
DATA

Using Flume

ISBN: 978-1-449-36830-2

US $39.99 CAN $41.99

“	Operators	will	find	this	
book	immensely	valuable	
for	understanding	how	
to	easily	set	up	and	
deploy	Flume	pipelines.	
Developers	will	find	it	a	
handy	reference	to	build	
or	customize	components	
within	Flume,	and	
to	better	understand	
its	architecture	and	
component	designs.		
	
Above	all,	this	book	will	
give	you	the	necessary	
insights	for	setting	up	
continuous	ingestion	for	
HDFS	and	HBase.”

—Arvind Prabhakar
CTO, StreamSets

Twitter: @oreillymedia
facebook.com/oreilly

How can you get your data from frontend servers to Hadoop in near
real time? With this complete reference guide, you’ll learn Flume’s rich
set of features for collecting, aggregating, and writing large amounts of
streaming data to the Hadoop Distributed File System (HDFS), Apache
HBase, SolrCloud, Elastic Search, and other systems.

Using Flume shows operations engineers how to configure, deploy, and
monitor a Flume cluster, and teaches developers how to write Flume plug-
ins and custom components for their specific use cases. You’ll learn about
Flume’s design and implementation, as well as various features that make
it highly scalable, flexible, and reliable.

 ■ Learn how Flume provides a steady rate of flow by acting as a
buffer between data producers and consumers

 ■ Dive into key Flume components, including sources that accept
data and sinks that write and deliver it

 ■ Write custom plug-ins to customize the way Flume receives,
modifies, formats, and writes data

 ■ Explore APIs for sending data to Flume agents from your own
applications

 ■ Plan and deploy Flume in a scalable and flexible way—and
monitor your cluster once it’s running

Hari Shreedharan is a Software Engineer at Cloudera, where he works on Apache
Spark, Apache Flume, and Apache Sqoop. He’s also a committer and a PMC
member on the Flume Project and helps make decisions on the project’s direction.

Hari Shreedharan

Using

 Flume
FLEXIBLE, SCALABLE, AND RELIABLE DATA STREAMING

N
adeau

 &
 Gray

U
sing Flum

e
Shreedharan

www.allitebooks.com

http://www.allitebooks.org

DATA

Using Flume

ISBN: 978-1-449-36830-2

US $39.99 CAN $41.99

“	Operators	will	find	this	
book	immensely	valuable	
for	understanding	how	
to	easily	set	up	and	
deploy	Flume	pipelines.	
Developers	will	find	it	a	
handy	reference	to	build	
or	customize	components	
within	Flume,	and	
to	better	understand	
its	architecture	and	
component	designs.		
	
Above	all,	this	book	will	
give	you	the	necessary	
insights	for	setting	up	
continuous	ingestion	for	
HDFS	and	HBase.”

—Arvind Prabhakar
CTO, StreamSets

Twitter: @oreillymedia
facebook.com/oreilly

How can you get your data from frontend servers to Hadoop in near
real time? With this complete reference guide, you’ll learn Flume’s rich
set of features for collecting, aggregating, and writing large amounts of
streaming data to the Hadoop Distributed File System (HDFS), Apache
HBase, SolrCloud, Elastic Search, and other systems.

Using Flume shows operations engineers how to configure, deploy, and
monitor a Flume cluster, and teaches developers how to write Flume plug-
ins and custom components for their specific use cases. You’ll learn about
Flume’s design and implementation, as well as various features that make
it highly scalable, flexible, and reliable.

 ■ Learn how Flume provides a steady rate of flow by acting as a
buffer between data producers and consumers

 ■ Dive into key Flume components, including sources that accept
data and sinks that write and deliver it

 ■ Write custom plug-ins to customize the way Flume receives,
modifies, formats, and writes data

 ■ Explore APIs for sending data to Flume agents from your own
applications

 ■ Plan and deploy Flume in a scalable and flexible way—and
monitor your cluster once it’s running

Hari Shreedharan is a Software Engineer at Cloudera, where he works on Apache
Spark, Apache Flume, and Apache Sqoop. He’s also a committer and a PMC
member on the Flume Project and helps make decisions on the project’s direction.

Hari Shreedharan

Using

 Flume
FLEXIBLE, SCALABLE, AND RELIABLE DATA STREAMING

N
adeau

 &
 Gray

U
sing Flum

e
Shreedharan

www.allitebooks.com

http://www.allitebooks.org

Hari Shreedharan

Using Flume

www.allitebooks.com

http://www.allitebooks.org

978-1-449-36830-2

[LSI]

Using Flume
by Hari Shreedharan

Copyright © 2015 Hari Shreedharan. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (https://www.safaribooksonline.com/). For more information, contact our cor‐
porate/institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editor: Ann Spencer
Production Editor: Kara Ebrahim
Copyeditor: Charles Roumeliotis
Proofreader: Rachel Head

Indexer: Meghan Jones
Interior Designer: David Futato
Cover Designer: Ellie Volckhausen
Illustrator: Rebecca Demarest

October 2014: First Edition

Revision History for the First Edition
2014-09-15: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781449368302 for release details.

The O’Reilly logo is a registered trademarks of O’Reilly Media, Inc. Using Flume, the cover image of a
burbot, and related trade dress are trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc., was aware of a trade‐
mark claim, the designations have been printed in caps or initial caps.

While the publisher and the author have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the author disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

www.allitebooks.com

https://www.safaribooksonline.com/?portal=oreilly
http://oreilly.com/catalog/errata.csp?isbn=9781449368302
http://www.allitebooks.org

Table of Contents

Foreword. vii

Preface. ix

1. Apache Hadoop and Apache HBase: An Introduction. 1
HDFS 1

HDFS Data Formats 3
Processing Data on HDFS 4

Apache HBase 5
Summary 6
References 6

2. Streaming Data Using Apache Flume. 7
The Need for Flume 8
Is Flume a Good Fit? 10
Inside a Flume Agent 10
Configuring Flume Agents 13
Getting Flume Agents to Talk to Each Other 17
Complex Flows 17
Replicating Data to Various Destinations 20
Dynamic Routing 21
Flume’s No Data Loss Guarantee, Channels, and Transactions 22

Transactions in Flume Channels 23
Agent Failure and Data Loss 25
The Importance of Batching 26
What About Duplicates? 28
Running a Flume Agent 29
Summary 31

iii

www.allitebooks.com

http://www.allitebooks.org

References 31

3. Sources. 33
Lifecycle of a Source 33
Sink-to-Source Communication 36

Avro Source 36
Thrift Source 40
Failure Handling in RPC Sources 42

HTTP Source 43
Writing Handlers for the HTTP Source* 44

Spooling Directory Source 50
Reading Custom Formats Using Deserializers* 53
Spooling Directory Source Performance 58

Syslog Sources 58
Exec Source 62
JMS Source 64

Converting JMS Messages into Flume Events* 67
Writing Your Own Sources* 69

Event-Driven and Pollable Sources 70
Summary 77
References 78

4. Channels. 79
Transaction Workflow 80
Channels Bundled with Flume 82

Memory Channel 82
File Channel 85

Summary 92
References 92

5. Sinks. 93
Lifecycle of a Sink 94
Optimizing the Performance of Sinks 95
Writing to HDFS: The HDFS Sink 96

Understanding Buckets 97
Configuring the HDFS Sink 100
Controlling the Data Format Using Serializers* 108

HBase Sinks 114
Translating Flume Events to HBase Puts and Increments Using Serializers* 117

RPC Sinks 121
Avro Sink 121
Thrift Sink 124

iv | Table of Contents

www.allitebooks.com

http://www.allitebooks.org

Morphline Solr Sink 125
Elastic Search Sink 129

Customizing the Data Format* 131
Other Sinks: Null Sink, Rolling File Sink, Logger Sink 133
Writing Your Own Sink* 135
Summary 139
References 139

6. Interceptors, Channel Selectors, Sink Groups, and Sink Processors. 141
Interceptors 141

Timestamp Interceptor 142
Host Interceptor 143
Static Interceptor 143
Regex Filtering Interceptor 144
Morphline Interceptor 145
UUID Interceptor 146
Writing Interceptors* 147

Channel Selectors 150
Replicating Channel Selector 151
Multiplexing Channel Selector 152
Custom Channel Selectors* 155

Sink Groups and Sink Processors 157
Load-Balancing Sink Processor 159
Failover Sink Processor 162

Summary 165
References 165

7. Getting Data into Flume*. 167
Building Flume Events 167
Flume Client SDK 168

Building Flume RPC Clients 169
RPC Client Interface 169
Configuration Parameters Common to All RPC Clients 170
Default RPC Client 177
Load-Balancing RPC Client 180
Failover RPC Client 184
Thrift RPC Client 184

Embedded Agent 185
Configuring an Embedded Agent 188

log4j Appenders 192
Load-Balancing log4j Appender 194

Summary 195

Table of Contents | v

www.allitebooks.com

http://www.allitebooks.org

References 195

8. Planning, Deploying, and Monitoring Flume. 197
Planning a Flume Deployment 197

Time to Repair 197
How Much Capacity Do I Need in My Flume Channels? 198
How Many Tiers? 199
Sending Data over Cross–Data Center Links 201
Sharding Tiers 202

Deploying Flume 203
Deploying Custom Code 204

Monitoring Flume 205
Reporting Metrics from Custom Components 208

Summary 209
References 209

Index. 211

vi | Table of Contents

www.allitebooks.com

http://www.allitebooks.org

Foreword

The past few years have seen tremendous growth in the development and adoption of
Big Data technologies. Hadoop and related platforms are powering the next wave of
data analytics over increasingly large amounts of data. The data produced today will
be dwarfed by what is expected tomorrow, growing at an ever-increasing rate as the
digital revolution engulfs all aspects of our existence. The barrier to entry in this new
age of massive data volumes is of course the obvious one: how do you get all this data
in your cluster to begin with? Clearly, this data is produced in a wide spectrum of sour‐
ces spread across the enterprise, and has an interesting mix of interaction, machine,
sensor, and social data among others. Any operator who has dealt with similar chal‐
lenges would no doubt agree that it is nontrivial, if not downright hard, to build a
system that can route this data into your clusters in a cost-effective manner.

Apache Flume is exactly built to handle this challenge.

Back in 2011 when Flume went into Incubation at The Apache Software Foundation,
it was a project built by Cloudera engineers to address large-scale log data aggrega‐
tion on Hadoop. Being a popular project from the beginning, it had seen a large num‐
ber of new requirements ranging from event-ordering to guaranteed-delivery seman‐
tics, that came up over its initial releases. Given its popularity and high demand for
complex requirements, we decided to refactor the project entirely and make it sim‐
pler, more powerful in its applicability and manageability, and allow for easy exten‐
sions where necessary. Hari and I were in the Incubator project along with a handful
of other engineers who were working around the clock with the Flume community to
drive this vision and implementation forward. From that time until now, Flume has
graduated into its own top-level Apache project, made several stable releases, and has
grown significantly rich in functionality.

Today, Flume is actively deployed and in use across the world in large numbers of
data centers, sometimes spanning continental boundaries. It continues to effectively
provide a super-resilient, fault-tolerant, reliable, fast, and efficient mechanism to
move massive amounts of data from a variety of sources over to destination systems

vii

www.allitebooks.com

http://www.allitebooks.org

such as HBase, HDFS, etc. A well-planned Flume topology operates with minimal or
no intervention, practically running itself indefinitely. It provides contextual routing
and is able to work through downtimes, network outages, and other unpredictable/
unplanned interruptions by providing the capacity to reliably store and retransmit
messages when connectivity is restored. It does all of this out of the box, and yet pro‐
vides the flexibility to customize any component within its implementation using
fairly stable and intuitive interfaces that are widely in use.

In Using Flume, Hari provides an overview of various components within Flume, div‐
ing into details where necessary. Operators will find this book immensely valuable for
understanding how to easily set up and deploy Flume pipelines. Developers will find
it a handy reference to build or customize components within Flume, and to better
understand its architecture and component designs. Above all, this book will give you
the necessary insights for setting up continuous ingestion for HDFS and HBase—the
two most popular storage systems today.

With Flume deployed, you can be sure that data—no matter where it’s produced in
your enterprise, or how large its volume is—will make it safely and timely into your
Big Data platforms. And you can then focus your energy on getting the right insights
out of your data. Good luck!

—Arvind Prabhakar, CTO, StreamSets

viii | Foreword

www.allitebooks.com

http://www.allitebooks.org

Preface

Today, developers are able to write and deploy applications on a large number of
servers in the “cloud” very easily. These applications are producing more data than
ever, which when stored and analyzed gives valuable insights that can improve the
applications themselves and the businesses that the applications are a part of. The
data generated by such applications is often analyzed using systems like Hadoop and
HBase.

Analyzing this data is really possible only if you can get the data into these systems
from frontend servers. Often, the validity of such analysis becomes less valid as the
data becomes older. To get the data into the processing system in near real time, sys‐
tems like Apache Flume are used. Apache Flume is a system for moving large
amounts of data from large numbers of data producers to systems that store, index, or
analyze that data. Such systems also decouple the producers from the consumers of
the data, making it easy to change either side without the other knowing about it. In
addition to decoupling, they also provide failure isolation and an added buffer
between the producer and the storage system. The data producers will not know
about the storage or indexing system being inaccessible until all of the Flume buffers
also fill up—this provides an additional buffer, which might be enough for the storage
system to come back online and clear up the backlog of events in the Flume buffers.

In this book, we will discuss in detail why systems like Flume are needed, the inter‐
nals of a Flume agent, and how to configure and deploy Flume agents. We will also
discuss the various ways in which Flume deployments can be customized and how to
write plug-ins for Flume.

Chapter 1 gives a basic introduction to Apache Hadoop and Apache HBase. This
chapter is only meant to introduce the reader to Hadoop and HBase and give some
details of their internals. This can be skipped if the reader is already familiar with
Hadoop and HBase.

ix

Chapter 2 introduces Flume, its major components, and its configuration, and also
explains how to deploy Flume to push data from data-generating servers to storage
and indexing systems.

Chapter 3, Chapter 4, Chapter 5, and Chapter 6 explain the various sources, channels,
and sinks that come packaged with Flume and how to write custom plug-ins to cus‐
tomize the way Flume receives, modifies, formats, and writes data.

In Chapter 7, we discuss the various ways to send data from your own applications to
Flume agents. This chapter is primarily meant for developers writing applications
that push data to Flume agents.

We will also discuss how to plan, deploy, and monitor Flume deployments in Chap‐
ter 8.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program ele‐
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

Bold in configuration listings
Indicates mandatory parameters in configuration parameter listings.

Writing custom code*
Certain chapter and section names end with an asterisk (*). This indicates that
they cover advanced or developer topics related to design aspects of Flume com‐
ponents or explain how to write custom components that can be plugged into
Flume.

x | Preface

This element signifies a tip or suggestion.

This element signifies a general note.

This element indicates a warning or caution.

Using Code Examples
Supplemental material (code examples, exercises, etc.) is available for download at
https://github.com/harishreedharan/usingflumecode.

Code in the Book

The code shown in the book has been edited to make it as clear as
possible, and may not compile or run as is. The full working ver‐
sion of the code can be found at the GitHub repository shown
above. Please be aware that the companion code is meant to illus‐
trate key Flume concepts and may not handle all edge or error
cases.

This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not
need to contact us for permission unless you’re reproducing a significant portion of
the code. For example, writing a program that uses several chunks of code from this
book does not require permission. Selling or distributing a CD-ROM of examples
from O’Reilly books does require permission. Answering a question by citing this
book and quoting example code does not require permission. Incorporating a signifi‐
cant amount of example code from this book into your product’s documentation does
require permission.

We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: “Using Flume by Hari Shreedharan
(O’Reilly). Copyright 2015 Hari Shreedharan, 978-1-449-36830-2.”

Preface | xi

https://github.com/harishreedharan/usingflumecode

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

Safari® Books Online
Safari Books Online is an on-demand digital library that deliv‐
ers expert content in both book and video form from the
world’s leading authors in technology and business.

Technology professionals, software developers, web designers,
and business and creative professionals use Safari Books Online as their primary
resource for research, problem solving, learning, and certification training.

Safari Books Online offers a range of plans and pricing for enterprise, government,
education, and individuals.

Members have access to thousands of books, training videos, and prepublication
manuscripts in one fully searchable database from publishers like O’Reilly Media,
Prentice Hall Professional, Addison-Wesley Professional, Microsoft Press, Sams, Que,
Peachpit Press, Focal Press, Cisco Press, John Wiley & Sons, Syngress, Morgan Kauf‐
mann, IBM Redbooks, Packt, Adobe Press, FT Press, Apress, Manning, New Riders,
McGraw-Hill, Jones & Bartlett, Course Technology, and hundreds more. For more
information about Safari Books Online, please visit us online.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://bit.ly/using-flume.

To comment or ask technical questions about this book, send email to bookques‐
tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our web‐
site at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

xii | Preface

mailto:permissions@oreilly.com
http://safaribooksonline.com/?portal=oreilly
https://www.safaribooksonline.com/pricing/
https://www.safaribooksonline.com/enterprise/
https://www.safaribooksonline.com/government/
https://www.safaribooksonline.com/academic-public-library/
https://www.safaribooksonline.com/our-library/
http://safaribooksonline.com/
http://bit.ly/using-flume
mailto:bookquestions@oreilly.com
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments
I gratefully dedicate this book to my parents, Dr. M. Shreedharan and Usha Shreed‐
haran, without whose efforts and encouragement I would not have been able to
become an engineer and eventually write this book.

I am also grateful to my sister, Lakshmi Shreedharan, and brother-in-law, Dinakar
Kesavapillai, for all their help and support during my college and grad school days. I
also want to thank my niece, Dhwani, for all the fun she adds to my life.

I am really thankful to my wife, Archana Sastry, for her support and the late nights
during the early days of Flume development.

I thank Arvind Prabhakar for being a mentor and friend whose guidance has always
helped me choose the right path.

Mike Percy, Brock Noland, Jarcec Cecho, Kathleen Ting, Jeff Lord, Prasad Mujumdar,
Will McQueen, and Ken Choy have all helped me grow as an engineer and a person
and I am thankful for that.

I also take this opportunity to thank Jon Hsieh for starting the Flume project, and the
Apache Flume community for building and maintaining it.

Preface | xiii

http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

CHAPTER 1

Apache Hadoop and Apache HBase:
An Introduction

Apache Hadoop is a highly scalable, fault-tolerant distributed system meant to store
large amounts of data and process it in place. Hadoop is designed to run large-scale
processing systems on the same cluster that stores the data. The philosophy of
Hadoop is to store all the data in one place and process the data in the same place—
that is, move the processing to the data store and not move the data to the processing
system. Apache HBase is a database system that is built on top of Hadoop to provide
a key-value store that benefits from the distributed framework that Hadoop provides.

Data, once written to the Hadoop Distributed File System (HDFS), is immutable. Each
file on HDFS is append-only. Once a file is created and written to, the file can either
be appended to or deleted. It is not possible to change the data in the file. Though
HBase runs on top of HDFS, HBase supports updating any data written to it, just like
a normal database system.

This chapter will provide a brief introduction to Apache Hadoop and Apache HBase,
though we will not go into too much detail.

HDFS
At the core of Hadoop is a distributed file system referred to as HDFS. HDFS is a
highly distributed, fault-tolerant file system that is specifically built to run on com‐
modity hardware and to scale as more data is added by simply adding more hard‐
ware. HDFS can be configured to replicate data several times on different machines
to ensure that there is no data loss, even if a machine holding the data fails. Replicat‐
ing data also allows the system to be highly available even if machines holding a copy
of the data are disconnected from the network or go down. This section will briefly

1

cover the design of HDFS and the various processing systems that run on top of
HDFS.

HDFS was originally designed on the basis of the Google File System [gfs]. HDFS is a
distributed system that can store data on thousands of off-the-shelf servers, with no
special requirements for hardware configuration. This means HDFS does not require
the use of storage area networks (SANs), expensive network configuration, or any
special disks. HDFS can be run on any run-of-the-mill data center setup. HDFS repli‐
cates all data written to it, based on the replication factor configured by the user. The
default replication factor is 3, which ensures that any data written to HDFS is replica‐
ted on three different servers within the cluster. This greatly reduces the possibility
that any data written to HDFS will be lost.

HDFS, like any other file system, writes data to individual blocks. Each HDFS file
consists of at least one block. Each file consists of multiple blocks, based on the size of
the file. HDFS is designed to hold very large files. Therefore, HDFS block sizes are
also usually pretty large compared to other file systems. HDFS block sizes are config‐
urable, and in most cases range between 128 MB to 512 MB. HDFS tries to ensure
that each block is replicated based on the replication factor, thus ensuring the file
itself is replicated as much as the replication factor. HDFS is rack-aware, and the
default block placement policy tries to ensure that each replica of a block is on a dif‐
ferent rack.

HDFS consists of two types of servers: name nodes and data nodes. Most Hadoop
clusters generally have two name nodes and several data nodes. Data nodes are the
nodes on which the data is stored. At any point in time, there is one active name node
and an optional standby name node. The active name node is the currently active
name node that serves client and other data nodes. The standby name node is an
active backup to the primary, and takes over if the active name node goes down or is
no longer accessible for some reason. Name nodes are responsible for storing meta‐
data about files and blocks on the file system. The name node maps every file to the
list of blocks that the file consists of. The name node also holds information about
each block’s location—which data nodes the block is stored on and where on the data
node it is.

Each client write is initially written to a local file on the client machine, until the cli‐
ent flushes the file or closes it or the size of the temporary file exceeds a block bound‐
ary. At this point, the file is created (or a new block is added if new data is being writ‐
ten once a block boundary is crossed or an existing file is reopened for append) and
the name node assigns blocks to it. Then the data is written to each block, which is
replicated to multiple data nodes, one after another. The operation is successful only
if all the data nodes succesfully replicate the blocks.

HDFS files cannot be edited and are append-only. Each file, once closed, can be
opened only to append data to it. HDFS also does not guarantee that writes to a file

2 | Chapter 1: Apache Hadoop and Apache HBase: An Introduction

are visible to other clients until the client writing the data flushes the data to data
node memory, or closes the file. Each time a new block is required, the name node
allocates a new block to the file and keeps track of it. For each read, the client gets the
locations of the blocks that represent the file from the name node and directly reads
the data from the data node. From the user’s point of view, HDFS is a single storage
system and the fact that each file is replicated and stored on multiple systems is com‐
pletely transparent to the user. So, user code need not worry about any of the failure
tolerance or replication aspects of HDFS. Even the client API writing to a file on the
local machine before a flush or close call is transparent to the user code.

The client API is one way of interacting with HDFS. HDFS also provides a set of shell
commands that can be used to perform many common file operations. HDFS com‐
mands are of the form:

hdfs dfs -<command> <options>

For example, to get a listing of files in the /Data/ directory on HDFS, the following
command can be used:

hdfs dfs -ls /Data

The list of supported commands can be found in the Hadoop documentation [com‐
mands]. Running these commands requires that HDFS be configured correctly on the
system, with HADOOP_HOME or HADOOP_PREFIX set correctly with the Hadoop
configuration files correctly in HADOOP_CLASSPATH. For more details on HDFS
architecture and configuration, refer to Hadoop: The Definitive Guide [hdfs-
architecture].

HDFS Data Formats
In general, data formats in HDFS are classified into splittable and unsplittable formats.
A splittable format is one in which a file can be reliably split into multiple pieces
called splits at record boundaries. A splittable file format can seek to the start of a
record from any point. Splittable file formats are MapReduce-friendly, since MapRe‐
duce splits files to read data from a file in parallel from different mappers.

It is always better to use binary formats rather than text to write to HDFS. This is
because most binary formats have some way of indicating corruption or incomplete‐
ness in a record. Failures can cause incomplete records to be written to files. An
example is if the HDFS cluster runs out of space, or has connectivity issues: there
could be a block allocation failure, which can cause the file to contain incomplete or
corrupt records. Binary records help ensure that such incorrect records are detected
and ignored. An example of a binary format that is used commonly in Hadoop is the
Avro container file format. This format is splittable, and can detect corrupt or incom‐
plete records in a file. MapReduce, Hive, Pig, etc. support Avro as an input format.

HDFS | 3

Avro also supports compression using the Snappy and Deflate/bz2 compression
codecs.

There are several data formats that are typically used on HDFS. One of the most com‐
mon data formats on HDFS is a sequence file. A sequence file is a splittable file format
that is typically used with MapReduce jobs. It is represented as a list of keys and val‐
ues, each of which is an instance of a Writable, which basically represents a serializa‐
ble class.

There are compression formats that are splittable, like bz2, preprocessed LZO, etc.
More details on file formats in the Hadoop ecosystem can be found in Hadoop: The
Definitive Guide [serialization].

Flume supports writing several of the built-in formats out of the box, and also allows
users to plug in their own serializers that can write data in any format of their own
choosing to HDFS. We will discuss this in Chapter 5, in “Controlling the Data Format
Using Serializers*” on page 108.

Processing Data on HDFS
As we discussed, Hadoop brings the processing systems to the data store. As a result,
the same nodes that host the data also run systems that can process the data stored on
HDFS. MapReduce has long been the classical system that processes data on HDFS.

MapReduce is a distributed processing framework that allows the user to write Java
code that reads data from HDFS and processes it. Each MapReduce program runs on
multiple nodes, each processing a part of the input data. MapReduce programs have
two phases: the Map phase and the Reduce phase. Each phase runs a piece of Java
code on multiple nodes simultaneously, thus processing huge amounts of data in par‐
allel. Each mapper reads an input split (a fixed subset of the inputs) from a specific
directory on HDFS and processes the inputs as keys and corresponding values.

How the data in the files in the directory are mapped to keys and values depends on
the format being used and the input format that processes it [input-format]. The Map
phase processes the inputs and produces intermediate key-value pairs. All key-value
pairs with the same intermediate key are then processed by the same reducer. Finally,
the reducer eventually writes out final outputs as key-value pairs to a configured out‐
put directory. You can read more about MapReduce in Hadoop: A Definitive Guide
[mr].

Apache Hive and Cloudera Impala provide SQL interfaces (really subsets of SQL) to
process data on HDFS. Hive parses the SQL query to generate a MapReduce job that
processes the data, while Impala has its own processing engine that reads the data and
applies transformations based on the query to process the data. These systems map
flat files on HDFS to tables on which the queries are run. Such systems provide an
easy migration path for users who have been using SQL-based database systems to

4 | Chapter 1: Apache Hadoop and Apache HBase: An Introduction

process and store their data. There are several other systems, like Apache Pig, Apache
Spark, etc., that can be used to process data stored on HDFS.

Apache HBase
Apache HBase is the Hadoop Ecosystem’s key-value store. HBase is often used to
write and update data in real time. It is also used to serve data in real time, in places
where a traditional database could be used. HBase is built on top of HDFS and relies
on HDFS for replication. Logically, the HBase data model is similar to a database with
data being written to tables that have several rows and columns, though the columns
are not fixed in the schema and can be created dynamically by a client (each row can
have a different set of columns and there is no fixed schema representing a fixed set
of columns).

Each row is accessed with a key known as the row key, which is very similar to the
primary key in a standard database system. There can be as many columns for a row
key as required, but there can be exactly one value per row for every column (though
HBase can keep multiple “versions”—the last n values of the column for that row).
HBase groups columns into column families, which are stored together on HDFS.
Therefore, it is usually a good idea to group columns whose data is written and
accessed in a similar pattern.

The HBase client API allows Java programs to interact with an HBase cluster. Writes
to HBase are in the form of Puts, which represent writes to a single row. A single Put
represents a single remote procedure call (RPC) call that can write to multiple col‐
umns within the same row. HBase also supports Increments, which can be used to
increment values in columns that can be used as counters. Just like Puts, Increments
can also update multiple columns in the same row in a single RPC call.

In the context of Flume’s HBase interaction, we are only concerned with Puts and
Increments, though HBase provides RPC calls to update or delete data. More details
on HBase operations can be found in HBase: The Definitive Guide [hbase-client]. To
interact with HBase from languages other than Java, HBase provides a Thrift API,
which you can read about on the Apache HBase wiki [hbase-thrift].

In addition to the client API, HBase provides a shell to interact with the HBase clus‐
ter. The HBase shell has commands to do Puts, Gets, Increments, Deletes, Scans, and
so on, and also to create, disable, truncate, and delete tables [hbase-shell]. To start an
HBase shell, use the following command:

hbase shell

HBase provides row-level atomicity. If a writer writes to multiple columns within the
same row in a single Put, then it is guaranteed that a reader will read either old values
of all columns or the new values of all columns and not old values of some columns
and new values of others. HBase, though, provides no transactions or ACID

Apache HBase | 5

(Atomicity, Consistency, Isolation, Durability) compliance. Since there are no trans‐
actions over multiple rows, there are no guarantees of consistency for clients reading
multiple rows.

As mentioned earlier, HBase is built on top of HDFS. As a result, data on HBase is
automatically replicated. HBase divides rows on HBase into Regions. A region is sim‐
ply the set of rows with row keys between two fixed values. HBase partitions the
entire dataset into multiple regions, each of which is hosted by a server known as a
Region Server. At any point in time, there is exactly one region server hosting a partic‐
ular region, though a single server can host more than one region. Every read or write
to a row belonging to a region goes through the region server hosting that region.
The server that decides which server hosts which region is the HBase Master. The
Master is HBase’s version of the HDFS name node. The master also decides when a
region becomes too big and has to be split, etc.

Flume allows users to Put data or Increment counters on HBase. The user can plug in
custom pieces of code to do the translation from Flume events to HBase Puts or
Increments. We will cover this in “Translating Flume Events to HBase Puts and Incre‐
ments Using Serializers*” on page 117.

Summary
In this chapter, we discussed the basics of HDFS and HBase. Though Flume supports
other systems, these are the most important and commonly used systems. In Chap‐
ter 5, we will discuss how to write data to these systems in a scalable way using Flume.

References
• http://research.google.com/archive/gfs.html
• [hdfs-architecture] HDFS architecture, Hadoop: The Definitive Guide, 3rd Edi‐

tion, Chapter 3
• [serialization] Hadoop serialization, Hadoop: The Definitive Guide, 3rd Edition,

Chapter 4
• [hbase-client] HBase operationsn, HBase: The Definitive Guide, Chapter 3
• [commands] Hadoop commands, http://bit.ly/1p9jalP
• [hbase-thrift] HBase Thrift API, http://wiki.apache.org/hadoop/Hbase/ThriftApi
• [hbase-shell] HBase shell, http://wiki.apache.org/hadoop/Hbase/Shell
• [input-format] Hadoop input format, Hadoop: The Definitive Guide, Chapter 7
• [mr] MapReduce, Hadoop: The Definitive Guide, Chapter 2

6 | Chapter 1: Apache Hadoop and Apache HBase: An Introduction

http://research.google.com/archive/gfs.html
http://bit.ly/1p9jalP
http://wiki.apache.org/hadoop/Hbase/ThriftApi
http://wiki.apache.org/hadoop/Hbase/Shell

CHAPTER 2

Streaming Data Using Apache Flume

Pushing data to HDFS and similar storage systems using an intermediate system is a
very common use case. There are several systems, like Apache Flume, Apache Kafka,
Facebook’s Scribe, etc., that support this use case. Such systems allow HDFS and
HBase clusters to handle sporadic bursts of data without necessarily having the
capacity to handle that rate of writes continuously. These systems act as a buffer
between the data producers and the final destination. By virtue of being buffers, they
are able to balance out the impedance mismatch between the producers and consum‐
ers, thus providing a steady state of flow. Scaling these systems is often far easier than
scaling HDFS or HBase clusters. Such systems also allow the applications to push
data without worrying about having to buffer the data and retry in case of HDFS
downtime, etc.

Most such systems have some fundamental similarities. Usually, these systems have
components that are responsible for accepting the data from the producer, through
an RPC call or HTTP (which may be exposed via a client API). They also have com‐
ponents that act as buffers where the data is stored until it is removed by the compo‐
nents that move the data to the next hop or destination. In this chapter, we will dis‐
cuss the basic architecture of a Flume agent and how to configure Flume agents to
move data from various applications to HDFS or HBase.

Apache Hadoop is becoming a standard data processing framework in large enterpri‐
ses. Applications often produce massive amounts of data that get written to HDFS,
the distributed file system that forms the base of Hadoop. Apache Flume was con‐
ceived as a system to write data to Apache Hadoop and Apache HBase in a reliable
and scalable fashion. As a result, Flume’s HDFS and HBase Sinks provide a very rich
set of features that makes it possible to write data in any format that is supported by
these systems and in a MapReduce/Hive/Impala/Pig–friendly way. In this book, we

7

will discuss why we need a system like Flume, its design and implementation, and the
various features of Flume that make it highly scalable, flexible, and reliable.

The Need for Flume
Why do we really need a system like Flume? Why not simply write data directly to
HDFS from every application server that produces data? In this section, we will dis‐
cuss why we need such a system, and what it adds to the architecture.

Messaging systems that isolate systems from each other have existed for a long time—
Flume does this in the Hadoop context. Flume is specifically designed to push data
from a massive number of sources to the various storage systems in the Hadoop eco‐
system, like HDFS and HBase.

In general, when there is enough data to be processed on a Hadoop cluster, there is
usually a large number of servers producing the data. This number could be in the
hundreds or even thousands of servers. Such a huge number of servers trying to write
data to an HDFS or HBase cluster can cause major problems, for multiple reasons.

HDFS requires that exactly one client writes to a file—as a result, there could be thou‐
sands of files being written to at the same time. Each time a file is created or a new
block is allocated, there is a complex set of operations that takes place on the name
node. Such a huge number of operations happening simultaneously on a single server
can cause the server to come under severe stress. Also, when thousands of machines
are writing a large amount of data to a small number of machines, the network con‐
necting these machines may get overwhelmed and start experiencing severe latency.

In many cases, application servers residing in multiple data centers aggregate data in
a single data center that hosts the Hadoop cluster, which means the applications have
to write data over a wide area network (WAN). In all these cases, applications might
experience severe latency when attempting to write to HDFS or HBase. If the number
of servers hosting the applications or the number of applications writing data increa‐
ses, the latency and failure rate are likely to increase. As a result, considering HDFS
cluster and network latencies becomes an additional concern while designing the
software that is writing to HDFS.

Most applications see production traffic in predictable patterns, with a few hours of
peak traffic per day and much less traffic during the rest of the day. To ensure an
application that is writing directly to HDFS or HBase does not lose data or need to
buffer a lot of data, the HDFS or HBase cluster needs to be configured to be able to
handle peak traffic with little or no latency. All these cases make it clear that it is
important to isolate the production applications from HDFS or HBase and ensure
that production applications push data to these systems in a controlled and organized
fashion.

8 | Chapter 2: Streaming Data Using Apache Flume

Flume is designed to be a flexible distributed system that can scale out very easily and
is highly customizable. A correctly configured Flume agent and a pipeline of Flume
agents created by connecting agents with each other is guaranteed to not lose data,
provided durable channels are used.

The simplest unit of Flume deployment is a Flume agent. It is possible to connect one
Flume agent to one or more other agents. It is also possible for an agent to receive
data from one or more agents. By connecting multiple Flume agents to each other, a
flow is established. This chain of Flume agents can be used to move data from one
location to another—specifically, from applications producing data to HDFS, HBase,
etc.

By having a number of Flume agents receive data from application servers, which
then write the data to HDFS or HBase (either directly or via other Flume agents), it is
possible to scale the number of servers and the amount of data that can be written to
HDFS by simply adding more Flume agents.

Each Flume agent has three components: the source, the channel, and the sink. The
source is responsible for getting events into the Flume agent, while the sink is respon‐
sible for removing the events from the agent and forwarding them to the next agent
in the topology, or to HDFS, HBase, Solr, etc. The channel is a buffer that stores data
that the source has received, until a sink has successfully written the data out to the
next hop or the eventual destination.

In effect, the data flow in a Flume agent works in the following way: the source pro‐
duces/receives the data and writes it to one or more channels, and one or more sinks
read these events from the channels and push them out to the next agent or to a stor‐
age or indexing system.

Flume agents can be configured to send data from one agent to another to form a
pipeline before the data is written out to the destination. The durability of the data
once the data has reached a Flume agent depends completely upon the durability
guarantees of the channel used by the agent. In general, when a Flume agent is con‐
figured to use any of the built-in sources or sinks together with one of the durable
channels, the agent is guaranteed to not lose data. By virtue of individual agents not
losing data, it is guaranteed that a Flume pipeline will not lose data either.

Flume, though, can cause duplicate data to eventually be written out, if there are
unexpected errors/timeouts and retries in the Flume pipeline. If disks that hold the
durable channel fail irrecoverably, Flume might lose data because of the disk failures.
Flume does allow users to replicate events across redundant flows to ensure that disk
and agent failures are handled, though this might cause duplicates. Therefore, users
might have to do some post-processing to ensure that duplicates are taken care of.

The Need for Flume | 9

Is Flume a Good Fit?
Flume represents data as events. Events are very simple data structures, with a body
and a set of headers. The body of the event is a byte array that usually is the payload
that Flume is transporting. The headers are represented as a map with string keys and
string values. Headers are not meant to transfer data, but for routing purposes and to
keep track of priority, severity of events being sent, etc. The headers can be used to
add event IDs or UUIDs to events as well.

Each event must essentially be an independent record, rather than a part of a record.
This also imposes the requirement that each event be able to fit in the memory of the
Flume agent JVM. If a File Channel is being used, then there should be enough disk
space to accommodate this. If data cannot be represented as multiple individual
records, Flume might not be a good fit for the use case.

Flume is primarily meant to push data from a large number of production servers to
HDFS, HBase, etc. In cases where Flume is not a good fit, there is often an easier
method, like Web HDFS or the HBase HTTP API, that can be used to write data. If
there are only a handful of production servers producing data and the data does not
need to be written out in real time, then it might also make sense to just move the
data to HDFS via Web HDFS or NFS, especially if the amount of data being written
out is relatively small—a few files of a few GB every few hours will not hurt HDFS. In
this case, planning, configuring, and deploying Flume may not be worth it. Flume is
really meant to push events in real time where the stream of data is continuous and its
volume reasonably large.

As noted earlier, the simplest unit of deployment of Flume is called a Flume agent. An
agent is a Java application that receives or generates data and buffers it until it is even‐
tually written to the next agent or to a storage or indexing system. We will discuss the
three main components of Flume agents (sources, channels, and sinks) in the next
section.

Inside a Flume Agent
As discussed earlier, each Flume agent consists of three major components: sources,
channels, and sinks. In this section, we will describe these and other components and
how they work together.

Sources are active components that receive data from some other application that is
producing the data. There are sources that produce data themselves, though such
sources are mostly used for testing purposes. Sources can listen to one or more net‐
work ports to receive data or can read data from the local file system. Each source
must be connected to at least one channel. A source can write to several channels, rep‐
licating the events to all or some of the channels, based on some criteria.

10 | Chapter 2: Streaming Data Using Apache Flume

Channels are, in general, passive components (though they may run their own
threads for cleanup or garbage collection) that buffer data that has been received by
the agent, but not yet written out to another agent or to a storage system. Channels
behave like queues, with sources writing to them and sinks reading from them. Multi‐
ple sources can write to the same channel safely, and multiple sinks can read from the
same channel. Each sink, though, can read from only exactly one channel. If multiple
sinks read from the same channel, it is guaranteed that exactly one sink will read (and
commit—more about this in Chapter 4) a specific event from the channel.

Sinks poll their respective channels continuously to read and remove events. The
sinks push events to the next hop (in the case of RPC sinks), or to the final destina‐
tion. Once the data is safely at the next hop or at its destination, the sinks inform the
channels, via transaction commits, that those events can now be deleted from the
channels.

Figure 2-1 shows a simple Flume agent with a single source, channel, and sink.

Figure 2-1. A simple Flume agent with one source, channel, and sink

Flume itself does not restrict the number of sources, channels, and sinks in an agent.
Therefore, it is possible for Flume sources to receive events and, through configura‐
tion, replicate the events to multiple destinations. This is made possible by the fact
that sources actually write data to channels via channel processors, interceptors, and
channel selectors.

Each source has its own channel processor. Each time the source writes data to the
channels, it does so by delegating this task to its channel processor. The channel pro‐
cessor then passes these events to one or more interceptors configured for the source.

An interceptor is a piece of code that can read the event and modify or drop the event
based on some processing it does. Interceptors can be used to drop events based on
some criteria, like a regex, add new headers to events or remove existing ones, etc.
Each source can be configured to use multiple interceptors, which are called in the
order defined by the configuration, with the result of one interceptor passed to the
next in the chain. This is called the chain-of-responsibility design pattern. Once the
interceptors are done processing the events, the list of events returned by the inter‐
ceptor chain is passed to the list of channels selected for every event in the list by the
channel selector.

Inside a Flume Agent | 11

A source can write to multiple channels via the processor-interceptor-selector route.
Channel selectors are the components that decide which channels attached to this
source each event must be written to. Interceptors can thus be used to insert or
remove data from events so that channel selectors may apply some criteria on these
events to decide which channels the events must be written to. Channel selectors can
apply arbitrary filtering criteria to events to decide which channels each event must
be written to, and which channels are required and optional.

A failure to write to a required channel causes the channel processor to throw a Chan
nelException to indicate that the source must retry the event (all events that are in
that transaction, actually), while a failure to write to an optional channel is simply
ignored. Once the events are written out, the processor indicates success to the
source, which may send out an acknowledgment (ACK) to the system that sent the
event and continue accepting more events. Figure 2-2 shows this workflow.

Figure 2-2. Interaction between sources, channel processors, interceptors, and channel
selectors

Sink runners run a sink group, which may contain one or more sinks. If there is only
one sink in a group, it is more efficient to not have a group at all. The sink runner is
simply a thread that asks the sink group (or the sink) to process the next batch of
events. Each sink group has a sink processor that selects one of the sinks in the group
to process the next set of events. Each sink can take data from exactly one channel,

12 | Chapter 2: Streaming Data Using Apache Flume

though multiple sinks could take data from the same channel. The sink selected (or
the lone sink, if there is no group) takes events from the channel and writes them to
the next hop or final destination. This is shown in Figure 2-3.

Figure 2-3. Sinks, sink runners, sink groups, and sink processors

Configuring Flume Agents
Flume agents are configured using plain-text configuration files. Flume configuration
uses the properties file format, which is simply a plain-text file with newline-separated
key-value pairs. An example of a properties file is shown here:

key1 = value1
key2 = value2

By using this format, Flume makes it easy to pass configuration into an agent and its
various components. In the configuration file, Flume follows a hierarchical structure.
Each Flume agent has a name, which is set when the Flume agent is started using the
flume-ng command (described in “Running a Flume Agent” on page 29). The config‐
uration file can contain configurations for several Flume agents, but only the configu‐
ration of the agent whose name is specified in the flume-ng command is actually
loaded.

There are some components that can have several instances of that type in a Flume
agent, like sources, sinks, channels, etc. To be able to identify the configuration of
each of these components, they are named. The configuration file must list the names

Configuring Flume Agents | 13

of the sources, sinks, channels, and sink groups in an agent in the following format,
called the active list:

agent1.sources = source1 source2
agent1.sinks = sink1 sink2 sink3 sink4
agent1.sinkgroups = sg1 sg2
agent1.channels = channel1 channel2

This configuration snippet represents a Flume agent named agent1, with two sour‐
ces, two sink groups, two channels, and four sinks. Even if there are configuration
parameters listed for some component, if they are not in the active list for that agent
they are not created, configured, or started. Other components, such as interceptors
and channel selectors, need not be present in the active list. They are automatically
created and activated when the component (source, sink, etc.) they’re associated with
is activated.

For each component to be configured, the configuration for that component is passed
in with a prefix in the following format:

<agent-name>.<component-type>.<component-name>.<configuration-parameter> = \
<value>

The <component-type> for sources is sources, sinks is sinks, channels is channels,
and sinkgroups is sinkgroups. Components such as interceptors, channel selectors,
and sink processors are tied to a single top-level component and are anchored to
these components in the same configuration pattern.

Component names are namespaced based on their component type. Therefore, it is
possible to have multiple components with the same name, as long as their compo‐
nent type is different. Components like interceptors are also namespaced to individ‐
ual sources, so it is possible, though not recommended, to have multiple interceptors
with the same name as long as each one is configured to a different source.

For example, configuration could be passed to source1 in the following format:

agent1.sources.source1.port = 4144
agent1.sources.source1.bind = avro.domain.com

For each component, the prefix of the configuration parameter key is removed
(including the component name). Only the actual parameter and its value are passed
in, via a Context class instance passed in to the configure method. Context is a
Map-like key-value store, with some slightly more complex methods. So, in this case
the source gets only two parameters with keys port and bind and values 4144 and
avro.domain.com, respectively, in the Context instance (and not the entire configura‐
tion line). When we discuss the configuration for each component, the tables will
show only the actual parameters passed to the components and not the entire lines
from the configuration file.

14 | Chapter 2: Streaming Data Using Apache Flume

www.allitebooks.com

http://www.allitebooks.org

The Flume configuration uses the type parameter for all sources, sinks, channels, and
interceptors to instantiate the component. The type parameter can be the fully quali‐
fied class name (FQCN), or the alias for built-in components. An example of specify‐
ing the type parameter follows:

agent1.sources.source1.type = avro

The Flume configuration system also ensures that the correct channels are set for
each source, by creating the channel processor and setting the correct channels for
each source’s processor. It also handles interceptor initialization so that the correct
channel processors from the correct sources pass the events to the correct intercep‐
tors (though from the configuration, it might seem like interceptors are subcompo‐
nents of sources—the sources actually don’t need to create or configure interceptors).
Similarly, the channel for each sink is also set by the configuration system. The con‐
figuration system adds sinks to the correct sink groups and also configures the sink
processors for the groups.

Any component that needs to get a configuration from the Flume configuration sys‐
tem must implement the Configurable interface, shown in Example 2-1.

Example 2-1. Configurable interface

package org.apache.flume.conf;
public interface Configurable {
 public void configure(Context context);
}

Components can have subcomponents, which can also be configurable. Each compo‐
nent must either configure its subcomponents or pass the subcomponent configura‐
tion to the subcomponents, which must then configure themselves. Though each sub‐
component can be configured in any way that the component implementation speci‐
fies, it is a good practice to implement the Configurable interface. Using the Context
class method getSubProperties, subproperties specific to the subcomponent can be
passed to it.

An example of configurable subcomponents is HDFS serializers, which are described
in detail in “Controlling the Data Format Using Serializers*” on page 108. Serializers
are configured by the HDFS Sink, using the Configurable interface and the getSub
Properties method. Serializers can be configured using the suffix serializer. to
the hdfsSink, and the serializer gets the key as the substring following the serial
izer. in the configuration. In the following example, the serializer would get a Con
text instance with one key-value pair. The key would be bufferSize and the value
would be 4096:

agent.sinks.hdfsSink.serializer.bufferSize = 4096

Configuring Flume Agents | 15

All Flume components with configurable subcomponents follow this pattern, with
each subcomponent getting just its own parameters with all prefixes removed. This is
true for even subcomponents of subcomponents, if any exist.

Example 2-2 shows an example of a Flume agent that has multiple components, with
some of them having subcomponents. In this agent there is one source, two channels,
and two sinks. The source is an HTTP Source, which is named httpSrc. This source
writes to two memory channels, memory1 and memory2—this is set by the configura‐
tion system in the channel processor, and source implementations need not worry
about setting the channels. Multiple parameters—bind, port, ssl, keystore,
keystore-password, handler, and handler.insertTimestamp—and their values are
available in the Context instance passed to the configure method. It is up to the
source implementation to decide what to do with any configuration parameters
passed to it.

For this configuration file, the configuration system also creates an interceptor to
which all events received by the HTTP Source are forwarded. In this example, the
HTTP Source does not need to bother about any special handling of the interceptor
creation or configuration. Creation and configuration of interceptors is handled by
the channel processor. Similarly, all other components get the parameters and their
values via the configure method, including the ones meant for subcomponents.

Example 2-2. A typical Flume agent configuration

agent.sources = httpSrc
agent.channels = memory1 memory2
agent.sinks = hdfsSink hbaseSink

agent.sources.httpSrc.type = http
agent.sources.httpSrc.channels = memory1 memory2

Bind to all interfaces
agent.sources.httpSrc.bind = 0.0.0.0
agent.sources.httpSrc.port = 4353

Removing this line will disable SSL
agent.sources.httpSrc.ssl = true
agent.sources.httpSrc.keystore = /tmp/keystore
agent.sources.httpSrc.keystore-password = UsingFlume

agent.sources.httpSrc.handler = usingflume.ch03.HTTPSourceXMLHandler
agent.sources.httpSrc.handler.insertTimestamp = true

agent.sources.httpSrc.interceptors = hostInterceptor
agent.sources.httpSrc.interceptors.hostInterceptor.type = host

Initializes a memory channel with default configuration
agent.channels.memory1.type = memory

16 | Chapter 2: Streaming Data Using Apache Flume

Initializes a memory channel with default configuration
agent.channels.memory2.type = memory

HDFS Sink
agent.sinks.hdfsSink.type = hdfs
agent.sinks.hdfsSink.channel = memory1
agent.sinks.hdfsSink.hdfs.path = /Data/UsingFlume/%{topic}/%Y/%m/%d/%H/%M
agent.sinks.hdfsSink.hdfs.filePrefix = UsingFlumeData

agent.sinks.hbaseSink.type = asynchbase
agent.sinks.hbaseSink.channel = memory2
agent.sinks.hbaseSink.serializer = usingflume.ch05.AsyncHBaseDirectSerializer
agent.sinks.hbaseSink.table = usingFlumeTable

Getting Flume Agents to Talk to Each Other
As we will see in the following sections, there is almost always a need for one Flume
agent to send data to another. To achieve this goal, specialized RPC sink–source pairs
come bundled with Flume. The preferred RPC sink–RPC source pair for agent-to-
agent communication is the Avro Sink–Avro Source pair.

To receive data from other Flume agents or from clients, the agents receiving the data
can be configured to use Avro Sources and the agents sending the data must be con‐
figured to run Avro Sinks. The Avro Sink is a specialized sink that can send events to
the Avro Source. In addition to the Avro Sink, the Flume RPC client can also send
events to the Avro Source. Avro Sources receive data from other Flume agents or
applications running Flume RPC clients via the Avro RPC protocol. A single Avro
Source can receive data from a large number of clients or Flume agents. Even though
a single Avro Sink can send data to only one Avro Source, it is possible to send data
from one agent to many other agents, using sink groups and sink processors we will
discuss in “Sink Groups and Sink Processors” on page 157.

We will discuss this in more detail in “Sink-to-Source Communication” on page 36.
For now, it is just important to understand that it is possible to send data from one
Flume agent to another and from custom applications to Flume agents via a client
API (which we will discuss in Chapter 7).

Complex Flows
As explained earlier, it is possible for Flume agents to have several sources, sinks, and
channels, though the number of these components in a single agent must be carefully
managed to ensure that hardware is not overwhelmed. Since each source can actually
write to multiple channels, events can easily be replicated to make sure that each
event goes to more than one destination. Sinks can then remove data from channels
to push data to various destinations.

Getting Flume Agents to Talk to Each Other | 17

A flow is a series of one or more agents that push data to one another and eventually
to a storage or indexing system. In reality, flows can be arbitrarily more complex,
with each of the three components being part of multiple flows, and flows including
multiple source-channel-sink triplets.

In general, Flume is meant to push data in from a very large number of servers to
send data to a single HDFS cluster. Flume comes bundled with Avro and Thrift sink–
source pairs, which can be used to send data from one Flume agent to another. This
allows the user to design a fan-in–style flow from a large number of data-producing
applications. It is important to restrict the number of applications writing data to any
storage system to ensure that the storage system scales with the amount of data being
written and can handle bursty data writes.

There are multiple ways in which Flume agents can be organized within a cluster. The
first and the simplest one is to deploy a single tier of Flume agents to receive data
from the application servers and have the same agents write the data directly to the
storage system. Such a system isolates applications from a storage system failure and
allows the storage system to handle periodic bursts by absorbing the increasing input
rate. Flume will adjust the rate of writes to the storage system by backing off for
increasing amounts of time every time a write fails (up to some maximum period), so
as to not overwhelm the storage system if the capacity is lower than what is required
to handle the current write rate.

The number of Flume agents within this single tier usually needs to be only a fraction
of the total number of application servers, since Flume’s Avro Source and Thrift
Source are designed to receive a large amount of data from a large number of servers,
though each agent will have a maximum capacity that depends on the exact hardware
deployed, the network, the latency requirements, etc. Such a topology can be
designed as shown in Figure 2-4.

