
www.allitebooks.com

http://www.allitebooks.org

Unity Android Game Development
by Example Beginner's Guide

Learn how to create exciting games using Unity 3D for
Android with the help of hands-on examples

Thomas Finnegan

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Unity Android Game Development by Example
Beginner's Guide

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its
dealers and distributors will be held liable for any damages caused or alleged to be
caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: December 2013

Production Reference: 1131213

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-84969-201-4

www.packtpub.com

Cover Image by Thomas Finnegan (tom@mooingduck.com)

www.allitebooks.com

http://www.allitebooks.org

Credits

Author

Thomas Finnegan

Reviewers

Mootez Billeh Chaabani

Valera Kogut

Marc Schaerer

Aris Tsevrenis

Acquisition Editor

Owen Roberts

Commissioning Editor

Llewellyn Rozario

Lead Technical Editor

Ritika Dewani

Technical Editors

Arwa Manasawala

Ankita Thakur

Project Coordinator

Anugya Khurana

Copy Editors

Roshni Banerjee

Deepa Nambiar

Karuna Narayanan

Laxmi Subramanian

Proofreader

Stephen Copestake

Indexer

Rekha Nair

Graphics

Disha Haria

Production Coordinator

Manu Joseph

Cover Work

Manu Joseph

www.allitebooks.com

http://www.allitebooks.org

About the Author

Thomas Finnegan completed his graduation from Brown College in 2010. Since then,
he has worked on everything from mobile platforms to web development, and even
experimental devices. He now works as a freelance game developer. Past clients include
Carmichael Lynch, Coleco, and Subaru. His most recent project is Battle Box 3D, a virtual
table top. Currently he is teaching game development at the Minneapolis Media Institute
in Minnesota.

I would like to thank my fiancée for kicking me into gear whenever I was
distracted. Also, I would like to thank my parents for always supporting me.
Without my friends and family, life would be dismal.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Mootez Billeh Chaabani is a software engineer. Currently he is working as a software
engineer (Research and Development) in a French company named SpacEyes. He recently
completed his graduation. He studied graphical programming and virtual and augmented
reality. He also published two apps: Quizz game in the Windows Marketplace and an Android
app in the local appshop, and now he is working on Android/C++ projects based on 3D in
SpacEyes. Before this, he was an intern at Microsoft Tunisia in 2011. He also worked as an
Android developer in Orange Tunisia in 2012. He also worked on the book Android NDk
Game Development Cookbook.

I would like to thank my family, my soulmate, and all of my friends including
Bardo Boys (my neighborhood friends).

Valera Kogut is a passionate software developer with different areas of expertise. Before
diving into the game industry five years ago, Valera was creating for Web with PHP and Yii
frameworks. Having a mathematical background, he finally realized gamedev was his mission.
Reusable designs, optimized algorithms, clean code, and elaborated workflows—these
things make him happy. He is a co-founder and principal architect at applicat.io, software
development agency offering a wide range of services (http://applicat.io). However,
architectural and management tasks can't stop Valera from digging deeply into code.

www.allitebooks.com

http://www.allitebooks.org

Currently, Valera executes one contract as Unity3D C# developer for Kaufcom GmbH,
a known games and apps producer from Switzerland http://www.kauf.com
(Android games https://play.google.com/store/search?q=kaufcom).

First of all, thanks to the author and team from Packt Publishing for
creating this book, and thereby helping the Unity community grow and
mature. Special thanks go to my family for the love, education, and
freedom they gave me! I would also like to thank my best friends and
associates at applicat.io, Paul Kofmann, Alexander Kofmann, and Vitaly
Shapovalov; we are the Team! Thanks to the Kaufcom Company! And of
course, no progress of mine could be achieved without the support and
love of my wife, Irina.

Marc Schaerer is an interactive media software engineer who is creating cutting
edge interactive media experiences for training, education, and entertainment purposes
on mobile, desktop, and web platforms for customers through his company Gayasoft
(http://www.gayasoft.net) located in Switzerland.

His technology of choice is Unity, which he has been using since its early days in 2007.

He has a strong background in 3D graphics, network technology, software engineering, and
the interactive media field. Originally, he started programming at the age of 11 and built
upon it later while studying Computer Science and Computational Science and Engineering
at Swiss Federal Institute of Technology, Zurich, thereby growing into it. This knowledge
found, among other projects, usage in Popper (http://www.popper.org), an interactive
3D behavioral research platform by Harvard developed by Gayasoft and powered by Unity,
Mathlab, and the ExitGames Photon.

With the rise of serious games, he focused on researching options and technologies for the
next generation of interactive and immersive experiences, applying state of the art AR and
VR technologies (Vuforia, Metaio, and Oculus Rift) and new innovative input technologies
(Razer Hydra, STEM, Leap Motion, and Emotive Insight). He predicts that this will become
the base of future experiences in many fields of our daily life.

www.allitebooks.com

http://www.allitebooks.org

Aris Tsevrenis is a game developer and director at Terahard Ltd, a game development studio
dedicated to creating addictive games that will be remembered for their quality in every aspect.
The company's motto, "Terabytes of Quality for Hardcore Gaming", explains a few things about
Aris' ambitions. Aris was introduced to games from a very early age in the 90s. Showing great
skill, and evolving from chess to modern computer and console games, Aris became famous
among the people who knew his numerous feats in the gaming world. He received his BSc in
Computer Science with a Computer Vision and Computer Graphics degree in 2009 from Cardiff
University in Wales, followed by an MSc in Computer Games and Entertainment degree from
Goldsmith's University in London. He entered the games development world and worked in a
few different games companies until he set up Terahard Ltd. He currently lives in London, where
his games studio is located, and can be contacted at aris.tsevrenis@terahard.org.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
�� Fully searchable across every book published by Packt

�� Copy and paste, print and bookmark content

�� On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

www.allitebooks.com

http://www.allitebooks.org

Table of Contents
Preface	 1

Chapter 1: Saying Hello to Unity and Android	 7
Understanding what makes Unity great	 8
Understanding what makes Android great	 10
Understanding how Unity and Android work together	 10
Differences between Pro and Basic	 11

License comparison overview	 11
Setting up the development environment	 16
Time for action – installing the JDK	 16
Time for action – installing the Android SDK	 17
Time for action – installing Unity 3D	 20
Optional code editor	 23
Connecting to a device	 23
Time for action – simple device connection	 23
Time for action – connecting trickier devices	 25
Unity Remote	 26
Building a simple application	 26
Time for action – Hello World	 26
Summary	 34

Chapter 2: Looking Good – Graphical Interface	 35
Creating a Tic-tac-toe game	 36
Time for action – creating Tic-tac-toe	 36
Finishing the game	 41
Time for action – finish creating the game	 41
GUI Skins and GUI Styles	 48
A prettier form of Tic-tac-toe	 54
Time for action – styling the game	 54

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

Dynamic positioning	 61
Time for action – the dynamic GUI	 61
A better way to build to device	 66
Time for action – build and run	 66
Summary	 69

Chapter 3: The Backbone of Any Game – Meshes, Materials,
and Animations	 71

Setting up	 72
Time for action – the setup	 72
Importing the meshes	 73
Time for action – importing the tank	 73
Tank import settings	 74

Setting up the tank	 79
Time for action – creating the tank	 79
Time for action – keeping score	 81
Time for action – controlling the chassis	 81
Time for action – controlling the turret	 84
Time for action – putting the pieces together	 87
Creating the materials	 89
Time for action – creating the city	 89
Time for action – moving treads	 96
Animations	 97

The target's animations	 102
Time for action – setting up target's animations	 102

State machines	 103
Time for action – creating the target state machine	 104
Time for action – scripting the target	 110

Creating the prefab	 113
Time for action – creating the target	 113
Ray tracing to shoot	 115
Time for action – simple shooting	 115
Summary	 118

Chapter 4: Setting the Stage – Camera Effects and Lighting	 119
The camera effects	 120

Skyboxes and distance fog	 120
Time for action – adding a skybox and distance fog	 120

Target indicator	 122
Time for action – creating the pointer	 122
Time for action – controlling the indicator	 124
Time for action – working with a second camera	 126

Table of Contents

[iii]

Turbo boost	 129
Time for action – using the boost effect	 129
Lights	 132
Time for action – adding more lights	 133

Lightmaps	 136
Time for action – creating a lightmap	 136

Cookies	 139
Time for action – applying headlights	 139
Blob shadow	 141
Time for action – a tank with a shadow	 141
Summary	 144

Chapter 5: Getting Around – Pathfinding and AI	 145
Understanding AI and pathfinding	 146
The NavMesh	 146
Time for action – creating the NavMesh	 147
The NavMeshAgent component	 152
Time for action – creating the enemy	 152
The chase	 154
Time for action – the player is over here	 155
Time for action – chasing the player	 156
Being attacked	 158
Time for action – getting ready to fire	 159
Attacking the enemy	 164
Time for action – giving it a weakness	 164
Spawning	 166
Time for action – creating spawns	 166
Summary	 169

Chapter 6: Specialties of the Mobile Device – Touch and Tilt	 171
Setting up	 172
Time for action – creating the project	 172
Controlling with tilt	 172
Time for action – steering the space ship	 173

Making things move in space	 175
Time for action – flying asteroids	 176

Adding space collisions	 180
Time for action – adding collisions	 180

Creating the enemy	 182
Time for action – adding an enemy ship	 182
Controlling with touch	 187
Time for action – touch to shoot	 187

Table of Contents

[iv]

Spawning in space	 190
Time for action – creating a space spawn	 190
Summary	 194

Chapter 7: Throwing Your Weight Around – Physics and a 2D Camera	 195
2D games in a 3D world	 196
Time for action – preparing the world	 196
Physics	 198

Building blocks	 199
Time for action – creating planks	 199

Physics materials	 203
Time for action – sliding and bouncing	 203
Characters	 204

The enemy	 204
Time for action – creating the pigs	 204

The ally	 208
Time for action – creating the red bird	 209
Controls	 210

Attacking	 210
Time for action – creating the slingshot	 211

Watching	 220
Time for action – controlling the camera	 220
A better background	 224
Time for action – creating the parallax background	 224
The flock variety	 227

The yellow bird	 227
Time for action – creating the yellow bird	 227

The blue bird	 228
Time for action – creating the blue bird	 228

The black bird	 230
Time for action – creating the black bird	 230
Level selection	 232
Time for action – creating the level selection	 232
Summary	 234

Chapter 8: Special Effects – Sound and Particles	 235
Understanding audio	 236

Import settings	 236
Audio Listener	 237
Audio Source	 238
Adding background music	 240

Table of Contents

[v]

Time for action – adding background music	 240
Creating an alarm system	 242

Time for action – warning the player	 243
Understanding particle systems	 244

Particle system settings	 244
Creating engine trails	 253

Time for action – adding engine trails	 254
Putting it together	 256

Explosions	 256
Time for action – adding explosions	 256

Creating laser blasts	 259
Time for action – adding laser blasts	 260
Summary	 264

Chapter 9: Optimization	 265
Minimizing the application footprint	 266

Editor log	 266
Asset compression	 267

Models	 267
Model tab	 268
Rig tab	 269
Animations tab	 270
Textures	 271
Audio	 272

Player settings	 274
Rendering	 274
Optimization	 275

Tracking performance	 276
Editor statistics	 276
The Profiler	 278
Tracking script performance	 279

Time for action – tracking scripts	 279
Minimizing lag	 285
Occlusion	 285
Time for action – occluding tanks	 286

Points to remember	 290
Summary	 291

Pop Quiz Answers	 293

Index	 295

Preface
In this book, we explore the ever-expanding world of mobile game development. Using
Unity 3D and the Android SDK, we will learn how to create every aspect of a mobile game.
Every chapter explores another piece of the development puzzle. Exploring the special
features of development with mobile platforms, every game in the book is designed to
increase your understanding of these features. We also finish the book with a total of
four complete games and all of the tools we need to create many more.

The first game that we make is Tic-tac-toe. This game functions just as the classic paper
version. Two players take turns filling a grid with their symbols; the first to make a line of
three wins. It is the perfect game for us to explore the graphical interface options that we
have in Unity. By learning how to add buttons, text, and pictures to the screen here, we
have all of the understanding and tools needed to add any interface that we might want
to any game.

The next game that we create is the Tank Battle game. The player takes control of a tank to
drive around a small city and shoot targets and enemies. This game spans three chapters,
allowing us to explore many key points of creating games for the Android platform. We start
by creating a city and making the player's tank move around, using controls that we learned
about when making the Tic-tac-toe game. We also create and animate the targets that the
player will shoot at. In the second part of this game, we add some lighting and special camera
effects. By the end of the chapter, the environment looks great. In the third part of the game's
creation, we create some enemies. Using the power of Unity, these enemies chase the player
throughout the city, and attack when they are close.

The third game to be completed is a simple clone of a popular mobile game. Using the power
of Unity's physics system, we are able to create structures and throw birds at them. Knock
down the structures to gain points, and destroy the target pigs to win the level. We also take
the time to explore some of the specific features of a 2D game, such as a parallax scrolling
background, and how they can be achieved in Unity. We complete the chapter and the
game with the creation of a level selection menu.

Preface

[2]

Finally, we create the Space Fighter game. This game involves using the special inputs of a
mobile device to control the player's ship. As the player's device is tilted, they will be able to
steer the ship. When they touch the screen, they can shoot at the enemy ships and asteroids.
The second part of this game involves including the special effects that complete the look of
every game. We create explosions when ships are destroyed, and engine trails for the ships.
We also add the sound effects for shooting and exploding.

The book wraps up with a look at optimization. We explore all of the great features of Unity,
and even create a few of our own to make our game run as best as it can. We also take a
little bit of time to understand some things that we can do to minimize the file size of our
assets while maximizing their look and effect in the game. At this point, our journey ends,
but we have four great games that are just about ready to go to market.

What this book covers
Chapter 1, Saying Hello to Unity and Android, explores the feature lists of the Android platform
and the Unity 3D game engine, covering why they are great choices for development. We
will also cover setting up the development environment, and create a simple Hello World
application for your device and emulators.

Chapter 2, Looking Good – Graphical Interface, takes a detailed look at the graphical user
interface. By creating a Tic-tac-toe game, we learn about the user interface while making
it pleasing to look at.

Chapter 3, The Backbone of Any Game – Meshes, Materials, and Animations, explores meshes,
materials, and animations. Through the creation of a Tank Battle game, we cover the core of
what players will see when playing.

Chapter 4, Setting the Stage – Camera Effects and Lighting, explains about the camera effects
and lighting. With the addition of shadows, lightmaps, distance fog, and a skybox, our Tank
Battle environment becomes more dynamic. Utilizing special camera effects, we create extra
feedback for the player.

Chapter 5, Getting Around – Pathfinding and AI, shows the creation of mobile enemies in our
Tank Battle game. We explore pathfinding and AI to give players a target more meaningful
than a stationary dummy.

Chapter 6, Specialties of the Mobile Device – Touch and Tilt, covers the features that make
the modern mobile device special. We create a Space Fighter game to understand the touch
interface and tilt controls.

Preface

[3]

Chapter 7, Throwing Your Weight Around – Physics and a 2D Camera, shows the creation of
a clone of Angry Birds after taking a short break from the Space Fighter game. Physics and
a 2D camera effect are explored here.

Chapter 8, Special Effects – Sound and Particles, returns to the Space Fighter game to add
special effects. The inclusion of sound effects and particles allows us to create a more
complete game experience.

Chapter 9, Optimization, covers optimization in Unity 3D. We cover the benefits and costs
of making our Tank Battle and Space Fighter games as efficient as possible.

What you need for this book
Throughout this book, we will be working with both the Unity 3D game engine and Android.
As you can see in the previous section, we will cover both the acquisition and installation of
Unity and the Android SDK in Chapter 1, Saying Hello to Unity and Android. To get the most
of this book, you will need access to an Android-powered device; either a phone or tablet
will work well. For simplicity's sake, we will assume that you are working on a Windows-
powered computer. Also, the code throughout the book is written in C#, though JavaScript
versions of each chapter project are available for reference. To fully utilize the models
provided for the chapter projects, you will need Blender, a free modeling program available
at http://www.blender.org. To reach all of the challenges, you will need to make use
of either Blender or another modeling program that you are comfortable with, for example,
a photo-editing program; Photoshop is a common choice, and a source for the creation
or acquisition of audio files. All of the audio files provided by this book were found at
http://www.freesound.org.

Who this book is for
This book will be optimal for readers who are new to game development and mobile
development with Unity. Readers who learn best with real-world examples rather than dry
documentation will find every chapter useful. Even if you have little or no programming
skills, this book will make a great place to jump in and learn some concepts and standards
for programming.

Preface

[4]

Conventions
In this book, you will find a number of styles of text that distinguish between different kinds
of information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "If during
the build process, Unity complains about where the Android SDK is, select the android-
sdk folder inside the location where it was installed."

A block of code is set as follows:

public void OnGUI() {
 GUILayout.Label("Hello World");
}

Any command-line input or output is written as follows:

adb kill-server
adb start-server
adb devices

New terms and important words are shown in bold. Words that you see on the screen,
in menus or dialog boxes for example, appear in the text like this: "Follow that up by
clicking on the Download the SDK Tools for Windows button".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or may have disliked. Reader feedback is important for us to
develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com, and
mention the book title in the subject of your message.

Preface

[5]

If there is a topic that you have expertise in, and you are interested in either writing or
contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books that you have purchased from
your account at http://www.packtpub.com. If you purchased this book elsewhere, you
can visit http://www.packtpub.com/support, and register to have the files e-mailed
directly to you.

Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/diagrams used
in this book. The color images will help you understand the changes in the output better.
You can download this file from: http://www.packtpub.com/sites/default/files/
downloads/2014OT_Images.pdf.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you would report this to us. By doing so, you can save other
readers from frustration, and help us improve subsequent versions of this book. If you
find any errata, please report them by visiting http://www.packtpub.com/submit-
errata, selecting your book, clicking on the errata submission form link, and entering the
details of your errata. Once your errata are verified, your submission will be accepted, and
the errata will be uploaded on our website or added to any list of existing errata under the
Errata section of that title. Any existing errata can be viewed by selecting your title from
http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt,
we take the protection of our copyright and licenses very seriously. If you come across any
illegal copies of our works in any form on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Preface

[6]

Please contact us at copyright@packtpub.com with a link to the suspected pirated material.

We appreciate your help in protecting our authors, and our ability to bring you valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with any
aspect of the book, and we will do our best to address it.

1
Saying Hello to Unity and Android

Welcome to the wonderful world of mobile game development. Whether you are
still looking for the right development kit or have already chosen one, this chapter
will be most important. In this chapter we explore the various features that come
with choosing Unity as your development environment and Android as the target
platform. Through comparison with major competitors, it is discovered why
Unity and Android stand on the top of the pile. Following that, we examine how
Unity and Android work together. Finally, the development environment is set up
and we create a simple Hello World application to test that everything is set up
correctly. For the purposes of this book, it is assumed you are working in
a Windows-based environment.

In this chapter, we will cover the following topics:

�� Major Unity features

�� Major Android features

�� Unity licensing options

�� Installing the JDK

�� Installing the Android SDK

�� Installing Unity 3D

�� Installing Unity Remote

Saying Hello to Unity and Android

[8]

Understanding what makes Unity great
Perhaps the greatest feature of Unity is how open-ended it is. Nearly all game engines
currently on the market are limited in what one can build. It makes perfect sense but it
can limit the capabilities of a team. The average game engine has been highly optimized
for creating a specific game type. This is great if all you plan on making is the same game
again and again. When one is struck with inspiration for the next great hit, only to find that
the game engine can't handle it and everyone has to retrain in a new engine or double the
development time to make it capable, it can be quite frustrating. Unity does not suffer this
problem. The developers of Unity have worked very hard to optimize every aspect of the
engine, without limiting what types of games can be made. Everything ranging from simple
2D platformers to massive online role-playing games is possible in Unity. A development
team that just finished an ultra-realistic first-person shooter can turn right around and
make 2D fighting games without having to learn an entirely new system.

Being so open ended does, however, bring a drawback. There are no default tools optimized
for building that perfect game. To combat this, Unity grants the ability to create any tool one
can imagine, using the same scripting that creates the game. On top of that, there is a strong
community of users that have supplied a wide selection of tools and pieces, both free and
paid, to be quickly plugged in and used. This results in a large selection of available content,
ready to jump-start you on your way to the next great game.

When many prospective users look at Unity, they think that because it is so cheap, it is not as
good as an expensive AAA game engine. This is simply not true. Throwing more money at the
game engine is not going to make a game any better. Unity supports all of the fancy shaders,
normal maps, and particle effects you could want. The best part is, nearly all of the fancy
features you could want are included in the free version of Unity and 90 percent of the time
beyond that, one does not need to even use the Pro only features.

One of the greatest concerns when selecting a game engine, especially for the mobile market,
is how much girth it will add to the final build size. Most are quite hefty. With Unity's code
stripping, it becomes quite small. Code stripping is the process by which Unity removes every
extra little bit of code from the compiled libraries. A blank project, compiled for Android, that
utilizes full code stripping ends up being around 7 megabytes.

Perhaps one of the coolest features of Unity is the multi-platform compatibility. With a single
project one can build for several different platforms. This includes the ability to simultaneously
target mobile, PC, and consoles. This allows one to focus on real issues, such as handling
inputs, resolution, and performance.

Chapter 1

[9]

In the past, if a company desired to deploy their product on more than one platform, they
had to nearly double the development costs in order to essentially reprogram the game.
Every platform did, and still does, run by its own logic and language. Thanks to Unity, game
development has never been simpler. We can develop games using simple and fast scripting,
letting Unity handle the complex translation to each platform.

There are of course several other options for game engines. Two major ones that come to
mind are cocos2d and Unreal Engine. While both are excellent choices, we can always find
them to be a little lacking in certain respects.

The engine of Angry Birds, cocos2d, could be a great choice for your next mobile hit. However,
as the name suggests, it is pretty much limited to 2D games. A game can look great in it, but
if you ever want that third dimension, it can be tricky to add. A second major problem with
cocos2d is how bare bones it is. Any tool for building or importing assets needs to be created
from scratch, or they need to be found. Unless you have the time and experience, this can
seriously slow down development.

Then there is the staple of major game development, Unreal Engine. This game engine has
been used successfully by developers for many years, bringing great games to the world;
Unreal Tournament and Gears of War not the least among them. These are both, however,
console and computer games, which is the fundamental problem with the engine. Unreal
is a very large and powerful engine. Only so much optimization can be done for mobile
platforms. It has always had the same problem; it adds a lot of girth to a project and its final
build. The other major issue with Unreal is its rigidity in being a first-person shooter engine.
While it is technically possible to create other types of games in it, such tasks are long and
complex. A strong working knowledge of the underlying system is a must before achieving
such a feat.

All in all, Unity definitely stands strong among the rest. Perhaps you have already discovered
this, and that is why you are reading this book. But these are still great reasons for choosing
Unity for game development. Projects can look just as great as AAA titles. Overhead and
girth in the final build is small and very important when working on mobile platforms. The
system's potential is open enough to allow you to create any type of game you might want,
where other engines tend to be limited to a single type of game. And should your needs
change at any point in the project's life cycle, it is very easy to add, remove, or change your
choice of target platforms.

Saying Hello to Unity and Android

[10]

Understanding what makes Android great
With over 30-million devices in the hands of users, why would you not choose the Android
platform for your next mobile hit? Apple may have been the first one out of the gate with
their iPhone sensation, but Android is definitely a step ahead when it comes to smartphone
technology. One of its best features is its blatant ability to be opened up so you can take a
look at how the phone works, both physically and technically. One can swap out the battery
and upgrade the micro SD card, should the need arise. Plugging the phone into a computer
does not have to be a huge ordeal; it can simply function as removable storage media.

From the point of view of cost of development, the Android market is superior as well. Other
mobile app stores require an annual registration fee of about 100 dollars. Some also have a
limit on the number of devices that can be registered for development at one time. The Google
Play market has a one-time registration fee, and there is no concern about how many or what
type of Android devices you are using for development.

One of the drawbacks about some of the other mobile development kits is that you have to
pay an annual registration fee before you have access to the SDK. With some, registration
and payment are required before you can view their documentation. Android is much more
open and accessible. Anybody can download the Android SDK for free. The documentation
and forums are completely viewable without having to pay any fee. This means development
for Android can start earlier, with device testing being a part of it from the very beginning.

Understanding how Unity and Android work together
Because Unity handles projects and assets in a generic way, there is no need to create multiple
projects for multiple target platforms. This means that you could easily start development with
the free version of Unity and target personal computers. Then, at a later date, you can switch
targets to the Android platform with the click of a button. Perhaps, shortly after your game
is launched, it takes the market by storm and there is a great call to bring it to other mobile
platforms. With just another click of the button, you can easily target iOS without changing
anything in your project.

Most systems require a long and complex set of steps to get your project running on a
device. For the first application in this book, we will be going through that process because
it is important to know about it. However, once your device is set up and recognized by
the Android SDK, a single-button click will allow Unity to build your application, push it to
a device, and start running it. There is nothing that has caused more headaches for some
developers than trying to get an application on a device. Unity makes it simple.

Chapter 1

[11]

With the addition of a free Android application, Unity Remote, it is simple and easy to test
mobile inputs without going through the whole build process. While developing, there is
nothing more annoying than waiting for 5 minutes for a build every time you need to test a
minor tweak, especially in the controls and interface. After the first dozen little tweaks the
build time starts to add up. Unity Remote makes it simple and easy to test it all without ever
having to hit the Build button.

These are the big three: generic projects, a one-click build process, and Unity Remote. We
could, of course, come up with several more great ways in which Unity and Android can work
together. But these three are the major time and money savers. You could have the greatest
game in the world but, if it takes 10 times as long to build and test, what is the point?

Differences between Pro and Basic
Unity comes with two licensing options, Pro and Basic, which can be found at https://
store.unity3d.com. In order to follow the bulk of this book, Unity Basic is all that is
required. However, real-time shadows in Chapter 4, Setting the Stage – Camera Effects and
Lighting, the whole of Chapter 5, Getting Around – Pathfinding and AI, and some of the
optimization features discussed in Chapter 9, Optimization, will require Unity Pro. If you are not
quite ready to spend the $3,000 required to purchase a full Unity Pro license with the Android
add-on, there are other options. Unity Basic is free and comes with a 30-day free trial of Unity
Pro. This trial is full and complete, just as if one has purchased Unity Pro. It is also possible to
upgrade your license at a later date. Where Unity Basic comes with mobile options for free,
Unity Pro requires the purchase of Pro add-ons for each of the mobile platforms.

License comparison overview
License comparisons can be found at http://unity3d.com/unity/licenses. This
section will cover the specific differences between Unity Android Pro and Unity Android
Basic. We will explore what the feature is and how useful it is.

�� NavMeshes, Pathfinding, and crowd Simulation: This feature is Unity's built-in
pathfinding system. It allows characters to find their way from point to point around
your game. Just bake your navigation data in the editor and let Unity take over at
runtime. This feature is great if you don't have the ability or inclination to program
a pathfinding system yourself. There is a whole slew of tutorials online about how
to program pathfinding and do crowd simulation. It is completely possible to do all
of this in Unity Basic; you just need to provide the tools yourself.

Saying Hello to Unity and Android

[12]

�� LOD Support: LOD (Level-of-detail) lets you control how complex a mesh is, based
on its distance from the camera. When the camera is close to an object, render a
complex mesh with a bunch of detail in it. When the camera is far from that object,
render a simple mesh, because all that detail is not going to be seen anyway. Unity
Pro provides a built-in system to manage this. However, this is another system that
could be created in Unity Basic. Whether using Pro or not, this is an important feature
for game efficiency. By rendering less complex meshes at a distance, everything can
be rendered faster, leaving more room for awesome gameplay.

�� Audio Filter: Audio filters allow you to add effects to audio clips at runtime. Perhaps
you created gravel footstep sounds for your character. Your character is running, and
we can hear the footsteps just fine, when suddenly they enter a tunnel and a solar
flare hits, causing a time warp and slowing everything down. Audio filters would
allow us to warp the gravel footstep sounds to sound like they are coming from
within a tunnel and are slowed by a time warp. Of course, you could also just have
the audio guy create a new set of tunnel gravel footsteps in the time warp sounds.
But this might double the amount of audio in your game and limits how dynamic we
can be with it at runtime. We either are or are not playing the time warp footsteps.
Audio filters would allow us to control how much time warp is affecting our sounds.

�� Video Playback and Streaming: When dealing with complex or high-definition cut
scenes, being able to play a video becomes very important. Including them in a
build especially with a mobile target can require a lot of space. This is where the
streaming part of this feature comes in. This feature not only lets us play video, it
also lets us stream that video from the internet. There is, however, a drawback to
this feature. On mobile platforms, the video has to go through the device's built-
in, video-playing system. This means the video can only be played full-screen and
cannot be used as a texture. Theoretically, though, you could break your video into
individual pictures for each frame and flip through them at runtime, but this is not
recommended for build size and video quality reasons.

�� Fully Fledged Streaming with Asset Bundles: Asset bundles are a great feature
provided by Unity Pro. They allow you to create extra content and stream it to the
users, without ever requiring an update to the game. You could add new characters,
levels, or just about any other content you can think of. Their only drawback is that
you cannot add more code. The functionality cannot change, but the content can.
This is one of the best features of Unity Pro.

�� 100,000 Dollar Turnover: This one isn't so much a feature as it is a guideline.
According to Unity's End User License Agreement, the basic version of Unity cannot be
licensed by any group or individual that made $100,000 in the previous fiscal year. This
basically means, if you make a bunch of money, you have to buy Unity Pro. Of course,
if you are making that much money, you can probably afford it without issue. That is
the view of Unity at least, and the reason why it is there.

Chapter 1

[13]

�� Mecanim: IK Rigs: Unity's new animation system, Mecanim, supports many exciting
new features, one of which is IK. If you are unfamiliar with the term, IK allows one
to define the target point of an animation and let the system figure out how to get
there. Imagine you have a cup sitting on a table and a character that wants to pick
it up. You could animate the character to bend over and pick it up, but what if the
character is slightly to the side? Or any number of other slight offsets that a player
could cause, completely throwing off your animation. It is simply impractical to
animate for every possibility. With IK, it hardly matters that the character is slightly
off. We just define the goal point for the hand and leave the arm to the IK system.
It calculates for us how the arm needs to move in order to get the hand to the cup.
Another fun use is making characters look at interesting things as they walk around
a room. A guard could track the nearest person, the player character could look at
things that they can interact with, or a tentacle monster could lash out at the player
without all the complex animation. This will be an exciting one to play with.

�� Mecanim: Sync Layers & Additional Curves

�� Sync layers, inside Mecanim, allow us to keep multiple sets of animation
states in time with each other. Say you have a soldier that you want to
animate differently based on how much health he has. When at full health,
he walks around briskly. After a little damage, it becomes more of a trudge.
If health is below half, a limp is introduced to his walk. And when almost
dead, he crawls along the ground. With sync layers, we can create one
animation state machine and duplicate it to multiple layers. By changing
the animations and syncing the layers, we can easily transition between
the different animations while maintaining the state machine.

�� Additional curves are simply the ability to add curves to your animations.
This means we can control various values with the animation. For example,
in the game world, when a character picks up their feet for a jump, gravity
will pull them down almost immediately. By adding an extra curve to that
animation, in Unity, we can control how much gravity is affecting the
character, allowing them to actually get in the air when jumping. This is a
useful feature for controlling such values right alongside the animations, but
one could just as easily create a script that holds and controls the curves.

�� Custom Splash Screen: Though pretty self-explanatory, it is perhaps not immediately
evident why this feature is specified, unless you have worked with Unity before.
When an application built in Unity initializes on any platform, it displays a splash
screen. In Unity Basic this will always be the Unity logo. By purchasing Unity Pro,
you can substitute the Unity logo with any image you want.

Saying Hello to Unity and Android

[14]

�� Build Size Stripping: This is an important feature for mobile platforms. Build size
stripping removes all of the excess from your final build. Unity does a very good job
at only including the assets that you have created that are used in the final build.
With the stripping, it also only includes the parts of the engine itself that are used in
the game. This is of great use when you absolutely have to get under that limit for
downloading from the cell towers. On the other hand, you could create something
similar to the asset bundles. Just let the users buy the framework, and download
the assets later.

�� Realtime Directional Shadows: Lights and shadows add a lot to the mood of a
scene. This feature allows us to go beyond blob shadows and use realistic looking
shadows. This is all well and good if you have the processing space for it. Most
mobile devices do not. This feature should also never be used for static scenery.
Instead, use static lightmaps, which is what they are for. But if you can find a good
balance between simple needs and quality, this could be the feature that creates
the difference between an alright and an awesome game.

�� HDR, tone mapping: HDR (High Dynamic Range) and tone mapping allow us to
create more realistic lighting effects. Standard rendering uses values from zero to
one to represent how much of each color in a pixel is on. This does not allow for
a full spectrum of lighting options to be explored. HDR lets the system use values
beyond this range and process them using tone mapping to create better effects,
such as a bright morning room or the bloom from a car window reflecting the sun.
The downside of this feature is in the processor. The device can still only handle
values between zero and one, so converting them takes time. Additionally, the
more complex the effect, the more time it takes to render it. It would be surprising
to see this used well on handheld devices, even in a simple game. Maybe the
modern tablets could handle it.

�� Light Probes: Light probes are an interesting little feature. When placed in the
world, light probes figure out how an object should be lit. Then, as a character walks
around, they tell it how to be shaded. The character is, of course, lit by the lights in
the scene but there are limits on how many lights can shade an object at once. Light
probes do all the complex calculations beforehand, allowing for better shading at
runtime. Again, however, there are concerns about the processing power. Too little
and you won't get a good effect; too much and there will be no processing left for
playing the game.

�� Lightmapping with Global Illumination and area lights: All versions of Unity support
lightmaps, allowing for the baking of complex static shadows and lighting effects.
With the addition of global illumination and area lights, you can add another touch
of realism to your scenes. However, every version of Unity also lets you import
your own lightmaps. This means, you could use some other program to render the
lightmaps and import them separately.

Chapter 1

[15]

�� Static Batching: This feature speeds up the rendering process. Instead of spending time
on each frame grouping objects for faster rendering, this allows the system to save the
groups generated beforehand. Reducing the number of draw calls is a powerful step
towards making a game run faster. That is exactly what this feature does.

�� Render-to-Texture Effects: This is a fun feature, but of limited use. It simply allows
you to redirect the rendering of the camera from going to the screen and instead
go to a texture. This texture could then, in its most simple form, be put onto a mesh
and act like a surveillance camera. You could also do some custom post processing,
such as removing the color from the world as the player loses their health. However,
that option could become very processor-intensive.

�� Full-Screen Post-Processing Effects: This is another processor-intensive feature that
probably will not make it into your mobile game. But you can add some very cool
effects to your scene. Such as, adding motion blur when the player is moving really
fast, or a vortex effect to warp the scene as the ship passes through a warped section
of space. One of the best is using the bloom effect to give things a neon-like glow.

�� Occlusion Culling: This is another great optimization feature. The standard camera
system renders everything that is within the camera's view frustum, the view
space. Occlusion culling lets us set up volumes in the space our camera can enter.
These volumes are used to calculate what the camera can actually see from those
locations. If there is a wall in the way, what is the point of rendering everything
behind it? Occlusion culling calculates this and stops the camera from rendering
anything behind that wall.

�� Navmesh: Dynamic Obstacles and Priority: This feature works in conjunction with
the pathfinding system. In scripts, we can dynamically set obstacles, and characters
will find their way around them. Being able to set priorities means different types of
characters can take different types of objects into consideration when finding their
way around. A soldier must go around the barricades to reach his target. The tank,
however, could just crash through, should it desire to.

�� .Net Socket Support: This feature is only useful if you plan on doing fancy things
over a user's network. Multiplayer networking is already supported in every version
of Unity. The multiplayer that is available, though, does require a master server.
With the use of sockets, one could create connections to other devices locally.

�� Profiler and GPU profiling: This is a very useful feature. The profiler provides tons
of information about how much load your game puts on the processor. With this
information we can get right down into the nitty-gritties and determine exactly how
long a script takes to process. Towards the end of the book, though, we will also
create a tool for determining how long specific parts of your code take to process.

www.allitebooks.com

http://www.allitebooks.org

Saying Hello to Unity and Android

[16]

�� Script Access to Asset Pipeline: This is an alright feature. With full access to the
pipeline, there is a lot of custom processing that can be done on assets and builds.
The full range of possibilities are beyond the scope of this book. But think of it as
being able to tint all of the imported textures slightly blue.

�� Dark Skin: This is entirely a cosmetic feature. Its point and purpose are questionable.
But if a smooth, dark-skinned look is what you desire, this is the feature you want.
There is an option in the editor to change it to the color scheme used in Unity Basic.
For this feature, whatever floats your boat goes.

Setting up the development environment
Before we can create the next great game for Android, we need to install a few programs. In
order to make the Android SDK work, we will first install the JDK. Then, we will be installing
the Android SDK. After that is the installation of Unity. We then have to install an optional
code editor. To make sure everything is set up correctly, we will connect to our devices and
take a look at some special strategies if the device is a tricky one. Finally, we will install Unity
Remote, a program that will become invaluable in your mobile development.

Time for action – installing the JDK
Android's development language of choice is Java, so to develop for it we need a copy of the
Java SE Development Kit, JDK, on our computers. The process of installing the JDK is given in
the following steps:

1.	 The latest version of the JDK can be downloaded from http://www.oracle.com/
technetwork/java/javase/downloads/index.html. So, open the site in a
web browser.

Chapter 1

[17]

2.	 Select Java Platform (JDK) from the available versions and you will be brought to
a combination of license agreement and type selection page.

3.	 Accept the license agreement, and select your appropriate Windows version from
the bottom of the list. If you are unsure which to choose, then Windows x86 is
usually a safe choice.

4.	 Once the download is completed, run the new installer.

5.	 A scan, two Next button-clicks, an initialization, and one more Next button
will install the JDK to the default location. It is as good there as anywhere else,
so once it is done installing, hit Close.

What just happened?
We installed the JDK (Java Development Kit). We need this so that our Android development
kit will work. Luckily, the installation process for this keystone is short and sweet.

Time for action – installing the Android SDK
In order to actually develop and connect to our devices, we need to have the Android SDK
installed. Having it fulfills two primary requirements. First, it makes sure we have the bulk
of the latest drivers for recognizing devices. Second, we are able to use the ADB (Android
Debug Bridge). ADB is the system used for actually connecting to and interacting with the
device. The process of installing the Android SDK is given in the following steps:

1.	 The latest version of the Android SDK can be found at http://developer.
android.com/sdk/index.html, so open a web browser and go to the given site.

2.	 Once there, scroll to the bottom and select USE AN EXISTING IDE.

3.	 Follow that up by clicking on the Download the SDK Tools for Windows button.

Saying Hello to Unity and Android

[18]

4.	 You will then be sent to a Terms and Conditions agreement. Read it if you prefer, but
agree to it to continue and hit the download button to start downloading the installer.

5.	 Once it has finished downloading, start it up.

6.	 Hit the first Next button and the installer will try to find an appropriate version of
the JDK. You will come to a page complaining about it, if you do not have it installed.

7.	 If you skipped ahead and do not have the JDK installed, hit the Visit java.oracle.com
button in the middle of the page and go back to the previous section for guidance
on installing it. If you do have it, continue with the process.

8.	 Hitting Next again will bring us to a page about selecting who to install the SDK for.

9.	 Select Install for anyone using this computer, because the default install location is
easier to get to for later purposes.

10.	Hit Next twice, followed by Install to install to the default location.

11.	Once it is done, hit Next and Finish to complete the installation of the Android
SDK Manager.

12.	 If the Android SDK Manager does not start right away, start it up. Either way, give it
a moment to initialize. The SDK Manager makes sure that we have the latest drivers,
systems, and tools for developing with the Android platform. But first, we have to
actually install them.

Chapter 1

[19]

13.	By default it should select a number of options to install. If not, select the latest
Android API, 4.3 (API 18) as of the time of writing this, Android Support Library
and Google USB Driver found in Extras. Be absolutely sure that Android SDK
Platform-tools is selected. This one will be very important later. It actually
includes the tools we need to connect to our device.

14.	Once everything is selected, hit Install packages in the bottom-right corner.

15.	 The next screen is another set of license agreements. Every time a component is
installed or updated through the SDK Manager, you have to agree to the license terms
before it gets installed. Accept all of the licenses and hit Install to start the process.

16.	 You can now sit back and relax. It takes a while for the components to be downloaded
and installed. Once it is all done, you can close it out. We have completed the process,
but you should occasionally come back to it. Periodically checking the SDK Manager
for updates will make sure you are using the latest tools and API's.

What just happened?
We installed the Android SDK. Without it, we would be completely unable to do anything
with the Android platform. Besides the long wait to download and install components, this
was a pretty easy installation.

Saying Hello to Unity and Android

[20]

Time for action – installing Unity 3D
Perhaps the most important part of this whole book, without which none of the rest has
meaning, is installing Unity.

1.	 The latest version of Unity can be found at http://www.unity3d.com/unity/
download. As of the time of writing this, the current version is 4.2.2.

2.	 Once downloaded, launch the installer and click Next until you reach the Choose
Components page.

3.	 Here, we are able to select the features of Unity installation. None of these options
are actually necessary for following the rest of this book, but they warrant having a
look at since Unity will ask every time you update or reinstall it.

�� The Example Project is the current project built by Unity to show off some
of its latest features. If you want to jump in early and take a look at what a
complete Unity game looks like, leave this checked.

Chapter 1

[21]

�� The Unity Development Web Player is required if you plan on developing
browser applications with Unity. As this book is focused on Android
development, it is entirely optional. It is, however, a good one to check.
You never know when you may need a web demo and since it is entirely
free to develop for the web using Unity, there is no harm in having it.

�� The last option is MonoDevelop. It is a wise choice to leave this option
unchecked. There is more detail in the next section, but it will suffice for
now to say that it just adds an extra program for script editing that is not
nearly as useful as it should be.

4.	 Once you have selected or deselected your desired options, hit Next. If you wish
to follow the book exactly, we will be unchecking MonoDevelop and leaving the
rest checked.

5.	 Next is the install location. The default location works well, so hit Install and wait. This
will take a couple of minutes, so sit back, relax, and enjoy your favorite beverage.

6.	 Once the installation is complete, the option to run Unity will be displayed. Leave
it checked and hit Finish. If you have never installed Unity before, you will be
presented with a license activation page.

Saying Hello to Unity and Android

[22]

7.	 While Unity does provide a feature–rich, free version, in order to follow the entirety of
this book, one requires to make use of some of the Unity Pro features. At https://
store.unity3d.com you have the ability to buy a variety of licenses. To follow the
whole book, you will at least need to purchase Unity Pro and Android Pro licenses.
Once purchased, you will receive an e-mail containing your new license key. Enter
that in the provided text field.

8.	 If you are not ready to make a purchase, you have two alternatives. We will go
over how to reset your license in the Building a simple application section later
in the chapter.

�� The first alternative is that you can check the Activate the free version
of Unity checkbox. This will allow you to use the free version of Unity.
As discussed earlier, there are many reasons to choose this option.
The most notable at the moment is cost.

�� Alternatively, you can select the Activate a free 30-day trial of Unity Pro
option. Unity offers a fully functioning, one-time installation, and free
30-day trial of Unity Pro. This trial also includes the Android Pro add-on.
Anything produced during those 30 days is completely yours, just as if you
had purchased a full Unity Pro license. They want you to see how great it
is, so you will come back and make a purchase. The downside is the Trial
Version watermark that will be constantly displayed in the corner of the
game. After the 30 days, Unity will revert to the free version. This is a
great option, should you choose to wait before making a purchase.

9.	 Whatever your choice is, hit OK once you have made it.

10.	The next page simply asks you to log in with your Unity account. This will be the
same account you used to make your purchase. Just fill out the fields and hit OK.

11.	 If you have not yet made a purchase, you can hit Create Account and have it ready
to go when you do make a purchase.

12.	The next page is a short survey on your development interests. Fill it out and hit
OK or scroll straight to the bottom and hit Not right now.

13.	Finally there is a thank you page. Hit Start using Unity.

14.	 After a short initialization, the project wizard will open and we can start creating
the next great game. However, there is still a bunch of work to do: in connecting the
development device. So, for now, hit the X button in the top-right corner to close the
project wizard. We will cover how to create a new project in the Building a simple
application section later on.

Chapter 1

[23]

What just happened?
We just installed Unity 3D. The whole book relies on this step. We also had to make a choice
about licenses. If you chose to purchase the Pro version, you will be able to follow everything
in this book without issues. The alternatives, though, will have a few shortcomings. You will
either not have full access to all of the features or be limited to the length of the trial.

Optional code editor
Now a choice has to be made about code editors. Unity comes with a system called
MonoDevelop. It is similar in many respects to Visual Studio. And, like Visual Studio, it adds
many extra files and much girth to a project, all of which it needs to operate. All this extra
girth makes it take an annoying amount of time while it starts up, before one can actually
get to the code.

Technically, you can get away with a plain text editor as Unity doesn't really care. This book
recommends using Notepad++, found at http://notepad-plus-plus.org/download.
Free to use, it is essentially Notepad with code highlighting. There are several fancy widgets
and add-ons for Notepad++ that add even greater functionality, but they are not necessary
for following this book. If you choose this alternative, installing Notepad++ to the default
location will work just fine.

Connecting to a device
Perhaps the most annoying step in working with Android devices is setting up the connection
to your computer. Because there are so many different kinds of devices, it can get a little tricky
at times just to have the device recognized by your computer.

Time for action – simple device connection
The simple device-connection method involves changing a few settings and a little work in
the command prompt. It might seem a little scary but if all goes well, you will be connected
to your device shortly.

1.	 The first thing we need to do is turn on some developer settings on the phone.
At the top of the settings page, there should be a Development option; select it.
If you do not have that option, look for an Applications option.

2.	 Find the Unknown sources check box and check it. This lets us install our
development applications on the device.

Saying Hello to Unity and Android

[24]

3.	 The next checkbox to be checked is USB debugging. This allows us to actually detect
our device from the development environment.

4.	 If you are using Kindle, be sure to go into Security and turn on Enable ADB as well.

There are several warning pop ups that are associated with
turning these various options on. They essentially amount to
the same malicious software warnings associated with your
computer. Applications with immoral intentions can mess with
your system and get to your private information. All these
settings need to be turned on if your device is only going to be
used for development. But, as the warnings suggest, if malicious
applications are a concern, turn them off when not developing.

5.	 Next, start a command prompt. This can be done most easily by hitting your
Windows key, typing cmd.exe, and hitting Enter.

6.	 We now need to navigate to the ADB commands. If you did not install to the default
location, replace the path in the following commands with the path you installed to.

�� If you are running a 32-bit version of Windows and installed to the default
location, type the following in the command prompt:

cd c:\program files\android\android-sdk\platform-tools

�� If you are running a 64-bit version, type the following in the
command prompt:

cd c:\program files (x86)\android\android-sdk\platform-tools

7.	 Now connect your device to your computer, preferably using the USB cable that
came with it.

8.	 Wait for your computer to finish recognizing the device. There should be a "Device
drivers installed" type of message pop-up when it is done.

9.	 The following command lets us see which devices are currently connected and
recognized by the ADB system. Emulated devices will show up as well. Type into
the command prompt:

adb devices

10.	After a short pause for processing, the command prompt will display a list of devices
attached along with the unique IDs of all attached devices. If this list now contains
your device, congratulations, you have a developer-friendly device. If not, things get
a little trickier.

Chapter 1

[25]

What just happened?
We made our first attempt at connecting to our Android devices. For most, this should
be all that you need to connect to your device. For some, this process is not quite enough.
The next little section covers solutions to resolve the issue.

Time for action – connecting trickier devices
For trickier devices, there are a few general things we can try. If these steps fail to connect
your device, you may need to do some special research.

1.	 Start by typing the following commands. These will restart the connection system
and display the list of devices again.

adb kill-server

adb start-server

adb devices

2.	 If you are still not having any luck, try the following commands. These commands
force an update and restart the connection system.

cd ../tools

android update adb

cd ../platform-tools

adb kill-server

adb start-server

adb devices

3.	 If your device is still not showing up, you have one of the most annoying and
tricky devices. Check the manufacturer's website for data syncing and management
programs. If you have had your device for quite some time, you have probably been
prompted to install this more than once. If you have not already done so, install the
latest version, even if you never plan on using it. The point is to obtain the latest
drivers for your device, and this is the easiest way.

4.	 Restart the connection system again using the first set of commands, and cross
your fingers.

5.	 If you are still unable to connect, the best, professional recommendation that can
be made is to Google it. Conducting a search for your device brand with adb at the
end should turn up a step-by-step tutorial specific to your device in the first couple
of results. http://www.xda-developers.com/ is also an excellent resource for
finding out all about the nitty-gritties of Android devices.

Saying Hello to Unity and Android

[26]

What just happened?
Some of the devices that you will encounter while developing will not connect easily. We just
covered some quick steps and managed to connect these devices. If we could have covered
the processes for every device, we would have. However, the variety of devices is just too
large, and they keep making more.

Unity Remote
Unity Remote is a great application created by the Unity team. It allows developers to
connect their Android powered devices to the Unity Editor and provide mobile inputs for
testing. This is a definite must for any aspiring Unity and Android developer. If you are using
a non-Amazon device, acquiring Unity Remote is quite easy. At the time of writing this
book, it could be found on Google Play at https://play.google.com/store/apps/
details?id=com.unity3d.androidremote. It is free and does nothing but connect
to the Unity Editor, so the permissions are negligible.

If, however, you are like the ever-growing Amazon market or seek to target Amazon's line of
Android devices, adding Unity Remote becomes a little trickier. First, you need to download
the APK. It can be found at: http://files.unity3d.com/ricardo/AndroidRemote.
apk. Be sure to download the file to a location that you can easily get the whole file path for.
In the next section, we build a simple application and put it on our device. Follow along from
the Start Console step, replacing the simple application with the downloaded APK.

Building a simple application
We are now going to create a simple Hello World application. This will familiarize you with
the Unity interface and how to actually put an application on your device.

Time for action – Hello World
To make sure everything is set up properly, we need a simple application to test with, and
what better to do that with than a Hello World application?

1.	 The first step is pretty straightforward and simple; start Unity.

2.	 If you have been following along so far, once it is done you should see a screen
resembling the next screenshot. As the tab might suggest, this is the screen through
which we open our various projects. Right now, though, we are interested in creating
one, so select Create New Project from the second tab on top, and we will do just that.

Chapter 1

[27]

3.	 Use the Browse button to select an empty folder to keep your project in. Be sure
that the folder is empty, because Unity will delete everything in it before creating
the new project. Ch1_HelloWorld_CS works well for a project name.

4.	 For now we can ignore the packages. These are bits of assets and functionality
provided by Unity. They are free for you to use in your projects.

Saying Hello to Unity and Android

[28]

5.	 Hit the Create button, and Unity will create a brand new project for us.

6.	 The default layout of Unity contains a decent spread of windows needed to create
a game.

�� Starting from the left-hand side, Hierarchy contains a list of all the objects
that currently exist in our scene. They are organized alphabetically and are
grouped under parent objects, if any.

�� Next to that is the Scene view. This window allows us to edit and arrange
objects in the 3D space. In the top-left hand side, there are two groups
of buttons. These affect how you can interact with the Scene view.

�� The button on the far left that looks like a hand lets you pan around
when clicking and dragging with the left-mouse button.

�� The next button over, the crossed arrows, lets you move objects around.
Its behavior and the gizmo it provides will be familiar if you have made
use of any modeling programs.

�� The third button changes the gizmo to rotation. It allows you to
rotate objects.

�� The fourth button is for scale. It changes the gizmo as well.

�� The second to last button toggles between Pivot and Center. This will
change the position of the gizmo used by the last three buttons to be
either at the pivot point of the selected object, or at the average position
point of all the selected objects.

Chapter 1

[29]

�� The last button toggles between Local and Center. This changes whether
the gizmo is orientated parallel with the world origin or rotated with the
selected object.

�� Underneath the Scene view is the Game view. This is what is currently
being rendered by any cameras in the scene. It is what the player will see
when playing the game and is used for testing your game. There are three
buttons that control the playback of the Game view in the upper-middle
section of the window.

�� The first is the Play button. It toggles the playing of the game. If you want
to test your game, press this button.

�� The second is the Pause button. While playing, pressing this button will pause
the whole game, allowing you to take a look at the game's current state.

�� The third is the Step button. When paused, this button will let you progress
through your game one frame at a time.

�� On the right-hand side is the Inspector window. This displays information
about any object that is currently selected.

�� In the bottom left-hand side is the Project window. This displays all of the
assets that are currently stored in the project.

�� Behind it is the Console. It will display debug messages and compile errors,
warnings, and runtime errors.

7.	 At the top, underneath Help is an option called Manage License.... By selecting this,
we are given options to control the license. The button descriptions cover what they
do pretty well, so we will not cover them in more detail at this point.

8.	 The next thing we need to do is connect our optional code editor. At the top, go to
Edit followed by Preferences..., which opens the following window:

Saying Hello to Unity and Android

[30]

9.	 By selecting External Tools on the left, we can select other software to be used for
managing asset editing.

10.	 If you do not desire to use MonoDevelop, select the drop-down list to the right of
External Script Editor and navigate to the executable of Notepad++, or the other
code editor of your choice.

11.	Your Image application can also be changed here to Adobe Photoshop CS3 or any
other image-editing program you prefer, in the same way as the script editor.

12.	 If you installed the Android SDK to the default location, do not worry about it.
Otherwise, click on Browse... and find the android-sdk folder.

13.	Now, for the actual creation of this application, right-click inside of your
Project window.

14.	From the new window that pops up, select Create and C# Script from the menu.

15.	Type in a name for the new script, HelloWorld will work well, and hit Enter twice:
once to confirm the name and once to open it.

Because this is the first chapter, it will be a simple Hello World
application. Unity supports C#, JavaScript, and Boo as scripting
languages. For consistency, this book will be using C#. If you,
instead, wish to use JavaScript for your scripts, copies of all
of the projects can be found with the other resources for this
book and an _JS suffix for JavaScript.

