
Deane Barker

Web Content
Management
SYSTEMS, FEATURES, AND BEST PRACTICES

www.allitebooks.com

http://www.allitebooks.org

CONTENT MANAGEMENT

Web Content Management

ISBN: 978-1-491-90812-9

US $39.99 CAN $45.99

“	This	book	is	long	overdue	
and	a	much-needed	
antidote	to	the	industry	
reports	and	vendor	
white	papers	that	have	
dominated	the	CM	
discussion	for	so	long.	
Hooray	for	Deane!”

—Bob Boiko
author of Content Management Bible (Wiley)

Twitter: @oreillymedia
facebook.com/oreilly

Looking to select a web content management system (CMS), but
confused about the promises, terminology, and buzzwords? Do you want
to understand content management without having to dive into the
underlying programming? This book provides a clear, unbiased overview
of the entire CMS ecosystem—from platforms to implementations—in a
language- and platform-agnostic manner for project managers, executives,
and new developers alike.

Author Deane Barker, a CMS consultant with almost two decades of
experience, helps you explore many different systems, technologies, and
platforms. By the end of the book, you’ll have the knowledge necessary
to make decisions about features, architectures, and implementation
methods to ensure that your project solves the right problems.

 ■ Learn what content is, how to compare different systems, and
what the roles of a CMS team are

 ■ Understand how a modern CMS models and aggregates
content, coordinates workflow, and manages assets

 ■ Explore the scope and structure of a CMS implementation
project

 ■ Learn the process and best practices for successfully running
your CMS implementation

 ■ Examine the practice of migrating web content, and learn how
to work with an external CMS integrator

D eane B arke r, founding par tner and Chief Strateg y O f f icer at B lend
Interactive, has been working in web content management since the mid-
90s, before the discipline even had a name. Since then, he’s worked on hun-
dreds of CMS implementations, ranging from small marketing sites to massive
publishing operations.

W
eb C

ontent M
anagem

ent

www.allitebooks.com

http://www.allitebooks.org

Deane Barker

Web Content Management
Systems, Features, and Best Practices

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing

www.allitebooks.com

http://www.allitebooks.org

978-1-491-90812-9

[LSI]

Web Content Management
by Deane Barker

Copyright © 2016 Deane Barker. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://safaribooksonline.com). For more information, contact our corporate/
institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editor: Allyson MacDonald
Production Editor: Colleen Cole
Copyeditor: Rachel Head
Proofreader: Susan Moritz

Indexer: WordCo Indexing Services
Interior Designer: David Futato
Cover Designer: Randy Comer
Illustrator: Rebecca Demarest

March 2016: First Edition

Revision History for the First Edition
2016-03-09: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781491908129 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Web Content Management, the cover
image, and related trade dress are trademarks of O’Reilly Media, Inc.

While the publisher and the author have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the author disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

www.allitebooks.com

http://safaribooksonline.com
http://oreilly.com/catalog/errata.csp?isbn=9781491908129
http://www.allitebooks.org

For Mom.

I finally figured out what I want to be when I grow up.

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

Foreword. xiii

Preface. xv

Part I. The Basics

1. What Content Management Is (and Isn’t). 1
What Is Content? 3

Created by Humans via Editorial Process 3
Intended for Human Consumption via Publication to an Audience 4
A Definition of Content 5

What Is a Content Management System? 5
The Discipline Versus the Software 6

Types of Content Management Systems 7
What a CMS Does 9

Control Content 9
Allow Content Reuse 10
Allow Content Automation and Aggregation 11
Increase Editorial Efficiency 11

What a CMS Doesn’t Do 12
Create Content 12
Create Marketing Plans 12
Effectively Format Content 13
Provide Governance 13

2. Points of Comparison. 15
Target Site Type 16

v

www.allitebooks.com

http://www.allitebooks.org

Systems Versus Implementations 17
Platform Versus Product 18
Open Source Versus Commercial 20
Technology Stack 23
Management Versus Delivery 25
Coupled Versus Decoupled 26
Installed Versus Software-as-a-Service (SaaS) 27
Code Versus Content 28
Code Versus Configuration 29
Uni- Versus Bidirectional Publishing 30
Practicality Versus Elegance, and the Problem of Technical Debt 32