Figure 2-4. Aggregating data from a large number of application servers to HDFS using
Flume

18 | Chapter 2: Streaming Data Using Apache Flume

To design a fan-in topology, there needs to be a number of Flume agents receiving
data from the applications producing the data while a few agents write data to the
storage system. Depending on how many servers are producing how much data, the
agents could be organized into one, two, or more tiers, with agents from each tier for‐
warding data from one tier to the next using an RPC sink–RPC source combination.

As shown in Figure 2-5, the outermost tier has the maximum number of agents to
receive data from the application, though the number of Flume agents is usually only
a small fraction of the number of application servers; the exact number depends on a
variety of factors including the network, the hardware, and the amount of data. When
the application produces more data or more servers are added, it is easy to scale out
by simply adding more agents to the outermost tier and having them configured to
write data to the machines in the second tier.

Figure 2-5. A fan-in flow

Often the second tier can be scaled out with more agents much more slowly than the
outermost tier, since the number of servers writing the data to the second tier (the
number of Flume agents in the outermost tier) needs to grow much more slowly than
the number of application servers. This is because the first tier of Flume agents will
absorb much of the impact caused by the increase in application servers.

This kind of topology allows Flume to control the rate of writes to the storage system
by backing off as needed, while also allowing the application to write data without
any worry. Such a topology is also often used when the application producing the
data is deployed in many different data centers, and data is being aggregated to one
cluster. By writing to a Flume agent within the same data center, the application can
avoid having to write data across a cross–data center WAN link, yet ensure that the
data will eventually get persisted to the storage system. The communication between
Flume agents can be configured to allow higher cross–data center latency to ensure
that the agent-to-agent communication can complete successfully without timeouts.

Having more tiers allows for absorbing longer and larger spikes in load, by not over‐
whelming any one agent or tier and draining out data from each tier as soon as possi‐
ble. Therefore, the number of tiers required is primarily decided by the amount of
data being pushed into the Flume deployment. Since the outermost tier receives data

Complex Flows | 19

from the largest number of machines, this tier should have the maximum number of
agents to scale the networking architecture. As we move further into the Flume topol‐
ogy, the number of agents can reduce significantly.

If the number of servers producing data consistently increases, the number of Flume
agents in the tier receiving data from the application servers also needs to increase.
This means that at some point, it may be required to increase subsequent tiers,
though the number of agents in subsequent tiers can be increased at a far slower rate
than in the outer tiers. This also ensures increased buffering capacity within the
Flume setup, to accommodate the increase in data production. An example of such a
flow is shown in Figure 2-6.

Figure 2-6. A large, complex topology supporting a large number of application servers
and providing a lot of buffering

In most cases, communications between applications and Flume agents and between
Flume agents themselves have to be resilient to agent or machine failure. Even if data
on a failed machine is unavailable while the machine is still down, this should not
cause backlogs if capacity has not been exhausted. Flume has features allowing appli‐
cations that use the Flume API to automatically load balance between multiple Flume
agents (this would be a subset of the outermost tier of Flume agents), and also allows
sinks to load balance between multiple agents in the next tier via a sink processor.
These two combined ensure that data flow continues if there is capacity remaining in
tiers following the failed agent.

Replicating Data to Various Destinations
Very often, event counters are aggregated in HBase together with some metadata for
real-time querying from user applications, while the actual data is written to HDFS

20 | Chapter 2: Streaming Data Using Apache Flume

for detailed processing and analysis. Flume allows such topologies, too. An example
of this is shown in Figure 2-7.

Figure 2-7. Replicating data to various destinations

Accomplishing this is fairly simple. To do this, the Avro Source should be configured
to write to the channels that the HDFS and HBase Sinks read from. Since more than
one sink can read from a single channel, more HDFS and HBase Sinks can be config‐
ured, each reading from the channels feeding HDFS and HBase, respectively. A sam‐
ple configuration for such an agent is shown here (configuration parameters specific
to each component are omitted for clarity):

agent.sources.avro.type = avro
The following line causes the Avro Source
to replicate data to channels feeding HDFS and HBase
agent.sources.avro.channels = hdfsChannel hbaseChannel
agent.channels.hdfsChannel.type = file
agent.channels.hbaseChannel.type = file
agent.sinks.hdfsSink1.type = hdfs
agent.sinks.hdfsSink1.channel = hdfsChannel
agent.sinks.hdfsSink2.type = hdfs
agent.sinks.hdfsSink2.channel = hdfsChannel
agent.sinks.hbaseSink2.type = hbase
agent.sinks.hbaseSink2.channel = hbaseChannel

Dynamic Routing
An important feature of Flume is dynamic routing. Event data coming in is often not
of the same priority, or does not need to go to the same data store—some might need
to go to HDFS only, while other events may be destined for HDFS and HBase, or the
data may go to different clusters based on the priority or some other criterion. In any
of these cases, events must be routed based on some criteria. Flume supports this

Dynamic Routing | 21

using the multiplexing channel selector. The multiplexing channel selector is a channel
selector that inspects every event that passes through it for the value of a specific
header; based on this value, it selects a set of channels that the event has to get written
to, as illustrated in Figure 2-8. This is built into Flume, and the header, the values, and
the channels to select are configurable. Configuring dynamic routing is a bit more
involved, so we will discuss it in more detail in “Channel Selectors” on page 150.

Figure 2-8. Dynamic routing

Intermediate tiers are important when dynamic routing is being configured. Having
an additional tier after the tier that does the dynamic routing ensures that once the
flow is bifurcated, each new flow does not hit the destination directly and gets buf‐
fered on one more tier.

Flume’s No Data Loss Guarantee, Channels, and
Transactions
Flume provides guarantees of no data loss, if configured properly. Of course, once the
combined capacity of all Flume agents in the pipeline is used up, Flume will no longer
accept data from clients. At this point, the client needs to buffer the data, or else data
could be lost. Thus, it is extremely important to configure the pipeline to be able to
handle the maximum expected downtime. We will discuss configuring Flume pipe‐
lines in Chapter 8.

Flume’s durability guarantees depend on the durability guarantees of the channel
used. Flume comes bundled with two channels: the Memory Channel and the File
Channel. The Memory Channel is an in-memory buffer, and thus any data in the

22 | Chapter 2: Streaming Data Using Apache Flume

buffer will be lost if the Java Virtual Machine (JVM) or the machine is restarted. The
File Channel, on the other hand, is on disk. The File Channel does not lose data even
when the JVM or machine is restarted, as long as the disk(s) on which the data is
stored is still functioning and accessible. Any data stored on the File Channel will
eventually be accessible once the machine and the agent start running.

Channels are transactional in nature. A transaction in this context is different from a
database transaction. Each Flume transaction represents a batch of events written to
or removed from a channel atomically. Whenever a source writes events to the chan‐
nel or a sink takes events from a channel, it must do so within the purview of a
transaction.

Flume guarantees that the events will reach their destination at least once. Flume
strives to write data only once, and in the absence of any kind of failure the events are
only written once. Errors like network timeouts or partial writes to storage systems
could cause events to get written more than once, though, since Flume will retry
writes until they are completely successful. A network timeout might indicate a fail‐
ure to write or just a slow machine. If it is a slow machine, when Flume retries this
will cause duplicates. Therefore, it is often a good idea to make sure each event has
some sort of unique identifier that can eventually be used to deduplicate the event
data, if required.

Transactions in Flume Channels
Transactional semantics are key to the “no data loss” guarantees made by Flume.
When each source (or sink) writes or reads data to or from a channel, it starts a trans‐
action with the channel. For all channels that come bundled with Flume, each trans‐
action is thread-local. For this reason, transaction handling in different types of sour‐
ces and sinks differs slightly, though the basic idea is the same: each thread should
run its own transaction. For all pollable sources and all sinks—which, as described
earlier, are driven by runner threads—each process call should start only one transac‐
tion and throw an exception if the transaction is rolled back, to inform the runner
thread to back off for a bit. Even if the source or sink spawns multiple new threads for
I/O, it is best to follow this protocol, to avoid ambiguity if one of the many transac‐
tions initiated from the process method fails.

When sources write events to a channel, the transactions are handled by the channel
processor, so sources don’t have to handle the transactions by themselves. The chan‐
nel processor commits the transaction only when the events are successfully written
out to the channel; otherwise, it rolls back the transaction and closes it. Since it is
possible for each source to write to multiple channels, the channel processor for the
source writes events and commits them to one channel at a time. Therefore, it is pos‐
sible for the data to be written out and committed to some channels but not others.
In this case, Flume cannot roll back the transactions that were committed, but to

Flume’s No Data Loss Guarantee, Channels, and Transactions | 23

ensure that the data is written out to all channels successfully, Flume will retry writes
to all channels, including the ones where the writes were successful previously; this
may cause duplicates.

In the case of terminal sinks, a transaction should be committed only when the data
is safely written out to the storage system. Once the data is safe at the eventual desti‐
nation, the transaction can be committed and the channel can delete the events in
that transaction. If the write fails, the sink must roll back the transaction to ensure
that the events are not lost. All sinks bundled with Flume work this way, and ensure
that the data is on HDFS, HBase, Solr, Elastic Search, etc. before the transaction is
committed. If the write fails or times out, the transaction is rolled back, and then this
or another sink reading from the channel will try to write the events again.

The technique discussed earlier ensures that the data is written out by the terminal
sinks in a durable way, but what about an agent-to-Flume agent or a client-to-Flume
agent communication? For communication between RPC sinks and RPC sources, the
RPC sink sends events out in a batch—these are all read as part of the same transac‐
tion from the channel, which are written to its channel(s) by the source in a single
transaction. Once the source successfully commits the transaction with its channel(s),
it sends an acknowledgment (ACK) to the sink that sent the events indicating that the
events are now safe in the receiving agent’s channels. When the sink receives this
ACK, the sink commits the transaction it opened when it reads the events from the
channel, indicating that the events can now be removed from the channel.

If the source takes too long to send the ACK or there is some network issue that
causes the sink to time out, then the sink assumes that the write failed, and it rolls
back the transaction and repeats the whole process again (this or another sink con‐
nected to this channel could read the same events). This method of overlapping
transactions guarantees that events are safely in one of the channels at any point in
time. Figure 2-9 shows the timeline of how the RPC sinks and RPC sources guarantee
that the events are safely in at least one of the agents at any point.

24 | Chapter 2: Streaming Data Using Apache Flume

Figure 2-9. RPC sinks and sources guarantee that each event is at least in one agent’s
channel by overlapping transactions

Agent Failure and Data Loss
What happens if one of the agents fails, or if the storage system becomes unreacha‐
ble? When an agent or the eventual destination becomes unreachable, the agent(s)
writing to that location will end up seeing errors at the sink. The sink will either see
connection failures or missing ACKs from the next hop or the storage system (or the
storage system’s client API throwing exceptions). When the sink hits an exception
that indicates that the data may not have been written, the sink rolls back the transac‐
tion with the channel. Since the incoming data flow has not stopped, this causes the
channel size to increase, eventually filling up the channel. When this agent’s channel
fills up, the Avro Source (or any other source writing the data to this channel) starts
getting ChannelExceptions on Puts to the channel, causing the source to push back
to the previous hop by returning an error. This in turn causes the previous hop’s sink
to roll back its transaction, causing the channel size on that hop to grow. This sce‐
nario is shown in Figure 2-10.

Agent Failure and Data Loss | 25

Figure 2-10. Failure causes channels to fill up

As is evident, the failure now causes each tier to buffer data until the channels are full,
at which point it starts pushing back on the previous tier, until all tiers are full. At this
point, the client starts seeing errors, which the client must now handle by buffering
the data or dropping it, causing data loss. Capacity must be planned in such a way
that downtime should never create a situation where this happens. We will talk about
planning capacity in Chapter 8.

The Importance of Batching
When events are sent to a source that receives data over the network from an RPC
sink or a remote client, the source writes out all events in this batch in a single transac‐
tion by delegating this task to the channel processor.

26 | Chapter 2: Streaming Data Using Apache Flume

In case of the File Channel, which is the persistent channel implementation, each
transaction commit causes an fsync [fsync]. fsync is a system call defined by the
POSIX standard that tells the operating system to flush all of its internal buffers for a
specific file descriptor to disk. If the amount of data written per transaction is small,
the overhead cost (in terms of time taken and resources consumed) of initiating a sys‐
tem call, switching to kernel space, and flushing all buffers before actually syncing to
disk becomes a very high fraction of the total cost of the fsync call itself.

In the case of the Memory Channel, which is the in-memory channel implementa‐
tion, there is a cost with regard to synchronization across the channel that comes into
play during a commit, but this is far smaller than the overhead of an fsync call.

RPC calls have an additional overhead due to metadata associated with the actual call
and all of the additional TCP overheads. When the amount of data sent is really
small, these overheads end up being a large fraction of the cost of each RPC call, caus‐
ing unnecessary network utilization, etc. To avoid such overhead, it is always a good
idea to batch several events (unless of course each event is large by itself) into a single
RPC call or write from a remote client.

Even though Flume’s RPC client and RPC sinks support writing events without batch‐
ing or with a batch size of 1, it is almost always a good idea to bundle events into
reasonably sized batches to avoid paying the additional overhead cost more times
than necessary. The ideal batch size would depend on the specific use case, but for
events of up to a few kilobytes, batch sizes between 100 and 1,000 usually work well
(though specific hardware, network, and other considerations affect this value, and it
should be finally set after testing various values and finding one that matches the per‐
formance requirements).

Batching affects the performance of RPC sinks and any other sinks that write data
over the network. RPC sink performance is affected for multiple reasons, as men‐
tioned earlier. Even for the HDFS Sink, Flume flushes events to the memory of all
data nodes when each batch gets committed. Therefore, it is always a good idea to use
reasonably large batch sizes for all sinks.

There are sources that control batch sizes, like the Exec Source, JMS Source, etc.
These sources should also batch events for performance, for the same reasons. Sour‐
ces write events to channels, and they should be written out in reasonably large
batches to avoid the fsync or synchronization issues discussed earlier in this section.
So, even for sources that control their own batch sizes, it is important that they be
configured to use batch sizes that are reasonably large.

The Importance of Batching | 27

What Is a Reasonable Batch Size?

Well, it depends on the deployment, hardware, and several other
factors. Batch sizes should not be finalized without a good deal of
trial-and-error testing, since having batches that are huge also
causes its own problems—like too much fragmentation over the
network, etc. Also, having batches that are too large increases the
risk of duplication of events, because each batch failing could end
up causing a massive number of events to get written again, and if
some of the events were successfully written out to HDFS, these
events will end up getting written all over again.
To choose the correct batch size for RPC and terminal sinks, start
with something like the equivalent of a few hundred KB to 1 MB,
and then work up or down from there based on what timeouts you
see, and what rate of duplicates you see. If there are too many
duplicates or many timeouts, you have to reduce your batch size; in
the opposite case, increase it until timeouts start appearing. Once
you see the timeouts, you have hit the threshold, and you should
reduce it a few percentage points from there.

What About Duplicates?
Flume provides at-least-once guarantees, which basically means that any event sent
via Flume to a storage system will get stored at least once. Flume, though, may end up
storing the data more than once. There are numerous scenarios that can cause dupli‐
cates, some due to errors, others due to configuration.

Since each agent-to-agent RPC call has a configurable timeout, it is possible that even
though an RPC did not fail, the sending agent might think it failed if it did not get a
response within the timeout, triggering a retry. If the RPC did not fail, this retry will
cause the same event to be sent again, causing duplicates. Such a scenario could hap‐
pen on terminal sinks, such as the HDFS or HBase Sink.

Also, since Flume sources can write to more than one channel, the same event can
essentially get duplicated if multiple channels are configured for the same source. If
the sinks reading from the channels eventually push the events to the same storage
system, this can cause duplicates.

If the use case is duplicate-sensitive, it is usually a good idea to insert unique identifi‐
ers in events. These identifiers can be used by a post-processing job to remove dupli‐
cates, using Spark, MapReduce, etc.

28 | Chapter 2: Streaming Data Using Apache Flume

Running a Flume Agent
This section assumes that the Flume directory structure is not changed and the cur‐
rent working directory is the top level of the Flume directory structure. Each Flume
agent is started from the command line using the flume-ng command. This com‐
mand takes in several parameters—the name of the Flume agent being started, the
configuration file to use, and the configuration directory to use.

The Flume configuration file can contain configuration for multiple Flume agents,
each identified by a unique name. When a Flume agent is started, this name is passed
in to the flume-ng script as the value of the -n command-line switch. Flume’s config‐
uration system will load the configuration parameters associated with the specific
agent’s own name only. Because the configuration of multiple agents can be in a single
file, it is easy to deploy the same file to multiple tiers, each with a different configura‐
tion. In most cases, since all agents in one tier communicate with the same set of
agents in the next tier, each agent in that tier can have an identical configuration.
Using the same name and the same configuration file for all agents in a tier makes
deployment of tiers extremely easy to automate. The configuration file is passed to
the Flume agent using the -f command-line switch.

The configuration directory, whose path can be passed to the Flume agent using the -
c command-line switch, is home to two important files: flume-env.sh and log4j.prop‐
erties. When a Flume agent is started, the agent initialization script will source the
flume-env.sh script. This file must contain any environment variables that need to be
passed to the flume-ng script. The most common environment variables that are ini‐
tialized using the flume-env.sh file are listed in Table 2-1.

Table 2-1. Environment variables initialized using flume-env.sh

Environment variable Description

FLUME_CLASSPATH Classpath to be passed to the Flume agent in addition to the Flume lib and plugins.d directories,
which are automatically added

JAVA_OPTS Any Java-specific options to be passed to the JVM, including the -XX and -D parameters to control
memory and pass in parameters from the command line

HADOOP_PREFIX (or)
HADOOP_HOME

Directory where Hadoop is installed ($HADOOP_PREFIX/bin contains the Hadoop executable)

HBASE_HOME Directory where HBase is installed ($HBASE_HOME/bin contains the HBase executable)

The FLUME_CLASSPATH environment variable is a list of directories (separated by :) in
addition to Flume’s lib and plugins.d directories, which are added to the classpath for
the Flume agent. The plugins.d directory is the directory where custom component

Running a Flume Agent | 29

JARs (Java Archive files) can be dropped in, so Flume can use those to load the cus‐
tom components.

JAVA_OPTS is a set of arguments that are to be passed directly to the JVM. The most
commonly used are the parameters used to modify the heap size allocated to the
JVM: -Xms and -Xmx. You can read about them and the other options that can go into
JAVA_OPTS in the Java documentation [java-commandline].

HADOOP_PREFIX (and equivalently HADOOP_HOME in the older Hadoop version 1) is the
directory where Hadoop is installed. If the hadoop command is the PATH, Flume will
simply use that if HADOOP_PREFIX is not set. HBASE_HOME accomplishes the same for
HBase.

To run a Flume agent named usingFlumeAgent, which uses a Flume configuration /
home/usingflume/flume/flume.conf and a configuration directory /home/usingflume/
flume/conf, the following command can be used (assuming that the current working
directory is the directory in which Flume is installed):

bin/flume-ng agent -n usingFlumeAgent -f /home/usingflume/flume/flume.conf
-c /home/usingflume/flume/conf

The agent will read the log4j.properties file in the configuration directory and log
according to the specification in that file. log4j configuration details can be found in
the log4j documentation [log4j]. Once the agent starts, it keeps running until it is kil‐
led by a SIGTERM or its equivalent, causing the agent to shut down. The agent does all
the logging to the log4j logs (it might look like the agent is stuck, even though it is
actually running and doing what it is supposed to; nothing gets logged to the
console).

The flume-ng script accepts a lot more parameters, which are described in Table 2-2.

Table 2-2. Command-line parameters accepted by flume-ng script

Parameter Description

-n Agent name to use. This must be placed after flume-ng agent on the command line.

-f Configuration file (without this the agent will not run).

-c Configuration directory to use (if not specified, ./conf is used).

-C List of directories to be appended to the classpath. These can be specifed in FLUME_CLASSPATH as
well.

-d Dry run only. This will print out the entire command that Flume will use if run without this switch.

30 | Chapter 2: Streaming Data Using Apache Flume

Parameter Description

--plugins-path If ./plugins.d is not to be used as the directory where JARs containing custom classes are, the value of
this parameter is checked for the plug-ins.

-h This will print out detailed help.

Even though Flume can accept parameters to pass to the JVM via the command line,
it is recommended to use JAVA_OPTS to set these parameters, and thus they are not
listed here.

To find out the exact version and revision information for the version of Flume that is
being used, run:

bin/flume-ng version

Summary
In this chapter, we discussed the basics of Flume and its design, its various compo‐
nents, and how to configure it. Finally, we looked at how to run a Flume agent once
its configuration and components have been decided.

Chapter 3, Chapter 4, and Chapter 5 will cover sources, channels, and sinks, respec‐
tively. Chapter 6 will cover other components—interceptors, channel selectors, sink
groups, and sink processors. Chapter 7 will explain how to get data into Flume using
the Flume software development kit (SDK) and the Embedded Agent API. The last
chapter, Chapter 8, will cover details on how to plan with, deploy, and monitor
Flume.

References
• [java-commandline] Java command-line arguments, http://bit.ly/1p9NzQX
• [log4j] log4j documentation, https://logging.apache.org/log4j/1.2/manual.html
• [fsync] fsync system call, http://bit.ly/1p9Nzk3

Summary | 31

http://bit.ly/1p9NzQX
https://logging.apache.org/log4j/1.2/manual.html
http://bit.ly/1p9Nzk3

CHAPTER 3

Sources

Sources are the components responsible for accepting data into a Flume agent. Sour‐
ces can accept data from other systems, like the Java Message Service (JMS), or the
output of other processes. Sources are also used to receive data from other Flume
agents whose sinks send data via RPC. There are even sources that can produce data.
It is possible to write sources to accept data from pretty much anything!

The data sources receive from an external system or from other agents (or produce by
themselves) is then written out to one or more channels configured for the source.
This is the basic responsibility of a source.

In this chapter, we will discuss the design and working of various sources that come
packaged with Flume and how to configure them optimally for use; we will also look
at how to write a custom source.

Lifecycle of a Source
Sources are named components that are configured like any other component
through the configuration file. Flume’s configuration system validates each source’s
configuration and discards sources that are incorrectly configured. The validation
done by the configuration system is pretty minimal, though. The Flume configura‐
tion system ensures that:

• Each source has at least one properly configured channel “connected” to it.
• Each source has a type parameter defined.
• The source is in the active list of sources for the agent.

Once the configuration system approves a source, it is then instantiated and config‐
ured by the ConfigurationProvider. If the source is misconfigured or is missing

33

required parameters, this source is discarded. Once the source is successfully config‐
ured, Flume’s lifecycle management system will attempt to start the source. The
source is then stopped only if the agent itself is stopped or killed, or if the agent is
reconfigured by the user.

Sources, like all Flume components, require their type to be specified in the configu‐
ration. This can be the fully qualified class name (FQCN), or the alias for built-in
sources. All sources require at least one properly configured channel to write to.
Therefore, a list of channels is also a mandatory parameter for the source to be con‐
sidered properly configured. The required parameters are shown in Table 3-1.

Table 3-1. Mandatory configuration parameters for all sources

Parameter Description

type The type of the source. This can be the FQCN or the alias of the source (only for sources that are part of Flume
itself). The class must be installed using the plugins.d framework described in “Deploying Custom Code” on
page 204. The alias for each of Flume’s built-in sources is mentioned in the relevant section.

channels A space-separated list of channels the source should write events to. For all channels selected for writes by the
channel selector based on the event and the routing parameters, the source will write events to the channels in
the order specified in the configuration file. More details on this are in “Channel Selectors” on page 150.

A source named usingFlumeSource of type avro, running in an agent started with
the name usingFlume, would be configured with a file that looks like:

usingFlume.sources = usingFlumeSource
usingFlume.channels = memory

usingFlume.sources.usingFlumeSource.type = avro
usingFlume.sources.usingFlumeSource.channels = memory
usingFlume.sources.usingFlumeSource.port = 7877
usingFlume.sources.usingFlumeSource.bind = 0.0.0.0

There are a few parameters that can optionally be passed to all sources. These are
meant to configure interceptors and channel selectors for the source. They are shown
in Table 3-2. These parameters are passed to the source just as any other configura‐
tion parameters are passed in.

Table 3-2. Optional configuration parameters for all sources

Parameter Description

interceptors A list of names that represent a chain of interceptors

interceptors.<interceptor_name>.* Parameters to pass to the interceptor with the specific name

34 | Chapter 3: Sources

www.allitebooks.com

http://www.allitebooks.org

Parameter Description

selector The alias or FQCN of the channel selector to use; if no selectors are
specified, the replicating channel selector is used

selector.* Configuration parameters to pass to the channel selector

An example configuration for two interceptors for a source named avro is shown in
Example 3-1. Two interceptors, host and static (named i1 and i2, respectively), are
configured to intercept events being received by the source. As you can see, intercep‐
tors can accept configuration with the interceptors.<interceptor_name>. prefix.

Example 3-1. Configuring interceptors

agent.sources.avro.interceptors = i1 i2
agent.sources.avro.interceptors.i1.type = host
agent.sources.avro.interceptors.i1.preserveExsiting = true
agent.sources.avro.interceptors.i2.type = static
agent.sources.avro.interceptors.i2.key = header
agent.sources.avro.interceptors.i2.value = staticValue

Each source has exactly one channel selector (which is why it is not a named compo‐
nent and can be configured using the selector configuration suffix). Though the
channel selector configuration looks like the configuration of a source subcompo‐
nent, the source does not need to configure the selector—this is done by the configu‐
ration system. In Example 3-2, the channel processor for the source named avro con‐
figures a multiplexing channel selector to bifurcate the flow of events from the source.
We will discuss the specific configuration parameters for a multiplexing channel
selector in Chapter 6, but as this example demonstrates, selectors can accept configu‐
ration parameters based on which they can return the channels to which the source
should write specific events.

Example 3-2. Channel selector configuration

agent.sources.avro.selector.type = multiplexing
agent.sources.avro.selector.header = priority
agent.sources.avro.selector.mapping.1 = channel1
agent.sources.avro.selector.mapping.2 = channel2
agent.sources.avro.selector.default = channel2

If an agent is reconfigured, the same instance of the source class will not be reused.
Therefore, all sources packaged with Flume are stateless. It is expected that any cus‐
tom sources that are plugged into Flume are also stateless to avoid data loss.

Now that we have covered the basic concepts of sources, let’s discuss the various sour‐
ces that come packaged with Flume.

Lifecycle of a Source | 35

Sink-to-Source Communication
One of the most important features of Flume is the ease of horizontally scaling a
Flume deployment. The reason this can be done easily is that it’s trivial to add new
agents to a Flume deployment and configure them to send data to other Flume
agents. Similarly, once a new agent is added, it is fairly easy to configure the agents
that are already running to write to this agent by simply updating the configuration
file.

At the center of this flexibility is Flume’s RPC sink–source combination. As discussed
in “Getting Flume Agents to Talk to Each Other” on page 17, RPC sinks are designed
to send events to RPC sources—Thrift Sink to Thrift Source and Avro Sink to Avro
Source. RPC sinks and sources are highly scalable, with the sources being able to
receive data from a large number of sinks or RPC clients. Even though each RPC sink
can send data only to one RPC source, each agent can be configured to send data to
multiple other agents using sink groups and sink processors; see “Sink Groups and
Sink Processors” on page 157.

In this section, we will discuss Flume’s RPC sources and the various aspects of config‐
uring and deploying them.

Avro Source
Flume’s primary RPC source is the Avro Source. The Avro Source is designed to be a
highly scalable RPC server that accepts data into a Flume agent, from another Flume
agent’s Avro Sink or from a client application that uses Flume’s SDK to send data. The
Avro Source together with the Avro Sink represents Flume’s internal communication
mechanism (between Flume agents). With the scalability of the Avro Source com‐
bined with the channels that act as a buffer, Flume agents can handle significant load
spikes.

Flume’s Avro Source uses the Netty-Avro inter-process communication (IPC) proto‐
col to communicate. As a result, it is possible to send data to the Avro Source from
Java or JVM languages. To send events from your application to an agent with an
Avro Source, you can make use of the Flume SDK (see “Flume Client SDK” on page
168) or the embedded agent (see “Embedded Agent” on page 185).

An Avro Source can be configured to accept compressed events from an Avro Sink
that is configured to output them. It can also be configured to make sure that any cli‐
ents or sinks sending data to it encrypt the data using SSL. An Avro Source’s configu‐
ration parameters are detailed in Table 3-3.

36 | Chapter 3: Sources

Table 3-3. Avro Source configuration

Config parameter Default
value

Description

type - The alias for an Avro Source is avro. The FQCN, which is
org.apache.flume.source.AvroSource (case sensitive), can also be
used.

bind - The IP address/hostname to bind to. To bind to all interfaces on the machine, use
0.0.0.0.

port - The port to bind to.

threads infinity The maxmium number of worker threads to accept incoming data from clients/
Avro Sinks.

ssl false Should SSL be enabled? If this is set to true, all clients connecting to this source
are required to use SSL. If SSL is enabled, the keystore and keystore-
password parameters are required.

keystore - The path to the keystore to use for SSL. This is a required parameter if SSL is
enabled.

keystore-password - The password to be used to open the keystore. This is a required parameter if SSL
is enabled.

keystore-type JKS The type of keystore that is being used.

compression-type - The compression format used to decompress the incoming data. The only
compression format supported is zlib [zlib_ch3]. To accept zlib-compressed data,
set this parameter to deflate.

Configuring the Avro Source in the simplest way requires a minimal set of parame‐
ters. Minimally, the source requires two mandatory parameters other than the type
parameter itself: bind and port. These two parameters define the socket address that
the source uses. If there are multiple network interfaces, the Avro Source can bind to
one or all of them. To bind to just one of the interfaces, simply set the IP address/
domain address of that interface as the value of the bind parameter. To bind to all
interfaces, use 0.0.0.0 as the value of the bind parameter. The port parameter defines
the port number the source should listen on, for the configured bind address(es).

The Avro Source uses a Netty server [netty] to serve incoming requests. The Netty
server uses Java’s nonblocking I/O (NIO) [nio], which allows it to be highly perform‐
ant while using a relatively small number of threads to handle the requests. The Avro
Source allows the user to configure the maximum number of threads that the source
should use to handle incoming data using the threads parameter. This allows the

Sink-to-Source Communication | 37

user to keep a check on the resources consumed by the source. Though there is no
theoretical maximum on the number of threads, the actual number is limited by the
JVM, the OS, and the hardware.

SSL Keystores

A keystore is a collection of cryptographic keys and certificates, as
defined by the Java standard [keystore]. Each keystore is protected
by a password, which can be used load the keystore. In Flume’s
case, this password is stored in the Flume configuration file as plain
text; the configuration file must be guarded by the correct permis‐
sions to avoid this password falling into the wrong hands.

If the Avro Sink(s) or RPC clients sending data to Flume are configured to use SSL to
send the events to the Avro Source, the Avro Source must be configured with the SSL-
related parameters. The ssl parameter must be set to true and the keystore and
keystore-password parameters must be set. The keystore parameter must point to a
valid keystore file, and keystore-password is the password that is to be used to open
the keystore.

The keystore-type parameter is optional and can be set to an alternate keystore
type, if needed [keystore-type]. The cryptographic algorithm used is defined by
ssl.KeyManagerFactory.algorithm in the Java security properties file. If this param‐
eter is not set in the Java security properties file, then the SunX509 algorithm is used.
More details about the Java security properties file can be found in the Java Security
Guide [java-security].

Avro Sinks and Flume’s RPC clients can be configured to compress data before send‐
ing it to the Avro Source. This is especially useful if the data is sent over a WAN,
between data centers, etc. to reduce bandwidth usage. Currently, the Avro Source
only supports zlib compression for RPC. To enable the Avro Source to receive data in
compressed form, set the compression-type parameter to deflate. If this parameter
is not set or is set to none, Flume will not attempt to decompress the data; this might
cause the events to get backlogged at the previous hop, since the source will not be
able to parse the compressed data and will return an error to the previous hop, caus‐
ing that hop to retry forever.

38 | Chapter 3: Sources

Avro Sources and Compression

If the compression-type parameter is set to deflate, the incoming
data must be compressed, or else the source will not be able to
parse the incoming data. The sink or Flume client sending the data
must be configured to compress the data being sent. Therefore, if
both compressed and uncompressed data will be sent to the same
Flume agent, the agent should run two Avro Sources, one for
receiving compressed data and another for receiving uncompressed
data.
Also note that when the Avro Sink/Flume RPC client sends data to
the Avro Source, it compresses the data batch by batch, not event
by event, since this may provide a better compression ratio and
reduce the CPU usage for compression.

Here is an example of an Avro Source configured with SSL and compression. To dis‐
able SSL, simply remove the ssl parameter, and the remaining SSL-related parame‐
ters will be ignored:

agent.sources = avroSrc
agent.channels = memChannel

agent.sources.avroSrc.type = avro
agent.sources.avroSrc.channels = memChannel

Bind to all interfaces
agent.sources.avroSrc.bind = 0.0.0.0
agent.sources.avroSrc.port = 4353

Removing the next line will disable SSL
agent.sources.avroSrc.ssl = true
agent.sources.avroSrc.keystore = /tmp/keystore.jks
agent.sources.avroSrc.keystore-password = UsingFlume
agent.sources.avroSrc.keystore-type = jks

agent.sources.avroSrc.compression-type = deflate

Initializes a memory channel with default configuration
agent.channels.memChannel.type = memory

An Avro Sink that writes to this source would have a configuration similar to the
following:

agent.channels = avroSinkChannel
agent.sinks = avroSink

agent.channels.avroSinkChannel.type = memory

agent.sinks.avroSink.type = avro
agent.sinks.avroSink.channel = memory

Sink-to-Source Communication | 39

agent.sinks.avroSink.hostname = avrosrchost.example.com
agent.sinks.avroSink.port = 4353

SSL properties
agent.sinks.avroSink.ssl = true
agent.sinks.avroSink.trust-all-certs = true
agent.sinks.avroSink.truststore = /path/to/keystore
agent.sinks.avroSink.truststore-password = UsingFlume
agent.sinks.avroSink.truststore-type = JKS

agent.sources.avroSink.compression-type = deflate

Thrift Source
As mentioned in “Avro Source” on page 36, Flume’s use of Avro’s Java-specific RPC
mechanism makes the Avro Source unable to accept data from non-JVM languages.
As Flume became more popular, this use case had to be addressed. Therefore, Apache
Thrift RPC support [thrift_ch3] was added to Flume. Thrift is a top-level project at
the Apache Software Foundation that enables cross-language communication, which
is extremely popular. The Thrift Sink–Thrift Source combination in Flume is
designed to work pretty much exactly like the Avro Sink–Avro Source combination.
Flume also has a Java Thrift RPC client that is part of the Flume SDK. The Thrift
Source, in the simplest terms, is a multithreaded high-performance Thrift server. The
Thrift interface definition language (IDL) that Flume uses is shown here:

namespace java org.apache.flume.thrift

struct ThriftFlumeEvent {
 1: required map <string, string> headers,
 2: required binary body,
}

enum Status {
 OK,
 FAILED,
 ERROR,
 UNKNOWN
}

service ThriftSourceProtocol {
 Status append(1: ThriftFlumeEvent event),
 Status appendBatch(1: list<ThriftFlumeEvent> events),
}

This IDL can be used to generate Thrift clients in any language that Thrift supports.
The generated code can then be used to send data to Flume’s Thrift Source.

The configuration of the Thrift Source is extremely simple and mimics that of the
Avro Source (see Table 3-4).

40 | Chapter 3: Sources

Table 3-4. Thrift Source configuration

Config
parameter

Default
value

Description

type - The alias for a Thrift Source is thrift. The FQCN, which is
org.apache.flume.source.ThriftSource (case sensitive), can also be used.

bind - The IP address/hostname to bind to. To bind to all interfaces on the machine, use 0.0.0.0.

port - The port to bind to.

threads - The maximum number of threads this source should use for processing requests.

The bind parameter specifies the hostname/IP address of the interface to bind to; use
0.0.0.0 to bind to all interfaces. The port parameter specifies the port to use—this is
the port clients would use to send events to this source. These are both mandatory
parameters.

The threads parameter for a Thrift Source works in a slightly different way than for
the Avro Source. Flume (as of version 1.4.0), by default, is built against and includes
Thrift version 0.7.0. This was meant to support clients (programs written to use the
Flume SDK) that would also write to HBase version 0.92 (or older) from the same
process. If there is no requirement to support this version of HBase, then it is recom‐
mended that the Thrift version that comes with Flume be replaced with a newer ver‐
sion, though due to incompatibilities in the Thrift-generated code, Flume may also
need to be recompiled against the newer version.

When using a version of Thrift lower than 0.8.0, Flume uses Thrift’s TThreadPool
Server, which uses one thread per client connected, and the threads parameter con‐
trols the maximum number of threads that the source will create, thus indirectly con‐
trolling the number of clients that can connect to the agent. It is recommended to not
set this parameter in this case. If a newer version of Thrift is being used, then Flume
uses Thrift’s TThreadedSelectorServer, which uses Java’s nonblocking I/O and
therefore can support more clients than there are threads available. In this case, the
threads parameter works just like the Avro Source’s threads parameter and can be
used to keep the resource utilization under control.

The Thrift Source, unlike the Avro Source, does not currently support compression
or SSL. A Thrift Source should therefore be used only to push data into Flume from
systems that are written in non-JVM languages, or if the application that is writing
the data already uses Thrift for other purposes. For Flume agent–to–Flume agent
communication, it is recommended that the Avro Sink–Avro Source pair be used.

The following is an example of configuration of a Thrift Source:

Sink-to-Source Communication | 41

agent.sources = thriftSrc
agent.channels = memChannel

agent.sources.thriftSrc.type = thrift
agent.sources.thriftSrc.channels = memChannel

Bind to all interfaces
agent.sources.thriftSrc.bind = 0.0.0.0
agent.sources.thriftSrc.port = 4564

Initializes a memory channel with default configuration
agent.channels.memChannel.type = memory

A Thrift Sink that writes to this source would have a configuration similar to the
following:

agent.channels = memChannel
agent.sinks = thriftSink

agent.channels.memChannel.type = memory

agent.sinks.thriftSink.type = thrift
agent.sinks.thriftSink.channel = memory
agent.sinks.thriftSink.hostname = thriftsrchost.example.com
agent.sinks.thriftSink.port = 4564

Failure Handling in RPC Sources
Failure handling in both the Avro and Thrift Sources is a bit tricky. This is because
the RPC sources are invoked by a client or sink on the other side of a network link,
though it looks like a local method call. In all cases where the RPC sources cannot
start due to some permanent error, like being unable to bind to the port, the source
will throw an exception when it tries to start. Since Flume’s configuration system will
retry every few seconds to restart the component, since it was successfully configured,
the source will start up if the condition causing the error no longer exists—for exam‐
ple, if the other process that was bound to the port was killed or released the port.

The trickier part, though, is with respect to the code that actually receives the data
and writes the events to the channel. If even one of the channels the source is config‐
ured to write to throws a ChannelException due to the channel being full, or if the
transaction is too large, the source returns a failure status to the client or sink that
called it and expects it to retry. Since RPC sources receives data via threads owned by
a thread pool, exceptions would simply cause the thread to die.

In all such cases, the real indication of failure is only in the log files where these
exceptions are logged. Sometimes these exceptions may indicate a major problem,
like the process running out of resources (as with an OutOfMemoryError). Therefore,
it is important to monitor the logs generated by the Flume agent to ensure that things
are running smoothly. ChannelExceptions being thrown too often can mean that the

42 | Chapter 3: Sources

channels are too underallocated for the rate of writes, or that the sinks are not clear‐
ing the data from the channels fast enough. Increasing the number of sinks can help
if too few sinks are reading the data, but if the eventual destination itself cannot han‐
dle the load, the capacity needs to be rethought. In all cases, errors may cause dupli‐
cates but never actually cause data loss, since events are removed from the channel if
and only if the data is actually successfully written out to the next hop.

HTTP Source
Flume comes bundled with an HTTP Source that can receive events via HTTP POST.
For application environments where it might not be possible to deploy the Flume
SDK and its dependencies, or in cases where the client code prefers to send data over
HTTP rather than over Flume’s RPC, the HTTP Source can be used to receive data
into Flume. From a client’s point of view, an HTTP Source behaves exactly like a web
server that accepts Flume events.

The HTTP Source takes in a few configuration parameters, as shown in Table 3-5.
The configuration of the source is extremely simple and allows the user to also con‐
figure the handler that is plugged in.

Table 3-5. HTTP Source configuration

Config parameter Default value Description

type - The alias for the HTTP Source is http. The FQCN, which is
org.apache.flume.source.http.HttpSource (case sensitive), can
also be used.

bind - The IP address/hostname to bind to. To bind to all interfaces on the machine,
use 0.0.0.0.

port - The port to bind to.

enableSSL false To enable SSL, this parameter should be set to true.

keystore - The path to the keystore file to be used.

keystorePassword - The password to be used for accessing the keystore.

handler JSONHandler The FQCN of the handler class that should be used by the HTTP Source to
convert the HTTP request into Flume events. See “Writing Handlers for the HTTP
Source*” on page 44 to learn how to write handlers for the HTTP Source.

handler.* - Any parameters that have to be passed to the handler can be passed in through
the configuration by using the handler. prefix.

HTTP Source | 43

As is to be expected, the bind and port parameters define the interface and the port
the source binds to. This is the hostname and port that the client sends data to.

The HTTP Source also supports SSL for secure transport. By default, the source does
not use SSL. To enable SSL, set the enableSSL parameter to true. If SSL is enabled,
the keystore and keystorePassword parameters are mandatory. The keystore
parameter is the full path to the keystore to be used for SSL. keystorePassword is the
password that is to be used to access the keystore.

An example of how to configure an HTTP Source that uses a custom handler is
shown in Example 3-3.

Example 3-3. HTTP Source configuration example

agent.sources = httpSrc
agent.channels = memChannel

agent.sources.httpSrc.type = http
agent.sources.httpSrc.channels = memChannel

Bind to all interfaces
agent.sources.httpSrc.bind = 0.0.0.0
agent.sources.httpSrc.port = 4353

Removing this line will disable SSL
agent.sources.httpSrc.ssl = true
agent.sources.httpSrc.keystore = /tmp/keystore
agent.sources.httpSrc.keystore-password = UsingApacheFlume

agent.sources.httpSrc.handler = usingflume.ch03.HTTPSourceXMLHandler
agent.sources.httpSrc.handler.insertTimestamp = true

Initializes a memory channel with default configuration
agent.channels.memChannel.type = memory

What parameters the handler requires and how they are used by the handler depends
on the specific handler implementation. Please consult the handler’s documentation
for details on this.

Writing Handlers for the HTTP Source*
It is easy for the user to develop and plug in a handler to convert the data received
into Flume events. This allows the HTTP Source to accept data from clients in any
format that can be processed by the handler. The HTTP Source handler is a class that
inherits a very simple interface, HTTPSourceHandler:

package org.apache.flume.source.http;
public interface HTTPSourceHandler extends Configurable {
 public List<Event> getEvents(HttpServletRequest request) throws

44 | Chapter 3: Sources

 HTTPBadRequestException, Exception;
}

The handler interface is extremely simple and has only one method, getEvents,
which accepts the HTTPServletRequest sent by the client and returns a list of Flume
events. Even though this handler interface is simple, it can essentially do any arbitrary
processing to convert the input data from the HTTPServletRequest into Flume
events. The amount of processing should be limited, though, or the client sending
data to this source might get timed out. The handler is configurable through Flume’s
standard configuration mechanism. Since the HTTP Source always uses exactly one
transaction per request whatever the handler is, the sender has to be careful to send
only as many events as the channels support.

The handler is responsible for making sure that the configuration parameters passed
to it are valid. The HTTP Source will instantiate and configure the handler on
startup. Since the HTTP Source propagates any Exception thrown by the handler to
the configuration system, the handler must verify the parameters and apply the
parameters in the configure method. The parameters are passed in to the configure
method via a Context instance. Context instances are simply key-value pairs contain‐
ing various configuration keys and their values. If the configuration passed in is inva‐
lid and cannot be applied successfully, the HTTP Source rethrows the exception
thrown by the handler to the configuration system, which in turn disables the HTTP
Source and removes it from the agent.

While processing incoming data, the HTTP Source handles exceptions thrown by the
handler by returning a failure to the client. The HTTP Source expects the handler to
throw an HTTPBadRequestException if the incoming data was malformed and cannot
be converted into Flume events. This operation must be idempotent, and the handler
must throw the same exception for the same input every time. If an HTTPBadReques
tException is thrown by the handler, the HTTP Source returns HTTP error code
400, to inform the client that the request was malformed. If the handler throws any
other exception, the source returns HTTP error code 500, to inform the client that
there was an internal error in the HTTP Source. It is then up to the client to decide
how to retry in such a case. If one of the channels that the source is writing to throws
a channel exception, the source returns error code 503, to signal that the channel is
temporarily at capacity and the client should retry later.

The JAR file containing the handler (or the handler’s .class file) and all its dependen‐
cies should be added to the Flume classpath via the plugins.d mechanism discussed in
“Deploying Custom Code” on page 204.

If no handler is specified in the configuration, the HTTP Source uses a handler that
comes bundled with Flume, which can handle JSON formatted events. Each request
can contain several events represented as an array, though the channel(s) the source
writes to might have a limited transaction capacity. The handler accepts JSON-

HTTP Source | 45

formatted data in the UTF-8, UTF-16, or UTF-32 charset, and converts it into a list of
events with the body serialized in the charset of the original HTTP request. The for‐
mat that the handler accepts is shown here:

[{
 "headers" : {
 "event1Header1" : "event1Value1",
 "event1header2" : "event1Value2"
 },
 "body" : "This is the body of the first event."

},
{
 "headers" : {
 "event2Header1" : "event2Value1",
 "event2Header2" : "event2Value2"
 },
 "body" : "This is the body of the second event"
}]

HTTPSourceXMLHandler, shown in Example 3-5, is another example of a handler that
works with the HTTP Source. This handler converts XML-formatted data into Flume
events. The handler is pretty simple and expects the data to be in the XML format
shown in Example 3-4. The format expected by this handler is pretty simple. Only
data in between <events> and </events> is processed. Each event is expected to be
between <event> and </event> tags. The only thing that limits the number of events
per request is the transaction capacity of the channel(s) the source writes to. Each
event can have one or more sections, enclosed by <headers> and </headers> tags.
Each header is denoted by a tag whose name is used as the header name; the value in
between the opening header name tag and the closing tag is used as its value. The
body is enclosed between <body> and </body> tags.

Example 3-4. Format expected by HTTPSourceXMLHandler

<events>
 <!-- This can contain as many events
 as the channel can support in a transaction -->

 <event>
 <headers>
 <header1>value1</header1>
 <header2>value2</header2>
 </headers>

 <body>This is a test.
 This input should show up in an event.
 </body>
 </event>

46 | Chapter 3: Sources

 <event>
 <!-- There can be zero or more headers sections.
 They are merged together, so each header name
 must be unique even between sections. -->
 <headers>
 <event2Header1>event2Value1</event2Header1>
 </headers>

 <!-- Each event can have only one body -->

 <body>This is the 2nd event.</body>

 <headers>
 <event2Header2>event2Value2</event2Header2>
 </headers>
 </event>
</events>

The handler parses the XML-formatted events into Flume events and returns them to
the HTTP Source, which in turn writes them to the channel(s). While parsing the
events, the handler makes sure that each event has at least a header and a body. If not,
the handler throws an HTTPBadRequestException to inform the client that the
incoming data was malformed. It can be configured to insert a timestamp into the
Flume event headers, which the HDFS Sink can use for bucketing of events.

Example 3-5. XML handler for HTTP Source

package usingflume.ch03;

/**
 * A handler for the HTTP Source that accepts XML-formatted data.
 * Each event can contain multiple header nodes,
 * but exactly one body node. If there is
 * more than one body tag, the first one in the event is picked up.
 */
public class HTTPSourceXMLHandler implements HTTPSourceHandler {

 private final String ROOT = "events";
 private final String EVENT_TAG = "event";
 private final String HEADERS_TAG = "headers";
 private final String BODY_TAG = "body";

 private final String CONF_INSERT_TIMESTAMP = "insertTimestamp";
 private final String TIMESTAMP_HEADER = "timestamp";

 private final DocumentBuilderFactory documentBuilderFactory
 = DocumentBuilderFactory.newInstance();

 private final ThreadLocal<DocumentBuilder> docBuilder
 = new ThreadLocal<DocumentBuilder>();

HTTP Source | 47

 private boolean insertTimestamp;

 @Override
 public List<Event> getEvents(HttpServletRequest
 httpServletRequest) throws HTTPBadRequestException, Exception {
 if (docBuilder.get() == null) {
 docBuilder.set(documentBuilderFactory.newDocumentBuilder());
 }
 Document doc;
 final List<Event> events;
 try {
 doc = docBuilder.get().parse(
 httpServletRequest.getInputStream());
 Element root = doc.getDocumentElement();
 root.normalize();

 // Verify that the root element is "events"
 Preconditions.checkState(
 ROOT.equalsIgnoreCase(root.getTagName()));

 NodeList nodes = root.getElementsByTagName(EVENT_TAG);
 int eventCount = nodes.getLength();
 events = new ArrayList<Event>(eventCount);
 for (int i = 0; i < eventCount; i++) {
 Element event = (Element) nodes.item(i);
 // Get all headers. If there are multiple header sections,
 // combine them.
 NodeList headerNodes
 = event.getElementsByTagName(HEADERS_TAG);
 Map<String, String> eventHeaders
 = new HashMap<String, String>();
 for (int j = 0; j < headerNodes.getLength(); j++) {
 Node headerNode = headerNodes.item(j);
 NodeList headers = headerNode.getChildNodes();
 for (int k = 0; k < headers.getLength(); k++) {
 Node header = headers.item(k);

 // Read only element nodes
 if (header.getNodeType() != Node.ELEMENT_NODE) {
 continue;
 }
 // Make sure a header is inserted only once,
 // else the event is malformed
 Preconditions.checkState(
 !eventHeaders.containsKey(header.getNodeName()),
 "Header expected only once " + header.getNodeName());
 eventHeaders.put(
 header.getNodeName(), header.getTextContent());
 }
 }
 Node body = event.getElementsByTagName(BODY_TAG).item(0);

48 | Chapter 3: Sources

 if (insertTimestamp) {
 eventHeaders.put(TIMESTAMP_HEADER, String.valueOf(System
 .currentTimeMillis()));
 }
 events.add(EventBuilder.withBody(
 body.getTextContent().getBytes(
 httpServletRequest.getCharacterEncoding()),
 eventHeaders));
 }
 } catch (SAXException ex) {
 throw new HTTPBadRequestException(
 "Request could not be parsed into valid XML", ex);
 } catch (Exception ex) {
 throw new HTTPBadRequestException(
 "Request is not in expected format. " +
 "Please refer documentation for expected format.", ex);
 }
 return events;
 }

 @Override
 public void configure(Context context) {
 insertTimestamp = context.getBoolean(CONF_INSERT_TIMESTAMP,
 false);
 }
}

An example of XML handler configuration is shown in Example 3-3. This configura‐
tion instructs the handler to insert the timestamp of processing into each event. In
general, any number of parameters can be passed to HTTP Source handlers in this
way.

The HTTPHandler interface is part of the flume-ng-core Maven artifact, which can be
added to your application by including Example 3-6 in your application’s pom.xml
file’s dependency section.

Example 3-6. Including the flume-ng-core artifact in your application

 <dependency>
 <groupId>org.apache.flume</groupId>
 <artifactId>flume-ng-core</artifactId>
 <version>1.5.0</version>
 </dependency>

Use the plugins.d framework shown in “Deploying Custom Code” on page 204 to
deploy custom HTTP handlers to Flume agents.

HTTP Source | 49

Spooling Directory Source
In many scenarios, applications generate data that gets written to files. Often, these
files are not simply text, or they may not make sense if each line is converted into a
single event, but a group of lines together make an event. An example of this is stack
traces. It is often difficult or not possible to modify these applications to use the
Flume Client API to send data directly to Flume. In such cases, Flume’s Spooling
Directory Source can be used to read data from each of these files.

