
www.allitebooks.com

http://www.allitebooks.org

TypeScript Essentials

Develop large scale responsive web applications
with TypeScript

Christopher Nance

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

[FM-2]

TypeScript Essentials

Copyright © 2014 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: October 2014

Production reference: 1161014

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78398-576-0

www.packtpub.com

www.allitebooks.com

www.packtpub.com
http://www.allitebooks.org

[FM-3]

Credits

Author
Christopher Nance

Reviewers
Andrea Martinelli

Nathan Rozentals

Basarat Ali Syed

Carlos Ballesteros Velasco

Commissioning Editor
Amarabha Banerjee

Acquisition Editor
Richard Gall

Content Development Editor
Arvind Koul

Technical Editor
Kunal Anil Gaikwad

Copy Editors
Maria Gould

Paul Hindle

Project Coordinator
Neha Bhatnagar

Proofreaders
Simran Bhogal

Ameesha Green

Paul Hindle

Indexers
Monica Ajmera Mehta

Priya Sane

Graphics
Disha Haria

Production Coordinators
Adonia Jones

Komal Ramchandani

Nitesh Thakur

Cover Work
Komal Ramchandani

www.allitebooks.com

http://www.allitebooks.org

[FM-4]

About the Author

Christopher Nance is an experienced software engineer and has been developing
rich web applications for more than 4 years. At KnowledgeLake, he adopted
TypeScript to develop a series of reusable components to scale across multiple
product offerings and platforms.

I would like to thank my parents for their constant support
and encouragement. I would also like to thank my team at
KnowledgeLake for pushing me to improve my skills as an engineer.

www.allitebooks.com

http://www.allitebooks.org

[FM-5]

About the Reviewers

Andrea Martinelli is a passionate software developer who is currently working
on Shaman.IO, a tool that automatically detects and extracts structured data from
the Web.

In the past, he worked on Songr, a music player and aggregator. His interests span
across web data extraction, code performance, and statically typed languages. He
is a proficient C# developer and has been interested in TypeScript since its initial
announcement. He graduated from the University of Trento in Computer Science
and then studied at the Technical University of Denmark, even though he is now
dedicating more time to the Shaman.IO project while moving across Europe.

I would like to thank my friends, especially Gianluca and Stefano,
for always being supportive. I would also like to thank Prof. Filz,
who was one of my most influential teachers in high school. Thanks
also to Mads, a special person that I will never forget. And to my
family, who I haven't seen for quite a long time.

Nathan Rozentals has been writing commercial software for over 23 years,
starting with COBOL on mainframes, through C, on to C++ and Java, and finally
settling on C# and ASP.NET.

He picked up TypeScript in October 2012—a day after the 0.8.0 release—and
could not put it down. In TypeScript, he found a language that could bring all
of the design patterns and practices he had learned over the years—in a variety
of languages—to JavaScript.

www.allitebooks.com

shaman.io
http://www.allitebooks.org

[FM-6]

Some 6 days after the 0.8.0 release, he began blogging about TypeScript; covering
a variety of topics, including unit testing, implementing an IoC container, and
organizing code with AMD modules. He knew he had hit the mark when Microsoft
themselves started to reference his blog in their CodePlex discussion forums.

You can find his blog at http://blorkfish.wordpress.com.

He currently works in the health industry, bringing touchscreen interfaces to
medical systems, thereby enabling BYOD for clinicians and hospital staff.

He is passionate about code quality, unit testing, and continuous integration,
and has helped many large teams implement CI across many different software
projects in many different languages.

When he is not coding, he loves windsurfing and playing soccer. He is also an
avid Liverpool FC supporter.

I would like to thank my partner, Kathy, for her never ending love
and support, and for giving me the freedom to spend long hours
working on something that I am so passionate about. You are the best.
To Ayron and Dayna—you are always in my thoughts—your
enthusiasm for life and curious nature have given me such inspiration.
I will always be there for you.

Basarat Ali Syed (BAS) is a senior developer and the go-to guy for frontend issues
at Picnic Software (http://picnicsoftware.com/) in Melbourne, Australia. He has
a Master of Computing degree from Australian National University and graduated
with high distinction in all courses. He is a familiar face at developer meetups and
conferences in Australia and has been a speaker at events such as ALT.NET, DDD
Melbourne, MelbJS, and Node.js meetups, among others. He is deeply passionate
about web technologies. He is a known member of the TypeScript community and
works on the DefinitelyTyped team (https://github.com/DefinitelyTyped). In
his spare time, he enjoys bodybuilding, cycling, and maintains a YouTube channel
for helping fellow developers (http://youtube.com/basaratali). You can easily
find him on Twitter @basarat, www.github.com/basarat, and www.basarat.com.

www.allitebooks.com

http://blorkfish.wordpress.com
http://picnicsoftware.com/
https://github.com/DefinitelyTyped
http://youtube.com/basaratali
www.github.com/basarat
www.basarat.com
http://www.allitebooks.org

[FM-7]

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.com
and as a print book customer, you are entitled to a discount on the eBook copy. Get in
touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print, and bookmark content
•	 On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials
for immediate access.

www.allitebooks.com

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
http://PacktLib.PacktPub.com
www.PacktPub.com
http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Table of Contents
Preface	 1
Chapter 1: Getting Started with TypeScript	 5

The advantages of TypeScript	 6
Setting up the IDE	 8
Hello World	 9

Command-line compilation	 10
Integrating Visual Studio	 12
Creating a new project	 13
Build options	 14

Summary	 16
Chapter 2: TypeScript Basics	 17

Types	 18
Functions	 20
Interfaces	 23
Classes	 25
Definitions	 25

Interfaces	 27
Static and instance members	 28
Properties	 31

Enums	 34
Modules	 37

Internal modules	 37
Generic objects	 42
Summary	 44

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

Chapter 3: The TypeScript Compiler	 45
Generation of ECMAScript	 45

ECMAScript version	 46
Code manipulation	 49

Controlling compiler output	 51
JavaScript output	 51
Source maps	 54

Advanced options	 56
Summary	 60

Chapter 4: Object-oriented Programming with TypeScript	 61
The basics	 62

SOLID – object-oriented design	 63
Understanding inheritance	 64
Encapsulation	 68
Abstraction	 70
Polymorphism	 72

Method overloading	 72
Operator overloading	 73
Method overrides	 75

References	 76
Summary	 77

Chapter 5: Creating a Simple Drawing Application	 79
Setting up the project	 79
The shapes	 82

Basic shapes	 82
Drawing shapes	 84

Making the application interactive	 90
The engine	 90
Mouse events	 94
User options	 97

Summary	 104
Chapter 6: Declaration Files and Library Integrations	 105

Declaration files	 105
Third-party library integration	 107

Installing NuGet packages	 107
Integrating with jQuery	 109
Integrating with Knockout	 112
Using RequireJS	 115

Summary	 120

Table of Contents

[iii]

Chapter 7: Enhancing the Drawing Application	 121
Converting to AMD modules	 122
Binding the user controls	 130

Reusable controls	 130
Creating a ViewModel	 135

Generating a single output file	 138
Styling the application	 144
Summary	 149

Chapter 8: Debugging TypeScript	 151
Debugging	 151
Source maps	 152
Debuggers	 152

Test-driven development	 154
Unit testing	 155
Adding tests	 156

Summary	 162
Index	 163

Preface
This book is a quick and useful guide to learning the TypeScript language.
The language features that TypeScript provides on top of JavaScript are covered
thoroughly in this book with hands-on examples. TypeScript is a fairly new
development language that can ease the pain of normal JavaScript development.
Starting from downloading the compiler, covering language features, and
implementing a dynamic application, this book will leave you ready to
create new, large-scale JavaScript-based applications.

What this book covers
Chapter 1, Getting Started with TypeScript, covers setting up an environment
for developing TypeScript applications and creating a simple application.

Chapter 2, TypeScript Basics, covers the primary language features that
TypeScript creates on top of JavaScript and how each of these features
compiles into plain JavaScript.

Chapter 3, The TypeScript Compiler, examines the TypeScript compiler and the
different parameters that it accepts. The results of the different parameters
will be discussed as well as how they affect the final JavaScript output.

Chapter 4, Object-oriented Programming with TypeScript, is all about the basics
of object-oriented programming. You will be presented with the benefits that
TypeScript adds to make ECMA Script a more full-fledged object-oriented language.

Chapter 5, Creating a Simple Drawing Application, walks you through creating a simple
drawing application using the concepts already covered in the book. By the end of
the chapter, you will have created a web-based drawing application that will give
you a good understanding of writing complex applications using TypeScript.

Preface

[2]

Chapter 6, Declaration Files and Library Integrations, discusses declaration files
and how they help us integrate with other JavaScript libraries. Libraries such
as jQuery, KnockoutJS, and RequireJS will be covered.

Chapter 7, Enhancing the Drawing Application, re-examines the drawing application
and shows you how to create a more reusable set of objects. Module definitions
will be created and the process of minifying code is covered.

Chapter 8, Debugging TypeScript, discusses the different options available to
debug TypeScript once it is deployed and running. We also cover unit testing
and test-driven development, which will allow us to test functionality with code.

What you need for this book
TypeScript has a standalone compiler install, so any text editor can be used to
develop TypeScript applications. The examples provided with this book will use
Microsoft's Visual Studio, and it is recommended that you use it too to help you
follow the examples; however, this is not a requirement. A basic understanding
of JavaScript and web development is required as not every language construct
will be covered; just the ones that TypeScript provides on top of it.

Who this book is for
This book is intended to introduce the TypeScript language and its features to
anyone looking to develop rich web applications. Whether you are new to web
development or are an experienced engineer with strong JavaScript skills, this
book will get you writing code quickly. A basic understanding of JavaScript and
its language features is necessary for this book.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"To get started, let's create a new file on the filesystem and call it HelloWorld.ts."

Preface

[3]

A block of code is set as follows:

var p = document.createElement('p');
var hello: string = "Hello";
var world: string = 2;
p.textContent = hello + " " + world;

document.body.appendChild(p);

Any command-line input or output is written as follows:

tsc HelloWorld.ts

New terms and important words are shown in bold. Words that you see on
the screen, in menus or dialog boxes for example, appear in the text like this:
"To create a new project that includes TypeScript, go to the File menu and
navigate to New | Project."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things
to help you to get the most from your purchase.

www.packtpub.com/authors

Preface

[4]

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to
have the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you would report this to us. By doing so, you can save
other readers from frustration and help us improve subsequent versions of this book.
If you find any errata, please report them by visiting http://www.packtpub.com/
submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list
of existing errata, under the Errata section of that title. Any existing errata can be
viewed by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we
can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring
you valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/support

Getting Started with
TypeScript

There are many languages available that can be used to create cross-platform
applications and these types of code applications are being created daily. Some of the
more common languages that these applications use are Java, C, and JavaScript and
each has its advantages and disadvantages. While JavaScript is easy to get started
with, it is also easy to lose control of. C requires a lot of overhead to create complex
applications such as memory management, and Java requires the Java runtime to
be installed. As applications grow and become more complex, so does the need to
produce maintainable code. TypeScript is a new open source language created to
make web development easier and more reliable. In this chapter we will:

•	 Understand what TypeScript is
•	 Learn how TypeScript improves on the foundations of JavaScript
•	 Explore the ways TypeScript makes code more maintainable
•	 Learn how to get the TypeScript compiler
•	 Create our first application in TypeScript

Getting Started with TypeScript

[6]

The advantages of TypeScript
As hardware technology has advanced, so too has the need for more advanced
software applications to run not just on one device but on an array of devices.
JavaScript is the natural solution to this cross-platform model since almost all
modern browsers are capable of running it. Unfortunately, the development
paradigm of JavaScript is still dependent upon complex pattern knowledge,
and debugging must be done at runtime. Creating large applications in JavaScript
can be difficult and structuring the code in a maintainable form is just as difficult.
TypeScript, an open source language project started by Microsoft, aims to take
JavaScript development to the next level.

JavaScript originally ran as an interpreted language and still does in some places,
while modern browsers convert it to machine code during execution. What this
means is that the code you write is the code being used at runtime. The advantage
of using interpreted languages is that they provide a rapid development model
with very little overhead for the developer. They work in cross-platform
environments because the code does not need to be compiled for each new device
it is deployed to. Interpreted languages aren't without their share of disadvantages
either though. In most modern implementations, JavaScript code must be run
through a just-in-time compiler first, but even with the help of this compilation,
the dynamic typing of the language makes this a difficult task and performance can
suffer. On top of the performance hit, JavaScript code must still be deployed before
testing can be done. A single syntax error will force you to run the application, track
down the source of the problem, fix it, and then run the application again, which
wastes a lot of time and can be quite frustrating. Developers like to refactor code as
better ways to solve problems arise or new functionality is needed. This refactoring
could cause other parts of the application to fail and without performing complete
regression testing the problem could be overlooked. To interact with an object you
must have intimate knowledge of the type that the object represents. TypeScript
aims to solve these problems through a variety of additions to the JavaScript
language including a compilation step with a detailed list of errors.

TypeScript is a statically typed compiled language that generates JavaScript code
that can be used in cross-platform scenarios. You may be thinking to yourself at
this point: why would I want to rewrite all of the applications I already have in this
new language? The simple answer is you don't have to. TypeScript is just a superset
of JavaScript that gets compiled into plain JavaScript. Although almost all of your
existing JavaScript code is valid TypeScript code, certain pieces will need to be
adapted to ensure safe compilation; however, they will generally improve the
quality of your code. You are free to type your code as strong or as weak as you
wish but I highly recommend embracing the typing system completely.

Chapter 1

[7]

JavaScript was originally created as a scripting language, but as the need for larger
applications has grown so has the need for those applications to contain more reusable
components and libraries. JavaScript is dynamic enough to act as both a functional
language and an object-oriented one through certain design patterns. Object-oriented
code is focused on the concept of code reuse and we will be investigating it during
our journey into TypeScript. TypeScript provides a rich set of object types and
accessibility levels that will seem very familiar to object-oriented developers.
Inheritance, encapsulation, and abstraction are all made easier in TypeScript.
JavaScript is focused on the value of functions and prototype-based inheritance,
which means TypeScript is as well. This can seem strange to anyone used to the
idea of class-based inheritance. So through the use of its compiler, TypeScript
introduces a number of important concepts from a few different object-oriented
languages. These are as follows:

•	 Static typing
•	 Classes
•	 Interfaces
•	 Generics
•	 Modules

TypeScript adds a static typing layer on top of JavaScript that is then run through
a compiler. The compiler parses the TypeScript code and converts it into plain
JavaScript. The addition of type safety and code compilation allows errors to be
caught sooner and bugs to be eliminated without ever having to deploy a line of
code. The introduction of classes and modules makes the development of large scale
applications much easier. Including generics and interfaces in the type system allows
us to easily create components and libraries that can be used with a variety of objects.

On top of this, TypeScript introduces the idea of public and private members. If an
object or function attempts to access a private member of another object the compiler
will recognize that the code is invalid and a build error will be generated. This helps
implement encapsulation, which is meant to prevent consumers of your TypeScript
objects from accessing methods and properties that could be potentially harmful
when manipulated outside of the scope of the object itself. Providing accessibility
levels helps us limit the scope of possible interactions with an object or even hide
it completely from access by other components or libraries.

Keep in mind that the output from the compiler is just JavaScript
code and when it is run, any segment of code that has access to the
object can manipulate any property of the object.

Getting Started with TypeScript

[8]

Writing unit tests has become common practice in software development. Unit tests
allow us as developers to refactor and clean code with the safety of knowing that we
are not breaking existing functionality. The design decision to include interfaces in the
language specification for TypeScript has helped to improve the testability of our code.
Writing unit tests help us to verify that small segmented blocks of code always operate
as expected. However, as our applications grow we must pass around more complex
objects and create more complex functions. This makes testing small segments of code
individually more difficult. With the addition of interfaces, it is now easier to mock up
objects to be passed around and more tightly control the scope of the tests.

Another key component of JavaScript development is the ability to integrate
third-party libraries. It is difficult to find rich web applications these days that don't
integrate with jQuery, which has advantages and disadvantages. Due to the open
nature of JavaScript development, libraries exist to do almost anything and a lot of
them are free to use. Later on we will discuss how TypeScript is already equipped to
integrate with these libraries and make the development experience infinitely better.
For now, let's focus on getting ready to write our first application in TypeScript.

Setting up the IDE
To start writing code in TypeScript, we first need to install the compiler. The
compiler is available as a standalone package through Node.js, Visual Studio
tooling that Microsoft provides, or you can directly download the compiler's
source code. Throughout this text we will be using Visual Studio 2013 as our
interactive development environment (IDE). Visual Studio 2013 provides native
support for TypeScript with the release of Update 2. For Visual Studio 2012,
Microsoft provides an extension that can be installed from the TypeScript home
page (http://www.typescriptlang.org/). As TypeScript is becoming more
widespread, the number of code editors that have support for it has grown
including Eclipse (http://www.jetbrains.com/webstorm/) and Notepad++
(https://github.com/hansrwindhoff/nppPluginTypescript).

The TypeScript compiler, as with a number of modern languages, is written
in TypeScript, which means it will compile to plain JavaScript and run in any
JavaScript host. With Microsoft's tools installed, you can access the TypeScript
compiler directly from the command line and generate JavaScript immediately.
The following screenshot shows a list of the available compiler options and what
they do. We will look at each of these options more thoroughly later on but for
now you can see that the compiler, although very new, already has a very robust
feature set

http://www.typescriptlang.org/
http://www.jetbrains.com/webstorm/
https://github.com/hansrwindhoff/nppPluginTypescript

Chapter 1

[9]

As you can see the list of options is fairly extensive so far and will undoubtedly
become richer as the language develops. TypeScript 1.0, which will be the version of
the language used in this text, provides parameters for everything from specifying the
output file to warnings based on code rules. We will discuss all of these options later
on, but for now all you need to know is that you can compile your TypeScript code by
passing the compiler the path of the file you want to compile. When we begin to build
more complicated applications the Visual Studio integrations will provide an easy way
for you to set compiler options for all TypeScript files included in your projects.

Hello World
Now that we have the compiler installed, let's start writing some code. This wouldn't
be a good technical book without the inclusion of "Hello World" to get you started with
writing code in a new language. The code for this particular example is pretty simple,
but we can use it to demonstrate some of the early benefits of switching to TypeScript.

Getting Started with TypeScript

[10]

Command-line compilation
The TypeScript compiler is nothing more than JavaScript code; it is possible to
compile your TypeScript anywhere that a JavaScript host exists. Earlier, we saw
that an executable was provided that allows us to compile our code from the
command line. We will walk through this first example using this executable and
discover how simple it is to get going with TypeScript. To get started, let's create
a new file on the filesystem and call it HelloWorld.ts. The following code creates
a new HTML paragraph element and sets the text to the value of a pair strings
concatenated together:

var p = document.createElement('p');
var hello: string = "Hello";
var world: string = 2;
p.textContent = hello + " " + world;

document.body.appendChild(p);

For the most part, this looks like plain old JavaScript. However, if you pay
close attention to the declaration of the hello and world variables, you will see
something new. After the variable names, you will see that they are now given the
type of string. This type annotation tells the compiler to always treat the variables
hello and world as strings; however, in this case, the compiler can infer these types
from their initial values. Every other reference to these variables will be able to
assume that all of the properties and methods of an object of the type string will be
accessible. This allows IDEs to provide intelligent code completion as well as visually
alert us if we are performing an action that the compiler is going to fail on. Now let's
verify that this code compiles and analyze the JavaScript that the compiler outputs.

Downloading the example code
You can download the example code files for all Packt books you have
purchased from your account at http://www.packtpub.com. If you
purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed directly to you.

Launch an instance of the command prompt and browse to the directory where
you created the HelloWorld.ts file. From here, running the compiler is as simple
as typing the following:

tsc HelloWorld.ts

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support

Chapter 1

[11]

This generates the following output:

As you can see, the compiler recognizes that we typed the world variable as string
and then tried to assign a numeric value to it. While that would have been legal
JavaScript, it could lead to data errors later when another piece of code is expecting
world to be string. So let's go back to the TypeScript file and modify the value we
are assigning to world and run the compiler again:

 var world: string = "World!";

Success! Our code has successfully made it through the TypeScript compiler and it
generated a JavaScript file by the name of HelloWorld.js. If you open up this file,
you will find the resulting code that will be deployed and run on the client. As you
can see, the type annotations were stripped out of the final code, while maintaining
a one-to-one mapping between our TypeScript code and the resulting JavaScript
code, because they are not actually part of the JavaScript language specification:

 var p = document.createElement('p');
var hello = "Hello";
var world = "World!";
p.textContent = hello + " " + world;

document.body.appendChild(p);

Now that we have our JavaScript generated, we need to test it. The first thing our
code is attempting to do is to create a new HTML paragraph element. So we will
need to generate an HTML file to load our code and be available for manipulation.
Then two parts of a message are concatenated together and assigned to the text
value of the paragraph element that has just been created. Finally, the paragraph
element is appended to the body of the HTML document. The following HTML
code will load our generated JavaScript file:

<html>
<head>
 <title>Hello World</title>
</head>

Getting Started with TypeScript

[12]

<body>
 <script src="HelloWorld.js" ></script>
</body>
</html>

In general, script tags should be included within the <head> tag,
not in the main <body> tag. In this case, our code is dependent
upon the DOM being ready for our code to execute successfully.

Opening the HTML file in a browser will result in the immediate execution of our
code when the document's body loads. As you can see in the following screenshot,
our paragraph was added to the HTML on the page and Hello World! is displayed:

So as you can see, creating and compiling TypeScript applications is just as easy
as creating a basic JavaScript application. However, running the compiler from the
command line will become cumbersome as the applications you develop grow in
size and complexity. So let's go over setting up a TypeScript project in Visual Studio
and get the Hello World application running in a web-based project.

Integrating Visual Studio
Now that we have created a simple application and discovered how TypeScript
generates JavaScript that can be deployed, let's cover the integration with Visual
Studio or Visual Studio Express, which is a free version of Visual Studio available at
http://www.visualstudio.com/en-us/products/visual-studio-express-vs.
aspx. Once you have the Visual Studio tooling installed for TypeScript, you will be
able to create new projects that are set up to use our new language of choice.

http://www.visualstudio.com/en-us/products/visual-studio-express-vs.aspx
http://www.visualstudio.com/en-us/products/visual-studio-express-vs.aspx

Chapter 1

[13]

Creating a new project
To create a new project that includes TypeScript, go to the File menu and navigate to
New | Project. In the New Project window, you will see a list of installed templates.
There is now a new section named TypeScript; select this section and you will see all
of the available project templates that can be used to create TypeScript applications.

The location of this template may vary depending on the version of
Visual Studio installed. If the TypeScript section is not available, use
the search function of the project template selector.

This does not mean that TypeScript can only be added to these project types—you
can add TypeScript files to any existing project. For our examples, we will be using
the HTML Application with TypeScript project template, so let's select that and
create our new application:

Once the project has been created you will notice a few things right away. First, a
default TypeScript file and HTML file have been created to host our new application.
There is also a web.config and CSS file to host your application styles. All of these
elements should seem pretty familiar to you, except the TypeScript file, which is
there in place of a JavaScript file.

Getting Started with TypeScript

[14]

Now that our project has been created we need to move our code in. Copy
the code from HelloWorld.ts into app.ts and do the same with the HTML that
was generated. Change the script tag's source attribute to app.js to reference the
new location of our code and run the application. The output displayed should be
the same.

Build options
Visual Studio has provided a seamless integration with TypeScript and provides
a large variety of configuration options. Let's take a look at the project build options
first and get a feel for the different things that TypeScript can generate when it is
being compiled. To find the build options, right-click on the project in the solution
explorer and select Properties from the context menu. As you can see in the
following screenshot, we are able to manipulate a large number of the compiler
options we saw earlier:

From the build settings you can see that we have the ability to change which version of
JavaScript we want to compile our TypeScript into: ECMAScript 5 or ECMAScript 3.

JavaScript is now formally known as ECMAScript but it is still
commonly referred to as its original name.

Chapter 1

[15]

You also have the option for compiling TypeScript files when you save changes to
them. This is a helpful option because when a TypeScript file is compiled so are all
other TypeScript files that it references. This is a helpful feature when you have only
a few files being referenced, but as your applications grow and the dependency trees
become more complex you could run into performance issues. Allowing implicit
"any" types tells the compiler not to fail if an object's type is not given or cannot be
implied. Unchecking this option is the easiest way to force yourself to fully embrace
the type system. Although you may run across some scenarios where an "any" type
is inevitable they should be very rare. This can be done by providing a type
annotation as shown here:

 var explicitAny: any;

We also have the ability to change the module system we want to use when our
JavaScript code is generated. We will discuss modules and the differences between
each of our available options later on, but it is important to be aware of this option
because it could drastically change the way our final code looks.

The output section gives us a variety of options for what the final output from the
compiler will be. Commenting code is a very useful way of making it maintainable,
but this can bloat the size of a JavaScript file. This could cause performance
problems when downloading the code to a remote client over the web. Since Visual
Studio gives us the ability to define different compiler options for different build
configurations, we could allow the comments to remain in the output for debugging
while removing them for release builds. The Combine JavaScript output into file
option allows us to combine all of our generated code into a single output file. This
becomes incredibly useful as the number of files in our project grows and there are
a lot of network calls taking place to get each file one at a time.

We also have the ability to change the output path of the generated JavaScript. This
gives us the ability to push changes directly into a test environment upon successful
compilation without ever having to bring down the site or manually copy files to
the deployment location. The last option in the output section is a very interesting
one. Checking the Generate declaration files option will create declaration files for
each of the types you create. These declaration files can then be referenced by other
TypeScript files to provide a type definition for objects of a specific type. We will
discuss declaration files in more depth later on in the book.

Getting Started with TypeScript

[16]

The final section is related to how we want to debug our TypeScript code. We
have the ability to generate source maps and the directory in which they should
be deployed to. Source maps provide a way for debugging combined and minified
JavaScript code. They are particularly helpful when debugging code that has been
pushed into production by creating a way to make the JavaScript readable, however,
in TypeScript they also provide us with a way back to the original TypeScript code.
The final option specifies where the TypeScript files are located; this will allow
debugging from inside of Visual Studio directly. In most scenarios, the default
option here will suffice.

Summary
The things learned in this chapter will be the basis for continuing our journey into
TypeScript. We have discussed a variety of ways in which TypeScript improves the
JavaScript development model. TypeScript makes large scale application development
easier with the addition of a static typing system and code completion. Visual Studio's
intellisense feature brings JavaScript development in line with other languages such
as C# and Visual Basic. We briefly discussed the compiler and how it turns TypeScript
into deployable JavaScript and created our first application. All of the examples shown
moving forward will be using Visual Studio; however, feel free to use your favorite
IDE. In the next chapter, we will discuss the different language features provided by
TypeScript and how the compiler generates its JavaScript output.

