

Table of Contents
Tabular Modeling with SQL Server 2016 Analysis Services Cookbook
Credits
About the Author
About the Reviewer
www.PacktPub.com

Why subscribe?
Customer Feedback
Preface

What this book covers
What you need for this book
Who this book is for
Sections

Getting ready
How to do it…
How it works…
There's more…
See also

Conventions
Reader feedback
Customer support

Downloading the example code
Downloading the color images of this book
Errata
Piracy
Questions

1. Introduction to Microsoft Analysis Services Tabular Mode
Introduction

Learning about Microsoft Business Intelligence and SQL Server 2016
Understanding tabular mode
Learning what's new in SQL Server 2016 tabular mode

Modeling
Instance management
Scripting
DAX

Importing sample datasets
Getting ready
How to do it...
How it works...

Understanding basic concepts

Tables
Columns
Measures
Relationships
Hierarchies

2. Setting up a Tabular Mode Environment
Introduction
Installing and configuring a development environment

Getting ready
How to do it...
How it works...

Installing Visual Studio 2015
Getting ready
How to do it...
How it works...

Installing SQL Server Data Tools (SSDT)
Getting ready
How to do it...
How it works...

Interacting with SQL Server Data Tools
Getting ready
How to do it...
How it works...

Configuring a workspace server
Getting ready
How to do it...
How it works...
There's more...

Configuring SSAS project properties
Getting ready
How to do it...
How it works...

3. Tabular Model Building
Introduction
Adding new data to a tabular model

Getting ready
How to do it...
How it works...

Adding a calculated column
Getting ready
How to do it...
How it works...

Adding a measure to a tabular model

How to do it...
How it works...

Changing model views
How to do it...
How it works...
There's more...

Renaming columns
How to do it...
How it works...

Defining a date table
Getting ready
How to do it...
How it works...

Creating hierarchies
How to do it...
How it works...

Understanding and building relationships
Getting ready
How to do it...
How it works...

Creating and organizing display folders
Getting ready
How to do it...
How it works...

Deploying your first model
Getting ready
How to do it...
How it works...

Browsing your model with SQL Server Management Studio
How to do it...
How it works...

Browsing your model with Microsoft Excel
How to do it...
How it works...

4. Working in Tabular Models
Introduction
Opening an existing model

How to do it...
How it works...

Importing data
Getting ready
How to do it...
How it works...

Modifying model relationships
How to do it...
How it works...

Modifying model measures
How to do it...
How it works...

Modifying model columns
How to do it...
How it works...

Modifying model hierarchies
How to do it...
How it works...
There's more...

Creating a calculated table
How to do it...
How it works...
There's more...

Creating key performance indicators (KPIs)
How to do it...
How it works...

Modifying key performance indicators (KPIs)
How to do it...
How it works...

Deploying a modified model
How to do it...
How it works...
There's more...

5. Administration of Tabular Models
Introduction
Managing tabular model properties

Changing data backup locations
Changing DirectQuery mode
Changing workspace retention
Changing workspace server

Managing perspectives
Getting ready
How to do it...

Adding a new perspective
Editing a perspective
Renaming a perspective
Deleting a perspective
Copying a perspective

Managing partitions

How to do it...
Creating a Partition
Editing a partition
Processing partitions

How it works...
Managing roles

Getting ready
How to do it...

Creating Admin role
Creating a Read role
Creating a read and process role
Creating a process role
Editing roles

There's more...
Managing server properties

How to do it...
Managing Analysis Services memory

How to do it...
How it works...

6. In-Memory Versus DirectQuery Mode
Introduction

Understanding query modes
Understanding in-memory mode

Advantages of in-memory
Limitations of in-memory

Understanding DirectQuery mode
Advantages of DirectQuery
Limitations of DirectQuery mode

Creating a new DirectQuery project
How to do it...
How it works...

Configuring DirectQuery table partitions
How to do it...
How it works...

Testing DirectQuery mode
How it works...

7. Securing Tabular Models
Introduction
Configuring static row-level security

Getting ready
How to do it...
How it works...

Configuring dynamic filter security

Getting ready
How to do it...
How it works...

8. Combining Tabular Models with Excel
Introduction
Using Analyze in Excel from SSMS

How to do it...
How it works...

Connecting to Excel from SQL Server Data Tools
How to do it...
How it works...

Using PivotTables with tabular data
Using Slice, Sort, and Filter
How to do it...
How it works...

Using the timeline filter with pivot tables
How to do it...
How it works...

Analyzing data with Power View
How to do it...
How it works...
There's more...

Importing data with Power Pivot
Getting ready
How it works...

Modeling data with Power Pivot
Getting ready
How to do it...
How it works...

Adding data to Power Pivot
Getting ready
How to do it...
How it works...

Moving Power Pivot models to the enterprise
Moving Power Pivot to SSAS via Management Studio

How to do it...
How it works...

Moving Power Pivot to SSAS via SQL Server Data Tools
How to do it...
How it works...

9. DAX Syntax and Calculations
Introduction
Understanding DAX formulas

Getting ready
How to do it...
How it works...
There's more...

Using the AutoSum measure in Visual Studio
How to do it...
How it works...

Creating calculated measures
Getting ready
How to do it...
How it works...

Creating calculated columns
How to do it...
How it works...
There's more...

Using the IF function
Getting ready
How to do it...
How it works...

Using the AND function
How to do it...

Using the SWITCH function
How to do it...
How it works...
There's more...

Using the CONCATENATE function
How to do it...
How it works...
There's more...

Using the LEFT Function
How to do it...
How it works...
There's more...

Using the RELATED function
How to do it...
How it works...
There's more...

Using the RELATEDTABLE function
How to do it...
How it works...

Using EVALUATE in DAX queries
How to do it...

Filtering based on a value

Getting ready
How to do it...
How it works...

Filtering a related table
How to do it...
How it works...

Using ALL to remove filters
How to do it...
How it works...

Using ALL to calculate a percentage
Getting ready
How to do it...
How it works...

Using the SUMMARIZE function
How to do it...
How it works...

Adding columns to the SUMMARIZE function
Getting ready
How to do it...
How it works...

Using ROLLUP with the SUMMARIZE function
How to do it...
How it works...

10. Working with Dates and Time Intelligence
Introduction
Creating a date table in Visual Studio

Getting ready
How to do it...
How it works...

Using the CALENDAR function
How to do it...
How it works...

Modifying the date table with the YEAR function
Getting ready
How to do it...
How it works...

Modifying the date table to include month data
How to do it...
How it works...
There's more...

Using the NOW and TODAY functions
How to do it...
How it works...

Using the DATEDIFF function
Getting ready
How to do it...
How it works...
There's more...

Using the WEEKDAY function
How to do it...
How it works...
There's more...
See also...

Using the FIRSTDATE function
How to do it...
How it works...
There's more...

Using the PARALLELPERIOD function
How to do it...
How it works...
There's more...

Calculating Year over Year Growth
How to do it...
How it works...

Using the OPENINGBALANCEMONTH function
How to do it...
How it works...

Using the OPENINGBALANCEYEAR function
How to do it...
How it works...

Using the CLOSINGBALANCEMONTH function
How to do it...
How it works...

Using the CLOSINGBALANCEYEAR function
How to do it...
How it works...

Using the TOTALYTD function
How to do it...
How it works...

11. Using Power BI for Analysis
Introduction
Getting started with Power BI desktop

How to do it...
How it works...

Adding data to Power BI reports
How to do it...

How it works...
There's more...

Visualizing the crash data with Power BI
Getting ready
How to do it...
How it works...

Editing visualization properties in Power BI
Getting ready
How to do it...
How it works...

Adding additional visualizations to Power BI
Getting ready
How it to do it...
How it works...

Adding a slicer to Power BI
Getting ready
How to do it...
How it works...

Using analytics in Power BI
Getting ready
How to do it...
How it works...

Tabular Modeling with SQL Server 2016
Analysis Services Cookbook

Tabular Modeling with SQL Server 2016
Analysis Services Cookbook
Copyright © 2017 Packt Publishing
All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.
Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly
or indirectly by this book.
Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.
First published: January 2017
Production reference: 1200117
Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.
ISBN 978-1-78646-861-1
www.packtpub.com

http://www.packtpub.com

Credits
Author
Derek Wilson

Copy Editor
Safis Editing
Laxmi Subramanian

Reviewer
Dave Wentzel

Project Coordinator
Shweta H Birwatkar

Commissioning Editor
Wilson D'souza

Proofreader
Safis Editing

Acquisition Editors
Malaika Monteiro
Vinay Argekar

Indexer
Tejal Daruwale Soni

Content Development Editor
Sumeet Sawant

Graphics
Disha Haria

Technical Editor
Sneha Hanchate

Production Coordinator
Arvindkumar Gupta

  

About the Author
Derek Wilson is a data management, business intelligence and predictive analytics
practitioner. He has been working with Microsoft SQL Server since version 6.5 and with
Analysis Services since its initial version. In his current role he responsible for the overall
architecture, strategy, and delivery of Business Intelligence, analytics, and predictive
solutions. In this role, he is focused on transforming how companies leverage data to gain
new insights about their customers and operations to drive revenue and decrease
expenses. He has over 17 years of experience in information technology leading and driving
architectural solutions across enterprises. Over his career, he has been part of IT services,
business units, and consulting organizations, which provides him with a unique perspective
on how to communicate the value of technology to business leaders. He is a local chapter
leader for the Houston SQL PASS Organization. You can connect with him on his blog at
www.derekewilson.com or www.cdoadvisors.com.
I would like to thank my wife, Jessica and my children Jakob and Allison for their support
and understanding as I wrote this book. I would also like to thank Dave Wentzel for
reviewing and providing feedback to improve the content of this book.

http://www.derekewilson.com
http://www.cdoadvisors.com

About the Reviewer
Dave Wentzel is a Data Solutions Architect for Microsoft. He helps customers with their
Azure Digital Transformation, focused on data science, big data, and SQL Server. After
working with customers, he provides feedback and learnings to the product groups at
Microsoft to make better solutions. Dave has been working with SQL Server for many
years, and with MDX and SSAS since they were in their infancy. Dave shares his
experiences at http://davewentzel.com. He’s always looking for new customers. Would you
like to engage?

http://davewentzel.com

www.PacktPub.com
For support files and downloads related to your book, please visit www.PacktPub.com.
Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.com and as
a print book customer, you are entitled to a discount on the eBook copy. Get in touch with
us at service@packtpub.com for more details.
At www.PacktPub.com, you can also read a collection of free technical articles, sign up for
a range of free newsletters and receive exclusive discounts and offers on Packt books and
eBooks.

https://www.packtpub.com/mapt
Get the most in-demand software skills with Mapt. Mapt gives you full access to all Packt
books and video courses, as well as industry-leading tools to help you plan your personal
development and advance your career.

Why subscribe?
Fully searchable across every book published by Packt
Copy and paste, print, and bookmark content
On demand and accessible via a web browser

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
https://www.packtpub.com/mapt

Customer Feedback
Thank you for purchasing this Packt book. We take our commitment to improving our
content and products to meet your needs seriously--that's why your feedback is so
valuable. Whatever your feelings about your purchase, please consider leaving a review on
this book's Amazon page. Not only will this help us, more importantly it will also help others
in the community to make an informed decision about the resources that they invest in to
learn.
You can also review for us on a regular basis by joining our reviewers' club. If you're
interested in joining, or would like to learn more about the benefits we offer, please
contact us: customerreviews@packtpub.com.

Preface
Data has always been a key success of any business. Thanks to advances in software,
processing and storage technology data is now more abundant than ever. Businesses can
collect and store data from internal systems and mash up external data to new insights
about their business. One of the challenges is wrangling the data into a manner that is
useful to your organization. Microsoft’s SQL Server Analysis Services running in tabular
mode allows you to quickly model your data to build business intelligence solutions that will
enable your organization to make better decisions.
This book is designed to walk you through the necessary steps to learn the fundamentals of
tabular modeling. It uses a public dataset that recorded all crashed in the State of Iowa.
Using this dataset, you will design, build, and modify a tabular model. If you are an
experienced developer this book can be a great reference to fill gaps in areas, you may not
have used. Each recipe can stand alone and show you how to implement a specific
feature. If you are a new business intelligence developer and have never used Analysis
Services. Start from the beginning of the book and walk through the recipes. Each chapter
is designed to build on the knowledge learned in the prior chapters. If you follow all of the
recipes in the book you will build a complete solution to help further your understanding from
collecting data, modeling, enhancing and visualizing information. You should then be
comfortable transferring your knowledge from the examples and recipes in this book and
apply the concepts to your own business data and challenges.

What this book covers
Chapter 1 , Introduction to Microsoft Analysis Services Tabular Mode, introduces SQL
Server 2016 and Microsoft’s Business Intelligence. You will learn about tabular modeling
and the basic concepts that are used to build a solution. You will also review the new
features that were released in SQL Server 2016.
Chapter 2, Setting up a Tabular Mode Environment, shows you how to install and configure
SQL Server Analysis Services in tabular mode. In addition, you will install and configure
Visual Studio 2015 and SQL Server Data Tools. Once setup you will learn how to configure
your tabular model project.
Chapter 3 , Tabular Model Building, begins your foundational knowledge of tabular mode.
You will begin by adding data to a model, create relationships between tables and then
create a calculated column and measure. Finally, you round out the model with hierarchies
and folders and deploy the model to the server.
Chapter 4, Working in Tabular Models, expands on the initial model and shows how to
make modifications to existing and deployed model. In addition, you will learn how to create
and modify Key Performance Indicators (KPIs).
Chapter 5, Administration of Tabular Models, examines how to manage and modify your
model’s properties. You will learn about perspectives, data partitions, user roles, and server
properties.
Chapter 6, In-Memory Versus DirectQuery Mode, shows examples of the two choices in
data storage and processing options. You then learn how to configure DirectQuery mode
and the advantages and limitations of its use.
Chapter 7, Securing Tabular Models, details the different ways to implement security in a
tabular model using both row level and dynamic security. The recipes in this chapter show
how to create and modify security on your model.
Chapter 8, Combining Tabular Models with Excel, explores the various ways to leverage
Microsoft Excel when designing and building a tabular model. You will explore data in Excel
directly from Visual Studio when building a solution. In addition, you will connect to your
model from Excel and use Power View and Power Pivot to explore the model.
Chapter 9, DAX Syntax and Calculations, explains the basics of Data Analysis Expressions
(DAX) and how DAX is used to enhance a tabular model. Recipes are given on several of
the more commonly used DAX formulas and how to filter data in your queries.
Chapter 10, Working with Dates and Time Intelligence, details how to create and define a
Date table that the model will use for date and time based functions. Then you will explore
common date functions to enhance your model to make it easy for your users to leverage
the model.
Chapter 11, Using Power BI for Analysis, shows how to connect to the completed model
and create reports. Recipes in this chapter detail how to create and modify visualizations
and bring them together to create a dashboard.

What you need for this book
To run the recipes in this book you will need the following software:

Virtual Machine Software
Windows Server 2012
SQL Server 2016 Developer Edition
Microsoft Excel 2016
Microsoft Power BI Desktop

Who this book is for
This book was written primarily for developers who want to better understand how to build
BI solutions using Microsoft SQL Server Analysis Services running in tabular mode. If you
are a new to Analysis Services running in tabular mode. This book will walk you through
developing a complete BI solution. If you are an experienced BI developer, then you can
use this book as a reference to review what you already know or skip ahead to the recipes
that you need additional information to implement. If you are a business user you can use
this book to better understand how to leverage Excel and Power BI to build business
solutions.

Sections
In this book, you will find several headings that appear frequently (Getting ready, How to do
it, How it works, There's more, and See also).
To give clear instructions on how to complete a recipe, we use these sections as follows:

Getting ready
This section tells you what to expect in the recipe, and describes how to set up any
software or any preliminary settings required for the recipe.

How to do it…
This section contains the steps required to follow the recipe.

How it works…
This section usually consists of a detailed explanation of what happened in the previous
section.

There's more…
This section consists of additional information about the recipe in order to make the reader
more knowledgeable about the recipe.

See also
This section provides helpful links to other useful information for the recipe.

Conventions
In this book, you will find a number of text styles that distinguish between different kinds of
information. Here are some examples of these styles and an explanation of their meaning.
Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "Create a
new user for JIRA in the database and grant the user access to the jiradb database we
just created using the following command:"
A block of code is set as follows:

Total_Fatalities_GT2_MajorInjuries := SUMX(
FILTER(CRASH_DATA_T, CRASH_DATA_T[MAJINJURY]>2),
CRASH_DATA_T[FATALITIES]
)

Any command-line input or output is written as follows:
mysql -u root -p

New terms and important words are shown in bold. Words that you see on the screen,
for example, in menus or dialog boxes, appear in the text like this: "Select System info
from the Administration panel."

Note
Warnings or important notes appear in a box like this.
Tip
Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book-what you liked or disliked. Reader feedback is important for us as it helps us develop
titles that you will really get the most out of.
To send us general feedback, simply e-mail feedback@packtpub.com, and mention the
book's title in the subject of your message.
If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide at www.packtpub.com/authors.

http://www.packtpub.com/authors

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

Downloading the example code
You can download the example code files for this book from your account at
http://www.packtpub.com. If you purchased this book elsewhere, you can visit
http://www.packtpub.com/support and register to have the files e-mailed directly to you.
You can download the code files by following these steps:
1. Log in or register to our website using your e-mail address and password.
2. Hover the mouse pointer on the SUPPORT tab at the top.
3. Click on Code Downloads & Errata.
4. Enter the name of the book in the Search box.
5. Select the book for which you're looking to download the code files.
6. Choose from the drop-down menu where you purchased this book from.
7. Click on Code Download.

You can also download the code files by clicking on the Code Files button on the book's
webpage at the Packt Publishing website. This page can be accessed by entering the
book's name in the Search box. Please note that you need to be logged in to your Packt
account.
Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR / 7-Zip for Windows
Zipeg / iZip / UnRarX for Mac
7-Zip / PeaZip for Linux

The code bundle for the book is also hosted on GitHub
at https://github.com/PacktPublishing/Tabular-Modeling-with-SQL-Server-2016-Analysis-
Services-Cookbook. We also have other code bundles from our rich catalog of books and
videos available at https://github.com/PacktPublishing/. Check them out!

http://www.packtpub.com
http://www.packtpub.com/support
https://github.com/PacktPublishing/Tabular-Modeling-with-SQL-Server-2016-Analysis-Services-Cookbook
https://github.com/PacktPublishing/

Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/diagrams
used in this book. The color images will help you better understand the changes in the
output. You can download this file from
https://www.packtpub.com/sites/default/files/downloads/TabularModelingwithSQLServer2016AnalysisServicesCookbook_ColorImages.pdf

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books-maybe a mistake in the text or the code-
we would be grateful if you could report this to us. By doing so, you can save other readers
from frustration and help us improve subsequent versions of this book. If you find any
errata, please report them by visiting http://www.packtpub.com/submit-errata, selecting
your book, clicking on the Errata Submission Form link, and entering the details of your
errata. Once your errata are verified, your submission will be accepted and the errata will
be uploaded to our website or added to any list of existing errata under the Errata section
of that title.
To view the previously submitted errata, go to
https://www.packtpub.com/books/content/support and enter the name of the book in the
search field. The required information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all media. At
Packt, we take the protection of our copyright and licenses very seriously. If you come
across any illegal copies of our works in any form on the Internet, please provide us with
the location address or website name immediately so that we can pursue a remedy.
Please contact us at copyright@packtpub.com with a link to the suspected pirated material.
We appreciate your help in protecting our authors and our ability to bring you valuable
content.

Questions
If you have a problem with any aspect of this book, you can contact us
at questions@packtpub.com, and we will do our best to address the problem.

https://www.packtpub.com/sites/default/files/downloads/TabularModelingwithSQLServer2016AnalysisServicesCookbook_ColorImages.pdf
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support

Chapter 1. Introduction to Microsoft
Analysis Services Tabular Mode
In this chapter, we will cover the following recipes:

Learning about Microsoft Business Intelligence and SQL Server 2016
Understanding tabular mode
Learning what's new in SQL Server 2016 tabular mode
Importing sample datasets
Understanding basic concepts

Introduction
Microsoft continues to add and enhance the business intelligence offerings that are included
with SQL Server. With the release of SQL Server 2012, Microsoft added Tabular Mode for
Analysis services as a deployment option. Unlike traditional multidimensional Analysis
Services models that write to disk and require special model design and implementation,
tabular models are created using basic relational data models. Then, using in-memory
technology, the model is deployed to RAM for faster access to the data. Microsoft has
created a new query language to interact with the Tabular model named Data Analysis
Expressions, or DAX for short. For new BI developers' tabular models can be an easier
way to get started with delivering business results.
For experienced developers, Tabular models can offer an additional method to develop BI
solutions. You can develop robust completed solutions or quickly develop prototypes without
investing heavily in ETL or Star Schema designs.
In order to take advantage of this technology you need to understand the basics of tabular
models and how they work. This chapter focuses on the background you need to get
started with designing and deploying tabular models.
After reading this section, you will understand what tabular mode in SQL Server Analysis
Services is. You will also learn the basic components required to create a tabular model
and how to import data into your first project.
Every tabular model begins with data that you import into your project. This chapter teaches
you the skills required to get started by importing a list of states in the United States and a
short list of famous United States landmarks. By using these two small tables and their
data, you will learn all of the core components of tabular modeling. Later you will use a
much larger sample dataset from the state of Iowa to build a complete tabular model
solution.

Learning about Microsoft Business Intelligence and
SQL Server 2016
In SQL Server 2016, Microsoft has added many new features to the Business Intelligence
stack. The Microsoft BI Stack refers to the components most used with creating data
insights. These include Reporting Services, Analysis Services, and Integration Services.
Reporting Services is a standalone enterprise reporting platform. It can connect to a wide

variety of data sources that allow you to create rich and powerful reports for your users.
Analysis Services includes traditional OLAP solutions as well as the newer tabular mode
version. With Analysis Services you can create analytical solutions that enable your users to
quickly explore the data without writing code. In addition, you can add custom calculations
to create KPI's, trends, and show period over period growth to the values in the model.
Integration Services is an enterprise data integration solution. You can design and build
robust ETL solutions that move data across your enterprise. In addition, you can add steps
to transform, clean, or analyze the data while it is being moved to improve the data for your
users.
Business intelligence projects are primarily concerned with turning raw data into business
information. Source systems store and collect data to process transaction such as making
an online purchase. Business intelligence systems look to gather individual transactions and
present the data to business users to improve the operations of a business. BI solutions
can be created for any industry. In financial industries you can monitor cash flow, expenses,
and revenue. You can also create KPIs that let you know when critical metrics are hit or
missed. For marketing, you can combine data from various systems, both internal and
external, such as Twitter or Facebook to create a comprehensive view of customer
interactions. This can help you know how well your marketing campaigns are working and
which ones are most effective. In retail industries you can build solutions to track customer
purchases and changes in customer patterns over time. For example, questions such as
how many users made purchases over the last seven days, or what is the average
purchase price per customer are typical BI questions.
This book focuses on Analysis Services, specifically the Tabular Mode engine. Developers
can leverage this engine to create high-performing BI solutions that provide valuable data to
your business users.

