
www.allitebooks.com

http://www.allitebooks.org

TypeScript Revealed

Dan Maharry

www.allitebooks.com

http://www.allitebooks.org

TypeScript Revealed

Copyright © 2013 by Dan Maharry

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or
dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are
brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for
the purpose of being entered and executed on a computer system, for exclusive use by the purchaser
of the work. Duplication of this publication or parts thereof is permitted only under the provisions
of the Copyright Law of the Publisher’s location, in its current version, and permission for use must
always be obtained from Springer. Permissions for use may be obtained through RightsLink at the
Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law.

ISBN 978-1-4302-5725-7

ISBN 978-1-4302-5726-4 (eBook)

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image, we use the names, logos, and
images only in an editorial fashion and to the benefit of the trademark owner, with no intention of
infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they
are not identified as such, is not to be taken as an expression of opinion as to whether or not they are
subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility
for any errors or omissions that may be made. The publisher makes no warranty, express or implied,
with respect to the material contained herein.

President and Publisher: Paul Manning
Lead Editor: Jonathan Hassell
Technical Reviewer: Todd Meister
Editorial Board: Steve Anglin, Mark Beckner, Ewan Buckingham, Gary Cornell, Louise Corrigan,

Morgan Ertel, Jonathan Gennick, Jonathan Hassell, Robert Hutchinson, Michelle Lowman,
James Markham, Matthew Moodie, Jeff Olson, Jeffrey Pepper, Douglas Pundick,
Ben Renow-Clarke, Dominic Shakeshaft, Gwenan Spearing, Matt Wade, Tom Welsh

Coordinating Editor: Mark Powers
Copy Editor: Sharon Wilkey
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global
Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring
Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California
LLC and the sole member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance
Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional
use. eBook versions and licenses are also available for most titles. For more information, reference
our Special Bulk Sales–eBook Licensing web page at www.apress.com/bulk-sales.

Any source code or other supplementary materials referenced by the author in this text is available
to readers at www.apress.com/9781430257257. For detailed information about how to locate your
book’s source code, go to www.apress.com/source-code/.

www.allitebooks.com

http://www.allitebooks.org

For Jane and Evie, who make me smile and laugh

www.allitebooks.com

http://www.allitebooks.org

v

Contents at a Glance

About the Author .. xi

About the Technical Reviewer .. xiii

Acknowledgments ... xv

Introduction ... xvii

Chapter 1: Getting Up to Speed with TypeScript 1

Chapter 2: The New Syntax .. 27

Chapter 3: Working with TypeScript ... 61

Appendix A: Webliography .. 77

Index .. 81

www.allitebooks.com

http://www.allitebooks.org

vii

Contents

About the Author .. xi

About the Technical Reviewer .. xiii

Acknowledgments ... xv

Introduction ... xvii

Chapter 1: Getting Up to Speed with TypeScript 1

The Development of TypeScript ... 1

What TypeScript Is, Does, and Does Not Do... 3

TypeScript vs. JavaScript Gotchas .. 4

Type Coercion Issues ... 5

TypeScript vs. Other Compile-to-JavaScript Languages .. 7

TypeScript vs. ECMAScript ... 9

Installation ... 10

Visual Studio 2012 .. 10

Other Visual Studio Editions.. 17

On Node.js .. 18

Sublime Text ... 18

From JavaScript to TypeScript .. 19

A Simple HTML+JS Page .. 19

TypeScript and IntelliSense .. 20

Errors and Declaration Files ... 21

A Little Code Structure with Classes and Modules ... 24

Summary ... 26

www.allitebooks.com

http://www.allitebooks.org

CONTENTS

viii

Chapter 2: The New Syntax .. 27

The Story So Far .. 27

The Type System ... 29

Primitive Types ... 30

The Any Type ... 31

Arrays ... 32

Casts ... 33

Ambient Declarations ... 34

Functions ... 34

Variations on a Signature ... 36

Function Overloads ... 38

Classes .. 40

Class Members ... 41

Access Modifiers .. 46

Instantiating Classes .. 46

Static Classes and Members .. 46

Object Literals vs. Anonymous Types .. 47

Inheritance .. 48

Interfaces .. 50

Using Interfaces as Function Types .. 51

Using Interfaces as Object Types .. 52

Combining Interfaces.. 53

Modules ... 54

Summary ... 59

www.allitebooks.com

http://www.allitebooks.org

CONTENTS

ix

Chapter 3: Working with TypeScript ... 61

The Compiler ... 61

The File List .. 64

Declaration Files .. 65

Has Someone Else Written It? .. 65

Substitute with an Ambient Declaration ... 66

Use the Compiler to Generate a Declaration File .. 66

Roll Your Own ... 67

TypeScript in Your Projects .. 68

In Your MSBuild File .. 69

In Your Web Sites .. 73

In the Development Life Cycle .. 74

Summary ... 75

Appendix A: Webliography .. 77

Core Links ... 77

GitHub Projects .. 78

Notable Bugs and Discussions .. 78

Miscellaneous ... 79

Index .. 81

www.allitebooks.com

http://www.allitebooks.org

xi

About the Author

Dan Maharry is an experienced technical author with
over a dozen books to his name and many more as
technical reviewer and editor for a variety of publishers
including Wrox Press, Apress, Microsoft Press, and
O’Reilly Media.

Dan contributes code and documentation to
various open source projects and tries to blog and to
speak from time to time to user groups about cool stuff.

He’s also a .NET developer with past stints for the
dotCoop TLD registry and various web development
houses under his belt.

He listens to a lot of new music as he does the above.
You can find him online at http://hmobius.com.

His blog is available at http://blog.hmobius.com.

www.allitebooks.com

http://www.allitebooks.org

xiii

About the Technical
Reviewer

Todd Meister has been working in the IT industry for
more than 15 years. He’s been a technical editor for
over 75 titles, ranging from SQL Server to the .NET
Framework. Besides technical editing, he is the senior
IT architect at Ball State University in Muncie, Indiana.
He lives in central Indiana with his wife, Kimberly, and
their five excellent children.

www.allitebooks.com

http://www.allitebooks.org

xv

Acknowledgments

Many thanks to Jon and Mark at Apress for inviting me to write this book, and thanks also
to Anders and the TypeScript team for making the fruits of Project Strada available for us
to consume.

And, of course, thanks to the two ladies in my life who keep me sane and drag me
away from the screen into reality. To Jane and Evie, I love you both.

xvii

Introduction

Anders Hejlsberg has a lot to answer for. Perhaps not as well known as Bjarne Stroustrup
(C++) or Dennis Ritchie (C), he’s responsible for the creation of Turbo Pascal, Delphi,
J++, and C#. And, as the creator of the language that the majority of .NET developers
have been using for the past ten years, it is fair to say that he knows a fair bit about
language design.

October 1, 2012 heralded the start of the journey for another Hejlsberg creation.
TypeScript is a superset of JavaScript that brings to it an additional object-oriented-like
syntax familiar to .NET programmers that compiles down into JavaScript that any browser
can run today. As I write this three weeks since its announcement, it’s interesting to see
how, with hindsight, the loudest reactions have been, “Why do we need this?” or “Not
in my backyard,” and so on—the naysayers getting their dimes’ worth before this Friday,
when Windows 8 is officially launched and they can copy and paste the same reactions
back into their slightly revised pieces about the new touch interface that isn’t called
Metro. Now that the dust has settled, my personal favorite response to all the initial
negativity was simply, “But this is Anders.”

TypeScript is an interesting project, considering the forces that will work at it and the
target at which it is aimed.

Its mission statement is “JavaScript for application-scale
development.”

It’s an open source project, so there’s direct input from its users.

It’s a standard in its own right.

It’s a proof of concept for, and therefore will/should react to, parts
of the ECMAScript 6 standard.

It’s inevitably a well-timed boost for the development of Windows 8 applications
using HTML and JavaScript rather than C# and XAML, or a hybrid approach between the
two for lack of JavaScript structure.

How TypeScript is allowed to evolve will be interesting. In the meantime, we have
the initial v0.8.x releases that this book targets. It covers the following:

The language features in TypeScript additional to those in
JavaScript

The tooling and community support for TypeScript development

How TypeScript can be included in ASP.NET, and Windows 8
application development projects

xviii

INTRODUCTION

Who Is This Book For?
This book is for .NET and JavaScript developers who want to get a head start
incorporating TypeScript into their applications. I explain the tools and language features
you need to get up to speed quickly and also the current, soon to be ex-limitations of
TypeScript as it makes its way toward a version 1.0 release.

What Do You Need to Know Before You
Read This Book?
You need a good knowledge of an object-oriented language such as C#, ideally from
creating ASP.NET web applications or Windows 8 applications. TypeScript tooling is, in
the main, based on Visual Studio, so a familiarity with that would also be good.

You also need a basic familiarity with JavaScript, but advanced JavaScript skills are
not necessary.

What Software Do You Need for This Book?
Technically, you don’t need anything more than a text editor such as Notepad to write
TypeScript applications. However, to take full advantage of the tooling that exists, you’ll
need a copy of a non-Express version of Visual Studio 2012. If you don’t have access to
that, there is support for Visual Studio 2012 Express for Web and also for Sublime Text 2,
Vim, and eMacs, which are all free downloads.

You’ll learn where to download and how to install TypeScript in Chapter 1.

What Is the Structure of the Book?
This is a primer to get you started on TypeScript. As TypeScript is at such an early stage in
its adoption and development, this book does not aim to be a comprehensive tutorial and
focuses instead on the three key topics that you’ll need to consider in order to determine
whether you’ll want to start using TypeScript now, and if so, how to do it:

Chapter 1: Getting Up to Speed with TypeScript

Just exactly what is TypeScript, and how does it fit in to your
projects? In this chapter, you’ll look at the aims of TypeScript,
how it compares to its perceived competition, and what
exactly it does and does not do. You’ll also see how to install
it, what you get, and how to run through creating a simple
TypeScript-based page.

xix

INTRODUCTION

Chapter 2: The New Syntax

TypeScript is all about the additional object-oriented-like
syntax and features that it brings to JavaScript. In this chapter,
you’ll look at the main new constructs in the language: static
typing, classes, interfaces, arrow functions, and modules.
You’ll see the similarities between them and their equivalents
in C# as well as the common gotchas encountered so far.

Chapter 3: Working with TypeScript

With the new syntax covered, the final chapter takes a look at
how to incorporate TypeScript into your project. You’ll look at
the various options on the TypeScript compiler, learn how to
create declaration files for third-party JavaScript libraries, and
see how to include TypeScript in your existing Visual Studio
projects.

Appendix: Resources

Finally, the appendix at the back lists all the code projects
and the online communities that currently exist as well as the
URLs mentioned in the book for a quick reference.

1

CHAPTER 1

Getting Up to Speed
with TypeScript

In this chapter, you’ll start your look at TypeScript with an overview and an example. In
particular, this chapter covers the following:

The motivation for the TypeScript project

What TypeScript does and what it doesn’t do compared to
JavaScript and other JavaScript-related languages

How to install it and what you get as a result

A simple example using TypeScript and Visual Studio

Hopefully, by the end of this chapter, you’ll have a good idea of what TypeScript does
and how. You’ll follow this up in Chapter 2 by looking in depth at the many new language
features of TypeScript, and in Chapter 3 by learning how to incorporate TypeScript into
some projects as a whole.

The Development of TypeScript
JavaScript probably should not have been the first choice for the language
of all Web functionality—at least, not without some serious reworking.
It became standardized long before it was ever rationalized. And had
rationality been the goal, it should have looked much more like Java
than script.

Scott M. Fulton, ReadWrite

http://readwrite.com/2012/10/03/microsofts-typescript-fills-a-long-standing-
void-in-javascript

Stop. Before you read any further, open a browser, load the home page for Google or
Bing, and then view the source code for the page. It’s just a mass of minimized JavaScript.
Would you like to figure out how the page works by looking at the source code? No.
Me neither.

CHAPTER 1 GETTING UP TO SPEED WITH TYPESCRIPT

2

JavaScript is an unusual beast. When it was first introduced in late 1995 to give
a web page some dynamism, neither the browsers nor the browser vendors were
ready. It arrived during the first skirmishes of the browser wars. Each browser had its
own Document Object Model and its own Browser Object Model, and they were still
changing. Trying to keep even some basic functionality on a web page compatible
across browsers was a nightmare and required far more code than it should have.
Microsoft first tried to get us to script pages by using VBScript and then caused
confusion with JScript, its own version of the language. Oh, and all the JavaScript
execution engines were pretty woeful. Even the name of the standard for JavaScript had
to be changed to ECMAScript because Sun Microsystems wouldn’t let the standards
body use the name.

A little messy, wasn’t it?
Fortunately, common sense has prevailed over time. Browsers now generally

follow web standards, their Document Object Models are nearly all implemented in the
same way, and modern JavaScript execution engines such as V8 in Google Chrome and
Chakra in Microsoft Internet Explorer are exponentially quicker than their predecessors.
JavaScript itself has come a long way as well. Five editions of ECMAScript have been
published, and a sixth, code-named Harmony, is under development. The popularization
of object-oriented JavaScript, JSON, AJAX, and the HTML5 JavaScript APIs (in that order)
have seen its use in serious, nontrivial coding on the client side grow sharply. On the
server side, meanwhile, Node.js has shown to the world that JavaScript is a perfectly valid
server-side technology, and even Microsoft has been pushing the use of JavaScript as an
equivalent to C# and Visual Basic; Windows 8 applications can be built with JavaScript
and HTML5 as well as C#/Visual Basic and XAML.

Which brings us to the big question: is JavaScript “big enough” for writing complete
applications? JavaScript was never designed to be a language for larger applications.
Google has proven it possible, but the fact that it has also created a whole new
language—Dart—which can compile down into JavaScript because that’s what we all use
but which requires its own virtual machine (currently available only in a developmental
build of Chrome) for optimal performance, might indicate just how hard it is and
how awkward maintenance can be. JavaScript does support classical inheritance and
other code reuse patterns, but it’s a dynamic language without the features we see in
IronPython and IronRuby. It lacks the familiar home comforts of a C# or Visual Basic
class-based object-oriented programming model, not to mention strong typing,
interfaces, and namespaces, which we might consider the bread and butter of our
development efforts. The forthcoming Harmony specification does include these, but
ratification is a way off, and it’ll be longer still before browsers include JavaScript engines
that support it. There are still engines supporting only v3 of ECMAScript rather than the
latest (published in December 2009) v5 in full, for heaven’s sake.

Microsoft has decided that the big answer to the big question is no, and thus
has created TypeScript, a superset of JavaScript that includes static typing, classes,
interfaces, modules, and a couple of other features that .NET developers will find familiar
and that are borrowed from the Harmony specification. We now have at our disposal
a way to build large applications in JavaScript (or to switch into application-scale
JavaScript development, as Microsoft call it) far more easily than was previously possible.

CHAPTER 1 GETTING UP TO SPEED WITH TYPESCRIPT

3

More important, we have a system that makes it easier to scale, debug, and revise
applications once written. And, at the heart of it, are four simple truths:

TypeScript is just JavaScript. You only need to know JavaScript
to use TypeScript, and all your favorite third-party JavaScript
libraries (jQuery, MooTools, Prototype, and so forth) will work
fine with it.

JavaScript is just TypeScript. Any valid .js file can be renamed .ts
and be compiled with other TypeScript files.

TypeScript borrows from the Harmony specification. When
Harmony is ratified, the TypeScript compiler can just let the new
language elements alone and allow the new Harmony-compliant
engines to parse your TypeScript as pure JavaScript instead.

The TypeScript compiler is itself a JavaScript file (compiled down
from TypeScript). Thus it can be hosted in any browser, on any
host, on any operating system if required. There’s no dedicated
VM and no plan to develop one.

Oh, and TypeScript is an open source project too:

The compiler is an open source project and released under the
Apache 2.0 license.

The TypeScript language is available under the Open Web
Foundation’s Final Specification Agreement (OWFa 1.0).

All of this means that you can have direct input into bug fixing and new features by
submitting bug reports and feature requests on http://typescript.codeplex.com.

What TypeScript Is, Does, and Does Not Do
So yay for Microsoft having the gumption to create and propel TypeScript into a crowded
web development world where several efforts to make app-scale development more
manageable (Dart and CoffeeScript, to name two) already exist. But now we’re past
the justification for its existence, what exactly does it do, and how does it work? More
important, perhaps: what doesn’t it do, exactly?

At its heart, TypeScript has three components:

The TypeScript compiler: Written itself in TypeScript, the
compiler recompiles TypeScript down to idiomatic JavaScript,
compliant to ECMAScript v3 by default or v5 with a compiler
switch. The compiler is covered in Chapter 3.