TypeScript Basics
One of the primary benefits of compiled languages is that they provide a more plain
syntax for the developer to work with before the code is eventually converted to
machine code. TypeScript is able to bring this advantage to JavaScript development
by wrapping several different patterns into language constructs that allow us
to write better code. We have talked a little bit about the static type system that
TypeScript adds on top of JavaScript. Every explicit type annotation that is provided
is simply syntactic sugar that will be removed during compilation, but not before
their constraints are analyzed and any errors are caught. In this chapter, we will
explore this type system in depth. We will also discuss the different language
structures that TypeScript introduces. We will look at how these structures are
emitted by the compiler into plain JavaScript. This chapter will contain a detailed
look at each of these concepts:

•	 Types
•	 Functions
•	 Interfaces
•	 Classes
•	 Enums
•	 Modules
•	 Generic types

www.allitebooks.com

http://www.allitebooks.org

TypeScript Basics

[18]

Types
In Chapter 1, Getting Started with TypeScript, we wrote our first TypeScript application
and briefly glanced at the static type system. Two variables were created and
were given static type annotations to declare them as string objects. These type
annotations put a specific set of constraints on the variables being created. These
constraints allow the compiler and development tools to better assist in the proper
use of the object. This includes a list of functions, variables, and properties available
on the object. If a variable is created and no type is provided for it, TypeScript will
attempt to infer the type from the context in which it is used. For instance, in the
following code, we do not explicitly declare the variable hello as string; however,
since it is created with an initial value, TypeScript is able to infer that it should
always be treated as a string:

var hello = "Hello There";

The ability of TypeScript to do this contextual typing provides development tools
with the ability to enhance the development experience in a variety of ways.
The type information allows our IDE to warn us of potential errors in our code,
or provide intelligent code completion and suggestion. As you can see from
the following screenshot, Visual Studio is able to provide a list of methods and
properties associated with string objects as well as their type information:

When an object's type is not given and cannot be inferred from its initialization then
it will be treated as an Any type. The Any type is the base type for all other types
in TypeScript. It can represent any JavaScript value and the minimum amount of
type checking is performed on objects of type Any. Every other type that exists in
TypeScript falls into one of three categories: primitive types, object types, or type
parameters. TypeScript's primitive types closely mirror those of JavaScript.

Chapter 2

[19]

The TypeScript primitive types are as follows:

•	 Number: var myNum: number = 2;
•	 Boolean: var myBool: boolean = true;
•	 String: var myString: string = "Hello";
•	 Void: function(): void { var x = 2; }
•	 Null: if (x != null) { alert(x); }
•	 Undefined: if (x != undefined) { alert(x); }

All of these types correspond directly to JavaScript's primitive types except for Void.
The Void type is meant to represent the absence of a value. A function that returns no
value has a return type of void. Object types are the most common types you will see
in TypeScript and they are made up of references to classes, interfaces, and anonymous
object types. Object types are made up of a complex set of members. These members
fall into one of four categories: properties, call signatures, constructor signatures, or
index signatures. Later in this chapter, we will start creating different object types
using the different language entities in TypeScript.

Type parameters are used when referencing generic types or calling generic functions.
Type parameters are used to keep code generic enough to be used on a multitude of
objects while limiting those objects to a specific set of constraints. An early example
of generics that we can cover is arrays. Arrays exist just like they do in JavaScript and
they have an extra set of type constraints placed upon them. The array object itself has
certain type constraints and methods that are created as being an object of the Array
type, the second piece of information that comes from the array declaration is the type
of the objects contained in the array. There are two ways to explicitly type an array;
otherwise, the contextual typing system will attempt to infer the type information:

var array1: string[] = [];
var array2: Array<string> = [];

Both of these examples are completely legal ways of declaring an array. They both
generate the same JavaScript output and they both provide the same type information.
The first example is a shorthand type literal using the [and] characters to create
arrays. The resulting JavaScript for each of these arrays is shown as follows:

var array1 = [];
var array2 = [];

TypeScript Basics

[20]

Despite all of the type annotations and compile-time checking, TypeScript
compiles to plain JavaScript and therefore adds absolutely no overhead to the
run time speed of your applications. All of the type annotations are removed
from the final code, providing us with both a much richer development
experience and a clean finished product.

Functions
If you are at all familiar with JavaScript you will be very familiar with the concept
of functions. TypeScript has added type annotations to the parameter list as well
as the return type. Due to the new constraints being placed on the parameter list,
the concept of function overloads was also included in the language specification.
TypeScript also takes advantage of JavaScript's arguments object and provides
syntax for rest parameters. Let's take a look at a function declaration in TypeScript:

function add(x: number, y: number): number {
 return x + y;
}

As you can see, we have created a function called add. It takes two parameters that
are both of the type number, one of the primitive types, and it returns a number. This
function is useful in its current form but it is a little limited in overall functionality.
What if we want to add a third number to the first two? Then we have to call our
function multiple times. TypeScript provides a way to provide optional parameters
to functions. So now we can modify our function to take a third parameter, z, that
will get added to the first two numbers, as shown in the following code:

function add(x: number, y: number, z?: number) {
 if (z !== undefined) {
 return x + y + z;
 }
 return x + y;
}

As you can see, we have a third named parameter now but this one is followed
by ?. This tells the compiler that this parameter is not required for the function
to be called.

Chapter 2

[21]

Optional parameters tell the compiler not to generate an error if the
parameter is not provided when the function is called. In JavaScript,
this compile-time checking is not performed, meaning an exception
could occur at runtime because each missing parameter will have
a value of undefined. It is the responsibility of the developer to
write code that verifies a value exists before attempting to use it.

So now we can add three numbers together and we haven't broken any of our
previous code that relied on the add method only taking two parameters. This has
added a little bit more functionality but I think it would be nice to extend this code
to operate on multiple types. We know that strings can be added together just the
same as numbers can, so why not use the same method? In its current form, though,
passing strings to the add function will result in compilation errors. We will modify
the function's definition to take not only numbers but strings as well, as shown in the
following code:

function add(x: string, y: string): string;
function add(x: number, y: number): number;
function add(x: any, y: any): any {
 return x + y;
}

As you can see, we now have two declarations of the add function: one for strings,
one for numbers, and then we have the final implementation using the any type.
The signature of the actual function implementation is not included in the function's
type definition, though. Attempting to call our add method with anything other than
a number or string will fail at compile time, however, the overloads have no effect on
the generated JavaScript. All of the type annotations are stripped out, as well as the
overloads, and all we are left with is a very simple JavaScript method:

function add(x, y) {
 return x + y;
}

Great, so now we have a multipurpose add function that can take two values and
combine them together for either strings or numbers. This still feels a little limited in
overall functionality though. What if we wanted to add an indeterminate number of
values together? We would have to call our add method over and over again until
we eventually had only one value. Thankfully, TypeScript includes rest parameters,
which is essentially an unbounded list of optional parameters.

TypeScript Basics

[22]

The following code shows how to modify our add functions to include a
rest parameter:

function add(arg1: string, ...args: string[]): string;
function add(arg1: number, ...args: number[]): number;
function add(arg1: any, ...args: any[]): any {
 var total = arg1;
 for (var i = 0; i < args.length; i++) {
 total += args[i];
 }
 return total;
}

A rest parameter can only be the final parameter in a function's declaration.
The TypeScript compiler recognizes the syntax of this final parameter and generates
an extra bit of JavaScript to generate a shifted array from the JavaScript arguments
object that is available to code inside of a function. The resulting JavaScript code
shows the loop that the compiler has added to create the array that represents our
indeterminate list of parameters:

function add(arg1) {
 var args = [];
 for (var _i = 0; _i < (arguments.length - 1); _i++) {
 args[_i] = arguments[_i + 1];
 }
 var total = arg1;
 for (var i = 0; i < args.length; i++) {
 total += args[i];
 }
 return total;
}

Now adding numbers and strings together is very simple and is completely
type-safe. If you attempt to mix the different parameter types, a compile error will
occur. The first two of the following statements are legal calls to our Add function;
however, the third is not because the objects being passed in are not of the same type:

alert(add("Hello ", "World!"));
alert(add(3, 5, 9, 120, 42));
//Error
alert(add(3, "World!"));

We are still very early into our exploration of TypeScript but the benefits are already
very apparent. There are still a few features of functions that we haven't covered
yet but we need to learn more about the language first. Next, we will discuss the
interface construct and the benefits it provides with absolutely no cost.

Chapter 2

[23]

Interfaces
Interfaces are a key piece of creating large-scale software applications. They are a
way of representing complex types about any object. Despite their usefulness they
have absolutely no runtime consequences because JavaScript does not include any
sort of runtime type checking. Interfaces are analyzed at compile time and then
omitted from the resulting JavaScript. Interfaces create a contract for developers
to use when developing new objects or writing methods to interact with existing
ones. Interfaces are named types that contain a list of members. Let's look at an
example of an interface:

interface IPoint {
 x: number;
 y: number;
}

As you can see we use the interface keyword to start the interface declaration.
Then we give the interface a name that we can easily reference from our code.

Interfaces can be named anything, for example, foo or bar, however,
a simple naming convention will improve the readability of the code.
Throughout this book, interfaces will be given the format I<name>
and object types will just use <name>, for example, IFoo and Foo.

The interfaces' declaration body contains just a list of members and functions and
their types. Interface members can only be instance members of an object. Using
the static keyword in an interface declaration will result in a compile error.

Interfaces have the ability to inherit from base types. This interface inheritance
allows us to extend existing interfaces into a more enhanced version as well as
merge separate interfaces together. To create an inheritance chain, interfaces use
the extends clause. The extends clause is followed by a comma-separated list
of types that the interface will merge with.

interface IAdder {
 add(arg1: number, ...args: number[]): number;
}
interface ISubtractor {
 subtract(arg1: number, ...args: number[]): number;
}
interface ICalculator extends IAdder, ISubtractor {
 multiply(arg1: number, ...args: number[]): number;
 divide(arg1: number, arg2: number): number;
}

TypeScript Basics

[24]

Here, we see three interfaces:

•	 IAdder, which defines a type that must implement the add method that
we wrote earlier

•	 ISubtractor, which defines a new method called subtract that any object
typed with ISubtractor must define

•	 ICalculator, which extends both IAdder and ISubtractor as well as
defining two new methods that perform operations a calculator would
be responsible for, which an adder or subtractor wouldn't perform

These interfaces can now be referenced in our code as type parameters or type
declarations. Interfaces cannot be directly instantiated and attempting to reference
the members of an interface by using its type name directly will result in an error.
In the following function declaration the ICalculator interface is used to restrict
the object type that can be passed to the function. The compiler can now examine
the function body and infer all of the type information associated with the calculator
parameter and warn us if the object used does not implement this interface.

function performCalculations(calculator: ICalculator, num1, num2) {
 calculator.add(num1, num2);
 calculator.subtract(num1, num2);
 calculator.multiply(num1, num2);
 calculator.divide(num1, num2);
 return true;
}

The last thing that you need to know about interface definitions is that their
declarations are open-ended and will implicitly merge together if they have
the same type name. Our ICalculator interface could have been split into two
separate declarations with each one adding its own list of base types and its own
list of members. The resulting type definition from the following declaration is
equivalent to the declaration we saw previously:

interface ICalculator extends IAdder {
 multiply(arg1: number, ...args: number[]): number;
}
interface ICalculator extends ISubtractor {
 divide(arg1: number, arg2: number): number;
}

Chapter 2

[25]

Creating large scale applications requires code that is flexible and reusable. Interfaces
are a key component of keeping TypeScript as flexible as plain JavaScript, yet allow
us to take advantage of the type checking provided at compile time. Your code
doesn't have to be dependent on existing object types and will be ready for any new
object types that might be introduced. The TypeScript compiler also implements a
duck typing system that allows us to create objects on the fly while keeping type
safety. The following example shows how we can pass objects that don't explicitly
implement an interface but contain all of the required members to a function:

function addPoints(p1: IPoint, p2: IPoint): IPoint {
 var x = p1.x + p2.x;
 var y = p1.y + p2.y;
 return { x: x, y: y }
}
//Valid
var newPoint = addPoints({ x: 3, y: 4 }, { x: 5, y: 1 });
//Error
var newPoint2 = addPoints({ x: 1 }, { x: 4, y: 3 });

Classes
In the next version of JavaScript, ECMAScript 6, a standard has been proposed for
the definition of classes. TypeScript brings this concept to the current versions of
JavaScript. Classes consist of a variety of different properties and members. These
members can be either public or private and static or instance members.

Definitions
Creating classes in TypeScript is essentially the same as creating interfaces. Let's
create a very simple Point class that keeps track of an x and a y position for us:

class Point {
 public x: number;
 public y: number;
 constructor(x: number, y = 0) {
 this.x = x;
 this.y = y;
 }
}

TypeScript Basics

[26]

As you can see, defining a class is very simple. Use the keyword class and then
provide a name for the new type. Then you create a constructor for the object with
any parameters you wish to provide upon creation. Our Point class requires two
values that represent a location on a plane.

The constructor is completely optional. If a constructor implementation
is not provided, the compiler will automatically generate one that takes
no parameters and initializes any instance members.

We provided a default value for the property y. This default value tells the compiler
to generate an extra JavaScript statement than if we had only given it a type.
This also allows TypeScript to treat parameters with default values as optional
parameters. If the parameter is not provided then the parameter's value is assigned
to the default value you provide. This provides a simple method for ensuring that
you are always operating on instantiated objects. The best part is that default values
are available for all functions, not just constructors. Now let's examine the JavaScript
output for the Point class:

var Point = (function () {
 function Point(x, y) {
 if (typeof y === "undefined") { y = 0; }
 this.x = x;
 this.y = y;
 }
 return Point;
})();

As you can see, a new object is created and assigned to an anonymous function that
initializes the definition of the Point class. As we will see later, any public methods
or static members will be added to the inner Point function's prototype. JavaScript
closures are a very important concept in understanding TypeScript. Classes,
modules, and enums in TypeScript all compile into JavaScript closures. Closures
are actually a construct of the JavaScript language that provide a way of creating a
private state for a specific segment of code. When a closure is created it contains two
things: a function, and the state of the environment when the function was created.
The function is returned to the caller of the closure and the state is used when the
function is called.

For more information about JavaScript closures and the module pattern
visit http://www.adequatelygood.com/JavaScript-Module-
Pattern-In-Depth.html.

http://www.adequatelygood.com/JavaScript-Module-Pattern-In-Depth.html
http://www.adequatelygood.com/JavaScript-Module-Pattern-In-Depth.html

Chapter 2

[27]

The optional parameter was accounted for by checking its type and initializing it if
a value is not available. You can also see that both x and y properties were added to
the new instance and assigned to the values that were passed into the constructor.

Interfaces
Let's revisit our discussion of interfaces for a moment and look at how they interact
with classes. In the next example, we will enforce the IPoint interface upon the
Point class. Classes can optionally inherit type information from interfaces using
the implements keyword. The class will then be required to implement all of the
interface members; otherwise, compile errors will occur:

interface IPoint {
 x: number;
 y: number;
}
class Point implements IPoint {
 constructor(public x: number, public y = 0) {
 }
}

As we discussed earlier, interfaces are a purely compile time construct. The JavaScript
that is output from this example is completely identical to the JavaScript we just saw.
I snuck in a shorthand method of defining instance variables on classes too. Decorating
the constructor's parameters with the public or private keywords tells TypeScript to
treat these objects as part of the type and not just initialization parameters.

Classes are not limited to implementing a single interface. Providing a comma
separated list of interfaces after the implements keyword allows your class to
provide implementations of a variety of different contracts. Let's make our
Point class more useful by implementing a second interface, as follows:

interface IPoint {
 x: number;
 y: number;
}
interface ICompare {
 Compare(p2: IPoint): number;
}
class Point implements IPoint, ICompare {
 public x: number;
 public y: number;
 constructor(x: number, y = 0) {

TypeScript Basics

[28]

 this.x = x;
 this.y = y;
 }
 public Compare(p2: IPoint): number {
 var p1Val = this.x * this.x + this.y * this.y;
 var p2Val = p2.x * p2.x + p2.y * p2.y;
 var result = p1Val - p2Val;
 if (result == 0) {
 return 0;
 } else if (result > 0) {
 return 1;
 } else {
 return -1;
 }
 }
}

The ability to enforce multiple interfaces on our classes provides us with the ability
to use our objects in several different contexts. Keeping our interfaces simple allows
them to be more reusable across our applications. We could have easily placed the
Compare method on the IPoint interface and achieved the same result. However,
as we will see later with a few tweaks, any number of types could implement the
ICompare interface, which have no need for the members x and y. In this case, the
Compare method determines the distance each point is from the origin and returns
a number representing which one is farthest away. If the object performing the
comparison is farther away, a positive value is returned. If the point that has been
passed as a parameter is farther away then a negative value is returned. If the two
points are equivalent distances from the origin then a value of zero is returned.

Static and instance members
Both x and y are instance members of the class Point; this means that an object of the
type Point must be instantiated for them to be referenced. When the constructor is
called, values are assigned to properties of the object instance being created. These
values can either be new objects created within the constructor function or references
to objects passed in as the constructor parameters. This is a good thing for certain
members, however, there are other class members that you may want access to even
when an object has not been created. TypeScript provides this ability through static
members. Static members are accessible at any time by referencing the named type.
To declare a static member you simply decorate it with the static keyword:

class Point implements IPoint, ICompare {
 public x: number;
 public y: number;
 constructor(x: number, y = 0) {

Chapter 2

[29]

 this.x = x;
 this.y = y;
 }
 public Compare(p2: IPoint): number {
 var p1Val = this.x * this.x + this.y * this.y;
 var p2Val = p2.x * p2.x + p2.y * p2.y;
 var result = p1Val - p2Val;
 if (result == 0) {
 return 0;
 } else if (result > 0) {
 return 1;
 } else {
 return -1;
 }
 }
 static Compare(p1: Point, p2: Point): number {
 return p1.Compare(p2);
 }
}

The preceding Compare method takes in two Point objects and compares their
distance from the origin to determine which is greater. The JavaScript output for
this class member is very different from that of the x and y properties being created
in the constructor. The following output shows that the Compare method is put
directly on the Point object being created:

var Point = (function () {
 function Point(x, y) {
 if (typeof y === "undefined") { y = 0; }
 this.x = x;
 this.y = y;
 }
 Point.prototype.Compare = function (p2) {
 var p1Val = this.x * this.x + this.y * this.y;
 var p2Val = p2.x * p2.x + p2.y * p2.y;
 var result = p1Val - p2Val;
 if (result == 0) {
 return 0;
 } else if (result > 0) {
 return 1;
 } else {
 return -1;
 }
 };

TypeScript Basics

[30]

 Point.Compare = function (p1, p2) {
 return p1.Compare(p2);
 };
 return Point;
})();

We still haven't discussed one of the most important parts of TypeScript classes, and
that's instance member functions. These functions are only available to an instance of
the object of the type and they have access to the this object that allows easy access to
all of an object's members. In JavaScript, there are a couple of ways to create instance
member functions. They can be added directly to the object using the this object
during the object's creation, or they can be attached to the object's prototype. There are
advantages and disadvantages to both, but it is generally better to put functions on the
prototype rather than assign them to each new instance of the class. The instance of the
function placed on the static prototype is then reused over and over rather than being
recreated with each new instance of the type. This helps reduce memory consumption
and will improve performance as your applications grow. TypeScript has adopted this
method for attaching methods to instances of an object.

Let's create a new type that represents an object on a plane. It will have three
properties: Height, Width, and Location. There will also be one instance member
function that determines the size of the object on the plane. The Location member
will be of type Point that we created just a little while ago:

interface IBounds {
 Location: IPoint;
 Height: number;
 Width: number;
 Size(): number;
}
class Bounds implements IBounds {
 public Location: IPoint = new Point(0, 0);
 public Height: number = 0;
 public Width: number = 0;
 public Size() {
 return this.Height * this.Width;
 }
}

Chapter 2

[31]

As you can see, this class does not contain an explicit constructor; however, all of its
properties are initialized and will be available for consumption when an instance of
the type is created. As you can see from the resulting JavaScript, the Size method
is placed on the Bounds object's static prototype member and a parameter-less
constructor is created where all of the instance members are initialized:

var Bounds = (function () {
 function Bounds() {
 this.Location = new Point(0, 0);
 this.Height = 0;
 this.Width = 0;
 }
 Bounds.prototype.Size = function () {
 return this.Height * this.Width;
 };
 return Bounds;
})();

Properties
In ECMAScript 5, the concept of properties was introduced. This allows a
developer to create getter and setter methods for a designated instance method
that can be accessed like properties. If you have your TypeScript project set to
compile ECMAScript 5, then you will be able to use the get and set keywords
to define properties according to the ECMAScript 5 language specification. The
ECMAScript version can be changed in the General settings of the TypeScript
Build section of the project properties as shown in the following screenshot:

Let's modify our bounds class to treat both Height and Width as object properties
rather than simple instance members and create both getter and setter methods for
them both. The getters and setters will modify private instance members too, which
will maintain the actual value. It is common practice in JavaScript to name private
instance members with a leading underscore, so we will create _height and _width
instance members for the Bounds class to access internally.

TypeScript Basics

[32]

Since we now have a method block in which we can execute some code we
should also provide some value checking to ensure correct program execution.
The height and width of an object should never be less than zero so let's verify
that the values being assigned to them fit this constraint; if not, we will set the
value to zero manually:

interface IBounds {
 Location: IPoint;
 Height: number;
 Width: number;
 Size(): number;
}
class Bounds implements IBounds {
 public Location: IPoint = new Point(0, 0);
 private _height: number = 0;
 private _width: number = 0;
 public Size() {
 return this.Height * this.Width;
 }

 get Height(): number {
 return this._height;
 }
 set Height(value: number) {
 this._height = (value > 0) ? value : 0;
 }

 get Width(): number {
 return this._width;
 }
 set Width(value: number) {
 this._width = (value > 0) ? value : 0;
 }
}

As you can see, we now have method blocks wrapping the access of the Height and
Width properties. The properties are still accessed as if they were instance variables
as you can see from the Size method, however, our function blocks are executed
when we access them. The resulting JavaScript calls the Object.defineProperty
method, outlined in the ECMAScript 5 standard, when the type is created.

Chapter 2

[33]

While the ECMAScript 5 standard has been widely adopted by
most browsers, it is important to note that there are some lapses
in feature support in certain browsers. The table found at the
following link outlines the current support for the ECMAScript 5
standard: http://kangax.github.io/compat-table/es5/.

This places a new object on the prototype that is accessible on all instances of that
type. The following JavaScript is what is generated by defining getters and setters
in TypeScript:

var Bounds = (function () {
 function Bounds() {
 this.Location = new Point(0, 0);
 this._height = 0;
 this._width = 0;
 }
 Bounds.prototype.Size = function () {
 return this.Height * this.Width;
 };

 Object.defineProperty(Bounds.prototype, "Height", {
 get: function () {
 return this._height;
 },
 set: function (value) {
 this._height = (value > 0) ? value : 0;
 },
 enumerable: true,
 configurable: true
 });

 Object.defineProperty(Bounds.prototype, "Width", {
 get: function () {
 return this._width;
 },
 set: function (value) {
 this._width = (value > 0) ? value : 0;
 },
 enumerable: true,
 configurable: true
 });
 return Bounds;
})();

http://kangax.github.io/compat-table/es5/

TypeScript Basics

[34]

There are a few other notables from this output to consider. We created new private
variables to store the values being surfaced by our property declarations. These
private variables are being added to each instance of the object in the constructor.
This seems a little strange since we know that closures can store a private state for
each instance of the class. The reason that private variables need to be added to each
instance is because the functions and properties are attached to the prototype on the
class. The prototype does not retain the state of the closure and relies on the actual
object instance to access its members.

The IBounds interface is still upheld after converting to properties as well. The
resulting type information from creating an instance of the class just has to match
that of the interface for compilation. There is no distinction made between whether
it is an instance member or a property declaration because they are both accessed in
the same manner.

We have covered quite a bit here in a very short period of time. Classes are one of the
most important concepts introduced by TypeScript that help turn JavaScript into an
enterprise-level development platform. We still have a number of concepts to cover,
including enums.

Enums
Enums are a useful entity intended for holding a specific value that is referenced
using a friendly name to keep code readable. An enum value is nothing more than
an integer that is associated with a named constant. Enums are very simple to
declare, however, it is what they generate in JavaScript that makes them interesting.
First, let's look at an enum declaration and then we will go over the result:

enum ShapeType {
 Rectangle,
 Circle,
 Line,
 Freehand
}

The declaration of an enum type takes the type name for referencing the enum
and then the body is just a list of possible values separated by commas. There's
nothing particularly special about this from a TypeScript perspective. You can
access the enum values like you were accessing a class's static members: ShapeType.
Rectangle. As I said earlier though, the real magic behind enums in TypeScript is
how they are generated in JavaScript, so let's take a look at the output of our enum:

var ShapeType;
(function (ShapeType) {

Chapter 2

[35]

 ShapeType[ShapeType["Rectangle"] = 0] = "Rectangle";
 ShapeType[ShapeType["Circle"] = 1] = "Circle";
 ShapeType[ShapeType["Line"] = 2] = "Line";
 ShapeType[ShapeType["Freehand"] = 3] = "Freehand";
})(ShapeType || (ShapeType = {}));

There is quite a bit of JavaScript here to represent something as simple as number
mapping. However, if you look at it more deeply you will see that TypeScript is
creating a two-way mapping between the named constant and the number it is
mapped to. This creates a number of interesting ways in which you can access the
values of an enum. Take a look at the following code snippet and consider what the
output might be:

alert(ShapeType[ShapeType.Rectangle]);

ShapeType has been created inside of an anonymous function that returns an object
that has been given two properties for each member of the enum. Taking advantage
of JavaScript's dynamic typing system, TypeScript adds a property with the string
value of the member name and maps it to an integer value. That integer value is
then simultaneously added as a property of the ShapeType object and is mapped
to the string value of the named member. So if you thought that the value returned
previously was the string representation of the named member, then you were correct!

Now that we are familiar with how an enum works, let's look some more at the
individual members of an enum. We know that enums represent two-way mapping
between a number and a string, but where does that number come from? In the
ShapeType example, we just saw each member was just given a name, the number
was generated by the compiler. This works well and creates a sequential set of
numbers for us to access, but a little more control over these values would be nice.
TypeScript has therefore provided two types of enum members that can be created:
constant members, and computed members. What we looked at earlier were
all constant members with auto-generated constant values. These numbers are
sequential starting from zero unless a constant value is provided to a member.
Then, all of the subsequent members of the enum will be in sequence with the
number given.

