",
calculatedColumnExpression)
else:
 calculatedColumn = dataTable.Columns["GDP Comparison"].
As[CalculatedColumn]()
 calculatedColumn.Expression = calculatedColumnExpression

How to add data to an analysis
In Chapter 5, Source Data is Never Enough, we explored the notion that the source data
might not be sufficient or in quite the right form for the analysis we want to do. It's
always best to do as much data modeling and manipulation as possible at source,
but if you need to do some additional data manipulation, scripting allows you to
automate and control this activity.

Data can be added as columns or as rows, and it can be added from a variety of
sources, including tables already present in an analysis file. The first step is to define
or reference the data source using the Spotfire.Dxp.Data.Import classes. We can
then move back to the Spotfire.Dxp.Data namespace to make the additions.

Define a data source
Data can come from many sources, and there is a class for each type. In this section,
we're going to look at database sources, delimited text file data sources, information
links, and sources within the analysis file. Once you have defined a data source, you
can simply add an entire table, or you can use the source definition to add specific
rows and columns, and we will cover this aspect in the sections that follow.

Action Property or Method
Add a table from a
defined data source

Document.Data.Tables.Add(Table Name, dataSource)

Database source
Initialize new
instance of a
database source

dataSource = DatabaseDataSource()

Get or set the
settings for a
database source

dataSource.Settings.ConnectionString

dataSource.Settings.User

dataSource.Settings.Password

dataSource.Settings.SqlStatement

dataSource.Settings.Provider

The Secret Life of Python

[268]

Action Property or Method
Delimited Text File

Initialize a new
instance of text data
reader settings

readerSettings = TextDataReaderSettings()

Define column
names

readerSettings.SetColumnName(Index, Column Name)
Index begins at 0.

Define column to
ignore

readerSettings.AddIgnoreColumn(Index)

Define column data
types

readerSettings.SetDataType(Index, DataType)
DataType is specified by the standard Spotfire DataType
enumeration.

Define the delimiter readerSettings.Separator
tab = "/t"

Skip rows readerSettings.StartReadingRow
Integer (row 1 = 1)

Initialize new
instance of a text file
source

dataSource = TextFileDataSource(File Path, readerSettings)
When entering a file path as a literal string, you need to double all
the backslashes: C:\\myDataFolder\\myDataFile.txt.

Information links
Initialize new
instance of an
information link
source

dataSource = InformationLinkDataSource(GUID)

Define any
parameters to be set
when executing an
information link

parameterValue = Array[object](Value)
(Value could be a document property linked to an input control.)

Compile a list of all
parameters

ilParameters = [InformationLinkParameter.
CreateNamedParameter (Name1, parameterValue1),
InformationLinkParameter.CreateNamedParameter
(Name2, parameterValue2), … etc]

Add parameter
values to the
information link
definition

dataSource.Parameters = ilParameters

Internal data tables
Initialize new
instance of a data
table link source

dataSource = DataTableDataSource(dataTable)

Chapter 8

[269]

Action Property or Method
Initialize new
instance of a data
table link source
with data selection

dataSource = DataTableDataSource(dataTable, rowSelection)

Add a column to a table
The addition of columns to a table require a sequence of coordinated actions and a
few specialized objects. The basic action is to add an "add columns setting" definition
from a defined source to a defined target. However, the AddColumnsSettings
constructor has two elements that themselves require definition: the table joins and
the columns to ignore. I don't know why the API is written this way. Defining the
columns to include would be more intuitive, but it is what is! All columns,
whether for a join definition or columns to ignore list, must be expressed or
cast as column signatures.

Action Property or Method

Create a column
signature

columnSignature = DataColumnSignature(Column Name,
DataType)

.

DataType is defined by the standard Spotfire DataType
enumeration

Define a column
map

columnMap = {columnSignature:columnSignature, columnSignature:c
olumnSignature, …,}
The curly braces define a dictionary set, which is required for the
column map definition. The column signatures in this case are for
the left and right sides of a join.

Define the add
columns settings

columnSettings = AddColumnsSettings(columnMap,
JoinType, IgnoredColumns)
JoinType is enumerated by the following values: JoinType.
InnerJoin, JoinType.LeftOuterJoin, JoinType.
RightOuterJoin, JoinType.FullOuterJoin.

IgnoredColumns is a list of column signatures. Any column not
included in the list will be added. However, you can leave it blank
when adding columns from a text file source, which has its own
method for designating columns to ignore.

Add the columns dataTable.AddColumns(SourceTable, columnSettings)

The Secret Life of Python

[270]

Script example
Add a column from an external CSV file to a data table in an analysis file. A text area
control and the associated document property are used to allow the user to enter the
file path to the external file:

AddColumn

from Spotfire.Dxp.Data import *
from Spotfire.Dxp.Data.Import import *

Define source and target and generate ignored columns list
targetTable = Document.Data.Tables.TryGetValue("GDP_Data")[1]
ignoredColumns = []
readerSettings = TextDataReaderSettings()
readerSettings.AddIgnoreColumn(0)
readerSettings.SetColumnName(1, "Country Name")
readerSettings.SetDataType(1, DataType.String)
readerSettings.AddIgnoreColumn(2)
readerSettings.AddIgnoreColumn(3)
readerSettings.SetColumnName(4, "G20")
readerSettings.SetDataType(4, DataType.String)
readerSettings.Separator = ","
filePath = Document.Properties["FilePath"]
sourceTable = TextFileDataSource(filePath, readerSettings)

Define the table relationship
leftColumnSignature = DataColumnSignature("Country Name", DataType.
String)
rightColumnSignature = DataColumnSignature("Country Name", DataType.
String)
columnMap = {leftColumnSignature:rightColumnSignature}

Build the column settings and add the column to the target
ignoredColumns = []
columnSettings = AddColumnsSettings(columnMap, JoinType.LeftOuterJoin,
ignoredColumns)

targetTable.AddColumns(sourceTable, columnSettings)

Chapter 8

[271]

Add rows to a table
The addition of rows to a table follows a similar process to the add columns process.
Just like adding columns, you have to define column signatures and a column map.
Think back to Chapter 5, Source Data is Never Enough, and how we added rows using
the graphical user interface: we matched all relevant columns in the two tables.
Therefore, the column map will include all matches. You also have to define ignored
columns, just as you do when adding columns to a table.

Action Property or Method
Define the add rows
settings

columnsSettings = AddRowsSettings(columnMap,
ignoredColumns)

Add the rows dataTable.AddRows(SourceTable, columnSettings)

Script example
Add rows from one table in an analysis file to another:

AddRows

from Spotfire.Dxp.Data import *
from Spotfire.Dxp.Data.Import import *

Define source and target
targetTable = Document.Data.Tables.TryGetValue("GDP_Data_first_half")
[1]
sourceTable = DataTableDataSource(Document.Data.Tables.
TryGetValue("GDP_Data_second_half")[1])
dataTable2 = Document.Data.Tables.TryGetValue("GDP_Data_second_half")
[1]

Generate ignored columns list to disregard any nonshared columns
ignoredColumns = []
targetList = []
for column in targetTable.Columns:
 targetList.Add(column.Name)
for column in dataTable2.Columns:
 if column.Name not in targetList:
 ignoredColumns.Add(DataColumnSignature(column.Name, DataType.
Undefined))

Define the table relationships
leftColumnSignature1 = DataColumnSignature("Country Abbreviation",
DataType.String)

The Secret Life of Python

[272]

rightColumnSignature1 = DataColumnSignature("Country Abbreviation",
DataType.String)
leftColumnSignature2 = DataColumnSignature("Country Name", DataType.
String)
rightColumnSignature2 = DataColumnSignature("Country Name", DataType.
String)
leftColumnSignature3 = DataColumnSignature("Region", DataType.String)
rightColumnSignature3 = DataColumnSignature("Region", DataType.String)
leftColumnSignature4 = DataColumnSignature("GDP (USD million)",
DataType.Integer)
rightColumnSignature4 = DataColumnSignature("GDP (USD million)",
DataType.Integer)
columnMap = {leftColumnSignature1:rightColumnSignature1, leftColumnSig
nature2:rightColumnSignature2, leftColumnSignature3:rightColumnSignatu
re3, leftColumnSignature4:rightColumnSignature4}

Build the row settings and add the rows to the target
rowSettings = AddRowsSettings(columnMap, ignoredColumns)

targetTable.AddRows(sourceTable, rowSettings)

Summary
This chapter has introduced you to Python scripting and the Spotfire API. You have
learned how to write basic IronPython scripts and how to use Spotfire and .NET
classes. We have toured the Spotfire API, referencing and manipulating the primary
elements in an analysis file, manipulating visualization properties, manipulating
color, manipulating filters, manipulating data already loaded into Spotfire, and
adding data to an analysis.

The Spotfire API can be difficult to figure out. The class descriptions and script
examples in this chapter should demystify the API for you and provide you with
practical script recipes that inspire you to begin creating your own applications.
Working through the examples and writing your own scripts will help you to
explore the online API resource to find new properties and methods to solve your
analysis problems. The TIBCO website provides a complete guide to every class:
https://docs.tibco.com/pub/doc_remote/spotfire/6.5.0/api/Index.aspx.

In the next chapter, we will develop a case study in self-service business intelligence
that uses scripts as an integral component of the solution.

https://docs.tibco.com/pub/doc_remote/spotfire/6.5.0/api/Index.aspx

It's All About Self-service
These Days

Traditional business intelligence (BI) places a strong emphasis on data control
and the delivery of static dashboards and reports. The underlying data may be
refreshed, maybe even in real time, but the metrics, KPIs, and configuration of the
visualizations and reports remain the same unless someone, most probably an IT
developer, updates or changes them.

The process for working with the customers of BI to build new reports or find new
analytic insights is usually too slow. The customers tend to make ill-formed and
indiscriminate requests because they are not quite sure what they want, are often
precluded from truly agile development in which they can quickly change or drop
things that have been built, and insure themselves in a way by keeping a long list
of all possible requirements in the queue. Meanwhile, the IT professionals, perhaps
overwhelmed with requirements, perhaps coping with limited resources, take too
long to analyze the requirements and build the solutions. To compound matters,
when the customers finally see the solution, they complain that it is not quite what
they want or announce that the requirements have changed.

BI platforms often allow users to run ad hoc reports and analyses. Some provide
a semantic layer to abstract a physical data structure into a representation that is
familiar to end users. These are tentative steps toward self-service BI, but they are
only the beginning, not least because the power to define new metrics, KPIs, and
data representations remains restricted and the system or process for publishing BI
to the enterprise remains slow and under the control of IT.