3. Acquiring a CMS. 35
Open Source CMSs 36

Business Models of Open Source Companies 37
Commercial CMSs 39

Licensing Models 40
Software Subscription 42

Software-as-a-Service 45
Build Your Own 47
Questions to Ask 49

4. The Content Management Team. 53
Editors 54
Site Planners 56
Developers 57
Administrators 58
Stakeholders 59

Part II. The Components of Content Management Systems

5. CMS Feature Analysis. 65
The Difficulties of Feature Analysis 65

“Fitness to Purpose” 66
“Do Everything” Syndrome 67
The Whole Is Greater than the Sum of Its Parts 68
Implementation Details Matter 69

An Overview of CMS Features 71

6. Content Modeling. 75
Data Modeling 101 76

vi | Table of Contents

www.allitebooks.com

http://www.allitebooks.org

Data Modeling and Content Management 80
Separating Content and Presentation 81

The “Page-Based” CMS 84
Defining a Content Model 85

Content Types 85
Attributes and Datatypes 88
Built-in Attributes 90
Attribute Validation 91
Using Attributes for Editorial Metadata 92
Content Type Inheritance 93
Content Embedding 97

Relationships 103
Content Composition 104
Content Model Manageability 105
A Summary of Content Modeling Features 107

7. Content Aggregation. 109
The Shape of Content 111
Content Geography 114

Editorial Limitations on Geography 117
Secondary Geographies: Categories, Taxonomies, Tags, Lists, Collections,

and Menus 118
The Tyranny of the Tree 119

Aggregation Models: Implicit and Explicit 120
Should Your Aggregation Be a Content Object? 121
The URL Addressability of Aggregations 122

Aggregation Functionality 122
Static Versus Dynamic 123
Variable Versus Fixed 125
Manual Ordering Versus Derived Ordering 125
Type Limitations 127
Quantity Limitations 128
Permissions and Publication Status Filters 128
Flat Versus Hierarchical 129
Interstitial Aggregations 129

By Configuration or by Code 130
A Summary of Content Aggregation Features 133

8. Editorial Tools and Workflow. 135
The Content Lifecycle 136
The Editing Interface 138

Content Findability and Traversal 138

Table of Contents | vii

www.allitebooks.com

http://www.allitebooks.org

Type Selection 140
Content Preview 142
Editing Interface Elements 144

Versioning, Version Control, and Version Labels 151
Dependency Management 153
Content Scheduling and Expiration 155

Changeset Publication 156
Content Expiration 156

Workflow and Approvals 157
Approvals 157
Workflow 157

Collaboration 160
Content File Management 162

Adding Content Files 162
Content Association 163
Image Processing 164

Permissions 164
A Summary of Editorial Tools 170

Content Traversal and Navigation 170
Type Selection 170
Content Preview 170
The Editing Interface 171
Versioning, Version Control, Scheduling, and Expiration 171
Workflow and Approvals 171
Content File Management 172
Permissions 172

9. Output and Publication Management. 173
The Difference Between Content and Presentation 173
Templating 175

Templating Philosophy 177
Templating Language Functionality 179
The Surround 185
Template Selection 190
Template Abstraction and Inclusion 193
Template Development and Management 195
Responsive Design and Output Agnosticism 195

Publishing Content 196
Coupled Versus Decoupled Content Management 196
Decoupled Publishing Targets 199

A Summary of Output Management and Publication Features 201
Architecture 201

viii | Table of Contents

www.allitebooks.com

http://www.allitebooks.org

Templating 201
Decoupled Publishing 202

10. Other Features. 203
Multiple Language Handling 204

Nomenclature 205
Language Detection and Selection 206

Language Rules 208
Language Variants 209
Beyond Text 210
Editorial Workflow and Interface Support 211
External Translation Service Support 211

Personalization, Analytics, and Marketing Automation 213
Anonymous Personalization 214
Analytics Integration 218
Marketing Automation and CRM Integration 218

Form Building 220
Form Editing Interfaces 221
Form Data Handling 223

URL Management 224
Historical URLs, Vanity URLs, and Custom Redirects 225

Multisite Management 226
Reporting Tools and Dashboards 228
Content Search 229
User and Developer Ecosystem 233

11. APIs and Extensibility. 235
The Code API 236

Event Models 239
Plug-in Architectures 243
Customizing the Editorial Interface 245