16.	Every script that is going to attach to an object inherits from MonoBehaviour.
JavaScript does this automatically, but C# scripts must define it explicitly. However,
as you can see from the default code in the script, we do not have to worry about
setting this up initially; it is done automatically. Inheriting from MonoBehaviour lets
our scripts access various values of the game object, such as the position, and lets
the system automatically call certain functions during specific events in the game,
such as the Update cycle and the GUI rendering.

17.	For now we will delete the Start and Update functions that Unity insists on
including in every new script. Replace them with a bit of code that simply renders
the words Hello World in the top-left corner of the screen. You can now close the
script and return to Unity.

public void OnGUI() {
 GUILayout.Label("Hello World");
}

18.	Drag the HelloWorld script from the Project window and drop it on the Main
Camera object in the Hierarchy window. Congratulations, you have just added
your first bit of functionality to an object in Unity.

Chapter 1

[31]

19.	 If you select the Main Camera in Hierarchy, then Inspector will display all of
the components attached to it. At the bottom of the list is your brand new
HelloWorld script.

20.	Before we can test it, we need to save the scene. To do this, go to File at the top,
and select Save Scene. Give it a name of HelloWorld and hit Save.

21.	You are now free to hit the Play button in the upper-middle section of the editor
and witness the magic of Hello World.

22.	We now get to build the application. At the top, select File followed by Build
Settings....

23.	By default the target platform is PC. Under Platform, select Android and hit Switch
Platform in the bottom-left corner of the Build Settings window.

24.	Underneath the Scenes In Build box, there is a button labeled Add Current. Click
on it to add our currently opened scene to the build. Only scenes that are in this
list and checked will be added to the final build of your game. The scene with the
number zero next to it will be the first scene loaded when the game starts.

25.	There is one last thing to change before we can hit the Build button. Select Player
Settings... at the bottom of the Build Settings window.

26.	The Inspector window will open Player Settings for the application. From here
we can change the splash screen, icon, screen orientation, and a handful of other
technical options.

Saying Hello to Unity and Android

[32]

27.	At the moment, there are only a few options that we care about. At the top,
Company Name is the name that will appear under the information about the
application. Product Name is the name that will appear underneath the icon
on your Android device. You can largely set these to anything you want, but
they do need to be set immediately.

28.	The important setting is Bundle Identifier underneath Other Settings. This is the
unique identifier that singles out your application from all other applications on the
device. The format is com.CompanyName.ProductName, and it is good practice to
use the same company name across all of your products. For this book, we will be
using com.TomPacktAndBegin.Ch1.HelloWorld for Bundle Identifier, opting
to use an extra dot for organization.

29.	Go up to File and click on Save again.

30.	Now you can hit the Build button in the Build Settings window.

31.	Pick a save location and a file name; Ch1_HelloWorld.apk works well. Be sure to
remember where it is, and hit Save.

32.	 If, during the build process, Unity complains about where the Android SDK is, select
the android-sdk folder inside the location where it was installed. The default
would be C:\Program Files\Android\android-sdk for 32-bit Windows and
C:\Program Files (x86)\Android\android-sdk for 64-bit Windows.

33.	Once the loading bar finishes, which should not be very long, your apk has been
made and we are ready to continue.

34.	We are finished with Unity for this chapter. You can close it down and start a
command prompt.

Chapter 1

[33]

35.	 Just as we did when we were connecting our devices, we need to navigate to the
platform tools folder in order to connect to our device. If you installed it to
the default location, use:

1.	 For 32-bit Windows:

cd c:\program files\android\android-sdk\platform-tools

2.	 For 64-bit Windows:

cd c:\program files (x86)\android\android-sdk\platform-tools

36.	Double-check to make sure that the device is connected and recognized using:

adb devices

37.	Now we install the application. This command tells the system to install an
application on the connected device. The -r indicates that it should override if
an application is found with the same Bundle Identifier as the application we are
trying to install. That way you can just update your game as you develop, rather
than uninstalling before installing the new version each time you need to make
an update. The path to the .apk file that you wish to install is shown in quotes as
follows:

adb install -r "c:\users\tom\desktop\packt\book\ch1_helloworld.apk"

38.	Replace it with the path to your apk file; capital letters do not matter, but be sure to
have all the correct spacing and punctuations.

39.	 If all goes well, the console will display an upload speed when it has finished pushing
your application to the device and a success message when it is finished installing. The
most common causes for errors at this stage are not being in the platform-tools
folder when issuing commands and not having the correct path to your .apk file
surrounded by quotes.

40.	Once you have received your success message, find the application on your phone
and start it up.

41.	Now, gaze in wonder at your ability to create Android applications with the power
of Unity.

What just happened?
We created our very first Unity and Android application. Admittedly, it was just a simple Hello
World application, but that is how it always starts. Also, it served very well for double-checking
the device connection and for learning about the build process without all of the clutter from
a game.

Saying Hello to Unity and Android

[34]

Have a go hero – working ahead
Try changing the icon for the application. It is a fairly simple procedure that you will
undoubtedly want to perform as your game develops. How to do this was mentioned
earlier in this section. But, as a reminder, take a look at Player Settings. Also, you will
need to import an image. Take a look under Assets, in the menu bar, to know how to
do this.

Summary
There were a lot of technical things in this chapter. First, we discussed the benefits and
possibilities when using Unity and Android. That was followed by a whole lot of installation;
the JDK, the Android SDK, Unity 3D, and Unity Remote. We then figured out how to connect
to our devices through the command prompt. Our first application was quick and simple to
make. Finally, we built it and put it on a device.

The next chapter will see us creating a game that is significantly more interactive, Tic-tac-toe.
We will be exploring the wonderful world of graphical user interfaces. So, not only will we
make the game, but we will make it look good too.

2
Looking Good – Graphical Interface

In the previous chapter, we covered the features of Unity and Android. We also
discussed the benefits of using them together. After we finished installing a
bunch of software and setting up our devices, we created a simple Hello World
application to confirm that everything was connected correctly.

This chapter is all about Graphical User Interface (GUI). We will start by creating
a simple Tic-tac-toe game, using the basic pieces of GUI that Unity provides.
Following that we will discuss Unity's GUI Styles and GUI Skins. Using what we
learned, we will improve the look of our game. Also, we will explore some tips
and tricks for handling many different screen sizes of Android devices. Finally,
we will learn about a much quicker way to put our games on the device, which
was covered in the previous chapter. With all that said, let's jump in.

In this chapter, we will cover the following topics:

�� User preferences

�� Buttons and labels

�� GUI Skins and GUI Styles

�� Dynamic GUI positioning

�� Build and run

In this chapter, we will be creating a new project in Unity. The first section here will walk
you through its creation and setup.

www.allitebooks.com

http://www.allitebooks.org

Looking Good – Graphical Interface

[36]

Creating a Tic-tac-toe game
The project for this chapter is a simple Tic-tac-toe-style game, similar to what any of us
might play on paper. As with anything else, there are several ways you could make this
game. We are going to use Unity's GUI system, in order to better understand how to
create a GUI for any of our other games.

Time for action – creating Tic-tac-toe
The basic Tic-tac-toe game involves two players and a 3 x 3 grid. The players take turns filling
X's and O's. The player who first fills a line of three squares with his/her letter wins the game.
If all squares are filled without a player achieving a line of three, the game is a tie. Let's perform
the following steps to create our game:

1.	 The first thing to do is to create a project for this chapter. So, start up Unity and we
will do just that.

2.	 If you have been following along so far, Unity should boot up into the last project that
was open. This isn't a bad feature, but it can become extremely annoying. Think of it
like this: you have been working on a project for a while and it has grown large. Now
you need to quickly open something else, but Unity defaults to your huge project.
If you wait for it to open before you can work on anything else, it can consume a lot
of time. To change this feature, go to the top of the Unity window and click on Edit
followed by Preferences. This is the same place where we changed our script editor's
preferences. This time, though, we are going to change settings in the General tab.
The following screenshot shows the options present under the General tab:

Chapter 2

[37]

3.	 At this moment, the primary concern is the Always Show Project Wizard option;
however, we will still cover all of the options in turn. All the options under the
General tab are explained in detail as follows:

�� Auto Refresh: This is one of the best features of Unity. As assets are
changed outside of Unity, this option lets Unity automatically detect
the change and refresh the asset inside your project.

�� Always Show Project Wizard: This is a great first option to go check
whenever installing Unity. Instead of opening the last project, Unity
opens Project Wizard. From there, you can open any project of your
choice or create a new one. This is always a good one to turn on.

�� Compress Assets on Import: This is the checkbox for automatically
compressing your game assets when they are first imported to Unity.

�� Editor Analytics: This is the checkbox for Unity's anonymous usage statistics.
Leave it checked and the Unity Editor sends info occasionally to the Unity
source. It doesn't hurt anything to leave it on, and helps the Unity team
make the Unity Editor better. But it comes down to personal preference.

�� Show Asset Store search hits: This setting is only relevant if you are
planning to use the Asset Store. The Asset Store can be a great source
of assets and tools for any game; however, since we are not going to use
it, the relevance to this book is rather limited. It does what the name
suggests. When you search the Asset Store for something from within the
Unity Editor, the number of results is displayed based on this checkbox.

�� Verify Saving Assets: This is a good one to be left off. If this is on, every time
you click on Save in Unity. A dialog box will pop up so that you can make
sure you save any and all of the assets that have changed since your last
save. It is not so much about your models and textures, but concerned with
Unity's internal files, the materials, and prefabs. Best to leave it off for now.

�� Skin (Pro Only): This option only applies to Unity's pro users. It gives the
option to switch between the light and dark versions of the Unity Editor.
It is purely cosmetic, so go with your gut for this one.

4.	 With your preferences set, now go up to File and follow it with selecting Open Project.

5.	 Select the Create New Project tab, followed by the Browse... button to pick a
location and name for the new project.

6.	 We will not be using any of the included packages, so click on Create and we can
get on with it.

Looking Good – Graphical Interface

[38]

7.	 Once Unity finishes initializing the new project, create two new scripts in the Project
panel, just as we did for the Hello World project in the previous chapter. Name the
new scripts as TicTacToeControl and SquareState. Open them and clear out
the default functions; again, just as we did in Chapter 1, Saying Hello to Unity
and Android.

8.	 The SquareState script will hold the possible states of each square of our game
board. To do that, clear everything out of the script and replace it with a simple
enumeration. An enumeration is just a list of potential values. This one is concerned
with the player who controls the square. Do X's control it, O's control it, or is it clear
because the game board is traditionally clear by default. Clear becomes the first
and therefore the default state.

public enum SquareState {
 Clear,
 XControl,
 OControl
}

9.	 In our other script, TicTacToeControl, we start with two variables that will
largely control the flow of the game. The first defines our game board. Traditionally
the game is played on a 3 x 3 grid, therefore nine squares. The second line dictates
whose turn it is. How it is going to change will be made clear in a little bit, but for
now suffice it to say that if it is X's turn, the value will be true. If it is not X's turn,
the value will be false.

public SquareState[] board = new SquareState[9];
public bool xTurn = true;

In Unity, every script by default inherits from the MonoBehaviour
class. This gives our scripts two primary benefits.

First, it allows us to add our scripts to objects as components. The
filename of the script also needs to be the exact same as the class
name within the script, if you plan on adding the script to an object.

The second benefit of the MonoBehaviour class is the variety of
variables and functions that come with it. The variables give us access
to all the parts that make up objects in Unity. The functions provide a
number of automatic features and access to the game initialization and
loop. This is what we are most interested in at this particular moment.

10.	 In order to draw anything in each GUI frame, one needs to utilize the OnGUI
function provided by the MonoBehaviour class. That is where we will draw
our game board. The OnGUI function lets us draw our interface every frame.
Inside it, we will first define the width and height of our board squares.

Chapter 2

[39]

public void OnGUI() {
 float width = 75;
 float height = 75;

11.	Following that is a pair of for-loops. Because our board is a 3 x 3 grid, we need the
loops to count three rows of three squares.

for(int y=0;y<3;y++) {
 for(int x=0;x<3;x++) {

12.	 Inside the loops we must first figure out which square we are currently drawing.
It becomes hard to play a game, if you don't know which square was touched.

int boardIndex = (y * 3) + x;

13.	The next line of code defines whether the square is going to be drawn as a Rect
class. A Rect class is defined in GUI space as x position, y position, width, and
height. In Unity, GUI space is defined as the top-left corner being (0,0) and the
bottom-right is Screen.width, Screen.height. The width and height of the
screen are the number of pixels.

Rect square = new Rect(x * width, y * height, width, height);

14.	We then figure out who controls the square. The following line of code is a little
complicated, but it is really just a compressed if statement. Basically, it works
like this: first check a condition and if it is true return the first value, whatever is
between the question mark and the colon. If the condition is false, return the value
after the colon. Two of these compressed if statements were combined here; if
the square is owned by X, set our owner to X. Otherwise, if it is owned by O, set the
owner to O. If neither of the conditions is true, nobody owns the square and we set
our owner to an empty string.

string owner = board[boardIndex] == SquareState.XControl ? "X" :
board[boardIndex] == SquareState.OControl ? "O" : "";

15.	 Now that all the hard work of figuring out where we are is done, we actually draw
our game board square. This is done through the use of a wonderful little function
provided by Unity, GUI.Button. To use this function in its basic form, we must tell the
function where the button should be drawn and what text to display, hence rect and
string. We give it our square and owner variables, it does all the hard work of actually
drawing on screen, and we are given back a Boolean result, whether or not the button
was pressed. Therefore, we check it with an if statement and if true, we send to
a new function which square was pressed, letting it handle setting the owner. Also,
don't forget the extra curly braces to close up the loops and the function.

 if(GUI.Button(square, owner))
 SetControl(boardIndex);

Looking Good – Graphical Interface

[40]

 }
 }
}

16.	The SetControl function is pretty short; it simply sets the owner for whichever
square is passed to it. It first makes sure that the index given is actually within the
range for our board. If it is not, we'll exit the function early. The next line of code
sets control of the board square based on whose turn it is. If it is X's turn, set the
square to XControl; otherwise set control to OControl. Finally we change whose
turn it is. This is done by simply setting our xTurn Boolean to the opposite of itself,
indicating that it is the other person's turn.

public void SetControl(int boardIndex) {
 if(boardIndex < 0 || boardIndex >= board.Length) return;

 board[boardIndex] = xTurn ? SquareState.XControl : SquareState.
OControl;
 xTurn = !xTurn;
}

17.	We are just about ready to play our game. We just need to set up the scene. To do
this, start by dragging our TicTacToeControl script from the Project pane of the
Unity Editor to the Main Camera object in the Hierarchy pane of the Unity Editor.

18.	Now save the scene, just as we did in Chapter 1, Saying Hello to Unity and Android,
as TicTacToe.

19.	 It is possible to play the game at this point. It is also possible to do so on a device;
just follow the same steps as in Chapter 1, Saying Hello to Unity and Android, but
for now just perform testing in the Unity Editor. Later in this chapter we will cover
a much easier way to build to our devices.

Downloading the example code

You can download the example code files for all Packt books you have
purchased from your account at http://www.packtpub.com. If you
purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed directly to you.

What just happened?
We created the very base of what we need to play Tic-tac-toe. We did this with two short
and simple scripts. However, while playing the game now, you probably noticed a few things
about it. For starters, it doesn't look particularly fantastic. That is extremely odd, considering
it is the point of this chapter, but we will address that soon enough. Second, there are no
checks to determine whether or not somebody already controls a square.

Chapter 2

[41]

Also, there are no checks to see if anybody won the game. Finally, if you decided to build to
device, you might have noticed one of the great things about Unity's GUI functions. There
is no special programming needed to make any of the GUI functions work with touch inputs
rather than the mouse. A lot of time is saved when you don't have to worry about special
inputs, especially if you plan on multiplatform targeting.

Finishing the game
If you didn't want to go through the process of building the application and putting it on
your device, it is still possible for you to try out interacting with the buttons, and touching
them with your fingers. In Chapter 1, Saying Hello to Unity and Android, we installed the
application, Unity Remote. Plug the device into your computer and start it up; when you
click on Play in the Unity Editor, you should see the game running on your device. If you
can see the game playing in the Unity Editor but not on the device, just restart Unity.
Make sure to save it; it would be awful to lose all of your hard work.

Undoubtedly the first thing you will notice when using Unity Remote is that the game
doesn't look good. It is almost certainly stretched and pixelated. If it doesn't concern you
now, don't worry, it gets worse when the project becomes more complicated. Now, before
you start freaking out, grumbling about why you had to install such a useless program, you
must understand the point of Unity Remote. We went over it sometime back, but we will
dig a little deeper. Unity Remote is for testing device inputs: touch screen, tilt, and so on.
What it looks like is a result of freeing up bandwidth so that the frame rate is the same
as it is in the Unity Editor.

There is something you can and should do about the stretching. At the top-left corner of
the Game window of the Unity Editor is a drop-down list. By default it is set to Free Aspect,
which means the window will fill all the space available. If you click on it, a variety of aspect
ratio options will be presented. Clicking through these options, you will see black bars in the
Game window. This is Unity resizing the Game window and blacking out the unused space.
The options change based on what the build target is. In the Build Settings window, change
your platform to Android. In the Game window's drop-down menu, find an aspect ratio that
matches your device. With that selected, your game will no longer appear stretched when
using Unity Remote.

Time for action – finish creating the game
Let us finish the creation of our game by creating an opening screen. We will then add some
checks to stop players from selecting squares more than once. Follow that with a check to
see if anyone won and finally display a game over screen. With that, the game will be ready
for us to make it look great.

Looking Good – Graphical Interface

[42]

Let's perform the following steps for finishing our game:

1.	 We will do all this by first creating another script like our SquareState script.
Create the new GameState script and clear out the default contents. Add the
following code snippet and we will have the values needed to track the current
state of our game:

public enum GameState {
 Opening,
 MultiPlayer,
 GameOver
}

2.	 We now need to update our TicTacToeControl script. For starters, because we
want to be able to play multiple games, add the NewGame function to the script.
This function initializes our control variables so that we can start a fresh game with
a clear board. It will not do very well for players to start a new game and have the
board already filled in. This function will be used by our main menu, which we will
be writing shortly.

public void NewGame() {
 xTurn = true;
 board = new SquareState[9];
}

3.	 But first, we need to update our OnGUI function. To do that, start by moving all of
the current contents of OnGUI to a new function called DrawGameBoard.

4.	 Now, we need to change our cleared OnGUI function to the following code snippet
in order to allow it to check and draw the proper screen based on the current
game state. A switch statement works the same as a bunch of if and else if
statements. In our case, we check the game state and call a different function based
on what it is. For example, if the game state is equal to GameState.MultiPlayer,
we will call the DrawGameBoard function, which should now contain what used to
be in the OnGUI function.

public void OnGUI() {
 switch(gameState) {
 case GameState.Opening:
 DrawOpening();
 break;
 case GameState.MultiPlayer:
 DrawGameBoard();
 break;
 case GameState.GameOver:
 DrawGameOver();
 break;
 }
}

Chapter 2

[43]

5.	 By this point you are probably wondering where that game state variable is coming
from. If you guessed that it was automatically provided by Unity, you are wrong.
We have to track our own game state. That is why we created the GameState script
earlier. Add the following line of code to the top of our TicTacToeControl class,
right above where we defined our game board:

public GameState gameState = GameState.Opening;

6.	 Next, we need to create the other two game state screens. Let us start with the
opening screen. When we draw our opening screen, we start by defining the Rect
class used by our title. We follow that with a quick call to GUI.Label. By passing it
a Rect class to position itself by and some text, the text is simply drawn on screen.
This function is the best way to draw a section of text on the screen.

public void DrawOpening() {
 Rect titleRect = new Rect(0, 0, 300, 75);
 GUI.Label(titleRect, "Tic-Tac-Toe");

7.	 The following line of code defines the Rect class used by our New Game button.
We want to be sure that it was right under the title, so it starts with the title's x
position. We then combine the title's y position with its height to find the position
right underneath it. Next, we used the width from the title so that our button will
cover the entire position under it. Finally, the height is set to 75 because it is a good
size for fingers and we don't want it to change based on the title. We could have just
as easily used all the values from the title or just put in the numbers but our title will
change later when we start styling everything.

 Rect multiRect = new Rect(titleRect.x, titleRect.y + titleRect.
height, titleRect.width, 75);

8.	 Finally, we make a call that will draw our button. You may remember our use of the
GUI.Button function from when we drew the game board. If the button is pressed,
the game state is set to MultiPlayer that will start our game. The NewGame
function is also called, which will reset our game board. And of course, there is an
extra curly brace to finish off the function.

 if(GUI.Button(multiRect, "New Game")) {
 NewGame();
 gameState = GameState.MultiPlayer;
 }
}

Looking Good – Graphical Interface

[44]

9.	 We have one screen left to draw, the game over screen. To do this, we will create the
function referenced by our OnGUI function. However, in order for a game to end,
there must be a winner, so add the following line of code right under our game state
variable. We are making extended use of the SquareState enumeration. If the
winner variable is equal to Clear, nobody won the game. If it is equal to XControl
or OControl, the relevant player has won. Don't worry, it will make more sense when
we create the game over screen next and the winner check system in a little bit.

public SquareState winner = SquareState.Clear;

10.	There is nothing particularly new in the DrawGameOver function. First, we'll define
where we are going to write who won the game. We'll then figure out who won,
using our winner variable. After drawing the winner title, the Rect class used is
shifted down by its height so it can be reused. Finally, we'll draw a button that
changes our game state back to Opening, which is of course our main menu.

public void DrawGameOver() {
 Rect winnerRect = new Rect(0, 0, 300, 75);
 string winnerTitle = winner == SquareState.XControl ? "X Wins!"
: winner == SquareState.OControl ? "O Wins!" : "It's A Tie!";
 GUI.Label(winnerRect, winnerTitle);

 winnerRect.y += winnerRect.height;
 if(GUI.Button(winnerRect, "Main Menu"))
 gameState = GameState.Opening;
}

11.	To make sure we are not overwriting squares that somebody already controls,
we need to make a few changes to our DrawGameBoard function. First, it would
be helpful if the players could easily tell whose turn it is. To do this, we'll add the
following code snippet to the end of the function. This should start to become
familiar. We'll first define where we want to draw. Then, we'll use our xTurn
Boolean to determine what to write about whose turn it is. Finally, it is the GUI.
Label function to draw it on screen.

Rect turnRect = new Rect(300, 0, 100, 100);
string turnTitle = xTurn ? "X's Turn!" : "O's Turn!";
GUI.Label(turnRect, turnTitle);

12.	 We now need to change the bit where we draw the board square, the GUI.Button
function. We need to only draw that button if the square is clear. The following code
snippet will do just that by moving the button inside of a new if statement. It checks
whether the board square is clear. If it is, we draw the button. Otherwise, we use a
label to write the owner to the button's location.

if(board[boardIndex] == SquareState.Clear) {
 if(GUI.Button(square, owner))

Chapter 2

[45]

 SetControl(boardIndex);
}
else GUI.Label(square, owner);

13.	The last thing we need to do is make a system that checks for a winner. We will do
this in another function provided by the MonoBehaviour class. LateUpdate is
called at the end of every frame, just before things are drawn on the screen. You
might be wondering to yourself, why don't we just create a function that is called
at the end of OnGUI, which is already called every frame? The reason is that the
OnGUI function gets a little weird when drawing some of the GUI elements. It will
sometimes be called more than once so that it can draw everything. So, for the most
part, the functionality should never be controlled by OnGUI. That is what Update
and LateUpdate are for. Update is the normal game loop where most of a game's
functionality is called from. LateUpdate is for things that need to happen after the
objects' update, such as our check for a game over.

14.	Add the following LateUpdate function to our TicTacToeControl class. We'll
start with a check to make sure we should even be checking for a winner. If the
game isn't in a state where we are playing, in this case MultiPlayer, exit here
and go no further.

public void LateUpdate() {
 if(gameState != GameState.MultiPlayer) return;

15.	Follow that with a short for loop. A victory in this game is a run of three matching
squares. We start by checking the column that is marked by our loop. If the first
square is not Clear, compare it to the square below; if they match, check it against
the square below that. Our board is stored as a list but drawn as a grid, so we have
to add three to go down a square. The else if statement follows checks of each
row. By multiplying our loop value by three, we will skip down a row of each loop.
We'll again compare the square to SquareState.Clear, then to the square one
to its right, and finally two to the right. If either set of conditions is correct, we'll
send the first square in the set out to another function to change our game state.

 for(int i=0;i<3;i++) {
 if(board[i] != SquareState.Clear && board[i] == board[i + 3]
&& board[i] == board[i + 6]) {
 SetWinner(board[i]);
 return;
 }
 else if(board[i * 3] != SquareState.Clear && board[i * 3] ==
board[(i * 3) + 1] && board[i * 3] == board[(i * 3) + 2]) {
 SetWinner(board[i * 3]);
 return;
 }
 }

Looking Good – Graphical Interface

[46]

16.	The following code snippet is largely the same as the if statements we just wrote
previously. However, these lines of code check the diagonals. If the conditions
are true, again send out to the other function to change game states. You have
probably also noticed the returns after the function calls. If we have found a winner
at any point, there is no need to check any more of the board. So, we'll exit the
LateUpdate function early.

 if(board[0] != SquareState.Clear && board[0] == board[4] &&
board[0] == board[8]) {
 SetWinner(board[0]);
 return;
 }
 else if(board[2] != SquareState.Clear && board[2] == board[4] &&
board[2] == board[6]) {
 SetWinner(board[2]);
 return;
 }

17.	This is the last little bit for our LateUpdate function. If no one has won the game,
as determined by the previous parts of this function, we have to check for a tie.
This is done by checking all of the squares of the game board. If any one of them
is Clear, the game has yet to finish and we exit the function. But, if we make it
through the entire loop without finding a Clear square, we go set the winner
but declare a tie.

 for(int i=0;i<board.Length;i++) {
 if(board[i] == SquareState.Clear)
 return;
 }
 SetWinner(SquareState.Clear);
}

Do remember to close the last curly brace. It is needed
to close off the LateUpdate function. If you forget it,
some annoying errors will come your way.

18.	Finally, we'll create the SetWinner function that is called repeatedly in our
LateUpdate function. Short and sweet, we'll pass to this function that is going
to win. It sets our winner variable and changes our game state to GameOver.

public void SetWinner(SquareState toWin) {
 winner = toWin;
 gameState = GameState.GameOver;
}

Chapter 2

[47]

What just happened?
That is it. Congratulations! We now have a fully functioning Tic-tac-toe game and you survived
the process. In the next sections, we will finally get to make it all look pretty. That is a good
thing because, as the screenshot shows, the game does not look great right now.

Looking Good – Graphical Interface

[48]

GUI Skins and GUI Styles
GUI Styles are how we change the look and feel of GUI elements, buttons, and labels in
Unity. A GUI Skin contains several GUI Styles and allows us to change the look of the entire
GUI without explicitly defining GUI Styles for each element. To create a GUI Skin, right-click
in the Project window of the Unity Editor, just as with creating a new script. Go to Create
but, instead of selecting Script, go to the bottom and select GUI skin. Selecting this option
will create the new GUI Skin and let us name it to GameSkin. By looking at our GameSkin
in the Inspector window, you can see what we have to work with.

Chapter 2

[49]

�� At the top is a Font attribute. By importing font files to your project and placing one
here, you can change the default font used by text in the whole game.

�� Under that is a long list of GUI elements, including our good friends Button and
Label. These are all GUI Styles and coincide with the GUI functions that we use to
draw things on screen. For example, unless otherwise specified, when we use the
Button function, it will draw using the Button GUI Style.

�� Following the list of GUI elements is a Custom Styles attribute. This is where we
can put any extra styles that we want to use. Of our dozen buttons, perhaps we
want one to have red text. That GUI Style would go here.

�� At the bottom is a Settings attribute. By expanding it, we can see it is fairly short.
It includes options for whether or not multiclicks can be used for selection, what
color of cursor and how fast it should flash when in a text field, and what color the
highlight on selected words should be. The defaults here are just fine. Unless there
is a very specific look or need, these values can be ignored.

Looking Good – Graphical Interface

[50]

Now, let us go over what it takes to be a GUI Style. Expand the Button GUI Style from our
GameSkin example. No matter what the GUI Style is used for, they all are made up the
same. It may look like there are many attributes that make up a GUI Style, but most of
them are nearly identical, making it much simpler.

�� The first attribute is fairly straightforward, but perhaps the most important. Name is
what Unity uses to find GUI Styles and apply them to GUI elements. It lets us know
what the style is supposed to be; however, if there is a typo between it and the code,
you will never see your style in the game.

Chapter 2

[51]

�� The next several groups of values describe how the GUI element should look when
in a particular state. This is where the bulk of your styling will go. The primary states
of any element are Normal, Hover, Active, and Focused. Secondary to these are On
Normal, On Hover, On Active, and On Focused. These secondary states only occur
as the GUI element transfers into the corresponding primary state. Not every GUI
element makes use of every state, and you have the ability to control which states
an element can go into, but we will discuss that a little later. Let's see in detail how
these states work:

�� Normal: This is the default state of any GUI element. It is always used and
occurs any time the element is not being interacted with.

�� Hover: This state is used primarily by buttons and other clickable elements.
When your mouse is on top of a GUI element, it will enter this state, if it
can. However, since the focus of this book is touch screens, we do not have
a mouse to really concern ourselves with. So, we will not be using this state.

�� Active: This has to be the second most important state. An element enters
this state when it is activated. For example, when one presses a button, it is
active. By clicking on or touching a button, it enters the Active state. All of
the GUI elements that can be interacted with use this state.

�� Focused: This is a rarely used state. In terms of Unity's GUI, focused means
having keyboard control. The only element that uses it by default is the
Text Field.

�� If you were to expand any of the states, you would see that it has two attributes,
Background and Text Color. The Background attribute is a texture. It can be any
texture in your game. The Text Color attribute is simply the color of any text that
appears in the GUI element. Except for the Normal state, if a state does not have a
background texture, it will not be used. This can be both good and annoying. If we
do not want our buttons to show that they have been hovered over, simply remove
the texture from the Hover state's Background attribute. It becomes annoying when
we want a GUI element that does not have a background image of its own, but
we do want the text to change color between states. How do we make use of the
active state, but not use a texture for the background? The answer is that we create
a blank image, but it is not quite as simple as saving off a 100 percent transparent
PNG and using that. The GUI Style is too smart for that. It detects that the image
is completely blank, making it no different than if there was no image. And so, the
state still is not used. To get around this, create a small, blank PNG image, but take
a single pixel and make it 90 percent transparent white. This might seem like a hack
solution, but it is, unfortunately, the only way. At such a low transparency, we can't
detect the pixel; though it is not actually clear. However, Unity sees that there is a
slightly white pixel that must be drawn and does so.

Looking Good – Graphical Interface

[52]

�� Now, you might be thinking, that's stupid. I'm just going to create images of all of my
buttons and not worry about the text. It is indeed stupid but the response to that is,
what if you need to slightly change the text of a button? Or perhaps the text on the
button is dynamic based on the player's name. In nearly every project I have been a
part of there has been a need to create the not quite blank image.

�� Below the GUI element's states are Border, Margin, Padding, and Overflow.
These attributes control how an element interacts with its background images and
contained text. Inside each you will find Left, Right, Top, and Bottom values. Since
every element is drawn as a rectangle, these correspond to each side of the said
rectangle. They are defined in pixels, just like our GUI space. Let's see all these
attributes in detail as follows:

�� Border: This lets us define how many pixels from each side should not
be stretched. When defining a GUI element, the background is normally
stretched evenly across the space occupied. If you were to create a blue
box with red edging and rounded corners, these values would keep your
edges and corners regular while still stretching the blue on the inside.

�� Margin: This is only used by Unity's automatic GUI layout system named
GUILayout. It is how much extra space should be around the outside of
the element.

�� Padding: This is the space between the borders of an element and the text
that it contains. If you want the text of a button left-justified but in slightly,
you should use Padding.

�� Overflow: This defines an extra space for your background image. When
creating our buttons, we defined a Rect class for how much space the
button takes up. If we are to use Overflow, the button itself would be
where the Rect class is, but the background would extend beyond each
edge as dictated by the values. This would be useful for buttons with a
shadow or glow around them.

�� The next several values have to do with the text in an element. The Font attribute is
a font that is used specifically by this style. If this value is left empty, the font from
the GUI Skin is used. Font Size is how big the letters of the text should be. This works
just like your favorite word processor, except that a value of zero means to use the
default font size defined in the font object. Font Style also works like your word
processor. It lets you choose between Normal, Bold, and Italic text. This only makes
a difference if it is supported by your chosen font.

�� Alignment defines where to justify the text in the GUI element. Imagine splitting
your element into a 3 x 3 grid. Alignment is the same as the position of the grid.

Chapter 2

[53]

�� Word Wrap defines whether or not text should split into multiple lines if it is too
long. It again works on the same principle as your word processor. If checked and
the line of text would extend beyond the sides of the GUI element, the text is split
into as many lines as necessary to keep it within the bounds.

�� Rich Text is a fairly new and interesting feature of GUI Styles. It allows us to use
HTML style markup to control text. You could put the tags and around
a word in your Label's text, and instead of writing those tags, Unity will make the
words in between bold. We can make use of the bold, italics, size, and color tags.
This allows for selectively making parts of our text bold or italics. We can make
certain words larger or smaller. And, the color of any part of the text can be
altered using hexadecimal values.

�� Text Clipping became weird in the recent updates. It used to be a nice drop-down
list of values, but now it is an integer field. Either way, it still serves its function.
If the text extends beyond the edges of the GUI element, this attribute dictates
what to do. A value of zero means don't clip the text, let it extend beyond the
edges. Any value that is not zero will cause the text to be clipped. Any text that
extends beyond the borders will simply not be drawn.

�� Image Position is used in conjunction with GUIContent. GUIContent is a way
of passing GUI elements the text, an icon image, and a tool tip. Image Position
describes how the image and text interact. The image can either go to the left
of the text or above. Or, we can choose to only use either the image or the text.
Since tool tips aren't really useful in a touch environment, GUIContent is of
limited use to us. For that reason, we will not be using it extensively, if at all.

�� Content Offset adjusts anything contained inside the GUI element by the values
provided. If all of your text is normally centered in your button, this will allow
you to move it slightly to the right and up. It is an aesthetic thing, for when you
need a very specific look.

�� Fixed Width and Fixed Height provides approximately the same function.
If any value other than zero is provided for these attributes, they will override the
corresponding values in the Rect class used for the GUI element. So, if you wanted
buttons to always be one hundred pixels wide, no matter where they are in the
game, you could set Fixed Width to one hundred and they will do just that.

�� Stretch Width and Stretch Height also serves about the same function. They
are used by GUILayout for automatic placement of GUI elements. It pretty much
gives the system permission to make elements wider/skinnier and taller/shorter,
respectively, in order to satisfy its conditions for a better layout. The way GUILayout
arranges elements is not always the best. It is good, if you need something up quick.
But it gets complicated if you want any sort of deeper control.

Looking Good – Graphical Interface

[54]

A prettier form of Tic-tac-toe
Finally, we get to put what we learned about GUI Skins and GUI Styles into action and
make our game look better. Or, at least make the game look like it isn't using default
assets. Whatever your artistic talents, you will need to find or create a few images to
continue following along.

Time for action – styling the game
If you do not want to look far, the assets used for this chapter are found along with the
resources for the book. All of the needed images are available, and they will work just
well, until you have an opportunity to create some of your own.

1.	 First, we need five small textures: ButtonActive, ButtonNormal, ONormal,
XNormal, and Title. To create these, you will have to use a separate photo-editing
program or use the ones supplied with the included projects.

2.	 The easiest way to get the images into your Unity project is to simply save them
into the Assets folder that is created when you create a new project. Alternatively,
you can go up to the top and click on Assets followed by Import New Asset. This
will open a file browser and let you navigate to the asset you want. When you have
found the asset you desire to import and have clicked on the Import button, a copy
of the asset is put in your project. Unity will not move or remove files that exist
outside of the current project.

�� And now a note about import settings for textures. By default, Unity
assumes any image files imported to your project are going to be used as
game model textures. Because of that, Unity compresses them and adjusts
them to fit a power of two.

In case you didn't know, in computer graphics it is much faster
to render images that can be divided in half evenly, down to a
single unit. There are deeper reasons, but suffice it to say that it is
because of the binary switches that actually make up a computer.

Chapter 2

[55]

�� Making our images recognized as being for the GUI is quite simple.
To the right of Texture Type, click on Texture and select GUI from
the drop-down menu.

�� You will notice that we were given a new Filter Mode drop-down menu.
This is essentially how much effort Unity will put into making the image
look nice as it is resized for the various GUI elements. Trilinear is the best,
Point is the fastest, and Bilinear is in the middle.

�� Once the import settings have been changed, be sure to click on Apply,
or Unity will complain when you try to do anything else. If you do not want
to commit the changes, clicking on Revert will discard any changes just
made and set back the Import Settings window to the last configuration
that was used.

3.	 So, set all of Texture Types for your images to GUI and we will get on with it.

4.	 Let us start with the beginning of the game. Open your TicTacToeControl
script and add the following lines of code at the beginning. These allow us to
attach references to other assets inside of the Unity Editor. The first will hold
our GameSkin, so we can style all of our GUI elements. The second, as you
can see in the following lines of code, will hold our fancy title image:

public GUISkin guiSkin;
public Texture2D titleImage;

Looking Good – Graphical Interface

[56]

5.	 Now go to the Unity Editor and select Main Camera from the Hierarchy window.

�� Every object that you see listed in the Hierarchy window is a GameObject.
A GameObject is given a purpose and a meaning by the various components
that are attached to it, for example, our TicTacToeControl script.

�� An empty GameObject is just a point in space, as defined by the
Transform component that is always the first component on any
GameObject.

�� You can see in the Inspector window, the Main Camera object has a
Camera component. It gives a purpose to the GameObject and controls
how the Camera component functions, just as our TicTacToeControl
component at the bottom lets it control our Tic-tac-toe game.

�� The Inspector window also lets us see all of the public variables that can be
changed in the Unity Editor. If they are changed, those values are saved and
used when the game is played. So, by creating a variable in our script, we
can add the reference to our GameSkin and it will be used in the game. To
add the reference, simply click-and-drag the object to the desired variable
on the component in the Inspector window.

6.	 Drag GameSkin to the GUI Skin slot and our title image to the Title Image slot.

Be sure to save. Saving regularly is the only thing that
stands between you and premature baldness, the next
time your computer decides to die.

7.	 Inside of our TicTacToeControl script, add the following line of code at the
beginning of the OnGUI function. It first checks to make sure there is a GUI Skin
available. If it is, it is set into the GUI.skin variable. This variable controls the
GUI Skin that is used in the game. Once set, any GUI elements drawn after that
will use the new GUI Skin. This could allow you to set one GUI Skin and draw half
of the GUI, then set a different GUI Skin and draw the other half in a completely
different style.

if(guiSkin != null) GUI.skin = guiSkin;

8.	 If you play your game now, it won't look like much. The defaults of a new GUI Skin
are the exact same as the default GUI Skin that Unity uses. Let us change that by
selecting our GameSkin and expanding Button and Label in the Inspector window.

Chapter 2

[57]

9.	 For Button we created a ButtonNormal and ButtonActive image. By dragging
those to the Background properties of the respective states, the look of the
buttons will change.

10.	The supplied button images have a yellow background, which will make the white
text hard to read. So, by clicking on the color next to the Text Color property, the
Color Picker window will open and we can select a new color. A navy blue for the
Normal state and a faded blue for the Active state works well.

11.	Also, to keep it from looking weird in the Unity Editor, remove the Hover state.
With a touch interface, there is no cursor to hover over buttons; therefore, there
is no need for a hover state. To remove it, first click on the little circle to the right
of the Background image.

12.	The new window that pops up allows us to select any image that is currently
in our project. However, since we want nothing to be in there select None,
the first option in the list.

13.	The borders on the button images are much larger than those of the default
buttons. So, we need to adjust the Border attribute to accommodate them.
Values of 15 for each side works well.

14.	The text is also too small, so for the Font Size attribute choose a value of 40.
This will give us a large and easily readable text.

Looking Good – Graphical Interface

[58]

15.	For the Label element, we are only going to make two changes. First, the text is too
small. So, it will also get a value of 40 for its font size. Second, we want the text to be
centered in the GUI elements. That requires setting the alignment to middle center.

16.	Play the game now. It is already looking better or at least different. However, it is a
little difficult to tell at a glance who controls which square. To fix this we are going
to create two custom GUI Styles. To do this, expand the Custom Styles attribute of
our GameSkin in the Inspector window. By default, one blank style is already in
there. We are going to need two, but don't change the quantity just yet.

17.	Expand the custom GUI Style, by default called Element 0.

18.	On clicking to the right of the Name attribute, more or less in the middle of the
Inspector window, will allow us to rename the style. The name is very important.
Whatever we call it here we need to call it exactly the same in code or it won't be
used. Give it the name XSquare because it will be used to mark which squares
are controlled by the X player.

19.	 Inside of the Normal state, add the XNormal image to the Background attribute.
The Text Color attribute can be left as black. We also need to adjust the font size
and alignment properties to the same as we did for the Label element. So, set
them to 40 and MiddleCenter respectively.

20.	Now that we have created the first style, creating the second becomes fast and easy.
Collapse the XSquare style.

21.	Set the size of the Custom Styles attribute to 2. When increasing the size of arrays
in the Unity Editor, Unity duplicates whatever was the last item in the array to each
of the new slots. So, we should now have two XSquare GUI Styles.

Chapter 2

[59]

22.	Expand the second GUI Style and change its name to Osquare.

23.	Also, replace the XNormal Background image with the ONormal image.

If you are having trouble in dragging-and-dropping in the Inspector
window, the GameSkin keeps losing focus perhaps; there is a
lock at the top of the Inspector window. Clicking on that will stop
the window from changing to anything else when a new object is
selected. Clicking it again will toggle off this feature.

24.	 Just because we have our spiffy new custom GUI Styles, doesn't mean they will
work automatically. But, just a little bit of coding will make them work. Inside our
DrawGameBoard function of the TicTacToeControl script, we need to change the
line that draws our label by adding a little bit to the end of it. The addition of a second
string will tell the GUI system to look for a specific GUI Style. A little bit earlier in the
function, we figure out who owns the square, is it X or O. By adding this to Square
we create the names of our two custom GUI Styles, XSquare and OSquare.

else GUI.Label(square, owner, owner + "Square");

25.	 If you play the game now, you will see that when a player claims control of a square,
our custom styles appear.

Looking Good – Graphical Interface

[60]

26.	There is one more thing to do to change the look of our Tic-tac-toe game. Do you
remember the title image that was created and for which we added a variable? Now
is the time to place that. Inside of TicTacToeControl go to the DrawOpening
function. To draw our image, we need to replace the call to GUI.Label with a call
to GUI.DrawTexture. Instead of using GUI Styles, this function simply draws an
image to the screen. It uses a Rect class, just as with all of our Buttons and Labels,
to define a size and position. The image is, by default, stretched to fill the whole
Rect class. For now, this suits us just fine.

GUI.DrawTexture(titleRect, titleImage);

27.	We can fix the stretching by updating the previous line of code, where we defined
the Rect class for our title to accommodate. As you can see by the following code
snippet, we use the width and height of titleImage to determine the width and
height of titleRect. The Rect class now automatically determines how large it
should be based on the size of our title image. If the Rect class is of the same size
and shape as the image, it won't be stretched. In addition to that, because of the
way we defined the Rect class for our New Game button, it will still be directly
under and just as wide as our title image.

Rect titleRect = new Rect(0, 0, titleImage.width, titleImage.
height);

28.	That is all there for styling our Tic-tac-toe game. Click on the Play button and take
a look at all your hard work.

What just happened?
We made our Tic-tac-toe game look great, or at least not like the defaults. We achieved this
through the use of a handful of images and some custom GUI Skins and GUI Styles. With
the addition of a special function for drawing textures on screen, we also add a unique title
image to our opening screen.

Chapter 2

[61]

Have a go hero – backgrounds
Your challenge here is to make a background image and draw it behind the game. It also has
to cover the whole of the screen. The default blue is great, but we could do so much better.
As a note, whichever GUI element was drawn last is drawn on top, so think carefully about
where to call the function to have the image drawn in the background. Also, since stretching
is only good for exercising and rubber bands, take a look at also passing the function a
ScaleMode, which is a special value type that Unity uses to determine how images should
stretch. Look in the scripting reference or search online to find more information about it.

Dynamic positioning
You are probably thinking that it is all well and good that the game is all styled now, but
everything is still sitting in the top-left corner of the screen. Well then, you are in luck. That is
exactly the topic of this section. It is not enough to simply adjust the numbers in our Rects
until our GUI is centered. While working with the Android platform and other mobile devices,
we have to be prepared for a large variety of possibilities. Not every device that our games will
be played on will have the same screen size. So, you may position your GUI to be centered on
your tablet, but it will be far off screen on a phone.

Time for action – the dynamic GUI
We will be covering two excellent ways of dynamically adjusting our GUI to meet any screen
requirements. The opening screen and the game over screen will both be centered. We will
stretch the game board to fill the available space. The turn indicator text will also be set up
to automatically change position based on the screen orientation.

1.	 Again, let's start with our main menu. Open up the TicTacToeControl script and
go to the DrawOpening function.

2.	 To center the menu, we will wrap up the contents as a GUI group by adding the
following line of code at the beginning of the DrawOpening function. Think of GUI's
grouping as picture-in-picture (PIP) that some televisions can do. Pick a rectangle
section on screen and draw some other channel in it. So, first we are deciding where
to draw our group. We do this by finding the center of the screen, Screen.width
and Screen.height is divided by two. But, because GUI content is positioned at the
top-left corner, we must subtract half our content's size to find that corner. For the
width, that is simply the width of our title image. But the height is a combination of
the image and the button below.

Rect groupRect = new Rect((Screen.width / 2) - (titleImage.
width / 2), (Screen.height / 2) - ((titleImage.height + 75) / 2),
titleImage.width, titleImage.height + 75);

Looking Good – Graphical Interface

[62]

3.	 The BeginGroup function of the GUI is what gives us the PIP effect. Any GUI elements
that are drawn after a call to this function are confined to the Rect class that was
passed to the function. Instead of positions starting from the top-left corner of the
screen, elements within the group will start at the top-left corner of the group Rect.
Anything that extends beyond the edges of the group is also not drawn, just as if it
extended beyond the edges of the screen.

GUI.BeginGroup(groupRect);

4.	 Before we can see the group in action, we must add a line to the end of our
DrawOpening function. EndGroup is the direct counterpart to BeginGroup.
If ever you use BeginGroup, there must be a corresponding call to EndGroup.
Should you fail to pair up the function calls, Unity will make no end of complaints
until the problem is fixed. It is really quite annoying.

GUI.EndGroup();

5.	 With that line added, play the game. The main menu will now center itself. It will do
this no matter the screen size. Also, it will do this whether the screen is in landscape
or in portrait mode. In this case, the trick to keeping everything on screen is to plan
for the smallest screen size and make images and GUI elements that fit accordingly.

6.	 Skipping ahead a little, we can use a similar method for centering the game over
screen. Add the following line of code to the beginning of the DrawGameOver
function. You can see that we are doing the same thing we did a moment ago.
Figure out where the center of the screen is and subtract half of the total size of
our content. In this case we supplied solid numbers instead of keying off the size
of an image. Also, because the math is easy, we already did the divisions to come
up with 150 and 75.

Rect groupRect = new Rect((Screen.width / 2) - 150, (Screen.height
/ 2) - 75, 300, 150);
GUI.BeginGroup(groupRect);

7.	 Be sure to add your EndGroup function call to the end of the DrawGameOver
function.

GUI.EndGroup();

8.	 After that, find the line where we define the winnerRect variable class. We
need to change it so it is easier to adjust the size and fit the contents, should we
want to. Because of the way we set up the winner label and main menu button,
this will cause each to take up the whole width of the group. They will also split
the available height evenly; hence the division is by two.

Rect winnerRect = new Rect(0, 0, groupRect.width, groupRect.height
/ 2);

Chapter 2

[63]

9.	 Now we have the tricky part to do. For the game board, we want it to expand
evenly so that it fills whichever direction is shortest. The turn indicator should be
centered in the remaining space. Because the board needs to dynamically expand
and the turn indicator needs to be either in the right or bottom of the screen, based
on orientation, we can't get away with using our GUI group functions. Instead, we
first need to figure out which side of our screen is smaller, the width or the height.
This is fairly simple with the following lines of code added to the beginning of the
DrawGameBoard function. Recognize the conditional statement, our good old
friend? First, we create a variable to hold the result of comparing the width and
height of the screen; we will be using it again later. If the width is smaller, obviously
the small side is the width; otherwise it is the height.

bool widthSmaller = Screen.width < Screen.height;
float smallSide = widthSmaller ? Screen.width : Screen.height;

10.	Next we change our width and height definitions. Because the game board is a 3 x
3 grid, once we have the small side it is a simple matter to figure out how big the
squares should be to fill the space. The change to the height is to keep the board
squares actually square. Perhaps you remember from your first geometry lessons?
The width and height of the sides of a square are equal.

float width = smallSide / 3;
float height = width;

11.	Playing the game at this point, we will be able to experience a game board that
scales with our game screen. Try it out!

Looking Good – Graphical Interface

[64]

12.	Remember when we were connecting Unity Remote? Use the drop-down menu
in the top-left corner of the Game window to select different screen sizes and
orientations. This does, however, reveal another small error. The turn indicator text
sometimes appears over the top of our game board. Other times it may be beyond
the edges of the screen. Or, perhaps you already noticed that one? Either way,
to make it better we need to find the Rect class that will cover the remaining
negative space.

13.	 After the initial definition of our turnRect, add the following code snippet. Using our
conditional friends, we figured out all we need to place the Rect class in the negative
space. If the width is smaller in portrait mode, the negative space starts at the left
side of the screen, zero. The y position of the space begins where the board ends, the
equivalent of the width; it is a square board, after all. The total width of the negative
space is also equivalent to the width of the screen. The height becomes whatever is
left over from the difference between the height and the width. If we are in landscape
mode instead, the height being smaller than the width, the positioning is largely
determined in the same way.

turnRect.x = widthSmaller ? 0 : smallSide;
turnRect.y = widthSmaller ? smallSide : 0;
turnRect.width = widthSmaller ? Screen.width : Screen.width -
Screen.height;
turnRect.height = widthSmaller ? Screen.height - Screen.width :
Screen.height;

14.	 This is all well and good. Looks pretty good with the turn text actually positioned
where it can easily be seen and read. But, in some of those screen sizes there is an
awful lot of empty space. If only there was some way we could scale the text to better
fit the space. It just so happens that there is a good way to do just that. After we are
done messing with the turn indicator's Rect, we can add the following line of code.
This touch of code gets the label GUI Style from the current GUI Skin and creates a
duplicate. In code, if we ever create a new GUI Style and pass another one as the
argument, all of the values are copied into the new GUI Style. This allows us to cause
temporary and dynamic changes without ruining the whole GUI Skin being used.

GUIStyle turnStyle = new GUIStyle(GUI.skin.GetStyle("label"));

Chapter 2

[65]

15.	 In the next line of code we'll adjust the font size. To do this we have to figure out
how much space is left on the long side of the screen after the game board is scaled
up. Adding the width and height of the screen results in the total amount of screen
distance available. By subtracting the smaller of the two sides, the distance that the
game board covers multiplied by two, we are left with the excess negative space.
Dividing all of that by one hundred, the amount of space that we had previously
used for our turn indicator, will scale the font size to proportionately fit the change
in space. It is finally wrapped in an explicit conversion to the integer type because
the font size value must be defined as an integer.

turnStyle.fontSize *= (int)((Screen.width + Screen.height -
(smallSide * 2)) / 100);

16.	To actually see this dynamic font size in action, we need to make a change to the
line that draws the turn indicator. We change the call to the Label function to
use the temporary style. Instead of providing the name of the GUI Style to GUI
functions, we can provide a specific GUI Style. The function will then use this
style to draw the GUI element.

GUI.Label(turnRect, turnTitle, turnStyle);

17.	Try it out. By clicking on the Game window tab and dragging it into the Game
window, you can undock the window and make it free floating. Changing the aspect
ratio, that drop-down menu in the top-right corner of the Game window, to Free
Aspect allows us to freely re-size the window and witness our great work in action.

Looking Good – Graphical Interface

[66]

What just happened?
We made our game change dynamically based on the screen of our devices. Both of the
menu screens will center themselves. We also caused our game board to grow and shrink
until it fills as much of the screen as it can. We then used a carefully applied bit of code
magic to make the turn indicator automatically position itself and change font size to fill
the remaining space.

Have a go hero – scaling menus
The second challenge is a little tougher. Continue to use the GUI groups, but make
the opening screen and the game over screen scale with the screen size. If you want a
subchallenge with this one, see what you can do about scaling the text with it as well.
And, don't forget about the text used to indicate control of the game board squares.

If you want to prepare for even more devices, change the Rects that we use throughout
the section. Wherever we used specific numbers for position or size on screen, change
them to percent. You will have to calculate the pixel size using percent and the size of
the screen. That calculated amount can then be passed to and used in our Rects.

A better way to build to device
Now for the part of the build process that everyone itches to learn. There is a quicker
and easier way to have your game built and playing on your Android device. The long and
complicated way is still very good to know. Should this shorter method fail, and it will at
some point, it is helpful to know the long method so you can debug any errors. Also, the
short path is only good for building to a single device. If you have multiple devices and a
large project, it will take significantly more time to load them all with the short path.

Time for action – build and run
With this alternate build method, we can quickly and easily test games on our devices
as follows:

1.	 Start by opening the Build Settings window. Remember, it can be found under
File at the top of the Unity Editor.

2.	 Click on the Add Current button to add our current scene, also the only scene,
to the list of Scenes In Build. If this list is empty, there is no game.

3.	 Be sure to change your Platform to Android, if you haven't already done so.
It is after all still the point of this book.

Chapter 2

[67]

4.	 Do not forget to set the Player Settings. Click on the Player Settings button to open
them up in the Inspector window. Do you remember this from Chapter 1, Saying
Hello to Unity and Android.