It's All About Self-service These Days

[274]

The rapidly growing demand for informatics, frustration with traditional IT, and the
evolution of BI thinking within IT are leading to a growing interest in and delivery of
self-service analytics, which is all about empowering end users to design and deploy
their own reports and analyses within an approved and supported architecture
and tools portfolio. One of the biggest drivers and enablers of self-service BI is the
often superior understanding of the data and its applications among the consumers
of BI, especially in a data-driven organization, a reality that the IT department can
sometimes be unwilling to acknowledge.

Spotfire is built with self-service analytics as a core value, and it is an exemplary data
exploration tool. Some might think it is too free and too individualistic; however,
with a little imagination and technical know-how, the freedom and openness of the
Spotfire platform can be harnessed to build sustainable and stable enterprise-grade
self-service BI solutions.

In this chapter, we will explore this theme, starting with a look at guided analysis
and finishing with the construction of a more sophisticated self-service application.
We will cover the following topics:

• Building a guided analysis
• Key data concept—metadata
• Incorporating configurable business rules into your analysis
• A metadata-driven self-service analytics case study

Building a guided analysis
Spotfire can be used as a completely free-form data discovery tool; it can also be used
to create static reports and dashboards. As a BI author, you will often want to build
something in between: an analysis framework that allows the user to explore the
data but within certain parameters and under the constraints imposed by the web
player. A guided analysis can also simply give direction, helping users to navigate
the data and gain insights quickly.

Some of the examples we've already worked through in this book have included
guided analysis elements, such as drop-down options in text areas. The inline help
in Spotfire highlights the following techniques:

• Create a cover page
• Write instructions in text areas
• Place links or buttons in text areas leading to relevant tools, pages, or views

Chapter 9

[275]

• Use the Step-by-Step navigation mode or define page navigation using the
History Arrows navigation mode

• Use customized filtering schemes

In the next example, we're going to reuse concepts already covered, include some of
the techniques mentioned in the Spotfire user guide, and use some more advanced
techniques to help guide an analysis. By now, you should be comfortable enough with
Spotfire and a detailed set of instructions should not be required: so, the creation of the
analysis will be outlined rather than stepped through in detail. We're going to create
three pages, and we're going to use some fabricated retail data: StoreSales.csv,
which can be downloaded from http://www.insidespotfire.com.

Before we create any pages, load the data file into a new analysis file.

Index page
The first page is an index that introduces the analysis options and provides links to
the other pages. It consists of a text area with a layout defined by HTML and CSS
(cascading style sheets) tags. You can download the HTML/CSS used to generate the
following page from http://www.insidespotfire.com:

http://www.insidespotfire.com
http://www.insidespotfire.com

It's All About Self-service These Days

[276]

To insert the images and link them to pages in the analysis file, edit the text
area, select the Insert Action Control icon, select Actions, select Image as the
Control type, and add the page you want the action to navigate to from the
available selections.

Chapter 9

[277]

Once you've added the links, right-click on the text area and select Edit HTML to
open the HTML editor. You will see the links embedded in the HTML as Spotfire
controls; for example, <SpotfireControl id="97df4e28318c43e78c8cf605363b4
e3e" />. You can change the surrounding text and HTML tags and introduce your
own custom inline CSS code to style the page. Just make sure you leave the Spotfire
controls intact.

Projections page
The next page, Projections, shows the current net margin by store and gives the user
sliders to project the effect of percentage decreases in costs or increases in sales. For
example, a 2 percent drop in operational costs is projected to take two stores out of
the red zone. The user can filter by department to see how individual departments
affect the bottom line.

It's All About Self-service These Days

[278]

If you change the operational costs slider to -2, the San Diego and New York stores
shift to an amber status.

To build this page, you need to create the following components:

• Sliders: Create three sliders in a text area and associate them with new
document properties called OpScaler, GoodsScaler, and SalesScaler. In each
case, select Numerical range for Set property value through:. Assign a Value
interval: of 1 in each case, and also Min: and Max: values of -20 and 20,
respectively. Provide supporting text, such as Percent Operational Costs,
Percent Goods Costs, and Percent Sales.

• Hierarchy column: Create the hierarchy column DepartmentHierarchy,
which includes [Store Location], [Department].

Chapter 9

[279]

• Custom filters: Hide the main filter panel and add custom filters for
[DepartmentHierarchy] and [Quarter] to the text area containing the sliders
by right-clicking on the text area, selecting Edit Text Area, clicking on the
custom filter icon, and selecting [DepartmentHierarchy] and [Quarter] from
the filtering scheme list.

The layout and appearance of the text area can be improved using HTML.

• Link to Index page: Insert a navigation link to the Index page in the text area.
• Calculated columns: Create the following calculated columns:

Projected Operational Cost: [Operational Cost]+[Operational
Cost]*(${OpScaler}/100)

Projected Goods Cost: [Goods Cost] + [Goods
Cost]*(${GoodsScaler}/100)

Projected Sales: [Sales] + [Sales]*(${SalesScaler}/100)
Net Margin Store: Avg(([Sales] - [Goods Cost] -
[Operational Cost]) / [Sales]) OVER ([Quarter],[Store
Location],[Department])

Projected Net Margin Store: Avg(([Projected Sales] - [Projected
Goods Cost] - [Projected Operational Cost]) / [Projected
Sales]) OVER ([Quarter],[Store Location],[Department])

Averaging over Quarter, Store Location, and Department
allows the user to analyze the effect of filtering by quarter,
store location, and department.

It's All About Self-service These Days

[280]

• Graphical Table: Create a graphical table with the following properties:
Rows: [Store Location]
Axes - Calculated value: Avg([Net Margin Store]); color bottom three red.
Axes - Icon: Avg([Net Margin Store]); color rules: Green = Greater
than value 0.075; Amber = Boolean expression [Axis.Icon]>0.01 and
[Axis.Icon]<=0.075; Red = Less than or equal to 0.01.
Axes - Calculated value: Avg([Projected Net Margin Store])
Axes - Icon: Avg([Projected Net Margin Store]); color rules: Green
= Greater than value 0.075; Amber = Boolean expression [Axis.
Icon]>0.01 and [Axis.Icon]<=0.075; Red = Less than or equal to 0.01.

• Combination Chart: Create a combination chart with the
following properties:

Appearance: Sort x-axis by [Actual].
X-axis: [Store Location]
Y-axis: Avg([Net Margin Store]) as [Actual], Avg([Projected Net
Margin Store]) as [Projected]

Series: (Column Names) ([Axis.Default.Names]); Actual as bar, Projected
as line.
Lines and Curves: Horizontal Line 1: Fixed value: 0.01; Custom name:
Minimum. Horizontal Line 2: Fixed value: 0.075; Custom name: Target.

Department Performance page
The final page for this example, the Department Performance page, allows the user to
set margin and volume targets to categorize department performance at each store.
The user can also filter to see how the performance changes through each quarter.

Chapter 9

[281]

To build this page, you need to create the following components:

• Sliders: Embed sliders called High Volume, High Margin, and Losing
Margin in a text area, and add supporting text. The High Volume Mark
slider should range from 4 to 12 in increments of 8; the High Margin Mark
slider should range from 0.03 to 0.10 in increments of 0.05; and the Losing
Margin Mark slider should range from -0.02 to 0.03 in increments of 0.01.

• Custom filters and navigation link: Hide the main filter panel and add
custom filters for [DepartmentHierarchy] and [Quarter] in the same way
as for the Projections page. Add a navigation link back to the Index page.

• Calculated columns: Net Margin: Avg(([Sales] - [Goods Cost]
- [Operational Cost]) / [Sales]) OVER ([Quarter],[Store
Location],[Department])

Net Profit: [Sales] * [Net Margin]

It's All About Self-service These Days

[282]

• Hierarchies: DepartmentHierarchy: [Store Location] | [Department]
• Scatter Plot: X-axis: Avg([Net Margin]) as [Net Margin]

Y-axis: Sum([Sales]) / UniqueCount([Quarter]) as [Sales/Quarter]

We need to average over a quarter to enable filtering by quarter.
Doing this directly on the axis means the plot will dynamically
recalculate as quarters are filtered in and out by the user.

Colors:
case

when Sum([Sales])/UniqueCount([Quarter])>=${Volume} and
Avg([Net Margin]) >=${HighMargin} then "HV-HM"

when Sum([Sales])/UniqueCount([Quarter])>=${Volume} and
Avg([Net Margin]) <${HighMargin} and Avg([Net Margin])
>${LosingMargin} then "HV-LM"

when Sum([Sales])/UniqueCount([Quarter])<${Volume} and Avg([Net
Margin]) >=${HighMargin} then "LV-HM"

when Sum([Sales])/UniqueCount([Quarter])<${Volume} and Avg([Net
Margin]) <${HighMargin} and Avg([Net Margin]) >${LosingMargin}
then "LV-LM"

when Avg([Net Margin]) <=${LosingMargin} then "Losing"

end as [Sector]

Labels: UniqueConcatenate([Department])
Marker by: [Store Location] NEST [Department]
Lines and Curves: Horizontal Line: Custom expression: ${Volume}. Vertical
Line 1: Custom expression: ${HighMargin}. Vertical Line 2: Custom
expression: ${LosingMargin}.

• Table: Columns: [Store Location], [Department], [Quarter], [Net
Profit], [Sales], [Net Margin].
Limit data using markings: Marking

• Bar Chart (for net profit): Appearance: Sort bars by value.
Category axis: DepartmentHierarchy.
Value Axis: Sum([Sales]) * Avg([Net Margin]) as [Net Profit]
Colors: None.

Chapter 9

[283]

• Treemap: Colors: Same as scatter plot.

Size: None
Hierarchy: DepartmentHierarchy set to Department.
(PruneHierarchy([StoreSales].[Hierarchy.DepartmentHierarchy],1))
Trellis: [Store Location]

History Arrows
The final step is to remove the page tabs and switch to History Arrows mode to
provide a more guided analysis. Right-click on any page tab, select Page Navigation,
and select History Arrows.

Now, the user is guided through the analysis through the navigation links you
provide, combined with browser-style back and forward arrows. This type of
guided analysis could be developed further to provide an analytic workflow, with
the workflow laid out on the index page. You could also provide a button that uses
a simple script to switch the page navigation mode from history arrows to tiled tabs,
allowing users to deviate from the standard workflow to conduct more advanced or
custom analysis.