TypeScript Basics

[36]

Computed members are still named constants but the integer value they are mapped
to is provided by an expression. This can be either an inline expression or a function
call to another segment of code. The only stipulation on the expression that you
provide is that it returns a number. As you can see in the following code segment,
we have modified our previous enum, ShapeType, to generate some specific indexes
as well as create a computed member:

function GetEnumValue(): number {
 return Date.now();
}
enum ShapeType {
 Rectangle = 3,
 Circle,
 Line,
 Freehand,
 Random = GetEnumValue()
}

As you can see, we have created a function that returns an integer representing
the current time using the global Date object available in JavaScript. We also set
the first constant member to an integer value of our choosing. When the compiler
parses this, all of the members in the enum will grow sequentially from this value.
Let's take a look at the resulting JavaScript now and see how a computed member
will look at runtime:

function GetEnumValue() {
 return Date.now();
}
var ShapeType;
(function (ShapeType) {
 ShapeType[ShapeType["Rectangle"] = 3] = "Rectangle";
 ShapeType[ShapeType["Circle"] = 4] = "Circle";
 ShapeType[ShapeType["Line"] = 5] = "Line";
 ShapeType[ShapeType["Freehand"] = 6] = "Freehand";
 ShapeType[ShapeType["Random"] = GetEnumValue()] = "Random";
})(ShapeType || (ShapeType = {}));

As you can see, the expression provided to the computed member is built directly
into the enum declaration generated. This expression will be evaluated at runtime
but only when ShapeType is initialized. Once the expression has been run, the result
will remain a member of the ShapeType object. Therefore, in the preceding example
ShapeType.Random is equivalent to ShapeType.Random as long as the ShapeType
enum stays in memory. You may be wondering right now what the usefulness is
of being able to change the constant members' numeric sequence.

Chapter 2

[37]

The one piece of information we haven't covered on enums so far is that their
definitions can be merged. If two enum declarations are placed in different segments
of code with the same type name they will contribute to the same object. You can see
this in the last line of the enum declaration in the resulting JavaScript. If the object
exists then each new property is added to the existing object; otherwise, a new object
is created and the properties are applied.

Modules
The module pattern has become increasingly popular in JavaScript development.
It provides an easy way to encapsulate private members, something that isn't
inherently available in JavaScript, and keep objects off the global namespace.
In TypeScript there are two types of modules: internal modules and external
modules. We will discuss them both in detail, but for now let's just talk about
internal modules.

Internal modules
Internal modules represent a namespace that classes, interfaces, enums, variables,
code segments, and other namespaces can exist inside of. They are created inside
of a closure just like classes are. However, modules don't return a function that
gets assigned to a global variable. Modules execute the closure with a global
variable as a parameter. Exported properties are then attached to this global variable.
A module can contain any number of declarations of any type of object including
other modules. Each of the declarations inside of a module can be either kept isolated
or they can be exported. Exported objects will be added to the module's instance.
In the following code segment, you can see an internal module definition:

module Shapes {
 var origin: IPoint = new Point(0, 0);
 export interface IShape {
 Type: ShapeType;
 Bounds: IBounds;
 }
 export class Shape implements IShape {
 public Type: ShapeType = ShapeType.Rectangle;
 public Bounds: IBounds = new Bounds();
 }
}

www.allitebooks.com

http://www.allitebooks.org

TypeScript Basics

[38]

In this example, we see a mix of both private members and public members that exist
on the Shapes module. The origin variable is a private instance of the Point class
we created earlier. Any expression inside the Shapes module has access to the
origin variable but since it is not decorated with the export keyword, it is limited
to within the module. We have defined an interface for an object type that will
represent a shape of some sort. Then we also have a new class that implements the
shape interface and is ready to be drawn on a surface. This Shape object needs to
be accessible outside the Shapes namespace so we must export it. Our ShapeType
enum probably belongs within the Shapes namespace so let's move its declaration
to within the module definition as well:

module Shapes {
 var origin: IPoint = new Point(0, 0);
 export enum ShapeType {
 Rectangle = 3,
 Circle,
 Line,
 Freehand,
 }
 export interface IShape {
 Type: ShapeType;
 Bounds: IBounds;
 }
 export class Shape {
 public Type: ShapeType = ShapeType.Rectangle;
 public Bounds: IBounds = new Bounds();
 }
}

We now have an internal module that has two accessible named types, the
ShapeType enum and Shape class, and one inaccessible variable, the origin variable,
which is part of the isolated state of the module. While we may not necessarily need
access to the ShapeType enum it still must be exported for our code to compile.
Any named types that are used in the definition of another member must be made
as accessible as that member. If this requirement is not met compilation will fail.
Accessing these types is done by providing the module name and then the type you
wish to access. In the following example, you can see we create a new Shape object
and set its type:

var shape = new Shapes.Shape();
shape.Type = Shapes.ShapeType.Circle;

Chapter 2

[39]

The JavaScript generated for this module looks very similar to the code generated
for enum types. All of the members of the module are wrapped in a closure that runs
when the module is loaded. Each of the exported types is placed on the instance
variable that is passed to the closure that it is available to anyone accessing the
module. Modules also share the same ability to be merged that enums do. This
means that you can separate your code into multiple files and have them merged
into one object during runtime. The downside to this implementation of modules
is that it takes away the ability to create interfaces for your modules. However, the
ability to organize your code in whichever manner you choose is far more valuable
than any functionality interfaces would bring to modules. Here, you can see the
resulting JavaScript that TypeScript creates to define its modules:

var Shapes;
(function (Shapes) {
 var origin = new Point(0, 0);
 (function (ShapeType) {
 ShapeType[ShapeType["Rectangle"] = 3] = "Rectangle";
 ShapeType[ShapeType["Circle"] = 4] = "Circle";
 ShapeType[ShapeType["Line"] = 5] = "Line";
 ShapeType[ShapeType["Freehand"] = 6] = "Freehand";
 })(Shapes.ShapeType || (Shapes.ShapeType = {}));
 var ShapeType = Shapes.ShapeType;
 var Shape = (function () {
 function Shape() {
 this.Type = 3 /* Rectangle */;
 this.Bounds = new Bounds();
 this.Bounds.Location = origin;
 }
 return Shape;
 })();
 Shapes.Shape = Shape;
})(Shapes || (Shapes = {}));

So far we've only seen a small example of a module, but imagine building a
large-scale application with a large amount of object types. You will want to create
namespaces to organize your code and create a layer of separation between segments
of code that are unrelated. There are two ways to provide module namespaces in
TypeScript. We can nest the modules inside of each other or we can define them as
part of the module declaration.

TypeScript Basics

[40]

Let's take a look at some of the different ways to define namespaces and create
module definitions.

module Animals {
 export module Reptiles {
 export var snake = "snake";
 }
}
module Animals.Mammals {
 export var monkey = "monkey";
}

In this example, we create a declaration for the Animals module and then nest
another module declaration inside of it that gets exported. There is also a module
declaration that is given a multi-part type name separated by the . character.
Both of the module declarations shown are valid. The JavaScript output from both
declarations is exactly the same so which style you choose is really a matter of
preference. The compiler will treat them as equivalents as will the development
environment. As you can see in the following screenshot, accessing both the
Reptiles and Mammals namespaces is identical:

The resulting JavaScript from each of these module definitions is identical in
structure. However, if you intend on declaring multiple nested modules inside of
a single TypeScript file, it is best to use the expanded nesting declaration rather
than the shortcut. The compiler will not attempt to optimize and merge the module
definitions when it creates the JavaScript output. As you can see in the following
JavaScript code, you will unnecessarily have multiple closures adding objects to the
type object. This is inevitable if you intend on separating your namespaces by file.

var Animals;
(function (Animals) {

Chapter 2

[41]

 (function (Reptiles) {
 Reptiles.snake = "snake";
 })(Animals.Reptiles || (Animals.Reptiles = {}));
 var Reptiles = Animals.Reptiles;
})(Animals || (Animals = {}));
var Animals;
(function (Animals) {
 (function (Mammals) {
 Mammals.monkey = "monkey";
 })(Animals.Mammals || (Animals.Mammals = {}));
 var Mammals = Animals.Mammals;
})(Animals || (Animals = {}));

There are probably some common object types or utility methods that you would
prefer to have quick access to inside of another module. As we continue to separate
our types appropriately let's create a new module for drawing-related functionality.
This module will contain both the Point class and the Bounds class that we created
earlier. Both of these classes will be exported because other modules will need to
be able to reference them. While it is nice to have the code separated into isolated
segments that can be easily managed, I now have to provide a fully qualified name
every time I wish to use a type from another module. Thankfully, TypeScript has
provided a keyword opposite to the export keyword that allows us to create an alias
to members of another module. The import keyword creates a new local reference
to exported types from other modules. In the following code segment, we will create
an alias for the Bounds class inside the Shapes module. This will prevent us from
having to change the definition of our Shape class to contain the full namespace of
the Bounds type.

module Shapes {
 import Bounds = Drawing.Bounds;
 export enum ShapeType {
 Rectangle = 3,
 Circle,
 Line,
 Freehand,
 }
 export interface IShape {
 Type: ShapeType;
 Bounds: Drawing.IBounds;
 }
 export class Shape {
 public Type: ShapeType = ShapeType.Rectangle;
 public Bounds: Drawing.IBounds = new Bounds();
 }
}

TypeScript Basics

[42]

As you can see, the alias can be used as both a type annotation and as its object type.
The resulting JavaScript just replaces the import keyword with var and lets the
runtime engine create the reference to the exported member. However, doing this
directly in TypeScript will generate a compile error. The import keyword informs
the compiler not to inspect just the object being aliased but its type information as
well so that it can be used in type declarations.

The export and import keywords can be used in conjunction
to create externally accessible aliases.

Generic objects
If your goal when adopting TypeScript is to create an API for client consumption,
then generics are the language construct you should become the most familiar with.
They allow consumers of frameworks and APIs to agree on a specific contract to
accomplish a designated goal without having to know specific object types. Generics
define the third and final category of objects in TypeScript, type parameters. As we
saw earlier in this chapter when we discussed arrays, type parameters are defined
inside of < and > characters. They can be used on interfaces or class definitions to
create functionality for a broad set of object types that may or may not be known
at the time of development. Let's say we wanted to create a generic task processor.
We will assume the simplest possible implementation, which is just a sequential
process that passes a list of generic tasks to a function to have them run:

interface ITask {
 Id: number;
 Execute(): boolean;
 Error: string;
}
function ProcessTasks<T extends ITask>(tasks: T[]): T {
 for (var i = 0; i < tasks.length; i++) {
 if (tasks[i].Execute() == false) {
 return tasks[i];
 }
 }
 return null;
}

Chapter 2

[43]

In this example, we have defined an interface that the task processor will rely on to
execute a set of tasks sequentially. The function declaration for ProcessTasks now
contains a type parameter, T, which must adhere to the ITask interface. This type
parameter is used as a constraint for the objects that can be passed in as part of the
tasks array, and will be the return type of the function. The tasks array is looped
through one by one and the Execute method is called. If the Execute method returns
a false value then the processing is stopped and the task is returned. Generics are built
completely on type annotations, so they have no effect on the generated JavaScript.
However, if the type constraints are not met, a compile error will be generated.

Interfaces and classes are capable of creating even more complex structures built
around a very loose type definition. A type parameter provided to an interface or class
can be used to provide type information for any member or function inside of the
declaration body. In the next example, our ProcessTasks function has been moved
into a class that will operate as the processor. A generic interface is created that will
allow us to create any number of task processors with different implementations of
the ProcessTasks function. Then, we see a class declaration that provides its own
set of type parameters and implements the ITaskProcessor interface:

interface ITask {
 Id: number;
 Execute(): boolean;
 Error: string;
}
interface ITaskProcessor<T extends ITask> {
 ProcessTasks(tasks: Array<T>): T;
 CurrentTask: T;
}
class TaskProcessor<T extends ITask> implements ITaskProcessor<T> {
 public CurrentTask: T = null;
 constructor() {
 }
 public ProcessTasks(tasks: T[]): T {
 for (var i = 0; i < tasks.length; i++) {
 this.CurrentTask = tasks[i];
 if (this.CurrentTask.Execute() == false) {
 return tasks[i];
 }
 }
 this.CurrentTask = null;
 return null;
 }
}

TypeScript Basics

[44]

Generic functions and types are not limited to a single unknown type. Type
parameters can be lists of type information that can be used anywhere within the
declaration block that the list is associated with. Creating a list of type parameters
is the same as passing a single type parameter, only each type is separated by a
comma. Furthermore, each generic type created in a parameter list can be used
as a base type for other type parameters inside of the type's definition. The next
example shows both of these concepts:

interface IExample<T, U extends HTMLElement> {
 Operate<V extends U>(): T;
}

As you can see, there is a comma-separated list of generic types and any
constraints they might have instead of the single generic type. The Operate
function then requires a type that inherits from the U type that was provided
in the initial type parameter list.

Summary
This chapter has thoroughly discussed the different language constructs in
TypeScript. We covered all three of the type categories: primitive types, object
types, and type parameters. Primitive types are ones that have been built into the
language such as Number, Boolean, and String. Object types range from classes
to modules and allow us to construct organized components in our applications.
Type parameters allow us to create generic functions and objects that can be used
to operate on a variety of types. TypeScript relies heavily on JavaScript's closures
when it is generating the different object types. Next, we are going to be looking
at the TypeScript compiler and its various options.

The TypeScript Compiler
In this chapter, the TypeScript compiler will be analyzed. The different parameters
that the compiler understands will be broken down and explained, as well as how
they affect the ECMAScript that gets generated. We will discuss how to control
where your code gets generated to, as well as the different files that can accompany
our generated ECMAScript. There are also a few other options available on the
compiler that make building and deploying large scale applications easier.

The topics that will be covered in the chapter are as follows:

•	 ECMAScript generation
•	 Output control
•	 Advanced compiler options

Generation of ECMAScript
As with most programming languages, ECMAScript has evolved over time. It was
initially developed in the mid-nineties for use in client-side scripting. The current
standard is ECMAScript 5; however, Version 6 is currently being worked on. The
TypeScript compiler provides a list of options to change the way your code is
generated. In this section, we will look at these options and compare the results.

The TypeScript Compiler

[46]

ECMAScript version
Writing JavaScript code means your code must be portable across multiple types of
client devices and browsers. You may be forced to not only support the latest version
of a browser but potentially any of its previous versions. For this reason, the compiler
supports compiling your TypeScript code into different versions of ECMAScript.
ECMAScript 3 was a widely adopted and heavily used standard and has survived
in many legacy browsers. ECMAScript 4 was abandoned when the group responsible
for creating the standard could not agree on the language features. ECMAScript 5 is
the current standard and has been adopted by most current browsers. It was published
in 2009, nearly a decade after Version 3 was initially published. In Chapter 2, TypeScript
Basics, we saw that you could easily switch between versions of ECMAScript in Visual
Studio. Let's take a look at what is actually going on behind the scenes when we
change this option. In the following screenshot, you can see that we call the compiler
the same way we did in Chapter 1, Getting Started with TypeScript, only this time we
have provided an additional parameter:

As you can see, there are two ways of passing the ECMAScript target version to the
compiler: the verbose method –target and the shorthand method –t.

If a target version is not supplied, the compiler will default to
ECMAScript 3. So, unless you are explicitly using language
constructs only defined in ECMAScript 5, this parameter does
not need to be provided.

ECMAScript 5 was originally slated to be a minor update, ECMAScript 3.1,
and provide only a limited set of new features in an attempt to maintain backwards
compatibility. Strict mode was introduced, which provides a set of different semantic
rules to the language. There are three primary changes that strict mode makes to
normal ECMAScript semantics:

•	 Certain silent errors are now thrown
•	 Enforces rules that allow the language engine to provide more optimizations
•	 Ensures that certain keywords can't be used to allow future versions of

ECMAScript to have them available for the language specification

Chapter 3

[47]

While the option to use strict mode is still available in TypeScript by placing use
strict at the top of your TypeScript file, its value is less significant. The TypeScript
compiler accounts for most of the rules enforced on JavaScript code that is run in
strict mode. For instance, if you attempt to assign a value to a variable that does
not exist or is not defined, a compile error will be generated. When running your
JavaScript out of strict mode this will create a new variable and put it in the global
scope. If this is done in JavaScript running in strict mode, a reference error will be
generated. The with keyword creates a syntax error in strict JavaScript because
optimizations are not able to be made on code blocks within the declaration block.
TypeScript will generate a syntax error any time you attempt to use a with block.
The TypeScript compiler will even format your existing JavaScript to a more
restricted set of standards, for instance, if you write the following lines of code:

function sayHello() {
 alert("Hello There")
}
SayHello()

In most cases this is legal JavaScript; however, under certain circumstances
semicolons are required to keep the code meaningful. When the compiler finishes
generating this code it has recognized the missing semicolons and added them to
the resulting JavaScript:

function sayHello() {
 alert("Hello There");
}
SayHello();

As we discussed in the previous chapter, TypeScript adds a large number of
language constructs that the current version of ECMAScript is lacking. However,
the language will continue to evolve and new constructs will be added to the
specification. Strict mode helps prevent developers from creating code that uses
potential keywords for future versions. The keywords prevented in strict mode are:
implements, interface, let, package, private, protected, public, static, and
yield. As you can see, there is a fair amount of overlap between what TypeScript
defines and what has been set aside by the language committee for future use. We
have already discussed the TypeScript implementations of implements, interface,
private, public, and static. The remaining names, restricted by strict mode, are
currently keywords in TypeScript; however, any attempt to use them will result in a
compile error.

The TypeScript Compiler

[48]

There is really only one key construct that you should avoid if you want your code
to be compatible with both ECMAScript 3 and 5, and that is getters and setters.
Getters and setters are used to define properties for JavaScript objects. They are
a special type of language construct that allows them to be accessed like variables
but internally they are implemented as functions. Browser compatibility for getters
and setters can be found in the table referenced in Chapter 2, TypeScript Basics.
The following code snippet shows how these properties are created:

interface IBook {
 title: string;
}
class Book implements IBook {
 private _title: string = "";
 constructor() {
 }
 get title(): string {
 return this._title;
 }
 set title(value: string) {
 if (value && value.length > 0) {
 this._title = value;
 } else {
 throw ("Invalid Book Title!");
 }
 }
}

We are now able to wrap the process of assigning or retrieving the title of the book
in a function declaration. In this case, a book must have a title, so attempting to set it
to null or an empty string results in an exception being generated. If you attempt to
run this code through the compiler and do not set the target version to ES5, you will
receive an error that looks similar to the following screenshot:

Chapter 3

[49]

Code manipulation
There are a couple of other options available for the compiler that will determine
what the resulting JavaScript code will look like. Like JavaScript, TypeScript allows
comments to be placed within the code. They are defined exactly the same way
JavaScript comments are and they have no effect on runtime execution. Comments
are used to explain what a segment of code, is designed to do, so that when another
developer has to look at the code they will know what is going on. This can be very
helpful when stepping through our code during development. However, when the
code is deployed to a client, these comments are unnecessary and add to the size
of our JavaScript files. Using the –removeComments parameter, we can ensure that
all of this unneeded data is removed before deployment. Consider the following
TypeScript code:

//Retrieve a new random integer value
function getRandom(): number {
 return Math.floor(Math.random() * Date.now());
}

The preceding code can be compiled using the command shown in the
following screenshot:

This results in the following JavaScript output:

function getRandom() {
 return Math.floor(Math.random() * Date.now());
}

On a small scale, this doesn't represent a huge gain; however, when you scale the
application up to have hundreds of thousands of lines of code, this could represent
a significant amount of data. It is common practice in JavaScript development to
minify your .js files when you push them into production. This helps reduce the
overall file size and has no effect on runtime speed. Unfortunately, the TypeScript
compiler does not have an option for this upon the release of Version 1.0. Hopefully,
it will be added in future versions but there are other tools available to minify
JavaScript in the meantime. RequireJS is a library that we will talk about later
on, and it provides options to minify JavaScript code.

The TypeScript Compiler

[50]

The final ECMAScript output-related parameter available for the TypeScript
compiler is the module parameter. This parameter tells the compiler how to
generate code for external modules. There are two very common patterns used for
the implementation of external modules: CommonJS (used in Node.js) and AMD
(provided by RequireJS). Each one provides its own syntax and keywords to help
define external modules. TypeScript uses the same syntax to represent both and
provides the compiler option to define the result. The following code segment
defines an external module in TypeScript:

export module CompilerExample {
 var verify = "Success!";
 export function test() {
 alert(verify);
 }
}

As you can see, our top level module is now decorated with the export keyword.
This defines the external module in TypeScript but external modules aren't a
construct in JavaScript so third-party libraries are used. If we compile this code
using the module parameter and give it a value of amd, then the compiler will
generate the modules consumable using RequireJS:

Then our generated JavaScript will be the following:

define(["require", "exports"], function(require, exports) {
 (function (CompilerExample) {
 var verify = "Success!";
 function test() {
 alert(verify);
 }
 CompilerExample.test = test;
 })(exports.CompilerExample || (exports.CompilerExample = {}));
 var CompilerExample = exports.CompilerExample;
});

Chapter 3

[51]

We will discuss exactly what this code is doing later in our discussion of external
modules but as you can see, a closure is generated and two objects are passed in for
use in generation of the module. The CommonJS module pattern looks very different
from this though. Running the same command only providing commonjs for the
module parameters value will generate the following output:

(function (CompilerExample) {
 var verify = "Success!";
 function test() {
 alert(verify);
 }
 CompilerExample.test = test;
})(exports.CompilerExample || (exports.CompilerExample = {}));
var CompilerExample = exports.CompilerExample;

As you can see, the resulting JavaScript is very different; however, nothing about our
TypeScript changed.

Controlling compiler output
The TypeScript compiler has a very robust set of features when it comes to
controlling the final results of the compiler. The compiler is built in a scalable
manner that allows us to compile multiple source files at once as well as controlling
their output directory or path. We will also discuss creating source maps that help us
when debugging our applications.

JavaScript output
Up until this point, we have only been working with compiling single TypeScript files
at a time. As applications grow in size though, it is very important to separate our code
into maintainable segments. When writing code for a C# application, it is common to
separate code files by class. JavaScript conventions vary in how code is segmented. If
following the module pattern, it is common to place an entire module in a single file;
otherwise, code is usually segmented into related blocks as the application requires
them. Passing multiple file names separated by spaces will tell the compiler to parse
each file and generate a JavaScript file for each. The following screenshot shows how
this is done:

The TypeScript Compiler

[52]

As you can see, we now have two TypeScript files and each is being passed to the
compiler as a parameter. The result of running this command will be two JavaScript
files, one for each corresponding TypeScript file. There is no limit to the number of
files that can be provided; however, at some point the command line will reach its
buffer limit. We will see in a little while how to make this easier through the use
of a parameter file.

The TypeScript compiler provides two main options for controlling where the
JavaScript that will be used at runtime is output to. The first option requires a folder
location to output all of the generated JavaScript files separately. As you can see in
the following screenshot, we use the --outDir parameter to provide our location:

The other option allows us to compile our TypeScript down into a single JavaScript
file. This allows us to make a single HTTP GET request for our application rather
than having to make multiple ones. This can be a very complex task to accomplish
when an application grows in scale and each piece of code must be loaded in a
certain order to ensure proper execution. The TypeScript compiler has a few different
ways of ensuring that code generated in a single file is created in such a manner that
all objects exist before they are needed. The simplest manner in which to ensure this
is to manually provide the files in the order that they should be compiled. Let's look
at our two TypeScript files and how they interact:

function sayHello() {
 alert("Hello There");
}
function getRandom(): number {
 return Math.floor(Math.random() * Date.now());
}

Chapter 3

[53]

The preceding section of code represents a file called utilities.ts and is
a collection of functions that can be used to do a variety of different things.
The next segment of code is app.ts and it references both of these functions
and relies on them to be available at runtime.

SayHello();
alert(GetRandom());

If we were to generate these into separate JavaScript files then we would have
to place multiple script tags in our HTML pages. The script tags would have to
be provided in a specific order, otherwise a reference error would occur and the
application would stop working. We already have to provide multiple TypeScript
files to the compiler, so why not just generate a single JavaScript file and avoid
having to deal with this? The following screenshot shows how to specify a single file
location for all of our generated JavaScript:

This will result in the concatenation of the two resulting JavaScript files that are
generated by the compiler. This means that our TypeScript files must still be provided
in the proper order, otherwise a reference error will occur. Thankfully, TypeScript
provides a way to help control this problem using a particular syntax to determine
a reference graph. The next code segment shows how to provide a specific reference
to another TypeScript file to ensure the proper order is upheld by the compiler:

/// <reference path="utilities.ts" />
sayHello();
alert(getRandom());

These references should be made at the very top of your TypeScript files. If they are
not, then the order your files are concatenated together in will be wrong. The compiler
examines the beginning of each file and parses certain constructs to determine how
the resulting JavaScript should be generated. Once the first block of execution code is
reached, the compiler will stop looking for these syntax constructs. By providing this
reference, we are now able to pass our TypeScript files to the compiler in any order
that we want.

The TypeScript Compiler

[54]

Run the command shown in the following screenshot:

The resulting JavaScript file will look like the following:

function sayHello() {
 alert("Hello There");
}
function getRandom() {
 return Math.floor(Math.random() * Date.now());
}
/// <reference path="utilities.ts" />
sayHello();
alert(getRandom());

As you can see, our final result is placed into a single output.js file and is in the
proper order to ensure no reference errors are thrown. It is possible for two files
to reference each other, however this is not recommended. If only one of the files
references objects instantiated by the other file, the compiler will be able to order
the JavaScript properly. Otherwise, it will be unable to guarantee that all of the
referenced objects are available at runtime. This will not result in a compilation
error, so be wary of creating such a situation.

Source maps
Next, we will look at source maps and how they allow us to step through our
TypeScript code rather than just the generated JavaScript. Source maps are a
useful tool created to help debug code that has already been combined and minified.
TypeScript and Visual Studio take advantage of this by providing source maps that
direct back to the original TypeScript files. The --sourcemap parameter tells the
compiler to generate a map file for each JavaScript file generated. This map file is
then used to help map each line segment of minified or combined code back to a
non-minified file that is easier to debug. The map file generated by the TypeScript
compiler will point the mappings to the original TypeScript files associated with
the code being run.