A Spooling Directory Source watches a directory, from which it reads events. The
source expects files in the directory to be immutable, though new files can be added
to the directory in real time. Once a file is moved to the directory, it should not be
written to. If you’re dealing with log files, a good way of doing this is to configure
your logging system to move the file when it is being rolled. Also, the source expects
that filenames are never reused. If either of these two happens, the source will throw
an exception and quit. The only way to restart the source at this point is to restart the
agent itself.

The Spooling Directory Source is a good alternative to using an Exec Source with
tail -F, as discussed later in this chapter, since this source guarantees data delivery
and is generally more reliable than using tail -F with an Exec Source. The only
downside is that the data is not tailed in real time, and is read only once the file is
closed and moved to the relevant directory. Once a file is completely consumed by
the source and all its events successfully written to the source’s channel(s), the source
can either rename the file or delete the file, based on the configuration. When the file
is renamed, the source simply adds a suffix to the filename, rather than changing it
completely. The suffix is configurable as well.

The Spooling Directory Source uses a tracker persisted to disk to track the location
within each file at which events were successfully written out to the channel, so that
the source can start reading data from that position if the agent or machine fails and
restarts. This allows the source to track which file it is processing at any point in time
and resume processing that file from the last processed location when the source
restarts. This is one of the reasons the source does not allow filenames to be reused.

Table 3-6 shows the various configuration parameters accepted by the Spooling
Directory Source.

50 | Chapter 3: Sources

Table 3-6. Spooling Directory Source configuration

Parameter Default Description

type - The alias for the Spooling Directory Source is spooldir. The FQCN is
org.apache.flume.source.SpoolDirectorySource.

spoolDir - The directory to “watch” and read files from. Subdirectories of this directory are not
scanned.

batchSize 100 The maximum number of events to write to the channel per transaction.

ignorePattern ^$ Files with names matching this regex are ignored and data is not read from them.

deletePolicy never When to delete ingested files—must be never or immediate.

fileSuffix .COMPLETED The suffix to use for files that have been completely ingested. The “.” is required if
this is to be an extension.

fileHeader false If set to true, the filename is added to the event headers.

fileHeaderKey file The key to use in the headers, if the filename is added to headers.

trackerDir .flumespool The directory where the Spooling Directory Source stores the metadata that is used
to restart the source from where it left off.

deserializer line The alias or FQCN of the Builder class that can be used to build the deserializer
that should be used to read custom-formatted data. “Reading Custom Formats
Using Deserializers*” on page 53 explains how to write deserializers.

deserializer.* - Any parameters to be passed to the deserializer.

inputCharset UTF-8 The character set to use when the deserializer calls readChar.

The type of the Spooling Directory Source is spooldir. As mentioned earlier, this
source reads all files in a given directory and processes them one by one. The full path
to the directory to process should be passed in via the spoolDir parameter. For per‐
formance reasons, the source writes events in batches. The maximum size of each
batch is defined by the batchSize parameter. The source attempts to read as many
events as it can from the file until the specified batch size is reached. If there are fewer
events available in the files, it will commit the transaction as soon as all events are
read from the files.

Sometimes, there are files that get written to the same directory that may actually not
contain data, like metadata files. To avoid ingesting such files, which are known to
not contain valid data, an ignore pattern can be specified via the ignorePattern

Spooling Directory Source | 51

parameter. This parameter takes a regex, and any files with filenames matching this
regex are ignored.

As mentioned earlier, once the files are completely ingested, Flume can either rename
or delete the files. To delete the files immediately, set the value of the deletePolicy
parameter to immediate. If deletePolicy is set to never (the default), the file is
renamed once ingested with the suffix specified by the fileSuffix parameter
appended to the original name of the file. Any files that use this suffix for completed
files are ignored, so be careful to not use a file suffix that could be the suffix of new
files that get written to the directory.

When a file is processed and events are generated from the file, it is often beneficial
for processing systems to know which file the events came from (for example, show‐
ing the filename a stack trace belongs to in a search UI). The full path and the file‐
name can be included by setting the fileHeader parameter to true. The key to use in
the headers can be set using the fileHeaderKey parameter (this defaults to file).

The Spooling Directory Source is able to recover from where it left off, so as to avoid
duplicates but still consume all data from the file. This is made possible by persisting
information to disk about the file it is processing and reading this information when
the source starts up. This information is persisted in the tracker directory. The tracker
directory is always inside the directory that this source is watching. The default name
of the tracker directory is .flumespool. This can be changed using the trackerDir
parameter. Note that the directory is created inside the directory that is being read,
and the value of the trackerDir parameter is used as a relative path to the directory
that the source is watching. Once the name of the tracker directory is set, if the value
of this parameter is changed (even after shutting down Flume), the source will no
longer be able to track the location of the file it was processing and might end up
being processed again from the beginning, causing duplicates. So, once this is set, it
should not be changed.

Example 3-7 shows an example of an agent configured to use the Spooling Directory
Source to read data from a directory on disk in batches of 250 events each. The source
deletes files as soon as they are completely ingested. It also inserts a header with the
filename, with the key usingFlumeFiles.

Example 3-7. Spooling Directory Source configuration example

agent.sources = spool
agent.channels = memChannel

agent.sources.spool.type = spooldir
agent.sources.spool.channels = memChannel

agent.sources.spool.spoolDir = /data/flume/spool
agent.sources.spool.batchSize = 250

52 | Chapter 3: Sources

agent.sources.spool.deletePolicy = immediate
agent.sources.spool.fileHeader = true
agent.sources.spool.fileHeaderKey = usingFlumeFiles
agent.sources.spool.deserializer = \
usingflume.ch03.ProtobufDeserializer$ProtobufDeserializerBuilder

agent.channels.memChannel.type = memory
agent.channels.memChannel.capacity = 10000
agent.channels.memChannel.transactionCapacity = 500

Reading Custom Formats Using Deserializers*
The source deserializes data in the files in the directory using a pluggable deserializer,
allowing the source to read and interpret the data from these files into events in dif‐
ferent ways. For example, a deserializer that “understands” Avro could read Avro con‐
tainer formatted files and convert each Avro message to a Flume event, or several
lines could be read at once, until an entire stack trace is read and then converted to
Flume events. Once all data in a file is read, this source can either delete or rename
the file with a new extension so that the same file is not processed again.

To use a custom deserializer, set the value of the deserializer parameter to an
implementation of EventDeserializer$Builder that can build the EventDeserial
izer implementation to use. The deserializer can be configured by passing in param‐
eters with the deserializer. prefix. Text-based deserializers can call the readChar
method to read a character. The way a character is represented differs by character
set. To tell the source what character set to use, set inputCharset to the name of the
character set, which by default is UTF-8.

Deserializers implement the EventDeserializer interface, and should also provide a
Builder class, which must implement the EventDeserializer$Builder interface.
The Builder must have a public, no-argument constructor that the Flume framework
can use to instantiate the builder. The Builder’s build method must create and return
a fully configured instance of the deserializer.

A Context instance and an instance of ResettableInputStream are passed to this
method. The Context instance can be used to configure the deserializer. The deserial‐
izer is expected to deserialize events from the input stream. ResettableInputStream
is an interface that is meant to read data from the stream, but also gives the ability to
roll back to a previous location in the stream. An instance of the ResettableInput
Stream class guarantees that a reset call will reset the reads from this stream to the
position in the stream at which the last mark call happened, regardless of how many
bytes were read from the stream using the read or readChar methods after the last
mark call. This allows the Spooling Directory Source to reread events if writes to a
channel failed and the events could not be written. The deserializer can use this

Spooling Directory Source | 53

functionality in its own mark and reset methods to ensure it rolls back to the correct
location within the stream.

The deserializer implements two other methods that are called by the source to read
events from the stream—the readEvent and readEvents methods. The readEvent
method must return exactly one event from the stream, while the readEvents
method takes an argument that is the maximum number of events it must read from
the stream.

Example 3-9 shows a deserializer that deserializes messages serialized as Protocol
Buffer (Protobuf) messages based on the format shown in Example 3-8. Each Proto‐
buf message is written to the file after its length is written to the file as a 4-byte
integer.

Example 3-8. Protobuf format used by ProtobufDeserializer

option java_package = "usingflume.ch03";
option java_outer_classname = "UsingFlumeEvent";

message Event {
 repeated Header header = 1;
 required bytes body = 2;
}

message Header {
 required string key = 1;
 required string val = 2;
}

Example 3-9. ProtobufDeserializer: a class that deserializes data written as Protobuf
messages

package usingflume.ch03;

public class ProtobufDeserializer implements EventDeserializer {
 private final ResettableInputStream stream;
 private boolean isOpen;

 private ProtobufDeserializer(ResettableInputStream stream) {
 // No configuration to do, so ignore the context.
 this.stream = stream;
 isOpen = true;
 }

 @Override
 public Event readEvent() throws IOException {
 throwIfClosed();
 // To not create an array each time or copy arrays multiple times,
 // read the data to an array that backs byte buffers,

54 | Chapter 3: Sources

 // then wrap that array in a stream and pass it to the Protobuf
 // parseDelimitedFrom method.
 // The format is expected to be:
 // <length of message> - int
 // <protobuf message (written using writeTo (not delimited)>
 // We assume here that the file is well-formed and the length
 // or the
 // message are not partially cut off.
 byte[] sz = new byte[4];
 if (stream.read(sz, 0, 4) != -1) {
 int length = ByteBuffer.wrap(sz).getInt();
 byte[] data = new byte[length];
 stream.read(data, 0, data.length);
 UsingFlumeEvent.Event protoEvent =
 UsingFlumeEvent.Event.parseFrom(new ByteArrayInputStream(data));
 List<UsingFlumeEvent.Header> headerList
 = protoEvent.getHeaderList();
 Map<String, String> headers = new HashMap<String, String>(
 headerList.size());
 for (UsingFlumeEvent.Header hdr : headerList) {
 headers.put(hdr.getKey(), hdr.getKey());
 }
 return EventBuilder.withBody(protoEvent.getBody().toByteArray(), headers);
 }
 return null;
 }

 @Override
 public List<Event> readEvents(int count) throws IOException {
 throwIfClosed();
 List<Event> events = new ArrayList<Event>(count);
 for (int i = 0; i < count; i++) {
 Event e = readEvent();
 if (e == null) {
 break;
 }
 events.add(e);
 }
 return events;
 }

 @Override
 public void mark() throws IOException {
 throwIfClosed();
 stream.mark();
 }

 @Override
 public void reset() throws IOException {
 throwIfClosed();
 stream.reset();
 }

Spooling Directory Source | 55

 @Override
 public void close() throws IOException {
 isOpen = false;
 stream.close();
 }

 private void throwIfClosed() {
 Preconditions.checkState(isOpen, "Serializer is closed!");
 }

 public static class ProtobufDeserializerBuilder implements Builder {

 @Override
 public EventDeserializer build(Context context,
 ResettableInputStream resettableInputStream) {
 // The serializer does not need any configuration,
 // so ignore the Context instance. If some configuration has
 // to be passed to the serializer, this Context instance can be used.
 return new ProtobufDeserializer(resettableInputStream);
 }
 }
}

This ProtobufDeserializer class reads Protobuf-serialized events from the file and
converts them into Flume events in the readEvent method, returning null when no
more events are available to be read. If no events could be read by the readEvents
method, an empty list is returned, as is mandated by the EventDeserializer
interface.

Since the file is immutable, once we reach a stage where no more events are available
in the file, this means all the events have been read out from the file, at which point
the source closes the deserializer by calling the close method. If the serializer is
maintaining any internal state or has some cleanup to do, this method is expected to
do that. In this case, we simply close the stream. The mark and reset methods simply
check that the deserializer is open and forward the calls to the stream. This specific
implementation of the serializer does not need any configuration, but deserializers
can receive configuration via the Context instance passed to the builder, which in
turn can be passed through a constructor to the deserializer instance. Example 3-7
showed a Spooling Directory Source configured to use ProtobufDeserializer.

Flume comes bundled with a handful of deserializers. The default deserializer is the
LineDeserializer [line-deserializer]. This is an example of a deserializer that accepts
configuration. The line deserializer is enabled if no deserializer is set for the Spooling
Directory Source or if the value of the deserializer parameter is set to line. The
line deserializer reads the file line by line, converting each line to an event, based on a

56 | Chapter 3: Sources

configurable character set (UTF-8 by default). Table 3-7 lists the configuration
parameters.

Table 3-7. Line deserializer configuration

Parameter Default Description

outputCharset UTF-8 The charset to use to convert the characters read from the file to the byte array that is set as
the event body.

maxLineLength 2048 The maximum number of characters to return per line. If the line is longer than this, it is
truncated.

Another deserializer that comes bundled with Flume is the AvroEventDeserializer.
To use this deserializer, set the deserializer parameter to avro. The Avro deserial‐
izer can read Avro container files and send data out as Avro-formatted events. There is
only one configuration parameter for this deserializer, as described in Table 3-8.

Table 3-8. Avro deserializer configuration

Parameter Default Description

schemaType flume.avro.schema.hash This can be set to either flume.avro.schema.hash or
flume.avro.schema.literal. Setting this to
flume.avro.schema.hash causes the 64-bit Rabin fingerprint of
the schema to be inserted in the headers with the key
flume.avro.schema.hash. If the value of this parameter is set to
flume.avro.schema.literal, the entire JSONified schema is
inserted into the header with the flume.avro.schema.literal
key.

To interpret the data, it is important to know the schema used. Though this informa‐
tion is contained in the file itself, it is important to keep the schema with each event
so that it is possible to read the data from the event. So, this deserializer supports
inserting the Avro schema in the headers or simply putting the 64-bit Rabin finger‐
print of the schema (as specified in the Avro specification [schema-fp]) in the head‐
ers, which can later be used to look up a schema registry that is indexed on the
schema fingerprint. (Imagine a situation where there is Avro-formatted data that is
going to be in one of several known schemas, which is mostly the case. Using this fin‐
gerprint in the headers allows the user to identify which schema should be used to
read the message, and thus this can be used by a serializer while writing the data.) To
set the fingerprint in the event headers, set the schemaType parameter to
flume.avro.schema.hash. The schema fingerprint is written to a header with the key
flume.avro.schema.hash.

Spooling Directory Source | 57

If the entire JSON-ified schema should be written to every event, set schemaType to
flume.avro.schema.literal. In this case, the entire schema is written with the key
flume.avro.schema.literal. Writing the schema in every event’s header is pretty
inefficient since it increases the event size, especially if there are a limited number of
schema types.

To read files from a directory as a binary large object (BLOB) [blob], the blob deser‐
ializer can be used. The FQCN of the blob deserializer is org.apache.flume.
sink.solr.morphline.BlobDeserializer. This deserializer takes the maximum size
of a blob it should accept, and for each file attempts to read data from the file in blobs
of that many bytes. This serializer takes only one configuration parameter, maxBlo
bLength, which is the maximum size, in bytes, of each blob. If a file is larger than this,
the file is split up into several blobs, each with a size less than equal to the configured
maximum. This deserializer buffers all blobs in a batch in memory, so the batch size
and maximum blob size should be configured to ensure that the serializer does not
end up using more memory than expected.

Since the Spooling Directory Source is also a part of the flume-ng-core artifact,
make sure you add the flume-ng-core artifact to your serializer’s pom.xml file, as
shown in Example 3-6. Custom deserializers can be deployed to a Flume agent using
the plugins.d framework shown in “Deploying Custom Code” on page 204.

Spooling Directory Source Performance
A Spooling Directory Source is I/O-bound. To avoid complicating deserializer imple‐
mentations, the source was specifically designed to be single-threaded. This means
that it is possible that the performance could be improved by using more threads to
read the data and use more of the available CPUs. One way of improving perfor‐
mance of files being read is to write the files alternately to different directories and
have one Spooling Directory Source process each of the directories (and write to the
same channel, if all the data is going to the same destination). This means more
threads read data from the disk and more of the CPUs can be utilized for
deserialization.

Syslog Sources
Syslog is a well-known format that is used by many applications to write log mes‐
sages. Flume integrates with syslog and can receive syslog messages both in TCP and
UDP. Flume provides two syslog sources: the Syslog UDP Source and the Multiport
Syslog Source. The Syslog UDP Source receives syslog messages in UDP, while the
Multiport Syslog Source can receive syslog messages on several ports in TCP. Both
sources can parse the syslog messages and extract several fields into Flume event
headers, which can be used in HDFS Sink bucketing. If the syslog messages do not

58 | Chapter 3: Sources

conform to the Syslog RFCs, RFC-3164 or RFC-5424, the events will contain a header
with the key flume.syslog.status with the value Invalid.

The Syslog UDP Source considers an entire UDP datagram to be one syslog event
and converts it to a single Flume event, while the Multiport Syslog Source creates a
new message each time it encounters a newline (\n) character. These sources create
two headers, Facility and Severity, in each Flume event header to indicate the
facility and severity of each message. This can be used in bucketing or with the multi‐
plexing channel selector (discussed in Chapter 6).

Table 3-9 lists the configuration parameters that are common to both sources.

Table 3-9. Syslog Source configuration

Parameter Default Description

type - The Syslog UDP Source type is syslogudp and the Multiport Syslog Source type is multi
port_syslogtcp.

host - The IP address/hostname to bind to. To bind to all interfaces on the machine, use 0.0.0.0.

keepFields false If set to true, all fields from the syslog message are left in the event body in addition to having
them in the event headers.

The Syslog UDP Source can be enabled using the syslogudp alias, while the Multi‐
port Syslog Source can be enabled using the multiport_syslogtcp alias. Both sour‐
ces require the user to specify the hostname to bind to as the value of the host
parameter. To bind to all interfaces on the machine, use 0.0.0.0 as the value of host. If
keepFields is set to true, fields from the syslog message that are normally moved to
the event headers (or removed altogether), such as Priority, Timestamp, and Host‐
name, are left in the body of the event as well as copied to the event headers. The
Multiport Syslog Source also allows syslog messages to be encoded in different char‐
acter sets on each port it receives the data on. This allows a single source to essentially
receive data from various sources, each encoding the message in a different character
set.

As well as the common parameters, the Syslog UDP Source has only one additional
parameter (see Table 3-10).

Table 3-10. Syslog UDP Source configuration

Parameter Default Description

port - The port to bind to.

The port parameter is used to specify which port the source should bind to.

Syslog Sources | 59

The Multiport Syslog Source can bind to several ports on the host. In addition to the
common parameters, the Multiport Syslog Source defines the parameters listed in
Table 3-11.

Table 3-11. Multiport Syslog Source configuration

Parameter Default Description

ports - A space-separated list of ports to bind to.

portHeader - The port on which the event was received is included in the headers as the value of
the key specified by this header. If this parameter is not configured, the port
information is not included.

charset.default UTF-8 The default character set to use.

charset.port.<port> - The character set to use for a specific port.

eventSize 2500 The maximum size of a single event, in bytes.

batchSize 100 The number of events to buffer in memory before writing to the channel.

readBufferSize 1024 The buffer size the underlying server should use.

numProcessors - The number of processors to use. This allows the source to increase the degree of
parallelism.

The Multiport Syslog Source can receive data on multiple ports. The ports should be
listed separated by spaces as the value of the ports parameter. Each event received
can be annotated with the port number on which the event was received. The value of
the configuration parameter portHeader is used as the key for the header in the
Flume event, and the value of this header is the port number.

The source also allows syslog messages to be encoded in different character sets on
each port it receives data on. To configure the character set per port, use the char
set.port. prefix followed by the port number as the configuration parameter, with
the value being the character set name. The default character set can be set using the
charset.default parameter. The value of this parameter is used when a specific
character set has not been set for a port.

As mentioned earlier, the source assumes that each event is delimited by a newline
character. Sometimes, it is important to also ensure that each event does not go over
some fixed size. This maximum size for each event can be set using the eventSize
parameter, which is represented in bytes. If the event’s size is greater than this value,
the event is truncated to this length, and a header with the key flume.syslog.status
is inserted with the value Incomplete. The Multiport Syslog Source also buffers

60 | Chapter 3: Sources

events in memory to avoid affecting channel performance. The batch size can be
specified using the batchSize parameter.

This source uses a framework called Apache MINA to receive messages. The MINA
server uses an internal buffer while reading the data from the network. The size of
this buffer is configurable via the configuration parameter readBufferSize, specified
in bytes. MINA also supports heavy parallelism. To configure the degree of parallel‐
ism, the number of processors that can be used can be passed in using the numProces
sors parameter. If this is not defined, the value of the number of processors to be
used is autodetected. For each processor that can be used, MINA will spawn up to
two threads. To reduce thread usage (not often required), reduce the value specified
by numProcessors.

Example 3-10 shows an example of a Multiport Syslog Source configured to receive
data on all interfaces and three ports, 4353, 4565, and 4553. The source is configured
to process the data received on port 4565 as ISO-8859-1 charset encoded, while all
other data received on the other two ports is assumed to be encoded as UTF-8. The
source also adds a header to each event with the key port, with the port number
where the event was received as the value. The source writes events in batches of
1,000 events each, with a maximum event size of 1,092 bytes. The source also config‐
ures MINA to use a buffer of 2,048 bytes while receiving data.

Example 3-10. Multiport Syslog Source configuration example

agent.sources = syslog
agent.channels = memChannel

agent.sources.syslog.type = multiport_syslogtcp
agent.sources.syslog.channels = memory

Bind to all interfaces
agent.sources.syslog.host = 0.0.0.0
agent.sources.syslog.ports = 4353 4565 4553

agent.sources.syslog.charset.default = UTF-8
agent.sources.syslog.charset.port.4565 = ISO-8859-1

agent.sources.syslog.batchSize = 1000
agent.sources.syslog.portHeader = port
agent.sources.syslog.readBufferSize = 2048
agent.sources.syslog.eventSize = 1092

agent.channels.memChannel.type = memory
agent.channels.memChannel.capacity = 10000
agent.channels.memChannel.transactioncapacity = 5000

Syslog Sources | 61

Syslog Data Loss

Syslog is generally assumed to be a “fire and forget” protocol. The
RFCs do not define a way of sending an acknowledgment from the
receiver to the sender, nor does it specify a way to retransmit a
message after a timeout. Therefore, if the Flume source is unable to
write the events to the channel, or if there is some network disrup‐
tion causing the message to be lost (especially in the UDP case),
there is no real way for Flume to inform the sender of failure or for
the sender to know that there is an error condition and resend the
message. This essentially causes silent data loss, with no possibility
of recovering the lost data. This causes Flume’s no-data-loss guar‐
antee to not hold true for syslog, and therefore, it is recommended
to only use syslog if there is no other option and the Flume RPC
client or the embedded agent cannot be used at all.

Exec Source
An Exec Source executes a command configured by the user and generates events
based on the standard output of the command. It can also read the error stream from
the command, convert the events into Flume events, and write them to the channel.
The source expects the command to continuously produce data and ingests its output
and error stream. The source runs as long as the process started by the command
runs, continuously reading the output stream of the process (and the error stream, if
configured).

Each line in the output stream is then encoded as a byte array. The encoding to be
used is configurable, and defaults to UTF-8. Each byte array generated as a result is
then used as the body of a Flume event. For performance reasons, the source then
batches a preconfigured number of events (or until a timeout) and writes them out to
the channel. If the channel is full, the source can be configured to stop reading the
output and error streams of the process (thus blocking the process temporarily) or to
drop the current batch and continue reading the output and error streams (thus let‐
ting the process continue). Table 3-12 illustrates the configuration parameters for an
Exec Source.

Table 3-12. Exec Source configuration

Config parameter Default
value

Description

type - The alias for an Exec Source is exec. The FQCN is
org.apache.flume.source.ExecSource (case sensitive).

command - The command that the source should run.

62 | Chapter 3: Sources

Config parameter Default
value

Description

restart false If set to true, the source will attempt to restart the process if it dies.

restartThrottle 10000 The time in milliseconds to wait before the process is restarted. This parameter has no
effect if restart is false or is not set.

logStdErr false If set to true, the error stream of the process is also read by the source and converted
into Flume events.

batchSize 20 The maximum number of events to buffer before writing out to the channel(s)
configured.

batchTimeout 3000 The time in milliseconds to wait before writing buffered events to the channel(s)
configured.

charset UTF-8 The character set to use to encode the output and error streams into Flume events.

shell - The shell or command processor to be used to run the command.

The command that is to be run is passed in through the command parameter. The Exec
Source can be configured to restart the process started by the command, by setting
the restart parameter to true. To make sure there is a sufficient time difference
between executions of the command, restartThrottle can be set. Once the process
dies, the source will wait for this time interval before running the command again.

Exec Source buffers data to ensure good performance when used in conjunction with
the File Channel. As mentioned in “File Channel” on page 85, the performance of the
channel is better when the number of events per transaction is reasonably high. The
batchSize parameter in the Exec Source controls the size of a batch. The source can
also be configured to write out the buffered events at the end of a configured time
interval, which can be set using the batchTimeout parameter. If both batchSize and
batchTimeout are set, the batch is written to the channel as soon as the batch size or
batch timeout is met.

The Exec Source can be set to run the configured command in a separate shell, which
may be different from the one the Flume process is running in. To run the process in
a different shell, pass the full path of the shell executable to the shell parameter. If
the command requires shell features like substitution of wildcards or pipes, the shell
parameter must be set, since Flume will not perform substitution.

Here is an example of a configuration file where the Exec Source is used for running a
complex command using the shell parameter:

Exec Source | 63

agent.sources = execSrc
agent.channels = memChannel

agent.sources.execSrc.type = exec
agent.sources.execSrc.shell = /bin/bash -c
agent.sources.execSrc.command = tail -F /var/log/flume/flume.log | grep "error:"

agent.sources.execSrc.channels = memChannel

Initializes a memory channel with default configuration
agent.channels.memChannel.type = memory

Possibility of Data Loss with Exec Source

The Exec Source is an example of an asynchronous source, which
cannot inform the data producer if there is a failure. As a result,
restarting the agent or the machine can result in data loss, as
explained here.
The Exec Source is most commonly used to tail files from within
Flume. Tailing a file using the Exec Source with the command tail
-F will get the data into Flume in near real time, but there is risk of
data loss. If the Flume agent dies or the machine restarts, the Exec
Source will run the command when it starts up; in this case it will
run tail -F <file_name>. Since the tail command will only pull
in new data written to the file, any data written to the file between
the agent’s death and the time the source started up is lost. For this
reason, it is recommended to use the Spooling Directory Source
discussed earlier in this chapter to handle data written into files.
Though slightly more restrictive, this source will not lose data as it
tracks the data being read from the file.
Even when used with some other command, the Exec Source does
buffer as many events as the batch size before writing the events to
the channel. These events will also be lost if the agent or machine
restarts before the batch timeout or batch size is reached.

JMS Source
Flume comes bundled with a source that can fetch data from a Java Message Service
queue or topic. Using the JMS Source, it is possible to accept messages from messag‐
ing systems that support JMS, like ActiveMQ, as well. Installing and using the JMS
Source is slightly trickier than most other sources. Since it is possible to integrate with
multiple messaging systems that support JMS, the client libraries supplied by the
respective system must be installed into the plugins.d directory, as discussed in
“Deploying Custom Code” on page 204.

The configuration parameters for the JMS Source are shown in Table 3-13.

64 | Chapter 3: Sources

Table 3-13. JMS Source configuration

Config parameter Default value Description

type - The alias for the JMS Source is jms. The FQCN is
org.apache.flume.source.jms.JMSSource (case
sensitive).

initialContextFactory - The class name of the vendor’s initial context factory. An
example, in the case of ActiveMQ, would be
org.apache.activemq.jndi.ActiveMQInitial

ContextFactory.

destinationName - The name of the JMS destination from where the messages are
consumed.

destinationType - The type of the JMS destination, queue, or topic.

providerURL - The URL of the JMS broker.

connectionFactory ConnectionFactory The JNDI name the connection factory appears as.

messageSelector - The FQCN of the message selector class to filter the messages,
if needed.

userName - The username to log in to the JMS provider.

passwordFile - The file that contains the password to the JMS provider.

batchSize 100 The number of events to write to the channel per transaction.

converter.type DEFAULT The FQCN of a class that implements JMSMessage
Converter. See “Converting JMS Messages into Flume
Events*” on page 67.

converter.charset UTF-8 The charset that the default converter should use. This
parameter may not be accepted by other converters.

converter.* - Other configuration parameters to be passed to the converter.

Vendor-supplied libraries to communicate with the JMS broker must be dropped into
Flume’s plugins.d directory. The library’s initial context factory and connection fac‐
tory classes should be passed in as values to the configuration parameters initialCon
textFactory and connectionFactory. This information should be available in the
documentation of the vendor-supplied libraries. The value of connectionFactory
defaults to ConnectionFactory, which should work for popular JMS systems like
ActiveMQ. Other JMS-related parameters, such as the destination name, destination

JMS Source | 65

type, and message selector (if messages need to be filtered), should also be passed in
through the configuration file. The source also requires the URL of the JMS broker as
the value of the providerURL parameter.

The source can log in to secure JMS brokers using the username specified by the user
Name and the password specified in a file whose path is specified by the passwordFile
parameter.

By default, this source will pull up to 100 messages from the broker per JMS session,
but this can be adjusted using the batchSize parameter.

The JMS Source can convert data from JMS-style messages into Flume events via a
converter. The default converter, which is used if no converter is specified in the con‐
figuration, can handle most standard JMS messages. If custom or proprietary formats
are used, a custom converter can be deployed using the converter.type parameter,
whose value should be the FQCN of the converter class. Any parameters that have to
be passed to a converter can be passed in using the converter. prefix. For example,
to use a character set other than the default UTF-8 character set with the default con‐
verter, set the value of converter.charset to the standard name of the character set,
like ISO-8859-1. “Converting JMS Messages into Flume Events*” on page 67 dis‐
cusses in detail how to write custom converters. Example 3-11 presents a sample JMS
Source configuration.

Example 3-11. JMS Source configuration example

agent.sources = jmsSrc
agent.channels = memChannel

agent.sources.jmsSrc.type = jms
agent.sources.jmsSrc.channels = memory

Bind to all interfaces
agent.sources.jmsSrc.initialContextFactory = \
org.apache.activemq.jndi.ActiveMQInitialContextFactory
agent.sources.jmsSrc.destinationName = UsingFlume

agent.sources.jmsSrc.charset.providerURL = tcp://usingflume.oreilly.com:61616
agent.sources.jmsSrc.destinationType = QUEUE

agent.sources.jmsSrc.batchSize = 1000
agent.sources.jmsSrc.converter.type = usingflume.ch03.JsonMessageConverter
agent.sources.jmsSrc.converter.charset = iso-8859-1

agent.channels.memChannel.type = memory
agent.channels.memChannel.capacity = 10000
agent.channels.memChannel.transactioncapacity = 5000

66 | Chapter 3: Sources

This configuration file configures the source to pull data from an ActiveMQ message
queue, which reads from a JMS queue at host usingflume.oreilly.com:61616. The
queue information is passed in via various parameters. The initial context factory is
set as org.apache.activemq.jndi.ActiveMQInitialContextFactory, as per
ActiveMQ documentation. The JsonMessageConverter is used with the ISO-8859-1
character set.

Converting JMS Messages into Flume Events*
The JMS Source can be configured to use custom code to convert JMS messages into
Flume events, much like the HTTP Source’s handler. This makes the JMS Source
extremely flexible, and allows the user to parse data in proprietary formats in the JMS
message. Flume comes packaged with a JMS Message Converter that supports default
JMS formats. The JMS Source can pass configuration into the message converter, just
like the HTTP Source. This configuration can be used to set up any initial configura‐
tion or state required for the converter. All of the JMS transaction handling is done by
the source; the converter need not worry about any of that.

The default JMS Message Converter that comes packaged with Flume converts indi‐
vidual JMS messages into Flume events based on their format and content. A JMS
ByteMessage is simply read, and the bytes read from the message are placed into the
body of a Flume event. For a JMS TextMessage, the converter encodes the text into a
byte array and places it into the body of a Flume event. The encoding to be used is
configurable through the source configuration. If an ObjectMessage is read off the
JMS queue, the converter wraps the object in an ObjectOutputStream and writes it
out to a ByteArrayOutputStream. The bytes are then read from this stream and set as
the Flume event’s body. In most cases, this is what users need.

Sometimes, though, it might make more sense to parse out any schemas in the mes‐
sage and convert them into a format that can be serialized at the terminal sink more
easily. For example, if there are several different applications writing to the JMS queue
in different serialization formats like JSON or XML, then a converter can be written
to convert these into a unified format that can be parsed more easily at the terminal
sink.

Converters must implement the JMSMessageConverter interface, which is shown in
Example 3-12. The JMS Source instantiates a JMSMessageConverter$Builder class,
and then passes the configuration via a Context instance to the Builder’s build
method, which is expected to return a fully configured converter instance.

JMS Source | 67

Example 3-12. JMS converter interface

package org.apache.flume.source.jms;
public interface JMSMessageConverter {
 public List<Event> convert(Message message)
 throws JMSException;
 /**
 * Implementors of JMSMessageConverter must either provide
 * a suitable builder or implement the Configurable interface.
 */
 public interface Builder {
 public JMSMessageConverter build(Context context);
 }
}

Example 3-13 shows an example of a JMS Message Converter that reads the JMS mes‐
sages formatted as JSON and converts them into Flume events. Converters can imple‐
ment Configurable to accept configuration, and the JMS Source passes any parame‐
ters specified with the converter. prefix to the converter. This converter accepts a
configuration that tells the converter which charset to use to convert the JSON events
to Flume events.

Example 3-13. An example of a JMS Message Converter

package usingflume.ch03;

public class JsonMessageConverter implements JMSMessageConverter,
 Configurable {

 private static final Logger LOGGER =
 LoggerFactory.getLogger(JsonMessageConverter.class);
 private final Type listType
 = new TypeToken<List<JSONEvent>>() {
 }.getType();
 private final Gson gson
 = new GsonBuilder().disableHtmlEscaping().create();
 private String charset = "UTF-8";

 @Override
 public List<Event> convert(javax.jms.Message message)
 throws JMSException {

 Preconditions.checkState(message instanceof TextMessage,
 "Expected a text message, but the message received " +
 "was not Text");
 List<JSONEvent> events =
 gson.fromJson(((TextMessage) message).getText(), listType);
 return convertToNormalEvents(events);
 }

68 | Chapter 3: Sources

 private List<Event> convertToNormalEvents(List<JSONEvent> events) {
 List<Event> newEvents = new ArrayList<Event>(events.size());
 for(JSONEvent e : events) {
 e.setCharset(charset);
 newEvents.add(EventBuilder.withBody(e.getBody(),
 e.getHeaders()));
 }
 return newEvents;
 }

 @Override
 public void configure(Context context) {
 try {
 charset = context.getString("charset", "UTF-8");
 } catch (Exception ex) {
 LOGGER.warn("Charset not found. Using UTF-8 instead", ex);
 charset = "UTF-8";
 }

 }
}

The converter shown in Example 3-13 simply takes a message that it expects to be a
JMS TextMessage. This message is expected to be in JSON format converted into a
list of Flume JSON events. Once the JSON events are created, a list of “simple” Flume
events are created to avoid the additional overhead of converting the string to a byte
array each time it is read. To configure the JMS Source with this converter,
Example 3-11 can be used.

To deploy a custom converter, make sure the JAR file containing the class is deployed
in the plugins.d directory and the converter.type parameter specifies the FQCN of
the class that is to be used. While writing your deserializer, include the flume-jms-
source artifact in your application’s pom.xml file:

 <dependency>
 <groupId>org.apache.flume.flume-ng-sinks</groupId>
 <artifactId>flume-hdfs-sink</artifactId>
 <version>1.5.0</version>
 </dependency>

Custom converters can be installed to the plugins.d directory as explained in
“Deploying Custom Code” on page 204.

Writing Your Own Sources*
Sources are the points of entry for data into a Flume agent. It is likely that users will
have custom or proprietary communication formats that need to be used to write
data into Flume. This is often more efficient and easier than pushing data via the

Writing Your Own Sources* | 69

Flume SDK. To integrate with other systems, users can write their own Flume sources
and deploy them, using Flume’s plugins.d mechanism.

Each source “generates” events and then forwards the events to the channel processor
for the source. Each time an event is generated by the source, the source can either
write it to the channel processor by calling the channel processor’s processEvent
method or wait for a batch of events to be generated and then send them to the chan‐
nel processor using the channel processor’s processEventBatch method. It is almost
always better to use the processEventBatch method with a list of events. Each proc
essEventBatch call starts a transaction with each of the channels and writes the
entire batch in one transaction, and then commits it. processEvent, on the other
hand, creates transactions of just one event, which can cause a severe overhead that
affects the channels’ performance. This is why it is recommended that sources use
processEventBatch unless each event is known to be large (on the order of hundreds
of kilobytes to a few megabytes). To get access to the channel processor for a source,
the source can call the getChannelProcessor method defined in the AbstractSource
class.

If data coming from an external source requires that an acknowledgment be sent, it is
important that this be sent only after the processEventBatch method returns. If a
commit to one of the channels fails, we must inform the original data source that the
data needs to be sent again. Sending the ACK after the processEventBatch method
returns avoids the problem. ChannelExceptions thrown by this method can be
caught and a failure can be reported to the data source so that the data can be sent
again.

The channel processor for each source is created and set up by the Flume framework,
so the source does not need to handle the creation or configuration of the channel
processor. In this section, we will take a look at how to write custom sources.

All classes described as dependencies in this section are part of the flume-ng-core
artifact or its dependencies. Example 3-6 describes how to include this artifact in your
plug-in’s pom.xml file. Custom sources can be deployed to Flume just like any other
plug-in, as shown in “Deploying Custom Code” on page 204.

Event-Driven and Pollable Sources
Each source is run in its own thread, called a SourceRunner. The source runner runs
a single thread that operates on the source. Flume has two types of sources: event-
driven sources and pollable sources. Based on the type of source, the Flume framework
creates an EventDrivenSourceRunner or a PollableSourceRunner to run the source.

70 | Chapter 3: Sources

Developing pollable sources
Pollable sources do not run their own threads; instead, they are controlled by the
Flume framework, which calls the source’s process method in a loop. These sources
extend the AbstractPollableSource class and implement the process method. A
pollable source can accept a configuration from the user via the Flume configuration
system by implementing the Configurable interface in addition to extending the
AbstractPollableSource class.

Pollable sources are sources that run a loop to generate data or poll an external sys‐
tem to receive data, rather than running a server. Once the configuration provider
instantiates and configures a pollable source, the Flume framework creates a Polla
bleSourceRunner to run the source.

The Flume framework runs a thread for each pollable source that repeatedly calls the
process method. Each time the process method is called, the source “generates”
events and passes them to the channel processor. The source is responsible for
informing the framework whether it was successfully able to generate data or not. If
the source was successfully able to generate events, then the source returns Pollable
Source.Status.READY to the runner thread that called it, which will call the process
method again immediately. Otherwise, the source returns PollableSource.Sta
tus.BACKOFF. In such a case, the Flume framework will initiate a backoff with the
process method being called only after a brief timeout, which increases by one sec‐
ond each time the source returns failure (the maximum timeout is five seconds). A
pollable source is expected to generate data on its own, or by polling some other
source.

If the processEventBatch method throws an exception, the source can catch the
exception to report failure to the system from which data is being retrieved. In the
case of a JMS Source, this might result in a JMS transaction being rolled back. Other‐
wise, success can be reported to the external system, like a JMS transaction commit.

A pollable source is extremely simple to write. An example of a pollable source is
shown in Example 3-14. The StockTickerSource periodically polls an external ser‐
vice for the prices of a preconfigured set of stock tickers and creates Flume events
from the data received. This source simply converts the stock prices into simple
strings and creates the event body from the string’s UTF-8 representation.

Writing Your Own Sources* | 71

Example 3-14. An example of a pollable source

package usingflume.ch03;

public class StockTickerSource extends AbstractPollableSource {

 private static final String CONF_TICKERS = "tickers";
 private static final String CONF_REFRESH_INTERVAL = "refreshInterval";
 private static final int DEFAULT_REFRESH_INTERVAL = 10;

 private int refreshInterval = DEFAULT_REFRESH_INTERVAL;

 private final List<String> tickers = new ArrayList<String>();
 private final QuoteProvider server = new RandomQuoteProvider();

 private volatile long lastPoll = 0;

 @Override
 protected Status doProcess() throws EventDeliveryException {
 Status status = Status.BACKOFF;
 if(TimeUnit.MILLISECONDS.toSeconds(System.currentTimeMillis() - lastPoll) >
 refreshInterval) {
 final List<Event> events = new ArrayList<Event>(tickers.size());
 Map<String, Float> prices = server.getQuote(tickers);
 lastPoll = System.currentTimeMillis();
 // Convert each price into ticker = price form in UTF-8 as event body
 for(Map.Entry<String, Float> e: prices.entrySet()) {
 StringBuilder builder = new StringBuilder(e.getKey());
 builder.append(" = ").append(e.getValue());
 events.add(EventBuilder.withBody(builder.toString().getBytes(Charsets
 .UTF_8)));
 }
 getChannelProcessor().processEventBatch(events);
 status = Status.READY;
 }
 return status;
 }

 @Override
 protected void doConfigure(Context context) throws FlumeException {
 refreshInterval = context.getInteger(CONF_REFRESH_INTERVAL,
 DEFAULT_REFRESH_INTERVAL);
 String tickersString = context.getString(CONF_TICKERS);
 Preconditions.checkArgument(tickersString != null && !tickersString
 .isEmpty(), "A list of tickers must be specified");
 tickers.addAll(Arrays.asList(tickersString.split("\\s+")));
 }

 @Override
 protected void doStart() throws FlumeException {
 server.start();

72 | Chapter 3: Sources

 }

 @Override
 protected void doStop() throws FlumeException {
 server.stop();
 }
}

This source extends the AbstractPollableSource class, whose parent, BasicSource
Semantics, implements the start, stop, and configure methods. Calls to these
methods are delegated to the doStart, doStop, and doConfigure methods of this
source.

When the agent starts, the framework configures this source. Any configuration must
be set up through the doConfigure method that gets called. In this example, the list of
tickers for which the quote must be retrieved is fetched from the configuration file.
The interval between consecutive event generation is also read from the
configuration.

After this, the doStart method of this source gets called. This method can be used to
set up any network clients. In this case, the service that fetches the stock quotes is
started (since this is just an example, the service in this case simply returns random
values).

The pollable source runner then calls the process method (implemented in Basic
SourceSemantics), which delegates the calls to the doProcess method. The doPro
cess method generates the events from the data fetched from the external service.
When the source successfully translates the incoming quotes into Flume events and
writes events out to the channels via the channel processor’s processEventBatch
method, it returns Status.READY; otherwise, it returns Status.BACKOFF. In this case,
if consecutive calls to doProcess occur in less time than the refresh interval, the
source simply returns Status.BACKOFF, indicating that the source runner should wait
for a while before calling the process method again.

Eventually, when the agent is stopped, the doStop method gets called. This is where
any cleanup can be done, like closing network connections. Once the agent is stop‐
ped, the instance may be garbage-collected.

This is a simple example of a pollable source. For a more realistic example, please take
a look at the JMS Source in Flume [jms_src_code].

Building event-driven sources

Event-driven sources implement the EventDrivenSource interface, which is simply a
marker interface for the Flume framework to choose the SourceRunner implementa‐
tion to run the source. Event-driven sources usually run their own threads, which are

Writing Your Own Sources* | 73

started when the Flume framework calls the start method. Such sources control the
rate at which they write data to the channels.

For example, the HTTP Source that comes bundled with Flume is an event-driven
source that runs a web server that listens on a particular port. It generates Flume
events based on the HTTP requests sent to it, and writes those events out into the
channel(s) associated with it. Event-driven sources typically run their own threads or
thread pools, which handle event generation and writing those events to the channels.
Since these sources respond to some external stimulus, the Flume framework creates
a new EventDrivenSourceRunner that simply starts these sources by calling the start
method in a new thread and then allows them to manage themselves. When the agent
is stopped or reconfigured, the stop method is called to stop the source.

Event-driven sources respond to an external event to produce data. Most sources that
receive data from an external entity would fall into this category. Event-driven sour‐
ces run their own threads that they use to receive data and generate events. Most of
the sources that come bundled with Flume, like the Avro Source, HTTP Source, Exec
Source, etc., are event driven.

An event-driven source is slightly more complex than a pollable source because this
source has to keep track of an external process that produces the data and handle the
incoming data without help from the Flume framework. Event-driven sources can
also be configured via the configuration file, by implementing the Configurable
interface.

To write an event-driven source, extend the AbstractEventDrivenSource class,
which already implements the Configurable interface. Alternatively, simply imple‐
ment the marker interface, EventDrivenSource, which extends the Source interface.
As a result, the only methods that the source needs to implement are the ones defined
by the Source interface and, if required, the Configurable interface.

The AbstractEventDrivenSource class extends the BasicSourceSemantics class,
which implements the start, stop, and configure methods. These calls get delegated
to the doStart, doStop, and doConfigure methods of this class.

Once the framework starts the source, it is pretty much on its own, until the frame‐
work stops it. It is completely up to the implementor of the source to create threads to
handle the external events that generate Flume events.

Example 3-15 shows an example of an event-driven source that accepts data from an
external service via Netty-Avro IPC. We will not go into a detailed discussion of the
IPC protocol here, but the basic idea is that a handler class, in this case the Transac
tionSource class, must implement an interface, FlumeCreditCardAuth, which is gen‐
erated by Avro from the protocol definition file and is shown here:

74 | Chapter 3: Sources

@namespace("usingflume.ch03")

protocol FlumeCreditCardAuth {

 record CreditCardTransaction {
 string cardNumber;
 string location;
 float amount;
 }

 enum Status {
 OK,
 FAILED
 }

 Status transactionsCompleted(array<CreditCardTransaction> transactions);
}

The Avro compiler generates classes representing the CreditCardTransaction and
an interface that represents the callback whose transactionCompleted method gets
called when the client sends data to this host. The TransactionSource implements
this interface. More information about the Avro IDL can be found in the Avro docu‐
mentation [avro-idl].

Example 3-15. An example of an event-driven source

package usingflume.ch03;

public class TransactionSource extends AbstractEventDrivenSource implements
 FlumeCreditCardAuth {

 private static final String CONF_HOST = "host";
 private static final String CONF_PORT = "port";
 private static final String DELIMITER = ";";

 private String host;
 private Integer port;
 private Server srv;

 @Override
 protected void doConfigure(Context context) throws FlumeException {
 host = context.getString(CONF_HOST);
 Preconditions.checkArgument(host != null && !host.isEmpty(),
 "Host must be specified");
 port = Preconditions.checkNotNull(context.getInteger(CONF_PORT),
 "Port must be specified");
 }

 @Override
 protected void doStart() throws FlumeException {
 srv = new NettyServer(

Writing Your Own Sources* | 75

 new SpecificResponder(FlumeCreditCardAuth.class, this),
 new InetSocketAddress(host, port));
 srv.start();
 super.start();
 }

 @Override
 protected void doStop() throws FlumeException {
 srv.close();
 try {
 srv.join();
 } catch (InterruptedException e) {
 throw new FlumeException("Interrupted while waiting for Netty Server to" +
 " shut down.", e);
 }
 }

 @Override
 public Status transactionsCompleted(List<CreditCardTransaction> transactions)
 throws AvroRemoteException {
 Status status;
 List<Event> events = new ArrayList<Event>(transactions.size());
 for (CreditCardTransaction txn : transactions) {
 StringBuilder builder = new StringBuilder();
 builder.append(txn.getCardNumber()).append(DELIMITER)
 .append(txn.getLocation()).append(DELIMITER)
 .append(txn.getAmount()).append(DELIMITER);
 events.add(EventBuilder.withBody(builder.toString().getBytes(
 Charsets.UTF_8)));
 }
 try {
 getChannelProcessor().processEventBatch(events);
 status = Status.OK;
 } catch (Exception e) {
 status = Status.FAILED;
 }
 return status;
 }
}

The source takes a few configuration parameters, like the hostname and port to
which the server must bind. The configure method is called by the Flume frame‐
work once the source is initialized and all configuration specific to this source is
passed in via the Context instance. All relevant configuration must be validated and
saved to relevant fields in this method. For example, the doConfigure method of the
TransactionSource verifies that the hostname and port are supplied by the user in
the configuration file, throwing an exception if they are not specified.

Once configured, the framework starts the source by calling start, which gets dele‐
gated to the doStart method of this class. In this method, the source starts the server

76 | Chapter 3: Sources

process. Once started, the framework does not interact with the source until it is to be
stopped. Any servers or threads that are to be started to receive data must be started
in this method. In the case of the TransactionSource, a NettyServer is started in
this method.

The NettyServer manages several threads that receive data over the network. When
a complete Avro message is received, it calls the transactionCompleted method, to
which it passes the data. This method converts the data from the Avro format to
Flume events. Being demo code, the translation is simply into a byte representation of
a string-formatted version of the data. This conversion can involve any arbitrary
logic, though it is a good idea to keep this logic simple as this code will execute for
every event received and will have a direct impact on the performance of the source.

Once the incoming data is converted to Flume events, the entire batch of Flume
events are passed to the channel processor via the processEventBatch method. The
channel processor handles the transaction processing with the channel(s) and throws
an exception if commits to any channel fail, in which case the source returns Sta
tus.FAILED to the sender, who may send the same data again to ensure it is persisted
to the Flume channels. If the events are successfully written out, the source returns
Status.OK, indicating that the data has been committed to the channel(s).

When the agent stops or is being reconfigured, the stop method gets called. This call
gets delegated to the doStop method, which must do any cleanup required. In this
case, this method stops the NettyServer instance, and waits for it to terminate before
returning. If event-driven sources start threads or create thread pools, or open sock‐
ets or files, they must be shut down or closed, respectively, in the stop method.

Summary
In this chapter, we discussed the two types of Flume sources (pollable and event
driven). We also looked at the various sources that come bundled with Flume, their
configuration, their plug-ins, etc. We also looked at some of the best practices with
respect to the sources, mostly with reference to batching. In the end, we wrote cus‐
tom event-driven and pollable sources to get a better understanding of how sources
are written.

In the next chapter, we will cover the basics of channels, the two channels that come
bundled with Flume, and how to configure them.

Summary | 77

References
• [netty] The Netty Project, http://netty.io
• [nio] Java New I/O API, http://bit.ly/1wxlcQC
• [zlib_ch3] zlib compression library, http://www.zlib.net
• [keystore] Java KeyStore API, http://bit.ly/1wxlgQg
• [keystore-type] Java KeyStore types, http://bit.ly/1wxll6y
• [java-security] Customizing Java security, http://bit.ly/1wxlmrj
• [thrift_ch3] Apache Thrift project, http://thrift.apache.org
• [jms_src_code] Apache Flume JMS Source, http://bit.ly/1wxlreC
• [line-deserializer] Line deserializer, http://bit.ly/1wxlyXC
• [schema-fp] Avro Schema Fingerprints, http://bit.ly/1wxlF5s
• [blob] Binary large object, http://en.wikipedia.org/wiki/Binary_large_object
• [avro-idl] Avro IDL documentation, http://avro.apache.org/docs/current/idl.html

78 | Chapter 3: Sources

http://netty.io/
http://bit.ly/1wxlcQC
http://www.zlib.net/
http://bit.ly/1wxlgQg
http://bit.ly/1wxll6y
http://bit.ly/1wxlmrj
http://thrift.apache.org/
http://bit.ly/1wxlreC
http://bit.ly/1wxlyXC
http://bit.ly/1wxlF5s
http://en.wikipedia.org/wiki/Binary_large_object
http://avro.apache.org/docs/current/idl.html

CHAPTER 4

Channels

Channels are buffers that sit in between sources and sinks. As such, channels allow
sources and sinks to operate at different rates. Channels are key to Flume’s guarantees
of not losing data (of course, when configured properly). Sources write data to one or
more channels, which are read by one or more sinks. A sink can read only from one
channel, while multiple sinks can read from the same channel for better performance.
Channels have transactional semantics that allow Flume to provide explicit guaran‐
tees about the data written in a channel.

Having a channel operating as a buffer between sources and sinks has several advan‐
tages. The channel allows sources operating on the same channel to have their own
threading models without being worried about the sinks reading from the channel,
and vice versa. Having a buffer in between the sources and the sinks also allows them
to operate at different rates, since the writes happen at the tail of the buffer and reads
happen off the head. This also allows the Flume agents to handle “peak hour” loads
from the sources, even if the sinks are unable to drain the channels immediately.