It's All About Self-service These Days

[284]

Key data concept – metadata
Putting the prefix meta in front of a word means essentially that you are abstracting
information in some way. A meta-analysis is an analysis of a set of analyses.
Metadata is a term used to denote the description of data—data about data. This
often means the data's structure, its column names essentially, but it can mean any
abstraction of the data, such as purpose, date of collection, source, or standard.

Metadata is the key to bridging the gulf between the raw data sitting in databases
and data warehouses in what are necessarily complex data structures optimized for
performance and the everyday user of this data, irrespective of how familiar the user
is with the data content. Metadata should be seen as an essential communication
protocol for data analysis, particularly where a self-service approach is sought. It
can be a common language through which user requirements can be expressed and
understood by BI consumers, developers, and applications.

Incorporating configurable business
rules into your analysis
Business rules are a form of metadata and usually play a central part in the creation
of an analysis file. They govern the definition of metrics, KPIs, parameters, and even
the application or customization of filters. They can be and often are hardcoded.
They can be facilitated through the provision of user inputs, such as the input boxes
we added to the pages in the guided analysis example. BI dashboards and analysis
pages often include this type of flexibility, allowing users to essentially alter the
business rules governing the analysis.

However, the level of configurability can be progressed to a deeper level, and this
is where we begin to move from a world in which IT delivers informatics solutions
directly to consumers via BI provisioners in the business who have the subject matter
expertise and data skills to extend the informatics platform provided by IT. The
challenge for IT is to make the platform extendable while retaining governance over
the data and potentially other core aspects of the delivery.

A simple way to achieve this in Spotfire is to include a metadata table or tables in
the analysis file that can describe pretty much any piece of metadata you wish to
expose to configuration. It could be table column labels, a KPI, a list of options for
a drop-down selection, or a color scheme. You will need to do the following:

• Write some IronPython scripts to read the metadata tables and apply
the settings

• Ensure the settings relate correctly to the data structure and its
expected values

Chapter 9

[285]

• Ensure the settings conform to the visualization properties they affect
• Train the business provisioners on how to use the metadata tables correctly

In the simplest model, you do all of the preceding and allow the business provisioners
to alter and use the metadata tables directly as part of a deployment process. The
tables should be simple enough to export from a database to a spreadsheet, where they
can be modified before being reimported back to a database location. The metadata
configuration tables could be maintained under version control as spreadsheet files by
the relevant business unit and imported directly into Spotfire as and when the business
provisioner needs to change the report configuration.

In a more mature model, you would build a configuration interface in the Spotfire
analysis file to guide the business provisioner's editing of the underlying metadata
tables, ensuring that all settings are compatible with the analysis file and its data.

Only when there is a need to change the scope of the metadata or configuration
options is there a need to engage IT to make those changes and any necessary
alterations to the underlying visualizations and data model. The scope of metadata
control is very wide, however, and metadata tables can be used to define and
accommodate data structure changes and even define new data views, to completely
alter visualization configurations, and to automate testing, eliminating the need for
further IT involvement in every case.

Let's take a very simple example: say you want to allow a business provisioner to
create new KPIs and add them as a color-by option to a particular visualization
without any need to contact IT. Some constraints would apply:

• The KPI expression must obviously reference valid column names
• The RAG value must be "Red," "Amber," or "Green"
• The KPI must be applied to a specific visualization with a fixed data source

These constraints could be removed through the use of additional metadata
properties, and you could break out the KPI definition into more user-friendly
clauses, but let's keep the example simple to illustrate the principle.

The metadata table would have just two columns as follows:

KPI Name KPI Expression
Any description Valid Spotfire case expression with values conforming to

the RAG constraint described in the preceding text

It's All About Self-service These Days

[286]

Example metadata table/spreadsheet
KPI Name KPI Expression
Profitability case when [Sales]-[Costs]/[Sales] > 0.07 then

"Green" when [Sales]-[Costs]/[Sales] <= 0.07 and
[Sales]-[Costs]/[Sales] > 0.03 then "Amber" when
[Sales]-[Costs]/[Sales] <= 0.03 then "Red" end

Volume case when [Sales] > 5000000 then "Green" when
[Sales] <= 5000000 and [Sales] > 1500000 then
"Amber" when [Sales] <= 1500000 then "Red" end

The analysis file would have a Deployment page for the business provisioner, and
on this page, you would include a Deploy Metadata button with an associated script
that does the following:

• Reads the metadata table row by row and gets the KPI Name
• Looks for the KPI Name as a calculated column in the target visualization

data table and updates the expression with the KPI Expression from the
metadata table

• If the calculated column is not found, creates a new one and adds the
KPI Expression

The provisioner would load the updated metadata table and run the script,
deleting the deployment page before publishing the analysis to consumers in the
Spotfire library. The relevant page in the analysis file would have a drop-down list
preconfigured to look for unique values in the metadata table's [KPI Name] column.
The visualization would have a color-by property bound to the drop-down list
property control.

Everyone works within an agreed analytic framework created by IT; yet, users can
suggest and quickly get access to new KPIs. As long as the scope of the metadata-
driven application is agreed by all stakeholders and conforms to relevant governance
procedures, and as long as the development of the framework follows good software
development practices, the possibilities are extensive and far reaching. Let's finish
this chapter by exploring a more complex example.

A metadata-driven self-service analytics
case study
Consider the following scenario for the fictional chain store we used for the guided
analysis example:

Chapter 9

[287]

A business unit has requested a KPI dashboard, but it's not sure exactly what data
or KPIs it will need on an ongoing basis and wants to develop and control the
dashboard, once it is built, with as little involvement from IT as possible.

We start with the following basic wireframe:

It's a good idea to set out your analysis design using
wireframes, which are simply graphical outlines of the
high-level content of your analysis: pages, visualizations,
user inputs, and so on. Wireframes help you conceptualize
the design and share it with other stakeholders, without any
need for actual data or working visualizations.

We need IT to create this wireframe on top of a metadata definition that allows the
business unit to define the KPI classes, source tables, and KPIs as required. The detail
levels will always be Region, Store, and Department. What will the base template
look like, what will the metadata look like, and what scripts will be needed to enable
the template? Let's take a closer look.

It's All About Self-service These Days

[288]

Metadata
Let's start with the metadata. We will need three tables (all available as CSV files
from http://www.insidespotfire.com):

Table Description Columns
BaseTable List of stores.

This table will be used to join any
other tables added to the analysis
so that marking and filtering will
work across all loaded data tables.

[Region], [Store
Location], [Department]

MetadataKpis KPI names and expressions.
This table will be used to populate
KPI dropdowns, reference source
data, and build the KPI base
metric expressions.

[KPI Class], [KPI
Name], [KPI Metric
Expression], [Table
Name], [Data Source],
[Column List]

MetadataBusinessRules Business rules for KPI metrics.
This table will be used to build
the RAG clauses for the KPI
metric expressions defined in
MetadataKPIs.

[Business Rule
Name], [Condition1],
[Condition 2],
[Description], [RAG]

The metadata design anticipates that there might be a need for more than one source
table ([Data Source]) and that the KPIs might need to be classified into groups
([KPI Class]). The KPI class can be used as a convenient label for different data
sources, as shown in the following example, but it is also flexible and can be used for
a single data source:

Representative metadata content
BaseTable

Region Store Location Department
Midwest Chicago Electronics
Midwest Chicago Furniture
Midwest Chicago Garden
Midwest Chicago Groceries
Midwest Chicago Toys
Midwest Columbus Electronics
And so on for all the stores

http://www.insidespotfire.com

Chapter 9

[289]

MetadataKpis

KPI Class KPI
Name

KPI Expression Table Name Data Source Column List

Profitability Margin (([Sales]-
[Goods
Cost]-
[Operational
Cost])/
[Sales])*100

StoreSales C:\Source Data\
StoreSales.csv

[Region{String}],[Store Lo
cation{String}],[Departme
nt{String}],[Quarter{Inte
ger}],[Sales{Real}],[Goo
ds Cost{Real}],[Operational
Cost{Real}],[Discount{Real}]

Customers Gender ([Male
Sales]/
[Female
Sales])*100

StoreCustomers C:\Source Data\
StoreCustomers.
csv

[Region{String}],[Store Lo
cation{String}],[Departm
ent{String}],[Quarter{In
teger}],[Sales{Real}],[M
ale Sales{Real}],[Female
Sales{Real}],[Sales
20{Real}],[Sales
30{Real}],[Sales
40{Real}],[Sales
50{Real}],[Sales
60{Real}],[Sales 70{Real}]

MetadataBusinessRules

Business Rule
Name

Condition1 Condition2 Description RAG

Margin <3 <3% Red
Margin >=3 <=7 3-7% Amber
Margin >7 >7% Green
Gender >62 >62% Red
Gender <=62 >=56 56-62% Amber
Gender <56 >=48 48-55% Green
Gender <48 <48 Amber

Source data
The source data tables, which could be views created by IT in the data warehouse
or views created by a business information designer in Spotfire, have only
one constraint: they must contain the columns [Region], [Store Location], and
[Department]. All other columns are flexible. Any business user(s) adding new
KPI metrics just needs to know the column names.

We can use the following datasets to build the example: StoreSales.csv,
StoreCustomers.csv, and StoreStaff.csv (all available from http://www.
insidespotfire.com).

http://www.insidespotfire.com
http://www.insidespotfire.com

It's All About Self-service These Days

[290]

Base template
The base template needs to have the components outlined in the following text. To
build the template, you will need to load some source data, even just a single row.
Once the visualizations are configured, the source table is removed from the analysis
file. The configurations will no longer be valid, but this is taken care of by the
deployment scripts. The idea is to create a generic, blank template that is deployed
using metadata tables, source tables, and scripts.

KPI Page
• Source data:

Start the analysis file build by loading the base table, empty KPI and business
rules metadata tables, and one of the source tables.

• User inputs:
KpiClass: drop-down list with values set through unique values in
[MetadataKpis].[KPI Class].
SelectedKpi: List box with values set through unique values in
[MetadataKpis].[AvailableKpis]. Please note that you will need to create the
calculated column [AvailableKpis] first (see the following text).
DetailLevel: drop-down list with fixed values "Region," "Store Location,"
and "Department."

• Calculated columns:
MetadataKpis
AvailableKpis: if([KPI Class]="${KpiClass}",[KPI Name])
Source data table
KPI Metric: The integer value 1 (the correct expression will be set at
deployment by metadata and scripts).
KPI RAG: The string value "1" (the correct expression will be set at
deployment by metadata and scripts).