Chapter 3

[55]

The following screenshot shows how to generate source maps during compilation:

Now, both of our TypeScript files are combined into a single JavaScript file but if
we want to debug them individually, we can. When the sourcemap parameter is
provided, it tells the compiler to inject a new line into each generated JavaScript
file directing the debugger to the source map that has been generated:

//# sourceMappingURL=output.js.map

In our case, the resulting map file is called output.js.map and is located in the
same directory as output.js. The contents of this map file are as follows:

{
 "version":3,
 "file":"output.js",
 "sourceRoot":"",
 "sources":["utilities.ts","app.ts"],
 "names":["SayHello","GetRandom"],
 "mappings":"AACA,+BAD+B;AAC/B,SAAS,QAAQ;IACbA,KAAKA,CAACA,aAAaA,CA
ACA;AACxBA,CAACA;;AAED,KAAK,CAAC,SAAS,CAAC,CAAC,CAAC;ACLlB,qCAAqC;AACr
C,QAAQ,CAAC,CAAC;AACV,SAAS,SAAS;IACdC,OAAOA,IAAIA,CAACA,KAAKA,CAACA,IA
AIA,CAACA,MAAMA,CAACA,CAACA,GAAGA,IAAIA,CAACA,GAAGA,CAACA,CAACA,CAACA;
AACjDA,CAACA;AAED,mBAAmB;AACnB,oBAAoB;AACpB,GAAG;AACH,+BAA+B;AAC/B,kCA
AkC;AAClC,qBAAqB;AACrB,OAAO;AACP,2BAA2B;AAC3B,6BAA6B;AAC7B,OAAO;AACP,g
CAAgC;AAChC,0CAA0C;AAC1C,kCAAkC;AAClC,kBAAkB;AAClB,4CAA4C;AAC5C,WAAW;A
ACX,OAAO;AACP,GAAG;AAEH,qCAAqC"
}

As you can see, this is a very simple JSON object that contains the information
necessary to map the JavaScript code that has been generated back to the TypeScript
files that it originated from. The "sources" property contains the array of
TypeScript files that we build. The "names" property represents named types that
exist within the code, and "sourceRoot" is the location where the source files are
located. If you have opted to specify an output file for your combined JavaScript
that is in a different directory than your TypeScript files, it is important to specify
the --sourceRoot if you intend to use the source map. The sourceRoot parameter
should be a value that is relative to the location of your map file.

The TypeScript Compiler

[56]

The following screenshot shows you how to configure your Visual Studio project to
combine its JavaScript into a single file, generate a source map, and point that source
map back to the original TypeScript files:

As you can see, we combine our TypeScript into a single JavaScript file in a
subdirectory of the project. The Generate source maps checkbox has been selected
so that sourceMappingURL is added to the resulting JavaScript. The Specify root
directory of TypeScript files option has been selected and a relative path has
been provided for the debugger to interpret. The Specify root directory of source
maps option changes the location provided to the sourceMappingURL value.
The TypeScript root directory and source map root directory options correspond
to the --sourceRoot and --mapRoot respectively.

Advanced options
With everything we've seen so far, we can build and deploy large applications.
Now, we are going to take a look at the few remaining options that we haven't
covered yet. Some are just informative, while others can help you and your team
write better TypeScript code. As with most command line utilities, the TypeScript
compiler comes with a help parameter that will output all of the compiler's options.
To view all of these options, use the –h or --help parameters or simply run the
compiler with no parameters at all. There is also a version parameter that outputs
the current version of the TypeScript compiler that is installed. This is viewed
using either the -v or --version parameters. As you can see from the following
screenshot, this book was written immediately following the initial release of
TypeScript as a completed language.

Chapter 3

[57]

Since the language is open source, expect improvements to be made and new
versions to be available.

Now that we've covered the options that we'll use very infrequently, let's get back
to improving how we develop for the Web. If you are writing a web application, it
is possible you could have users all around the world. This means your applications
could and probably should support multiple languages. To ensure that each
localized character is displayed properly, you may have to specify a code page.

A code page is a number that is used to represent character encoding.
For instance, UTF-8 is 65001 while ASCII is 20127.

The TypeScript compiler provides the --codepage parameter to allow you to
specify the character set that the resulting JavaScript file will contain. By default, the
TypeScript compiler will use 65001 when this parameter is not provided. Visual Studio
does not allow this option to be specified and UTF-8 should be used in most scenarios.

We talked earlier about JavaScript's strict mode and how it forced certain constructs
upon the language that help improve the code we develop. TypeScript has its
own version of strict mode that forces us to use types everywhere. If a type is not
explicitly provided and the compiler is not able to infer the object's type information,
we can use the compiler to warn us. To enforce this constraint, simply provide the
--noImplicitAny parameter when compiling your TypeScript files. In the following
code segment, you can see that we create a situation where the type variable a is
not known. We do not provide it with initial type information and we assign it to
multiple object types during execution.

function implicitType() {
 var a;
 a = 2;
 a = "bob";
 alert(a);
}

The TypeScript Compiler

[58]

The final runtime value of a will be "bob"; however, this breaks the type safety that
TypeScript aims to provide. In the following screenshot, you can see how to enforce
types within your code and the result of attempting to compile the preceding code:

Enforcing types upon our code will not only help us to ensure we write solid code,
but it will help anyone attempting to consume it on an API level or understand
the intent of the code. Strongly typing our objects helps others know what they are
working with. However, you don't want to have to provide all of your TypeScript
source files to anyone consuming your code as an API. For this reason, TypeScript
has created another language construct that will provide type information to
consumers without providing any implementation details. This type information is
placed into a declaration file, which can then be distributed along with the combined
and minified JavaScript file that can be used at runtime. In the next segment of code,
there is a module that is reusable and can be deployed for any JavaScript code to call:

module MyNamespace {
 export interface IClass {
 Id: string;
 DoSomething();
 }
 export class MyClass implements IClass {
 constructor(public Id: string = Date.now().toString()) {
 }
 public DoSomething() {
 alert(this.Id);
 }
 }
}

Chapter 3

[59]

This module can be consumed by other TypeScript files that are aware where the
source file is. However, someone consuming only a JavaScript file will be unable to
interact with our objects in a strongly typed fashion. If we provide the declaration
file to our consumers though, they can use our objects as if they existed inside of
their own code base. To generate the declaration file for a TypeScript file, run the
command shown in the following screenshot:

During the compilation process, the type information for our module will be extracted
into a new file that will be output alongside the resulting JavaScript file. It will have the
format <filename>.d.ts and will be treated by any TypeScript compiler as a collection
of type definitions. Attempting to place execution code in a declaration file will result
in an error. The file generated from our module is as follows:

declare module MyNamespace {
 interface IClass {
 Id: string;
 DoSomething(): any;
 }
 class MyClass implements IClass {
 public Id: string;
 constructor(Id?: string);
 public DoSomething(): void;
 }
}

As you can see, all of the type information is present but the implementation
details have been left out. We will discuss these more in detail later when we start
integrating other libraries such as jQuery.

The TypeScript Compiler

[60]

The final compiler option allows us to pass a text file as the parameter to the
compiler. This text file can contain the list of parameters for the compiler and all of
the files for compilation, allowing us to bypass command line restrictions. This is the
work-around to the buffer limit in the command line. In the following screenshot,
you can see a text file that has been created to manage our compilation parameters:

As you can see, we are now able to provide all of our parameters in an easily
managed list. The following screenshot shows how to use this file with the compiler:

Summary
In this chapter, we covered each of the different parameters for the TypeScript
compiler. We discussed how to target the different versions of ECMAScript as
well as which external module pattern to follow. Source maps will become very
handy to debug our TypeScript code and declaration files will help us deploy
compiled JavaScript while still providing a rich type experience for developers using
TypeScript. The ability to pass a file to the compiler allows us to create reusable
compilation scripts that can scale much further than using the command line alone.
Next, we are going to cover how the different constructs turn what is normally a
scripting language into an object-oriented language.

Object-oriented Programming
with TypeScript

Object-oriented Programming (OOP) is a concept built into many languages
that help associate data and methods together in a single construct. Objects are
created and are able to interact with each other using one another's public facing
methods. JavaScript itself is not an object-oriented language in the way that C++, C#,
or Java are. The construct of closures, which we discussed earlier allows us to bring
object-oriented concepts into JavaScript development. TypeScript on the other hand
can be treated as an object-oriented language because of the language constructs
it introduces on top of JavaScript closures. In this chapter, we will discuss each of
the core concepts behind object-oriented programming and how TypeScript allows
JavaScript to implement this paradigm. The topics that will be covered in the chapter
are as follows:

•	 SOLID
•	 Inheritance
•	 Encapsulation
•	 Abstraction
•	 Polymorphism

Object-oriented Programming with TypeScript

[62]

The basics
Before we dig into the main concepts of OOP, let's talk about what objects are
and how they work. Objects are self-contained entities that maintain a set of data
members and methods. The data members are unique to each object instance and the
methods have direct access to these members. An object represents an instance of a
class type and any number of instances can be created. Each of these instances will
have different memory locations to store their internal member variables at runtime
to differentiate between them. The following code sample shows a class definition
and then the creation of different objects of that type:

class Shape {
 public locationX: number = 0;
 public locationY: number = 0;
 public height: number = 0;
 public width: number = 0;
 constructor() {
 }
 public draw() {
 }
 public resize(height: number, width: number) {
 this.height = height;
 this.width = width;
 }
 public move(x: number, y: number) {
 this.locationX = x;
 this.locationY = y;
 }
}

var shapeInstance = new Shape();
var otherShape = new Shape();
shapeInstance.move(30, 35);
otherShape.resize(15, 15);

As you can see, we have a simple Shape class that contains a few data members as
well as a few methods. We are then able to instantiate multiple instances of this class
and store references to them so that we can operate on them separately. As you can
see, we change the location of our first object and the size of the second object. If we
were to access these members directly, shapeInstance would still have a height and
width of 0 and location of (30, 35), while otherShape will still be located at (0, 0)
with a height and width of 15.

Chapter 4

[63]

SOLID – object-oriented design
SOLID is an acronym for five of the basic principles when designing classes
in OOP. Following these principles will ensure that your application is well
structured and flexible enough for the future. Let's take a look at what each
of these letters represents:

•	 Single Responsibility Principle: A class should have only one reason to
change. If a class has multiple responsibilities, then those responsibilities
become coupled together. When this coupling occurs, it increases the
potential for a change to one of the responsibilities to break the functionality
of the other responsibilities. For more information on this principle, refer to:
http://www.objectmentor.com/resources/articles/srp.pdf.

•	 Open/Closed Principle: An object should be open for extension but closed
for modification. This principle is the basis for abstraction, which we will
discuss briefly. Essentially, your programs should be designed around
a specific set of contracts or abstract classes that should be extended to
implement new functionality as requirements change. For more information
on this principle, please refer to: http://www.objectmentor.com/
resources/articles/ocp.pdf.

•	 Liskov Substitution Principle: An object should be able to be replaced with
a subtype object without altering program execution. This principle builds on
the Open/Closed Principle in that any subclass must maintain the minimum
contract established by the base class. However, this principle goes a step
further in that it applies to the client use of each object and the behavior
expected from the base class. For more information on this principle, please
refer to: http://www.objectmentor.com/resources/articles/lsp.pdf.

•	 Interface Segregation Principle: Many client specific interfaces are better
than a single general purpose interface. This principle is important because
it helps to decouple different behaviors from each other, allowing clients
to only implement exactly what they need to. For more information on this
principle, please refer to: http://www.objectmentor.com/resources/
articles/isp.pdf.

•	 Dependency Inversion Principle: Rely on abstractions rather than
concretions. This principle states that proper abstractions should be created
that both dependent functions can rely on and concrete implementations will
adhere to. When both are capable of using this abstraction, then it becomes
simple to reuse code as requirements change with minimal impact. For more
information on this principle, please refer to: http://www.objectmentor.
com/resources/articles/dip.pdf.

Keeping these principles in mind while developing your applications will allow you
to develop object-oriented code with the procedural language of JavaScript.

http://www.objectmentor.com/resources/articles/srp.pdf
http://www.objectmentor.com/resources/articles/ocp.pdf
http://www.objectmentor.com/resources/articles/ocp.pdf
http://www.objectmentor.com/resources/articles/lsp.pdf
http://www.objectmentor.com/resources/articles/isp.pdf
http://www.objectmentor.com/resources/articles/isp.pdf
http://www.objectmentor.com/resources/articles/dip.pdf
http://www.objectmentor.com/resources/articles/dip.pdf

Object-oriented Programming with TypeScript

[64]

Understanding inheritance
Inheritance is the ability of a class to extend the functionality of an existing class.
Inheritance creates a way for multiple objects to share a common core set of
code and then extend or modify this as necessary for a specific purpose. Take for
example our Shape class, which is very simple with a couple of properties in it, but
these properties don't provide specific details as to what shape is actually being
represented. In the following code, you can see we have modified the Shape class to
be more generic and created a subclass using the extends construct in TypeScript:

interface IShape {
 location: IPoint;
 move(newLocation: IPoint);
}
class Shape implements IShape {
 public location: IPoint = new Point(0, 0);
 constructor() {
 }
 public move(newLocation: IPoint) {
 this.location = newLocation;
 }
}
interface IRectangle extends IShape {
 height: number;
 width: number;
 area(): number;
 resize(height: number, width: number);
}
class Rectangle extends Shape implements IRectangle {
 public height: number = 0;
 public width: number = 0;
 constructor() {
 super();
 }
 public area(): number {
 return this.height * this.width;
 }
}

Chapter 4

[65]

As you can see, we have a generic interface for the Shape class that implements only
the basic functionality needed for a shape object, which is a location on a plane. The
Point class is the same one we created back in Chapter 2, TypeScript Basics. Then a
new interface gives us the properties and methods needed to define a basic rectangle
shape. This interface is not explicitly necessary, but having it defined will allow us
to extend or replace the Rectangle class easily in code later if we need to. This is
followed by the class definition for a rectangle which, like the IRectangle definition,
shows the usage of the extends keyword. This tells the compiler that the Rectangle
class is a shape and should inherit all of the properties that come with it. Inside the
constructor, an extra line must be added that initializes the base class instance.

The call to the base class constructor must be the first
statement inside the subclass constructor otherwise a
compile-time error will occur.

Now every Rectangle object created will have not only the height, width, and
area members but it will also contain a Location property and the Move method
that are defined by the Shape class. This is not a default construct in the language
of JavaScript so let's take a quick look at the output provided by the compiler to
see how this is implemented:

var __extends = this.__extends || function (d, b) {
 for (var p in b) if (b.hasOwnProperty(p)) d[p] = b[p];
 function __() { this.constructor = d; }
 __.prototype = b.prototype;
 d.prototype = new __();
};
var Point = (function () {
 function Point(x, y) {
 if (typeof x === "undefined") { x = 0; }
 if (typeof y === "undefined") { y = 0; }
 this.x = x;
 this.y = y;
 }
 return Point;
})();

var Shape = (function () {

Object-oriented Programming with TypeScript

[66]

 function Shape() {
 this.location = new Point(0, 0);
 }
 Shape.prototype.move = function (newLocation) {
 this.location = newLocation;
 };
 return Shape;
})();

var Rectangle = (function (_super) {
 __extends(Rectangle, _super);
 function Rectangle() {
 _super.call(this);
 this.height = 0;
 this.width = 0;
 }
 Rectangle.prototype.area = function () {
 return this.height * this.width;
 };
 return Rectangle;
})(Shape);

As you can see, all of our classes are created as modules as discussed previously,
but before any of these are generated, the compiler injects a special segment of code
to handle extending classes. The TypeScript compiler implements object-oriented
principles for us by applying a standard set of well-known patterns—member
addition and prototype copying. This code takes in two object types as parameters.
The first parameter is the subclass that is in need of all of the base class's properties,
and the second is the base class itself. This function then loops through each of
the available members on the base class and adds them to the subclass. Then the
prototype of the base class is copied onto the subclass's prototype. When we look
at the module that is output for the subclass, you can see that the Shape type is
passed to the Rectangle's module definition for use in the newly generated function.
The first thing that happens in the Rectangle's type definition is that it makes a
call to this newly generated extends function and then proceeds to initialize the
Rectangle as it normally would. The final piece of this is the call to initialize a
new Shape object using the call method and passing in the current object
instance. This tells the Shape constructor to perform all of its operations on
the current object rather than initializing a new object.

Chapter 4

[67]

TypeScript, like most object-oriented languages, only allows for single inheritance
when defining a class. So, creating two classes that perform different functions and
then attempting to merge them with a single subclass is not possible and a compile
error will be generated. This is very different from the way interfaces work but it
is necessary because it would be impossible to ensure proper functionality in all
scenarios where this could occur. These two separate classes could define properties
or methods with similar names and call signatures and the subclass would have no
way of differentiating between them. If you find yourself in a scenario where this is
needed, you should consider refactoring your code.

While multiple inheritance is not possible for a single class, we are able to chain a
series of classes together to merge functionality in this manner. In the next example, we
create a new interface called IBox to define the new requirements for a box object. This
interface will extend the IRectangle interface to merge their definitions. The concrete
implementation of IBox will inherit from the Rectangle class we created earlier to
bring its methods and properties on to the Box class. This creates an inheritance tree
stemming from the basic Shape class we created initially, to the Rectangle object,
and finally into the Box class, as you can see in the following example:

interface IBox extends IRectangle {
 depth: number;
}
class Box extends Rectangle implements IBox {
 public depth: number = 0;
 constructor() {
 super();
 }
 public resize(height: number, width: number, depth: number) {
 super.resize(height, width);
 this.depth = depth;
 }
}

An extra property is added to the IBox interface, representing a three-dimensional
object and all of the functionality of both Shape and Rectangle is available. The
resize method has been modified to take an extra parameter that will allow us
to modify the new property. There is a problem with this example though; it is
in violation of one of the SOLID principles that we discussed earlier. Attempting
to compile this code will result in an incompatible type error because the resize
method of Rectangle has a different call signature than Box's implementation of it.
To fix this, change the resize method to the following:

public resize(height: number, width: number, depth: number = 0) {
 super.resize(height, width);
 this.depth = depth;
}

Object-oriented Programming with TypeScript

[68]

This parameter must be optional, otherwise we risk breaking the Liskov Substitution
Principle that we discussed earlier in this chapter; however, we want to ensure it
has a valid value if it is not provided to the constructor. For this reason, the depth
parameter is given an initializer rather than just making it optional: depth?:
number. If this parameter was not optional, then we would receive compilation
errors if we changed any Rectangle object in our application to a Box, as shown
in the following code sample:

//var rect = new Rectangle();
var rect = new Box();
rect.resize(4, 3);

Now that we've started to create a complex object tree, let's take a look at the
relationships between the different classes we have so far. The following diagram
lays out the Is-a and Has-a relationship between all of our different objects:

ShapeI RectangleI BoxIPointI
Has-a

Is-a Is-a

Shape Rectangle BoxPoint
Has-a

Is-a Is-a

Is-aIs-aIs-aIs-a

As you can see, just these few simple classes and interfaces can create a very complex
object tree. As applications grow, this can become harder and harder to manage,
however if you follow the guidelines for developing object-oriented code, you
will be able to maintain your applications with relative ease.

Encapsulation
The concept of encapsulation in OOP allows us to define all of the necessary
members for an object to function while hiding the internal implementation details
from the application using the object. This is a very powerful concept for us to use
because it allows us to change the internal workings of a class without breaking any
of its dependent objects. This could come in the form of either private members or
private method implementations. The contract that has been established remains
the same and the functionality that it provides is consistent, however, improvements
are able to be made. In the following code segment, you can see how hiding certain
members from the calling application will be beneficial:

interface IActivator {

Chapter 4

[69]

 activateLicense(): boolean;
}
class LocalActivator implements IActivator {
 private _remainingLicenses: number = 5;
 constructor() {
 }
 public activateLicense(): boolean {
 this._remainingLicenses--;
 if (this._remainingLicenses > 0)
 return true;
 throw "Out of Licenses";
 }
}

In this example, we have an interface that defines a type that will manage the
activation of licenses for a product. This is followed by a concrete implementation
of the interface that locally keeps track of the remaining licenses and returns a
true value if there are remaining licenses, otherwise an exception is thrown to
stop program execution. The number of licenses is kept in a private variable so
that the calling application can't give itself more licenses to work with. In real-world
scenarios, however, the actual implementation details would likely make a call to
a server that determines whether the product has licenses remaining. Thanks to
encapsulation, we could change the implementation details of this class too without
the client ever knowing the difference, other than the delay in making a server
request. In the following code segment, you can see how we are able to swap the
LocalActivator object with a ServerActivator object and program execution
continues to function as expected:

class ServerActivator implements IActivator {
 constructor() {
 }
 public activateLicense(): boolean {
 var request = new XMLHttpRequest();
 var requestResponse: boolean = false;
 request.open('GET', '/license/activate', false);

 request.onload = () => {
 if (request.status == 200) {
 requestResponse = true;
 } else {
 throw "An error occured during activation!";
 }
 };

 request.onerror = () => {

Object-oriented Programming with TypeScript

[70]

 throw "An error occured during activation!";
 }
 request.send(null);
 return requestResponse;
 }
}
//var activator: IActivator = new LocalActivator();
var activator: IActivator = new ServerActivator();
var isActive = activator.activateLicense();
if (isActive) {
 //Program logic
}

The ServerActivator class implements the same interface as LocalActivator
we declared earlier, but it makes a synchronous request back to the server for data
rather than doing it on the client. Normally, this type of request should be made
asynchronously, however, we would need to change the IActivator interface to
support promises or use callbacks.

Promises will be natively supported in ECMAScript 6, however
several libraries have implemented their own implementation.
More information on ECMAScript 6 promises can be found here at:
http://www.html5rocks.com/en/tutorials/es6/promises/.

The implementation details between the two objects is vastly different but the end
result is the same. The two can be used interchangeably and the application requires
no further changes.

Abstraction
Abstraction is an incredibly powerful concept in object-oriented development.
It encompasses the idea of hiding specific implementation details while providing
the high-level definition of what should be implemented. In the previous example,
we saw a very basic case of abstraction. The IActivator interface creates the
abstraction layer needed to handle the concept of activating the application. The
LocalActivator and ServerActivator types are concrete implementations of this
abstraction. In other programming languages such as C#, classes are able to declare
specific members as abstract. This forces any subclasses of the base type to provide a
concrete implementation of that member. In the following code segment, you will see
a C# example of this:

public abstract class AbstractBaseClass
{

http://www.html5rocks.com/en/tutorials/es6/promises/

Chapter 4

[71]

 protected bool isActive = false;
 public AbstractBaseClass()
 {
 }
 public abstract bool CheckStatus();
}
public class ConcreteClass : AbstractBaseClass
{
 public ConcreteClass()
 {
 }
 public override bool CheckStatus()
 {
 return this.isActive;
 }
}

The base class provides the declaration for a method called CheckStatus,
however, no implementation is provided. The implementation is forced upon
the ConcreteClass type, however, members made available in the base class are
available to this implementation. The abstract keyword on the CheckStatus method
tells the compiler that all subclasses of the AbstractBaseClass must implement
this method or a compile error will be generated. The abstract keyword on the
AbstractBaseClass will cause the compiler to generate an error if the class is
instantiated directly. The simplest way to do this in TypeScript is through the
use of interfaces, however, this does not provide the full functionality that comes
from abstract classes in C#. The protected member in the base class is not accessible
outside of the concrete implementations of the type, however if it is placed on a
TypeScript interface, then it must be made publicly available. Despite the lack of
an abstract keyword and language construct in TypeScript, we can use certain
patterns to create a similar implementation:

class AbstractClass {
 constructor() {
 }
 public checkStatus(): boolean {
 throw new Error("Not Implemented");";
 }
}
class ConcreteClass extends AbstractClass {
 private _isActive: boolean = false;
 constructor() {
 super();
 }

Object-oriented Programming with TypeScript

[72]

 public checkStatus(): boolean {
 return this._isActive;
 }
}

As you can see, we must still define a complete class that represents the abstract
base class. However, in the method implementation of checkStatus, an exception
is thrown at runtime that will stop program execution whenever an attempt to use
this class directly is made. It would be nice if there was some way to enforce this at
compile time, however, currently this functionality does not exist. TypeScript does
not have a protected accessibility level so we have been forced to move this detail
down into the concrete class explicitly. In this specific case, it would make sense to
just make the AbstractClass into an interface that the ConcreteClass type would
then implement; however, as our objects become more complex, we will want to
have publicly accessible members that are defined only once in the base type and
specific method implementations will need to be provided by the concrete classes.

Polymorphism
Polymorphism in its pure definition means to have many shapes. When this is
applied to software development, it applies to a wide variety of techniques that
enable us to use a variety of different objects or methods to perform a task. In pure
OOP languages, polymorphism refers to the use of method overloading, operator
overloading, and method overriding.

Method overloading
Method overloading is the idea of providing multiple methods with different call
signatures but the same name. We discussed this earlier in Chapter 2, TypeScript
Basics, so this will be a short review of that. As we saw earlier, we are able to provide
multiple call signatures for a single function as long as the parameters all share
a common base type. The ICommunicator interface shown in the following code
provides an example of this:

interface ICommunicator {
 speak(message: string);
 speak(message: number);
 sipeak(message: boolean);
 speak(message: any);
}
class Communicator implements ICommunicator {
 constructor() {
 }
 speak(message: string);

Chapter 4

[73]

 speak(message: number);
 speak(message: boolean);
 speak(message: any) {
 alert(message);
 }
}

In this example, we defined a class that is used for communicating messages. The
message can be of any of the types defined in the method list, and they all share a
common base type that must be used in the final method signature, as discussed in
Chapter 2, TypeScript Basics. In traditional object-oriented languages, we would be able
to define multiple implementations of the speak method, however since the end result
is still plain JavaScript, we can only provide the single method block. Through the use
of conditional statements, we could provide different execution paths for each of the
different types used in the parameter list, as shown in the following example:

class Communicator implements ICommunicator {
 constructor() {
 }
 speak(message: string);
 speak(message: number);
 speak(message: boolean);
 speak(message: any) {
 if (typeof message === "string") {
 alert(message);
 } else if (typeof message === "number") {
 alert("The number provided was: " + message);
 } else if (typeof message === "boolean") {
 alert("The boolean value was: " + message);
 } else {
 alert(message);
 }
 }
}

Operator overloading
JavaScript is not inherently an object-oriented language and this limits what we
can do somewhat, so we are still restricted in some respects compared to languages
such as C#. There is no way to perform operator overloading in JavaScript so we are
forced to implement specific methods on our classes to implement the functionality
we want. In the following example, we defined a Vector type that will allow us to
perform vector math operations:

interface IVector {

Object-oriented Programming with TypeScript

[74]

 x: number;
 y: number;
}
class Vector implements IVector {
 public x: number = 0;
 public y: number = 0;
 constructor(x = 0, y = 0) {
 this.x = x;
 this.y = y;
 }
}

We know that performing vector addition is fairly simple so it would be very nice
if we could use the + operator to add two instances of this class together.

var v1 = new Vector(2, 5);
var v2 = new Vector(4, 3);
var v3 = v1 + v2;
alert(v3);

However, since operator overloading is not available in JavaScript, the result will
end up looking something similar to the following screenshot:

Behind the scenes, the JavaScript engine calls the toString method associated with
the objects and then concatenates them into a single value. This has the potential to
cause unexpected results in our applications. To perform the functionality we want,
we must explicitly implement methods to handle the desired functionality.

public add(v: IVector): IVector {
 var newVector = new Vector();
 newVector.x = this.x + v.x;
 newVector.y = this.y + v.y;
 return newVector;
 }
 public static add(v1: IVector, v2: IVector): IVector {

Chapter 4

[75]

 return v1.add(v2);
 }

After adding these methods to our class definition and performing a method
override of toString, we can simply change our application code to call the new add
method and we will receive the expected result:

var v3 = Vector.add(v1, v2);
alert("X: " + v3.x + ", Y: " + v3.y);

The end result will now be a new Vector object that is the sum of the two vectors:

Method overrides
Method overrides are a way to replace functionality that is inherited from
super-classes. Method overrides must have the same call signature as the
method that is being overridden. Take a look at the following example:

interface IEmployee {
 name: string;
 email: string;
 work(tasks: string[]);
}
class Employee implements IEmployee {
 constructor(public name: string, public email: string) {
 }
 public work(tasks: string[]) {
 for (var i = 0; i < tasks.length; i++) {
 //perform task
 }
 }
}
interface IManager extends IEmployee {
 employees: IEmployee[];
}

Object-oriented Programming with TypeScript

[76]

class Manager extends Employee implements IManager {
 public employees: IEmployee[] = [];
 constructor(name: string, email: string, employees: IEmployee[]) {
 super(name, email);
 this.employees = employees;
 }
 public work(tasks: string[]) {
 for (var i = 0; i < this.employees.length; i++) {
 for (var j = 0; j < tasks.length; j++) {
 this.employees[i].work([tasks[j]]);
 }
 }
 }
}

In this example, you can see that we have two classes. First, a generic Employee
class that represents the base class for any employee within an organization. This
employee has a few properties such as a name and an e-mail address to contact
them with. Then, second, there is a very simple method that allows the employee
to be passed a list of tasks, and this task list will be executed sequentially until all
of the tasks are complete. The next class is the Manager class, which is a subclass of
Employee. The manager has all of the same functions as a normal employee, they just
also have a list of employees that they are responsible for. The manager is handed a
list of tasks, and rather than performing each one explicitly, it will delegate each task
to each of its employees for execution. If we were to add or remove parameters from
the Work method, then the call signatures would be different between the subclass
and superclass and would break the Liskov substitution principle. TypeScript will
not stop you from changing the method signature, however, it will make your code
harder to manage.