Understanding tabular mode
Microsoft SQL Server Analysis Services can be deployed in two ways, multidimensional
mode or tabular mode. Tabular mode is the newest way to build and deploy BI solutions
and it requires installation of the Analysis Services engine in Tabular mode within your SQL
Server Installation. Once installed you design and build Tabular models in SQL Server Data
Tools (SSDT). SSDT is installed inside Visual Studio and allows for a complete development
experience within a single tool. You can design, build, and refactor your database solutions.
When development is complete you deploy from your desktop SSDT solution to the Tabular
model server. Once deployed your users are able to connect to the models and can explore
and leverage the data.
Tabular models are deployed in memory or in DirectQuery mode and deliver fast access to
the data from a variety of client tools.

Learning what's new in SQL Server 2016 tabular
mode
The release of SQL Server 2016 includes a variety of enhancements for Tabular mode in
the areas of modeling, instance management, scripting, DAX, and developer interfaces.

These changes continue to make designing and building Tabular modes easier to provide
better value to your business.
Modeling
Modeling is where you start with tabular mode. All users will connect to the server and
access the data provided from a model. As a designer, you will spend most of your time
inside the Tabular Model adding data, creating relationships, and custom calculations. With
the SQL Server 2016 release, tabular models have a compatibility level of 1,200.
If you have used prior editions of SQL Server to build Tabular Models you will notice right
away the designer is much faster in this release. When modeling in SQL Server Data Tools,
you will notice that the performance of tabular models has been improved. Design changes
will occur faster than previous versions, such as creating a relationship or copying a table.
Also included now is the ability to create folders to organize your model for better end user
navigation. This enables you to group your data into logical folders such as Sales, Regions,
Gross, Net, and so on, and it also helps your users know where to go for data instead of a
long list of values.
If you need the ability to store multiple definitions for a name or a description to account for
different languages, this ability is handled under the Translation tab of the model. For
instance, you could store Customer Name in English and provide a variety of cultural
translations as required.
In this release, you can now deploy to a variety of environments, as you have been able to
do with multidimensional modeling. Developers can develop and deploy to a test
environment. Then if you need to deploy to a UAT environment on a different server, you
can do that by leveraging the configuration manager.
Instance management
After setting up and configuring tabular mode on a server that is known as an instance, you
can have multiple instances running on the same server provided you have enough
hardware to run all instances. Each instance can have different properties, security, and
configurations based on your needs.
An SQL Server 2016 Tabular mode instance can now run prior versions of tabular services.
This allows for compatibility level 1,100 and 1,103 models to be run without the requirement
of upgrading the model to the current release and redeploying the model to the instance.
Scripting
Microsoft continues to add functionality to improve the ability to write scripts for tabular
models. Scripting allows you to write code that will perform actions instead of using the
visual design tools such as SSDT or SQL Server Management Studio.
PowerShell cmdlets are able to be used, such as Invoke-ProcessAsDatabase and Invoke-
ProcessTable cmdlet.
DAX
DAX is the language that you will use the most inside tabular models. New in this release is
an improved formula editor. When creating formulas inside the formula bar functions, fields
and measures are color coded. The intelligence function inspects your formula as you

create it to let you know any known errors. In line comments can now be added to help
document your function by using //. The creation of DAX measures no longer requires the
measure to be complete. You can now save incomplete DAX measures in your model and
complete them at a later time.

Importing sample datasets
For the examples in this chapter you will import two sets of data to create tables inside the
model. This first table is a list of all states in the United States plus the District of Columbia.
The second data set is a short list of famous landmarks.

Note
These examples are available at
https://github.com/derekewilson/SSAS_2016_Tabular_Model.

Getting ready
This example assumes you have a working tabular mode server and SQL Server Data Tools
installed.

How to do it...
1. Open Visual Studio, select File and then New Project.
2. On the next screen select Analysis Services Tabular Project to create a new

Analysis Service tabular project.

3. Select Model from the menu and Import from Data Source.

https://github.com/derekewilson/SSAS_2016_Tabular_Model

4. Select Excel File from the bottom of the Table Import Wizard and click Next.

5. Browse to the location of the US States.xlsx file. Check the Use first row as column
headers box.

6. Select the Service Account to specify a user that has access to the data source.
Click Next.

7. Review the Source Table information and click Finish.

8. Click Close after successfully importing the data.

9. Now repeat steps 4-8 and import into the data the Famous Landmarks.csv file.

How it works...
Let's review what was done in the previous steps for this first recipe. In steps 1 and 2 we
created a new Tabular Model project and selected the option to import data. Then in steps
3 and 4 we selected the source data type of Excel and chose the file to import that included
a list of the States in the USA. During step 5 we selected how the data source can be
accessed via user security. In step 6, we reviewed the import process and started loading
the data. In step 7 we were able to see that the data was successfully imported. Then you
repeated the process to import the Famous Landmarks file. You now have two data tables
loaded into your model that Tabular mode can use.

Understanding basic concepts
Tabular models are built using four main principles: tables, measures, columns, and
relationships:

Tables
Tables contain the columns and rows of data that you are using to populate your Tabular
data model. Data can be added from a variety of source systems. Examples include
relational database structures such as tables or views, Analysis Services cubes, or text
files. The tabular mode engine does not require you to transform data into special schema
structures such as Star or Snowflake schemas. By leveraging the tabular model engine you
can connect directly to data and transform it in the model designer if needed. This enables
quicker model design and iterations without the need to invest in design and building data
transformations and load processes. You can share the model with users to ensure the
business need is being met. In addition to performing time calculations you will have to
create and configure a table known to be a Date Table.
Using the model designer, you can view tables as either a diagram or a grid design view.
The grid designer view shows the data in the table similar to viewing the data as an Excel
file. This view is where you will create new DAX calculations and review the data.

When using the grid designer view, you see a data model of the table that displays the table
and column names. Using this mode enables you to create hierarchies on a table and
relationships between tables.

Columns

Every table will contain columns that store the data that make up your model. When you
import data into your table, the designer inspects each column to automatically determine
the type of data in the column and assign it a data type. In SQL Server 2016, the following
data types are allowed:
1. Currency.
2. Date.
3. Decimal Number.
4. Text.
5. True / False.
6. Whole Number.

Measures
In order to perform calculations in Tabular mode you must create measures using Data
Analysis Expressions, also known as DAX. Adding measures to your data improves the
usefulness of the information to your business users. For instance, adding a calculation to
perform period over period growth to a tabular model would allow all users to leverage the
same calculation and result. Otherwise, you may have users creating calculations outside of
the model that use different logic.

Relationships
As you build more complex models that contain many tables, relationships are the method
to determine how data in one table relates to data in another table by linking columns.
When adding a relationship to a Tabular Model, the column data must be the same. For
example, if you create a relationship between an address table and a state table containing
the master data of all 50 United States plus the District of Columbia, the columns used to
link would have to match the data.

Once you know what columns and tables you want to link together you then must determine
the type of relationship to establish. In the Tabular Model designer, you can create two
types of relationships:

One-to-one
One-to-many

Continuing on our previous example will demonstrate the differences in the types of
relationships. Every address can have one state and is a one-to-one relationship. However,
every state can have multiple addresses and is an example of a one-to-many relationship.

When building relationships there are rules that are enforced in the model designer; first,
each column can only be used in a single relationship. You cannot reuse a column that is
already established in a relationship. The second rule is there can be only one active
relationship between tables.

Hierarchies
Much like how relationships define how tables are joined together and related, hierarchies
define how data between columns is related. You add hierarchies to your model to make it
easier for your business users to leverage the data. The classic example of a well formed
hierarchy is a Calendar hierarchy built on a date table. The top of the calendar is the
highest unit of measure and the bottom of the hierarchy is the lowest unit of measure.
Therefore, you could have a Calendar hierarchy that is defined as Year | Quarter | Month
| Day. Given this hierarchy users could navigate the model starting at Year and then drill
down into the next lower level (Quarter), and then ultimately down to the day to get more
detail based on their needs.

Chapter 2. Setting up a Tabular Mode
Environment
In this chapter, we will cover the following recipes:

Installing and configuring a development environment
Installing Visual Studio 2015
Installing SQL Server Data Tools (SSDT)
Configuring a workspace server
Configuring SSAS project properties

Introduction
This chapter will show you how to install and configure SQL Server Analysis Services in
tabular mode on a Windows Server 2012 R2. At the end of this chapter, you will have a
server set up and configured to leverage for a development environment. As part of the
installation, you will install the SQL Database engine to be used later as a data source for
the tabular model. Once installed, you will set up the development software on the same
server that will allow you to create models. Finally, you will create a project and learn how
to configure the workspace server and project settings that allow you to deploy the project
to a server.
This setup assumes you have the operating system installed and running with an account
with administrator privileges. On this server is where you will begin to learn how tabular
mode works, how to interact with data in the model, and how to set up deployment options.

Installing and configuring a development
environment
Getting ready
Create a virtual machine running Windows Server 2012 R2 with important updates installed.
You can download and install SQL Server Developer Edition for free from Microsoft. Also,
make sure you have an account set up with administrative privileges that you will use for the
installation and configuration of SQL Server 2016 tabular mode. In my examples, I have a
user named Admin set up as a local administrator.

How to do it...
1. Launch SQL Server Developer Edition from your virtual machine drive to begin the

installation process in the SQL Server Installation Center window.

2. Select Installation to bring up the options for installing components. Then choose New
SQL Server stand-alone installation or add features to an existing installation.

3. The next screen is where you enter your product key if you have one. Since we are
using the developer edition, no product key is needed. Click Next.

4. Next you need to review and accept the license terms for the software. Review the
license terms and click on the checkbox next to I accept the license terms, and then
click Next.

5. The next screen allows you to have Microsoft Update automatically check for updates
for SQL Server. Depending upon your environment, you may want to turn this on, but
for now let's keep it off. Click Next.

6. Now we are ready to install the features required for our development environment.
You can always go back and add additional features later. For our development server
we will need Database Engine Services and Analysis Services. Check both of those
boxes and then click Next.

7. Now you can name the instance of the database if you want to use something other
than the default instance. This is useful if you will be running more than one database
engine on a server. For this development environment, we will only have one instance,
so we will use the default. Click Next.

8. The next settings are for the services that will be installed and the accounts that will be
enabled to run them. In a production environment you would have specific accounts set
up. For this environment, we will keep them as the default values. Click Next.

9. Since we selected the Database Engine in step 6. This screen enables us to configure
how the SQL Database will be installed. First, change the Authentication Mode radio
button to Mixed Mode. Then enter a password for your server system administrator
(sa) account such as P@ssword. Secondly, add the current Windows account to be an
Administrator on the server by clicking Add Current User. Then click Next.

10. Now we are ready to configure Analysis Services Configuration in tabular mode.
Select the radio button next to Tabular Mode and click on the Add Current User
button to make the local windows account an Administrator. Review on the Data
Directory tab, that is where you can define where the data is stored if you need to
customize your setup. Click Next.

11. Everything is now ready for installation. The Ready to Install window allows you to
review all of the settings that we just configured. We are ready to click on Install to
begin the process.

12. Once completed, you will be prompted to restart your server. Click OK and then
Close. From the operating system, select Restart to reboot your server.

How it works...
This recipe showed you step-by-step instructions to install the SQL Database Engine and
Analysis Services in tabular mode. You then configured the services that run the Database
Engine and Analysis Services. Next you created a local SQL server account that will have
administrative rights to SQL Server and Analysis Services. Upon completion you have a
working development server.

Installing Visual Studio 2015
Visual Studio 2015 is the base software that you will use to leverage the SQL Server Data
Tools (SSDT) components. SSDT contains the templates that you use to design and
develop your Tabular Models. If you already have Visual Studio installed then you can install
SSDT with Visual Studio. To continue with your development environment setup, this recipe
will show you how to install Visual Studio and the basic database components of SSDT
together. The base components of SSDT only install the SQL Server Database template.

Getting ready
Login to the development server with your local Admin account. Then download the free
Visual Studio Community edition at https://www.visualstudio.com/en-us/products/visual-
studio-community-vs.aspx.
Once completed, open the file to begin installation.

How to do it...
1. Select the Custom radio button to select the features required for SSDT. Then click

Next.

https://www.visualstudio.com/en-us/products/visual-studio-community-vs.aspx

2. Once you reach the Select Features window, select Microsoft SQL Server Data
Tools and then click Next.

3. On the next screen review the selected features and then click Install.

4. Once successfully completed you will need to restart your server.

How it works...
This recipe showed you how to download and install Visual Studio 2015. Then using the
custom configuration option you installed the database templates for SQL Server Data
Tools. Visual Studio is now ready to have the remaining SQL templates installed.

Installing SQL Server Data Tools (SSDT)
Once Visual Studio is installed the next step is to add SQL Server Data Tools (SSDT).
SSDT is the environment that you will use to create your tabular model. You will use it to
import your data, design your model, add DAX calculations, and finally deploy your model to
the server.

Getting ready
Once Visual Studio is installed, you can now install the remaining pieces of SSDT. This
recipe shows the steps required to install the templates for Analysis Services, Reporting
Services, and Integration Services.

How to do it...
1. From the SQL Server installation disk, select the installation tab and then click on

Install SQL Server Data Tools to open a web browser with the link to download the
software.

2. Select Download SQL Server Data Tools for Visual Studio 2015! and save the file.
On the next screen select your language to install and run the SSDTSetup.exe
program.

3. On the next window you can select which features of SSDT to install. In this case,
keep them all checked and select Next.

4. In the final step, check the checkbox for I Agree to the license terms and conditions
and then click Install.

How it works...
This recipe installed the remaining templates for SSDT into Visual Studio. These templates
allow you to create Analysis Services, Reporting Services, and Integration Services
projects.

Interacting with SQL Server Data Tools
After the installation of Visual Studio and SSDT you will need to set up your environment
settings. These setting are chosen the first time you start Visual Studio. However, they can
be changed later in the Options section of the Tools menu. Once set, each new project will
use the options selected.

Getting ready
Now that Visual Studio and SSDT have been installed, this section will review how to
access SSDT and use it to create a tabular model project.

How to do it...
1. Open Visual Studio 2015.

2. On the next screen, sign in if you have an account or select Not now, maybe later if
you do not, and then select the color scheme you want to use.

3. You are now at the base screen for Visual Studio projects. Select New Project...

4. You will now be presented with the New Project window. From here expand Business
Intelligence. Here you will see the choices for the features you installed. To create a
new Tabular Mode project, select Analysis Services. Type Chapter2_model in the
Name: box and click OK to create the project.

How it works...
This recipe showed you how to create a new Analysis Services Tabular Project in Visual
Studio. You can now begin to design tabular models.

Configuring a workspace server
Getting ready
This recipe connects your development environment to the Tabular Model workspace
server. If a workspace server has not been configured for a project, you will be prompted
to configure it after creating a project.

How to do it...
1. When prompted, enter the server address of the development Tabular server. For our

setup we will use localhost. Next, set Compatibility level to SQL Server 2016 RTM
(1200) and click OK.

2. Your tabular model designer will now open.

How it works...
The workspace server specifies what Analysis Services will be used to host the workspace
database while you are creating models. For authoring it is recommended to use a local
Analysis Services instance instead of a remote instance.

There's more...
If you need to change your workspace server after a project has been created, you can
change the setting by accessing Tools | Options | Analysis Services Tabular Designers.

Configuring SSAS project properties
The SSAS project properties are where you set up different environments for your model to
use. You design and build your model on the workspace server. When ready for deployment
you will select the configuration and server to deploy your solution.

Getting ready
The final step to getting your development environment ready is to configure Visual Studio.
In this recipe, you will configure the project properties that will allow you to deploy your
model to the Analysis Services service.

How to do it...
1. Click on Project to find the properties at the bottom of the page. In this case,

Chapter2_Model Properties...

2. On the Chapter2_Model Properties pages, change the Server to the name of your
development server. It defaults to localhost so we can click OK without changing the
value.

How it works...
The project properties area is where you define where the model you design will be
deployed. You can create multiple areas such as Development, UAT, and Production. Then,
for each area define the server names.

Chapter 3. Tabular Model Building
In this chapter, we will cover the following recipes:

Adding new data to a tabular model
Adding a calculated column
Adding a measure to a tabular model
Changing model views
Renaming columns
Defining a date table
Creating hierarchies
Understanding and building relationships
Creating and organizing display folders
Deploying your first model
Browsing your model with SQL Server Management Studio
Browsing your model with Microsoft Excel

Introduction
In this chapter, you will build your first tabular model, deploy it to the Analysis Server, and
then view the results with SQL Server Management Studio and Microsoft Excel. Instead of
using the standard sample databases such as AdventureWorks, you will download a public
dataset and then create a simple dimensional model. Once the model is completed, you will
learn how to deploy the data. The recipes in this chapter cover all of the basics required to
get a working model built. Each recipe builds upon information to complete the model. They
should be done in order to get the best understanding.
Tabular modeling allows you to quickly take de-normalized data and turn it into a working
dimensional model that makes it easy for your users to leverage. By transforming the data
and creating user-friendly fields you will be able to create an easy to use reporting
database. All of the recipes in this chapter are built using public vehicle crash data from the
state of Iowa. Upon completion of these recipes you will have your first working model and
know how to interact with the data.

Adding new data to a tabular model
In this recipe, you will download external data and then add it into the model. The data is
freely available from the state of Iowa and is a list of all crashes recorded by date. It
includes many columns of data that you will use to build a model in the remaining chapters.

Getting ready
Depending upon your setup you may need to install Microsoft Access Database Engine
2010 Redistributable in order to enable importing data from Excel. For this recipe you will
be using data vehicle crash data provided by the state of Iowa. Download the csv file of the
data here: https://data.iowa.gov/api/views/bew5-k5dr/rows.csv?accessType=DOWNLOAD.
Once downloaded, open the csv in Excel and save it as Iowa_Crash_Data.xlsx. There are
several fields in the file that will be used to create and enhance the model:

CRASH_KEY - UNIQUE RECORD IDENTIFIER
CRASH_DATE - DATE OF CRASH
FATALITIES - NUMBER OF FATALITIES
MAJINJURY - NUMBER OF MAJOR INJURIES
MININJURY - NUMBER OF MINOR INJURIES
POSSINJURY - NUMBER OF POSSIBLE INJURIES
UNKINJURY - NUMBER OF UNKOWN INJURIES
VEHICLES - NUMBER OF VEHICLES INVOLVED
CRCOMNNR - MANNER OF CRASH
MAJCSE - MAJOR CAUSE
ECNTCRC - CONTRIBUTING CIRCUMSTANCES - ENVIRONMENT
LIGHT - LIGHT CONDITIONS
CSRFCND - SURFACE CONDITIONS
WEATHER - WEATHER CONDITIONS
PAVED - PAVED (1,0)
CSEV - CRASH SEVERITY
PROPDMG - AMOUNT OF PROPERTY DAMAGE

How to do it...
1. Create a new Analysis Services tabular model project and name it Chapter3_Model.

Then select Model | Import From Data Source to bring up the Table Import Wizard
window. Scroll to the bottom and select Excel File, browse to your Iowa_Crash_Data
file, check Use first row as column headers, and then click Next.

2. On the next screen, enter a username and password that has administrator privileges
and click Next. On the next screen review the Source Table and Friendly Name and
then click Finish to begin the import process.

3. Once all records are imported you will be back at the grid view of your project.

https://data.iowa.gov/api/views/bew5-k5dr/rows.csv?accessType=DOWNLOAD

How it works...
In this recipe, you downloaded a public data set and saved it on your local machine. You
then imported the data into your tabular model project. You provided a username and
password for an account that has permissions to be able to access the crash data. Finally,
the data was imported and loaded inside your project model to be extended and enhanced
in the following recipes.

Adding a calculated column
Calculations contain code that is applied to all rows in your data. You will create calculations
to make the data easier for your users to use. In this recipe, you will add a function to
create a new date column to your model.

Getting ready
The data that was imported has the CRASH_DATE column formatted as a text field. In
order to use this field for calculations, you need the CRASH_DATE column to be formatted
as a date data type. You can create a new column and use the built-in functions to achieve
this result.

How to do it...
1. From the design mode view on the Crash_Data tab, scroll to the end of the columns

until you see Add Column.

2. Next you need to create a new column based on the CRASH_DATE column that is
formatted as a date data type. This new column will be used later to create a
relationship with the calendar table. Select Add Column and in the function box enter:

 =LEFT(Crash_Data[CRASH_DATE],10)

3. Press Enter.
4. The formula will run and the column is renamed to Calculated Column 1.

5. Now rename the column to a helpful name and set the data type. Select Calculated
Column 1 and then in the properties window change the following settings. Column
Name from Calculated Column 1 to Crash_Date_fx, and Data Type from Auto(Text)
to Date.

How it works...
When you add a new column to the model each row gets a value based on the logic for the
column. In this recipe, you added a new column, created a formula, and then renamed the
column. The formula works by retrieving the first 10 characters from the CRASH_DATE
column to find the calendar date. For example, in row 1 the date you need is 01/04/2006,
everything after the tenth character is ignored. Then you used the properties of the column
to set the data type as a date. Your model now has a properly formatted date column.

Adding a measure to a tabular model
Measures are what your model uses for calculations against the rows and columns based
on the formula. Once a measure has been created in the model, users will be able to add it
to their reports. For this recipe you will create one measure that counts the number of rows
in the CRASH_DATE table. Measures are added to the measure grid area of the grid view
in your model.

How to do it...
1. Open your project to the CRASH_DATE grid view. You will create the function in the

cell highlighted in the following screenshot:

2. Left-click on the highlighted cell and enter the following in the function bar
 Count_of_Crashs:=COUNT(Crash_Data[CRASH_KEY])

3. Press Enter to calculate your function.

How it works...
In this recipe, you entered a DAX formula into the measure grid area that counts the rows.
The formula currently shows the total number of rows in your table of 559,227. However, as
you continue to add the following recipes, the formula will dynamically count the number of
records at various levels of the model.

Changing model views
As you continue to design and build models, you will need to change the model view to
allow you to perform different tasks. There are two views that you can choose in your
Model Grid: DataView and Diagram View. Data Views are where you inspect the data
and add DAX calculations. Diagram View is where you change column names, add
relationships, and add hierarches.

How to do it...
1. Open your Chapter3_Model, and then select Model | Model View. This exposes the

two views you can choose.
2. Select Diagram View to switch to enable modeling options.

How it works...
The model views are how you interact and work with your tabular model. You used the
Model menu to change your view from Grid to Diagram.

There's more...
The other option to quickly change the view is using the icons at the bottom right corner of
the model designer. Hover and click on the two different icons to switch between the views.
Here is the Grid view:

Grid or Data View
This is how the Diagram view looks:

Diagram View

Renaming columns
Often, when you find data to use in a model, the columns have names that you will want to
change. The end users of the model need to easily be able to determine what is in the data
that you are presenting. This recipe shows you how to change a column name from the
diagram view of the model.

How to do it...
1. Change your model view from the Grid view to the Diagram view.
2. Right-click on the column you want to rename. In this example, CASENUMBER to bring

up the options and select Rename.

3. CASENUMBER is now highlighted, change the name to CASE_NUMBER and hit
Enter.

How it works...
The model designer allows for editing of column names. You selected the column to rename
and then changed the name by adding an underscore.

Defining a date table
Tabular models require a table to be designated as a date table in order for DAX
calculations to perform correctly. A date table can be unique for each solution and be simple
or complex as your business needs require.