The TypeScript Language Service (TLS): The TLS is a Visual
Studio extension. It is this extension that provides you with
IntelliSense for TypeScript, enforcing type safety and several
features of TypeScript within Visual Studio.

CHAPTER 1 GETTING UP TO SPEED WITH TYPESCRIPT

4

Declaration files: The TLS uses declaration files (.d.ts files) to
provide IntelliSense for the types, function calls, and variables
expected by third-party libraries such as jQuery , Prototype,
MooTools, and so forth.

You’ll find templates for Visual Studio, sample projects, color-coding rules, and an
MSBuild rule as well, but they’re more about enriching the TypeScript development
experience rather than enabling it. Understandably, as Microsoft wrote it, you’ll need
Visual Studio for the best TypeScript development experience. The TLS is the key. It’s no
less valid to write TypeScript outside of Visual Studio, but it is more likely to be prone to
errors as the TLS is not there to help you along, writing your code before it goes
to the compiler.

WHAT TYPESCRIPT IS NOT

The important thing to remember is that TypeScript is just a tool to be used at
coding-time to improve the quality of your JavaScript. After your TypeScript is
compiled to JavaScript, you can use all your other tools—minifiers, packagers,
runtime loaders, unit test frameworks, and so forth—as you would if you had
written the JavaScript from scratch. Microsoft provides some basic support for
editing TypeScript from Sublime Text 2, Vim and eMacs, but it does not include the
TLS, so there is no IntelliSense or feature enforcement. On the third-party front,
JetBrains has announced TypeScript support in WebStorm v6, making this the first
cross-platform IDE to do so. There are also several preliminary discussions about
supporting it in MonoDevelop.

Note Please don’t forget that TypeScript is still only a prerelease (v0.8.1.1 at the time of
this writing). The level of TypeScript support for non–Visual Studio IDEs will change.

The TypeScript compiler is also available as a Node.js package, but it is not
exposed as an explicit public API for module access. There is a workaround, however
(https://github.com/eknkc/typescript-require) while Microsoft works on the official
fix (http://typescript.codeplex.com/workitem/97).

TypeScript vs. JavaScript Gotchas
TypeScript’s aims are squarely pointed at the long-term issues of scalability and
maintainability, but does it assist with the day-to-day task of writing functional code?
JavaScript has more idiomatic programming pain points than most languages, and many
online pages are dedicated to listing these gotchas, so you don’t have to figure them
out yourself. Because it is just JavaScript itself, compiled TypeScript is subject to these
gotchas as well. However, thanks to the real-time type checking and inference, the TLS

CHAPTER 1 GETTING UP TO SPEED WITH TYPESCRIPT

5

does catch a few of these before they get compiled. This section details three of the most
common that TypeScript can help to avoid.

Type Coercion Issues
Suppose you have two variables, one a string and the other a number:

var oneNumber = 1;
var oneString = "1";

In JavaScript, you can compare these two variables by using the == operator and
expect JavaScript to return true. The == operator coerces one variable into the same type
as the other and then compares the two:

var theSameJS = (oneNumber == oneString); // true in JavaScript. Invalid
in TypeScript

In TypeScript, the same operation will not compile until one of the two variables is
explicitly cast to the other’s type. Even if the types of oneNumber and oneString are not
specifically set, the TLS will infer them from the values assigned, meaning this gotcha is
one you shouldn’t need to worry about.

var theSameTS = (oneNumber.toString() == oneString); // true in TypeScript
and JavaScript.

A similar gotcha occurs when using the + operator. If one of the operands is a string,
JavaScript will always concatenate the two values together and return a string, rather
than adding the two as numbers and returning a number, which may have been the
desired result.

var thisIsAString = 1 + "1"; // returns "11"
var thisIsANumber = 1 + parseInt("1", 10); // returns 2

The TLS won’t stop you from making the same mistake, but it will infer the type of
the returned value and flag potential errors later if you reuse it. If you hover the cursor
over the name of the variable, the TLSwill display the inferred type of the variable as well.

Block Scope
TypeScript inherits JavaScript’s lack of block scoping for variables. Consider the following
(contrived) code:

for (var i = 0; i < 10; i++) {
 console.log(i); // displays numbers 0 to 9
}

CHAPTER 1 GETTING UP TO SPEED WITH TYPESCRIPT

6

// variable i now redeclared but value not reset to undefined.
// instead it uses last set value of 9 from inside the for loop block
var i;
console.log(i); // displays 10

When i is declared, it will remain in scope after the loop exits, so the console will
display 10 as well as 0–9. The TLS won’t stop this from happening, but it will infer that i is
of type number or type any when it is redeclared because of its previous use as a number in
the for loop. Therefore, should i be assigned or inferred a type other than number or any
outside of the for loop, the code as a whole will not compile because the code inside the
for loop—specifically, the part where i is treated as a number—is then invalid.

Optional Semicolons and Bracket Placement
For C# programmers, the idea that you need not use semicolons to indicate the end of a
statement may seem anathema. Likewise, if you press Ctrl+K, D enough times in Visual
Studio, it may start to seem odd if the curly braces in your code aren’t on their own lines.
So consider this particular code and ask yourself what the function returns:

function optionalSemicolons() {
 return
 {
 a: "Hello"
 };
}

In fact, this function returns undefined because JavaScript interprets the code by
adding a semicolon immediately after the return statement. If the opening curly brace is
placed next to the return keyword, the function returns an object as expected.

function optionalSemicolons2() {
 return {
 a: "Hello"
 };
}

All of this means that both C# and Visual Basic programmers need to take care when
adding semicolons and new lines into code. Fortunately, the TLS can save us some head-
scratching in two ways here.

The TLS, together with the Web Essentials extension for Visual Studio, will display
your TypeScript code recompiled into JavaScript in the right-hand pane of your Visual
Studio window whenever you save your TypeScript file. The compiled version of
optionalSemicolons() shows the inserted semicolons (there are actually two of them)
not where you’d want them to be.

CHAPTER 1 GETTING UP TO SPEED WITH TYPESCRIPT

7

function optionalSemicolons() {
 return;
 {
 a:
"Hello"
 }
 ; ;
}

The compiled version of optionalSemicolons2(), however, is exactly the same as
the TypeScript original.

You can also explicitly define the return type of the function. In
this case, the function returns an object, so we can rewrite the first
line of our errant function as

function optionalSemicolons() : Object { ...

and the TLS will instantly underline the whole function with red squigglies as it does not
return an object. Adding the same explicit return type to optionalSemicolons2() will
result in no change.

Note Full details of TypeScript’s strong typing and function signature syntax can be
found in Chapter 2.

TypeScript vs. Other Compile-to-JavaScript Languages
So TypeScript does help with the quality of the JavaScript you can produce as well as its
overall structure, but there’s plenty of competition in the particular space. Several dozen
similar language projects are listed at https://github.com/jashkenas/coffee-script/
wiki/List-of-languages-that-compile-to-JS, for example. How does TypeScript stack
up against them all, and is it right for you? Let’s start by asking a few questions:

What’s the main aim of the language?

Is it still JavaScript, or something else?

Does it add static typing?

Does it add a class-based, object-oriented programming model?

Can I use third-party JavaScript libraries?

Is it supported in Visual Studio or Windows?

Is it supported on Mac OS or Linux?

What VM does it use to run?

CHAPTER 1 GETTING UP TO SPEED WITH TYPESCRIPT

8

First we’ll answer for TypeScript and then for the two most visible alternatives to
TypeScript at the moment: Dart and CoffeeScript.

The main aim of TypeScript is to enable large-scale application
development with JavaScript.

TypeScript is a superset of JavaScript, so yes, it is still JavaScript.

Yes, TypeScript incorporates static typing.

Yes, TypeScript adds a class-based, object-oriented programming
model.

Yes, but you’ll need a declaration file for the library to enable
IntelliSense and strong typing.

Yes, with the TypeScript Language Service extension.

No concrete IDE support yet for Mac OS or Linux, although the
compiler itself is easy to install by itself or in Node.js.

It uses the JavaScript VM.

Dart (www.dartlang.org) is Google’s answer to JavaScript. This completely new
language addresses JavaScript’s issues, cleans up its semantics, adds static types (as
does TypeScript) and class-based object-oriented features, and improves startup times
and performance overall. It requires its own Dart VM (currently available only in a
developmental build of Chrome) for optimal performance but does come with a Dart-
to-JavaScript compiler. It shares some common goals with TypeScript—the main one is
making large-scale web application development possible—but in general, the two are
separate, with only the dart2js compiler linking the two languages.

The main aim of Dart is to learn from the mistakes of JavaScript
and provide an alternative.

No, it’s a new language but it compiles to JavaScript.

Yes, Dart incorporates static typing.

Yes, Dart adds a class-based, object-oriented programing model.

Not yet, although there is a js-interop library.

The Dart Editor IDE is available for Windows, Mac OS, and Linux.

Dart has its own VM, but when you compile it to JavaScript, you
can run it in any JavaScript VM.

CoffeeScript (http://coffeescript.org), meanwhile, tries not to replace JavaScript
but to produce a syntax based on other dynamic languages. This makes CoffeeScript easier
and quicker to write, as it then compiles into neat, well-formed JavaScript. Essentially, you
could say it’s JavaScript without the large numbers of braces, brackets, and parentheses,
but that would be missing the point. It sits in your tool chain at the same point as
TypeScript but helps you generate better JavaScript while using a non-JavaScript syntax.

CHAPTER 1 GETTING UP TO SPEED WITH TYPESCRIPT

9

The main aim of CoffeeScript is to provide a language that has
neater syntax than JavaScript (based on Ruby and Python) but
that compiles back into JavaScript.

No, it’s a different language, but like TypeScript, it’s a design-time-
only construct to help you write better JavaScript.

No, CoffeeScript does not add static typing.

Yes, CoffeeScript adds a class-based, object-oriented
programming model.

You can use external JavaScript libraries from inside CoffeeScript,
but you’ll get syntax errors if you compile JavaScript as is, without
converting it.

CoffeeScript is supported via the Web Extensions add-in for
Visual Studio. There are also several other Windows IDEs that
support CoffeeScript development.

CoffeeScript is available as a Node.js package and via APT for
Linux and Mac. Eclipse, Vim, TextMate, and many other IDEs
support CoffeeScript.

CoffeeScript compiles down to JavaScript, so all you need is a
JavaScript VM.

TypeScript vs. ECMAScript
The final question in this section is how TypeScript may evolve as we continue to use
it. It is an open source project, so we know that Microsoft will be listening to feature
requests as well as taking on bug patches, but we also know that it is trying hard to keep
its “additional features” aligned with the ECMAScript 6 standard. For example, the class,
module, and arrow function syntax conform to this proposed future standard.

Going one further, it has been stated that,

In the long term, we expect TypeScript to include everything that becomes
part of future versions of ECMAScript. In some cases, these will only be
available when targeting newer browsers, when the feature relies upon
some new runtime capability. But in many cases, where the features are
just syntactic sugar, we expect to be able to compile to simple and clean
JavaScript for ES3/ES5, which implements a very good approximation.

http://TypeScript.codeplex.com/workitem/15

Looking at the spec as it stands (http://wiki.ecmascript.org/doku.
php?id=&idx=harmony), there’s quite a lot to keep the project busy for several major
version releases. What’s not clear, however, is how Microsoft will react if ECMAScript
6 is altered such that realigning TypeScript with the new syntax would create breaking
changes across all existing TypeScript projects. Time will tell.

CHAPTER 1 GETTING UP TO SPEED WITH TYPESCRIPT

10

Installation
Now that we’ve established what TypeScript is, what it does, and what it doesn’t do, let’s
get cracking and install it. TypeScript has a couple of homes on the Internet:

typescriptlang.org is its official home. Here you’ll find the latest
bits to download, tutorials, and links to the main help forums.

typescript.codeplex.org is where you’ll find the latest source
code for the TypeScript compiler, along with a list of open bugs
and more discussion forums.

You’ll be concentrating on setting up a TypeScript development environment here
rather than working with nightly builds of the compiler. There are two environments
you’ll see how to build:

Visual Studio 2012

Sublime Text 2

Note You’ll also find links on typescriptlang.org to syntax highlighter files for Vim
and eMacs.

Visual Studio 2012
Microsoft has focused on giving TypeScript developers the best experience through the
non-Express editions of their Visual Studio IDE. In this section, you’ll see how to integrate
TypeScript as best as currently allows for work in Visual Studio Professional, Premium,
or Ultimate. You’ll find notes about using TypeScript with Visual Studio 2012 Express
editions and WebMatrix afterward.

Installing the Compiler and TLS Extension
Assuming you already have Visual Studio 2012 installed, the first task is to install the
TypeScript plug-in:

1. Open a browser at www.typescriptlang.org/#Download.

2. When it loads, click the link to Download the Plugin for Visual
Studio 2012. Currently this points to www.microsoft.com/en-
gb/download/details.aspx?id=34790.

3. Download the installer file TypeScriptSetup.<VERSION>.msi
and double-click to install it.

CHAPTER 1 GETTING UP TO SPEED WITH TYPESCRIPT

11

When the installer has finished, open Windows Explorer. Then do one of the following:

If you’re running 64-bit Windows, browse to C:\Program Files
(x86)\Microsoft SDKs\TypeScript\<VERSION> to find the
installed files.

If you’re running 32-bit Windows, browse to C:\Program Files\
Microsoft SDKs\TypeScript\<VERSION>.

Figure 1-1 shows the contents of the directory.

The key files are as follows:

tsc.exe is the TypeScript compiler as an executable file.

tsc.js is the command-line compiler called by tsc.exe. It
contains an options parser and a batch compiler needed for
compiling multiple files.

typescript.js is the core compiler without the options parser
and batch compiler.

tschost.dll is the scripting host for the compiler.

Figure 1-1. The TypeScript installation directory and its contents

CHAPTER 1 GETTING UP TO SPEED WITH TYPESCRIPT

12

TypeScriptLanguageService.vsix is the installer file for the
Visual Studio TLS extension.

lib.d.ts is a TypeScript declarations file containing the
type descriptions for the entire Document Object Model and
JavaScript standard runtime. The TLS extension uses this file to
provide IntelliSense and type checking when coding.

Note See Chapter 3 for the various command-line options available for the TypeScript
compiler and for more on declarations files.

At this point, you may want to do the following:

Check that the installation directory has been added to your PATH
environment variable so you can easily run tsc.exe from the shell
of your choice.

Download some more definitions files for your future use. If you
are likely to use some third-party JavaScript libraries in your
application (such as jQuery, WinJS, or Node.js), you’ll need these
for the TLS extension to provide IntelliSense and type checking in
your calls to these libraries.

You can find d.ts files for WinJS, WinRT, and jQuery 1.7 on
the TypeScript CodePlex web site. You’ll find them in the
source code listings in the typings directory, and also at
https://github.com/borisyankov/DefinitelyTyped, along
with many others.

The TLS extension adds several new templates and a new build step into
Visual Studio:

You can find the HTML Application with TypeScript project
template listed under Visual C# (not Visual C# Web) in the New
Project dialog box, as shown in Figure 1-2.

CHAPTER 1 GETTING UP TO SPEED WITH TYPESCRIPT

13

To add a TypeScript file to an existing project, use the TypeScript
File file template listed under Visual C# (not Visual C# Web) in
the New File dialog box, as shown in Figure 1-3.

When you add a new TypeScript file to your project, Visual Studio will open it
automatically and present some sample code, which you’ll need to delete.

Figure 1-2. Locating the TypeScript project template

Figure 1-3. Locating the TypeScript File file template

CHAPTER 1 GETTING UP TO SPEED WITH TYPESCRIPT

14

Tip If you can’t find the templates in Visual Studio, try rerunning the
TypeScriptLanguageService.vsix file manually.

The TSL extension also adds a few editing options if you’d like to tweak the way
Visual Studio displays your code. From the Tools menu, choose Options. When the
Options dialog box appears, expand Text Editor and then TypeScript, as shown in
Figure 1-4.

Using Web Essentials
An optional but very handy extension for Visual Studio 2012 only is Mads Kristensen’s
Web Essentials 2012. His version for VS 2010 does not include TypeScript support.

Note Mads Kristensen is the creator of BlogEngine.NET, among other things, and a
program manager for the Web Platform and Tools team at Microsoft. You’ll find his blog at
http://madskristensen.net.

Figure 1-4. The TypeScript Options dialog box in Visual Studio 2012

CHAPTER 1 GETTING UP TO SPEED WITH TYPESCRIPT

15

Web Essentials adds three very useful functions to your TypeScript development
process:

When you open a TypeScript file, Web Essentials presents it in a
split-screen editing panel, as shown in Figure 1-5. The left side
contains the TypeScript you are writing, and the right-hand panel
automatically updates with the JavaScript that will be generated.
By default, this is ECMAScript 5–compliant JavaScript. If you
want to compile it as ECMAScript 3–compliant JavaScript, you’ll
need to tweak the TypeScriptCompile build action for MSBuild,
which is discussed in Chapter 3. Web Essentials will automatically
compile the TypeScript file and update the preview as soon as it is
saved in Visual Studio.