• Hierarchies:
BaseTable
StoreHierarchy: [Region] | [Store Location] | [Department]

Chapter 9

[291]

• Document properties:
HierarchyLevel: integer value (set to 1).
TreemapTrellisLevel: string value.
TreemapHierarchyLevel: integer value (set to 1).

• Scatter plot
Data table: source data (StoreSales, for example).
X-axis: <PruneHierarchy([BaseTable].[Hierarchy.StoreHierarchy],${
HierarchyLevel})>

Y-axis: Avg([KPI Metric])
Colors: <[KPI RAG]>
Marker by: <$esc(${DetailLevel})>

• Treemap
Data table: source data.
Colors: UniqueConcatenate([KPI RAG])
Size: UniqueCount($esc(${DetailLevel})) as [${DetailLevel}s]
Hierarchy: <PruneHierarchy([BaseTable].[Hierarchy.StoreHierarchy]
,${TreemapHierarchyLevel})>

Trellis: Panels split by <${TreemapTrellisLevel}>

• Table

Data table: source data.

Once the template is built, remove the source data table (Edit | Data Table
Properties, select table, and click on Delete). Save the analysis file as
KpiTemplate_Blank.dxp.

IronPython scripts
As you can see, the metadata and base template are actually quite simple. The
complexity in this design is all in the scripts, and this is where IT involvement is
probably, though not necessarily required. Once the scripts are written, however,
the template will be flexible enough to support new KPI classes/source tables and
new KPI metrics.

It's All About Self-service These Days

[292]

Three scripts are required:

• RefreshMetadata: Implemented as a button on a dedicated deployment
page, this script deploys new metadata and source tables

• ChangeDataTable: Implemented to run each time the property KpiClass
changes, this script switches the data table on all visualizations accordingly
and assigns a default KPI metric

• ChangeMetric: Implemented to run the properties SelectedKpi and
DetailLevel changed each time, this script alters the visualization
configuration to reflect the selected metric or detail level

The scripts can be downloaded from the publisher's website or from
http://www.insidespotfire.com. The scripts are outlined in the
following text using pseudocode.

Deployment page
Create a deployment page with a single button called Refresh Metadata and
associate the RefreshMetadata script with this button. You would remove this page
when publishing the template to the user community. Whenever the metadata files
are modified at source, this script is run to rebuild and update the template, whether
it is blank or already populated with data.

The RefreshMetadata script reads the MetadataKpis table to determine what needs
to be added to the template and what configuration changes need to be made (refer
to the representative metadata content shown earlier in this chapter).

For convenience, we are using CSV files as data sources, but the source entry in the
metadata table could be a database connection and table reference or even a piece of
SQL. You would just have to incorporate the necessary code into the script to process
the information. The key point is that the script can be as complex as it needs to be to
ensure that the metadata tables are simple and business friendly.

If the business provisioner wants to add a new KPI, they just need to add a new
entry to MetadataKpi. If a new table is required, a data requirement might have to
be submitted to IT to create the necessary view, but if the business provisioner has
direct access to the data, even this contact with IT is not necessary, just an update
to MetadataKpis.

http://www.insidespotfire.com

Chapter 9

[293]

The KPI name is used to look up the MetadataBusinessRules. The business
provisioner can maintain these business rules and change them as required, simply
redeploying the template to publish the change to the consumers of the analysis
(refer to the representative metadata content shown earlier in this chapter).

The deployment script that makes all of this possible is outlined as follows:

RefreshMetadata
Declare libraries
Define the metadata table objects
Refresh their content
Get a list of tables already loaded
Set up cursors for columns in MetadataKpis and MetadataBusinessRules
Initialize dictionaries for holding key:value pairs
Read MetadataKpis to get a list of required source tables
 # Use the dictionaries to store key:value pairs for
TableName:DataSource, TableName:ColumnList, TableName:KpiName,
TableName:KpiExpression, and TableName:KpiClass
Load the source tables
 # Use TableName:ColumnList to define the columns in each case
 # Use the TextDataReaderSettings() method with TableName:DataSource
to import the table
Relate all imported tables to the base table
Set filter propagation to mutually exclude filtered out rows

It's All About Self-service These Days

[294]

Add a calculated column [KPI Metric] using TableName:KpiName and
TableName:KpiExpression. This script sets up a nominal KPI expression,
which is changed/updated dynamically at runtime by the script
ChangeMetric (described later in the chapter)
Read MetadataBusinessRules to create nominal [KPI RAG] and [KPI
Description] case statements and add them as calculated columns. These
expressions will be updated dynamically at runtime by the script
ChangeMetric
Add a Region>Store>Department hierarchy column
Assign document properties for drop-down controls
Ensure visualizations are pointed at a data table
Set the columns to display in the table plot

Runtime scripts
The ChangeDataTable and ChangeMetric scripts perform similar lookups in the
metadata tables as users make selections at runtime. You need to associate the
ChangeDataTable script with the KPI Class dropdown control (right-click on the
control and select Edit control… and then Script. Select the script and select the
option Execute the script selected below:). Associate the ChangeMetric script with
the Selected KPI and Detail Level controls.

The ChangeDataTable script makes some default assumptions about the KPI and
the level of detail to use, but as soon as the user selects a KPI or detail level, the
ChangeMetric script changes the configuration to reflect this change:

ChangeDataTable
Declare libraries
Define the metadata table objects
Set up cursors for columns in MetadataKpis and MetadataBusinessRules
Get a nominal metric expression from MetadataKpis for the KPI Class
selected by the user (document property KpiClass) and update the
calculated column [KPI Metric]
Set the document property SelectedKpi to correspond to the nominated
KPI
Get the corresponding KPI RAG and KPI descriptions from
MetadataBusinessRules, create the case statements, and update the
calculated columns [KPI RAG] and [KPI Description]
Point visualizations at the correct data table
Set the columns to display in the table plot
ChangeMetric
Declare libraries

Chapter 9

[295]

Define the metadata table objects
Set up cursors for columns in MetadataKpis and MetadataBusinessRules
Get the metric expression from MetadataKpis for the KPI selected
(document property SelectedKpi) and update the calculated column [KPI
Metric]
Get the corresponding KPI RAG and KPI descriptions from
MetadataBusinessRules, create the case statements, and update the
calculated columns [KPI RAG] and [KPI Description]
Set the hierarchy levels to match the selection made in the document
property DetailLevel
Point visualizations at the correct data table
Set the columns to display in the table plot

The complete self-service solution can be summarized as follows:

It's All About Self-service These Days

[296]

We'll finish with a screenshot of one selection showing a margin KPI by department
on the scatter plot, automatically rolled up to show a department summary by store
in a treemap. The take-home message here, however, is the empowerment of the
owners of this data and analysis to modify parameters and add new domains and
metrics over time without any further IT development.

Summary
In this chapter, we started by looking at the concept of guided analysis and we
worked through a relatively sophisticated example of how a guided analysis
can be constructed. We moved on to consider the importance of metadata as an
essential communication protocol for data analysis, particularly where a self-service
approach is sought. If you talk to BI professionals or read about the subject, you will
find strong recognition for the importance of metadata dictionaries and semantic
layers, but you will also find an acknowledgment that we are poor at implementing
business-targeted metadata.

This chapter should give you a sense of how metadata can be a common language
through which user requirements can be expressed and understood by BI consumers,
developers, and applications. You should now see how easy it can be to incorporate
configurable business rules into an analysis using metadata tables.

Chapter 9

[297]

This chapter finished with a metadata-driven self-service analytics case study. This
example is a significant advance from our opening foray into Spotfire as described
in Chapter 1, Show Me the Data, and it relies on some fairly advanced programming
skills. You might not wish to develop your Spotfire programming skills to this
degree, but perhaps the case study gives you some food for thought and a practical
basis to discuss self-service BI options with those who have these skills.

We are almost at the end of the book now, and all that remains is to take a peek over
the horizon at some of the other components that Spotfire offers. Up to now, we have
focused on the core components of server, web player, and client, but believe it or
not, there is a lot more to the Spotfire platform than this core functionality. The final
chapter will take a cursory look at these additional components.

Beyond the Horizon
This book has focused on what most people would understand as the core
implementation of TIBCO Spotfire: analysts working in a professional client (Spotfire
Analyst) to build analysis files and then publishing those files to a wider audience
through the web player (Spotfire Consumer) and the Spotfire library. The Spotfire
server manages authentication, functional licensing, and access to the library content.

We delved quite deeply into what the Spotfire client can do, including the advanced
functionality of IronPython scripting. In this chapter, we'll take a short tour of some
additional components that add even further power to the platform. We'll start with
TIBCO Enterprise Runtime for R (TERR), which is an essential tool for advanced
and predictive analytics, and progress to consider some of the advanced data
handling capabilities of Spotfire. Along the way, we'll look at some new
mobility options.

In this chapter, we will cover the following topics:

• TIBCO Enterprise Runtime for R (TERR)
• JavaScript
• TIBCO Spotfire Mobile Metrics
• Event analytics
• Spotfire data connectors
• TIBCO Spotfire Advanced Data Services

Beyond the Horizon

[300]

TIBCO Enterprise Runtime for R (TERR)
R is a language for data manipulation and statistical computing available as free
software under the terms of the Free Software Foundation's GNU general public
license. It has a wide range of statistical modeling and graphical techniques, but
it is also highly extensible through the use of thousands of community-developed
packages published through Comprehensive R Archive Network (CRAN). It is
one of the most popular tools for statistical modeling and analysis and is used, for
example, in data cleaning, data exploration and visualization, statistical analysis, and
the predictive modeling of complex systems. Go to http://www.r-project.org for
more information.

R has always been a supported feature of Spotfire, but up to the release of Version
5.0 of the platform, you had to install a TIBCO Spotfire Statistics Services server,
configure it with an R engine, write your R programs in that environment, and create
and register data functions to provide input to the R program and use its output in a
Spotfire analysis file. Furthermore, the R installation was not part of TIBCO Spotfire
and had to be obtained under separate open source software license terms.

Version 5.0 of Spotfire launched TERR as a compatible R installation and embedded
it in the Spotfire professional client, giving you the option to deploy R code directly
in Spotfire analysis files. Furthermore, Spotfire now leverages TERR to provide a
host of built-in modeling functions and tools that you can incorporate into your
analysis. For further reading on TERR, visit https://docs.tibco.com/products/
tibco-enterprise-runtime-for-r-3-0-0, which includes documentation on the
compatibility of R packages with TERR.