Getting ready
For this recipe, you will need to create a date table in your SQL Server database called
MasterCalendar_T. The script that you run will create this table and populate it with data
from 1/1/2006 to 12/13/2016. Once created you are ready to add the MasterCalendar_T
table to your model and designate it as a date table.
First, create the table in an SQL Server database to store the calendar information:

CREATE TABLE [dbo].[MasterCalendar_T](
 [MasterCalendarKey] [int] NULL,
 [Date] [date] NULL,
 [Year] [int] NULL,
 [Quarter_Name] [varchar](2) NULL,
 [Quarter_Num] [int] NULL,
 [Month_Name] [nvarchar](30) NULL,
 [Month_Num] [int] NULL,
 [Day_Name] [nvarchar](30) NULL,
 [Day_Num] [int] NULL
) ON [PRIMARY]

Next, populate the table with data from January 1st 2000 to December 31, 2016. This script
will load the data into your table:

declare @start_date date, @end_date date

set @start_date = '01/01/2000'
set @end_date = '12/31/2016'

WHILE (@start_date<=@end_date)
BEGIN

INSERT INTO MasterCalendar_T2
SELECT
[MasterCalendarKey]=CONVERT(int,CONVERT(VARCHAR(15), @start_date,
112)),
[Date]= @start_date,
[Year] = DATEPART(YEAR,@start_date),
[Quarter_Name] = 'Q'+ cast(DATEPART(QUARTER, @start_date) as
char(1)),
[Quarter_Num] = DATEPART(QUARTER, @start_date),
[Month_Name] = DATENAME(MONTH, @start_date),
[Month_Num] = DATEPART(MONTH, @start_date),
[Day_Name]= DATENAME(WEEKDAY, @start_date),
[Day_Num]= DATEPART(day, @start_date)

SET @start_date =DATEADD(dd, 1, @start_date)

END

How to do it...
1. Change your model view to the design view. Click on Model | Import from Data

Source and select Microsoft SQL Server. Then click Next.
2. Enter your SQL Server name and authentication method and select your database

name. Click Next.

3. Now select the Impersonation Information and enter a User Name and Password
that has access to the table you created and then click Next.

4. Since you know the table and need all of the data, you can leave the default radio
button for Select from a list of tables and views to choose the data to import.
Then click Next.

5. Select the MasterCalendar_T table and click Finish.
6. Once imported you will see 4,018 rows transferred and then click Close. You now

have two tables imported into your model.

7. To designate the MasterCalendar_T table as the date table, left-click on it and then
select Table from the menu, Date | Mark as Date Table.

8. On the next screen, select Date as the column and then click OK.

How it works...
In this recipe, you executed a T-SQL script to create a table named MasterCalendar_T to
store calendar date information. Then you imported the data into your model and
designated the table as the date table. The date table allows your DAX calculations to
perform date-based functions on your data such as period over period or lag.

Creating hierarchies
Now that you have created and imported a table that contains date information, you need to
establish how the data in the MasterCalendar_T table is related. This recipe shows you
how to create the standard Year | Quarter | Month | Day hierarchy.

How to do it...
1. Left-click on the MasterCalendar_T to select the table, then right-click to bring up the

menu of options, and select Create Hierarchy.

2. On the new virtual column that was added to your table, you will add the columns
required to build the hierarchy.

3. Select each column one by one and drag to the Hierarchy1 name. When completed
you will see your completed hierarchy.

4. Next, right-click on Hierarchy1 and then select Rename and change the name to
Calendar_YQMD. This identifies the hierarchy as a regular calendar and tells your
users what values are available in the hierarchy.

5. Next, you need to define the sort order of the calendar for the hierarchy. Sort order is
set on the property of the base columns. On the Quarter_Name column change the
Sort By Column to Quarter_Num, and on the Month_Name change the Sort By
Column to Month_Num.

How it works...
This recipe created a new hierarchy in the MasterCalendar_T table. For your hierarchy
you added the four columns required to create a calendar year hierarchy that has Year to
Quarter to Month to Date. This hierarchy will be exposed in the client tools to allow for
easy browsing for your users.

Understanding and building relationships
As you add tables to your model, you will need to build the relationships that tell the tabular
model which tables and fields are related to each other. These relationships enable the
calculations that you create to perform correctly. In this recipe, you will create a relationship
between the MasterCalendar_T table and the Crash_Data table.

Getting ready
Before starting this recipe make sure you have loaded the Iowa crash data and the
MasterCalendar_T table into you model. This recipe shows you how to create a
relationship between the two tables.

How to do it...
1. Left-click the Crash_Date_fx column from the CRASH_DATE table and then drag it to

the Date column in the MasterCalendar_T table.
2. Since MasterCalendar_T is designated as a Date table, the model made the

relationship be one-to-many from the MasterCalendar_T to the Crash_Data table.

3. Double-click on the relationship arrow that was added to bring up the Edit
Relationship window. This window allows you to modify any relationship and see the
details of what was created. It is showing the relationship that you want, so you can
close it by clicking Cancel.

How it works...
This recipe created a link between the Crash_Data table and the MasterCalendar_T
table. The MasterCalendar_T table contains only one row for each date and the
Crash_Data table can contain one too many rows for each date. For example, if there are
multiple crashes reported on the same date.

Creating and organizing display folders
As the number of measures increases in your model, you will want to organize them into
logical groupings that make it easier to use in the reporting tools. This recipe shows you
how to create a group for the data that relates to the injury columns.

Getting ready
Switch back to the diagram view to see the table layout and columns.

How to do it...
1. You are going to create a folder to hold all injury related fields to make it easier for the

users to find this information. Select the Crash_Data table and then scroll down and
left-click the INJURIES column.

2. On the properties window type Injuries_Folder into the Display Folder field.

3. Now you are going to add four additional columns to the same folder. Hold down shift
and then select MAJINJURY, MININJURY, POSSINJURY, and UNKINJURY. In the
Display Folder property, type Injuries_Folder.

How it works...

A display folder is created in this recipe to store the injury related fields. First you selected
an individual column and then typed in the name of the folder. Then you added four fields by
selecting them together and typing in the same folder name. Once this model is deployed,
your users will be able to see these columns grouped into a folder in the Crash_Data
dimension.

Deploying your first model
Deployment of your model is the final step to getting the data accessible to your users for
reporting. You have designed and built your model in Visual Studio. In order for others to
see and use it, you need to push the design and data to the Analysis Services server.

Getting ready
If you have completed all of the steps then you are ready to deploy your model to the
server. From here your users will access the data you provide.

How to do it...
1. Select Build from the menu and then select Build Solution.

2. If everything is okay, you will get a message that shows the build succeeded.

3. Next click Build again and then Deploy solution. Enter your username and password
and click OK.

4. All of the data will now be imported. Once completed successfully, you will have data
on your server, and you can then click Close.

How it works...
The deployment process moves the model from your local project to the Analysis Services
server for users to interact with the information. First you built your model to ensure there
were no known errors or issues with the formulas or data types. Then you deployed the
model to the server using a user that has permissions to deploy to the server. Upon
completion your first model is now ready to be viewed.

Browsing your model with SQL Server
Management Studio
As a developer, you will want to explore the model prior to releasing it for use. SQL Server
Management Studio provides you with a way to browse the model and ensure everything is
performing as expected. This recipe shows you how to connect to the model and explore
dimensions and measures.

How to do it...
1. Open SQL Server Management Studio and select Analysis Services... from the

connect drop-down box.

2. Type in your Analysis Services server name and click Connect.

3. Expand the Analysis Services server to show the Databases and Tables under
Chapter3_Model to validate that the tables were published to the server.

4. Right-click on the Chapter3_Model database and then select Browse... to open the
model browser.

5. From the Model[Browse] window expand the Crash_Data dimension to find
Injuries_Folder and then click the + sign to view the five columns you added.

6. Click on the - sign on Crash_Data to close the dimension. Then click on the + sign on

MasterCalendar_T to review the hierarchy you created.

7. Expand Measures | Crash_Data and drag Count_of_Crashes to the area on the
right. The total count of records is shown.

8. To see the total Count_of_Crashes by Year, expand the Calendar_YQMD hierarchy
and drag Year to the design area on the left side of Count_of_Crashes.

9. To see the number of crashes by COUNTY_NUMBER, expand the Crash_Data
dimension and then drag the COUNTY_NUMBER between Year and
Count_of_Crashes.

10. To see only the crashes that occur in COUNTY_NUMBER 7, drag COUNTY_NUMBER
to the Dimension area and set the Operator to = 7.

How it works...
In this recipe, you connected to Analysis Services tabular mode to explore the data. Using
SQL Server Management Studio you browsed the measures, dimensions, and hierarchies
that were created in this chapter. By adding the measure on the viewer and then adding
dimensions you can view how the DAX calculation is summarizing the data at each level of
the hierarchy.

Browsing your model with Microsoft Excel
Most users will want to use Microsoft Excel to interact with the data and perform analysis.
By using Excel you can create many types of interactions with the data in the model. This
recipe shows you how to connect to the model and build a Power View report.

How to do it...
1. Open Microsoft Excel and create a new workbook.
2. Click on the Data ribbon and then select Get External Data | From Other Sources |

From Analysis Services.

3. Enter your Analysis Services Server name and Log on credentials on the next
window.

4. Select Chapter3_Model from the drop-down list and click Next.

5. On the next screen click Finish.

6. Now you can Select how you want to view the data in Excel. If you have installed
Power View Report, select it and select OK.

7. After connecting to the data you will have a new Power View sheet in Excel.

8. Select Year from the MasterCalendar_TCalendar_YQMD hierarchy and drag it to the
design surface. Then drag the CRASH_KEY from the Crash_Data table and change
the aggregation to Count in the FIELDS area.

How it works...
You connected to the Analysis Service tabular model using the data tab in Microsoft Excel.
You then connected to the model that was deployed. By choosing the Power View option,
Excel opened a new worksheet in Power View mode. By dragging and dropping the fields
from the Power View fields window you were able to interact with the data you published
earlier.

Chapter 4. Working in Tabular Models
In this chapter, we will cover the following recipes:

Opening an existing model
Importing data
Modifying model relationships
Modifying model measures
Modifying model columns
Modifying model hierarchies
Creating a calculated table
Creating key performance indicators (KPIs)
Modifying key performance indicators (KPIs)
Deploying a modified model

Introduction
This chapter will focus on how to modify and enhance the model built in the previous
chapter. After building a model, we will need to maintain and enhance the model as the
business users update or change their requirements. We will begin by adding additional
tables to the model that contain the descriptive data columns for several code columns.
Then we will create relationships between these new tables and the existing data tables.
Once the new data is loaded into the model, we will modify various pieces of the model,
including adding a new key performance indicator.
Next, we will perform calculations to see how to create and modify measures and columns.

Opening an existing model
For this recipe, we will open the model created and deployed in Chapter 3. To make
modifications to your deployed models, we will need to open the model in the Visual Studio
designer.

How to do it...
1. Open your solution from Chapter 3 in Visual Studio, by navigating to File | Open |

Project/Solution.

2. Then select the folder and solution, Chapter3_Model, and select Open.
3. Your solution is now open and ready for modification.

How it works...
Visual Studio stores the model as a project inside of a solution. In Chapter 3, Tabular
Model Building, we created a new project and saved it as Chapter3_Model. To make
modifications to the model, we open it in Visual Studio. This brings up the design windows
necessary to perform the upcoming recipes.

Importing data
The crash data has many columns that store the data in codes. In order to make this data
useful for reporting, we need to add description columns. In this section, we will create four
code tables by importing data into a SQL Server database. Then, we will add the tables to
your existing model.

Getting ready
In the Chapter 3 database on your SQL Server, run the following scripts to create the four
tables and populate them with the reference data:
1. Create the Major Cause of Accident Reference Data table:

 CREATE TABLE [dbo].[MAJCSE_T](
 [MAJCSE] [int] NULL,
 [MAJOR_CAUSE] [varchar](50) NULL
) ON [PRIMARY]

2. Then, populate the table with data:
 INSERT INTO MAJCSE_T
 VALUES
 (20, 'Overall/rollover'),
 (21, 'Jackknife'),
 (31, 'Animal'),
 (32, 'Non-motorist'),
 (33, 'Vehicle in Traffic'),
 (35, 'Parked motor vehicle'),
 (37, 'Railway vehicle'),
 (40, 'Collision with bridge'),
 (41, 'Collision with bridge pier'),
 (43, 'Collision with curb'),
 (44, 'Collision with ditch'),
 (47, 'Collision culvert'),
 (48, 'Collision Guardrail - face'),
 (50, 'Collision traffic barrier'),
 (53, 'impact with Attenuator'),
 (54, 'Collision with utility pole'),
 (55, 'Collision with traffic sign'),
 (59, 'Collision with mailbox'),
 (60, 'Collision with Tree'),
 (70, 'Fire'),
 (71, 'Immersion'),
 (72, 'Hit and Run'),
 (99, 'Unknown')

3. Create the table to store the lighting conditions at the time of the crash:

 CREATE TABLE [dbo].[LIGHT_T](
 [LIGHT] [int] NULL,
 [LIGHT_CONDITION] [varchar](30) NULL
) ON [PRIMARY]

4. Now, populate the data that shows the descriptions for the codes:
 INSERT INTO LIGHT_T
 VALUES

 (1, 'Daylight'),
 (2, 'Dusk'),
 (3, 'Dawn'),
 (4, 'Dark, roadway lighted'),
 (5, 'Dark, roadway not lighted'),
 (6, 'Dark, unknown lighting'),
 (9, 'Unknown')

5. Create the table to store the road conditions:
 CREATE TABLE [dbo].[CSRFCND_T](
 [CSRFCND] [int] NULL,
 [SURFACE_CONDITION] [varchar](50) NULL
) ON [PRIMARY]

6. Now populate the road condition descriptions:
 INSERT INTO CSRFCND_T
 VALUES
 (1, 'Dry'),
 (2, 'Wet'),
 (3, 'Ice'),
 (4, 'Snow'),
 (5, 'Slush'),
 (6, 'Sand, Mud'),
 (7, 'Water'),
 (99, 'Unknown')

7. Finally, create the weather table:
 CREATE TABLE [dbo].[WEATHER_T](
 [WEATHER] [int] NULL,
 [WEATHER_CONDITION] [varchar](30) NULL
) ON [PRIMARY]

8. Then populate the weather condition descriptions.
 INSERT INTO WEATHER_T
 VALUES
 (1, 'Clear'),
 (2, 'Partly Cloudy'),
 (3, 'Cloudy'),
 (5, 'Mist'),
 (6, 'Rain'),
 (7, 'Sleet, hail, freezing rain'),
 (9, 'Severe winds'),
 (10, 'Blowing Sand'),
 (99, 'Unknown')

You now have the tables and data required to complete the recipes in this chapter.

How to do it...
1. From your open model, change to the Diagram view in Model.bim folder.
2. Navigate to Model | Import from Data Source, and then select Microsoft SQL Server

on the Table Import Wizard, and click on Next.
3. Set your Server Name to Localhost and change the Database name to Chapter3 and

click on Next.
4. Enter your admin account username and password and click on Next.

5. You want to select from a list of tables the four tables that were created at the
beginning of this recipe.

6. Click on Finish to import the data.

How it works...
This recipe opens the Table Import Wizard and allows us to select the four new tables that
are to be added to the existing model. The data is then imported into your tabular model
workspace. Once imported, the data is now ready to be used to enhance the model.

Modifying model relationships
In this recipe, we will create the necessary relationships for the new tables. These
relationships will be used in the model in order for the SSAS engine to perform correct
calculations.

How to do it...
1. Open your model in the Diagram view and you will see the four tables that you

imported from the previous recipe.

2. Select the CSRFCND field in the CSRFCND_T table and drag the CSRFCND table in
the Crash_Data table.

3. Select the LIGHT field in the LIGHT_T table and drag to the LIGHT table in the
Crash_Data table.

4. Select the MAJCSE field in the MAJCSE_T table and drag to the MAJCSE table in the
Crash_Data table.

5. Select the WEATHER field in the WEATHER_T table and drag to the WEATHER table
in the Crash_Data table.

How it works...
Each table in this section has a relationship built between the code columns and the
Crash_Data table corresponding columns. These relationships allow for DAX calculations
to be applied across the data tables.

Modifying model measures
Now that there are more tables in the model, we are going to add an additional measure to
perform quick calculations on data. The measure will use a simple DAX calculation since
this recipe is focused on how to add or modify the model measures. The future chapters
will focus on more advanced DAX calculations.

How to do it...
1. Open the Chapter 3_Model project in the Model.bim folder and make sure you are in

Grid view.
2. Select the cell under Count_of_Crashes and in the fx bar add the following DAX

formula to create Sum_of_Fatalities:
 Sum_of_Fatalities:=SUM(Crash_Data[FATALITIES])

3. Then, hit Enter to create the calculation:

4. In the Properties window, enter Injury_Calculations in the Display Folder. Then,
change the Format to Whole Number and change the Show Thousand Separator to
True. Finally, add it to Description Total Number of Fatalities Recorded:

How it works...
In this recipe, we added a new measure to the existing model that calculates the total
number of fatalities on the Crash_Data table. Then we added a new folder for the users to
see the calculation. We also modified the default behavior of the calculation to display as a
whole number and show commas to make the numbers easier to interpret. Finally, we
added a description to the calculation that users will be able to see in the reporting tools. If
we did not make these changes in the model, each user will be required to make the
changes each time they accessed the model. By placing the changes in the model,
everyone will see the data in the same format.

Modifying model columns
In this recipe, we will modify the properties of the columns on the WEATHER table.
Modifications to the columns in a table make the information easier for your users to
understand in the reporting tools. Some properties determine how the SSAS engine uses
the fields when creating the model on the server.

How to do it...
1. In Model.bim, make sure you are in the Grid view and change to the WEATHER_T

tab.
2. Select WEATHER Column to view the available Properties and make the following

changes:
Select the Hidden property to True
Select the Unique property to True
In the Sort By Column select WEATHER_CONDITION
Select Summarize By to Count

3. Next, select the WEATHER_CONDITION column and modify the following properties:
In the Description add Weather at time of crash
Set the Default Label property to True

How it works...
This recipe modified the properties of the measure to make it better for your report users to
access the data. The WEATHER code column was hidden so it will not be visible in the
reporting tools and the WEATHER_CONDITION was sorted in alphabetical order. You set
the default aggregation to Count and then added a description for the column. Now, when
this dimension is added to a report only the WEATHER_CONDITION column will be seen
and pre-sorted based on the WEATHER_CONDITION field. It will also use count as the
aggregation type to provide the number of each type of weather condition. If you were to
add another new description to the table, it would automatically be sorted correctly.

Modifying model hierarchies
Once you have created a hierarchy, you may want to remove or modify the hierarchy from
your model. In this recipe, we will make modifications to the Calendar_YQMD hierarchy.

How to do it...
1. Open Model.bim in the Diagram view and find the Master_Calendar_T table.
2. Review the Calendar_YQMD hierarchy and included columns.
3. Select the Quarter_Name column and right-click on it to bring up the menu.

4. Select Remove from Hierarchy to delete Quarter_Name from the hierarchy and
confirm on the next screen by selecting Remove from Hierarchy.

5. Select the Calendar_YQMD hierarchy and right-click on it and select Rename.

6. Change the name to Calendar_YMD and hit on Enter.

How it works...
In this recipe, we opened the Diagram view and selected the Master_Calendar_T table to
find the existing hierarchy. After selecting the Quarter_Name column in the hierarchy, we
used the menus to view the available options for modifications. Then we selected the option
to remove the column from the hierarchy. Finally, we updated the name of the hierarchy to
let users know that the quarter column is not included.

There's more...
Another option to remove fields from the hierarchy is to select the column and then press
the delete key. Likewise, you can double-click on the Calendar_YQMD hierarchy to bring
up the edit window for the name. Then edit the name and hit Enter to save the change in
the designer.

Creating a calculated table
Calculated tables are created dynamically using functions or DAX queries. They are very
useful if you need to create a new table based on information in another table. For example,
you could have a date table with 30 years of data. However, most of your users only look at
the last 5 years of information when running most of their analysis. Instead of creating a
new table you can dynamically make a new table that only stores the last 5 years of dates.
In this recipe, you will use a single DAX query to filter the Master_Calendar_T table to the
last 5 years of data.

How to do it...
1. Open Model.bim in the Grid view and then select the Table menu and New Calculated

Table.

2. A new data tab is created. In the function box, enter this DAX formula to create a date
calendar for the last 5 years:

 FILTER(MasterCalendar_T,

MasterCalendar_T[Date]>=DATEADD(MasterCalendar_T[Date],6,YEAR))

3. Double-click on the CalculatedTable 1 tab and rename it to Last_5_Years_T.

How it works...
This recipe works by creating a new table in the model that is built from a DAX formula. In
order to limit the number of years shown, the DAX formula reduces the total number of
dates available for the last 5 years of data.

There's more...
After you create a calculated table, you will need to create the necessary relationships and
hierarchies just like a regular table:
1. Switch to the Diagram view in the Model.bim and you will be able to see the new

table.
2. Create a new hierarchy and name it Last_5_Years_YQM and include Year,

Quarter_Name, Month_Name, and Date
3. Replace the Master_Calendar_T relationship with the Date column from the

Last_5_Years_T date column to the Crash_Date.Crash_Date column.

Now, the model will only display the last 5 years of crash data when using the
Last_5_Years_T table in the reporting tools. The Crash_Data table still contains all of the
records if you need to view more than 5 years of data.

Creating key performance indicators
(KPIs)
Key performance indicators are business metrics that show the effectiveness of a business
objective. They are used to track actual performance against budgeted or planned value
such as Service Level Agreements or On-Time performance. The advantage of creating a
KPI is the ability to quickly see the actual value compared to the target value. To add a KPI,
you will need to have a measure to use as the actual value and another measure that
returns the target value. In this recipe, we will create a KPI that tracks the number of
fatalities and compares them to the prior year with the goal of having fewer fatalities each
year.

How to do it...
1. Open the Model.bim in the Grid view and select an empty cell and create a new

measure named
Last_Year_Fatalities:Last_Year_Fatalities:=CALCULATE(SUM(Crash_Data[FATALITIES]),DATEADD(MasterCalendar_T[Date],-1,
YEAR))

2. Select the already existing Sum_of_measure, then right-click, and select Create
KPI....

3. On the Key Performance Indicator (KPI) window, select Last_Year_Fatalities as the
Target Measure. Then, select the second set of icons that have red, yellow, and green
with symbols. Finally, change the KPI color scheme to green, yellow, and red and make
the scores 90 and 97, and then click on OK.

4. The Sum_of_Fatalites measure will now have a small graph next to it in the measure
grid to show that there is a KPI on that measure.

How it works...
You created a new calculation that compared the actual count of fatalities compared to the
same number for the prior year. Then you created a new KPI that used the actual and
Last_Year_Fatalities measure. In the KPI window, you set up thresholds to determine
when a KPI is red, yellow, or green. For this example, you want to show that having less
fatalities year over year is better. Therefore, when the KPI is 97% or higher, the KPI will
show red. For values that are in the range of 90% to 97%, the KPI is yellow and anything

below 90% is green. By selecting the icons with both color and symbols, users that are
color-blind can still determine the appropriate symbol of the KPI.

Modifying key performance indicators
(KPIs)
Once you have created a KPI, you may want to remove or modify the KPI from your model.
In this recipe, you will make modifications to the Last_Year_Fatalities hierarchy.

How to do it...
1. Open Model.bim in the Grid view, select the Sum_of_Fatalities measure, then right-

click to bring up Edit KPI settings....