Channels allow multiple sources and sinks to operate on them. Channels are transac‐
tional in nature. Each write to a channel and each read from a channel happens
within the context of a transaction. Only once a write transaction is committed will
the events from that transaction be readable by any sinks. Also, if a sink has success‐
fully taken an event, the event is not available for other sinks to take until and unless
the sink rolls back the transaction.

Temporary load spikes are common in most real-time applications, and Flume is
designed to handle these cases. The events will be buffered in the channel until the
sinks remove them, allowing the agent to handle changes in incoming load. How
much additional data each agent can handle depends on the capacity of the channel.
The capacity of the channel should be allocated based on the expected combined
maximum peak load of all sources writing to the channel and the combined rate of

79

drain of all sinks. This design also allows the sources and sinks to have retry logic on
failure. On failure, sources can reattempt writing to the channel and sinks can reat‐
tempt reads.

Transaction Workflow
As discussed in “Transactions in Flume Channels” on page 23, Flume channels are
transactional. Transactions are essentially batches of events written into a channel
atomically. Either all or none of the events in the batch are present in the channel.
Transactions are important to provide guarantees of exactly when an event is written
to or removed from the channel. For example, a sink could take an event from the
channel and attempt to write it to HDFS and fail. In this case, the event should go
back to the channel and be available for this sink or another one to take and write to
HDFS.

Making sure that takes cause events to be removed only on transaction commit guar‐
antees that events are not lost even if the write fails once, at which point the sink can
just roll back this transaction. Transactions could have one event or many events, but
for performance reasons it is always recommended to have a reasonably large number
of events per transaction.

It is important to batch writes to channels, especially durable channels. Durable chan‐
nels guarantee no data loss even in the event of agent or machine restarts, so they
have to flush and sync all buffered event data to disk during a transaction commit,
which occurs once per batch. Syncing to disk is an expensive and time-consuming
operation and should be done only when a reasonably large chunk of data has been
written to the page cache. Also, time taken to sync to disk includes the nontrivial cost
of making a system call before the actual sync, which adds up over time. Each such
batch is also represented by a transaction, making transactions important for perfor‐
mance as well as reliability.

Each channel can have several sources and sinks, respectively writing to and reading
from the channel. Sources and sinks operate in slightly different ways with respect to
transactions. Sources do not directly work with transactions; instead, a source’s chan‐
nel processor handles the transactions on its behalf. The way the channel processor
works with transactions is almost identical to the way sinks do (except that sinks take
from the channels, while channel processors put data into the channels).

The sink initiates a transaction with the channel by calling the channel’s getTransac
tion method, which returns an instance of a Transaction. The sink then calls begin
on the transaction object, which allows the channel to set up any internal state it
requires for the transaction. Usually, this includes creation of queues for temporarily
holding the events until the transaction is completed.

80 | Chapter 4: Channels

Once the transaction is started, the sink calls take (put in the case of channel pro‐
cessors) on the channel, until the sink is ready to commit the transaction. Once a sink
takes an event, it will not be available for the same or another sink to take unless the
transaction is rolled back.

Sinks (and channel processors) usually batch several events into one transaction for
performance reasons. Once the sink has completed its batch, the sink calls commit on
the transaction. Once a sink-side transaction (a transaction with only takes) is com‐
mitted, the events in that transaction are marked as deleted by the channel and will
not be available to any sink again. Once a source-side transaction (owned by the
channel processor) is committed, the events are safely in the channel. This means that
the events will be deleted from the channel only when a sink takes the events and
commits.

Be aware that if a sink has taken an event, that event is no longer available to any sink
unless and until this sink rolls back the transaction, causing the events in it to be
available for takes again. This is specifically designed to avoid duplicates when multi‐
ple sinks operate on the same channel. Every event in the channel can be taken and
committed exactly once, after which the event is removed from the channel.

Depending on the specific channel used, the events may be available in the channel
even if the machine or the JVM restarts. It is also likely that the sink may have failed
to write all the events to wherever it was supposed to and hence has to retry. In this
case, the sink rolls back the entire transaction using the rollback method in the
transaction. Once a transaction is rolled back on the sink side, the channel restores
the events to the channel and makes them available for sinks to take. In the case of a
source-side transaction rollback, it is as if the transaction never happened, and the
events written during that transaction are not written into the channel. Rollbacks
could potentially cause duplicates when they are caused by timeouts or other failures
where the events may have been committed to the next hop’s channel.

After the transaction is committed or rolled back, it is closed by calling the close
method to clear up any resources to be used by the transaction. Figure 4-1 illustrates
the workflow for a transaction.

Transaction Workflow | 81

Figure 4-1. Transaction workflow

A single transaction cannot put and take events. This ensures that sources can only
put events into the channel and sinks can only take events from the channel.

Channels Bundled with Flume
Flume comes bundled with two channels: the Memory Channel and the File Channel.
Both channels work on the same basic principles explained here. Both channels are
fully thread-safe and can operate with multiple sources and sinks. As the names
imply, the Memory Channel stores committed events in main memory while the File
Channel writes out events to files on disk. In this section, we will discuss both of these
channels and the different factors to consider while selecting between the two.

Memory Channel
The Memory Channel is an in-memory channel that stores events written to it on the
heap. For all practical purposes, the Memory Channel is an in-memory queue—the
sources write to its tail and sinks read off its head. The Memory Channel supports
very high throughput, as it holds all data in memory. As mentioned earlier, the chan‐
nel is thread-safe and can handle writes from several sources and reads from several
sinks at the same time. The Memory Channel should be used when data loss is not a
concern, since the channel does not persist the data to disk. If data loss is a concern,

82 | Chapter 4: Channels

then the Memory Channel should not be used, since process death or machine
crashes or restarts can cause data to be lost.

The Memory Channel supports Flume’s transactional model and maintains separate
queues for each transaction in progress. Once a source-side transaction is committed,
the events in the queue for that transaction are moved to the channel’s main queue
atomically. If the commit successfully completes, the events in the transaction will be
available for the sinks to take. If it fails, the transaction has to be rolled back by the
source and the events will be discarded. For sink-side transactions, the events are
moved to the transaction’s queue each time the sink does a take. This ensures that
exactly one sink “takes” an event. When the sink commits the transaction, the trans‐
action queue is discarded and the events are dereferenced, to be garbage-collected.
Therefore, the sink implementation must be careful to commit the transaction if and
only if the events have been successfully written to the destination.

If the transaction fails, the events are reinserted at the head of the channel in the
reverse order, so the events are available to be “taken” again in the same order as they
were originally inserted. In this way, although Flume does not guarantee ordering, the
Memory Channel does make the events available for takes in the order they were
written. However, when certain transactions are rolled back, it is possible that events
written after the events in those transactions will get written out to their destination
earlier (since another sink may have committed a transaction containing events that
are “newer” than the ones in the rolled-back transactions).

The Memory Channel can be configured without much effort and is one of the easiest
Flume components to configure. Table 4-1 lists the configuration parameters for the
channel.

Table 4-1. Memory Channel configuration

Config parameter Default
value

Description

type - The alias for the Memory Channel is memory. The FQCN is
org.apache.flume.channel.MemoryChannel (case
sensitive).

capacity 100 The maximum number of committed events the channel can
hold.

transactionCapacity 100 The maximum number of events that can be put or taken in a
single transaction.

Channels Bundled with Flume | 83

Config parameter Default
value

Description

byteCapacity 80% of the
total amount
of heap space
available to
the process

The maximum amount of heap space (in bytes) this channel is
allowed to use.

byteCapacityBufferPercentage 20 The percent of byteCapacity to consider keeping as a buffer
between the byte capacity of the channel and the total size of
the bodies of all events currently in the channel.

keep-alive 3 The maximum period of time (in seconds) each put or take
should wait for completion.

The Memory Channel holds all events in memory—therefore, the channel’s capacity
is limited and is defined by the capacity parameter. This parameter defines the total
number of committed events that the channel can hold at any given time. The differ‐
ence between the total number of events committed into the channel and the number
of events taken out of the channel (and committed) at any time should be less than or
equal to the capacity of the channel. If the channel is at capacity, any more attempts to
insert events into the channel will fail with a ChannelException until at least an
equivalent number of events are taken from the channel.

The maximum number of events that can be put or taken in a transaction is con‐
trolled by the transactionCapacity parameter. This parameter is also a good defense
against rogue clients pushing a huge number of events to a source, causing the agent
to run out of memory. This parameter forces batches to be of limited size and thus
limits the number of events per RPC call, and is a simple defense against denial of
service (DoS) attacks.

The total amount of memory that the events in the channel use can be restricted by
the byteCapacity parameter. The byteCapacityBufferPercentage parameter repre‐
sents the percentage of the byte capacity that is reserved for the event headers. When
an event is about to be committed to the channel, the event is inserted into the chan‐
nel if and only if the combined size of the bodies of all events in the channel plus the
size of the body of the current event is less than or equal to the amount of memory
available that is not reserved for the event headers.

When an event is about to be inserted into the channel, it is possible that the channel
is full at that time. In this case, the thread inserting the events will wait for a maxi‐
mum of keep-alive seconds before failing. The thread taking events from the chan‐
nel will also wait for keep-alive seconds for an event to be available in the channel.
In most cases, there should be no need to set this parameter. It is a safety valve to

84 | Chapter 4: Channels

www.allitebooks.com

http://www.allitebooks.org

throttle the write or read rate. Throttling the rate is useful when the take rate is much
faster than the put rate, or vice versa.

The following configuration shows a Memory Channel configured to hold up to
100,000 events, with each transaction being able to hold up to 1,000 events. The total
memory occupied by all events in the channel can be a maximum of approximately 5
GB of space. Of this 5 GB, the channel considers 10% to be reserved for event headers
(as defined by the byteCapacityBufferPercentage parameter), making 4.5 GB avail‐
able for event bodies:

agent.channels = mc
agent.sources = sq

agent.channels.mc.type = memory
agent.channels.mc.capacity = 100000
agent.channels.mc.transactionCapacity = 1000
agent.channels.mc.byteCapacity = 5000000000
agent.channels.mc.byteCapacityBufferPercentage = 10

agent.sources.sq.type = seq
agent.sources.sq.channels = mc

File Channel
The File Channel is Flume’s persistent channel. It writes out all events to disk and
thus does not lose data on process or machine shutdown or crash. The File Channel
ensures that any events committed into the channel are removed from the channel
only when a sink takes the events and commits the transaction, even if the machine
or agent crashed and was restarted. It is designed to be highly concurrent and to han‐
dle several sources and sinks at the same time. The File Channel’s design is roughly
based on the paper about log-structured file systems by Rosenblum and Ousterhout
[lfs-paper]. The design is discussed in more detail later in this section.

The File Channel is designed to be used in situations where data durability is required
and data loss cannot be tolerated. Since the channel writes data to disk, it does not
lose data on crash or failure. An additional bonus due to the fact that it writes data to
disk is that the channel can have a very large capacity, especially compared to the
Memory Channel.

As long as disk space is available, the File Channel can have an extremely large
capacity, up to tens or hundreds of millions of events. This is especially useful when it
is expected that the sinks taking from the channel will not be able to keep up with a
limited peak period, and a large backlog of events is possible. The File Channel as a
result can also handle much longer downstream downtimes, if configured correctly.
Since the channel does not keep the events in memory once they’ve been committed,
it requires much less heap space than a Memory Channel of equivalent capacity.

Channels Bundled with Flume | 85

The File Channel guarantees that every event written to it will be available through
agent and machine failures or restarts. It does this by writing out every event put to
the channel to disk. Once a transaction is committed, the events in that transaction
are made available for takes. The events are read from disk and passed to the sink
when they are taken from the channel, and are completely dereferenced and eligible
for removal once the take transaction is committed. More details on the implementa‐
tion will be discussed later in this section.

The File Channel allows the user to configure the use of multiple disks by having
them mounted at different mountpoints. When configured to use multiple disks, the
channel round-robins between the disks, thus allowing the channel to perform better
when more disks are available to it. It is recommended (though not required) to use a
separate disk for the File Channel checkpoint. The checkpoint reflects the exact state
of the channel at the instant the checkpoint was written out. The File Channel uses
the checkpoint to restart quickly without having to read all the data files. It writes out
the checkpoint to disk periodically while it is in operation. On restart, the channel
loads the last checkpoint written out and only replays the puts and takes that hap‐
pened after this checkpoint, allowing the channel to start up quickly and be ready for
normal operation. The interval between two consecutive checkpoints is set to 30 sec‐
onds by default, though it is configurable.

The File Channel allows users to pass in several configuration parameters, allowing
them to fine-tune the channel’s performance based on the hardware. The configura‐
tion parameters for the File Channel are described in Table 4-2.

Table 4-2. File Channel configuration

Config parameter Default value Description

type - The alias for the File Channel is file. The FQCN is
org.apache.flume.channel.file.FileChannel (case
sensitive).

capacity 1000000 The maximum number of committed events the channel can hold.

transactionCapacity 1000 The maximum number of events that can be put or taken in a single
transaction.

checkpointDir ~/flume/
filechannel/
checkpoint

The directory to which the channel should write out the checkpoint.

dataDirs ~/flume/
filechannel/data

A comma-separated list of directories to use to write the events to.
Configuring multiple directories, each mounting a different disk, can
dramatically improve performance by writing to the disks in parallel.

86 | Chapter 4: Channels

Config parameter Default value Description

useDualCheckpoints false Tells the channel whether to back up the checkpoint once it has
completely been written out. This must be either true or false. If this
is set to true, backupCheckpointDir must be set.

backupCheckpointDir - The directory to back up the checkpoint to. If the primary checkpoint is
corrupt or incomplete, the channel can recover from the backup, thus
avoiding a full replay of the data files. This parameter should point to a
directory different to checkpointDir.

checkpointInterval 30 The time period (in seconds) between consecutive checkpoints.

maxFileSize 1623195647 The maximum size (in bytes) of each data file. Once the file reaches this
size (or will reach it once the next event is written to it), the file is rolled
and a new data file is created in that directory. If this value is set to
higher than the default value, the channel still uses the default as the
maximum value.

minimumRequiredSpace 524288000 The minimum amount of space (in bytes) required on each volume for the
channel to continue operation. If any one of the volumes on which the
data directories is mounted has only this much space remaining, the
channel will stop operation to prevent corruption and avoid incomplete
data being written out. The minimum possible value for this parameter is
1048576 (1 MB).

keep-alive 3 The maximum period of time (in seconds) each put or take should wait for
completion.

The File Channel, being Flume’s main persistent channel, often dictates the perfor‐
mance of the agent as a whole. It is possible to fine-tune several aspects of the channel
through configuration. The File Channel has capacity and transactionCapacity
parameters, which are exactly the same as those of the Memory Channel, though they
default to higher values of 1000000 and 1000, respectively.

As discussed earlier, the File Channel can write data to multiple disks, though the
channel is not directly aware of this. Different disks can be mounted at different
mountpoints and the channel can be configured to write data in a round-robin fash‐
ion to these directories. The channel will always append to exactly one file per data
directory, though it will read from all of the files as required. Since multiple sources
can write to the channel (and each source can write from multiple threads), the chan‐
nel will write to different data directories in parallel from different threads (each
source and sink runs at least one thread, and in many cases, like the Avro Source, they
may run more than one thread), thus parallelizing disk usage, resulting in better per‐
formance. Therefore, if you give the File Channel more disks to work with, it is likely
that the performance of the channel will improve.

Channels Bundled with Flume | 87

The File Channel takes a comma-separated list of data directories as the value of the
dataDirs parameter. The default value should only be used for testing and is not rec‐
ommended for production use. Even for a single disk or a limited number of disks,
multiple data directories can be used per disk for better performance, though the
number of directories that can be used such that the performance improves will vary
by disk.

The File Channel writes out a checkpoint periodically to make restart or recovery
faster. The checkpoint is written to the directory specified as the value of the check
pointDir parameter. If the channel is stopped while it is checkpointing, the check‐
point may be incomplete or corrupt. A corrupt or incomplete checkpoint could make
the restart of the channel extremely slow, as the channel would need to read and
replay all data files.

To avoid this problem, it is recommended that the useDualCheckpoints parameter be
set to true and that backupCheckpointDir be set. It is recommended that this direc‐
tory be on a different disk than the one where the original checkpoint is stored.
When these parameters are set, Flume will back up the checkpoint to the backup
CheckpointDir as soon as it is completed. This ensures that once the channel has
been in operation for a brief period of time (enough time for the first checkpoint to
be written out and backed up), it will be able to restart from a checkpoint, even if the
newest one is corrupt or incomplete, reducing the restart time drastically. The time
period between consecutive checkpoints is controlled by the checkpointInterval
parameter.

The remaining parameters are meant to fine-tune the File Channel’s performance and
disk usage. Flume appends each event to the end of a data file and retains that file as
long as the file contains events that have not yet been taken and committed, or is still
being written to. The maximum size the file should grow to before Flume rolls it and
considers it read-only is controlled by the maxFileSize parameter. This parameter
defaults to the equivalent of about 1.6 GB, which is also the maximum value for this
parameter. If this is set to higher than the default value, the file will still be rolled once
it reaches the default size. It must be noted that each file is deleted if and only if all of
the events written to the channel are taken and committed (in fact, the file is deleted
only at the time of the checkpoint following the last event being taken and commit‐
ted). If the files are to be deleted sooner, this parameter should be set to a lower value,
so that all events get taken out from individual files faster (since the files are smaller,
they will contain fewer events than a larger file). Keeping this value too small can lead
to too many files being created on the disks being used, though, so it is better to not
reduce this value from the default. The channel is also conservative with regard to
deletion of files. It will always retain two files per data directory, even if the files do
not have any events to be taken and committed. The channel will also not delete the
file currently being written to.

88 | Chapter 4: Channels

To ensure that the channel does not write to disks with low disk space, the minimumRe
quiredSpace parameter can be configured. Once the disk space on a specific disk
goes down to the value set by this parameter (or 1 MB, whichever is higher), the
channel ceases operation. To conserve system resources and not affect performance,
the channel does not check the disk space on every write, but does it periodically,
maintaining counters internally to calculate the space available on disk. This makes
the assumption that no other channel or process is writing to this disk, which would
make the available disk space decrease faster.

As discussed earlier, the File Channel writes a checkpoint out to disk periodically. As
the checkpoint reflects the state of the channel at the time it was written, normal
operations cannot be performed while the checkpoint is being written. The keep-
alive parameter works similarly to the one in the Memory Channel, specifying the
time to wait for capacity to be available or the checkpoint to complete for an event to
be put or an event to be available for taking from the channel.

Typically, the channel performs better when more disks are available to it. If enough
disk space is available, the channel should be configured to a capacity high enough to
accommodate downstream failures or traffic spikes. Based on the expected through‐
put per channel and expected maximum downtime of downstream agents or destina‐
tions, the channel capacity can be configured to handle big backlogs. The channel is
fast enough to be able to clear off tens of millions of events within a few minutes,
though performance to a large extent will depend on the underlying hardware.

The following configuration file shows a File Channel named fc configured to be able
to hold one million events. This channel stores data to three disks, writing to them in
round-robin order. The channel is also configured to back up the checkpoint to a dif‐
ferent directory to recover from failure quickly. It is configured to support transac‐
tions of up to 10,000 events. To garbage-collect files faster, the channel also sets the
maximum file size of the data files to approximately 900 MB:

agent.channels = fc
agent.sources = sq

agent.channels.fc.type = file
agent.channels.fc.capacity = 1000000
agent.channels.fc.transactionCapacity = 10000
agent.channels.fc.checkpointDir = /data1/fc/checkpoint
agent.channels.fc.dataDirs = /data1/fc/data,/data2/fc/data,/data3/fc/data
agent.channels.fc.useDualCheckpoints = true
agent.channels.fc.backupCheckpointDir = /data4/fc/backup
agent.channels.fc.maxFileSize = 900000000

agent.sources.sq.type = seq
agent.sources.sq.channels = fc

Channels Bundled with Flume | 89

Best Practices with the File Channel

You can have the File Channel write to multiple disks by specifying
several data directories in the configuration. Adding more disks
directly improves performance, since the File Channel round-
robins writes between disks.
The File Channel can back up the checkpoint and start from the
backup if the checkpoint itself is incomplete or corrupt (this might
happen if the machine or agent crashes while the channel is check‐
pointing). Enabling checkpoint backup allows the channel to
restart fast even if the checkpoint itself is corrupt.
The File Channel can lose data if the disk it is writing to fails. Even
if just one of the many disks the channel is writing data to fails, the
channel may not be able to recover any of the data—even events
that are on disks that have not failed. To avoid such a situation, it is
a good idea to used RAID-ed disks with the File Channel.
Using NFS-mounted disks with the File Channel is not a good idea,
since NFS does not provide the same guarantees as local disks.
Specifically, the fsync system call does not guarantee that data is
persisted onto a physical disk, so it is possible that the File Channel
data might be lost if the machine or agent crashes.

Design and implementation of the File Channel*
As discussed previously, the File Channel persists every event to disk and ensures that
the events are available even in the event of agent or machine crashes and restarts.
The File Channel also persists every operation that is performed to disk. This means
the channel can replay each record in the same order as it happened to get itself back
to the same state it was in when the channel shut down. When the channel has com‐
pleted replaying the records, it is ready for normal operation. In this section, we will
take a more detailed look at the internals of the File Channel.

The File Channel maintains two separate data structures: the Flume event queue
(which will be referred to as the queue) and the write-ahead log (WAL). Every put,
take, commit, and rollback is represented by a transaction event record (referred to
from here on as a record), with the type of the record representing the operation—
put, take, commit, or rollback. Each File Channel operation is recorded in the WAL
as a record. Each time an event is put into the channel, a put record is written to the
WAL, even if the transaction does not actually get committed.

Similarly, for a take, a take record is written out. Each record has a unique, monoton‐
ically increasing ID, the write ID, which is recorded when the record is written to the
WAL. Each record also contains the unique ID of the transaction that the record is a
part of. Since each put (or take) record contains the transaction ID, it is possible to

90 | Chapter 4: Channels

figure out which events were committed and which ones rolled back by mapping this
transaction to the corresponding commit or rollback record.

By reading the WAL and performing each operation in the order it actually happened
(which can be inferred from the write IDs of the operations), we can reconstruct the
file state of the channel at any point. When the channel is reconstructed by reading all
data files fully, it is called a full replay. Full replays are often time-consuming and dis‐
ruptive, as all data files have to be read and every operation in the WAL has to be
processed. This is especially true when the WAL contains millions of put records and
take records—even if the final state contains very few events, each record has to be
read and stored in memory until we read the corresponding commit or rollback
record.

Each time a put happens, a put record is written to disk. Using the file ID and offset
of the record in the file, the channel constructs a unique Flume event pointer for that
record. Each time an event is put into the channel, the pointer representing the
record is stored in an in-memory queue local to the transaction. When the transac‐
tion is committed, the pointers from the local queue are copied to the tail of the File
Channel’s main queue: the Flume event queue. That queue, therefore, represents the
current state of the channel at any point in time.

When a sink takes an event from the channel, the head of the queue is removed and
the pointer is dereferenced. The event is then stored in a queue local to the transac‐
tion. On commit, the local queue is discarded since the events are completely
removed. On rollback, the events are pushed back into the queue. The queue is
actually a memory-mapped file—the mapped buffer is updated and pushed to disk
during a checkpoint.

At startup, Flume begins a process called replay to get the channel back to the exact
state it was in when it was previously stopped. The queue is loaded back into memory
at the time of startup by simply memory-mapping the checkpoint file. The data files
are then read from the offset at the time of the checkpoint (this offset is recorded in
the data files’ metadata at the time of the checkpoint), and the puts and takes are
applied to the queue in order.

All pointers representing the current incomplete transactions (called inflights) are
also written to disk so that any events taken out but not yet committed at the time of
the checkpoint can be reinserted into the queue after loading the checkpoint. Put
transactions that were still in progress at the time of the checkpoint are also recovered
using the inflight files. (There may be events in data files that were written before the
checkpoint but committed after. They are not inserted into the queue at the time of
the checkpoint and thus are not replayed from the data files, as the data files are
replayed only from their offset at the time of the checkpoint.)

Channels Bundled with Flume | 91

Once the replay is completed, the channel is ready for normal operation. When no
queue is present or when it is incomplete, the channel does a full replay. As discussed
earlier, the channel can back up each checkpoint immediately after it is completed, so
that if the current checkpoint is corrupted, or the agent is killed before it is complete,
the previous one can be loaded to avoid a full replay.

Summary
In this chapter we discussed channels, which are buffers that sit between sources and
sinks and hold the data brought into a Flume agent by a source, until it is removed by
a sink. Channels can be in memory or on disk, with the in-memory Memory Channel
giving better performance while the on-disk File Channel guarantees durability
through agent and machine restarts by persisting all operations and data to disk.

In the next chapter, we will discuss how sinks are designed and the various sinks that
come packaged with Flume. We will also look at how to write custom sinks.

References
• [lfs-paper] “The design and implementation of a log-structured file system,”

http://bit.ly/1wxCsoM

92 | Chapter 4: Channels

http://bit.ly/1wxCsoM

CHAPTER 5

Sinks

Flume is designed with the ability to plug in practically every component, including
the ones that write the data out to the eventual destination—in most cases, some data
store.

The component that removes data from a Flume agent and writes it to another agent
or a data store or some other system is called a sink. To facilitate this process, Flume
allows the user to configure the sink, which could be one of the sinks that comes bun‐
dled with Flume or one that was written by the user (for custom sinks not built into
Flume, the JARs should be dropped into Flume’s plugins.d directory).

Sinks are the components in a Flume agent that keep draining the channel, so that the
sources can continue receiving events and writing to the channel. Sinks continuously
poll the channel for events and remove them in batches. These batches of events are
either written out to a storage or indexing system, or sent to another Flume agent.

Sinks are fully transactional. Each sink starts a transaction with the channel before
removing events in batches from it. Once the batch of events is successfully written
out to storage or to the next Flume agent, the sink commits the transaction with the
channel. Once the transaction is committed, the channel removes the events from its
own internal buffers.

Flume comes packaged with a number of sinks that can write to storage and indexing
systems such as HDFS, HBase, Solr, Elastic Search, etc. These sinks are what are gen‐
erally referred to as terminal sinks, because they usually appear at the terminus of a
Flume pipeline. Flume pipelines are built by Flume agents that send data to one
another. This communication happens via the RPC sink–source pairs. Flume comes
packaged with Avro- and Thrift-based RPC sinks that can be used to send data to the
respective RPC sources on remote Flume agents.

93

In this chapter, we will discuss the various sinks, their configuration and manage‐
ment, how to serialize data for each of them so the data can be written in a format of
the user’s choice, and how to write custom sinks.

Lifecycle of a Sink
Sinks are configured using the standard Flume configuration system. Each agent can
have zero or more sinks. Each sink can read events from exactly one channel. If no
channel is configured for a sink, the sink is removed from the agent. The configura‐
tion system ensures that:

• Each sink reads from exactly one properly configured “connected” channel.
• Each sink has a defined type parameter.
• The sink is in the active list of sinks for the agent.

Like sources, each sink (if properly configured) is instantiated by the Configuration
Provider and then configured. Misconfigured sinks and sinks whose configure
method throws an exception are removed from the agent. Once sinks are configured,
they are started by the configuration system. Flume can group threads together into
sink groups, which we will discuss in a later section. Each sink group can contain one
or more sinks. If no sink group is defined for a sink, then the sink can be thought of
as being in a group with that sink as its only member.

Each sink group is run by a sink runner, which is a single thread that calls the process
method in a loop on the sink group, which in turn forwards the call to the process
method of one of the sinks in the group. The process method returns Status.READY
if the sink can immediately process more events, usually when the current call pro‐
cessed at least one event. If the sink failed to process any events, the sink returns Sta
tus.BACKOFF, indicating that the runner thread should back off for some time before
trying again. It is not mandatory to define sink groups for sinks. If a sink is active, but
not in a sink group, it gets a sink runner for itself, which calls the sink’s process
method. The backoff semantics for this sink are the same as those for a sink group.
We will discuss when to use sink groups and sink processors in “Sink Groups and
Sink Processors” on page 157.

Sinks can be specified in the configuration using either their FQCNs or, for built-in
sinks, their aliases. Each sink must have exactly one channel configured. The sink is
started only if the channel was configured correctly and started successfully. Table 5-1
lists the required parameters.

94 | Chapter 5: Sinks

Table 5-1. Mandatory configuration parameters for all sinks

Parameter Description

type The type of the sink. This can be the fully qualified class name or the alias of the sink (only for sinks that are part
of Flume itself). The class must be in Flume’s classpath. The alias for each of Flume’s built-in sinks is mentioned
in the relevant section.

channel The channel to read events from.

Like all other components (other than the Memory Channel), instances of sinks are
not reused when Flume is reconfigured. Therefore, the sinks should not buffer any
events that have been taken and committed. This is because committing the transac‐
tion indicates that the channel can delete the events that were taken in the context of
that transaction. Buffering these events in the sinks could lead to data loss when the
agent restarts, since the data is not in a persistent store or buffer, but in internal data
structures owned by the sink that may not get reused. Once committed, the sinks
must guarantee that the events have been committed to the next agent’s channel (in
the case of RPC sinks) or were persisted to the final destination.

Optimizing the Performance of Sinks
Each sink is, in general, run by one thread: the sink runner. Since each sink is run by
one thread, and most sinks tend to be I/O-bound, there may be instances when the
sink is waiting on I/O to complete and no events are being removed from the chan‐
nel. Therefore, in most cases, when an individual sink is notably slower than the write
rate to a particular channel, it is worthwhile to add multiple sinks that write to the
same destination and read from the same channel. This is especially useful for the
HDFS and HBase Sinks, for improving the write rate to HDFS or HBase.

The number of sinks required for optimal performance depends on various factors,
including the sink being used, the destination (Avro Source/HDFS/HBase), the net‐
work throughput, the channel, and the I/O performance of the disks the channel is
using. Therefore, it is usually a good idea to try various configurations with varying
numbers of sinks before settling on one. While increasing the number of sinks to
improve performance, one must also ensure that resources don’t end up being over-
utilized, creating situations where there is too much context switching or networks
are being clogged. When this point is reached, it indicates that the hardware on that
machine is being utilized to the maximum; if the HDFS or HBase cluster still has
capacity, more Flume agents can be added on other machines.

Optimizing the Performance of Sinks | 95

Writing to HDFS: The HDFS Sink
Flume was primarily designed to write data in a scalable way to HDFS. Often users
have hundreds or even thousands of data sources writing data to HDFS. If all these
sources wrote data directly to HDFS, it would create a lot of stress on the name node
and the HDFS cluster in general. It is therefore recommended to fan in the data using
multiple tiers of Flume agents, with the last and smallest tier writing data to HDFS.
This is explained in “Complex Flows” on page 17. The agents that eventually write
data into HDFS will use the HDFS Sink to do so. The HDFS Sink is very flexible and
can be configured to write to different directories based on event headers, the time‐
stamp of the event (or current time at the sink), etc. We will look into the details of
how the sink works with respect to the bucketing of events into different directories
on HDFS later in this section.

The HDFS Sink allows the user to customize the format in which events are written
to HDFS using serializers that the user can write and deploy. The HDFS Sink sup‐
ports both Hadoop 1 and Hadoop 2, though the code has to be specifically compiled
against the relevant version of Hadoop. For example, Flume compiled against
Hadoop 2 will not be able to write data to a Hadoop 1 HDFS cluster. This is due to
binary incompatible changes between Hadoop 1 and 2. Therefore, the binaries com‐
piled against the specific version of HDFS in use must be used. Apache Flume cur‐
rently ships only binaries compiled against Hadoop 1, but there are several vendors
who ship binaries compatible with their own distributions based on Hadoop 2 (they
may not work against the binaries shipped by the Apache Hadoop project, though).

The HDFS Sink writes data to buckets on HDFS. A bucket, for all practical purposes,
is a directory (though multiple sinks can write to the same directory, the user needs
to carefully configure it in such a way that exactly one sink writes to a given file). We
can therefore think of a bucket as a directory to which the HDFS Sink writes data,
based on the criteria specified by the configuration.

An HDFS Sink can write data to multiple buckets at the same time, though each event
will go to exactly one bucket. Each bucket will have at most one file open at any point
in time, though each sink could have several files open in different buckets. Flume
allows the user to dynamically create buckets based on various parameters specified
in the configuration file, like the timestamp in the event headers, a specific header’s
value, etc. Each event is then evaluated based on these parameters and written to
exactly one bucket. The HDFS Sink processes events in batches and flushes all events
in a batch to HDFS.

If the version of HDFS Flume is writing to supports it, Flume flushes the entire batch
to data node memory, and the data will then be available for reads by other processes.
Data visibility is an important aspect of working with HDFS, and it is important to
understand when the data written by Flume will be visible to other processes. By

96 | Chapter 5: Sinks

default, Flume does not write to hidden files on HDFS, but to files that end with
a .tmp extension. This can be changed in the configuration. Since Flume writes each
batch of events out and flushes the data out to HDFS, other processes running on
HDFS will be able to see data written by Flume immediately after the batch is success‐
fully flushed to HDFS. If Flume fails to write an event to HDFS or the write times out,
the sink rolls back the transaction with the channel and closes the file that was being
written to. Only if the write was successful will the sink commit the transaction with
the channel, thus ensuring that the data is removed from the channel if and only if
the data was successfully written to HDFS. If an event gets written to the same bucket
again, then a new file is created by the sink.

Understanding Buckets
As discussed previously, sinks can decide which directory on HDFS an event gets
written to. The HDFS Sink builds the bucket path using several parameters. To build
these paths dynamically, the configuration file must specify a path as the parameter of
hdfs.path. This path can specify one or more escape sequences that the sink will
replace to construct the real path to which to write the event.

To generate the filenames dynamically, the value of the hdfs.filePrefix parameter
also can be escaped. In simple words, escaping is done by replacing a sequence of
characters specified in the configuration with another sequence. In the HDFS Sink,
all escape sequences begin with a % character. The HDFS Sink recognizes several
escape sequences, replacing each of them with another value. We’ll illustrate this with
an example, showing how Flume can insert the value of a specific event header into
the path.

Consider adding the following configuration parameter to an HDFS Sink:

agent.sinks.hdfsSink.hdfs.path = /Data/Flume/%{topic}

When the HDFS Sink reads an event off of the channel, it reads the value of the topic
header and replaces the escape sequence in the path from the configuration parame‐
ter with the value of the header named topic. For example, an event whose topic
header has the value inputData would get written out to a file in the directory on
HDFS with the path /Data/Flume/inputData. Another event whose topic header has
the value logData would get written out to a file in the directory on HDFS with the
path /Data/Flume/logData. This configuration parameter is often used to replace host
information that was inserted by the host interceptor, or, more often, the timestamps
inserted by the timestamp interceptor or by the system that generated the event.

Writing to HDFS: The HDFS Sink | 97

The HDFS Sink provides extremely powerful escaping of timestamps. It supports sev‐
eral escape sequences that use the value of the timestamp event header. To use the
timestamp for escaping, the sink expects a numerical value for the header with the
key timestamp (or the hdfs.useLocalTimestamp parameter in the configuration
must be set to true). The HDFS Sink considers the value of the timestamp to be in
epoch time, defined as the total number of seconds since 00:00:00 UTC on January 1,
1970, not counting leap seconds. Based on the value of this header, the sink can
replace multiple escape sequences with a corresponding value. The escape sequences
based on timestamps are listed in Table 5-2.

Table 5-2. HDFS Sink timestamp escape sequences

Escape
sequences

Replacement value

%t Epoch time in milliseconds

%s Epoch time in seconds

%H Hour of the day specified in 24-hour clock (00..23)

%I Hour specified in 12-hour clock (01..12)

%M Minute of the hour (00..59)

%S Second of the minute (00..59)

%k Same as %H, except that the leading 0 is removed (0..23)

%p AM or PM (or their equivalent in the current locale)

%z Time zone specified as offset from UTC in +hhmm format (e.g., +0530 would represent Indian Standard
Time, 5 hours 30 minutes ahead of GMT)

%a Short name for the day of the week in the current locale (e.g., Mon, Tue, etc.)

%A Long name for the day of the week in the current locale (e.g., Monday, Tuesday, etc.)

%b Short name for the month in the current locale (e.g., Jan, Feb, etc.)

%B Long name for the month in the current locale (e.g., January, February, etc.)

%d Day of the month (e.g., 01, 02, etc.)

%c Day, date, and time specified in the current locale (e.g., Sun Feb 9 14:05:45 2014)

98 | Chapter 5: Sinks

Escape
sequences

Replacement value

%m Numerical representation for month (e.g., January would be 01)

%D Date represented as mm/dd/yy

%y Years since the beginning of the century (00..99)

%Y The current year (e.g., 2013, 2014, etc.)

Multiple escape sequences can be used in the same path. This essentially means that
users can bucket their messages according to the date, hour, minute, etc., as shown
here:

agent.sinks.hdfsSink.hdfs.path = /Data/Flume/%{topic}/%Y/%m/%d/%H

This example would write all events with timestamps within the same hour in the
same directory for each topic. If an event with topic UsingFlume came in with a time‐
stamp of 2:35 PM on September 1, 2014, it would get written to the /Data/Flume/
UsingFlume/2014/09/01/14 directory.

Most often time-based bucketing is used to load data into systems like Hive or Impala
by running a query to load the data into the system a few minutes after the hour, usu‐
ally using Oozie or a cron job (to account for the delay in the Flume pipeline). One
important aspect of such bucketing is that it is possible for data to be written to a
bucket with an older timestamp, since the timestamp used by the sink is based on the
header in the event—if the timestamp is inserted on event creation or by an intercep‐
tor in a Flume agent, agent downtime or network delays can cause the event to arrive
at the HDFS Sink much later than that time. If a Hive query is loading data based on
time-based buckets, such delayed writes must be accounted for. If only the latest
directories are scanned, then the new data in directories with much older timestamps
may never get loaded.

The HDFS Sink has a configuration parameter, hdfs.useLocalTimestamp, that if set
to true forces the sink to use the system timestamp of the machine that is running
the agent; it can be used to ensure that the data gets written based on the local time‐
stamp. This parameter should be used with caution, since the HDFS cluster and the
Flume agent may not be synchronized and may not have exactly the same time.

One issue with the time-based bucketing configuration described here is that bucket‐
ing can be done per year, day, hour, minute, or second, but it is not possible to create
a new bucket once every few minutes; for example, a new bucket every 10 minutes. If
the user wants buckets for every 10 minutes, he will need to have buckets for each
minute—which means he could end up with a large number of small files on HDFS.
The HDFS Sink does provide a way to achieve this, though, through a combination of

Writing to HDFS: The HDFS Sink | 99

configuration parameters. The three configuration parameters required are shown in
Table 5-3.

Table 5-3. HDFS Sink round-down parameters

Parameter Default
value

Description

hdfs.round false Indicates whether the timestamp on the event should be rounded down.

hdfs.roundValue 1 The timestamp will be rounded to the largest multiple of this parameter in the units
specified by the hdfs.roundUnit parameter.

hdfs.roundUnit second The unit of the hdfs.roundValue configuration parameter (can be second,
minute, or hour).

If the hdfs.round parameter is true, the HDFS Sink reads the timestamp from the
event headers and rounds it down to the highest multiple of the value specified by
hdfs.roundValue in the unit specified by hdfs.roundUnit. Rounded-down values
are not used when the %t escape sequence is used. Let’s consider a sink with the con‐
figuration parameters shown here:

agent.sinks.hdfsSink.hdfs.path = /Data/Flume/%{topic}/%Y/%m/%d/%H/%M
agent.sinks.hdfsSink.hdfs.round = true
agent.sinks.hdfsSink.hdfs.roundUnit = minute
agent.sinks.hdfsSink.hdfs.roundValue = 10

If an event with the timestamp equivalent of 2:35 PM on September 1, 2014 comes in,
the HDFS Sink rounds the timestamp down to 2:30 PM on September 1, 2014 and
writes the event out to the /Data/Flume/UsingFlume/2014/09/01/14/30 directory. In
fact, every event between 2:30:00:00:000 PM and 2:39:59:59:999 will get written out to
the same directory. Using a similar configuration mechanism (as shown next), the
user can have buckets of two hours each:

agent.sinks.hdfsSink.hdfs.path = /Data/Flume/%{topic}/%Y/%m/%d/%H/%M
agent.sinks.hdfsSink.hdfs.round = true
agent.sinks.hdfsSink.hdfs.roundUnit = hour
agent.sinks.hdfsSink.hdfs.roundValue = 2

Configuring the HDFS Sink
The HDFS Sink has quite a large number of configuration parameters, allowing the
user to control the behavior of the sink at a pretty granular level. Table 5-4 lists the
parameters that are used to configure the HDFS Sink.

100 | Chapter 5: Sinks

Table 5-4. HDFS Sink configuration

Parameter Default value Description

type - The alias for the HDFS Sink is hdfs. The FQCN, which is
org.apache.flume.sink.hdfs.HDFSEventSink, can
also be used.

hdfs.path
 The directory path this sink should write to. Escape sequences are

allowed.

hdfs.filePrefix FlumeData The prefix of the filename. The filename will consist of this prefix
followed by a number and then the name.

hdfs.fileSuffix - The suffix to use for the filenames. If extensions are required, the “.”
should be explicitly specified.

hdfs.inUsePrefix - The prefix to use for the filename while the HDFS Sink is writing to it.

hdfs.inUseSuffix .tmp The suffix to use for the filename while the HDFS Sink is writing to it.

hdfs.timeZone - The time zone to use for creating the bucket path.

hdfs.rollInterval 30 The time in seconds before a file is rolled. Set this to 0 to disable
time-based file rolling.

hdfs.rollSize 1024 The number of events to be written into a file before it is rolled. Set
this to 0 to disable event count–based file rolling.

hdfs.batchSize 100 The maximum number of events to write per batch.

hdfs.idleTimeout 0 The maximum time period in seconds to wait between consecutive
events to a file before closing it. Setting this to 0 disables this.

hdfs.fileType SequenceFile The file format to use. This can be one of SequenceFile, Data
Stream, or CompressedStream.

hdfs.codeC - The compression codec to be used to compress the file. This can be
one of gzip, bzip2, lzo, lzop, or snappy.

hdfs.maxOpenFiles 5000 The maximum number of files the HDFS Sink can keep open at a
time.

hdfs.callTimeout 10000 The delay, in milliseconds, to wait before timing out each HDFS
operation.

hdfs.threadsPoolSize 10 The number of threads in the pool that performs HDFS operations.

Writing to HDFS: The HDFS Sink | 101

Parameter Default value Description

hdfs.rollTimerPoolSize 1 The number of threads in the pool that rolls HDFS files based on the
hdfs.rollInterval and hdfs.idleTimeout parameters.

hdfs.kerberosPrincipal - The Kerberos principal to use to log in to the Kerberos key
distribution center (KDC) (to be used with secure HDFS).

hdfs.kerberosKeytab - The path to the keytab file to use with hdfs.kerberosPrinci
pal to log in to the KDC (to be used with secure HDFS).

hdfs.proxyUser - The user Flume should impersonate, if required. If set to none,
Flume writes data as the current user.

hdfs.useLocalTimeStamp false If set to true, the HDFS Sink will use the timestamp on the current
agent to do time-based bucketing.

hdfs.round false Indicates whether the timestamp on the event should be rounded
down.

hdfs.roundUnit second The unit of the hdfs.roundValue configuration parameter (can
be second, minute, or hour).

hdfs.roundValue 1 The timestamp will be rounded to the largest multiple of this
parameter in the units specified by the hdfs.roundUnit
parameter.

serializer TEXT The serializer to use. Other built-in serializers can be used by setting
this to AVRO_EVENT or HEADER_AND_TEXT. To use a custom
class, this should be the FQCN of the Builder class of the serializer,
which implements EventSerializer$Builder. The serializer
itself must implement EventSerializer. See “Controlling the
Data Format Using Serializers*” on page 108.

serializer.* - Configuration parameters to be passed to the serializer. See
“Controlling the Data Format Using Serializers*” on page 108.

To use the HDFS Sink, set the sink’s type parameter to hdfs or use the FQCN
org.apache.flume.sink.hdfs.HDFSEventSink.

The HDFS Sink requires the user to supply a directory path to which the files are
written. This directory path should be passed in as the value of the hdfs.path param‐
eter. This parameter supports bucketing, as explained in “Understanding Buckets” on
page 97. Therefore, this path need not actually specify exactly one directory, but
rather a set of directories based on the bucketing specified. The name of each file cre‐
ated by the HDFS Sink follows a specific pattern specified by a set of parameters in
the HDFS configuration.

102 | Chapter 5: Sinks

The hdfs.filePrefix parameter specifies the prefix of the filename to be used.
Bucketing is allowed in this parameter, but time-based bucketing will be done only
when the first file is created and will remain the same for all files in the bucket, so it is
best to avoid time-based bucketing and use only header-based bucketing in the file
prefixes.

The hdfs.fileSuffix parameter can be used to specify a suffix for a filename. Usu‐
ally, the extension for the file is specified using this parameter. Flume will not auto‐
matically add a period (.) before the extension, so if an extension like “txt” is required,
the value of this parameter should be specified as .txt. Eventually, the filename will
be composed of the file prefix, the file suffix, and a counter in between. Consider the
following configuration:

agent.sinks.hdfsSink.hdfs.filePrefix = UsingFlume
agent.sinks.hdfsSink.hdfs.fileSuffix = .oreilly

This configuration would eventually yield files that would be named something like
UsingFlume.33434321.oreilly, UsingFlume.33434322.oreilly, etc.

When the file is still being written to, it is recommended that systems like Hive or
MapReduce ignore the file until Flume closes it. This ensures that the content of the
file does not get updated while MapReduce or Hive is reading from it. Unfortunately,
it is not easy to find out if a file is being written to and if the content will get updated.
To work around this problem, the HDFS Sink allows the user to add a suffix and pre‐
fix to the filename that get removed once the file is closed by Flume.

By using these parameters, the MapReduce job or Hive query can filter out such files.
While the file is being written to, the filename will have the in-use prefix at the begin‐
ning, the in-use suffix at the end, and the eventual filename in between (based on the
file prefix and file suffix parameters explained earlier). Once again, let’s look at a con‐
figuration example:

agent.sinks.hdfsSink.hdfs.filePrefix = UsingFlume
agent.sinks.hdfsSink.hdfs.fileSuffix = .oreilly
agent.sinks.hdfsSink.hdfs.inUsePrefix = .
agent.sinks.hdfsSink.hdfs.inUseSuffix = .temp

This would create files that are named .UsingFlume.33434321.oreilly.temp, .Using‐
Flume.33434322.oreilly.temp, etc., which once closed would get renamed to Using‐
Flume.33434321.oreilly, UsingFlume.33434322.oreilly, etc. The previous configuration
ensures that the files are hidden until they are eventually closed, when they get
renamed to the filenames defined by the hdfs.filePrefix and hdfs.fileSuffix
parameters described earlier.

The HDFS Sink can do bucketing based on time, as described in “Understanding
Buckets” on page 97. The sink translates the epoch timestamp to dates and times for
bucketing, based on the hdfs.timeZone parameter. If no time zone is specified, the

Writing to HDFS: The HDFS Sink | 103

local time zone of the machine running the agent is used. Time zones are specified in
the standard format specified by the Internet Assigned Numbers Authority (IANA)
[tz-list].

To make sure the files are closed and the data is available to systems that process the
data, the HDFS Sink can be configured to roll the files based on time, event counts, or
the precompressed size of events written to the file. The hdfs.rollInterval parame‐
ter controls the rolling of files based on time. Each file is flushed, closed, and
renamed after the time (in seconds) specified by this parameter. Setting this to 0 disa‐
bles time-based rolling.

The HDFS Sink can also roll the files based on the number of events written to them.
The hdfs.rollCount parameter controls this. Setting this to 0 disables count-based
rolling. Finally, it is possible to roll the files based on the total size of the event bodies
in them using the hdfs.rollSize parameter (this is the precompressed size even if
the data is being written in a compressed format). The value of this parameter is
specified in bytes. As soon as one of the rolling parameters is reached, the file is rolled
(e.g., even if the number of events reaches the roll count before the roll interval is
reached, then the file is rolled). So, more than one of these can be enabled at the same
time.

When time-based bucketing is used, it is possible that after a certain point in time, no
more events get written to a bucket. It will take at least as long as the roll interval, if
enabled, for the file to be closed. If the roll interval is not enabled, such a file might
never get closed. So, it is always recommended to set hdfs.idleTimeout, which is the
time in seconds to wait before closing a file after the last event was written to the file.
In most cases, it makes sense to set this value much smaller than the roll interval, so
the data becomes available sooner than the roll interval when data is no longer being
written to a bucket. It should, though, be set to be slightly more than the average time
between events being written to a bucket, so that the files don’t get closed more often
than required—otherwise, there would be many small files on HDFS, which can
stress the HDFS name node.

When there are multiple HDFS Sinks writing to HDFS, in the same agent or different
agents, it is important that each agent writes to a different directory or uses different
file prefixes. This is important because exactly one HDFS Sink can write to each file;
other HDFS Sinks attempting to write to the same files might face exceptions and will
not be able to write the data. To avoid this, it is advisable to bucket the data in such a
way that each HDFS Sink “owns” the directory it is writing to and no other sink or
process is writing to it. This can be done by using the hostname and sink name as
part of the bucket name (the hostname can be inserted by the host interceptor that
comes bundled with Flume), or by using the multiplexing channel selector to make
sure exactly one HDFS Sink writes data belonging to a certain topic, etc.

104 | Chapter 5: Sinks

The HDFS Sink allows users to write data as sequence files or compressed files, or in
any binary or text format. The hdfs.fileType parameter controls the file format. To
write the data as sequence files, set this parameter to SequenceFile. For sequence
files, Flume writes the event body as the value corresponding to a numerical key, writ‐
ten as a LongWritable. If there is a timestamp in the event headers, that is used as the
key; otherwise, the current time in milliseconds is used. The event body is itself writ‐
ten out as a ByteWritable or a TextWritable, based on the hdfs.writeFormat
parameter. To use TextWritable, this parameter should be set to text; it should be
set to writable for ByteWritable. When using sequence files, the serializer and
serializer.* parameters are ignored. The hdfs.writeFormat parameter is ignored
when using a data stream or compressed stream.

The HDFS Sink allows the user to specify a serializer to convert the events into a data
format suitable to the user. The serializer is enabled and used only if the file type is set
to DataStream or CompressedStream. The serializer can then write the data to disk in
the format of its choice. The serializer can do any compression internally, but Flume
itself does not compress the data being written using a data stream. To compress the
data, the file type must be set to CompressedStream, and the hdfs.codeC parameter
should be set to one of gzip, bzip2, lzo, lzop, or snappy, indicating which codec to
use to write to HDFS. The codec should not be set when a data stream is used. When
a compressed stream is used, files are written using the correct extension for the com‐
pression codec configured if the file suffix is not specified (file suffix will override the
default extension for the codec).

If required, HDFS can be secured using Kerberos [kerberos]. The HDFS Sink can
write to a secure HDFS cluster using credentials that are specified in the configura‐
tion file. The hdfs.kerberosPrincipal parameter specifies the principal to be used
to log in to a key distribution center (KDC). The hdfs.kerberosKeytab parameter
should specify the full path to the Kerberos keytab file. This file should be readable by
the user running the Flume agent and must contain the keytab corresponding to the
principal being used. HDFS allows users to impersonate other users. Flume supports
this feature through the hdfs.proxyUser parameter. To impersonate another user,
specify that the user’s username as the value to this parameter, and Flume will write
data to HDFS as that user. See the HDFS documentation [impersonation] for details
on configuring this. To use this functionality, the user running the Flume agent must
be authorized to impersonate the user Flume is writing as in the HDFS configuration.

Writing to HDFS: The HDFS Sink | 105

Kerberos, HDFS, and HBase Sinks

All HDFS Sinks within the same agent must use the same Kerberos
credentials to log in. In addition, all HBase Sinks must use the same
credentials. Using different credentials for different HDFS and
HBase Sinks will cause one or more of them to not be able to write
to HDFS or HBase. If multiple HDFS or HBase clusters need the
same data but have different credentials, the data must be routed
from the originating Flume agent (the one that received/generated
the data) to different Flume agents, each writing using one of the
multiple credentials. This can easily be done by having multiple
channels attached to the source that receives the data, having an
Avro Sink pulling out from each of these channels, and sending
them to different Flume agents that write to HDFS.