Figure 1-5. The split-pane view of a TypeScript file in Visual Studio 2012 with the Web
Essentials extension installed

Optionally, you can also set Web Essentials to produce a minified
version of the generated JavaScript file.

Web Essentials will automatically produce source map (.js.map)
files for debugging purposes as soon as the .ts file is saved in
Visual Studio.

In fact, it’s a regular Swiss army knife for web developers, with features for style
sheet, JavaScript, CoffeeScript, LESS, and JSON development.

CHAPTER 1 GETTING UP TO SPEED WITH TYPESCRIPT

16

Assuming you already have Visual Studio 2012 and the TLS extension installed, you
can install Web Essentials 2012 in one of two ways:

Using the Extensions and Updates dialog box in Visual Studio itself:

a. From the Tools menu, choose Extensions and Updates.

b. When the dialog box appears, choose Online Visual
Studio Gallery and press Ctrl+E to move to the search box.

c. Type Web Essentials and wait. After a little while, Web
Essentials 2012 will appear at the top of the list in the
center of the dialog box.

d. Select its entry and then click Download to have it install.

Download and install it manually:

a. Open a browser and browse to
http://visualstudiogallery.msdn.microsoft.com/.

b. Click in the search box on the right-hand side, type Web
Essentials 2012, and press Return.

c. Click the entry for Web Essentials 2012 in the search
results list and then click Download on the following page.

d. Double-click the WebEssentials2012.vsix file you’ve
just downloaded to install it.

After installing Web Essentials 2012, you can set a number of TypeScript compiler flags
to be used by Web Essentials along with a couple of other options from within the Visual
Studio Options dialog box. From the Tools menu, choose Options. When the Options
dialog box appears, expand Web Essentials and then TypeScript, as shown in Figure 1-6.

Figure 1-6. TypeScript options for Web Essentials 2012

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 1 GETTING UP TO SPEED WITH TYPESCRIPT

17

For more information on the various compiler options, please see “The Compiler”
in Chapter 3.

Note These compiler options control Web Essentials’ compilation of your TypeScript
files across all your projects. Mads Kristensen is currently working with the TypeScript team
to come up with a less rigid set of options.

Other Visual Studio Editions
Although it may not be possible to enjoy the full TypeScript experience if you aren’t using
Visual Studio 2012 Professional or higher, remember that you can download a current
version of the compiler and sample files from http://typescript.codeplex.com and go
from there. There are also a few other things you can try.

Visual Studio 2012 Express Editions
The TLS extension for Visual Studio 2012 can be installed successfully into copies of
Visual Studio 2012 Express for Web. However, if you have VS 2012 Express for Windows 8
or Windows Desktop installed, the compiler will install successfully, but the TLS extension
will not.

The Web Essentials 2012 extension will not install on any Express edition of Visual
Studio.

Visual Studio 2010 Professional and Higher
It is apparently possible to install the TLS extension in VS 2010, by installing the compiler
as usual and then running the TypeScriptLanguageService.vsix installer manually
from the installation directory. Of course, this is not supported by Microsoft.

WebMatrix
Microsoft does not officially provide an extension for the WebMatrix IDE. However,
an unofficial extension is already available at http://extensions.webmatrix.com/
packages/TypeScript4WebMatrix/. This is an open source extension, the source code for
which can be found at http://macawnl.github.com/TypeScript4WebMatrix/.

CHAPTER 1 GETTING UP TO SPEED WITH TYPESCRIPT

18

On Node.js
The TypeScript compiler can be installed as an npm package on Node.js. Just type
the following:

npm install -g TypeScript

You’ll be able to compile code by running tsc helloworld.ts, for example. Note,
however, that the compiler itself is not exposed as an instruction, although there is an
issue raised in CodePlex to do this (WorkItem 97).

Sublime Text
If you’re not a fan of Visual Studio, you can grab a copy of the TypeScript compiler (either
from the CodePlex site or by installing the download) and then run it manually. Sublime
Text 2 users can also find a set of TypeScript syntax highlighter rules written by Microsoft
at http://blogs.msdn.com/b/interoperability/archive/2012/10/01/sublime-text-
vi-emacs-typescript-enabled.aspx.

To install these rules and include TypeScript compilation in your build system,
do the following:

1. Download the Sublime Text zip file from the MSDN Blogs
page noted earlier and extract the contents. You’ll find a file
inside called typescript.tmlanguage.

2. Open Sublime Text and from the Preferences menu choose
Browse Packages.

3. When Solution Explorer / Finder opens, create a folder in the
current directory called TypeScript and copy the .tmlanguage
file into it.

4. From the Tools menu, choose Build System New Build System.

5. Add the following to the new sublime-build file that has been
created for you:

{
 "cmd": ["tsc","$file"],
 "file_regex": "(.*\\.ts?)\\s\\(([0–9]+)\\,([0–9]+)\\)\\:
\\s(...*?)$",
 "selector": "source.ts",
 "osx": {
 "path": "/usr/local/bin:/opt/local/bin"
 },
 "windows": {
 "cmd": ["tsc.cmd", "$file"]
 }
}

6. Restart Sublime Text 2.

CHAPTER 1 GETTING UP TO SPEED WITH TYPESCRIPT

19

From JavaScript to TypeScript
Now that you’ve installed TypeScript, let’s look at a simple example. You’ll take an HTML
page with some JavaScript embedded in it and rewrite it as an HTML page backed by
some unobtrusive TypeScript. You’ll also see how to add jQuery and some basic structure
to the script that might be easier to read coming from .NET.

Note The purpose of this exercise is not to learn TypeScript as such, but to illustrate
some of the new syntax and how the TLS extension in Visual Studio can help.

Let’s start by creating a new TypeScript project:

1. Open Visual Studio. From the File menu, choose New Project.

2. From the Visual C# templates list, select HTML Application
with TypeScript and give it the name FirstSteps.

3. Click OK.

A Simple HTML+JS Page
The project template includes an HTML page backed with a TypeScript file that
demonstrates a few more features than we’ll use here, so it will be worth your while
coming back to it in a while. In the meantime, you can delete the files app.cs and
app.ts.

1. Press Ctrl+Shift+A, and add a new HTML page to the project
called SimplePage.html.

2. Add the following code:

<!DOCTYPE html>
<html>
<head>
 <title>A Simple Demo</title>
 <script>
 function displayDate() {
 document.getElementById("txtDemo").innerHTML = Date();
 }
 </script>
</head>
<body>
 <h1>My First JavaScript</h1>
 <p id="txtDemo">This is a paragraph.</p>
 <button type="button" id="btnGo" onclick="displayDate()">

CHAPTER 1 GETTING UP TO SPEED WITH TYPESCRIPT

20

 Display Date
 </button>
</body>
</html>

3. Press Ctrl+F5 to run this page. You’ll see that the current date
and time replaces the paragraph text when you press the
button.

TypeScript and IntelliSense
Now it’s time to split out the script from the HTML and rewrite the script as a TypeScript
file. The compiler targets only .ts files, so you can’t just embed TypeScript in an HTML
page. Here are the steps:

1. Create a copy of SimplePage.html and rename it
SimplePageTS.html.

2. Delete the <script> block from the <head> element in
SimplePageTS.html and also the onclick attribute from the
<button> element.

3. Right-click SimplePageTS.html in Solution Explorer and then
click Set as Start Page.

4. Press Ctrl+Shift+A, and add a new TypeScript file called
SimplePage.ts to the project. Delete its contents and add the
following, copying the displayDate function verbatim and
adding an event handler for the button.

function displayDate() {
 document.getElementById("txtDemo").innerHTML = Date();
}

document.getElementById("btnGo").addEventListener("click",
displayDate);

Note that as you type, you get full IntelliSense support for the JavaScript language,
the Document Object Model, and any functions you’ve written yourself. Also, if you hover
your cursor over a type, function, or variable, you’ll get a full set of information about it,
as shown in Figure 1-7.

CHAPTER 1 GETTING UP TO SPEED WITH TYPESCRIPT

21

5. Add a new <script> block as the last child of the <body>
element. Set its src attribute to SimplePage.js. This is the
JavaScript file our TypeScript will compile into. You could
reference the SimplePage.ts file directly here and have it
compiled on the fly on the web server, but the performance
loss would make this not a particularly viable option.

Errors and Declaration Files
If you run SimplePageTS.html, you’ll see that the page still functions as before, with the
TypeScript file being compiled into JavaScript when the site is built. Let’s introduce an
error and see what happens.

In SimplePage.ts, change displayDate() to read as follows:

function displayDate() {
 var currentDate: Date = new Date();
 document.getElementById("txtDemo").innerHTML = currentDate;
}

You’ll see that an error is raised, indicating that currentDate cannot be converted
to a string (see Figure 1-8). Also, the right-hand pane showing the resultant compiled
JavaScript has been grayed out.

Figure 1-7. The TypeScript Language Service displays type and method information as you
hover

CHAPTER 1 GETTING UP TO SPEED WITH TYPESCRIPT

22

Why the error? All we did was replace the Date() constructor with a variable
containing a Date object. Well, like the gotchas noted earlier, JavaScript silently coerces
the Date object into a string in the original example. When we strongly type
the currentDate variable as a Date, TypeScript does not allow this conversion to
happen implicitly.

In SimplePage.ts, right-click innerHTML and select Go To Definition from the
context menu (or press F12). Visual Studio will open the JavaScript runtime and DOM
declaration file lib.d.ts and highlight the line showing that the innerHTML property of
an HTMLElement object requires a string.

Return to SimplePage.ts and convert currentDate to a string with the following
code:

document.getElementById("txtDemo").innerHTML = currentDate.toUTCString();

jQuery, Ambient Declarations, and Reference Hints
At this point, sprinkling a little jQuery into our simple function would make it a little more
readable:

1. In SimplePageTS.html, add a reference to jQuery in the head
element.

<script src="http://code.jquery.com/jquery-latest.js"></script>

Figure 1-8. TypeScript errors are underscored in the edit window and listed in the Error List
window

CHAPTER 1 GETTING UP TO SPEED WITH TYPESCRIPT

23

2. In SimplePage.ts, replace the existing code with the following
jQuery equivalent:

function displayDateJQ(): void {
 var currentDate: Date = new Date();
 $("#txtDemo").text(currentDate.toUTCString());
}

$("#btnGo").click(displayDateJQ);

If you try to build the project now, you’ll see that TypeScript raises an issue about the
use of the jQuery $ variable. It’s not defined in the .ts file and it hasn’t been declared, so
there’s a problem. You’ll also note that there is no IntelliSense for jQuery. There are two
solutions to this.

The first is to add an ambient declaration for the $ variable by using the declare
keyword at the top of SimplePage.ts.

declare var $: any;

This tells the compiler that $ is a variable of type any and that it is defined in some
other (third-party library) JavaScript file, which the site has access to but the compiler
does not. The compiler takes it on trust that you know what you’re talking about. The file
will compile, and the page will run. But you still don’t get IntelliSense for jQuery.

The second option is to locate a declaration file for jQuery. Like lib.d.ts for the
DOM, this will contain all the type information, and class and interface definitions for the
jQuery library. The TLS will be able to refer to this, understand from it that $ is a variable
of type JQueryStatic, and provide IntelliSense from there.

Add a new folder called lib to your project and add a copy of the latest
jQuery declaration file to it. You’ll find it at https://github.com/borisyankov/
DefinitelyTyped/tree/master/jquery named jQuery-<version>.d.ts, where
<version> is the version you want. At the time of this writing, the version is 1.8.

At the top of SimplePage.ts, add the following reference hint to the compiler.
Remove the ambient declaration if you added it earlier.

/// <reference path="lib\jquery-1.8.d.ts" />

You’ll see that the file now compiles, and the page will run. If you retype some of the
function code, you’ll see that you now have IntelliSense for jQuery functions too.

Note If you can find a declaration file for the third-party library you are using, make
use of it. There is a suggestion on the CodePlex site for a declaration file community site
(http://typescript.codeplex.com/workitem/191), but while that is being considered,
have a look at https://github.com/borisyankov/DefinitelyTyped for now.

CHAPTER 1 GETTING UP TO SPEED WITH TYPESCRIPT

24

A Little Code Structure with Classes and Modules
In our final revision for this demonstration, you’re going to see how TypeScript’s class
and module features can help you refactor your code into a more maintainable structure.
As you’ll see in Chapter 2, class and module are roughly analogous to C#’s class and
namespace, allowing you to create objects as you would in .NET and give them some
scope. In this simple example, adding classes and modules is overkill, of course, but it’s
useful to give you a quick flavor of how they work in TypeScript.

1. In SimplePage.ts, wrap the DisplayDate function inside
a class called Chapter1. Note that you’ll need to delete the
function keyword preceding DisplayDate, as it is now an
object method.

2. Update the event handler to bind Chapter1.prototype.
DisplayDate to the button’s click event, as shown in the
following code.

class Chapter1 {
 DisplayDate(): void {
 var currentDate: Date = new Date();
 $("#txtDemo").text(currentDate.toUTCString());
 }
 }

$("#btnGo").click(Chapter1.prototype.DisplayDate);

TypeScript includes the ability to make object methods static so we don’t have to go
through an object’s prototype to find its method reference for the event handler.

3. Make DisplayDate a static method by adding the static
keyword before its name.

4. Update the event handler to bind Chapter1.DisplayDate to
the button’s click event.

class Chapter1 {
 static DisplayDate(): void {
 var currentDate: Date = new Date();
 $("#txtDemo").text(currentDate.toUTCString());
 }
 }

$("#btnGo").click(Chapter1.DisplayDate);

CHAPTER 1 GETTING UP TO SPEED WITH TYPESCRIPT

25

Finally, we’ll wrap the class in a module. There are two rules to remember for
accessing classes from outside the module it is declared in:

The class must be made visible by using the export keyword.

There’s no equivalent keyword in TypeScript for the using
keyword in C#, or imports in Visual Basic. References to the class
or static method must be fully qualified with the module and class
name.

5. Wrap the Chapter1 class inside a module called TypeScript.
Revealed.

6. Add the export keyword to the class statement so the event
handler can access it.

7. Update the event handler to reflect the new fully qualified
name for DisplayDate.

module TypeScript.Revealed {
 export class Chapter1 {
 static DisplayDate(): void {
 var currentDate: Date = new Date();
 $("#txtDemo").text(currentDate.toUTCString());
 }
 }
}

$("#btnGo").click(TypeScript.Revealed.Chapter1.DisplayDate);

Once again, you’ll find that the page runs as before. Hopefully, you’ve seen how
some of the new features of TypeScript—strong typing, ambient declarations, reference
hints, declaration files, classes, and modules—can help you feel more at home creating
TypeScript/JavaScript. Now might be a good time to go back to the default.html and
app.ts files originally generated with the TypeScript project and review the further syntax
features it demonstrates: class member variables and constructors, and lambda (arrow)
functions. All of these and more are covered in Chapter 2.

You can find the code for the FirstSteps project in the Source Code/Download area of
the Apress web site (www.apress.com).

CHAPTER 1 GETTING UP TO SPEED WITH TYPESCRIPT

26

Summary
JavaScript is in good health, but hasn’t the structure, tooling, or inherent maintainability
to be used for application-scale development. Or at least that’s what Microsoft thinks.
In this chapter, you’ve taken a wide-angle view of TypeScript—Microsoft’s answer to
these problems with JavaScript—and how it works. You’ve seen how to install it and
then written your first code with it, using basic syntax features and the TLS service to
rewrite some basic JavaScript embedded in a web page into a nicely structured piece of
unobtrusive TypeScript.

In the next chapter, you’ll look at the new language features of TypeScript.

27

CHAPTER 2

The New Syntax

In this chapter, you’re going to look at the TypeScript additions to the JavaScript language.
You’ll learn about its strong typing features first and then move on to its object-oriented
specific features. In particular, this chapter covers the following:

Static typing

Classes

Interfaces

Modules

TypeScript is a design-time-only language—that is, it exists only prior to compilation
(into JavaScript) in your IDE—so I’ll try to reveal as much of the tooling that’s relevant to
each feature as you go along as well.

Most of you reading this will be new to TypeScript, but not necessarily to JavaScript,
so I’ll assume you know at least some basic JavaScript as well as C# or Visual Basic. I’ll
drop into a discussion of JavaScript features only when relevant.

Tip If you’re completely new to JavaScript, have a look at
www.w3schools.com/js/default.asp for a quick guide and then come back. I’ll wait.