References
To find out more about object-oriented design and object-oriented programming
concepts, visit:

•	 http://www.objectmentor.com/omSolutions/oops_what.html

•	 http://www.codeproject.com/Articles/22769/Introduction-to-
Object-Oriented-Programming-Concep

http://www.objectmentor.com/omSolutions/oops_what.html
http://www.codeproject.com/Articles/22769/Introduction-to-Object-Oriented-Programming-Concep
http://www.codeproject.com/Articles/22769/Introduction-to-Object-Oriented-Programming-Concep

Chapter 4

[77]

Summary
Throughout this chapter, you should have gained a basic understanding of
object-oriented programming. We have looked at several examples of how to
put the encapsulation, polymorphism, abstraction, and inheritance into practice
and how they allow us to make scalable applications. The SOLID principles helped
us to outline how our classes should be designed. We are now going to put these
concepts into use over the next few chapters. We will be developing an interactive
drawing application with TypeScript and a little bit of HTML in Chapter 5, Creating
a Simple Drawing Application.

Creating a Simple
Drawing Application

We have covered a lot of information in a very short period of time. Let's take that
information and put it to use; let's build a full application rather than just looking at
code samples. We are going to build a web-based drawing application similar to Paint,
but it will be hosted in the browser. The topics we will cover in this chapter include:

•	 Creating the project
•	 Basic shapes
•	 Drawing objects on the canvas
•	 Managing the canvas state and decision making
•	 Keeping track of the application state

Setting up the project
First things first, we need to create a new project that will host our application
and configure the compiler settings. Create a new project in Visual Studio, using
the TypeScript project template as described in Chapter 2, TypeScript Basics, and call
it DrawingApplication. Then, open up the project properties by right-clicking on
the project and selecting Properties.

Creating a Simple Drawing Application

[80]

In the following screenshot, you can see the settings we will use for this application:

As you can see, we will be targeting ECMAScript 3 to ensure a broader scope of
platforms that our application will run on. We will not be using an external module
system, comments will be removed from the final output, and the rest of the output
can be left as the default values. Next, we need to modify index.html to contain a
canvas element. The HTML canvas element is part of the HTML5 standard, which
is supported by most modern browsers at this point. Since we aren't using jQuery
yet, we will also need to move the loading of our app.js file to within the body;
that way, the canvas element will be available to us at runtime. The following
screenshot shows the index.html file after making these modifications:

Chapter 5

[81]

Now that we have the basics for the project set up, let's start putting together an
object-oriented TypeScript application. As we move through this chapter, we will
use a couple of enumerations to help us define abstractions and allow our types to
communicate in a strongly typed fashion. I prefer to maintain a clear separation of
code for easy navigation, so all of the enums that are created will be placed in a file
called Enums.ts. The two enums are as follows:

enum DrawingToolType {
 Select,
 Rectangle,
 Circle,
 Line,
 Freehand
}
enum CanvasEngineAction {
 None,
 Move,
 Resize
}

The DrawingToolType type will be used to help determine which drawing tool the
user has selected. The type responsible for interacting with the canvas will need to
know this to function properly. The CanvasEngineAction type will be used by the
objects responsible for drawing the shapes to inform the canvas operator what to
do with the user's input.

Creating a Simple Drawing Application

[82]

The shapes
In keeping with the principles that we learned in the previous chapter, we will need
a variety of different types to perform different tasks within our application. We will
need a representation of what shapes are, how to draw them, something to interact
with the user interface, and somewhere to maintain the list of objects to be drawn.

Basic shapes
The first thing we need is a set of classes that will represent the different shapes that
we eventually intend on drawing. These objects should be kept separate from the
drawing logic that we will implement later. The first thing we need to do is create
an abstraction for each of the shapes we intend on representing. This abstraction
will allow us to easily extend object types or swap certain objects for others as
requirements change. The abstraction is as follows:

interface IPoint {
 x: number;
 y: number;
}
interface IShape {
}
interface IRectangle extends IShape {
 height: number;
 width: number;
 resize(height: number, width: number);
}
interface ICircle extends IShape {
 radius: number;
 resize(radius: number);
 area(): number;
}
interface ILine extends IShape {
 p1: IPoint;
 p2: IPoint;
 length(): number;
}
interface IFreehand extends IShape {
 points: Array<IPoint>;
 addPoint(point: IPoint);
}

Chapter 5

[83]

As you can see, we have several basic shape interfaces that handle the properties
associated with the specific type of shape. The IShape interface is empty for now,
but having it provides a common base type for all shapes we create. In the next code
sample, the concrete implementation of each of our shape interfaces is shown. These
types can be reused across any number of applications that require the representation
of shapes and are therefore more useful than if they had been coupled directly to the
drawing logic:

class Point implements IPoint {
 constructor(public x: number, public y: number) {
 }
}
class Rectangle implements IRectangle {
 constructor(public height: number, public width: number) {
 }
 public resize(height: number, width: number) {
 this.height = height;
 this.width = width;
 }
}
class Circle implements ICircle {
 constructor(public radius: number) {
 }
 public resize(radius: number) {
 this.radius = radius;
 }
 public area(): number {
 return Math.PI * this.radius * this.radius;
 }
}
class Line implements ILine {
 constructor(public p1: IPoint, public p2: IPoint) {
 }
 public length(): number {
 var a2 = Math.pow(this.p2.x - this.p1.x, 2);
 var b2 = Math.pow(this.p2.y - this.p1.y, 2);
 return Math.sqrt(a2 + b2);
 }
}
class Freehand implements IFreehand {
 public points: Array<IPoint> = [];

Creating a Simple Drawing Application

[84]

 constructor() {
 }
 public addPoint(point: IPoint) {
 this.points.push(point);
 }
}

Each of these classes is limited to a single responsibility that keeps track of the
shape's state and reports the various properties associated with it. All of this
functionality is useful, but it doesn't get us fully to our goal of having objects
drawn on the canvas.

Drawing shapes
Now that we have the basic representation of what we want to draw, we need to
define objects that will handle this. These objects should do the least amount of
work required to draw the shapes they represent. This means no direct interaction
with the Document Object Model (DOM). The following interfaces represent the
different abstractions that we will use to represent a shape that can be drawn and
manipulated on the canvas element:

interface IDraw {
 draw(ctx: CanvasRenderingContext2D);
}
interface IResize {
 inResizeZone: (mouse: IPoint) => boolean;
 resizeToLocation: (to: IPoint) => void;
}
interface IMove {
 move: (to: IPoint) => void;
 contains: (mousePoint: IPoint, ctx: CanvasRenderingContext2D) =>
boolean;
 getMoveOffset(mousePos: IPoint): IPoint;
}
interface IDrawingShape extends IDraw, IResize, IMove {
 shape: IShape;
 location: IPoint;
 isSelected: boolean;
 selectionZoneWidth: number;
 opacity: number;
 getCursorType: (mousePoint: IPoint) => string;
 getClickLocationAction(mouse: IPoint, ctx:
CanvasRenderingContext2D): CanvasEngineAction;
}

Chapter 5

[85]

Each of these interfaces could easily be combined into a single interface, but
in accordance with the interface segregation principle, each of these actions can
now be decoupled from one another if needs be. The IDrawingShape interface
eventually merges each of these types while adding some of its own functionality.
All of this put together represents a type that we will be able to draw on the HTML
canvas element and interact with in some way. Each IDrawingShape instance holds
a reference to its specific shape that can then be accessed or manipulated by our
application logic. Separating each shape from the drawing-specific interface upholds
the single responsibility principle by allowing the shape to keep track of its data
while the drawing objects will only be responsible for methods related to rendering
the specific shape in the browser. The shape's location on the canvas is managed
by the drawing shape as well as whether it is the currently selected object on the
canvas. The getCursorType and getClickLocationAction functions are
application-specific and will allow the object responsible for handling user
interaction to request information from the drawing objects before proceeding
through its application logic. The concrete implementation of this interface is
as follows:

class DrawingShapeBase implements IDrawingShape {
 public shape: IShape = null;
 public location: IPoint = new Point(0, 0);
 public isSelected: boolean = false;
 public selectionZoneWidth: number = 4;
 public opacity: number = 1;
 constructor() {
 }
 public inResizeZone(mouse: IPoint): boolean {
 throw "Method not implemented";
 }
 public move(to: IPoint) {
 this.location = to;
 }
 public resizeToLocation(to: IPoint) {
 throw "Method not implemented";
 }
 public contains(mousePoint: IPoint, ctx:
CanvasRenderingContext2D): boolean {
 throw "Method not implemented";
 }
 public draw(ctx: CanvasRenderingContext2D) {
 throw "Method not implemented";
 }
 public getMoveOffset(mousePos: IPoint): IPoint {

Creating a Simple Drawing Application

[86]

 return new Point(0, 0);
 }
 public getCursorType(mousePoint: IPoint): string {
 throw "Method not implemented";
 }
 public getClickLocationAction(mousePoint: Point, ctx:
CanvasRenderingContext2D): CanvasEngineAction {
 if (this.inResizeZone(mousePoint)) {
 return CanvasEngineAction.Resize;
 }
 else if (this.contains(mousePoint, ctx)) {
 return CanvasEngineAction.Drag;
 }
 return CanvasEngineAction.None;
 }
}

As you can see, this is a very simple base class and is not meant to be instantiated
directly. It provides a few default implementations that can be reused by shapes
if necessary but are also available to be overloaded. So, now we have our shape
abstractions set up, let's start implementing the specific logic for each of the different
shapes we intend on drawing in our application. The following screenshot shows a
concrete implementation of the DrawingShape type specifically for the Rectangle
shape that we defined earlier:

We will go over the specific implementations of each of the different methods when
we come across their use. The full code is available online. For now, let's just look at
the most basic thing we are trying to do, which is to draw a rectangle on the canvas:

public draw(ctx: CanvasRenderingContext2D) {
 ctx.fillStyle = "#FF0000";
 ctx.globalAlpha = this.Opacity;

Chapter 5

[87]

 ctx.fillRect(this.location.x, this.location.y, this.shape.
width, this.shape.height);
 ctx.strokeStyle = "#000000";
 ctx.lineWidth = 3;
 ctx.strokeRect(this.location.x, this.location.y, this.shape.
width, this.shape.height);
 }

As we defined earlier in the abstraction of our types, the Draw method takes in one
parameter which is of type CanvasRenderingContext2D. This type is a description
of the object returned by the canvas element that allows us to draw our different
objects directly on the canvas. The rectangle is very easy to draw using the context
object's API.

The HTML5 canvas object has a very robust API; for the full list
of what it is capable of, visit http://www.w3schools.com/
tags/ref_canvas.asp.

The first thing we do is set the color that we want our rectangle to be; this must
be done using RGB hex triplets. We can then send the transparency level that the
object will be using the globalAlpha property. Next, we use the context to render
the rectangle on the canvas object using the properties of the shape object and the
drawing object's location. We are also going to display a border around the rectangle,
so we set the stroke color in the same fashion, followed by the width of the border
that we want to draw. Then, once again, we call upon the context to render the object
we want on the canvas. OK, we now have a shape type and a type that can render
it in the browser. Let's create a shape and test the application:

var canvas = <HTMLCanvasElement>window.document.getElementById("drawi
ngCanvas");
var ctx = canvas.getContext("2d");
var shape1 = new DrawingRectangle();
shape1.move(new Point(20, 60));
shape1.shape.resize(60, 80);
shape1.draw(ctx);

First we grab the canvas from the DOM and cast it to the HTMLCanvasElement type so
that we can easily access its different properties. We need to get the rendering context
that will be used by our drawing objects to display their shapes. Then, we create a new
DrawingRectangle and move it to a new location and give it a size. Finally, we tell the
shape to draw itself using the context object for our canvas element.

www.allitebooks.com

http://www.w3schools.com/tags/ref_canvas.asp
http://www.w3schools.com/tags/ref_canvas.asp
http://www.allitebooks.org

Creating a Simple Drawing Application

[88]

In the following screenshot, you can see that we have a red rectangle with a black
border around it. It is positioned 20 pixels from the left edge and 60 pixels down from
the top edge. The top-left edge of the canvas represents the origin, or Point(0, 0).

Now that we can draw the shape on the canvas, let's define how it can be manipulated.
The remainder of the work is done by calculations based on the shape type that is
being represented and the actions performed by the user. The Move functionality was
provided by the base type because it doesn't require any interaction with the shape
directly. Any subclass that wants to manipulate how the Move method works can
override it, as we learned in Chapter 4, Object-oriented Programming with TypeScript.
Next, let's take a look at the methods for resizing DrawingRectangle:

public inResizeZone(point: IPoint): boolean {
 return ((point.X >= this.location.x + this.shape.width - this.
selectionZoneWidth &&
 point.x <= this.location.x + this.shape.width + this.
selectionZoneWidth) &&
 (point.y >= this.location.y + this.shape.height - this.
selectionZoneWidth &&
 point.y <= this.location.y + this.shape.height + this.
selectionZoneWidth));
}
public resizeToLocation(to: IPoint) {
 var cursor = window.document.body.style.cursor;
 if (cursor == "se-resize") {
 this.shape.width = to.x - this.location.x;
 this.shape.height = to.y - this.location.y;
 }
}

Chapter 5

[89]

The first method determines whether the point parameter resides within the
boundaries of the selection zone for the drawing object. It will be used to help the
engine we build in the next section make decisions. For DrawingRectangle, this is
the bottom-right corner; however, hovering over exactly the right pixel to manage
this is fairly difficult. This is why there is a selection zone with a configurable size.
The ResizeToLocation method takes in a point and modifies the properties of the
underlying shape object to resize it. For the rectangle, this is as simple as taking the
difference between the incoming point and the current location of the rectangle. The
other methods of the abstraction are shown in the following code. They are used to
provide information to the canvas engine so that it can appropriately interact with
the user.

public contains(mousePoint: IPoint, context:
CanvasRenderingContext2D): boolean {
 if (this.shape.height < 0) {
 this.location.y = this.location.y + this.shape.height;
 this.shape.height = this.shape.height * -1;
 }
 if (this.shape.width < 0) {
 this.location.x = this.location.x + this.shape.width;
 this.shape.width = this.shape.width * -1;
 }
 return (this.location.x <= mousePoint.x) &&
 (this.location.x + this.shape.width >= mousePoint.x) &&
 (this.location.y <= mousePoint.y) &&
 (this.location.y + this.shape.height >= mousePoint.y);
}
public getMoveOffset(mousePosition: IPoint): IPoint {
 return new Point(mousePosition.x - this.location.x,
mousePosition.y - this.location.y);
}
public getCursorType(mousePoint: IPoint) {
 if (this.inResizeZone(mousePoint))
 return "se-resize";
 else
 return "move";
}

The contains method does a little bit of maintenance on the state of the shape to
ensure it performs the correct calculations. If the height or width of the rectangle is
less than zero, then the logic to determine whether the provided point is within the
bounds of the shape will not perform as expected. getMoveOffset returns the x and
y offsets needed to provide a smooth dragging experience across the canvas. The last
piece of the puzzle is the getCursorType method, which tells the engine to inform
the user that this region is interactive by changing the cursor.

Creating a Simple Drawing Application

[90]

Making the application interactive
Now we have the ability to make any number of shapes and present them to the user.
This, however, is very limited in functionality and doesn't allow for any interaction
between the application and the consumer. Most drawing applications allow for basic
movement and resizing of the objects on the canvas. This requires the application to
redraw itself each time the user attempts to change one of the shapes.

The engine
To handle the drawing and updating of the canvas state, we will need a new type
that is focused around maintaining this. This type, which we'll call CanvasEngine,
should have a very simple abstraction since it only needs to perform a few basic
tasks: drawing the canvas, clearing the canvas, and receiving requests to redraw
the current frame:

interface ICanvasEngine {
 invalidate();
 clear();
 draw();
}

The object will do more under the covers, but any object consuming the engine
needs only these functions to interact with it. Now let's take a look at the more
complex implementation of this type. In the following screenshot, you can see
the full implementation. This will be followed by a breakdown of each public
and private method.

Chapter 5

[91]

As you can see, we have a number of private methods and event handlers that will
help us interpret user actions. The constructor takes in the canvas we want to work
with and a model that is responsible for maintaining a list of shapes for the engine
to operate on. This model has been abstracted the same way the rest of our types
have to maintain a decoupled application.

interface IDrawingModel {
 selection: IDrawingShape;
 shapes: IDrawingShape[];
 addShape(shape: IDrawingShape);
 getNewShape(location: IPoint): IDrawingShape;
 getDrawingTool(): DrawingToolType;
}

We will look at the concrete implementation of this type later, but knowing what
the interface is will allow us to proceed with the engine code. We will start in the
constructor, then move on to the public methods, and finally look at the private
user interaction focused methods. As you can see in the following code sample,
the constructor does a few things to set up not only the engine's state, but also to
wire up the event handlers:

constructor(private _canvas: HTMLCanvasElement, private _model:
IDrawingModel) {
 this.ctx = this._canvas.getContext("2d");
 this._canvas.addEventListener('mousedown', (e) => this._
mousedown(e), true);
 this._canvas.addEventListener('mousemove', (e) => this._
mousemove(e), true);
 this._canvas.addEventListener('mouseup', (e) => this._
mouseup(e), true);
 }

The first thing we do is get the rendering context that we will use to manipulate
the canvas. This is stored as a private variable and will be used throughout the
application's life cycle. The next thing we do is wire up the event handlers to the
canvas element. We need to perform specific actions as the user manipulates objects
on the canvas with the mouse. The syntax for directing the events towards our private
methods looks a little strange though. This is not valid JavaScript code, but when it
gets compiled it will run just fine. The => syntax inside of the constructor tells the
TypeScript compiler to generate a special representation to the this object in the
final JavaScript representation. The final JavaScript code will look something similar
to the following:

function CanvasEngine(_canvas, _model) {
 var _this = this;

Creating a Simple Drawing Application

[92]

this._canvas.addEventListener('mousedown', function (e) {
 return _this._mousedown(e);
 }, true);
}

This ensures that when the event listener we are attaching to the canvas is called, we
have a correct reference to the engine's instance. Otherwise, we could end up using a
this object that doesn't represent the CanvasEngine instance; in this case, the DOM
element that fired the event and the call to the _mousedown method would fail. Now
that we have our object being instantiated and events being wired up, let's take a look
at the public methods. The Clear and Invalidate methods are both very simple:

public clear() {
 this.ctx.clearRect(0, 0, this._canvas.width, this._canvas.height);
}
public invalidate() {
 window.requestAnimationFrame(() => this.draw());
}

The clear method overwrites the entire canvas with a blank rectangle to remove all
existing objects from view. The invalidate method makes a call to the draw method
to show all of the objects represented by the drawing model that was passed in to the
constructor. The draw method isn't much more complex than either of these methods
because of the drawing shape abstractions we made earlier.

 public Draw() {
 var shapes: Array<IDraw> = this._model.shapes;
 this.clear();
 if (shapes) {
 for (var i = 0; i < shapes.length; i++) {
 this.context.save();
 shapes[i].draw(this.context);
 this.context.restore();
 }
 }
 }

In this method, we get a reference to each of the shapes the model wants us to
draw and clear the canvas of any existing drawings. We then loop through the
list of shapes and have each one draw its shape. Since we abstracted the drawing
interface away, the actual type of each object is irrelevant to the engine as long as
it implements the draw method. As you can see, we wrapped the call to the draw
method in two calls to the context object: save and restore.

Chapter 5

[93]

These methods are used to persist the context's drawing state from before the specific
drawing shape changes it and revert to this state after it completes. With these
methods alone, we have created a way to repeatedly draw frames on the canvas.
Combined with the following implementation of the IDrawingModel interface we
saw earlier, we can effectively simulate objects moving across the screen:

class DrawingModel implements IDrawingModel {
 public selection: IDrawingShape = null;
 public shapes: IDrawingShape[] = [];
 constructor() {
 }
 public addShape(shape: IDrawingShape) {
 this.shapes.push(shape);
 }
 public getNewShape(location: IPoint): IDrawingShape {
 throw ("Not implemented");
 }
 public getDrawingTool(): DrawingToolType {
 return DrawingToolType.Select;
 }
}

This is the bare minimum for this class and we will fill in the getNewShape and
getDrawingTool methods later. For now though, we can store a list of shapes and
add new shapes to this list and the canvas will be able to redraw them for us. If we
modify our application code from the previous example to create a DrawingModel
and add our shape to it, then we can code to manipulate our rectangle and have it
move across the screen.

var model: IDrawingModel = new DrawingModel();
model.addShape(shape1);
var engine: ICanvasEngine = new CanvasEngine(canvas, model);
function moveObject(counter: number, upperLimit: number) {
 if (counter > upperLimit) {
 return;
 }
 setTimeout(() => {
 shape1.move(new Point(shape1.location.x + 1, shape1.location.y
+ 1));
 engine.invalidate();
 counter++;
 moveObject(counter, upperLimit);
 }, 20);
}
moveObject(0, 75);

Creating a Simple Drawing Application

[94]

The preceding code instantiates a DrawingModel, adds a shape to it, instantiates
CanvasEngine, and runs a recursive function that moves the object diagonally across
the canvas. The recursive function uses the setTimeout function to cause a slight
delay in the object's movement, otherwise the object would move faster than we
would be able to track it. Again we use the lambda syntax, () => { }, but because
we are not within an object's constructor, it will only act as a shorthand method for
generating a function. However, this application is supposed to be user-focused;
so, let's look at how we hook into the mouse events to allow the user to manipulate
objects on our canvas.

Mouse events
The first action involved in any interaction between one of our shapes and the mouse
will be a selection event. This will be handled by the mousedown event associated
with the canvas. This will allow us to use the click and hold functionality as well as
additional functionality when the mouse is released. The mousedown event handler
is shown in the following example:

private _mousedown(e) {
 var mouse: IPoint = this._getMousePosition(this._canvas, e);
 var i, shape;
 if (this._model.shapes) {
 for (i = this._model.shapes.length - 1; i >= 0; i--) {
 this._model.shapes[i].isSelected = false;
 }
 }
 if (this._model.getDrawingTool() != DrawingToolType.Select) {
 shape = this._model.getNewShape(mouse);
 this._model.addShape(shape);
 this.action = CanvasEngineAction.Resize;
 this._setShapeAsSelected(shape);
 return;
 }
 else if (this._model.shapes) {
 for (i = this._model.shapes.length - 1; i >= 0; i--) {
 this.action = this._model.Shapes[i].
getClickLocationAction(mouse, this.context);
 switch (this.action) {
 case CanvasEngineAction.Resize:
 case CanvasEngineAction.Move:
 var moveOffsetPoint = this._model.shapes[i].
getMoveOffset(mouse);
 this._dragOffsetX = moveOffsetPoint.X;
 this._dragOffsetY = moveOffsetPoint.Y;

Chapter 5

[95]

 this._setShapeAsSelected(this._model.
shapes[i]);
 this._bringToFront(i);
 return;
 default:
 break;
 }
 }
 }
 this._clearEngineState();
 }

This method starts by getting the point location of the mouse in relation to the canvas.
Then, each shape is set to unselected. If the model tells us that the drawing tool is
something other than the selection tool, then we will create a new shape, add it to the
model, select it, and set the engine's current action to resize so that holding the mouse
down will cause the new shape to scale as the mouse moves. So far, we haven't defined
any logic to change our drawing tool though, so for now it will always be the selection
tool. When the selection tool is active, then we want to loop through the list of shapes
in the model and determine whether any action should be taken on them.

Take note of the fact that we loop backwards through the
list this time; however, in the draw method, we proceeded
forwards. If we ever have overlapping objects, we want the
object shown on top to be the object we operate on.