The HDFS Sink can time out each HDFS operation after a configured time period.
This ensures that the sink does not stop processing events in case a data node hangs.
The timeout is configured in milliseconds as the value of the hdfs.callTimeout
parameter. The optimum value of this parameter depends on the user’s specific
deployment and should be configured carefully to avoid too many timeouts occuring
or the sink waiting for too long, as this might affect throughput. These operations are
performed using a separate thread pool whose size can be configured using the
hdfs.threadsPoolSize parameter, though this rarely needs to be changed.

To trigger rolling and idle timeouts, Flume uses a separate thread pool whose size can
be configured too, though this is rarely required. This can be tweaked using the
hdfs.rollTimerPoolSize parameter.

The HDFS client API keeps internal buffers for open files, especially for compressed
files. To limit the number of files open and thus conserve the resources used, the sink
automatically closes files that were written to earliest, once the number of open files
reaches an upper limit. This upper limit is specified by the hdfs.maxOpenFiles
parameter.

The hdfs.useLocalTimestamp parameter, if set to true, would use the local time on
the machine hosting the agent for time-based bucketing.

The maximum number of events written out per transaction is controlled by
hdfs.batchSize (provided there are enough events available in the channel—if there
are fewer events in the channel, the batch is considered complete immediately). Each
transaction with the channel is committed per batch.

Let’s take a look at some real examples of HDFS configuration. The following config‐
uration writes events out in 10-minute buckets, using time-based bucketing and
rounding, in Snappy format. The files will automatically get suffixed with .snappy if
no file suffix is configured. The sink rolls files every 2 minutes or when 100,000

106 | Chapter 5: Sinks

events have been written to a file, whichever comes first, and closes a file if it’s been
open for 30 seconds with no writes, using idle timeout. The sink also rolls the file if
128 MB of uncompressed data has been written to the file.

This sink writes events as text using the built-in TEXT serializer. The sink also closes
the files that were written to earliest when 100 files are open at any point in time. It
uses Kerberos credentials to log in using the flume principal, and writes data as the
UsingFlume user. The flume user must be authorized to impersonate the UsingFlume
user in the HDFS configuration. When a file is being written to this sink keeps it hid‐
den by using the . prefix, and suffixes the filename with .temporary. Once the file is
rolled, it is renamed to the eventual filename:

agent.sinks = hdfsSink
agent.channels = memoryChannel

agent.channels.memoryChannel.type = memory
agent.channels.memoryChannel.capacity = 10000

agent.sinks.hdfsSink.type = hdfs
agent.sinks.hdfsSink.channel = memory
agent.sinks.hdfsSink.hdfs.path = /Data/UsingFlume/%{topic}/%Y/%m/%d/%H/%M
agent.sinks.hdfsSink.hdfs.filePrefix = UsingFlumeData
agent.sinks.hdfsSink.hdfs.inUsePrefix = .
agent.sinks.hdfsSink.hdfs.inUseSuffix = .temporary
agent.sinks.hdfsSink.hdfs.fileType = CompressedStream
agent.sinks.hdfsSink.hdfs.codeC = snappy
agent.sinks.hdfsSink.hdfs.rollSize = 128000000
agent.sinks.hdfsSink.hdfs.rollCount = 100000
agent.sinks.hdfsSink.hdfs.rollInterval = 120
agent.sinks.hdfsSink.hdfs.idleTimeout = 30
agent.sinks.hdfsSink.hdfs.maxOpenFiles = 100
agent.sinks.hdfsSink.hdfs.round = true
agent.sinks.hdfsSink.hdfs.roundUnit = minute
agent.sinks.hdfsSink.hdfs.roundValue = 10
agent.sinks.hdfsSink.hdfs.kerberosPrincipal = flume/_HOST@OREILLY.COM
agent.sinks.hdfsSink.hdfs.kerberosKeytab = /etc/flume/conf/UsingFlume.keytab
agent.sinks.hdfsSink.hdfs.proxyUser = UsingFlume

Writing to HDFS: The HDFS Sink | 107

Writing to Hadoop 1 and Hadoop 2*

Flume can write to HDFS from Hadoop 1 or Hadoop 2. The binary
artifacts released by the Apache Software Foundation are built
against Hadoop 1. If data is being written to a Hadoop 2.x cluster,
then the user must recompile Flume using the command mvn
clean install -Dhadoop.profile=2 (this command requires that
HBase 0.94.2 compiled against Hadoop 2.x be available in the
Maven cache), or mvn clean install -Dhadoop.profile=

hbase-98 to compile against Hadoop 2.4.0 and HBase 0.98. Flume
does not package Hadoop or its dependencies with Flume’s binar‐
ies. If Hadoop is installed on the machine, Flume will automatically
pick up the dependencies; otherwise, the user must add the direc‐
tories that contain HDFS client libraries and their dependencies to
Flume’s classpath. Hadoop vendors usually ship the versions of
HDFS client libraries that the Flume binaries they ship use.

Controlling the Data Format Using Serializers*
The data written out to HDFS will eventually be consumed by various other systems.
Therefore, it is important that the HDFS Sink be flexible enough to support data for‐
mats that can be understood by these systems. The HDFS Sink allows users to write
data to HDFS in a format that is suitable for them by allowing the users to plug in
serializers that convert the Flume events into a format that can be understood by the
systems that process them and writes them out to a stream that eventually gets
flushed out to HDFS. Flume comes packaged with a few serializers that support com‐
mon formats such as text and Avro. Remember that serializers are used only when
events the HDFS sink is configured to use data stream or compressed stream. This
section will illustrate how to write a serializer and how to tell the HDFS Sink to use
that serializer.

File Formats
When writing data to HDFS, or any other system where the data is likely to be pro‐
cessed by applications and not meant for humans to read, it makes much more sense
to use binary formats like Avro, Protobuf, etc. Binary formats are often more efficient
when it comes to the amount of space taken on disk, and hence the amount of time
taken to write the data out. This is because binary formats can more efficiently
encode the data—an integer is four bytes in Avro, while if text is used, it will be more
than four bytes if the number has more than four digits (in plain old ASCII). Several
binary formats are also able to compress the data before writing it.

With Flume, there is another significant advantage to binary formats. Flume writes
out transactions in batches to HDFS, which allocates blocks as and when required. If
a block allocation fails or if the write fails for any other reason, a partial event might

108 | Chapter 5: Sinks

get written. Flume will retry the event in a new file when such a failure occurs, but the
partial event will still be there in the HDFS file. If this partial event represents a row of
data that Hive is to consume, it might fail the Hive query since the data might not
make sense or might be incomplete. Even worse, there is no way to know whether the
data was valid if the parsing did not fail, since the write may have failed in the middle
of the last column in a row. Such failures can cause bad data to be processed. On the
other hand, binary formats will fail to read an incomplete write, usually by means of
an exception—thus letting the application reading the data know that the data is bad
and can be skipped. In such a case, the reading application can just move on to the
next file. Being better at error detection, binary formats should generally be used to
write data out from Flume.

What about binary columnar formats like RCFile, ORCFile, Parquet, etc.? Most col‐
umnar formats are optimized for bulk writes, i.e., writing large batches of data in a
single write. Flume, on the other hand, writes data as it comes in. This may not be
very suitable for such formats. A good way to use formats like Parquet with Flume is
to write data as Avro and then convert it into Parquet using the tools that come with
Parquet or using Impala.

An HDFS serializer is usually a pretty simple class that can be configured using the
Flume configuration system. The serializer class itself must implement the
org.apache.flume.serialization.EventSerializer interface. Flume requires that
the class be built using a builder class that inherits from the org.apache.flume.seri
alization.EventSerializer.Builder class. All builder classes must have a public
no-argument constructor, which is used by the sink while instantiating the builder.

The EventSerializer interface is shown in Example 5-1.

Example 5-1. EventSerializer interface

package org.apache.flume.serialization;
public interface EventSerializer {
 public static String CTX_PREFIX = "serializer.";
 public void afterCreate() throws IOException;
 public void afterReopen() throws IOException;
 public void write(Event event) throws IOException;
 public void flush() throws IOException;
 public void beforeClose() throws IOException;
 public boolean supportsReopen();
 public interface Builder {
 public EventSerializer build(Context context, OutputStream out);
 }
}

The HDFS Sink passes an OutputStream instance and a Context instance to the
builder, which in turn builds and configures the Serializer instance that is returned

Writing to HDFS: The HDFS Sink | 109

to the sink. The serializer is expected to convert the events passed in to its write
method into the required format and then write the data out to the output stream
provided. Serializers can be configured using the Context instance passed in.

The afterOpen method is called immediately after the file is opened. This method
can be used to write file-level header information, like the top-level tag in a serializer
that may be writing data in XML.

Every time the sink reads an event, the write method is called. This method is
responsible for converting the Flume event into the required format and then writing
it to the output stream. Once the sink completes an entire batch, it calls the flush
method. This method must flush the data in any internal buffers of the serializer into
the stream itself. If the stream is wrapped in a BufferedOutputStream by the serial‐
izer, the serializer must flush the buffered stream so that all data is flushed to the out‐
put stream passed in to the serializer. The serializer need not flush the stream that is
passed in, since that is done by the HDFS Sink itself.

Just before the HDFS Sink closes the file, the beforeClose method is called. This
method can be used to write any trailers to the file (like the closing top-level header).
If the supportsReopen method returns true, the HDFS Sink may append to the file.
So, this method must return true only if the file can be closed and then reopened for
writes.

The serializer shown in Example 5-2 serializes Flume events into a file that contains
serialized Protobufs using the Protobuf definition shown in Example 3-8. Each event
is represented as an integer representing the length of the event followed by the Pro‐
tobuf serialized event.

Example 5-2. Protobuf event serializer

package usingflume.ch05;

public class ProtobufSerializer implements EventSerializer {
 private final boolean writeHeaderAndFooter;
 private final BufferedOutputStream stream;
 private static final byte[] footer = ("End Using Flume protobuf " +
 "file").getBytes();
 private static final byte[] header = ("Begin Using Flume protobuf" +
 " file").getBytes();

 private ProtobufSerializer(Context ctx, OutputStream stream) {
 writeHeaderAndFooter = ctx.getBoolean("writeHeaderAndFooter",
 false);
 this.stream = new BufferedOutputStream(stream);
 }

 @Override

110 | Chapter 5: Sinks

 public void afterCreate() throws IOException {
 if(writeHeaderAndFooter) {
 stream.write(header);
 }
 }

 @Override
 public void afterReopen() throws IOException {

 }

 @Override
 public void write(Event event) throws IOException {
 UsingFlumeEvent.Event.Builder
 builder = UsingFlumeEvent.Event.newBuilder();
 for (Map.Entry<String, String> entry : event.getHeaders()
 .entrySet()) {
 builder.addHeader(UsingFlumeEvent.Header.newBuilder()
 .setKey(entry.getKey())
 .setVal(entry.getValue()).build());
 }
 builder.setBody(ByteString.copyFrom(event.getBody()));
 UsingFlumeEvent.Event e = builder.build();
 stream.write(ByteBuffer.allocate(Integer.SIZE / 8).putInt(e
 .getSerializedSize()).array());
 e.writeTo(stream);
 }

 @Override
 public void flush() throws IOException {
 stream.flush();
 }

 @Override
 public void beforeClose() throws IOException {
 if (writeHeaderAndFooter) {
 stream.write(footer);
 }
 }

 @Override
 public boolean supportsReopen() {
 return false;
 }

 public static class Builder implements EventSerializer.Builder {

 @Override
 public EventSerializer build(Context context,
 OutputStream outputStream) {
 return new ProtobufSerializer(context, outputStream);
 }

Writing to HDFS: The HDFS Sink | 111

 }
}

Any configuration parameters passed to the HDFS Sink with the suffix serializer.
get passed to the serializer. For example, a serializer that requires a character set could
be configured like the following:

agent.sinks.hdfsSink.serializer.bufferSize = 4096
agent.sinks.hdfsSink.serializer.charset = UTF-8

These parameters get passed through the Context instance (only the parameters and
values are passed—everything before that is not) and are used for configuring the
serializer. The serializer, for simplicity, assumes that the body of the event is already
encoded in the correct format; it does not change it and writes it out as is.

There are three serializers that come built into Flume: the TEXT serializer, the
HEADER_AND_TEXT serializer, and the AVRO_EVENT serializer. The TEXT serializer writes
out the event body to the file as is, and optionally inserts a new line between events.
The HEADER_AND_TEXT serializer does exactly the same thing, but also includes the
event headers in a “key=value” format, followed by the event body. A new line is
inserted between events by default. This can be disabled by setting the value of
appendNewline to false, as shown here:

agent.sinks.hdfsSink.fileType = DataStream
agent.sinks.hdfsSink.serializer = HEADER_AND_TEXT
agent.sinks.hdfsSink.serializer.appendNewline = false

The AVRO_EVENT serializer writes the events out as Avro container files [container-
files] with the schema shown here:

{
 "type": "record",
 "name": "Event",
 "fields": [
 {
 "name": "headers",
 "type": {
 "type": "map",
 "values": "string"
 }
 },
 {
 "name": "body",
 "type": "bytes"
 }
]
}

MapReduce jobs can read Avro container files directly using the Avro MapReduce
module. The Avro container format is supported in other systems by Hive, Pig,

112 | Chapter 5: Sinks

Cloudera Impala, etc. To compress Avro container files, Avro’s native compression
should be used rather than using Flume’s compressed stream. To use Avro’s native
compression, pass the compressionCodec parameter to the serializer with the value
set to either deflate or snappy for the corresponding compression codec. The Avro
container format allows the user to specify the amount of data between sync markers,
which can be set using syncIntervalBytes, which is specified in bytes. It defaults to
2048000 (2 MB). An example of Avro serializer configuration is shown here:

agent.sinks.hdfsSink.fileType = DataStream
agent.sinks.hdfsSink.serializer = AVRO
agent.sinks.hdfsSink.serializer.syncIntervalBytes = 4096000
agent.sinks.hdfsSink.serializer.compressionCodec = snappy

The EventSerializer interface is a part of the flume-ng-core artifact and can be
added to your serializer’s pom.xml file, as shown in Example 3-6.

The Difference Between Ingest Format and Output Format*
A major source of confusion when using Flume is the relation between the format in
which data gets written to its eventual destination and the format in which it was
ingested. The ingest format could be anything—depending on which source is used,
the way the input data is converted into Flume events will vary. For example, if the
data is ingested via an RPC client and RPC source, the application will convert the
data into Flume events. For other sources, like the spooling directory, a pluggable
component does the conversion from the original data format to Flume events.

Once the events are in Flume, the event data is like a black box for Flume until it rea‐
ches the destination sink. The one exception to this rule is when interceptors, which
are components that can actually modify events, are used. We will discuss intercep‐
tors in Chapter 6. When writing the data to the storage system, the Flume event itself
needs to be converted into the format that is used by the processing systems that read
the data from the storage system. This is the output format. Most sinks that behave as
terminal sinks, like the HDFS, HBase, and Morphline Solr Sinks, accept a plug-in that
can convert the Flume events to the eventual destination format.

As you can see, there is an initial conversion from the original format to a Flume
event at the source, and a second conversion to the eventual destination format at the
destination sink. If the original and eventual formats are the same, it might make
sense to simply convert the original format into a byte array and then write that byte
array in as pre-encoded data.

A good example of writing pre-encoded data is the way it is done in the AvroEvent
Serializer that comes bundled with Flume. If an event comes in as Avro, it can sim‐
ply be encoded into a byte array using the Avro API and set as the event’s body. It can

Writing to HDFS: The HDFS Sink | 113

be written to HDFS using this serializer, which simply writes the data as is, thus mak‐
ing the data available in the original Avro format in an Avro container file on HDFS.

HBase Sinks
HBase has become increasingly popular for accumulating real-time data, and Flume
supports writing to HBase. Flume has two HBase sinks, the HBase Sink and the Async
HBase Sink, with slightly different implementations but very similar configurations.
The HBase Sink uses the HBase client API to write data to HBase. The HBase Sink,
therefore, is more likely to be in sync with HBase wire protocol changes.

The HBase client API is blocking, so the HBase Sink sends events to the HBase clus‐
ter one by one. On the other hand, the Async HBase Sink uses the AsyncHBase API
[asynchbase], which is nonblocking and uses multiple threads to write data to HBase.
So, in most cases, the Async HBase Sink is likely to give better performance. The
HBase Sink, though, supports secure HBase, which the Async HBase Sink does not.
Both sinks support serializers, which allows the user to use custom logic to translate
Flume events into HBase-friendly objects. The serializers are configurable through
the Flume configuration file. In this section, we will discuss the two types of HBase
sink and how to implement serializers for both sinks.

Both HBase sinks connect to one or more HBase clusters, whose quorums are speci‐
fied either via the Flume configuration file or from the first hbase-site.xml file in the
classpath. The HBase sinks have fewer configuration parameters than the HDFS Sink.
All parameters shown in Table 5-5 are common to both sinks.

Table 5-5. Configuration for both HBase sinks

Parameter Default value Description

type - The alias for the HBase Sink is hbase. The FQCN, which
is org.apache.flume.sink.hbase.HBase
Sink, can also be used. The alias for the Async HBase
Sink is asynchbase. The FQCN, which is
org.apache.flume.sink.hbase.AsyncHBa

seSink, can also be used.

table - The table the sink writes events to. This table must exist
in HBase—Flume will not create it.

columnFamily _ The column family to create the columns in. Flume will
not create the column family either. This must exist in
HBase.

batchSize 100 The number of events written per batch.

114 | Chapter 5: Sinks

Parameter Default value Description

zookeeperQuorum - A list of Zookeeper servers in the quorum that the HBase
cluster uses.

znodeParent /hbase The parent znode used by the HBase cluster on the
Zookeeper quorum.

serializer SimpleHbaseEventSerializer

for HBase Sink, SimpleAsyncHba
seEventSerializer for Async
HBase Sink

The FQCN on the serializer to use. More details on how to
write serializers are discussed in “Translating Flume
Events to HBase Puts and Increments Using Serializers*”
on page 117.

serializer.* - A list of configuration parameters to pass the serializer.

These parameters are accepted by both sinks, and both sinks have the same behavior
with respect to these parameters. As with all the other components we have seen until
now, the sink’s type parameter can be the alias or the actual FQCN of the sink: hbase
or org.apache.flume.sink.hbase.HBaseSink for the HBase Sink and asynchbase or
org.apache.flume.sink.hbase.AsyncHBaseSink for the Async HBase Sink. Both
HBase sinks can write to only one table and one column family, specified by the
table and columnFamily parameters.

Both sinks write events out in batches. The maximum number of events written out
per transaction is controlled by the batchSize parameter (provided there are enough
events available in the channel—if there are fewer events in the channel, the batch is
considered complete immediately). Each transaction with the channel is committed
per batch. The transaction is committed if and only if all events from a batch are suc‐
cessfully written out to HBase. It is important to try different values for the batch size
before settling on one number, as the most appropriate value depends on the exact
data coming in, the HBase cluster topology, the schema design, how the table is split
across various region servers, and the network architecture. Design details for HBase
clusters and HBase schema can be found in the HBase documentation or HBase: The
Definitive Guide [hbase-book].

By default, both sinks will look for the client configuration file, hbase-site.xml, in the
classpath and use the information from that to connect to HBase. This brings up an
interesting issue—every sink in an agent sees the same classpath, which means it
becomes impossible to write data to more than one HBase cluster. Flume does allow
the user to override this through configuration.

The sinks accept a parameter, zookeeperQuorum, that accepts a comma-separated list
of hostnames and ports. The hostnames and posts are specified in the following for‐
mat: hostname1:port1, hostname2:port1 (all servers must use the same port, which is
an HBase requirement). The sinks also accept another parameter, znodeParent,

HBase Sinks | 115

which is the parent znode that the HBase cluster uses (this most often does not need
to be changed).

Each type of HBase sink also takes some parameters that are specific to only that sink.
As discussed earlier, the HBase Sink has the ability to write to a secure HBase cluster.
Therefore, it takes in security-related parameters in the configuration. The parame‐
ters in Table 5-6 are accepted by the HBase Sink and are not used by the Async HBase
Sink (as with other components, adding them in the configuration for the Async
HBase Sink causes no harm—they are simply ignored) [hbase-security].

Table 5-6. HBase Sink security configuration

Parameter Default
value

Description

kerberosPrincipal - The Kerberos principal to use to log in to the KDC.

kerberosKeytab - The path to the keytab file to use with kerberosPrincipal to log in to the
KDC.

These parameters have exactly the same meaning as the hdfs.kerberosPrincipal
and hdfs.kerberosKeytab parameters.

The Async HBase Sink accepts one parameter in addition to the parameters common
to both sinks: timeout, which is the time period (in milliseconds) for an entire batch
to be successfully written out to HBase. If the entire batch is not successfully written
out within this timeout period, the sink rolls back the entire transaction with the
channel and makes the events available to this and other sinks. The default value for
this parameter is 60000.

An example of an Async HBase Sink that is configured with a custom serializer and
specifies the zookeeper quorum in the configuration is shown in Example 5-3.

Example 5-3. Example of an Async HBase Sink configuration

agent.sinks = asynchbase
agent.channels = memory

agent.sinks.asynchbase.type = asynchbase
agent.sinks.asynchbase.channel = memory
agent.sinks.asynchbase.zookeeperQuorum = zk1.usingflume.com:2181,
zk2.usingflume.com:2181,zk3.usingflume.com:2181
agent.sinks.asynchbase.znodeParent = /hbase
agent.sinks.asynchbase.table = usingFlumeTable
agent.sinks.asynchbase.columnFamily = usingFlumeFamily
agent.sinks.asynchbase.batchSize = 1000
agent.sinks.asynchbase.timeout = 60000
agent.sinks.asynchbase.serializer = usingflume.ch05.AsyncHBaseDirectSerializer

116 | Chapter 5: Sinks

agent.channels.memory.type = memory
agent.channels.memory.size = 100000

Translating Flume Events to HBase Puts and Increments Using
Serializers*
HBase sinks can write data or increment counters in HBase. Just like the HDFS Sink,
the HBase sinks allow users to convert Flume events into the format required by the
destination system: in this case, HBase Puts and Increments. This can be done with
the help of serializers. Each sink has its own serializer interface; they are slightly dif‐
ferent from each other, mainly in the API used to represent the writes to HBase. We
will discuss the serializer interface that plugs into the Async HBase Sink first. The
Async HBase Sink interface is shown in Example 5-4, followed by an explanation of
each of the methods. The serializer for the HBase Sink is very similar.

Example 5-4. Async HBase Sink serializer interface

package org.apache.flume.sink.hbase;
public interface AsyncHbaseEventSerializer extends Configurable,
ConfigurableComponent {
 public void initialize(byte[] table, byte[] cf);
 public void setEvent(Event event);
 public List<PutRequest> getActions();
 public List<AtomicIncrementRequest> getIncrements();
 public void cleanUp();
}

Though not evident in the interface, the AsyncHbaseEventSerializer (and the Hba
seEventSerializer) does have the ability to accept configurations from the Flume
configuration system. Any configuration parameters passed in through the configu‐
ration file get passed in to the serializer’s configure method (inherited from the Con
figurable interface). When the sink starts up, the sink creates an instance of the
serializer and then calls the initialize method, to which it passes the table and
columnFamily set in the configuration.

Once the sink reads an event from the channel, it calls the serializer’s setEvent
method and passes in the event. Immediately after that, the sink calls getActions,
which returns a list of PutRequest objects [put-request] (Async HBase’s equivalent of
HBase Puts), followed by getIncrements, which returns a list of AtomicIncrementRe
quest objects [increment-request] (Async HBase’s equivalent of HBase Increments).

As is evident, each Flume event can generate zero or more HBase Puts and zero or
more HBase Increments. This allows users to be extremely flexible in how they parse
the events, with data based on each event written to several rows or columns and
multiple counters incremented. The AsyncHBaseDirectSerializer shown in

HBase Sinks | 117

Example 5-5 does exactly that. This serializer looks for three headers: rowKey, incre
mentColumns, and payloadColumn. If the rowKey header is not present, the event is
simply ignored. If the incrementColumn header is present, it is treated as a list of
comma-separated strings and each of these columns is incremented for the row
specified by the rowKey header. If the payloadColumn header is present, the event
body is written out to that column in the row specified by the rowKey header. This
serializer does not accept any configuration, but it is possible to pass configurations
to the serializers via the configuration file. This configuration is passed in to the seri‐
alizer’s configure method.

Example 5-5. Example of a serializer for the Async HBase Sink

package usingflume.ch05;

public class AsyncHBaseDirectSerializer
 implements AsyncHbaseEventSerializer {
 private byte[] table;
 private byte[] columnFamily;
 private Event currentEvent;
 private static final String ROWKEY_HEADER = "rowKey";
 private static final String INCREMENTCOLUMNS_HEADER
 = "incrementColumns";
 private static final String PAYLOADCOLUMN_HEADER = "payloadColumn";
 private final ArrayList<PutRequest> putRequests
 = Lists.newArrayList();
 private final ArrayList<AtomicIncrementRequest> incrementRequests
 = Lists
 .newArrayList();
 private byte[] currentRow;
 private String incrementColumns;
 private String payloadColumn;
 private boolean shouldProcess = false;

 @Override
 public void initialize(byte[] table, byte[] cf) {
 this.table = table;
 this.columnFamily = cf;
 }

 @Override
 public void setEvent(Event event) {
 this.currentEvent = event;
 Map<String, String> headers = currentEvent.getHeaders();
 String rowKey = headers.get(ROWKEY_HEADER);
 if (rowKey == null) {
 shouldProcess = false;
 return;
 }
 currentRow = rowKey.getBytes();

118 | Chapter 5: Sinks

 incrementColumns = headers.get(INCREMENTCOLUMNS_HEADER);
 payloadColumn = headers.get(PAYLOADCOLUMN_HEADER);
 if (incrementColumns == null && payloadColumn == null) {
 shouldProcess = false;
 return;
 }
 shouldProcess = true;
 }

 @Override
 public List<PutRequest> getActions() {
 putRequests.clear();
 if (shouldProcess && payloadColumn != null) {
 putRequests.add(new PutRequest(table, currentRow, columnFamily,
 payloadColumn.getBytes(), currentEvent.getBody()));
 }
 return putRequests;
 }

 @Override
 public List<AtomicIncrementRequest> getIncrements() {
 incrementRequests.clear();
 if (shouldProcess && incrementColumns != null) {
 String[] incrementColumnNames = incrementColumns.split(",");
 for (String column : incrementColumnNames) {
 incrementRequests.add(
 new AtomicIncrementRequest(table, currentRow,
 columnFamily, column.getBytes()));
 }
 }
 return incrementRequests;
 }

 @Override
 public void cleanUp() {
 // Help garbage collection
 putRequests.clear();
 incrementColumns = null;
 payloadColumn = null;
 currentEvent = null;
 currentRow = null;
 table = null;
 columnFamily = null;
 }

 @Override
 public void configure(Context context) {
 // No configuration required
 }

 @Override
 public void configure(ComponentConfiguration conf) {

HBase Sinks | 119

 // No configuration required
 }
}

It is possible to write a serializer for the HBase Sink that has the exact same behavior.
The interface that needs to be implemented is shown in Example 5-6.

Example 5-6. Serializer interface for the HBase Sink

package org.apache.flume.sink.hbase;
public interface HbaseEventSerializer extends Configurable,
 ConfigurableComponent {
 public void initialize(Event event, byte[] columnFamily);
 public List<Row> getActions();
 public List<Increment> getIncrements();
 public void close();
}

The serializer for the HBase Sink does not have a global initialization method; HBase
Puts and Increments do not need information about the table, so this is handled by
the sink directly. Instead, the initialize method in the HbaseEventSerializer does
the same thing as the setEvent method in the AsyncHbaseEventSerializer, passing
the next event to be serialized along with the column family it needs to go to. The
getActions and getIncrements methods do the exact same thing as the AsyncHbaseE
ventSerializer’s methods of the same name, the only difference being the API used.
The sink calls these methods immediately after the initialize method is called to
pass in the event. The close method does any cleanup required. The sink calls this
method only when it is being stopped.

The serializers of both sinks are part of the flume-ng-hbase-sink package. You can
add it to your pom.xml’s dependency section as follows:

 <dependency>
 <groupId>org.apache.flume.flume-ng-sinks</groupId>
 <artifactId>flume-ng-hbase-sink</artifactId>
 <version>1.5.0</version>
 </dependency>

120 | Chapter 5: Sinks

HBase Versions

Prior to HBase 0.96, Apache did not ship HBase JARs that were
compiled against Hadoop 2. The hadoop-2 profile in Apache Flume
compiles against HBase 0.94.2 by default. Unfortunately, this ver‐
sion of HBase built against Hadoop 2 is not available on Maven
Central. So, the user must build HBase using the Hadoop 2 profile
to ensure that Flume is built against the correct version of HBase.
The default profile builds against HBase 0.92.1. Flume can also be
built against HBase 0.98.x and Hadoop 2.4.0 using the hbase-98
profile. If any other version of HBase is being used, make sure the
correct versions of HBase are in the classpath and the Flume
pom.xml file is modified to point to the correct version of HBase.

RPC Sinks
As explained in earlier chapters, cluster topology can require Flume agents to send
data to other Flume agents. To send data from one Flume agent to another, RPC sinks
are used. RPC sinks use the same RPC protocol as the corresponding Flume RPC
sources. Refer to “Sink-to-Source Communication” on page 36 for more details on
RPC sources. Due to this, RPC sinks can send data to RPC sources. This is the
method that can be used to send data from one Flume agent to another. Since RPC
sources act as servers listening on a specified port, it is possible for several Flume
agents to send data to one or a number of Flume agents using the corresponding RPC
sink(s).

Flume supports two RPC systems, as explained in “Sink-to-Source Communication”
on page 36: Avro and Thrift [thrift_ch5]. Avro is considered to be the primary RPC
format for Flume, so we will spend more time discussing the Avro Sink in this sec‐
tion. We will also briefly go over the Thrift Sink, but since the Avro Sink is more
mature, it is still the recommended method for communication between Flume
agents. Both RPC sinks share some of the basic configuration parameters, though the
Avro Sink has a lot more features and hence has more configuration options. Note
that an Avro Sink can only send data to a Flume Avro Source (or a Java server that is
built on Avro’s Netty RPC format), while the Thrift Sink can send data to the Flume
Thrift Source and a server process written in any language that has a Thrift server
listening on the port the sink is sending data to.

Avro Sink
The Avro Sink uses Avro’s Netty-based RPC protocol to send data to an Avro Source.
It is implemented as a transaction-aware wrapper around Flume’s NettyAvroRpc
Client. As a result, they share several configuration parameters. The Avro Sink can
send batches of events to the Avro Source. This is important since the Avro Source

RPC Sinks | 121

does not control the number of events written out per transaction—it will write out
an entire batch as is. For the File Channel, it is important to write out reasonably
large batches since the channel will fsync the data file to disk for each transaction. To
avoid too many fsyncs, which can be expensive, the batch sizes must be reasonably
large.

Another reason for large batch sizes is that each batch is sent out as one RPC call.
Having small batches could mean that the RPC overhead is a large percentage of the
size of the payload, which should be avoided. The best batch size will be different for
every deployment. As with the HDFS Sink, it will depend on the hardware being
used, the network, and even the configuration (the File Channel will perform better if
the batches are large on both agents—the one hosting the sink and the one hosting
the source it is writing to.

The configuration parameters of the Avro Sink are listed in Table 5-7.

Table 5-7. Avro Sink configuration

Parameter Default
value

Description

type - The alias for the Avro Sink is avro. The FQCN, which is
org.apache.flume.sink.AvroSink, can also be used.

hostname - The hostname of the machine on which the agent is hosting the source
that this sink should connect to.

port - The port that the source that this sink is connecting to is listening on.

batch-size 100 The number of events to be sent per RPC call. This is also the number of
events that the sink takes from the channel in a single transaction.

compression-type - The compression format used to decompress the incoming data. As of
Flume 1.5.0, the only compression format supported is zlib [zlib_ch5]. To
accept zlib-compressed data, set this parameter to deflate.

compression-level 6 The compression level to be used if compression is enabled using the
compression-type parameter. Valid values are 1–9. The higher the
number, the better the compression.

connect-timeout 20000 The timeout, in milliseconds, for the initial connection and handshake to
complete.

request-timeout 20000 The timeout, in milliseconds, for the entire RPC call to complete
succesfully.

ssl false To encrypt the data sent to the server, this should be set to true.

122 | Chapter 5: Sinks

Parameter Default
value

Description

trust-all-certs false If set to true, all SSL certificates are accepted by this sink.

truststore - The path to the trust store to use. If this is not set, the default Java trust
store is used.

truststore-password - The password to use to open the trust store.

truststore-type JKS The Java trust store type.

reset-connection-interval - The interval after which the sink must disconnect from and reconnect to
the source.

The alias for the Avro Sink is avro, and the FQCN is org.apache.flume.sink.Avro
Sink; either of these can be used.

The hostname parameter specifies the hostname of the host that the sink should con‐
nect to. The source that accepts the data from this sink should be running on this
machine. The port parameter specifies the port that the source is listening to. The
sink connects to this port on the host specified by the hostname parameter.

The maximum number of events to be sent per RPC call (provided there are enough
events available in the channel—if there are fewer events in the channel, the batch is
considered complete immediately) is specified by the batch-size parameter, which
defaults to 100. Each transaction with the channel is committed per batch.

The Avro Sink can compress data before sending it over the wire. To enable compres‐
sion, set the compression-type to deflate. The level of compression can be con‐
trolled using the compression-level parameter. The value of this parameter can be
any whole number between 1 and 9, with 1 being the worst compression and 9 being
the best. Note that the time taken to compress at the sink and decompress at the
source is higher for higher compression levels. The default value of this parameter is
6. When compression is enabled, the Avro Source to which an Avro Sink is sending
compressed data should be configured to accept compressed data by setting the
compression-type parameter of the Avro Source to deflate as well. Compression
happens at the batch level, so an entire batch of events is compressed at once, before it
is sent.

The Avro Sink supports encrypted communication using SSL. The source accepting
the data must also be configured to accept encrypted data from the Avro Sink. To
enable encryption, set the ssl parameter to true. This parameter, by default, is set to
false. Unless directed otherwise, Flume will use Java’s default JSSE certificate

RPC Sinks | 123

authority files, jssecacerts/cacerts, to determine if the Avro Source’s SSL certificate
should be trusted.

If a custom trust store is to be used, set the value of the truststore parameter to the
path to the respective trust store file. The user running the agent should have read
access to the file. The truststore-password parameter’s value is used as the pass‐
word to open this file. The trust store type is set by the truststore-type parameter.
By default it is set to JKS, but this can be any supported Java trust store type. If the
sink should send data without checking the source’s SSL certificates, set trust-all-
certs to true. This should not be set to true, except for testing purposes. Trusting
the source’s SSL certificates blindly means that any source will be able to read the data
sent—this undermines the security provided by SSL. More details about SSL in Java
and how to create trust stores can be found in the Oracle Java CAPS documentation
[truststores].

In many cases, agents communicate with each other with a load balancer in the mid‐
dle. Since the connections between the agents are sticky, adding new agents hosting
Avro Sources behind the load balancer would require the agents hosting the Avro
Sinks to be restarted to make sure that the new agents actually receive connections.
To avoid having to do this, the user can force the Avro Sinks to periodically terminate
their connections to the agents and reconnect, by setting the reset-connection-
interval parameter.

An example of an Avro Sink configuration is shown in “Avro Source” on page 36.

Thrift Sink
The Thrift Sink can be used for communication between Flume agents using Thrift
RPC. In general, the Thrift Sink works exactly like the Avro Sink, but it lacks com‐
pression and SSL capabilities. It is recommended to use Avro RPC for communica‐
tion between Flume agents. Thrift Sinks should be used to write data to Thrift Sour‐
ces that are already running, and perhaps to receive data from RPC clients written in
other languages that use the Thrift RPC client.

The Thrift Sink configuration parameters are shown in Table 5-8.

Table 5-8. Thrift Sink configuration

Parameter Default
value

Description

type - The alias for the Thrift Sink is thrift. The FQCN, which is
org.apache.flume.sink.ThriftSink, can also be used.

hostname - The hostname of the machine on which the agent is hosting the source
that this sink should connect to.

124 | Chapter 5: Sinks

Parameter Default
value

Description

port - The port that the source that this sink is connecting to is listening on.

batch-size 100 The number of events to be sent per RPC call. This is also the number of
events that the sink takes from the channel in a single transaction.

request-timeout 20000 The timeout, in milliseconds, for the entire RPC call to complete
succesfully.

reset-connection-interval - The interval after which the sink must disconnect from and reconnect to
the source.

maxConnections 5 The maximum number of connections that the sink opens to the source.

All of these configuration parameters except for maxConnections have the same
meaning as the parameters with the same names for the Avro Sink. The maxConnec
tions parameter controls the maximum number of connections that each sink
should open to the source, if required. This parameter can be used to fine-tune the
resources that are used by this sink.

An example of a Thrift Sink configuration is shown in “Thrift Source” on page 40.

Morphline Solr Sink
Morphlines is a highly extensible ETL (extract, transform, and load) framework
released as part of the Kite SDK [morphlines_ch5]. Commands operate on individual
records. A command does a specific transformation on the input record to generate
zero or more output records. Several commands can be chained together, with the
output of one command being the input of the next, to perform heavyweight trans‐
formation of data. Such a chain of commands is referred to as a Morphline. The
Morphline Solr Sink integrates the Morphline framework with Flume by providing a
sink that can transfer data from a Flume pipeline into such a morphline (chain of
commands). The most important use of the Morphline Solr Sink is with respect to the
integration of morphlines with Apache Solr [solr] search.

The Morphline Solr Sink converts each Flume event into a record by moving the
event body to the _attachment_body field of the record. The headers are populated
into fields named the same as the header keys, with the values set to the correspond‐
ing values from the Flume headers. Each batch of events read from the channel is
processed as part of a single morphline transaction, so if one event fails anywhere in
the morphline, the entire transaction gets rolled back.

Morphline Solr Sink | 125

As mentioned earlier, the most important use of the Morphline Solr Sink is to actually
load Flume events into Solr for indexing. The Morphline library provides a command
called loadSolr that can load records into Solr. To load Flume events into Solr using
this sink, the morphline configuration file to be used must list loadSolr as the last
command. Each Flume event undergoes transformations by each command config‐
ured and eventually gets loaded into Solr by the loadSolr command. The transfor‐
mations can be used to parse text out of data represented in complex formats such as
PDF, XML, etc., before loading the searchable text into Solr. Before we go into details
of the Solr use case, let’s take a look at the configuration parameters for the Morph‐
line Solr Sink in Table 5-9.

Table 5-9. Morphline Solr Sink configuration

Parameter Default
value

Description

type - The alias for the Morphline Solr Sink is morphlinesolr. The FQCN, which is
org.apache.flume.sink.solr.morphline.MorphlineSolr

Sink, can also be used.

morphlineFile - The full path of the file to read the morphline from.

morphlineId - The ID of the morphline that the sink should use to process events, if there are
multiple morphlines in the same file.

batchSize 1000 The number of events to be written per batch.

batchDurationMillis 1000 The time in milliseconds after which a batch is considered complete (and gets
loaded to Solr, if the loadSolr command is present).

The alias for the Morphline Solr Sink is morphlinesolr and the FQCN is
org.apache.flume.sink.solr.morphline.MorphlineSolrSink. Either can be used.
The morphline to be used by the sink is read from the file whose path is specified by
the morphlineFile parameter.

The Morphlines framework allows morphline files to contain multiple morphlines,
each represented by an ID. If there is more than one morphline in the file, the ID of
the morphline to be used from the file should be specified by the morphlineId
parameter.

The batchSize parameter specifies the maximum number of events that the sink
reads from the channel in one transaction (if there are fewer events than this available
in the channel, the batch is considered complete immediately after reading the last
event from the channel). This is also the total number of events in one morphline

126 | Chapter 5: Sinks

session. It is also possible to close a morphline session after a fixed duration. This is
specified in milliseconds as the value of batchDurationMillis.

For indexing data on Solr, each record inserted into Solr requires a unique key that
identifies the record. The field to use as the key is specified using the <uniqueKey> tag
in the schema.xml file for the Solr collection [solr-unique-key]. In this example, let’s
assume that the field specified to be the unique key is id. Let’s first take a look at the
morphline file (shown in Example 5-7) that could be used to load this data into Solr.

Example 5-7. A morphline configuration file

SOLR_LOCATOR: {
 collection : usingFlumeCollection
 zkHost : "com.usingflume.solrZk:2181/solr"
}

morphlines : [
 {
 id : usingFlumeMorphline

 importCommands : ["org.kitesdk.**", "org.apache.solr.**"]
 # Convert the event into a UTF-8 encoded string
commands : [
 {
 readClob {
 charset : UTF-8
 }
 }

 # Generate a UUID that can be used for the Solr unique key field
 {
 generateUUID {
 field : id
 }
 }

 # Load the record into Solr
 {
 loadSolr: {
 solrLocator : ${SOLR_LOCATOR}
 }
 }
]
 }
]

The Morphline Solr Sink starts a morphline session, reads events from the channel,
and converts them into records with the event body set to the _attachment_body
field. The sink then passes the events to the morphline one by one. Each record is

Morphline Solr Sink | 127

passed to the readClob command, which reads the body, converts it into a UTF-8
string, and sets the string as the value of the message field.

The generateUUID command generates a UUID and sets it as the value of the id field,
which (as discussed earlier) is the unique key that Solr is using. The event is then
loaded into Solr for indexing by the loadSolr command. The loadSolr command
also allows loading data into a SolrCloud cluster for scaling.

Adding more morphline sinks can increase the number of events being loaded into
Solr, until the available capacity in Solr is used up. Once the total number of events
read reaches the batch size or the time since the batch was started exceeds the value of
batchDurationMillis (or, like for all other sinks, the channel does not have any
more events), the sink commits the morphline transaction followed by the sink trans‐
action. Any failure will lead to both the morphline transaction and the transaction
with the channel being rolled back.

This sink can be configured using a configuration file similar to the one shown in
Example 5-8.

Example 5-8. Example of a Morphline Solr Sink configuration

agent.sinks = morphline
agent.channels = solrChannel

agent.sinks.morphline.type = morphlinesolr
agent.sinks.morphline.morphlineFile = /etc/morphline/conf/morphline.conf
agent.sinks.morphline.morphlineId = usingFlumeMorphline
agent.sinks.morphline.batchSize = 1000
agent.sinks.morphline.batchDurationMillis = 2500
agent.sinks.morphline.channel = solrChannel

agent.channels.solrChannel.type = memory
agent.channels.solrChannel.capacity = 100000

This configuration file represents an agent that receives data from other Flume agents
or applications via the Avro Source and then replicates this data via two Memory
Channels to HDFS and Solr. This is an example of a typical setup that can be used to
ensure near real-time search indexing using Flume.

It is common for events to be replicated to HDFS as well by having the source write
the same events to the channel feeding this sink and an HDFS Sink. To merge Solr
shards and reconcile the data on HDFS with Solr, the data on HDFS can be used as
input to a MapReduce job [solr-on-hdfs].

In this agent, the morphline sink uses the morphline configuration file /etc/morph‐
line/conf/morphline.conf and reads the morphline with ID usingFlumeMorphline. The

128 | Chapter 5: Sinks

sink uses a batch size of 1,000 but commits the batch if it takes more than 2.5 seconds
to reach this number.

The morphline JARs and the morphline configuration files should be added to the
Flume classpath using the plug-in deployment system shown in “Deploying Custom
Code” on page 204.

Elastic Search Sink
Flume can also load data in real time to Elastic Search for indexing using the Elastic
Search Sink. The Elastic Search Sink requires that the user install the correct version
of the Elastic Search client JAR and its dependencies in the classpath, since Elastic
Search requires the client JAR version to match the server version. The sink dynami‐
cally creates new indices on the Elastic Search cluster at midnight UTC every day. By
default, this sink is compatible with the Kibana UI [kibana].

The configuration parameters of the Elastic Search Sink are shown in Table 5-10.

Table 5-10. Elastic Search Sink configuration

Parameter Default value Description

type - The alias for the Elastic Search Sink is elasticsearch. The FQCN,
which is org.apache.flume.sink.elastic
search.ElasticSearchSink, can also be used.

hostNames - A comma-separated list of hostnames and ports of Elastic Search
hosts.

batchSize 100 The maximum number of events per transaction.

ttl - The time period, in days, after which expired documents are deleted.

indexName flume The prefix of the index name.

indexType logs The type of index on Elastic Search.

clusterName elasticsearch The name of the Elastic Search cluster to write to.

serializer ElasticSearchLogStash

EventSerializer

The FQCN of a class that implements ElasticSearchEvent
Serializer or ElasticSearchIndexRequestBuilder
Factory. “Customizing the Data Format*” on page 131 discusses
how to write data in custom formats using this sink.

serializer.* - Parameters to pass to the serializer.

Elastic Search Sink | 129

The Elastic Search Sink can be initialized using the elasticsearch alias or the FQCN
org.apache.flume.sink.elasticsearch.ElasticSearchSink. The list of Elastic
Search servers to which the sink writes data can be specified as the value of the host
Names configuration parameter. The hostnames are specified as a comma-separated
list in the hostname:port format. The port can be omitted if the cluster uses the
default port, 9300. The maximum size of each transaction with the channel can be
controlled by the batchSize parameter, which specifies the maximum number of
events the sink will remove per transaction, if events are available in the channel.

Elastic Search allows users to set an expiry date on indexed documents. To automati‐
cally delete such documents, the user can configure the ttl (time to live in days) of
documents.

The indexName parameter specifies the prefix of the name of the index. The serializer
is responsible for deciding which index each event goes to, but it is expected to use
this parameter to create the indexes. When using the default serializer (or if the cus‐
tom serializer extends from AbstractElasticSearchIndexRequestBuilderFactory),
the sink creates a new index every day, with the value of the indexName parameter as
the prefix and the current date as the suffix. The index name is of the form
<indexName>-DAY, MONTH DD, YYYY. The default value of the parameter is flume, so
an example index name would be flume-Monday, September 22, 2014. The user
can also specify the type of data in the index as a value of the indexType parameter.
This type is indexed by Elastic Search, and can be used to search specific types of
documents. The name of the Elastic Search cluster to write the indices to is specified
by the value of the clusterName parameter.

Just like the Morphline Solr Sink, the Elastic Search Sink can be configured to index
data (in this case, in Elastic Search) while an HDFS Sink writes data in parallel to
HDFS. The configuration file in Example 5-9 shows an Elastic Search Sink configured
to write to indices that start with usingFlume, of index type books.

Example 5-9. Elastic Search configuration example

agent.sinks = elasticsearch
agent.channels = esChannel

agent.sinks.elasticsearch.type = elasticsearch
agent.sinks.elasticsearch.hostNames = es1.usingflume.com:5400,es2.usingflume.com,
es3.usingflume.com
agent.sinks.elasticsearch.batchSize = 1000
agent.sinks.elasticsearch.ttl = 2
agent.sinks.elasticsearch.indexName = usingFlume
agent.sinks.elasticsearch.indexType = books
agent.sinks.elasticsearch.clusterName = usingFlumeCluster
agent.sinks.elasticsearch.serializer =
usingflume.ch05.HeaderAndBodyIndexRequestBuilderFactory

130 | Chapter 5: Sinks

agent.sinks.elasticsearch.serializer.writeHeaders = true
agent.sinks.elasticsearch.channel = esChannel

agent.channels.esChannel.type = memory
agent.channels.esChannel.capacity = 100000

Customizing the Data Format*
It is possible to customize the format in which the data is written out to Elastic Search
using a pluggable class that implements ElasticSearchIndexRequestBuilderFac
tory to build an IndexRequest for Elastic Search. This is the preferred way of adding
events to Elastic Search. There is a deprecated method to do this as well, which is to
implement ElasticSearchEventSerializer; this is still supported, though it might
be removed in the future.

To use a custom class to serialize data when writing to Elastic Search, specify the
FQCN of the class as the value of the serializer parameter. This class must imple‐
ment either ElasticSearchIndexRequestBuilderFactory or ElasticSearchEvent
Serializer. If this parameter is not specified, the events are serialized in a Kibana-
friendly format. Any parameters to be passed to the serializer can be passed using the
serializer. prefix. The ElasticSearchIndexRequestBuilderFactory interface is
shown in Example 5-10.

Example 5-10. ElasticSearchIndexRequestBuilderFactory interface

package org.apache.flume.sink.elasticsearch;
public interface ElasticSearchIndexRequestBuilderFactory extends Configurable,
 ConfigurableComponent {
 IndexRequestBuilder createIndexRequest(Client client,
 String indexPrefix, String indexType, Event event) throws IOException;
}

To make it easier to implement this interface, Flume provides an abstract class that
provides a basic implementation, AbstractElasticSearchIndexRequestBuilderFac
tory, that creates a new index daily, as explained in the previous section. A serializer
that inherits from this class would automatically create a new index per day (if, of
course, the class does not override the createIndexRequest method to change this
behavior).

To use the automatic index creation functionality, and also insert the data in some
custom format, the FQCN of a class that inherits this class should be the value of the
serializer parameter. To customize the data inserted into the index, the prepareIn
dexRequest method should be implemented. Example 5-11 can be used to insert
events into an Elastic Search index. If configured to write the headers, the headers are
inserted with their respective keys and the body is inserted with the body key (this

Elastic Search Sink | 131

serializer makes the assumption that there is no header with the body key). If the
headers are not configured to be written, the body is simply written as is.

Example 5-11. Example of an IndexRequestBuilderFactory implementation

package usingflume.ch05;

public class HeaderAndBodyIndexRequestBuilderFactory extends
 AbstractElasticSearchIndexRequestBuilderFactory {

 private String CONFIG_WRITE_HEADERS = "writeHeaders";
 // By default, don't write the headers.
 private boolean DEFAULT_WRITE_HEADERS = false;
 private boolean writeHeaders = false;
 private static final String BODY_HEADER = "body";

 public HeaderAndBodyIndexRequestBuilderFactory() {
 this(FastDateFormat.getDateInstance(FastDateFormat.FULL));
 }

 protected HeaderAndBodyIndexRequestBuilderFactory(
 FastDateFormat dateFormat) {
 super(dateFormat);
 }

 @Override
 public void configure(Context context) {
 writeHeaders = context.getBoolean(CONFIG_WRITE_HEADERS,
 DEFAULT_WRITE_HEADERS);
 }

 @Override
 public void configure(
 ComponentConfiguration componentConfiguration) {
 }

 @SuppressWarnings("unchecked")
 @Override
 protected void prepareIndexRequest(
 IndexRequestBuilder indexRequestBuilder,
 String indexName, String indexType, Event event)
 throws IOException {
 indexRequestBuilder.setIndex(indexName).setType(indexType);
 if (writeHeaders) {
 Map source = (Map) event.getHeaders();
 source.put(BODY_HEADER,
 new String(event.getBody(), Charsets.UTF_8));
 indexRequestBuilder.setSource((Map<String, Object>) source);
 } else {
 indexRequestBuilder.setSource(event.getBody());
 }

132 | Chapter 5: Sinks

 }
}

An example of this serializer being configured is shown in Example 5-9.

Both of the serializer base classes shown here are part of the flume-ng-

elasticsearch-sink artifact. To include it while building your serializer, add the fol‐
lowing to the pom.xml file’s dependency section:

 <dependency>
 <groupId>org.apache.flume.flume-ng-sinks</groupId>
 <artifactId>flume-ng-elasticsearch-sink</artifactId>
 <version>1.5.0</version>
 </dependency>

Elastic Search Client API

Since Elastic Search requires that Flume use the exact same version
of Elastic Search as the cluster, Flume does not package the Elastic
Search client libraries with it. The user must deploy the libraries
and all their dependencies in the agent’s classpath for the sink to be
able to write data.

Other Sinks: Null Sink, Rolling File Sink, Logger Sink
Flume comes packaged with several sinks that can be used for testing purposes.
Though we will not go into each one of these in detail, we will take a look at their
functionality and configuration. The Null Sink is a very simple sink that takes events
off the channel and discards them. The purpose of this sink is to test the functionality
and performance of the rest of the agent. The Null Sink removes events from the
channel in batches. The size of each batch is controlled by the batchSize parameter.
The sink can also update the log file every time it discards a certain number of events.
The number of events after which the sink logs to the log file is controlled by the
logEveryNEvents parameter. The Null Sink takes only a few parameters, listed in
Table 5-11.

Table 5-11. Null Sink configuration

Parameter Default
value

Description

type - The alias for the Null Sink is null. The FQCN, which is
org.apache.flume.sink.NullSink, can also be used.

batchSize 100 The number of events the sink removes from the channel before the transaction is
committed.