The Story So Far
In Chapter 1, you saw how to create an HTML Application with TypeScript project and
wrote your first TypeScript code:

/// <reference path="lib\jquery.1.8.d.ts" />

module TypeScript.Revealed {
 export class Chapter1 {
 static DisplayDate(): void {

CHAPTER 2 THE NEW SYNTAX

28

 var currentDate: Date = new Date();
 $("#txtDemo").text(currentDate.toUTCString());
 }
 }
}

$("#btnGo").click(TypeScript.Revealed.Chapter1.DisplayDate);

You saw that as you typed, the TypeScript Language Service (TLS) that is part of
the Visual Studio extension prompted you with type information and alerted you to any
errors it detected in your code. You also learned how declaration files are used to provide
TLS with IntelliSense and type-safe information for third-party libraries such as jQuery.
Finally, you saw that when the project was compiled, the TypeScript file was compiled
into native ECMAScript 3–compliant JavaScript for use in the HTML page you wrote to
accompany it, as shown in Figure 2-1.

You should have no problem figuring out how the code translates to the output, but
let’s point out a few features that you’ll investigate further in this chapter:

Line 1 references the jQuery declaration file so the TLS extension
can provide IntelliSense for and type-safe calls into the jQuery
library.

Line 3 declares a module, TypeScript.Revealed. Modules
function much the same way as namespaces do in C# or Visual
Basic. However, there’s no equivalent using or imports statement
in TypeScript, so a function must be called using its fully qualified
name, in this case TypeScript.Revealed.Chapter1.DisplayDate
(line 12).

Figure 2-1. The TLS displays the JavaScript your TypeScript will be compiled into

CHAPTER 2 THE NEW SYNTAX

29

Line 4 declares a simple class, Chapter1, much as we would create
a class in C#.

Line 6 declares a variable, currentDate, and gives it a type Date.
The TLS extension now regards this as strongly typed and will flag
an error if you try to use it like an Array or add it to a Number, for
example.

These features are arguably the most important language features in TypeScript, but
there are many more besides, as you’ll see in this chapter.

The Type System
TypeScript may bring a level of maintainable structure to JavaScript development through
its class and module features, but it is the optional static typing and type inference system
that TypeScript—through the TypeScript Language Service extension for Visual Studio
(TLS for short)—brings to design-time development that will reduce the number of errors
found at compile time as well as the tooling. Thanks to a strongly typed system, the TLS
extension can also support many features—such as IntelliSense, refactorings, renamings,
go-to definitions, and cross-file compiling—that .NET developers take for granted these
days. Of course, you have the option not to apply types to any of your TypeScript code
and have it behave dynamically as raw JavaScript does, but if you do start to define types,
the TLS can infer further types and provide refactoring information. In fact, even if you
don’t explicitly define a type for a variable, the TLS will attempt to infer one from the
values and literals you give it according to the (many) rules laid out in the TypeScript
specification. For example:

var a = 1584;
// type inferred as Number

var b = { height : 180, name : "Gandalf" };
// type inferred as { height : Number; name : String; }

Let’s not get ahead of ourselves, however. TypeScript inherits its five primitive
types—Number, String, Boolean, undefined, and null—from JavaScript. As you saw in
Chapter 1, because TypeScript is strongly typed, some of the classic JavaScript gotchas
caused by JavaScript converting values on the fly are easily caught by the TLS extension
and by the compiler. For instance:

var oneNumber : number = 1; // creates a Number
var oneString : string = "1"; // creates a String

console.log(oneNumber == oneString);
// JavaScript would output 'true'. TypeScript won't compile this

As you can see from the example, a variable’s type is declared by using the var
keyword and a postfix syntax rather than the prefix system we know from C# or Visual

CHAPTER 2 THE NEW SYNTAX

30

Basic. The type is separated from the name of the variable by a colon. When you declare
a variable, you have four options:

Declare its type and value (as a literal) in one statement.

Declare its type but no value. The value will be set to undefined.

Declare its value but no type. The variable will be of type Any (that
is, an old-school dynamic JavaScript variable), but its type may be
inferred by the TLS based on its value.

Declare neither value nor type. The variable will be of type Any,
and its value will be undefined.

For example:

var numberOfDwarves : number = 13;
// Option 1. Type and value set

var numberOfGoblins : number;
// Option 2. Type set but value undefined

var numberOfHobbits = 1;
// Option 3. Value set and type inferred as number

var lengthOfFilm;
// Option 4. Neither value nor type set yet.

Variables can also be declared with an interface type or a class type. You’ll look
at both interfaces and classes later in this chapter. For now, you’ll examine the other
possibilities—that a variable is of a primitive, function, or array type.

Note Variables have varying levels of scope in TypeScript, depending on where they are
declared. Those declared outside functions, classes, and modules have global scope and can
be accessed by all code in the application or in the web page on which it is declared.

Primitive Types
From a .NET perspective, JavaScript primitive types are slightly limited. The String and
Boolean types are as you would expect, and the Number type is the equivalent of
System.Double; there is no integer type in TypeScript or JavaScript.

var heroName : string = "Bilbo Baggins";
var orcsNeedAShower : bool = true;

The null and undefined types, however, are often a source of confusion. In a
nutshell, undefined is equivalent to a variable having no value or object assigned to it,

CHAPTER 2 THE NEW SYNTAX

31

while null means an object has been assigned to the variable but that object is null
(a la C#). So undefined is a value, while null is an object. To add a little more confusion,
variables cannot be typed as Undefined or Null, but they can be given the values
undefined and null explicitly (or by not setting a variable’s value when declaring it, in
undefined’s case).

var numberOfGoblins : number;
// Same as var numberOfGoblins : number = undefined;

var ageOfGandalf = undefined;
// Same as var ageOfGandalf : any = undefined;

var ageOfSaruman : number = null;
// Primitives can be given the null value (confusingly)

var ageOfRadagast = null;
// Same as var ageOfRadagast : any = null;

var error1 : Null; // Throws an error
var error2 : Undefined; // Throws an error

Note There’s a collection of JavaScript gotchas around null and undefined at
www.codeproject.com/articles/182416/A-Collection-of-JavaScript-

Gotchas#nullundefined if you aren’t already confused enough.

The Any Type
I’ve mentioned it in passing so far, but there’s one more variable type to cover in detail. If
you do not assign a variable a type, the TLS assigns it the Any type. If you do this, or set it
explicitly, it will be allowed to act as any standard, dynamically typed JavaScript variable
that can be set any value, from complex objects to a simple number.

var changeling; // assigned type Any implicitly
var morph : any; // assigned type Any explicitly

When a variable is given the Any type, the TLS will try to infer the type of the variable
you are using in order to make sure you’re not doing anything potentially incorrect
with it. However, if you do want to use it as a dumping ground for random values, that’s
entirely up to you. JavaScript allows this, and TypeScript does too.

Of course, as TypeScript actually gives you a strongly typed diving board over the
shark-infested waters of dynamic JavaScript variables, you should always prefer to assign
a specific type to a variable rather than the Any type. You’ll get no IntelliSense help or
red squigglies to help you deal with Any type variables correctly. Future iterations of the
TypeScript compiler will also verify that there are no spurious variables of type Any in
your program.

CHAPTER 2 THE NEW SYNTAX

32

Arrays
If you’re a C# developer, arrays use the same syntax and literals as you’re already used to.
An array type is defined by using the name of the type in the array followed by a pair of
square brackets. For example:

var emptyArray: any[] = new Array();

Array literals are written as comma-separated lists surrounded by a pair of square
brackets:

var actors: string[] = ["Martin Freeman", "Ian Holm", "Elijah Wood"];

Tip Always prefer to declare an untyped array as any[] rather than just assign it to
new Array().

You can assign only one type to all the elements in an array. You can’t state a set of
allowed types. You can, however, declare the array to be of type any[], in which case the
array can hold any value of any type—numbers, objects, functions, other arrays, and so forth.

Arrays are of variable length, and not fixed length as in C#. You can retrieve the
number of items in the array by using its length property and add or remove items with
its push or pop functions as you would in .NET.

You can iterate through the items in an array by using either for or for..in loops as
demonstrated here:

// standard for loop
for (var i = 0; i < actors.length; i++)
{
 console.log(actors[i]);
}

// for..in loop
for (var actor in actors)
{
 console.log(actor);
}

Note that you can reference an item in an array by using both a number and a string.
However, using a string indexer returns a value of type any rather than one of type string.
For example:

var asExpected = actors[0]; // returns string "Martin Freeman"
var gotcha = actors["Ian Holm"]; // returns value of type any

The same is true of all arrays of type T[]. Using a numerical index returns a value of
type T. Using a string index returns a value of type Any.

CHAPTER 2 THE NEW SYNTAX

33

Arrays of Arrays
Multidimensional arrays, or arrays of arrays, are also allowed in TypeScript, and declared
to be of type T[][]. For example:

var trilogies: string[][] = [
 ["An Unexpected Journey", "The Desolation of Smaug", "There and Back Again"],
 ["The Fellowship Of the Ring", "The Two Towers", "The Return Of The King"]
];

As you can see, multidimensional array literals can quickly appear a bit confusing
(especially when dealing with arrays of functions, or arrays of arrays of functions), but
they remain simply a comma-separated list of comma-separated lists. If you prefer, you
can build them up programmatically:

var trilogies: string[][] = new Array();
trilogies.push(["An Unexpected Journey", "The Desolation of Smaug",
"There and Back Again"]);
trilogies.push(["The Fellowship Of the Ring", "The Two Towers",
"The Return Of The King"]);

Note The TypeScript spec says, “Arrays are obviously a prime candidate for generic
treatment. We expect array type literals to eventually become syntactic sugar for generic
instantiation of a global interface type Array<T>.”

Casts
One of the more common issues of working with strongly typed variables is the need to
cast between types from time to time. Naturally, it’s preferable to use a method such as
ToString or ParseInt to do the conversion for you, but there are occasions in both .NET
and TypeScript programming when an explicit cast (boxing) is required. In the TypeScript
specification (section 4.13), it’s referred to as type assertion, but it’s still casting. The
syntax is to put the target type between < and > symbols and then place it in front of the
variable or expression that returns a value. For example:

var a : int = <int>SomeNumberAsAString;

Those familiar with client-side web programming using JavaScript
and the Document Object Model (DOM) may occasionally come across
issues as a result of the strongly typed nature of TypeScript that would not
arise in plain JavaScript. For example, in the Stack Overflow post-
http://stackoverflow.com/questions/12686927/typescript-casting-htmlelement,
a user copied some working DOM-manipulation code straight from JavaScript into

CHAPTER 2 THE NEW SYNTAX

34

TypeScript and was told a method he was calling on an HTML element did not exist. It
transpired that JavaScript was transparently converting the element his code selected (an
HTMLElement) into a different type that did define the method (an HTMLScriptElement),
but as TypeScript would not do that without an explicit cast, an error occurred. However,
we can cast the type of the returned object to an HTMLScriptElement.

var script = <HTMLScriptElement>document.....

Don’t forget that type assertions are only a design-time feature of TypeScript
designed to make sure that you can indeed cast from one type to another and that what
you call on the newly cast object is possible. TypeScript uses structural (duck) typing, so if
a Duck object has the same methods and properties as a Pig object—Oink(), Snort(), and
so forth—apart from it being a very strange duck, it can be cast into a Pig object.

Type assertions check for assignment compatibility in both directions.
Thus, type assertions allow type conversions that might be correct, but
aren’t known to be correct.

Section 4.13 of the TypeScript specification

In TypeScript, then, you won’t be able to cast an integer to an HTMLScriptElement,
for instance, but you would in JavaScript, and you would find out something was wrong
only at runtime.

Ambient Declarations
As you saw in Chapter 1, you can use ambient declarations to create a placeholder
variable to represent an object or other variable not declared in full in your current
TypeScript file. For example, you might want to use a third-party JavaScript library that
does not have its own declaration file. You can use an ambient declaration to introduce
an object created in that library into your script without having the compiler throw an
error because it does not know what the variable is referring to. For example, if you
wanted to add a reference to the global jQuery object $ without adding a reference to the
jQuery declaration file, you would write this:

declare var $;

The key is to prefix the variable declaration with the declare keyword, as you saw in
the example at the end of Chapter 1.

Functions
Perhaps the biggest difference between JavaScript and today’s .NET languages is the
way in which functions are used. Both use them to group code statements together for
reuse, but in JavaScript (currently), functions are also the only way of structuring content.

CHAPTER 2 THE NEW SYNTAX

35

Classes and modules in TypeScript are compiled down to constructor functions that
put properties on an object instance. Closures (access to local function variables from
outside the function) are used to encapsulate data. Functions are also first-class objects in
JavaScript/TypeScript, so they can be assigned to a variable, passed as a parameter
(for example, as a callback), or returned from a (factory) function.

TypeScript distinguishes between three types of functions:

Top-level (global) functions are defined outside a class or module
declaration. They have global scope and can be called at any
point from code. They have a name.

Class methods are named functions declared as part of an object
class. They can be called only after the class has been instantiated
unless they are marked as static.

Anonymous functions do not have a name. They are typically used
when declaring a function that will be used in only one place.

As it does with variable declarations, TypeScript allows you to strongly type a
function’s signature with the net result that the TLS alerts you to any invalid passed
parameter values. It also provides you with IntelliSense for those parameters when you
are calling the function (which turns out to be invaluable when trying to pass callback
functions). For example:

function CelsiusToFahrenheit(celsius: number): number {
 return (celsius * (9 / 5) + 32);
}

function EncodeAndLog(
 unencodedString: string,
 encodefn: (rawString: string) => string): void {
 console.log(encodefn(unencodedString));
}

function CalculateArea(rect: {width: number; height: number;}): number {
 return rect.width * rect.height;
}

We can provide a type for each argument in a function’s signature and its return type
by using the same postfix syntax for typing variables. The parameters for the function are
declared as a comma-separated list within a pair of parentheses, followed by a colon and
the return type. If the function does not return a type, you should indicate this by using
the Void type. As with variables, the TLS will do its best to infer the correct signature for
those functions not given types explicitly. Just hover the cursor over a parameter or the
return value, and a tooltip will appear, displaying what the TLS believes is the correct
type, although it will default to the Any type if its use is ambiguous in some way.

CHAPTER 2 THE NEW SYNTAX

36

function fnName(
 param1name : param1type,
 param2name : param2type,
 ...,
 paramNname : paramNtype) : returnType { ... }

Indeed, the net result is exactly the same as you would see declaring a type for a
function expression (a variable holding a function) with one optional change. The return
type of the function can be prefixed by either a colon or an arrow (=>). For example:

// Set to undefined
var logFn : (rawString: string) => void;

// Set to named function
var converterFn : (celsius: number) => number = CelsiusToFahrenheit;

// Set to anonymous function
var areaFn : (ellipse: {r1: number; r2: number;}) => number =
 function(ellipse) {
 return Math.PI * ellipse.r1 * ellipse.r2;
 };

// An array of typed functions - both syntaxes demonstrated
var areaCalculators : { (s: Shape) => number; }[];
var areaCalculators : { (s: Shape) : number; }[];

Functions can be assigned to variables only if their signature completely matches the
“brand” of the variable. In other words, all parameter names and types must match—not
just types. The comparison is not based solely on the position of the parameters and
their types.

Note TypeScript does not currently support a documentation system such as XMLDoc
for .NET. Discussion is continuing at
http://typescript.codeplex.com/ discussions/397660 as to which documentation
style should be used.

Variations on a Signature
TypeScript functions may take three types of parameters when defined:

Positional parameters

Optional parameters

Rest parameter

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 2 THE NEW SYNTAX

37

Positional Parameters
Positional parameters, declared as paramName[:paramType], which you’ve used
exclusively up to now, require you to specify a value for them when you call the
procedure:

function CelsiusToFahrenheit(celsius: number): number {
 return (celsius * (9 / 5) + 32);
}

Optional Parameters
Optional parameters are declared with a postfix question mark: paramName?
[: paramType]. These should be set as the last arguments in a call to a function:

var kelvin: number;
function CelsiusConverter (celsius: number,
 calculateKelvinToo?: bool = false): number {
 if (calculateKelvinToo) { kelvin = celsius −273.1; }
 return (celsius * (9 / 5) +32);
}

JavaScript doesn’t have an explicit hasValue method as C# does to check whether
an optional parameter has been given a value. The best way to overcome this is to specify
a default value for the parameter. If the function is called without a value assigned to the
optional parameter, it is given the default value.

function CelsiusConverter (celsius: number,
 calculateKelvinToo?: bool = false): number {
 ...
}

If you’d prefer not to assign a default value, you can check whether a parameter has
been given a value by comparing it to null and undefined:

var kelvin: number;
function CelsiusConverter (celsius: number,
 calculateKelvinToo?: bool): number {
 if (calculateKelvinToo !== null && calculateKelvinToo !== undefined) {
 if (calculateKelvinToo) { kelvin = celsius −273.1; }
 }
 return (celsius * (9 / 5) +32);
}

Note that in this example, we take advantage of the fact that functions can access
variables outside their scope, to make up for the fact that TypeScript/JavaScript has no
equivalent to an out parameter in .NET.