5.	 At the top, set the Company Name and Product Name fields. Values of
TomPacktAndBegin and Ch2 TicTacToe respectively will match the included
completed project. Remember, these are seen by the people playing your game.

6.	 The Bundle Identifier field under Other Settings needs to be set as well. The format
is still com.CompanyName.ProductName, so com.TomPactAndBegin.Ch2.
TicTacToe will work well.

7.	 So that we can see our cool dynamic GUI in action on a device, there is one other
setting that should be changed. Click on Resolution and Presentation to expand
the options.

8.	 We are interested in Default Orientation. The default is Portrait, but this option
means the game will be fixed in the portrait display mode. Click on the drop-down
menu and select Auto Rotation. This option tells Unity to automatically adjust the
game to be upright in whichever orientation the device is being held.

�� The new set of options that popped up when Auto Rotation was selected
allow for the limiting of the orientations that are supported. Perhaps you
are making a game that needs to be wider and held in landscape orientation.
By unchecking Portrait and Portrait Upside Down, Unity will still adjust (but
only for the remaining orientations). On your Android device, along one of
the shorter sides, are the controls of some sort usually a home, menu, back,
and search set of buttons. This side is generally recognized as the bottom
of the device and it is the position of these buttons that dictates what each
orientation is. Portrait is when those buttons are down relative to the screen.
Landscape Right is when they are to the right. The pattern begins to come
clear, does it not?

9.	 For now, leave all of the orientation options checked and we will go back to
Build Settings.

10.	The next step (and this is very important) is to connect your device to your
computer and give it a moment to be recognized. If your device is not first
connected to your computer, this shorter build path will fail.

11.	 In the bottom-right corner of the Build Settings window, click on the Build And Run
button. You will be asked to give the application file, the APK, a relevant name and
save it to an appropriate location. A name Ch2_TicTacToe.apk will be fine and it
is suitable enough to save the file to the desktop.

Looking Good – Graphical Interface

[68]

12.	Click on Save and sit back to watch the wonderful loading bar that is provided.
If you paid attention to the loading bar when we built the Hello World project
in Chapter 1, Saying Hello to Unity and Android, you will notice that there is an
extra step taken this time around. After the application is built, there is a pushing
to device step. This means the build was successful and Unity is now putting the
application on your device and installing it. Once done, the game will be started
on the device and the loading bar will be finished.

What just happened?
We just learned about the Build And Run button provided by the Build Settings window.
Quick, easy, and free from command prompt pain; isn't the short build path wonderful?
But if the build process fails for any reason including being unable to find the device, the
application file will not be saved. You will have to sit through the entire build process again,
if you want to try installing again. This isn't so bad for our simple Tic-tac-toe game, but
might consume a lot of time for a larger project. Also, you can only have one Android device
connected to your computer while building. Any more and the build process is a guaranteed
failure. Unity also doesn't check for multiple devices until after it has gone through the rest
of the potentially long build process.

Other than those words of caution, the Build And Run option is really quite nice. Let Unity
handle the hard part of getting the game to your device. This gives us much more time to
focus on testing and making a great game.

Have a go hero – single player mode
This is a tough one. Create a single player mode. You will have to start by adding an extra
game state. Is the choice of MultiPlayer for a game state starting to make sense? The
opening screen is going to need an extra button for selecting the second game mode. Also,
any logic for the computer player should go in the Update function that is provided by the
MonoBehaviour class. The computer needs to take its turn before we check for victory in
LateUpdate. The Update function is just the place to do it. Also, take a look at Random.
Range for randomly selecting a square to take control of. Or, you could do a little more work
and make the computer search for a square where it can win or create a line of two matches.

Chapter 2

[69]

Summary
At this point, you should be familiar with Unity's GUI system including GUI Skins, GUI Styles,
and a variety of GUI functions.

In this chapter, we learned all about the GUI by creating a Tic-tac-toe game. We first became
familiar with drawing buttons and the like to the GUI. After delving into the depths and gaining
understanding of GUI Styles and GUI Skins, we applied the knowledge to make our game look
even better. The game continued to improve when we added some dynamic positioning to
our GUI elements. The opening and closing screens became centered, while the game board
dynamically scaled to fill the screen. Finally, we explored an alternative build method for
putting our game onto devices.

In the next chapter, we will be starting a new and more complex game. The Tank Battle game
that we will be creating will be used to gain understanding with the basic building blocks of
any game: meshes, materials, and animations. When all is done, we will be able to drive a
tank around a colorful city and shoot animated targets.

3
The Backbone of Any Game – Meshes,

Materials, and Animations

In the previous chapter we learned about the GUI. We started by creating a
simple Tic-tac-toe game to learn about the basic pieces. This was followed by
styling the GUI to change the look of the game. Finally, we adjusted the game
so it would expand automatically to fit a screen of any size.

This chapter is about the core of any game: meshes, materials, and animations.
Without these blocks there is generally nothing to show players. You could,
of course, just use flat images in the GUI. But, where is the fun in that? If you
are going to choose a 3D game engine, you might as well make full use of
its capabilities.

To understand meshes, materials, and animations, we will be creating a Tank
Battle game. This project will be used in a few other chapters. By the end of the
book, it will be one of the two robust games we will create. For this chapter, the
player will get to drive a tank around a small city, he/she will be able to shoot
at animated targets, and we will add a counter to track the scores.

This chapter covers the following topics:

�� Importing the meshes

�� Creating the materials

�� Animations

�� Creating the prefabs

�� Ray tracing

The Backbone of Any Game – Meshes, Materials, and Animations

[72]

We will be starting a new project for this chapter, so follow along in the first section to get
it started.

Setting up
Though this project will eventually grow to become much larger than the previous ones, the
actual setup is similar and not overly complex. You will also need a number of starting assets
for this project; they will be described during the setup process. Due to the complexity and
specific nature of these assets, it is recommended to use the ones provided for now.

Time for action – the setup
As we have done in the previous two chapters, we will need to create a new project so that
we can create our next game. Obviously, the first thing to do is to start a new Unity project.
For organizational purposes, name it Ch3_TankBattle_CS.

1.	 This project will also grow to become much larger than our previous projects, so we
should create some folders to keep things organized. For starters, create six folders.
The top level folders will be the Models, Scripts, and Prefabs folders. Inside
Models, create Environment, Tanks, and Targets. Having these folders makes
the project significantly more manageable. Any complete model can consist of a
mesh file, one or more textures, a material for every texture, and potentially dozens
of animation files.

2.	 Before we go too far, it is a good idea to change your target platform to Android,
if you haven't already done so. Every time the target platform is changed, all of the
assets in the project need to be re-imported. This is an automatic step carried out by
Unity, but will take an increasing amount of time as your project grows. By setting our
target platform before there is anything in the project, we save loads of time later.

3.	 We will also make use of a very powerful part of Unity. Prefabs are special objects
that make the process of creating a game significantly easier. The name means
prefabricated—created beforehand and replicated. What this means for us is, we
can completely set up a target for our tank to shoot at and turn it into a prefab.
Then, we can place instances of that prefab throughout the game world. If we
ever need to make a change to the targets, all we need to do is modify the original
prefab. Any change made to a prefab is also made on any instance of that prefab.
Don't worry; it makes more sense when used.

4.	 We will also need to create some meshes and textures for this project. To start with,
we will need a tank. It is kind of hard to have a battle of tanks without any tanks. The
tank that is provided has a turret and cannon, which are separate pieces. We will also
use a trick to make the tank's treads look like they are moving, so that each of them
are separate pieces and also use a separate texture.

Chapter 3

[73]

5.	 For the location of our battle, a portion of a city was created. Instead of applying a
specific texture to the city, some tile-able textures will be used. Also, there is a wall
around the city to keep the player from falling out of the world.

6.	 Finally, we will need an animated target. The one that is provided is rigged up like
the human arm, with a bull's eye for the hand. It has four animations. The first starts
in a curled position and goes to an extended position. The second is the reverse
of the first one, going from the extended position to the curled position. The third
starts in the extended position and is flung back, as if hit in the front, and returns
to the curled position. The last is just like the third one, but it goes forward as if
hit from behind. These are fairly simple animations, but they will serve us well in
learning about Unity's animation system.

What just happened?
Very little happened here, we simply created the project and added some folders. There was
also a little discussion about the assets we would be using for this chapter's project.

Importing the meshes
There are several ways to import assets to Unity. We will be going over perhaps the simplest
and certainly the best ways for groups of assets.

Time for action – importing the tank
Let's get started.

1.	 Inside the Unity Editor, start by right-clicking on your Tanks folder and selecting
Show in Explorer from the menu.

2.	 This opens the folder that contains the asset that was selected. In this case, the
Models folder is opened in the Windows folder browser. We just need to put our
tank and its textures into the Tanks folder.

The files provided for this chapter are Tank.blend, Tanks_Type01.
png, and TankTread.png files. Also, utilizing .blend files in Unity
requires Blender to be installed on your system. Blender is a free modeling
program available at http://www.blender.org. Unity makes use of
it in order to convert the previously mentioned files into ones that it can
fully utilize.

The Backbone of Any Game – Meshes, Materials, and Animations

[74]

3.	 When we return to Unity, the fact that we added files will be detected and they
will be automatically imported. This is one of the best things about Unity. There is
no need to explicitly tell Unity to import. If there are changes within the project's
assets, it just does so.

4.	 You might also notice that an extra folder and some files were created when Unity
imported our tank. Whenever a new mesh is imported, by default Unity will try to
pair it with the materials. We will go into more detail about what a material is in
Unity in the next section. For now, it is an object that keeps track of how to display a
texture on a mesh. Based on the information in the mesh, Unity looks in the project
for a material with the correct name. If one cannot be found, a Materials folder
is created next to the mesh and the missing materials are created inside it. When
creating these materials, Unity also searches for the right textures. This is why it is
important to add textures to the folder at the same time as the mesh, so that they
all can be imported together. If you did not add the textures at the same time as
the tank, the section about creating materials will describe how to add textures
to materials.

What just happened?
We just imported our tank into Unity. It is really quite simple. Changes made to any of the
assets or folders of the project are automatically detected by Unity, and anything that needs
to be is suitably imported.

Tank import settings
When importing any asset into Unity, it is done by using a default group of settings. Any of
these settings can be changed from the Inspector window. With your new tank selected,
we will go over the import settings for a model here.

Chapter 3

[75]

�� The top of the Unity Editor has three tabs: Model, Rig, and Animations.
The Model page handles the mesh itself, while Rig and Animations are for
importing animations. For now, we only care about the Model page, so select
it if it is not already selected.

�� The Meshes section of the Import Settings window starts with the Scale Factor
attribute. This is a value that tells Unity how big the mesh is by default. One generic
unit or one meter from your modeling program translates to one unit in Unity. This
tank was made in generic units, so the tank's scale factor is one. If you were working
in centimeters when making the tank, the scale factor would be 0.01, because a
centimeter is a hundredth of a meter.

The Backbone of Any Game – Meshes, Materials, and Animations

[76]

�� The next option, Mesh Compression, will become important in the final chapter
when we go over the optimization of our games. The higher the compression is set,
the smaller the file is in the game. However, this will start to introduce weirdness to
your mesh as Unity works to make it smaller. For now, leave it Off.

�� Read/Write Enabled is useful if you want to make changes to the mesh while
the game is playing. This could allow you to do some really cool things such as
destructible environments where your scripts break the meshes into pieces based
on where they are being shot at. However, it also means that Unity has to keep a
copy of the mesh in memory, which could really start to lag a system if it is complex.
This is outside the scope of this book, so unchecking the option is a good idea.

�� Optimize Mesh is a good one to leave on, unless you are doing something specific
and fancy with the mesh. With it on, Unity does some special magic behind the
scenes. In computer graphics and especially Unity, every mesh is ultimately a series
of triangles being drawn on screen. This option allows Unity to reorder the triangles
in the file so that the whole mesh will be drawn faster and more easily.

�� The next option, Generate Colliders, is a useful one if doing complex things with
Physics. Unity has a set of simple collider shapes that should be used whenever
possible, because they are easier to process. However, there are situations where
they won't quite get the job done, for example, rubble or a half-pipe where the
collision shape is too complex to be made with a series of simple shapes. That
is why Unity has a Mesh Collider component. With this option checked, a Mesh
Collider component is added to every mesh in our model. We will be sticking with
simple colliders in this chapter, so leave the Generate Colliders option off.

�� Swap UVs and Generate Lightmap UVs are primarily used when working with
lighting, especially lightmaps. Unity can handle two sets of UV coordinates on a
model. Normally, the first is used for the texture and the second for the lightmap
or shadow texture. If they are in the wrong order, Swap UVs will change them,
so that the second set now comes first. If you need an unwrap for a lightmap,
but did not create one, Generate Lightmap UVs will create one for you. We are
not working with lightmaps in this project, so both of these can remain off.

�� The next section of options, Normals & Tangents, begins with the Normals option.
This defines how Unity will get a hold of the normals of your mesh. By default, they
are imported from the file; but there is also the option to make Unity calculate them
based on the way the mesh is defined. Or, if we set this option to None, Unity will
not import the normals. Normals are needed if we want our mesh to be affected by
real-time lighting or make use of normal maps. We will be making use of real-time
lighting in this project, so leave it set to Import.

Chapter 3

[77]

�� Tangents, Smoothing Angle, and Split Tangents are used if your mesh has a
normal map. Tangents are needed to determine how lighting interacts with a
normal-mapped surface. By default, Unity will calculate these for you. Importing
tangents is only possible from a few file types. The smoothing angle dictates
whether shading across an edge would be smooth or sharp, based on the angle
between the two faces. The Split Tangents option is there to handle a few specific
lighting quirks. If lighting is broken by seams, enabling this option will fix it. Normal
maps are great for making a low-resolution game look like a high-resolution one.
However, because of all the extra files and information needed to use them, they
are not ideal for a mobile game. Therefore, we will not be using them in this book
and all of these options can be turned off to save memory.

�� The last section, Materials, defines how Unity should look for materials. The
first option, Import Materials, is to decide whether or not a material should be
imported. If it is turned off, a default white material will be applied. This material
will not show up anywhere in your project; it is a hidden default. For models that
will not have any textures, such as collision meshes, this could be turned off.
For our tank and nearly every other case, this should be left on.

�� The last two options, Material Naming and Material Search, work together to
name and find the materials for the mesh. Directly below them, there is a text box
that describes how Unity will go about searching for the material. The name of the
material being searched for can be the name of the texture used in the modeling
program, the name of the material created in the modeling program, or the name of
the model plus the material. If a texture name cannot be found, the material name
will be used instead. By default, Unity does a Recursive-Up search. This means that
we start by looking in the Materials folder, followed by any materials that are in
the same folder. We then check the parent folder for matching materials, followed
by the folder above that. This continues until we either find the material that has the
correct name or we reach the root assets folder. Alternatively we have the options of
checking the entire project by only looking in the Materials folder that is next to
our model. The defaults for these options are just fine. In general, they do not need
to be changed. They are most easily changed with the Unity Editor scripting, which
will not be covered in this book.

The Backbone of Any Game – Meshes, Materials, and Animations

[78]

�� Next, we have a pair of buttons: Revert and Apply. Whenever changes are made to
the import settings, one of these two buttons must be chosen. The Revert button
cancels the changes and switches the import settings back to what they were before
changes were made. Apply confirms the changes and re-imports the model with the
new settings. If these buttons are not selected, Unity will complain with a pop up
and force a choice before letting you mess with anything else.

�� Finally, we have two types of previews. The Imported Object section is a preview
of what the object will look like in the Inspector window, if added to the Scene
view and selected. The Preview window is what the model will look like in the
Scene view. You can click-and-drag in this window to rotate the object and look
at it from different angles. Also, there is a little blue button in this window. By
clicking on this button, you will be able to add labels to the object. Then, these
labels are also searchable in the Project window.

Chapter 3

[79]

Setting up the tank
Now that we have the tank imported, we need to set it up. We will be adjusting the
arrangement of the tank as well as creating a few scripts.

Time for action – creating the tank
At this point, the creation of our tank will primarily consist of the creation and arrangement
of the tank's components.

1.	 Start by dragging the tank from the Project window to the Hierarchy window. You
will notice that the name of the tank appears in blue color in the Hierarchy window.
This is because it is a prefab instance. Any model in your project largely acts like a
prefab. But, we want our tank to do more than just sit there. So, being a prefab of a
static mesh is not helpful. Therefore, select your tank in the Hierarchy window and
we will start making it useful by removing the Animator component. To do this,
select the gear to the right of the Animator component in the Inspector window.
From the new drop-down list, select Remove Component and it will be removed.

2.	 If you are using the tank provided by default, selecting the different parts of it will
reveal that all the pivot points are at the base. This will not be useful for making
our turret and cannon pivot properly. The easiest way to solve this is by adding
new empty GameObject to act as pivot points.

Any object in the scene is a GameObject. Any empty
GameObject is one that only has a Transform component.

3.	 At the top of the Unity Editor, Create Empty is the first option under the GameObject
button. It creates the objects we need. Create two empty GameObjects, and position
one at the base of the turret and the other at the base of the cannon. Also, rename
them to TurretPivot and CannonPivot respectively. This can be done with the
textbox at the very top of the Inspector window, if the object is selected.

The Backbone of Any Game – Meshes, Materials, and Animations

[80]

4.	 In the Hierarchy window, drag TurretPivot onto Tank. This changes the parent
of TurretPivot to Tank. Then, drag the object, that is, the turret mesh, onto
TurretPivot. In code, we will be rotating the pivot point, not the mesh directly.
When a parent object moves or rotates, all of the children objects move with it.
When you make this change, Unity will complain about the change to the original
hierarchy of the object; just checking to make sure it is a change you want to do
and not an accident.

5.	 Because losing that connection to the prefab can potentially break a game, Unity
just wants to be sure that we actually want it to happen. So, click on Continue and
we can finish working with the tank without other complaints from Unity. We also
need to make CannonPivot a child of TurretPivot, and the cannon a child of
CannonPivot.

6.	 To finish off our hierarchy changes, we need to place the camera. Because we want
it to appear as if the player is actually in the tank, the camera should be placed
behind and above the tank with a tilt slightly downward to focus on a spot a few
tank lengths ahead. Once positioned, make it a child of TurretPivot as well.

What just happened?
We set up the basic structure that our tank will use. By making use of multiple objects
in this way, we can control their movements and actions independently from each other.
At this point, instead of having a rigid tank that only points forward, we can tilt, rotate,
and aim each piece independently.

Also, the tank should be centered above the point that you want the
whole thing to pivot around. If yours is not, you can select everything
that is under the base tank object in the Hierarchy window and move
it around.

Chapter 3

[81]

Time for action – keeping score
A short script for keeping track of the player's score will constitute the focus of this
short section.

1.	 To make this tank work, we are going to need three scripts. The first is fairly simple.
Create a new script and name it ScoreCounter. It will, as the name implies, track
the score. Create it in the Scripts folder and clear out the default functions, just
like every other script we have made so far.

2.	 Add the following line of code to the new script:

public static int score = 0;

�� For the most part, this should look familiar from the previous chapter. First
we define an integer counter. Because it is static, other scripts (such as the
ones we will create for the targets) will be able to modify this number and
give us the score.

3.	 We follow with an OnGUI function that defines a Rect class and displays the score
using the GUI.Box function. A Box is just like a Label, but it has a black background
by default. This will make it easier to see as we move around.

public void OnGUI() {
 Rect scoreRect = new Rect(0, 0, 100, 30);
 GUI.Box(scoreRect, "" + score);
}

What just happened?
We just created a very simple script. It will track our score throughout the game. Also, instead
of doing any of the score incrementation itself, other scripts will update the counter to give
points to the player.

Time for action – controlling the chassis
A normal tank rotates in place, and it can easily move forward and back. We will make our
tank do this with the creation of a single script.

1.	 The second script is called ChassisControls. It will make our tank move around.
Create it in the Scripts folder as well.

The Backbone of Any Game – Meshes, Materials, and Animations

[82]

2.	 The first three lines of the script define the variables the tank will need to move
around. We will also be able to change them in the Inspector window, in case our
tank is too fast or too slow. The first line defines a variable that holds a connection
to a CharacterController component. This component will easily move the
tank around, but will allow it to be stopped by walls and other colliders. The next
two lines of code define how fast we move and rotate:

public CharacterController characterControl;
public float moveSpeed = 10f;
public float rotateSpeed = 45f;

3.	 Now let's add our good friend OnGUI to the mix. This should look mostly familiar.
We are creating four buttons that will sit in the bottom-left corner of the screen.
When the first two buttons are pressed, we make a call to a function that will move
our tank and give it a value for how fast it can move. A positive value is going to
move us forward and a negative value will move us backward. The last two buttons
do the same thing, except with rotation instead of movement. A positive value will
rotate to the right and a negative value will rotate the tank to the left. These buttons
are also RepeatButtons. A normal button will only activate once for each time it
is pressed. A repeat button is active as long as it is held down. The good side of this
is that it will allow our tank to move every frame the button is held down. The down
side is a quirk in how the RepeatButton and OnGUI functions work. If one of these
buttons is active, nothing will be drawn after that button in the OnGUI function. It is
a bit annoying, but suits our needs for now.

public void OnGUI() {
 Rect fore = new Rect(50, Screen.height – 150, 50, 50);
 if(GUI.RepeatButton(fore, "f")) {
 MoveTank(moveSpeed);
 }

 Rect back = new Rect(50, Screen.height – 50, 50, 50);
 if(GUI.RepeatButton(back, "b")) {
 MoveTank(-moveSpeed);
 }

 Rect left = new Rect(0, Screen.height – 100, 50, 50);
 if(GUI.RepeatButton(left, "l")) {
 RotateTank(-rotateSpeed);
 }

 Rect right = new Rect(100, Screen.height – 100, 50, 50);
 if(GUI.RepeatButton(right, "r")) {
 RotateTank(rotateSpeed);
 }
}

Chapter 3

[83]

4.	 Only two functions left to go. We start the following line of code by defining our
MoveTank function. It needs to be passed with a speed value to dictate how far
and in which direction to go. It was mentioned a moment ago; a positive value
will go forward and a negative value will go backwards.

public void MoveTank(float speed) {

5.	 In order to move in three-dimensional spaces, we need a vector—a value with both
direction and magnitude. Therefore, we define a movement vector and set it to the
tank's forward direction, multiplied by the tank's speed, and again multiplied by the
amount of time since the last frame. If you remember from the geometry class, 3D
space has three directions: x, y, and z. In Unity, the following convention applies: x
is to the right, y is up, and z is forward. The Transform component holds an object's
position, rotation, and scale. We can access the Transform component of any object
in Unity by calling upon the .transform value that Unity provides. The Transform
component also provides a forward value that will give us a vector that points
forward relative to the object. Also, we want to move at a regular pace, for example,
a certain number of meters per second, hence we make use of Time.deltaTime.
This is a value provided by Unity that holds how many seconds it has been since
the last frame of the game was drawn on screen. Think of it like a flip book. In order
to make it look like a guy is walking across the page, he needs to move slightly on
each page. In the case of a game, the pages are not flipped regularly. So, we have to
modify our movement by how long it has taken to flip to the new page. This helps us
to maintain an even pace.

 Vector3 move = characterControl.transform.forward * speed *
Time.deltaTime;

6.	 Next, we want to stay on the ground. In general, any character you want to control
in a game does not automatically receive all of the physics that a boulder would,
such as gravity. For example, when jumping, you temporarily remove gravity so the
character can go up. That is why the next line of code does a simple implementation
of gravity by subtracting the normal speed of gravity and again keeps it in pace with
our frame rate:

 move.y -= 9.8f * Time.deltaTime;

7.	 Finally, for the MoveTank function, we actually do the moving. The
CharacterController component has a special Move function that will move the
character but constrain it by collisions. We just need to tell it how far and in which
direction we want to move this frame by passing the Move vector to it. That final
curly brace, of course, closes off the function.

 characterControl.Move(move);
}

The Backbone of Any Game – Meshes, Materials, and Animations

[84]

8.	 The RotateTank function is the last one. This function also needs a speed value
to dictate how fast and in which direction to rotate. We start by defining another
vector; but, instead of defining which direction to move, this one will dictate which
direction to rotate around. In this case, we will be rotating around our up direction.
We then multiply that by our speed and Time.deltaTime to move fast enough
and keep pace with our frame rate.

public void RotateTank(float speed) {
 Vector3 rotate = Vector3.up * speed * Time.deltaTime;

9.	 The last bit of the function actually does the rotation. The Transform component
provides a Rotate function. Rotation, especially in 3D space, can become weird
and difficult very quickly. The Rotate function handles all of that for us; we just
need to supply it with the values to be applied for rotation. Also, don't forget the
curly brace to close off the function.

 characterControl.transform.Rotate(rotate);
}

What just happened?
We created a script to control the movement of our tank. It will draw a group of buttons on the
screen, so that our tank can move forward and back. This is done using a special Move function
from the CharacterController component. We also used a special Rotate function
provided by the Transform component to rotate our tank using another set of buttons.

Time for action – controlling the turret
This script will allow the player to rotate their turret and aim the cannon.

1.	 The last script we need to create for our tank is TurretControls. This script will
allow players to rotate the turret left and right and tilt the cannon up and down.
As with all of the others, create it in the Scripts folder.

2.	 The first two variables we define will hold pointers to the turret and cannon pivots,
the empty GameObjects that we created for our tank. The second set is the speed
that our turret and cannon will rotate at. Finally we have some limit values. If we didn't
limit how much our cannon could rotate, it would just spin around and around, passing
through our tank. This isn't the most realistic behavior for a tank, so we must put some
limits on it. The limits are in the range of 300 because straight ahead is zero degree and
down is 90 degree. We want it to be the upwards angle, so it is in the range of 300. We
also use 359.9 because Unity will change 360 to zero so it can continue to rotate.

public Transform turretPivot;
public Transform cannonPivot;

Chapter 3

[85]

public float turretSpeed = 45f;
public float cannonSpeed = 20f;

public float lowCannonLimit = 315f;
public float highCannonLimit = 359.9f;

3.	 The next step is to create the OnGUI function to draw buttons and give the player
control of the turret. This function is almost identical to the OnGUI function we
made for the ChassisControls script. The differences are in the fact that the
Rects class will move to the bottom-right corner of the screen, and that we are
calling the RotateCannon and RotateTurret functions. When we send a speed
to RotateCannon, we need a positive value to go up and a negative value to
go down. RotateTurret will largely function like the RotateTank function; a
positive speed will rotate to the right and a negative speed will rotate to the left.

public void OnGUI() {
 Rect up = new Rect(Screen.width – 100, Screen.height – 150, 50,
50);
 if(GUI.RepeatButton(up, "u")) {
 RotateCannon(cannonSpeed);
 }

 Rect down = new Rect(Screen.width – 100, Screen.height – 50, 50,
50);
 if(GUI.RepeatButton(down, "d")) {
 RotateCannon(-cannonSpeed);
 }

 Rect left = new Rect(Screen.width – 150, Screen.height – 100,
50, 50);
 if(GUI.RepeatButton(left, "l")) {
 RotateTurret(-turretSpeed);
 }

 Rect right = new Rect(Screen.width – 50, Screen.height – 100,
50, 50);
 if(GUI.RepeatButton(right, "r")) {
 RotateTurret(turretSpeed);
 }
}

www.allitebooks.com

http://www.allitebooks.org

The Backbone of Any Game – Meshes, Materials, and Animations

[86]

4.	 Next is the RotateTurret function. It works exactly in the same way as the
RotateTank function. However, instead of looking at a CharacterController
component 's Transform variable, we act upon the turretPivot variable that
was defined at the beginning of the function.

public void RotateTurret(float speed) {
 Vector3 rotate = Vector3.up * speed * Time.deltaTime;
 turretPivot.Rotate(rotate);
}

5.	 The last function, RotateCannon, gets a little more down-and-dirty with rotations.
The fault completely lies with the need to put limits on the rotation of the cannon.
After opening the function, the first step is to figure out how much we are going to
be rotating this frame. We are using a float value instead of a vector because we
have to set the rotation ourselves.

public void RotateCannon(float speed) {
 float rotate = speed * Time.deltaTime;

6.	 Next, we define a variable that holds our current rotation. We do this because Unity
will not let us act on the rotation directly. Unity actually keeps track of rotation as a
quaternion. This is a complex method of defining rotations that is beyond the scope
of this book. Luckily, Unity gives us access to an x, y, z method of defining rotations
called EulerAngles. It is a rotation around each of the three axes in 3D space.
The localEulerAngles value of a Transform component is the rotation relative
to the parent GameObject.

Vector3 euler = cannonPivot.localEulerAngles;

It is called EulerAngles because of Leonhard Euler, a Swiss
mathematician who defined this method of defining rotations.

7.	 Next, we adjust the rotation and apply the limits in one go through the use of the
Mathf.Clamp function. Mathf is a group of useful math functions. The Clamp
function takes a value and makes it no lower and no higher than the other two
values passed to the function. So, we first send it our x axis rotation, which is the
result of subtracting rotate from the current x rotation of euler. Because the
positive rotation is clockwise around an axis, we have to subtract our rotation
to go up instead of down with a positive value. Next, we pass our lower limit to
the Clamp function, followed by our higher limit: the lowCannonLimit and
highCannonLimit variables that we defined at the top of the script.

euler.x = Mathf.Clamp(euler.x – rotate, lowCannonLimit,
highCannonLimit);

Chapter 3

[87]

8.	 Finally, we have to actually apply the new rotation to our cannon's pivot point. This
is simply setting the localEulerAngles value of the Transform component to the
new value. And again, be sure to use the curly brace to close off the function.

 cannonPivot.localEulerAngles = euler;
}

What just happened?
We created a script that will control the turret of the tank. Through the use of buttons on
the screen, the player is able to tilt the cannon and rotate the turret. This script functioned
in a very similar manner to the ChassisControls script we created earlier. The difference
came in limiting the amount the cannon can tilt.

Time for action – putting the pieces together
That was the last of the scripts, for the moment. We have our tank and our scripts; the next
step is to put them together.

1.	 Now, we need to add them to our tank. Remember how we added our Tic-tac-toe
script to the camera in the last chapter? Start by selecting your tank in the Hierarchy
window. Before they work, we will first need to add the CharacterController
component to our tank. So, go to the top of the Unity Editor and select Component,
then select Physics, and finally click on the Character Controller option.

�� You will notice that a green capsule also appears on the tank in the
Scene view; at the same time the new component is added. This capsule
represents the space that will collide and interact with other colliders.
The values on the CharacterController component let us control how it
interacts with other colliders. For most cases, the defaults for the first
four are just fine.

Slope Limit: This attribute shows us how steep an incline the controller
can move up.

Step Offset: This attribute shows us how high a step can be before it
starts to block movement.

Skin Width: This defines how far another collider can penetrate this
controller's collider before it is completely stopped. This is mostly
used for squeezing between objects.

Min Move Distance: This attribute is for limiting jitter. It is the
minimum amount of movement that has to be applied in a frame
before it will actually move.

The Backbone of Any Game – Meshes, Materials, and Animations

[88]

Center, Radius, and Height: These attributes define the size of the
capsule that you see in the Scene view. They are used for the collision.

2.	 The last three values are what we care about right now. We need to adjust these
values to match our tank's values as closely as possible. Admittedly the capsule is
round and our tank is square, but a CharacterController component is the
easiest way to move a character with collision and will be used most often. Use
values of 2.3 for the Radius attribute and the Y portion of the Center attribute;
everything else can be left at the default values.

3.	 It is now time to add the scripts to our tank. Do this by selecting the tank in the
Hierarchy window and dragging the ChassisControls, TurretControls, and
ScoreCounter scripts onto the Inspector window. This is just as we did it in the
previous chapters.

4.	 Before the tank will work, we need to finish creating the connections that we started
in our scripts. Start by clicking the CharacterController component's name and
dragging it to the Character Control value that is on our new ChassisControls
script component. Unity lets us connect object variables in the Unity Editor, so that
they do not have to be hard coded.

5.	 We also need to connect our turret and cannon pivot points. So, click-and-drag
the points from the Hierarchy window to the corresponding variable on the
TurretControls script component.

6.	 Save the scene as TankBattle and try it out.

What just happened?
We just finished putting our tank together. Unless you look at the Scene view while using
the movement controls, it is hard to tell that the tank is moving. The turret controls can be
seen in the Game view, though. Other than not having a point of reference for whether or
not our tank is moving, it runs pretty well. The next step and the next section will give us
that reference point as we add our city.

Chapter 3

[89]

Have a go hero – cannon alignment
You might notice a quick jump when you first try to tilt the cannon. Such behavior is annoying
and makes the game look broken. Try adjusting the cannon to fix it. If you are having trouble
with it, take a look at the cannon's starting rotation.

Creating the materials
In Unity, the materials are the defining factor for how models are drawn on the screen.
They can be as simple as coloring it all blue, or as complex as reflective water with waves.
In this section, we will cover the details of the controls for a material. We will also create
our city and some simple materials to texture it with.

Time for action – creating the city
Creating a city gives our tanks and our players a good place to play.

1.	 For the purposes of this section, no part of the provided city was given a specific
texture. It was just unwrapped and some tile-able textures were created. So, we
need to start by importing the city and the textures to the Environment folder.
Do it the same way that we imported the tank.

The files are TankBattleCity.blend, brick_001.png,
brick_002.png, brick_003.png, dirt_001.png,
dirt_003.png, pebbles_001.png, rocks_001.png,
rubble_001.png, and water_002.png.

2.	 Because the city was unwrapped, Unity still created a single material for it.
However, textures were never applied in any modeling program. So, the material
is plain white. We have several extra textures, so we are going to need more than
that one material for the whole city. Creating a new material is simple; it is done
just as with creating a new script. Right-click on the Materials folder inside the
Environment folder, and select Create followed by Material, which is about
halfway down the menu.

The Backbone of Any Game – Meshes, Materials, and Animations

[90]

3.	 This will create a new material in the folder and immediately allow us to name it.
Name the material, Pebbles.

4.	 With your new material selected, take a look at the Inspector window. When we
have a material selected, we get the options needed to change its look.

Chapter 3

[91]

�� At the very top of the Inspector window, we have the material's name,
followed by a Shader drop-down list. A shader is essentially a short script
that tells the graphics card how to draw something on screen. You will
use the Diffuse shader most often, so it is always selected by default. This
is where you would select from your Bump-mapped shaders, specular,
transparent, and a plethora of other options. If you were to create some
custom shaders, they would also be found here.

�� The next little block will only be visible if Unity has something to warn
you about. In this case, it is advising us to use a different shader for
performance reasons. However, that is a discussion for Chapter 9,
Optimization, so we will ignore it for now.

�� Then, we have the Main Color value with a colored square next to it.
By clicking on that square, the Color Picker window will open and let us
select any color we want. This color value changes the tinting on the texture
being drawn by the material. Because we don't have a texture yet, you will
notice that it just changes the color of the ball in the Preview window.

�� The Base (RGB) value is under the Main Color value. This is the texture.
The box on the right, with None (Texture) and a Select button in it, is a
preview box for the texture being used by this material. To add a texture
to the material, either drag one to this box from the Project window, or
click on the Select button. The button opens a new window that holds the
thumbnails of every texture that is currently in the project. You can scroll
through or use the search bar to find the texture that you need and
double-click to select it.

�� To the left of the box, we have our Tiling and Offset controls. The Tiling
values dictate how many times the texture will repeat across the normalized
UV space in the x and y directions. The Offset is how far off zero the texture
starts in the normalized UV space. You can select the number fields and
input values to modify them. Doing so, and paying attention to the Preview
window below, you will see how they change the texture. Tiling textures are
most commonly used for large surfaces where the texture is similar enough
across the surface that it just repeats.

�� Our Preview window is at the bottom of the Inspector window. It functions
just as the one we saw for our tank mesh. What makes this one special,
though, is the two buttons in the top-right corner of this window. The one
to the left scrolls through a set of preview shapes. By clicking on it you'll
be able to see how the texture looks on a sphere, cube, cylinder, or torus.
The other button toggles between the two types of lighting.

The Backbone of Any Game – Meshes, Materials, and Animations

[92]

5.	 Add the pebbles_001 texture to this material by dragging it from the Project
window and dropping it on the Base (RGB) preview box.

6.	 Use values of 30 for the material's Tiling and a light tan color for the Main Color
option, so that the texture can be sized right and more pleasing to look at.

7.	 To see our new material in action, first drag your city to the Hierarchy window,
so that it is added to the Scene view. By right-clicking-and-dragging, you can look
around in your Scene view. Look over at the streets of the city.

8.	 Now, drag your new material from the Project window into your Scene view.
While dragging the material around, you should see the meshes change to
appear as if they are using the material. Once you are over the streets, let go
of your left mouse button. The material is now applied to the mesh.

9.	 However, we currently have a whole quarter of a city to texture. So, create more
materials and use the remaining textures on the rest of the city. Create a new
material for each extra texture, plus four extra of brick_002, so, we can have
different colors for each building height.

10.	Apply your new materials to the city, either by comparison with the following
figure or through your own artistic whim:

Chapter 3

[93]

When trying to get to the center fountain, if your tank is in the way,
select your tank in the Hierarchy window and use the Gizmo option
in the Scene view to drag it out of the way.

�� If you were to try to play the game now, you might notice that we have a
couple of problems. For starters, we only have a quarter of a city; perhaps
you have more if you made your own city. There is still no collision on the
city, so we fall right through it when moving. Also, the tank is a little large
for this city, and it is too dark to see where we are going. Turning on the
lights is the quickest solution to fix this problem.

11.	At the top of the Unity Editor, select GameObject, followed by Create Other, and
finally Directional Light. This creates an object that emits light in a single direction.
The next chapter explains lights and how to control them, so the details will be left
for later.

12.	Changing the size of our tank is also pretty simple. Select it in the Hierarchy window
and look for the Scale label in our Transform component. Changing the X, Y, and Z
values under Scale will change the size of our tank. Be sure to change them evenly
or some weirdness will occur when we start rotating the tank. Values of 0.5 make
the tank small enough to fit through the small streets.

13.	Next up is collision for the city. For the most part, we will be able to get away with
simple collision shapes that are faster to process. However, the circular center of
the city will require something special. Start by double-clicking on the walls of one
of the square buildings in the Scene view.

When dealing with prefabs, which the city still is, clicking on any object
that makes up the prefab will select the root prefab object. Once a
prefab is selected, clicking on any part of it will select that individual
piece. Because this behavior is different from non-prefab objects, you
need to be mindful of it when selecting objects in the Scene view.

14.	With a set of walls selected, go to the top of the Unity Editor and select Component,
followed by Physics, and finally Box Collider.

15.	Because we are adding the collider to a specific mesh, Unity does its best to
automatically fit the collider to the shape. For us, this means that the new
BoxCollider component is already sized to fit the building. Continue by adding
BoxColliders to the rest of the square buildings and the outer wall. Our streets
are essentially just a plain, so a BoxCollider component will work just fine for
them as well. Though pointed at the top, the obelisk in the center of the fountain
is essentially just a box; so, another BoxCollider will suit it fine.

The Backbone of Any Game – Meshes, Materials, and Animations

[94]

16.	We have one last building and the fountain ring to deal with. These are not boxes,
spheres, or capsules. So, our simple colliders will not work. Select the walls of the
last building, the one next to the center fountain. A few options down from where
you were selecting Box Collider, there is a Mesh Collider option. This will add a
MeshCollider component to our object. This component does what its name
suggests; it takes a mesh and turns it into a collider. By adding it to a specific mesh,
the MeshCollider component automatically selects that mesh to be collideable.
You should also add MeshColliders to the short ledge around the center building
and the ring wall around the fountain.

17.	The last problem to solve is the duplication of our city quarter. Start by selecting
the root city object in your hierarchy, TankBattleCity, and remove the
Animator component from it. The city is not going to animate, so it does not
need this component.

18.	Now, right-click on the city in the Hierarchy window and select Duplicate. This
creates a copy of the object that was selected.

19.	Duplicate the city quarter twice more and we will have the four parts of our city.
The only problem is that they are all in the exact same position.

20.	We need to rotate three of the pieces to make a full city. Select one and set the
Y Rotation value in the Transform component to 90. This will rotate it 90 degrees
around the vertical axis and give us half of a city.

21.	We will complete the city by setting one of the remaining pieces to 180 and another
to 270.

22.	That leaves one last thing to do. We have four center fountains. In three of the four
city pieces, select the three meshes that make up the center fountain (the Obelisk,
Wall, and Water) and click on the Delete key on your keyboard. Confirm that you
want to break the prefab connection each time, and our city will be complete.

Chapter 3

[95]

What just happened?
Try out the game now. We can drive around the city and rotate our turret. It is so much
fun. We created materials and textured the city. After making it possible to collide with
the buildings and road, we duplicated the section so that we could have a whole city.

Have a go hero – decorating the city
Now that you have all the skills needed to import meshes and create materials, the challenge
is to decorate the city. Create some rubble and tank traps and practice importing them to
Unity and setting them up in the scene. If you really want to go above and beyond, try your
hand at creating your own city. Choose something from the world, or choose something
from your imagination. Once it is created, we can release the tanks in it.

The Backbone of Any Game – Meshes, Materials, and Animations

[96]

Time for action – moving treads
1.	 There is just one thing left to do, and then we will be done with materials and can go

on to make the game even more fun. Remember the Offset value of the materials?
It turns out that we can actually control that with a script. Start by opening up the
ChassisControls script.

2.	 First, we need to add a few variables to the beginning of the script. The first two will
hold references to our tank tread renderers, the part of the mesh object that keeps
track of the material that is applied to the mesh and actually does the drawing.
This is just like how the characterControl variable holds a reference to our
CharacterController component.

public Renderer rightTread;
public Renderer leftTread;

3.	 The second two variables will keep track of the amount of offset applied to each
tread. We store it here because it is a faster reference than trying to look it up
from the thread's material each frame.

private float rightOffset = 0;
private float leftOffset = 0;

4.	 To make use of the new values, these lines need to be added to the end of the
MoveTank function. The first line here adjusts the offset for the right tread as
per our speed and keeps in time with our frame rate. The second line utilizes the
material value of a Renderer component to find our tank tread material. The
mainTextureOffset value of the material is the offset of the primary texture
in the material. In the case of our diffuse materials, it is the only texture. Then,
we have to set the offset to a new Vector2 value that will contain our new offset
value. Vector2 is just like Vector3 we used for moving, but works in 2D space
instead of 3D space. A texture is flat, hence 2D space. The last two lines of the
code do the same thing as the other two, but for the left tank tread.

rightOffset += speed * Time.deltaTime;
rightTread.material.mainTextureOffset = new Vector2(rightOffset, 0);
leftOffset += speed * Time.deltaTime;
leftTread.material.mainTextureOffset = new Vector2(leftOffset, 0);

5.	 To make the connections to the Renderer components of our treads, do the same
thing that we did for the pivot points: drag the tread meshes from the Hierarchy
window to the corresponding value in the Inspector window. Once done, be sure
to save it and try it out.

Chapter 3

[97]

What just happened?
We updated our ChassisControls script to make the tank treads move. As the tank
is driven around, the textures pan in the appropriate direction. This is the same type of
functionality that is used to make waves in water and other textures that move.

Have a go hero – turning with the treads
The movement of the material doesn't quite match the speed of the tank. Figure out how
to add a speed value for the tank's treads. Also, it would be cool if they moved in opposite
directions when the tank is rotating. Real tanks turn by making one tread go forward and
the other back.

Animations
The next topic we will be covering is animation. As we explore animations in Unity, we will
be creating some targets for our tank to shoot at. Much of the power of Unity's animation
system, Mecanim, lies in working with humanoid characters. But, setting up and animating
human type characters is a book unto itself, so it will not be covered here. However, there
is still much we can learn and do with Mecanim.

�� Before we continue with the explanation of the animation import settings, we need
an animated model to work with. We have one last set of assets to import to our
project. Import the Target.blend and Target.png files into the Targets folder
of our project. Once imported, adjust the Import Settings window on the Model
page for the target, just as we did for the tank. Now switch to the Rig tab.

The Backbone of Any Game – Meshes, Materials, and Animations

[98]

�� The Animation Type attribute tells Unity what type of skeleton the current model is
going to use when animating.

�� The Humanoid option adds many more buttons and switches to this page
for working with human type characters. But again, it is too complex to
cover here.

�� A Generic rig still uses Mecanim and many of its features. Really, this is
just any animation skeleton that does not resemble a human in structure.

�� The third option, Legacy, utilizes Unity's old animation system. But, this
system will be phased out over the next few versions of Unity, so it will
not be covered either.

�� The last option, None, indicates that the object will not be animating.
You could select this option for both the tank and the city, because it also
keeps Unity from adding that Animator component and saves space in
the final project size.

�� The Root Node value is a list of every object that is in the model file. Its
purpose is to select the base object of your animation rig. For this target,
select Bone_Arm_Upper, which is underneath the second Armature option.

Chapter 3

[99]

�� The last page of the import settings, Animations, contains everything that we
need to get the animations from our files into Unity. At the top of the Target Import
Settings window, we have the Import Animation checkbox. If an object is not going
to animate, it is a good idea to turn this option off. Doing so will also save space in
your project.

�� The option below that, Bake Animations, is only used when your animations contain
Kinematics and are from 3Ds Max or Maya. This target is from Blender, so the option
is grayed out.

�� The next four options, Anim. Compression, Rotation Error, Position Error, and Scale
Error, are primarily for smoothing jittery animations. Nearly all of the time, the
defaults will suit just fine.

�� The Clips section is what we are really concerned about. This will be a list of every
animation clip that is currently being imported from the model. On the left-hand
side of the list, we have the name of the clip. On the right-hand side, we can see
the start and end frames of the clip.

�� Unity will add the Default Take animation clip to every new model. This is a
clip generated from the default preview range of your modelling program,
when the file was saved.

�� In Blender, it is also possible to create a series of actions for each rig. By
default, they are imported by Unity as animation clips. In this case, the
ArmatureAction clip is created.

The Backbone of Any Game – Meshes, Materials, and Animations

[100]

�� Below and to the right-hand side of the clips, there is a little tab with + and
- buttons. These two buttons add a clip to the end and remove the selected
clip respectively.

�� When a clip is selected, the next section appears. It starts with a text field for
changing the name of the clip.

Chapter 3

[101]

�� Below the text field, there is a Source Take drop-down list. This list is the same as
the default animations. Most of the time, you will just use Default Take; but if your
animation is ever appearing wrong or is missing, try changing the Source Take
drop-down list first.

�� Then, we have a small timeline, followed by input fields for the start and end frames
of the animation clip. Clicking-and-dragging on the two blue flags in the timeline will
change the numbers in the input fields.

�� Next we have Loop Pose and Cycle Offset. If we want our animation to repeat, check
the box next to Loop Pose. When an animation is looping, Cycle Offset will become
available. This value lets us adjust the frame that the looping animation starts on.

�� The next three small sections, Root Transform Rotation, Root Transform Position
(Y), and Root Transform Position (XZ), allow us to control the movement of a
character through the animation.

�� All three of these sections have a Bake into Pose option. If these are
left unchecked, the movement of the root node (we selected it under
the Rig page) within the animation is translated into movement of the
whole object. Think of it like this: say you were to animate a character
running to the right and inside of the animation program, you actually
move them, rather than animating in place as normal. With Unity's old
animation system, for the physical part of a character to move the collider,
the GameObject had to be moved with code. So, if you were to use that
animation, the character would appear as if it had moved, but it would
have no collision. With this new system, the whole character will move
when that animation is played. However, this requires a different and
more complex setup to work completely. So, it was not chosen to be
used on the tank, though we could have used it.

�� Each of the three sections also has a Based Upon drop-down option.
The choice of this option dictates the object's center for each of the
sections. There are more choices if you are working with humanoid
characters, but for now we only have two.

A choice of Root Node means the pivot point of the root node
object is the center.

A choice of Original means the origin as defined by the animation
program is the center of the object.

�� There is also an Offset option for the first two of these sections that
works to correct errors in the motion. When animating a walk cycle for
a character, if the character is pulling to the side slightly, adjusting the
Offset option under Root Transform Rotation will correct it.

The Backbone of Any Game – Meshes, Materials, and Animations

[102]

�� The last option for our animation clip is a Transform Mask option. By clicking on
the arrow to the left, you can expand a list of all objects in the model. Each object
has a checkbox next to it. The objects that are not checked will not be animated
when this clip is played. This is useful in the case of a hand-waving animation. Such
an animation would only need to move the arm and hand, so we would uncheck
all of the objects that might make up the body of the character. We could then
layer animations, making our character capable of waving while standing, walking,
or running, without the need to create three extra animations.

�� Finally, we have our Revert button, Apply button, and the Preview window at the
bottom. Just as with all of our other import settings, we have to hit one of these
buttons when changes are made. This Preview window is made special by the speed
slider in the top-right corner and the big play button in the top-left corner. By clicking
on this button, we can preview the selected animation. This lets us detect those
errors in motion that we talked about earlier, and just generally make sure that
the animation is what we want.

The target's animations
So, now that the description is all out of the way, let's actually make something with it.
We start by setting up the animations for the target.

Time for action – setting up target's animations
Using the knowledge we just gained, we can now set up our target's animations.

1.	 For starters, if you missed or skipped it earlier, be sure to import the Target.blend
and Target.png files to the Targets folder. Also, on the Rig page of the import
settings, set the Animation Type attribute to Generic and the Root Node attribute
to Bone_Arm_Upper.

2.	 We need a total of six animations. By clicking on the + button in the Clips section,
you can add four more animations. If you have added too many, click on the - button
to remove the extra clips.

3.	 All of these clips should have a Source Take drop-down list of Default Take and all
of the Bake into Pose options should be checked, because the target isn't going to
be moving from its starting location.

Chapter 3

[103]

4.	 First, let's create our idle animations. Select the first clip and rename it to Idle_
Retract. Because it is a mechanical object, we can get away with a really short
animation; so short that we are just going to use the first frame. Set the starting
frame to 0.9 and the ending frame to 1.

5.	 We also need to turn on Loop Pose because idle animations are of course looping.

6.	 The extended idle animation is created in almost exactly the same manner. Select
the second clip and rename it to Idle_Extend. The starting frame here is 14 and
the ending frame is 14.1. Also, this animation needs to loop.

7.	 Our next two animations are for when the target extends and retracts. They are
going to be called Extend and Retract, so rename the next two clips. The Extend
animation will start at frame 1 and end at frame 13. The Retract animation starts
at frame 28 and ends at frame 40. Neither of these will loop.

8.	 The last two animations also will not loop. They are for when we shoot the targets.
There is one for being shot in the front and one for being shot from behind. The
Hit_Front animation will be from frame 57 to frame 87. The Hit_Back animation
will be from frame 98 to frame 128.

9.	 Once all of the changes are made, be sure to click on Apply or they will not be saved.

What just happened?
We set up the animations that will be used by our targets. There were six in total. They may
not seem like much now, but the next section would be lost without them.

State machines
In order for us to control these new animations in Unity, we need to set up a state machine.
A state machine is just a fancy object that keeps track of what an object can do, and how to
transition between those things. Think of it in terms of a builder from a Real Time Strategy
game. The builder has a walk state that is used when moving to the next construction site.
When it gets there, it switches to a build state. If an enemy shows up, the builder will enter
a run away state until the enemy is gone. Finally, there is an idle state for when the builder is
doing nothing. In Unity, these are called Animator Controllers when working with animations
and Mecanim.

The Backbone of Any Game – Meshes, Materials, and Animations

[104]

Time for action – creating the target state machine
The use of a state machine allows us to focus more on what the target is doing, while letting
Unity handle the how it is going to do it part.

1.	 Creating an Animator Controller is simple and done just as we have been doing for
our scripts and materials. The option is second from the bottom of the Create menu.
Create one in the Targets folder and name it TargetController.

2.	 Double-click on TargetController to open a new window.

3.	 The Animator window is where we edit our state machines.

�� At the top-left corner of the window, there is a breadcrumb trail as you
might find on a website that lets us see where we are in the state machine
at a glance.

�� The Auto Live Link button in the top-right controls our ability to see
the state machine's update in real time with the game. This is useful for
debugging transitions and controls for the character.

�� Underneath the breadcrumb trail, there are a list of layers and a button for
adding new layers. Every state machine will have at least the Base Layer.
Adding additional layers would allow us to blend state machines. Say we
have a character that walks around normal when at full health. When his
health drops below half, he starts to limp. If the character has only ten
percent of his health left, he starts to crawl. This would be achieved
through the use of layers.

Chapter 3

[105]

�� At the bottom-left corner of the window, there is the Parameters list. Clicking
on the + button will add a new parameter to the list. These parameters can be
Boolean, float, vector, and integer values. The transitions between states are
most often triggered by changes in the parameters. Any scripts working with
the state machine can modify these values.

�� Finally, that green box in the center with Any State on it that allows a
character to transition from any action to a specific one. When a character's
health drops below zero, we want them to go to the death state. The Any
State box would hold this transition, and it would be able to pull the character
out of any other state and put them in the death state.

4.	 To create a new state, right-click on the grid that is inside our Animator window.
Mouse over Create State and select Empty. This creates a new empty state for our
state machine. Normally new states are gray but, because this is the first state in
our machine it is orange, which is the color of the default state.

5.	 Every state machine will start in its default state. Click on the state to select it,
and we can take a look at it in the Inspector window.

�� At the top, there is a text field for changing the name of the state.

�� Below that, you can add a tag for organizational purposes.

�� Next, there is a Speed field. This field controls the speed of the animation.

�� The Motion field is where we will add connections to the animation clips
that we created earlier.

�� The Foot IK option lets us decide if we want to let part of the animation be
calculated with IK. We did not set up any IK for these animations, so we do
not need to worry about this option.

The Backbone of Any Game – Meshes, Materials, and Animations

[106]

�� The last option, Mirror, is used to flip the left and right (or x axis) of the
animation. If you created a right-hand-waving animation, this option
would let you change it to a left-hand-waving animation.

�� Below that, there is the list of transitions that go from this state to another
state. These are transitions out of the state, not into it. As you will soon
see, a transition in this list appears as the name of the current state with
an arrow to the right, followed by the name of the state it is connected to.

�� Checkboxes also appear under the Solo and Mute labels on the right.
These are for debugging transitions between states. Any number of the
transitions can be muted at one time, but only one can be soloed at a
time. When a transition has been muted, it means that the state machine
will ignore it when deciding which transition to make. Checking the solo
box is the same as muting all but one of the transitions. It is just a quick
way of making it the only active transition.