Other Sinks: Null Sink, Rolling File Sink, Logger Sink | 133

Parameter Default
value

Description

logEveryNEvents 10000 The number of events after which the sink logs to the log file.

The Rolling File Sink writes events to files on the local file system. The directory to
which the events should be written is specified by the sink.directory parameter.
This sink supports the same serializers as the HDFS Sink. The serializer is specified
by the sink.serializer configuration parameter. Just like with the HDFS Sink, con‐
figuration can be passed to the serializer using the sink.serializer. prefix. The sink
can roll the files based on a time interval. This interval is specified by the sink.roll
Interval (in seconds). The sink also supports batching of events into one transac‐
tion. The batch size is specified in the sink.batchSize parameter. The parameters for
Rolling File Sink configuration are shown in Table 5-12.

Table 5-12. Rolling File Sink configuration

Parameter Default
value

Description

type - The alias for the Rolling File Sink is file_roll. The FQCN, which is
org.apache.flume.sink.RollingFileSink, can also be used.

sink.batchSize 100 The number of events the sink removes from the channel before the transaction is
committed.

sink.directory - The directory that the sink should write events to.

sink.rollInterval 30 The time interval, in seconds, after which the file should be rolled.

sink.serializer TEXT The serializer to use to write events. This can be an alias for built-in serializers, or the
FQCN for custom classes.

sink.serializer.* - The configuration parameters to be passed to the serializer.

The Logger Sink logs to the log4j log file configured for the Flume agent in the
log4j.properties file. All of the configuration for the sink is picked up from the
log4j.properties file, and it does not require any other configuration (except the type
and channel parameters). The parameter for Logger Sink configuration is shown in
Table 5-13.

134 | Chapter 5: Sinks

Table 5-13. Logger Sink configuration

Parameter Default
value

Description

type - The alias for the Logger Sink is logger. The FQCN, which is
org.apache.flume.sink.LoggerSink, can also be used.

Writing Your Own Sink*
In many cases, it is likely that users will have to write custom sinks. An example of
such a case would be if the user needs to write the data to a proprietary data store or
in a custom format. In this section we will cover the basic workflow of a sink and
write an example of a custom sink.

A custom sink must implement the Sink interface, and optionally the Configurable
interface if the sink needs to accept configuration from the configuration system. To
better understand how to write a sink, it is important to understand how the Flume
framework interacts with a sink itself.

When the agent starts up, the framework checks to make sure each sink has a type
specified and has a channel parameter with a value representing a channel that exists
in the agent that has been properly configured. Then the sink is instantiated and the
configuration is passed to its configure method. If the configure method fails and
throws an exception, the sink is removed from the agent and the instance is dis‐
carded. Once the sink is successfully configured, it is connected to the channel it is
supposed to read events from.

From then on, the sink is managed by a sink runner. The sink runner is simply a
thread that is responsible for running a sink. The framework starts the sink by calling
the start method. If the start method fails, the framework will repeatedly retry
starting the sink.

Once the sink is started, the sink runner thread calls the process method in a loop.
This method is responsible for reading data from the channel and writing it out to the
next hop or to the final destination. Each process call must process an entire transac‐
tion—start a transaction, read events from the channel, commit or roll back the
transaction, and eventually close the transaction. If the channel does not contain any
events for the sink to remove, the process method must return Status.BACKOFF,
which causes the sink runner to retry only after an interval that increases each con‐
secutive time the sink returns Status.BACKOFF. This mechanism slows down the sink
when there is not enough data coming in. If the sink is successful, it must return Sta
tus.READY and the runner will call the process method again immediately.

Writing Your Own Sink* | 135

The sink must either return Status.BACKOFF or throw an exception to report failure
if it hits some exception while reading from the channel or writing to the destination.
This slows down the sink runner and is a regulating mechanism to avoid sending data
to the next hop if it is unable to clear data to downstream agents or the final destina‐
tion. The process method must be thread-safe for proper execution within the Flume
framework. An example of a custom sink is illustrated in Example 5-12.

Example 5-12. Example of a custom sink

package usingflume.ch05;

public class S3Sink extends AbstractSink implements Configurable {
 private String objPrefix;
 private final AtomicLong suffix = new AtomicLong(System
 .currentTimeMillis());
 private String awsAccessKeyId;
 private String awsSecretKey;
 private String bucket;
 private int batchSize;
 private String endPoint;
 private int bufferSize;
 private AmazonS3 connection;

 // 64K buffer
 public static final int DEFAULT_BUFFER_SIZE = 64 * 1024;
 public static final int DEFAULT_BATCH_SIZE = 1000;
 public static final String DEFAULT_OBJECT_PREFIX = "flumeData-";

 @Override
 public void start() {
 // Set up Amazon S3 client
 AWSCredentials credentials = new BasicAWSCredentials(
 awsAccessKeyId, awsSecretKey);
 ClientConfiguration config = new ClientConfiguration();
 config.setProtocol(Protocol.HTTP);
 connection = new AmazonS3Client(credentials, config);
 connection.setEndpoint(endPoint);
 if (!connection.doesBucketExist(bucket)) {
 connection.createBucket(bucket);
 }
 super.start();
 }

 @Override
 public synchronized void stop() {
 super.stop();
 }

 @Override
 public Status process() throws EventDeliveryException {

136 | Chapter 5: Sinks

 Status status = Status.BACKOFF;
 Transaction tx = null;
 final ByteArrayOutputStream data
 = new ByteArrayOutputStream(bufferSize);
 try {
 tx = getChannel().getTransaction();
 tx.begin();
 int i = 0;
 for (; i < batchSize; i++) {
 Event e = getChannel().take();
 if (e == null) {
 break;
 }
 byte[] body = e.getBody();
 data.write(
 ByteBuffer.allocate(Integer.SIZE / 8).putInt(body.length).array());
 data.write(body);
 }
 if (i != 0) {
 connection.putObject(bucket,
 objPrefix + suffix.incrementAndGet(),
 new ByteArrayInputStream(data.toByteArray()),
 new ObjectMetadata());
 status = Status.READY;
 }
 tx.commit();
 } catch (Exception e) {
 if (tx != null) {
 tx.rollback();
 }
 throw new EventDeliveryException("Error while processing " +
 "data", e);
 } finally {
 if (tx != null) {
 tx.close();
 }
 }
 return status;
 }

 @Override
 public void configure(Context context) {
 awsAccessKeyId = context.getString("awsAccessKeyId");
 Preconditions.checkArgument(!Strings.isNullOrEmpty(awsAccessKeyId),
 "AWS Key Id is required");

 awsSecretKey = context.getString("awsSecretKey");
 Preconditions.checkArgument(!Strings.isNullOrEmpty(awsSecretKey),
 "AWS Secret Key must be specified");

 bucket = context.getString("bucket");
 Preconditions.checkArgument(!Strings.isNullOrEmpty(bucket),

Writing Your Own Sink* | 137

 "Bucket name must be specified");

 endPoint = context.getString("endPoint");
 Preconditions.checkArgument(!Strings.isNullOrEmpty(endPoint),
 "Endpoint cannot be null");

 batchSize = context.getInteger("batchSize", DEFAULT_BATCH_SIZE);
 objPrefix = context.getString("objectPrefix", DEFAULT_OBJECT_PREFIX);
 bufferSize = context.getInteger("bufferSize", DEFAULT_BUFFER_SIZE);
 }
}

This example shows a sink that writes data to Amazon S3 buckets [s3]. This sink is an
example of a terminal sink that writes data to a storage system. It reads data from
channels and writes them out in batches to text files on Amazon S3.

The S3 Sink inherits from the AbstractSink class and implements the Configurable
interface. When the agent starts up, the framework configures the sink by calling the
configure method. The sink sets up the credentials that are required to log in to the
S3 service. The bucket name and endpoint to which to connect are also read from the
configuration file. Since these parameters are required, the method validates that these
values are passed in by the configuration file and are not empty. Parameters like
batchSize and an object name prefix can be optionally passed in. If they are not,
defaults are used.

The Flume framework then starts the sink by calling the start method. In this
method, the sink sets up the required connections and bucket information.

Once the sink is started, the sink runner calls the process method in a loop. In the
process method, the sink creates a transaction by calling the channel’s getTransac
tion method. The transaction is started using the Transaction.begin method, then
the sink reads as many events as the batch size by calling the take method on the
channel (or until no more events are available from the channel—the take method
returns null at this point), and writes them out to S3. The sink also prepends the
length of each event to every event to ensure that we can read multiple events from
the same file. Once the data is successfully written, the transaction is committed;
otherwise, it is rolled back. Eventually, the transaction must be closed (this should
always be done in a finally block). If no events were read, the sink runner is asked
to slow down by returning Status.BACKOFF from the process method; otherwise, the
method returns Status.READY. If any exception is thrown, the sink runner catches
the exception and backs off automatically.

Eventually, when the agent is stopped, the stop method is called. The stop method
must close any network connections and shut down any threads or thread pools that
may have been created.

138 | Chapter 5: Sinks

Custom sinks can be deployed to a Flume agent using the plug-in deployment frame‐
work shown in “Deploying Custom Code” on page 204.

Summary
In this chapter, we discussed the basic sink concepts and the various sinks that come
bundled with Flume, including the RPC sinks and sinks that push data to storage and
indexing systems. We also discussed how to write custom sinks to move data to sys‐
tems that Flume does not support out of the box.

In the next chapter, we will cover other components in the Flume architecture: inter‐
ceptors, channel selectors, sink groups, and sink processors, which allow Flume to be
even more flexible and extensible.

References
• [tz-list] IANA Time Zone Data, http://www.iana.org/time-zones
• [kerberos] MIT Kerberos, http://web.mit.edu/~kerberos/
• [impersonation] Hadoop impersonation configuration, http://bit.ly/1ARZHsp
• [container-files] Avro container file specification, http://bit.ly/1ARZKoe
• [asynchbase] AsyncHBase, https://github.com/OpenTSDB/asynchbase
• [hbase-book] HBase: The Definitive Guide, O’Reilly Media
• [hbase-security] HBase client-side security configuration, http://bit.ly/1AS0qKj
• [put-request] AsyncHBase PutRequest, http://bit.ly/1ARZVjm
• [increment-request] AsyncHBase AtomicIncrementRequest, http://bit.ly/

1ARZYLX
• [thrift_ch5] Apache Thrift, http://thrift.apache.org/docs/concepts
• [zlib_ch5] zlib compression library, http://www.zlib.net
• [truststores] Oracle Java trust store, http://bit.ly/1AS0bPj
• [morphlines_ch5] Morphlines: Kite SDK, http://bit.ly/1AS0g5I
• [solr] Apache Solr, https://lucene.apache.org/solr/
• [solr-unique-key] Apache Solr unique key, http://bit.ly/1AS0fi8
• [solr-on-hdfs] Apache Solr on HDFS, http://bit.ly/1AS0jhN
• [kibana] Kibana Elastic Search UI, http://www.elasticsearch.org/overview/kibana/
• [s3] Amazon S3, http://aws.amazon.com/s3/

Summary | 139

http://www.iana.org/time-zones
http://web.mit.edu/~kerberos/
http://bit.ly/1ARZHsp
http://bit.ly/1ARZKoe
https://github.com/OpenTSDB/asynchbase
http://bit.ly/1AS0qKj
http://bit.ly/1ARZVjm
http://bit.ly/1ARZYLX
http://bit.ly/1ARZYLX
http://thrift.apache.org/docs/concepts
http://www.zlib.net/
http://bit.ly/1AS0bPj
http://bit.ly/1AS0g5I
https://lucene.apache.org/solr/
http://bit.ly/1AS0fi8
http://bit.ly/1AS0jhN
http://www.elasticsearch.org/overview/kibana/
http://aws.amazon.com/s3/

CHAPTER 6

Interceptors, Channel Selectors, Sink
Groups, and Sink Processors

As we discussed in previous chapters, the most important Flume agent components
are sources, channels, and sinks. In addition to these, a Flume agent has a few more
components that make Flume even more flexible. In this chapter, we will discuss
interceptors, channel selectors, sink groups, and sink processors.

Interceptors
Interceptors are simple pluggable components that sit between a source and the chan‐
nel(s) it writes to. Events received by sources can be transformed or dropped by inter‐
ceptors before they are written to the corresponding channels. Each interceptor
instance processes events received by only one source. Interceptors can remove
events or transform them based on any arbitrary criteria, but an interceptor must
return only as many (or as few) events as originally passed to it.

Any number of interceptors can be added to transform events coming from a single
source, in a chain. The source passes all events in one transaction to the channel pro‐
cessor, which in turn passes it to the interceptor chain, which passes the events to the
first interceptor in the chain. The list of events resulting from the transformation of
events by this interceptor gets passed to the next interceptor in the chain, and so on.
The final list of events returned by the last interceptor in the chain gets written out to
the channel.

Since the interceptors must complete their transformations before the events get writ‐
ten to the channel, RPC sources (and any other sources that may have timeouts) will
respond to the client or the sinks that sent the events only after the interceptors have
successfully transformed the events. Therefore, it is a not a good idea to do a lot of

141

heavyweight processing in interceptors. If the processing being done in the intercep‐
tors is heavy and time-consuming, timeouts should be adjusted accordingly.

The only configuration parameter common to all interceptors is the type parameter,
which must be the alias of the interceptor or the FQCN of a Builder class that can
build the interceptor. As mentioned previously, there can be an arbitrary number of
interceptors connected to a single source.

Interceptors are named components, and an interceptor instance is identified by a
name. To add interceptors to a source, list the names of the interceptors that the
source should be connected to as the value of the interceptors parameter in the
configuration of the source. Any values prefixed in the source configuration with
interceptors. followed by the name of the interceptor and the parameter are passed
to the interceptor. The following configuration shows an example of how to configure
interceptors:

agent.sources.avroSrc.interceptors = hostInterceptor timestampInterceptor
agent.sources.avroSrc.interceptors.hostInterceptor.type = host
agent.sources.avroSrc.interceptors.hostInterceptor.preserveExisting = true
agent.sources.avroSrc.interceptors.timestampInterceptor.type = timestamp
agent.sources.avroSrc.interceptors.timestampInterceptor.preserveExisting = false

There are several interceptors that come bundled with Flume, with more being added
regularly. In this section, we will discuss a few of the most commonly used intercep‐
tors that are built into Flume.

Timestamp Interceptor
One of the most commonly used interceptors, the timestamp interceptor inserts the
timestamp into the Flume event headers, with the timestamp key, which is the header
that the HDFS Sink uses for bucketing. If the timestamp header is already present,
this interceptor will replace it unless the preserveExisting parameter is set to false.
To add a timestamp interceptor, use the alias timestamp. This interceptor is com‐
monly used on the first-tier agent that receives the data from a client, so that the
HDFS Sink can use the timestamp for bucketing. The configuration parameters for
the timestamp interceptor are shown in Table 6-1.

Table 6-1. Timestamp interceptor configuration

Parameter Default Description

type - The type name is timestamp. The FQCN of the Builder class,
org.apache.flume.interceptor.TimestampInterceptor$Builder,
can also be used.

preserveExisting false If set to true, the value of the timestamp header is not replaced if the header is already
present in the event.

142 | Chapter 6: Interceptors, Channel Selectors, Sink Groups, and Sink Processors

An example of an agent with a source connected to a timestamp interceptor is shown
here:

agent.sources.avro.interceptors = timestampInterceptor
agent.sources.avro.interceptors.timestampInterceptor.type = timestamp
agent.sources.avro.interceptors.timestampInterceptor.preserveExisting = false

Host Interceptor
The host interceptor inserts the IP address or hostname of the server on which the
agent is running into the Flume event headers. The key to be used in the headers is
configurable using the hostHeader parameter, but defaults to host.If the header that
this interceptor is configured to use exists in the event, it will be replaced if preser
veExisting is false (or is not specified). To insert the hostname instead of the IP
address, set useIP to false. The configuration parameters for the host interceptor are
outlined in Table 6-2.

Table 6-2. Host interceptor configuration

Parameter Default Description

type - The type name is host. The FQCN of the Builder class,
org.apache.flume.interceptor.HostInterceptor$Builder, can also
be used

hostHeader host The key for the header in which to insert the IP address/hostname.

useIP true If set to true, the value inserted for the host key is the IP address.

preserveExisting false If set to true, the value of the host header is not replaced if the header is already
present in the event.

The following example shows the configuration of a host interceptor configured to
write the hostname in the event headers, and not replace the value of the header if it
already exists in the event:

agent.sources.avro.interceptors = hostInterceptor
agent.sources.avro.interceptors.hostInterceptor.type = host
agent.sources.avro.interceptors.hostInterceptor.useIP = false
agent.sources.avro.interceptors.hostInterceptor.preserveExisting = true

Static Interceptor
The static interceptor simply inserts a fixed header key and value into every event that
it intercepts. The header key and value are configurable, though they default to key
and value, respectively. The interceptor also has the preserveExisting parameter,
which preserves the existing key-value pair in the headers if the key already exists in

Interceptors | 143

the headers. This parameter has a default value of true (unlike in the timestamp and
host interceptors). The configuration parameters for the static interceptor are shown
in Table 6-3.

Table 6-3. Static interceptor configuration

Parameter Default Description

type - The type name is static. The FQCN of the Builder class,
org.apache.flume.interceptor.HostInterceptor$Builder, can also
be used.

key key The key to use for the header.

value value The value to insert for the specific key.

preserveExisting true If set to false, the value for the specified key is replaced by the value specified in the
value parameter, if the key already exists in the event headers.

The following configuration causes every event processed by the interceptor to have a
header with the key book with the value usingFlume:

agent.sources.avro.interceptors = staticInterceptor
agent.sources.avro.interceptors.hostInterceptor.type = static
agent.sources.avro.interceptors.staticInterceptor.key = book
agent.sources.avro.interceptors.staticInterceptor.value = usingFlume
agent.sources.avro.interceptors.staticInterceptor.preserveExisting = false

Regex Filtering Interceptor
The regex filtering interceptor can be used to filter events passing through it. The fil‐
tering is based on a regular expression (regex) supplied in the configuration. Each
regex filtering interceptor converts the event’s body into a UTF-8 string and matches
that string against the regex provided. Once matched, it can either allow the event to
pass through or drop the event. The interceptor can be configured to drop events
matching the regex or allow events matching the regex to pass through.

Several such interceptors can be added to a single source to perform more complex
filtering, with only events matching certain patterns being written to the channel,
while if they also match another pattern, they can be dropped. Regex filtering inter‐
ceptors can be used to make sure only important events are passed through Flume
agents to reduce the volume of data being pushed into HDFS or HBase. Table 6-4 lists
the regex filtering interceptor configuration parameters.

144 | Chapter 6: Interceptors, Channel Selectors, Sink Groups, and Sink Processors

Table 6-4. Regex filtering interceptor configuration

Parameter Default Description

type - The type name is regex_filter. The FQCN of the Builder class,
org.apache.flume.interceptor.RegexFilteringInterceptor

$Builder, can also be used.

regex .* The regex to match the event body against.

excludeEvents false If set to true, events that match the regex are dropped; otherwise, only events that match
the regex are allowed to pass through.

The excludeEvents parameter decides what is to be done when the event body
matches the regex. If this parameter is set to true, all events that match the regex are
dropped and all the remaining events are let through. If this is set to false, events
matching this regex are the only ones that are let through, and all others are dropped.

The following configuration shows a set of two regex filtering interceptors that allow
through any events with the word “flume” in them, but not if the word “DEBUG”
appears anywhere in the messages. Such combinations can be used to ensure that
only messages that come from a particular source and that match some other criteria
are let through:

agent.sources.avroSrc.interceptors = include exclude
agent.sources.avroSrc.interceptors.include.type = regex_filter
agent.sources.avroSrc.interceptors.include.regex = .*flume.*
agent.sources.avroSrc.interceptors.include.excludeEvents = false
agent.sources.avroSrc.interceptors.exclude.type = regex_filter
agent.sources.avroSrc.interceptors.exclude.regex = .*DEBUG.*
agent.sources.avroSrc.interceptors.exclude.excludeEvents = true

Morphline Interceptor
We discussed the Morphline Solr Sink in “Morphline Solr Sink” on page 125, in
which we also described how morphlines can be used for processing events and then
loading them into Solr. It is also possible to use the same morphline commands to
make event transformations. This interceptor simply takes information about which
morphline file to use and which morphline from that file to use for processing the
events.

If heavyweight processing is required, it is better to use the Morphline Solr Sink, as
time taken in processing in the interceptor should not cause timeouts for the source
or the Avro Sink writing to the source. Complex morphlines like loadSolr should
not be used from the interceptor. For more details on how to use morphlines, refer to
the Kite SDK documentation [morphlines_ch6]. Table 6-5 outlines the configuration
parameters for the morphline interceptor.

Interceptors | 145

Table 6-5. Morphline interceptor configuration

Parameter Default Description

type - The FQCN of the Builder class, org.apache.flume.sink.solr.morph
line.MorphlineInterceptor$Builder, must be used.

morphlineFile - The file containing the morphline to use.

morphlineId - The ID of the morphline to use if there are multiple morphlines in the file.

The morphlineFile parameter specifies the full path to the file containing the
morphline that is to transform the event. The morphlineId parameter specifies the ID
of the morphline in that file that should be used to transform the event.

An example of a morphline interceptor configuration that loads the morphline with
ID usingFlume from the file /etc/flume/conf/morphline.conf to process events passed
to it is shown here:

agent.sources.avroSrc.interceptors = morphlineInterceptor
agent.sources.avroSrc.interceptors.morphlineInterceptor.type = \
org.apache.flume.sink.solr.morphline.MorphlineInterceptor$Builder
agent.sources.avroSrc.interceptors.morphlineInterceptor.morphlineFile = \
/etc/flume/conf/morphline.conf
agent.sources.avroSrc.interceptors.morphlineInterceptor.morphlineId = usingFlume

As with the Morphline Solr Sink, the morphline configuration file and the JARs con‐
taining the morphlines used must be deployed using the plug-in deployment frame‐
work described in “Deploying Custom Code” on page 204.

UUID Interceptor
Systems like Solr require each document written to them to have a unique ID. The
UUID (universally unique identifier) interceptor can be used to generate such unique
identifiers for every event. The UUID generated can be set as the value of a configu‐
rable parameter. It can be optionally prefixed with a preconfigured prefix string as
well. Table 6-6 lists the configuration parameters for the UUID interceptor.

Table 6-6. UUID interceptor configuration

Parameter Default Description

type - The FQCN of the Builder class, org.apache.flume.sink.solr.morph
line.UUIDInterceptor$Builder, must be used.

headerName id The key for the header whose value the UUID should be inserted as.

prefix - The prefix to be added before the UUID.

146 | Chapter 6: Interceptors, Channel Selectors, Sink Groups, and Sink Processors

Parameter Default Description

preserveExisting true If set to false, the value of the header specified by headerName is overwritten with
the prefix+UUID generated.

An example of a UUID interceptor that adds UUIDs (prefixed with usingFlume-) as
the value of the header eventId and replaces any existing eventId is shown here:

agent.sources.avroSrc.interceptors = uuidInterceptor
agent.sources.avroSrc.interceptors.uuidInterceptor.type = \
org.apache.flume.sink.solr.morphline.UUIDInterceptor$Builder
agent.sources.avroSrc.interceptors.uuidInterceptor.headerName = eventId
agent.sources.avroSrc.interceptors.uuidInterceptor.prefix = usingFlume-
agent.sources.avroSrc.interceptors.uuidInterceptor.preserveExising = false

UUID Generated by the UUID Interceptor

This interceptor generates version 4 UUIDs, which are pseudo-
random in nature. For applications that require very strong guar‐
antees of UUID uniqueness, it might be better to write a custom
interceptor that gives these guarantees.

Writing Interceptors*
Interceptors are among the easiest Flume components to write. To write interceptors,
the implementor needs to simply write a class that implements the Interceptor
interface. The interface itself is fairly simple, though Flume mandates that all inter‐
ceptors must have a Builder class that implements the Interceptor$Builder inter‐
face. All Builders must also have a public no-argument constructor that Flume uses to
instantiate them. Interceptors can be configured using the Context instance that is
passed to the builder. Any required parameters should be passed through this Con
text instance.

Interceptors are commonly used to analyze events and drop events if needed. Often,
interceptors are used to insert headers into the events, which are later used by the
HDFS Sink (for timestamps or for header-based bucketing), HBase Sink (for row
keys), etc. These headers are often also used with the multiplexing channel processor
to bifurcate the flow into multiple flows or to send events to different sinks based on
priority—which is analyzed by the interceptor. This way string processing to do regex
matching and detect the priority (based on things like log levels) can be offloaded
from the application that is creating the data.

Example 6-1 shows the Interceptor interface that all interceptors must implement.

Interceptors | 147

Example 6-1. Interceptor interface

package org.apache.flume.interceptor;
public interface Interceptor {
 public void initialize();
 public Event intercept(Event event);
 public List<Event> intercept(List<Event> events);
 public void close();
 /** Builder implementations MUST have a no-arg constructor */
 public interface Builder extends Configurable {
 public Interceptor build();
 }
}

When implementing an interceptor, there are two methods that process events, both
called intercept, that take different arguments and also vary in return value. The
first variant of this method takes just one event and returns one event (or null), and
the second variant takes in a list of events and returns a list of events. In both cases,
this is what comprises one transaction with the channel. Both these methods must be
thread-safe, since these methods can be called from multiple threads if the source
runs several threads.

If the variant that takes in one event is called, then the transaction will have exactly
one event and is called by the channel processor’s processEvent method, which is
called by the source for processing the event. When the second variant is called, the
channel processor’s processEventBatch method is called by the source, and all events
in the list returned by the interceptor are written in a single transaction. See “Writing
Your Own Sources*” on page 69 to understand the difference between processEvent
and processEventBatch.

Example 6-2 shows a simple interceptor that illustrates how an interceptor works.
The channel processor instantiates the builder and then calls the builder object’s con
figure method, which it passes the Context instance that contains the configuration
parameters to be used to configure the interceptor. The channel processor then calls
the build method, which returns the interceptor. The channel processor initializes
the interceptor by calling the initialize method of the interceptor instance. It is
usually a good idea to pass the configuration to the interceptor via the constructor, so
the interceptor can make all state based on configuration final, as is done in the
CounterInterceptor class.

Example 6-2. A simple interceptor

package usingflume.ch06;

public class CounterInterceptor implements Interceptor {
 private final String headerKey;
 private static final String CONF_HEADER_KEY = "header";

148 | Chapter 6: Interceptors, Channel Selectors, Sink Groups, and Sink Processors

 private static final String DEFAULT_HEADER = "count";
 private final AtomicLong currentCount;

 private CounterInterceptor(Context ctx) {
 headerKey = ctx.getString(CONF_HEADER_KEY, DEFAULT_HEADER);
 currentCount = new AtomicLong(0);
 }

 @Override
 public void initialize() {
 // No op
 }

 @Override
 public Event intercept(final Event event) {
 long count = currentCount.incrementAndGet();
 event.getHeaders().put(headerKey, String.valueOf(count));
 return event;
 }

 @Override
 public List<Event> intercept(final List<Event> events) {
 for (Event e : events) {
 intercept(
 e); // Ignore the return value; the event is modified in place
 }
 return events;
 }

 @Override
 public void close() {
 // No op
 }

 public static class CounterInterceptorBuilder
 implements Interceptor.Builder {

 private Context ctx;

 @Override
 public Interceptor build() {
 return new CounterInterceptor(ctx);
 }

 @Override
 public void configure(Context context) {
 this.ctx = context;
 }
 }
}

Interceptors | 149

CounterInterceptor’s intercept methods are thread-safe, because the only variable
that is accessed by the instance is either final (all variables initialized on the basis of
configuration) or uses thread-safe classes (the AtomicLong instance used as a
counter). The intercept method that processes a list of events simply calls the var‐
iant of the intercept method that processes one event in a loop. It is advised that all
custom interceptors follow this pattern. In this case, since the events are just trans‐
formed in place, a new list is not created and the original list is simply returned with
the modified events. It is also possible to create a new list and add new events to that
one, if required. Events can be dropped by either removing them from the original
list if that is being returned, or by not adding the event to the new list being returned.

How Many Events Can an Interceptor Return?

An interceptor is not allowed to return more events than originally
passed to it, though it may return fewer events. The logic behind
this is that interceptors adding more events can cause more events
to be written to the channel than its transaction capacity, even if
the Avro Sink sending data to the Avro Source is sending fewer
events per batch than the transaction capacity. If an interceptor
drops all events passed to it, the interceptor must still return a list,
which may be empty if all events are dropped.

Custom interceptors can be deployed in the plugins.d directory, as explained in
“Deploying Custom Code” on page 204.

Channel Selectors
Channel selectors are the components that decide which channels a specific event
received by the source is to be written to. They inform the channel processor, which
then writes the events to each channel.

Since Flume does not have two-phase commits, events are written to a channel, then
committed before events are written to the next channel. If writes to one of the chan‐
nels fail, writes of the same events that may have happened to other channels cannot
be rolled back. When such a failure happens, the channel processor throws a Channe
lException and fails the transaction. If the source tries to write the same events again
(in most cases it will; only sources like Syslog, Exec, etc. cannot retry since there is no
way of producing the same data again), duplicate events will get written to the
channels where the previous commit was actually successful. This is one of the ways
in which duplicates can occur in a Flume pipeline.

Channel selector configuration is done via the channel processor, though the configu‐
ration looks like configuration for a subcomponent of a source. All parameters to be
passed to the channel selector are passed as parameters in the source context, with

150 | Chapter 6: Interceptors, Channel Selectors, Sink Groups, and Sink Processors

the selector suffix. For each source, the selector is specified by using a configuration
parameter, type. Channel selectors can specify a set of channels as required and
another set as optional, as described in Chapter 2. The one parameter common to all
channel selectors is shown in Table 6-7.

Table 6-7. Channel selector configuration

Configuration parameter Default Description

type replicating The alias or FQCN of the channel selector to use for the source.

Flume comes packaged with two channel selectors: replicating and multiplexing.
If a source does not specify a selector in the configuration, then the replicating chan‐
nel selector is automatically used. An example of a channel selector configuration is
shown here:

agent.sources.avroSrc.selector.type = multiplexing
agent.sources.avroSrc.selector.header = priority
agent.sources.avroSrc.selector.mapping.1 = channel1
agent.sources.avroSrc.selector.mapping.2 = channel2
agent.sources.avroSrc.selector.default = channel2

Replicating Channel Selector
If no selector is specified for a source, the replicating channel selector is used for that
source. The replicating channel selector replicates every event to all channels speci‐
fied by the channels parameter for that source.

In addition to the parameter specified in Table 6-7, the replicating selector takes only
one configuration parameter, optional, which takes a list of space-separated channel
names. This parameter is optional. All channels specified in this parameter are con‐
sidered optional, so if event writes to any of these channels fail, the failure is simply
ignored. Any failure to write to any other channel will cause an exception to be
thrown to the source, indicating failure and asking the source to retry.

The following source configuration shows the use of a replicating channel selector
with no optional channels:

agent.sources.avroSrc.type = avro
agent.sources.avroSrc.channels = c1 c2 c3

This configuration causes every event received by the Avro Source to get written to all
three channels, c1, c2, and c3. If any one of them is full, or cannot be written to for
any other reason, the Avro Source gets a ChannelException, which causes the source
to inform the previous hop (the Avro Sink or RPC client that sent the message) of the
failure, causing it to retry (a retry is guaranteed in the case of the Avro Sink, though
how the application using the RPC client behaves is application-dependent).

Channel Selectors | 151

If this configuration is changed to make c3 optional, as shown next, a failure to write
to c3 will not cause a ChannelException to be thrown to the source, and the source
will inform the previous hop that the write was successful:

agent.sources.avroSrc.type = avro
agent.sources.avroSrc.channels = c1 c2 c3
agent.sources.avroSrc.selector.optional = c3

Optional channels also must be listed in the source’s channels parameter, but they
must be marked optional using the optional parameter passed to the selector. Note
that even though we did not have to specify the selector’s type here (since it is the
default), the configuration parameters are still passed in. The replicating channel
selector does not do any other processing or bifurcation of the flow; it simply repli‐
cates the data. This allows events to be written to more than one destination, by hav‐
ing sinks going to different destinations read from each of the channels.

Multiplexing Channel Selector
The multiplexing channel selector is a more specialized channel selector that can be
used to dynamically route events by selecting the channels an event should be written
to, based on the value of a specific header. Combined with interceptors, it is possible
to do some sort of analysis on the event and then decide which channels it should get
written to.

The multiplexing channel selector looks for a specific header, specified by the config‐
uration for the selector. Based on the value of this header, the selector returns a subset
of channels the event is to be written to. The list of channels to be written to is speci‐
fied in the configuration for each of the header values. If the value of the header in a
specific event is not specified in the configuration, the event is written to the default
channels for the channel selector.

Figure 6-1 shows the flow of an event to one or more channels based on the value of a
header. In this case, the selector checks the value of the priority header. Events with
either priority 1 or 2 are written to HDFS, while events with priority 1 are also writ‐
ten to HBase. Such routing can be done even on tiers where the data is received, to
send higher-priority events via a faster, unreliable flow (using Memory Channels) for
lower latencies while sending all events (including the high-priority ones) over
slightly slower but reliable flows (using File Channels) and later de-deduping, if
necessary.

152 | Chapter 6: Interceptors, Channel Selectors, Sink Groups, and Sink Processors

Figure 6-1. Multiplexing channel selector

Table 6-8 shows the configuration parameters for multiplexing channel selectors.
Note that all configuration parameters shown here must be prefixed with selector.
in the source context.

Table 6-8. Multiplexing channel selector configuration

Configuration parameter Default Description

type - multiplexing

header flume.selector.header The header whose value must be checked for routing the
event.

mapping.<hdr-value> - The list of mappings for the header. Each mapping is a list
of channels the event must be written to, if the value of
the header matches the value (<hdr-value>) in this
parameter.

optional.<hdr-value> - Same as mapping, but channels specified in this list are
considered optional, and write failures are ignored.

default - The list of channels the event must be written to if the
header is not present or its value does not have a specified
mapping.

Configuring a multiplexing channel selector is quite a bit different from configuring a
replicating selector. As usual, all channels the source writes to must be specified in the

Channel Selectors | 153

source’s channels parameter. To enable the multiplexing channel selector for a
source, the source’s selector.type parameter must be set to multiplexing. All
parameters to be passed to the channel selector are passed with the source prefix for
that source followed by selector., as shown here:

agent.sources.avroSrc.type = avro
agent.sources.avroSrc.channels = c1 c2 c3
agent.sources.avroSrc.selector.type = multiplexing
agent.sources.avroSrc.selector.default = c3

For each event, the selector looks for the header with the key specified by the header
parameter in the configuration. Next, it checks if the value of the header is any one of
the values specified in the configuration with the mapping. prefix. If one of the map‐
pings matches, then it writes the event out to the channels specified by the mapping.
Optional mappings can also be specified using the optional. prefix instead of the
mapping. prefix. Any write failures to the list of channels specified as optional for a
value are simply ignored. If the selector does not find a match or the header itself
does not exist, then it writes the event to the channels specified in the default
parameter. If an event doesn’t map to any required channel, but does map to one or
more optional channels, the event is written out to the optional channels and the
default channel(s). Any failure to write to the default channel will cause a ChannelEx
ception to be thrown.

The following shows an example of configuration of a source configured with a mul‐
tiplexing channel selector:

agent.sources.avroSrc.type = avro
agent.sources.avroSrc.channels = c1 c2 c3 c4 c5
agent.sources.avroSrc.selector.type = multiplexing
agent.sources.avroSrc.selector.header = priority
agent.sources.avroSrc.selector.mapping.1 = c1 c2
agent.sources.avroSrc.selector.mapping.2 = c2
agent.sources.avroSrc.selector.optional.1 = c3
agent.sources.avroSrc.selector.optional.2 = c4
agent.sources.avroSrc.selector.optional.3 = c4
agent.sources.avroSrc.selector.default = c5

In this example, the Avro Source writes events to four channels. Unlike with the repli‐
cating channel selector, though, not all events get written to all the four channels. For
each event, the channel selector looks for the header with the priority key.

For each event with priority 1, the events are written to three channels, c1, c2, and c3,
of which c3 is marked as optional. So, if writes to c1 or c2 fail, the source gets an
exception from the channel processor’s processEvent or processEventBatch method
and the source has to retry. But since c3 is marked optional, if a write to c3 fails, the
source does not get an exception and is unaware of the failure, as this failure is
ignored by the channel processor.

154 | Chapter 6: Interceptors, Channel Selectors, Sink Groups, and Sink Processors

Similarly, any event with priority 2 gets written to c2 and optionally c4. As is clear,
channels can appear in multiple mappings, like c2 in this example. Channels with pri‐
ority 1 or 2 are written to c2—this is how the example shown in Figure 6-1 is
achieved.

Events where the priority header is missing or has a value other than 1 or 2 get writ‐
ten to the default channel(s)—in this case, c5. If there are no required channels found
for an event, the event will get written to the optional channels for that event and the
default channel. In this example, an event with priority 3 would get written to chan‐
nels c4 and c5. If the write to c4 fails, it is simply ignored, but if the write to c5 fails,
the source gets an exception and the event has to be rewritten.

Custom Channel Selectors*
It is possible to write and deploy a custom channel selector, allowing you to use
deployment-specific logic to control the flow of events. To implement a custom chan‐
nel selector, the selector needs to implement the ChannelSelector interface or inherit
from the AbstractChannelSelector class. The AbstractChannelSelector class is
shown in Example 6-3.

For every event, the channel processor calls the getRequiredChannels and getOptio
nalChannels methods of the channel selector, which return the list of required and
optional channels the event is to be written to. If writes to any of the required chan‐
nels fail, the channel processor throws a ChannelException, causing the source to
retry. Any failure to write to any of the optional channels is ignored.

Example 6-3. AbstractChannelSelector class that can be inherited by custom selectors

package org.apache.flume.channel;

public abstract class AbstractChannelSelector implements ChannelSelector {

 private List<Channel> channels;
 private String name;

 @Override
 public List<Channel> getAllChannels() {
 return channels;
 }

 @Override
 public void setChannels(List<Channel> channels) {
 this.channels = channels;
 }

 @Override
 public synchronized void setName(String name) {

Channel Selectors | 155

 this.name = name;
 }

 @Override
 public synchronized String getName() {
 return name;
 }

 protected Map<String, Channel> getChannelNameMap() {
 Map<String, Channel> channelNameMap = new HashMap<String, Channel>();
 for (Channel ch : getAllChannels()) {
 channelNameMap.put(ch.getName(), ch);
 }
 return channelNameMap;
 }

 protected List<Channel> getChannelListFromNames(String channels,
 Map<String, Channel> channelNameMap) {
 List<Channel> configuredChannels = new ArrayList<Channel>();
 if(channels == null || channels.isEmpty()) {
 return configuredChannels;
 }
 String[] chNames = channels.split(" ");
 for (String name : chNames) {
 Channel ch = channelNameMap.get(name);
 if (ch != null) {
 configuredChannels.add(ch);
 } else {
 throw new FlumeException("Selector channel not found: "
 + name);
 }
 }
 return configuredChannels;
 }

}

The channel processor calls the setChannels method, to which it passes all the chan‐
nels from which the selector must select the channels for each event. This class imple‐
ments the Configurable interface, so the configure method is called when the selec‐
tor is initialized. The getRequiredChannels and getOptionalChannels methods are
called by the processor when each event is being processed. The getAllChannels
method must return all the channels that were set by the channel processor during
setup.

This class also provides a couple of convenience methods—one that returns a map of
channel names to the actual channel instances and another that returns a list of chan‐
nel instances given a list of channel names represented as a space-delimited string. A
custom channel selector can be deployed using the FQCN:

156 | Chapter 6: Interceptors, Channel Selectors, Sink Groups, and Sink Processors

agent.sources.avroSrc.type = avro
agent.sources.avroSrc.channels = c1 c2 c3 c4 c5
agent.sources.avroSrc.selector.type = com.usingflume.selector.RandomSelector
agent.sources.avroSrc.selector.default = c5
agent.sources.avroSrc.selector.random.seed = 4532

Custom selectors get all configuration parameters that are passed in with the
agent.sources.avro.selector. in this case, just like any other component. In this
example, the selector will get a Context instance in the configure method with keys
default and random.seed with values c5 and 4532, respectively.

Custom channel selectors should be dropped into the plugins.d directory as described
in “Deploying Custom Code” on page 204.

Sink Groups and Sink Processors
In Chapter 5, we discussed how sinks work and the various sinks that come bundled
with Flume. We also briefly discussed sink groups and sink processors. As we dis‐
cussed before, the Flume configuration framework instantiates one sink runner per
sink group to run a sink group. Each sink group can contain an arbitrary number of
sinks. The sink runner continuously asks the sink group to ask one of its sinks to read
events from its own channel. Sink groups are typically used for RPC sinks to send
data between tiers in either a load-balancing or failover fashion.

Since RPC sinks are designed to connect to exactly one RPC source, sending data
from one Flume agent to a set of agents in the next tier requires at least as many sinks
as the agent is sending events to. To make sure each agent sends events to several des‐
tination agents in the next tier, and each tier on one tier sends data to all next-tier
agents without overwhelming the network or those agents, each agent can load bal‐
ance between all the machines in the next tier.

It is important to understand that all sinks within a sink group are
not active at the same time; only one of them is sending data at any
point in time. Therefore, sink groups should not be used to clear
off the channel faster—in this case, multiple sinks should simply be
set to operate by themselves with no sink group, and they should be
configured to read from the same channel.

Each sink group is declared as a component in the active list, just like sources, sinks,
and channels, using the sinkgroups keyword. Each sink group is a named compo‐
nent, since each agent can have multiple sink groups. Sink groups are defined in the
following way:

agent.sinkgroups = sg1 sg2

Sink Groups and Sink Processors | 157

This configuration shows two sink groups being defined: sg1 and sg2. Each sink
group is then configured with a set of sinks that are part of the group. The list of sinks
in the active set of sinks takes precedence over the lists of sinks specified as part of
sink groups. Therefore, all sinks that are part of a sink group must also be separately
defined in the active set of sinks for them to be active. The following shows sg1 and
sg2 being configured with a set of sinks:

agent.sinks = s1 s2 s3 s4
agent.sinkgroups.sg1.sinks = s1 s2
agent.sinkgroups.sg2.sinks = s3 s4

Each sink in a sink group has to be configured separately. This includes configuration
with regard to which channel the sink reads from, which hosts or clusters it writes
data to, etc. If the sink group represents a set of RPC sinks meant to communicate to
the next tier, each host to connect to must have one sink configured to send data to it.
Presumably, they all read from the same channel, since this is tier-to-tier communica‐
tion. Ideally, if several sinks are set up in a sink group, all the sinks will read from the
same channel—this helps clear data in the current tier at a reasonable pace, yet ensure
the data is being sent to multiple machines in a way that supports load balancing and
failover.

For cases where it is important to clear the channel faster than a single sink group is
able to do, but it is also required that the agent be set up to send data to multiple
hosts, multiple sink groups can be added, each with sinks that have similar configura‐
tion. For example, sg1 and sg2 in the previous example have sinks s1, s2 and s3, s4,
respectively. s1 and s3 could have the same configuration (pushing data from the
same channel to the same host and port), while s2 and s4 could have a similar config‐
uration. This ensures that more connections are open per agent to a destination
agent, while also allowing data to be pushed to more than one agent if required. This
allows the channel to be cleared faster, while making sure load balancing and fail‐
overs happen automatically.

Thus far, we’ve discussed how sink groups can be used to set up flows to load balance
and fail over, but we have not discussed how to actually tell the sink groups that they
should load balance or fail over. This is done using the sink processor. Sink process‐
ors are the components that decide which sink is active at any point in time.

Note that sink processors are different from sink runners. The sink runner actually
runs the sink, while the sink processor decides which sink should pull events from its
channel. When the sink runner asks the sink group to tell one of its sinks to pull
events out of its channel and write them to the next hop (or to storage), the sink pro‐
cessor is the component that actually selects the sink that does this processing. Flume
comes bundled with two sink processors: the load-balancing sink processor and the
failover sink processor.

158 | Chapter 6: Interceptors, Channel Selectors, Sink Groups, and Sink Processors

A sink processor is configured using the processor.type suffix for the specific sink
group it is part of. Configurations can be passed to sink processors using the pro
cessor. prefix. Here is an example of how this configuration looks:

agent.sinks = s1 s2
agent.sinkgroups = sg1
agent.sinkgroups.sg1.sinks = s1 s2
agent.sinkgroups.sg1.processor.type = load_balance
agent.sinkgroups.sg1.processor.backoff = false

Load-Balancing Sink Processor
Suppose you have a topology in which the first tier receives data from thousands of
application servers and the second tier receives data from the first via Avro RPC,
before pushing the data into HDFS. For simplicity, let’s assume that the first tier has
100 agents and the second tier has 4. In the simplest possible topology, each first-tier
agent would have four Avro Sinks pushing data to each of the second-tier agents. This
works fine until one of the second-tier agents fails. At this point, the sink configured
to send data will not send any data until the second-tier agent that failed comes back
online.

Apart from the fact that this sink uses up a few threads on the agent (one for the sink
runner and another for the thread pool used by Netty to send the data), thus wasting
CPU cycles until the second-tier agent is up and running, the sink also causes addi‐
tional stress on the channel by creating transactions removing the events and then
rolling them back. For the File Channel, even though the transaction does not get
committed, a number of takes get written to the file (takes are written to the file even
if the transaction is not committed), which carries an I/O cost and a disk space cost.
This is shown in Figure 6-2.

Figure 6-2. Why we need a load-balancing sink processor

Sink Groups and Sink Processors | 159

As you can see, having such a topology can lead not only to an underutilized net‐
work, but also unnecessary wastage of CPU cycles and a higher I/O cost. To avoid
such a problem, it is a good idea to use a sink group with a load-balancing sink
processor, which will select one among all the sinks in the sink group to process
events from the channel.

The order of selection of sinks can be configured to be random or round-robin. If the
order is set to random, one among the sinks in the sink group is selected at random to
remove events from its own channel and write them out. The round-robin option
causes the sinks to be selected in a round-robin fashion: each process loop calls the
process method of the next sink in the order in which they are specified in the sink
group definition. If that sink is writing to a failed agent or to an agent that is too slow,
causing timeouts, the sink processor will select another sink to write data.

The sink processor can be configured to blacklist a failed sink, with the backoff
period increasing exponentially until an upper limit is reached. This ensures that the
same sink is not retried in a loop and resources are not wasted, until the backoff
period has expired.

The configuration parameters for the load-balancing sink processor are shown in
Table 6-9. All parameters must be prefixed with the sink group prefix followed by
processor. to ensure that the sink processor gets the correct parameters.

Table 6-9. Load-balancing sink processor configuration

Configuration parameter Default Description

type - Has to be set to load_balance.

selector round_robin Can be set to round_robin or random, or the FQCN of a class that
implements the LoadBalancingSinkProcessor$SinkSelec
tor interface.

backoff false If set to true, a failed sink will be blacklisted for exponentially increasing
periods of time.

selector.maxTimeOut 30000 The time, in milliseconds, after which the blacklist time period is not
increased.

The load-balancing sink processor is configured in the following way:

agent.sinks = s1 s2 s3 s4
agent.sinkgroups = sg1
agent.sinkgroups.sg1.sinks = s1 s2 s3 s4
agent.sinkgroups.sg1.processor.type = load_balance
agent.sinkgroups.sg1.processor.selector = random

160 | Chapter 6: Interceptors, Channel Selectors, Sink Groups, and Sink Processors

agent.sinkgroups.sg1.processor.backoff = true
agent.sinkgroups.sg1.processor.selector.maxTimeOut = 10000

This configuration sets the sink group to use a load-balancing sink processor that
selects one of s1, s2, s3, or s4 at random. If one of the sinks (or more accurately, the
agent that the sink is sending data to) fails, the sink will be blacklisted with the back‐
off period starting at 250 milliseconds and then increasing exponentially until it rea‐
ches 10 seconds. After this point, the sink backs off for 10 seconds each time a write
fails, until it is able to write data successfully, at which point the backoff is reset to 0.
If the value of the selector parameter is set to round_robin, s1 is asked to process
data first, followed by s2, then s3, then s4, and s1 again.

This configuration means that only one sink is writing data from each agent at any
point in time. This can be fixed by adding multiple sink groups with load-balancing
sink processors with similar configuration. Note that there may be several agents
attempting to write data to each second-tier agent.

Risks of Having Too Many Sinks Sending Data to the Same Agent

Since each Avro Sink keeps persistent connections open to the
Avro Source, having multiple sinks writing to the same agent does
add more socket connections and takes up more resources on the
second-tier agents. This must be carefully considered before adding
too many sinks connecting to the same agent.

Writing sink selectors*
It is possible to have the load-balancing sink processor use custom logic to select
which sink to activate each time the sink runner calls the process method. Custom
selectors must implement the LoadBalancingSinkProcessor$SinkSelector interface
that is shown here:

public interface SinkSelector extends Configurable, LifecycleAware {
 void setSinks(List<Sink> sinks);
 Iterator<Sink> createSinkIterator();
 void informSinkFailed(Sink failedSink);
}

When the sink processor starts up, the sink selector is instantiated and the setSinks
method is called, to which the list of sinks is passed in. This list is in the same order
specified by the configuration file. Each time a sink processes events, the createSin
kIterator method is called. This method must return an iterator that returns sinks
in the order the sinks must be asked to pull data in.

Once a sink is successfully able to process events and return success, the current itera‐
tor is discarded and this method is called again to get a new iterator, which could
potentially return sinks in a different order. When a sink fails to send events

Sink Groups and Sink Processors | 161

(indicated by an exception being thrown), the informSinkFailed method is called.
This can be used to blacklist the sink temporarily, if needed.

To build a custom sink selector, include the flume-ng-core artifact in your pom.xml
file’s dependency section as shown in Example 3-6.

Failover Sink Processor
The same problem shown in Figure 6-2 can be solved in a slightly different way. The
problem with the load-balancing sink processor is that since each sink group decides
which sink is active on a large number of agents, it is possible that the second-tier
agents won’t all receive the same amount of data, though on average they should
when round-robin is used. However, it is possible to configure the sink groups to use
hard-wired writes, as described earlier, until a failure actually occurs. By allowing the
sink groups to write data consistently to the same sinks most of the time, it is possible
to predict how much data is being written to each agent. This can be achieved using
the failover sink processor.

The failover sink processor selects a sink from the sink group based on priority. The
sink with the highest priority writes data until it fails (failure of the sink could even be
because the downstream agent died in the case of RPC sinks), and then the sink with
the highest priority among the other sinks in the group is picked. A different sink is
selected to write the data only when the current sink writing the data fails. This
ensures that all agents on the second tier have one sink from each machine writing to
them when there is no failure, and only on failure will certain machines see more
incoming data.

The failover mechanism, though, does not choose a new sink until and unless the
current sink fails. This means even though it is possible that the agent with highst pri‐
ority may have failed and come back online, the failover sink processor does not
make the sink writing to that agent active until the currently active sink hits an error.
Figure 6-3 shows the workflow of the failover sink processor.

162 | Chapter 6: Interceptors, Channel Selectors, Sink Groups, and Sink Processors

Figure 6-3. Failover sink processor workflow

Table 6-10 shows a list of configuration parameters that can be used to configure the
failover sink processor. All parameters must be prefixed with the sink group prefix
processor. to make sure the parameters are passed in to the sink processor.

Table 6-10. Failover sink processor configuration

Configuration parameter Default Description

type - Has to be set to failover.

priority.<sink_name> - A list of priorities for each sink in the sink group.

maxpenalty 30000 The maximum backoff period for failed sinks.

As shown in Table 6-10, the type parameter for the failover sink processor is fail
over. Since each sink processor activates sinks in priority order, the sinks’ priorities
must be set in the configuration using the priority. prefix followed by the sink
name, with the value set to the desired priority. Note that the priorities are considered
in increasing order, which means higher the absolute value of the priority is, the earlier
the sink is activated.