CHAPTER 2 THE NEW SYNTAX

38

Rest Parameter
The rest parameter, declared as ...paramName[:paramType] (three periods), represents
the last argument in a call to a procedure and can hold an arbitrary number of arguments
in addition to those specified before it. These arguments are held in an array of type T[]
that can be iterated over by using a for loop:

function CountDwarvesTallerThan(minHeight: number, ...dwarves: Dwarf[]) :
number {
 var count: number = 0;
 for (var i = 0; i < dwarves.length; i++) {
 if (dwarves[i].height > minHeight) {
 count++;
 }
 }
 return count;
}

Remember not to use a for..in loop over your rest parameter, as this will turn your
arguments into strings rather than the desired type (unless, of course, they are strings
anyway, in which case, job’s a good ’un).

Function Overloads
TypeScript also supports the overloading of functions, albeit without quite the same
efficacy as .NET. JavaScript has no concept of method overloading itself, so while the TLS
enforces strong typing against the various overloads at design time, you still have to write
a generalized form of the function that will work in “raw” JavaScript that discerns which
one of the overloads you’re using and operates accordingly.

All of this explanation really requires an example to clarify the picture.
In .NET, a method can be overloaded by creating multiple functions with the same

name, but each working with different parameter types. For example, in C# I might
overload a function called CalculateArea like so:

public double CalculateArea(Square shape)
{
 return shape.x * shape.y;
}

public double CalculateArea(Ellipse shape)
{
 return shape.r1 * shape.r2 * Math.PI;
}

CHAPTER 2 THE NEW SYNTAX

39

public double CalculateArea(Triangle shape)
{
 return 0.5 * shape.x * shape.y;
}

The function name is the same, but the signature of each overload (that is, their
name and parameters but, crucially, not the return type) is different.

In TypeScript, a method is overloaded by stacking each signature variant of the
function on top of a single implementation of the function. For example:

function CalculateArea(shape : Square) : number;
function CalculateArea(shape : Ellipse) : number;
function CalculateArea(shape : Triangle): number;
function CalculateArea(shape : Shape) : number { // <−− The crucial line!!
 if (shape instanceof Square) {
 return (<Square>shape).x * (<Square>shape).y;
 }
 if (shape instanceof Ellipse) {
 return (<Ellipse>shape).r1 * (<Ellipse>shape).r2 * Math.PI;
 }
 if (shape instanceof Triangle) {
 return 0.5 * (<Triangle>shape).x * (<Triangle>shape).y;
 }
 throw new TypeError("Unsupported type!");
}

The key differences here are as follows:

You must explicitly type your functions—parameters and return
types—if you want to overload them.

There is an additional generalized function signature at the
bottom of the stack.

You need to generalize all parameters and the return type.
Use optional parameters if the number of parameters varies
plus default parameter values as appropriate.

You need to generalize the return type as well: it is key.

The signature of the implementation has to be compatible
with all of the overloads.

You must type-check the parameters within the function body.
Again, the final JavaScript method is not type safe, so TypeScript
forces you to write overloaded functions in this way. Use typeof
to test for primitive types and instanceof for everything else.

CHAPTER 2 THE NEW SYNTAX

40

Basically, you are creating just one function and giving it a number of signatures so
that TypeScript doesn’t give compile errors when you pass it differently typed parameters.
This means that while you’re still writing the code, the TLS will strongly type the function
calls correctly, but when compiled to JavaScript, the concrete function alone will be
visible. For example, the overloaded CalculateArea function in the preceding code
compiles down into the following JavaScript:

function CalculateArea(shape) {
 if(shape instanceof Square) {
 return (shape).x * (shape).y;
 }
 if(shape instanceof Ellipse) {
 return (shape).r1 * (shape).r2 * Math.PI;
 }
 if(shape instanceof Triangle) {
 return 0.5 * (shape).x * (shape).y;
 }
 throw new TypeError("Unsupported type!");
}

And, unless you call CalculateArea from outside your TypeScript, you know that
all the calls to this concrete function will work with the objects sent to them because all
calls have been vetted by the TLS. (They may throw a TypeError, but that still counts as
working in this case.)

Classes
As .NET developers, we take for granted that we can group properties, methods, and
events into classes representing objects that interact within a system. It is fundamental
to the concept of object-oriented programming that we can create a class, instantiate
it, call methods, and handle events on it. Unless we’re using unsafe code, we even take
for granted that the garbage collector will free the memory the object used after it is no
longer in use. JavaScript has been a capable, object-oriented language for some time now
(as Douglas Crockford has taken pains to point out at http://javascript.crockford.com/
inheritance.html and http://javascript.crockford.com/prototypal.html).
However, for Java, C#, and Visual Basic developers, the way in which JavaScript
implements said object-oriented capabilities is awkward. Fortunately, TypeScript
implements a class syntax system that is very similar to C# and also very close to the class
proposal in ECMAScript 6.

To define an empty class, the syntax is simply as follows:

class SimpleWebSocket {
}

CHAPTER 2 THE NEW SYNTAX

41

When compiled into JavaScript, it looks like the following code. The TypeScript
version is clearer and carries the bonus that you can cross-compile the code into
JavaScript compliant with both ECMAScript 3 and ECMAScript 5 (and ECMAScript 6 too,
in time, you would imagine) for free.

var SimpleWebSocket = (function () {
 function SimpleWebSocket() { }
 return SimpleWebSocket;
})();

Enough looking at what JavaScript is generated. The point is to get away from that.
Have a look at JavaScript: The Definitive Guide by David Flanagan (O’Reilly Media, 2011)
if you want to understand it.

Note TypeScript has no equivalent to structs in .NET.

Class Members
TypeScript classes provide for the same three types of class members you would expect
to find in .NET:

Properties and fields to store data

Methods to define behavior

Events to provide interactions between different objects and
classes

Let’s look at each of these in turn.

Properties and Fields
A common practice in .NET is to create a private field to store data and then a public
property with get and set functions that allow you to implement any rules or constraints
for retrieving or writing to the data in the field. In JavaScript, the option to create such
a public property has only existed since ECMAScript 5 was released. As the majority
of JavaScript VMs out there are still only ECMAScript 3–compliant, creating properties
with getters and setters is not often done. In TypeScript, however, implementing public
properties over private fields is allowed and enforced through the TLS extension in Visual
Studio. The compiler just leaves them in when compiling down to ECMAScript 5 code
and refactors them into methods when compiling into ECMAScript 3 code.

For example, to define a simple read-write field, we have this:

class SimpleWebSocket {
 serviceUrl: string;
}

CHAPTER 2 THE NEW SYNTAX

42

If you wish to create a public property over a private field, you can include additional
logic for reading and writing it in the getter and setter methods:

class SimpleWebSocket {
 private serviceUrl: string;
 get ServiceUrl(): string {
 // Fields and Properties are always referred to in class prefixed with 'this.'
 return this.serviceUrl;
 }

 set ServiceUrl(value: string) {
 this.serviceUrl = value;
 }
}

Points to note here:

The serviceUrl private field is private only at design time. The
TLS can enforce the intention of a private field only at design
time, as JavaScript itself has no concept of a private member field.
However, if the variable acts as a private one in TypeScript, it will
do similarly in the compiled JavaScript.

You cannot add a return type to a setter method. (It is assumed to
be null.)

Omitting the get or set property method does not mean that
property is read-only or write-only in JavaScript as it would be in
C#. As noted in the first point, you can still access the read-write
private variable directly.

Whether you use fields or properties, you will always need to refer to them inside the
class by using the this.name syntax, as demonstrated in the preceding code.

Methods
To define a method of a class, simply add a function in the class without the function
keyword you would use if declaring a global function as demonstrated earlier in this
chapter:

class SimpleWebSocket {
 Close(code: number, reason: string): void {
 console.log(code + " : " + reason);
 this.state = this.SocketState.CLOSED;
 }
}

CHAPTER 2 THE NEW SYNTAX

43

As noted earlier, if you wish to overload a class method, you do so by stacking
signatures for that method on top of each other and implementing a generalized form of
the many functions:

class SimpleWebSocket {
 Close(code: string): void;
 Close(code: string, reason: string): void;
 Close(code: number): void;
 Close(code: number, reason: string): void;
 Close(code: any, reason?: string): void {
 var logEntry: string = code.toString();
 if (reason) { logEntry += (" : " + reason); }
 console.log(logEntry);
 this.state = this.SocketState.CLOSED;
 }
}

Note If you want to add a custom method to a built-in JavaScript object, you should
do so on the object’s prototype property. However, this breaks the TLS type analysis. See
http://typescript.codeplex.com/workitem/4 for the current workaround and status for
this bug.

Arrow Functions

Another JavaScript gotcha that TypeScript helps us fix at design time concerns the this
variable. You’ve seen previously that to reference class members from within other class
members, you prefix them with this:

class SimpleWebSocket {
 state : number;

 Close(code: number, reason: string): void {
 console.log(code + " : " + reason);
 this.state = this.SocketState.CLOSED;
 }
}

However, when dealing with the DOM, it is possible to lose sight of what your this
variable is referring to because its lexical scope has changed. Take, for example, any of the
window.onmouse* events—onmouseover, onmousemove, and so forth.

When assigning any of these events a handler function, the function overrides
this to refer not to your class, but to the element your mouse has just interacted with.
In the following example, then, the function beginMenuTest() tries to alter the value
of the UITester class property menuTouches twice. First it correctly resets it to zero,

CHAPTER 2 THE NEW SYNTAX

44

but the second reference is within an anonymous function handling an onmouseenter
event. Within the scope of the anonymous function, this.menuTouches refers to the
menuTouches property of the menu object the mouse has just moved over—which
probably doesn’t exist.

class UITester {
 menuTouches : number;
 sidebarTouches : number;

 beginMenuTest(): void {
 this.menuTouches = 0; // Right!!
 menu.onmouseenter = function (e) {
 this.menuTouches++; // Wrong!!
 }
}

TypeScript provides the solution by allowing us to use arrow functions (which have
a very similar syntax to lambda functions in C#) that retain a lexically scoped this variable.

In the beginSidebarTest() method, both references to this.sidebarTouches refer
to the property of the UITester class:

 beginSidebarTest() : void {
 this.sidebarTouches = 0; // Right!!
 sidebar.onmousemove = e => {
 this.sidebarTouches++; // Still right!!
 }
 }
}

Note that the TLS warns you to use arrow functions only indirectly. You won’t see
any red squigglies highlighting something wrong with beginMenuTest, because there
isn’t. However, the TLS will infer this to be of type UITester in the first instance and of
type any in the second instance (within the function handler), so IntelliSense will appear
to stop working.

Constructors

For every class implementation, there is at least one constructor function that is executed
automatically when an object of that class is created. Taking its cue from ECMAScript 6,
class constructor functions are identified by using the constructor keyword:

class SimpleWebSocket {
 constructor (url: string) {
 this.serviceUrl = url;
 this.state = this.SocketState.OPEN;
 this.messagesSent = 0;
 }
}

CHAPTER 2 THE NEW SYNTAX

45

You can also overload your constructor, but don’t forget to treat it as you would any
other overloaded method. At the bottom of your stack of signatures must be a generalized
function providing the concrete implementation of the constructor used when compiled
into JavaScript:

class SimpleWebSocket {
 constructor ();
 constructor (url: string);
 constructor (url?: string) {
 if (url !== null && url !== undefined) {
 this.ServiceUrl = url;
 }
 else {
 this.ServiceUrl = "http://localhost:80";
 }
 this.state = this.SocketState.OPEN;
 this.messagesSent = 0;
 }
}

Don’t forget to reference your class properties and fields by using the this prefix.

Events
You saw in Chapter 1 how handler methods can be attached to events by using the DOM
or jQuery:

// Using the DOM
document.getElementById("btnGo").addEventListener("click", displayDate);

// Using jQuery
$("#btnGo").click(displayDateJQ);

In C#, a class event is declared by using the event keyword and by then also
declaring a delegate function to be called when the event has occurred:

// Declare the delegate (if using non-generic pattern).
public delegate void SampleEventHandler(object sender, SampleEventArgs e);

// Declare the event.
public event SampleEventHandler SampleEvent;

In TypeScript, these two declarations are combined into an optional class property
defined to be of a certain function type but currently undefined:

class SimpleWebSocket {
 onOpen?: (ev: Event) => any;
}

CHAPTER 2 THE NEW SYNTAX

46

Access Modifiers
You can add public and private accessors to the fields, properties, and methods inside
a class:

public (the default) indicates that the class member is available
to all code in another module after it has been exported.

private indicates that the class member is available only to other
code in the same assembly.

For instance:

class SimpleWebSocket {
 private serviceUrl : string;
}

Note, however, that, as discussed earlier, the class member will not actually be
accessible only to the class when compiled as JavaScript. It is only at design time that the
TLS enforces the concept of private members.

Instantiating Classes
To create an object, you can instantiate a class by using the new keyword, exactly as you
would in C#:

var TestSocket : SimpleWebSocket = new �
 SimpleWebSocket("http://testthis.com");

After you’ve created the object, you can assign and retrieve that instance’s properties
and invoke its methods:

console.log("Opened a connection to " + TestSocket.ServiceUrl);
TestSocket.Send("Test the socket");
TestSocket.Close(200, "OK");
console.log(TestSocket.state.toString());

Check whether you can create an instance of a class by using an object literal.

Static Classes and Members
You can use the static keyword to indicate that a class property, field, or function is
shared by all instances of a class, as you would in C# or by using the shared keyword in
Visual Basic. To access the static member, use the name of the class without
instantiating it:

class SimpleWebSocket {
 static origin: string;

CHAPTER 2 THE NEW SYNTAX

47

 static ThrowError(code: number) {
 this.Close(code); // NB. You can call non-static methods from a
static method.
 }
}

SimpleWebSocket.origin = "Program Name";
SimpleWebSocket.ThrowError(404);

Note that if you are referencing the static member from within a class function, you
do not need to prefix it with this:

class SimpleWebSocket {
 constructor (url: string) {
 this.ServiceUrl = url; // non-static members.
'this' required
 this.state = this.SocketState.OPEN;
 this.messagesSent = 0;
 SimpleWebSocket.origin = "This Program"; // static member. No
'this' required.
 }

 static origin: string;
}

Unlike .NET, static methods do not have to call only static methods or reference only
static fields and properties. Also, while there is no explicit way to label a class as static, it
is perfectly correct to label every member of a class as static, which amounts to the same
thing. There is just no way to have the TLS check that all members of a class are static. You
have to do it yourself.

Object Literals vs. Anonymous Types
In .NET, anonymous types allow you to create objects without a class definition. The
compiler then generates a class for you that has no name and only the properties you
specify when creating the object. For instance:

var simpleAnonymousObject = new { This = 123, That = "A string" };

In TypeScript, a similar system occurs through the use of JSON-formatted object
literals. A variable can be assigned an object literal—the new keyword is not required in
TypeScript—and the TLS then infers the type of that variable.

var anon = { This : 123, That : "A String" };

Hover your cursor over the anon variable name and you’ll see the inferred type,
which in this case is

CHAPTER 2 THE NEW SYNTAX

48

{
 This: number;
 That: string;
}

Inheritance
JavaScript mirrors the concept of class inheritance through the creation of a prototype chain
on your objects. While TypeScript compiles the relationship between classes and base
classes into similar code, the actual syntax to indicate that relationship in TypeScript is more
akin to that of .NET, using the extends keyword to indicate an inheritance relationship.

class ComplexWebSocket extends SimpleWebSocket {
}

If you need to reference the base class from within the derived one—for example, to
access the base class’s (constructor) function, use the super keyword:

class ComplexWebSocket extends SimpleWebSocket {
 constructor (url: string, protocol: string) {
 super(url); // calls the base class constructor function
 this.protocol = protocol;
 }

 protocol: string;

 ThrowError(code: number) {
 // some code
 super.Close(code); // calls Close on the base class.
 }
}

In the case of instantiating an object of the derived type, the base class’s constructor
function will be called automatically if it isn’t done so explicitly (as shown in the
preceding code) within its own constructor.

Note If you follow the same practice as in .NET of writing one class per file, you’ll need
to make sure to add a reference to the file containing the parent class. TypeScript won’t look
around the project for the class you’re referencing automatically. It must be told where to look.

/// <reference path="SimpleWebSocket.ts"/>

class ComplexWebSocket extends SimpleWebSocket {

 ...