2. Edit the appropriate settings to modify an existing KPI.

How it works...
Just like models, KPIs will need to be modified after being initially designed. The icon next
to a measure denotes that a KPI is defined on the measure. Right-clicking on the measure
brings up the menu that allows you to enter the Edit KPI setting.

Deploying a modified model
Once you have completed the changes to your model, you have two options for
deployment. First, you can deploy the model and replace the existing model. Alternatively,
you can change the name of your model and deploy it as a new model. This is often useful
when you need to test changes and maintain the existing model as is.

How to do it...
1. Open the Chapter3_Model project in Visual Studio.
2. Select the Project menu and select Chapter3_Model Properties... to bring up the

Properties menu and review the Server and Database properties. To overwrite an
existing model make no changes and click on OK.

3. Select the Build menu from the Chapter3_Model project and select the Deploy
Chapter3_Model option.

4. In the following screen, enter the impersonation credentials for your data and hit OK to
deploy the changes that were made using the recipes in this chapter.

How it works...
This recipe takes the model that is on your local machine and submits the changes to the
server. By not making any changes to the existing model properties, a new deployment will

overwrite the old model. By completing all of the recipes in this chapter, all of your changes
are now published on the server and users can begin to leverage the changes.

There's more...
Sometimes you might want to deploy your model to a different database without overwriting
the existing environment. This could be to try out a new model or test different functionality
with users that you might want to implement. You can modify the properties of the project to
deploy to a different server such as development, UAT, or production. Likewise, you can
also change the database name to deploy the model to the same server or different servers
for testing.
1. Open the Project menu and then select Chapter3_Model Properties.
2. Change the name of the Database to Chapter4_Model and click on OK.

3. Next, on the Build menu, select Deploy Chapter3_Model to deploy the model to the
same server under the new name of Chapter4_Model.

4. When you review the Analysis Services databases in SQL Server Management Studio,
you will now see a database for Chapter3_Model and Chapter4_Model.

Chapter 5. Administration of Tabular
Models
In this chapter, we will cover the following recipes:

Managing tabular model properties
Managing perspectives
Managing partitions
Managing roles
Managing server properties
Managing Analysis Services memory

Introduction
In the previous chapters, we focused on the recipes that would create a new model
focused on the data and how it is organized and displayed. This chapter focuses on recipes
that will modify the model properties, how data is stored in partitions, role-based security
and server properties. You will learn about the tabular model properties and the most
common properties to modify. In addition, there are many ways to change how the model is
seen and used by the users. These techniques include adding perspectives, partitions,
roles, and server properties.

Managing tabular model properties
Tabular model properties are set inside the project in Visual Studio. These properties affect
how the model is built, deployed in the workspace, and the backup method being used.
When creating a new model project, there are several properties that are set to default
values that include workspace server, workspace retention, and data backup. All model
properties are accessed through the Solution Explorer window and by selecting the
Model.bim file. You will then see the various properties that you can modify to change the
default behavior of the model. The following recipes show how to make modifications to the
most common properties.

Changing data backup locations
You can change the model to perform a backup to disk and set the location of the backup.
This can be helpful if you want to store the backup in a shared folder and let others restore
it to their machine. You can also use it to back up the model to a different disk drive if you
have more than one in your development machine.
1. Open the Chapter3_Model solution and select the Model.bim file in the solution

explorer to bring up the properties window.

2. Select the Data Backup property. It is currently set to Do not back up to disk.
Change the property to Back up to disk.

3. Make a change to the model to force a backup and then click on Save All to bring up
the Save File As window.

4. Click on Save and then click on Yes and then on Confirm Save As.
5. Save the Model.bim file to create an Analysis Services backup file (.abf). While this

option is being used, it will take longer to save and load the model.

Changing DirectQuery mode
The default setting for your project is to have DirectQuery Mode turned off. While this
setting is off, queries against the data will be directed at the in-memory VertiPaq cache.
Data is loaded into the VertiPaq cache when you process the model. One limitation to be
mindful of is the amount of data you are loading and how much memory your server has
available. The additional details on the benefits and limitations of DirectQuery will be
provided in the later recipes.
1. Open the Chapter3_Model solution and select the Model.bim file in the solution

explorer to bring up the properties windows.
2. Select the dropdown for DirectQuery Mode and change to On.

Changing workspace retention
There are three settings available for handling the data when working building a Tabular
Model. By default, the model is set to Unload from memory. This setting removes the data
from memory once the project is closed. One drawback is that opening of large projects will
take more time while the project is loaded. Using the Keep in memory setting will maintain
the database in memory on the server. This reduces the amount of time to open the model
in Visual Studio. The final option is to Delete workspace. This option deletes the
workspace database from memory and does not keep a copy on disk. Using this option
consumes the least amount of memory and storage; however, it requires the most time to
load the model when it requires changes.
1. Open the Chapter3_Model solution and select the Model.bim file in the solution

explorer to bring up the Properties window.
2. Select the dropdown for Workspace Retention to choose the new settings.

Changing workspace server
If required, you can change the server used when building models. This is required if you
have a new development server that you need to leverage and are opening old models that
use a now out of date server.
1. Open the Chapter3_Model solution and select the Model.bim file in the solution

explorer to bring up the properties window.
2. Select Workspace Server and type in the appropriate server name.

Managing perspectives
As your models grow in size and complexity, it is easy for users to be overwhelmed by the
amount of data, dimensions, and measures. Perspectives enable you to create views of the
model that are limited in size based on your requirements. Using our example, you could
create a perspective that limits the data to being greater than 2010 and weather accidents
that occurred under rain and severe winds.

Getting ready
Download the code for the Crash_Data database from the Packt website and load into a
SQL Server database named Crash_Data_DB.

How to do it...
In this recipe, you will create a new perspective to limit the dimensions and measures that
are exposed. Users who have access to this partition, will only see the selected data.
Adding a new perspective
1. Open the Crash_Data_Solution in Visual Studio.
2. On the Model menu, select Perspectives, and then select Create and Manage.

3. On the Perspectives windows, click on New Perspective to bring up the menu.

4. Type Weather in the New Perspective Name. Expand the Crash_Data_T table and
select CASENUMBER and Count_of_crashes. Then select the YQMD hierarchy from
the MasterCalendar_T table, and WEATHER_CONDITION and then click on OK.

5. To test the change, deploy the model. Then change the Select Perspective dropdown
to Weather.

6. Notice the only tables and fields that are now visible are the ones selected in step 4.

7. To select the perspective in Excel, open a new document and then select the Data tab
and Get External Data | SQL Server Analysis Services. In Data Connection
Wizard, select the Crash_Data_SSASTM model and you will see two cubes.

8. Select the Weather cube and click on Finish and import into a pivot table. You will now
only be able to see the items selected in Step 4 as the only selectable items in the
Excel pivot table.

Editing a perspective
Editing a perspective enables you to modify the tables and fields that are included in the
perspective.
1. Open the Model menu, perspectives, and then create and manage.
2. From the Perspectives window, select SURFACE_CONDITION, LIGHT_CONDITION,

and MAJOR_CAUSE and then click on OK.

3. Change the Model.bim to the Diagram view to see the available tables in the
perspective.

Renaming a perspective

1. Open the Model menu, perspectives, and then create and manage.
2. From the Perspectives window, place your cursor over the Weather name and select

the middle box to rename the perspective, Weather_All, and click on OK.

Deleting a perspective
1. Open the Model menu, Perspectives window, and then create and manage.
2. From the Perspectives window, place your cursor over the Weather name and select

the first box containing the red x to delete the perspective and click on OK to remove
the perspective.

Copying a perspective
1. Open the Model menu, Perspectives window, and then create and manage.
2. From the Perspectives window, place your cursor over the Weather name and select

the last box containing the two boxes to copy the perspective and click on OK.

Managing partitions
Partitions in Analysis Services enable you to break up your data into manageable parts.
Typically, you use them when you want to limit the amount of data you need to process in
the model when the data is updated. Using our crash data table, we will add a new partition
to the one that includes only crash data from January 1, 2015 onwards. Partitions are
commonly created to break up large datasets based on common properties such as dates,
regions, or stores. When you create a partition, only the data that matches the condition in
the SQL statement will be inserted into each partition. In this recipe, you will create a new
partition to move the crashes that occurred after 1/1/2012 to a new partition. Then you will
edit the partition to limit the data to crashes that occurred prior to 1/1/2015.

How to do it...
Creating a Partition
1. Open Crash_Data_Solution in Visual Studio.
2. Select the Table menu and then Partitions... to bring up the Partition Manager

window.

3. Select New to create a new partition. Change Partition Name to
CRASH_DATA_GT_2015 and then select the SQL icon to change from the Grid view
and select OK.

 SELECT [dbo].[CRASH_DATA_T].* FROM [dbo].[CRASH_DATA_T]
 where crash_date >= '01/01/2012'

4. The previous query creates a new partition for all data greater than January 1,
2012.

Editing a partition
The process to edit a partition begins the same way as creating a partition, as follows:
1. Open Crash_Data_Solution in Visual Studio.
2. Select the Table menu and then Partitions... to bring up the Partition Manager

window.
3. Select the first partition CRASH_DATA_T and rename to CRASH_DATA_LT_2015 and

select the SQL icon.
4. Modify the SQL statement to limit the data to less than January 1, 2015:

 SELECT [dbo].[CRASH_DATA_T].* FROM [dbo].[CRASH_DATA_T]
 where crash_date < '01/01/2015'

Processing partitions
Once the data has been partitioned in order for Analysis Services to take advantage of the
partition, you must process them. In your example, you do not have older data stored in a
partition prior to 2015. If no further data is being added or modified to that partition, you
can process it once and would only need to process it for modifications to the model. As
new data is being added to the newer partition, you would process it to incorporate the new
data as required by your load process.
1. Open the Model menu and select Process to bring up the available options.

2. From the Process Partitions window, change Mode to Process All and then check
the boxes next to CRASH_DATA_LT_2015 and CRASH_DATA_GT_2015 and then
click on OK. This forces the model to reprocess all data, which would otherwise not be
required.

3. The model will then process the data for both partitions.

How it works...
In this recipe, you created a new partition for the Crash_Data_T table that is split based on
the crash date value. The new partition only has records from January 1, 2015 onwards.
Then, to get the data into the partitions, you performed a full partition of the model. This
processing moved the data into proper partitions.

Managing roles
Each tabular model that you develop in Analysis Services can have unique permissions as
required for your use cases. Permissions are assigned by implementing defined roles and
associating Windows users or Windows groups to each role. In addition, you are able to
limit the data that users can see by adding row-level filters.
In this recipe, you will be able to create a new role for four of the types of permissions that
are defined in Analysis Services.

Permission Abilities Row
Filter

Read Members assigned to this role can query the data Yes
Read and
process

Members assigned to this role can query the data. In addition, they
can execute commands to process the model. Yes

Process Members assigned to this role can process the model only No

Administrator Members assigned to this role have full control and can query the
data No

There is one additional permission: None, which does not allow anyone to view or process
the model. If required, you could configure this permission in the same way as the others.

Getting ready
On your Windows machine, you will need to create four new users that will be assigned to
various roles in the following recipes:

SSAS_READ
SSAS_READ_PROCESS
SSAS_PROCESS
SSAS_Admin

How to do it...
In these recipes, you will assign the users you've created to different roles. Then, test the
ability of each role in the model to ensure they work and understand the impact of each.
Creating Admin role
1. Open the Crash_Data_Solution in Visual Studio.
2. On the Model menu and select Roles... to bring up the Role Manager window.

3. In the top box, select Administrator from the Permissions dropdown to enable this
role as an admin. Then, select the Members tab and click on Add... to bring up the
Select Users or Groups window. Add the SSAS_Admin user and click on OK to
return to the Role Manager window.

4. Review that you have the proper settings and then click on OK to create the new
Admin role.

Creating a Read role
In this recipe, you will create a new role that uses the read permission and then limit data to
the role by adding a row filter to show only data relating to ice surface conditions.
1. In the Model menu, select Roles... to bring up the Role Manager window.
2. In the row under admin, change the permission to read and name the role Read_Ice.
3. Using the DAX filter box, enter:

 =CSRFCND_T[SURFACE_CONDITION]="Ice"

4. Then, limit the role for only seeing data pertaining to ice surface conditions.

5. Then, select the Members tab and click on Add... to bring up the Select Users or
Groups window. Add the SSAS_Read user and click on OK to return to the Role
Manager window and then click on OK.

6. To confirm that the filter is working correctly, deploy the model and then connect to it
using SQL Server Management Studio. Change the role to SSAS_READ.

7. From SSMS, drag SURFACE_CONDITION and Count_of_Crashes to the model
browser. Because the filter is limiting data to only surface conditions of ice, only data
for ice is returned.

Creating a read and process role
In this recipe, you will create a new role that uses the read and process permission.
1. In the Model menu, select Roles... to bring up the Role Manager window
2. In the row under Admin, change the permission to read and name the role

Read_and_Process.
3. Then, select the Members tab and click on Add... to bring up the Select Users or

Groups window. Add the SSAS_READ_PROCESS user and click on OK to return to
the Role Manager window and then click on OK.

Creating a process role
In this recipe, you will create a new role that uses the process permission.
1. In the Model menu, select Roles... to bring up the Role Manager window
2. In the row under Admin, change the permission to read and name the role

Read_and_Process.
3. Then, select the Members tab and click on Add... to bring up the Select Users or

Groups window. Add the SSAS__PROCESS user and click on OK to return to the
Role Manager window and then click on OK.

Editing roles
In this recipe, you will see how to go back and edit existing roles:
1. In the Model menu, select Roles... to bring up the Role Manager window.
2. Once the available roles are shown, you can modify filters and memberships to roles.

There's more...
You can also bring up the Role Manager window using the icon in Visual Studio.

Managing server properties
You can modify the installed Analysis Server by modifying the properties. Changes to these
properties affect all models deployed to the server.

How to do it...
1. Connect to Tabular Services in SQL Server Management Studio.
2. Select the localhost service, right-click and then select properties to bring up the

Analysis Services Properties windows.
3. Select the General page; to bring up Advanced Properties click on the Show

Advanced (All) Properties checkbox.

Managing Analysis Services memory
SQL Server Analysis Services running in Tabular mode stores data in memory as the default
behavior. In some cases, you can load more data than you have memory, which would
result in failed processing. The default setting is to allow the engine to page data to disk
when required. By design, the engine will begin paging to disk when the memory
consumption goes higher than 60% of the total memory. When running Tabular Models, be
sure to monitor the server's total memory consumption. If the system becomes stressed,
you will need to reduce the amount of data being processed or add more memory.

How to do it...
1. Connect to Tabular Services in SQL Server Management Studio.
2. Select the localhost service, right-click and then select properties to bring up the

Analysis Services Properties windows.
3. Select the General tab and then scroll down to the Memory items.
4. To change VertiPaq memory limit, update the Value to 70 and then click on OK.

How it works...
In this recipe, you updated the amount of memory that must be consumed before paging to
disk would occur. In this case, the percentage of memory that can be used is up to 70%.
Once more than 70% is consumed, the data will then be paged to disk. This is a serverwide
setting and affects all Tabular models that are published to the server.

Chapter 6. In-Memory Versus DirectQuery
Mode
In this chapter, we will cover the following recipes:

Creating a new DirectQuery project
Configuring DirectQuery table partitions
Testing DirectQuery mode

Introduction
When developing a tabular model, you have two primary choices for where and how the
data is stored and accessed from end user tools. Tabular models are unlike SQL Server
Analysis Services Multidimensional models, which only store all data to disk. Tabular models
by default store data in memory with an option for storing data to disk when appropriate.
By storing the data in memory there is faster query performance since there is no disk I/O
for retrieving data results. Modeling can be accomplished in visual studio and does not
require a full data transformation or load process which speeds up the time to develop and
deploy the model to production. This chapter focuses on the available storage modes for
tabular models, in-memory mode and DirectQuery mode. You will learn how each mode
operates and best practices for choosing the appropriate mode for your solution.

Understanding query modes
There are two unique values that you can choose to implement the query mode in your
model. Before changing the value of the property you need to review how each mode works
when deciding the optimal solution for your project before choosing in-memory and
DirectQuery mode.
QueryMode
Property Description

In-memory
(Default) Queries are answered using the data stored in cache.

DirectQuery Queries are answered by accessing the data directly from the
relational database.

Understanding in-memory mode
The default storage for a tabular model is to use the in-memory data cache to store and
query data. By storing the data in memory, queries accessing the data perform faster than
having to retrieve data from disk. Starting with SQL Server 2012, Microsoft integrated an
in-memory technology that they branded as xVelocity in-memory technologies. At the core
of this technology is the analytics engine found in Analysis Services, as well as in-memory
optimized columnstore indexes added to the SQL Server engine.
All of the recipes that you have performed in Chapters 1-5 leveraged the in-memory
functionality. When you are using in-memory mode, the following steps occur when you
deploy your model to the Analysis Services server:

1. Developer builds the model in Visual Studio and deploys.
2. Data is sent to the Analysis Services Server.
3. Model is processed to load into memory on the server.
4. When a user accesses the model from any tool, the query is executed against the in-

memory data.
5. Results from the query are returned to the user's tool.

Typically, this configuration will have the best performance due to the data being cached to
memory and eliminating the need to access physical disks.
Advantages of in-memory
Using in-memory caching allows for the most available performance and options in tabular
mode. You have full access to all the available DAX functions to build out your solution. In
addition, you can leverage the ability to create calculated tables. These tables are created
and stored in-memory to optimize query performance. This is also the most flexible mode
since it allows you to connect data from a variety of data source systems and join them in
model creation. This speeds up the creation of your BI solution by eliminating the need to
create a separate ETL process to load and stage the data.
Limitations of in-memory
While in-memory mode is highly effective for creating BI solutions, there are limitations.
First, since all data is cached in-memory, you have to ensure your server has adequate
memory, not only for the dataset. Be sure to include the operating system, Analysis
Services, and any other third-party software your company may require. If loading very
large datasets into memory, you can exceed available memory and the deployment and
processing will fail. If you are using the same Analysis Services server for multiple models,
you will need to monitor the total size of data being loaded into memory. You could have a
small model fail to deploy because other models have used most of the available free
memory.
Another limitation of in-memory mode is having to keep the data refreshed. If your data
needs to be kept near real time, it can be difficult to reprocess the data in the memory
cache.

Understanding DirectQuery mode
The alternate storage for a tabular model is to use the DirectQuery mode to store and
query data. Using this mode, data is stored in the SQL server relational database engine

and queries to the model are passed to the SQL engine.
When you are using DirectQuery mode, the following steps occur when you deploy your
model to the Analysis Services server:
1. Developer builds the model in Visual Studio and deploys tabular model.
2. The model is processed with location of data.
3. When a user accesses the model from any tool, the query is sent to SSAS and then

sent to the SQL Engine.
4. Results from the SQL Engine are sent to SSAS.
5. SSAS translates the data and returns the results to the end user:

Advantages of DirectQuery
There are many benefits to using DirectQuery mode for your model instead of in-memory
mode.
As discussed earlier, in-memory mode requires an extra step of processing the data to
ensure the data in the memory cache is refreshed. DirectQuery mode overcomes this
limitation by reading directly from the source tables. For instance, if you have a model built
against a table that is being updated in real time and a user queries data from the model,
the query goes directly to the source table not the in-memory data to get the data with no
need to refresh the model.
Since in-memory mode is limited by the amount of available memory on the server,
DirectQuery mode can overcome that limitation by allowing you to access datasets larger
than the available memory of the Analysis Services server. This is done by leveraging the
data being stored in the relational database engine.
The performance of DirectQuery mode can be further enhanced by leveraging the ability of

the model to access column store indexes in the SQL Server database.
Limitations of DirectQuery mode
While DirectQuery mode does have many advantages, there are limitations to the
functionality compared with in-memory mode.
If you are pulling data from multiple sources, then you cannot use DirectQuery mode. Due
to the nature of how DirectQuery mode works, it can only access a single relational
database. Allowed databases for DirectQuery mode include:

Microsoft SQL Server 2008 and up
Microsoft Azure SQL Database and Data Warehouse
Microsoft Analytics Platform System (APS)
Oracle 9i and up
Teradata relational database V2R6 and up

Query sources are limited in DirectQuery mode. If you have leveraged stored procedures,
then you will not be able to use DirectQuery mode. Data pulled from stored procedures
would have to be rewritten to a query that is used when building the model. Also you cannot
leverage calculated tables. If possible, you would need to recreate the calculated table as a
physical table or view it on the relational database engine to enable DirectQuery mode.
When queries are run against DirectQuery mode, the DAX or MDX queries are transformed
into T-SQL and sent to the SQL database. Therefore, if you are using any DAX or MDX
formulas that cannot be converted and processed successfully, you will receive an error. It
is better to decide early in model development whether you will be using DirectQuery mode.
You can then test your formulas and performance as you develop the model.
DirectQuery restrictions summary:
Feature Restriction
Data source Can only pull from a single relational database
Calculated tables Calculated Tables are not supported in DirectQuery models
Query limit By default DirectQuery is limited to 1 million rows
Stored
procedures Tables cannot be defined from stored procedures

DAX formulas DAX formulas that cannot be converted to SQL syntax will return an
error

Creating a new DirectQuery project
In this recipe you will create a new tabular model project that will be configured to use
DirectQuery mode.

How to do it...
1. Create a new tabular model solution in Visual Studio named DirectQuery_CrashData.
2. Change the model to use DirectQuery mode by selecting the Model.bim to bring up

the properties and change DirectQuery Mode to On from Off:

3. Select Microsoft SQL Server and then click Next:

4. On the Table Import Wizard, select your server and the Crash_Data_DB and click
Next. Then enter a username and password that has access to your data and click
Next.

5. Select the table in the Crash_Data_DB and select Finish:

How it works...
By enabling DirectQuery prior to building anything in the model, the options for importing
data are limited to those data sources that are compatible with this mode. You will notice
that unlike in-memory mode, upon completion of the table import step no data is loaded into
SQL Server Analysis Services. The connections have been established so queries can pass
through to the underlying data.

Configuring DirectQuery table partitions
Before you can deploy and use the model, you must configure the sample partitions for
each table that is being used in the model. When you first try to deploy the model, you will
receive an error on each table. These errors occur because there is no data loaded into the
sample partition:

This recipe walks you through the steps to create a sample partition on a table to clear the
error.

How to do it...
1. In the data Grid view select the CRASH_DATA_T table and then select the Table menu

and Partitions to bring up the Partition Manager.
2. On the Partition Manager, click Copy to make a copy of the data. Select the SQL

icon and filter the results to data greater than January 1st 2015 and click Validate to
ensure that the SQL statement is correct and click OK to finish:

3. Now repeat the process for the remaining tables in the project to create sample data
and clear the errors. You will not need to add a filter on the other tables.

4. Select the Build menu and then Deploy to deploy your model to the server.

How it works...
This process prepares the Visual Studio project to have sample data by making a copy of
the data from the underlying relational database source. Until this step is done, you will not
have any data in Visual Studio to view. By creating a copy of the data, Visual Studio has
sample data that you can see to build your model and calculations. Once completed, you
will be able to deploy the model to the server.