Once we have requested the action that should be taken on the current shape, we
must persist any additional properties that the mousemove or mouseup events could
possibly need to complete their actions. This includes determining how far the
mouse click is from the drawing shapes current location, setting it as the selected
shape, and moving it to the end of the shapes' list; that way, it is rendered last and
on top of all other shapes on the canvas. If no action needs to be taken, the engine
clears any selections and redraws all of the shapes. The helper methods shown in
this method block are shown in the following example:

 private _getMousePos(canvas: HTMLCanvasElement, e: MouseEvent):
IPoint {
 var rect = canvas.getBoundingClientRect(),
 root = window.document.documentElement;
 var mouseX = e.clientX - rect.left - root.scrollLeft;
 var mouseY = e.clientY - rect.top - root.scrollTop;
 return new Point(mouseX, mouseY);
 }
 private _setShapeAsSelected(shape: IDrawingShape) {

Creating a Simple Drawing Application

[96]

 shape.isSelected = true;
 this._model.selection = shape;
 this.invalidate();
 }
 private _clearEngineState() {
 this.action = CanvasEngineAction.None;
 this._model.selection = null;
 this.invalidate();
 }
 private _bringToFront(index: number) {
 var shape = this._model.shapes[index];
 if (shape) {
 this._model.shapes.splice(index, 1);
 this._model.shapes.push(shape);
 this.invalidate();
 }
 }

Each of these methods performs a very specific function in a very controlled scope.
This will come in handy later when we get into unit testing. So at this point, the end
user has an object selected on the canvas and wants to manipulate it. These interactions
will be handled within the mousemove event. As you can see in the following code
sample, manipulating our objects requires very little work from the engine:

private _mousemove(e) {
 var mouse: IPoint = this._getMousePosition(this._canvas, e);;
 switch (this.action) {
 case CanvasEngineAction.Move:
 var newLocationX = mouse.x - this._dragOffsetX;
 var newLocationY = mouse.y - this._dragOffsetY;
 var newLocation = new Point(newLocationX, newLocationY);
 this._model.selection.move(newLocation);
 this.invalidate();
 break;
 case CanvasEngineAction.Resize:
 this._model.selection.resizeToLocation(mouse);
 this.invalidate();
 break;
 case CanvasEngineAction.None:
 default:
 var mousePointer = "auto";
 if (this._model.shapes) {
 for (var i = this._model.shapes.length - 1; i >= 0;
i--) {

Chapter 5

[97]

 if (this._model.shapes[i].inResizeZone(mouse) ||
 this._model.shapes[i].contains(mouse, this.
context)) {
 mousePointer = this._model.shapes[i].
getCursorType(mouse);
 break;
 }
 }
 }
 window.document.body.style.cursor = mousePointer;
 break;
 }
}

This function uses the private state of the engine to determine the action it is supposed
to take and call the appropriate method from our IDrawingShape abstraction. This
method also accounts for when no shape is selected and the user is moving the mouse
around the screen. If no object is selected, the engine determines whether the location
of the cursor is available to click for manipulation. We can safely place any concrete
implementation of the DrawingShapeBase class through this method and it will be
available for interaction with the user. The final piece of this interaction is the mouseup
event, which signifies the end of a specific set of user interactions. At this point, the
CanvasEngine class will have to reset its state and get ready for another interaction.

 private _mouseup(e) {
 var selection = this._model.selection;
 if (selection) {
 selection.isSelected = false;
 }
 this._clearEngineState();
 }

Now, we can run the application and the shapes in our DrawingModel can be moved
around the canvas and resized as the user wishes. The next thing we want to do
is allow the user to make new shapes because this wouldn't be much of a drawing
application if we could only interact with the shapes already on the screen.

User options
We now have a reusable set of shape types, a set of drawing types that contain
references to our shapes, an engine to control execution flow, and an object to keep
track of and manage the drawing objects. The only thing we are missing is user
options to manipulate what action is taken. In this section, we will be modifying
our original HTML and finishing the implementation of the DrawingModel type.

Creating a Simple Drawing Application

[98]

The first thing we need to do is add some new buttons. Each one will be associated
with a different tool type. As you can see in the following screenshot, we now have
three new buttons, each of which displays the name of the tool that it represents:

Now that we have the buttons, we need to perform some work when they are
clicked. The DrawingModel will handle this work for us since we will need to
modify properties of this object directly. We will need to add an event handler for
each button that sets a private member of the model to the corresponding drawing
tool. In the example of this class earlier, we had an empty constructor; we need to
change this so that when the model is created, it starts listening for the click events.

 private _drawingTool: DrawingToolType = DrawingToolType.Select;
 constructor() {
 this._addEventListeners();
 }
 private _addEventListeners() {
 var selectButton = window.document.
getElementById("selectButton");
 selectButton.addEventListener("click", (e) => {
 this._drawingTool = DrawingToolType.Select;

Chapter 5

[99]

 }, true);
 var rectButton = window.document.getElementById("rectangleBut
ton");
 rectButton.addEventListener("click", (e) => {
 this._drawingTool = DrawingToolType.Rectangle;
 }, true);
 var rectButton = window.document.getElementById("lineButton");
 rectButton.addEventListener("click", (e) => {
 this._drawingTool = DrawingToolType.Line;
 }, true);
 }

With these event handlers setting the private variable to the appropriate drawing
tool, we can now fill in the remainder of this implementation as well. Previously,
we left the getNewShape method without a body and the getDrawingTool method
always returned the Select tool. Now that we have a private reference to the tool
we should be using, getDrawingTool will just return this value. The getNewShape
method needs a little more work though. In the following example, you can see
that we create the new shape and set some of the initial properties for drawing:

public getNewShape(location: IPoint): IDrawingShape {
 var shape: IDrawingShape = null;
 var cursor: string = "auto";
 switch (this._drawingTool) {
 case DrawingToolType.Rectangle:
 shape = new DrawingRectangle();
 shape.move(location);
 (<DrawingRectangle>shape).shape.height = 3;
 (<DrawingRectangle>shape).shape.width = 3;
 cursor = "se-resize";
 break;
 case DrawingToolType.Line:
 shape = new DrawingLine();
 (<DrawingLine>shape).shape.p1 = location;
 (<DrawingLine>shape).shape.p2 = new Point(location.x +
1, location.y + 1);
 cursor = "e-resize";
 break;
 }
 window.document.body.style.cursor = cursor;
 return shape;
 }
 public getDrawingTool(): DrawingToolType {
 return this._drawingTool;
 }

Creating a Simple Drawing Application

[100]

Based on the private state of the model, we either create DrawingRectangle or
DrawingLine. The full implementation of the DrawingRectangle class has been
shown in this text; the implementation of the DrawingLine class is available for
download along with all the other code samples in this book. Now we have all of
the components necessary to run our application and allow users to create and
modify shapes as they please. The final code for app.ts is as follows:

var canvas: HTMLCanvasElement = <HTMLCanvasElement>window.document.get
ElementById("drawingCanvas");
var model: IDrawingModel = new DrawingModel();
var engine: ICanvasEngine = new CanvasEngine(canvas, model);

As you can see, the main part of our application does very little work. The canvas
is retrieved from the DOM, DrawingModel is instantiated, and finally the engine
is created. When the application is run, all of the event handlers are attached and
everything from that point forward is user-driven.

This is a good start, but it would be really nice if we could change the color of the
objects we are drawing. Along with the canvas element, HTML5 includes a color
picker that will launch the browser's color picker dialog and return the six-digit
hex code of the color that was selected. The first thing we need to do is create new
interfaces to support what we want to do. Since the drawing context for the canvas
has both a fillStyle and a strokeStyle attribute, we might as well adopt a similar
system. These should be separate interfaces because as you can see from the previous
image, a line would have no use for a fill color. So, let's create these two new
interfaces and apply them to our drawing objects:

interface IFillStyle {

Chapter 5

[101]

 fillStyle: string;
}
interface IStrokeStyle {
 strokeStyle: string;
}

Next, we will need to modify the concrete implementations of the drawing objects to
implement the appropriate interfaces. We have to modify the DrawingRectangle class
to implement the IFillStyle interface and the DrawingLine class to implement the
IStrokeStyle interface. In the following screenshot, you can see the modifications
made to the DrawingRectangle class:

The implements keyword has been added to the class declaration enforcing the type
restriction upon DrawingRectangle. The public fillStyle member has been added
and initialized. The Draw method only had one minor change which was to set the
rendering context's fillStyle to the new fillStyle member. Let's now modify
our HTML to include the color picker and give it an ID so that we can add an
event handler to it later.

Creating a Simple Drawing Application

[102]

Now, we can modify the model to change the color of these object types when they
are created. First, we must add another event handler to listen for the value of the
color picker to change. When this event fires, we will store the value as part of the
model's private state and retrieve it during the creation of new shape objects. In the
following example, you can see how the model has been modified:

 private _drawingColor: string = "#000000";
 private _addEventListeners() {
 var selectButton = window.document.
getElementById("selectButton");
 selectButton.addEventListener("click", (e) => {
 this._drawingTool = DrawingToolType.Select;
 }, true);
 var rectButton = window.document.getElementById("rectangleBut
ton");
 rectButton.addEventListener("click", (e) => {
 this._drawingTool = DrawingToolType.Rectangle;
 }, true);
 var rectButton = window.document.getElementById("lineButton");
 rectButton.addEventListener("click", (e) => {
 this._drawingTool = DrawingToolType.Line;
 }, true);
 var colorPicker = window.document.
getElementById("colorPicker");
 colorPicker.addEventListener("change", (e) => {
 this._drawingColor = (<any>e.currentTarget).value;
 }, true);
 }
 public getNewShape(location: IPoint): IDrawingShape {
 var shape: IDrawingShape = null;
 var cursor: string = "auto";
 switch (this._drawingTool) {
 case DrawingToolType.Rectangle:
 shape = new DrawingRectangle();
 shape.Move(location);
 (<DrawingRectangle>shape).shape.height = 3;
 (<DrawingRectangle>shape).shape.width = 3;
 (<DrawingRectangle>shape).fillStyle = this._
drawingColor;
 cursor = "se-resize";
 break;
 case DrawingToolType.Line:
 shape = new DrawingLine();

Chapter 5

[103]

 (<DrawingLine>shape).shape.p1 = location;
 (<DrawingLine>shape).shape.p2 = new Point(location.x +
1, location.y + 1);
 (<DrawingLine>shape).strokeStyle = this._drawingColor;
 cursor = "e-resize";
 break;
 }
 window.document.body.style.cursor = cursor;
 return shape;
 }

As you can see, we added a new private variable to store the current color value.
The extra event handler was added to listen for the color picker's value to change
and to store this value. The getNewShape code simply sets the appropriate property
for the type being instantiated and the shape object handles the rest. As you can see
in the following screenshot, we can now create objects of any size or color:

Creating a Simple Drawing Application

[104]

Summary
Throughout this chapter, we have focused on building a drawing application
from end to end in TypeScript. We started with the basic building blocks for the
application, the abstraction, then created a set of reusable shape objects. These objects
are then used in a set of classes responsible for drawing them on an HTML5 canvas.
Next, we built an engine responsible for handling user interaction and requesting
information from the drawing objects to make decisions. Finally, we built a model
to keep track of all of the shape objects in the running application. All of this has
been done using TypeScript, and only TypeScript. However, a common practice in
web development is integrating with third-party libraries such as jQuery. In the next
chapter, we are going to look at some of the available third-party libraries and how
to integrate them with your projects.

Declaration Files and
Library Integrations

So far, we have been writing TypeScript without integrating with any external
JavaScript libraries. We have covered the different concepts that the language adds
on top of JavaScript and how to use them to our advantage when building large scale
applications. We have ignored all of the third-party libraries that are openly available
on the Web to improve the JavaScript experience. In this chapter, we will cover
declaration files and how they help us integrate with other JavaScript libraries.
The topics we are going to cover in this chapter include:

•	 Declaration files
•	 The NuGet package manager
•	 jQuery
•	 Knockout
•	 External modules

Declaration files
Declaration files are a special type of source file in TypeScript and have a different
file extension. Declaration files have a file extension of .d.ts and they can contain
type information but no implementation details. This includes interface definitions
as well as type declarations.

Declaration Files and Library Integrations

[106]

Type declarations are created using the declare keyword, as shown in the
following screenshot:

As you can see, the name of the file is Book.d.ts, which is how the compiler knows
that this file will only contain declarations. When this occurs, no output file is created
and an error will be generated when the implementation code is found in the file. The
purpose of these files is to provide type information for other JavaScript libraries that
are not in TypeScript files. This allows us to interact with these libraries in a strongly
typed fashion, providing compile time checks and intelligent code completion. In the
previous example, we declare that the Book class will exist in the global namespace
allowing it to be referenced throughout our project. We can now use Book freely,
but if an implementation is not provided for it our application will fail during
execution wherever the Book type is referenced.

As we saw earlier on when looking at the TypeScript compiler and its options, we can
automatically generate declaration files for our own code. These declaration files can
be referenced from other projects within your own solution or deployed as part of a
library you distribute. A declaration file will be output for every JavaScript file that is
output. If you combine all of your code into a single file then a single declaration file
will be created. Selecting the Generate declaration files option from the TypeScript
build section of the project properties will provide the compiler with the appropriate
parameter used to create our declaration files, as shown in the following screenshot:

Chapter 6

[107]

Throughout this book, we have used a variety of types that weren't explicitly declared
by us. The CanvasRenderingContext2D object we used in our drawing application
had a full list of type information in Visual Studio IntelliSense, yet we never saw its
declaration or implementation. This is because TypeScript comes with a lib.d.ts file
that declares type information for thousands of different objects. This declaration file
is automatically referenced every time the compiler runs. This list of types is incredibly
useful but it doesn't include any types from external libraries that may or may not be
referenced in your projects.

Third-party library integration
One of the key components in large scale web development is the use of open
source libraries that handle certain tasks for us. jQuery is one of the more popular
libraries and is used for easy interaction with the Document Object Model (DOM).
These libraries provide a wide variety of functionalities but all of these interactions
can be given some level of typing. In this section, we are going to look at the
following libraries:

•	 jQuery
•	 Knockout
•	 RequireJS

Before we start developing these libraries, we need to get them referenced in our
project. Each of these libraries can be downloaded directly from their web pages
or through the use of NuGet. NuGet is a package manager for Visual Studio and
can be installed as an extension.

Installing NuGet packages
The first thing we need to do is install the NuGet Package Manager. To do this,
first select Tools from the menu and choose Extensions and Updates. This will
bring you to a screen showing all of the extensions you currently have installed
as well as provide you with the ability to find more online.

Declaration Files and Library Integrations

[108]

Select the Online section in the tree view on the left and search for NuGet Package
Manager, as shown in the following screenshot:

Once you locate the package manager, download and install it. After this
process is complete, Visual Studio will need to be restarted before we can
start consuming packages.

Chapter 6

[109]

The NuGet packages we will be installing will include the code for the libraries
we will be using as well as separate declaration files for each of these libraries.
Not every library has NuGet packages or declaration files associated with them,
however, the web development community is very good about filling in these
holes. There is a large repository of TypeScript library declaration files available
from the DefinitelyTyped repository on GitHub.

Integrating with jQuery
jQuery is one of the most popular open source libraries available on the Web. It can be
used for anything from DOM manipulation to simplifying remote server calls. If you
plan on building a large scale web application you were probably already planning
on using jQuery and if not, I strongly recommend that you do. To start using jQuery,
the first thing we need to do is install the jQuery NuGet package. Right-click on the
project and select Manage NuGet Packages. This will bring up a window similar to
the updates and extensions window. Locate jQuery from the nuget.org repository in
the Online section and install it. As you can see in the following screenshot, several
files are installed with this package that help us develop with jQuery:

Now we can add a script tag the index.html file and jQuery will be available at
runtime for us to use. This, however, isn't very useful during development and
compilation of our TypeScript code because we don't have any type information
about the library. To import this type information, we need a declaration file that
represents the jQuery library. Open up the Manage NuGet Packages window again
and search for jQuery.TypeScript. Install the package named jquery.TypeScript.
DefinitelyTyped, which is on Version 1.3.5 at the time of writing this, to import the
type information of the jQuery library.

Declaration Files and Library Integrations

[110]

There are a number of other libraries that extend jQuery and quite a few
declaration files have been created to support these different extensions.

Now that the type information for jQuery has been included in the project we will be
able to use the library in a more robust way. Let's add some elements to our HTML
that we will manipulate with the jQuery library.

As you can see, we have added the script tag for jQuery to the document's head
tag, and a couple of elements to the body. The first element is a large square div
with a blue background. The second is a button that the user will click to hide the
blue div tag that is shown. Now that we have the objects we want to manipulate,
let's create some TypeScript to perform the expected operation.

In order to use jQuery in a strongly typed manner with the TypeScript compiler,
we must include a reference to the declaration file at the top of the TypeScript file
we wish to use it in. This is done using a specific format at the top of the TypeScript
file; placing references anywhere but at the top of the page will cause them not to
function. In the following example, you can see how to reference declaration files:

/// <reference path="scripts/typings/jquery/jquery.d.ts" />

Chapter 6

[111]

The path included in the reference is relative to the file you are currently working
in. Once this reference has been added, we are able to use IntelliSense and code
completion to help us work with the jQuery API.

As you can see, we get the full feature set associated with Visual Studio's
code completion.

When integrating with a large number of libraries it can be easier to
manage your references by creating a _references.d.ts file and
added references only to this file. Then, each of your code files only
has to reference the single _references.d.ts file to import all of
the relevant type information for the project.

As you can see in the following code sample, locating objects on the DOM and
manipulating them is far easier with jQuery included and will reduce the amount
of code we have to produce to make a dynamic application:

/// <reference path="scripts/typings/jquery/jquery.d.ts" />
$(document).ready(() => {
 $("#hideButton").click((event) => {
 $("#colorPanel").hide(1000);
 });
});

Declaration Files and Library Integrations

[112]

The first element in the file is the reference to the jQuery declaration file. This is
what allows us to use the $ notation in our TypeScript without generating a compiler
error, however, jQuery still needs to be loaded for this to work at runtime. We wait
for the DOM to finish loading, which causes the function delegate to be called. At this
time, we select the button we added to our HTML earlier on and listen for its click
event to fire. When this occurs, another function delegate is called, which uses one
of jQuery's UI modification methods called hide to make the large square div tag
disappear over a period of 1000 milliseconds. Now if the application is run, there
will be a large blue square just above the hide button. Once the button is clicked,
you can watch the blue box disappear and the UI adjust for its disappearance.
jQuery has a very large set of features and extensions. To learn more about this
I recommend visiting http://jquery.com/ for an API reference and samples.

Integrating with Knockout
Software development in thick client applications, applications installed on the
desktop, using technologies such as WPF have adopted new patterns to interact
with the UI. Primary among these is the Model-View-ViewModel pattern, which
aims to separate our business logic from the client application logic. Knockout is
a JavaScript library that is meant to facilitate this pattern in the browser. You can
install Knockout through the NuGet Package Manager as well as the declaration file
for use in TypeScript. The packages used for this text are knockoutjs Version 3.1.0
and knockout.TypeScript.DefinitelyTyped Version 0.5.4. Knockout is dependent
upon jQuery being available so make sure it is part of the project as well.

Knockout creates objects known as observables that other objects can subscribe
to and will be notified if the value changes. When a value changes, the watchers
can optionally take action on the new value of the observable. This comes in very
handy when combined with Knockout's binding engine that allows us to bind our
TypeScript/JavaScript objects to DOM elements. Let's take a look at an example
of this binding. The first thing we need to do is create a ViewModel. This will be
a class that contains observables and methods that we can bind to in the HTML
of the application:

/// <reference path="scripts/typings/jquery/jquery.d.ts" />
/// <reference path="scripts/typings/knockout/knockout.d.ts" />
class ViewModel {
 public toggleText: KnockoutObservable<string> =
ko.observable("Hide");
 public isVisible: KnockoutObservable<boolean> =
ko.observable(true);
 constructor() {
 }

http://jquery.com/

Chapter 6

[113]

 public toggleClick(viewModel: ViewModel, event: JQueryEventObject)
{
 if (this.isVisible()) {
 this.toggleText("Show");
 this.isVisible(false);
 } else {
 this.toggleText("Hide");
 this.isVisible(true);
 }
 }
}

As you can see, we create two observable objects providing the specific type as a
type parameter using the generic syntax we discussed in Chapter 2, TypeScript Basics.
The toggleText observable contains a string value that will be displayed on a button
in our UI. The second observable holds a Boolean value that will determine whether
an object in the DOM is visible to the user or not. Finally, we have a method that
will be bound to a button click event and will change the value of these observables.
This object will be bound to our HTML using the data-bind syntax defined by the
Knockout API. The HTML code in the following screenshot shows our bindings:

Declaration Files and Library Integrations

[114]

As you can see, we include the jQuery and Knockout libraries in head. Then, in the
body of the HTML, we have the two elements we created during the jQuery example.
However, each of these elements now contains bindings. The colorPanel div is bound
to the IsVisible observable using Knockout's visible binding. When the IsVisible
observable changes, Knockout will evaluate the new value and manipulate the DOM
to show or hide the div. The button is bound to multiple elements on the view model,
the toggleText object, which will determine what the value of the button is, and the
toggleClick method, which will execute anytime the click event fires.

Knockout supports many different kinds of bindings and also has
a custom binding model that will allow you to define your own
bindings. Visit www.knockoutjs.com to learn more.

OK, we have most of the pieces together now to dynamically bind the DOM to
our TypeScript/JavaScript but we need to actually connect the view and the
view model. The following code segment shows how to bind the two together:

$(document).ready(() => {
 ko.applyBindings(new ViewModel());
});

As you can see, we wait for the DOM to be ready before we apply the binding. If we
attempt to bind before all of the elements are available an error will occur at runtime.
Once the DOM is ready, we create a new instance of our ViewModel class and pass it
to Knockout, which will handle the rest. Optionally, you can pass in a specific element
to bind the view model to. Now when we run the application it starts with the large
blue square visible and the text of the button is Hide. However, instead of this being
the end of the application's life cycle as it was earlier, the button text has changed and
we can perform another action, as shown in the following screenshot:

www.knockoutjs.com

Chapter 6

[115]

Using RequireJS
In Chapter 2, TypeScript Basics, we discussed module definitions but at the time we
only focused on internal modules. At the time, external modules were mentioned
but we did not explore them in-depth. Now that we are familiar with integrating
external libraries we will bring in one of the more common external module libraries
available. RequireJS is a JavaScript module loader used to ensure that all objects being
used during application execution are available when necessary. This will allow us to
separate our code into different files and not worry about the order in which they
are loaded because RequireJS will manage that for us. Just like jQuery and Knockout,
RequireJS and its declaration file are available through the NuGet Package Manager
or can be found online at www.requirejs.org. The packages used for this text are
"RequireJS" Version 2.1.14 and requires.TypeScript.DefinitelyTyped
Version 0.2.0. For this next example, we will need all three libraries available.
Let's put together a simple app that will allow us to add people to a directory
and then search that directory.

RequireJS is an Asynchronous Module Loader (AMD) so we need to set the
appropriate project settings. Open the TypeScript Build section of the project settings
and set the Module system option to AMD. Now, we need to create a new module
that will contain all of the code related to a set of types that represent people for the
directory. Create a new TypeScript file called People.ts in the Scripts folder of the
project. As you can see in the following sample, we define the IPerson abstraction
and then implement it:

export interface IPerson {
 firstName: string;
 lastName: string;
 age: number;
}
export class Person implements IPerson {
 constructor(public firstName: string, public lastName: string,
public age: number) {
 }
}

Both the IPerson interface and Person class are decorated with the export
keyword, which will tell the compiler that these types are available in other modules
that use this module. The resulting JavaScript is a little different from what was
generated for internal modules:

define(["require", "exports"], function(require, exports) {
 (function (People) {

www.requirejs.org

Declaration Files and Library Integrations

[116]

 var Person = (function () {
 function Person(firstName, lastName, age) {
 this.firstName = firstName;
 this.lastName = lastName;
 this.age = age;
 }
 return Person;
 })();
 People.Person = Person;
 })(exports.People || (exports.People = {}));
 var People = exports.People;
});

As you can see, the normal module definition is wrapped in another function called
define that takes an array of dependent objects and a function to be called when
all of the dependent modules are loaded. The next thing we need to create is a view
model that we can bind our HTML to. We will need observables for the three input
values for new people, the value that we want to search against, and an observable
array to hold the search results. We will also need a method to initiate the addition
process and a method to perform a directory search. We can place all of this code in
a separate TypeScript file and use the import and require keywords to include the
People module we just created:

import People = require("Scripts/People");
export class PersonFinderViewModel {
 public peopleArray: KnockoutObservableArray<People.IPerson> =
ko.observableArray([]);
 public newFirstName: KnockoutObservable<string> =
ko.observable("");
 public newLastName: KnockoutObservable<string> =
ko.observable("");
 public newAge: KnockoutObservable<number> = ko.observable(null);
 public searchValue: KnockoutObservable<string> =
ko.observable("");
 public searchResult: KnockoutObservableArray<People.IPerson> =
ko.observableArray([]);
 constructor() {
 }
 public findPersonByFirstName(viewModel: PersonFinderViewModel,
event: JQueryEventObject) {
 var people = this.peopleArray();

Chapter 6

[117]

 var searchValue = this.searchValue();
 this.searchResult([]);
 for (var i = 0; i < people.length; i++) {
 if (searchValue === people[i].firstName) {
 this.searchResult.push(people[i]);
 }
 }
 }
 public addNewPerson(viewModel: PersonFinderViewModel, event:
JQueryEventObject) {
 var newPerson = new People.Person(this.newFirstName(), this.
newLastName(), this.newAge());
 this.peopleArray.push(newPerson);
 this.newFirstName("");
 this.newLastName("");
 this.newAge(null);
 }
}

As you can see, we provide the path to the People module to the require
function, which tells RequireJS to add the module to the list of modules given to the
define method, but also the TypeScript compiler for type information. We define a list
of people that will be stored as the full directory list, the new people field observables,
the search observables, and the two methods that will be bound to click events. The
findPersonByFirstName method retrieves the most recent value of the searchValue
observable as well as the list of people that we will be searching against.

If you are going to reference an observable or observable collection
several times during a single execution block, it is faster to
retrieve the value of the observable a single time, as shown in the
findPersonByFirstName method. However, any modifications
to the values should be made directly against the observables.

The existing set of search results is cleared to make way for new results. Finally,
we iterate through the list of people and compare the search value to the first name
of the current person. If there is a match, we add it to the list and continue on. The
addNewPerson method retrieves all of the current values for the new person input
values and passes them to the constructor of the Person class inside the People
module. This person is then added to the observable array and the fields are cleared
for a new entry.

Declaration Files and Library Integrations

[118]

Now that we have domain objects and a view model, we need to create the HTML
to represent our application. Normally, we would have to add script tags for all
of our JavaScript source files but since we are now using require we only need
to add a few.

Chapter 6

[119]

We include the references to jQuery and Knockout that will sit on the global
namespace and then we have a script tag for require. Included in the tag for
require is a binding called data-main that is used to define the entry point
for the application.

For more information regarding RequireJS please visit
http://requirejs.org/.

In the body of the HTML, we have labels and inputs defining our UI and binding
to each of the different objects in our view model. The search results section is
doing something new that is worth noting. Using the foreach binding on the
searchResult observable array, we have created a template for every item in
the array. The context for these bindings is based on the type of the item being
iterated over, in our case a Person object. While the firstName, lastName, and Age
properties are not observables that can be bound to, the binding will only occur once.
If the value of these fields change, the UI will not be updated. The last thing we need
to do is create the entry point of our application. We will need to import the view
model we created, wait for the DOM to be ready, and apply our bindings:

import PersonFinderViewModel = require("Scripts/
PersonFinderViewModel");
$(document).ready(() => {
 ko.applyBindings(new PersonFinderViewModel.
PersonFinderViewModel());
});

Now we can run the application and add several users to the directory. When
we perform a search for someone by their first name, all of the matching results
will be displayed:

http://requirejs.org/

Declaration Files and Library Integrations

[120]

Summary
In this chapter, we looked at declaration files and how to generate our own.
We installed the NuGet extension for Visual Studio, allowing us to easily install
third-party libraries for applications. Then, we covered some of the more common
web application libraries in jQuery and Knockout that can be used to easily create
large, dynamic, and interactive applications. Finally, we covered external modules
and RequireJS to optimize the loading of our modules. In the next chapter, we
will use these new tools to improve both our code and the user experience of the
drawing application created in Chapter 5, Creating a Simple Drawing Application.