}

CHAPTER 2 THE NEW SYNTAX

49

Overriding Methods from the Base Class
TypeScript allows you to override the method of a base class simply by writing another
method in the derived class with the same method signature or of a valid subtype of
the original signature. For instance, let’s say the base class defines the method Send as
follows:

Send(data: string): void {
 console.log(data);
 this.messagesSent++;
}

If you needed to override this method, you could add either of the following to
the derived class, and all would be well. There is no need to mark it specifically as an
overridden method as you would in C# or Visual Basic with an override or Overrides
keyword, respectively:

Send(data: string): void { // <−− matches signature in base class
 // new code
}

Send(data: any): void { // <−− is a generalized form of the function
 // new code
}

At this point, within the derived class definition, you can call the new version of Send
by calling this.Send() and the base class version of it by using super.Send(). However,
you do not have access to super.Send() from an instantiation of the derived class.

var cws = new ComplexWebSocket("someUrl", "http");

// Calls Send defined in ComplexWebSocket or base class version
// if not defined in ComplexWebSocket
cws.Send("a message");

// Throws an error.
cws.super.Send("another msg");

If you want to override a function that is overloaded in the base class, note that you
must list out all the signatures for that overloaded method in the derived class as well.
You can’t just override one form of the function; you must override the generalized form
instead. For example, the SimpleWebSocket class defines a Close method with four
overloads:

Close(code: string): void;
Close(code: string, reason: string): void;
Close(code: number): void;
Close(code: number, reason: string): void;

CHAPTER 2 THE NEW SYNTAX

50

Close(code: any, reason?: string): void {
 var logEntry: string = code.toString();
 if (reason) { logEntry += (" : " + reason); }
 console.log(logEntry);
 this.state = this.SocketState.CLOSED;
}

To override it in the ComplexWebSocket class that derives from SimpleWebSocket,
you’ll need to include this:

Close(code: string): void;
Close(code: string, reason: string): void;
Close(code: number): void;
Close(code: number, reason: string): void;
Close(code: any, reason?: string): void {
 // ^^ or a further generalized form ^^ of the function signature
 // new code
}

Interfaces
In .NET, interfaces define a set of properties, methods, and events but do not provide their
implementation. You cannot instantiate an interface as you can a class. Classes inherit
from interfaces and must implement each item in the interface exactly as defined. In this
way, interfaces perform a dual role in .NET:

As a marker that a class has a certain kind of behavior—for
instance, IContainer, IEnumerable, IDisposable.

As a generalization of a group of classes without being a base type.
For instance, you might give an interface as a function’s return
type indicating that any number of object types might be returned
by the function but that they will all have a minimum level of
common functionality as given in the interface. This idea is a
cornerstone of dependency injection.

These same purposes are true of interfaces in TypeScript, but there are significant
differences in how they are used.

They are a design-time-only construct for the TLS to consume
and provide useful type checking, IntelliSense, and refactoring
services, and for us to use as a shortcut. They vanish after
compilation, replaced with the object types they represent.

They are not inherited by classes. They are object types for
application to variables, parameters, and return types.

TypeScript interfaces are open-ended. That is, rather like partial
classes in .NET, they can be defined across several files and the
combination of the parts is the final object type actually applied
to variables assigned that interface.

CHAPTER 2 THE NEW SYNTAX

51

Common-sense dictates that we’ll use interfaces as a refactoring tool for function
types, behavioral sets of functions a la IComparable, and full class definitions.

Note There’s no convention set for naming interfaces in TypeScript, but we’ll prefix
them with IFn for function types and I otherwise, as is done in .NET.

Using Interfaces as Function Types
If one of the goals of TypeScript is to make JavaScript more maintainable, then using
interfaces to represent function types will definitely help. It can certainly make things
more legible, and the clearer code is, the easier it is to maintain. Consider the following
code:

var sayHello: (input: string) : string = function (s: string) {
 return "Hello " + s;
}
var stringUtils: { (input: string): string; }[];
stringUtils.push(sayHello);

Even though sayHello is just a function that takes a string and returns one, and
stringUtils is an array of such functions, it’s not difficult to see how such types can
quickly become difficult to write and interpret with more parameters, perhaps some of
those being functions and arrays of functions everywhere. A parenthetical crisis!

Fortunately, we can refactor the function signature into an interface, and things
become instantly more legible. And bracket free.

interface IFnStringManipulator {
 (input: string) : string;
}

var sayHello: IFnStringManipulator = function (s: string) {
 return "Hello " + s;
}
var stringUtils: IFnStringMaipulator[];
stringUtils.push(sayHello);

At this point, we should note that the tooling to go with this useful refactoring is
a bit lacking at the moment. There’s currently no support in Visual Studio for the
Extract Interface refactoring available with .NET languages. (See the discussion at
http://typescript.codeplex.com/discussions/400724.) Also, IntelliSense tells you
that sayHello is of type IFnStringManipulator rather than presenting the actual function
signature. Of course, you can right-click IFnStringManipulator and choose Go To
Definition (F12) to see what it is, but the to-and-fro between files is a pain.

CHAPTER 2 THE NEW SYNTAX

52

Using Interfaces as Object Types
As .NET developers, it’s easy to understand why defining interfaces as behavioral sets of
functions is a good idea. It’s quite easy to translate those concepts into TypeScript. For
instance:

interface IComparable {
 CompareTo(obj: any): number;
}

interface IEnumerable {
 [index: number]: any;
}

interface ICloneable {
 Clone(): any;
}

And it’s not too difficult to check whether an object implements an interface either.
You need to check that all the elements in the interface exist on the object.

function ImplementsICloneable (obj : any) :bool {
 return (obj && obj.Clone);
}

However, why define interfaces that represent whole classes? Why not just write
classes? Well, the TLS understands and uses both classes and interfaces to provide
IntelliSense and other type-related services, but there are (currently) very few third-party
JavaScript libraries out there that also come in TypeScript, let alone in classes, for the TLS
to consume and help us code more accurately. Hence declaration files exist, making full
use of interfaces and ambient variable declarations to represent complete classes in these
libraries where TypeScript classes are not available.

Rambling aside, interfaces representing object types can contain placeholders for
the following:

Constructors

Fields

Optional fields

Methods

Overloaded methods

Indexers

As in .NET, you cannot add static members to interfaces, and currently you cannot
specify that a field should be private and accessed through getter and setter methods. To
demonstrate, here’s the nearest interface equivalent for the SimpleWebSocket class we’ve
used in this chapter.

CHAPTER 2 THE NEW SYNTAX

53

// Entire Class Interface
interface IWebSocket {
 // use 'new' to indicate constructor
 new (url: string) : SimpleWebSocket;

 // fields
 state: number;
 messagesSent: number;

 // optional fields
 protocols?: string;

 // properties can be added
 // but getters and setters cannot be enforced
 ServiceUrl: string;

 // methods
 Send(data: string): void;
 onError(errorCode: number, message: string): void;

 // 'overloaded' method
 Close(code: string): void;
 Close(code: string, reason: string): void;
 Close(code: number): void;
 Close(code: number, reason: string): void;

 // indexer - socket[12] returns message #12 perhaps
 [index: number] : string;
}

Note how we use the new keyword to indicate a constructor function in the interface
rather than constructor. Also the entry for the overloaded Close method does not
include the generalized function signature we actually need to use to implement it.

Combining Interfaces
In .NET, a class can inherit more than one interface. In TypeScript, an interface represents
an object type. Variables and parameters can’t have more than one object type, so how
can we create a variable based on IEnumerable and ICloneable, for instance? The answer
is to create another interface that does inherit from both IEnumerable and ICloneable:

interface IEnumerableClone extends IEnumerable, ICloneable {
 // any overrides or additional items
}

CHAPTER 2 THE NEW SYNTAX

54

Now you can set an object to be of the new derived type:

var BobaFett : IEnumerableClone;

An interface can inherit from zero or more base interfaces. Inheritance is expressed
using the extends keyword followed by a comma-separated list of the base interfaces. As
with classes, you can choose to use the base interface members in the new child interface
or to hide them using new declarations. The TypeScript specification (section 7.1) lays
out the rules for hiding base interface members:

A base interface property is hidden by a property declaration with
the same name.

A base interface call signature is hidden by a call signature
declaration with the same number of parameters and identical
parameter types in the respective positions.

A base interface construct signature is hidden by a construct
signature declaration with the same number of parameters and
identical parameter types in the respective positions.

A base interface index signature is hidden by an index signature
declaration with the same parameter type.

The following constraints must be satisfied by an interface declaration, or otherwise
a compile-time error occurs:

An interface cannot, directly or indirectly, be a base interface of
itself.

Inherited properties with the same name must have identical
types.

The declared interface must be a subtype of each of its base
interfaces.

The net result is that if you’re inheriting from two or more base interfaces that
define items of the same name but different types, your child interface needs to redefine
that item by using a more generalized form, much the same as you need to do when
overloading a method.

Modules
Whether you’re more familiar working with System.Web or System.IO, if you develop
against the .NET Framework, you’re working with namespaces all the time. TypeScript
supports some of the ECMAScript 6 functionality for modules.

CHAPTER 2 THE NEW SYNTAX

55

The basic module declaration is exactly the same as for classes or interfaces, but uses
the module keyword instead of class or interface. However, modules can also be nested,
unlike classes and interfaces. For instance:

module MyWebApp {
 module DataAccess {
 // code here
 }
 module BusinessLogic {
 // code here
 }
 module UI {
 // code here
 }

 // global code here
}

Of course, we don’t often actually nest modules in .NET, preferring to write code in
files pertaining to a single class or web page in a namespace. The preceding structure can
be written as follows in TypeScript, using the additive names for the modules:

module MyWebApp.DataAccess {
 // code here
}

module MyWebApp.BusinessLogic {
 // code here
}

module MyWebApp.UI {
 // code here
}

// global code here

However you prefer to write them, modules can contain any of the language features
you’ve seen in this chapter so far and two more:

Classes

Interfaces

Global functions and variables

Ambient declarations

Import declarations

Export declarations

CHAPTER 2 THE NEW SYNTAX

56

In terms of structuring your code, they are effectively the same as any namespace
in .NET, both logically and physically. If you wish to build modules across many files as
you would namespaces (for instance, to write one class per file), you can do that too. Any
elements within the same module can be accessed by each other. However, if they are
located in separate files, you will need to add a reference from the top of one file to the
other.

For example, you saw in the section on class inheritance that by keeping to a rule of
one class per file, the child class must include a reference to that of the parent class before
it will compile:

/// <reference path="parentClass.ts" />

As long as the <reference>s are there, the TLS knows and the compiler will pick up
the reference chain. However, we must remember that class names must be fully qualified
when written inside a module. For instance:

In SimpleWebSocket.ts:

module MyWebApp.BusinessLogic {
 class SimpleWebSocket {
 // code
 }
}

In ComplexWebSocket.ts:

/// <reference path="SimpleWebSocket.ts" />
module MyWebApp.BusinessLogic {
 class ComplexWebSocket extends MyWebApp.BusinessLogic.SimpleWebSocket {
 }
}

Although, as it happens, referencing a class name in the same module is an
exception to a golden rule.

If you want to instantiate any class, reference any interface, use any global method,
or access any global variable within a module from a different file, a different module or
from global code, you will need to export it.

TypeScript considers each declaration within a module as private unless you expose
it to other code by exposing it using the export keyword. The exceptions to this are class
members that become accessible when you mark the class declaration with export.

In SimpleWebSocket.ts:

module MyWebApp.BusinessLogic {

 export class SimpleWebSocket {
 ...
 }

CHAPTER 2 THE NEW SYNTAX

57

 // functions global to module but not in a class
 // must be exported individually
 export function Initialise() {}
 export var CurrentVisitors : number;
}

In another file:

/// <reference path="SimpleWebSocket.ts" />

// requires class is exported
var TestSocket = new MyWebApp.BusinessLogic.SimpleWebSocket("http");
TestSocket.Send("Some info");
TestSocket.Close("123");
console.log(TestSocket.state);

// Static class property
MyWebApp.BusinessLogic.SimpleWebSocket.origin = "here";

// In MyWebApp.BusinessLogic module but not in class
MyWebApp.BusinessLogic.Initialise();
MyWebApp.BusinessLogic.CurrentVisitors++;

The TLS does a good job of letting you know you’ve forgotten to export something.
Generally, you’ll get a good case of the red squigglies if you’re attempting to access code
in a module that hasn’t been exported.

However, you are stuck with using the fully qualified names for module-scoped
functions, interfaces, classes, and variables, as shown in the preceding code. TypeScript
has no direct equivalent of the C# using or Visual Basic Imports statement. It is possible,
though, to use the TypeScript import statement to create an alias for the module. For
example:

/// <reference path="SimpleWebSocket.ts" />

import BL = MyWebApp.BusinessLogic;

// class declaration
var TestSocket = new BL.SimpleWebSocket("http");

// Static class property
BL.SimpleWebSocket.origin = "here";

// Module-scoped function and property
BL.Initialise();
BL.CurrentVisitors++;

CHAPTER 2 THE NEW SYNTAX

58

Note These import declarations for your own modules are evaluated lazily. They can
reference modules that haven’t been instantiated yet, but you can’t then use them to
reference items in that module until the module has been instantiated.

All of this brings us to the point that so far in this section we have been dealing solely
with modules we have written for the same application. TypeScript divides modules into
two categories:

If a module does not contain export statements (but likely
references those that do), it is an internal module.

If a module does contain export statements, it is an external
module.

External modules also describe third-party JavaScript modules that we’ve not
written but wish to use. For example, if we are writing a Node.js application, we will need
to import the (public/exported) contents of the main node module to access its basic
functionality. Alternatively, we might want to use Modernizr (modernizr.com) to check a
browser’s support for new HTML5 APIs. Think of these types of external modules as you
would the libraries you might add to your .NET projects using NuGet.

To use such external libraries, download the TypeScript files or declaration files
(.d.ts) if they exist (or the JavaScript files if they don’t) so the TLS can carry on type
checking and providing IntelliSense to your project. Then you import the library into your
TypeScript file using a slightly different syntax to that used earlier:

import ModuleAlias = module('ModuleName');

In this case, the ModuleName in question is the location (absolute or relative) of the
file containing the target module to be imported minus the .js at the end:

import Modernizr = module('c:\src\lib\modernizr');
import svr = module('..\lib\node');

Tip Section 9.4.1 in the TypeScript specification contains the full rules for module name
resolution.

After the module has been imported, you reference the module’s contents in the
same way as internal modules. This means that unless you’re referencing external
modules written in TypeScript, you’ll want a declaration file for it as well to maintain the
tooling.

CHAPTER 2 THE NEW SYNTAX

59

Tip You’ll find a number of community-written declaration files at
https://github.com/borisyankov/DefinitelyTyped.

One final note about modules. The TypeScript compiler will transpile your modules
into one of two styles of JavaScript module:

CommonJS modules

AMD modules

If you always write TypeScript applications with HTML or use TypeScript within
web applications or Windows 8 applications, you may never need to use modules for any
purpose other than code structure and not need to worry about this fact. However, if you
begin to write applications using Node.js, or some JavaScript dependency loaders, you’ll
need to take note of which style module they use and consult Chapter 3 to make sure the
compiler creates the module type you need.

Summary
In this chapter, you’ve looked at the new language features that TypeScript appends to
JavaScript. You’ve seen how they mirror similar features in .NET and how they differ in
certain cases as well.

In the next chapter, you’ll see how to take control of the TypeScript compiler and
how to incorporate TypeScript into your existing development projects.

61

CHAPTER 3

Working with TypeScript

So now you’re up to speed with the new syntax and language features of TypeScript, it’s
time to put them to use and include TypeScript in your own projects. In this chapter,
you’ll look at how to get the most from the compiler and then how to include TypeScript
in your Visual Studio projects.

The Compiler
Thus far, your interaction with the compiler has been to watch Visual Studio use it in the
background when you’ve asked it to build your sample projects. In this section, you’ll
look at how to use it manually so you can tweak its operation if necessary. The Web
Essentials Options dialog box for TypeScript support that you saw in Chapter 1 (and that’s
shown in Figure 3-1) has already given you a clue to the various options you can use, but
there are some other points to consider.

Figure 3-1. The Web Essentials Options dialog box for TypeScript

CHAPTER 3 WORKING WITH TYPESCRIPT

62

As you saw in Chapter 1, the TypeScript compiler is installed in the
%ProgramFiles (x86)%\Windows SDK\Typescript\<VERSION> directory on 64-bit
systems (%ProgramFiles%\Windows SDK\Typescript\<VERSION> on 32-bit) and is
a single JavaScript file, tsc.js, that can be run using any ECMAScript 3–compliant
JavaScript engine. Another file—tsc.exe—allows us to work with ithe compilerfrom the
command line, and deals with the switches and file batches we want to compile.