Data functions
To use TERR with a dataset, you first define a data function using Register Data
Functions… in the Tools menu. Data functions have three principal components:

• The R program script to be run—you can type the code from scratch, paste it
from the clipboard, or import it as a script function definition

• Input parameters—you specify the input type (value, column, or table) and
allowed data types

• Output parameters—you specify the output type (value, column, or table)
and allowed data types

http://www.r-project.org
https://docs.tibco.com/products/tibco-enterprise-runtime-for-r-3-0-0
https://docs.tibco.com/products/tibco-enterprise-runtime-for-r-3-0-0

Chapter 10

[301]

You can run a data function immediately, or you can save it to the Spotfire library,
after which you can select Data Function… in the Insert menu to associate it with
a table and explicitly define the input(s) and output(s), which can be new columns
or document properties. You can also edit the data function at any time by selecting
Data Function Properties in the Edit menu.

Expression functions
You can use TERR to write custom functions and then use those functions directly
in calculated columns and custom expressions. You simply open the Data Function
Properties dialog from the main Edit menu, select the Expression Functions tab, and
type or paste your R code. You give the function a name, specify its return data type,
and categorize the function's type (binning, conversion, date and time, and so on).
Now, whenever you use the Calculated Column… or Custom Expression… builder,
your custom function will be listed among the built-in functions, categorized as you
specified in its definition.

Predictive modeling
TERR provides a lot more than access to data functions; it also supports a suite of
built-in predictive modeling tools. These tools are powered by TERR but you don't
need any knowledge of R code to use them.

TERR can be used to fit a model using either regression analysis (numerical) or
classification analysis (categorical). Both are accessible from the Tools menu.

After you run a model over some data, Spotfire automatically generates a Model
Page, giving you a comprehensive set of outputs:

• Model Summary
• Table of Coefficients
• Residuals vs. Fitted

Beyond the Horizon

[302]

• Variable Importance
• Choice of additional diagnostic visualizations

The Model Summary panel provides five tools to help you refine and evaluate the
model and predict from it. From left to right, they are Edit model, Evaluate model,
Predict from model, Export from model, and Duplicate model.

The Evaluate Model tool allows you to compare the model with another data table
that includes the values you are trying to predict using the model. When you run
the Predict from model tool, Spotfire inserts prediction columns into the source data
table, from where you can easily work up your own visualizations and analysis to
present the findings as you wish.

Apart from the model page, TERR also generates a set of supporting tables:

• MyModel_fitSummaryTable

• MyModel_fitPlotData

• MyModel_coefTable

• MyModel_varImpTable

Chapter 10

[303]

Holt–Winters forecast
You can use TERR to do a Holt–Winters forecast for any data that can be mapped
to a time series. The Holt–Winters algorithm, named after Charles C. Holt and his
student Peter Winters, is a triple exponential smoothing technique that models the
level, trend, and seasonal components of a time series. The smoothing parameters
are selected, either automatically or by the user, to minimize the sum of the squared
one-step-ahead prediction errors. You can also select how far out in time you wish to
project the forecast.

The great thing is that all of this is handled by TERR and integrated as a Lines &
Curves option for any time series plot, as shown in the following screenshot:

Beyond the Horizon

[304]

The Holt–Winters forecast creates three curves: a fitted curve showing the general
variation of the measure of interest, a forecast curve predicting the future trend,
and a confidence interval, or funnel, for the future trend. For example, if you apply
a Holt–Winters forecast to the market interest rate data we used in the earlier
chapters, you can see how a forecast based on data for January 1987 to February
1989 compares with the actual values (provided in a separate table) for subsequent
months up to December 1992.

JavaScript
Since Spotfire v6.0, it is possible to add JavaScript to text areas using the HTML
editor. It is beyond the scope of this book to review all the things you can do with
JavaScript, but a common use is to improve the appearance and usability of websites
by creating interactive elements such as menus and calendar pickers for date inputs.
Treat the Spotfire text area as a website. You can also use JavaScript to change the
content of property controls and even run IronPython scripts.

If you right-click on a text area, select Edit HTML, and click on the Insert JavaScript
icon, a window will open in which you can type or paste the required JavaScript
code and save it for deployment in other text areas. You can also assign parameters
to the JavaScript in similar fashion to IronPython scripts.

Chapter 10

[305]

To apply JavaScript code to text area content, including Spotfire controls such
as buttons, you tag the target element with an identifier and then reference that
identifier in the script. For example, if you want to run an IronPython script every
time the mouse cursor rolls over some text or image, format the text area with the
following HTML tags:

<div id="mouseover">Some text or an image</div>
<div style="DISPLAY: none" id="autoExec"><SpotfireControl id="f7dd0eef
477b4897b7b42052430b112b" /></div>

The style display attribute for the Spotfire control hides the button containing the
script you want to run. The JavaScript, which could include two script parameters,
one for the text and one for the button, would be as follows:

Beyond the Horizon

[306]

Mobile Metrics
TIBCO Spotfire Mobile Metrics was released with Spotfire v6.0 as a new, standalone
tool to deliver key performance indicators (KPIs) to mobile devices (iOS, Android,
and Windows) and Windows 8 PCs. It is implemented through Microsoft Internet
Information Services (IIS) and requires a dedicated Microsoft SQL Server database.

You can group sets of KPIs into different feeds, allowing you to target specific
audiences with the mobile KPI dashboard(s) most appropriate for them. The
information latency can be as real time as you wish to give your mobile clients an up-
to-date picture of performance. The tool also has a comment functionality, allowing
users to socialize their response to the information and their insights with colleagues
directly from their mobile device.

The consumer app is available to everyone as a free download from the relevant
app stores. You, as a KPI provider, supply a URL and login credentials to give
access to your mobile metrics website. The display is slightly different with each
app/operating system, but all show an intuitive set of Traffic Light tiles and allow
drilling down into deeper levels of detail and trend analysis. You can also link
each KPI directly to another analytics solution, such as a Spotfire analysis file,
for deeper analysis.

The next screenshot shows the iPhone app with demo data provided by TIBCO.
The left-hand picture is the starting position; the center picture is a Drill Down on
South - Sales; the right-hand picture is a Drill Down on Florida - South - Sales.

Chapter 10

[307]

Setting up KPI sets
You set up KPIs using TIBCO Spotfire Metrics Modeler, a web-based metrics
application service that allows you to do the following:

• Connect to and query different data sources
• Define KPIs for the data returned by database queries
• Deliver those KPIs to users via the Metrics Viewer Service
• Build different feeds to group and categorize KPI sets for context or

security reasons
• Schedule data refresh and set caching parameters to store refreshed content

in memory between refreshes

The metrics modeler can connect to the following data sources: Microsoft SQL
Server, Oracle, Teradata, Microsoft Excel, Google Spreadsheet, and Microsoft
Online Analytical Processor (MSOLAP).

To build a KPI set, create a database connection, write a query to obtain the
information and metrics you need, and add that query to a KPI set. Then, configure
the set with additional metadata to map the query dataset to KPI set definitions
(dimensions and measures), threshold settings for a visual indication of performance
(traffic lights), and other formatting and presentation settings. KPI sets are
maintained in a KPI library.

You need to be familiar with dimensional modeling to create a KPI set and to
understand the cardinality of the relationships between dimensions, that is,
whether the relationship is one-to-one, one-to-many, or many-to-many.

The metrics modeler allows you to create feeds, which not only allow you to
group KPI sets for publishing but also allow you to preview your KPIs as end
users see them.

Event analytics
TIBCO's event analytics bundle combines multiple components to build, in TIBCO's
words, an "Understand–Anticipate–Act" analytic cycle. This system allows you
to stream data in real time through a predefined workflow, apply business rules,
generate forecasts based on current and historical values, apply statistical models,
and present the findings to decision makers and analysts, allowing them to take
preemptive action.

Beyond the Horizon

[308]

It has many business applications across multiple industries:

• Financial Services—FX trading systems, pricing, smart order routing, real-
time profit and loss, auto-hedging, transaction cost analysis, compliance,
algorithmic trading, and market data processing

• Intelligence—Signals processing
• Manufacturing—Supply chain monitoring
• Retail and e-commerce—Real-time inventory and offers, dynamic pricing,

and customer engagement
• Telco—Network monitoring
• Online Gaming and Social Media—Fraud detection, cyber security, and

user behavior analytics

So how does it work?

TIBCO StreamBase
The first component of the event analytics bundle is TIBCO StreamBase, an event
processing platform that joined the TIBCO suite of products when the company
acquired StreamBase Systems in June 2013. StreamBase has over 150 pre-built
connectivity and visualization options that integrate with a variety of real-time
data feeds, messaging systems, high-capacity data stores, alternative programming
languages, and real-time interactive dashboards. It has over 40 market data/venue
adapters, over 50 general adapters, connectivity to general purpose and analytic
databases, multiple visualization options, and APIs for C++, C#, Java, .NET,
and Python.

The StreamBase engine differs from traditional database models by processing the
inbound data while it is in flight, streaming through the server, rather than storing,
indexing, and processing the data through queries. It can perform a multitude of
actions on the streaming data, applying aggregating functions, computing new
values, applying filters, performing buffered sorts, joining split streams of data,
and populating shared data tables to facilitate lookups.

To help you work with this complex data application, TIBCO provides a graphical
development environment called StreamBase Studio, which allows you to design,
test, and deploy streaming applications. You build the workflow using a palette of
operators, each of which has a set of properties that you can configure to manipulate
and redirect data streams and static data sources.

Chapter 10

[309]

For example, you could set up a workflow that captures key sales metrics for
the members of a sales team directly from a transactional system, merge those
metrics with historical data from a data warehouse to analyze the trend, and run
the numbers through a predictive algorithm to forecast whether individual sales
personnel are on track to meet their targets. The workflow can also be used to
initiate additional actions based on the results of the forecast.

StreamBase and TERR
The next component in the event analytics bundle is TERR, which we covered at the
beginning of the chapter. The idea here is to pass the data captured by StreamBase
to a predictive algorithm, which could be a built-in forecast or a custom algorithm
developed by a data scientist and implemented in TERR.

In our relatively simple example of projecting sales targets, we could project an
individual's sales against a predefined target for the year. The StreamBase workflow
can include actions based on the output of the predictive analytics, updating other
analysis and even e-mailing alerts.

In a more complex example, an event analytics workflow could be used to
track a manufacturing process in real time, streaming data from instruments
through predictive models and outputting the results to KPI and other types
of analytics dashboards.