Testing DirectQuery mode
By running an SQL Server profiler trace, you can see exactly what is happening when a
DirectQuery mode query is executed. In this recipe, you will use SQL Server Management
Studio to execute a query and trace the results:
1. Connect to your model using SQL Server Management Studio.
2. Drag SURFACE_CONDITION, MAJOR_CAUSE, and Count_of_Crashes to the query

window:

How it works...
Since the QueryMode property is set to DirectQuery, the tabular engine is accessing the
data from the SQL Server Engine tables. The actual query can be seen when you use SQL
Server Profiler to trace the query on the SQL Server Database. In this instance, the query
results are sent back to SSAS tabular mode and then presented to the end user tool:

As you can see, the tables being queried are the base tables, and they are being accessed
using T-SQL syntax not DAX or MDX.

Chapter 7. Securing Tabular Models
In this chapter, we will cover the following recipes:

Configuring static row-level security
Configuring dynamic filter security

Introduction
Tabular models leverage the use of Windows users and groups. Recall that in Chapter 5,
Administration of Tabular Models, you added row-level security to a user to filter for one
role to only see Ice conditions in the crash data. When the query is run, the security is
checked to ensure that the user's role has the ability to retrieve the rows of data associated
with the permission of the role, unlike multidimensional security, which uses cells and
dimensions to determine what data can be accessed. In addition, tabular models do not
have the ability to deny permissions such as does the multidimensional model. Tabular
models rely on row-level security only. If a user is assigned to multiple roles, they obtain the
rights from all the associated roles; for example, if the Read_Ice user is added to the
Admin role, they would have all rights as an administrator as well. Pay close attention when
setting up and deploying security. Tabular model security can be configured to use row
filters or dynamic filters. When preparing to implement security on your model, you need to
understand how each filter type works and choose the most appropriate method for your
requirements.

Configuring static row-level security
Static row-level security applies the filter to all members of the role. Roles can have filters
on multiple tables. This recipe demonstrates this by adding a new filter on the Read_Ice
role already created on the model.

Getting ready
Open the Crash_Data_Model in Visual Studio to bring up Model.bim. Then, change your
view to the Diagram view to see the table relationships. In this recipe, you will review how
row-level security is added and how it works. You will add a filter on the LIGHT_T table
and then add a filter on the CRASH_DATA_T table.

In SQL Server Management Studio, the current security is only limiting rows to Ice
conditions.

How to do it...
1. Select the Model menu and then Roles to bring up the Role Manager window.
2. Select Read_Ice to see the row filter already applied.

3. In the DAX Filter area for the LIGHT_T table enter:
 =LIGHT[LIGHT_CONDITION]="Dawn"

4. Deploy the model and review the results in SQL Server Management Studio.

How it works...
In this recipe, you added an additional filter to the Read_Ice role since there is a defined
relationship. In this case, a many to one relationship is defined from the LIGHT_T table to
the CRASH_DATA_T table. The Read_Ice role has been filtered to only see Dawn
conditions in addition to the Ice conditions previously defined. When the query is executed,
the DAX formula is evaluated in-memory and the filtered result set is returned.
This type of filtering does not work if you apply the filter on the CRASH_DATA_T table. You
must apply the filter to the correct table of the relationship to enable the row-based filtering
to work.

Configuring dynamic filter security
Dynamic security uses additional information to filter the data to allow more flexibility than
row-level security. In this recipe, you will create a security table that has two users, Bob
and John. Then, by implementing dynamic security, the data that each is able to see will be
shown.

Getting ready
Open the Crash_Data_Model in Visual Studio to bring up Model.bim. Then change your
view to the Diagram view to see the table relationships. In this recipe, you will create a new
security table and then implement dynamic security for these users by using the
USERNAME() function. The USERNAME() function will return the DOMAIN\User from the
account accessing the model.

How to do it...
1. Select the Model menu and the Existing Connections...:

2. Then select Open to bring up the existing connection information:

3. The default import wizard is set to Select from a list of tables and views to choose
the data to import. Click on Next:

4. Select the DynamicSecurity_T table and then click on Finish to import the data:

5. The DynamicSecurity_T is now added to your model using the same connection
information:

6. In the Diagram view, create a relationship between the DynamicSecurity_T table and

the Weather_T table:

7. Then, in the Model menu, select Roles to bring up the Role Manager window. Create
a new role name, DynamicSecurity, and grant it read permissions. Then add User1 to
the Members tab:

8. Now we add the DAX expression to leverage the USERNAME() function. In the
DynamicSecurity table, enter = FALSE(). In the Weather_T table, enter:

=WEATHER_T[WEATHER]=LOOKUPVALUE(DynamicSecurity_T[Weather_ID]
 ,DynamicSecurity_T[UserName]
 ,USERNAME()
 ,DynamicSecurity_T[Weather_ID]

 ,WEATHER_T[WEATHER])

9. Then deploy the model. When a user logs in, the security permission will limit the rows
they can see to what is defined in the DynamicSecurity table.

How it works...
The DynamicSecurity_T table stores the domain names and key to the data a user is
permitted to access. Once this table is loaded into the model and a relationship is
established between it and the WEATHER_T table, filters can be applied. Then you created
a new role to leverage the DynamicSecurity_T table. To this, you add the users to the
members in the role. Then you added the = FALSE() statement to prevent users from being
able to query the DynamicSecurity_T table. The other DAX statement leverages the
LOOKUPVALUE function to return the rows that meet the condition of the Windows user.

Chapter 8. Combining Tabular Models
with Excel
In this chapter, we will cover the following recipes:

Using Analyze in Excel from SSMS
Connecting to Excel from SQL Server Data Tools
Using PivotTables with tabular data
Using the timeline filter with pivot tables
Analyzing data with Power View
Importing data with Power Pivot
Modeling data with Power Pivot
Adding data to Power Pivot
Moving Power Pivot to SSAS via Management Studio
Moving Power Pivot to SSAS via SQL Server Data Tools

Introduction
Excel is the most popular tool for people to use when reporting on data. It is widely
adopted, very flexible, and loaded with features. Most users turn to Excel as their data
analytic tool of choice to help them make better decisions. It is easy to get data from a
variety of sources into Excel such as text files, relational databases, other Excel files, or
Analysis Services. Once data is loaded in Excel, you can easily manipulate the data using
the standard filtering, sorting, and data deduplication. From there you can enhance how the
data is shown by creating different types of charts and visualizations. With the additions of
Power View and Power Pivot, users can now go even further with their analysis by making
interactive reports in Power View. Or they can create their own analytic models in Power
Pivot by combining data from various sources into a single view. The recipes in this chapter
provide an overview of connecting Excel to your Tabular model. You will then create a
Power View report to understand the basics of leveraging Power View. Finally, you will
enhance the Crash Data model with two new sets of codes by connecting Power Pivot to
the SQL Server and loading up the new data from Excel.

Using Analyze in Excel from SSMS
Often you will have users that use SQL Server Management Studio (SSMS) to write
queries or browse data. When you are using SQL Server Management Studio to browse
the cube, there is an easy way to quickly connect to Excel to interact with your model. Built
into the browser in SSMS is a feature called Analyze in Excel. Once clicked the data and
connection that you are viewing is lifted into Excel for further exploration.

How to do it...
1. Open SQL Server Management Studio and connect to your Tabular Service. Right-click

on the database model, Crash_Data_SSASTM, to analyze and select Browse....

2. Once the browser opens, select the columns to review the data in the browser, select
Year from the MasterCalendar_T, LIGHT_CONDITION from the LIGHT_T, and
Count_of_Crashes from the measures CRASH_DATA_T.

3. Click on the Excel icon to start the Analyze in Excel window.

4. Select the Perspective you would like to use, if multiple perspectives are displayed.

5. Select the Crash_Data_Model and then click OK.
6. The next screen displays the Microsoft Excel Security Notice; choose Enable to let

Excel read data from the tabular model.

7. Once completed, you will have a connection established to the cube and a new
PivotTable created in an Excel workbook.

8. Select MAJOR_CAUSE as rows and YQMD as columns, and finally add
Count_of_Crashes as values to ensure you have successfully connected to the
model.

How it works...

From within SQL Server Management Studio you can quickly change to Excel and explore
how the model you designed and built as end users would interact. In this recipe, you
created an initial view of your data in the data browser and then selected the Analyze in
Excel icon to auto create the connection and launch Excel. Once approving the connection,
Excel started with a pivot table. Finally, you created a simple pivot table to ensure that all
the connections and access to your model were successful.

Connecting to Excel from SQL Server Data
Tools
SQL Server Data Tools also has the built-in feature to Analyze in Excel. When prompted you
must select the role or user that you want to connect to the model. Users would not
typically leverage SQL Server Data Tools. Therefore, this feature allows you to test the
perspectives and security to ensure it is working as designed.

How to do it...
1. Open Visual Studio and the Crash_Data_Solution.
2. Click on the Analyze in Excel icon.

3. On the Analyze in Excel Window, select the role that you want to use. In this case,
keep Current Windows User and click OK.

4. Excel opens using the permissions of the account you selected by creating a new
workbook and pivot table.

5. Select MAJOR_CAUSE as rows and YQMD as columns, and finally add
Count_of_Crashes as values to ensure you have successfully connected to the
model.

How it works...

This recipe allows you to connect to Excel and explore the data the same way your users
see the model. While using SQL Server Data Tools, you selected the Analyze in Excel icon
to launch the program. In order to test out the model, you selected the security role that
you wanted to use. Then Excel is launched using the security access of the role. Finally, you
built a simple pivot table report to check that the security and data are accessible as
required.

Using PivotTables with tabular data
These recipes explain how to do fundamental operations with PivotTables against a tabular
model. You will create slicers in Excel. You will then see how to sort and filter the data
within Excel that is connected to your model.

Using Slice, Sort, and Filter
In this recipe, you will learn how to insert a slicer, filter your data, and sort the data in an
Excel PivotTable.

How to do it...
1. Connect to the model as described in the Connecting to Excel from SQL Server Data

Tools recipe.
2. On the Analyze menu, click on Insert Slicers to bring up the Insert Slicers window:

3. Scroll down and select the LIGHT_CONDITION checkbox and click OK:

4. A new Slicer menu is created and added to the worksheet:

5. To use the slicer to filter the data, select the Dawn condition:

6. To select multiple filters, click on the icon to enable the selection of more than one filter:

7. Select Dawn, Daylight, and Dusk to filter for those three conditions:

8. To clear the selection, click on the icon to reset all filters in the slicer:

9. To sort the rows by number of crashes, right-click on a cell to bring up the Sort menu
and then select the sort order you want. Click on the first column under 2015 and Sort
Largest to Smallest:

10. To add a filter, right-click and select Filter and then the filter option you would like to
use. Click on the column header for 2015 and then Keep Only Selected Items:

11. You will now have a PivotTable that has a slicer, sort order, and filtering all applied:

How it works...

Slicers are graphical ways for you to interact with the PivotTable. You selected the field that
you wanted to expose as a clickable button. This created the Slicer menu that you can now
leverage to filter your dataset in an easier format. Then you sorted the data from largest to
smallest by selecting the cell value. Finally, you filtered the data by selecting only the row
that you wanted to explore.

Using the timeline filter with pivot tables
In this recipe, you will create a new timeline filter that enables users to quickly choose the
time frame that they want to analyze. The timeline filter is easier to use than having to
select rows from the pivot table fields.

How to do it...
1. Open Excel and connect to the Crash_Data_SSASTM model and create a new pivot

table report.
2. Add WEATHER_CONDITION to columns, from the MasterCalendar_T select YQMD,

and finally add Count_of_Crashes to the values.

3. Select the Insert menu and then in the filter area select Timeline.
4. On the Insert Timelines windows, select the MasterCalendar_T table and click OK.

5. A new filter window will be added to your worksheet. Change the dropdown on the
right to Years from Months to see all available years. You change your filter criteria by
selecting the different hierarchy of the YQMD to change what the slicer shows.

6. To interact with the data, select the years that you want to focus your analysis on.
Select 2010 to see only that year's data.

7. Then select the right side of the 2010 year to get the slider bar and then select 2010 to
2013.

How it works...
In this recipe, you connected Excel to the tabular model. Then you created a timeline filter
that uses the MasterCalendar_T table's YQMD hierarchy. You are using the predefined
hierarchy in the model for the date control with the relationship between each hierarchy
level established. The timeline filter leverages the relationships and allows for easy viewing
of the data in the Excel sheet. For the first example, you selected the year 2010 and
reviewed how the filter worked. Then you changed the filter selection to use 2010 to 2013
and viewed the results.

Analyzing data with Power View
Power View enables highly flexible analytical views view from within Excel. Users can
leverage Power View to create interactive data exploration, visualizations, and
presentations. Users who are familiar with pivot tables will quickly be able to leverage
Power View. The Power View interface enables faster exploration of data over traditional
pivot tables. This recipe will show you how to connect to your model from Excel. You will
then see how to build and interact with Power View against the data.

How to do it...
1. Open a new worksheet in Excel and select the Data menu. Then Get External Data,

From Other Sources, and select From Analysis Services.

2. On the Data Connection Wizard, enter your server name (this example uses WIN-
6D5CGQH9KL9) and your Log on Credentials, then click Next.

3. Select the Crash_Data_SSASTM database, then the Crash_Data_Model, and then

click Next.

4. Review your connection information and then click Finish.

5. On the Import Data window, choose Power View Report and New Worksheet and
then OK to have your data ready to view.

6. A new Power View1 worksheet is opened in Excel with connections to the data in the
tabular model.

7. Then select the LIGHT_CONDITION and Count_of_Crashes from the Power View
fields to create a simple data grid.

8. To change the data grid to a chart click on the field on the grid to bring up the DESIGN
menu. Then choose Bar Chart and Stacked Bar.

9. Now add another data grid by dragging the MAJOR_CAUSE and Count_of_Crashes
from the Power View Fields to a blank area on the Power View1 sheet.

10. To see how the filtering works, click on the Dark, roadway lighted graph and you will
see the major cause data grid be filtered at the same time.

How it works...
You connected Excel directly to the tabular model and launched the Power View interface.
Then you explored the data and created a data grid report that showed the number of
crashes by light conditions. Then you changed the data grid to a bar graph. To show how
the interactivity works, you added a new data grid that shows the number of crashes by
major cause. Then by selecting a light condition on the bar graph, you filtered the major
cause data grid to only those crashes related to the light condition of Dark, Roadway
lighted.

There's more...
Power View has many more functions and features that allow users to easily interact with
data. There are options to create maps, different types of graphs, and sorting features. To
get the most from this feature in Excel, take the time to explore and see how you can
leverage it to perform better data analysis.

Importing data with Power Pivot
Power Pivot is an add-in for Excel that enables business users to create models using
disparate data sources. Once the data is gathered, you can build PivotTables, PivotCharts,
or Power View reports. For example, a user could import internal business data and mash it
up with external data to create an analytical model to share with others in the company.
Instead of requiring IT to be involved in building the solution, PowerPivot empowers users to
go beyond requirements and actually build a solution. If the solution is required for the
enterprise, the PowerPivot model can be used as the basis for the tabular model deployed
to the server.

Getting ready
Before you can use PowerPivot for the first time, you will need to enable it in Microsoft
Excel:
1. Open Excel and go to File | Options and then Add-Ins.
2. In the Manage dropdown, select COM Add-ins, and then click Go....

3. Select Microsoft Power Pivot for Excel and click OK.

4. You will now have a new menu option in Excel - Power Pivot.

5. You have now enabled Power Pivot. Click on Manage to begin working with Power
Pivot. This will bring up the model window where you add data to your model.

6. Click on Manage and Get External Data, select SQL Server, and then connect to
your Crash_Data_DB database.

7. Accept the default setting and then click Next.

8. Then select CRASH_DATA_T, LIGHT_T, and WEATHER_T, and then click Finish.

9. Upon completion, the data is imported into your Power Pivot model locally.

How it works...
In this recipe, you set up Excel to add the PowerPivot add-in. By selecting the COM Add-
ins, you reviewed the available options and then selected PowerPivot. Then once enabled
you connected to an SQL Server database and imported data from three tables into your
PowerPivot model. The PowerPivot model is now ready for use within Excel.

Modeling data with Power Pivot
Getting ready
Follow the steps in the Importing data with Power Pivot recipe to get your Excel
environment ready.

How to do it...
1. Click on the Manage icon from the Power Pivot menu button to bring up the data you

just loaded.

2. Click on a blank cell to create a new measure called
Count_of_Crashes, Count_of_Crashs:=COUNT([CASENUMBER]), and then press Enter.

3. You will now have a new measure added to your model.

4. Next switch to the Diagram View in the upper right corner to show the tables loaded in
the model.

5. Now you need to create relationships between the tables to enable DAX calculations to
work properly. Drag the LIGHT column from LIGHT_T to the LIGHT column in
CRASH_DATA_T. Then do the same for WEATHER, from WEATHER_T to WEATHER
in the CRASH_DATA_T table to create the relationships.

6. Next create a Pivot Table chart to show the data. Select PivotTable, then Two Charts
(Horizontal), and then select New Worksheet on the next window.

7. Finally, you are ready to create charts in your worksheet.

8. Select Chart 1 and then move WEATHER_CONDITION to the Axis and then
Count_of_Crashes to the Values. Then select Chart 2 and move
LIGHT_CONDITION to the axis and Count_of_Crashes to values to create two
charts.

How it works...
After importing data from an SQL database into Power Pivot you created a calculation to
find the number of crashes in the data. Then you modeled the relationship between the
tables by adding a new relationship between the WEATHER_CONDITION and the

Crash_Data_T table. You then created another relationship between the
LIGHT_CONDITION and the Crash_Data_T table. Finally, you created graphs on the data
that show how the relationships interact with each other by displaying the
Count_of_Crashes for both light and weather conditions.

Adding data to Power Pivot
Now that you have a working model in PowerPivot, you will enhance your SQL Server data
that was imported with new external data that is stored in Excel. You will add new data
from an Excel sheet that contains codes for two other columns. This is an example of how
users can continue to enhance corporate data and make the model more useful for all
people that need to leverage the data.

Getting ready
This recipe requires the Crash_Data_PowerPivot_new_tables.xlsx Excel data that is
available from the Packt Publishing site.

How to do it...
1. Open your model by clicking the Manage icon in PowerPivot to bring up the model

window.
2. Select Get External Data and From Other Sources, scroll to the bottom and select

Excel file, and then click Next.

3. Select the Use first row as column headers and then Next>. Then select
CRASH_SEVERITY and MANNER_of_CRASH to add those tables to your model and

select Finish.
4. Now switch to the Diagram View and build a relationship from the new tables you just

imported. Drag Severity_ID from CRASH_SEVERITY to CSEV in CRASH_DATA_T.
Then drag Manner_of_Crash_ID to CRCOMNNR in CRASH_DATA_T.

5. To test the new tables, select PivotTable and then Two charts (Vertical) and New
Worksheet, and then OK.

6. Drag Severity_Description to Axis and Count_of_Crashes to Values on the top
chart. Then select the bottom chart and drag Manner_of_Crash and
Count_of_Crashes to Values to produce graphs based on the old and new data.

How it works...
This recipe extends the base data by adding new data sources from an Excel file and
mashing them together with the existing SQL database tables that were originally imported.
You imported the CRASH_SEVERITY and MANNER_OF_CRASH data and then created
the required relationships in the model. Finally, you created new Pivot Charts that leverage
the data to show how the model responds. You now have a working model that combines
data from two sources. If additional data was required, importing the data is the method to
continue to extend your model.
Moving Power Pivot models to the enterprise
Having your business users create Power Pivot models enables quicker collaboration
between IT and business needs. Users are able to source data, model the relations, create
calculations, and then analyze the results. IT developers can then take the Excel book and
start a project with many pieces already in place, and move the model to production using
the organizations software development lifecycle (SDLC) process.
There are several reasons why you will need to move your user-created model to an SSAS
solution. First, Excel is currently limited to workbook sizes of 2 GB. When users are
accessing the data from the SSAS model, there is no limitation on the size of the data. The
SSAS model could hold terabytes of data and users can access over the 2 GB limit of
Excel. In addition, once the model is moved to SSAS, you can implement security at the
server level. Then users across the enterprise that have access can leverage the model.

Moving Power Pivot to SSAS via
Management Studio
Once you have a developed Power Pivot solution that you would like to move to SSAS, you
can save a copy of your Excel workbook and place it in the SSAS backup folder location.
Then use the Excel file as the basis for the SSAS model.

How to do it...
1. Open the Chapter 8 Power Pivot Excel workbook.
2. Save a copy of the file as the Crash_Data_PowerPivot_SSAS workbook, and then copy

or move the file to the backup location of your SSAS server. In this example, the folder
is c:\Program Files\Microsoft SQL Server\MSAS13.MSSQLSERVER\OLAP\Backup.

3. Open SQL Server Management Studio and connect to your tabular instance. Expand
the Server menu to see the folders.

4. Right-click on Databases to bring up the menu window, and then select Restore from
PowerPivot....

5. In the Restore from PowerPivot... window, update the options to create the database
from the Excel file. In the Restore Source section, to restore the file you just saved in
step 2, select the folder with the OLAP\Backup and then select the
Crash_Data_PowerPivot_SSAS.xlsx file and select OK.

6. Then in the Restore Target section, type SSAS_from_PowerPivot in the Restore
database field to create a new database from the file. If you had an existing database
that you wanted to restore the PowerPivot file to, you would select it from the drop-
down list. Next, in the storage location field, select the browse button and then select
the location to use for the data file.

7. Now that the source and restoration fields are completed, on the main window select
OK to start the import process.

8. Once completed, right-click on the Databases folder in SSMS, and then you will see
your new model - SSAS_from_PowerPivot.

9. To test the model, right-click on SSAS_from_PowerPivot, and then select Browse. In
the Browse window, drag over the Count_of_Crashes and the Manner_of_Crash to
see the data that you added in Excel now being used in SSAS.

How it works...
In this recipe, you used the SQL Server Management Studio option to restore a tabular
model from an Excel database. First you opened an Excel workbook that contained a
Power Pivot model and saved it to the SSAS backup folder. Then you switched to SQL
Server Management Studio and used the Restore from PowerPivot... option to bring up
the option window. Next you chose the location to use as the source and typed in the new
SSAS tabular model to restore the Excel file along with the location to store the data.
Finally, you completed the import and then refreshed SQL Server Management Studio. By
viewing the data, you were able to ensure that the new model was created and the data
you added was present in the model.

Moving Power Pivot to SSAS via SQL
Server Data Tools
The other option to migrate Power Pivot models to SSAS is through the SQL Server Data
Tools in Visual Studio. This option uses the import from the PowerPivot template to take the
model from the Excel file and load it into a new Visual Studio project. Developers would use
this mode to create a solution in Visual Studio and then be able to follow the normal SDLC
process and version control that they do for other projects.

How to do it...
1. Open Visual Studio and create a new project and then select the Business

Intelligence installed templates to find Import from PowerPivot. Change the name to
SSAS_PP_from_SSDT and select OK.

2. On the next screen, select the Workspace server if asked and click OK.

3. Now select the location and file for your Excel workbook that has a Power Pivot model
and select Open. In this recipe, the workbook is on the desktop labeled Chapter 8
PowerPivot. Once this is selected click OK.

4. The data will be imported into a new project in Visual Studio. To see that the model
imports the data and relationships, change to the Diagram View and you will see the
tables with the relationships that you built in Excel Power Pivot.

How it works...
In this recipe, you opened Visual Studio and then created a new project using the installed
import from the PowerPivot template. You then selected the Excel file that has a Power
Pivot model. Visual studio then imported the model and created a project with the data and
all features that were built in Power Pivot. Finally, you switched to the Diagram View and
ensured that the relationships were imported correctly.