Enhancing the
Drawing Application

When we started the drawing application in Chapter 5, Creating a Simple Drawing
Application, we grouped all of our code together by functionality. This allowed us to
reduce the number of script tags required for our application to work. Using what we
learned in the previous chapter, we will modify the drawing application to use AMD
modules and RequireJS. We will also integrate Knockout and jQuery to improve the
overall user experience. Finally, we will look at how we can use RequireJS to build all
of our application code into a single minified file for deployment optimization. The
enhancements we will make to our application include:

•	 Converting to AMD modules
•	 Binding user controls
•	 Generating a single output file
•	 Styling the application

Enhancing the Drawing Application

[122]

Converting to AMD modules
Converting to AMD modules is a fairly simple process. However, this is a good
time to look at the structure and maintainability of our project. Before getting
started, we must install the RequireJS NuGet package Version 2.1.14 and the
corresponding declaration file requirejs.TypeScript.DefinitelyTyped Version 0.2.0.

The TypeScript build settings must also be changed to use the AMD module
system as shown in the previous chapter. Once these steps are completed, we can
begin enhancing our application. To do this, we will want to add a folder structure
to our application that will help us easily separate modules based on functionality.
At this point, it is important to decide how you want to divide up the code for
your application. Since we are using RequireJS modules, we will be using the export
keyword for all objects that we want to use from other modules. There are three ways
to use the export keyword, and each one has different ramifications on the resulting
JavaScript. The following example shows the more common use of the keyword:

export class Freehand implements IFreehand {
 public points: Array<IPoint> = [];
 constructor() {
 }
 public AddPoint(point: IPoint) {
 this.points.push(point);
 }
}

In this example, the export keyword annotates the type declaration. This tells
the TypeScript compiler to place this type on the exports object of the module
being generated.

The export keyword is only available when the -- module flag is
provided to the compiler. An attempt to use it without providing
this option will result in a compiler error. Visual Studio provides
this flag when you select a module system in the TypeScript Build
section of the project properties.

Chapter 7

[123]

The resulting JavaScript from this class definition will look very similar to our
previous module definitions. However, there will be some special syntax added
since we have chosen to use AMD modules:

define(["require", "exports"], function(require, exports) {
 var Freehand = (function () {
 function Freehand() {
 this.points = [];
 }
 Freehand.prototype.AddPoint = function (point) {
 this.points.push(point);
 };
 return Freehand;
 })();
 exports.Freehand = Freehand;
});

The differences between an AMD module and a standard JavaScript module are
apparent from the very beginning of the definition. The AMD specification provides
a function called define that is used to assist the module loader. While there are only
two parameters shown for this function here, the function optionally takes a third
parameter that precedes the two shown in the generated JavaScript code. This optional
first parameter is an identifier for the module, and we will look at this parameter in
more detail later in this chapter when we want to minify our final application code.
The second parameter for the define function is a list of module dependencies.
Every require statement that we use to reference another module in our project will
be included in this list. The third and final parameter is the only mandatory parameter
for us to define a module, and it is a function that will execute to instantiate an object
or module. Each of the dependencies provided to the define function will be provided
as parameters to the function for use inside of the module.

The export keyword can also be assigned to a type. In the following example, you
can see that rather than decorating our class with the export keyword, we instead
use the assignment operator to give it a new value:

class Circle implements ICircle {
 constructor(public radius: number) {
 }
 public resize(radius: number) {
 this.radius = radius;
 }
 public area(): number {
 return Math.PI * this.radius * this.radius;
 }
}
export = Circle;

Enhancing the Drawing Application

[124]

Using this method limits us to exporting a single type from a file; however, this type
can be a module containing any number of exported objects. The resulting JavaScript
looks like the following code:

define(["require", "exports"], function(require, exports) {
 var Circle = (function () {
 function Circle(radius) {
 this.radius = radius;
 }
 Circle.prototype.resize = function (radius) {
 this.radius = radius;
 };
 Circle.prototype.area = function () {
 return Math.PI * this.radius * this.radius;
 };
 return Circle;
 })();

 return Circle;
});

As you can see, the object being exported is no longer placed on the exports object, but
is instead the return value of the function used by the module loader. Both of these
uses are completely valid, but they have a significant effect on how we use the types
that we have defined. When decorating the type definition with the export keyword,
any other segment of code attempting to use that type must require the module and
then access it through the module name, as shown in the following screenshot:

In this example, the path used to reference modules is built relative
to the project directory. The RequireJS API allows you to change
this path using a configuration file. For more information about
the RequireJS API and configuration files, please visit http://
requirejs.org/docs/api.html.

http://requirejs.org/docs/api.html
http://requirejs.org/docs/api.html

Chapter 7

[125]

However, when we use the assignment method to export a type, we have direct
access to that object when we import it into another code block, as you can see in
the following screenshot:

The third and final use of the export keyword is to attach an imported type to the
exports object. When this is done, the imported object isn't just available through its
own definition, but we will also be able to access it through the module that exports
it. The following sample shows how this is done:

export import CanvasEngineAction = require('Scripts/Drawing/Enums/
CanvasEngineAction');
export import DrawingToolType = require('Scripts/Drawing/Enums/
DrawingToolType');

Hang on a minute; those aren't the values for our enumeration. What went wrong?
Well, this has something to do with the way that the compiler interprets the return
type of the CanvasEngineAction enum that was imported and then exported.
Enumerations are a clever representation of a number, so the type system reads the
return type as a number and determines that these must be our available options.
Modules and classes do not have this problem because their type is unique. To work
around this problem, we simply have to correctly type the action variable and our
enumeration will behave as expected.

Enhancing the Drawing Application

[126]

All of these methods are completely valid and fit different needs. As we refactor
the drawing application, we will use a combination of these methods to break our
code into logical groupings. Using the TypeScript compiler isn't the only way for us
to segment out our code. Keeping code in a directory structure that groups similar
objects together results in easy differentiation between code functionality. In the
following screenshot, you can see that we have created a separate directory for our
generic shape objects from any drawing-related logic. The drawing code is separated
into more finely-grained subsections as well depending on the functionality each
grouping will contain.

Now we can start breaking our code into separate files, each serving a different and
specific purpose. All of our interface types for a specific area can be placed into a
single TypeScript file called <Area>Types.ts, for example, ShapeTypes.ts. This will
give us a place to reference interfaces and enumerations while keeping our classes
and actual implementation code separate. Each interface should be decorated with
the export keyword to ensure that we are able to interact with all of these types in
a consistent manner. Next, we need to decide how to structure our implementation
code. Each of the different shape objects could be broken into a separate code file and
placed inside the Shapes directory that we created. However, the amount of code in
these classes is minimal and relatively easy to manage, so we can easily place them
all inside of a single module. If the implementations start to grow in size like with
the drawing-related objects, we will want separate files for each type to keep the
code clear and easy to maintain.

Chapter 7

[127]

The complete contents of the Shapes.ts file is shown in the following code:

import ShapeTypes = require('Scripts/Shapes/ShapeTypes');
export class Point implements ShapeTypes.IPoint {
 constructor(public X: number, public Y: number) {
 }
}
export class Line implements ShapeTypes.ILine {
 constructor(public p1: ShapeTypes.IPoint, public p2: ShapeTypes.
IPoint) {
 }
 public Length(): number {
 var a2 = Math.pow(this.p2.X - this.p1.X, 2);
 var b2 = Math.pow(this.p2.Y - this.p1.Y, 2);
 return Math.sqrt(a2 + b2);
 }
}
export class Rectangle implements ShapeTypes.IRectangle {
 constructor(public Height: number, public Width: number) {
 }
 public Resize(height: number, width: number) {
 this.Height = height;
 this.Width = width;
 }
}
export class Freehand implements ShapeTypes.IFreehand {
 public Points: Array<ShapeTypes.IPoint> = [];
 constructor() {
 }
 public AddPoint(point: ShapeTypes.IPoint) {
 this.Points.push(point);
 }
}
export class Circle implements ShapeTypes.ICircle {
 constructor(public Radius: number) {
 }
 public Resize(radius: number) {
 this.Radius = radius;
 }
 public Area(): number {
 return Math.PI * this.Radius * this.Radius;
 }
}

Enhancing the Drawing Application

[128]

As you can see, we import the ShapeTypes module, which gives us access to all
of the abstractions we created for the shapes. Normally, interfaces are available at
the global level in the TypeScript type system. However, because we decorated
them with the export keyword, they have been placed on a module type that has
no associated code. We reference each of the interfaces through this module type.
However, the resulting JavaScript contains no reference to it. Now, we should move
into the Drawing area of the application and divide up those types accordingly.
We will start with the interfaces and enumerations because they are the most basic
types and the implementation code won't work without them.

Each enumeration can be placed in its own file, while all of the interfaces will be
placed in a single DrawingTypes.ts file. Since some of our interfaces reference the
enumerations, we will need to import them into the DrawingTypes file. This is a
particularly good time to use the export and import keywords in conjunction to
attach the enumerations to the DrawingTypes module. This will allow us to access
each of these enumerations in the same way that we access the interfaces in our
application. Next, let's break up the drawing shapes into separate files. Each one
of these classes requires a significant amount of code, and having them separated
into individual code files will make it easier for us to maintain them. The following
screenshot shows each of the different files in the Drawing directory:

Chapter 7

[129]

We will recombine them into a single module called DrawingShapes that we will
use to directly access these types. The DrawingShapes module is nothing more
than a list of export imports, as shown in the following code:

export import DrawingShapeBase = require('Scripts/Drawing/
DrawingShapes/DrawingShapeBase');
export import DrawingRectangle = require('Scripts/Drawing/
DrawingShapes/DrawingRectangle');
export import DrawingLine = require('Scripts/Drawing/DrawingShapes/
DrawingLine');

The DrawingModel and CanvasEngine files will import the modules they need
and assign the classes they contain to the export object. With all of our code now
in AMD modules, we can modify our HTML to load only the main entry point to
our application, app.js, which resides in the root directory of the project, and the
rest of the modules will be loaded as necessary through program execution.

Enhancing the Drawing Application

[130]

Binding the user controls
Now that we have converted our application to use AMD modules, let's gradually
increase the complexity of the application. Currently, we search the DOM for
individual elements and attach event handlers to them. This isn't necessarily a
bad thing; however, it does leave our code vulnerable to a number of possible issues.
The DOM may not have finished rendering the objects we are attempting to attach
to, or the object could have been removed by another segment of code. Another
pitfall of this approach is that if we wanted to add another drawing shape type to
our application, we would have to add another element to the HTML and then more
code to add the event handler. This is inefficient and could open up the possibility
of making a mistake somewhere. Fortunately, there are a number of libraries available
that allow us to implement binding patterns such as Model View Controller (MVC)
and Model View ViewModel (MVVM). Knockout is one of these libraries, and it
brings MVVM to JavaScript and TypeScript development.

Reusable controls
In the previous chapter, we learned about Knockout and its foreach binding that
allows us to create a template in HTML that each object in an array will be bound
to. We will apply the same concept to each of the options we have for our drawing
application. Some of these objects are very similar in type and functionality, such as
the type selection controls. However, the color picker has a very different interface
to implement. This is where the Knockout template binding will come in handy.

The Knockout template binding allows us to provide an HTML template for a specific
object type. This gives us the ability to create a separation between our HTML and
the JavaScript that is running. In this case, we will have a list of user controls that will
be displayed in the space above our canvas object. Before we create the template that
we want to bind to, we will need to define the abstraction they will be bound to. The
top layer of this abstraction will be the IUserControl type, which will contain two
properties, id and templateName, and will be the minimum requirement for binding
our DOM elements to:

export interface IUserControl {
 id: string;
 templateName: string;
}

Chapter 7

[131]

We will also need interfaces to represent the tool selection buttons and the color
picker. These interfaces are more specific to their direct functionality, but as long
as they provide a template name that matches it, all of our bindings will flow
seamlessly. These interfaces will be defined in a file called ControlsTypes.ts
in the Controls directory and can be seen in the following code:

export interface IUpdateObservable {
 observable: KnockoutObservable<any>;
}
export interface IToolSelectionControl extends IUserControl,
IUpdateObservable {
 toolType: DrawingTypes.DrawingToolType;
 click(viewModel: any, event: JQueryEventObject);
 observable: KnockoutObservable<DrawingTypes.DrawingToolType>;
 buttonText: KnockoutObservable<string>;
}
export interface IColorSelectionControl extends IUserControl,
IUpdateObservable {
 change(viewModel: any, event: JQueryEventObject);
 observable: KnockoutObservable<string>;
}

As you can see, the IToolSelectionControl interface has a toolType property
that will store the value that this control will be responsible for. There is also a click
function that will serve as an event handler in the HTML bindings we will create
shortly. The remaining two objects are Knockout observables, one of which will be
used to inform the calling application that a new tool has been selected and the other
will define the text that is displayed by the button. The IColorSelectionControl
interface extends IUserControl in the same way that the IToolSelectionControl
interface does, but the additional properties here are very different. This interface
defines a change method that will be called when the color input change event fires.
The final property of this interface is very similar to the observable property on the
IToolSelectionControl interface. The primary difference between the two is that
they store different types; in this case, we store the string value that represents
the current color. Due to the close relationship between these two interfaces,
we abstracted the IUpdateObservable interface out and then provided a more
specific type definition experience within the more finely-grained interfaces.

Enhancing the Drawing Application

[132]

Now that we have our interfaces defined, we can build our HTML templates to
represent the different controls we wish to create. The first template will contain
only a button element that has bindings of its own applied to it. The second template
is the color picker with a different set of bindings that is unique to this element type.
The final thing we must do is modify the area of our HTML that currently holds our
controls. As you can see, the resulting HTML has no direct controls defined, but as
controls are added to an observable list called userControls, they will appear in
our application:

As you can see, we use the foreach binding to create a new control for each object
in the UserControls list that our HTML will be bound to. Inside this, there is a span
element that is bound to the IUserControl interface. Our canvas object will remain
unchanged for now, but there are some new elements at the bottom of the page. These
new script tags will contain our HTML templates that the user controls will bind to.
The button template creates its bindings around the tool selection control interface,
binding the text to the ButtonText observable and the click event to the Click
function. The color picker only needs to bind the change event to the Change method.

Chapter 7

[133]

The final piece of this is to implement each of our interfaces and bind our view
model to the DOM. Each of these types will be placed in separate files in the
Controls directory. All of the files can be seen in the following screenshot:

We will start with the base user control object, which will be in the
UserControlBase.ts file that the remainder of our types will extend:

import ControlsTypes = require('Scripts/Controls/ControlsTypes');
class UserControlBase implements ControlsTypes.IUserControl {
 public templateName: string = "TemplateNotProvided";
 constructor(public id: string) {
 }
}
export = UserControlBase;

The id property comes in as a required property, and therefore will always have
a value. The templateName string is set to a bad value by default, and this ensures
that any type extending the UserControl type will be forced to update this property.
If an invalid template name is provided, Knockout will generate an error at runtime.
However, if an empty string is provided, execution will continue as normal. Now
let's provide the implementation for our tool selection buttons:

import ControlsTypes = require('Scripts/Controls/ControlsTypes');
import UserControlBase = require('Scripts/Controls/UserControlBase');
import DrawingTypes = require('Scripts/Drawing/DrawingTypes');
class ToolSelectionControl extends UserControlBase
 implements ControlsTypes.IToolSelectionControl {

Enhancing the Drawing Application

[134]

 public buttonText: KnockoutObservable<string> = ko.observable("");
 constructor(id: string, public toolType: DrawingTypes.
DrawingToolType,
 public observable: KnockoutObservable<DrawingTypes.
DrawingToolType>) {
 super(id);
 this.templateName = "ButtonTemplate";
 this.buttonText(DrawingTypes.DrawingToolType[this.toolType]);
 }
 public click(viewModel: any, event: JQueryEventObject) {
 this.observable(this.toolType);
 }
}
export = ToolSelectionControl;

The overall code here isn't very flashy, but it allows us to add new tool buttons with
significantly less effort than what was previously required. The constructor of this type
takes in the object's ID to pass to the base type constructor, the DrawingToolType value
that the object instance will represent, and finally a Knockout observable that will be
updated when the button is clicked. Since this is a concrete implementation, we must
provide a valid name for our HTML template, and finally, we use a bit of enumeration
magic to provide the value for our button's text. The click event does nothing more
than assign the stored tool type to the observable that was provided when the object
was created. The color selection control has an even simpler implementation:

import ControlsTypes = require('Scripts/Controls/ControlsTypes');
import UserControlBase = require('Scripts/Controls/UserControlBase');
class ColorSelectionControl extends UserControlBase
 implements ControlsTypes.IColorSelectionControl {
 constructor(id: string, public observable:
KnockoutObservable<string>) {
 super(id);
 this.templateName = "ColorPickerTemplate";
 }
 public change(viewModel: any, event: JQueryEventObject) {
 this.observable((<any>event.currentTarget).value);
 }
}
export = ColorSelectionControl;

Chapter 7

[135]

Creating a ViewModel
Now that we have our reusable controls set up, we need to create the view model that
our application will be bound to and make some modifications to our existing types
to ensure execution runs smoothly. To maintain the single responsibility pattern,
we should create a new model that the UI will be bound to rather than using the
DrawingModel class, which is responsible for maintaining the state of the shapes in
our application. This new model will be bound to the DOM using Knockout and will
be responsible for creating and maintaining the state of the application. It will reside
in a file called DrawingModel.ts inside of the Drawing directory. Before we can create
this model, we will need to modify the existing drawing model so that our application
view model will be able to update the drawing model when the user interacts with the
controls. As you can see, in the new interface definition provided, we have made the
drawing tool and drawing color properties public members:

export interface IDrawingModel {
 selection: IDrawingShape;
 shapes: IDrawingShape[];
 addShape(shape: IDrawingShape);
 getNewShape(location: ShapeTypes.IPoint): IDrawingShape;
 drawingTool: DrawingToolType;
 drawingColor: string;
}

The getDrawingTool method is no longer necessary because we are providing
public access to the underlying instance member. If we were dealing with released
software, we would not want to modify this interface directly, but instead extend
it and provide a new implementation for the DrawingModel type. However, since
this is only a sample application, we can modify it to improve our overall design
despite the breaking changes this will cause. Only the internal implementation of
this class and a single reference inside of the canvas engine will need to be modified
to return our application to a working state. Once these fixes have been made, we
can effectively design the application view model that will reside in a file called
DrawingApplicationModel.ts in the Scripts directory:

import ControlsTypes = require('Scripts/Controls/ControlsTypes');
import DrawingModel = require('Scripts/Drawing/DrawingModel');
import CanvasEngine = require('Scripts/Drawing/CanvasEngine');
import Controls = require('Scripts/Controls/Controls');
import DrawingTypes = require('Scripts/Drawing/DrawingTypes');

class DrawingApplicationModel {

Enhancing the Drawing Application

[136]

 public userControls: KnockoutObservableArray<ControlsTypes.
IUserControl> =
 ko.observableArray([]);
 public selectedToolType: KnockoutObservable<DrawingTypes.
DrawingToolType> =
 ko.observable(DrawingTypes.
DrawingToolType.Select);
 public selectedColor: KnockoutObservable<string> =
ko.observable("#000000");
 private _drawingModel: DrawingTypes.IDrawingModel;
 constructor(canvas: HTMLCanvasElement) {
 this._drawingModel = new DrawingModel();
 var engine = new CanvasEngine(canvas, this._drawingModel);
 this._buildControls();
 this._createSubscriptions();
 }
 private _buildControls() {
 var selectionControl = new Controls.ToolSelectionControl("sel
ectButton",
 DrawingTypes.DrawingToolType.Select, this.
selectedToolType);
 var rectangleControl = new Controls.ToolSelectionControl("rec
tangleButton",
 DrawingTypes.DrawingToolType.Rectangle, this.
selectedToolType);
 var lineControl = new Controls.ToolSelectionControl("lineButt
on",
 DrawingTypes.DrawingToolType.Line, this.selectedToolType);
 var colorControl = new Controls.ColorSelectionControl("colorP
icker",
 this.selectedColor);
 this.userControls.push(selectionControl, rectangleControl,
 lineControl, colorControl);
 }
 private _createSubscriptions() {
 this.selectedToolType.subscribe((newValue) => {
 if (this._drawingModel) {
 this._drawingModel.drawingTool = newValue;
 }
 });

Chapter 7

[137]

 this.selectedColor.subscribe((newValue) => {
 if (this._drawingModel) {
 this._drawingModel.drawingColor = newValue;
 }
 });
 }
}
export = DrawingApplicationModel;

We will need three Knockout observable types: one for the controls we wish to display,
another to maintain the currently selected control, and a final one to track the current
color. This view model will create and modify the drawing model and canvas engine
objects as necessary as well. The constructor takes HTMLCanvasElement, which the
engine will use as a parameter and the rest of the application is isolated to within this
class. We have two private initialization methods. The first method builds the array
of controls that the DOM is bound to. As you can see, we now use code to define
these objects rather than manipulate the DOM directly. Each of the tool selection
controls receives the observable that the application model uses to track the state of
the observable object from the IUpdateObservable interface. The color picker, on the
other hand, receives the SelectedColor observable. As you can see, it is now as easy
as adding a few lines of code to create a whole new button:

var freehandControl = new Controls.ToolSelectionControl("freehandButt
on",
 DrawingTypes.DrawingToolType.Freehand, this.
SelectedToolType);
 this.userControls.push(freehandControl);

Once all of these objects are instantiated, they are added to the controls array,
causing the Knockout binding to fire and display all of our buttons. This does not
get us all the way to the goal, however. The user will be able to interact with each
of these controls and their values will be updated in the application model, but the
drawing model will have no concept of these changes. The second private method
in our application model will bind listeners to the observable values, and any time
the value of an observable changes, we will be able to execute some code. In this
case, any time the observable maintaining the selected tool changes, we will update
the drawing model's DrawingTool property, and any time the selected color changes,
we will modify the DrawingColor property.

Enhancing the Drawing Application

[138]

The entry point into our application, app.ts, has now been simplified into just a
couple of lines of code that creates the application model and binds it to the DOM:

import DrawingApplicationModel = require('Scripts/
DrawingApplicationModel');
$(document).ready(() => {
 var canvas: HTMLCanvasElement =
 <HTMLCanvasElement>window.document.getElementById("drawingCan
vas");
 ko.applyBindings(new DrawingApplicationModel(canvas));
});

While the look of our application has not changed at all from the end user's
perspective, we have accomplished quite a bit from a development standpoint.
Our code has been separated into smaller logical chunks within a nested structure
for folder-driven discovery. Adding new user controls requires no direct DOM
interaction, and neither does our connection between the DOM and our application
model. The unfortunate side effect of this is that it makes the loading of our
page inefficient.

Generating a single output file
In the original version of our drawing application, we only had six files to download
to the client browser: a single CSS file, our app.js file, and the files containing our
object types. Each file is a separate web request and all of the files must be loaded
before our application can run.

Chapter 7

[139]

This is a relatively speedy process, and on average takes less than 100 ms depending
on network latency. However, in our quest to create a large-scale maintainable
application, the number of code files we have has exploded. We now have more
than 20 files that need to be loaded into the client browser before the application
will successfully complete all of its functionality. This has caused our load times
to more than double from what they previously were as shown in the following
screenshot of the network traffic:

This delay in load time is perfectly acceptable for development purposes (in fact,
as we will see in the next chapter, it will actually be preferable). However, if we
ever plan to make our application available to consumers, then we will need to
reduce the footprint of our JavaScript output. Before implementing AMD modules,
this was as simple as providing the compiler with the --out parameter or changing
our TypeScript build settings in Visual Studio. However, when the module flag is
provided, this is not possible.

Enhancing the Drawing Application

[140]

To compile all of our resulting JavaScript modules into a single file, we will need
at least one more tool at our disposal. Node.js is a fantastic platform that provides
a whole host of functionality, and its primary function is to help create scalable
network applications. It is available for download from http://nodejs.org/.
Node provides a ton of functionality, and I encourage you to read through the
API documentation and examples to learn more. In our case, we are going to use
it as a JavaScript runtime environment. This will allow us to use r.js to trace all
of our RequireJS statements and build an optimized module list.

Once we have Node.js installed, we will have access to it from the command line
as well as through PowerShell. We will use this in combination with r.js, which
was installed in our Visual Studio project when we installed the RequireJS NuGet
package. This library is an optimizer for RequireJS and runs in both Node and Rhino.

http://nodejs.org/

Chapter 7

[141]

For more information regarding Rhino, please visit
https://developer.mozilla.org/en-US/
docs/Mozilla/Projects/Rhino.

The optimizer requires a few parameters that will determine how the output is
generated. We must provide a name, the path to the resulting output file, a flag that
tells the optimizer to search for all of the nested dependencies in our application, and
the paths that r.js should look at when performing its optimization. We will place all
of these options in a separate JavaScript file that we can modify if we want to change
the way we want our final code to be generated:

({
 name: "DrawingApplication",
 out: "DrawingApplication.js",
 findNestedDependencies: true,
 optimize: "none",
 paths: {
 'DrawingApplication': 'app'
 }
})

As you can see, all of these options are placed on a JSON object that will be
provided to the RequireJS optimizer. The one extra flag here is the optimize
flag, which determines whether or not the code should be minified.

For more information about the r.js optimizer,
please visit http://requirejs.org/docs/
optimization.html.