Contextual analysis and mobile metrics
The final components in the event analytics bundle are contextual analysis and
mobile metrics. The predictive output from TERR gives you the basic alert, but you
will probably also want to dig deeper into the causes and context of the alert. The
StreamBase workflow can trigger a Spotfire Automation Services job to update a
prebuilt analysis file containing supporting visualizations with the projected data,
placing the sales trend in context and allowing an analyst or manager to reach more
informed conclusions and decisions.

Beyond the Horizon

[310]

The relevant KPIs and predictions can also be updated in a Spotfire Mobile Metrics
implementation, giving the relevant audience a real-time Traffic Light overview of
the sales team's performance, alerting relevant managers whenever an individual
is trending below or above target, providing some detail on those trends, and even
providing a link to a more detailed, contextual analysis. All of this can be delivered
in a personalized way to any mobile device.

Spotfire data connectors
Way back in Chapter 1, Show Me the Data, we covered some standard ways in
which Spotfire can access data: delimited text files and Excel spreadsheets, SAS
datasets, and basic database connections to mainstream databases such as Oracle
and Microsoft SQL Server. In Chapter 5, Source Data is Never Enough, we looked at
information links and in-database analytics, but we still confined the discussion to
those mainstream data sources.

In the world of Big Data, there are many data sources that don't fit any of the
preceding categories and that require specific connectors. Since Spotfire v4.5,
TIBCO has been expanding the number of data connectors available. Spotfire now
has almost 20 native connectors, including Apache Hadoop/Hive, Cloudera Hive
and Impala, HP Vertica, Oracle Essbase, SAP HANA and NetWeaver Business
Warehouse, Teradata, IBM DB2 and Netezza, and Cisco ("Composite")
Information Server.

To install these connectors, a Spotfire administrator must first deploy the relevant
connector package on the Spotfire server. The connector is then automatically rolled
out to clients that log in to the server. In most cases, a driver must also be installed
on the machine running the data connector.

Once the connector is installed and configured, you treat it like you would any data
link, saving a shared data connection to the library or adding a local data connection
to an analysis. Some connectors support a basic, username–only authentication
protocol; others have more complete authentication models.

TIBCO provides further information on its website: http://support.spotfire.
com/sr_spotfire_dataconnectors.asp.

Hadoop
Apache Hadoop is a key enabling technology for Big Data analytics and is widely
used to manage large amounts of data, particularly unstructured or semi-structured
data. Hadoop is not so much a database as a combined data processing framework
and distributed file system for data storage.

http://support.spotfire.com/sr_spotfire_dataconnectors.asp
http://support.spotfire.com/sr_spotfire_dataconnectors.asp

Chapter 10

[311]

You need to use a programming platform such as MapReduce to process data
in Hadoop. Using this Java-based platform instead of a more traditional query
language gives you a lot of power and flexibility but also adds a lot of complexity
and requires specialist programming skills. Apache Hive provides the SQL-like
language HiveQL to translate SQL-type queries into MapReduce operations.

Cloudera is a provider of Apache Hadoop–based software, support, and services.
Another supported Hadoop provider is Hortonworks. Spotfire has connectors for
both providers.

It's important to stress that Hive is batch-oriented and not well suited to interactive
data analytics. It's best used to extract information from large quantities of
unstructured data, put some structure on it, and then feed it to an agile analytic
tool such as Spotfire.

Columnar databases
HP Vertica is a distributed, columnar database designed to handle large, fast-
growing volumes of data and provide very fast query performance across parallel
nodes. A columnar database organizes data in a columnar fashion, meaning that you
can extract designated columns over billions of rows in conventional database terms
in a matter of seconds. The database indexes each column to allow it to respond
to queries and return just the required columns, skipping the other columns and
therefore saving time scanning them. The time-saving becomes considerable when
you reach large data volumes.

SAP also offers a high-performance analytic appliance called HANA, which
is an in-memory, column-oriented, relational database management system
designed to handle both high transaction rates and complex query processing
on the same platform.

Online analytical processing
Oracle Essbase and Microsoft SQL Server Microsoft Analysis Services are
multidimensional database management systems optimized for online analytical
processing (OLAP), rather than online transaction processing. These products are
probably best known for their facility to slice and dice OLAP cubes.

Beyond the Horizon

[312]

Teradata
Teradata is a massively parallel processing system running a shared-nothing architecture,
which means that each node in the distribution is independent and self-sufficient
and there is no single point of contention across the system. It is a powerful data
warehouse solution that offers scale and speed. It is used across a wide range
of industries.

IBM offers competing products (DB2 and Netezza), as does Pivotal Greenplum,
and Spotfire has native connectors for these systems too.

Cisco information server
Cisco's composite data integration platform collects data from multiple sources
across the enterprise into a unified, logical virtualized data layer for consumption by
frontend business and analytics tools such as Spotfire. Cisco information server has
its own connectors for many of the data management systems mentioned previously.

The main take-home message of this section is that Spotfire can hook into most
of the data management systems on the market, whether they are designed to
process unstructured data, provide quick parallel processing of human queries, or
build multidimensional "cubes." Many of these systems offer their own multitiered
business intelligence and analytics solutions. Spotfire, though by no means unique in
this regard, provides a central analytics integration point to explore and analyze data
from disparate sources. When you add TERR and Mobile Metrics to the mix, you
have a lot of options in your toolkit.

TIBCO Spotfire Advanced Data Services
We're going to finish this chapter with a look at TIBCO Spotfire Advanced Data
Services, which is an on-demand data integration service that allows you to
create aggregated and mashed-up views of business objects from multiple source
applications and deliver those views directly to Spotfire users or via the information
and library services on the Spotfire server. The resulting data views are well suited
for self-service visual data discovery.

In addition to all the standard database connections and specialized data connectors
supported by Spotfire, Advanced Data Services can also connect to database
applications such as Oracle E-Business Suite, Salesforce.com, SAP BW, SAP ERP,
and Siebel CRM, as well as other applications through web services APIs.

Chapter 10

[313]

Data delivery
The Advanced Data Services platform supports multiple data delivery mechanisms:
SQL (ODBC and JDBC), web services (HTTP, SOAP, and JSON), messaging (JMS),
URIs, Java, and application APIs.

Caching
The diversity of data sources and data usage types that converge on the Advanced
Data Services platform via multiple connectors and network connections requires
load management. The platform provides a set of connectivity tuning tools to help
ensure that the right balance is achieved and that the system is not, for example,
wasting resources trying to refresh large volumes of archived data in real time and
compromising the refreshing of data from a time-critical transactional database.

Beyond the Horizon

[314]

The system can offload queries to a caching layer to uphold time-critical transactions,
it can speed data access to slow sources using an optional caching layer, and it allows
users to schedule data updates at specified frequencies so that data is available for
analysis when they need it.

Metadata modeling
The metadata modeling engine is the brain of the system. A graphical interface
studio allows developers to create metadata transforms for source API-based
applications to create a common logical layer in Spotfire. The goal is to create
reusable views that hide the physical data integration complexity from end
users, providing them with a more logical presentation that makes sense to
their business context.

For example, an end user might wish to view or analyze all available information
on a business object such as a customer, but they might not want, or might not have,
the required skills to negotiate multiple sources of information and figure out how
those sources are related in a data sense or how a metadata label in one source is
equivalent to the label in another. For example, is "ZMKT_CUST_NM" in SAP BW
the same thing as "ACC_NAME" in Oracle E-Business Suite?

Therefore, the IT department does all that work up front, creating a single logical
view of customer information and freeing the end users to apply their business
analysis and data visualization skills at the Spotfire frontend. The logical layer can
be updated by IT when necessary, but day-to-day dependency on IT development is
essentially eliminated.

There are benefits for IT as well because this logical layer can eliminate the need
to build and maintain additional data warehouses or data marts, thereby reducing
infrastructural capital and resource costs.

Query engine
At the heart of Advanced Data Services is a query processing engine that securely
queries, accesses, federates, abstracts, and delivers data to consume business
solutions on demand. The engine uses distributed query-plan optimization and
data-streaming technologies to create a query plan that optimizes processing
and performance.

As you might imagine, processing such diverse data streams, queries, and mashups
requires careful monitoring, and this is achieved using a feature-rich graphical user
interface console to monitor queries through the system.

Chapter 10

[315]

Summary
In this chapter, we have looked at some optional Spotfire components. Most are
unlikely to be universally deployed, although we've seen that one of them, TERR,
assuming you have Spotfire v5.0 or later, is actually available to all users of the
professional client. TERR is definitely worth a look, if only to use the built-in
advanced analytics tools, and if you have any interest in predictive analytics then
TERR is a must.

We saw how JavaScript can extend the functionality of text areas. If you want to
deliver clear and personalized KPIs to your mobile user community, then we've
seen how easy it can be to get up and running with TIBCO Spotfire Mobile Metrics.

For those interested in the analysis and monitoring of complex data streams in real
time, the event analytics bundle, incorporating StreamBase, offers a powerful and
sophisticated solution. This chapter should also have given you a good appreciation
for the breadth of Spotfire's data modeling and connectivity capability. With just an
overview of the range of data connectors supported by Spotfire and the capabilities
of TIBCO Spotfire Advanced Data Services, you should now have a greater sense of
the extent of Spotfire's potential as a hub for data integration, modeling, exploration,
and visualization.

We've been to the horizon and looked beyond it and have come to the end of this
book. The main purpose of this relatively short primer was to launch you into the
rich analytics landscape of the Spotfire platform. If it has also stretched you a little
and stimulated you to develop your analytics skills further, all the better.