6.	 We are going to need one state for each of our target's animations. So, create five
more states and rename all six to match the names of the animation clips we created
earlier. The default state, the orange one, should be named Idle_Retract.

7.	 In the Project window, click on the little triangle to the left of the Target model.

�� This expands the model, so that we can see all of the objects that make up
that model in Unity. The first group, as indicated by the little thumbnails next
to each object, is the raw mesh data. This is followed by an Avatar object; this
is what keeps track of the Rig setup. Below that, there are the animation clip
objects; these are what we are interested in right now. The objects that make
up the model are at the bottom of the stack.

8.	 Select each state in your Animator window and pair it with the correct clip
by dragging an animation clip from the Project window and dropping it on
the Motion field in the Inspector window.

The thumbnail for animation clips looks like a little play button.

Chapter 3

[107]

9.	 Before we can create our transitions, we need a few parameters. Click on the +
button next to Parameters in the bottom-left corner of the window and select
Float from the menu that appears. A new parameter should now appear in
the list.

10.	The new field on the left is the name of the parameter; rename this one to time.
The field on the right is the current value of this parameter. When debugging our
state machine, we can modify these values here to trigger changes in the state
machine. Any changes made by the scripts while the game is running will also
appear here.

11.	We need two more parameters. Create two Boolean parameters and rename
them to wasHit and inTheFront. These will trigger the machine to change
to the getting hit states, while the time parameter will trigger the machine to
utilize the extend and retract states.

12.	To create a new transition, right-click on a state and select Make Transition from
the menu that pops up. A transition line is now connected from the state to your
mouse. To complete the transition creation, click on the state that you wish to
connect to. There is an arrow on the line, indicating the direction of the transition.

1.	 We need a transition from Idle_Retract to Extend.

2.	 We also need a transition from Extend to Idle_Extend.

3.	 Idle_Extend needs three transitions, one each going to Retract,
Hit_Front, and Hit_Back.

4.	 Retract, Hit_Front, and Hit_Back need a transition going to
Idle_Retract.

Use the following diagram for reference. If you create a transition or state
that you do not want, select it and click on the Delete key on your keyboard
to remove it.

Any State Hit_Front

Extend

Hit_Back

Retract

Idle_Retract

Idle_Extend

The Backbone of Any Game – Meshes, Materials, and Animations

[108]

13.	 If you click on one of the transition lines, then we can take a look at its settings.

�� At the top of the Inspector window, we have the same indicators of which
states we are transitioning between that we had in the state, the name of
the state the transition starts in followed by an arrow, and finally the name
of the state the transition ends in.

�� Underneath the familiar Transitions list, there is a text field where we can
give our transitions specific names. This would be useful if we had several
different types of transitions between the same two states.

�� Directly under the field, there is a more exact path-based indication of
which states the transition is between.

Chapter 3

[109]

�� The Atomic checkbox allows us to decide whether or not a transition can
be interrupted. If Atomic is checked, it cannot be interrupted.

In the example about the Any State option and the death state,
perhaps we were shot while pulling out a sword, going from an idle
state to an attack state. That transition cannot be atomic, if we are
to avoid the weirdness of completing our sword draw before falling
over dead.

�� Next is a timeline block that lets us preview the transition between
animations. Dragging the little flag left and right, we can watch the transition
in the Preview window below. The top half of this block holds wave forms
that indicate the movement contained in an animation. The bottom half
shows the states as boxes that overlap where the transition actually occurs.
Either of these boxes can be dragged to change the length of the transition.

Because our two idle animations are of negligible length,
this can't be seen in our setup normally. If you temporarily
create a transition between the extend and retract
states, it would be visible.

�� Lastly, we have a Conditions list. Using the parameters we set up, we
can create any number of conditions here that must be met before this
transition can take place.

The default condition is Exit Time. This means that, when the first
state reaches a certain percentage of the way through its animation,
as defined by the float field to the right, it will start transitioning into
the next state. For half of our transitions, this is what we want. The
other half, namely anything that exits our idle states, need to be
based on our parameters.

There is also another Preview window at the bottom of the
Inspector panel. It functions just like the one for the animation
import settings page, but this one plays the transition between
the two relevant animations.

14.	Select the transition between the Idle_Retract state and Extend state.
We want the targets to randomly pop up. This will be controlled by a script
changing the time parameter.

15.	Click on Exit Time under the Conditions list to bring up the list of parameters
and select time from the list.

The Backbone of Any Game – Meshes, Materials, and Animations

[110]

16.	 In order to turn a float value into a conditional statement, we need to compare
it with another value. That is why we got a new drop-down button of comparison
options when we selected the parameter. A float value will be either greater than
or less than the value on the right. Our time will be counting down, so select Less
from the list and leave the value at zero.

17.	Change the conditions for the transition between the Idle_Extend and Retract
states to be the same.

18.	For the transition between the Idle_Extend state and Hit_Front state, we will
use both of the Boolean parameters that were created. Select the transition and
click on the + button under Conditions to add a second condition.

19.	For the first condition, select wasHit and select inTheFront for the second condition.

20.	A Boolean is either true or false. In the case of the transitions, it needs to know
which of those values it is waiting for. For this transition, both should be left as true.

21.	 Next, set up the conditions for the transition between Idle_Extend and Hit_Back,
just as you did for the previous transition. The difference being that false needs to be
selected from the drop-down list next to the inTheFront conditional.

What just happened?
We created a state machine that will be used by our targets. By linking each state to an
animation and connecting them all with transitions, the target will be able to switch between
animations. This transitioning is controlled through adding conditionals and parameters.

Time for action – scripting the target
We only need one more piece before we can finish putting the target together.

1.	 That piece is a script. Create a new script in our Scripts folder and name it Target.

2.	 First, in order to interact with our state machine, we need a reference to the
Animator component. It is the component that you removed from the tank and the
city. The Animator component is what ties all of the pieces of animation together.

public Animator animator;

3.	 It is followed by two float values that will dictate the range of time, in seconds,
that our targets will sit in their idle states.

public float maxIdleTime = 10f;
public float minIdleTime = 3f;

Chapter 3

[111]

4.	 Next, we have three values that will hold the ID numbers of the parameters that we
need to change. It is technically possible to just use the names of the parameters to
set them, but using the ID number is much faster.

private int timeId = -1;
private int wasHitId = -1;
private int inTheFrontId = -1;

5.	 The last two variables will hold the ID numbers of the two idle states. We need these
for checking which state we are in. All of the IDs are initially set to -1 as a dummy
value, we set them to their actual values with the following function:

private int idleRetractId = -1;
private int idleExtendId = -1;

6.	 The Awake function is a special function in Unity that is called on every script at the
beginning of the game. Its purpose is initialization before the game gets underway,
perfect for initially setting our ID values. For each ID, we make a call to the Animator.
StringToHash function. This function calculates the ID number of the parameter or
state that we give it the name of. The state names also need to be prefixed with Base
Layer. This is because Unity wants us to be specific when it is possible to have several
different layers with states that are named the same thing. It is also very important
that the name here exactly matches the name in the Animator window. If it does not,
IDs will not match, errors will occur, and the script will not function correctly.

public void Awake() {
 timeId = Animator.StringToHash("time");
 wasHitId = Animator.StringToHash("wasHit");
 inTheFrontId = Animator.StringToHash("inTheFront");
 idleRetractId = Animator.StringToHash("Base Layer.Idle_
Retract");
 idleExtendId = Animator.StringToHash("Base Layer.Idle_Extend");
}

7.	 To make use of all of these IDs, we turn to our very good friend—the Update function.
At the beginning of the function, we use the GetCurrentAnimatorStateInfo
function to figure out which state is the current one. We send it a zero because it
wants to know the index of the layer we are inquiring about, of which we only have
the one. The function returns an object with the info about the current state, and we
grab the nameHash value (also known as the ID value) of this state right away and set
our variable to it.

public void Update() {
 int currentStateId = animator.GetCurrentAnimatorStateInfo(0).
nameHash;

The Backbone of Any Game – Meshes, Materials, and Animations

[112]

8.	 The next line of code is a comparison with our idle state IDs to figure out
if we are in one of those states. If we are, we call upon the SubtractTime
function (which we will write in a moment) to reduce the time parameter.

 if(currentStateId == idleRetractId || currentStateId ==
 idleExtendId) {
 SubtractTime();
 }

9.	 If the target is not currently in one of its idle states, we start by checking to see
if we were hit. If so, the hit is cleared using the ClearHit function and the time
parameter is reset using the ResetTime function. Both functions will also be
written in a moment. Finally, we check to see if our timer had dropped below
zero. If that is the case, we again reset the timer.

 else {
 if(animator.GetBool(wasHitId)) {
 ClearHit();
 ResetTime();
 }

 if(animator.GetFloat(timeId) < 0) {
 ResetTime();
 }
 }
}

10.	 In the SubtractTime function we use the GetFloat function of our Animator
component to retrieve the value of a float parameter. By sending it our timeId
variable, we can receive the current value of the time parameter. Like we did with
the tank, we then use Time.deltaTime to keep in pace with our frame rate and
subtract time from the timer. Once done, we need to give the state machine the
new value, which is done with the SetFloat function. We tell it which parameter
to change by giving it an ID value, and we tell it what to change it to by giving it
our new time value.

public void SubtractTime() {
 float curTime = animator.GetFloat(timeId);
 curTime -= Time.deltaTime;
 animator.SetFloat(timeId, curTime);
}

11.	 The next function to create is ClearHit. This function uses SetBool from the
Animator component to set Boolean parameters. It functions just as the SetFloat
function. We just give it an ID and a value. In this case, we are setting both of our
Boolean parameters to false so that the state machine no longer thinks it has been hit.

Chapter 3

[113]

public void ClearHit() {
 animator.SetBool(wasHitId, false);
 animator.SetBool(inTheFrontId, false);
}

12.	The last function for the script is ResetTime. This is another quick function. First,
we use the Random.Range function to get a random value. By passing it a minimum
and maximum value, our new random number will be between them. Finally we use
the SetFloat function to give the state machine the new value.

public void ResetTime() {
 float newTime = Random.Range(minIdleTime, maxIdleTime);
 animator.SetFloat(timeId, newTime);
}

What just happened?
We created a script to control the state machine of our target. For comparing states and
setting parameters, we gathered and used IDs. For now, do not worry about when the hit
states are activated. It will be made clear in the following section when we finally make
the tank shoot.

Creating the prefab
Now that we have the model, animations, state machine, and script, finally it is time to create
the target and turn it into a prefab.

Time for action – creating the target
We have all the pieces; the next step is to put them together.

1.	 Start by dragging the Target model from the Project window to the Hierarchy
window. This creates a new instance of the target object.

2.	 By selecting the new target object, we can see that it already has an Animator
component attached; we just need to add a reference to AnimatorController
that we created. Do this by dragging TargetController from the Project window
and dropping it on the Animator component's Controller field, just as with all the
other object references we have set up so far.

3.	 Also, we need to add the Target script to the object and connect a reference to the
Animator component in its relevant field.

The Backbone of Any Game – Meshes, Materials, and Animations

[114]

4.	 The last thing to do to the target object is to add a collider to actually receive
our cannon shots. Unfortunately, because the target object uses bones and
a rig to animate, it is not as simple as adding a collider directly to the mesh
we will be shooting at. Instead, we need to create a new empty GameObject.

5.	 Rename it TargetCollider, and make it a child of the target's Bone_Target bone.

6.	 Add a MeshCollider component to the new GameObject.

7.	 Now, we need to provide it with some mesh data. Find the Target mesh data in
the Project window, underneath the Target model. Drag it to the Mesh value of the
MeshCollider component. This causes a green cylinder to appear in the Scene view.
This is our collision, but it is actually not on the target.

The many objects in the Project window can be easily told
apart by the little symbol that sits next to each. The symbol
for a mesh is a gray and blue grid.

8.	 Use the Transform component to set the GameObject's position to 4 for the X value
and 0 for both Y and Z. The rotation needs to be changed to 0 for X, -90 for Y and
90 for Z.

9.	 As we made the changes, you probably noticed that the font of everything that was
new or changed became bold. This is to indicate that something is different with this
prefab instance when compared to the original. Remember, models are essentially
prefabs; their problem is that we cannot directly make changes such as adding scripts.
To make this target into a new prefab, simply drag it from the Hierarchy window and
drop it on the Prefabs folder in the Project window.

10.	With this spiffy new prefab created, populate the city with it.

11.	 In placing all of these targets, you probably noticed that they are a little large. Instead
of editing each target individually or even all of them as a group, we only have to make
a change to the original prefab. Select the Target prefab in the Project window. The
Inspector window displays the same information for a root prefab object as it does for
any other object in the scene. With our prefab selected, half the scale and all of the
instances already in the scene will automatically be updated to match. We can also
make changes to the min and max idle times and have it affect the whole scene.

What just happened?
We just finished creating the targets for our tank. By making use of Unity's prefab system,
we are also able to duplicate the target throughout our game and easily make changes that
affect them all.

Chapter 3

[115]

If you wanted one of the targets to be larger than all of the others, you could change it in
the scene. Any changes made to a prefab instance are saved, and they take precedence over
changes made to the root prefab object. Also, when looking at an instance in the Inspector
window, there will be three new buttons at the top of the window. The Select button selects
the root prefab object in the Project window. Revert will remove any unique changes made
to this instance, whereas the Apply button updates the root object with all the changes that
were made in this instance.

Have a go hero – more targets
Using all that you have learned about animations and state machines, your challenge here
is to create a second type of target. Play around with different movements and behaviors.
Perhaps, create one that transitions from waving around to standing still.

Ray tracing to shoot
Play the game now; it is pretty cool. We have our drivable tank and textured city. We even
have fancy animated targets. We are just missing one thing: how do we shoot? We need to
make one more script and we can shoot targets to our heart's content.

Time for action – simple shooting
With the addition of one more object and a single script, we can start shooting at our
targets.

1.	 First, we need to add an empty GameObject to our tank. Rename it to
MuzzlePoint and make it a child of the cannon's pivot point object. Once done,
position it at the end of the cannon so the blue arrow points away from the tank,
along the same direction as the cannon. This will be the point where our bullets
will come from.

2.	 We also need something to indicate where we are shooting. The explosions are
covered in future chapters, so choose Sphere from the Create Other menu and
rename it TargetPoint.

3.	 Set the sphere's scale to 0.2 for each axis and give it a red material. This way it can
be more easily seen, without being completely obtrusive.

4.	 Remove the SphereCollider component from TargetPoint.
The SphereCollider has to be removed because we don't want to shoot
our own target indicator.

5.	 Now, create a new script and call it FireControls.

The Backbone of Any Game – Meshes, Materials, and Animations

[116]

6.	 This should start to look familiar to you. We start with variables to hold references to
our muzzle and targeting objects that we just created. They are followed by an OnGUI
function that draws a button in the bottom-right corner of the screen, just above
where we drew the turret control buttons. If the button is pressed, we call upon the
Fire function that we will create next.

public Transform muzzlePoint;
public Transform targetPoint;

public void OnGUI() {
 Rect fire = new Rect(Screen.width – 70, Screen.height – 220, 50,
50);
 if(GUI.Button(fire, "Fire")) {
 Fire();
 }
}

7.	 The Fire function starts by defining a variable that will hold the detailed
information about what was shot. It is followed by an if statement that checks
the Physics.Raycast function. The Raycast function works just like shooting
a gun. We start with a position (the muzzle point's position) pointing in a specific
direction (forward relative to the muzzle point) and get out what was hit. If we
hit something, the if statement evaluates to true; otherwise it is false and we
would skip ahead. When we do hit something, we first move our target point to
the point that was hit. We then use the SendMessage function to tell what we hit
that it was hit. The SendMessage function is only available for GameObjects and
MonoBehaviours, and our Target script is on the root object for the target, hence
the hit.transform.root.gameObject in order to get at the GameObject
that was hit. The SendMessage function takes the name of a function and tries to
find it on the GameObject to which the message was sent. We are also providing
it with a value, hit.point, to give to the function that should be found. The
SendMessageOptions.DontRequireReceiver part of the line keeps the
function from throwing an error if it is unable to find the desired function. The
last part of our Fire function occurs if we didn't hit anything. We send our target
point back to the world origin, so the player can tell that they missed everything.

public void Fire() {
 RaycastHit hit;
 if(Physics.Raycast(muzzlePoint.position, muzzlePoint.forward,
out hit)) {
 targetPoint.position = hit.point;
 hit.transform.root.gameObject.SendMessage("Hit", hit.point,
SendMessageOptions.DontRequireReceiver);
 }

Chapter 3

[117]

 else {
 targetPoint.position = Vector3.zero;
 }
}

8.	 The last thing to do is to add the Hit function to the end of our Target script. We
start the function by getting the current state ID, just as we did earlier in the script.
However, this time we check only against our extended idle ID. If they do not match,
we use return to exit the function early. We do this because we don't want to let the
player shoot any targets that are down or in mid transition. If our state is correct,
we continue by telling the animation that we were hit using the SetBool function.

public void Hit(Vector3 point) {
 int currentStateId = animator.GetCurrentAnimatorStateInfo(0).
nameHash;
 if(currentStateId != idleExtendId) return;
 animator.SetBool(wasHitId, true);

9.	 The rest of the Hit function figures out which side the target was hit on.
To do this, we first had to convert the point that we received from world space
into local space. The InverseTransformPoint function from our Transform
component does this nicely. We then do a check to see where the shot came from.
Because of the way the target is constructed, if the shot was positive on the x axis,
it came from behind. Otherwise, it came from the front. Either way, we set the
inTheFront parameter from our state machine to the proper value. Then we give
the player some points by incrementing the static variable that we created on our
ScoreCounter script, way back at the beginning of the chapter.

Vector3 localPoint = transform.InverseTransformPoint(point);
 if(localPoint.x > 0) {
 animator.SetBool(inTheFrontId, false);
 ScoreCounter.score += 5;
 }
 else {
 animator.SetBool(inTheFrontId, true);
 ScoreCounter.score += 10;
 }
}

10.	Finally, be sure to add the new FireControls script to the tank. Also, you need to
connect the references to the MuzzelPoint and TargetPoint objects.

The Backbone of Any Game – Meshes, Materials, and Animations

[118]

What just happened?
We created a script that allows us to fire the cannon of our tank. The method of using ray
tracing is the simplest and most widely used. In general, bullets fly too fast for us to see
them. Ray tracing is like this, that is; it is instant. However, this method does not take
gravity, or anything else that might change the direction of a bullet, into account.

Have a go hero – better GUI
Now that all of the buttons and components are in place, make them look better. Use the
skills you gained from the previous chapter to style the GUI and make it great. Perhaps you
could even manage to create a directional pad for the movement.

Summary
And, that is it! The chapter was long and we learned a lot. We imported meshes and set up
a tank. We created materials so that color could be added to a city. We also animated some
targets and learned how to shoot them down. It was a lot and it is time for a break. Play the
game, shoot some targets, and gather those points. The project is all done and ready to be
built to your device of choice. The build process is the same as both of the previous projects,
so have fun!

The next chapter is about special camera effects and lighting. We will be learning about
lights and their types. Our Tank Battle game will expand through the addition of a skybox
and several lights. We will also take a look at distance fog. With the addition of shadows
and lightmaps, the city we will battle in really starts to become interesting and dynamic.

4
Setting the Stage – Camera Effects

and Lighting

In the previous chapter, you learned about the basic building blocks of any game:
meshes, materials, and animations. We created a Tank Battle game that utilized
all of these blocks.

In this chapter, we will expand upon the Tank Battle game. We will start
with the addition of a skybox and distance fog. The exploration of camera
effects continues with a target indicator overlay that uses a second camera.
The creation of a turbo boost effect for the tank will round out our look at
camera effects. Continuing with a look at lighting, we will finish off our tank
environment with the addition of lightmaps and shadows.

In this chapter, we will cover the following topics:

�� Skyboxes

�� Distance fog

�� Using multiple cameras

�� Adjusting the field of view

�� Adding lights

�� Creating lightmaps

�� Adding cookies

Setting the Stage – Camera Effects and Lighting

[120]

We will be directly piggybacking off the project from Chapter 3, The Backbone of Any
Game – Meshes, Materials, and Animation. So, open it in Unity and we will get started.

The camera effects
There are many great camera effects that you should add to give your game the last great
finishing touch. In this chapter, we will be covering a few options that are easy to add.
These will also give our tank game a great finished look.

Skyboxes and distance fog
When a camera renders a frame of a game, it starts by clearing the screen. By default,
cameras in Unity do this by coloring everything in solid blue. All of the game's meshes are
then drawn on top of this blank screen. Blue is rather boring for an exciting battle of tanks.
So, lucky for us, Unity allows us to change the color. But, pink is not better than blue, so
we have to change the method of clearing the screen. This is where the skybox comes in.
A skybox is just a fancy word for the series of images that form the background sky of any
game. Distance fog works in conjunction with the skybox by easing the visual transition
between models and background.

Time for action – adding a skybox and distance fog
The very first thing we need is a skybox, obviously. We could create our own; however,
Unity provides us with several excellent ones that will fit our needs just fine.

1.	 At the top of the Unity Editor, select Assets followed by Import Package. About half
way down this list, select Skyboxes.

2.	 After a little bit of processing, a new window will pop up. A package in Unity is just
a compressed group of assets that have already been set up in Unity. This window
displays the contents and allows us to selectively import them. We want them all,
so just click on Import in the bottom-right corner of this window.

3.	 A new folder, Standard Assets, will be added to the Project window. This contains
a folder, Skyboxes, which contains various skybox materials. Select any one of these.
You can see in the Inspector window that they are normal materials that make use of
the Skybox shader. They each have six images, one for each direction.

4.	 To add the skybox of your choice to the game, first make sure you have the correct
scene loaded. If you do not, simply double-click on it in the Inspector window. This
is necessary because the settings we are about to change are specific to each scene.

Chapter 4

[121]

5.	 Go to the top of the Unity Editor and select Edit, followed by Render Settings.
The new group of settings will appear in the Inspector window.

6.	 At the moment we are concerned with the value that is fifth from the bottom, Skybox
Material. Just drag-and-drop the skybox material into the Skybox Material slot and it
will be automatically updated. The change can be viewed in the Game window.

7.	 To add distance fog, we also adjust it in Render Settings. To turn it on, simply click
on the Fog checkbox.

8.	 The next setting, Fog Color, allows us to pick a color for the fog. It is good to pick a
color that is close to the general color of the skybox.

9.	 Fog Mode is a drop-down list of options that dictate the method Unity will use to
calculate the distance fog. For nearly all cases, the default of Exp2 is suitable.

10.	The next three settings, Fog Density, Linear Fog Start, and Linear Fog End, all
determine how much fog there is and how close it starts. Fog Density is used for
the Exponential and Exp2 fog modes while the others are used for the Linear fog
mode. Settings that put the fog at the edge of sight are generally good.

Setting the Stage – Camera Effects and Lighting

[122]

What just happened?
We imported several skyboxes and added them to the scene. The distance fog settings were
also turned on and adjusted. Now, our scene has started to look like a real game.

Target indicator
Another camera effect that is rather interesting is the use of multiple cameras. A second
camera could be used for making a 3D GUI, a minimap, or perhaps a security camera pop-up.
In this next section, we will be creating a system that will point at targets that are nearby.
Using a second camera, we will make it appear above the player's tank.

Time for action – creating the pointer
We are going to start by creating an object that will point at targets. We will be making a
prefab that can be used repeatedly. However, you will need a model for the player to see.
We will use a pie-slice type mesh. The size isn't particularly important; we will be adjusting
the scale later. Let's perform the following steps to create the pointer:

1.	 Once you have created and imported your mesh, add it to the scene.

2.	 Create an empty GameObject and rename it to IndicatorSlice.

3.	 Make your mesh a child of IndicatorSlice and position it so that it points
along the GameObject's z axis. IndicatorSlice will be centered in our indicator.
Each slice that is created will have its z axis pointing in the direction of a target.

Chapter 4

[123]

4.	 Now, we need to create a new script that will control our indicator. Create a new
script called TargetIndicator in the Project window.

5.	 We start this script off with a pair of variables. The first will hold a reference to the
target that this indicator piece will point at. The indicator is also going to grow and
shrink based on how far away the target is. The second variable will control the
distance at which the indicator will start to grow.

public Transform target;
public float range = 25;

6.	 The next function will be used to set the target variable when the indicator piece
is created.

public void SetTarget(Transform newTarget) {
 target = newTarget;
}

7.	 The last set of code goes in the LateUpdate function. The LateUpdate function is
used so the indicator pieces can point at a target after our tank moves in the Update
function. We start the function with a check to make sure the target variable has
a value. If it is null, the indicator slice is destroyed. The Destroy function can be
used to remove any object that exists from the game. The gameObject variable is
automatically provided by the MonoBehaviour class and holds a reference to the
GameObject that the script component is attached to. Destroying it will also destroy
everything that is a child of (or attached to) it.

public void LateUpdate() {
 if(target == null) {
 Destroy(gameObject);
 return;
 }

8.	 The next bit of code sets the scale of the indicator slice. As you can see in the following
code snippet, the first line of code uses Vector3.Distance to determine how far
the two positions are from each other. The next code line determines the vertical
scale, y axis, of the slice. It does so by using a bit of carefully applied math and the
Mathf.Clamp01 function. This function limits the supplied value to be between zero
and one. The last line of code sets the indicator slice's local scale. By adjusting the local
scale, we can easily control how big the whole indicator is by just changing the scale of
the parent object.

float distance = Vector3.Distance(transform.position, target.
position);
float yScale = Mathf.Clamp01((range - distance) / range);
transform.localScale = new Vector3(1, yScale, 1);

Setting the Stage – Camera Effects and Lighting

[124]

9.	 One last set of code for this script. The transform.LookAt function is just a
fancy, automatic way of rotating a GameObject so its z axis points to a specific
spot in the world. However, we want all of the indicator slices to lay flat on the
ground and not pointing into the air at any targets that might be above us. So,
we collect the target's position. By setting the variable's Y value to the position
of the slice, we ensure that the slice remains flat. That last line, of course, closes
off the LateUpdate function.

Vector3 lookAt = target.position;
lookAt.y = transform.position.y;
transform.LookAt(lookAt);
}

10.	That is the last code for this script. Return to Unity and add the TargetIndicator
script to the IndicatorSlice object in the scene.

11.	To finish off the indicator, create a prefab of it.

12.	Lastly, delete the IndicatorSlice object from the scene. We will be creating
slices dynamically when the game starts. That requires the prefab, but not the
one in the scene.

What just happened?
We created a prefab of the object we will be using to indicate the direction of targets.
The script that was created and attached will rotate each instance of the prefab to point
at the target. It will also adjust the scale to indicate how far the target is from the player.

Time for action – controlling the indicator
We now need to create a script that will control the indicator slices. This will include creating
new slices as they are needed. Also, the GameObject it is attached to will act as a center
point for the indicator slices, that we just created, to rotate around.

1.	 Create a new script and name it IndicatorControl.

2.	 We start this script off with a pair of variables. The first will hold a reference to the
prefab that was just created. This will allow us to spawn instances of it whenever we
desire. The second is a static variable, meaning it can be easily accessed without a
reference to the component that exists in the scene. It will be filled when the game
starts with a reference to the instance of this script that is in the scene.

public GameObject indicatorPrefab;
private static IndicatorControl control;

Chapter 4

[125]

3.	 This next function will be used by the targets. Soon, we will be updating the target's
script to call this function at the beginning of the game. The function is static, just
like the variable, and starts by checking to see whether there is a reference to any
object in it. If it is empty, equal to null, Object.FindObjectOfType is used to
attempt to fill the variable. By telling it what type of object we want to find, it will
search in the game and try to find one. This is relatively a slow process and should
not be used often, but we use this process and the variable so that we can always
be sure that the system can find the script. The second part of the CreateSlice
function checks to make sure our static variable is not empty. If so, it then tells the
instance to create a new indicator slice and passes it to the target.

public static void CreateSlice(Transform target) {
 if(control == null) {
 control = Object.FindObjectOfType(typeof(IndicatorControl))
as IndicatorControl;
 }

 if(control != null) {
 control.NewSlice(target);
 }
}

4.	 One more function for this script. The NewSlice function does as its name
implies, it creates new indicator slices when called. It does this by first using the
Instantiate function to create a copy of the GameObject that is passed to
it. The second line of the function makes the new slice a child of the control's
transform. The next line just zeroes out the local position of the new slice. This
way it will be centered properly after it is created. The last line uses the slice's
SendMessage function to call the SetTarget function that we created
previously and passes it the desired target object.

public void NewSlice(Transform target) {
 GameObject slice = Instantiate(indicatorPrefab) as GameObject;
 slice.transform.parent = transform;
 slice.transform.localPosition = Vector3.zero;
 slice.SendMessage("SetTarget", target);
}

5.	 Now that the script is created, we need to use it. Create an empty GameObject and
name it IndicatorControl.

6.	 The new GameObject needs to be made a child of your tank, followed by having its
position set to zero on each axis.

7.	 Add the script we just created to IndicatorControl.

8.	 Finally, with the GameObject selected, add the reference to the IndicatorSlice
prefab. Do this by dragging the prefab from the Project window to the proper slot in
the Inspector window.

Setting the Stage – Camera Effects and Lighting

[126]

What just happened?
We created a script that will control the spawning of our target indicator slices.
The GameObject we created at the end will also allow us to control the size of the
whole indicator with ease. We are almost done with the target indicator.

Time for action – working with a second camera
If you were to play the game now, it would still look no different. This is because the targets
do not yet make the call to create the indicator slices. We will also be adding that second
camera in this section as we finish off the target indicator.

1.	 Start by opening the Target script and adding the following line of code to the end
of the Awake function. This line tells the IndicatorControl script to create a new
indicator slice for this target.

IndicatorControl.CreateSlice(transform);

Chapter 4

[127]

2.	 On playing the game now, you can see the indicator in action. However, it is probably
too large and certainly appears inside the tank. A bad solution would be to move the
IndicatorControl object until the whole thing appears above the tank. However,
when explosions occur and things start flying through the air, they will obscure the
target indicator all over again. A better solution is to add a second camera. Do so now
by selecting GameObject from the top of the Unity Editor, followed by Create Other,
and finally Camera.

3.	 Additionally, make the camera a child of Main Camera. Be sure to set the new
camera's position and rotation values to zero.

4.	 By default, every camera in Unity is given a variety of components: Camera,
Flare Layer, GUI Layer, and Audio Listener. Besides the Camera component, the
others are generally unimportant to every other camera, and there should only
be one Audio Listener component in the whole of the scene. Remove the excess
components from the camera, leaving just the Camera component.

5.	 Before we do anything else with the camera, we need to change the layer that
the IndicatorSlice prefab is on. Layers are used to cause selective interaction
between objects. They are used primarily for physics and rendering. First select
the prefab in the Project window.

6.	 At the top of the Inspector window is the Layer label with a drop-down list that
reads Default. Click on the drop-down list and select Add Layer... from the list.

7.	 A list of layers will now appear in the Inspector window. These are all the layers
used in the game. The first few are reserved for use by Unity; hence, they are
grayed out. The rest are for our use. Click on the right-hand side of User Layer 8
and name it Indicator.

8.	 Select the IndicatorSlice prefab again. This time select the new Indicator
layer from the Layer drop-down list.

9.	 Unity will ask if we want to change the layer of all the child objects as well.
We would want the whole object rendered on this layer, so select Yes, change
children and we will be able to do so.

10.	Now, back to our second camera. Select it and take a look in the Inspector window.

11.	The first attribute of the Camera component is Clear Flags. This list of options
dictate what the camera will fill the background with before drawing all of the
models in the game. The second camera does not block out everything drawn
by the first camera. We select Depth only from the Clear Flags drop-down list.
This means that, instead of putting the skybox in the background, it will leave
what was already rendered and just draw new things on top.

Setting the Stage – Camera Effects and Lighting

[128]

12.	The next attribute, Culling Mask, controls which layers are rendered by the
camera. The first two options, Nothing and Everything, are for deselection
and quick selection of all of the layers. For this camera, deselect all other
layers, so that only the Indicator layer has a check next to it.

13.	The last thing to do is to adjust the scale of IndicatorControl so that the
target indicator is not too large or small.

What just happened?
We created a system to indicate the direction of potential targets. To do this, we used a
second camera. By adjusting the layers in the Culling Mask attribute, we can make a camera
render only a part of a scene. Also, by changing the Clear Flags attribute to Depth only, the
second camera can draw on top of what was drawn by the first camera.

Chapter 4

[129]

Have a go hero – adjusting the position
It is possible to change where the indicator is drawn by moving the camera. If you were
to instead move the IndicatorControl object, it will change how the distance from
and direction to targets are calculated. Move and angle the second camera so that there
is a more pleasing view of the target indicator.

When you were moving the second camera or when you use the boost from the next
section, you probably noticed that the target indicator can still be seen in the tank. Adjust
the main camera so that it does not render the target indicator. This is done very similarly
to how we made the second camera only render the target indicator.

Turbo boost
The last camera effect we will be looking at in this chapter is a turbo boost. It is going to be
a button on the screen that will propel the player forward rapidly for a short amount of time.
The camera effect comes in because a simple adjustment to the Field of View attribute can
make it look as if we are going much faster. A similar method is used by movies to make the
car chases look even faster.

Time for action – using the boost effect
We will only be making a single script in this section. It will move the tank in a similar
manner to the ChassisControls script we created in the last chapter. The difference is,
we won't have to hold down a button for the boost to work. Let's get to it.

1.	 Start by creating a new script and calling it TurboBoost.

2.	 To start the script off, we need four variables. The first is a reference to
CharacterController. We need this for movement. The second is how fast we
will be moving while boosting. The third is how long, in seconds, we will be boosting.
The last is used internally for whether or not we can boost and when we should
stop.

public CharacterController controller;
public float boostSpeed = 50;
public float boostLength = 5;
public float startTime = -1;

Setting the Stage – Camera Effects and Lighting

[130]

3.	 The next bit of code returns to our good friend, the OnGUI function. Here we are just
drawing a button on the screen, the same as we did several times before. If the button
is pressed, it calls the StartBoost function that we will be writing in a moment.

public void OnGUI() {
 Rect turboRect = new Rect(10, Screen.height – 220, 75, 75);
 if(GUI.Button(turboRect, "Turbo"))
 StartBoost();
}

4.	 The StartBoost function is pretty simple. It checks to see if the startTime
variable is less than zero. If it is, the variable is set to the current time as provided
by Time.time. Being less than zero means that we are not currently boosting.

public void StartBoost() {
 if(startTime < 0)
 startTime = Time.time;
}

5.	 The last function we are going to use is the Update function. It begins with a
check of startTime to see if we are currently boosting. If we are not boosting,
the function is exited early. The next line of code checks to make sure we have our
CharacterController reference. If the variable is empty, then we can't make
the tank move.

public void Update() {
 if(startTime < 0) return;
 if(controller == null) return;

6.	 The next line of code should look familiar. This is the line that makes the tank move.

controller.Move(controller.transform.forward * boostSpeed * Time.
deltaTime);

7.	 The following few lines of code actually apply the camera effect. First is a check to
see whether we are in the first half-second of the boost. If we are, we transition
the camera by adjusting the fieldOfView value. The Camera.main value is just
a reference provided by Unity to the main camera used in the scene. The Mathf.
Lerp function takes a starting value and moves it towards a goal value based on a
third value between zero and one. Using this, the camera's fieldOfView is moved
towards our goal over the half-second. The second half of this set of code checks
for the last half-second of our boost and uses the same method to transition the
fieldOfView value back to the default.

if(Time.time – startTime < 0.5f)
 Camera.main.fieldOfView = Mathf.Lerp(Camera.main.fieldOfView,
130, (Time.time - startTime) * 2);

Chapter 4

[131]

else if(Time.time – startTime > boostLength - 0.5f)
 Camera.main.fieldOfView = Mathf.Lerp(Camera.main.fieldOfView,
60, (Time.time – startTime – boostLength + 0.5f) * 2);

8.	 The last bit of code checks to see whether we are done boosting. If so, startTime is
set to negative one to indicate that we can start another boost. That last curly brace,
of course, closes off the Update function.

if(Time.time > startTime + boostLength)
 startTime = -1;
}

9.	 We are almost done. Add the script to your tank and connect the
CharacterController reference.

10.	Try it out.

Setting the Stage – Camera Effects and Lighting

[132]

What just happened?
We created a turbo boost. The same method of movement used in the last chapter moves
the tank here. By adjusting the Field of View attribute of the camera, we make it look like
the tank is moving even faster.

Have a go hero – styling and control
The easy and obvious challenge here is to style the button. To spice it up, try changing it so
there is a label while boosting and a button when not boosting. The label and button could
each have their own style.

Another thing you might notice while playing the game is that you can still turn while boosting.
Try adding a check to the ChassisControls script to lock the controls, if we are boosting.
You are going to need to add a reference to the TurboBoost script.

For an added, extra challenge try adding a cooldown to the boost. Make it so the player can't
constantly use the boost. Also, try canceling the boost if the tank runs into something. This is
a big one, so you will start off with a hint: take a look at OnControllerColliderHit.

Lights
Unity provides a variety of light types for brightening the game world. They are Directional
Light, Spotlight, Point Light, and Area Light. Each of them projects light in a different way
and are explained in detail as follows:

�� Directional Light: This functions very much like the sun. It projects all of its light in
a single direction. The position of the light does not matter, only the rotation. Light
is projected over the entirety of the scene in one direction. This makes it perfect for
initially adding light to a scene.

�� Spotlight: This functions just like the ones on a stage. Light is projected in a cone-like
shape in a specific direction. Because of this, it is also the most complex light type for
the system to calculate. Unity has made significant improvements in how it calculates
lights, but overuse of these lights should be avoided.

�� Point Light: This is the primary light type that will be used in your games. It emits
light in every direction. This functions just like a light bulb.

�� Area Light: This is a special-use light. It emits light in a single direction from a plane.
Think of it as the big neon sign used to advertise a hotel or restaurant. Because of
their complexity, these lights can only be used when baking shadows. There are too
many calculations for them to be used when the game is running.

Chapter 4

[133]

The next obvious question when talking about lights concerns shadows, especially real-time
shadows. While real-time shadows add a lot to a scene and are technically possible on any
platform, they are very expensive. On top of that, they are a Unity Pro feature. All in all, that
makes them a bit too much for your average mobile game.

On the other hand, there are perfectly viable alternatives that do not cost nearly as much
and often look more realistic than real-time shadows. The first is for your environment. In
general, the environment in a game never moves and never changes within a specific scene.
For this, we have lightmaps. They are extra textures that contain shadow data. Using Unity
you can create these textures while making your game. Then, when the game is running,
they are automatically applied and your shadows appear. This however does not work for
dynamic objects (anything that moves).

For dynamic objects we have cookies. These are not your grandmother's cookies. In lighting,
a cookie is a black and white image that is projected onto meshes in the game. This is similar
to shadow puppets. The shadow puppets use a cutout to block a part of the light, whereas
cookies use black and white images to tell the light where it can cast its light.

Cookies can also be used to create other nice effects, both static and dynamic, such as cloud
cover that pans across the scene. Perhaps light projecting out from a cage. Or, you could use
them for making the uneven focus point of a flashlight.

Time for action – adding more lights
Adding additional lights to the scene is rather simple. Also, as long as one sticks to point
lights, the cost to render them stays low.

1.	 At the top of the Unity Editor, select GameObject, followed by Create Other,
and lastly Point Light.

2.	 With the new light selected, there are a few attributes that we are concerned about
in the Inspector window.

�� Range: This is how far light will be emitted from the object. The light emitted
from this point is brightest at the center and fades to nothing as it reaches
the extent of the range. The range is additionally represented as a yellow
wire sphere in the Scene view.

�� Color: This is simply the color of the light. By default, it is white; however,
any color can be used here. This setting is shared between all light types.

�� Intensity: This is the brightness of the light. The greater the intensity of the
light, the brighter the light will be at its center. This setting is also shared
between all light types.

Setting the Stage – Camera Effects and Lighting

[134]

3.	 Create and position several more lights, arranging them along the streets to add
some more interest to the environment.

4.	 Using Ctrl + D will duplicate the selected object. This can greatly speed up the
creation process.

5.	 While adding these lights, you probably noticed one of their major drawbacks.
There is a limit to how many lights will affect a surface in real time. It is possible
to somewhat get around this by using more complex meshes. The better option
is to use lightmaps, which we'll be seeing in the next section.

6.	 At the top of the Unity Editor again, select GameObject, followed by Create Other,
and this time select Spotlight.

7.	 Again, select the new light and take a look at it in the Inspector window.

�� Spot Angle: This is unique to this type of light. It dictates how wide a
cone the light emits. Together with Range, it is represented by a yellow
wire cone in the Scene view.

Chapter 4

[135]

8.	 Add a few spotlights around the fountain in the center of our tank battle city.

9.	 Having so many objects in a scene starts to clutter the Hierarchy window, making it
hard to find anything. To organize it, you can use empty GameObjects. Create one
and name it PointLights.

10.	By making all of your point lights children of this empty GameObject, the Hierarchy
window becomes significantly less cluttered.

What just happened?
We added several lights to the game. By changing the lights of the colors, we make the
scene much more interesting to look at and play in. However, a drawback of the lighting
system is revealed. The city we are using is very simple and there is a limit to the number
of lights that can affect a plane at one time. While the look of our scene is still improved,
much of the impressiveness is stolen by this drawback.

Setting the Stage – Camera Effects and Lighting

[136]

Lightmaps
Lightmaps are great for complex lighting setups that would be too expensive or simply won't
work at runtime. They also allow you to add detailed shadows to your game world without
the expense of real-time shadows. However, it will only work for objects that do not move
over the course of a game.

Time for action – creating a lightmap
Lightmaps are a great effect for any game environment, but we need to explicitly tell Unity
which objects will not move and then use lightmaps.

1.	 The first thing to do is make our environment meshes static. To do this start by
selecting a piece of your city.

2.	 In the top-right corner of the Inspector window to the right of the object name field
are a checkbox and a Static label. Checking this box will make the object static.

3.	 Make all of the city's meshes static.

Instead of selecting each checkbox one by one, if you have any
sort of grouping (as we just did for the lights), this step can be
completed much faster.

1.	 Select the root object of your city, the one that is the parent to all the
pieces of our city, the buildings, and streets.

2.	 Now go and select the Static checkbox.

3.	 On the new pop-up, select Yes, change children to cause all of the
subobjects to become static as well.

4.	 Any mesh that is either not unwrapped or has UV positions outside the normalized
UV space will be skipped when Unity generates a lightmap. In the Model Import
Settings window, there is an option to have Unity automatically generate lightmap
coordinates, Generate Lightmap. If you are using TankBattleCity for your
environment, this option should be turned on now.

5.	 Go to the top of the Unity Editor and select Window followed by Lightmapping,
near the bottom.

6.	 Most of your time will be spent on the Bake page looking at this window. Select
Bake at the top of the window to switch to it.

Chapter 4

[137]

7.	 Mode dictates what types of lightmaps will be rendered by the system. To save on
processing speed and file size, select Single Lightmaps from the Mode drop-down
list to the right. This means that only a Far set of lightmaps is created rather than
both Near and Far. Using Dual Lightmaps also requires special shaders that you
won't use most of the time.

8.	 Quality is a set of presets that dictates how good the lightmaps look. High is obviously
the best and Low is the fastest to process. For our purposes, Low will look good
enough and should be selected.

9.	 Resolution is how much space an object will take up on a single lightmap. To the
right of the input field, it reads texels per world unit. A texel is just a fancy type of
pixel used for lightmaps. It is the number of pixels a single unit of space in the world
will take up on the lightmap. A setting of 30 here will maintain the desired level of
quality while making the whole thing run faster.

10.	At the bottom of the page is a Bake Scene button. Clicking on this button will start
the render process. A loading bar will appear in the bottom-right corner of Unity so
you can monitor the progress.

1.	 If you are still adjusting lights and settings and desire to see what a portion
of the game will look like, start by selecting the meshes you wish to see.

2.	 Next, click on the little arrow to the right of the Bake Scene button.

3.	 From the new drop-down list, select Bake Selected. This will run an
identical process to Bake Scene, except it will only be for the selected
objects rather than the entire scene.

Be warned, this process will likely take a while. Especially as
the complexity of the environment and the number of lights
increases, this will take longer and longer to run. And, unless
you have a superior computer, there isn't much you can do in
Unity while it is running.

11.	 If you clicked on the button and realized you made a mistake, don't fret. After Bake
Scene is selected, the button changes to Cancel. At this time it is possible to select
it and stop the process from continuing. However, once the textures have been
created and Unity starts to import them, there is no stopping it.

12.	To the left of Bake Scene is Clear. This button is the quickest and easiest way to
delete and remove all of the lightmaps that are currently being used in the scene.
This cannot be undone.

13.	 In order to add shadows to your buildings, select Directional Light in your scene
and take a look at the Inspector window.

Setting the Stage – Camera Effects and Lighting

[138]

14.	From the Shadow Type drop-down list, select Soft Shadows. This simply turns
shadows on for this light. It also turns on real-time shadows for this light, if you
are using Unity Pro. The more lights with shadows turned on, the more expensive
they become to render.

15.	When all of your lights and settings match your desires, select Bake Scene and gaze
in wonder at the now beautiful scene before you.

What just happened?
We added lightmaps to our game world. The length of time it takes to just process this step
makes it difficult to make minor tweaks. However, our lighting has vastly improved with a few
clicks. While before the lights were broken by the meshes, we now have smooth patches of
color and light.

Chapter 4

[139]

Have a go hero – reason and speed
When playing a game, there is only one light that people will not question the source of:
the Sun. Every other light looks weird if a source cannot be seen. Create a mesh and add
it to the game to give the lights you are using a reason. This could be something along
the lines of torches, or lamp posts, or even glowing alien goo balls. Whatever they end up
being, having them adds that touch of completeness that makes the difference between
an alright OK-looking game and a great-looking game.

As a second challenge, take a look at your lightmap's quality. Play with the various quality
settings we discussed to see what the differences are. Also, find out how low the resolution
can go before you notice any pixelation. Can the settings go even lower when running on
the smaller, mobile device screens? Go find out.

Cookies
Cookies are a great way to add interest to the lights in your game. They use a texture to
adjust how the light is emitted. This effect can cover a wide range of uses from sparkling
crystals to caged industrial lights and, in our case, headlights.

Time for action – applying headlights
By giving our tank headlights, we give the player the ability to control the light in their world.
Using cookies, we can make them look more interesting than just circles of light.

1.	 Start by creating a Spotlight.

2.	 Position the light in front of the tank and pointing away.

3.	 In the Inspector window, increase the value of the Intensity attribute to three.
This will make our headlights bright like real headlights.

4.	 Now we need some cookie textures. At the top of the Unity Editor, select Assets,
followed by Import Package, and lastly Light Cookies.

5.	 On the new window, select Import and wait for the loading bar to finish.

6.	 We now have a few options to choose from. Inside the Standard Assets folder,
a new folder was created, Light Cookies that contains the new textures. Drag
Flashlight from the Project window and drop it onto the Cookie field on the
Spotlight in the Inspector window. It is as simple as that to add a cookie to a light.

Setting the Stage – Camera Effects and Lighting

[140]

7.	 To finish it off, duplicate the light for the second headlight and make them both
children of the tank. What good is having headlights if they don't come with us?

What just happened?
We created a pair of headlights for our tank using cookies. This is exactly how many other
games, especially horror games, create flashlight effects.

Have a go hero – adding a switch
Try making a script that will allow the player to turn the headlights on and off. It should be a
simple button that toggles the lights. Take a look at the enabled variable that is supplied as
part of the light.

Chapter 4

[141]

As a simpler challenge, create a lamp that sits on the turret of the tank. Give it a light as well.
With this, the player can point a light to where they are shooting and not just in the direction
their tank is pointing.

Blob shadow
Blob shadows are a simpler and cheaper method for adding a shadow to a character. They
have been around since the dawn of time. A normal shadow is a solid, dark projection of an
object onto another surface. The contours of the shadow exactly match the contours of the
object. This becomes expensive to calculate when characters start to move around randomly.

A blob shadow is a blot of black texture underneath a character or an object. It usually does
not have a clearly definable shape and never matches the contours of the object it is meant
to be the shadow of. The blob shadow also, generally, does not change sizes. This makes
it significantly easier to calculate, making it the shadow of choice for many generations of
video games. That also means it is a better option for our mobile devices where processing
speed can quickly become an issue.

Time for action – a tank with a shadow
We are going to add a blob shadow to our tank. Unity has already done the bulk of the work
for us; we just need to add it to the tank.

1.	 We start this one off by importing Unity's blob shadow. Go to the top of the Unity
Editor, select Assets, Import Package, and finally Projectors.

2.	 Select Import in the new window and take a look in the Project window for a new
folder called Projectors created under Standard Assets.

Setting the Stage – Camera Effects and Lighting

[142]

3.	 Drag the Blob Shadow Projector prefab from the Project window to the scene
and position it above the tank.

4.	 Unfortunately, the shadow is appearing on top of our tank. To fix this, we need
to again make use of layers. So, select the tank.

5.	 From the Layer drop-down list, select Add Layer....

6.	 Click on the right-hand side of User Layer 9 and give it the name PlayerTank.

7.	 Select your tank once more, but select PlayerTank from the Layer drop-down
list this time.

8.	 When the new window pops up, be sure to select Yes, change children to change
the layer of the whole tank. If you don't, the blob shadow may appear on some
parts of the tank while not on other parts.

Chapter 4

[143]

9.	 Now, select Blob Shadow Projector from the Hierarchy window.

The blob shadow is created by the Projector component.
This component functions in a similar manner to the Camera
component. However, it puts an image on the world rather than
turning the world into an image and putting it on your screen.

10.	Take a look at the Inspector window. The value we are concerned with right now is
that of Ignore Layers. Right now it is set to Nothing.

11.	Click on Nothing and select PlayerTank from the Layers drop-down list. This
will make the projector ignore the tank and only make the blob shadow appear
underneath it.

12.	The next step is to change the size of the shadow to roughly match the size of the
tank. Adjust the value of the Field of View attribute until the size is about right.
A value of about 70 seems to be a good place to start from.

Setting the Stage – Camera Effects and Lighting

[144]

13.	The final step is to make Blob Shadow Projector a child of the tank. We need to
be able to bring our shadow with us; we don't want to lose it.

What just happened?
We gave our tank a shadow. Shadows are great for making objects, and especially characters,
look like they are actually touching the ground. The blob shadow that we used is better than
real-time shadows because it is processed faster.

Have a go hero – making it square
The texture that the blob shadow came with is round but our tank is mostly square. Try creating
your own texture for the blob shadow and use that. Some sort of rectangle should work well.

If you managed to add your own texture to the blob shadow, then how about taking a look at
that cannon? The cannon sticks out of our tank and ruins its otherwise square profile. Use a
second blob shadow, attached to the turret, to project a shadow for the cannon. The texture
for it will also have to be a rectangle-type shape.

Summary
At this point, you should be well and truly familiar with camera effects and lights.

In this chapter, we started with a look at using multiple cameras. We then played around
with a turbo boost camera effect. The chapter continued with the lighting of our city. The
lights improved greatly when we made use of lightmaps. We finished it off with a look at
cookies and blob shadows for use with some special lighting effects.

In the next chapter, will see the creation of enemies for our game. We will use Unity's
pathfinding system to make them move around and chase the player. After this, the
player is going to need to be much more active if they hope to keep their points.

5
Getting Around – Pathfinding and AI

In the previous chapter, we learned about camera and lighting effects. We added
a skybox, lights, and shadows to our Tank Battle game. We created lightmaps to
make our scene dynamic. We took a look at cookies by giving our tank headlights.
We also took a look at projectors by creating a blob shadow for the tank. A
turbo boost was also created for the tank. By adjusting the viewing angle of the
camera, we were able to make the tank look as if it is going much faster than it
really is. When we finished, we had a dynamic and exciting-looking scene.

This chapter is all about the enemy. No longer will the player be able to just sit
in one place to gather points. We will be adding an enemy tank to the game.
By using Unity's NavMesh system, the tank will be able to do pathfinding and
chase the player. Once found, the tanks will shoot and reduce the player's score.

In this chapter, we will be covering the following topics:

�� NavMesh

�� NaveMeshAgent

�� Pathfinding

�� Chase and attack AI

�� Spawn points

We will be adding modifications to the Tank Battle game from Chapter 4, Setting the
Stage – Camera Effects and Lighting, so open it up and we can begin.

Getting Around – Pathfinding and AI

[146]

Understanding AI and pathfinding
AI is, as you might have guessed, artificial intelligence. In the broadest sense this is anything
an inanimate object might do to appear to be making decisions. You are probably most familiar
with this concept from video games. When a character, not controlled by the player, selects a
weapon to use and a target to use it on, this is AI.

In its most complex form, AI attempts to mimic full human intelligence. However, there is
still far too much happening incredibly fast for this to truly succeed. Video games do not
need to reach nearly this far. We are primarily concerned with making our characters appear
intelligent, but still conquerable by our players. Usually, this means not allowing characters
to act on more information than a real player might have. Adjusting how much information
characters have and can act on is a good way to adjust the level of difficulty in a game.

Pathfinding is a subset of AI. We use it all the time, though you have probably never realized
it. Pathfinding is, as the word suggests, the act of finding a path. Every time you need to
find your way between any two points, you are doing pathfinding. As far as our characters
are concerned, the simplest form of pathfinding is to follow a straight line to the goal point.
Obviously, this method works best on an open plain, but tends to fail when there are any
obstacles in the way. Another method is to overlay the game with a grid. Using the grid, we
can find a path that goes around any obstacles and reaches our target.

An alternative method of pathfinding, and perhaps the one most often chosen, makes use
of a special navigation mesh, or NavMesh. This is just a special model that is never seen by
the player but covers all of the area that a computer character can move around in. It is then
navigated in a similar way to the grid, the difference being that the triangles of the mesh are
used rather than the squares of the grid. This is the method we will be using in Unity. Unity
provides a nice set of tools for creating the NavMesh and utilizing it.