For example, a sink with priority 100 is activated before a sink with priority 90. If no
priority is set for a specific sink, the priority of the sink is determined based on the
order of the sinks specified in the sink group configuration. Each time a sink fails to

Sink Groups and Sink Processors | 163

write data, the sink is considered to have failed and is blacklisted for a brief period of
time. This blacklist time interval (similar to the backoff period in the load-balancing
sink processor) increases with each consecutive attempt that results in failure, until
the value specified by maxpenalty is reached (in milliseconds). Once the blacklist
interval reaches this value, further failures will result in the sink being tried after that
many milliseconds. Once the sink successfully writes data after this, the backoff
period is reset to 0. Take a look at the following example:

agent.sinks = s1 s2 s3 s4
agent.sinkgroups.sg1.sinks = s1 s2 s3 s4
agent.sinkgroups.sg1.processor.type = failover
agent.sinkgroups.sg1.processor.priority.s2 = 100
agent.sinkgroups.sg1.processor.priority.s1 = 90
agent.sinkgroups.sg1.processor.priority.s4 = 110
agent.sinkgroups.sg1.processor.maxpenalty = 10000

In this configuration, four sinks are used in a failover configuration, with sink s4 hav‐
ing the highest priority, followed by s2 and s1. No priority is set for sink s3. For sinks
whose priority is not specified, the first sink with no priority set is given priority 0,
the next is given priority –1, the next is given –2, and so on. These priorities are only
assigned to sinks with no priority set. Therefore, the sample configuration shown
here implicitly assigns sink s3 priority 0, so the sinks are tried in the order s4, s2, s1,
s3. Note that if two sinks have the same priority (implicitly or explicitly assigned), the
sink specified first in the sink group is the only one activated. Also note that if explicit
and implicit priorities are set in the same range, then their values are used as is. For
example:

agent.sinks = s1 s2 s3 s4
agent.sinkgroups.sg1.sinks = s1 s2 s3 s4 s5 s6
agent.sinkgroups.sg1.processor.type = failover
agent.sinkgroups.sg1.processor.priority.s2 = 0
agent.sinkgroups.sg1.processor.priority.s4 = 110
agent.sinkgroups.sg1.processor.priority.s5 = -5
agent.sinkgroups.sg1.processor.priority.s6 = -2
agent.sinkgroups.sg1.processor.maxpenalty = 10000

In this configuration, sink s4 has the highest priority, so s4 is activated first. Sink s1
will be assigned a priority of 0—the same as s2—which means s2 is not activated. s3
gets priority –1, so the order of activation will be s4, s1, s3, s6, s5. Even though s3’s
priority is not specified in the configuration, its implicitly specified priority is higher
than s5’s and s6’s, so s3 is activated before either of them.

164 | Chapter 6: Interceptors, Channel Selectors, Sink Groups, and Sink Processors

Summary
In this chapter, we covered interceptors, channel selectors, sink groups, and sink pro‐
cessors. They can be deployed using the plugins.d framework, which we will discuss
in Chapter 8.

References
• [morphlines_ch6] Morphlines: Kite SDK, http://bit.ly/1AS0g5I

Summary | 165

http://bit.ly/1AS0g5I

CHAPTER 7

Getting Data into Flume*

So far, we’ve discussed the internals of Flume agents and how to configure the various
components that make up an agent. In this chapter, we will look at the various meth‐
ods by which data can be sent to one or more Flume agents from a client application.
Flume has two programmatic ways through which data can be sent to Flume agents:
the Flume SDK and the Embedded Agent API. Flume also comes bundled with log4j
appenders that can be used to send data from applications to Flume agents.

Building Flume Events
Before we discuss the API that is used to send data to Flume agents, let’s look at how
Flume events are created. As we discussed in Chapter 2, events are the basic form of
representation of data in Flume. Each Flume event contains a map of headers and a
body, which is the payload represented as a byte array. The Event interface is shown in
Example 7-1.

Example 7-1. Event interface

package org.apache.flume;
public interface Event {
 public Map<String, String> getHeaders();
 public void setHeaders(Map<String, String> headers);
 public byte[] getBody();
 public void setBody(byte[] body);
}

As is evident, the internal representation of data within different implementations of
the Event interface might differ as long as it exposes the headers and body in the for‐
mat specified by the interface. In general, most applications build events using Flu‐
me’s EventBuilder API. The EventBuilder API provides a few static methods to

167

build events. In all cases, the API itself makes no modifications to the actual event
data submitted—either the headers or the body. There are four methods that the Even
tBuilder API provides that are commonly used to create Flume events. They are
shown here:

public class EventBuilder {
 public static Event withBody(byte[] body, Map<String, String> headers);
 public static Event withBody(byte[] body);
 public static Event withBody(String body, Charset charset,
 Map<String, String> headers);
 public static Event withBody(String body, Charset charset);
}

The first method simply takes the body as a byte array and the headers as a map,
while the second takes the body as a byte array, but does not set event headers. The
third and fourth methods can be used to create events from Java String instances,
which are converted into a byte array encoded using the supplied character set and
then used as the body of the Flume event. The third method also takes in the event
headers as an argument.

Now that we know how to create Flume events, we can send these events to Flume
agents using the Flume SDK or the Embedded Agent API.

Flume NG SDK Artifact

To use any of the RPC clients or the Event and EventBuilder APIs,
make sure you include the Flume Client SDK in your application.
The artifacts are available from the Maven central repository. You
can include the flume-ng-sdk artifact in your pom.xml file by
adding the following to the dependencies section:

 <dependency>
 <groupId>org.apache.flume</groupId>
 <artifactId>flume-ng-sdk</artifactId>
 <version>1.5.0</version>
 </dependency>

Flume Client SDK
Once an application knows what data is to be sent to HDFS via Flume, the application
somehow needs to send the data to a Flume agent. We already discussed the HTTP
Source and its pluggable handler in “HTTP Source” on page 43. We also covered the
JSON-formatted events the HTTP Source accepts. This is one way of getting data to
Flume—use an HTTP Source as the receiving source and have the application use
HTTP-friendly formatted data (or JSON-ified data if the default handler is used). The
issue with this is that it’s more inefficient than it needs to be, with the additional
HTTP and the encoding/decoding overhead.

168 | Chapter 7: Getting Data into Flume*

Since the format of Flume events is fixed, the best way to send data to Flume is via
RPC calls in one of Flume’s supported RPC formats: Avro or Thrift. In general, Avro
RPC should be preferred, as this is more mature and better tested by use in produc‐
tion in Flume’s case. The downside of using Avro RPC is that the version of Avro RPC
used by Flume supports only Java and other JVM languages. Non-JVM languages are
supported via Thrift RPC, though in Flume’s case, Thrift RPC may lack some features
that are available in Avro RPC. In this section, we will discuss the Flume SDK and
how to write programs that use this SDK to send data to Flume.

Building Flume RPC Clients
We’ll begin by looking at how to create RPC clients in Java. RPC client instances are
created via the RpcClientFactory class. This class provides methods to create the
various RPC client instances. All classes that are used to create RPC clients accept a
Properties instance. This Properties instance contains configuration information
that is used to configure the RPC client. All RPC clients can be created using the fol‐
lowing methods:

public static RpcClient getInstance(Properties properties);
public static RpcClient getInstance(File properties);

The Properties instance is basically a map that contains the configuration parame‐
ters. The second method takes a File instance that represents the configuration in
the properties file format, as explained in “Configuring Flume Agents” on page 13.
There is only one mandatory parameter required by the factory class—the cli
ent.type parameter, which specifies the type of RPC client to create. This parameter
must be set to one of default, default_failover, default_loadbalance, or thrift.
Once the RPC client is created, the Properties instance is passed to it. Before we
look at the various RPC clients available, let’s take a look at the RPC client interface
that the application developer must program against.

RPC Client Interface
The RPC client interface is extremely simple and minimalistic. Since RPC clients are
themselves configured during creation, the application writer does not need to worry
about configuring the RPC clients explicitly. The RPC client interface is shown in
Example 7-2.

Example 7-2. Flume RPC client interface

package org.apache.flume.api;
public interface RpcClient {
 public int getBatchSize();
 public void append(Event event) throws EventDeliveryException;
 public void appendBatch(List<Event> events) throws EventDeliveryException;

Flume Client SDK | 169

 public boolean isActive();
 public void close() throws FlumeException;
}

To send events to a Flume agent using an RPC client instance, the application pro‐
gram must call the appendBatch or append method. These methods accept the
event(s) that have to be sent to the Flume agent and send them over the wire before
returning. If the method returns successfully, it means that the events were success‐
fully written to the destination agent’s channel(s). If the destination agent could not
write the events out to one or more of the source’s required channels, or if there was a
network issue or any other problem that caused the events to not be successfully writ‐
ten out, these methods throw an EventDeliveryException. If an EventDeliveryEx
ception is thrown, it is up to the application that is using the RPC clients to decide
how to proceed. Applications could back off and retry, or even drop the events based
on their own internal logic.

If the number of events passed in the list to appendBatch is greater than the batch
size, the RPC client will split the list into multiple batches and write them out one
after another, and will return only if all events were successfully written out. The
method throws an exception as soon as one batch fails. If some batches succeed and
another fails, this could cause duplicates in the final destination if the application
retries. Therefore, it is usually a good idea to pass as many events as the batch size, or
fewer. The getBatchSize method returns the maximum size of a batch that this RPC
client uses.

Before each RPC call, it is a good idea to check if the RPC client is still active and
ready for action, by calling the isActive method. Once the RPC client is no longer
required, or if isActive returns false, the RPC client must be closed by calling the
close method to clean up resources and avoid any resource leaks. This is described
by the following snippet:

if (client == null) {
 client = RpcClientFactory.getDefaultInstance(host, port);
} else if (!client.isActive()) {
 client.close();
 client = RpcClientFactory.getDefaultInstance(host, port);
}

Configuration Parameters Common to All RPC Clients
There are several configuration parameters that are common to all RPC clients. We
will discuss how these are passed to the RPC clients in the following sections. Table
7-1 lists the common RPC client configuration parameters.

170 | Chapter 7: Getting Data into Flume*

Table 7-1. Common RPC client configuration parameters

Parameter Default Description

client.type - This must be set to default, default_loadbalance, default_failover,
or thrift.

batch-size 100 The maximum number of events to be sent per batch.

hosts - A list of names that can be used to specify the host parameters.

hosts.<hostalis> - The configuration of the hosts in hostname:port format.

The client.type parameter specifies the RPC client type to use. This can be one of
default, default_loadbalance, default_failover, or thrift. We will discuss each
of these clients in the following sections.

The maximum number of events to be sent per batch can be set using the batch-size
parameter. If more than this number of events are passed in to a single appendBatch
method call, multiple batches, each of the specified batch size or below, are sent.

The hosts parameter lists the aliases that will be used to identify hosts to which the
client must connect (in the case of the default RPC client, all except the first host in
the list are ignored). The hostname information must be passed using the
hosts.<hostname> parameter for the first host in the list, in the hostname:port for‐
mat. An example of such a configuration is shown here:

hosts = h1 h2 h3
hosts.h1 = usingflume1.oreilly.com:5545
hosts.h2 = usingflume2.oreilly.com:5545
hosts.h3 = usingflume3.oreilly.com:5545

RPC clients are created using the RpcClientFactory#getInstance method, as
explained in “Building Flume RPC Clients” on page 169. When an RPC client is
returned to the application by the RpcClientFactory, it is fully configured and ready
to be used. RPC clients can send either a single event or an entire batch of events in
an RPC call. The batch size is configurable via the Properties instance that was
passed to the RpcClientFactory when this RPC client instance was created. Example
7-3 shows a simple class that generates events using random strings and then writes
batches of events via RPC to a Flume agent. We will use UsingFlumeRPCApp as the
base class when we discuss the various RPC Clients.

Example 7-3. Flume RPC client usage example

package usingflume.ch07;

public abstract class UsingFlumeRPCApp {

Flume Client SDK | 171

 private static final Logger LOGGER = LoggerFactory.getLogger(
 UsingFlumeRPCApp.class);

 private RpcClient client;
 private final Properties config = new Properties();
 private final ExecutorService executor
 = Executors.newFixedThreadPool(5);
 private int batchSize = 100;

 protected void parseCommandLine(String args[])
 throws ParseException {
 setClientTypeInConfig(config);
 Options opts = new Options();

 Option opt = new Option("r", "remote", true,
 "Remote host to connect " +
 "to");
 opt.setRequired(true);
 opts.addOption(opt);

 opt = new Option("h", "help", false, "Display help");
 opt.setRequired(false);
 opts.addOption(opt);

 opt = new Option("b", "batchSize", true, "Batch Size to use");
 opt.setRequired(false);
 opts.addOption(opt);

 opt = new Option("c", "compression", false, "If set, " +
 "data is compressed before sending");
 opt.setRequired(false);
 opts.addOption(opt);

 opt = new Option("l", "compression-level", false,
 "The compression level " +
 "to use if compression is enabled");
 opt.setRequired(false);
 opts.addOption(opt);

 opt = new Option("s", "ssl", false,
 "If set, ssl is enabled using keystore supplied by argument k");
 opt.setRequired(false);
 opts.addOption(opt);

 opt = new Option("k", "keystore", true,
 "Keystore to use with SSL");
 opt.setRequired(false);
 opts.addOption(opt);

 opt = new Option("d", "keystore-password", true,
 "Password for keystore");

172 | Chapter 7: Getting Data into Flume*

 opt.setRequired(false);
 opts.addOption(opt);

 opt = new Option("t", "keystore-type", true,
 "Type keystore");
 opt.setRequired(false);
 opts.addOption(opt);

 opt = new Option("i", "maxIoWorkers", true,
 "Set the maximum number of " +
 "worker threads to use for network IO");
 opt.setRequired(false);
 opts.addOption(opt);

 opt = new Option("o", "backoff", false,
 "Backoff failed clients?");
 opt.setRequired(false);
 opts.addOption(opt);

 Parser parser = new GnuParser();
 CommandLine commandLine = parser.parse(opts, args);

 if (commandLine.hasOption("h")) {
 new HelpFormatter().printHelp("UsingFlumeDefaultRPCApp", opts,
 true);
 return;
 }

 parseHostsAndPort(commandLine, config);

 if (commandLine.hasOption("b")) {
 String batchSizeStr = commandLine.getOptionValue("b", "100");
 config.setProperty(CONFIG_BATCH_SIZE, batchSizeStr);
 batchSize = Integer.parseInt(batchSizeStr);

 }

 if (commandLine.hasOption("c")) {
 config.setProperty(CONFIG_COMPRESSION_TYPE, "deflate");
 if (commandLine.hasOption("l")) {
 config.setProperty(CONFIG_COMPRESSION_LEVEL,
 commandLine.getOptionValue("l"));
 }
 }

 if (commandLine.hasOption("s") && commandLine.hasOption("k") &&
 commandLine.hasOption("d")) {
 config.setProperty(CONFIG_SSL, "true");
 config.setProperty(CONFIG_TRUSTSTORE, commandLine.getOptionValue("k"));
 config.setProperty(CONFIG_TRUSTSTORE_PASSWORD, commandLine.getOptionValue("d"));
 if (commandLine.hasOption("t")) {
 config.setProperty(CONFIG_TRUSTSTORE_TYPE, commandLine.getOptionValue("t"));

Flume Client SDK | 173

 }
 }

 if (commandLine.hasOption("i")) {
 config.setProperty(MAX_IO_WORKERS,
 commandLine.getOptionValue("i"));
 }
 backoffConfig(commandLine, config);
 }

 protected abstract void setClientTypeInConfig(Properties p);

 protected abstract void parseHostsAndPort(CommandLine commandLine,
 Properties config);

 protected abstract void backoffConfig(CommandLine commandLine,
 Properties config);

 @VisibleForTesting
 protected void run(String[] args) throws Exception {
 parseCommandLine(args);

 final UsingFlumeRPCApp app = this;

 for (int i = 0; i < 5; i++) {
 executor.submit(new Runnable() {
 final int total = 100;
 @Override
 public void run() {
 int i = 0;
 while (i++ < total) {
 app.generateAndSend();
 }
 }
 }).get();
 app.closeClient();
 }

 // Set a shutdown hook to shutdown all the threads and the
 // executor itself
 Runtime.getRuntime().addShutdownHook(new Thread(new Runnable() {
 @Override
 public void run() {
 executor.shutdown();
 try {
 if (!executor.awaitTermination(60, TimeUnit.SECONDS)) {
 executor.shutdownNow();
 }
 } catch (InterruptedException e) {
 LOGGER.warn(
 "Interrupted while attempting to shutdown executor. " +
 "Force terminating the executor now.", e);

174 | Chapter 7: Getting Data into Flume*

 executor.shutdownNow();
 }
 app.closeClient();
 }
 }));

 }

 private synchronized void reconnectIfRequired() {
 if (client != null && !client.isActive()) {
 closeClient();
 }
 // If client is null, it was either never created or was closed by
 // closeClient above
 if (client == null) {
 try {
 client = RpcClientFactory.getInstance(config);
 } catch (Exception e) {
 e.printStackTrace();
 LOGGER.warn("Client creation failed. Source may not have been started yet");
 }
 }
 }

 protected synchronized void closeClient() {
 if(client != null) {
 client.close();
 }
 client = null;
 }

 protected void generateAndSend() {
 reconnectIfRequired();
 List<Event> events = new ArrayList<Event>(100);
 for (int i = 0; i < batchSize; i++) {
 events.add(EventBuilder.withBody(
 RandomStringUtils.randomAlphanumeric(100).getBytes()));
 }
 try {
 client.appendBatch(events);
 } catch (Throwable e) {
 e.printStackTrace();
 LOGGER.error(
 "Error while attempting to write data to remote host at " +
 "%s:%s. Events will be dropped!");
 // The client cannot be reused, since we don't know why the
 // connection
 // failed. Destroy this client and create a new one.
 reconnectIfRequired();
 }
 }
}

Flume Client SDK | 175

As you can see, the UsingFlumeRPCApp is an abstract class, whose concrete implemen‐
tations will be presented in following sections. The same class will be used to write
data to more complex RPC clients, like the load-balancing RPC client by implement‐
ing the setClientTypeInConfig method, which will set the required parameter in the
configuration to instantiate the correct type of RPC client. Implementations of the
parseHostsAndPort method converts the hostname parameter into the required for‐
mat for each RPC client, and the backoffConfig method enables backoff based on
the command-line input.

The parseCommandLine method reads several arguments, including the hostname(s)
and port(s) to connect to, whether to use compression and SSL, whether to backoff
on failure, etc., as command-line arguments. The arguments are then mapped to the
corresponding configuration parameters for the RPC client and inserted into a Prop
erties instance that is passed to the getInstance method to create the client. A safe
way to correctly specify the parameters is to use the RpcClientConfigurationConst
ants class that defines all configuration parameters as static final strings. In this
example, these strings are imported statically and used to specify the configuration
parameters when they are passed to the Properties instance.

The RPC client methods are thread-safe, though multithreaded applications are likely
to do some thread synchronization by themselves to ensure that one thread does not
close a client, or set it to null while allowing another thread to try to write data, lead‐
ing to a NullPointerException.

In the application shown in Example 7-3, if any thread hits an exception while writ‐
ing data to the remote host, the client is immediately closed and a reconnect is forced.
If at this point there are other threads using this client, they will also hit an exception
—which is fine, because Flume’s default RPC client is considered dead as soon as it
throws an exception.

At this point, one of the threads has to create a new connection. Having all threads
reconnecting will lead to multiple clients being created one after the other, even
though only one is needed. Therefore, we create the new connection in a synchron‐
ized method, reconnectIfRequired, that forces the reconnect only if the client is no
longer active or is null (by virtue of never having been created). By doing this, we
ensure that once a new RPC client is created and is available for use, the other threads
will not create fresh connections. When asked to shut down, in addition to shutting
down the executor and the threads, the application also closes the RPC client instance
to clear up resources.

The run method generates a fixed number of events and sends them in batches to
remote Flume agent(s) using the RPC client instance. For simplicity, this example

176 | Chapter 7: Getting Data into Flume*

simply uses byte array representations of randomly generated strings as the event
body.

Default RPC Client
The default RPC client instance uses the Avro RPC protocol and can connect to
exactly one Avro Source. For Java programs writing data to exactly one Flume agent,
this is the recommended client. To create the default RPC client, the RpcClientFac
tory provides a couple of convenience methods that can be used:

public static RpcClient getDefaultInstance(String hostname, Integer port);
public static RpcClient getDefaultInstance(String hostname, Integer port,
Integer batchSize);

Since the default RPC client writes to exactly one Avro Source, the parameters
required to connect to this Avro Source are only the hostname and port information,
which can be passed in to the first method shown here as the first and second param‐
eters, respectively. The second method takes an additional parameter, which is the
batch size—the maximum number of events this client sends out in a single RPC call.
Since the first method does not take a batch size, the RPC client created by that
method simply uses the default batch size of 100 events per batch. No further config‐
uration of the RPC client is required before using it.

In addition to the parameters discussed in “Configuration Parameters Common to
All RPC Clients” on page 170, there are several more parameters that can be used to
encrypt data being sent to the agent or to compress it. Table 7-2 describes these
parameters.

Table 7-2. Default RPC client configuration

Parameter Default Description

connect-timeout 20 The timeout, in seconds, to wait for the initial connection to complete.

request-timeout 20 The timeout, in seconds, to wait for a batch to successfully complete writing a batch
of events.

compression-type - The compression algorithm to use. The value can be deflate or not set at all.

compression-level 6 The compression level to be used if compression is enabled using the
compression-type parameter. Valid values are 1–9. The higher the number,
the better the compression.

ssl false If set to true, SSL is enabled.

trust-all-certs false If set to true, all SSL certificates are trusted.

Flume Client SDK | 177

Parameter Default Description

truststore - The trust store to use. This is a required parameter if SSL is enabled.

truststore-password - The password to use to open the trust store.

truststore-type JKS The type of trust store that is being used.

maxIoWorkers 10 The maximum number of threads to use for communication with the remote
machines.

Many of the parameters shown here are common to the Avro Sink and the RPC cli‐
ent. The reason for this is that the Avro Sink is actually a channel- and transaction-
aware wrapper around the default RPC client. Therefore, all features supported by the
default RPC client may be supported by the Avro Sink (though they may not be
exposed to the user).

To pass in these parameters, the RpcClientFactory methods that accept the Proper
ties instance (shown in “Building Flume RPC Clients” on page 169) must be used.

To use the default RPC client with more advanced configuration, the value of the cli
ent.type parameter must be set to default in the Properties object (or use
RpcClientConfigurationConstants.DEFAULT_CLIENT_TYPE).

The batch-size parameter specifies the maximum number of events that should be
sent per RPC call. If the number of events passed to a single appendBatch call is
greater than the batch size, then the events are sent in multiple RPC calls.

The connect-timeout parameter specifies the time period to wait for the initial con‐
nection setup to complete; if this is exceeded, the client will throw an EventDeliver
yException. This is done only when the first batch of events is being sent. The
request-timeout parameter specifies the time period to wait before a single RPC call
is assumed to have failed. If an RPC call takes more than the number of seconds
specified by this parameter, an EventDeliveryException is thrown.

The RPC client can compress data while sending data to agents that are expecting
compressed data. To send compressed data, set compression-type to deflate. The
compression level can be set using the compression-level parameter, whose value
can range between 1 and 9. As the compression level increases, the compression ratio
also improves, as does the time taken to compress the data. You can read about
deflate compression and compression levels in the zlib manual [zlib-manual].

178 | Chapter 7: Getting Data into Flume*

Compression Type Mismatches

If the RPC client is configured to use compression, the Avro Source
receiving the events must have compression-type set to deflate.

To enable SSL, set ssl to true. The client can be set to trust all SSL certificates by
setting trust-all-certs to true—this should not be done in production, to avoid
security issues. A trust store is a file that contains information about which public
keys to trust. Unless instructed otherwise, Flume will use Java’s default JSSE certificate
authority files, jssecacerts/cacerts, to determine if the Avro Source’s SSL certificate
should be trusted.

If a custom trust store is to be used, set the value of the truststore parameter to the
path to the respective trust store file [truststore]. The user running the agent should
have read access to the file. The truststore-password parameter must be set to the
password that can be used to open the trust store. The truststore-type parameter is
optional and can be set to an alternate keystore type, if needed [truststore-type].

It is possible to limit the number of worker threads that the RPC client spawns by
setting the value of the maxIoWorkers parameter. By default, this is set to 10, which
means a maximum of 10 workers are used to perform network I/O.

To configure UsingFlumeRPCApp to use the default RPC client, we override the set
ClientTypeInConfig, parseHostsAndPort, and backoffConfig methods as shown in
Example 7-4.

Example 7-4. Default Flume RPC client usage example

package usingflume.ch07;

public class UsingFlumeDefaultRPCApp extends UsingFlumeRPCApp {
 private String remote;

 @Override
 protected void setClientTypeInConfig(Properties p) {
 p.setProperty(CONFIG_CLIENT_TYPE, DEFAULT_CLIENT_TYPE);
 }

 @Override
 protected void parseHostsAndPort(CommandLine commandLine,
 Properties config) {
 config.setProperty(CONFIG_HOSTS, "h1");

 remote = commandLine.getOptionValue("r").trim();
 Preconditions.checkNotNull(remote, "Remote cannot be null.");
 // This becomes hosts.h1
 config.setProperty(CONFIG_HOSTS_PREFIX + "h1", remote);

Flume Client SDK | 179

 }

 @Override
 protected void backoffConfig(CommandLine commandLine,
 Properties config) {
 // No op
 }

 public static void main(String args[]) throws Exception {
 // Outsource all work to the app.run method which can be tested
 // more easily
 final UsingFlumeDefaultRPCApp app = new UsingFlumeDefaultRPCApp();
 app.run(args);
 }
}

For the default RPC client, the client.type is set to default in the setClientTypeIn
Config method. The parseHostsAndPort method simply reads the host and port
from the command line and then sets the hosts parameter with value h1, to indicate
that the host is identified by the alias h1. The value of hosts.h1 parameter is set to the
hostname and port in the hostname:port format.

To enable SSL or compression, or specify the batch size, connection timeout, request
timeout, etc., all parameters for the default RPC client can be passed in to the load-
balancing RPC client or the failover RPC client.

Load-Balancing RPC Client
The load-balancing RPC client works similarly to the load-balancing sink processor.
The load-balancing RPC client can be configured to send events to several clients. For
each append or appendBatch call, the load-balancing RPC client selects one of the
agents it is configured to send data to, in either random or round-robin order based
on configuration.

When the application calls append or appendBatch, the load-balancing RPC client
attempts to send events to Flume agents one after another, until the data is actually
sent out successfully. If a remote agent fails and this RPC client tries another host, the
application will not know of the failure or get an exception until all hosts have been
tried and all of them have failed. If all remote agents have failed, then append and
appendBatch will throw an EventDeliveryException.

All parameters that can be passed to the default RPC client (shown in Table 7-2) can
also be passed to the load-balancing RPC client, which results in the same behavior as
the default RPC client. For example, SSL and compression can be enabled using the
same parameters as the default RPC client.

180 | Chapter 7: Getting Data into Flume*

To configure load-balancing RPC clients, the parameters in Table 7-3 can be passed in
via the Properties instance (in addition to the ones shown in Table 7-1 and Table
7-2).

Table 7-3. Load-balancing RPC client configuration

Parameter Default Description

backoff false If set to true, a failed host will not be reconnected for an exponentially increasing
backoff period.

maxBackoff - The maximum time, in milliseconds, to back off a failed agent.

host-

selector

round_robin The order in which to select hosts to send data to.

As we discussed earlier, the load-balancing RPC client can select one of many hosts to
write events to. When a host it is connected to has failed and is not accepting data (or
is too slow, or the network connection has failed), the load-balancing RPC client can
blacklist this host for an exponentially increasing backoff period (similar to the load-
balancing sink processor). Each time the backoff period expires, the load-balancing
RPC client tries to write to that host, and if it fails the backoff period is doubled;
otherwise, it is reset to zero and the host is considered active. If the backoff parame‐
ter is set to true, this exponential backoff is enabled. There is no default maximum
ceiling for the backoff period, but this can be set using the maxBackoff parameter.
Once the backoff period for a host has reached this value, the backoff period for try‐
ing the host is not increased any further.

The host-selector parameter specifies the policy by which the client selects hosts to
send events to. If this is set to random, a host that is not backed off is selected at ran‐
dom. If set to round_robin, active hosts are selected in round-robin order based on
the order in which they are specified in the hosts list. This can also be set to the
FQCN of the class that implements LoadBalancingRpcClient$HostSelector. “Writ‐
ing your own host selector*” on page 183 explains how to write a custom host
selector.

Example 7-3 can be easily modified to use the load-balancing RPC client by changing
the way hosts are accepted into the application and then parsing this host list and set‐
ting them as hosts named h1, h2, h3, etc. For each of these aliases, the address of the
host is specified in hostname:port format, which is set as the value of parameters
named hosts.h1, hosts.h2, hosts.h3 etc.

The client is set to default_loadbalance. To switch to the load-balancing RPC client,
the setClient method should be modified to the following:

Flume Client SDK | 181

protected void setClientTypeInConfig(Properties p) {
 p.setProperty(CONFIG_CLIENT_TYPE, "default_loadbalance");
}

This is shown in Example 7-5.

Example 7-5. Load-balancing Flume RPC client usage example

package usingflume.ch07;

public class UsingFlumeLBRPCApp extends UsingFlumeRPCApp {

 private String host;
 private String port;

 @Override
 protected void setClientTypeInConfig(Properties p) {
 p.setProperty(CONFIG_CLIENT_TYPE, "default_loadbalance");
 }

 protected void parseHostsAndPort(CommandLine commandLine,
 Properties config) {
 host = commandLine.getOptionValue("r").trim();
 Preconditions.checkNotNull(host, "Remote host cannot be null.");
 StringBuilder hostBuilder = new StringBuilder("");

 String[] hostnames = host.split(",");
 int hostCount = hostnames.length;

 for (int i = 1; i <= hostCount; i++) {
 hostBuilder.append("h").append(i).append(" ");
 }
 config.setProperty(CONFIG_HOSTS, hostBuilder.toString());

 for (int i = 1; i <= hostCount; i++) {
 config.setProperty(
 CONFIG_HOSTS_PREFIX + "h" + String.valueOf(i),
 hostnames[i - 1]);
 }
 }

 @Override
 protected void backoffConfig(CommandLine commandLine,
 Properties config) {
 if (commandLine.hasOption("o")) {
 config.setProperty(CONFIG_BACKOFF, "true");
 }
 }

 public static void main(String args[]) throws Exception {
 // Outsource all work to the app.run method which can be tested
 // more easily

182 | Chapter 7: Getting Data into Flume*

 final UsingFlumeLBRPCApp app = new UsingFlumeLBRPCApp();
 app.run(args);
 }
}

Since the load-balancing RPC client supports backing off failed hosts, the backoffCon
fig method sets this in the Properties instance based on the command line
configuration.

As mentioned earlier, the load-balancing RPC client also accepts the parameters that
are passed to the default RPC client. Therefore, all of the parameters passed to the
default RPC client in the parseCommandLine method are also used in the configura‐
tion of the load-balancing RPC client.

Writing your own host selector*
Round-robin or random selectors satisfy most use cases for selecting the sink that
should be chosen to pull data out of the channel. But there are always cases where it
might make sense to write your own algorithm to select the sink that should be active.
To write a selector, the LoadBalancingRpcClient$HostSelector interface must be
implemented. The interface is shown in Example 7-6.

Example 7-6. HostSelector interface

public interface HostSelector {
 void setHosts(List<HostInfo> hosts);
 Iterator<HostInfo> createHostIterator();
 void informFailure(HostInfo failedHost);
}

When Flume starts the sink processor, it creates the host selector and calls the
setHosts method, to which it passes a list of HostInfo instances [hostInfo] that con‐
tain information about hosts to which events should be sent. For each append or
appendBatch call coming from the client, the load-balancing RPC client calls create
HostIterator, which must return an iterator of HostInfo instances that must return
the hosts in the order in which the client should try to send events. When the events
can be sent successfully to one of the hosts, this iterator is discarded and createHos
tIterator is called again. If a host has failed or sending data to that host fails, the
RPC client calls the informFailure method, passing in a HostInfo instance describ‐
ing that host. This can be used to temporarily blacklist the host.

When building a host selector, add the flume-ng-sdk artifact to your project’s
pom.xml file’s dependency section as shown earlier.

Flume Client SDK | 183

Failover RPC Client
The failover RPC client works exactly like the failover sink processor, connecting to
agents based on priority. The RPC client connects to the agent with the highest
priority first. If this agent fails, the client connects to the agent with the next highest
priority. Unlike the failover sink processor, the failover RPC clients don’t need
priorities to be set explicitly. Instead, the priority is based on the order of hosts in the
hosts parameter. The host specified first in the hosts parameter has the highest pri‐
ority, followed by the second host in the list, and so on. Table 7-4 lists the failover
RPC client configuration parameters.

Table 7-4. Failover RPC client configuration

Parameter Default Description

client.type default_failover

max-connections 5 The maximum number of hosts to attempt to connect to before throwing
an exception.

The client.type for the failover RPC client is default_failover. The only parame‐
ter in addition to the ones specified in Table 7-1 and Table 7-2 is the max-
connections parameter. This is the number of times the RPC client must fail over
within a single append or appendBatch call. For example, if this is set to 5, then up to
five connections are attempted if there are five or more hosts. If there are fewer hosts,
only that many attempts are made.

The setClientTypeInConfig method from Example 7-3 must be overriden to use the
failover sink processor:

protected void setClient(Properties p) {
 p.setProperty(CONFIG_CLIENT_TYPE, "default_failover");
}

Thrift RPC Client
Apache Thrift is a data serialization and RPC framework that can be used to serialize
and deserialize data from various languages. Thrift supports this by having a
language-neutral specification of the data format. The Thrift compiler can then gen‐
erate the code in various languages that can be used to read and write this data. To
send data from applications in different languages to Flume, the Flume Thrift spec
[flume-thrift] can be used to generate the code that can be used in the specific lan‐
guage. The Flume Thrift spec is shown in Example 7-7.

184 | Chapter 7: Getting Data into Flume*

Example 7-7. Flume Thrift specification

namespace java org.apache.flume.thrift

struct ThriftFlumeEvent {
 1: required map <string, string> headers,
 2: required binary body,
}

enum Status {
 OK,
 FAILED,
 ERROR,
 UNKNOWN
}

service ThriftSourceProtocol {
 Status append(1: ThriftFlumeEvent event),
 Status appendBatch(1: list<ThriftFlumeEvent> events),
}

More details on generating Thrift code for different languages can be found in the
Apache Thrift tutorial [thrift-doc].

We will not discuss the Thrift RPC client in detail, since this client should only be
used when there is a Thrift Source already running on the agent to receive data from
applications written in another language (simply to avoid running an Avro Source as
well). If the data being sent is only Java, then the Avro Source should be used with the
default, load-balancing, or failover RPC clients.

Embedded Agent
One very obvious issue with using Flume RPC clients in applications is that the appli‐
cations have to buffer the data in the case of failures and retries. This means that
downstream failures can have a direct impact on the applications, even if load-
balancing or failover RPC clients are used (which may impact latency as well). Appli‐
cations that cannot afford to lose messages would now have to buffer events. Buffer‐
ing events in such a way that they survive process or machine failure is time-
consuming and painful to implement. Buffering, sending data without affecting the
application—sounds like a problem already solved, doesn’t it? Flume was designed to
solve this very problem!

To solve this issue, Flume provides the embedded agent. The embedded agent is a very
restricted Flume agent that can be deployed within a third-party application. The
advantage of using an embedded agent rather than an RPC client is that an agent has
a channel—a buffer that the application does not need to manage—which can be on

Embedded Agent | 185

disk as well. This allows the application to survive failed downstream agents for
longer; basically, until the channel is full.

Embedded agents also allow the application to buffer events while waiting for a
downstream HDFS failure and the resulting full Flume channels to get resolved, by
buffering data within the application. Since each application process often produces
only a small fraction of the data being handled by a first-tier Flume agent, having a
much smaller Flume channel size within each application’s embedded agent will
suffice.

Figure 7-1 shows a typical embedded agent architecture. The embedded agent is con‐
figured and then started by the application. Since the agent is embedded within the
application, it resides within the application’s process address space and creates and
runs threads within the application. Therefore, the application will consume more
resources than if it simply used the RPC client. That is the cost to be paid for the
additional buffering time that the embedded agent provides.

Figure 7-1. Embedded agent architecture

Embedded agents also support using the File Channel, which can help persist events
even if the application dies or the machine is restarted. This can increase the I/O per‐
formed by the application and can lead to more load on the machine, and specifically

186 | Chapter 7: Getting Data into Flume*

the disks that are being used by the File Channel. Also, as discussed in Chapter 4, File
Channels perform well when there are no other processes using the disks. In this
case, even the application embedding this agent should preferably not be using the
same disk, to avoid unnecessary seeks.

The embedded agent exposes a very simple API that starts the agent and then oper‐
ates by itself until it is stopped. It is represented by a class aptly named Embedded
Agent. An embedded agent has the same lifecycle as any other Flume agent. It is first
created by creating an instance of the EmbeddedAgent class via the public constructor
that takes a name, which is the name used to refer to this specific agent. Exceptions
and log messages will contain the name of this agent, so the user can identify the
agent that is in trouble if more than one embedded agent is being deployed within a
single application instance.

Whitespaces in Embedded Agent Name

Be aware that the name of an embedded agent cannot currently
contain whitespaces. Whitespaces in the name will cause the
embedded agent to not start throwing an Exception stating that
the configuration is bad.

Once it is created it is configured using the configure method, which is passed a Map
containing the configuration of the agent. If configuration fails, this method will not
return, but will throw a FlumeException.

The agent can then be started using the start method. A failed start will result in a
FlumeException being thrown by this method. This method initializes all the config‐
ured components and starts them.

Events can be written to the agent using the put or putAll methods, which accept
individual events and event batches, respectively. If the events cannot be written to
the channel for any reason, including but not limited to the channel being full, an
EventDeliveryException will be thrown.

When the agent is ready to be shut down, it can be stopped using the stop method,
which may throw a FlumeException if the stop fails. The Embedded Agent API is
shown in Example 7-8.

Example 7-8. Embedded Agent API

public class EmbeddedAgent {
 public EmbeddedAgent(String name);
 public void configure(Map<String, String> configuration) throws
 FlumeException;
 public void start() throws FlumeException;
 public void put(Event event) throws EventDeliveryException;

Embedded Agent | 187

 public void putAll(List<Event> events) throws EventDeliveryException;
 public void stop() throws FlumeException;
}

Configuring an Embedded Agent
An embedded agent can contain only one source, one channel, and one sink group
(technically, the limit is on the number of sink runners), though the sink group may
contain multiple sinks. Table 7-5 list the configuration parameters for an embedded
agent.

Table 7-5. Embedded agent configuration

Parameter Default Description

source.type embedded The only source that an embedded agent can use is the embedded source.

channel.type - The channel type to use.

channel.* - The configuration parameters to pass to the channel.

sinks - Names of the sinks in this agent. This is equivalent to the <agentname>.sinks
line in the active set of normal agents’ configuration.

<sinkname>.type - Embedded agents can contain only Avro Sinks, so this must be set to avro.

<sinkname>.* - The configuration parameters to pass to each sink.

processor.type - If there are multiple sinks specified, the sink processor to use for selecting the active
sink.

processor.* - The configuration parameters to pass to the sink processor.

It is not required to specify the source to be used—the agent is automatically set to
use the embedded source. Even if the source is set through the configuration, it must
be set to embedded. No configuration is necessary for the embedded source.

Each embedded agent can have only one channel, either the File Channel or the
Memory Channel, so the channel.type parameter accepts file or memory as its
value. Any parameters to be passed to this channel can be passed using the channel.
prefix.

An embedded agent can have multiple sinks. If an embedded agent has multiple
sinks, the sinks will be grouped into a single sink group, as an embedded agent has
only one sink runner. Since the embedded agent can have multiple sinks, they are
named using the sinks parameter, where their names are specified. Any parameters
are passed in to the sinks using the sink’s name as a prefix. Only Avro Sinks can be

188 | Chapter 7: Getting Data into Flume*

used in an embedded agent, so the type parameter for all sinks must be set to avro. If
there are multiple sinks specified, the sinks are automatically grouped into a sink
group, whose sink processor can be configured by the processor.type; any configu‐
ration can be passed to it via the processor. prefix.

Since there is only one channel in an embedded agent, the source and sinks do not
have to specify the channels or channel parameter explicitly—the agent will auto‐
matically set the source to write to the only channel and the sinks to read from it.
Example 7-9 shows an application that uses the Embedded Agent API and can write
data to several Flume agents via load balancing.

Example 7-9. Embedded agent example

package usingflume.ch07;

public class UsingFlumeEmbeddedAgent {
 private static final Logger LOGGER = LoggerFactory.getLogger
 (UsingFlumeEmbeddedAgent.class);
 private final EmbeddedAgent agent = new EmbeddedAgent(
 "UsingFlume");
 private int batchSize = 100;

 public static void main(String args[]) throws Exception {
 UsingFlumeEmbeddedAgent usingFlumeEmbeddedAgent = new
 UsingFlumeEmbeddedAgent();
 usingFlumeEmbeddedAgent.run(args);
 int i = 0;
 while (i++ < 100) {
 usingFlumeEmbeddedAgent.generateAndSend();
 }
 }

 public void run(String args[]) throws Exception {
 Options opts = new Options();

 Option opt = new Option("r", "remote", true,
 "Remote host to connect " +
 "to");
 opt.setRequired(true);
 opts.addOption(opt);

 opt = new Option("p", "port", true, "Port to connect to");
 opt.setRequired(true);
 opts.addOption(opt);

 opt = new Option("b", "batchSize", true, "Batch Size to use");
 opt.setRequired(false);
 opts.addOption(opt);

 Parser parser = new GnuParser();

Embedded Agent | 189

 CommandLine commandLine = parser.parse(opts, args);

 if (commandLine.hasOption("h")) {
 new HelpFormatter().printHelp("UsingFlumeEmbeddedAgent", opts,
 true);
 return;
 }

 Map<String, String> config = new HashMap<String, String>();
 parseHostsAndPort(commandLine, config);
 config.put("source.type", "embedded");
 File dcDir = Files.createTempDir();
 dcDir.deleteOnExit();
 config.put("channel.type", "file");
 config.put("channel.capacity", "100000");
 config.put("channel.dataDirs", dcDir.toString() + "/data");
 config.put("channel.checkpointDir", dcDir.toString() + "/checkpoint");
 agent.configure(config);
 agent.start();
 Runtime.getRuntime().addShutdownHook(new Thread(new Runnable() {
 @Override
 public void run() {
 agent.stop();
 }
 }));
 }

 private void generateAndSend() {
 List<Event> events = new ArrayList<Event>(100);
 for (int i = 0; i < batchSize; i++) {
 events.add(EventBuilder.withBody(
 RandomStringUtils.randomAlphanumeric(1024).getBytes()));
 }
 try {
 agent.putAll(events);
 } catch (Throwable e) {
 LOGGER.error(
 "Error while attempting to write data to remote host at " +
 "%s:%s. Events will be dropped!");
 // The client cannot be reused, since we don't know why the
 // connection
 // failed. Destroy this client and create a new one.
 }
 }

 private void parseHostsAndPort(CommandLine commandLine,
 Map<String, String> config) {
 String host = commandLine.getOptionValue("r").trim();
 Preconditions.checkNotNull(host, "Remote host cannot be null.");

 String port = commandLine.getOptionValue("p").trim();
 Preconditions.checkNotNull(port, "Port cannot be null.");

190 | Chapter 7: Getting Data into Flume*

 String[] hostnames = host.split(",");
 int hostCount = hostnames.length;
 final String sinkStr = "sink";
 StringBuilder stringNamesBuilder = new StringBuilder("");
 for (int i = 0; i < hostCount; i++) {
 stringNamesBuilder.append(sinkStr).append(i).append(" ");
 }
 // this puts sinks = sink0 sink1 sink2 sink 3 etc...
 config.put("sinks", stringNamesBuilder.toString());
 final String parameters[] = {"type", "hostname", "port",
 "batch-size"};
 final String avro = "avro";
 for (int i = 0; i < hostCount; i++) {
 final String currentSinkPrefix = sinkStr + String.valueOf(i) +
 ".";
 config.put(currentSinkPrefix + parameters[0], avro);
 config.put(currentSinkPrefix + parameters[1], hostnames[i]);
 config.put(currentSinkPrefix + parameters[2], port);
 config.put(currentSinkPrefix + parameters[3],
 String.valueOf(batchSize));
 }

 if (hostnames.length > 1) {
 config.put("processor.type", "load_balance");
 config.put("processor.backoff", "true");
 config.put("processor.selector", "round_robin");
 config.put("processor.selector.maxTimeout", "30000");
 } else {
 config.put("processor.type", "default");
 }
 }
}

This application reads the hostnames and port from the command line in the parse
HostsAndPort method, and configures Avro Sinks to connect to each of them. If sev‐
eral hosts are specified on the command line, a load balancing sink processor is
added to the configuration to make sure data is sent to all hosts that this application
connects to. It also configures a File Channel with a capacity of 100,000 and the
checkpoint and data directories to use. These parameters are all set in a Map, which is
then passed to the configure method of the EmbeddedAgent class.

Once configured, the agent is started by calling the start method, after which the
agent can accept events from the application via the put and putAll methods. In this
case, a predefined number of randomly generated events are passed to the agent using
the putAll method.

When the application is done sending data, the agent is shutdown by calling the stop
method.

Embedded Agent | 191

The Embedded Agent API is contained in the flume-ng-embedded-agent artifact,
which can be added to your application’s pom.xml file’s dependency section as follows:

 <dependency>
 <groupId>org.apache.flume</groupId>
 <artifactId>flume-ng-embedded-agent</artifactId>
 <version>1.5.0</version>
 </dependency>

log4j Appenders
Apache log4j is an extremely popular logging system that supports plugging in cus‐
tom loggers. Flume provides two log4j appenders that can be plugged into your appli‐
cation: one that can write data to exactly one Flume agent and another that can
choose one of many configured Flume agents in a round-robin or random order. To
use Flume’s log4j appenders, flume-ng-log4jappender-1.5.0-jar-with-dependencies.jar
[flume-log4j] should be put in the classpath of your application. It is not required
when building your project, but during deployment.

log4j appenders are configured via the log4j.properties files. To learn more about log4j
configuration, please refer to the log4j documentation [log4j-doc]. The log4 append‐
ers support log4j layouts, which can be specified using the layout parameter in the
appender configuration.

Both of the log4j appenders accept the parameters in Table 7-6.

Table 7-6. Configuration parameters common to both Flume log4j appenders

Parameter Default Description

UnsafeMode false If set to true, the log4j appender will not throw any exception if a log message
could not be committed into the Flume agent’s channel.

AvroReflectionEnabled false If set to true, the appender will attempt to parse the content of the message as
an Avro datum.

AvroSchemaUrl - The URL where the Avro Schema is stored.

The UnsafeMode parameter can be set to true to ignore failure when log messages
sent to the Flume agents fail. This should only be set if it is acceptable to lose log mes‐
sages quietly. If this is not set or is set to false, and log messages time out or fail to be
committed to the Flume agent’s channel(s), logging methods may throw an
exception.

Both log4j appenders can serialize data using Avro serialization. If the incoming data
is an instance of an Avro Generic Record or Specific Record, the log4j appender will

192 | Chapter 7: Getting Data into Flume*

serialize it using Avro serialization. If AvroReflectionEnabled is set to true, the
appender serializes any arbitrary data to Avro as well. Note that this should be used
only when the data must be serialized to Avro. If the AvroSchemaURL parameter is set,
then the appender sets in the Flume event with key flume.avro.schema.url whose
value is the value of the AvroSchemaURL parameter. If this is not set, then the entire
JSON-ified schema is written to a header with the key flume.avro.schema.literal.

Both log4j appenders insert additional headers into Flume event headers, which give
additional information about the events. They are shown in Table 7-7.

Table 7-7. Headers added by Flume log4j appenders

Header Description

flume.client.log4j.logger.name The name of the logger instance that inserted the event.

flume.client.log4j.log.level The level at which this message was logged.

flume.client.log4j.message.encoding The encoding of the message (currently it is always UTF-8).

flume.client.log4j.timestamp The timestamp at which the message was appended.

The log4j appender takes two additional configuration parameters, listed in Table 7-8.

Table 7-8. Flume log4j appender configuration

Parameter Default Description

<appender-name> - Must be org.apache.flume.clients.log4jappender.Log4jAppender.

Hostname - The hostname where the Flume agent is running.

Port - The port where the Flume agent’s Avro Source is listening.

The name of the appender is the key for specifying the FQCN of the log4j appender.
In this case, it must be set to org.apache.flume.clients.log4jappender.Log4jAp
pender. The Flume log4j appender referred to as flumeAppender can be configured
by using the following line in your log4j.properties file:

log4j.rootLogger = INFO, flumeAppender
log4j.appender.flumeAppender = \
org.apache.flume.clients.log4jappender.Log4jAppender
log4j.appender.flumeAppender.Hostname = usingflume-srv-1.domain.com
log4j.appender.flumeAppender.Port = 3343
log4j.appender.flumeAppender.UnsafeMode = true

log4j Appenders | 193

This configuration writes any messages at INFO level or above to the flumeAppender
and passes the data to the Flume agent at usingflume-srv-1.domain.com:3343.

Load-Balancing log4j Appender
Similar to RPC clients, log4j appenders also can be configured to load balance
between multiple Flume agents, using a round-robin or random strategy. This is con‐
figured using the additional parameters in Table 7-9.

Table 7-9. Load-balancing log4j appender configuration

Parameter Default Description

<appender-name> - Must be org.apache.flume.clients.log4jappender.LoadBa
lancingLog4jAppender.

Hosts - A list of hosts specified in hostname:port format, where Flume Avro Sources are
listening.

Selector ROUND_ROBIN Can be ROUND_ROBIN, RANDOM, or the FQCN of a class that implements Load
BalancingRpcClient.HostSelector.

MaxBackoff - The maximum time (in milliseconds) to back off while connecting to a Flume
agent that may have failed.

The load-balancing log4j appender can load balance over several hosts, similar to the
load-balancing RPC client. The list of hosts must be specified as a comma-separated
list in the format hostname:port as the value of the key Hosts.

Just like the load-balancing RPC client, this log4j appender can select the hosts in
round-robin or random order by setting ROUND_ROBIN or RANDOM as the value of the
Selector parameter. To use a custom strategy, the FQCN of a class implementing
LoadBalancingRpcClient$HostSelector can be specified. Also like the load-
balancing RPC client, a log4j appender can blacklist a failed Flume agent for an
increasing period of time up to a maximum backoff using the MaxBackoff parameter:

log4j.rootLogger = INFO, flumeAppender
log4j.appender.flumeAppender =
org.apache.flume.clients.log4jappender.LoadBalancingLog4jAppender
log4j.appender.flumeAppender.Hosts = usingflume-srv-1.domain.com:5545,
usingflume-srv-2.domain.com:3133,usingflume-srv-3.domain.com:4454
log4j.appender.flumeAppender.UnsafeMode = true
log4j.appender.flumeAppender.Selector = RANDOM
log4j.appender.flumeAppender.MaxBackoff = 120000

This configuration uses a LoadBalancingLog4jAppender that connects to three dif‐
ferent hosts in a random order and blacklists failed Flume agents for 120 seconds.

194 | Chapter 7: Getting Data into Flume*

Summary
In this chapter, we covered the APIs Flume provides to get the data out from applica‐
tions to Flume agents reliably. We also covered the log4j appenders that come bun‐
dled with Flume that allow the user to send data to Flume without actually writing
any code, using some simple configuration.

In the next and final chapter, we will look at how to plan and deploy Flume, and how
to monitor a Flume cluster once it’s deployed.

References
• [truststore] Oracle trust store documentation, http://bit.ly/1oprwQn
• [truststore-type] KeyStore types, http://bit.ly/1wxll6y
• [thrift-doc] Apache Thrift tutorial, http://thrift.apache.org/tutorial/
• [flume-thrift] Flume Thrift specification, http://bit.ly/1oprwjc
• [hostInfo] HostInfo class, http://bit.ly/1opryrq
• [zlib-manual] zlib manual, http://www.zlib.net/manual.html
• [log4j-doc] log4j manual, http://logging.apache.org/log4j/1.2/manual.html
• [flume-log4j] Flume log4j appender on Maven Central, http://bit.ly/1oprCav

Summary | 195

http://bit.ly/1oprwQn
http://bit.ly/1wxll6y
http://thrift.apache.org/tutorial/
http://bit.ly/1oprwjc
http://bit.ly/1opryrq
http://www.zlib.net/manual.html
http://logging.apache.org/log4j/1.2/manual.html
http://bit.ly/1oprCav

CHAPTER 8

Planning, Deploying, and
Monitoring Flume

Up to this point, we’ve discussed the architecture of Flume and the various compo‐
nents and their configuration. In this chapter, we will discuss how to plan a Flume
deployment and how to deploy and monitor Flume agents. We will also discuss the
various tools available outside of the Flume project itself that make deployment and
monitoring of Flume easier.