Index
A
active element 232
Administration Manager

about 101
Groups and Licenses tab 102-106
Preferences tab 102, 106
Users tab 102, 103

analysis
configurable business rules,

incorporating into 284, 285
data, adding to 267
framing, text areas used 76-79

analysis snapshots
creating, bookmarks used 95, 96

application programming
interface (API) 225

automatic geocoding 204
Automation Services

about 117
jobs, running 118
used, for automating tasks 117

axes properties
about 243
example script 244

B
background map layers

creating 200-202
bar charts

used, for visualizing categorical
information 38-42

Bar Chart visualization 38

base template, metadata-driven self-service
analytics case study

about 290, 291
KPI Page 290

basic metric 124-126
basic row/column structure,

of data table 13, 14
Big Data 310
binning functions

used, for categorizing continuous
numerical data 132, 133

bookmarks
used, for creating analysis snapshots 95, 96

box plot
used, for visualizing statistical

measures 182-185
Box Plot visualization 182
business applications, multiple industries

Financial Services 308
Intelligence 308
Manufacturing 308
Online Gaming and Social Media 308
Retail and E-commerce 308
Telco 308

business intelligence (BI) 273

C
caching, TIBCO Spotfire Advanced Data

Services 313, 314
calculated columns

about 266
example script 266
used, for creating metrics 124
versus custom expressions 161, 162

[318]

categorical information
visualizing, with bar charts 38-42

categorical information, and trends
visualizing, together in combination

charts 179, 180
Change a filter option

about 260
script example 261

ChangeDataTable script 292
ChangeMetric script 292
check box filter 65
Cisco information server 312
color

manipulating 253
Color by category

about 254
example script 254

Color by rule
about 255, 256
example script 257

coloring tables
about 258
example script 259

color rules
defining 166-168

column, adding to table
about 269
script example 270

columnar databases 311
column matching 23, 24
column signatures 269
combination charts

categorical information and trends,
visualizing in 179, 180

Combination Chart visualization 179
complex data manipulations

optimizing, in-database analytics
used 153, 154

complex multidimensional data
visualizing, heat maps used 188-190

Comprehensive R Archive Network
(CRAN) 300

configurable business rules
incorporating, into analysis 284, 285

connection string 24

continuous numerical data
categorizing, binning functions

used 132, 133
control structures 226
coordinate columns 207
coordinate reference systems 204
core components, Spotfire

Spotfire Automation Services 100
Spotfire Client 101
Spotfire Database 100
Spotfire Server 100
Spotfire Web Player 100

cross tables
about 258
example script 259
used, for creating dynamic pivots 175

cross table visualization 247
cross tabulation 178
cursors 262
curves

about 251, 252
script example 253

custom expressions
about 160
applying, to visualization

properties 160, 161
versus calculated columns 161, 162

D
data

about 7
adding, to analysis 267
annotating 90
annotating, lists used 90-92
annotating, tags used 93, 94
exporting 196-198
manipulating 262
marking 264, 265
mashing up, from different tables in single

visualization 174, 175
merging, from multiple sources 138
profiling, parallel coordinate

plots used 192-196
publishing 196-198

[319]

selecting 264, 265
selecting, for data connection 154

database, connecting
about 24
ODBC connection, setting up in Microsoft

Windows 7 25, 26
ODBC connection, using in Spotfire 27-29
ODBC, using 24

Data Catalog
URL 213

data concept
basic row/column structure,

of data table 13, 14
data queries 30
data relationships 18
data types 15

data delivery, TIBCO Spotfire Advanced
Data Services 313

data functions, TIBCO Enterprise Runtime
for R (TERR)

about 300
principal components 300

data granularity 20
data, linking

about 19, 20
column matching 23
tables, relating 20, 22

data, merging from multiple sources
columns, inserting 139, 140
rows, inserting 141, 142

Data Panel tool 130
data queries

about 30
SQL statement anatomy 30

data relationships 18, 19
data source

defining 267, 268
Data Source, Information Designer 110
data, Spotfire

adding, from files 8, 9
Microsoft Excel spreadsheet,

importing 9-11
structured file types, importing 13
text file, importing 12

data structure
transforming, pivot transformation

used 143

transforming, unpivot transformation
used 143

Data Table Properties 21
data tables 239
data types

about 15
dates 15
numbers 15
text 15

dendrogram 190-192
Department Performance page,

guided analysis
about 280
Bar Chart (for net profit) 282
calculated columns 281
custom filters 281
hierarchies 282
navigation link 281
Scatter Plot 282
sliders 281
table 282
treemap 283

Deployment page 286
Deploy Metadata button 286
dimensional hierarchies 130
dimensionality

adding, to data by defining
hierarchies 131, 132

distribution 38
document color schemes

organizing 166-168
Document Color Scheme visualization 167
document property 79, 80
dynamic metric 126-129
dynamic pivots

creating, cross tables used 175

E
error bars

about 165, 250
visualizations, annotating with 163, 164

Eurostat
URL 193

event analytics
about 307
contextual analysis and mobile

metrics 309, 310

[320]

StreamBase and TERR 309
TIBCO StreamBase 308, 309

Export button, Library Administration
interface 108

expression functions, TIBCO Enterprise
Runtime for R (TERR) 301

external libraries
about 229
from System.Collections.Generic import

Dictionary 229
from System.Drawing import Color 229
from System.Drawing import Font 229
from System import

Array,String,Object 229
from System import Guid 229
import clr 229
import re 229

extract transform load (ETL) 123

F
feature layer

incorporating 208-210
using 208-210

Filter, Information Designer 110
filtering schemes 66
filter panel

customizing 88, 89
filters

about 64
applying 66, 67
check box filter 65
item filter 65
list box filter 65
manipulating 259
radio button filter 65
range filter 65
resetting 68
text filter 65

filter types 17
fitted curves

visualizations, annotating with 163, 164
folder permissions, Library Administration

interface 106-108
functions 227

G
generic visualization properties

about 241
example script 242

GeoAnalytics
URL 200

geocoding
about 205
applying 205-207

geographic drill-down 210-212
geographic information systems (GIS) 199
globally unique identifier (GUID) 108
Google Maps 199
gradient coloring 258
Graphical Table visualization 68-73
gross domestic product (GDP) figures 61
Groups and Licenses tab, Administration

Manager 102-106
guided analysis

building 274, 275
Department Performance page 280-282
History Arrows mode 283
Index page 275, 277
Projections page 277-280

H
Hadoop 310, 311
heat maps

used, for visualizing complex
multidimensional data 188-190

Heat Map visualization 188
Hide a filter group option 262
hierarchical relationships

visualizing, treemaps used 61-63
hierarchy nodes

Intersect method 138
LastPeriods method 135
NavigatePeriod method 137
ParallelPeriod method 136, 137
Parent method 135
PreviousPeriod method 135
used, for dicing data 133, 134
used, for dicing visualizations 169-174

[321]

used, for slicing data 133, 134
used, for slicing visualizations 169-174

histogram 38
History Arrows, guided analysis 283
History Arrows navigation mode 275
Holt-Winters forecast, TIBCO Enterprise

Runtime for R (TERR) 303, 304
HP Vertica 311
hypothesis 185

I
Image Layer 203
Import button, Library Administration

interface 108
inbuilt filters

using, in Spotfire 16-18
in-database analytics

used, for optimizing complex data
manipulations 153, 154

in-database views
creating 155-157

Index page, guided analysis 275-277
Information Designer

about 109
Columns 110
Data Source 110
Filter 110
Information Links 111
Join 110
Procedure 111
using 147

information link
building, to multiple source

data tables 147-151
building, which writes data back to

database 151-153
Information Links, Information Designer

about 111
Caching section 112
Conditioning section 112
Description section 112
Elements section 112
Filters section 112
Join path section 112
Parameters section 112

Prompts section 112
Properties section 112

inner join 149
interactivity

increasing, property controls used 81-85
Internet Information Services (IIS) 100, 306
IronPython

about 225
URL 226

IronPython scripts, metadata-driven
self-service analytics case study

ChangeDataTable 292
ChangeMetric 292
deployment page, creating 292, 293
RefreshMetadata 292
runtime scripts 294-296

item filter 65

J
JavaScript 304, 305
jobs, Automation Services

running 118
Join, Information Designer 110

K
KPI Page, metadata-driven self-service

analytics case study
calculated columns 290
document properties 291
hierarchies 291
scatter plot 291
source data 290
table 291
treemap 291
user inputs 290

KPI sets, Mobile Metrics
setting up 307

L
libraries 227
Library Administration interface

Export button 108
folder permissions 106-108

[322]

Import button 108
using 106

Library Administrator 106
Line Chart visualization 49-51
list box filter 65
lists

about 227
used, for annotating data 90-92

logical layer 314

M
map chart

using, for nongeographical spatial
analysis 217-222

Web Map Service data, adding to 213-215
map chart layers 203
Map Chart visualization 199, 200
Map Layer 203
marked items

details, obtaining of 90
Marker Layer 203
marking

about 43, 239
behaviors, setting 45-49
color, changing 44

metadata 284
metadata-driven self-service analytics

case study
about 286, 287
base template 290
IronPython scripts 291
metadata 288
source data 289

metadata modeling, TIBCO Spotfire
Advanced Data Services 314

metadata table/spreadsheet
example 286

metrics
creating, calculated columns used 124

Microsoft Active Directory 102
Microsoft Excel spreadsheet

importing, into Spotfire 9-11
Microsoft Online Analytical Processor

(MSOLAP) 307
Mobile Metrics

about 306

KPI sets, setting up 307
Model Page 301
multiple source data tables

information link, building to 147-151
multiple sources

data, merging from 138

N
narrow tables

versus wide tables 142
nongeographic spatial analysis

map chart, using for 217-222
nonparametric statistics 182
normal data distributions

reference link 182

O
object orientation 227
ODBC

about 24
connection, setting up in Microsoft

Windows 7 25, 26
connection, using in Spotfire 27-29

on base percentage (OBP) 124
online analytical processing (OLAP) 311
Open Database Connectivity. See ODBC
optional components, Spotfire

Spotfire Advanced Data Services 101
Spotfire Desktop 101
Spotfire Statistics Services 101

OVER functions 133

P
pages

about 233
example script 234

panels 240
parallel coordinate plots

used, for profiling data 192-196
Parallel Coordinate Plot visualization 192
parametric statistics 182
Pareto chart 179
Pie Chart visualization 51, 52

[323]

pivot aggregation
examples 176, 177

pivot transformation
used, for transforming data structure 143

predictive modeling, TIBCO Enterprise
Runtime for R (TERR) 301, 302

Preferences tab, Administration
Manager 102, 106

primary elements
data tables 239
manipulating, in analysis file 232, 233
marking 239
pages 233
panels 240
properties 236-238
referencing, in analysis file 232, 233
visualizations 234

Private Bookmarks 96
Procedure, Information Designer 111
programming concepts

control structures 226
functions 227
libraries 227
lists 227
object orientation 227