The NavMesh
Creating the navigation mesh in Unity is very simple. The process is similar to the one we
used for making lightmaps. We just mark some meshes to be used, adjust some settings in
a special window, and hit a button. So, load up the Tank Battle game in Unity, if you haven't
already done so, and we can get started.

Chapter 5

[147]

Time for action – creating the NavMesh
Unity can automatically generate a NavMesh from any meshes that exist in a scene. To do
so, the mesh must first be marked as static, just as we did for lightmaps. However, we do not
want or need to be able to navigate the roofs of our city, so we make use of a special list of
settings for dictating what type of static each object will be:

1.	 Select the city from the Hierarchy window and click on the down arrow to the right
of Static in the Inspector window and we can take a look at the options available for
static objects as follows:

�� Nothing: This option is used to quickly deselect all the other options. If all
the others are unchecked, this one will be checked.

�� Everything: Using this option, you can quickly select all the other options.
When all of them are checked, this one will also be checked. The checkbox
next to the Static label in the Inspector window performs the same function
as checking and unchecking the Everything checkbox.

�� Lightmap Static: This option needs to be checked, when working with
lightmaps, in order for them to work. Any mesh that does not have
this checked will not be lightmapped.

Getting Around – Pathfinding and AI

[148]

�� Occluder Static: This is an option for working with occlusion. Occlusion
is a method of runtime optimization that involves only rendering objects
that can actually be seen whether or not they are within the camera's view
space. An Occluder is an object that will block other objects from being
seen. It works in conjunction with the Occludee Static option. The best
object choices for this option are large and solid.

�� Batching Static: This is another option for runtime optimization. Batching
is the act of grouping objects together before rendering them. It greatly
increases the overall render speed of a game.

�� Navigation Static: This is the option we are primarily concerned with
at this point. Any mesh that has this option checked will be used when
calculating the NavMesh.

�� Occludee Static: As mentioned a moment ago, this option works in
conjunction with Occluder Static for the good of occlusion. An Occludee
is an object that will be obscured by other objects. When covered by an
Occluder, this object will not be drawn.

�� Off Mesh Link Generation: This option also works with the NavMesh
calculation. An Off Mesh Link is a connection between two parts of the
NavMesh that aren't physically connected, such as the roof and the street.
Using a few settings in the Navigation window and this option, the links
are automatically generated.

2.	 In order to make the NavMesh work properly, we need to change the settings so
that only the streets of the city can be navigated. When was the last time you saw
a tank jump to or fall from the roof of a building? So, we need to change the Static
options so that only the streets have Navigation Static checked. This can be done in
one of the following two ways:

�� The first way is to go through and uncheck the option for each object we
want changed.

�� The second is to uncheck Naviagation Static for the top-level object in the
Hierarchy window and, when Unity asks if we want to make the change for
all children objects, reply with a yes. Then, go to just the objects that we
want to navigate and recheck the option.

3.	 Now, open the Navigation window by going to Unity's toolbar and clicking on Window
followed by Navigation at the bottom of the menu. The following screenshot displays
the window where all the work of making the NavMesh happens:

Chapter 5

[149]

4.	 This window consists of three pages and a variety of settings:

�� When an object is selected, the settings will appear on the Object page. The
two checkboxes correspond directly with the Static options of the same name
that we set a moment ago. The drop-down list in Navigation Layer lets us use
different layers for different parts of our NavMesh. These layers can be used
to affect the pathfinding calculation. For example, a car can be set to only
travel on a road layer and the human can follow the sidewalk layer.

�� The Bake page is the one we are interested in; it is full of options to change
how the NavMesh is generated.

Radius: This should be set to the size of the average character.
It is used to keep characters from walking too close to the walls.

Height: This is the height of your characters. Using this, Unity
can calculate and remove the areas that are too low for them
to pass. Anything lower than this value is deemed too small.

Getting Around – Pathfinding and AI

[150]

Max Slope: Anything steeper than this value is ignored when
calculating NavMesh.

Step Height: When making use of stairs, one must use this value. This is
the maximum height of a stair that a character can step on.

Drop Height: This is the height from which characters can fall. With it,
paths will include jumping off ledges, if it is faster to do so. As you can
tell from the screenshot, this is a Unity Pro-only feature.

Jump Distance: Using this value, characters can jump across gaps in
NavMesh. This value represents the longest distance that can be jumped.
As you can tell from the screenshot, this is a Unity Pro only feature.

Min Region Area: If parts of the NavMesh are too small, anything smaller
than this value, they will not be used in the final NavMesh.

Width Inaccuracy %: When doing the NavMesh calculations, Unity makes
use of a number of approximations. This is not entirely accurate, but it is fast.
This value represents how much inaccuracy is allowed for the horizontal.

Height Inaccuracy %: This is the same as the previous settings, the
difference being that it works for the vertical.

Height Mesh: With this option checked, the original height information
is maintained in NavMesh. Unless you have a special need of it, this option
should remain off. It takes the system longer to calculate and requires more
memory to store.

�� The third page, Layers, allows us to adjust the cost of movement for each
of our layers. Essentially, how difficult is it to move through different parts
of our game world. With cars, we could adjust the layers, so it is twice as
costly for them to move through the field as it is to move along the road.

At the bottom of the window, we have two buttons:

Clear: This button removes the previously created NavMesh. After using
this button, you will need to re-bake the NavMesh before you can make
use of pathfinding again.

Bake: This button starts the work and creates the NavMesh.

5.	 Our city is very simple, so the default values will suit us well enough. Hit Bake and
watch the progress bar in the bottom-right corner. Once it is done, a blue mesh
will appear. This is the NavMesh and, of course, represents all of the area that a
character can move through.

6.	 There is one last thing we need to do. Our NavMesh is just right but, if you look
closely, it goes through the fountain in the center of the city. It would just be wrong
if enemy tanks start driving through the fountain. To fix this, start by selecting the
mesh that forms the wall around the fountain.

Chapter 5

[151]

7.	 In the toolbar of Unity, click on Component, followed by Navigation, and finally
NavMeshObstacle. This simply adds a component that tells the navigation system
to go around when finding a path. Because we had the wall already selected, the
new component is already sized to fit. You can see it represented as a wire cylinder
in the Scene view.

What just happened?
We created the NavMesh. We made use of the Navigation window and the Static options to
tell Unity which meshes to use when calculating the NavMesh. The Unity team put a lot of
work into making this process quick and easy.

Getting Around – Pathfinding and AI

[152]

Have a go hero – creating extra obstacles
Remember, in Chapter 3, The Backbone of Any Game – Meshes, Materials, and Animation,
when the challenge was to create obstacles for the player, you were encouraged to create
additional meshes, such as tank traps and rubble. It would be a bad idea to let the enemy
tanks drive through these, as well. So, have a go at turning these into obstacles for the
navigation system. This will be done just as with the fountain.

The NavMeshAgent component
You might be thinking that it is all well and good that we have a NavMesh, but there are no
characters to navigate it. In this section, we will start the creation of our enemy tank.

Time for action – creating the enemy
We will need to import and do a little setup on a second tank, before we can do any AI type
programming:

1.	 Select Tanks_Type03.png and Tanks_Type03.blend from the starting assets
for the chapter and import them to the Tanks folder under the Models folder.

2.	 Once Unity has finished importing, select the new tank in the Project window and
take a look at it in the Inspector window.

3.	 This tank has no animations, so the Animation Type can be set to None and Import
Animation can be unchecked from the Rig and Animations pages respectively.

4.	 Drag the tank from the Project window to the Scene window; any clear patch of
street will work just fine.

5.	 For starters, rename the model in the Scene view to EnemyTank.

6.	 Now, we need to change the parenting of the tank so the turret can turn and the
cannon will follow, just as we did for the player's tank. To do that, create an empty
GameObject and rename it to TurretPivot.

7.	 Position TurretPivot to be at the base of the turret.

8.	 In the Hierarchy window, drag-and-drop TurretPivot onto EnemyTank to make
EnemyTank the parent.

9.	 Still in the Hierarchy window, make the cannon and turret mesh objects children
of TurretPivot. When Unity asks whether you are sure that you want to break
the prefab connection, be sure to click on Yes.

10.	The tank is a little large, so adjust the Scale Factor of the tank's Import Settings in
the Inspector window to 0.6 to give us a tank that is about the size of the player's.

Chapter 5

[153]

11.	 In order for the tank to be able to navigate our new NavMesh, we need to add a
NavMeshAgent component. First, select EnemyTank in the Hierarchy window
and then go to the toolbar of Unity; click on Component, followed by Navigation,
and then click on NavMeshAgent. In the Inspector window, we can see the new
component and the settings associated with it, as shown in the following screenshot:

�� Radius: This is simply how big the agent is. Working in conjunction with the
Radius value we set in the Navigation window, this keeps the object from
walking partly in the walls.

�� Speed: The NavMeshAgent component automatically moves the connected
object when it has a path. This value dictates how fast to follow the path in
units per second.

�� Acceleration: This is the maximum speed that the agent will accelerate with.

�� Angular Speed: This is the degrees per second that the agent can turn. A
person would have a very high angular speed, while a car's angular speed
would be low.

�� Stopping Distance: This is how far away from the target destination the
agent will start to slow down and stop.

�� Auto Traverse Off Mesh Link: With this checkbox checked, the agent will
use the Off Mesh Links when pathfinding, such as jumping gaps and falling
off ledges.

�� Auto Braking: With this checkbox checked, the agent will stop as soon as it
reaches the destination, rather than overshooting, because of the irregular
frame rate.

Getting Around – Pathfinding and AI

[154]

�� Auto Repath: If the path that was found is incomplete for any reason, this
checkbox allows Unity to automatically try to find a new one.

�� Height: This setting affects the cylinder that appears in the editor, around
the agent. It simply sets the height of that cylinder.

�� Base Offset: This is the vertical offset of the colliders that are attached to
the agent.

�� Obstacle Avoidance Type: This is how much effort the agent will put in to
find a smooth path around obstacles. The higher the quality, the more work
is done.

�� Avoidance Priority: This value dictates who has the right of way. An agent
with a high value will go around an agent with a low value.

�� NavMesh Walkable: Remember those layers that were mentioned earlier
when discussing the Navigation window? This is where we can set which
layers the agent is able to traverse. Only the layers in this list that are
checked will be used for pathfinding.

12.	Now that we understand the settings, let's use them. For the enemy tank, a value
of 2.4 for the Radius and 4 for the Height will work well. You should be able to
see another wire cylinder in the Scene window, this time around our enemy tank.

13.	The last thing to do is to turn EnemyTank into a prefab. Do this just as we did
with the targets, by dragging it from the Hierarchy window and dropping it on
the Prefabs folder in the Project window.

What just happened?
We created an enemy tank. We also learned about the settings for the NavMeshAgent
component. However, if you try to play the game now, nothing will appear to happen.
This is because the NavMeshAgent component is not being given a destination. We will
solve that in the next section.

The chase
Our next task is to make our enemy tank chase the player around. We will need two scripts.
The first will simply advertise the player's current position. The second will use that position
and the NavMeshAgent component that we set up earlier to find a path to the player.

Chapter 5

[155]

Time for action – the player is over here
With a very short script, we can easily allow all our enemies know the location of the player:

1.	 Start by creating a new script in the Scripts folder of the Project window. Name it
PlayerPosition.

2.	 This script will start with a single static variable. This variable will simply hold the
current position of the player. Because it is static, we will be able to easily access
it from the rest of our scripts.

public static Vector3 position = Vector3.zero;

3.	 For the next lines of code, we make use of the Start function. This function is
automatically called when a scene is first loaded. We use it so that the position
variable can be filled and used as soon as the game starts.

public void Start() {
 position = transform.position;
}

4.	 The last segment of code simply updates the position variable in every frame to
the player's current position. We also do this in the LateUpdate function so that it
is done after the player has moved. The LateUpdate function is called at the end
of every frame. With that, the player is able to move during the OnGUI and Update
functions and their position is updated later.

public void LateUpdate() {
 position = transform.position;
}

5.	 The last thing to do with this script is to add it to the player's tank. So, return to
Unity and drag-and-drop the script from the Project window to the tank to add
it as a component, just as we have done with all our other scripts.

What just happened?
We created the first script needed for our chase AI. This script simply updates a variable with
the player's current position. We will make use of it in our next script, where we will make
the enemy tank move around.

Getting Around – Pathfinding and AI

[156]

Time for action – chasing the player
Our next script will control our simple chase AI. Because we are making use of the NavMesh
and NavMeshAgent components, we can leave nearly all the difficult portions of pathfinding
to Unity:

1.	 Again, create a new script. This time name it ChasePlayer.

2.	 The first line for this script simply holds a reference to the NavMeshAgent
component that we set up earlier. We need access to this component in
order to move the enemy.

public NavMeshAgent agent;

3.	 The last segment of code first makes sure that we have our NavMeshAgent
reference and then updates our goal destination. It uses the PlayerPosition
script's variable, that was set up earlier, and the SetDestination function from
the NavMeshAgent. Once we tell the function where to go, the NavMeshAgent
component does all the hard work of getting us there. We are updating our goal
destination in the FixedUpdate function because we do not need to update the
destination in every frame. Updating too often could cause a serious lag if there are
a whole lot of enemies. The FixedUpdate function is called at regular intervals and
is slower than the frame rate, so it is perfect.

public void FixedUpdate() {
 if(agent == null) return;

 agent.SetDestination(PlayerPosition.position);
}

4.	 We now need to add the script to our enemy tank. Select the prefab in the
Project window, and drag-and-drop the script in the Inspector panel, underneath
the NavMeshAgent component.

5.	 Be sure to connect the reference, as we have done previously. Drag the
NavMeshAgent component to the Agent value in the Inspector window.

6.	 Play the game now to try it out. Wherever the enemy starts, it finds its way around
all the buildings and makes it to the player's position. As you drive around, you can
watch the enemy follow. However, the enemy tank ends up going through our tank.
Also, we can drive through it.

Chapter 5

[157]

7.	 The first step to fixing it is to add some colliders. Add a Box Collider component
from underneath Physics in the Component menu to the turret, chassis, and each of
the TreadCase objects. Neither the cannon nor the treads need colliders. The tread
casings already cover the area of the treads, and the cannon is too small a target to
be shot at properly.

If you are making any of these changes in the Scene view, be
sure to click on the Apply button in the Inspector window to
update the root prefab object.

Getting Around – Pathfinding and AI

[158]

8.	 The last thing to change is the Stopping Distance property on the NavMeshAgent
component. When the tanks fight, they move into range and start firing. They do
not try to occupy the same space as the enemy, unless that enemy is small and
squishy. By setting Stopping Distance to 10 we are able to replicate this behavior.

What just happened?
In this section, we created a script that causes a NavMeshAgent component, in this case
our enemy tank, to chase the player. We added colliders to stop us from driving through
the enemy. And, we adjusted the Stopping Distance to give us a better tank behavior.

Have a go hero – adding shadow
Try adding a blob shadow to the enemy tank. This will give it a better visual sense of being
grounded. You can just copy the one that was made for the player's tank.

Being attacked
What fun is a game without a little conflict; the nagging choice, the fight to the death, the
doom of the cosmos? Every game needs some form of conflict to drive the player towards
seeking a resolution. Our game will become a battle for points. Before, it was just shoot
some targets and get some points.

Chapter 5

[159]

Now, we will make the enemy tank shoot at the player. Every time the enemy scores a hit, we
will reduce the player's score by a few points.

Time for action – getting ready to fire
The enemy will shoot in a similar manner to how the player fires, but we will use some basic
AI to control the direction and firing speed, replacing the player's input controls:

1.	 We will start this off with a new script called ShootAtPlayer. Create it in the
Scripts folder.

2.	 As with all our other scripts, we start this one out with two variables. The first
variable will hold the last position the enemy tank was at. It will not be shooting
if the tank is in motion, so we need to store that last position to see if we have
moved. The second variable will be the maximum speed at which we can move
and shoot. If the tank moves faster than this, it will not fire.

private Vector3 lastPosition = Vector3.zero;
public float maxSpeed = 1f;

3.	 The next two variables dictate how long it takes the tank to ready a shot. It is
unrealistic to be shooting the player in every single frame. So, we use the first
variable to adjust the length of time it takes to ready a shot, and the second to
store when the shot is ready.

public float readyLength = 2f;
private float readyTime = -1;

4.	 The next variable is how fast the turret can rotate. While the tank is readying its
shot, the turret will not be rotating to point at the player. That gives the player
an opportunity to move out of the way. However, we need a speed to keep the
turret from snapping to face the player after shooting.

public float turretSpeed = 45f;

5.	 The last two variables here hold references to other parts of the tank. The
turretPivot variable, of course, is the pivot of the turret that we will be
rotating. The muzzlePoint variable will be used as the point from where
our cannon is fired. These will be used in the same manner as the ones for
the player's tank.

public Transform turretPivot;
public Transform muzzlePoint;

Getting Around – Pathfinding and AI

[160]

6.	 For the first function of the script, we will make use of the Update function. It
starts by calling a function that will check to see whether it is possible to fire the
cannon. If we can fire, we perform some checks on our readyTime variable. If it is
less than zero, we have not yet begun to ready our shot and call a function to do so.
Otherwise, if it is less than the current time, we have finished the preparation and
call the function to fire the cannon. If we are unable to fire, we first call a function
to clear any preparations and then rotate the turret to face the player.

public void Update() {
 if(CheckCanFire()) {
 if(readyTime < 0) {
 PrepareFire();
 }
 else if(readyTime <= Time.time) {
 Fire();
 }
 }
 else {
 ClearFire();
 RotateTurret();
 }
}

7.	 Next, we will create our CheckCanFire function. The first part of code checks to
see if we have moved too fast. First, we use Vector3.Distance to see how far we
have moved since the last frame. By dividing the distance by the length of the frame,
we are able to determine the speed with which we moved. Next, we update our
lastPosition variable with our current position, so it is ready for the next frame.
Finally, we compare the current speed with the maxSpeed. If we moved too fast in
this frame, we are unable to fire and return a result of false.

public bool CheckCanFire() {
 float move = Vector3.Distance(lastPosition, transform.position);
 float speed = move / Time.deltaTime;

 lastPosition = transform.position;

 if(speed > maxSpeed) return false;

Chapter 5

[161]

8.	 For the second half of the CheckCanFire function, we check to see if the turret
is pointed at the player. First, we find the direction to the player. Given any point in
space and subtracting the second point's location from it, will give us the direction
from the second point to the first as a vector. We then flatten the direction by setting
the y value to 0. This is done because we do not want to be looking up or down at
the player. Then, we use Vector3.Angle to find the angle between the direction
to the player and our turret's forward direction. Finally, we compare the angle to a
low value to determine whether we are looking at the player, and return the result.

 Vector3 targetDir = PlayerPosition.position – turretPivot.
position;
 targetDir.y = 0;

 float angle = Vector3.Angle(targetDir, turretPivot.forward);

 return angle < 0.1f;
}

9.	 The PrepareFire function is quick and easy. It simply sets our readyTime variable
to the time in the future when the tank will be done preparing its shot.

public void PrepareFire() {
 readyTime = Time.time + readyLength;
}

10.	The Fire function starts by making sure that we have a muzzlePoint reference to
shoot from.

public void Fire() {
 if(muzzlePoint == null) return;

11.	The function continues with the creation of a RaycastHit variable to store the
result of our shot. We use Physics.Raycast and SendMessage, just as we
did in the FireControls script, to shoot at anything and tell it that we hit it.

RaycastHit hit;
if(Physics.Raycast(muzzlePoint.position, muzzlePoint.forward, out
hit)) {
 hit.transform.gameObject.SendMessage("RemovePoints", 3,
SendMessageOptions.DontRequireReceiver);
}

12.	The Fire function finishes by clearing the fire preparations.

 ClearFire();
}

Getting Around – Pathfinding and AI

[162]

13.	The ClearFire function is another quick function. It sets our readyTime variable
to be less than zero, indicating that the tank is not preparing to fire.

public void ClearFire() {
 readyTime = -1;
}

14.	The last function for the script is RotateTurret. It begins by checking the
turretPivot variable and canceling the function should the reference be
missing. It is followed by the finding of the flat direction that points at the
player, just as we did earlier. Next, we create the step variable to hold how
much we can move this frame. We use Vector3.RotateTowards to find
a vector that is closer to pointing at our target than the current forward
direction is. Finally, we use Quaternion.LookRotation to create a special
rotation that points our turret in the new direction.

public void RotateTurret() {
 if(turretPivot == null) return;

 Vector3 targetDir = PlayerPosition.position – turretPivot.
position;
 targetDir.y = 0;

 float step = turretSpeed * Time.deltaTime;

 Vector3 rotateDir = Vector3.RotateTowards(turretPivot.forward,
targetDir, step, 0);
 turretPivot.rotation = Quaternion.LookRotation(rotateDir);
}

15.	Now, returning to Unity, create an empty GameObject and rename it to
MuzzlePoint.

16.	Position MuzzlePoint as we did for the player, at the end of the cannon.

17.	Make MuzzlePoint a child of the cannon and zero out any Y rotation that might be
on it, in the Inspector window.

18.	Next, add our new ShootAtPlayer script to the enemy tank. Additionally, connect
the references to the TurretPivot and MuzzlePoint variables.

19.	Finally, for the enemy tank, hit the Apply button in the Inspector window to update
the prefab.

Chapter 5

[163]

20.	 If you play the game now, you will see the enemy rotating to point at you, but your
score never decreases. This is because of two issues. First, the tank is slightly floating.
It doesn't matter where in the world you place it, when playing the game, the tank will
slightly float. This is because of the way the NavMeshAgent component functions. The
fix is simple, just set the Base Offset to -0.3 in the Inspector window. This tricks the
system and puts the tank on the ground.

21.	The second reason the score isn't changing is because the player is missing a
function. Open the ScoreCounter script.

22.	We will be adding the RemovePoints function. Given an amount, this function
simply removes that many points from the player's score.

public void RemovePoints(int amount) {
 score -= amount;
}

Getting Around – Pathfinding and AI

[164]

What just happened?
We gave the enemy the ability to attack the player. The new ShootAtPlayer script checks
first to see whether the tank has slowed down and whether the cannon is trained on the
player. If so, it will take regular shots at the player to reduce their score. The player is going
to need to keep moving and aim at targets fast, if they hope to be left with any points at the
end of the game.

Have a go hero – player feedback
Unless you are paying close attention to your score, it is difficult to tell when you are being
shot at. We will be working with explosions in a future chapter but, even so, the player needs
some feedback to tell what is going on. Most games will flash a red texture on the screen
when the player is hit, whether or not there are any explosions. Try creating a simple texture
and drawing it on the screen for half a second when the player is hit.

Attacking the enemy
Players tend to become frustrated quickly when faced with an enemy they are unable to
fight against. So, we are going to give our player the ability to hurt and destroy the enemy
tank. This will function in a similar manner to the way the targets are shot.

Time for action – giving it a weakness
The easiest way to weaken our enemies is to give them some health that is reduced when
they are shot, and to destroy them when they run out of health:

1.	 We start by creating a new script and naming it Health.

2.	 This script is rather short and starts with a single variable. This variable will keep
track of the remaining health of the tank. By setting the default value to 3, the tank
will be able to survive three hits before being destroyed.

public int health = 3;

3.	 This script also contains only one function, Hit. As in the case of the targets, this
function is called by the BroadcastMessage function when the player shoots at
it. The first line of the function reduces health by one point. The next line checks
to see if health is below zero. If it is, the tank is destroyed by calling the Destroy
function and passing it the gameObject variable. We also give the player a handful
of points.

public void Hit() {
 health--;

Chapter 5

[165]

 if(health <= 0) {
 Destroy(gameObject);
 ScoreCounter.score += 5;
 }
}

4.	 It really is just that simple. Now, add the new script to the EnemyTank prefab
in the Project window, and it will update all the enemy tanks that you currently
have in the scene.

5.	 Try it out. Add a few extra enemy tanks to the scene and watch them follow you
around and disappear when you shoot them.

What just happened?
We gave the enemy tank a weakness, health. By creating a short script, the tank is able
to track its health and detect when it has been shot. Once the tank runs out of health,
it is removed from the game.

Have a go hero – coloring the enemy
We now have two targets to shoot at: the animated ones and the tank. However, they
are both indicated with red slices. Try to make the ones that point at tanks be a different
color. You will have to make a duplicate of the IndicatorSlice prefab and change the
IndicatorControl script so that it can be told which type of slice to use when the
CreateSlice and NewSlice functions are called.

As a further challenge, the moment we give a creature some health, players want to
be able to see how much damage they have done to it. There are two ways you could
do this. First, you could put a cluster of cubes above the tank. Then, each time the tank
loses health, you delete one of the cubes. The second option is a little more difficult,
drawing the bar in the GUI and changing its size based on the remaining health.
To make the bar stay above the tank as the camera moves around, take a look at
Camera.WorldToScreenPoint, in the documentation.

Getting Around – Pathfinding and AI

[166]

Spawning
Having a limited number of enemies in the game, at the beginning, is not suitable for our
game to have lasting fun. Therefore, we need to make some spawn points. As tanks are
destroyed, these will issue forth new tanks to keep the player on their toes.

Time for action – creating spawns
The script we will be creating in this section will keep our game world populated with all the
enemies our player might want to destroy:

1.	 We need another new script for this section. Once created, name it SpawnPoint.

2.	 This script begins simply with a few variables. The first variable will hold a reference
to our EnemyTank prefab. We need it so we can spawn duplicates.

public GameObject tankPrefab;

3.	 The second variable tracks the spawned tank. When it is destroyed we will create
a new one. Using this variable we prevent the game from becoming overwhelmed
with the enemy. There will only be as many tanks as spawn points.

private GameObject currentTank;

4.	 The third variable is for setting a distance from the player, to prevent spawning
tanks on top of the player. If the player is outside this distance, a new tank can
be spawned. If they are within, a new tank will not be spawned.

public float minPlayerDistance = 10;

5.	 The first function we will use is FixedUpdate. It will start by checking a function
to see whether it needs to spawn a new tank. If it does, it will call the SpawnTank
function to do so.

public void FixedUpdate() {
 if(CanSpawn())
 SpawnTank();
}

6.	 Next, we create the CanSpawn function. The first line of the function checks to see
whether we already have a tank and returns false if we do. The second line uses
Vector3.Distance to determine how far away the player currently is. The last line
compares that distance to the minimum distance away that the player needs to be
before we can spawn anything and returns the result.

public bool CanSpawn() {
 if(current != null) return false;

Chapter 5

[167]

 float currentDistance = Vector3.Distance(PlayerPosition.
position, transform.position);
 return currentDistance > minPlayerDistance;
}

7.	 The last function, SpawnTank, starts by checking to make sure the tankPrefab
reference has been connected. It can't continue if there is nothing to spawn. The
second line uses the Instantiate function to create a duplicate of the prefab.
In order to store it in our variable, we use as GameObject to make it the proper
type. The last line moves the new tank to the spawn point's position. We don't
want the tanks appearing in random locations.

public void SpawnTank() {
 if(tankPrefab == null) return;

 currentTank = Instantiate(tankPrefab) as GameObject;
 currentTank.transform.position = transform.position;
}

8.	 Return to Unity, create an empty GameObject, and rename it to SpawnPoint.

9.	 Add the SpawnPoint script that we just created, to it.

10.	Next, with the spawn point selected, connect the prefab reference by dragging
the EnemyTank prefab from the Prefabs folder and dropping it on the
appropriate value.

11.	Now, turn the SpawnPoint object into a prefab, by dragging-and-dropping it from
the Hierarchy window and into the Prefabs folder.

Getting Around – Pathfinding and AI

[168]

12.	Finally, populate the city with the new points. Positioning one in each corner of the
city will work well.

What just happened?
We created spawn points for the game. Each point will spawn a new tank. When a tank is
destroyed, a new one is created at the spawn point. Feel free to build the game and try it
out on your device. This section and chapter are now complete and ready for wrap up.

Have a go hero – two for one
Having one spawn point per tank is great, until we want many tanks. Or, we desire them
to all spawn in the same location. Your challenge here is to make a single spawn point track
multiple tanks. If any one of the tanks is destroyed, a new one should be created. You will
definitely need an array to keep track of all the tanks. Also, implement a delay for the spawn.
We don't want it spawning multiple tanks on top of each other.

Now that you have all the knowledge and tools that you need, as a further challenge, try
creating other types of enemy tanks. Experiment with size and speed. They can also have
different strengths, or give more points when destroyed. Perhaps there is a tank that actually
gives the player points when shooting at them. Play around and have some fun with it.

Chapter 5

[169]

Pop Quiz – understanding enemies
Q1. Probably the most common act performed in games is shooting with guns. We have
done it a couple of times now. Do you remember what function we use to determine where
and what our bullet might hit?

1.	 Input.mousePosition

2.	 Transform.position

3.	 Physics.Raycast

Q2. We will need a great many enemies running around for us to shoot at. Do you remember
which function we use to make them move around our NavMesh?

1.	 CharacterController.Move

2.	 NavMeshAgent.SetDestination

3.	 NavMesh.CalculatePath

Q3. Finally, all these enemies will have to be spawned again and again. Do you remember
what function we use to spawn these enemies?

1.	 Instantiate

2.	 Destroy

3.	 Start

Summary
In this chapter, we learned about NavMeshes and pathfinding. We also did a little work with
AI. It was perhaps among the simplest types of AI but chase behaviors are highly important
to all types of games. To utilize all of this, we created an enemy tank. It chased the player and
shot at them to reduce their score. To give the edge back to the player, we gave health to the
enemy tanks. The player can now shoot the enemy tanks as well as the targets for points.
But, we also created some spawn points. Every time a tank was destroyed a new one will
be created. In terms of general game play, our Tank Battle game is pretty much complete.

In the next chapter, we will be creating a new game. In order to explore some of the special
features of the mobile platform, we will create a Space Fighter game. Nearly all the buttons
will be removed from the screen, in favor of new control methods. We will be turning the
device's tilt sensors into our steering method. And, we will have to touch enemies and
targets to shoot at them. We will also take a look at a different methods of spawning to
give the player an endless amount of space to fly through.

6
Specialties of the Mobile

Device – Touch and Tilt

In the previous chapter, we learned about Pathfinding and AI. We expanded our
Tank Battle game to include enemy tanks. We created points for them to spawn
at, and made them shoot at the player. Utilizing Unity's pathfinding system,
we made the tanks chase the player. Also, the player was given the ability to
destroy the tanks. Once destroyed, the player receives some points and a new
enemy tank is spawned.

In this chapter, we start working on a new game as we explore some of the
specialties of the mobile device. We will be creating a Space Fighter game.
The player will take control of a space ship and blast enemy ships, mines, and
asteroids for points. To steer their ship, the player will have to tilt the mobile
device. To shoot, the player will touch the screen where they want their laser
blast to hit.

In this chapter, we will be covering the following topics:

�� Touch controls

�� Tilt controls

We will be creating a new project for this chapter, so start up Unity and we will begin.

Specialties of the Mobile Device – Touch and Tilt

[172]

Setting up
As with every project, we need a little bit of preparation work in order to prepare
our development environment. Don't worry, the setup for this chapter is simple
and straightforward.

Time for action – creating the project
Let's get started. The first step is, of course, to start Unity and create a new project.
Naming the project Ch6_SpaceFighter will work well:

1.	 Once Unity has finished initializing, this is a perfect opportunity to set our build
settings. Open the Build Settings window, select Android from the list of platforms,
and hit Switch Platform to change the target platform.

2.	 While at the Build Settings window, select Player Settings to open the player
settings in the Inspector. Adjust the Company Name, Product Name, and
especially the Bundle Identifier.

3.	 We need to create a few folders to keep the project organized. The Scripts,
Models, and Prefabs folders should be created in the Project window.

4.	 We now need to import the assets for this project. We are going to need a space ship
for the player, an enemy space ship, an explosive mine, and some asteroids. Luckily,
all of these have already been prepared and are available with the starting assets for
this chapter. Import PlayerShip.blend, PlayerShip.png, EnemyShip.blend,
EnemyShip.png, Asteroid.blend, Asteroid.png, SpaceMine.blend, and
SpaceMine.png to the Models folder that you just created.

What just happened?
We just finished the setup for this chapter's project. Once again, a little bit of effort at the
beginning of the project will save time and frustration later. Especially, as a project grows
in size, the organization done at the beginning becomes most important.

Controlling with tilt
Modern mobile devices possess a broad variety of internal sensors for detecting and
providing information about the surronding world. Though you may not have thought of
them in such a way, you are certainly most familiar with the microphone and speaker that
are required for making calls. There is a Wi-Fi receiver for connecting to the Internet and a
camera for taking pictures. Your device almost certainly has a magnetometer to work with
your GPS to provide directions.

Chapter 6

[173]

The sensor we are interested in right now is the gyroscope. This sensor detects local rotation
of the device. In general, it is used to determine the orientation of the device. We are going
to use it to steer our ship. When the user tilts their device left and right, their space ship will
turn to the side. When the device is tilted up and down, the ship will go up and down.

Time for action – steering the space ship
To steer our ship, we will need to create a single script and apply it to our ship:

1.	 To start this off, create a new script and name it TiltSteering.

2.	 As with all of our other scripts, we will begin this one with a few variables.
The first two variables control the speed with which the ship will rotate as the
device is tilted. The second two are going to be used to limit the rotation of the
ship. These will determine how tight a circle the player's ship can turn in.

public float horizRotateSpeed = 7f;
public float vertRotateSpeed = 3f;

public float horizMax = 60f;
public float vertMax = 45f;

3.	 Next, we will make use of the Update function. We start out by creating a variable
to store the ship's current rotation. Next, we have to adjust the rotation. When
working with Euler rotations, Unity adjusts values to be between zero and 360. This
way, the values are never negative. Anything below zero simply wraps around and
starts counting down from 360; anything above 360 wraps back to start counting
up from zero again. We need the negative values. So, if the parts of the rotation
are above 180, we subtract 360 to determine their negative values. Also, we are
not making adjustments to the z component because the ship will not be rotating
around its forward axis.

public void Update() {
 Vector3 rotation = transform.eulerAngles;

 if(rotation.y > 180f) rotation.y -= 360f;
 if(rotation.x > 180f) rotation.x -= 360f;

Specialties of the Mobile Device – Touch and Tilt

[174]

4.	 Next, we apply the accelerometer measurement. When the device is held horizontally,
with the home button on the right and the screen towards the user, the x component
holds the rotation of the device while it is facing the user. The z component holds the
rotation of the screen being tilted up and down. The components are multiplied by
their respective speeds and are added to the rotation. The y rotation controls pointing
left and right while the x component controls pointing up and down. However, the z
acceleration is the opposite of how the ship should rotate, so we take the negative.

rotation.y += Input.acceleration.x * horizRotateSpeed;
rotation.x += -Input.acceleration.z * vertRotateSpeed;

5.	 After the acceleration is applied, we need to limit the rotations so that the ship
is not rotated too far. We use the Mathf.Clamp function to limit the rotation
components between the negative of the max and the max of the relevant values.

rotation.y = Mathf.Clamp(rotation.y, -horizMax, horizMax);
rotation.x = Mathf.Clamp(rotation.x, -vertMax, vertMax);

6.	 Finally, we apply the rotation to the ship's transform and close off the function for
the script.

 transform.eulerAngles = rotation;
}

7.	 In order to make use of our new script, we need to do some setup for the player's
ship. Start by creating an empty GameObject and setting its position to zero. Rename
it to PlayerShipPivot. This will allow us to control the movement and appearance
of the player's ship independently.

8.	 Drag your PlayerShip model from the Project window and drop it on the pivot
point we just created. Be sure to center your ship on the point and rotate it to face
forward along the z axis.

9.	 You can now add the script to the pivot point.

10.	This is the point when it is especially important to have Unity Remote. With your
device attached and Unity Remote running, you can hold it up and steer the ship.
Feel free to adjust the rotation speeds and limits until you find the settings that
feel natural to control.

11.	We will need to be able to see past the ship, so that we can later shoot at targets
we are flying towards. Adjust the position of the camera so the ship is centered
horizontally and a little below center.

12.	The scene also needs to be slightly lit. The light in deep space tends to be very
general, so we can get away with just adjusting the ambient light. Click on Edit
in the menu bar of Unity, and then click on Render Settings. By setting the
Ambient Light to white, our scene will be bright enough to see everything.

Chapter 6

[175]

13.	 Once all the settings are in place, be sure to save the scene. Name it SpaceFighter.

What just happened?
We made use of the accelerometer to provide steering control of a spaceship. By measuring
how the player is tilting their device, we are able to rotate the ship accordingly. We did not
make the ship actually move, but just rotated it in place. We will come to understand why
in a little bit.

Making things move in space
Your first instinct to make the ship move would be probably to just change the position of
the ship. However, things get weird when objects are really far from the world origin. In
programming, there are actually limits on the size of the number that a variable can hold.
This limit causes the rendering system to begin failing when the vertex positions become
too large, resulting in the model being distorted beyond recognition. Admittedly, we are
talking about positional values in the hundreds of thousands and beyond. However, say
the player were to just fly straight for a long time; eventually, they could reach this distance
of distortion.

Specialties of the Mobile Device – Touch and Tilt

[176]

As a potential solution, we could force the player to turn, or stop their forward progress, or
wrap their position so they continue flying from the opposite side of a finite space. However,
it is so much more fun to fly through an infinite space. We can achieve this by leaving the
player's ship in place and moving everything else around it. As a new space is entered, new
enemies and objects can be spawned to fill the space. Old objects and enemies that are too
far away can be destroyed by removing them where the player won't see. This would give
the illusion of an infinite amount of space.

Time for action – flying asteroids
The first objects we will be avoiding in our infinite space will be asteroids:

1.	 To make the asteroids work, we will first need to make the player ship's rotation
and speed available for the asteroids to use. To do this, we need to create a new
script and call it PlayerShip.

2.	 Again, this script starts with a group of variables. The first is the speed of the player's
ship. The asteroids and other objects in the space will use it to move around the
player. The second variable will hold a reference to the TiltSteering script that
we created earlier. This will give us access to the ship's rotational speed. The last
variable is a static variable that will hold a reference to the instance of this script
that exists in the scene. This will allow other scripts to access the information
stored by this script. We call the use variable to indicate to other scripts that
this is the instance they should access.

public float speed = 10f;
public TiltSteering tilt;

private static PlayerShip use;

3.	 Next, we make use of the Awake function. This function is automatically called at
the beginning of the game, making it perfect for initialization. We are using it to
simply set the use variable that we created earlier to the current instance of the
script.

public void Awake() {
 use = this;
}

4.	 The next function is for providing other scripts with the player's current rotation.
Being static, any script can call it at any time. The function first checks to see whether
a reference is available to the current instance of the script. If it cannot be found, a
neutral rotation, Quaternion.identity, is returned. Otherwise, the rotation of
the transform that the script instance is attached to is returned.

Chapter 6

[177]

public static Quaternion GetRotation() {
 if(use == null) return Quaternion.identity;

 return use.transform.rotation;
}

5.	 The Rotate function here is for faking the movement of the player. This function takes
the transform that is passed to it and moves and rotates it to make it look like it is the
player that has moved through space. As with the previous GetRotation function, it
first checks for a reference to the player and does nothing if there isn't one.

public static void Rotate(Transform other) {
 if(use == null) return;

6.	 To rotate the asteroid, and anything else, around the player's position, its current
position needs to be multiplied by the mirror of the player's current rotation. To do
that, we need to adjust the rotation so that it can be mirrored properly. The Euler
angles of the player's rotation are stored in a variable for manipulation. We then shift
the values that are greater than 180, just as we did earlier. The rotation is then scaled
by the player ship's rotation speed. Finally, it is multiplied by the frame speed to keep
it in time.

Vector3 euler = use.transform.eulerAngles;
if(euler.x > 180f) euler.x -= 360f;
if(euler.y > 180f) euler.y -= 360f;
euler.Scale(new Vector3(use.tilt.vertRotateSpeed, use.tilt.
horizRotateSpeed, 0));
euler *= Time.deltaTime;

7.	 We turn the negative Euler rotation, which is the mirrored rotation, back into a
Quaternion and store it in a variable for use.

Quaternion mirror = Quaternion.Euler(-euler);

8.	 The mirrored rotation is then multiplied by the passed object's position, updating
the position to be rotated around the player as if they were turning. The player's
rotation is then multiplied by a forward-facing vector, the player's speed, and finally
the frame speed. This is all subtracted from the object's current position in order
to imitate the player's forward movement. Finally, the passed object's rotation is
multiplied by the mirrored rotation to change its orientation. Altogether, this fakes
the movement of the player.

other.position = mirror * other.position;
other.position -= playerRotation * Vector3.forward * use.speed *
Time.deltaTime;
other.rotation *= mirror;

Specialties of the Mobile Device – Touch and Tilt

[178]

9.	 Add the script to the PlayerShipPivot object that was created previously.
Be sure to connect the TiltSteering reference.

10.	Next, we need to make use of that script by creating another. Name it Asteroid.
This script will control an asteroid as it flies through space and the player is forced
to avoid it.

11.	The first two of the variables for this script are used for determining a random
speed at which the asteroid will fly through space. The third variable will hold
the random speed. The final variable will hold the random direction in which
the asteroid is flying through space.

public float minSpeed = 5f;
public float maxSpeed = 10f;

private float speed = 1f;
private Vector3 direction = Vector3.forward;

12.	Next, we again make use of the Awake function for initialization. Any point that lies
on the surface of a sphere with a radius of one is essentially a vector that points in
a random direction. Therefore, we use Random.onUnitSphere to find a random
direction for the asteroid to go. It is followed by the use of Random.Range and
the first two variables to determine a random speed for the asteroid to travel.

public void Awake() {
 direction = Random.onUnitSphere;
 speed = Random.Range(minSpeed, maxSpeed);
}

13.	The last function for this script is LateUpdate. We need the asteroid to move
after the player's ship has updated its rotation; that is why we use this function.
The first line of the function uses the GetRotation function that we created
for the PlayerShip script and stores it in a variable for use.

public void LateUpdate() {
 Quaternion playerRotation = PlayerShip.GetRotation();

14.	Next, we make a call to the PlayerShip.Rotate function, passing it the asteroid's
transform, so that the asteroid can be moved to fake the player's movement.

PlayerShip.Rotate(transform);

15.	The next line of code rotates the asteroid's movement direction by the player's
rotation, again making a change that fakes the player's movement. The position is
again updated with the asteroid's own movement in the adjusted direction.

direction = playerRotation * direction;
transform.position += direction * speed * Time.deltaTime;

Chapter 6

[179]

16.	The function and the script finishes with a check to see if the asteroid is too far away
from the player. We do this by checking sqrMagnitude of the asteroid's position.
The length of a vector is its magnitude. For positional vectors, this is the distance
from the center point. The sqrMagnitude is the square of the vector's magnitude.
This is much faster to calculate and just as easy for comparison. We just need to
compare it to the square of the desired value. In this case a max distance of about
300, whose square is 100,000, will work well for our needs. If you remember from
math class, 1e5 is the same as a one with five zeros behind it, which is 1 million.
Finally, if the asteroid is too far away, it is destroyed.

 if(transform.position.sqrMagnitude > 1e5) Destroy(gameObject);
}

17.	 In order to test this script, we need an asteroid prefab. To create it, start off by
adding the Asteroid model to the scene and deleting two of the three meshes.

18.	 Add the script to the model and drag it to the Prefabs folder, turning it into a prefab.

What just happened?
We created two scripts and a prefab. The first script is used by the player's ship to relay
information about its rotation and speed to other scripts. The second script controls the
motion of asteroids in the game world. Because of the weirdness in the model's behavior
when subjected to extreme distances, the player never actually moves. The game world and
all of the objects in it are instead moved around the player. Finally, we created an asteroid
prefab. Try adding several prefabs to the scene and try them out. You can fly in, out, and
around them even though your ship never actually moves.

Specialties of the Mobile Device – Touch and Tilt

[180]

Adding space collisions
Flying around, you probably noticed that you can fly straight through the asteroids. To make
it possible for the player to hit them, we need to add some collision to the player's ship and
the asteroid. This is similar to what was done for the Tank Battle game. We will be going into
more detail about how the collision works in the next chapter, but we will need to make use
of the Rigidbody component. It provides access to Physics calculations and allows us to group
colliders to make more complex collision shapes.

Time for action – adding collisions
We need to add some collision capabilities to our space objects, so that they can crash into
each other and be shot at properly:

1.	 Let's start by giving collision to the asteroid. Do this by first selecting the mesh for
the asteroid and adding a MeshCollider component. This will later let us shoot at
the asteroid.

2.	 Next, select the same object that holds our Asteroid script component. Add
a SphereCollider component to the object and adjust the Radius to be a little
larger than the asteroid. This collider will detect when the asteroid has collided
with the player.

3.	 The SphereCollider needs to have the Is Trigger checkbox checked. We are not
checking the true collision, just an approximate one. With this checkbox checked,
objects will no longer be stopped by the collider, but instead trigger an event in
script when an object enters the collider volume. When the player enters the
collider, it will be close enough that we can assume and act as if it has collided.

Chapter 6

[181]

4.	 When you are satisfied with the changes, be sure to apply them to the prefab.
Otherwise, the other asteroids will not be updated and collidable.

5.	 To detect when the player has entered the new trigger area, we need to add a short
function to the Asteroid script. We add a OnTriggerEnter function to the end
of the script. This function is automatically called by the Physics system when one
collider enters another. The collider that is passed to it is the one that it collided
with. However, the function only works if at least one of the objects has a Rigidbody
component attached. We will be covering it in detail in Chapter 7, Throwing Your
Weight Around – Physics and a 2D Camera, but the Rigidbody component is what
actually connects an object into Unity's Physics engine, giving our scripts access to
the OnTrigger and OnCollision groups of functions. We will be adding this to
the player's ship. When the function is called, it simply destroys the asteroid.

public void OnTriggerEnter(Collider other) {
 Destroy(gameObject);
}

6.	 Next, we need to add collision to the the player's ship. Start by adding that
Rigidbody component to the PlayerShipPivot GameObject that we created earlier.

7.	 Be sure to check the Is Kinematic checkbox of the new component. This tells the
Physics system that we want to control the object's motion through the script. If it
was not checked, the ship would begin to fall as soon we start playing the game.

8.	 One of the features of a Rigidbody component is that it treats all colliders on child
objects in the Hierarchy as a part of a single collision shape. This way, we are able
to build a complex collision shape using several simple and faster process colliders.
By creating an empty GameObject and adding the simple colliders, we size and
position them to cover the player's ship. Be sure to make the collider objects
children of the ship's pivot point.

Specialties of the Mobile Device – Touch and Tilt

[182]

What just happened?
We added collision to the asteroids and the player's ship. This gives the player the ability to
crash into and destroy the asteroids. We are utilizing a trigger collider to approximate collision
with the asteroid. Also, we make use of the Rigidbody component, allowing our ship to collide
with other things in the scene. Additionally, this gives us the advantage of being able to build
a complex collision shape out of the simple colliders that are provided by Unity. Although it is
technically possible to just use a MeshCollider to exactly match the shape of the ship, it is not
recommended. The Rigidbody and MeshCollider components do not mix well. Also, several
simple colliders are much faster for the computer to calculate than a single MeshCollider.

Have a go hero – adding points
It is great that we can make the player ship collide with the asteroids, but it doesn't mean
much in terms of a game. There is no penalty for the collision. This challenge is for you to
implement a scoring system similar to the one we used for the Tank Battle game from the
previous chapters. When the player collides with asteroids, subtract points from the score.
Use the SendMessage function on the other collider from the OnTriggerEnter function.
Don't just subtract points when the trigger is entered, because (as you will find out later)
the asteroids will not be colliding only with the player.

Creating the enemy
Flying around space with a handful of asteroids is great, but it doesn't make for much of a
fight. That is why we are going to add an enemy spaceship that will chase and shoot at the
player. We have no mesh to use for pathfinding, so we cannot use the techniques we learned
in the previous chapter. However, there are no buildings in space to navigate around, so the
chasing of the player will be much simpler.

Time for action – adding an enemy ship
To make our enemy ships, we will need a script to turn our enemy ship into a prefab:

1.	 The first thing we need to do is create a new script and call it EnemyShip. This script
will control the movement and shooting of the enemy ships.

2.	 The script starts off with several variables. The first two define the speed with which
the ship moves forward and how fast it turns.

public float moveSpeed = 8f;
public float turnSpeed = 0.5f;

Chapter 6

[183]

3.	 The next three variables are for controlling the shooting of the ship. First is the rate
at which bullets are fired. It is followed by the range that the ship has to be within to
fire at the player. Third is a holder for how long it has been since the last bullet was
fired. This will work with the rate of fire to dictate when the ship can fire again.

public float fireRate = 1.5f;
public float fireRange = 60f;
private float fireTime = 0;

4.	 The last two variables will hold a reference to the bullet prefab that will be fired and
the point from which the bullet will be released. This is similar to how we made the
enemy tanks shoot in the previous chapter. The difference is that space games tend
to have a lot of laser blasts flying around that force the player to dodge.

public GameObject bullet;
public Transform muzzlePoint;

5.	 In the Update function, we will do the work of actually shooting. It starts by tracking
how long it has been since a bullet was last fired. Then we check to see if it has been
long enough since the last firing in order to fire again, and exit the function if it is not.
The third line of code in the function checks the range. This is done in exactly the same
way as we checked to see if the asteroids moved too far away from the player. Next,
we check to make sure the ship is pointed at the player. This is done in the same way
as we did when the enemy tanks were to shoot at the player. A comparison of the
forward direction is done with the direction to the player to check the angle. If it is
pointing close enough at the player, the ship can start shooting. The shooting is done
with a call to the Instantiate function. By passing it the muzzlePoint variable's
position and rotation, the new bullet is automatically rotated. A separate script will be
handling the movement of the bullet. Finally, the time since the ship last fired is reset
to zero.

public void Update() {
 fireTime += Time.deltaTime;
 if(fireTime < fireRate) return;

 if(transform.position.sqrMagnitude > fireRange * fireRange)
return;

 if(Vector3.Angle(transform.forward, -transform.position) > 10)
return;

 Instantiate(bullet, muzzlePoint.position, muzzlePoint.rotation);
 fireTime = 0;
}

Specialties of the Mobile Device – Touch and Tilt

[184]

6.	 The next function is the LateUpdate function. We are going to use this function just
as we did for the asteroid. The first line of code just calls out to the PlayerShip script
to have the ship rotated and moved to fake the player's movement.

public void LateUpdate() {
 PlayerShip.Rotate(transform);

7.	 The next line of code applies movement to the ship. The process is similar to how
we made the enemy turrets rotate to face the player in the previous chapter. The
step variable is used to dictate how fast the ship turns towards the player. We
use the Slerp function to change the ship's current rotation towards the target
rotation. In this case, the rotation is the one that looks at the player. Lastly, the ship
is moved forward. Altogether, this results in movements similar to how a car turns.

float step = turnSpeed * Time.deltaTime;
Quaternion toPlayer = Quaternion.LookRotation(-transform.
position);
transform.rotation = Quaternion.Slerp(transform.rotation,
toPlayer, step);
transform.position += transform.forward * moveSpeed * Time.
deltaTime;

8.	 The last code snippet for the function and the script is the check to see if the ship is
too far away. It is exactly the same as the one used by the asteroid.

 if(transform.position.sqrMagnitude > 1e5) Destroy(gameObject);
}

9.	 Before we can put our enemy ship together, we need to make one more short
script. Create a new script and name it Bullet. As you might guess, this is the
script that will control the movement of the enemy bullets.

10.	This script starts with a single variable, that is, how fast the bullet will move
through space.

public float speed = 20f;

11.	Next, we make use of the LateUpdate function again. This function first uses
PlayerShip.Rotate to reposition the bullet, just as with all the other objects
in the game world. It then moves forward with speed. Last, it does the check for
being out of range.

public void LateUpdate() {
 PlayerShip.Rotate(transform);

 transform.position += transform.forward * speed * Time.
deltaTime;

Chapter 6

[185]

 if(transform.position.sqrMagnitude > 1e5) Destroy(gameObject);
}

12.	The last function for the script, OnTriggerEnter, works just like the one for the
asteroid. If the bullet makes contact with a ship, it will destroy itself.

public void OnTriggerEnter(Collider other) {
 Destroy(gameObject);
}

13.	Now that we have our scripts, the next step is to create the enemy ship and
bullet prefabs. To create the bullet, start by navigating to GameObject | Create
Other | Sphere.

14.	Rename the new sphere to Bullet and scale it to about half of its original size.

15.	Next, add the Bullet script to the object and be sure to check the Is Trigger
checkbox in its SphereCollider component. Without that box checked, the bullet
won't work properly.

16.	Finally, drag the object to the Prefabs folder to turn it into a prefab.

17.	Next, we need to make the enemy ship. Start by creating an empty GameObject
and renaming it to EnemyShipPivot.

18.	Add a copy of the EnemyShip model to the scene and make it a child of the pivot
point we just created. Be sure to rotate it to face forward along the z axis, and
position it to be centered on the pivot point.

19.	Next, use simple colliders and empty GameObject to create a collision shape for the
ship. This is exactly like what we did for the player's ship. Be sure to make all of the
colliders children of the enemy ship's pivot point.

20.	We need to create a muzzle point and position it in front of the enemy ship. Do it
just as we did for the tanks. Be sure to also make it a child of the ship's pivot point.

Specialties of the Mobile Device – Touch and Tilt

[186]

21.	Now, add the EnemyShip script and a Rigidbody component to the pivot point.

22.	Almost done. Drag the muzzle point from the Hierarchy window and drop it on the
appropriate slot in the script component in the Inspector. Also, drag-and-drop the
Bullet prefab from the Project window to the waiting slot.

23.	Finally, make the ship into a prefab by dragging it from the Hierarchy window to
the Prefabs folder.

24.	Add a couple of extra ships to the scene and try it out.

What just happened?
We created an enemy space ship. The ships will fly after the player and begin shooting when
within range. Like the asteroids, they move around the player to fake the player's movement.
However, instead of moving in a random direction, the enemy ships turn towards the player.
By slowing down how fast the ships can turn, they move in arcs rather than pivoting quickly
in place. Also, because of the Rigidbody component attached to the enemy ships, they can
collide with the asteroids that are in the scene.