Planning a Flume Deployment
Planning a Flume deployment can be tricky. In this section, we will discuss the steps
involved in planning a Flume deployment for your requirements.

Time to Repair
Most production deployments define a mean time to repair (MTTR) for systems that
have gone down, which is usually a good estimate of how long systems will take to
come back online. In this section, we will assume that the MTTR for servers hosting
the various services is available and that in most cases the time required for recovery
does not exceed this. In simple terms, let’s consider this to be the time taken for
servers to recover from failure in most cases. This will vary between deployments,
and if a maximum time to repair (maximum time in which a failed system recovers) is
available, that should be considered instead. In this chapter, we assume that this is
available; we’ll call it MaxTTR.

Now that the user already has information on (or has calculated) the maximum time
that each machine can go down for, we also assume for the purposes of this chapter
that any planned or unplanned downtime for the storage or indexing system (the

197

system as a whole, not just one machine) has a known upper bound—let’s call it max‐
imum time to storage repair (MTSR).

Summarizing, we have two types of upper bounds: the MaxTTR, which is the maxi‐
mum downtime of a single server, and the MTSR, which is the maximum downtime
of a storage or indexing cluster. For the sake of simplicity, let’s also assume that these
values are measured in seconds.

Validity of These Calculations

If client applications cannot write to all agents in the first tier and
the first-tier agents cannot write to all agents in the second, these
values no longer have any meaning, since it is does not make sense
to combine capacities when one agent cannot write to another (if
the second agent goes down, the capacity of the path from the cli‐
ent via the first agent will be reduced). So, all numbers in this chap‐
ter are valid only when a load-balancing or failover strategy is
deployed between client applications and the first tier, and between
tiers.
In the following sections, we will discuss ratios between the num‐
ber of agents in different tiers and between the final tier and HDFS.
These numbers are based on experimentation and not necessarily
scientifically valid for every scenario. When the servers in question
are really powerful, with several cores and a lot of RAM, newer OS
optimizations, etc. can improve the performance a whole lot.
The ratios presented here might vary wildly based on a number of
factors including, but not limited to, the hardware, the network
configuration, the OS used, and the optimizations made for the
deployment. The idea here is to present the technique used and not to
provide absolute ways of doing this planning. The real ratios will
vary for each deployment, based on all the factors mentioned ear‐
lier. Use these numbers as guidance, but do not depend on them
blindly. Use them as a starting point and then come up with values
based on experimentation that reflect the actual hardware and net‐
work the deployment is going to be on.

How Much Capacity Do I Need in My Flume Channels?
This is one of the most common questions faced by teams deploying Flume. The
capacity of Flume channels is what provides a buffer between the applications pro‐
ducing data and the storage system. The maximum time that the storage system is not
accessible is equal to the MaxSTR, according to our earlier definition. This means
that for a period equivalent to the MaxSTR (plus a buffer period), the application
must still be able to produce and write data to Flume, while Flume buffers the data.

198 | Chapter 8: Planning, Deploying, and Monitoring Flume

Calculating the total buffer capacity is simple. Assume that the combined production
of events from all application servers at peak hours is pmax events per second. The total
number of events that are produced in this period can then be represented as:

Tmax = pmax × MaxTSR

This is the total number of events that should be buffered in the entire Flume deploy‐
ment. But this does not consider the fact that machines hosting Flume agents can also
fail, which means any buffering provided by them will be unavailable. To account for
this, it is important to also add an additional buffer in the Flume cluster. A reasonable
buffer to add is an additional 25% of the Tmax. So, a good overall channel capacity
over the entire Flume deployment would be represented by:

T = 1 . 25 × Tmax

How Many Tiers?
Now that we know how much overall capacity the Flume deployment needs to have,
we need to understand how to split the Flume deployment into multiple tiers. When
designing a tiered Flume deployment, start calculating capacity from the tier that
talks to HDFS.

The number of machines that directly write to an HDFS cluster should be very limi‐
ted, since the HDFS cluster must also support applications that read and process data,
like MapReduce, Impala, Spark, etc. It is usually a good idea to limit the number of
Flume agents writing data to Flume to a few tens of agents. Depending on the servers
used for the HDFS cluster, how loaded the cluster is, and the network, your deploy‐
ment may be able to handle more clients writing at any point in time.

HDFS and Avro Source Scaling

In general, keeping the number of agents writing to an HDFS clus‐
ter low is a good idea. The number of sinks required and number
of agents required vary based on specific use cases.
Since Avro Sources that receive data from other Flume agents really
are servers running within a JVM that does a lot of additional work
—buffering to the channel, sinks running several threads pulling
data out of the channel and writing to the storage system, etc.—
Avro Sources eventually will reach a point where they cannot scale
any further. It will end up taking too long for Avro Source worker
threads to push data into the channels, causing timeouts on the
Avro Sink in the previous tier. At this point, more agents running
Avro Sources need to be added to that tier.

Planning a Flume Deployment | 199

The goal is make sure that there is at least a capacity of T in the Flume cluster chan‐
nels. To do this, we add agents between the application and the HDFS cluster. Once
the tier writing to HDFS is full, it pushes back on the previous tier or the application.
Since it is not a good idea to be pushing back on the application, an additional tier
between the application and the tier writing to HDFS is a good idea when the total
capacity of the agents writing to HDFS is more than T, and the number of HDFS tier
agents has increased to more than eight agents.

The idea is to start adding agents to the tier writing to HDFS to increase the overall
channel capacity. Once the number becomes large and the HDFS cluster starts facing
hiccups due to too many open files or too many clients writing to it, this indicates
more capacity needs to be added. At this point, a tier between the application and the
HDFS tier becomes necessary—let’s call this tier Tn.

Once the ratio between the number of agents in Tn and the tier writing to HDFS rea‐
ches 32:1 (remember, these numbers need to be tested for individual deployments),
an additional tier between the application and Tn may be necessary to add more
capacity. The same logic can be applied further to add more capacity between the
application and currently existing tiers.

Similar logic needs to be applied to scale the number of agents receiving data from
the application. Add agents to increase capacity and decrease the ratio of application
servers to the first-tier agents to less than 32:1. If the number of Flume agents in the
first tier is small (of the order of tens of machines), write directly to HDFS from these
machines; otherwise, add a second tier such that the ratio is less than 32:1 between
the first tier and the second. Now keep increasing the number of agents in tiers such
that the ratio between consecutive agents is less than 32:1. Additional tiers become
necessary because of the ratio between the final tier and HDFS, since the final tier
cannot have more than around eight machines.

How do you know if Flume is not scaling or if the destination storage system or index is slow?
The previous ratios give a good starting point for your cluster deployment. But once
you have deployed Flume, how do you know if you can write more data via Flume? In
most cases, if you are not seeing exceptions in the logs consistently, and your channel
sizes are not growing out of control (some growth is fine, provided they eventually go
down in size), it means all is well and more data can be sent. Once you start seeing
exceptions consistently or your channel sizes are simply growing, then action is
required on your part.

If Flume sinks are not clearing the channels fast enough, and there are no timeouts in
the logs, adding more sinks will help—until the maximum number of threads that the
JVM can support is reached, at which point the rate at which the channel is being
cleared starts flatlining (and there are still no timeouts in the logs). If the channels are
still not being cleared fast enough, and the channel sizes are creeping up, it means all

200 | Chapter 8: Planning, Deploying, and Monitoring Flume

the sinks combined are not clearing the channels as fast as the sources are writing to
them, indicating that more Flume agents are needed on this tier. Adding more agents
on this tier distributes the load, thus reducing the gap between the rate at which sour‐
ces are writing and the rate at which sinks are clearing. This should ensure that chan‐
nel sizes stay consistent and don’t keep growing.

There is another possibility, though—your storage or indexing system may be under‐
deployed for all the write load from Flume combined with the already heavy process‐
ing you are doing on the cluster. An indication of this is timeouts happening on the
sink, usually indicated by TimeoutExceptions in the logs. If this is the case, adding
more sinks won’t help as the storage system itself is unable to keep up with the load.

For HDFS, this can happen if there are several MapReduce or Impala jobs running on
the same cluster and the cluster’s I/O devices are getting overwhelmed.

For HBase, this can happen for multiple reasons, like too many writes going to the
same regions or scans happening too often, locking up rows. Either way, this needs to
be fixed by scaling up the storage system.

For each system, how this is done depends on the system itself. You can add more
data nodes to an HDFS cluster or add more region servers to an HBase cluster, or
distribute the writes to hit multiple regions.

Sending Data over Cross–Data Center Links
Cross–data center links are usually much slower and much less reliable than intra–
data center links. If the application producing data is in one data center and the
HDFS cluster is in another, it is always a good idea to have a Flume tier in each data
center, since cross–data center links are more likely to fail or have a higher latency
than local links. To keep the application from seeing these higher latencies or failures
on these links, it should write to Flume and have Flume deal with the latency or fail‐
ures. The application writes to one tier, which writes data across the WAN to another
tier, which writes to HDFS. This works better because Flume autoregulates by adjust‐
ing the backoffs when writes fail. This allows the application to continue working
despite failures or slowdowns in the cross–data center links, relying on Flume to do
the buffering, retries, and backoffs to reduce the congestion on these links.

It is not a good idea to have Flume write directly to HDFS across a
WAN, since failures are more likely. When failures happen, Flume
might not be able to close files or ensure data was reliably written
to the HDFS cluster. This can cause a huge number of duplicates,
and/or small files getting written to HDFS as Flume will close a file
as soon as a single write to that file times out or fails.

Planning a Flume Deployment | 201

If the responsibility to write across WANs is given to Flume, it is less likely that fail‐
ures will cause duplicates and small files in HDFS, as the RPC sink–source combo
takes care of delivering data reliably across the WAN. Of course, timeouts will have to
be adjusted based on the level of latency across the WAN, but a few failures every
now and then will not stress the Flume agents a whole lot. This is shown in
Figure 8-1.

Figure 8-1. Cross–data center communication using Flume

Sharding Tiers
Adding tiers makes sense in order to scale the number of events that need to be buf‐
fered. But with each agent in one tier opening connections to every agent in the next,
the number of connections still coming into each Avro Source on the second tier is as
many as the number of agents in the first tier. Such high absolute numbers still put
some stress on the resources on those servers because sockets use up file descriptors
and TCP buffers, even though their use might be limited since the agents in the previ‐
ous tier write to so many agents. To avoid this, a good idea might be to shard tiers.

Let’s take an example where tier 1 has 380 agents, which means tier 2 must have at
least 12 agents to keep the ratio below 32:1. Each one of the 12 agents in tier 2 will
end up having 380 incoming connections open. (You could substitute this with 380
application servers and 12 Flume agents as the first and only tier as well.) This gives
the agents in the first tier 12x failure tolerance, but this also means that each of the 12
agents allocates TCP buffers for 380 sockets. Often, 12x failure tolerance is not

202 | Chapter 8: Planning, Deploying, and Monitoring Flume

necessary at all. You could easily get away with something like 3–4x failure tolerance.
If each of the tier 1 agents sent data to only four tier 2 agents, they would still have 4x
failure tolerance.

Therefore, you could essentially partition tier 1 and tier 2 into three shards, each han‐
dling a subset of the total data being sent from the application to HDFS. If each of
these tiers were sharded, tier 1 would have three shards, each with approximately 128
agents, and tier 2 would have the same number of shards with 4 agents each. All
shards from tier 2 could either write directly to HDFS or to another tier, which need
not be sharded since the number of agents in tier 2 is small.

This technique is shown in Figure 8-2.

Figure 8-2. Sharding tiers to reduce load on individual servers

Deploying Flume
Now that you have planned a Flume deployment, you need to deploy the software
and configuration to these machines to get them running. Flume does not have a cen‐
tralized deployment or management service, but there are systems available in the
market that can do this for you. One example is Cloudera Manager [cm]. Cloudera
Manager can deploy Cloudera’s Flume distribution to various servers, in addition to
deploying custom code for plug-ins and also configuration files.

Deploying Flume | 203

Another option is Apache Bigtop [bigtop]; it provides packages in native formats for
various operating systems, like RPM for Red Hat (and derived systems), deb for
Debian, etc. These packages are generally based on the current Apache release of
Flume. They can be used for easily deploying Flume to various machines and even
installing and removing Flume using native package management systems.

Deploying Custom Code
Custom code is often deployed with Flume. Custom code may be written for inter‐
ceptors, serializers, deserializers, HTTP Source handlers, etc. Flume provides an easy
way to deploy custom code: the plugins.d framework. The plugins.d directory is auto‐
matically added to the Flume classpath, and hence this does not need to be added to
the FLUME_CLASSPATH explicitly. To add custom code to the plugins.d framework, you
must understand the way Flume adds plug-ins to its classpath from the plugins.d
directory.

The directory structure of the plugins.d directory is shown in Figure 8-3. For each
custom component, you create a new subdirectory in plugins.d (the name really does
not matter). In each of these subdirectories, Flume expects three directories:

lib
This directory contains the actual JAR files that contain the plug-in classes and build‐
ers that go into the configuration file and are to be instantiated by Flume.

libext
This directory contains external dependencies that the plug-in depends on.

native
This directory contains any native libraries that are to be loaded via the Java Native
Interface (JNI).

The directories are added to the Flume classpath in no specific order, so no ordering
should be expected in the JAR files being added in any of the directories.

204 | Chapter 8: Planning, Deploying, and Monitoring Flume

Figure 8-3. plugins.d directory structure

Monitoring Flume
Flume has a metrics framework that can expose metrics via Java Management Exten‐
sions (JMX) or HTTP, or to a Ganglia server. For each of the components, there are
multiple metrics that are exposed. Table 8-1, Table 8-2, and Table 8-3 show the vari‐
ous metrics exposed by channels, sources, and sinks.

All metrics are exposed in all cases via JMX. Since JMX can be used to start or stop
Java applications, it is not recommended to allow JMX to be accessed from remote
machines. This is disabled by default, and it is best not to enable this for security
reasons.

To report metrics to HTTP, pass -Dflume.monitoring.type=http to the agent while
starting it:

bin/flume-ng agent -f flume.conf -n agent -c conf -Dflume.monitoring.type=http \
-Dflume.monitoring.port=5653

This will cause Flume to start an HTTP server on port 5653. Accessing the /metrics
web page returns the metrics in the following JSON format (the URL used to access
the metrics would be of the form http://usingflume.oreilly.com:5653/metrics):

{
"type1.component1" : {"metric1" : "value1", "metric2" : "value2"},
"type2.component2" : {"metric3" : "value3", "metric4" : "value4"}
}

For the previous source, the type is SOURCE (CHANNEL is the type for a channel, SINK
for sink, etc.). Here’s an example of how metrics are represented:

Monitoring Flume | 205

{
"CHANNEL.ch1":{"EventPutSuccessCount":"6645",
 "Type":"CHANNEL",
 "StopTime":"0",
 "EventPutAttemptCount":"6887",
 "ChannelSize":"434",
 "StartTime":"1455782222341,
 "EventTakeSuccessCount":"45200",
 "ChannelCapacity":"600000",
 "EventTakeAttemptCount":"45100"
 }
}

Flume can also send metrics information to Ganglia, which can be used to monitor
Flume. Only one of Ganglia or HTTP monitoring can be enabled at any point in
time. The same metrics shown in Table 8-1, Table 8-2, and Table 8-3 are exposed via
HTTP and Ganglia. Flume reports metrics to Ganglia periodically—the default is
once per minute, though this can be configured to report more often. To start Ganglia
reporting, start Flume with the following command line (replacing the arguments
with their corresponding values in your deployment, of course):

bin/flume-ng agent -f flume.conf -n agent -c conf \
-Dflume.monitoring.type=ganglia \
-Dflume.monitoring.pollFrequency=45 -Dflume.monitoring.isGanglia3=true

To report metrics to Ganglia, you pass -Dflume.monitoring.type=ganglia to the
agent while starting it. By default, Flume reports metrics in Ganglia 3.1 format. To
report in Ganglia 3 format, pass -Dflume.monitoring.isGanglia3=true to the
Flume agent on startup, as in this command line. To change the reporting interval,
use the -Dflume.monitoring.poll Frequency command-line argument. The value
passed is the period between two consecutive reports from Flume (in seconds).

Table 8-1. Channel metrics

Metric Description

ChannelSize The total number of events currently in the channel.

EventPutAttemptCount The total number of events the source(s) attempted to write to the channel.

EventPutSuccessCount The total number of events that were successfully written and committed to the channel.

EventTakeAttemptCount The total number of times the sink(s) attempted to read events from the channel. This does
not mean that events were returned each time, since sinks might poll and the channel
might not have any data.

EventTakeSuccessCount The total number of events that were successfully taken by the sink(s).

StartTime Milliseconds since the epoch when the channel was started.

206 | Chapter 8: Planning, Deploying, and Monitoring Flume

Metric Description

StopTime Milliseconds since the epoch when the channel was stopped.

ChannelCapacity The capacity of the channel.

ChannelFillPercentage The percentage of the channel that is full.

Type For channels, this always returns CHANNEL.

Table 8-2. Source metrics

Metric Description

EventReceivedCount The total number of events that the source has received until now.

EventAcceptedCount The total number of events where the event was successfully written out to the
channel and the source returned success to the sink/RPC client/system that created the
event.

AppendReceivedCount The total number of events that came in with only one event per batch (the equivalent
of an append call in RPC calls).

AppendAcceptedCount The total number of events that came in individually that were written to the channel
and returned successfully.

AppendBatchReceivedCount The total number of batches of events received.

AppendBatchAcceptedCount The total number of batches successfully committed to the channel.

StartTime Milliseconds since the epoch when the source was started.

StopTime Milliseconds since the epoch when the source was stopped.

OpenConnectionCount The number of connections currently open with clients/sinks (only an Avro Source
currently exposes this).

Type For sources, this always returns SOURCE.

Table 8-3. Sink metrics

Metric Description

ConnectionCreatedCount The number of connections created with the next hop or storage system (like when a new
file is created on HDFS).

ConnectionClosedCount The number of connections closed with the next hop or storage system (like when a file
on HDFS is closed).

Monitoring Flume | 207

Metric Description

ConnectionFailedCount The number of connections that were closed due to an error with the next hop or storage
system (like when a new file on HDFS is closed because of timeouts).

BatchEmptyCount The number of batches that were empty—a high number indicates that the sources are
writing data slower than the sinks are clearing it.

BatchUnderflowCount The number of batches that were smaller than the maximum batch size this sink is
configured to use—this also indicates sinks are faster than sources if it’s high.

BatchCompleteCount The number of batches that were equal to the maximum batch size.

EventDrainAttemptCount The total number of events the sink tried to write out to storage.

EventDrainSuccessCount The total number of events that the sink successfully wrote out to storage.

StartTime Milliseconds since the epoch when the sink was started.

StopTime Milliseconds since the epoch when the sink was stopped.

Type For sinks, this always returns SINK.

These metrics can be used to keep an eye on the health of the Flume agents. There are
systems like Cloudera Manager that can take these raw metrics provided by Flume
and provide more meaningful metrics, like how long until the channel is filled. Such
systems also provide time-bucketed graphs of these metrics. These systems can alert
operations engineers when metrics hit critical situations, which are indicative of
downtime in the HDFS cluster or underplanned capacity of Flume agents.

Reporting Metrics from Custom Components
Custom components such as sources, sinks, or channels can expose metrics directly
to the Flume framework using the SourceCounter, SinkCounter, and Channel
Counter classes, respectively, which provide methods to update any of the previous
metrics for sources, sinks, and channels.

Other components, like interceptors, serializers, etc., can also expose metrics, but
there are no convenience classes that make this direct, since each component might
expose very different-looking metrics. Such components can report metrics directly
to JMX using the MonitoredCounterGroup class. Custom components should create a
counter class that inherits this class, and have public getter methods for the various
metrics. To add, update, or increment metric values, the counter class can expose
methods that can be used by the custom class implementation.

208 | Chapter 8: Planning, Deploying, and Monitoring Flume

Summary
In this chapter, we discussed how to plan, deploy, and monitor Flume. Flume can be
planned and deployed in a scalable and flexible way if issues such as cluster downtime
and the desired buffering are considered before actually deploying Flume. You should
also make sure that there is enough buffering to ensure HDFS downtimes do not
affect the application writing data to Flume.

Flume can be deployed and monitored using simple techniques built into Flume or
using third-party systems that allow for the deployment and configuration of Flume
from a single location.

References
• [cm] Cloudera Manager, http://bit.ly/1opzYiz
• [bigtop] Apache Bigtop, http://bigtop.apache.org

Summary | 209

http://bit.ly/1opzYiz
http://bigtop.apache.org/

Index

Symbols
% (percent) character, 97
64-bit Rabin Fingerprint, 57

A
AbstractChannelSelector class, 155
AbstractElasticSearchIndexRequestBuilderFac‐

tory class, 131
AbstractPollableSource class, 71, 73
ACID compliance, 5
active name node servers, 2
ActiveMQ, 64
agents (Flume), 9, 10-20

calculating optimum number of, 200
communication between, 17
components of, 9
configuring, 13-16
data loss and, 25
embedded, 185-192
failure of, 25
flows, 17-20
implementation of, 10-13
Kerberos credentials for, 106
running, 29-31

aliases for sources, 34
Amazon S3, 139
Apache Bigtop, 209

deploying Flume with, 204
Apache Flume JMS Source, 78
Apache Hadoop, 1-6

as data processing framework, 7
file system for, 1-5
HBase, 5
HDFS, 1-5

HDFS Sink support for, 96
writing to, 108

Apache HBase, 5
client API, 5
client-side security configuration, 139
HTTP API, 10
master server, 6
operations, 5
regions in, 6
Shell, 6
shell commands for, 5
Thrift API, 6
timeouts in, 201
versions, 121

Apache Hive, 4, 99
Apache Kafka, 7
Apache MINA, 61
Apache Pig, 5, 7

Avro container format, 112
Apache Solr, 139

on HDFS, 139
unique key, 139

Apache Solr Search, 125
Apache Spark, 5

removing duplicates with, 28
Apache Thrift, 139

generating code in other languages with,
184

IDL, 40
Project, 78
RPC client, 184
sending data over, 169
Source configuration, 40
SSL and, 41

211

Apache Thrift Project, 78
Apache Thrift source, 40-42

failure handling, 42
append method (RPC client), 170

for host selector, 183
appendBatch method (RPC client), 170

batch-size parameter and, 171
for host selector, 183

applications
aggregating data from, 8
embedding agents in, 185-192

Async HBase Sink, 114-121
configuration, 114
serializer interface, 117
serializer, location of, 120

AsyncBase, 139
AsyncHBase API, 114

atomic increment request, 139
AtomicIncrementRequest objects, 117
put request, 139
PutRequest objects, 117

Avro container file format, 108
compression support in, 3
error catching in, 3
log4j appenders and, 192
MapReduce and, 112
sending data over, 169

Avro container file specification, 139
Avro IDL documentation, 78
Avro Schema Fingerprints, 78
Avro Sink, 17, 121-124

agent to agent communication and, 17
compression and, 38
configuration, 122
configured with SSL and compression, 39
embedded agents and, 188
RPC client and, 178
SSL and, 38

Avro Source, 17, 36-39
configuration, 36
configured with SSL and compression, 39
failure handling, 42
replicating data with, 21
scaling, 199
source scaling for, 199

AvroEventDeserializer (Flume), 57
AvroReflectionEnabled parameter (log4j

appender), 193

AvroSchemaURL parameter (log4j appender),
193

B
backoff period, load-balancing RPC clients, 181
backupCheckpointDir parameter (File Chan‐

nel), 88
batch-size parameter (RPC clients), 171
batches, 26-28

determining size of, 28
Rolling Sink and, 134

batchSize parameter
Async HBase Sink, 115
Elastic Search Sink, 130
Exec Source, 63
HBase Sink, 115
HDFS Sink, 106
Morphline Solr Sink, 126
Null Sink, 133
Spooling Directory Source, 51

batchTimeout parameter (Exec Source), 63
begin method (Transaction), 80
Bigtop (Apache), 209

deploying Flume with, 204
binary columnar formats, 109
binary file formats, 108

HDFS and, 3
Binary Large Object (BLOB) files, 78

reading, 58
blacklisting failed sinks, 160, 162, 163
blacklisting unresponsive hosts, 181
BLOB (Binary Large Object) files, 78

reading, 58
blocks (of data), 2
buckets, 97-100

defined, 96
time-based, 99

buffers, 185
Builder interface

EventDeserializer interface, 53
Interceptor, 147

byteCapacity parameter (Memory Channel), 84
byteCapacityBufferPercentage parameter

(Memory Channel), 84
bz2 compression format, 4

C
callTimeout parameter (HDFS Sink), 106
capacity parameter

212 | Index

File Channel, 87
Memory Channel, 84

capacity planning, 198
channel processor, 11, 80
channel selectors, 150-157

configuration, 150
configuring for sources, 35
congestion behavior of, 151
custom, 157
multiplexing, 152-155
replicating, 151

ChannelCounter class, 208
ChannelException, 12
ChannelException error, 25, 42, 150
channels, 11, 22, 79-92

capacity planning, 198
clearing with multiple sinks, 200
clearing with sink groups, 158
component-type parameter for, 14
custom sources and, 70
File, 85-92
for embedded agents, 188
Memory, 82-85
persistent, 85-92
total buffer capacity, calculating, 199
transaction workflow and, 80-82
writing to multiple, 12

channels parameter (multiplex channel selec‐
tors), 153

ChannelSelector interface, 155
character sets, naming, 53
checkpointDir parameter, 88
checkpointInterval parameter (File Channel),

88
checkpoints (File Channel), 89
client configuration file

Async HBase Sink, 115
HBase Sink, 115

client writes, 2
close method (Transaction), 81
Cloudera Impala, 4, 7

bucketing and, 99
deploying Flume with, 203

Cloudera Manager, 208, 209
clusterName parameter (Elastic Search Sink),

130
clusters of agents, 18
column families (HBase), 5
command parameter (Exec Source), 63

commands (Morphline Solr Sink), 125
commit method (Trasaction), 81
communication sink-to-source, 36-43
component-type parameter, 14
compression formats, 4

Avro native, 113
for Avro Sink, 123
for HDFS Sink, 105
in RPC client, 178

Configurable interface, 15, 135, 138, 156
configuration file (Flume), 29
ConfigurationProvider

for sinks, 94
for sources, 33

configure method
custom source handlers, 76
EmbeddedAgent class, 187
HTTP Source handlers, 45
sinks, 94

connect-timeout parameter (RPC client), 178
connectionFactory parameter (JMS Source), 65
Context instances, 15, 45

deserializers and, 53
for custom interceptors, 147

converter (JMS Source), 66
configuring, 68

corruption of files, 3
createHostIterator method, 183
cron jobs, 99
cross-data center links, 201
custom code

channel selectors, 155-157
deployment of, 204
deserializing custom formats, 53-58
event-driven sources, 74
for channel selectors, 155-157
for handling HTTP Source, 44-49
for interceptors, 147-150
for sinks, 135-139
host selector, 183
pollable source, 71
reporting metrics from, 208

custom sources, 69-77
event-driven sources, 33
pollable sources, 71-73

Customizing Java Security, 78

D
data

Index | 213

backups, 90
buffering, 63
duplication, 9, 28
types allowed by HDFS Sink, 105

data blocks, 2
replicating, 20

data centers, 19
data compression

Avro Source and, 38
RPC clients and, 38

data flow in Flume agents, 9
data formats

controlling for HDFS Sinks, 108-114
controlling with serializers, 108-114
customizing, 131-133
in HDFS, 3
ingest vs. output, 113

data loss
Flume and, 22
Syslog sources and, 62
with Exec Source, 64

data node servers, 2
data processing in HDFS, 4
dataDirs parameter (File Channel), 88
Deflate/bz2 compression codec

Avro support for, 3
deletePolicy parameter (Spooling Directory

Source), 52
delimiters, setting, 60
deployment (Flume)

capacity planning, 198
cross-data center links and, 201
monitoring, 205-208
of custom code, 204
of Log4j appenders, 192
planning, 197-203
scaling, 199
services for, 203
tiers, calculating, 199
tiers, sharding, 202
time to repair, defining, 197

deserializer parameter, 53
deserializers, 53-58
The design and implementation of a log-

structured file system (Rosenblum, Ous‐
terhout), 92

disk space, checking, 89
doConfigure method (AbstractPollableSource),

73

durability guarantees, 9
dynamic routing, 21

E
Elastic Search Client API, 133

configuration, 129
Elastic Search Sink, 129-133

customizing data formats, 131-133
Embedded Agent API, 187, 192
embedded agents, 185-192

Avro Sink and, 188
configuring, 188-192
shutting down, 187

EmbeddedAgent class, 187
escape sequences, 97

for timestamps, 98
Event interface, 167
event-driven sources, 33
EventBuilder API, 167
EventDeliveryException, 187

RPC client, 170
EventDeserializer implementation, 53
EventDrivenSource interface, 73-77
events (Flume)

building, 167
converting from JMS Source, 67-69
converting into Morphline records, 125
filtering with regex interceptors, 144
sending from applications, 170
translating into Puts, 117-121
writing to embedded agents, 187

EventSerializer class (HDFS Sink), 109
exception handling in HTTP Sources, 45
excludeEvents parameter (regex interceptors),

145
Exec Source, 62-77

batch sizes, controlling, 27
configuration, 62
Spooling Directory Source vs., 50

expiration dates on indexed documents, 130

F
Facebook Scribe, 7
failed sinks, blacklisting, 160, 162, 163
failover

RPC client, 184
RPC client configuration, 184
sink processor, 162-164

failure handling, 25

214 | Index

Avro sources, 42
binary files and, 108
channel processors and, 150
embedded agents and, 186
sending events from applications, 170
Thrift sources, 42
with load-balancing RPC clients, 180
writing to required channels, 12

fan-in topology, 19
file

corruption, indicating, 3
formats of, 108
limiting number of open, 106
maximum size of, 88
size constraints on, 10

File Channel, 23, 85-92
Avro Sink and, 122
batching and, 27
best practices for, 90
designing, 90-92
embedded agents and, 186
implementing, 90-92
performance of, 89
records, reconstructing, 91

filenames
generating, 97, 103
including, 52

filePrefix parameter (HDFS Sink), 97, 103
fileSuffix parameter

HDFS Sink, 103
Spooling Directory Source, 52

fingerprinting headers, 57
flows, 17-20

of events to channels, 152
reliable vs. fast, 152

Flume, 8-31
agent failure, 25
batches, 26-28
channels, 22
configuration, 15
data duplication, 28
data durability guarantee, 22
data loss and, 22
data replication, 20
dynamic routing between, 21
metrics frameworks, 205-208
startup behavior of, 91
transactions, 23
usage, 10

Flume Client SDK, 168
dependencies for, 168
RPC clients, building, 169

Flume event queue (File Channel), 90
Flume log4j appender on Maven Central, 195
Flume Thrift specification, 184, 195
flume-env.sh, 29
flume-ng-hbase sink package, 120
FlumeException, 187
.flumespool directory, 52
FLUME_CLASSPATH environment variable,

29
FQCN (Fully Qualified Class Name)

for Elastic Search Sink, 130
for Morphline Solr Sink, 126
of Avro Sink, 123
of HBase, 115
of HDFS, 102
of log4j appenders, 193

fsync system call, 27, 31
full replay (File Channel), 91

G
Ganglia

exposing metrics via, 205
sending metrics to, 206

getBatchSize method (RPC client), 170
getChannelProcessor method (AbstractSource),

70
getEvents method (HTTPSourceHandler), 45
getInstance method (RpcClientFactory), 171
getOptionalChannels method (channel selec‐

tors), 155
getSubProperties method (Context instances),

15
getTransaction method (channel), 80
Google File System (gfs), 2, 6

H
Hadoop (Apache), 1-6

as data processing framework, 7
file system for, 1-5
HBase, 5
HDFS, 1-5
HDFS Sink support for, 96
writing to, 108

Hadoop Commands, 6
Hadoop impersonation configuration, 139
Hadoop: The Definitive Guide, 3, 6

Index | 215

HADOOP_PREFIX directory, 30
HBase (Apache), 5

client API, 5
client-side security configuration, 139
HTTP API, 10
master server, 6
operations, 5
regions in, 6
Shell, 6
shell commands for, 5
Thrift API, 6
timeouts in, 201
versions, 121

HBase Sinks, 114-121
configuration, 114
performance of, 95
Puts, translating events into, 117-121
serializer, location of, 120
translating events into Puts, 117-121

HBase: The Definitive Guide, 6, 115, 139
HDFS (Hadoop Distributed File System), 1-5, 7

calculating tier capacity for, 200
data formats in, 3
data processing in, 4
immutability of data in, 1, 2
replication factors, 2
shell commands for, 3
source scaling for, 199
SQL interfaces for, 4
timeouts in, 201
write constraints on, 8
writing across a WAN, 201
writing to, 96-114

HDFS Sink, 96-114
buckets, 97-100
configuring, 100-108
data format, controlling, 108-114
Hadoop support for, 96
multiple, configuring, 104
performance of, 95
serializers and, 108-114

headers
generated by interceptors, 147
generated by log4j appenders, 193

hidden files, writing to, 96
Hive (Apache), 4, 7, 99

Avro container format, 112
HDFS Sinks and, 103

host information, replacing, 97

host interceptors, 143
host selector, custom, 183
host-selector parameter (load-balancing RPC

client), 181
hostHeader parameter (interceptors), 143
HostInfo class, 183, 195
Hostname interceptor, 97
hosts parameter (RPC client), 171, 184
HostSelector class (LoadBalancingRpcClient),

183, 194
HTTP Source, 43-49

as event-driven source, 74
configuring, 43
custom handlers configuration, 44
custom handlers for, 44-49
exception handling in, 45

HTTP, exposing metrics via, 205
HTTPBadRequestException, 45, 47
HTTPHandler interface, 49
HTTPServletRequest, 45
HTTPSourceHandler interface, 44
HTTPSourceXMLHandler, 46

I
IANA Time Zone Data, 139
idle timeouts, triggering, 106
idleTimeout parameter (HDFS Sink), 104
ignorePattern parameter (Spooling Directory

Source), 51
immutability of data, 1, 2
increments (HBase), 5

translating events into, 117-121
indexName parameter (Elastic Search Sink),

130
indexType parameter (Elastic Search Sink), 130
inflight pointers (File Channel), 91
informFailure method (RPC client), 183
informSinkFailed method (sinks), 162
ingest format, 113
initialContextFactory parameter (JMS Source),

65
input format for MapReduce, 4
intercept method (interceptors), 148
Interceptor interface, 147
interceptor parameter (source), 142
interceptors, 11, 141-150

configuration, 142
configuring for sources, 35
custom, 147-150

216 | Index

custom, metrics for, 208
data processing alternatives to, 145
event data and, 113
host, 143
Morphline, 145
regex filtering, 144
static, 143
timestamp, 142
UUID, 146

isActive method (RPC client), 170

J
JAR file, 45
Java, 36
Java command-line arguments, 31
Java KeyStore API, 78
Java KeyStore types, 78
Java Message Service, 33
Java New I/O API, 78
Java String instances, 168
Java trust store, 139
Java Virtual Machines, 36
JAVA_OPTS arguments, 30
JMS ByteMessage converter, 67
JMS ObjectMessage converter, 67
JMS Source, 64-69

batch sizes, controlling, 27
converting into Flume events, 67-69

JMS TextMessage converter, 67
JMSMessageConverter interface, 67
JSON formatted events, 45
JSSE certificate authority files, 123

K
Kafka (Apache), 7
keep-alive parameter

File Channel, 89
Memory Channel, 84

Kerberos, 105
kerberosKeytab parameter

HDFS Sink, 105
kerberosKeytab parameter (HBase Sink), 116
kerberosPrincipal parameter

HDFS Sink, 105
kerberosPrincipal parameter (HBase Sink), 116
keystores, SSL, 38
Kibana Elastic Search UI, 139
Kite SDK, 125

L
lib directory, 29
Line Deserializer, 56, 78
load spikes, handling, 19, 79
load-balancing

between Avro Sinks, 124
log4j appenders, 194
log4j appenders configuration, 194
RPC client, 180-183
RPC client, configuring, 181
sink processor, 159-162

LoadBalancingLog4jAppender, 194
LoadBalancingRpcClient$HostSelector class,

183, 194
loadSolr command (Morphline Solr Sink), 126
log4j

documentation, 31
manual, 195
properties file, 29, 134

log4j appenders, 192-194
configuration, 192
load-balancing, 194

logEveryNEvents parameter (Null Sink), 133
Logger Sink, 134

configuration, 134

M
MapReduce, 4, 7

HDFS Sinks and, 103
input format for, 4
removing duplicates with, 28
splittable files and, 3

max-connections parameter (failover RPC cli‐
ent), 184

maxBackoff parameter (RPC client), 181
maxConnections parameter (Thrift Sink), 125
maxFileSize parameter (File Channel), 88
Maximum Time To Recover (MaxTTR), 197
maximum time to storage repair (MTSR), 197
maxIoWorkers parameter (RPC client), 179
maxOpenFiles parameter (HDFS Sink), 106
MaxTTR (Maximum Time To Recover), 197
mean time to repair (MTTR), 197

validating, 198
Memory Channel, 22, 82-85

batching and, 27
configuration, 83

metrics for Flume, 205-208
from custom components, 208

Index | 217

MINA (Apache), 61
minimumRequiredSpace parameter (File

Channel), 89
MIT Kerberos, 139
MonitoredCounterGroup class, 208
monitoring Flume, 205-208
Morphline interceptors, 145
Morphline Solr Sink, 125-129

configuration, 126
search indexing with, 125

morphlineFile parameter
Morphline interceptors, 146
Morphline Solr Sink, 126

morphlineId parameter
Morphline interceptors, 146
Morphline Solr Sink, 126

Morphlines: Kite SDK, 139, 165
mountpoints, multiple (File Channel), 86
MTSR (maximum time to storage repair), 197
MTTR (mean time to repair), 197

validating, 198
multiplexing channel selector, 22
multiplexing channel selectors, 152-155
Multiport Syslog Source, 58-62

N
name node servers, 2
naming components, 13
Netty Project, 78
Netty servers, 37, 77
Netty-Avro IPC protocol, 36
Netty-based RPC protocol, 121
network latency, 8
NFS-mounted disks, 90
nonblocking I/O (NIO), 37
Null Sink, 133

configuration, 133
NullPointerException, 176

O
ObjectOutputStream (JMS Source), 67
Oozie jobs, 99
optional parameter (channel selector), 151
Oracle trust store documentation, 195
ORCFile format, 109
OutOfMemoryError, 42
output format, 113

P
parameters, specifying safely, 176
Parquet file format, 109
path parameter (HDFS Sink), 97
paths, defining for sinks, 97
performance

deployment and, 200
deployment considerations for, 198
load-balancing sink processors and, 159-162
of Async HBase Sink, 114
of HBase Sink, 114
of RPC sinks, 27
of sinks, 95
sharding tiers and, 202
Spooling Directory Source, 58

persistent channel, 85-92
Pig (Apache), 5, 7

Avro container format, 112
plugins.d

directory, 29
framework, 34, 204

pollable sources, 71-73
PollableSourceRunner class (Flume), 71
pom.xml file, 49
preprocessed LZO compression format, 4
preserveExisting parameter (interceptors), 142,

143
priorities

in failover configuration of sinks, 162, 164
in multiplex channel selectors, 154

process method (sinks), 94
processEvent method (Channel), 70

custom interceptors and, 148
processEventBatch method (Channel), 70, 71

custom interceptors and, 148
Properties instance (RPC clients), 169
Protobuf, 108, 110
proxyUser parameter (HDFS Sink), 105
put method (channel processors), 81

File Channel and, 91
put method (embedded agent), 187
putAll method (embedded agent), 187
PutRequest objects (Async HBase Sink), 117
Puts (HBase), 5

translating events into, 117-121

R
random sink selection, 160
RCFile format, 109

218 | Index

readChar method, 53
readEvent method (deserializers), 54
records (Morphline Solr Sink), 125
regex filtering interceptors, 144
region server (HBase), 6
regions (HBase), 6
replicating channel selectors, 151
replication factors, 2
reporting metrics from custom code, 208
request-timeout parameter (RPC client), 178
ResettableInputStream instances, 53
restart parameter (Exec Source), 63
rollCount parameter (HDFS Sink), 104
Rolling File Sink, 134

configuration, 134
rolling timeouts, triggering, 106
rollInterval parameter (HDFS Sink), 104
rollTimerPoolSize parameter (HDFS Sink), 106
round-robin sink selection, 160
row key (HBASE), 5
RPC clients, 169-185

batching and, 27
building, 169
closing, 170
compression and, 38
configuration parameters for, 170-176
creating, 171
default, 177-180
failover, 184
interface, 169
load-balancing, 180-183
reconnecting, 176
sending data over, 169
SSL and, 38
Thrift, 184

RPC sinks, 121-125
agent to agent communication and, 17
Avro Sink, 121-124
batching and, 27
sink groups and, 157
Thrift Sink, 124
transaction handling by, 24

RPC sources
agent to agent communication and, 17
failure handling, 42
Thrift, 40-42
transaction handling by, 24

RpcClientConfigurationConstants class, 176
RpcClientFactory class, 171

creating default clients with, 177-180

S
SANs (storage area networks), 2
scalability

of Avro Source, 36
of Flume agents, 9
SolrCloud and, 128

Scribe (Facebook), 7
security

Avro Sink, 123
Avro Source, 39
for Avro Sink, 39
for RPC clients, 38
HBase Sink and, 116
in RPC clients, 179
Kerberos, 105
keystores, SSL, 38
SSL, 38
SSL keystores, 38
Thrift and, 41

Selector parameter (log4j appenders), 194
sequence files, 4
serializers, 4

controlling data format with, 108-114
custom, metrics for, 208
specifying for HDFS Sinks, 105
translating events into increments with,

117-121
translating events into puts with, 117-121

server types (HDFS), 2
setClient method (RPC client), 184
setHosts method (host selector), 183
shell commands

for HBase, 5
for HDFS, 3

shell parameter (Exec Source), 63
shell, running Exec Source in, 63
sink groups, 12, 157

component-type parameter for, 14
multiple, 158

Sink interface, 135
sink processors, 12, 158-164

failover, 162-164
load-balancing, 159-162

sink runner thread, 12, 94, 135
sink-to-source communication, 36-43

Avro Source, 36-39
failure handling, 42

Index | 219

Thrift, 40-42
sink.directory parameter (Rolling File Sink),

134
sink.rollInterval parameter (Rolling File Sink),

134
sink.serializer parameter (Rolling File Sink),

134
SinkCounter class, 208
sinks, 11, 93-139

Avro Sink, 121-124
clearing channels with, 200
component-type parameter for, 14
custom, 135-139
Elastic Search Sink, 129-133
embedded agents and, 188
HBase, 114-121
HDFS Sink, 96-114
lifecycle of, 94
Logger Sink, 134
Morphline Solr Sink, 125-129
Null Sink, 133
performance of, 95
Rolling File Sink, 134
RPC sinks, 121-125
specifying for Elastic Search Sink, 130
terminal, 93
Thrift Sink, 124
transaction handling by, 24, 80

Snappy compression codec, 3
Solr (Apache), 139

on HDFS, 139
Search, 125
SolrCloud, 128
unique key, 139

SourceCounter class, 208
sources, 10, 33-77

Avro Source, 36-39
batch sizes, controlling, 27
component-type parameter for, 14
custom, 69-77
Exec Source, 62-77
for embedded agents, 188
HTTP Source, 43-49
JMS Source, 64-69
lifecycle of, 33-35
optional channels in, 152
optional configuration parameters for, 34
required configuration parameters for, 34
sink-to-source communication, 36-43

Spooling Directory Source, 50-58
Thrift RPC Source, 40-42
transaction handling by, 23

Spark (Apache), 5
removing duplicates with, 28

splittable data format (HDFS), 3
spoolDir parameter (Spooling Directory

Source), 51
spooldir type (Spooling Directory Source), 51
Spooling Directory Source, 50-58

configuration parameters for, 50
deserializers and, 53-58
Exec Source vs., 50
performance, 58

SQL interfaces, 4
SSL

in Avro Sink, 123
in RPC clients, 179
keystores, 38
Thrift and, 41

standby name node servers, 2
start method (EmbeddedAgent class), 187
static interceptors, 143
stop method (embedded agent), 187
storage area networks (SANs), 2
streaming data, 7-31

with Flume agents, 10-20
subcomponents, configuring, 15
Syslog sources, 58-62

data loss and, 62
Syslog TCP Source, 58-62
Syslog UDP Source, 58-62

T
tail -F code, 50, 64
take method (Transaction), 81

File Channel and, 90
terminal sinks, 93
testing sinks, 133
thread-safety of RPC clients, 176
ThreadedSelectorServer (Thrift), 41
threadsPoolSize parameter (HDFS Sink), 106
Thrift (Apache), 139

documentation, 195
generating code in other languages with,

184
IDL, 40
Project, 78
RPC client, 184

220 | Index

sending data over, 169
Source configuration, 40
SSL and, 41

Thrift Sink, 124
configuration, 124

Thrift source (Apache), 40-42
failure handling, 42

tiers, 18
calculating, 199
capacity planning, 199
sharding, 202

time to repair, 197
time-based buckets, 99

by minute(s), 99
roll intervals and, 104

TimeoutExceptions, 201
timeouts

Async HBase Sink, 116
duplicate events and, 28
Exec Source, 63

HDFS Sink, 104, 106
in RPC clients, 178
interceptors and, 141
transactions and, 24

timestamp interceptor, 142
replacing host information from, 97

timestamps, escaping, 98
timeZone parameter (HDFS Sink), 103
total buffer capacity, calculating, 199
tracker (Spooling Directory Source), 50, 52
trackerDir parameter (Spooling Directory

Source), 52
transactionCapacity parameter

File Channel, 87
Memory Channel, 84

transactions, 23
channels and, 80-82
closing, 81
overlapping, 24

trust store, 124
custom, 179
for RPC client, 179

truststore-password parameter (RPC client),
179

truststore-type, 195
type parameter

Async HBase Sink, 115
HBase Sink, 115

types, specifying, 34

U
uniqueKey tag (Solr), 127
universally unique identifier (UUID), 146

configuration, 146
interceptors, 146

UnsafeMode parameter (log4j appender), 192
unsplittable data format (HDFS), 3
useDualCheckpoints parameter (File Channel),

88
useIP parameter, 143
users, impersonating, 105
UUID (universally unique identifier), 146

configuration, 146
interceptors, 146

V
validation of sources, 33

configuration parameters, 45

W
Web HDFS, 10
worker threads, limiting, 179
write-ahead log (WAL), 90
writeFormat parameter (HDFS Sink), 105

X
XML-formatted data, 46

Z
zlib compression, 38

library, 78, 139
manual, 195

zookeeperQuorum parameter for HBase/Async
HBase Sink, 115

Index | 221

About the Author
Hari Shreedharan is a Software Engineer at Cloudera where he works on Apache
Spark, Apache Flume, and Apache Sqoop. He’s also a committer and a PMC member
on the Flume Project and helps make decisions on the project’s direction. He regu‐
larly presents at various Big Data–related conferences and meetups. Hari completed
his Masters in Computer Science from Cornell University in 2010.

Colophon
The animal on the cover of Using Flume is a burbot (Lota lota), a fish of northern
waters that is often found in clean, large rivers and deep, cold lakes. Also known as
mariah, the lawyer, and eelpout, the burbot is closely related to the marine common
ling and the cusk.

Burbot are unusual looking, with a head like a catfish, a body like an eel, and very
small scales that make it smooth and slimy to the touch. They are marked by a single
barbel on their chin (the fish’s name comes from barba, the Latin word for “beard”).
They are aggressive predators and primarily fish eaters but, at times, burbot will also
eat insects and have been known to eat frogs, snakes, and birds.

Burbot are the only freshwater fish to spawn in midwinter. Spawning takes place
when water temperatures are between 32º and 40ºF, often under ice cover. They are
difficult to study, due to their deep habitats and reproduction under ice, but they pro‐
vide great fishing opportunities for winter anglers. In fact, the town of Walker, Min‐
nesota, holds an International Eelpout Festival every winter on Leech Lake.

Many of the animals on O’Reilly covers are endangered; all of them are important to
the world. To learn more about how you can help, go to animals.oreilly.com.

The cover image is from Meyers Kleines Lexicon. The cover fonts are URW Type‐
writer and Guardian Sans. The text font is Adobe Minion Pro; the heading font is
Adobe Myriad Condensed; and the code font is Dalton Maag’s Ubuntu Mono.

http://animals.oreilly.com

	Table of Contents
	Foreword
	Preface
	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	How to Contact Us
	Acknowledgments

	Chapter 1. Apache Hadoop and Apache HBase: An Introduction
	HDFS
	HDFS Data Formats
	Processing Data on HDFS

	Apache HBase
	Summary
	References

	Chapter 2. Streaming Data Using Apache Flume
	The Need for Flume
	Is Flume a Good Fit?
	Inside a Flume Agent
	Configuring Flume Agents
	Getting Flume Agents to Talk to Each Other
	Complex Flows
	Replicating Data to Various Destinations
	Dynamic Routing
	Flume’s No Data Loss Guarantee, Channels, and Transactions
	Transactions in Flume Channels

	Agent Failure and Data Loss
	The Importance of Batching
	What About Duplicates?
	Running a Flume Agent
	Summary
	References

	Chapter 3. Sources
	Lifecycle of a Source
	Sink-to-Source Communication
	Avro Source
	Thrift Source
	Failure Handling in RPC Sources

	HTTP Source
	Writing Handlers for the HTTP Source*

	Spooling Directory Source
	Reading Custom Formats Using Deserializers*
	Spooling Directory Source Performance

	Syslog Sources
	Exec Source
	JMS Source
	Converting JMS Messages into Flume Events*

	Writing Your Own Sources*
	Event-Driven and Pollable Sources

	Summary
	References

	Chapter 4. Channels
	Transaction Workflow
	Channels Bundled with Flume
	Memory Channel
	File Channel

	Summary
	References

	Chapter 5. Sinks
	Lifecycle of a Sink
	Optimizing the Performance of Sinks
	Writing to HDFS: The HDFS Sink
	Understanding Buckets
	Configuring the HDFS Sink
	Controlling the Data Format Using Serializers*

	HBase Sinks
	Translating Flume Events to HBase Puts and Increments Using Serializers*

	RPC Sinks
	Avro Sink
	Thrift Sink

	Morphline Solr Sink
	Elastic Search Sink
	Customizing the Data Format*

	Other Sinks: Null Sink, Rolling File Sink, Logger Sink
	Writing Your Own Sink*
	Summary
	References

	Chapter 6. Interceptors, Channel Selectors, Sink Groups, and Sink Processors
	Interceptors
	Timestamp Interceptor
	Host Interceptor
	Static Interceptor
	Regex Filtering Interceptor
	Morphline Interceptor
	UUID Interceptor
	Writing Interceptors*

	Channel Selectors
	Replicating Channel Selector
	Multiplexing Channel Selector
	Custom Channel Selectors*

	Sink Groups and Sink Processors
	Load-Balancing Sink Processor
	Failover Sink Processor

	Summary
	References

	Chapter 7. Getting Data into Flume*
	Building Flume Events
	Flume Client SDK
	Building Flume RPC Clients
	RPC Client Interface
	Configuration Parameters Common to All RPC Clients
	Default RPC Client
	Load-Balancing RPC Client
	Failover RPC Client
	Thrift RPC Client

	Embedded Agent
	Configuring an Embedded Agent

	log4j Appenders
	Load-Balancing log4j Appender

	Summary
	References

	Chapter 8. Planning, Deploying, and Monitoring Flume
	Planning a Flume Deployment
	Time to Repair
	How Much Capacity Do I Need in My Flume Channels?
	How Many Tiers?
	Sending Data over Cross–Data Center Links
	Sharding Tiers

	Deploying Flume
	Deploying Custom Code

	Monitoring Flume
	Reporting Metrics from Custom Components

	Summary
	References

	Index
	About the Author