Chapter 9. DAX Syntax and Calculations
In this chapter, we will cover the following recipes:

Understanding DAX formulas
Using the AutoSum measure in Visual Studio
Creating calculated measures
Creating calculated columns
Using the IF function
Using the AND function
Using the SWITCH function
Using the CONCATENATE function
Using the LEFT function
Using the RELATED function
Using the RELATEDTABLE function
Using EVALUATE in DAX queries
Filtering based on a value
Filtering a related table
Using ALL to remove filters
Using ALL to calculate a percentage
Using the SUMMARIZE function
Adding columns to the SUMMARIZE function
Using ROLLUP with the SUMMARIZE function

Introduction
This chapter will explore how to leverage Data Analysis Expressions (DAX) in Power
Pivot, tabular models, and SQL Server Management Studio. DAX is a formula-based
language similar to functions in Excel that allows you to create calculations and queries.
When designing models, you will leverage these formulas to enhance the model to make it
easier for users to leverage. There are two ways to add DAX into your model, either as a
calculated column or a calculate measure. When you create a calculated column you apply
a function that evaluates each row independently and returns the result. Calculated
measures are applied to the table and column by using functions to determine the result
based on the context. In addition, you can use DAX to query your model much like using T-
SQL to query a relational database.

Note
There are several categories of DAX functions designed to perform a variety of
calculations. These include logical, aggregation, text, mathematical, statistical, date and
time, and time intelligence functions.

When a DAX formula is calculated, it is evaluated in its context. There are two types of
context that apply in DAX: row and filter context. Row context applies to cells in a row, such
as creating a calculated column. The DAX expression is calculated on each row separately.
The concept of filter context refers to any filtering that has been applied that affects the
results returned from the model. In previous recipes, you have created basic DAX

calculations to count the number of crashes in the Iowa crash data using the COUNT
function. For example, the Count_of_Crashes measure when originally applied gives the
total of 559,227. As you apply other filters, the DAX expression is recalculated based on
the new filter context. For instance, when you query the data through a tool such as Power
View and use different columns, the formula is recalculated based on the new rows. In this
example, the formula is filtered by the LIGHT_T table using the same calculation. The
evaluation context applies the expression to each row in the LIGHT_T table to calculate the
count of crashes by LIGHT_CONDITION.

In this chapter, you will explore more capabilities of the DAX language to continue to
enhance the Iowa crash data model developed in Chapter 8, Combining Tabular Models
with Excel.

Understanding DAX formulas
There are two basic types of DAX formulas. The most common one that you will use
performs a function on the data to return a value. The other returns data as a table most
commonly used to create a new dataset or is used as input for another function. To create
any DAX formula, you need to understand the basic syntax. This recipe explains how the
Count_of_Crashes formula works and creates the formula using Power Pivot in Excel.

Getting ready
This recipe will use the Chapter 9 Power Pivot.xlsx workbook available from the Packt
Publishing website.

How to do it...
1. Open the Chapter 9 Power Pivot.xlsx workbook and click on the Power Pivot menu.
2. Then select the Measures tab and New Measure.

3. The Measure window will open.

4. Enter Count_of_Crashes in the Measure Name, and in the Formula area enter

 =COUNT([CASENUMBER])

5. Finally, change the Category to Number, Format to Whole Number, and check the
Use 1000 seperator (,),and hit OK to close the window.

How it works...
In this recipe, you opened the Excel workbook and switched to Power Pivot. Then you
opened the Measures menu, created a new measure, and then updated the formatting.
The formatting was changed to always display this measure in whole numbers using the
1000 separator. Since this is done in the model, whenever someone uses this field in Excel,
it will be automatically shown using the applied formatting. The basic syntax of DAX is
shown in this formula =COUNT(<column>). Every function begins with an equal sign and the
function name followed by the argument to pass to the function. In this recipe, you passed
the COUNT function the column of CASENUMBER as the argument. The function then counts
the number of rows that have a CASENUMBER and returns the result.

There's more...
To edit an existing calculation in Power Pivot, go back to the Power Pivot tab and then
select the Measures menu. Select Manage Measures and a list of existing measures is
shown. Select the measure you want to edit and then select Edit on the top window. To
delete a measure, select the measure and then select Delete.

Using the AutoSum measure in Visual
Studio
It is common when building a new model or enhancing an existing model that you will need
to apply formatting onto various columns. Updating the formats in the model prevents users
from needing to modify the format each time to access the model. For example, to
determine the number of records in a table using a record ID column that is numerical would
need to be aggregated with a COUNT function and not a SUM function. This behavior when
set at the model level affects how everyone using the model sees the data. When designing
your model in Visual Studio, there is an option to quickly apply one of six predefined
common functions to numerical columns:

Sum
Average
Count
DistinctCount
Max
Min

This option is very helpful when you need to add calculations on several columns quickly
that are numerical data types.

How to do it...
1. Open the Visual Studio solution for your crash data tabular model.
2. Select the CRASH_DATA_T table in the Grid View and then scroll to the right to find

the FATALITIES, INJURIES, MAJINJURY, MININJURY, POSSINJURY, and
UNKINJURY columns.

3. Hold down Shift and then select the five columns.

4. Each of these columns are whole numbers and are currently being summarized by the
default function on the model. To change them to be summarized by the SUM function,
select the AutoSum icon and then Sum.

5. Five new measures will be added to the model, one beneath each column chosen in
step 3. Each column will be named Sum of with the column name.

6. To update the format to show thousand separators and display as a whole number,
while all of the columns are selected, update the Properties window and change the
Data Format to Whole Number and then the Show Thousand Separator to True.
The numbers are now set to use this format in all client tools.

7. To change the name of the new measures, change the text on the left side of := in the
formula bar. For example, change Sum of FATALITIES:=SUM([FATALITIES]) to Total
Fatalities:=SUM([FATALITIES]). The measure will now show the new name and
totals.

How it works...
In this recipe, you created five new measures in your model. You selected the
CRASH_DATA_T table and then five columns that are numerical. Next, you used the
AutoSum feature to quickly create five new summary measures. Finally, you renamed a
column to make the name more meaningful for your users.

Creating calculated measures
Calculated measures are formulas that do more than simple aggregations of values. These
formulas add additional information to the tabular model by creating business calculations.
In addition, calculated measures are calculated based on the filter context applied to the
data. For example, using a row or column filter in Excel PivotTables or Power View.
Depending upon the filters selected, the DAX expression is calculated using the information
of the filter in real time. In this recipe, you will use a measure that has the total number of
fatal crashes. You will then create a new measure that calculates the total number of
crashes minus the number of fatalities.

Getting ready
Follow the steps in the Using Autosum measures in Visual Studio recipe to create the
Total Fatalities measure.

How to do it...
1. On the CRASH_DATA_T table in the Grid view, select an empty cell under the

Count_of_Crashes measure.
2. Enter the calculation in the formula bar:

 Total_NonFatal_Crashes:=([Count_of_Crashes] - [Total
 Fatalities])

3. Once you have entered the calculation, hit Enter.

4. To correct the formatting to make it better for users, select the
Total_NonFatal_Crashes in the Measures window and change the following fields in
the Properties window. Change the Format to Whole Number and the Show
Thousand Separator to True.

How it works...
In this recipe, you created a calculated measure that uses two other measures. To
determine the number of non-fatal crashes in the data, you subtracted the number of
fatalities from the total number of records. Your users now have the option of looking at the
total number of crashes, total fatalities, and total crashes less fatalities. In the Properties
window, you updated the formatting to only show whole numbers and include the thousand
separator, making it easier for your client tools and users to better use the data.

Creating calculated columns
When creating DAX formulas, there are two ways to apply them to the model. The first is to
create a calculated column. When you add a calculated column to the model, it applies the
function on a row-by-row basis. For example, if you want to parse the datetime format of a
table to only show the current year, adding a new calculated column would evaluate the
formula on the date column and add it to a new column on the table evaluated once for
each row in the table. When the data is refreshed, the formula is evaluated on the table and
no user interaction is required for the formula to be applied to its context.

How to do it...
1. Open Visual Studio and the tabular model project.
2. On the CRASH_DATA_T table, review the CRASH_DATE column. It is a Date column

that includes a timestamp.

3. Scroll to the end of the CRASH_DATA_T table and enter the DAX expression to parse
the year from the Crash_date column:

 =YEAR(CRASH_DATA_T[CRASH_DATE])

4. The tabular engine will now immediately parse the expression and add it to the column.
Change the name by updating the Column Name in the Properties window to
Crash_Year.

How it works...
In this recipe, you added a new calculated column. The DAX expression uses the YEAR
function and applies it to the Crash_Date column, the required argument. This parses the
column to return only the four-digit year to the column. You then updated the column name
to Crash_Year to make it easier for reports to leverage.

There's more...
As an additional step, you can concatenate text with the YEAR function to add context to the
values in the table. You can leverage the & symbol to join the data together. To add a label
before the Crash_Year, you modify the formula to include the following: ="Year of Crash:
" & YEAR(CRASH_DATA_T[CRASH_DATE]).
Once completed, your column will be updated to include the text with the date.

The addition of more detailed information to the columns can make the reports easier to
leverage. The more descriptive a field will help enable a self-service BI environment. When
building a report in Power View, the data is clearly displayed in the Crash_Year column
with the content.

Using the IF function
DAX includes several functions that are classified as logical functions. These functions let
you apply conditions to your calculations and measures when required. Some of the more
common functions that you will use include IF, AND, and SWITCH. Recipes for each of these
functions will be provided in this section.
The IF function performs a logical test to return either true or false when the condition is
met. In this recipe, you will add a formula that creates a label on each row. This label will let
your users know which rows had fatalities or were non-fatal. The IF function has a required
syntax of IF(<logical_test>,<value_if_true>,<value_if_false>).

Getting ready
All of these recipes will use the Chapter_9_DAX tabular model to add calculations. The
sample model is available to download.

How to do it...
1. Open the Chapter_9_DAX solution, and select the CRASH_DATA_T table and make

sure you are in the data Grid view.
2. Scroll to the right until you find Add Column. Then in the expression box, add the

formula to determine fatality type and press Enter to create the calculation. You will
then see a label added to each row:

 =IF([FATALITIES]>=1, "Was Fatal", "Non Fatal")

3. On the Properties window, change the Column Name from Add Column to Fatality
Flag.

How it works...
In this recipe, the IF function is checking for the condition on each row of the number of
fatalities being greater than or equal to 1. On each row that matches this condition, the
label of Was Fatal is added to the row. On all other rows, the label of Non Fatal is added.

Using the AND function
The AND function is similar to the IF function. When you use this function, it is checking two
arguments at the same time to determine if the condition is true or false. When both
arguments are true, then the function returns true. In this recipe, you will add a function on a
new column to determine if the record is a single or multiple vehicle fatality. The AND function
has a required syntax of AND(<logical1>, <logical2>).

How to do it...
1. Open the Chapter_9_DAX solution, select the CRASH_DATA_T table, and make sure

you are in the data Grid view.
2. Scroll to the right until you find the Add Column. Then in the expression box, add the

formula to determine the number of vehicles and number of fatalities involved and press
Enter to create the calculation. You will then see a label added to each row:

 =IF(And ([FATALITIES]>=1, [VEHICLES]=1), "Single
Vehicle
 Fatality", "Multiple Vehicle Fatality")

3. On the Properties window, change the Column Name from Add Column to Fatality
Group.

Using the SWITCH function
The SWITCH function is very useful when you need to evaluate an expression and return a
result from a list of possible values. In this recipe, you will create a column that can be used
to determine if the road was paved or unpaved. This will allow your users to filter the results
easily by choosing a label versus a value. The SWITCH function has a required syntax of
SWITCH(<expression>,<value>,<result>[, <value>,<result>]).

How to do it...
1. Open the Chapter_9_DAX solution, select the CRASH_DATA_T table, and make sure

you are in the data Grid view.
2. Scroll to the right until you find the Add Column. Then in the expression box, add the

formula to evaluate each value and return the corresponding label. Then press Enter to
create the calculation. You will then see a label added to each row:

 =SWITCH([PAVED], 1, "Paved", 2, "Unpaved", 99,
"Unknown")

3. On the Properties window, change the Column Name from Add Column to Fatality
Group.

How it works...
In this recipe, you added a formula that creates a label on each row. The SWITCH function
you entered has three available values to evaluate in the formula. It works by looking for
one of the values (1, 2, 99) and then returning the label that corresponds to each value
(Paved, Unpaved, Unknown). The label is then added to the column and can be used in
other measures or as a filter.

There's more...
By using the SWITCH function in this recipe, you created a column with unique labels. This
could also be accomplished by creating a table that has the same values, and then adding
this table to the model as a lookup table with a defined relationship. However, in cases
where there are not a lot of values, using the SWITCH function lets you quickly add a value to
the model without needing to link additional tables.

Using the CONCATENATE function
DAX includes several functions that are classified as text functions. These functions let you
apply and manipulate strings in a variety of ways. Some of the more common functions that
you will use include CONCATENATE and LEFT. Recipes for these functions will be provided in
this section.
The CONCATENATE function is very useful when you need to join two strings together into a
single string. You can join either two columns together or you can join columns to text
strings. When using a text string, the value must be enclosed in quotes. In this recipe, you
will create a column to join two columns together. This will allow your users to filter the
results easily by choosing a label versus a value. The CONCATENATE function has a required
syntax of CONCATENATE(<text1>,<text2>).

How to do it...
1. Open the Chapter_9_DAX solution, select the CRASH_DATA_T table, and make sure

you are in the data Grid view.
2. Scroll to the right until you find the Add Column. Then in the expression box, add the

formula to join the text Total Property Damage to the value in the PROPDMG column.
Then press Enter to create the calculation. You will then see a label added to each
row:

 =CONCATENATE("Total Property Damage $" ,[PROPDMG])

3. On the Properties window, change the Column Name from Add Column to Property
Damage.

How it works...
This recipe uses the CONCATENATE function to create a new column. This column is created
by passing in two arguments, the text "Total Property Damage $" with the value stored in
the [PROPDMG].

There's more...
You can also use CONCATENATE in a calculated measure. This can be helpful if you want to
add more information to the model or have variations on measures that you want users to
understand.

To create a calculated measure that shows all fatalities along with a label, in the measures
area, add the following formula:

Fatalities_Label:=CONCATENATE("Total Fatalities= ",
CRASH_DATA_T[Nof_Fatalities])

Using the LEFT Function
The LEFT function is very useful when you need to parse a string to get a subset of the
data. This is often used to make the data more meaningful for your users. In this recipe,
you will create a column on the Manner_of_Crash table to return the first nine letters of
each description. Then you will make the LEFT function use a dynamic argument to
determine the number of characters to find a comma. On this table, you can now create a
hierarchy that would group the two sideswipe rows into a single group. The LEFT function
has a required syntax of LEFT(<text>,<num_chars>).

How to do it...
1. Open the Chapter_9_DAX solution, select the CRASH_DATA_T table, and make sure

you are in the data Grid view.
2. Scroll to the right until you find the Add Column. Then in the expression box, add the

formula to return the first nine characters of the field. Then press Enter to create the
calculation. You will then see a label added to each row: =LEFT([Manner_of_Crash]).

3. On the Properties window, change the Column Name from Add Column to
Manner_Group.

4. Now you only see the first nine characters. The term sideswipe is now consistent on
rows 6 and 7; however, rows 1 and 4 are now only showing partial data. To fix the
strings to show the full text or the word before the comma, you need to add the FIND
function to locate the comma:

 =LEFT(
 [Manner_of_Crash],
 IFERROR(FIND(",",[Manner_of_Crash],1,20)-1,0)
)

5. Once you have done this, press Enter.

How it works...
This recipe first creates a new column that parses the string and returns the first nine
characters of the Manner_of_Crash. Once completed, you were able to see that the new
column is not parsing all fields to return the full description in cases that have a comma. To
correct this, you leveraged the FIND function to locate the position of the comma. The code
in part 4 works by making the length of each row dynamic by determining the number of
characters to the comma and then subtracting one place. If it does not find a comma, it
uses the default length of 20 to pass as the parameter to the LEFT function.

There's more...
If you need to get the data from the end of the column, there is also a RIGHT function that
returns the number of characters from the end of a column. The RIGHT function has a
required syntax of RIGHT(<text>,<num_chars>).

Using the RELATED function
The RELATED function leverages the relationships built in the model Diagram view. In this
model, there is a one to many relationship between the LIGHT_T table and the
CRASH_DATA_T table. The RELATED function is applied on the many table
(CRASH_DATA_T) and performs a lookup on the one table (LIGHT_T).
This recipe uses the RELATED function to create a new calculated column. This column will
add the label from the LIGHT_T table to the CRASH_DATA_T table. This can be helpful
when you have a frequently used column and your users do not need to select from the
associated table each time they access the data. The RELATED function has a required
syntax of RELATED(<column>).

How to do it...
1. Open the Chapter_9_DAX solution and select the CRASH_DATA_T table and make

sure you are in the data Grid view.
2. Scroll to the right until you find the Add Column. Then in the expression box, add the

formula to return the label from the LIGHT_T table. You will then see the
corresponding label on each row:

 =RELATED(LIGHT_T[LIGHT_CONDITION])

3. On the Properties window, change the Column Name from Add Column to
Light_Condition.

How it works...
In this recipe, you created a new column to add the label from the LIGHT_T table to the
CRASH_DATA_T table. The DAX formula uses the RELATED function to add the text in the
light condition column to the table.

There's more...
By viewing the data in a reporting tool such as Power View, users can now quickly select
the Light_Condition by expanding the CRASH_DATA_T folder. Otherwise, they would
need to add data from the CRASH_DATA_T folder and then expand the LIGHT_T folder to
add the Light_Condition column. By enhancing the model to add commonly used fields to

the main table, users can more easily leverage the data for analysis.

Using the RELATEDTABLE function
The RELATEDTABLE function changes the context in which the data is filtered, and evaluates
the expression in the new context that you specify.
This function is a shortcut for the CALCULATETABLE function with no logical expression.
The RELATEDTABLE function leverages the relationships built in the model Diagram view. In
this model, there is a one to many relationship between the Manner_of_Crash table and
the CRASH_DATA_T table. The RELATEDTABLE function is applied on the many table
(Manner_of_Crash) and performs a lookup on the one table (CRASH_DATA_T).
In this recipe, you will create a new column to the Manner_of_Crash table. This recipe
uses the RELATEDTABLE function to count the number of rows in the CRASH_DATA_T table
that occur by the Manner_of_Crash. This will provide a summary by row. The
REALTEDTABLE function has a required syntax of RELATEDTABLE(<tableName>).

How to do it...
1. Open the Chapter_9_DAX solution, select the Manner_of_Crash table, and make sure

you are in the data Grid view.
2. Scroll to the right until you find Add Column. Then in the expression box, add the

formula to summarize the number of events related to each type of crash. Then press
Enter to create the calculation. You will then see the total records added to each row:

 =COUNTROWS(RELATEDTABLE (CRASH_DATA_T))

3. On the Properties window, change the Column Name from Add Column to
Nof_Events.

How it works...
The RELATEDTABLE function leverages the relationships built in the model. In this example, it
uses the relationship between the CRASH_DATA_T table and the Manner_of_Crash table.
The COUNTROWS functions use the RELATEDTABLE as an argument to count the total number of
rows that has a related ID. The totals are then returned in the calculated column.

Using EVALUATE in DAX queries
If you need to query the data in a tabular model, then you can use the EVALUATE function.
The Evaluate function is used on a table to return the result set as a table. It is similar to
using Select * in T-SQL to return all columns and rows from a table. The EVALUATE
function has a required syntax of EVALUATE 'tablename'.

How to do it...
1. Connect to the CHAPTER_9_DAX database in SQL Server Management Studio.
2. Right-click on Databases and select New Query | MDX to create a new MDX query

window.

3. In the new window, use the EVALUATE function to return the data in a table. Type in the
expression and then press F5 to run the command:

 EVALUATE
 'WEATHER_T'

4. To extend this formula a bit more, you can add an order by clause to change the sort
order returned in the query. Add an order by clause on the next line to sort the data on
the first column in descending order:

 ORDER BY 'WEATHER'.[WEATHER] DESC

Filtering based on a value
You can also filter your model to return the data you need for your analysis using the FILTER
function. Using this function, you can limit the results on a table by applying an expression
that is evaluated on each row of the table. For example, if you wanted to know the total
number of crashes that had more than two major injuries, the FILTER function has a required
syntax of FILTER(<table>,<filter>).

Getting ready
In this recipe, you will create a filter to sum the total fatalities on crashes that have more
than two major injuries.

How to do it...
1. On the CRASH_DATA_T table in the Grid view, select an empty cell under the

Count_of_Crashes measure.
2. Enter the calculation in the formula bar:

 Total_Fatalities_GT2_MajorInjuries := SUMX(
 FILTER(CRASH_DATA_T, CRASH_DATA_T[MAJINJURY]>2),
 CRASH_DATA_T[FATALITIES]
)

3. Hit Enter.

4. In this recipe, there are 88 total fatalities that meet the condition of
CRASH_DATA_T[MAJINJURY]>2.

How it works...
In this recipe, you are using the SUMX and the FILTER functions to calculate the total number
of fatalities that also had more than two major injuries. The SUMX function applies the sum
calculation to the FATALITIES column, only on the records from the CRASH_DATA_T table
that have MAJINURY with more than the value of 2. The filter expression requires two

arguments, the table and the expression. In this recipe, the table is CRASH_DATA_T and
the expression is CRASH_DATA_T[MAJINJURY]>2.

Filtering a related table
You can also pass to the FILTER function the RELATED function as the condition to limit the
rows. In this recipe, you will filter your results to look at the Crash_Severity table and only
use rows that are labeled as fatal.

How to do it...
1. On the CRASH_DATA_T table in the Grid view, select an empty cell under the

CASENUMBER measure.
2. Enter the calculation in the formula bar:

 Fatal_Crashes:=SUMX(
 FILTER(CRASH_DATA_T,
 RELATED(Crash_Severity[Severity_Descr])="fatal"),
 CRASH_DATA_T[INJURIES])

3. Once you have done this, hit Enter.

4. In this recipe, there are 2821 total fatalities that meet the condition.

How it works...
In this recipe, you are using the SUMX and the FILTER functions to calculate the total number
of fatalities by summing the total INJURIES related to the Crash_Severity table. The SUMX
function applies the sum calculation to the INJURIES column, only on the records from the
CRASH_DATA_T table that are related to the Crash_severity table with a Severity_Descr
of Fatal.

Using ALL to remove filters
The ALL function works with FILTER to remove any conditions that are on your data. This is
helpful when you are creating calculations that need to use the entire dataset as the
denominator. Using the ALL function ignores any filters or slices that are applied in a query
or end user tool. The ALL function has a required syntax of: ALL(<table>|<column>).
In this recipe, you will create a new measure to show the number of crashes reported using
the CALCULATE function and the ALL function to ensure all filtering is removed.

How to do it...
1. On the CRASH_DATA_T table in the Grid view, select an empty cell under the

CASENUMBER measure.
2. Enter the calculation in the formula bar:

 Crashes_Reported:=
 CALCULATE(
 COUNT(CRASH_DATA_T[CASENUMBER]),
 ALL(CRASH_DATA_T))

3. Once you have done this, hit Enter.

4. The measure now shows the total number of cases on the CRASH_DATA_T table. The
total will be calculated regardless of any filtering or slicing that is done on the model.