Chapter 6

[187]

Have a go hero – skybox and fog
Now that we have several objects flying around in space, it is a good idea to make the scene
look a little better. For our Tank Battle game, we added a skybox to make the scene look like
it is actually on a planet. However, we are flying around in space. The challenge is for you to
find or make a skybox that looks like outer space. Also, adding some distant fog will obscure
objects as they move too far away from the player. If the fog is black, it will
look like the objects are swallowed by the blackness of deep space.

Controlling with touch
Now that we have several objects flying around in our space scene, including some that
will shoot at the player, we should give the player the ability to do more than just dodge.
One of the most obvious features of the modern mobile device is the touch screen. The
devices use the electrical conductivity of the user's finger and many tiny contact points
to determine the location that is being touched. Unity provides us with easy access to the
touch inputs. By combining the input with ray casts, as we did for making the tanks fire,
we can determine which object in the 3D space was touched by the user. For us, this
means we can give the player the ability to shoot at and destroy the objects in space.

Time for action – touch to shoot
For making use of the touch inputs, we will need to add a single script to our player's ship:

1.	 To give the player the ability to shoot, we need to first create a new script and call
it TouchShoot.

2.	 This script begins with a single variable. A LayerMask is used to selectively hit
objects with a raycast. There are essentially a lot of layers that should be hit. This
one will be used to determine what the player can or cannot shoot.

public LayerMask touchMask = -1;

3.	 The Update function is the only function in this script. It starts with a loop.
The Input class provides us with the touchCount value, which is simply a
counter for how many fingers are currently touching the device screen.

public void Update() {
 for(int i=0;i<Input.touchCount;i++) {

Specialties of the Mobile Device – Touch and Tilt

[188]

4.	 As we progress through the loop, we use the Input.GetTouch function to access
information about each touch. This line of code checks the phase of the touch. Every
touch has five potential phases: Began, Moved, Stationary, Ended, and Cancelled:

if(Input.GetTouch(i).phase == TouchPhase.Began) {

�� Began: This phase of touch is when the user first touches the screen.

�� Moved: This phase of touch is when the user moves his/her finger
across the screen.

�� Stationary: This phase of touch is the opposite of the previous phase;
it is when the finger is not moving across the screen.

�� Ended: This phase of touch is when the finger is lifted off the screen.
This is the normal way for a touch to complete.

�� Cancelled: This phase of touch is when an error occurs while tracking the
touch. This phase tends to occur most often when a finger is touching the
screen, but not moving for too long. The touch system is not perfect, so it
assumes it missed the finger being lifted off the screen and just cancels it.

5.	 Next, we create a pair of variables. The first is a Ray, which is just a container for
storing a point in space and a directional vector. The ScreenPointToRay function
is specially provided by the camera for converting touch positions from the 2D space
of the screen to the 3D space of the game world. As with our tanks, the second is a
holder for what was hit by our raycast.

Ray ray = Camera.main.ScreenPointToRay(Input.GetTouch(i).
position);
RaycastHit hit;

6.	 The last step for the function is to call the Raycast function. We pass the ray, and
the tracking variable to the function. Next, we have to give it a distance, and finally
the LayerMask. If an object is hit, it is destroyed. Also, there are several curly
braces required to close off the if statements, loop, and function.

 if(Physics.Raycast(ray, out hit, Mathf.Infinity, touchMask))
{
 Destroy(hit.transform.gameObject);
 }
 }
 }
}

7.	 To try the script out, simply add it to the PlayerShipPivot GameObject.
Be careful. At this point, if you were to touch the player's ship while testing,
it would be destroyed.

Chapter 6

[189]

8.	 In order to fix this issue, we need to create a new layer. Start by going to the menu
bar of Unity and clicking on Edit | Project Settings | Tags. This is just a second path
to the same location where we created layers for the Tank Battle game.

9.	 Click on the right of User Layer 8 and input Player in the field. This will create the
new layer.

10.	Select the PlayerShipPivot object in the Hierarchy window.

11.	 In the top-right corner of the Inspector window, select the layer we just created
from the Layers drop-down list.

12.	When Unity asks whether you want to change the children objects as well,
confirm that you do.

13.	For the TouchShoot script, deselect the new layer from the Touch Mask list.
This will allow the player to shoot everything but themselves.

14.	There is one last thing we need to do. Go to the menu bar of Unity and click on
Edit | Project Settings | Physics. This opens a new set of controls in the Inspector
window that adjust how the Physics engine runs.

15.	At the moment, we only care about the Raycasts Hit Triggers checkbox. Uncheck it.
If we don't, the players will hit the trigger volume that is around the asteroid when
they shoot, rather than the asteroid itself. It is not so great an issue for the asteroids.
But, if we were to create something, such as an explosive mine, the trigger volume
would be much larger. That would make it very odd-looking for shooting at the mine.

What just happened?
We gave the player the ability to shoot when they touch the screen. By looping through
the list of touches, the player is able to use more than one finger for shooting at targets.
The special ScreenPointToRay function provided by the camera allows us to change 2D
screen touches into 3D game world interactions. By making use of the LayerMask, we also
prevent the player from shooting and destroying themselves.

Have a go hero – healthy ships
The challenge here is to give the enemy ships some health. When we created the enemy
tanks in the previous chapter, we caused them to take a few shots from the player before
they would be destroyed. Do the same thing here for the enemy ships.

Specialties of the Mobile Device – Touch and Tilt

[190]

Spawning in space
So far, we have created a space game that allows the player to fly infinitely through space.
The player never actually moves; instead, the objects in the scene move around it to fake
the movement. We have asteroids that will fly in a random direction through space. We also
created enemy spaceships that fly after the player and shoot at them. Finally, we have the
ability to shoot at and destroy the objects in the scene. However, at this point we can quickly
run out of things to shoot at. Either they get too far away, or we destroy them. To fix this, we
will now create a system that will randomly spawn all that we have created around the player.

Time for action – creating a space spawn
Our last script will populate our space and will be attached to the player's ship, since it is the
center of the game world:

1.	 To fill our space with the objects, we need to create another script.
Name it SpaceSpawn.

2.	 We start it out with two variables. These two define the space within which the
new objects will be spawned. They will be created outside the minimum range
but within the maximum range.

public float minRange = 200f;
public float maxRange = 300f;

3.	 Next, we have two variables for controlling the frequency at which objects should
be spawned. These will work the same as the ones we used for making the enemy
ships shoot at the player.

public float frequency = 0.3f;
private float spawnTime = 0;

4.	 The final variable for this script, is an array. It is simply a list of all of the objects
that can be spawned. We will be filling it in a little bit, when we return to Unity
to set it up.

public GameObject[] spawnList = new GameObject[0];

5.	 Update is once again our function of choice for the script. We start it off by making
sure that there is something in the list to be spawned. If there are no objects to be
spawned, there is no point in continuing.

public void Update() {
 if(spawnList.Length <= 0) return;

Chapter 6

[191]

6.	 Next, we track how long it has been since the last spawn and check to see if it has
been long enough to spawn once more. Again, this works just like the shooting of
the enemy ships.

spawnTime += Time.deltaTime;
if(spawnTime < frequency) return;

7.	 Now, we need to figure out where to spawn the next object in space. To do this,
we first use Random.onUnitSphere to find a random direction. Next, we find
a random distance that lies within our min and max ranges. Finally, they are
multiplied together to give us a position.

Vector3 direction = Random.onUnitSphere;
float distance = Random.Range(minRange, maxRange);
Vector3 position = direction * distance;

8.	 To pick a random object, we use Random.Range and pass the length of the list of
objects to it. This will give us the index of one of the slots of the list. The following
line of code makes sure that there is an object in the slot. If there isn't, we cannot
spawn it.

int index = Random.Range(0, spawnList.Length);
if(spawnList[index] == null) return;

9.	 Next, we actually spawn the object using our good friend, the Instantiate
function. We pass the object we randomly selected, the position we found, and
finally, a random rotation to the Instantiate function. As a result, the object
is created in the scene and set into place.

Instantiate(spawnList[index], position, Random.rotation);

10.	Finally, we subtract the frequency variable from our time tracker to finish off
the function and the script. This will cause a spawn to occur on every frequency
tick without losing any time.

 spawnTime -= frequency;
}

11.	We now return to Unity to set up the script. Add it to the PlayerShipPivot
object. It will work as well here as anywhere else.

12.	To fill the list, just drag your prefabs from the Project window and drop them on
Spawn List in the Inspector window. The little triangle to the left of the field will let
you expand the list and see what is currently in it. If you want to adjust the chances
of the various objects appearing, just change how many of them are in the list.
There is nothing keeping you from putting nine references to the asteroid prefab
into the list and a single reference to the enemy ship prefab, to give the ship a one
in 10 chance of being spawned. Whatever you choose, use the list to set the object
chances and include at least one of each obstacle we have created.

Specialties of the Mobile Device – Touch and Tilt

[192]

13.	Finally, test it out. Hit play and fly around to see the objects spawn and fly around.

What just happened?
We created a system for spawning objects randomly in space. First, we tracked time in
the same way as we did for making the enemy ships shoot at the player. Next, we found
a random direction and the range with which we determined a position. After that, the
system selects a random object from the list and finally spawns it. In order to adjust the
chances of any single object appearing, we just adjust how often it appears in the list of
objects to be spawned, relative to the other objects in the list.

Have a go hero – more to spawn and shoot
Included in the starting assets for this chapter are two more asteroid meshes and a mine.
Using these, you can create more objects to be spawned in the game. The mine can also be
created with a much larger trigger volume. This would allow it to explode when ships get
close, not just hit it. If you were additionally inclined, you could at least make the asteroids
randomly pick a scale when they are spawned. This would give the appearance of even
greater variety in the asteroids, even though there are only a few.

Chapter 6

[193]

Also, try creating another ship or several other ships. Perhaps one is a transport ship and
it flees from the player. A hard one would be a ship that splits into two smaller ships when
destroyed. Or, just recreate your favorite space ships from your favorite sci-fi media. In this
game, the universe is the limit.

For the Tank Battle game, we created a turbo boost button for getting the player across the
city quickly. It is also useful for fleeing enemies. Implement it for the space fighter. It would
be useful for catching enemies and dodging bullets.

Pop Quiz – understanding Android components
Modern mobile devices have many parts that perform a huge variety of functions. Knowing
what they are and how they work together is the first step towards being able to use them.
Are the following statements true or false?

Q1. The magnometer and accelerometer work together to give position on a map.

1.	 True

2.	 False

Q2. The gyroscope detects rotation and movement of the device.

1.	 True

2.	 False

Q3. 2D positions on the touch screen can be translated into 3D positions in the game.

1.	 True

2.	 False

Q4. What line of code will allow us to translate the user's touch to a 3D position in the game?

1.	 Camera.main.ScreenPointToRay(Input.GetTouch(0).position)

2.	 Input.GetMouseButton(0)

3.	 Camera.main.WorldToScreenPoint(Input.GetTouch(0).position)

Q5. What line of code will give us the device's acceleration?

1.	 Input.gyro

2.	 Input.compass

3.	 Input.acceleration

Specialties of the Mobile Device – Touch and Tilt

[194]

Summary
In this chapter, we learned about the specialties of the modern mobile device. We created
a Space Fighter game to try it out. We gained access to the device's accelerometer to detect
when it is rotated. This gave our spaceship the ability to be steered. We also made use of the
touch screen to give a player the ability to shoot enemies in the game. Because we wanted
an infinite amount of space to fly through, we had to make it all without the player moving.
Instead, everything else moves around the player, faking the player's movement. It also
required a system that continuously spawned new enemies and obstacles around the player,
allowing us to keep flying and finding new things to play with.

In the next chapter, we will be taking a short break from our Space Fighter game. Almost
certainly the most popular mobile game on the market, Angry Birds is a distinct and not
uncommon type of game. In order to learn about Physics in Unity and the possibility of a
2D-style game, we will be making an Angry Birds clone. We will also take a look at Parallax
scrolling to create a pleasing background. Before you know it, we will be creating all of the
Angry Birds levels that you always wished you could play.

7
Throwing Your Weight Around –

Physics and a 2D Camera

In the previous chapter, we learned about the special features of a mobile
device and how to create touch and tilt controls. We also created a Space
Fighter game to use these new controls. The steering of the ship was done
by tilting the device and shooting by touching the screen. Using some special
movement tricks, we gave the player an infinite amount of space to fly and
enemies to fight.

In this chapter, we take a short break from the Space Fighter game to explore
Unity's physics engine. We will also take a look at options for creating a 2D game
experience. To do all of this, we will be recreating one of the most popular mobile
games on the market, Angry Birds. We will use physics to throw birds and destroy
structures. We will also take a look at the creation of a level-selection screen.

In this chapter, we will be covering the following topics:

�� Unity Physics

�� Parallax scrolling

�� Isometric camera

�� Level selection

We will be creating a new project for this chapter, so start up Unity and let's begin!

Throwing Your Weight Around – Physics and a 2D Camera

[196]

2D games in a 3D world
Perhaps the most underrealized thing when developing games is the fact that it's possible
to create 2D-style games in a 3D game engine such as Unity. As with everything else, it
comes with its own set of advantages and disadvantages, but the choice can be well worth
it for generating a pleasing game experience. The foremost of the advantages is that one
can use 3D assets for the game. This allows dynamic lighting and shadows to be easily
included. However, if using a 2D engine, any shadow would need to be painted directly into
the assets and you would be hard-pressed to make it dynamic. On the disadvantage side
is the use of 2D assets in the 3D world. It is completely possible to use them, but large file
sizes become necessary to achieve the desired detail and keep it from appearing pixelated.
Most 2D engines, however, make use of vector art that will keep the image's lines smooth
as it is scaled up and down. Also, one is able to use normal animations for the 3D assets, but
frame-by-frame animation is generally required for any 2D asset. Altogether, the advantages
have outweighed the disadvantages for many developers, creating a large selection of great
looking 2D games that you may never realize were actually made in a 3D game engine.
Now, we shall design another game by recreating the highly popular Angry Birds.

Time for action – preparing the world
Let's get started with preparing the world for the Angry Birds game:

1.	 To start it all off, we need to create a new project in Unity. Naming it Ch7_
AngryBirds will work well. Be sure to change the target platform to Android
and set the Bundle Identifier to an appropriate value.

2.	 Next, import the starting assets for this chapter and create some folders to keep
everything organized.

3.	 In Unity, it is very easy to turn a game from 3D to 2D. Simply select the Main
Camera object that is by default present in every new scene, find the Projection
value, and select Orthographic from the drop-down list.

Every camera has two options for how to render the game.
Perspective renders everything utilizing the distance from the
camera, imitating the real world; objects that are farther away
from the camera are drawn smaller than objects that are closer.
Orthographic renders everything without this consideration;
objects are not scaled based on their distance from the camera.

4.	 Initially, the amount of the scene that the camera views is far too large. To change
this, set the Size value to 5. This reduces the amount of space the camera will
render. This value will keep us focused on the action as the game is played.

Chapter 7

[197]

5.	 To make the camera properly usable, set its Position to 10 for the X axis, 3 for the
Y axis, and 0 for the Z axis. Also, set its Rotation for the Y axis to -90. Everything is
going to be positioned along the z axis, so our camera needs to be set to watch the
axis and be far away enough so that it is not in the action.

6.	 Next, we are going to need a ground. So, go to the menu bar of Unity and click on
GameObject, followed by Create Other, and finally, click on Cube. This will suit well
enough as a simple ground.

7.	 To make it look a little like a ground, create a green material and apply it to the Cube.

8.	 The ground cube needs to be large enough to cover the whole of our field of play.
To do this, set its Scale to 5 for the X axis, 10 for the Y axis, and 100 for the Z axis.
Also, set its Position to 0 for the X and Y axes, and 30 for the Z axis. Since nothing
will be moving along the x axis, the ground only needs to be large enough for the
other objects that will be in our scene to land on. It does, however, need to be
wide and tall enough to keep the camera from seeing the edges.

9.	 Right now, the ground looks rather dark due to the lack of light. From the menu
bar of Unity, click on GameObject, followed by Create Other, and lastly click on
Directional Light to add some brightness to the scene. It should be positioned
to shine on the side of the cube that faces the camera.

10.	Next, we need to keep all of the objects that will be flying around the scene from
straying too far and causing problems. To do this, we need to create some trigger
volumes. The simplest way to do this is to create three more cubes. Position one
at each end of the ground object and the last cube at about 50 units above. Then,
scale them to form a box with the ground. Each should be no thicker than a single
unit, and they need to be five units deep, the same as the ground. Next, remove
their Mesh Renderer and Mesh Filter components. This removes the visible box,
while leaving the collider volume. To change them to trigger volumes, check the
Is Trigger checkbox on each Box Collider component.

11.	To make the volumes actually keep objects from straying too far, we need to create
a new script. Create it and name it GoneTooFar.

12.	This script has a single, short function, OnTriggerEnter. We use it to destroy any
object that might enter the volume. This function is used by Unity's physics system
to detect when an object has entered a trigger volume. We will go into more detail
later but, for now, know that one of the two objects, either the volume or the object
entering it, needs a Rigidbody component. In our case, everything we might want to
remove when they enter the trigger will have a Rigidbody component.

public void OnTriggerEnter(Collider other) {
 Destroy(other.gameObject);
}

Throwing Your Weight Around – Physics and a 2D Camera

[198]

13.	Finally, return to Unity and add the script to the three trigger-volume objects.

What just happened?
We did the initial setup for our 2D game. By changing our camera view to Orthographic,
the view switches from a 3D game to a 2D one. We also created a ground and some trigger
volumes for our scene. Together, these will keep our birds and anything else from straying
too far.

Physics
In Unity, physics simulation primarily focuses on the use of the Rigidbody component. When
the Rigidbody component is attached to any object, it will be taken over by the physics engine.
The object will fall with gravity and bump into any object that has a collider. In our scripts,
making use of the OnCollision function and the OnTrigger function requires a Rigidbody
component to be attached to at least one of the two interacting objects. However, a Rigidbody
component can interfere with any specific movement we might cause the object to take. Every
Rigidbody, though, can be marked as kinematic, meaning the physics engine will not move it.
The CharacterController component that we used for our tank is a special, modified Rigidbody.
In this chapter, we will be making heavy use of the Rigidbody component to tie all of our birds,
blocks, and pigs into the physics engine.

Chapter 7

[199]

Building blocks
For our first physics objects, we will create the blocks that the pig castles are built out of. We
will be creating three types of blocks: wood, glass, and rubber. With these few simple blocks,
we will be able to easily create a large variety of levels and structures to smash with birds.

Time for action – creating planks
Each of the blocks we will be creating will be largely similar:

1.	 First, we will create the plank of wood. To do this, we need another cube. Rename it
Plank_Wood.

2.	 Set the plank's Scale to 2 for the X and Y axes, and 0.25 for the Z axis. Its scale on
the y and z axis define its size as seen by the player. The scale on the x axis makes
sure that it will be hit by other physics objects in the scene.

3.	 Next, create a new material using the plank_wood texture and apply it to the cube.

4.	 To convert this new wood plank into a physics object, add a Rigidbody component.
Make sure your plank is selected, go to the menu bar of Unity and click on
Component, followed by Physics; finally, click on Rigidbody.

5.	 We need to keep the plank from moving along the x axis and out of alignment
with our other physics objects as well as keeping it from rotating to show its other
sides to the player. To do this, we make use of the Constraints group of checkboxes
on the Rigidbody component. Check the checkbox for the X axis next to Freeze
Position and the Y and Z checkboxes next to Freeze Rotation. These will keep the
object from moving in ways we don't want it to.

6.	 To make the plank function properly within our game, we need to create a new
script and name it Plank.

7.	 This script begins with a bunch of variables. The first two are for tracking the
health of the plank. We need to separate the total amount of health from the
current health, so we will be able to detect when the object has been reduced
to half health. At that point, we will make use of our next three variables to
change the object's material to one that shows damage. The last variable is
used when the object runs out of health and is destroyed. We will use it to
increase the player's score.

public float totalHealth = 100f;
private float health = 100f;

public Material damageMaterial;

Throwing Your Weight Around – Physics and a 2D Camera

[200]

public Renderer plankRenderer;
private bool didSwap = false;

public int scoreValue = 100;

8.	 For the script's first function, we use Awake for initialization. We make sure
the object's current health is the same as its total health, and we make sure
the didSwap flag is set to false.

public void Awake() {
 health = totalHealth;
 didSwap = false;
}

9.	 Next, we make use of the OnCollisionEnter function. This is a special function,
triggered by the Rigidbody component, that gives us information about what
the object collided with and how. We use this information to find collision.
relativeVelocity.magnitude. This is the speed at which the objects collided,
and we use it as damage to reduce the current health. Next, the function checks to
see if the health has been reduced to half and calls the SwapToDamaged function if
it has. By using the didSwap flag, we make sure the function will only be called once.
Finally, for the function, it checks to see if the health has dropped below zero. If it has,
the object is destroyed and we call the LevelTracker script, which we will soon be
making, to add to the player's score.

public void OnCollisionEnter(Collision collision) {
 health -= collision.relativeVelocity.magnitude;

 if(!didSwap && health < totalHealth / 2f) {
 SwapToDamaged();
 }

 if(health <= 0) {
 Destroy(gameObject);
 LevelTracker.AddScore(scoreValue);
 }
}

10.	Finally for the script, we have the SwapToDamaged function. It starts by setting
the didSwap flag to true. Next, it checks to make sure the plankRenderer and
damageMaterial variables have references to other objects. Ultimately, it uses
the plankRenderer.sharedMaterial value to change to the damaged looking
material.

public void SwapToDamaged() {
 didSwap = true;

Chapter 7

[201]

 if(plankRenderer == null) return;
 if(damageMaterial == null) return;

 plankRenderer.sharedMaterial = damageMaterial;
}

11.	Before we can add our Plank script to our objects, we need to create the
LevelTracker script that was mentioned earlier. Create it now.

12.	This script is fairly short and starts with a single variable. The variable will track
the player's score for the level and is static so that it can be easily changed
as objects are destroyed for points.

private static int score = 0;

13.	Next, we use the Awake function to make sure the player starts at zero when
beginning a level.

public void Awake() {
 score = 0;
}

14.	Finally for the script, we add the AddScore function. This function simply takes
the amount of points passed to it and increases the player's score. It is also static,
so that it can be called by any object in the scene without needing a reference to
the script.

public static void AddScore(int amount) {
 score += amount;
}

15.	Back in Unity, we need to create a new material using the plank_wood_damaged
texture. This will be the material that the script will swap to.

16.	Add the Plank script to our Plank_Wood object. Connect the Damaged Material
reference to the new material and the Plank Renderer reference to the object's
Mesh Renderer component.

17.	As we create different types of planks, we can adjust the Total Health value to give
them different strengths. A value of 25 works pretty well for the wood planks.

18.	Next, create an empty GameObject and rename it LevelTracker.

19.	Add the LevelTracker script to the object and it will begin to track the
player's score.

20.	 If you want to see the wood plank in action, position it above the ground and hit
the play button. As soon as the game starts, Unity's physics will take over and drop
the plank with gravity. If it started out high enough, you will be able to see it switch
textures as it loses health.

Throwing Your Weight Around – Physics and a 2D Camera

[202]

21.	To make the other two planks that we need, select the Plank_Wood object and
press Ctrl + D twice to duplicate it. Rename one to Plank_Glass and the other
to Plank_Rubber.

22.	 Next, create three new materials. One should be purple for the rubber plank, one
should use the plank_glass texture for the glass plank, and the last material should
use the plank_glass_damaged texture for when the glass plank is damaged. Apply
the new materials to the proper locations for the new planks.

23.	As for the health of the new planks, a value of 15 for the glass and 100 for the
rubber will work well.

24.	Finally, turn your three planks into prefabs and use them to build a structure for
us to knock down. Feel free to scale them to make different-sized blocks, but leave
the x axis alone. Also, all of the blocks should be positioned at zero on the x axis
and your structure should be centered around about 30 on the z axis.

Chapter 7

[203]

What just happened?
We created the building blocks we needed for the structures that are going to be knocked
down in our game. We used a Rigidbody component to tie them into the physics engine.
Also, we created a script that keeps track of their health and swaps materials when it drops
below half.

Have a go hero – creating a stone block
Wood and glass work well as basic blocks. But, if we are going to make harder levels,
we need something a little stronger. Try your hand at making a stone block. Create two
textures and materials for it to show its pristine and damaged states.

Physics materials
Physics materials are special types of materials that specifically tell the physics engine how
two objects should interact. This does not affect the appearance of an object. It defines the
friction and bounciness of a collider. We will use them to give our rubber plank some bounce
and the glass plank some slide.

Time for action – sliding and bouncing
Physics materials are quick enough to implement and will allow us to complete this section
in four short steps:

1.	 Physics materials are created like everything else, in the Project panel. Right-click
inside the Project panel and click on Create | Physic Material. Create two physic
materials and name one Glass and the other Rubber.

2.	 Select one of them and take a look at it in the Inspector window. Right now,
we are only concerned with the first three values. The others are used for
more complex situations.

�� Dynamic Friction: This property is the amount of friction used when the
object is moving. A value of zero is no friction, such as ice, and a value of
one is a lot of friction, such as rubber.

�� Static Friction: This property functions the same as Dynamic Friction,
the difference being that it is used when the object is not moving.

�� Bounciness: This property is how much of an object's energy is reflected
when it hits something or is hit by something. Zero means none of the
energy is reflected, while a value of one will reflect all of it.

Throwing Your Weight Around – Physics and a 2D Camera

[204]

3.	 For the Glass material, set the two friction values to 0.1 and Bounciness to 0.
For the Rubber material, set the two friction values to 1 and Bounciness to 0.8.

4.	 Next, select your Plank_Glass prefab and take a look at its Box Collider
component. To apply your new physics materials, simply drag-and-drop one
from the Project to the Material slot. Do the same for your Plank_Rubber
prefab and, any time an object hits one of them, the materials will be used
to control their interaction.

What just happened?
We created a pair of physics materials. They control how two colliders interact when they run
into each other. Using them, we are given control over the amount of friction and bounciness
that is possessed by any collider.

Characters
Having a bunch of generic blocks is just the beginning of this game. Next, we are going to
create a few characters to add some life to the game. We are going to need some evil pigs
to destroy and some good birds to throw at them.

The enemy
Our first character will be the enemy pig. On their own, they don't actually do anything. So, they
are really just the wooden blocks we made earlier that happen to look like pigs. To make their
destruction the goal of the game, however, we are going to expand our LevelTracker script
to watch them and trigger a Game Over event if they are all destroyed. We will also expand it to
draw the score on the screen and make it save the score for later use. To demonstrate the use
of 2D assets in the 3D environment, the pigs are also created as flat textures.

Time for action – creating the pigs
Let's get started with creating the pigs for the Angry Birds game:

1.	 The pigs are created in a manner similar to that of the the wood planks. Start by
creating an empty GameObject and naming it Pig.

2.	 Next, create a plane, make it a child of the Pig object, and remove its Mesh
Collider component. We do this because of the rotation the plane will need to
face the camera. Being a child of the empty GameObject allows us to ignore
that rotation when working with the pig.

Chapter 7

[205]

3.	 Set the plane's local Position to 0 on each axis and set its Rotation to 90 on the X
axis, 270 on the Y axis, and 0 on the Z axis. This will make the plane face the camera.

4.	 Now, create two materials. Name one Pig_Fresh and the other Pig_Damage.
From their Shader drop-down list, select Transparent, followed by Cutout, and
finally Soft Edge Unlit. This allows us to make use of the the texture's alpha
channel and provide some transparency.

5.	 Finish off the materials by adding the pig_damage and pig_fresh textures to
them.

6.	 To the Pig object, add a Sphere Collider component, a Rigidbody component,
and the Plank script. We make use of the Sphere Collider component, rather
than the Mesh Collider component the plane came with, because the plane has
zero thickness and will, therefore, have many issues colliding with other objects.

7.	 To complete the pig's creation, apply your material to the plane and connect the
references in the Plank script. Finally, set the Constraints parameters on the
Rigidbody component just as we did for the other planks.

8.	 Now, turn the pig into a prefab and add it to your structure. Remember, leave them
at zero on the x axis, but feel free to adjust their size, health, and score values to
give them some variety.

9.	 Next, we need to expand the LevelTracker script. Open it up and we can add
some more code.

10.	First, we add some more variables at the beginning of the script. The first one,
as its name suggests, will hold a list of all the pigs in our scene. Next is a flag for
signaling that the game has ended. And finally, a string for telling the player
why the game has ended.

public Transform[] pigs = new Transform[0];

private static gameOver = false;
private static string message = "";

11.	Next, we need to add a line to the Awake function. This simply makes sure that the
gameOver flag is false when the level starts.

gameOver = false;

12.	We use the OnGUI function to draw a Game Over screen when the game has ended,
or for drawing the current score if it is still continuing.

public void OnGUI() {
 if(gameOver)
 DrawGameOver();

Throwing Your Weight Around – Physics and a 2D Camera

[206]

 else
 DrawScore();
}

13.	The DrawScore function takes the current score and uses GUI.Label to draw it in
the top-right corner of the screen.

private void DrawScore() {
 Rect scoreRect = new Rect(Screen.width – 100, 0, 100, 30);
 GUI.Label(scoreRect, "Score: " + score);
}

14.	The DrawGameOver function first uses the GUI.Box function to draw a dark box
over the whole of the screen, simultaneously drawing the Game Over message on
the screen. Next, it draws the player's final score in the middle of the screen. Below
that, it draws a button. This button will save the player's current score and load the
level-selection screen we will create later. The Application.LoadLevel function
is used to load any other scene in your game. All of the scenes you intend to load
have to be added to the Build Settings window found in the File menu and can be
loaded by using either their name or their index, as used here:

private void DrawGameOver() {
 Rect boxRect = new Rect(0, 0, Screen.width, Screen.height);
 GUI.Box(boxRect, "Game Over\n" + message);

 Rect scoreRect = new Rect(0, Screen.height / 2, Screen.width,
30);
 GUI.Label(scoreRect, "Score: " + score);

 Rect exitRect = new Rect(0, Screen.height / 2 + 50, Screen.
width, 50);
 if(GUI.Button(exitRect, "Return to Level Select")) {
 Application.LoadLevel(0);
 SaveScore();
 }
}

15.	 In the LateUpdate function, we call another function to check whether all the pigs
have been destroyed if the game is not yet over.

public void LateUpdate() {
 if(!gameOver)
 CheckPigs();
}

Chapter 7

[207]

16.	Next, we add the CheckPigs function. This function loops through the list of pigs
to see if they are all destroyed. Should it find one that is still around, it exits the
function. Otherwise, the game is flagged as being over and the message is set
to tell the player that they succeeded in destroying all of the pigs.

private void CheckPigs() {
 for(int i=0;i<pigs.Length;i++) {
 if(pigs[i] != null) return;
 }

 gameOver = true;
 message = "You destroyed the pigs!";
}

17.	The OutOfBirds function will be called by the slingshot we are going to create
later, when the player runs out of birds to launch at the pigs. If the game has not yet
ended, the function ends the game and sets an appropriate message for the player.

public static void OutOfBirds() {
 if(gameOver) return;

 gameOver = true;
 message = "You ran out of birds!";
}

18.	Finally, we have the SaveScore function. Here, we use the PlayerPrefs class. It
lets us easily store and retrieve small amounts of data, perfect for our current needs.
We just need to provide it with a unique key to save the data under. For that, we
use a short string combined with the level's index as provided by Application.
loadedLevel. Next, we use PlayerPrefs.GetInt to retrieve the last score that
was saved. If there isn't one, the zero that we passed to the function is returned
as a default value. Finally, we compare the new score with the old score and use
PlayerPrefs.SetInt to save the new score if it is higher.

private void SaveScore() {
 string key = "LevelScore" + Application.loadedLevel;
 int previousScore = PlayerPrefs.GetInt(key, 0);
 if(previousScore < score)
 PlayerPrefs.SetInt(key, score);
}

Throwing Your Weight Around – Physics and a 2D Camera

[208]

19.	Back in Unity, the pigs need to be added to the LevelTracker script's list. With
the LevelTracker script selected, drag-and-drop each pig to the Pigs value in
the Inspector window to add them.

What just happened?
We created the pigs and updated our LevelTracker script to track them. The pigs
are really just like the planks of wood, but are spheres instead of boxes. The updated
LevelTracker script watches for the instance when all of the pigs are destroyed and
triggers a Game Over screen when they are. It also handles the drawing of the score
while the game is being played and the saving of that score when the level is over.

The ally
Next, we need something to throw at the pigs and their fortification. Here, we will create
the simplest of the birds. The red bird is essentially just a rock. He has no special powers
and nothing particularly special about his code, besides health. You will also notice that
the bird is a 3D model, giving it the shadows that the pigs are missing.

Chapter 7

[209]

Time for action – creating the red bird
Let's get started with creating the red bird:

1.	 Although the red bird model is 3D, it is set up in a manner similar to that of the pig.
Create an empty GameObject, naming it Bird_Red, and add the appropriate model
from the birds model as a child, zeroing out its position. The model should be rotated
to align it along the z axis. If turned a little more toward the camera, the player is able
to see the bird's face while still giving the impression of looking down the field.

2.	 Next, give it a Sphere Collider component and a Rigidbody component, and set the
Constraints parameters.

3.	 Now, we need to create a new script named Bird. This script will be a base for all of
our birds, tracking their health and triggering their special powers when appropriate.

4.	 It starts with two variables. The first will keep track of the bird's current health.
The second is a flag so that the bird will only use its special power once. It is
marked as protected so the class that extends this script can use it while
keeping it from interference from outside the class.

public float health = 50;
protected bool didSpecial = false;

5.	 The Update function does three checks before activating the bird's special power.
First, it checks whether it has already been done, then whether the screen has been
touched, and finally whether the bird has a Rigidbody component and that it is not
being controlled by another script.

public void Update() {
 if(didSpecial)
 return;
 if(!Input.GetMouseButtonDown(0))
 return;
 if(rigidbody == null || rigidbody.isKinematic)
 return;

 DoSpecial();
}

6.	 In the case of the red bird, the DoSpecial function only sets its flag to true. It is
marked as virtual so that we can override the function for the other birds and
make them do some fancier things.

protected virtual void DoSpecial() {
 didSpecial = true;
}

Throwing Your Weight Around – Physics and a 2D Camera

[210]

7.	 The OnCollisionEnter function works just like the one for the planks,
subtracting health based on the strength of the collision and destroying
the bird if it runs out of health.

public void OnCollisionEnter(Collision collision) {
 health -= collision.relativeVelocity.magnitude;
 if(health < 0)
 Destroy(gameObject);
}

8.	 Return to Unity and add the script to the Bird_Red object.

9.	 Complete the bird's creation by turning it into a prefab and deleting it from the
scene. The slingshot we will be creating soon will handle the creation of the birds
when the game starts.

What just happened?
We created the red bird. It is set up just like our other physics objects. We also created a
script to handle the bird's health that is expanded later, when we create the other birds
for our game.

Controls
Next, we are going to give the player the ability to interact with the game. First, we will
create a slingshot to throw the birds. Following that will be the creation of the camera
controls. We will even create a nice background effect to round out the look of our game.

Attacking
To attack the pig fortress, we have our basic bird ammo. We need to create a slingshot to
hurl that ammo at the pigs. It will also handle the spawning of the birds at the beginning of
the level and automatically reload as birds are used. When the slingshot runs out of birds it
will notify the LevelTracker script and the game will end. Finally, we will create a script
that will keep the physics simulation from going on for too long. We don't want the player
forced to sit and watch a pig slowly roll across the screen. So, the script will, after a little
while, start damping the movement of the Rigidbody components to make them stop
rather than keep rolling.

Chapter 7

[211]

Time for action – creating the slingshot
Most of the slingshot's appearance will actually be an optical illusion:

1.	 To start off the creation of the slingshot, add the slingshot model to the scene
and position it at the origin. Apply a light brown material to the Fork model and
a dark brown one to the Pouch model.

2.	 Next, we need four empty GameObject. Make them all the children of the
Slingshot object.

�� Name the first FocalPoint and center it between the fork prongs of the
slingshot. This will be the point through which we fire all of the birds.

�� The second is Pouch. Make the pouch model a child of this object, setting
its position to 0.5 on the X axis and 0 on the Y and Z axes. This will make
the pouch appear in front of the current bird without having to make a
complete pouch model.

�� Third is BirdPoint; this will position the bird that is being fired. Make it a
child of the Pouch point and set its position to 0 on the X and Y axes and
0.3 on the Z axis.

�� Last is WaitPoint; the birds waiting to be fired will be positioned behind
this point. Set its position to 0 for the X axis, 0.5 for the Y axis, and -4 for
the Z axis.

3.	 Next, rotate the Fork model so that we can see both prongs of the fork. The values
of 270 for the X axis, 25 for the Y axis, and 0 for the Z axis will work well.

4.	 The Slingshot script will provide most of the interaction for the player. Create it now.

5.	 We start it with a group of variables. The first will keep a reference to the damper
that was mentioned earlier. The second group keeps track of the birds that will be
used in the level. Next is a group of variables that will track the current bird that is
ready to be fired. Fourth, we have some variables to hold references to the points
we created a moment ago. The maxRange variable is the distance from the focal
point to which the player can drag the pouch. The last two variables define how
powerfully the bird will be launched.

public RigidbodyDamper rigidbodyDamper;

public GameObject[] levelBirds = new GameObject[0];
private GameObject[] currentBirds;
private int nextIndex = 0;
public Transform waitPoint;

Throwing Your Weight Around – Physics and a 2D Camera

[212]

public Transform toFireBird;
public bool didFire = false;
public bool isAiming = false;

public Transform pouch;
public Transform focalPoint;
public Transform pouchBirdPoint;

public float maxRange = 3;

public float maxFireStrength = 25;
public float minFireStrength = 5;

6.	 As with our other scripts, we use the Awake function for initialization. The
levelBirds variable will hold references to all of the bird prefabs that will be
used in the level. We start by creating an instance of each one and storing it in the
currentBirds variable. The isKinematic variable is set to true on each bird's
Rigidbody so that it does not move when it is not in use. Next, it readies the first
bird to be fired and, finally, it positions the remaining birds behind the waitPoint.

public void Awake() {
 currentBirds = new GameObject[levelBirds.Length];
 for(int i=0;i<levelBirds.Length;i++) {
 GameObject nextBird = Instantiate(levelBirds[i]) as
GameObject;
 nextBird.rigidbody.isKinematic = true;
 currentBirds[i] = nextBird;
 }

 ReadyNextBird();
 SetWaitPositions();
}

7.	 The ReadyNextBird function first checks to see if we have run out of birds. If so,
it calls the LevelTracker script to trigger the Game Over event. The nextIndex
variable tracks the current location of the birds in the list to fire at the player. Next,
the function checks to make sure the next slot actually has a bird, incrementing the
index and trying for a new bird if it does not have one. If there is a bird available,
it is stored in the toFireBird variable and made a child of the BirdPoint object
we created; its position and rotation are zeroed out. Finally, the firing and aiming
flags are reset.

public void ReadyNextBird() {
 if(currentBirds.Length <= nextIndex) {
 LevelTracker.OutOfBirds();

Chapter 7

[213]

 return;
 }

 if(currentBirds[nextIndex] == null) {
 nextIndex++;
 ReadyNextBird();
 return;
 }

 toFireBird = currentBirds[nextIndex].transform;
 nextIndex++;

 toFireBird.parent = pouchBirdPoint;
 toFireBird.localPosition = Vector3.zero;
 toFireBird.localRotation = Quaternion.identity;

 didFire = false;
 isAiming = false;
}

8.	 The SetWaitingPositions function uses the position of the waitPoint to
position all of the remaining birds behind the slingshot.

public void SetWaitingPositions() {
 for(int i=nextIndex;i<currentBirds.Length;i++) {
 if(currentBirds[i] == null) continue;
 Vector3 offset = Vector3.forward * (i – nextIndex) * 2;
 currentBirds[i].transform.position = waitPoint.position –
offset;
 }
}

9.	 The Update function starts by checking to see if the player has fired a bird and
watches the rigidbodyDamper.allSleeping variable to see if all of the physics
objects have stopped moving. Once they do, the next bird is readied to fire. If we
have not fired, the aiming flag is checked and the DoAiming function is called to
handle the aiming. If the player is neither aiming nor has just fired a bird, we check
for touch input and, if the player touches close enough to the focal point, we flag
that the player has started aiming.

public void Update() {
 if(didFire) {
 if(rigidbodyDamper.allSleeping) {
 ReadyNextBird();
 SetWaitingPositions();
 }

Throwing Your Weight Around – Physics and a 2D Camera

[214]

 return;
 }
 else if(isAiming) {
 DoAiming();
 }
 else {
 if(Input.touchCount <= 0) return;
 Vector3 touchPoint = GetTouchPoint();
 isAiming = Vector3.Distance(touchPoint, focalPoint.position) <
maxRange / 2;
 }
}

10.	The DoAiming function checks to see if the player has stopped touching the screen
and fires the current bird when they have. If they have not, we position the pouch
at the current touch point. Finally, the pouch's position is limited to keep it within
the maximum range.

private void DoAiming() {
 if(Input.touchCount <= 0) {
 FireBird();
 return;
 }

 Vector3 touchPoint = GetTouchPoint();

 pouch.position = touchPoint;
 pouch.LookAt(focalPoint);

 float distance = Vector3.Distance(focalPoint.position, pouch.
position);
 if(distance > maxRange) {
 pouch.position = focalPoint.position – (pouch.forward *
maxRange);
 }
}

11.	The GetTouchPoint function uses ScreenPointToRay to find out where the
player is touching in 3D space. This is just as when we were shooting asteroids
but, because this game is 2D, we can just look at the ray's origin and return it
with a zero for its x axis value.

private Vector3 GetTouchPoint() {
 Ray touchRay = Camera.main.ScreenPointToRay(Input.GetTouch(0).
position);

Chapter 7

[215]

 Vector3 touchPoint = touchRay.origin;
 touchPoint.x = 0;
 return touchPoint;
}

12.	 Finally, for this script, we have the FireBird function. This function starts by setting
our didFire flag to true. Next, it finds out the direction to fire by finding the
direction from the pouch's position to the focalPoint. It also uses the distance
between them to determine the power to fire the bird with, clamping it between our
min and max strengths. Then, it releases the bird by clearing its parent and setting
its isKinematic flag to false. To launch it, we use the rigidbody.AddForce
function and pass the direction multiplied by the power to it. ForceMode.Impulse
is also passed to make the force applied once and immediately. Next, the pouch is
positioned at the focalPoint, as if it were actually under tension. And finally, we call
rigidbodyDamper.ReadyDamp to start the damping of the Rigidbody movement.

private void FireBird() {
 didFire = true;

 Vector3 direction = (focalPoint.position – pouch.position).
normalized;
 float distance = Vector3.Distance(focalPoint.position, pouch.
position);
float power = distance <= 0 ? 0 : distance / maxRange;
 power *= maxFireStrength;
 power = Mathf.Clamp(power, minFireStrength, maxFireStrength);

 toFireBird.parent = null;
 toFireBird.rigidbody.isKinematic = false;
 toFireBird.rigidbody.AddForce(direction * power, ForceMode.
Impulse);

 pouch.position = focalPoint.position;

 rigidbodyDamper.ReadyDamp();
}

13.	Before we can make use of the Slingshot script, we need to create the
RigidbodyDamper script.

14.	This script starts with six variables. The first two define how long to wait before the
damping movement and how much to damp it by. The next two track whether it
can apply the damping and when it will start. Next, is a variable that will be filled
with a list of all the rigidbodies that are currently in the scene. Finally, it has the
allSleeping flag that will be set to true when the movement has stopped.

public float dampWaitLength = 10f;
public float dampAmount = 0.9f;

Throwing Your Weight Around – Physics and a 2D Camera

[216]

private float dampTime = -1;
private bool canDamp = false;
private Rigidbody[] rigidbodies = new Rigidbody[0];

public bool allSleeping = false;

15.	The ReadyDamp function starts by using FindObjectsOfType to fill the list
with all of the rigidbodies. It sets when to start damping as the sum of the
current time and the wait length. It marks that the script can do its damping
and resets the allSleeping flag. Finally, it uses StartCoroutine to call
the CheckSleepingRigidbodies function. This is a special way of calling
functions to make them run in the background without blocking the rest of
the game from running.

public void ReadyDamp() {
 rigidbodies = FindObjectsOfType(typeof(Rigidbody)) as
Rigidbody[];
 dampTime = Time.time + dampWaitLength;
 canDamp = true;
 allSleeping = false;

 StartCoroutine(CheckSleepingRigidbodies());
}

16.	 In the FixedUpdate function, we first check to see if we can damp the movement
and whether it is time to do it. If it is, we loop through all of the rigidbodies,
applying our damp to each one's rotational and linear velocity. Those that are
kinematic, controlled by scripts, and already sleeping, meaning they stopped
moving, are skipped.

public void FixedUpdate() {
 if(!canDamp || dampTime > Time.time) return;

 foreach(Rigidbody next in rigidbodies) {
 if(next != null && !next.isKinematic && !next.IsSleeping()) {
 next.angularVelocity *= dampAmount;
 next.velocity *= dampAmount;
 }
 }
}

Chapter 7

[217]

17.	 The CheckSleepingRigidbodies function is special and will run in the background.
This is made possible by the IEnumerator flag at the beginning of the function and
the yield return null line in the middle. Together, these allow the function to
pause regularly and keep from freezing the rest of the game while it waits for the
function to complete. The function starts by creating a check flag and using it to check
if all of the rigidbodies have stopped moving. If one is found still moving, the flag is set
to false and the function pauses until the next frame, when it will try again. When it
reaches the end, because all of the rigidbodies are sleeping, it sets the allSleeping
flag to true, so that the slingshot can ready the next bird. It also stops itself from
damping while the player is getting ready to fire the next bird.

private IEnumerator CheckSleepingRigidbodies() {
 bool sleepCheck = false;

 while(!sleepCheck) {
 sleepCheck = true;

 foreach(Rigidbody next in rigidbodies) {
 if(next != null && !next.isKinematic && !next.IsSleeping())
{
 sleepCheck = false;
 yield return null;
 break;
 }
 }
 }

 allSleeping = true;
 canDamp = false;
}

18.	Finally, we have the AddBodiesToCheck function. This function will be used by
anything that spawns new physics objects after the player has fired the bird. It starts
by creating a temporary list and expanding the current one. Next, it adds all of the
values from the temporary list to the expanded one. Finally, the list of rigidbodies
is added after those of the temporary list.

public void AddBodiesToCheck(Rigidbody[] toAdd) {
 Rigidbody[] temp = rigidbodies;
 rigidbodies = new Rigidbody[temp.Length + toAdd.Length];

 for(int i=0;i<temp.Length;i++) {
 rigidbodies[i] = temp[i];
 }

Throwing Your Weight Around – Physics and a 2D Camera

[218]

 for(int i=0;i<toAdd.Length;i++) {
 rigidbodies[i + temp.Length] = toAdd[i];
 }
}

19.	 Return to Unity and add the two scripts to the Slingshot object. On the Slingshot
script component, connect the references to the Rigidbody Damper component and
each of the points. Also, add to the Level Birds list as many references to the red bird
as you want for the level.

20.	To keep objects from rolling back and through the slingshot, create a Box Collider
component and position it at the stock of the Fork model.

21.	To finish off the look of the slingshot, we need to create the elastic bands that tie
the pouch to the fork. We will do this by first creating the SlingshotBand script.

22.	The script starts with two variables. One for the point that the band will end at and
one to reference the LineRenderer that will draw it.

public Transform endPoint;
public LineRenderer lineRenderer;

23.	The Awake function makes sure the lineRenderer variable has only two points
and sets their initial positions.

public void Awake() {
 if(lineRenderer == null) return;
 if(endPoint == null) return;

 lineRenderer.SetVertexCount(2);
 lineRenderer.SetPosition(0, transform.position);
 lineRenderer.SetPosition(1, endPoint.position);
}

24.	 In the LateUpdate function, we set the lineRenderer variable's end position
to the endPoint value. This point will move around with the pouch, so we need
to constantly update the renderer.

public void LateUpdate() {
 if(endPoint == null) return;
 if(lineRenderer == null) return;

 lineRenderer.SetPosition(1, endPoint.position);
}

25.	Return to Unity and create an empty GameObject. Name it Band_Near and make it
a child of the Slingshot object.

Chapter 7

[219]

26.	As children of this new point, create a cylinder and a second empty GameObject,
named Band.

27.	 Give the cylinder a brown material and position it near the prong of the slingshot fork.

28.	To the Band object, add a Line Renderer component found under Effects in the
Component menu. After positioning it in the center of the cylinder, add the
SlingshotBand script to the object.

29.	To the Line Renderer under Materials, you can put your brown material in the slot
to color the band. under Parameters. Set the Start Width to 0.5 and the End width
to 0.2 to set the size of the line.

30.	Next, create one more empty GameObject and name it BandEnd_Near. Make it a
child of the Pouch object and position it inside the pouch.

31.	Now, connect the script's references to its line renderer and end point.

32.	To make the second band, duplicate the four objects we just created and position
them far from the prong of the fork. The end point for this band can just be moved
back along the x axis to keep it out of the way of the birds.

33.	Finally, turn the whole thing into a prefab so it can be easily reused in other levels.

Throwing Your Weight Around – Physics and a 2D Camera

[220]

What just happened?
We created the slingshot that will be used to fire birds. We used techniques we learned in
the previous chapter to handle touch input and track the player's finger while they aim and
shoot. If you save your scene and position the camera to look at the slingshot, you will notice
that it is complete if not entirely playable. Birds can be fired at the pig fortress, although we
can only see the destruction from within Unity's Scene view.

Watching
The game is technically playable at this point, but it is kind of hard to see what is going
on. Next, we will create a system to control the camera. It will allow the player to drag the
camera left and right, follow the bird when it is launched and return to the slingshot when
everything stops moving. There will also be a set of limits to keep the camera from going
too far and viewing things we do not want the player to see.

Time for action – controlling the camera
We will only need one, fairly short script to control and manage our camera:

1.	 To start and to keep everything organized, create a new empty GameObject and
name it CameraRig. Also, to keep it simple, set its position to zero on each axis.

2.	 Next, create three more empty GameObject and name them LeftPoint,
RightPoint, and TopPoint. Set their X axis positions to 5. Position the LeftPoint
to be in front of the slingshot and at 3 on the Y axis. The RightPoint needs to be
positioned in front of the pig structure you created. The TopPoint can be over the
slingshot, but needs to set to 8 on the Y axis. These three points will define the limits
of where our camera can move when being dragged and following birds.

3.	 Make all three points, and the Main Camera object, children of the
CameraRig object.

4.	 Now, we create the CameraControl script. This script will control all of the
movement and interaction with the camera.

5.	 Our variables for this script start with a reference to the slingshot; we need this so
we can follow the current bird when it is fired. Next are the references to the points
we just created. The next group of variables control how long the camera will sit
without input before returning to look at the slingshot and how fast it will return.
The dragScale variable controls how fast the camera actually moves when the
player drags their finger across the screen, allowing us to keep the scene moving
with the finger. The last group is to control whether the camera can follow the
current bird and how fast it can do so.

Chapter 7

[221]

public Slingshot slingshot;

public Transform rightPoint;
public Transform leftPoint;
public Transform topPoint;

public float waitTime = 3f;
private float headBackTime = -1;
private Vector3 waitPosition;
public float headBackDuration = 3f;

public float dragScale = 0.075f;

private bool followBird = false;
private Vector3 followVelocity = Vector3.zero;
public float followSmoothTime = 0.1f;

6.	 In the Awake function, we first make certain the camera is not following a bird and
make it wait before heading to look at the slingshot. This allows us to initially point
the camera to the pig fortress when the level starts and move to the slingshot after
giving the player a chance to see what they are up against.

public void Awake() {
 followBird = false;
 StartWait();
}

7.	 The StartWait function sets the time when it will start to head back to the slingshot
and records the position that it is heading back from. This allows us to create a smooth
transition.

public void StartWait() {
 headBackTime = Time.time + waitTime;
 waitPosition = transform.position;
}

8.	 Next, we have the Update function. This one starts by checking whether the
slingshot has fired. If it hasn't, it checks to see whether the player has started
aiming, signaling that the bird should be followed and zeroing out the velocity
if they have. If they have not, the followBird flag is cleared. Next, the function
checks whether it should follow and does so if it should, also calling the StartWait
function in case this is the frame in which the bird is destroyed. If it should not
follow the bird, it checks for touch input and drags the camera if it finds any. The
wait is again started in case the player removes their finger in this frame. Finally, it
checks to see if the slingshot is done firing the current bird and if it is time to head
back. Should both be true, the camera moves back to pointing at the slingshot.

public void Update() {
 if(!slingshot.didFire) {

Throwing Your Weight Around – Physics and a 2D Camera

[222]

 if(slingshot.isAiming) {
 followBird = true;
 followVelocity = Vector3.zero;
 }
 else {
 followBird = false;
 }
 }

 if(followBird) {
 FollowBird();
 StartWait();
 }
 else if(Input.touchCount > 0) {
 DragCamera();
 StartWait();
 }

 if(!slingshot.didFire && headBackTime < Time.time) {
 BackToLeft();
 }
}

9.	 The FollowBird function starts by making sure there is a bird to follow by checking
the toFireBird variable on the Slingshot script and stops following if a bird is not
found. Should there be a bird, the function then determines a new point to move to
that will look directly at the bird. It then uses the Vector3.SmoothDamp function
to smoothly follow the bird. This function works similar to a spring—the farther away
it is from its target position, the faster it moves the object. The followVelocity
variable is used to keep it moving smoothly. Finally, it calls another function to limit
the camera's position within those bounding points we set up earlier.

private void FollowBird() {
 if(slingshot.toFireBird == null) {
 followBird = false;
 return;
 }

 Vector3 targetPoint = slingshot.toFireBird.position;
 targetPoint.x = transform.position.x;

 transform.position = Vector3.SmoothDamp(transform.position,
targetPoint, ref followVelocity, followSmoothTime);
 ClampPosition();
}

Chapter 7

[223]

10.	 In the DragCamera function, we use the deltaPosition value of the current
touch to determine how far it has moved since the last frame. By scaling this value
and subtracting the vector from the camera's position, the function moves the
camera as the player drags across the screen. This function also calls upon the
function to clamp the camera's position.

private void DragCamera() {
 transform.position -= new Vector3(0, 0, Input.GetTouch(0).
deltaPosition.x * dragScale);
 ClampPosition();
}

11.	The ClampPosition function starts by taking the camera's current
position. It then clamps the z position to be between those of the leftPoint
and rightPoint variables' z positions. Next, the y position is clamped between
the leftPoint and topPoint variables' positions. Finally, the new position is
reapplied to the camera's transform.

private void ClampPosition() {
 Vector3 clamped = transform.position;
 clamped.z = Mathf.Clamp(clamped.z, leftPoint.position.z,
rightPoint.position.z);
 clamped.y = Mathf.Clamp(clamped.y, leftPoint.position.y,
topPoint.position.y);
 transform.position = clamped;
}

12.	Finally, we have the BackToLeft function. It starts by using the time and
our duration variable to determine how much progress in returning to the
slingshot the camera will have made. It records the camera's current position
and uses Mathf.SmoothStep on both the z and y axes to find a new position
that is the appropriate distance between the waitPosition variable and the
leftPoint variable. Finally, the new position is applied.

private void BackToLeft() {
 float progress = (Time.time – headBackTime) / headBackDuration;
 Vector3 newPosition = transform.position;
 newPosition.z = Mathf.SmoothStep(waitPosition.z, leftPoint.
position.z, progress);
 newPosition.y = Mathf.SmoothStep(waitPosition.y, leftPoint.
position.y, progress);
 transform.position = newPosition;
}

13.	Next, return to Unity and add the new script to the Main Camera object. Connect
the references to the slingshot and each of the points to finish it off.