Note The compiler’s current file I/O infrastructure supports only Node.js and Windows
Script Host file APIs, which is not great news if you’re running on OS X or Linux/Unix. Get
in touch with the team at the CodePlex site (http://typescript.codeplex.com/
discussions/404060) to request better native support.

Assuming the installation directory has been added to your PATH, you can call the
compiler from the command-line by using the following syntax:

> tsc @<file>
> tsc [options] <fileList>

There are ten options you can send to the compiler. The first two tell the compiler to
generate something in addition to compiled JavaScript:

--declaration requires the compiler to generate the .d.ts
declaration file for the input files as well as the compiled
JavaScript.

--sourcemap requires the compiler to generate the .map source
map files needed for step-through debugging of your
TypeScript files.

For example, calling

tsc --declaration test.js
tsc --sourcemap test.js

will produce the files test.d.ts and test.map, respectively, as well as test.js.

If you’re using TypeScript as a Node.js package, you can call
tsc -w <fileList> to have the compiler watch all the files in
<fileList> and recompile them when they have been altered.

The next few options tweak the pre- and post-compile tasks for the compiler:

--nolib requires the compiler to ignore its default and not to
include lib.d.ts in its compilation even if you <reference> it
explicitly in the file.

CHAPTER 3 WORKING WITH TYPESCRIPT

63

--out <outputFile> requires the compiler to output all its
compiled JavaScript into a single file called <outputFile>
rather than the default of producing one JavaScript file for each
TypeScript file in the <fileList> (with the same name: a.ts
becomes a.js, b.ts becomes b.js, and so on).

-e or --exec requires the compiler to execute the newly compiled
script after it has been created.

Remember that scripts are run from top to bottom, so any code not in a class or
module is run. There’s no single entry point, like a Main function in a .NET command-line
application. Also, if you use this option, be sure your global functions aren’t expecting to
run in a browser, or you’ll get errors straight away.

tsc -e saveFaramir.ts
tsc --nolib shire.ts
tsc --out fellowship.js hobbit.ts human.ts elf.ts dwarf.ts

Another three influence the contents of the actual JavaScript emitted by the
compiler:

-c or --comments requires the compiler to include the comments
you added to the TypeScript file in the compiled JavaScript.

--module <type> requires the compiler to generate the specified
<type> of modules during compilation. By default, it will generate
commonjs modules (for Node.js scripts), but you can also specify
amd modules (for example, for the RequireJS runtime module
loader). See the section on modules in Chapter 2 for more
information on the difference between the two.

--target <version> requires the compiler to emit JavaScript
compliant with the specified <version> of ECMAScript. By
default, it will generate script compliant with ECMAScript 3
(ES3), but you can also specify ES5 to have it emit ECMAScript
5–compliant script instead.

tsc --comments howDidThisWorkAgain.ts
tsc --module amd somethingForRequirejs.ts
tsc --target ES5 newAndShiny.ts

Finally, you can also use the -h or --help option to bring up a
quick recap of these options onscreen.

If you are setting a lot of options and including a large number of files in the
compilation, you can copy all the switches and the file list into a text file and

CHAPTER 3 WORKING WITH TYPESCRIPT

64

call tsc @file.txt to save typing it all out over and over again. File.txt, meanwhile,
would have each switch and file to compile separated by a new line, like this:

--out fellowship.js
--module amd
--comments
hobbit.ts
human.ts
elf.ts
dwarf.ts

The File List
The file list you supply to the compiler is a space-separated list of all the files you want it
to compile. This is much like the list you would send to the C# compiler (csc.exe), but
with one difference. With csc.exe, you also need to include a list of references to the
DLLs containing namespaces and classes your own C# code uses. This is not necessary
with TypeScript. The tsc compiler will scan the top of each file in the list supplied for
<reference file="..."> statements and include those referenced (both .d.ts and .ts)
in its list for compilation. It does the same for files referenced via an import statement in
your code.

It will also check those files for <reference> and import statements, include those
files, and so on, until it has completely walked through the entire reference tree and
has a complete list of files to compile. The net result is that you don’t need to include
any declaration files in the file list for the compiler and perhaps fewer .ts files than you
thought as well.

Also, unless you send it the --nolib option, the compiler will automatically include
the lib.d.ts declaration file for the standard JavaScript runtime library and DOM API.
The TLS does the same walk of <references> and import statements as it provides
IntelliSense, so if IntelliSense appears to be working correctly across all your TypeScript
files, you know your reference tree is intact as well, ready for compilation.

A QUICK COMPILER Q & A

Q: Can you include .js files in your compilation?

A: No. The compiler deals with only .ts or .d.ts files. Don’t try to pass it any “raw”
JavaScript files, because it will just reject them. If you need to reference something
in a .js file, you can do one of the following:

Create a declaration file for it (see the upcoming
“Declaration Files” section in this chapter).

Include an ambient declaration in your TypeScript file for the
variable or function you need to use.

Rename a copy of your .js file to .ts and see if it compiles.

CHAPTER 3 WORKING WITH TYPESCRIPT

65

Q: Why doesn’t the compiler generate a file if I pass it a declaration file?

A: If your file contains only comments, interface definitions, or other type
information, the compiler does not generate any code, and so it does not generate a
file, empty or otherwise (http://typescript.codeplex.com/workitem/284).

Q: Why does the compiler slow down when working with Windows 8 apps?

A: It’s not specifically Windows 8 apps. The compiler slows down when working with
really large files such as winrt.d.ts, which you need for Win 8 development
(http://typescript.codeplex.com/workitem/265).

Q: How do I pipe compiler errors from tsc to my own log file rather than to the
command line? (http://stackoverflow.com/questions/12897695/
typescript-tsc-redirection-of-messages)

A: The compiler writes errors to stderr rather than stdout, so you’ll need to use the
following command to pipe the errors:> tsc file.js > err.log 2>&1

Declaration Files
As soon as you start using Backbone.js, jQuery, jQuery UI, or any other third-party
JavaScript library with your own TypeScript code, you’ll need to start using declaration
files as well. Add a quick annotation at the top of your file, for example

/// <reference path="lib\jquery-1.8.d.ts" />

and the TLS can incorporate the interfaces and variables for jQuery into its IntelliSense
prompts and type inference/checking. It’s a very neat system that demonstrates the need
for ambient declarations (in case you’re wondering). Trouble is, what happens when the
declaration file doesn’t exist for the library you want to use, be it a third-party library or
one your own team has created? You have four choices at this point:

Double-check that it’s not available somewhere online.

Use an ambient declaration in your code to identify the library’s
existence.

Use the TypeScript compiler to generate a baseline declaration file.

Roll your own declaration file.

Let’s look at each of these in turn.

Has Someone Else Written It?
As you know by now, the TypeScript team has written four declaration files:

lib.d.ts covers the standard JavaScript Runtime Library,
HTML5 APIs, and the DOM API.

jquery.d.ts covers the definitions for jQuery 1.7.

CHAPTER 3 WORKING WITH TYPESCRIPT

66

winjs.d.ts covers the Windows Library for JavaScript (for
Windows 8 JavaScript apps).

winrt.d.ts covers the Windows Runtime Library (for Windows 8
apps).

Beyond these four, the TypeScript community has already done quite a bit of
work on both improving these four files and creating many more besides. Currently,
the unofficial repository for declaration files is https://github.com/borisyankov/
DefinitelyTyped. Here you’ll find updates for the four Microsoft declaration files and
several dozen more libraries from AngularJS to QUnit to WebGL. And, of course, if you
can’t find the declaration file on DefinitelyTyped, then Google may still be your friend.

Note There is a discussion at http://typescript.codeplex.com/discussions/398580
about an official repository for declaration files and how best to make them available
(NuGet, download, something else) and another at http://typescript.codeplex.com/
workitem/267 about how best to correlate the version of the declaration file with the
version of the library against which it is written. Both are ongoing as this book went to press.

Substitute with an Ambient Declaration
All declaration files contain interface definitions for the classes defined in a library
and ambient declarations for global variables of those classes. Without these, both the
compiler and TLS will complain as soon as you use one of those global variables in your
code, and it will not compile.

If you are sufficiently secure in your knowledge of the library you want to use,
you can add an ambient declaration for the global variable you want to use and assign
it the any type. For instance, let’s suppose you want to use jQuery but don’t have the
declaration file at hand. You can declare its global variable like so:

declare var $: any;

and continue to use jQuery with no issue. You’ll get no IntelliSense or type checking—
everything will be of the any type—but that’s how we worked with jQuery before anyway.

Use the Compiler to Generate a Declaration File
You saw earlier that the TypeScript compiler will generate a declaration file for you if you
pass it the --declaration flag. For example:

> tsc --declaration SimpleLibrary.ts

Assuming SimpleLibrary.ts compiles correctly, the compiler will generate
SimpleLibrary.js for inclusion in your project releases and SimpleLibrary.d.ts for use
in your development work.

CHAPTER 3 WORKING WITH TYPESCRIPT

67

This sounds like an ideal solution, and it is—for libraries written in TypeScript.
Unfortunately for JavaScript libraries, the compiler accepts only valid TypeScript files. If I
wanted to generate my own declaration file for jQuery, I couldn’t just download jquery.js,
rename it to jquery.ts, and point the compiler at it: the compiler would throw many
errors at it. And even if it did compile, the resultant declaration file would not contain
much useful type information and perhaps lose some of the subtlety in the library.
Because it is written in plain JavaScript, the compiler perceives all parameters to be of the
any type rather than strings, numbers, and so forth. Remember: it is the TLS in the Visual
Studio extension that infers types rather than the compiler.

All in all, unless you’re referencing a library written in TypeScript, this is the most
unsatisfactory solution of the four. Even Microsoft went down the route of writing a
custom script to produce its declaration files based on Web IDL and standards definitions
rather than pass the actual JavaScript libraries through the compiler.

Note Interestingly, some developers have decided that the best solution is to rewrite their
favorite libraries in TypeScript so declaration files can be quickly generated to match the latest
versions—for example, backbone.ts at https://github.com/jbaldwin/backbone.ts.

Roll Your Own
Like it or not, your best shot may be to write your own declaration file. Remember that
a declaration file is just a collection of interfaces and ambient declarations for global
variables, values, and functions. For example, lib.d.ts starts by declaring a handful of
familiar number-related values before going on to define the interface for the number
object type and then a class variable for it:

declare var NaN: number;
declare var Infinity: number;
declare function eval(x: string): any;
declare function parseInt(s: string, radix?: number): number;
declare function parseFloat(string: string): number;
declare function isNaN(number: number): bool;
declare function isFinite(number: number): bool;

...

interface Number {
 toString(radix?: number): string;
 toFixed(fractionDigits?: number): string;
 toExponential(fractionDigits?: number): string;
 toPrecision(precision: number): string;
}
declare var Number: {
 new (value?: any): Number;
 (value?: any): number;

CHAPTER 3 WORKING WITH TYPESCRIPT

68

 prototype: Number;
 MAX_VALUE: number;
 MIN_VALUE: number;
 NaN: number;
 NEGATIVE_INFINITY: number;
 POSITIVE_INFINITY: number;
}

One note, though: remember to include a prototype property inside your variable
declaration to generate the correct OO properties for JavaScript.

TypeScript in Your Projects
It’s time at last to look at how best to incorporate TypeScript into one of your own projects
rather than experiment with it in one of its own. Necessity dictates being brief in this
discussion about writing actual code in favor of how to set up your projects, so it goes
without saying that you should also look at the eight sample apps available at
http://typescriptlang.org/samples. Each demonstrates how TypeScript fits in with a
certain kind of project and set of libraries:

Hello World: Basic TypeScript

Raytracer: DOM canvas

TodoMVC: Backbone.js and jQuery

ImageBoard: Node.js, Express, and MongoDB

JQuery Parallax Starfield: jQuery (natch)

D3 Visualization: D3.js (Data-Driven Documents) and HTML5
canvas

Warship Combat: jQuery and jQuery UI

Encyclopedia App: Windows 8 Store application

Be it a Web or Windows 8 Application project, where you previously had JavaScript,
you can now have TypeScript generating JavaScript instead. It’s just a matter of adding a
new TypeScript file to the project instead of a JavaScript file, isn’t it?

Mostly, yes. However, when using TypeScript with anything other than the
accompanying HTML Application with TypeScript project template, you’ll need to
tweak your project’s MSBuild (.proj) file to invoke the TypeScript compiler. You’ll
look at that next and follow up with a few additional considerations to make if you’re
adding TypeScript to either a Web Site project or a project that uses the ASP.NET 4.5 Web
Optimization library.

If you’re an MVC user, you may also want to have a look at https://github.com/
devcurry/typescript-template-for-aspnet-mvc, which as the URL suggests is a
GitHub project developing a Visual Studio project template for using TypeScript with
MVC 4.

CHAPTER 3 WORKING WITH TYPESCRIPT

69

Tip As this book went to press, Chris Sells had just posted online some new
sample project templates for Windows 8 applications built with TypeScript. Find them at
https://www.sellsbrothers.com/Posts/Details/12724

In Your MSBuild File
The key to your projects correctly integrating TypeScript into their compilation is in adding
a call to the TypeScript compiler before the actual build. You know from Chapter 1 that if it
is installed, the Web Essentials extension compiles our TypeScript files for us on the fly, but
when we build the project, Visual Studio will compile them again based on a different set
of criteria from those expressed in the Web Essentials Options dialog box (shown earlier in
Figure 3-1). The build criteria can be found in the MSBuild file for your project—typically
the .jsproj, .csproj, or .vbproj file in the root directory of your project.

Let’s have a look at the MSBuild file for a TypeScript project and see what it does:

1. Create a new HTML Application with TypeScript project in VS
called CompilerTest.

2. Add a second TypeScript file to the project. Call it second.ts.

3. In the Solution Explorer window, right-click the project name
and then select Unload Project.

4. Right-click the project name again and click Edit
CompilerTest.csproj file.

5. To reload the project back into Visual Studio after you’ve
finished looking at this, right-click the project name in the
Solution Explorer window and then select Reload Project.

The relevant parts of the file are as follows.

The TypeScript Files and Their Dependencies
The project’s MSBuild file lists each TypeScript file within a <TypeScriptCompile>
element. Each of these is a child of an <ItemGroup> element, although there may
not be a 1:1 correspondence between the two. Each JavaScript file is listed within a
<Content> element, indicating that the JavaScript file must be included when the project
is published. Each <Content> element also has a child <DependentUpon> element
documenting the relationship between the two.

<ItemGroup>
 <Content Include="app.js">
 <DependentUpon>app.ts</DependentUpon>
 </Content>

CHAPTER 3 WORKING WITH TYPESCRIPT

70

 <Content Include="second.js">
 <DependentUpon>second.ts</DependentUpon>
 </Content>
 <TypeScriptCompile Include="second.ts" />
 <TypeScriptCompile Include="app.ts" />
</ItemGroup>

Note that the second <TypeScriptCompile> element may be wrapped in its own
<ItemGroup> parent element.

Compiler Instructions
Toward the end of the file, you’ll find the instructions for TypeScript compilation within a
<Target> element.

<Target Name="BeforeBuild">

In it, MSBuild is told to output the complete command sent to the tsc executable file
and then execute the command. If the application is in debug mode, MSBuild adds the
--sourcemap option to the compiler call so the TypeScript file can be stepped through
rather than having to debug the JavaScript and then work backward to the issue in the
TypeScript. MSBuild derives the file list sent to tsc by enumerating all the files listed in
<TypeScriptCompile> elements. As these instructions target the BeforeBuild step, all
TypeScript compilation will occur before any C# or VB.NET compilation.

<PropertyGroup Condition="'$(Configuration)' == 'Debug'">
 <TypeScriptSourceMap> --sourcemap</TypeScriptSourceMap>
</PropertyGroup>

<Target Name="BeforeBuild">
 <Message Text="Compiling TypeScript files" />
 <Message Text="Executing tsc$(TypeScriptSourceMap)
 @(TypeScriptCompile ->'"%(fullpath)"', ' ')" />
 <Exec Command="tsc$(TypeScriptSourceMap)
 @(TypeScriptCompile ->'"%(fullpath)"', ' ')" />
</Target>

Note that the <Exec> element assumes that the directory for the tsc compiler has
been added to your PATH. If it hasn’t for some reason, you’ll need to add the full path
to the exec command (and then remember to update it whenever you install the latest
version of TypeScript).