Projections page, guided analysis
about 277, 278
calculated columns 279
combination chart 280
custom filters 279
graphical table 280
hierarchy column 278
Link to Index page 279
sliders 278

properties
about 236
example script 238

property controls
used, for increasing interactivity 81-85

proportions
visualizing, pie charts used 51, 52

Public Bookmarks 96
Python

about 226
URL 226

Q
query engine, TIBCO Spotfire Advanced

Data Services 314

R
R 300
radio button filter 65
RAG value 285
range filter 65
reference lines

about 251, 252
script example 253
visualizations, annotating with 163, 164

RefreshMetadata script 292
relational database model 7
relationships

visualizing, scatter plots used 53-60
representative metadata content

BaseTable 288
MetadataBusinessRules 289
MetadataKpis 288

rows, adding to table
about 271
script example 271

R Project for Statistical Computing
URL 300

S
SAP 311
Scatter Plot visualization 53-60
scripts

creating 230-232
skewed data distributions

reference link 182
source data, metadata-driven self-service

analytics case study 289
spatial analytics 199
Spatineo

URL 213
Spotfire

core components 100, 101
data, adding from files 8, 9
filters 64

[324]

inbuilt filters, using 16-18
marking 43
optional components 101
Table visualization 34

Spotfire 6.5 119, 120
Spotfire Advanced Data Services 101
Spotfire Analyst 112, 113
Spotfire API 228
Spotfire Automation Services 100
Spotfire Business Author 100, 115, 116
Spotfire Client 101
Spotfire Consumer 114, 115
Spotfire Database 100
Spotfire data connectors

about 310
Cisco information server 312
columnar databases 311
Hadoop 310, 311
online analytical processing (OLAP) 311
Teradata 312

Spotfire Desktop 101
Spotfire Professional Client. See Spotfire

Analyst
Spotfire Server 100
Spotfire Statistics Services 101
Spotfire Web Player 100
SQL statement

anatomy 30
statistical measures

summarizing, summary tables
used 186, 187

visualizing, box plot used 182-185
visualizing, whisker plot used 182-185

Step-by-Step navigation mode 275
StreamBase Studio 308
structured file types

importing, into Spotfire 13
summary information

providing, at glance 86, 87
summary tables

used, for summarizing statistical
measures 186, 187

Summary Table visualization 186
system monitoring tools 118, 119

T
table

reading 262, 263
table visualization

about 248
script example 249

Table visualization
about 34
color properties 37
Columns property 36
Data property 36
General property 35
Show/Hide Items property 36

tabular presentations
enhancing, graphical tables used 68-73

tags
used, for annotating data 93, 94

tasks
automating, Automation Services used 117

Teradata 312
text areas

used, for framing analysis 76-79
text file

importing, into Spotfire 12
text filter 65
text values 84
TIBCO

URL, for documentation 99
URL, for Spotfire data connectors 310

TIBCO Enterprise Runtime for R (TERR)
about 101, 299, 300
data functions 300
expression functions 301
Holt-Winters forecast 303, 304
predictive modeling 301, 302
URL 300

TIBCO Spotfire Advanced Data Services
about 312
caching 313, 314
data delivery 313
metadata modeling 314
query engine 314

TIBCO Spotfire Desktop 99

[325]

TIBCO Spotfire Library Administration
license 106

TIBCO StreamBase 308, 309
treemap 61
Treemap visualization

about 62
Color property 63
Hierarchy property 62
properties 62
Size property 62

trellising 42, 249
trends

visualizing, line charts used 49-51
triple exponential smoothing technique 303
tuple 239

U
unpivot

reversing 146, 147
unpivot transformation

used, for transforming data structure 143
Users tab, Administration Manager 102, 103

V
view 30
visualization properties

custom expressions, applying to 160, 161
manipulating 240

visualizations
about 234
dicing, hierarchy nodes used 169-174
dividing, across trellis grid 42
enriching, with color categorization 36-38
example script 235
exporting 196-198
publishing 196-198
slicing, hierarchy nodes used 169-174

visualizations, annotating
with error bars 163, 164
with fitted curves 163, 164
with reference lines 163, 164

visualization-specific properties 244-246

W
W3Schools

URL 76
Web Map Service data

adding, to map chart 213-215
Web Map Service (WMS) Layer 203
whisker plot

used, for visualizing statistical
measures 182-185

wide tables
versus narrow tables 142

wireframes 287

	Cover
	Copyright
	Credits
	Foreword
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Show Me the Data
	Adding data to Spotfire from files
	Importing a Microsoft Excel spreadsheet into Spotfire
	Importing a text file into Spotfire
	Importing other file types into Spotfire

	Key data concept – basic row/column structure of a data table
	Key data concept – data types
	Using the inbuilt filters in Spotfire
	Key data concept – data relationships
	How to link data in Spotfire
	How to relate two tables
	Column matching

	Connecting to a database
	Using ODBC
	How to set up an ODBC connection in Microsoft Windows 7
	Using an ODBC connection in Spotfire

	Key data concept – data queries
	Anatomy of a SQL statement

	Summary

	Chapter 2: Visualize This!
	Displaying information quickly in
tabular form
	Enriching your visualizations with color categorization
	Visualizing categorical information using bar charts
	Dividing a visualization across a trellis grid
	Key Spotfire concept – marking
	How to change the marking color
	How to set the marking behavior of
a visualization

	Visualizing trends using line charts
	Visualizing proportions using pie charts
	Visualizing relationships using scatter plots
	Visualizing hierarchical relationships using treemaps
	Key Spotfire concept – filters
	Enhancing tabular presentations using graphical tables
	Summary

	Chapter 3: Analyze That!
	Framing your analysis using text areas
	Key Spotfire concept – document properties
	Increasing interactivity using property controls
	Providing summary information at a glance
	Customizing the filter panel
	Getting details of marked items
	Annotating data using tags and lists
	Using lists
	Using tags

	Creating analysis snapshots using bookmarks
	Summary

	Chapter 4: The Big Wide World of Spotfire
	An overview of Spotfire components and architecture
	A quick guide to Administration Manager
	Users
	Groups and Licenses
	Preferences

	Using the Library Administration interface
	Folder permissions
	Import and Export

	A quick tour of Information Designer
	Data Source
	Columns
	Join
	Filter
	Procedure
	Information Links

	An overview of Spotfire Analyst (formerly Professional Client)
	An overview of Spotfire Consumer (formerly web player)
	An overview of Spotfire Business Author (new with version 6.5)
	Automating tasks using Automation Services
	Running Automation Services jobs

	An overview of system monitoring tools
	Spotfire 6.5

	Summary

	Chapter 5: Source Data is Never Enough
	Creating metrics using calculated columns
	Basic metric
	Dynamic metric

	Using the Data Panel tool
	Key data concept – dimensional hierarchies
	Adding dimensionality to your data by defining hierarchies
	Categorizing continuous numerical data using binning functions
	Slicing and dicing data using hierarchy nodes
	LastPeriods
	Parent
	PreviousPeriod
	ParallelPeriod
	NavigatePeriod
	Intersect

	Merging data from multiple sources
	Insert columns
	Insert rows

	Key data concept – narrow tables versus wide tables
	Transforming data structure through pivots and unpivots
	Unpivot
	Pivot

	Using Spotfire's Information Designer
	Building an information link to multiple source data tables
	Building an information link that writes data back to a database

	Optimizing complex data manipulations using in-database analytics
	Selecting data for a data connection
	Creating in-database views

	Summary

	Chapter 6: The World is Your Visualization
	Applying custom expressions directly to visualization properties
	Key Spotfire concept – difference between calculated columns and custom expressions
	Annotating visualizations with reference lines, fitted curves, and error bars
	Error bars

	Defining color rules and organizing document color schemes
	Slicing and dicing visualizations using hierarchy nodes
	Mashing up data from different tables in a single visualization
	How to create dynamic pivots using cross tables
	Pivot aggregations
	Cross tabulation

	Visualizing categorical information and trends together in combination charts
	Visualizing statistical measures using box and whisker plots
	Summarizing statistical measures using summary tables
	Visualizing complex multidimensional data using heat maps
	Heat maps
	Dendrograms

	Profiling your data using parallel coordinate plots
	Exporting and publishing data and visualizations
	Summary

	Chapter 7: What's Your Location?
	Creating background map layers
	Key Spotfire concept: map chart layers
	Key mapping concept – coordinate reference systems
	Using automatic geocoding to accurately position locations from your data on a map
	Geocoding
	Coordinate columns

	Incorporating and using a feature layer
	Geographic drill-down

	Adding Web Map Service data to a map chart
	Using the map chart for nongeographic spatial analysis
	Summary

	Chapter 8: The Secret Life of Python
	Introduction to IronPython
	Control structures
	Libraries
	Lists
	Functions
	Object orientation

	Overview of the Spotfire API
	Some useful external libraries
	Creating scripts
	Referencing and manipulating the primary elements in an analysis file
	Pages
	Example script

	Visualizations
	Example script

	Properties
	Example script

	Data tables
	Marking
	Panels

	How to manipulate visualization properties
	Generic visualization properties
	Example script

	Axes properties
	Example script

	Visualization-specific properties
	Cross table visualization
	Table visualization
	Script example

	Trellising
	Error bars
	Reference lines and curves
	Script example

	How to manipulate color
	Color by category
	Example script

	Color by rule
	Example script

	Gradient coloring
	Coloring tables and cross tables
	Example script

	How to manipulate filters
	Change a filter
	Script example

	Hide a filter group

	Manipulating data already loaded into Spotfire
	Reading a table
	Example script

	Marking and selecting data
	Example script 1
	Example script 2

	Calculated columns
	Example Script

	How to add data to an analysis
	Define a data source
	Add a column to a table
	Script example

	Add rows to a table
	Script example

	Summary

	Chapter 9: It's All About Self-Service These Days
	Building a guided analysis
	Index page
	Projections page
	Department Performance page
	History Arrows

	Key data concept – metadata
	Incorporating configurable business rules into your analysis
	Example metadata table/spreadsheet

	A metadata-driven self-service analytics case study
	Metadata
	Representative metadata content

	Source data
	Base template
	KPI Page

	IronPython scripts
	Deployment page
	Runtime scripts

	Summary

	Chapter 10: Beyond the Horizon
	TIBCO Enterprise Runtime for R (TERR)
	Data functions
	Expression functions
	Predictive modeling
	Holt–Winters forecast

	JavaScript
	Mobile Metrics
	Setting up KPI sets

	Event analytics
	TIBCO StreamBase
	StreamBase and TERR
	Contextual analysis and mobile metrics

	Spotfire data connectors
	Hadoop
	Columnar databases
	Online analytical processing
	Teradata
	Cisco information server

	TIBCO Spotfire Advanced Data Services
	Data delivery
	Caching
	Metadata modeling
	Query engine

	Summary

	Index