5. Deploy the model to the server by selecting the Build menu and the Deploy
Chapter_9_DAX.

6. Switch to SQL Server Management Studio and connect to the model.
7. Expand the Measures | CRASH_DATA_T folder and drag Count_of_Crashes and

Crashes_Reported to the query window.
8. Then select Severity_Descr and place it before Count_of_Crashes to see how the

different formulas work.

9. Notice how the Count_of_Crashes is calculating the number of crashes by the
severity description. However, since Crashes_Reported uses the ALL function, it
ignores the slicer of the severity description and displays the total number of cases.

How it works...
In this recipe, you created a DAX calculation that returns the number of records on the
CRASH_DATA_T table regardless of any filters. To accomplish this, the ALL function is used
to eliminate any filter context and is passed into the CALCULATE function. After adding in the
measure, you deployed the changes to the cube to the server. Then you reviewed the
results and added it to the cube browser to see how this measure is different than the
Count_of_Crashes function by slicing the data using the crash severity description.

Using ALL to calculate a percentage
In this recipe, you will use the ALL function in the denominator of a percentage calculation.
This ensures that you see all records in the calculation you are performing.

Getting ready
Complete the steps in the Using ALL to remove filters recipe to create the initial calculation
and understand how ALL ignores any filters.

How to do it...
1. On the CRASH_DATA_T table in the Grid view, select an empty cell under the

CASENUMBER measure.
2. Enter the calculation in the formula bar:

 Pct_of_Crashes:=
 COUNT(CRASH_DATA_T[CASENUMBER])/
 CALCULATE (
 COUNT(CRASH_DATA_T[CASENUMBER]),
 ALL(CRASH_DATA_T))

3. Once you have done this, hit Enter.

4. The result returns a 1. To change the format to a percentage, edit the Format in the
Properties window to Percentage.

5. The result will now show 100.00 %.
6. Deploy the model to the server by selecting the Build menu and the Deploy

Chapter_9_DAX.
7. Switch to SQL Server Management Studio and connect to the model.
8. Expand the Measures | CRASH_DATA_T folder and drag Count_of_Crashes and

Pct_of_Crashes to the query window.
9. Then select Severity_Descr and place it before Count_of_Crashes to see how the

different formulas work.

How it works...
In this recipe, you leveraged a DAX calculation that returns the percentage of crashes
based on the current context. To accomplish this, you needed to create a function that
always returns the number of records using the ALL function as the denominator. You then
count the number of cases in the CRASH_DATA_T table to determine the numerator. After
adding in the measure, you deployed the changes to the cube to the server. Then you
reviewed the results and added it to the cube browser to see how this measure is creating
the percentage based on the context that you are slicing the data on. In this example, the
severity description breakout is shown along with the number of cases and then the
percentage of cases is shown as well.

Using the SUMMARIZE function
When you want to get the totals for the data in your model, you can leverage the SUMMARIZE
function to create a DAX expression to return the data back as a table.
This recipe uses the SUMMARIZE function on a single column. You will summarize the number
of fatalities on the CRASH_DATA_T table by the numbers that are related to a weather
condition. After building on this foundation, you will add additional columns and other options
to round out the features available using this function.

How to do it...
1. Connect to the CHAPTER_9_DAX database in SQL Server Management Studio.
2. Right-click on the database, and select New Query | MDX to create a new MDX query

window.
3. To determine the number of fatalities by weather condition you will use the SUMMARIZE

function along with the EVALUATE function to return a tableset:
 EVALUATE
 SUMMARIZE (
 CRASH_DATA_T
 ,WEATHER_T[WEATHER_CONDITION]
 ,"Total Fatalities", SUM('CRASH_DATA_T'.[FATALITIES])
)

4. Then press F5 to run the query.

How it works...
In this recipe, you created a query to output the results in SQL Server Management Studio.
The query totals the number of fatalities in the CRASH_DATA_T[FATALITIES] column. It
then uses the weather condition to total the number of fatalities by the type of weather. The

results of this data show that most fatalities happened on clear days with 2,172 deaths.

Adding columns to the SUMMARIZE
function
In this recipe, you will extend the last calculation to add an additional column to the output.
You can summarize the data by including more columns in the SUMMARIZE function to achieve
your desired output.

Getting ready
Complete the calculation in the Using the SUMMARIZE function recipe.

How to do it...
1. Connect to the CHAPTER_9_DAX database in SQL Server Management Studio.
2. Right-click on the database, and select New Query | MDX to create a new MDX query

window.
3. To determine the number of fatalities by the manner of the crash combined with the

weather condition, you will use the SUMMARIZE function along with the EVALUATE function
to return a table:

 EVALUATE
 SUMMARIZE (
 CRASH_DATA_T
 ,Manner_of_Crash[Manner_Group]
 ,WEATHER_T[WEATHER_CONDITION]
 ,"Total Fatalities"
 , SUM('CRASH_DATA_T'.[FATALITIES])
)

4. Then press F5 to run the query.

How it works...
In this recipe, you added a new column to show the manner of the crash along with the
weather condition and number of records for each group. This recipe totals the number of
fatalities associated to both manner of crash and weather condition.

Using ROLLUP with the SUMMARIZE
function
In this recipe, you will use the ROLLUP function within an argument for SUMMARIZE to show all
totals and subtotals in the query. This will be similar to using group by with rollup in T-SQL.
You will determine the number of crashes based on weather and manner of crash to get the
grouping and the totals by group. The SUMMARIZE function has a required syntax of
SUMMARIZE(<table>,<groupby_columnname>).

How to do it...
1. Connect to the CHAPTER_9_DAX database in SQL Server Management Studio.
2. Right-click on the database, and select New Query | MDX to create a new MDX query

window.
3. To determine the number of fatalities by the manner of the crash combined with the

weather condition, you will use the SUMMARIZE function along with the EVALUATE function
to return a table. To return all records that are related to these conditions, you need to
use the ROLLUP function:

 EVALUATE
 SUMMARIZE (
 CRASH_DATA_T,
 ROLLUP (Manner_of_Crash[Manner_Group]
 ,WEATHER_T[WEATHER_CONDITION])
 ,"Total Fatalities"
 , SUM('CRASH_DATA_T'.[FATALITIES])
)

4. Then press F5 to run the query.

How it works...
In this recipe, you used a combination of functions to create subtotals and totals to
determine the number of crashes by manner of crash and weather conditions. The DAX
query uses ROLLUP in the group by argument on the Manner_Group and then the
WEATHER_CONDITION to get the sum of fatalities. It then uses the SUMMARIZE function to
return the result set.

Chapter 10. Working with Dates and Time
Intelligence
In this chapter, we will cover the following recipes:

Creating a date table in Visual Studio
Using the CALENDAR function
Modifying the date table with the YEAR function
Modifying the date table to include month data
Using the NOW and TODAY functions
Using the DATEDIFF function
Using the WEEKDAY function
Understanding time intelligence
Using the FIRSTDATE function
Using the PARALLELPERIOD function
Calculating Year over Year Growth
Using the OPENINGBALANCEMONTH function
Using the OPENINGBALANCEYEAR function
Using the CLOSINGBALANCEMONTH function
Using the CLOSINGBALANCEYEAR function
Using the TOTALYTD function

Introduction
DAX includes many functions that enable you to aggregate and compare data over time
periods. To use the time intelligence functions, you must ensure that a table has been
chosen as the date table in your model. In addition, the date table must have one row for
each day in the year. In the following recipes, you will use the Calc_Date_T table created in
Chapter 9, DAX Syntax and Calculations. The Crash_Date will be used as the date
column. The time functions will use this date table as the basis for all of the calculations.
Date calculations can be either additive or semi-additive. Additive measures can be
summed across the date dimension in relation to the fact tables. For instance, total records
created by month or year. Semi-additive measures can only be summed across certain
dimensions but not all, for example, the opening balance of crashes recorded in a month. If
you total the opening balance of crashes for each month in the year 2015, it would not total
the total number of records created in the year 2015. When creating measures, be sure to
test the outcome to ensure the aggregations are properly summarizing as required for your
model.

Creating a date table in Visual Studio
Most models you will create need to have a date table to use for calculating and
summarizing data over time. Using DAX functions, you can create a customized date table
to add to your model. By leveraging many of the date functions included in DAX, you can
extend the columns to make the model easier for end users to leverage. The DAX time and
date functions leverage the date table to perform the calculations, without it your time and
date functions will not work properly.

Getting ready
To complete the recipes in this section, create a new Visual Studio project and import the
CRASH_DATA_T table from the Crash_Data_DB database. This table has the
CRASH_DATE column, which contains the date for each record crash. You will use this
table as the reference to create a new date table in the model.
In this recipe you will create a date table that is built by using a DAX formula and the
calculated table functionality of tabular models.

How to do it...
1. In Visual Studio, open the Table menu and then select New Calculated Table:

2. This creates a new table in the project that requires a DAX expression to populate the
table:

3. To create a row for each CRASH_DATE, use the SUMMARIZE function too return each
row once:

 =SUMMARIZE(CRASH_DATA_T,CRASH_DATA_T[CRASH_DATE])

4. Once you have done this, press Enter to complete the calculation.
5. In the CRASH_DATA_T table there are 93 records for the date 1/2/2006. The new

date table has only 1 row for 1/2/2006 and each other date found in the
CRASH_DATA_T table:

How it works...
This recipe uses the SUMMARIZE function to create a new date table. It uses the values from

the CRASH_DATA_T table and CRASH_DATE column to return one row for each date on
the table.

Using the CALENDAR function
You can also create a date table using the CALENDAR function in DAX. This function uses a
begin date and end date in the arguments to create a table for all dates between the range
given. If you need a complete table with all dates represented, using this method is quick
and effective.
To demonstrate how this works, you will create a date table with 10 consecutive dates.

How to do it...
1. In Visual Studio, open the Table menu and then select New Calculated Table.
2. This creates a new table in the project that requires a DAX expression to populate the

table.
3. To create a row for each row between 1/1/2006 and 1/10/2006, use the CALENDAR

function:
 =CALENDAR("1/1/2006","1/10/2006")

4. Now mark this table as the date table in the model. Select the Table menu and then
Date and Mark As Date Table:

5. Create the relationship from the Calc_Date_T table to the CRASH_DATA_T on the
CRASH_DATE table:

How it works...
The CALENDAR function is the best method to create a new calendar table for your model if
required. Creating a table using this function returns one row for each day between the
start date and end date passed to the function. Then you marked the new table as a date
table and added a relationship from the Calc_Date_T table to the CRASH_DATA_T table.

Modifying the date table with the YEAR
function
In order to make the date table easier to use in reporting, you will add new columns to the
table created in the Creating a date table in Visual Studio recipe. In this recipe, you will
create columns based on the date column such as year, month, and weekday.

Getting ready
Complete the steps in the Creating a date table in Visual Studio recipe.

How to do it...
1. Open the Model.bim to the Calc_Date_T table.
2. On the Add Column next to CRASH_DATE, select the first cell and enter the formula

to return the year from the date:
 =YEAR(Calc_Date_T[CRASH_DATE])

3. Once you have done this, press Enter:

How it works...
In this recipe, you added a new calculated column to the Calc_Date_T table to show the
year for each record. You passed the date to the YEAR function and it returned the 4-digit
year as the output. Using this method, you can create the columns required to build a
hierarchy for your uses to leverage.

Modifying the date table to include month
data
This recipe is similar to the YEAR function recipe. You will create a calculated column to
return the month number of the year. Then you will use the format function to convert the
number returned to the name of the month.

How to do it...
1. Open the Model.bim to the Calc_Date_T table.
2. On the Add Column next to CRASH_DATE, select the first cell and enter the formula

to return the month number from the date:
 =MONTH(Calc_Date_T[CRASH_DATE])

3. Once you have done this, press Enter to create the calculation. The calculation returns
the number of the year, for example, January equals one:

How it works...
In this recipe, you added a new calculated column to the Calc_Date_T table to show the
month for each record. You passed the date to the MONTH function and it returns the month
number as the output.

There's more...
To include a column that returns the month name, use the FORMAT function. To use the
FORMAT function, pass in the date and the format argument. There are four options to
change the information returned based on the arguments passed:

"M": returns month number
"MM": returns the 2-digit month number
"MMM": returns the first three characters of the month name
"MMMM": returns the full length of the month name

For example, to create a column that displays the first three characters of the month, click
on the open cell on the next Add Column:

=FORMAT(Calc_Date_T[CRASH_DATE],"MMM")

You can now use these fields to create a hierarchy in the Calc_Date_T table.

Using the NOW and TODAY functions
There are two functions to return the current datetime and date in the model. The TODAY
function will return the current date with the time set to 12:00:00 AM. This function is useful
when you need to use the current date as an input for your time calculations. The NOW
function returns not only the current date, but also the exact time of when the function is
executed. Depending on the time interval required, using the today function would allow you
to calculate the number of sales over the last 6 or 12 hours.

How to do it...
1. Open the Model.bim to the Calc_Date_T table.
2. In the measure creation area, click on an empty cell to create a measure to return the

current date and time:
 Current_DateTime:=NOW()

3. Now that you can see the date and time, create a new measure under the
Current_DateTime measure name Current_Date to return the current date with the
time set to 12:00:00 AM:

 =Current_Date:=TODAY()

How it works...
In this recipe, you used two functions to add measures that return the current date and
time. First you added the NOW function to return the exact date and time value. Then you
added a new measure to determine the current date using the TODAY function. Both of these
measures allow you to create calculations to determine the number of days between data in
your model and the current date.

Using the DATEDIFF function
The DATEDIFF function returns the values between two dates given a specific date interval.
You can use this function to determine the number of days between today and the first day
of the year. You could also calculate the number of months between date values.
Available options for the date interval are:

SECOND
MINUTE
HOUR
DAY
WEEK
MONTH
QUARTER
YEAR

Getting ready
Create a new measure to calculate the minimum date in the Calc_Date_T. This value will
be used to calculate the number of years from the first crash reported to today. In this
case, 11/27/2016:
1. Open the Model.bim to the Calc_Date_T table.
2. In the measure creation area, click on an empty cell to create a measure to minimum

date:
 Min_Crash_Date:=MIN(Calc_Date_T[CRASH_DATE])

How to do it...
1. In the measure creation area, click on an empty cell to create a measure to return the

current date and time:
 Years_Since_First_Accident:=DATEDIFF(
 [Min_Crash_Date],TODAY(), YEAR)

The result returns 10 as the number of years in this dataset.

How it works...
In this recipe, you created a measure to determine the minimum date value on the
CRASH_DATE_T table. You then used this value in the DATEDIFF function to calculate the
number of years between the MIN_CRASH_DATE and today.

There's more...
To change the date interval, you can replace YEAR in the preceding example to any of the
predefined values. Often it is helpful to have commonly reported values pre-calculated in the
model for your users and reporting tools. For example, to see the number of months
between two values, change the YEAR argument to MONTH:

Months_Since_First_Accident:=
DATEDIFF([Min_Crash_Date], TODAY(), MONTH)

Using the WEEKDAY function
The WEEKDAY function returns the day of the week as an integer. The week starts with
Sunday as 1. Using this function, you can include information in your model to indicate
workdays and weekends. Also you can create analysis that reviews trends on performance
based on the day of the week. For example, do more crashes occur on Fridays than
Tuesdays?

How to do it...
1. Open the Model.bim to the Calc_Date_T table.
2. In the measure creation area, click on an empty cell to create a measure to return the

day of the week as an integer:
 DayofWeek:=WEEKDAY("1/1/2016")

3. January 1st 2016 is a friday and the result returned is a 6.
4. To make this more beneficial to users, you can convert the number to the name of the

day:
 DayofWeekName:=FORMAT(WEEKDAY("1/1/2016"),"DDDD")

How it works...
This function takes a date as an argument and returns the day of the week as an integer.

You can use this function to find dates that are weekday values (2-6) and weekend values
(1 and 7).

There's more...
To determine the number of crashes that occur on Fridays and Tuesdays, create a new
measure for each date:

Friday_Crashes:=CALCULATE(COUNT(CRASH_DATE_T[CASENUMBER]),
 WEEKDAY(CRASH_DATA_T[CRASH_DATE])=6)
Tuesday_Crashes:=CALCULATE(COUNT(CRASH_DATE_T[CASENUMBER]),
 WEEKDAY(CRASH_DATA_T[CRASH_DATE])=3)

Once both are calculated, you can see that Fridays have approximately 14,000 crashes
more than Tuesdays.

See also...
There are many common calculations that you will want to include in your tabular model to
present data based on various time requirements. So far you have built time functions to
return information based on a set date range or to calculate the time between two dates.
Time intelligence functions make it easier to report on the data when comparing different
time periods. For instance, a common way to view summary data is to look at the data in
the current period compared to the last period. Another example is calculating year growth.
The following recipes leverage the time intelligence functions to make the data easier to
leverage and compare.

Using the FIRSTDATE function
This function returns the first date in the data column that you pass as an argument. You
can use the FIRSTDATE function to find the first occurrence of a transaction or the first time
an accident was reported that was associated to blowing sand.

How to do it...
1. Open the Model.bim to the Calc_Date_T table.
2. In the measure creation area, click on an empty cell to create a measure to return the

first date found on the Calc_Date_T table:
 First_Accident:=FIRSTDATE(Calc_Date_T[CRASH_DATE])

3. A more interesting date will be finding the first occurrence of an accident logged due to
the weather condition of blowing sand. To do this you will use the CALCULATE function
and FILTER to limit the results. Create a new measure under First_Accident:

 First_Accident_Blowing_Sand:=CALCULATE (
 FIRSTDATE(CRASH_DATA_T[CRASH_DATE],
 FILTER(WEATHER_T,[WEATHER_CONDITION]="Blowing Sand"))

Based on the date in the table, the first time an accident was logged due to blowing sand

was on 1/10/2006.

How it works...
This recipe returns the first date found in a dataset. You passed in the crash date as the
argument and found the first transaction record. Then you modified the function to look for a
specific occurrence of an event using the FILTER function. In this recipe, you referenced the
WEATHER_T table to look for the condition of blowing sand.

There's more...
You can also leverage the LASTDATE function to find the final entry in your table. LASTDATE
works just like FIRSTDATE. This function is useful to locate the last occurrence of
transactions, such as the last time a product was sold at a particular location.

Using the PARALLELPERIOD function
A common requirement for BI reporting is to show performance based on periods.
Examples include reporting on this month versus last month, this quarter versus last quarter,
or this year versus last year. In each of these instances you are calculating the totals based
on the time frame required. DAX includes the PARALLELPERIOD function to create these
types of comparisons.

How to do it...
1. Open the Model.bim to the CRASH_DATA_T table.
2. In the measure creation area, click on an empty cell to create a measure to return the

number of accidents using year:
 ParallelPeriod:=CALCULATE(
 COUNT(CRASH_DATA_T[CASENUMBER]),
 PARALLELPERIOD(Calc_Date_T[CRASH_DATE],
 -1,YEAR))

3. This returns the total number of records in the table by year excluding the year 2006:

By looking at the total number of records per year in the ParallelPeriod column you can
see how records were returned the prior year. For instance, in 2015 there were 52013 total
records in the ParallelPeriod column. This matches with the total records from the year
2014.

How it works...
This recipe uses the PARALLELPERIOD function to compare total crashes from last year to
the current year. The value of -1 passed to the function compares the context to the same
period 1 year ago. If you used the value of -2 it would compare the context to two years
ago.

There's more...
You can create other measures that use PARALLELPERIOD and a different time interval. By
changing the interval, you can produce measures to return the prior quarter or month. For
example, to see the number of crashes that occur in the prior month, you can copy the
preceding formula and create a new measure. Then change the time interval to MONTH:

To see how that affects the model, deploy the model and view the results in SQL Server
Management Studio.

Calculating Year over Year Growth
You can leverage the measures you created that use PARALLELPERIOD function to calculate
the growth over periods. In this recipe, you will create a measure to see if the number of
crashes increased or decreased year by year.

How to do it...
1. Open the Model.bim to the CRASH_DATA_T table.
2. In the measure creation area, click on an empty cell to create a measure to return the

number of accidents using year:
 YOY_Growth:=([Records]-
[ParallelPeriod])/[ParallelPeriod]

3. Then press Enter to create the measure.

4. Now deploy the solution to the server and switch to SQL Server Management Studio to
view the results. Browse the model and select the YEAR, Records, ParallelPeriod,
and YOY_Growth columns:

5. You will see the percentage growth for each year in the results. Notice that the first
value for YOY_Growth is labeled Infinity. This is due to the formula not having a value
for data prior to the year 2006. To correct this error, you need to modify the measure
to account for blank values. Create a new measure named YOY_Growth_New:

 YOY_Growth_New:= IF([ParallelPeriod],
 ([Records]- [ParallelPeriod])/[ParallelPeriod],BLANK())

6. Then press Enter to create the measure.
7. Once completed, deploy the model to view the data in SQL Server Management

Studio. Refresh your view created in step 3 and add the new column,
YOY_Growth_New, to see the results:

The value for the year 2006 is now set to null.

How it works...

In this recipe, you created a formula to calculate the Year over Year Growth in crashes. To
accomplish this, you created a measure that calculates the ParallelPeriod for the prior
year. To handle missing dates in the formula, you wrapped the function in an IF statement
and passed BLANK() as the argument if no records were found.

Using the OPENINGBALANCEMONTH
function
To determine the total number of crashes at the beginning of each month, you can use the
built-in functions to calculate opening balances. In this recipe, you will create a semi-additive
measure to calculate the number of crashes at the beginning of each month. This will enable
you to find out the total number of crashes each month and determine trends.

How to do it...
1. Open the Model.bim to the CRASH_DATA_T table.
2. In the measure creation area, click on an empty cell to create a measure to return the

opening month balance:
 OpeningMonth:=OPENINGBALANCEMONTH(COUNT
 (CRASH_DATA_T[CASE_NUMBER]),
 Calc_Date_T[CRASH_DATE])

3. Then press Enter to create the measure:

4. Now deploy the solution to the server and switch to SQL Server Management Studio to
view the results. Browse the model and select the YEAR, Month_Name, Records,
and OpeningMonth. Set the slicer to use the Calc_Date_T year equal to 2016 to limit
the results:

The results displayed in the OpeningMonth measure are the number of records on the first
day of each month. January 2016 had 153 crashes out of a total 4942 recorded in the
month of January.

How it works...
In this recipe, you passed in the date from the Calc_Date_T to count the number of
crashes on the CRASH_DATE_T table. The OPENINGBALANCEMONTH function takes these
arguments and calculates the count of crashes on the first day of each month.

Using the OPENINGBALANCEYEAR
function
To determine the total number of crashes at the beginning of each year, you can use the
built-in functions to calculate opening balances. In this recipe, you will create a semi-additive
measure to calculate the number of crashes at the beginning of each year. This will enable
you to find out the total number of crashes each year and determine trends.

How to do it...
1. Open the Model.bim to the CRASH_DATA_T table.
2. In the measure creation area, click on an empty cell to create a measure to return the

opening year balance:
 OpeningYear:=OPENINGBALANCEYEAR(COUNT
 (CRASH_DATA_T[CASE_NUMBER]),
 Calc_Date_T[CRASH_DATE])

3. Then press Enter to create the measure:

4. Now deploy the solution to the server and switch to SQL Server Management Studio to
view the results. Browse the model and select the YEAR, Month_Name, Records,
OpeningMonth, and OpeningYear. Set the slicer to use the Calc_Date_T year to
include 2016 and 2015 to limit the results:

The results displayed in the OpeningYear measure are the number of records on the first
day of the month for each year. January 2015 had 125 crashes out of a total 5251
recorded in the month of January. The OpeningYear measure stores this value regardless
of the month in the year 2015. Then in the year 2016 it is set to the value of January 2016
of 153.