14.	 Position the camera to point at your pig fortress and turn the whole rig into a prefab.

Throwing Your Weight Around – Physics and a 2D Camera

[224]

What just happened?
We created the camera rig that will let the player watch all of the action as they play the
game. The camera will now follow the birds as they are fired from the slingshot and can
now be dragged by the player. By keying off the positions of a few objects, this movement
is limited to keep the player from seeing things we don't want them to. If the camera is
left idle long enough, it will also return to look at the slingshot.

Have a go hero – more levels
Now that we have all of the pieces needed to make a complete level, we need some more
levels. We need at least two more levels. You can use the blocks and pigs to create any level
you might want. It is a good idea to keep the pig structures centered at about 30 on the Z
axis. Also, think about the difficulty of the level while making it, so that you can end up with
an easy, medium, and hard level.

A better background
A great feature of many 2D games is a parallax scrolling background. This simply means that
the background is created in layers that scroll by at different speeds. Think of it as if looking
out the window of your car. The objects that are far away appear to hardly move, while the
ones that are near move by quickly. In a 2D game, it gives the illusion of depth and adds a
nice touch to the look of the game. For this background, we will be layering several materials
on a single plane.

Time for action – creating the parallax background
There is an alternative method of creating and utilizing a second camera, but ours will make
use of a single script that additionally allows us to control the speed of each layer:

1.	 We will start this section with the creation of the ParallaxScroll script.

2.	 This script starts with three variables. The first two keep track of each material
and how fast they should scroll. The third keeps track of the camera's last position,
so we can track how far it moves in each frame.

public Material[] materials = new Material[0];
public float[] speeds = new float[0];

private Vector3 lastPosition = Vector3.zero;

3.	 In the Start function, we record the camera's beginning position. We use Start
instead of Awake here, in case the camera needs to do any special movement at
the beginning of the game.

Chapter 7

[225]

public void Start() {
 lastPosition = Camera.main.transform.position;
}

4.	 Next, we use the LateUpdate function to make changes after the
camera has moved about. It starts by finding the camera's new position and
comparing the z axis values to determine how far it moved. Next, it loops through
the list of materials. The loop first gathers the current offset of its texture using
mainTextureOffset. Next, the camera's movement multiplied by the material's
speed is subtracted from the offset's x axis to find a new horizontal position. Then,
the new offset is applied to the material. Finally, the function records the camera's
last position for the next frame.

public void LateUpdate() {
 Vector3 newPosition = Camera.main.transform.position;
 float move = newPosition.z – lastPosition.z;

 for(int i=0;i<materials.Length;i++) {
 Vector2 offset = materials[i].mainTextureOffset;
 offset.x -= move * speeds[i];
 materials[i].mainTextureOffset = offset;
 }

 lastPosition = newPosition;
}

5.	 Return to Unity and create six new materials. One for each of the
background textures: sky, hills_tall, hills_short, grass_light, grass_
dark, and fronds. All of the materials, except for the sky, need to use the Diffuse
shader under Transparent in the Shader drop-down list. If they do not, we will not
be able to see all of the textures when they are layered.

6.	 We also need to adjust the Tiling of each of these new materials. For all
of them, leave the Y axis as 1. For the X axis, set 5 for the sky, 6 for hills_tall,
7 for hills_short, 8 for grass_dark, 9 for fronds, and 10 for grass_light.
This will offset all of the features of the textures so a long pan does not see features
regularly lining up.

7.	 Next, create a new plane. Name it Background and remove its Mesh
Collider component.

8.	 Position it at -5 on the X axis, 7 on the Y axis, and 30 on the Z axis. Set its rotation to
90 for both the X and Y axes and 0 for Z. Also, set the scale to 10 for the X axis, 1 for
the Y axis, and 1.5 for the Z axis. Altogether, these position the plane as facing the
camera and filling the background.

Throwing Your Weight Around – Physics and a 2D Camera

[226]

9.	 In the plane's Mesh Renderer component, expand the Materials list and set the
Size to 6. Add each of our new materials to the list slots in the order of sky, hills_
tall, hills_short, grass_dark, fronds, grass_light. Do the same for the
Materials list in the Parallax Scroll script component.

10.	Finally, in the Parallax Scroll script component, set the Size of the Speeds
list to 6 and input the following values in the order of 0.03, 0.024, 0.018,
0.012, 0.006, 0. These values will move the materials gently and evenly.

11.	Turning the background into a prefab, at this point, will make it easy to reuse later.

What just happened?
We created a parallax scroll effect. This effect will pan a series of background textures, giving
the illusion of depth in our 2D game. To easily see it in action, hit play and grab the camera in
the Scene view, moving it along the z axis to see the background change.

Have a go hero – dark of the night
We have two other levels to add backgrounds to. Your challenge here is to create your
own background. Use the techniques you learned in this section to create a night-style
background. It could include a stationary moon while everything else scrolls in the shot.
For an added trick, create a cloud layer that slowly pans across the screen as well as
with the camera and the rest of the background.

Chapter 7

[227]

The flock variety
There is one last set of assets we need to create for our levels, the other birds. We will create
three more birds that each have a unique special ability: a yellow bird that accelerates, a blue
bird that splits into multiple birds, and a black bird that explodes. With these our flock will
be complete.

To make the creation of these birds easier, we will be making use of a concept called
inheritance. Inheritance allows a script to expand upon the functions it is inheriting
without the need to rewrite them. If used correctly, this can be very powerful and, in
our case, will aid in the quick creation of multiple characters that are largely similar.

The yellow bird
First, we will create the yellow bird. Largely, this bird functions exactly as the red bird.
However, when the player touches the screen, the bird's speed increases. By extending
the Bird script that we created earlier, this bird's creation becomes quite simple.

Time for action – creating the yellow bird
Because of the power of inheritance, the script we are creating here consists of only a handful
of lines of code:

1.	 Start by creating the yellow bird in the same way as the red bird, using the
YellowBird model instead.

2.	 Instead of using the Bird script, we will create the YellowBird script.

3.	 This script needs to extend the Bird script, so replace MonoBehaviour with
Bird on line four. It should look similar to the following code snippet:

public class YellowBird : Bird {

4.	 This script adds a single variable that will be used to multiply the bird's current velocity.

public float multiplier = 2f;

5.	 Next, we override the DoSpecial function and multiply the bird's
rigidbody.velocity when it is called:

protected override void DoSpecial() {
 didSpecial = true;
 rigidbody.velocity *= multiplier;
}

6.	 Return to Unity, add the script to your new bird, and turn it into a prefab. Add some
to the list on your slingshot to use the bird in your level.

Throwing Your Weight Around – Physics and a 2D Camera

[228]

What just happened?
We created the yellow bird. This bird is simple. It directly modifies its velocity to suddenly
gain a boost of speed when the player touches the screen. As you will soon see, we use this
same style of script creation to create all of our birds.

The blue bird
Next, we create the blue bird. This bird splits into three birds when the player touches the
screen. It will also extend the Bird script.

Time for action – creating the blue bird
The blue bird will again make use of inheritance, reducing the amount of code that needs to
be written to create the bird:

1.	 Again, start building your blue bird the same way as the previous two, substituting
the appropriate model. You should also adjust the Radius of the Sphere Collider
component to align appropriately with the smaller size of this bird.

2.	 Next, we create the BlueBird script.

3.	 Again, adjust line four so the script extends Bird instead of MonoBehaviour.

public class BlueBird : Bird {

4.	 This script has three variables. The first is a list of prefabs to spawn when
the bird splits. Next is the angle difference between each new bird that will
be launched. Finally is a value to spawn the birds a little ahead of their current
position to keep them from getting stuck inside each other.

public GameObject[] splitBirds = new GameObject[0];
public float launchAngle = 15f;
public float spawnLead = 0.5f;

5.	 Next, we override the DoSpecial function and start, as with the others, by
marking that we made our special move. Next, it calculates half of the number
of birds to spawn and creates an empty list for storing the rigidbodies of the
newly spawned birds.

protected override void DoSpecial() {
 didSpecial = true;

 int halfLength = splitBirds.Length / 2;
 Rigidbody[] newBodies = new Rigidbody[splitBirds.Length];

Chapter 7

[229]

6.	 The function continues by looping through the list of birds, skipping the slots that
are empty. It spawns the new birds at its position, continuing to the next if there
is a missing Rigidbody component. The new Rigidbody component is then stored
in the list.

 for(int i=0;i<splitBirds.Length;i++) {
 if(splitBirds[i] == null) continue;

 GameObject next = Instantiate(splitBirds[i], transform.
position, transform.rotation) as GameObject;
 if(next.rigidbody == null) continue;

 newBodies[i] = next.rigidbody;

7.	 Using Quaternion.Euler, a new rotation is created that will angle the new bird
along a path split off from the main path. The new bird's velocity is set to the rotated
velocity of the current bird. It is then moved forward along its new path to get out of
the way of the other birds being spawned.

 Quaternion rotate = Quaternion.Euler(launchAngle * (i –
halfLength), 0, 0);
 next.rigidbody.velocity = rotate * rigidbody.velocity;
 next.transform.position += next.rigidbody.velocity.normalized
* spawnLead;
 }

8.	 After the loop, the function uses FindObjectOfType to find the slingshot
that is currently in the scene. If found, it is changed to track the first new bird
spawned as the one that was fired. The new list of rigidbodies is also set to the
rigidbodyDamper variable to be added to its list of rigidbodies. Finally, the
script destroys the bird it is attached to, completing the illusion that the bird
has split apart.

 Slingshot slingshot = FindObjectOfType(typeof(Slingshot)) as
Slingshot;
 if(slingshot != null) {
 slingshot.toFireBird = newBodies[0].transform;
 slingshot.rigidbodyDamper.AddBodiesToCheck(newBodies);
 }

 Destroy(gameObject);
}

Throwing Your Weight Around – Physics and a 2D Camera

[230]

9.	 Before you add the script to your new bird, we actually need two blue birds: one
that splits and one that does not. Duplicate your bird and name one Bird_Blue_
Split and the other Bird_Blue_Normal. To the split bird add the new script
and to the normal bird add the Bird script.

10.	Turn both birds into prefabs and add the normal bird to the other's list of birds to be
split into.

What just happened?
We created the blue bird. This bird splits into multiple birds when the user taps the screen.
The effect actually requires two birds that look identical. One that does the splitting and
another that is split into but does nothing special.

Have a go hero – creating a rainbow bird
It is actually possible to add anything we want to spawn to the blue bird's list of things to
split into. Your challenge here is to create a rainbow bird. This bird could split into different
types of birds, not just blue ones. Or, perhaps it is a stone bird that splits into stone blocks.
For an extended challenge, create a mystery bird that picks a bird from its list randomly
when it splits.

The black bird
Finally, we have the black bird. This bird explodes when the player touches the screen.
As with all the birds discussed previously, it will extend the Bird script.

Time for action – creating the black bird
As with the two birds discussed earlier, inheriting from the red bird makes the black bird's
creation much easier:

1.	 As with the others, this bird is initially created in the same way as the red bird,
readjusting the Radius for its increased size.

2.	 Again, we create a new script to extend the Bird script. This time it is called
BlackBird.

3.	 Do not forget to adjust line four to extend the Bird script and not
MonoBehaviour.

public class BlackBird : Bird {

4.	 This script has two variables. The first is the size of the explosion and the second
is its strength.

Chapter 7

[231]

public float radius = 2.5f;
public float power = 25f;

5.	 Once more we override the DoSpecial function, first marking that we did it. Next,
we use Physics.OverlapSphere to acquire a list of all of the objects that are
within the range of the bird's explosion. The function then loops through the list,
skipping any empty slots and those without rigidbodies. If the object does exist and
has a Rigidbody component attached, we call AddExplosionForce to simulate
the way an explosion's strength against you is reduced the further you are from it.
We give the function the explosion's strength, followed by the bird's position and
radius. The value 3 is a vertical modifier. It does not interfere with the distance an
object is from the explosion but, instead, adjusts the angle the explosion hits it at.
This 3 moves the force to below the object, because explosions that throw debris
up are cooler than ones that push out. ForceMode.Impulse is again used to
apply the force immediately. Finally, the function destroys the exploded bird.

protected override void DoSpecial() {
 didSpecial = true;

 Collider[] colliders = Physics.OverlapSphere(transform.position,
radius);

 foreach(Collider hit in colliders) {
 if(hit == null) continue;
 if(hit.rigidbody != null)
 hit.rigidbody.AddExplosionForce(power, transform.position,
radius, 3, ForceMode.Impulse);
 }

 Destroy(gameObject);
}

6.	 As with the last two, apply your new script to your new bird and turn it into a
prefab. You now have four birds to choose from when selecting the slingshot
arsenal for each level.

What just happened?
We created our fourth and last bird, the black bird. This bird explodes when the user touches
the screen, throwing anything that might be near into the sky. This can be a fun bird to play
around with and effective for destroying your pig forts.

Throwing Your Weight Around – Physics and a 2D Camera

[232]

Have a go hero – explosive blocks
Now that you know how to cause explosions, we have another challenge. Create an
explosive crate. Extend the Plank script to make it. When enough damage is done to
the crate, trigger the explosion. For an added challenge, instead of making the crate
explode, configure it to throw out a few bombs that explode when they hit something.

Level selection
Finally, we need to create our level selection. From this scene, we will be able to access and
start playing all of the levels we created earlier. We will also display the current high scores
for each level.

Time for action – creating the level selection
A new scene and a single script will serve us well in managing our level selection:

1.	 This last section begins by saving your current scene and hitting Ctrl + N to create a
new one, named LevelSelect.

2.	 For this scene, we need to create a single, short script also named LevelSelect.

3.	 The first and only variable defines the size of the buttons that will appear on screen.

public int buttonSize = 100;

Chapter 7

[233]

4.	 The only function is the OnGUI function. This function starts with a loop. It will loop
through three times for the three levels we should have created earlier. A Rect
variable is created and initialized to the buttonSize. The x and y values are then
set to position the buttons in a row, centered on the screen. Next, the current high
score for the level is retrieved, using PlayerPrefs.GetInt and the same key
creation that we used in our LevelTracker script. Then, the function creates a
string to hold the message that will appear on the button. Finally, the button is
drawn and, when clicked, Application.LoadLevel is used to load the scene
and start the user playing that level.

public void OnGUI() {
 for(int i=0;i<3;i++) {
 Rect next = new Rect(0,0, buttonSize, buttonSize);
 next.x = (Screen.width / 2) – (buttonSize * 1.5f) +
(buttonSize * i);
 next.y = (Screen.height / 2) – (buttonSize / 2f);

 int levelScore = PlayerPrefs.GetInt("LevelScore" + (i + 1),
0);
 string text = "Level " + (i + 1) + "\nScore: " + levelScore;

 if(GUI.Button(next, text)) {
 Application.LoadLevel(i + 1);
 }
 }
}

5.	 Return to Unity and add the script to the Main Camera object.

6.	 Finally, open the Build Settings and add your scenes to the Scenes in Build
list. Clicking and dragging on the scenes in the list will let you reorder them.
Make sure your LevelSelect scene is first and has the index of zero to the right
of it. The rest of your scenes can appear in whatever order you desire. But be
aware that they will be associated with the buttons in the same order.

What just happened?
We created a level-selection screen. It uses a loop to create a list of buttons associated with
the levels in our game. When a button is pressed, Application.LoadLevel starts that
level. We also made use of PlayerPrefs.GetInt to retrieve the high scores for each of
the levels.

Throwing Your Weight Around – Physics and a 2D Camera

[234]

Have a go hero – adding some style
Here, the challenge is to use GUI styles to make the screen look great. A logo and a background
would help a lot. Additionally, take a look at GUI.BeginScrollView if you have more than
three levels. This function will let the user scroll through a list of levels that is far greater in size
than can be easily seen on screen.

Summary
In this chapter, we learned about physics in Unity and recreated the incredibly popular mobile
game, Angry Birds. By using Unity's physics system, we are able to make all of the levels that
we could ever want to play. With this game, we also explored options for creating a 2D game
in a 3D environment. Our birds and slingshot are 3D assets, giving us the ability to light and
shade them. The pigs and the background, however, are 2D images, reducing our lighting
options, but can allow for some greater detail in the assets. The 2D images were also crucial
in the creation of the parallax scrolling effect of the background. Finally, the building's blocks
appear to be 2D, but are actually 3D blocks. We also created a level-selection screen. From
there, the player can see their high scores and pick any of the levels that we created to play.

In the next chapter, we return to the Space Fighter game we started in the previous chapter.
We are going to create and add all of the special effects that finish off a game. We will add
the shooting and explosion sound effects that every space game needs. We will also add
various particle effects. When ships are shot at, they will actually explode, rather than
just disappearing.

8
Special Effects – Sound and Particles

In the previous chapter, we took a short break from our Space Fighter game to
learn about physics and 2D games in Unity. We created a clone of Angry Birds.
The birds utilized physics to fly through the air and destroy the pigs and their
structures. We utilized parallax scrolling to make a pleasing background effect.
We also created a level selection screen to load the game's various scenes from.

In this chapter, we return to the Space Fighter game. We are going to add many
special effects that will round out the game experience. We start by learning
about the controls that Unity provides when working with audio. We move on
to add some background music to the game and warning sounds when anything
gets too close. Next, we learn about particle systems, creating engine trails for
our ship. Finally, we combine the effects of the chapter to create bullet blasts
and explosions.

In this chapter, we will be covering the following topics:

�� Importing audio clips

�� Playing SFX

�� Understanding 2D and 3D SFX

�� Creating particle systems

Open up your Space Fighter project and we will get started.

Special Effects – Sound and Particles

[236]

Understanding audio
As with other assets, the Unity team has worked hard to make working with audio easy and
pain-free. Unity is capable of importing and utilizing a broad range of audio formats, allowing
you to keep your files in a format that you can edit in another program.

Import settings
Audio clips have a small assortment of important settings. They let you easily control the
type and compression of files.

The following are the settings that we have to work with while importing audio clips:

�� Audio Format: This controls whether the file is included in the Native format or
is Compressed in the final game. Native, though larger in file size, is best for short
sound effects because they can be loaded and played quickly. Compressed is better
for longer sounds and music. They will have a smaller footprint in the final build.

Chapter 8

[237]

�� 3D Sound: This checkbox controls whether the file will be played in 2D or 3D. 2D
sounds will be played at a constant volume no matter where the player is located—
perfect for background music and voice overs. 3D sounds will be adjusted in volume
based on their distance from the player—excellent for explosions and gun shots.

�� Force to mono: This checkbox will cause Unity to change a stereo file to a mono file.

�� Load type: This controls how the file is loaded when the game is being played.

�� Load into memory: This loads a Native file directly to the memory to
be played.

�� Stream from disc: This streams the audio as it is playing, such as streaming
music or video from the Web.

�� Decompress on load: This removes compression on the file when it is
first needed. The overhead for this option makes it a very poor choice
for large files.

�� Compressed in memory: This only decompresses the file as it is being
played. When it is just being held in memory, the file remains compressed.

�� Hardware decoding: This is only used for iOS devices to reduce processing cost.

�� Gapless looping: This adjusts the compression method to remove the small pop
of silence that some methods can introduce to a file.

�� Compression: This is the amount of data per second to compress the file to,
resulting in a smaller-sized file. It is best to find a value that minimizes the file
size while losing the least amount of quality.

Audio Listener
In order to actually hear anything in the game, every scene needs an Audio Listener component
in it. By default, the Main Camera object (included first in any new scene) and any new camera
you might create has an Audio Listener component attached. There can only be one Audio
Listener component in your scene at a time. If there is more than one, or you try to play a
sound when there isn't one, Unity will fill your console log with complaints. The Audio Listener
component also gives the precise position for any 3D sound effects to key off.

Special Effects – Sound and Particles

[238]

Audio Source
The Audio Source component is like a speaker and controls the settings for playing any
sound effect. If the clip is 3D, the position of this object to the Audio Listener component
and the mode chosen determine the volume of the clip.

The following are the various settings for an Audio Source component:

�� Audio Clip: This is the sound file that this Audio Source component will play
by default.

�� Mute: This is a quick way to toggle the volume of the playing sound on and off.

�� Bypass Effects: This allows one to toggle any special filters applied to this Audio
Source component.

�� Play On Awake: This will cause the Audio Clip to immediately start playing when
the scene loads or the object is spawned.

�� Loop: This will cause the playing clip to repeat as it is played.

�� Priority: This dictates the relative importance of the files being played. 0 is most
important and best for music, while 256 is least important. Depending on the system,
only so many sounds can be played at once. The list of files to be played starts with the
most important and ends when this limit is reached, excluding those with the lowest
values if there are more sounds than the limit would allow.

�� Volume: This decides how loud the clip will be played.

�� Pitch: This scales the playback speed of the clip.

Chapter 8

[239]

�� 3D Sound Settings: This contains the group of settings specific to the playing of 3D
audio clips. The Volume, Pan, and Spread options can be adjusted using the graph
at the end of the group. This allows one to create more dynamic transitions as the
player approaches an Audio Source component.

�� Doppler Level: This decides how much of the doppler effect to apply to
moving sounds.

�� Volume Rolloff: This controls how the volume fades with distance.

Logarithmic Rolloff: This is a sudden and rapid falloff of the sound at a
short distance from the source's center.

Linear Rolloff: This is an even falloff with distance, the loudest being at
the Min Distance value and the quietest at the Max Distance value.

Special Effects – Sound and Particles

[240]

Custom Rolloff: This allows you to create a custom falloff by adjusting
the graph at the end of the group. It is also automatically chosen when
the graph is adjusted.

�� If the Audio Listener component is closer than the Min Distance value,
the audio will be played at the current volume level. Outside this distance,
the sound will fall off according to the Rolloff Mode.

�� Pan Level: This is the percentage of the 3D effects to be applied to this
Audio Source component. This affects things such as the falloff and
doppler effects.

�� Spread: This adjusts the amount of area in speaker space that the sound
covers. It becomes more important when working with more than one or
two speakers.

�� Beyond the Max Distance value, the sound will stop transitioning based
on the graph at the bottom of the group.

�� 2D Sound Settings: This groups the settings that are specific to 2D audio clips.

�� Pan 2D: This adjusts how evenly the sound comes out of each speaker,
weighing it towards the left or right speaker

Adding background music
Now that we know about the available audio settings, it is time to put that knowledge into
action. We will start by adding some background music. This will have to be a 2D sound effect
so we can hear it comfortably no matter where the Audio Source component is. We will also
create a short script to fade in the music to reduce the suddenness with which sound effects
bombard the player.

Time for action – adding background music
Let's get started with a single script to control our background music.

1.	 We will start by creating a new script and naming it FadeIn.

2.	 This script begins with three variables. The first is the goal volume that the script
has to reach. The second is the number of seconds the transition will take. The last
is the time when the transition began.

public float maxVolume = 1f;
public float fadeLength = 1f;
private float fadeStartTime = -1f;

Chapter 8

[241]

3.	 Next, we make use of the Awake function. It begins by looking at the audio
variable, which is automatically supplied by Unity, to check for an attached Audio
Source component. If one cannot be found, the gameObject is destroyed and
the function is exited.

public void Awake() {
 if(audio == null) {
 Destroy(gameObject);
 return;
 }

4.	 The Awake function ends by setting its volume to 0 and playing it if it isn't already.

 audio.volume = 0;

 if(!audio.isPlaying)
 audio.Play();
}

5.	 To cause the transition over time, we use the Update function. It will first check to
see whether the fadeStartTime variable is below zero and set it to the current
time if it is. This allows us to avoid the hiccup that can be caused by the initialization
of a scene starting.

public void Update() {
 if(fadeStartTime < 0)
 fadeStartTime = Time.time;

6.	 The function next checks to see if the transition's time has ended. If it has,
the Audio Source component's volume is set to maxVolume and the script
is destroyed to free resources.

if(fadeStartTime + fadeLength < Time.time) {
 audio.volume = maxVolume;
 Destroy(this);
 return;
}

7.	 Finally, the current progress is calculated by finding the amount of time that
has passed since the fade started and dividing it by the length of the transition.
The resulting percentage of progress is multiplied by the value of maxVolume
and applied to the Audio Source component's volume.

 float progress = (Time.time – fadeStartTime) / fadeLength;
 audio.volume = maxVolume * progress;
}

Special Effects – Sound and Particles

[242]

8.	 Back in Unity, we need to create a new empty GameObject and name
it Background.

9.	 To this object, add our FadeIn script and an Audio Source component.

10.	 If you have not already, create an Audio folder in your Project panel and import the
four sound files included in Starting Assets for the chapter.

11.	Select the Background sound file and uncheck the 3D Sound checkbox in the
import settings.

12.	Select your Background object in the Hierarchy window and drag the Background
sound to the Audio Clip slot.

13.	Make sure the Play On Awake and Loop checkboxes are checked on the Audio
Source component. The Volume option also needs to be set to 0, all to make
the file play throughout the game but make no noise when starting.

What just happened?
We added background music to our game. In order for the sound to be constant and not
directional, we utilized the music as 2D sound. We also created a script to fade the music
in when the game starts. This eases the transition into the game for the player, preventing
a sudden onslaught of sound.

Have a go hero – setting some mood
Background music adds a lot to a game's experience. A horror scene is not nearly as scary
without some scary music. Bosses are much less intimidating without their daunting music.
Look for some good background music for your other games. Something light and cheery
would work nicely for Angry Birds, while a piece that is more industrial and fast-paced
would keep hearts racing through the Tank Battle game.

Creating an alarm system
To understand 3D audio effects, we are going to create an alarm system. As objects
approach the ship, the alarm will increase in volume. The 3D effect will indicate the
direction to the object relative to the ship. This gives the player the needed feedback
when they can't see everything around them. There are several ways this effect can
be achieved, but this one will demonstrate our ability to adjust the Audio Source
component over time.

Chapter 8

[243]

Time for action – warning the player
A single script attached to our objects in space will warn the player as the objects approach.

1.	 We start by creating a new script and name it Alarm.

2.	 This script starts with a single variable. It will hold the distance value at which
the sound will start to fade in.

public float warningDist = 100f;

3.	 Next, we create the Update function. It starts by checking for an Audio Source
component and exiting the function early if there isn't one. The audio variable
holds the reference to the attached Audio Source component.

public void Update() {
 if(audio == null) return;

4.	 The function continues by calculating the distance to the player. Because the
player never moves, we can just use the position's distance to the origin to make
it simpler. We also use sqrMagnitude, which is the square of the length of the
vector, because it is significantly faster to calculate. If the object is outside the
range, the volume is set to 0 and the function is exited.

float distance = transform.position.sqrMagnitude;
if(distance > warningDist * warningDist) {
 audio.volume = 0;
 return;
}

5.	 Finally, we calculate the new volume by dividing the distance by the square
of warningDist value and subtracting the result from one. This will result
in a rounded curve as it approaches maximum volume.

float volume = 1 – (distance / (warningDist * warningDist));
audio.volume = volume;
}

6.	 We now need to add the script to the relevant objects. To both the enemy ship
and asteroid prefabs, add the Alarm script and an Audio Source component.

7.	 For the Audio Clip value, select the Alarm clip. Also, make sure both the Play On
Awake and Loop checkboxes are checked.

8.	 Next, we don't want the alarm to overpower other sounds in our game, so set the
Priority option to 192.

9.	 To keep it from making any noise when the object is spawned, set the Volume
option to 0.

Special Effects – Sound and Particles

[244]

10.	 In order for the script to fully control the Audio Source component's volume,
expand the 3D Sound Settings component. Select Linear Rolloff for Volume
Rolloff and 495 for the Min Distance option.

What just happened?
We created a script to warn the player when objects get too close. As they approach the
player, the volume on their audio source is increased. As they move away from the player,
the volume is reduced. By utilizing 3D audio clips, we can direct the player as to where the
approaching object is coming from.

Have a go hero – differentiation
It is great that we can tell when objects are coming too close, but we can't tell what it is
until we see it. Find some alternate alarm sounds. For each type of object that the player
has to contend with, give it a different sound. This way, the player will know whether they
need to start pulling some tricky maneuvers to dodge bullets or they are entering an
asteroid field and need to fly carefully to avoid a collision.

Understanding particle systems
Particle systems add much to the final look of a game. They can take the form of fire,
magic waves, rain, or the great many other effects you can dream up. They are often hard
to create well, but are well worth the effort. Keep in mind, especially when working with the
mobile platform, that less is more. Larger particles are more effective than a great amount
of particles. If your particle system ever contains thousands of particles in a small space or
is duplicated on itself to increase the effect, you need to rethink the design and find a more
efficient solution.

Particle system settings
Every particle system contains a large variety of components, each with its own settings.
Most of the available settings have the option to be Constant, Curve, Random Between
Two Constants, and Random Between Two Curves. Constant will be a specific value. Curve
will be a set value that changes along the curve over time. The two random settings select a
random value between the respective value types. It may seem confusing at first but, as we
work through them, they will become more understandable.

As you will be able to see in the images and descriptions that follow, we will work through
and gain an understanding of each piece of a particle system.

Chapter 8

[245]

As you will see in the following screenshot, we will work through and gain an understanding
of each piece of a particle system:

1.	 The first portion, the Initial module, of the particle system holds all the settings used
by every emitter in Unity.

�� Duration: This is how long the emitter lasts. A looping system will repeat
after this amount of time. A non-looping system will stop emitting after
this length of time.

�� Looping: This checkbox dictates whether or not the system loops.

�� Prewarm: This checkbox, if checked, will start a looping system as if it
has already had a chance to loop for a while. This is useful in the case
of torches that should already be lit, not start when the player enters
the room.

�� Start Delay: This will stop the particle system from emitting for the given
number of seconds when it is initially triggered.

�� Start Lifetime: This is the number of seconds an individual particle
begins with.

�� Start Speed: This is how fast a particle will initially move when spawned.

�� Start Size: This dictates how large a particle is when spawned. It is always
better to use larger particles rather than more particles.

Special Effects – Sound and Particles

[246]

�� Start Rotation: This will rotate the emitted particles.

�� Start Color: This is the color tint of the particles when spawned.

�� Gravity Multiplier: This gives the particles a greater or lesser amount
of the gravity effect.

�� Inherit Velocity: This will cause particles to gain a portion of their
transform's momentum if it is moving.

�� Simulation Space: This determines whether the particles will stay with
the game object as it is moved (that is, local) or will remain where they
are in the world.

�� Play On Awake: This checkbox, if checked, will cause the emitter to start
emitting as soon as it is spawned or the scene starts.

�� Max Particles: This limits the total number of particles that this system
supports at a single time. This value only comes into play if the rate
particles are emitted or their life span is great enough to overbalance
their rate of destruction.

2.	 The Emission module controls how fast the particles are emitted.

�� Rate: If set to Time, this is the number of particles per second that are
created. If set to Distance, this is the number of particles per unit of
distance the system travels as it moves.

�� Bursts: This is only used when the Rate option is set to Time. It allows you
to set points in the system's timeline when a specific number of particles
will be emitted.

Chapter 8

[247]

3.	 The Shape module controls how the system emits particles.

�� Shape: This dictates what form the emission point will take. Each option
comes with a few more value fields that determine its size.

Sphere: This is the point from which particles are emitted in all directions.
Radius determines the size of the sphere. Emit from Shell dictates whether
the particles are emitted from the surface of the sphere or inside the volume.

Hemisphere: This is, as the name suggests, half of a sphere. Radius and Emit
from Shell work the same here as they do for Sphere.

Cone: This emits particles in one direction. Angle determines whether the
shape is closer to a cone or cylinder. Radius dictates the size of the emission
point of the shape. Emit From will determine where the particles are emitted
from. Base emits from the base disc of the shape. Base Shell emits from the
base of the cone, but around the surface of the shape. Volume will emit
from anywhere inside the shape and Volume Shell emits from the surface
of the shape.

�� Box: This emits particles from a cube-type shape. Box X, Box Y, and Box Z
determine the size of the box.

�� Mesh: This allows you to select a model to use as an emission point. All of
the particles for the system will be emitted from the surface of the Mesh.

�� Random Direction: This determines whether a particle's direction is
determined by the surface normal of the shape chosen, or if it is chosen
at random.

4.	 The Velocity over Lifetime module allows you to control the momentum of the
particles after they have been spawned.

�� X, Y, and Z: These define the number of units per second along each axis
of the particle's momentum

Special Effects – Sound and Particles

[248]

�� Space: This dictates whether the velocity is applied locally to the system's
transform, or relative to the world

5.	 The Limit Velocity over Lifetime module dampens a particle's movement if it
exceeds the specified value.

�� Separate Axis: This allows you to define a value unique to each axis
and whether that value is local or relative to the world

�� Speed: This is how fast the particle has to be moving before the damp
is applied

�� Dampen: This is the percentage of speed to cut the particle by. It is a
value between zero and one

6.	 The Force over Lifetime module adds a constant amount of movement to each
particle over the course of its life.

�� X, Y, and Z: These define how much force to apply along each axis

�� Space: This dictates whether the force is applied local to the system's
transform or in the world space

�� If X, Y, and Z are random values, Randomize will cause the amount of
force to apply to be randomly picked each frame, resulting in a statistical
averaging of the random values

Chapter 8

[249]

7.	 The Color over Lifetime module allows you to define a series of colors for the
particle to transition through after it has been spawned.

8.	 The Color by Speed module causes the particle to transition through the defined
range of colors as its speed changes.

�� Color: This is the set of colors to transition through

�� Speed Range: This defines how fast the particle must be going to be at
the minimum and maximum ends of the Color range

9.	 The Size over Lifetime module changes the size of the particle over the course of
its life.

10.	 The Size by Speed module adjusts the size of each particle based on how fast it
is going.

�� Size: This is the adjustment that the particles transition through

�� Speed Range: This defines the min and max values for each of the Size

11.	 The Rotation over Lifetime module rotates particles over time after they have
been spawned.

12.	 The Rotation by Speed module rotates particles more as they go faster.

�� Angular Velocity: This is the number of rotations to apply

Special Effects – Sound and Particles

[250]

�� Speed Range: This is the min and max range for the Angular Velocity value
if it is not set to Constant

13.	 The External Forces module multiplies the effect of Wind Zone objects. Wind Zones
simulate the effects of wind on particle systems and Unity's trees.

14.	 The Collision module allows particles to collide and interact with the physical
game world.

�� If set to Planes, you are able to define a number of flat surfaces for the
particles to collide with. This is faster to process than World collisions.

Planes: This is a list of transforms that define the surfaces to collide with.
Particles will only collide with the local, positive y side of the transform.
Any particles on the other side of the point will be destroyed.

Visualization: This gives you the option to view the planes as a Solid
surface or a Grid surface.

Scale Plane: This adjusts the size of the Visualization option. It does
not affect the actual size of the surface to collide with.

Particle Radius: This is used to define the size of the sphere used to
calculate the particle's collision with the planes.

�� If set to World, the particles will collide with every collider in your scene.
This can become a lot for the processor to handle.

Chapter 8

[251]

Collides With: This defines a list of layers that will be collided with.
Only colliders on layers that are checked in this list will be used for
the collision calculation.

Collision Quality: This defines how precise the collision calculations
are for this particle system. High will calculate precisely for every single
particle. Medium will use an approximation and a limited number of new
calculations each frame. Low just calculates less often than Medium.

If Collision Quality is set to Medium or Low, Voxel Size dictates how
precise the system estimates the points of collision.

�� Dampen: This removes the defined fraction amount of speed from the
particle when it collides with a surface.

�� Bounce: This allows the particle to maintain the defined fraction of its
speed, specifically along the normal of the surface that was hit.

�� Lifetime Loss: This is the percentage of life. When the particle collides,
this percentage of life is removed from the particle. When the particle's
life drops to zero over time, or through collision, it is removed.

�� If, after collision, the particle's speed is below the Min Kill Speed value,
it is destroyed.

�� If the Send Collision Messages checkbox is checked, scripts attached to
the particle system and the object that was collided with will be alerted
every frame that the collision took place. Only one message is sent per
frame, not per particle.

15.	 The Sub Emitters module allows additional particle systems to be spawned at points
in the life of each particle of this system.

�� Any particle systems in the Birth list will be spawned and follow the particle
when it is first created. This could be used to create a fireball or smoke trail.

�� The Collision list spawns particle systems when the particle hits something.
This could be used for rain drop splashes.

Special Effects – Sound and Particles

[252]

�� The Death list spawns particles when the particle is destroyed. It could be
used to spawn the firework explosion.

16.	 The Texture Sheet Animation module causes the particle to flip through a
number of particles over the course of its life. The texture used is defined
in the Renderer module.

�� Tiles: This defines the number of rows and columns in the sheet.
This will determine the total number of frames available.

�� Animation: This gives you the options of Whole Sheet and Single Row.
If set to Single Row, the row used can either be chosen at random or
specified using the Random Row checkbox and Row value.

�� Frame over Time: This defines how the particle transitions between
frames. If set to Constant, the system will only use a single frame.

�� Cycles: This is the number of times the particle will loop through the
animation over the course of its life.

17.	 The Renderer module dictates how the particle is drawn on the screen.

�� Render Mode: This defines which method a particle should use to
orient itself in the game world.

Billboard: This will always face directly at the camera.

Chapter 8

[253]

Stretched Billboard: This will face particles at the camera, but stretch
them based on the speed of the camera, the particle's speed, or by a
specific value.

Horizontal Billboard: This is flat on the XZ plane of the game world.

Vertical Billboard: This will always face the player, but will always stay
straight along the y axis.

If set to Mesh, you can define a model to be used as a particle rather
than a flat plane.

�� Normal Direction: This is used for the lighting and shading of the particles
by adjusting the normal of each plane. A value of 1 points the normals
directly at the camera while a value of 0 points them towards the center
of the screen.

�� Material: This defines the material used to render the particles.

�� Sort Mode: This dictates what order the particles should be drawn in,
by distance or age.

�� Sorting Fudge: This causes particle systems to be drawn earlier than
normal. The higher the value, the earlier it will be drawn on the screen.
This affects whether the system appears in front of or behind other
particle systems or partially transparent objects.

�� Cast Shadows: This determines if the particles will block light.

�� Receive Shadows: This determines if the particles are affected by the
shadows cast by other objects.

�� Max Particle Size: This is the total amount of screen space a single
particle is allowed to fill. No matter what the real size of the particle
is, it will never fill more than this space of the screen.

Creating engine trails
To enforce the player's impression that their ship is moving, we need to create some trails
for the ship's engines. This exhaust will trail out as if the ship is moving even though it is not.
By making the particle systems part of the group of objects that make up the ship, the engine
trails will move and leave particles as one would expect them to.

Special Effects – Sound and Particles

[254]

Time for action – adding engine trails
Engine trails can easily be added and controlled with the use of only a particle system.

1.	 To begin with, we need to create a new particle system. Do this by going to the top
of the Unity Editor and navigating to GameObject | Create Other | Particle System.

2.	 Rename the new particle system to EngineTrail.

3.	 First we look at the Initial module. We need the Looping and Prewarm checkboxes
checked. This will keep the ship looking as if it is moving throughout the game and
remove the build up the system would otherwise need to create the effect.

4.	 Next, we need to control the distance the particles travel. Do this by setting the
Start Lifetime option to 3 and the Start Speed option to 1.

5.	 To keep the particles sized and positioned properly in space, we need to set the
Start Size option to 0.8 and choose World for Simulation Space.

6.	 Now we move on to the Shape module. We want the particles to fly straight
out from the engines. So we use a value of 0 for the Angle option and 0.2 for
the Radius option.

7.	 Exhaust tends to fade in color and dissipate in density over time. To achieve this
effect, activate the Color over Lifetime and Size over Lifetime modules.

8.	 For the Color option, set the Alpha option to 0 at the beginning of the gradient
and 255 a short way in. As to colors, select a vibrant blue at the beginning,
transitioning to white, and then gray at the end.

9.	 For the Size option, select a linear slope that is maximum at the beginning and
minimum at the end. This is most easily done by clicking on the curve, to the
right of the Size label, and selecting the third option from the bottom of the
Particle System Curves window at the bottom of the Inspector window.

Chapter 8

[255]

10.	Now, in the Scene window, duplicate the EngineTrail object three times
and position them behind the engines of the ship. Be sure to rotate them so
the particles are emitted away from the ship.

11.	Finally, make all of them children of the player's ship. If this step is skipped,
they will not follow the ship as it moves.

Special Effects – Sound and Particles

[256]

What just happened?
We put into practice what we learned about particle systems to create trails for our space
ship's engines. Because they are children of the ship and simulate in world space, they move
with the ship and trail off as one would expect.

Have a go hero – more trails
The enemy ships have engines too. Try adding trails to the enemy ships. Be careful about
picking the local or world space to simulate in. Because the ships move to make it look like
the player is moving, simulating in world space could have some unusual side effects.

If you gave the player a turbo boost effect earlier, it is time to add some extra effects to it
now. Try changing the length of the trails when the player is boosting. Perhaps the ship taps
into a special type of fuel when it boosts. If it burns a different color, then the trails would
have to be a different color, or series of colors, when the player is boosting.

Putting it together
So far, we learned about audio effects and particle systems on their own. They each can
add a lot to the scene, setting the mood and giving that touch of polish that sets a game
apart. But there are many effects that cannot stand on their own as one or the other.
Explosions, for example, are simply not that impressive unless you have both the visual
and auditory effects.

Explosions
It is so much more satisfying to destroy enemies when they explode. It takes both a
particle effect and the sound effect to make a proper explosion. We will start by creating
an explosion prefab. Then we will update the player's shooting to spawn the explosion
when asteroids and enemy ships are destroyed.

Time for action – adding explosions
A single particle system and script will allow us to create some nice explosions that can be
used everywhere.

1.	 We first need some new textures to make the explosion look like fire. Luckily, Unity
provides a multitude of basic particle textures. To include them in your project, go
to the top of the Unity Editor and navigate to Assets | Import Package | Particles.

Chapter 8

[257]

2.	 In the resulting window, select Import and wait for Unity to finish importing them.
This package is a great resource, including both textures and complete particle
systems. However, all of the particle systems included use the old system that will
be phased out of Unity over the next few versions. Despite this, we can still make
full use of the included materials.

3.	 Create a new particleSystem object and name it Explosion.

4.	 First, in the Initial module, we need to make the effect last for a short time. Set the
Duration to 0.5 and the Start Lifetime option to 1.

5.	 To keep the particles close together, use a value of 0.5 for the Start Speed option.

When we are done with this system, it will not loop.
However, it is easier to see what we are working with
if we let it loop for now.

6.	 Next, we need more particles, so go to the Emission module. Set the Rate option to
120 to generate the proper amount.

7.	 An explosion is generally round, so we need to adjust the Shape module next. Select
Sphere for the Shape setting and set the Radius option to 0.5.

8.	 Now for the Color over Lifetime module. An explosion is bright at the beginning
and fades to brown, followed by black as it burns. For the Color option, start with
an army green color, followed by faded yellow, then medium brown, and finally
black at the end. Also, cause Alpha to fade in at the beginning and out at the end.
This keeps the particles from popping in and out of existence.

9.	 Next, we need a fire material for our particles. For the Material setting in the
Renderer module, select the Fire Smoke material. It can also be found in your
Project window by going to Standard Assets | Particles | Sources | Materials.

Special Effects – Sound and Particles

[258]

10.	Once we are satisfied with the look of the system, make sure the Play On Awake
checkbox is checked and the Looping checkbox is not checked in the Initial module.

11.	As with the asteroids and enemy ships, the explosion needs to move around
our player as they move. It also needs to destroy itself when it is done emitting.
So, create a new script and name it Explosion.

12.	This script is short and only includes two functions. The first function, Update,
checks to see if the particleSystem object is missing or has finished playing.
If either is true, the gameObject is destroyed.

public void Update() {
 if(particleSystem == null || !particleSystem.isPlaying)
 Destroy(gameObject);
}

13.	The second function, LateUpdate, simply uses the PlayerShip.Rotate function,
which we created in Chapter 6, Specialities of the Mobile Device – Touch and Tilt, to
move the explosion for the player's movement. This is the same way we move the
asteroids and enemy ships around as the player moves.

public void LateUpdate() {
 PlayerShip.Rotate(transform);
}

14.	Return to Unity and add the script to the Explosion object.

15.	Next, add an Audio Source component to the object.

16.	 For this component, we need the Play On Awake checkbox checked. Also select Linear
Rolloff for the Volume Rolloff mode and 10 for the Min Distance, both found under
3D Sound Settings.

17.	And, of course, select the Explosion sound effect for the source's audio clip. These
settings will cause the sound to play as soon as the explosion is spawned.

18.	To complete the explosion's creation, turn the object into a prefab and delete the
instance from the scene.

19.	 Next, we need to update the TouchShoot script to utilize the explosion. Open it now.

20.	To the beginning, we add a variable to hold a reference to the explosion.

public GameObject explosion;

21.	After the line where we make use of the Physics.Raycast function and before
we destroy the shot object, add this line. If there is a reference to the explosion,
it uses the Instantiate function to spawn a new instance of the explosion and
sets its position and rotation to that of the object that was shot.

if(explosion != null) Instantiate(explosion, hit.transform.
position, hit.transform.rotation);

Chapter 8

[259]

22.	 Back in Unity, find the instance of the TouchShoot script component on the player's
ship. Add the reference to the Explosion prefab in the new Explosion slot.

What just happened?
We created an explosion. Unity provides us with a slew of particle textures with which
we can create a multitude of effects. There are also a few particle systems already created,
including an explosion. However, that explosion uses the old system and will not be included
in Unity for much longer. We also updated our enemy ships and asteroids so they spawn the
explosions when they are destroyed by the player.

Have a go hero – more types of explosions
One explosion is alright, but it is odd that the asteroids explode in the same manner as
the ships. Different gases, fuels, and rock compositions all burn in different colors and
with varying amounts of vigor. Create some more explosions for the different objects
flying around your space. Change the colors and size to suit what is exploding. Also,
explore other sound effects that provide differing auditory clues as to what is exploding.
Finally, try to create a multi-explosion system. Perhaps the shots from the player cause
the first explosion, and a chain reaction causes explosions in the weapon hold and engine
compartment. To achieve this, take a look at using subemitters, or spawn a couple of
different particle systems around the ship when it is destroyed.

Creating laser blasts
Being able to destroy objects and see them explode is great. It gives the player a reward
for performing a simple action. However, when one fires a gun of any sort, you expect
a reaction from it, whether or not anything is hit. To that end, we are going to create a
muzzle-flash-type effect for the player's ship. Every time they tap the screen to fire, some
particle systems will flash and a sound effect will play.

Special Effects – Sound and Particles

[260]

Time for action – adding laser blasts
A muzzle flash generally consists of two parts. The first is a straight blast, forward along the
barrel. The second is a fan around the base of the first.

1.	 To begin, create a new particleSystem object and rename it as LineBlast;
we will now proceed to make the first part.

2.	 The flash does not last for very long, so find the Duration option in the Initial
module and set it to 0.1.

3.	 Next, we need to set the Start Lifetime option to 0.1 so the particles do not stay on
screen for very long.

4.	 The flash does not move away from the muzzle, so set the Start Speed option to 1,
keeping the particles close.

5.	 The particles need to be sized to correspond with the size of our ship's muzzle. Set
the Start Size option to 0.2 to keep them small.

6.	 It is no fun if our laser blasts are just white, so change the Start Color value to an
appropriate color for your lasers.

7.	 Last up for the Initial module is to uncheck the Play On Awake checkbox, keeping
the system from triggering immediately when loaded.

8.	 Next we need to adjust the Emission module. The flash occurs in a burst, so set the
Rate option to 0.

9.	 To make the burst, click on the + sign to the right of the Bursts list. A value of 5 will
work well.

10.	Next we adjust the Shape module to emit the particles along a straight line. To this
end, set the Angle option to 0 and the Radius option to 0.01.

11.	Finally, we need to adjust the Renderer module. To stretch out the particles,
change the Render Mode option to Stretched Billboard and set the Length
Scale option to -4.5.

12.	Now that we are satisfied with the way this system looks, uncheck the Looping
checkbox in the Initial module.

13.	Now create the second particleSystem object and rename it as SpreadBlast.

14.	These particles should last for as long as those of the first system. So, in the Initial
module, set the Duration option to 0.1, Start Lifetime to 0.1, Start Speed to 1, Start
Size to 0.2, and uncheck Play On Awake.

15.	To make these particles distinct from the line, set the Start Color value to a slightly
darker color.

Chapter 8

[261]

16.	Next, in the Emission module, set the Rate option to 0 and add the Bursts option
with a Particles value of 30.

17.	For the Shape module, set the Angle option to 60 and the Radius option to 0.01.
This causes the particles to fan out when spawned.

18.	For the Renderer module, set the Render Mode option to Stretched Billboard and
the Length Scale option to -3.

19.	Finally, once we are satisfied with the look of the system, again uncheck the Looping
checkbox in the Initial module.

20.	Before we put the particle systems in place, we need to create a script. Create a new
one and name it LaserBlast. This script will trigger the particle systems and the
audio clip to play.

21.	This script starts with a single variable. This variable holds the list of systems to be
triggered when the script is told to fire.

public ParticleSystem[] particles = new ParticleSystem[0];

22.	Next we have the only function in the script, Fire. It starts by making sure
there is an Audio Source component on the same GameObject. If it is present,
PlayOneShot is called using the source's clip. This function plays the passed
file once without blocking the playing of other clips.

public void Fire() {
 if(audio != null)
 audio.PlayOneShot(audio.clip);

23.	The function continues by looping through the list of particle systems and using
Play to trigger them if they exist.

 for(int i=0;i<particles.Length;i++) {
 if(particles[i] != null)
 particles[i].Play();
 }
}

24.	Next, we need to update the TouchShoot script. It needs to call the Fire function
on the LaserBlast script when the player touches the screen. To that end, we first
add the lasers variable to hold the list of objects that need to be triggered.

public LaserBlast[] lasers = new LaserBlast[0];

25.	To the beginning of the Update function, we add the didFire boolean value.
It will keep the lasers from being triggered more than once per frame.

bool didFire = false;

Special Effects – Sound and Particles

[262]

26.	We next set the Boolean to true after the if statement where we check to see if the
touch's phase value is found to be equal to TouchPhase.Began.

didFire = true;

27.	At the end of the Update function, if the didFire boolean is true, the Fire
function that we will be writing shortly is called.

if(didFire) Fire();

28.	Last up for the script, we add the Fire function. This function simply loops through
the lasers array and calls their Fire function if they exist.

private void Fire() {
 for(int i=0;i<lasers.Length;i++) {
 if(lasers[i] != null)
 lasers[i].Fire();
 }
}

29.	Now that we have all of the pieces, we need to put them together. Start by creating
a new empty GameObject and naming it LaserBlast.

30.	Next, make the LineBlast and SpreadBlast particle systems children of this new
object. Be sure to set their positions and rotations to 0.

31.	Add our LaserBlast script to the object of the same name and add the two
particle systems to the Particles list on the script component.

32.	Next, add an Audio Source component to the object. Select the Laser sound effect
for the Audio Clip value.

33.	Finally for this object, expand the 3D Sound Settings group and select Linear Rolloff
for the Volume Rolloff value; otherwise, we will not be able to hear it.

34.	Position the laser blast in front of the muzzles of the player's ship. Duplicate it as
needed to cover all the points. Also, make sure their local z axis points forward
along the muzzles.

35.	Next, make all of your LaserBlast objects children of the player's ship so they
keep moving with it.

36.	Finally, add the objects to the Lasers list on the TouchShoot script component.

Chapter 8

[263]

What just happened?
We created laser blasts for the player. Every time the player touches the screen, they are
triggered. This way the player can tell that they are shooting even if they fail to hit anything.
It is a quick and short effect, but adds a lot to the final experience.

Have a go hero – more types of lasers
The player can shoot lasers, now the enemy needs to too. Add some laser blasts to the
enemy ships. Also, it is time to replace their sphere bullets with something better. Create a
plasma ball to replace the sphere bullets. A smaller, looping version of the explosion could
work for the ball. An appropriately colored version of the engine trails could work for the
ball's trail as it flies towards the player. It might also be a good idea to add the alarms to the
bullets. This way the player knows when they are about to be blasted out of the game.

Special Effects – Sound and Particles

[264]

Summary
In this chapter, we learned about special effects in Unity, specifically audio and particle systems.
We started with understanding how Unity handles audio files. By adding background music
and an alarm system, we put what was learned into practice. We moved on to understanding
particle systems, and created engine trails for our player's ship. Finally, we put the two skill sets
together and created explosions and laser blasts. Particle systems and audio effects add a lot to
the final polish and look of a game.

In the next chapter, we complete our experience together by taking a look at optimization in
Unity. We will take a look at the tools provided for tracking performance. We will also create
our own tool to track specific parts of script performance. We will also create our own tool
to track specific parts of script performance. We will explore asset compression and other
points that we can change to minimize the application footprint. Finally, key points will be
discussed for minimizing lag.