For the sake of readability, we will leave it at none for now. When we actually want
to deploy our code, we can simply comment this option out and all of our code will
be placed on a single line in a single file. The final thing we must do to generate our
optimized JavaScript output file is create a simple PowerShell script that will run the
optimizer and provide our options:

cls

write-host '-Building Drawing Application'

node Scripts/r.js -o buildSingleFile.js

https://developer.mozilla.org/en-US/docs/Mozilla/Projects/Rhino
https://developer.mozilla.org/en-US/docs/Mozilla/Projects/Rhino
http://requirejs.org/docs/optimization.html
http://requirejs.org/docs/optimization.html

Enhancing the Drawing Application

[142]

In this script, we clear the current screen, log some output, and finally use Node.js
to run the RequireJS optimizer. If everything goes as expected, the optimizer
will provide tracing output, letting us know that all of the modules required
for our application to work have been included in the optimization. The following
screenshot shows the output of running our script and as you can see all of the
JavaScript dependencies have been included in the build:

The final piece of this process is modifying our HTML page to point at the
resulting output file. Before we can do this, we must understand the output from the
PowerShell script we just ran. As we discussed earlier, there are three parameters for
AMD modules; however, we only provided two. The module name was left out of the
resulting JavaScript for our module definitions, and this caused RequireJS to search
the directory structure for modules. Now that we have combined all of these modules
into a single file, this is no longer an effective way for us to load modules. Thankfully,
the optimizer handles this problem for us:

define('DrawingApplication',["require", "exports", 'Scripts/
DrawingApplicationModel'], function(require, exports,
DrawingApplicationModel) {

Chapter 7

[143]

 $(document).ready(function () {
 var canvas = window.document.getElementById("drawingCanvas");
 ko.applyBindings(new DrawingApplicationModel(canvas));
 });
});

This module definition actually represents the output of the app.ts file, which is the
entry point to our application. As you can see, the define method is now receiving
all three parameters. Based on the parameters we provided to the optimizer, the name
given for the app module is now DrawingApplication. RequireJS will take note of this
name, and anywhere another module requires it, it will be loaded instantly rather than
searching the file structure for a JavaScript file with the given pathname and filename.
The last thing we must do is modify our HTML page to point at the new single output
file. This is done by setting the data-main attribute for the RequireJS tag to the newly
built JavaScript file as shown in the following screenshot:

We only need to modify the data-main attribute of the script tag we use to
load RequireJS and it will handle the rest. RequireJS will see that it does not have
a definition for DrawingApplication and will search the filesystem relative to the
location of require.js for DrawingApplication.js and load it.

This behavior can be modified through the require.config
method. For more information about require.config, please
visit http://requirejs.org/docs/api.html#config.

This will cause all of our module definitions to be evaluated and an entry will be
created for each one by RequireJS for instantaneous loading when they are required.
Finally, when RequireJS reaches the DrawingApplication module, which has been
placed last in the resulting output file to ensure all of its dependencies have been
defined, it will be defined and then the function will run.

http://requirejs.org/docs/api.html#config

Enhancing the Drawing Application

[144]

The DrawingApplicationModel class, which has already been defined, will be
found in the RequireJS cache and will not be dependent on loading another
JavaScript file. As you can see, the loading of our application code is now only
a single web request, which will significantly decrease the application load time:

Now, we can keep our code separated in individual code files and not have to
worry about performance in production. In the next chapter, when we cover
debugging, this will become even more important for aiding our development
of application-scale JavaScript projects.

Styling the application
So far, we have only covered the way we develop the source code for our
applications. However, styling the application is just as important as the
functionality. The code that we write can be completely free of bugs, but if the
appearance and feel of the application is poor, users will not adopt it. Traditionally,
when developing web applications using HTML pages, we would use Cascading
Style Sheets (CSS) to style our objects. However, similar to the way TypeScript
improves JavaScript development, a language called LESS has been developed
that will compile into plain CSS. LESS is available for standalone download from
http://lesscss.org/, or in the case of Visual Studio, it can be installed with
Mads Kristensen's Web Essentials plugin. This plugin is available through the
Extensions and Updates window just like the NuGet Package Manager was.

http://lesscss.org/

Chapter 7

[145]

Once this has been installed, we can add a LESS style sheet to our application.
LESS has a lot of incredibly useful features that will help us create a friendly user
interface in a more robust manner. We have the ability to declare variables and
nest styles within each other. Let's use LESS to improve the feel of our application.
Currently, a user has no visual cues informing them what tool they are currently
working with. We could use some code to change the cursor type when a button is
clicked; however, this can be overridden by other elements on the page, including
the CanvasEngine class that our application relies on. Instead, we will use Knockout
bindings combined with generated CSS styles. First, we will need to create a new
property on the IToolSelectionControl interface and the ToolSelectionControl
class to store whether or not the current control is selected or not:

import ControlsTypes = require('Scripts/Controls/ControlsTypes');
import UserControlBase = require('Scripts/Controls/UserControlBase');
import DrawingTypes = require('Scripts/Drawing/DrawingTypes');
class ToolSelectionControl extends UserControlBase
 implements ControlsTypes.IToolSelectionControl {
 public buttonText: KnockoutObservable<string> = ko.observable("");
 public isSelected: KnockoutComputed<boolean> = null;
 constructor(id: string, public toolType: DrawingTypes.
DrawingToolType,
 public observable: KnockoutObservable<DrawingTypes.
DrawingToolType>) {
 super(id);
 this.templateName = "ButtonTemplate";
 this.buttonText(DrawingTypes.DrawingToolType[this.toolType]);
 this.isSelected = ko.computed(() => {
 return this.observable() == this.toolType;
 });
 }
 public click(viewModel: any, event: JQueryEventObject) {
 this.observable(this.toolType);
 }
}
export = ToolSelectionControl;

Enhancing the Drawing Application

[146]

As you can see, we created a new KnockoutComputed object that will return a
Boolean and that our HTML will be bound to. Instead of storing an instance value like
observables do, computed objects run a function that is responsible for either setting
or returning the value. In this case, we check whether the value of the observable the
control is supposed to update is the same as the tool that this control is associated
with. If they are the same, then a true value will be returned; otherwise, the result
will be false. By including another observable object within the body of this function,
Knockout will create a subscription to this object, and any time its value is changed,
this function will be re-evaluated. This keeps us from having to write any additional
logic to update an observable whenever one of these controls is clicked. Binding to
computed objects is the same as binding to observables as they share a common
super class.

In the preceding screenshot, you can see we have added a class to our button that
we will be able to provide styles for and then the additional Knockout binding.
This binding will add the 'selected' class to the button element if the computed
object returns a true value. Now we need to define these styles and include them
in our application. One of the most valuable features of LESS is the ability to define
variables that can be reused through all of your LESS files. In the following example,
we define several colors that we want to use throughout our application:

@selectionColor: #1111DD;
@accentColor: white;
@borderColor: black;

The selectionColor variable will be used to denote the color of the tool that is
currently selected, while the accentColor and borderColor variables will be used
for a variety of purposes. Rather than explicitly defining these colors for each style
and having to change every place they are used, we will simply be able to change
the value of these variables and the entire look of our application can change. To
use these variables, we simply import the .less file that contains them and they
will be available:

@import 'ApplicationColors.less';

Chapter 7

[147]

.tool-select-button {
 background-color: @accentColor;
 border-color: @borderColor;
 &.selected {
 background-color: @selectionColor;
 color: @accentColor;
 }
}
input[type=color] {
 border-color: @borderColor;
}
canvas {
 border: 4px solid @borderColor;
}

We use our variables to define the values that our styles will have. The buttons that
now have the .tool-select-button class will be given new background and border
colors. There is also a nested style shown, which when compiled into CSS will create
another style that represents the union between these two styles. The final style puts
a border around the color picker. When the LESS code is compiled, the resulting CSS
will look similar to the following code:

.tool-select-button {
 background-color: #ffffff;
 border-color: #000000;
}
.tool-select-button.selected {
 background-color: #1111dd;
 color: #ffffff;
}
input[type=color] {
 border-color: #000000;
}
canvas {
 border: 4px solid #000000;
}

Enhancing the Drawing Application

[148]

Notice that all of the variables have been removed and replaced with the values they
represent. LESS variables have no representation in CSS, so they behave similar to
interfaces in TypeScript in that they have no compiled output. If a LESS file is imported
that does contain styles, all of those styles will be included in the resulting CSS file as
a merged set of styles. Now we can simply modify our HTML to link our style sheet
and our application will have a better user experience.

When we run the application, the Select button will display the selected style
because the KnockoutComputed object we added evaluated to true for that control.
Selecting any of the other tools will cause the bindings to be re-evaluated and the
styles to change with the user action. Any of the elements with a border on them
have a consistent color, and if we ever want to modify that, we will only have to
change it in a single location. This will save us a significant amount of time if we
ever need to restyle the application.

Chapter 7

[149]

Summary
In this chapter, we have covered several ways to improve the way we develop
and deploy enterprise-level JavaScript applications. We converted the drawing
application to AMD modules to eliminate the need for manually managing how
scripts are loaded. We created bindings between our HTML and TypeScript code
using Knockout, which allow us to easily extend the behavior of our application
with minimal effort. Then, we looked to improve the speed at which our application
is available by reducing all of our modules into a single optimized JavaScript file.
Finally, we added LESS style sheets that allowed us to create a robust set of styles
that could be easily maintained and modified. In the next chapter, we will look at
the different methods used to debug TypeScsript as well as how we can provide
unit tests for our application.

Debugging TypeScript
We have covered all the skills you will need to write large-scale applications using
TypeScript. The compiler and language constructs provided by TypeScript allow
us to quickly and safely develop reliable programs. As all experienced developers
know though, code that compiles doesn't always perform as expected. In this
chapter, we will discuss the different options available to debug TypeScript once it
is deployed and running. We will also cover unit testing, which will allow us to test
the functionality with code. In this chapter, we will investigate the following topics:

•	 Debugging
•	 Test-driven development

Debugging
When developing plain old JavaScript applications, our debugging options are usually
dependent upon the available tooling in each browser. Most modern browsers include
some form of developer console that allows us to view the scripts running on a web
page. From this console, we can set breakpoints and investigate the behavior of our
application. We can perform the same task in TypeScript applications; however, this
leaves us stepping through the generated JavaScript rather than the TypeScript code
we actually wrote.

Debugging TypeScript

[152]

Source maps
As we discussed earlier, source maps are a way to map one code file, generally
minified, back to the original code file. In TypeScript, this concept holds true
and allows us to step through our non-compiled TypeScript code. To enable this
functionality, the first thing we must do is ensure that our project settings are set
to generate source maps; this setting is on by default:

This setting will provide the --sourcemap parameter to the compiler and allow
us to link the output JavaScript file to the original TypeScript file. In most modern
browsers, this will cause the TypeScript file to download to the client and we will
be able to set breakpoints and step through our code line by line.

Debuggers
There are several ways to debug our application's code, and it is likely that we will
need a combination of them to ensure we provide a high quality application. Modern
browsers such as Chrome, Firefox, and Internet Explorer all include a developer
console that provides debugging features for web applications. In the following
screenshot, you can see that we can step directly into our TypeScript code using
the Chrome developer tools:

Chapter 8

[153]

Here, you can see that we have set a breakpoint on the Draw method of the
CanvasEngine of our drawing application. In the source window, both the
JavaScript file and the TypeScript file are visible, as are the type annotations we
included in the TypeScript file. This is an incredibly powerful feature for developers
because it prevents us from having to translate the generated JavaScript code back
to a particular line of the original TypeScript code. With Visual Studio and Internet
Explorer, we are actually able to debug directly from the IDE. This enables us to use
all of the tools and features available in Visual Studio in the same way that we could
debug C# code. This includes the call stack, adding any watch expressions, as well
as object exploration, as you can see in the following screenshot:

Debugging TypeScript

[154]

It is important to test our application's code in all of the environments that it is
expected to run in. Each browser implements its own JavaScript engine and has
adopted different sets of features from the HTML5 standard. Being familiar with
each of the different developer consoles will be important to track down and
resolve issues that may not be readily apparent in another browser.

Test-driven development
As our applications grow in both size and complexity, it is more important than
ever for us to deliver software with as few bugs as possible. Manual testing is
inconsistent and slow, which means we need to adopt a more methodical way
of ensuring the quality of our software. This need has brought about the notion
of test-driven development. Test-driven development is a development cycle that
repeats a small set of steps to ensure each line of code is tested. The steps in the
test-driven development life cycle are:

•	 Adding a test
•	 Running the tests
•	 Writing the code
•	 Running the tests again
•	 Refactoring the code

The first thing we want to do is write a test to verify some functionality. This
creates a requirement for the code that we have yet to write. This test will initially
fail when writing unit tests for new functionality; this is expected and helps to
verify that the test does have a failure state. At this point, we run all of the tests,
verifying that preexisting tests still pass and our new test fails. If the new test does
not fail, the functionality has either already been implemented or the test is invalid
and needs to be rewritten. Once we have a valid test, we must implement the
feature that we are attempting to test. This code does not have to be perfect upon
the first implementation; the goal is only to write enough code to pass the test.
When the functionality is implemented, we rerun the tests and verify that our code
is effective. If not, then it must be corrected. Otherwise, the code can be refactored;
but the test must always pass. This process is repeated until every feature has tests
and an implementation. Now that we are familiar with the process of test-driven
development, let's look at how unit testing works in TypeScript.

Chapter 8

[155]

For more information about test-driven development, please
visit http://msdn.microsoft.com/en-us/library/
aa730844(v=vs.80).aspx.

Unit testing
Unit tests are code blocks that test small units of functionality with a set of control
data and expected results. These tests are reliable and reusable, ensuring that our
code is not only tested for the current version of the application, but for all future
releases. This will ensure that any added or modified features do not break existing
functionality and will alert us of a problem well ahead of time. TypeScript does not
come with any built-in unit testing tools; however, the web community once again
filled this hole. A unit test framework has been created by Maxim Fridberg and gives
you a simple way to create and view all of your unit tests for libraries that you have
created. The name of the framework is MaxUnit and is available for download from
https://github.com/KnowledgeLakegithub/MaxUnit, or it is available as
a NuGet package called KL.Testing.MaxUnit.

http://msdn.microsoft.com/en-us/library/aa730844(v=vs.80).aspx
http://msdn.microsoft.com/en-us/library/aa730844(v=vs.80).aspx
https://github.com/KnowledgeLakegithub/MaxUnit

Debugging TypeScript

[156]

This package will add a number of files to our Visual Studio project including
sample usage of the framework. The advantage of MaxUnit is that it allows us
to write tests in TypeScript for our TypeScript libraries. There are a number of
other testing frameworks available to test JavaScript libraries, including Jasmine
(https://github.com/pivotal/jasmine/) and QUnit (http://qunitjs.com/).
It is generally best to keep your test code separate from the implementation code,
to ensure that it will be tested in the same manner that it will be used. To get a feel
for how unit testing works, let's take the Shapes library that we created for the
drawing application and create a series of tests to ensure proper functionality.
The Shapes library outputs to a single JavaScript file and has interfaces associated
with it that we can use to test our code.

Adding tests
Now that we have the tooling installed, let's begin the process of unit testing our
library. The first thing we need to do is add the Shapes library to the testing project.
This process can be done manually or can be automated using PowerShell to deploy
the latest version of our code. For now, we will handle it manually so that we can
focus on testing. Once our library is added to the project, we can begin writing
tests. We will create a separate testing class to test each of our objects in the Shapes
library. Let's start with the simplest class in the library, the Point class, to get a feel
for testing. In the following sample, you can see we have created a new class called
test_Point that contains all of our tests for this particular class:

/// <reference path="../../maxunit.ts" />
/// <reference path="../../scripts/typings/shapes/shapestypes.d.ts" />
class test_Point extends maxUnit.TestClassBase {
 private _shapes: Shapes = null;
 constructor() {
 //give test suite a name
 super('test_Point');
 //add test by name
 }
 setUpAsync(dfdSetup: JQueryDeferred<any>) {
 var cb = super.setUpAsync;
 require(['/Scripts/Shapes/Shapes.js'], (Shapes) => {
 this._shapes = Shapes;
 cb(dfdSetup);
 });
 }
 tearDown() {

https://github.com/pivotal/jasmine/
http://qunitjs.com/

Chapter 8

[157]

 super.tearDown();
 }
}

export = test_Point;

The class inherits from the maxUnit base class TestClassBase, which provides
methods used to register tests with the testing framework. The constructor calls the
base constructor and provides the name for this set of tests. Eventually, this section
will also contain the registration for each of our unit tests. The setUpAsync method
will be used to set up any necessary mock objects and create a reference to the
Shapes library. If our library contained jQuery or any other dependencies, we would
mock these objects to ensure our library performs as expected. The teardown method
provides a place to provide any cleanup logic that you may want to execute after the
tests have run. Now, let's begin by writing some very simple tests that will verify the
creation of a Point object. Each unit test should be arranged into three sections:

•	 Arrange
•	 Act
•	 Assert

The arrange section will create any objects we need to perform our test, act will
perform the operations that make up our test, and assert will verify the results of these
operations. In the following tests, you can see that we provide implementations for
all three sections of the test to verify the initialization of the x and y members of the
Point class:

 test_PointInitX() {
 //Arrange
 var p: IPoint = new this._shapes.Point(3, 4);
 //Act
 var x = p.x;
 //Assert
 this.Assert.AreIdentical(3, x, "Should return 3");
 }
 test_PointInitY() {
 //Arrange
 var p: IPoint = new this._shapes.Point(3, 4);
 //Act
 var y = p.y;
 //Assert
 this.Assert.AreIdentical(4, y, "Should return 4");
 }

Debugging TypeScript

[158]

As you can see, we create a new Point object during the arrange phase of our
tests. We then evaluate the properties of the Point object during the act phase,
and finally we assert whether or not the object was initialized correctly. Before
we can run these tests though, we must add them to the Tests array that is
provided by TestClassBase:

 constructor() {
 //give test suite a name
 super('test_Point');
 //add test by name
 this.AddTest('test_PointInitX', 'Test Point.x value init');
 this.AddTest('test_PointInitY', 'Test Point.y value init');
 }

Finally, we must add our test class to the list of test classes defined in the tests.js
file provided by MaxUnit. This will ensure that our test class gets registered with
the testing framework and that all of our tests will be run upon execution:

define(function () {
 //add test modules relative to /tests
 return ["ShapeTests/test_Point"];
});

That's all we have to do to write unit tests for TypeScript code. If we set the testing
project as the start-up project for our Visual Studio solution and run it with MaxUnit,
the UI will display a list of all tests that have been run and their result, as shown in
the following screenshot:

Chapter 8

[159]

These are both very simple tests that cover the most basic path used to create Point
objects; however, when writing unit tests, we want to cover as many scenarios as
possible to verify proper functionality. For instance, rather than just testing specific
classes, let's write some tests around an interface, which will create a series of tests
that can be successfully run on multiple concrete implementations. In the following
example, you can see we have created a new set of tests that will be used to test the
IRectangle interface:

/// <reference path="../../maxunit.ts" />
/// <reference path="../../scripts/typings/shapes/shapestypes.d.ts" />
class test_IRectangle extends maxUnit.TestClassBase {
 private _shapes: Shapes = null;
 constructor() {
 //give test suite a name
 super('test_Point');
 //add test by name
 this.AddTest('test_RectangleResize', 'Test resizing of
Rectangle');
 }
 setUpAsync(dfdSetup: JQueryDeferred<any>) {
 var cb = super.setUpAsync;

 require(['/Scripts/Shapes/Shapes.js'], (Shapes) => {
 this._shapes = Shapes;
 cb(dfdSetup);
 });
 }
 tearDown() {
 super.tearDown();
 }
 test_RectangleResize() {
 //Arrange
 var rect: IRectangle = new this._shapes.Rectangle(4, 6);
 this.test_IRectangleResize(rect);
 }
 test_IRectangleResize(r: IRectangle) {
 //Act
 r.resize(3, 9);
 //Assert
 this.Assert.AreIdentical(9, r.width, "Should return 9");
 }
}

export = test_IRectangle;

Debugging TypeScript

[160]

As you can see, our class structure is very similar; however, the pieces of the unit
test have been separated into two logical parts. The first is the creation of the object
we are attempting to test, and the second is the interface that we will be testing.
The second piece of this test can be reused again and again for each class we create
that implements IRectangle. For instance, squares are quite similar to rectangles;
in fact, we could implement them in such a way that they have the exact same set
of properties. We can very easily add a new class to our Shapes library that will
represent squares:

export class Square implements IRectangle {
 constructor(public height: number, public width) {
 this.width = this.height;
 }
 public resize(height: number, width: number) {
 this.height = height;
 this.width = height;
 }
}

As you can see, this class upholds both the IRectangle interface and the notion
of squares by making sure that the width and height properties get set to the same
value. We can now write a third testing method in the test_IRectangle class that
will instantiate a new Square object and run it through the resize test that is being
used for the Rectangle objects:

test_SquareResize() {
 //Arrange
 var square: IRectangle = new this._shapes.Square(4, 6);
 this.test_IRectangleResize(square);
 }

Chapter 8

[161]

By using our interface abstraction, our tests become reusable units of code for
multiple object types. Running these tests together results in the following output:

The square test has failed. The interface was implemented so our code was able to
compile; however, this has exposed a problem with our assumption about squares.
Through our implementation, we forced the behavior of a square onto an IRectangle
type. This test exposed the fact that we broke the Liskov substitution principle that
we discussed in Chapter 4, Object-oriented Programming with TypeScript. We are not
able to safely substitute one IRectangle object for another, which could result in
unexpected behavior.

Debugging TypeScript

[162]

Summary
In this chapter, we discussed the final pieces of TypeScript development. We discussed
source maps and how TypeScript uses them to map output JavaScript files back to the
original TypeScript file, allowing us to step through our code before compilation. We
looked at the different environments in which we could debug our code, whether it
be in the browser or the IDE. Finally, we looked at test-driven development and how
it allows us to catch errors and unexpected functionality in a reusable and consistent
manner. We discussed a large number of topics in a short period of time:

•	 Working with the compiler
•	 TypeScript's language constructs
•	 Object-oriented development with TypeScript
•	 Asynchronous module definitions
•	 Integrating with external libraries
•	 Test-driven development

We built a drawing application using each of these different topics and refined it
as our needs changed and knowledge increased. You are now capable of starting a
new application in TypeScript and taking it from initial requirements to a polished
final product.

Index
A
abstraction 70-72
act section 157
advanced options, TypeScript

compiler 56-60
AMD modules

converting to 122-129
Any type 18
arguments 20
arrange section 157
assert section 157
Asynchronous Module Loader (AMD) 115

B
build options 14, 15

C
Cascading Style Sheets (CSS) 144
classes

about 25
creating 25-27

closures 26
command-line compilation 10-12
compiler output

about 51
JavaScript output 51-53
source maps 54-56

D
debuggers 152-154
debugging

about 151
debuggers 152-154

source maps, generating 152
declaration files 105-107
Dependency Inversion Principle

about 63
URL 63

Document Object Model (DOM) 84, 107
drawing application

engine 90-93
making, interactive 90
mouse events 94-97
styling 144-148
user options 97-103

E
Eclipse

URL 8
ECMAScript

about 45
code, manipulating 49-51
version 46-48

ECMAScript 3 46
ECMAScript 4 46
ECMAScript 5

about 46
properties 31
URL 33

ECMAScript 6 promises
URL 70

encapsulation 68-70
engine, drawing application 90-94
enums 34-37

F
functions 20-22

[164]

G
generic objects 42-44

H
Hello World

about 9
build options 14, 15
command-line compilation 10-12
new project, creating 13
Visual Studio, integrating 12

I
IAdder interface 24
IBounds interface 34
ICalculator interface 24
IDE

setting up 9
inheritance 64-68
instance members 28-31
interfaces

about 23-27
IAdder interface 24
ICalculator interface 24
inheritance 23
instance members 28-31
ISubtractor interface 24
properties 31-34
static members 28-31

Interface Segregation Principle
about 63
URL 63

internal modules 37-42
ISubtractor interface 24

J
Jasmine

URL 156
JavaScript closures and module pattern

URL 26
JavaScript output 51-53
jQuery

integrating with 109-112
URL 112

K
Knockout

integrating with 112-114

L
LESS

URL 144
Liskov Substitution Principle

about 63
URL 63

M
MaxUnit

URL 155
method overloading 72
method overrides 75, 76
Model View Controller (MVC) 130
Model View ViewModel (MVVM) 130
modules

about 37
external modules 37
internal modules 37

mouse events, drawing application 94-97

N
new project

creating 13
Node.js

URL 140
Notepad++

URL 8
NuGet packages

installing 107-109

O
object-oriented design

URL 76
Object-oriented Programming. See OOP
objects 62
object types 19
OOP

about 61
URL 76

[165]

Open/Closed Principle
about 63
URL 63

operator overloading 73-75

P
polymorphism

about 72
method overloading 72
method overrides 75, 76
operator overloading 73-75

primitive types 18
project

setting up 79-81
properties 31-34

Q
QUnit

URL 156

R
require.config

URL 143
RequireJS

API and configuration files, URL 124
URL 119
using 115-119

Rhino
URL 141

r.js optimizer
URL 141

S
setUpAsync method 157
shapes

about 82
basic shapes 82-84
drawing 84-89

single output file
generating 138-144

Single Responsibility Principle
about 63
URL 63

SOLID 63
source maps

about 54-56
generating 152

static members 28-31

T
teardown method 157
test-driven development

about 154
steps 154
tests, adding 156-161
unit testing 155, 156
URL 155

tests
adding 156-161

third-party library integration
about 107
NuGet packages, installing 107-109
RequireJS used 115-119
with jQuery 109-112
with Knockout 112, 113

type parameters 19
types, TypeScript

about 18, 19
Any type 18
object type 19
primitive type 18

TypeScript
about 5, 6
advanced options 56-60
advantages 6-8
classes 25
enums 34
functions 20-22
generic objects 42-44
interfaces 23-27
modules 37
primitive types 19
types 18
URL 8

TypeScript compiler
advanced options 56-60
JavaScript output 51-53
source maps 54-56

[166]

U
unit test

about 155, 156
act section 157
arrange section 157
assert section 157

user controls
binding 130
reusable controls 130-134

user options, drawing application 97-103

V
ViewModel

creating 135-137
Visual Studio

integrating 12
URL 12

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Getting Started with TypeScript
	The advantages of TypeScript
	Setting up the IDE
	Hello World
	Command-line compilation
	Integrating Visual Studio
	Creating a new project
	Build options

	Summary

	Chapter 2: TypeScript Basics
	Types
	Functions
	Interfaces
	Classes
	Definitions

	Interfaces
	Static and instance members
	Properties

	Enums
	Modules
	Internal modules

	Generic objects
	Summary

	Chapter 3: The TypeScript Compiler
	Generation of ECMAScript
	ECMAScript version
	Code manipulation

	Controlling compiler output
	JavaScript output
	Source maps

	Advanced options
	Summary

	Chapter 4: Object-oriented Programming with TypeScript
	The basics
	SOLID – object-oriented design

	Understanding inheritance
	Encapsulation
	Abstraction
	Polymorphism
	Method overloading
	Operator overloading
	Method overrides

	References
	Summary

	Chapter 5: Creating a Simple Drawing Application
	Setting up the project
	The shapes
	Basic shapes
	Drawing shapes

	Making the application interactive
	The engine
	Mouse events
	User options

	Summary

	Chapter 6: Declaration Files and Library Integrations
	Declaration files
	Third-party library integration
	Installing NuGet packages
	Integrating with jQuery
	Integrating with Knockout
	Using RequireJS

	Summary

	Chapter 7: Enhancing the Drawing Application
	Converting to AMD modules
	Binding the user controls
	Reusable controls
	Creating a ViewModel

	Generating a single output file
	Styling the application
	Summary

	Chapter 8: Debugging TypeScript
	Debugging
	Source maps
	Debuggers

	Test-driven development
	Unit testing
	Adding tests

	Summary

	Index