How it works...
Just like the OPENINGBALANCEMONTH function, this function returns the total records from the
beginning of the year.

Using the CLOSINGBALANCEMONTH
function
To determine the total number of crashes at the end of each month, you can use the built-in
functions to calculate ending balances. In this recipe, you will create a semi-additive
measure to calculate the number of crashes at the end of each month. This will enable you
to find out the total number of crashes at the end of each month and determine trends.

How to do it...
1. Open the Model.bim to the CRASH_DATA_T table.
2. In the measure creation area, click on an empty cell to create a measure to return the

closing month balance:
 ClosingMonth:=CLOSINGBALANCEMONTH(COUNT
 (CRASH_DATA_T[CASE_NUMBER]),
 Calc_Date_T[CRASH_DATE])

3. Then press Enter to create the measure:

4. Now deploy the solution to the server and switch to SQL Server Management Studio to
view the results. Browse the model and select the YEAR, Month_Name, Records,
and ClosingMonth. Set the slicer to use the Calc_Date_T year equal to 2016 to limit
the results:

The results displayed in the ClosingMonth measure are the number of records on the first
day of each month. January 2016 had 100 crashes out of a total 4942 recorded in the
month of January.

How it works...
In this recipe, you passed in the date from the Calc_Date_T table to calculate the number
of crashes at the end of each month. This measure, like the OPENINGBALANCEMONTH function,
allows you to create a trend and see performance of the measure over time.

Using the CLOSINGBALANCEYEAR
function
To determine the total number of crashes at the end of each year, you can use the built-in
functions to calculate ending balances. In this recipe, you will create a semi-additive
measure to calculate the number of crashes at the end of each year. This will enable you to
find out the total number of crashes at the end of each year and determine trends.

How to do it...
1. Open the Model.bim to the CRASH_DATA_T table.
2. In the measure creation area, click on an empty cell to create a measure to return the

closing year balance:
 ClosingYear:=CLOSINGBALANCEYEAR(COUNT
 (CRASH_DATA_T[CASE_NUMBER]),
 Calc_Date_T[CRASH_DATE])

3. Then press Enter to create the measure:

4. Now deploy the solution to the server and switch to SQL Server Management Studio to
view the results. Browse the model and select the YEAR, Month_Name, Records,
OpeningMonth, and OpeningYear. Set the slicer to use the Calc_Date_T year to
include 2016 and 2015. Include another filter to limit the results to the Month_Num of
{3,4,5,6, 12}:

The results displayed in the ClosingYear measure are the number of records on the last
day of the month for each year. December 31st 2015 had 153 crashes out of a total 5287
recorded in the month of January. The ClosingYear measure stores this value regardless of
the month in the year 2015. Then in the year 2016 it is set to the value of the last day of the
dataset, in this case, June 2016 with 25 recorded crashes.

How it works...
In this recipe, you passed in the date from the Calc_Date_T table to calculate the number
of crashes at the end of each year. This measure, like the OPENINGBALANCEYEAR, allows you
to create a trend and see performance of the measure over time.

Using the TOTALYTD function
The TOTALYTD function is an additive measure that returns the total records from the
beginning of the year to the date in the context. For example, you can use this function to
calculate the total number of crashes from 1/1/2016 to the date that you selected in the
filter context. You can quickly calculate the number of records at any point in the year.

How to do it...
1. Open the Model.bim to the CRASH_DATA_T table.
2. In the measure creation area, click on an empty cell to create a measure to return the

year to date cumulative total for the number of crashes:
 YTDTotals:=TOTALYTD(COUNT
 (CRASH_DATA_T[CASE_NUMBER]),
 Calc_Date_T[CRASH_DATE])

3. Then press Enter to create the measure:

4. Now deploy the solution to the server and switch to SQL Server Management Studio to
view the results. Browse the model and select the YEAR, Month_Name,
CRASH_DATE, Records, and YTDTotals:

5. The results displayed in the YTDTotals measure are the number of records from the
first date records. Then each day the total gets added to the next day's total to product
a running total. On January 1st there were 114 records and the YTD total is 114. Then
on January 2nd the records total is 93. However, the YTD total is the sum of 114 from
the 1st plus the 93 from the 2nd to equal 207.

6. By changing the view to remove the individual date, the function continues to calculate
the totals by month:

The total records for each month are calculated and then added to the next month to create
the YTD total for the year.

How it works...
The TOTALYTD function uses the Calc_Date_T date column to calculate the crashes from the
beginning of each year. The ending value of the context is set by the value you select in a
filter. In this recipe, you see that the aggregated total from January 2006 to June 2006 is
25,518.

Chapter 11. Using Power BI for Analysis
In this chapter, we will cover the following recipes:

Getting started with Power BI desktop
Adding data to Power BI reports
Using the SSAS tabular model as a source
Visualizing the crash data with Power BI
Adding additional visualizations to Power BI
Editing visualization properties in Power BI
Using analytics in Power BI

Introduction
Power BI is Microsoft's data analysis and visualization tool. Power BI allows users to
create rich reporting, dashboards, and analytics by connecting to one or many data
sources. There are several components that make up the Power BI environment. First you
connect or manually add data to your report to create a dataset. The dataset is then
available to be used for visualizations in the report. Each visualization which includes items,
such as graphs, data tables, treemaps, or slicers, are represented in a tile that can be
modified and edited independently. Visualizations are added to a page in a report. Each
report can have from one to many pages that are connected to the data.
In this section you will install Power BI desktop and connect to your tabular model. Then
you will create an initial graph and go through the steps to edit the visualization. Next you
will enhance the report by adding more visualizations and a slicer to filter the data. Finally,
you will create a new page in the report and create a line graph, and you will use the
Analytics feature to add the average to the graph.

Getting started with Power BI desktop
In this recipe you will download and install the Power BI desktop 64 bit edition. Once
installed you will be ready to continue with the remaining recipes in the chapter to visualize
the Iowa crash data.

How to do it...
1. This software is available to download from https://powerbi.microsoft.com/en-

us/desktop/.
2. Download the 32 or 64 bit version depending upon your environment.
3. Double-click the downloaded PBIDesktop_x64.msi file and install the software.
4. Launch the application from the desktop shortcut:

5. A blank report will be shown as follows:

How it works...
In this recipe you downloaded Microsoft's Power BI desktop. You then installed and
launched the application to ensure it is working.

https://powerbi.microsoft.com/en-us/desktop/

Adding data to Power BI reports
Power BI can currently connect to a wide variety of data sources. Your reports begin by
connecting to the data you want to explore and visualize. For example, you can connect to
file data sources like Excel, csv, txt or xml file types. You can also connect databases like
SQL Server, Oracle, MySQL, PostgresSQL or Hadoop HDFS. In addition, you can get data
from Azure datastores such as HDInsight, SQL Data Warehouse, and DocumentDB. In this
recipe you will connect Power BI to the SQL Server Analysis Services Tabular model.

How to do it...
1. Open Power BI desktop and select Get Data from the opening screen:

2. On the Get Data window, select the data source you want to connect to. In this recipe
you connect to the completed crash data database:

3. Select SQL Server Analysis Services Database and then Connect.
4. Type in your server name for the SSAS tabular model and make sure the Connect live

radio button is selected and click OK:

5. In the Navigator window, select the Crash_Data_Model_Complete and the model to
establish the connection:

6. Then click OK.
7. A new Power BI report is ready with all visible fields from your tabular model. You

should be able to see the tables in the Fields window:

8. As models become larger with more fields it can be difficult for users to keep track of
the available fields. Users can use the Search field to type in a word and all tables or
columns that match the term will be shown.

9. Type light into the search field to return all columns and tables with the word light:

How it works...
Power BI is a reporting tool that can connect to a wide variety of data sources. Before you
can use Power BI, you must connect it to the data you want to use. In this recipe you
started a new Power BI desktop report and connected to the SSAS tabular model. Power
BI established the connection and has the schema loaded. You are now ready to start
building reports.

There's more...
Once you are working on a report you can also retrieve data by selecting the Get Data
menu on the Home tab. This is the method that will enable you to add more connections:

Visualizing the crash data with Power BI
Once you have data connected to Power BI you can create visualizations. Each visualization
is designed and built independently. Once the basic visualization is completed you can
format it to make it easier to read. Formatting allows you modify settings like showing label
values, changing the color of the charts, or changing the title. By creating several
visualizations, you can combine them on a report page. In this recipe you will create a
stacked bar graph and then format it to change the default settings.

Getting ready
The Visualizations window in Power BI gives you over 26 out of the box graphs that you
can use on your data. To begin creating reports you select the type of visualization you want
and then the fields used to build the graphic.

How to do it...
1. Connect to your data source and create a new report.
2. Select the first icon--Stacked Bar Chart from the Visualizations window:

3. A new blank chart is added to the report tab as a tile:

4. Select Count_of_Crashes from the CRASH_DATA_T table and the
Light_Description from the LIGHT_T table. A chart will be created with the data from
the tabular model:

5. To format the chart select the ellipse to see the options:

6. Then select Sort by Count_of_Crashes to reorder the graph:

How it works...
In this recipe you added a stacked bar chart to the Power BI canvas. Then, using the data
connection to your tabular model, you created a bar graph that shows the number of
crashes that occurred by recorded light condition. To make the data easier to read, you
then sorted the chart based on the highest number of crashes from top to bottom. You now
have a completed visualization on page 1 of your report.

Editing visualization properties in Power
BI
There are many properties that you can modify to change the appearance of your
visualizations. These properties allow you to modify properties such as background, title,
borders, and colors. In this recipe you will modify the stacked bar chart to understand how
properties affect the visualization.

Getting ready
Complete the initial visualization in the recipe Visualizing the crash data in Power BI.

How to do it...
1. Select the graph and click on the paint roller icon under the Visualization to bring up

the Properties window:

2. Select the data colors and click the down arrow to show the available properties to
change. On the Default color select the drop down and change the color to purple to
change the bar graph colors:

3. The chart is now updated to reflect the new color:

4. Next expand the Title property to change the Title Text to Total Crashes based on
Reported Light Condition and increase the Text Size to 12:

5. Now to show the values of each bar chart, change the Data Labels slider from Off to
On.

6. Finally, to add a border to the graph, change the Border slider from Off to On:

7. The graph will now reflect all of these changes on the report.

How it works...
There are many properties you can change on a graph. In this recipe you changed the
default data color to purple. You then updated the title text and font size. Finally, you added
a border to the selected graph. By selecting the format icon, you will see a list of properties
that are available for you to modify. Experiment with the different properties to ensure you
understand what is available and how they work.

Adding additional visualizations to Power
BI
Reports normally contain multiple tables and visualizations designed to solve business
problems. A report page can contain many separate visualization tiles on the canvas. In the
prior recipe you worked with a single stacked bar chart visualization on a single page. In
this recipe you will add two more visualizations to the report to fill out your canvas.

Getting ready
Complete the initial visualization in the recipe Visualizing the crash data in Power BI.

How it to do it...
1. Select an area of the page canvas and not the existing graph. Then select a new

treemap visualization to add to the report page:

2. A new blank treemap will be added to the report:

3. Select the Count_of_Crashes from the CRASH_DATA_T table and the
Weather_Condition from the Weather_T table. This will create the default treemap:

4. Select the roller brush to edit the properties and change the Title Text to Heatmap of
Crashes by Weather Condition and change the Text to size 12:

5. Since the data is related, you can interact with the charts to filter the results in real
time. Based on all the records, most crashes occur in clear conditions because it has
the largest of the squares in the treemap. To see the number of crashes caused by a
specific light condition, select the square with sleet, hail, freezing rain in the treemap.
The top graph is filtered to show the number of crashes related to this condition:

6. There were 21,385 crashes in Daylight that were recorded in sleet, hail, or freezing
rain. Notice the total bar length did not change. You can see the impact relative to the
total number of records.

7. Finally, add a data table to the report to see the total crashes by weather condition.
Select a blank area on the report and then the table icon from Visualizations:

8. Add the Count_of_Crashes and the Weather_Condition to populate the table:

How it works...
In this recipe you added a treemap and data table to the report canvas. The treemap helps

you visualize the impact of weather on crashes. By adding the data table, you can see the
exact number of crashes. Because all of the data is related in the model, when you select a
value in a visualization the other visualizations are filtered based on the selection. This
allows for quick analysis and data exploration in your report.

Adding a slicer to Power BI
Slicers are a way to filter the data in your report. Slicers create a checkbox list of available
values to limit the dataset. For commonly used filters, slicers are a great choice to enable
users to easily interact and analyze data. In this recipe you will add a slicer tile to the report
and use it to limit the data shown in the report.

Getting ready
Complete the steps in the recipe Adding additional visualizations to Power BI.

How to do it...
1. Select an open area of the report canvas and then select the slicer icon from the

bottom left under Visualizations:

2. A new blank slicer will be added to the report page:

3. To enable slicing by the manner of crash, select the Manner_of_Crash from the
Manner_of_Crash table. The slicer will now be populated with all values from this
field:

4. Next select Rear-end as the manner of crash to filter the bar graph, the treemap, and
the data table to only show data related to rear-end crashes:

5. Rename the page to Crash Overview by double-clicking Page1 on the bottom tab:

How it works...
The slicer tile acts as a filter on the other visualizations on the report page. When you select
one or more values in the slicer, the other visualizations are automatically limited based on
the selected values.

Using analytics in Power BI
Getting ready
Complete the steps in the recipe Adding additional visualizations to Power BI.

How to do it...
1. Add a new page to the report and rename it Analytics.
2. Add a line chart to the report and add the count_of_crashes from the

CRASH_DATA_T table and the Light_Condition from the LIGHT_T table:

3. Select the ellipse and change the sort order to Sort by Count_of_Crashes:

4. While the chart is selected, select the spyglass icon next to the paint roller to see the
available analytics. The available choices vary based on the visualization that you
select:

5. To add an Average line, click on the down arrow next to Average Line. Then click +
Add to create an average line and rename it Average. Then change the color to red
and change the data label slider to On. Finally, change the color to red and change the
Text drop down to Name and Value:

6. The graph now has a horizontal line that shows the average of all value:

7. The average is 69903. This average is calculated based on any filters that you have.
Therefore, if you add a slicer the average will be recalculated based on the slicer or
filter.

8. Add a slicer and SURFACE_CONDITION from the CSRFCND_T table and select
Snow. The Average line is now 5383 and calculated based on all values related to
Snow:

How it works...
The average line is calculated based on all of the displayed data in the report. You modified
the properties to make it easy to see by changing the color and displaying the name and
value on the report. Since the average is calculated within Power BI, as you filter the data,
the average will be automatically recalculated to reflect the data being shown.

	Tabular Modeling with SQL Server 2016 Analysis Services Cookbook
	Tabular Modeling with SQL Server 2016 Analysis Services Cookbook
	Credits
	About the Author
	About the Reviewer
	www.PacktPub.com
	Why subscribe?

	Customer Feedback
	Preface
	What this book covers
	What you need for this book
	Who this book is for
	Sections
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also

	Conventions
	Reader feedback
	Customer support
	Downloading the example code
	Downloading the color images of this book
	Errata
	Piracy
	Questions

	1. Introduction to Microsoft Analysis Services Tabular Mode
	Introduction
	Learning about Microsoft Business Intelligence and SQL Server 2016
	Understanding tabular mode
	Learning what's new in SQL Server 2016 tabular mode
	Modeling
	Instance management
	Scripting
	DAX

	Importing sample datasets
	Getting ready
	How to do it...
	How it works...

	Understanding basic concepts
	Tables
	Columns
	Measures
	Relationships
	Hierarchies

	2. Setting up a Tabular Mode Environment
	Introduction
	Installing and configuring a development environment
	Getting ready
	How to do it...
	How it works...

	Installing Visual Studio 2015
	Getting ready
	How to do it...
	How it works...

	Installing SQL Server Data Tools (SSDT)
	Getting ready
	How to do it...
	How it works...

	Interacting with SQL Server Data Tools
	Getting ready
	How to do it...
	How it works...

	Configuring a workspace server
	Getting ready
	How to do it...
	How it works...
	There's more...

	Configuring SSAS project properties
	Getting ready
	How to do it...
	How it works...

	3. Tabular Model Building
	Introduction
	Adding new data to a tabular model
	Getting ready
	How to do it...
	How it works...

	Adding a calculated column
	Getting ready
	How to do it...
	How it works...

	Adding a measure to a tabular model
	How to do it...
	How it works...

	Changing model views
	How to do it...
	How it works...
	There's more...

	Renaming columns
	How to do it...
	How it works...

	Defining a date table
	Getting ready
	How to do it...
	How it works...

	Creating hierarchies
	How to do it...
	How it works...

	Understanding and building relationships
	Getting ready
	How to do it...
	How it works...

	Creating and organizing display folders
	Getting ready
	How to do it...
	How it works...

	Deploying your first model
	Getting ready
	How to do it...
	How it works...

	Browsing your model with SQL Server Management Studio
	How to do it...
	How it works...

	Browsing your model with Microsoft Excel
	How to do it...
	How it works...

	4. Working in Tabular Models
	Introduction
	Opening an existing model
	How to do it...
	How it works...

	Importing data
	Getting ready
	How to do it...
	How it works...

	Modifying model relationships
	How to do it...
	How it works...

	Modifying model measures
	How to do it...
	How it works...

	Modifying model columns
	How to do it...
	How it works...

	Modifying model hierarchies
	How to do it...
	How it works...
	There's more...

	Creating a calculated table
	How to do it...
	How it works...
	There's more...

	Creating key performance indicators (KPIs)
	How to do it...
	How it works...

	Modifying key performance indicators (KPIs)
	How to do it...
	How it works...

	Deploying a modified model
	How to do it...
	How it works...
	There's more...

	5. Administration of Tabular Models
	Introduction
	Managing tabular model properties
	Changing data backup locations
	Changing DirectQuery mode
	Changing workspace retention
	Changing workspace server

	Managing perspectives
	Getting ready
	How to do it...
	Adding a new perspective
	Editing a perspective
	Renaming a perspective
	Deleting a perspective
	Copying a perspective

	Managing partitions
	How to do it...
	Creating a Partition
	Editing a partition
	Processing partitions

	How it works...

	Managing roles
	Getting ready
	How to do it...
	Creating Admin role
	Creating a Read role
	Creating a read and process role
	Creating a process role
	Editing roles

	There's more...

	Managing server properties
	How to do it...

	Managing Analysis Services memory
	How to do it...
	How it works...

	6. In-Memory Versus DirectQuery Mode
	Introduction
	Understanding query modes
	Understanding in-memory mode
	Advantages of in-memory
	Limitations of in-memory

	Understanding DirectQuery mode
	Advantages of DirectQuery
	Limitations of DirectQuery mode

	Creating a new DirectQuery project
	How to do it...
	How it works...

	Configuring DirectQuery table partitions
	How to do it...
	How it works...

	Testing DirectQuery mode
	How it works...

	7. Securing Tabular Models
	Introduction
	Configuring static row-level security
	Getting ready
	How to do it...
	How it works...

	Configuring dynamic filter security
	Getting ready
	How to do it...
	How it works...

	8. Combining Tabular Models with Excel
	Introduction
	Using Analyze in Excel from SSMS
	How to do it...
	How it works...

	Connecting to Excel from SQL Server Data Tools
	How to do it...
	How it works...

	Using PivotTables with tabular data
	Using Slice, Sort, and Filter
	How to do it...
	How it works...

	Using the timeline filter with pivot tables
	How to do it...
	How it works...

	Analyzing data with Power View
	How to do it...
	How it works...
	There's more...

	Importing data with Power Pivot
	Getting ready
	How it works...

	Modeling data with Power Pivot
	Getting ready
	How to do it...
	How it works...

	Adding data to Power Pivot
	Getting ready
	How to do it...
	How it works...
	Moving Power Pivot models to the enterprise

	Moving Power Pivot to SSAS via Management Studio
	How to do it...
	How it works...

	Moving Power Pivot to SSAS via SQL Server Data Tools
	How to do it...
	How it works...

	9. DAX Syntax and Calculations
	Introduction
	Understanding DAX formulas
	Getting ready
	How to do it...
	How it works...
	There's more...

	Using the AutoSum measure in Visual Studio
	How to do it...
	How it works...

	Creating calculated measures
	Getting ready
	How to do it...
	How it works...

	Creating calculated columns
	How to do it...
	How it works...
	There's more...

	Using the IF function
	Getting ready
	How to do it...
	How it works...

	Using the AND function
	How to do it...

	Using the SWITCH function
	How to do it...
	How it works...
	There's more...

	Using the CONCATENATE function
	How to do it...
	How it works...
	There's more...

	Using the LEFT Function
	How to do it...
	How it works...
	There's more...

	Using the RELATED function
	How to do it...
	How it works...
	There's more...

	Using the RELATEDTABLE function
	How to do it...
	How it works...

	Using EVALUATE in DAX queries
	How to do it...

	Filtering based on a value
	Getting ready
	How to do it...
	How it works...

	Filtering a related table
	How to do it...
	How it works...

	Using ALL to remove filters
	How to do it...
	How it works...

	Using ALL to calculate a percentage
	Getting ready
	How to do it...
	How it works...

	Using the SUMMARIZE function
	How to do it...
	How it works...

	Adding columns to the SUMMARIZE function
	Getting ready
	How to do it...
	How it works...

	Using ROLLUP with the SUMMARIZE function
	How to do it...
	How it works...

	10. Working with Dates and Time Intelligence
	Introduction
	Creating a date table in Visual Studio
	Getting ready
	How to do it...
	How it works...

	Using the CALENDAR function
	How to do it...
	How it works...

	Modifying the date table with the YEAR function
	Getting ready
	How to do it...
	How it works...

	Modifying the date table to include month data
	How to do it...
	How it works...
	There's more...

	Using the NOW and TODAY functions
	How to do it...
	How it works...

	Using the DATEDIFF function
	Getting ready
	How to do it...
	How it works...
	There's more...

	Using the WEEKDAY function
	How to do it...
	How it works...
	There's more...
	See also...

	Using the FIRSTDATE function
	How to do it...
	How it works...
	There's more...

	Using the PARALLELPERIOD function
	How to do it...
	How it works...
	There's more...

	Calculating Year over Year Growth
	How to do it...
	How it works...

	Using the OPENINGBALANCEMONTH function
	How to do it...
	How it works...

	Using the OPENINGBALANCEYEAR function
	How to do it...
	How it works...

	Using the CLOSINGBALANCEMONTH function
	How to do it...
	How it works...

	Using the CLOSINGBALANCEYEAR function
	How to do it...
	How it works...

	Using the TOTALYTD function
	How to do it...
	How it works...

	11. Using Power BI for Analysis
	Introduction
	Getting started with Power BI desktop
	How to do it...
	How it works...

	Adding data to Power BI reports
	How to do it...
	How it works...
	There's more...

	Visualizing the crash data with Power BI
	Getting ready
	How to do it...
	How it works...

	Editing visualization properties in Power BI
	Getting ready
	How to do it...
	How it works...

	Adding additional visualizations to Power BI
	Getting ready
	How it to do it...
	How it works...

	Adding a slicer to Power BI
	Getting ready
	How to do it...
	How it works...

	Using analytics in Power BI
	Getting ready
	How to do it...
	How it works...