<Target Name="BeforeBuild">
 <Exec Command=""$(PROGRAMFILES)\Microsoft SDKs\TypeScript\<VERSION>\
tsc" @(TypeScriptCompile ->'"%(fullpath)"', ' ')" />
</Target>

CHAPTER 3 WORKING WITH TYPESCRIPT

71

Tweaking Your Existing Project File
If you are adding TypeScript files into an existing project, you need to know that Visual
Studio will add information to your MSBuild file listing the TypeScript/JavaScript files
and their dependencies, but it will not add the compiler instructions for you. You’ll need
to do this yourself:

1. Add the <Exec> element into your project’s BeforeBuild step.

2. Add the <TypeScriptSourceMap> element into your project’s
debug build PropertyGroup element.

If your project has neither a BeforeBuild step nor a debug build PropertyGroup, add
them in their entirety as given in the previous section.

In fact, if you’re in the project file anyway, you might find it useful to refactor it
slightly and tell it to compile every TypeScript file in the project.

<ItemGroup>
 <AvailableItemName Include="TypeScriptCompile" />
</ItemGroup>
<ItemGroup>
 <TypeScriptCompile Include="$(ProjectDir)***.ts" />
</ItemGroup>

This preemptive inclusion of every .ts file into the TypeScriptCompile group
replaces all the <TypeScriptCompile> elements with this single one. You’ll want to
remove the others if you go for this approach.

You can also add any of the options seen earlier in the chapter to the compiler call.
For example, to generate ECMAScript 5 code, to include your comments in the JavaScript,
and so forth, the <Exec> element is the place to do it:

<Exec Command="tsc$(TypeScriptSourceMap) -c --Target ES5 @(TypeScriptCompile
->'"%(fullpath)"', ' ')" />

For non-TypeScript-specific projects, you can use the <None> item group to list the
.ts files but not include them in releases:

<ItemGroup>
 <Content Include="app.js">
 <DependentUpon>app.ts</DependentUpon>
 </Content>
 <Content Include="second.js">
 <DependentUpon>second.ts</DependentUpon>
 </Content>
 <None Include="second.ts" />
 <None Include="app.ts" />
</ItemGroup>

CHAPTER 3 WORKING WITH TYPESCRIPT

72

Using this approach requires you to include the AvailableItemName and preemptive
TypeScriptCompile elements shown in the earlier code.

The Web Site Project
The preceding approach works for all Visual Studio projects except for one: the Web Site
project. With respect to TypeScript, there are two main differences between Web Site
projects and Web Application projects.

The first is that TypeScript files aren’t recognized file types for Web Site projects. As
Figure 3-2 shows, the Add New Item dialog box for Web Site projects has no TypeScript
option.

Figure 3-2. A Web Site project’s Add New Item dialog box has no TypeScript File option

To add a TypeScript file to a Web Site project, simply add a new text file but give it a
.ts extension. Visual Studio picks up the .ts extension and from then on treats it as
a TypeScript file (visually at least). The fact that Visual Studio doesn’t think of it as a
valid file type for a Web Site project doesn’t matter, because there’s no MSBuild file to
update manually anyway.

CHAPTER 3 WORKING WITH TYPESCRIPT

73

In fact, this is the main problem with TypeScript in Web Sites projects. They have
no MSBuild (.proj) file. Instead, MSBuild is passed the .sln file containing the root
directory of the site and from there it generates the .proj file on the fly. All of which
means, we can’t add the all-important compiler instructions to the projects’ build
instructions in the same way we could with other projects.

Fortunately, there are three workarounds:

If possible, install the Web Essentials extension for Visual Studio
and make sure the Compile TypeScript on Save option (see
Figure 3-1 earlier) is set to True.

Write a batch file that calls the TypeScript compiler first and then
MSBuild itself on the solution file. For example:

@echo off
setLocal EnableDelayedExpansion
for /f %%a in ('dir /b WebSiteFolder/*.ts') do (set str=!str!
"%%a")
tsc !str!
msbuild WebSiteProject.sln

You can get MSBuild to generate a hard copy of the .proj file it
creates on the fly when building the project. Open a Visual Studio
command prompt window and browse to the folder containing
the .sln file for your project. Then run the two following
commands:

> set msbuildemitsolution = 1
> msbuild <ProjectName>.sln

You’ll find that two .metaproj files have been generated in the same folder as the
.sln file: one for the solution as a whole and the other for the Web Site project. You
may then be able to add the BeforeBuild step and TypeScript file list to the solution’s
.metaproj file and call MSBuild on that.

In Your Web Sites
After your project is compiling your TypeScript to your preference, you still have a couple
of points to consider if you’re a web developer.

You can’t embed TypeScript within a web page. TypeScript lives inside its own files.
If your current project has web pages with <script> blocks containing actual JavaScript
rather than references to files, you’ll need to ask yourself whether there is any way to
refactor that JavaScript out to an external file. Chapter 1 provides a very simple example
of doing this, so all the event wire-up and scripting is done after the page has loaded. If it’s
not possible (perhaps your server-side code injects script into the page), remember that
your TypeScript code will still be able to interact with any functions or variables on the
page as long as you include ambient declarations for them in your .ts file.

CHAPTER 3 WORKING WITH TYPESCRIPT

74

Note There’s nearly always a way to separate a web page from its JavaScript. Try
googling Unobtrusive JavaScript for hints and tips.

If you’re using the Bundling feature in ASP.NET 4.5’s System.Web.Optimization feature,
you may want to use that to gather your compiled JavaScript (not the TypeScript files) into
one file rather than using the compiler’s own --out option. Indeed, this approach offers a
lot more flexibility if you want to compile several libraries into their own files.

BundleTable.Bundles.Add(
 new ScriptBundle("~/ts/AllScript.js")
 .IncludeDirectory("~/ts/", "*.js", true));

Remember, however, to reference the bundled JavaScript file in your pages and not
the individual JavaScript files.

Note You can also find a bundle transform for ASP.NET that takes a TypeScript bundle
and compiles it to JavaScript at https://github.com/wouterdevinck/TypeScript-
BundleTransform/.

In the Development Life Cycle
Before wrapping up, it’s worth saying that whatever you can do in JavaScript, you can
probably also do in TypeScript, and some more on top of that. Declaration files for
popular JavaScript libraries are still being written, and the TypeScript project itself is still
a way from wrapping up a v1.0 release. By that time, it would not be surprising to see
a complete and cogent application development life cycle based solely in HTML and
TypeScript. Consider the following:

The UI design phase is language-neutral anyway.

The Class and Module features in TypeScript allow for more-
accurate code design, development, and maintenance already.

The TypeScript debugging story is already getting better through
the generation of source map files that allow step-through
debugging in Visual Studio.

Unit testing in TypeScript is already possible with a QUnit
declaration file in the works. Other efforts also show that unit testing
is possible using Jasmine and Chutzpah. (See the appendix for links.)

Including TypeScript files in source control is the same as for any
other type of file. Just remember not to check in the JavaScript
files that the compiler generates from them. After all, you don’t
check in your project’s bin and obj folders, do you? Do you?

CHAPTER 3 WORKING WITH TYPESCRIPT

75

Summary
In this chapter, you’ve looked at the more practical issues of TypeScript development.
To wit:

Compiler options and what they do

Where to source and how to write your own declaration files

How to incorporate TypeScript compilation into your own Visual
Studio projects

I hope that you’ve enjoyed this whistle-stop tour and that you’ll start using
TypeScript in earnest. Now really is the best of times to start.

77

APPENDIX A

Webliography

In this appendix, you’ll find all the URLs mentioned in the book plus some more for
quick reference.

Core Links
TypeScript home

http://typescriptlang.org

TypeScript project on CodePlex

http://typescript.codeplex.com

TypeScript team blog

http://blogs.msdn.com/b/typescript/

TypeScript sample applications

http://typescriptlang.org/samples

TypeScript installer

www.microsoft.com/en-gb/download/details.aspx?id=34790

ECMAScript 6 (Harmony) specification

http://wiki.ecmascript.org/doku.php?id=&idx=harmony

Visual Studio Gallery for Web Essentials 2012 extension

http://visualstudiogallery.msdn.microsoft.com/

TypeScript support for Sublime Text, vi, and eMacs

http://blogs.msdn.com/b/interoperability/archive/2012/10/01/
sublime-text-vi-emacs-typescript-enabled.aspx

APPENDIX A WEBLIOGRAPHY

78

GitHub Projects
Community repository for TypeScript declaration files

https://github.com/borisyankov/DefinitelyTyped

TypeScript extension for WebMatrix

http://extensions.webmatrix.com/packages/TypeScript4WebMatrix/

Github repository for TypeScript extension for WebMatrix

http://macawnl.github.com/TypeScript4WebMatrix/

Autocompile TypeScript files on save for Sublime Text

https://github.com/alexnj/SublimeOnSaveBuild

Workaround for node.js while the TypeScript compiler is not
exposed as an explicit public API for module access

https://github.com/eknkc/typescript-require

backbone.js written in TypeScript

https://github.com/jbaldwin/backbone.ts

ASP.NET MVC 4 project template with TypeScript support

https://github.com/devcurry/typescript-template-for-aspnet-mvc

TypeScript-aware bundle transform

https://github.com/wouterdevinck/TypeScript-BundleTransform/

Notable Bugs and Discussions
TypeScript compiler is not exposed as an explicit public API for
module access in node.js package

http://typescript.codeplex.com/workitem/97

An official TypeScript declaration file community site

http://typescript.codeplex.com/workitem/191

http://typescript.codeplex.com/discussions/398580

How best to reconcile a declaration file with the particular version
of the JavaScript library the file is describing

http://typescript.codeplex.com/workitem/267

Native Compiler support for more file APIs in addition to node
and Windows Script Host

http://typescript.codeplex.com/discussions/404060

APPENDIX A WEBLIOGRAPHY

79

Compiler doesn’t generate a .js file if .ts file has no compilable code

http://typescript.codeplex.com/workitem/284

Compiler loses performance working with large files

http://typescript.codeplex.com/workitem/265

Will TypeScript support destructuring / more of the ECMAScript
Harmony specification?

http://typeScript.codeplex.com/workitem/15

Request for Visual Studio to support the ‘Extract Interface’ refactoring

http://typescript.codeplex.com/discussions/400724

Miscellaneous
A quick guide to JavaScript

http://www.w3schools.com/js/default.asp

A collection of JavaScript gotchas

http://www.codeproject.com/Articles/182416/A-Collection-
of-JavaScript-Gotchas

Quoted article in Chapter 1

http://readwrite.com/2012/10/03/microsofts-typescript-
fills-a-long-standing-void-in-javascript

List of languages like TypeScript, Dart, and CoffeeScript that
compile to JavaScript

https://github.com/jashkenas/coffee-script/wiki/List-of-
languages-that-compile-to-JS

The Dart language home page

http://www.dartlang.org

The CoffeeScript language home page

http://coffeescript.org

Mads Kristensen’s blog (creator of Web Essentials plugin for
Visual Studio)

http://madskristensen.net

TypeScript questions on Stack Overflow

http://stackoverflow.com/questions/tagged/typescript

TypeScript Templates for Windows 8 Applications

http://www.sellsbrothers.com/posts/Details/12724

81

� A, B
Arrays of arrays, 33
Arrays, type system

loops, 32
multidimensional arrays, 33
push/pop functions, 32
square brackets, 32
type string, 32

� C, D, E, F, G, H, I, J, K, L
Class members, TypeScript

events, 45
methods

arrow functions, 43–44
constructor functions, 44–45
declaration, 42
functions, 43

properties and fields, 41–42
types, 41

� M, N
Multidimensional arrays, 33

� O
Object literals vs. anonymous types, 47
Overriding methods, 49

� P, Q, R
Parameters, TypeScript functions

optional parameters, 37
positional parameters, 37
rest parameters, 38
types, 36

� S
Syntax, TypeScript, 27

chapter overview, 28
classes

access modifiers, 46
class members, 45
inheritance, 48, 50
instantiate, 46
object literals vs. anonymous

types, 47
static keyword, 46–47

class members
ECMAScript 3 and

ECMAScript 5, 41
garbage collector, 40
syntax, 40

documentation system, 36
features, 27
functions

callback functions, 35
colon/an arrow, 36
function overloads, 38–40
parameters, 36–38
structuring content, 35
types, 35
typing variables, 35–36
HTML application, 27

interfaces
combining interfaces, 53–54
differences, 50
function types, 51
object types, 52
role, 50

modules
additive names, 55
categories, 58
class declaration, 56–57

Index

 INDEX

82

declaration, 54
different syntax, 58
import statement, 57
JavaScript, 59
language features, 55
parent class, 56
reference chain, 56

TLS displays, 28
type system

ambient declarations, 34
any types, 31
arrays, 32–33
casts, 33–34
example, 29
primitive types, 30–31
TLS extension, 29
TypeScript specification, 29
variable declaration, 30

� T, U, V
Type assertion, 33
TypeScript

development of, 1, 3
open source project, 3
truths, 3

does and does not
compiler, 3
components, 3
declaration files, 4
not defined, 4
language service, 3

vs. ECMAScript, 9
installation

compilation, 18
compiler and TLS

extension, 10
development process, 15
dialog box, 14
directory, 11
environments, 10
extensions, 15
file template, 13
key files, 11
locating project, 13
Node.js, 18
sublime text, 18
various editions, 17

Visual Studio 2012, 10, 16
VS 2010 professional and

higher, 17
VS 2012 Express Edition, 17
web essentials 2012, 14, 16
WebMatrix, 17

vs. JavaScript Gotchas, 6
block scope, 5
bracket placement, 6
coercion issues, 5
optional semicolons, 6
other compile to, 7
script generation, 8
web essentials, 6

from JavaScript to
Ambient declarations, 22
code structure, 24
declaration files, 21
error files, 21
Error List Window, 22
HTML+JS page, 19
and IntelliSense, 20
jQuery, 22
module, 25
object’s prototype, 24
Reference hints, 22
TLS display, 21

� W, X, Y, Z
Webliography

core links, 77
GitHub projects, 78
miscellaneous, 79
notable bugs and discussions, 78–79

Working, TypeScript
compiler

command line application, 63
file list, 64
installation directory, 62
pre and post tasks, 62
quick compiler, 64
script emission, 63
web essentials, 61

declaration files
Ambient, substitute, 66
compiler to generate, 66
own declaration, 67
various declarations, 65

Syntax, TypeScript (cont.)

 INDEX

83

projects
compiler instructions, 70
feature buiding, 74
file option, 72
files and dependencies, 69
HTML application, 68
and libraries, 68

life cycle, 74
MSBuild file, 69
our site, 73
tweaking project file, 71
web site, 72
workarounds, 73

www.allitebooks.com

http://www.allitebooks.org

	Title Page
	Copyright Page
	Contents at a Glance
	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Who Is This Book For?
	What Do You Need to Know Before You Read This Book?
	What Software Do You Need for This Book?
	What Is the Structure of the Book?

	CHAPTER 1 Getting Up to Speed with TypeScript
	The Development of TypeScript
	What TypeScript Is, Does, and Does Not Do
	TypeScript vs. JavaScript Gotchas
	Type Coercion Issues
	Block Scope
	Optional Semicolons and Bracket Placement

	TypeScript vs. Other Compile-to-JavaScript Languages
	TypeScript vs. ECMAScript

	Installation
	Visual Studio 2012
	Installing the Compiler and TLS Extension
	Using Web Essentials

	Other Visual Studio Editions
	Visual Studio 2012 Express Editions
	Visual Studio 2010 Professional and Higher
	WebMatrix

	On Node.js
	Sublime Text

	From JavaScript to TypeScript
	A Simple HTML+JS Page
	TypeScript and IntelliSense
	Errors and Declaration Files
	jQuery, Ambient Declarations, and Reference Hints

	A Little Code Structure with Classes and Modules

	Summary

	CHAPTER 2 The New Syntax
	The Story So Far
	The Type System
	Primitive Types
	The Any Type
	Arrays
	Arrays of Arrays

	Casts
	Ambient Declarations

	Functions
	Variations on a Signature
	Positional Parameters
	Optional Parameters
	Rest Parameter

	Function Overloads

	Classes
	Class Members
	Properties and Fields
	Methods
	Arrow Functions
	Constructors

	Events

	Access Modifiers
	Instantiating Classes
	Static Classes and Members
	Object Literals vs. Anonymous Types
	Inheritance
	Overriding Methods from the Base Class

	Interfaces
	Using Interfaces as Function Types
	Using Interfaces as Object Types
	Combining Interfaces

	Modules
	Summary

	CHAPTER 3 Working with TypeScript
	The Compiler
	The File List

	Declaration Files
	Has Someone Else Written It?
	Substitute with an Ambient Declaration
	Use the Compiler to Generate a Declaration File
	Roll Your Own

	TypeScript in Your Projects
	In Your MSBuild File
	The TypeScript Files and Their Dependencies
	Compiler Instructions
	Tweaking Your Existing Project File
	The Web Site Project

	In Your Web Sites
	In the Development Life Cycle

	Summary

	APPENDIX A Webliography
	Core Links
	GitHub Projects
	Notable Bugs and Discussions
	Miscellaneous

	Index