9
Optimization

In the previous chapter, we learned about special effects for our games.
We added background music to our Space Fighter game. We also created
engine trails for our ship. Combining both audio effects and particle systems,
we created some explosions and gun blasts. Together, this rounds out the
game experience and gives us a very complete-looking game.

In this chapter, we explore our options for optimization. We start by looking
at the application footprint, and how to reduce it. We move on to look at the
game's performance. We look at the tools that Unity provides and create
another one ourselves. With the use of occlusion culling, we can improve the
game's performance even further. Finally, we will explore some key areas that
can cause lag and how to minimize their effects.

In this chapter, we will be covering the following topics:

�� Minimizing the application footprint

�� Tracking performance

�� Minimizing lag

�� Occlusion

We will be working on both our Space Fighter and Tank Battle games, for this chapter.
Start by opening the Space Fighter project.

Optimization

[266]

Minimizing the application footprint
One of the keys to a successful game is the size of the game itself. Many users will quickly
uninstall any application that appears to be unnecessarily large. Also, all of the mobile
app stores have limits to how your game will be supplied to users based on the size of the
application itself. Becoming familiar with the options you have for minimizing the size of
your game is the key to control how your game will be distributed.

The first thing to note when working to minimize the footprint is how Unity handles assets
as it builds the game. Only assets that are used somewhere in one of the scenes for the
build are actually included in the game. If it is not in the scene itself or referenced by an
asset that is in the scene, it will not be included. This means you could have test versions
of assets, or incomplete versions; as long as they are not referenced, they will not affect
the final build size of your game.

Unity also allows you to keep your assets in the format you need for working on them.
When the final build is made, all assets are converted to an appropriate version for their
type. This means you can keep models in the format native to your modeling program.
Or keep your images as Photoshop files, or any other format you work in, and they will
be converted to JPG or PNG appropriately when the game is built.

Editor log
When you are finally ready to work with the footprint of your game, it is possible to find
out exactly what is causing your game to be larger than desired. In the top-right corner of
the Console window is a drop-down menu button. Inside this menu is Open Editor Log.

The editor log is the location where Unity outputs information while it is running. This includes
information about the current version, license checks, and any asset importing. The log will
also contain detailed information about the file size and assets included in the game, after it
has been built.

Chapter 9

[267]

We can see a breakdown of the aspects of the final build. Every asset category has a size
and percentage of the total build size. We are also supplied with a list of every asset that is
actually included in the game, organized by their file size before being added to the build. This
information becomes very useful when looking for assets that can stand to be made smaller.

Asset compression
Inside the Import Settings for models, textures, and audio there are options that affect the
size and quality of imported assets. In general, the affected change is a reduction in quality.
However, especially when working on mobile devices, asset quality can be reduced well
below the levels required for a computer before the difference is noticeable on the device.
Once you understand the options available for each type of asset, you will be able to make
optimal decisions regarding the quality of your game. When working with any of these
options, look for a setting that minimizes the size before introducing undesired artifacts.

Models
No matter what program or method you use to create your models, ultimately they are
always a list of vertex positions and triangles, with a few references to textures. Most of
the file size of a model comes from the list of vertex positions. To make sure the models in
your game are of the highest quality, start in the modeling program of your choice. Delete
any and all extra vertexes and faces. Not only will this result in a smaller file when building
your final game, it will also reduce the import time when working in the editor.

Optimization

[268]

The Import Settings for models consists of three pages, resulting in more options to adjust
the quality. Each page tab corresponds to the relevant part of the model, allowing us to
fine-tune each one of them.

Model tab
On the Model tab, we are able to affect how the mesh is imported. When it comes to
optimizing our use of the models, there are many options here that are key to success.
Once your game is looking and playing the way you want it to, we should have a good
look at the settings shown in the following screenshot:

The settings available under the Model tab are explained as follows:

�� Mesh Compression: This option lets us select how much compression should be
applied to the model. The effect amounts to combining vertexes to reduce the
overall amount of detail that has to be stored for the mesh. This setting is likely
to introduce undesired oddities in the mesh. So, always pick the highest setting
that does not introduce any artifacts.

Chapter 9

[269]

�� Read/Write Enabled: This option is only useful when you want to manipulate the
mesh while the game is running, through the script. If you never touch the mesh
with any of your scripts, uncheck this box. While not affecting the final build size,
this will affect how much memory is required to run your game.

�� Optimize Mesh: This option causes Unity to reorder the triangles list that describes
the model. This is always a good one to leave checked. The only reason you might
want to uncheck it is if you are manipulating the game or mesh based on the
specific order of the triangles.

�� Generate Colliders: This option is almost always a candidate to leave off. This option
will add Mesh Collider components to every mesh in your model. These are relatively
expensive to calculate when working with physics in your game. If possible, you should
always use a group of the significantly simpler Box Colliders and Sphere Colliders.

�� Generate Lightmap UVs: This option should only be used when working with
objects that need static shadows. If the object does not, it will introduce excess
vertex information and bloat the asset.

�� Normals: This option is used by materials for determining which direction a vertex
faces and how lighting should affect it. If the mesh never uses a material needing
Normals information, be sure to set this to None.

�� Tangents: This option is used by materials for faking detail with bump maps and
similar special effects. Just as with the Normals setting, if you don't need them,
don't import them. If Normals is set to None, this setting will automatically be
grayed out and no longer imported.

Rig tab
The following is a screenshot that displays the Rig tab:

There are really only two things to keep in mind when working to optimize your animation
rig. The first is, if the asset does not animate, then don't import it. By setting Animation Type
to None, Unity will not try to import the rig or any useless animations. The second thing to
keep in mind is to remove any unnecessary bones. Once imported to Unity, delete any and all
objects from the rig that do not actually have an effect on the animation or character. Unity
converts any inverse kinematics that you might use for animating into forward kinematics, so
the guides used for it can be deleted once in Unity.

Optimization

[270]

Animations tab
As with with the Rig tab, if the model does not animate, do not import animations.
Unchecking the Import Animation box, when first importing the asset, will avoid any extra
components being added to your GameObjects in Unity. Also, if any extra animations get
added to your final build accidentally, they can quickly make your application over-sized.

The settings available under the Animations tab are explained as follows:

�� Anim. Compression: This option adjusts how Unity handles excess keyframes in your
animations. For most situations, the default option works well.

�� Off: This option should only be used if you need a high-precision animation.
This is the largest and most costly setting to choose.

�� Keyframe Reduction: This option will reduce the number of keyframes used
by the animation based on the Error settings that follow. Essentially, if a
keyframe does not have a noticeable effect upon the animation, it is ignored.

�� Keyframe Reduction and Compression: This option does the same as the
previous option but additionally compresses the file size of the animations.
At runtime, though, the animation will still require the same amount of
processor resources to calculate as the previous option.

�� Rotation Error: This option is the number of degrees different between keyframes
that will be ignored when performing keyframe reduction.

�� Position Error: This option is the movement distance that will be ignored between
keyframes when performing the keyframe reduction.

�� Scale Error: This option is the amount of size adjustment in the animation that will
be ignored between keyframes when performing the keyframe reduction.

Chapter 9

[271]

Textures
When working with textures in computer graphics, it is always better to work in Powers of
2. A Power of 2 is any value where it and its subsequent halves can be evenly divided by two
until one is reached. This is important because they are faster for the computer to calculate
and process. By default, Unity will convert any textures that do not meet this requirement
by scaling them to the nearest Power of 2.

The various Texture settings available in Unity are explained as follows:

�� Texture Type: This option affects what type of texture this image will be treated
as. It is always best to select the type most appropriate for the intended use of
the image.

�� Texture: This option is the most common and default setting. This should be
used for your normal model textures.

�� Normal Map: This option is used for special effects such as bump maps.
Materials using this type of texture will also need the normal and tangent
information from the model import settings.

�� GUI: This option should be used if the image is going to appear in the GUI
and not on any models.

�� Reflection: These textures are used for creating cube maps that imitate the
reflective properties of real objects.

�� Cookie: These textures are used on lights, changing how the light is emitted
from the light object.

Optimization

[272]

�� Advanced: This option gives full control over all of the settings concerned
with importing images. You will only need this setting if you have special
purposes for your textures.

When the Texture Type option is set to Advanced, the Read / Write
Enabled box becomes available. This should only be left checked if you
plan on manipulating the texture from your scripts while the game is
running. If unchecked, Unity does not maintain a copy of the data in
the CPU, freeing memory for other parts of the game.

�� Generate Mip Maps: This option is another Advanced setting that lets you control
the creation of smaller versions of the texture. These are then used when the
texture is small on the screen, reducing the amount of processing needed to draw
the texture and the object using it on the screen.

�� Filter Mode: This option is available for all of the texture types. It affects how the
image will look when you are very close to it. Point will make the image look blocky,
while Bilinear and Trilinear will blur the pixels. In general, Point is the fastest;
Trilinear is the slowest but gives the best looking effect.

�� Max Size: This option adjusts how large the image can be when it is used in the
game. This allows you to work with images that are very large but import them to
Unity in an appropriately small size. In general, values greater than 1024 are poor
choices; not just because of the increased memory requirement, but also because
the video cards on most mobile devices cannot handle textures that are any larger.
Choosing the smallest size possible will have a great effect on the footprint size of
the textures in your final build.

�� Format: This option adjusts how the image should be imported and how much
detail each pixel can hold. Compressed is the smallest, while Truecolor provides
the most detail.

Audio
Giving a game quality sound always adds a lot to the final size of the game. It is one of those
assets that a game cannot do without, but can be hard to include at a suitable level. When
working on them in your audio program, keep them as short as possible to minimize their
size. The audio import settings all have an effect on either their footprint in the build size,
or the memory required to run the game.

Chapter 9

[273]

The various Audio settings available in Unity are explained as follows:

�� Audio Format: This setting changes how the file will be stored in your game. Native
offers higher quality while Compressed results in a smaller file size. As a special
feature of mobile platforms, compressed audio can be retrieved relatively faster
than on other platforms because of some special hardware in the mobile devices.

�� 3D Sound: This setting dictates whether or not the file will be affected by its position
in the game relative to the Audio Listener. If this is unchecked, some calculations
can be avoided, reducing the processing required in each frame of your game.

�� Force to mono: This setting converts stereo audio into mono. While most devices are
technically capable of playing stereo sounds, they do not always have the multiple
speakers required for it to make a difference. Checking this box can significantly
reduce the file size of the audio, by removing that extra audio channel.

�� Load type: This setting affects how much of the system's memory is used, while
the game is running, to handle loading audio files. Decompress on load uses the
most memory, and is best for small, short sounds. Compressed in memory only
decompresses the file while it is playing, using a medium amount of memory, and
is best for medium-sized files. Stream from disc means that only the part of the
file currently being played is stored in the runtime memory. This is like streaming
video or music from the Internet. This option is best for large files but should only
be used by a few at one time.

�� Compression (kbps): This setting adjusts the amount of detail in the audio file.
A smaller value will reduce the file size, but also reduce quality. A larger value will
result in a larger file size and greater quality. If the amount of compression already
applied by your audio is smaller than the value here, the setting will have no effect
on the sound. In general, it is best to pick the smallest size while maintaining the
desired level of quality.

Optimization

[274]

Player settings
Open your game's Player Settings by going to Unity's toolbar and navigating to Edit | Project
Settings | Player. In the Per-Platform Settings, for Android, we have another few options
under Other Settings that will affect the final size and speed of our game.

Rendering
The following is the screenshot that displays the Rendering settings:

The various Rendering settings available in Unity are explained as follows:

�� When we worked with making lightmaps, we had to set some objects as static.
This told Unity that the objects will never be moving and allows them to be
lightmapped. It also allows Unity Pro users to utilize Static Batching that allows
Unity to significantly speed up rendering times by grouping identical objects.
For each group it then renders one object in multiple places, rather than each
object individually. Potentially, this setting can add some extra girth to your final
build size, because Unity will need to save extra information about your static
objects to make it work.

�� Dynamic Batching works the same as Static Batching, with two major differences.
First, it is available to both Unity Pro and Basic users. Second, it groups objects
that are not marked as static.

Chapter 9

[275]

Optimization
The Optimization settings are shown in the following screenshot:

The various Optimization settings available in Unity are explained as follows:

�� Api Compatibility Level: This setting determines which set of the .Net functions to
include in the final build. .Net 2.0 will include all of the available functions, making
the largest footprint. .Net 2.0 Subset is a smaller portion of the functions, including
only those that your programming is most likely to use. Unless you need some
special functionality, .Net 2.0 Subset should always be the option you choose.

�� The Stripping Level: This setting is a Unity Pro only feature. It allows you to reduce
the size of your final build by removing all of the excess code before compiling
it. System functions are grouped into what are called libraries for easy reference.
Strip Assemblies removes the unused libraries from the final build. The Use micro
mscorlib option performs the same function as the previous option, but utilizes a
minimized form of the libraries. While significantly smaller, this library possesses
fewer functions for your code to use. However, unless your game is complex, it
should not make a difference.

�� Optimize Mesh Data: This setting will remove extra information from all of your
meshes that are not being used by any materials applied to them. This includes
the Normals, Tangents, and a few other bits of information. Unless you have a
very special case, this is a good box to always check.

Optimization

[276]

Tracking performance
Unity provides us with many tools that allow us to determine how well our game is running.
The first we will be covering is readily available for both Unity Pro and Basic users. However,
the information is rather limited, though still useful. The second is only available to Unity Pro
users. It provides significantly more detail and information on performance. Finally, we will
create our own tool, allowing us to view the performance of our scripts in detail.

Editor statistics
In the top-right of the Game window, there is a button labeled Stats. Clicking on this button
will open a window, giving us information about how the game is running. There is little bit
of information about how fast the game is running. Most of the information in this window
concerns how well the game is being rendered, largely amounting to how many objects are
currently on the screen, how many are animating, and how much memory they take up.

The various statistics in Unity Editor are explained as follows:

�� At the top-right of the Unity Editor Statistics window is the current FPS (Frames
Per Second) and the time in milliseconds that the last frame took to render. These
values are unaffected by the rendering of the rest of the Unity Editor, though there
is a slight performance hit by running the game in the Editor. In general, if you can
keep your game running at more than 60 FPS, your game will run pretty well on
your target platform.

Chapter 9

[277]

�� The Main Thread statistic provides us with the time in milliseconds that it took to
run through the code for the frame and render everything to the screen. This is
the total amount of time it takes to process a single frame of your game.

�� To the right of Main Thread, we have Renderer. This statistic is the number of
milliseconds the rendering of the frame alone took. This time is already included
in the Main Thread statistic.

�� The Draw Calls statistic is the number of unique objects that had to be drawn on
screen. This is roughly equal to the number of objects that are currently visible
to the camera. So, things behind the camera are not drawn and do not add to
this value.

�� The Saved by batching statistic is closely related to the number of Draw Calls.
We will learn more about batching later. But, suffice it to say for now, batching
is a special grouping process that reduces the number of Draw Calls, making
the game render faster.

�� Ultimately, every model in 3D graphics is made from a series of triangles. Tris is
the total number of triangles seen and being rendered by the camera.

�� Most of the information in a model file is concerned with the position of each
vertex. Verts is the total number of vertexes seen and rendered by the camera.
The lower the number of vertexes for each model, the faster it will be rendered
to the screen.

�� The first number for the Used Textures statistic is the total number of unique
textures that are being used in this frame. The second is the total amount of
memory they take up. By reducing texture quality or by combining textures, this
statistic can be reduced, allowing the game to run faster.

�� The Render Textures statistic is a special type of texture used for special effects
such as security cameras and real-time reflections. This statistic displays the total
number visible and the amount of memory needed for them.

�� The switches statistic essentially amounts to how much work the Render Textures
statistic is doing. Fewer Render Textures and simpler materials will reduce this
number and the resulting cost to rendering time.

�� Screen is the current width and height, in pixels, of the Game window. It also
displays the amount of memory needed for rendering at that size. A smaller size
results in less detail for your game, but also makes the game easier to render.

�� The VRAM usage statistic gives the approximate minimum and maximum video
memory currently being used. It also provides the current total amount of video
memory available in parentheses. With this statistic and knowing the amount
of video memory available in your target device, you can determine whether
graphics of your game are simple enough to run on that device.

Optimization

[278]

�� The VBO Total statistic is the total number of unique meshes currently being rendered
by your game. Every distinct model you might use will add to this statistic.

�� The Shadow Casters statistic is used when making use of real-time shadows.
Real-time shadows are expensive. If possible, they should not be used on mobile
devices. But, if you have to have them, minimize the number of objects that cast
those shadows. Limit it to moving objects that are large enough for the user to
see the shadow. Small, static objects especially do not need to cast shadows.

�� The Visible Skinned Meshes statistic is the total number of rigged objects currently
in the view of the camera. Skinned Meshes are most often going to be your
characters and just about anything else that animates.

�� The Animations statistic provides the current total number of animations playing in
the scene.

�� The Network group of statistics only becomes visible when connected to other
players in a multiplayer game. The information generally amounts to how many
people the game is connected to and how fast those connections are.

The Profiler
The Profiler window, found in Unity's toolbar under Window | Profiler, is a great tool
for analyzing how your game is running. It gives us a colorful breakdown of each part
of our system and how much work it is doing. The only really unfortunate part of this
tool is that it is only available for Unity Pro users.

Chapter 9

[279]

By first opening the Profiler window, we can then play our game in the window and watch the
tool give us a fairly detailed breakdown of what is going on. We can click on any point and see
detailed information about that frame in the bottom of the window. The information provided
is specific to the lane that you clicked on, CPU Usage, Rendering, Memory, and so on.

The CPU Usage information is particularly useful when trying to find parts of our game that
are taking too long to process. Spikes in processing cost stand out pretty easily. By clicking
on a spike, we can see the breakdown of what each part of the game played in making that
frame expensive. For most of these parts we can dig down to the exact object or function
that is causing the issue. However, we can only get down to the function level. Just because
we know where an issue in the code generally is, the Profiler will not tell us exactly which
part of that function is causing the issue.

In order to actually work, the Profiler needs to hook into every part of your game. This
introduces a little extra cost in the speed of your game. Therefore, when analyzing the
information provided, it is best to consider the relative costs rather than hold each cost
as an exact value.

Tracking script performance
All of these tools that Unity provides are great, but not always the right solution. The Unity
Basic user does not have access to the Profiler. Also, both the Profiler and the Editor Statistics
are fairly generalized. We can get a little more detail with the Profiler, but not always enough.
In this next part, we will be creating a special script capable of tracking the performance of
specific parts of any script. It should definitely become a regular piece of your developer kit.

Time for action – tracking scripts
We will be creating this script in the Space Fighter game:

1.	 First, we will need a special class that will keep track of our performance statistics.
Create a new script and name it TrackerStat.

2.	 To begin this script, we first need to change the class definition line. We do not want
or need to extend the MonoBehaviour class. So, find the following line of code:

public class TrackerStat : MonoBehaviour {

And, change it to the following:

public class TrackerStat {

Optimization

[280]

3.	 This script starts with four variables. The first will be used as an ID, allowing us
to track multiple scripts at once by supplying different key values. The second will
keep track of the average amount of time that the tracked bits of code are taking.
The third is just the total number of times the tracked code has been called. The
fourth is the longest time the code has taken to execute.

public string key = "";
public float averageTime = 0;
public int totalCalls = 0;
public float longestCall = 0;

4.	 Next, we have two more variables. These will do the work of actually tracking
how long the script takes to execute. The first is the time when the tracking
starts. The second is a flag marking that tracking has started.

public float openTime = 0;
public bool isOpen = false;

5.	 The first function for this script is Open. This function is called when we want to
start tracking a bit of code. It first checks to see if the code is already being tracked.
It uses Debug.LogWarning to send a warning to the Console window, if it is. Next,
it sets the flag marking that code is being tracked. Finally, the function tracks the
time it was called by using Time.realtimeSinceStartup, which is the actual
number of seconds since the game started.

public void Open() {
 if(isOpen) {
 Debug.LogWarning("Tracking is already open. Key: " + key);
 }

 isOpen = true;
 openTime = Time.realtimeSinceStartup;
}

6.	 The next function, Close, acts as the opposite of the previous one. It is called
when we have reached the end of the code we want to track. The time when the
tracking should stop is passed to it. This is done to minimize the amount of excess
code being executed. As with the previous function, it checks to see if tracking is
being done, sending out another warning and exiting early if it is not. Next, the
isOpen flag is cleared by setting it to false. Finally, the amount of time since
tracking was opened is calculated and the AddValue function is called.

public void Close(float closeTime) {
 if(!isOpen) {
 Debug.LogWarning("Tracking is already closed. Key: " + key);
 return;
 }

Chapter 9

[281]

 isOpen = false;
 AddValue(closeTime - openTime);
}

7.	 This last function for this script is AddValue. This function is passed callLength,
the length of time that the tracked bit of code took. It then uses some math to add
the value to averageTime. Next, the function compares the current longestCall
with the new value and selects the longest. Finally, the function increments
totalCalls.

public void AddValue(float callLength) {
 float totalTime = averageTime * totalCalls;
 averageTime = (totalTime + callLength) / (totalCalls + 1);

 longestCall = longestCall < callLength ? callLength :
longestCall;

 totalCalls++;
}

8.	 Next, we need to create another new script and name it ScriptTracker.
This script will allow us to do actual performance tracking.

9.	 This script starts off with a single variable. This variable maintains all of the stats
that are currently being tracked. Note the use of static here; it allows us to
easily update the list from anywhere in the game.

private static TrackerStat[] stats = new TrackerStat[0];

10.	 The first function for this script, Open, allows us to start tracking the code execution.
It uses the static flag, so the function can be called easily by any script. A key
value is passed to the function, allowing us to group track calls. The function starts
by creating a variable to hold the index of the stat to start tracking. Next, it loops
through the current set of stats to find a matching key value. If one is found, the
index variable is updated with the value and the loop is exited.

public static void Open(string key) {
 int index = -1;

 for(int i=0;i<stats.Length;i++) {
 if(stats[i].key == key) {
 index = i;
 break;
 }
 }

Optimization

[282]

11.	The Open function continues by checking if a stat was found. The index variable will
only be less than zero if we make it through the whole loop of current stats and
are unable to find a matching key. If one is not found, we call AddNewStat, which
will be created shortly, to create the new stat for tracking. The index is then set to
that of the new stat. Finally, the stat is triggered to start tracking by using the stat's
Open function.

 if(index < 0) {
 AddNewStat(key);
 index = stats.Length – 1;
 }

 stats[index].Open();
}

12.	The AddNewStat function is passed the key of the stat that is to be created.
It starts by storing the list of stats in a temporary variable and increasing the
size of the stats list by one. Each value is then transferred from the temp list
to the larger stats list. Finally, a new stat is created, it is assigned to the last
slot in the stats list, and the key is set.

private static void AddNewStat(string key) {
 TrackerStat[] temp = stats;
 stats = new TrackerStat[temp.Length + 1];

 for(int i=0;i<temp.Length;i++) {
 stats[i] = temp[i];
 }

 stats[stats.Length – 1] = new TrackerStat();
 stats[stats.Length – 1].key = key;
}

13.	Next, we have the Close function. This function is passed the key value of the stat
to be closed. It starts by finding the time that the function was called, minimizing
the amount of excess code being tracked. It continues by looping through the list
of stats to find a matching key. If one is found, the stat's Close function is called
and the function is exited. If a match is not found, Debug.LogError is called to
send an error message to the Console window.

public static void Close(string key) {
 float closeTime = Time.realtimeSinceStartup;

 for(int i=0;i<stats.Length;i++) {
 if(stats[i].key == key) {

Chapter 9

[283]

 stats[i].Close(closeTime);
 return;
 }
 }

 Debug.LogError("Tracking stat not found. Key: " + key);
}

14.	The last static function for this script is Clear. It only empties the stats list,
making it ready for fresh tracking.

public static void Clear() {
 stats = new TrackerStat[0];
}

15.	 The last step for the script is the OnGUI function. This function will let us see our
statistics while the game is playing. In it we make heavy use of the GUILayout class
and its functions. GUILayout automatically arranges the various GUI elements,
allowing us to spend less time arranging and more time analyzing. We first use
BeginVertical to start a vertical list of elements. BeginHorizontal is used to
start a horizontal list of elements. The Label function is then used to create titles for
each row of our statistics. We are using the GUILayout.Width function to give each
label a specific width, making the layout look much nicer. Next, EndHorizontal is
called to close the horizontal list. Every call to BeginHorizontal must be paired
with an EndHorizontal else Unity will make many complaints.

public void OnGUI() {
 GUILayout.BeginVertical();

 GUILayout.BeginHorizontal();
 GUILayout.Label("Key", GUILayout.Width(150));
 GUILayout.Label("Average", GUILayout.Width(100));
 GUILayout.Label("Total", GUILayout.Width(50));
 GUILayout.Label("Longest", GUILayout.Width(100));
 GUILayout.EndHorizontal();

16.	Next, we loop through our list of stats. For each, we create a horizontal list and use
Label to draw each stat on the screen. The ToString function is used to convert
the numbers to strings, needed by the labels.

 for(int i=0;i<stats.Length;i++) {
 GUILayout.BeginHorizontal();

 GUILayout.Label(stats[i].key.ToString(), GUILayout.
Width(150));

Optimization

[284]

 GUILayout.Label(stats[i].averageTime.ToString(), GUILayout.
Width(100));
 GUILayout.Label(stats[i].totalCalls.ToString(), GUILayout.
Width(50));
 GUILayout.Label(stats[i].longestCall.ToString(), GUILayout.
Width(100));

 GUILayout.EndHorizontal();
 }

17.	The OnGUI function finishes by creating a button, that calls upon the Clear
function when clicked. And finally, the EndVertical function is called to end
the vertical list of elements. Every call to BeginVertical must be paired with
a call to EndVertical, just as the horizontal lists.

 if(GUILayout.Button("Clear"))
 Clear();

 GUILayout.EndVertical();
}

18.	To test these scripts, open up your PlayerShip script. To the beginning of the
Rotate function, add the following line to start tracking how long it takes to run.

ScriptTracker.Open("PlayerShip_Rotate");

19.	Towards the end of the Rotate function, we need to call the Close function with
the same key.

ScriptTracker.Close("PlayerShip_Rotate");

20.	Finally, create an empty game object and add your ScriptTracker script to it.
Start the game and take a look at the results.

Chapter 9

[285]

What just happened?
We created a tool for testing specific parts of code. By wrapping any bit of code in calls to
the functions and sending a unique ID, we can determine how long it takes to execute the
code. By averaging out the calls to the script, and wrapping different parts of code, we can
determine exactly which parts of a script are taking the longest to complete. We can also
find out if the parts of code have been called too many times. Both cases are ideal points
to start looking at for minimizing processing and lag.

Be sure to remove any references to this tool before you deploy your game. If left in the
final levels, it can add an unnecessary amount of load on the CPU. This adverse effect on
the game could make the game unplayable. Always remember to clear out any uses of
tools that are exclusively for Editor debugging.

Minimizing lag
Lag is one of those nebulous ideas used to describe an application performing slower
than expected. As developers, we constantly fight against providing the highest quality
experience we can, while maintaining the speeds and responsiveness that users expect.
It essentially amounts to whether or not the processor on the user's device can handle
the cost of providing the game experience. A few, simple objects in your game will result
in fast processing. Several complex objects will cost the most processing.

Occlusion
Occlusion is great for games with a lot of objects. In its basic form, anything off to the sides
or behind the camera is not seen and therefore not drawn. In Unity Pro, we are able to set
up occlusion culling. This will calculate what can actually be seen by the camera, not drawing
anything that is blocked from view. There is a balance that has to be achieved when using
these tools. The cost of calculating what can not be seen needs to be less than the cost of
just drawing those objects anyway. As a rule of thumb, if you have many smaller objects
that are regularly blocked from view by larger objects, occlusion culling is the right choice.

Optimization

[286]

Time for action – occluding tanks
We will add occlusion culling to the Tank Battle game, because it is the only one with anything
large enough to block objects from view:

1.	 So, open up the Tank Battle game now. If you completed the challenges and added
the extra debris and obstacles, this section will be particularly effective for you.

2.	 Open the Occlusion window by going to Unity's toolbar and navigate to Window
| Occlusion Culling. This window is your primary point of access for modifying the
various settings associated with occlusion in your game.

3.	 Switch to the Bake page and we can take a look at the options associated with
occlusion culling.

Chapter 9

[287]

�� Technique: This setting will determine what method to use when setting up
occlusion culling.

PVS Only: This setting will only calculate the static objects of your
scene to have occlusion culling applied. This option is the least
intensive for the processor but is only good if there are very few
moving objects in the scene.

PVS and dynamic objects: This setting will precompute what objects
can be seen by the camera. For dynamic objects, the system will create
portals. They are used to cull objects that are on opposite sides of the
portals from the camera.

Automatic Portal Generation: This setting will cull both static and
dynamic objects based on portals. While giving the most accuracy,
this option also has the highest cost for the processor.

View Cell Size: This setting sets how detailed the occlusion calculations
are. Smaller values will result in better culling but will cause the file size
to increase to store the extra information.

Near Clip Plane and Far Clip Plane: These settings are used by the
system to estimate what a camera can see at any point in space.
They should be set to the smallest Near Clip Plane and largest
Far Clip Plane of all the cameras in your game.

Memory Limit: This setting is used when either of the PVS Techniques
have been chosen. It helps guide how much detail can be put into
the calculation.

4.	 Select PVS and dynamic objects for Technique and 5 for View Cell Size.

5.	 In order to make the occlusion system work with dynamic objects, we need to set
up a number of occlusion areas. To create them, create an empty GameObject and
add an Occlusion Area component, found in Unity's toolbar under Component |
Rendering | Occlusion Area.

Optimization

[288]

6.	 They need to cover the area where any dynamic objects will be located. Create and
position enough areas to cover the streets of our game. Their size can be edited just
as when working with Box Collider components. Be sure to make them tall enough
to cover all of your targets.

7.	 Hit Bake at the bottom of the Occlusion window. A progress bar will appear at
the bottom-right of the Unity Editor, telling you how much longer the calculations
will take. This process usually takes a good amount of time, especially as your
game becomes more and more complex.

8.	 When the baking process has completed, the Occlusion window should have
switched to the Visualization tab and the camera should be selected in your
Scene window. If not, select them now. In the Scene view, Unity will give us
a preview of how occlusion culling is working. Only those objects that can be
seen will be visible while the rest are turned off.

Chapter 9

[289]

What just happened?
We went through the basic process for setting up occlusion culling. We took a look at the
Occlusion window and learned about the settings available there. Occlusion culling is great
for reducing the number of draw calls in a scene. However, that reduction needs to be
balanced against the cost of storing and retrieving the occlusion calculations. This balance
is achieved by selecting a proper Technique and an appropriate View Cell Size. Play around
with the different values now, finding a cell size that gives the appropriate amount of detail
without supplying too much information.

Optimization

[290]

Points to remember
The following is a list of tips for dealing with and avoiding lag in your games. Not all of them
will apply to every game you make, but they are good to keep in mind for every project:

�� Avoid the transparent shaders, if possible, when creating your materials. They are
a little more expensive to render. And, you can save yourself a world of headaches
dealing with depth sorting, if you avoid them.

�� Use one material per object. The greater the number of draw calls in your game,
the longer each frame will take to render. Every mesh is drawn once per material
on it, even if the material doesn't appear to do anything. By keeping to one material
per object, especially on mobile platforms, you minimize the number of draw calls
and maximize your rendering speed.

�� Combine textures when possible. Not every texture you make will utilize the whole
of the image. Whenever possible, combine the textures of objects that are in the
same scene. This maximizes your efficient use of the images, while reducing the
final build size and amount of memory needed to utilize those textures.

�� Group objects in your Hierarchy using empty GameObjects. Though not specific
to minimizing lag, it will make your project easier to work with. Especially with
large and complex levels, you will be able to spend less time searching through
the objects in your scene and more time making a great game.

�� The Console window is your friend. Before worrying about your game not working,
first take a look at the Console window or the bar at the bottom in Unity. Both will
display any complaints that Unity might have about the way your game is currently
set up. The messages here are great for pointing you in the right direction to fixing
any problems. If you are ever unsure what the messages are trying to tell you,
perform a Google search for the message and you should be able to easily find a
solution from one of the many other Unity users. If your code ever appears to not
be working and Unity isn't complaining about it, use the Debug.Log function to
print messages to the Console. This will let you find places that your code might
be exiting unexpectedly, or values that are not what they should be.

�� Device testing is important. Working in the Editor is great, but there is nothing quite
like testing on the target device. You can get a much better feel for how your game is
performing when it is on the device. The Editor always introduces a small amount of
additional processing overhead. Also, the computer you are working on will always
be more powerful than the mobile devices you might intend on deploying to.

Chapter 9

[291]

Summary
In this chapter, we learned about our options for optimization in Unity. We first took a look at
the various settings, for the assets used in our games, used to keep their file size down while
maintaining quality. Next, we learned about some settings that affect the overall game. After
that, we explored options for tracking the performance of the game. We first looked at some
tools provided by Unity for tracking that performance. Then, we created a tool of our own
for tracking script performance in detail. We then took a look at some options for minimizing
lag in our games, including utilizing occlusion culling. Now that we know about all of these
tools and options, go through the games we created and optimize them. Make them the best
they can be.

In this book we learned a whole lot. We started with learning about Unity, Android, and
how to make them work together. Our journey continued with an exploration of Unity's
GUI system and the creation of a Tic-tac-toe game. We then learned about the basic assets
needed for any game, while starting the creation of a Tank Battle game. Our Tank Battle
game then expanded with the addition of a few special camera effects and some lighting.
We concluded the creation of the Tank Battle game by introducing some enemies and
making them chase the player. The creation of our Space Fighter game taught us about the
touch and tilt controls that we can utilize in our game. A short break from that game saw
the creation of an Angry Birds clone while learning about physics and the possibilities of
a 2D game in Unity. We then returned to the Space Fighter game to add some polish with
the addition of sound and particle effects. Finally, our journey concluded by learning about
optimizing our games. Thank you for reading this book. Enjoy your experiences with Unity
and creating the awesome games you have always dreamed about.

Pop Quiz Answers

Chapter 5, Getting Around – Pathfinding and AI
Pop quiz – understanding enemies

Q1 3

Q2 2

Q3 1

Chapter 6, Specialties of the Mobile Device – Touch
and Tilt
Pop quiz – understanding Android components

Q1 2

Q2 1

Q3 1

Q4 1

Q5 3

Index
Symbols
3D world

2D game, preparing 196-198
.Net Socket Support feature 15

A
active state 51
AddBodiesToCheck function 217
AddNewStat function 282
AddScore function 201
AddValue function 280
AI

about 146
pathfinding 146

alarm system
creating 242, 244

Alignment 52
Android

drawbacks 10
features 10
working, with Unity 10

animations 97-102
Animations tab

about 270
Anim. Compression option 270
Keyframe Reduction and Compression

option 270
Position Error option 270
Rotation Error option 270
Scale Error option 270

Animator.StringToHash function 111
application footprint

asset compression 267
Editor log 266, 267
minimizing 266
Player settings 274

Area Light function 132
artificial intelligence. See AI
assests

tank, importing 73, 74
asset compression

about 267
Animations tab 270
Audio 272
models 267
Model tab 268
Rig tab 269
textures 271, 272

asteroids
flying 176-179

Audio Filter feature 12
Audio settings

about 236
3D Sound 273
Audio Format 273
Audio Listener 237
Audio Source 238
background music, adding 240
Compression (kbps) 273
Force to mono 273
Import settings 236
Load type 273

[296]

Audio Source settings
2D Sound Settings 240
3D Sound Settings 239
Audio Clip 238
Bypass Effects 238
Loop 238
Mute 238
Pitch 238
Play On Awake 238
Priority 238
Volume 238

Auto Live Link button 104
Awake function 111, 178, 221

B
background music

adding 240, 241
BackToLeft function 223
BeginGroup function 62
black bird

creating 230, 231
blob shadows

about 141
adding, to tank 141-144

blue bird
creating 228-230

BroadcastMessage function 164
Browse button 27
Build And Run button 67, 68
Build And Run option 68
Build button 32
building blocks

planks, creating 199-203
Build Settings window 32
Button GUI Style 50

C
camera effects

about 120
distance fog 120
skyboxes 120

CanSpawn function 166
CheckCanFire function 161
CheckPigs function 207

CheckSleepingRigidbodies function 217
Choose Components page 20
ClampPosition function 223
ClearFire function 162
ClearHit function 112
Close function 282
cocos2d 9
code editors 23
Collision module 250, 251
color attributes 133
Color by Speed module 249
Color over Lifetime module 249
Console window 290
Content Offset 53
controls

camera, creating 220, 221
slingshot, creating 211

cookies
about 139
headlights 139, 140

Create button 28
Custom Styles attribute 49

D
Dark Skin feature 16
Debug.Log function 290
development environment

Android SDK, installing 17-19
JDK, installing 16
setting up 16
Unity 3D, installing 20, 22

device
building to 66-68
tilting 172

Directional Light function 132
distance fog

adding 120-122
DoAiming function 214
DoSpecial function 231
DragCamera function 223
DrawGameBoard function 44, 63
DrawGameOver function 62, 206
DrawOpening function 61, 62
DrawScore function 206
dynamic GUI 61, 62

[297]

E
Emission module

Bursts 246
Rate 246

EndGroup function 62
EndVertical function 284
enemy

attacking 164, 165
chasing 154, 155
coloring 165
creating 182, 204-208
weakening 164

enemy ship
adding 182-187

engine trails
adding 254

explosions
about 256
adding 256-259

External Forces module 250

F
Field of View attribute 143
FireBird function 215
Fire function 161
Fixed Height 53
FixedUpdate function 156, 216
Fixed Width 53
flock variety

black bird 230
blue bird 228
yellow bird 227

focused state 51
FollowBird function 222
Font attribute 49
Force over Lifetime module

Space 248
X, Y, and Z 248

FPS (Frames Per Second) 276
Full-Screen Post-Processing Effects feature 15

G
Game window tab 64, 65
General tab 36

GetCurrentAnimatorStateInfo function 111
GetRotation function 178
GetTouchPoint function 214
Google Play

URL 26
Graphical User Interface (GUI) 35
GUI.Button function 44
GUI element states

Border 52
Margin 52
Overflow 52
Padding 52

GUI Skins
creating 48

GUI Styles 49-51
gyroscope 173

H
Hierarchy window 56, 167
High Dynamic Range (HDR) 14
hover state 51

I
Image Position 53
Import settings

3D Sound 237
Audio Format 236
compression 237
Force to mono 237
gapless looping 237
hardware decoding 237
Load Type 237

inheritance 227
Initial module

Duration 245
Gravity Multiplier 246
Inherit Velocity 246
Looping 245
Max Particles 246
Play On Awake 246
Prewarm 245
Simulation Space 246
Start Color 246
Start Delay 245
Start Lifetime 245

[298]

Start Rotation 246
Start Size 245
Start Speed 245

Inspector window 31
GameSkin 48

Instantiate function 125, 191
Intensity attributes 133
inTheFront parameter 117
InverseTransformPoint function 117

J
Java Development Kit (JDK) 17

L
lag

avoiding, points 290
minimizing 285

laser blasts
about 259
adding 260-262

LateUpdate function 46, 123, 184, 218
level selection

creating 232, 233
License comparisons

100,000 Dollar Turnover 12
.Net Socket Support feature 15
Audio filters 12
Build Size Stripping 14
Custom Splash Screen 13
Dark Skin feature 16
Full-Screen Post-Processing Effects feature 15
Fully Fledged Streaming with Asset Bundles 12
HDR, tone mapping 14
Lightmapping with Global Illumination and

area lights 14
light probes 14
Mecanim IK Rigs 13
Mecanim Sync Layers & Additional Curves 13
Navmesh Dynamic Obstacles and Priority

feature 15
NavMeshes, Path-finding, and crowd

Simulation 11
Occlusion Culling feature 15
Profiler and GPU profiling feature 15

Realtime Directional Shadows 14
Render-to-Texture Effects feature 15
Script Access to Asset Pipeline feature 16
Static Batching feature 15
Video Playback and Streaming 12

lightmap
about 136
creating 136-138

light probes feature 14
lights

about 132, 133
adding 133-135
Area Light 132
Directional Light 132
Point Light 132
Spotlight 132

Limit Velocity over Lifetime module
Dampen 248
Separate Axis 248
Speed 248

LOD (Level-of-detail) 12
LOD Support feature 12

M
Material Naming 77
materials

creating 89-95
Material Search 77
Mathf.Clamp01 function 123
Mathf.Clamp function 86
Mathf.Lerp function 130
Mesh Compression 76
Meshes section 75
Model tab

about 268
Generate Colliders option 269
Generate Lightmap UVs option 269
Mesh Compression option 268
Normals option 269
Optimize Mesh option 269
Read/Write Enabled option 269
Tangents option 269

MonoBehaviour class 45, 123
MonoDevelop 23
MoveTank function 83, 96

[299]

N
navigation mesh. See NavMesh
NavMesh

about 146
creating 147-151

NavMeshAgent component
about 152
Acceleration 153
Angular Speed 153
Auto Repath 154
Auto Traverse Off Mesh Link 153
Avoidance Priority 154
Base Offset 154
enemy, creating 152-154
Height 154
Inspector window 153
NavMesh Walkable 154
Obstacle Avoidance Type 154
Radius 153
Speed 153
Stopping Distance 153

New Game button 60
NewSlice function 125
normal state 51
Notepad++ 23

O
Occluder 148
occlusion

about 148
adding, to Tank Battle game 286-289

Occlusion Culling feature 15
OnCollisionEnter function 200
OnGUI function 42, 116, 130, 205, 233, 284
OnTriggerEnter function 182, 197
Open Editor Log 266
Open function 282
optimization

application footprint, minimizing 266
lag, minimizing 285
occlusion 285
performance, tracking 276

optimization settings
Api Compatibility Level 275

Optimize Mesh Data 275
Stripping Level 275

Optimize Mesh 76
OutOfBirds function 207

P
parallax background

creating 224-226
particle systems

about 244
engine trails, adding 254-256
settings 244-253

particle system settings
about 244
Collision module 250
Color by Speed module 249
Color over Lifetime module 249
Emission module 246
engine trails 253
External Forces module 250
Force over Lifetime module 248
Initial module 245
Limit Velocity over Lifetime module 248
Renderer module 252
Rotation by Speed module 249
Rotation over Lifetime module 249
Shape module 247
Size by Speed module 249
Size over Lifetime module 249
Sub Emitters module 251
Texture Sheet Animation module 252
Velocity over Lifetime module 247

pathfinding 146
Pause button 29
performance tracking

editor statistics 276-278
Profiler window 278, 279
script performance, tracking 279-284

physics materials
about 203
implementing 203

Physics.Raycast function 258
picture-in-picture (PIP) 61
pig. See enemy
platform-tools folder 33

[300]

Play button 29
player

chasing 156-158
player firing

controlling 159-163
player settings

optimization settings 275
rendering settings 274

Player Settings button 67
PlayerShip.Rotate function 178
Point Light function 132
Powers of 2 271
prefab

target, creating 113, 114
PrepareFire function 161
Profiler and GPU profiling feature 15
Profiler window 278, 279

R
Random.Range function 113
Range attributes 133
Raycast function 116
Raycasts Hit Triggers checkbox 189
Read/Write Enabled 76
ReadyDamp function 216
ReadyNextBird function 212
Rect class 64
red bird

creating 209, 210
RemovePoints function 163
Renderer module 252
Rendering settings 274
Render-to-Texture Effects feature 15
ResetTime function 112
Rich Text 53
rigidbody.AddForce function 215
Rigidbody component

working with 198
Rig tab 269
Rotate function 284
RotateTurret function 86
Rotation by Speed module 249
Rotation over Lifetime module 249

S
SaveScore function 207
Scenes In Build box 31
ScreenPointToRay function 188, 189
Script Access to Asset Pipeline feature 16
SendMessage function 116
SetBool function 117
SetControl function 40
Settings attribute 49
setup process

steps 72, 73
SetWaitingPositions function 213
Shape module

Box 247
Hemisphere 247
Mesh 247
Random Direction 247
Shape 247
Sphere 247

simple application
building 26-33
Hello World application 26

simple device-connection method 23, 24
single player mode

creating 68
skybox

adding 120-122
Slerp function 184
slingshot

creating 211-219
space collisions

adding 180-182
points, adding 182

Space Fighter game
project, creating 172
setting up 172

space ship
steering 173-175

space spawn
creating 190-193

spawns
creating 166-168

Spotlight function 132
StartBoost function 130

[301]

StartWait function 221
Static Batching feature 15
statistics, Unity Editor

Animations statistic 278
Draw Calls statistic 277
Main Thread statistic 277
Renderer 277
Render Textures statistic 277
Saved by batching statistic 277
Screen 277
Shadow Casters statistic 278
switches statistic 277
Used Textures statistic 277
VBO Total statistic 278
Verts 277
Visible Skinned Meshes statistic 278
VRAM usage statistic 277

Step button 29
Stretch Height 53
Stretch Width 53
Sub Emitters module 251
SubtractTime function 112
SwapToDamaged function 200

T
tank

chassis, controlling 82-84
creating 79, 80
pieces, putting together 87, 88
player’s score, tracking 81
turret, controlling 84-87

Tank import settings
about 74
Animations button 75
Apply button 78
Generate Colliders 76
Imported Object section 78
Import Materials 77
Inspector window 78
Material Naming 77
Material Search 77
Mesh Compression 76
Meshes section 75
Model button 75
Normals & Tangents 76

Optimize Mesh 76
Preview window 78
Read/Write Enabled 76
Revert button 78
Rig button 75
smoothing angle 77
Split Tangents option 77
Swap UVs 76
Tangents 77

target animations
setting up 102, 103

target indicator
about 122
controlling 124, 125
pointer, creating 122, 123
position, adjusting 129
second camera, working with 126-128

target shooting 115-117
target state machine

creating 104-110
target, scripting 110-112

Text Clipping 53
textures

Filter Mode 272
Format 272
Generate Mip Maps 272
Max Size 272
Texture Type 271

Texture Sheet Animation module 252
TicTacToeControl class 43, 45
Tic-tac-toe game

about 36
background image, creating 61
creating 36-40
creating, finish steps 41-46
finishing, steps 41
styling 54-60

ToString function 283
touch screen

used, for shooting 187-189
using 187

transform.LookAt function 124
Transform Mask option 102
trickier devices

connecting 25, 26

[302]

turbo boost
about 129
creating 129-132

U
Unity

drawback 8
features 8, 9
licensing options, Basic 11
licensing options, Pro 11
working, with Android 10

Unity Basic 11
Unity Pro 11
Unity Remote 26
Unreal Engine 9
Update function 68, 160, 213, 262

V
Velocity over Lifetime module

Space 248
X, Y, and Z 247

Video Playback and Streaming feature 12
Visit java.oracle.com button 18
Visualization tab 288

W
Word Wrap 53

Y
yellow bird

creating 227, 228

Thank you for buying
Unity Android Game Development by
Example Beginner's Guide

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective MySQL
Management" in April 2004 and subsequently continued to specialize in publishing highly focused
books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and
customizing today's systems, applications, and frameworks. Our solution-based books give you the
knowledge and power to customize the software and technologies you're using to get the job done.
Packt books are more specific and less general than the IT books you have seen in the past. Our unique
business model allows us to bring you more focused information, giving you more of what you need to
know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality, cutting-edge
books for communities of developers, administrators, and newbies alike. For more information,
please visit our website: www.PacktPub.com.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should be sent
to author@packtpub.com. If your book idea is still at an early stage and you would like to discuss
it first before writing a formal book proposal, contact us; one of our commissioning editors will get in
touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Unity iOS Game Development
Beginners Guide
ISBN: 978-1-84969-040-9 Paperback:314 pages

Develop iOS games from concept to cash flow using Unity

1.	 Dive straight into game development with no
previous Unity or iOS experience

2.	 Work through the entire lifecycle of developing
games for iOS

3.	 Add multiplayer, input controls, debugging,
in app and micro payments to your game

4.	 Implement the different business models that
will enable you to make money on iOS games

Unity 4.x Cookbook
ISBN: 978-1-84969-042-3 Paperback: 386 pages

Over 100 recipes to spice up you Unity skills

1.	 A wide range of topics are covered, ranging in
complexity, offering something for every Unity
4 game developer

2.	 Every recipe provides step-by-step instructions,
followed by an explanation of how it all works,
and alternative approaches or refinements

3.	 Book developed with the latest version of
Unity (4.x)

Please check www.PacktPub.com for information on our titles

Unity 4.x Game AI Programming
ISBN: 978-1-84969-340-0 Paperback:232 pages

Learn and implement game AI in Unity3D with a lot of
sample projects and next-generaion techniques to use
in your Unity3D projects

1.	 A practical guide with step-by-step instructions
and example projects to learn Unity3D scripting

2.	 Learn pathfinding using A* algorithms as well as
Unity3D pro features and navigation graphs

3.	 Implement finite state machines (FSMs), path
following, and steering algorithms

Unity 4 Character Animation with
Mecanim
ISBN: 978-1-84969-636-4 Paperback: 260 pages

A detailed guide to the complex new animation tools in
Unity packed with clear instructions and illustrated with
original content in the context of a next generation zombie
apocalypse adventure game

1.	 Create and export models and animation sequences
to Unity from 3ds Max, Maya and Blender

2.	 Prepare character models and animation for games
using Mecanim’s rigging tools

3.	 Retarget, adjust, and mix and match motion capture
and other animation data

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Saying Hello to Unity and Android
	Understanding what makes Unity great
	Understanding what makes Android great
	Understanding how Unity and Android work together
	Differences between Pro and Basic
	License comparison overview

	Setting up the development environment
	Time for action – installing the JDK
	Time for action – installing the Android SDK
	Time for action – installing Unity 3D
	Optional code editor
	Connecting to a device
	Time for action – simple device connection
	Time for action – connecting trickier devices
	Unity Remote
	Building a simple application
	Time for action – Hello World
	Summary

	Chapter 2: Looking Good – Graphical Interface
	Creating a Tic-tac-toe game
	Time for action – creating Tic-tac-toe
	Finishing the game
	Time for action – finish creating the game
	GUI Skins and GUI Styles
	A prettier form of Tic-tac-toe
	Time for action – styling the game
	Dynamic positioning
	Time for action – the dynamic GUI
	A better way to build to device
	Time for action – build and run
	Summary

	Chapter 3: The Backbone of Any Game – Meshes, Materials, and Animations
	Setting up
	Time for action – the setup
	Importing the meshes
	Time for action – importing the tank
	Tank import settings
	Setting up the tank

	Time for action – creating the tank
	Time for action – keeping score
	Time for action – controlling the chassis
	Time for action – controlling the turret
	Time for action – putting the pieces together
	Creating the materials
	Time for action – creating the city
	Time for action – moving treads
	Animations
	The target's animations

	Time for action – setting up target animations
	State machines

	Time for action – creating the target state machine
	Time for action – scripting the target
	Creating the prefab

	Time for action – creating the target
	Ray tracing to shoot
	Time for action – simple shooting
	Summary

	Chapter 4: Setting the Stage – Camera Effects and Lighting
	The camera effects
	Skyboxes and distance fog

	Time for action – adding a skybox and distance fog
	Target indicator

	Time for action – creating the pointer
	Time for action – controlling the indicator
	Time for action – working with a second camera
	Turbo boost

	Time for action – using the boost effect
	Lights
	Time for action – adding more lights
	Lightmaps

	Time for action – creating a lightmap
	Cookies

	Time for action – applying headlights
	Blob shadow
	Time for action – a tank with a shadow
	Summary

	Chapter 5: Getting Around – Pathfinding and AI
	Understanding AI and pathfinding
	The NavMesh
	Time for action – creating the NavMesh
	The NavMeshAgent component
	Time for action – creating the enemy
	The chase
	Time for action – the player is over here
	Time for action – chasing the player
	Being attacked
	Time for action – getting ready to fire
	Attacking the enemy
	Time for action – giving it a weakness
	Spawning
	Time for action – creating spawns
	Summary

	Chapter 6: Specialties of the Mobile
Device – Touch and Tilt
	Setting up
	Time for action – creating the project
	Controlling with tilt
	Time for action – steering the space ship
	Making things move in space

	Time for action – flying asteroids
	Adding space collisions

	Time for action – adding collision
	Creating the enemy

	Time for action – adding an enemy ship
	Controlling with touch
	Time for action – touch to shoot
	Spawning in space

	Time for action – creating a space spawn
	Summary

	Chapter 7: Throwing Your Weight Around – Physics and a 2D Camera
	2D games in a 3D world
	Time for action – preparing the world
	Physics
	Building blocks

	Time for action – creating planks
	Physics materials

	Time for action – sliding and bouncing
	Characters
	The enemy

	Time for action – creating the pigs
	The ally

	Time for action – creating the red bird
	Controls
	Attacking

	Time for action – creating the slingshot
	Watching

	Time for action – controlling the camera
	A better background
	Time for action – creating the parallax background
	The flock variety
	The yellow bird

	Time for action – creating the yellow bird
	The blue bird

	Time for action – creating the blue bird
	The black bird

	Time for action – creating the black bird
	Level selection
	Time for action – creating the level selection
	Summary

	Chapter 8: Special Effects – Sound and Particles
	Understanding audio
	Import settings
	Audio Listener
	Audio Source
	Adding background music

	Time for action – adding background music
	Creating an alarm system

	Time for action – warning the player
	Understanding particle systems
	Particle system settings
	Creating engine trails

	Time for action – adding engine trails
	Putting it together
	Explosions

	Time for action – adding explosions
	Creating laser blasts

	Time for action – adding laser blasts
	Summary

	Chapter 9: Optimization
	Minimizing the application footprint
	Editor log
	Asset compression
	Models
	Model tab
	Rig tab
	Animations tab
	Textures
	Audio

	Player settings
	Rendering
	Optimization

	Tracking performance
	Editor statistics
	The Profiler
	Tracking script performance

	Time for action – tracking scripts
	Minimizing lag
	Occlusion
	Time for action – occluding tanks
	Points to remember

	Summary

	Pop Quiz Answers
	Index