Customizing Rich Text Editors 246
Repository Abstraction 246
Pluggable Authentication 247
Web Services 248
Scheduled or On-Demand Jobs 249

Part III. Implementations

12. The CMS Implementation. 253
Principle Construction Versus Everything Else 254

Table of Contents | ix

Types of Implementations 255
Preimplementation 257

Discovery and Preimplementation Artifacts 257
Developing the Technical Plan 260

The Implementation Process 268
Environment Setup 268
Installation, Configuration, and Content Reconciliation 269
Content Modeling, Aggregation Modeling, and Rough-in 271
Early Content Migration 273
Templating 274
Non-Content Integration and Development 277
Production Environment Planning and Setup 278
Training and Support Planning 280
Final Content Migration, QA, and Launch 281

13. Content Migration. 285
The Editorial Challenge 286
Automated or Manual? 287
The Migration Process 288

Extraction 289
Transformation 291
Reassembly 292
Import 294
Resolution 295
QA 297

Migration Script Development 298
Content Velocity and Migration Timing 300

A Final Word of Warning 301

14. Working with External Integrators. 305
Engagement Models 306

CMS Vendor Professional Services 307
Sales and Scoping 309

Preimplementation Artifacts 310
Costs 313
Written Agreements 314

The Statement of Work 315
Production 319

Team Proximity and Dedication 319
Development and Testing Infrastructure 320
Project Communication and Check-in 320
Work Acceptance and QA 321

x | Table of Contents

Content Development 323
Training and Support 324
A Final Word 326

15. Where Content Management Is Going. 329
Fewer Open Source CMSs Will Get Traction 330
Decoupling Will Make a Comeback 331
Focus on Marketing Tools and Integration Will Increase 333
Entry-Level SaaS Will Eat Away the Lower End of the Market 335
Multichannel Distribution Will Increase 336
Distributed Content Intake Will Start to Grow 337

Afterword. 339

Index. 341

Table of Contents | xi

Foreword

The web content management industry has evolved substantially over the past two
decades. Today, CMS vendors and industry pundits put overarching emphasis on
“customer experience management,” the idea that successful customer interactions
should drive all your digital investments. This is a useful prioritization, inasmuch as
we should all be thinking “screen first” (i.e., how do customers experience our digital
incarnations?) After all, why produce digital content unless people actually want to
consume it?

But this emphasis on experience management sometimes relegates the process of pro‐
ducing and publishing high-quality information to the backseat. We can all under‐
stand why marketers pay more attention to frontend design, mobile strategies, and
social micromessaging, but in doing so they risk losing focus on deeper forms of
information-based engagement.

Consider the nearly ubiquitous desire to create more personalized digital interac‐
tions. Many personalization strategies start with the premise, “assume suitable con‐
tent for each interaction.” This begs many questions. Suitable content from where?
How will it be managed? How will it get chunked? How will we vary it for each and
every audience? How will it get assembled? How will we simulate all the permuta‐
tions? Behind those questions lie some thorny content management challenges.

On the brighter side, the last few years have seen the rise of “content strategy” as an
important digital discipline. What exactly people mean by content strategy will vary,
but the general idea is that you need to have your content house in order before you
start executing business strategies across various digital channels.

The emergence of a new generation of digital content strategists is a welcome devel‐
opment, though I sometimes wish they would better understand the organizational
environments where their strategies need to live. Content strategies that look great on
day 1 can get messy by day 365, let alone day 730. You need to sort out simple author‐
ing and approval regimes; you need to find and modify previous versions of cam‐

xiii

paigns; you need to integrate analytics into subsequent iterations; you need to archive
older information so it doesn’t clog up your search engine results. And so on.

So, the WCM industry is experiencing some key gaps today, and we need people who
can effectively bridge those gaps. Like the gap between content creation and content
consumption. The gap between content strategies and CMS implementations.
Between business needs and architectural patterns. Between authors and marketers.
Between developers and campaign managers. Between strategists and implementers.
Deane Barker is the rare individual who can speak to all those concerns.

As a New Zealander happily transplanted to North America, Deane has the ability to
get passionately engaged yet also take the outsider’s critical perspective. At first blush
this book is a primer on essential CMS topics, but when you read more deeply you’ll
find it’s really an argument—a passionate call to treat web content and processes
around it as seriously as you treat any other business or marketing asset.

So, you should read the book cover to cover, but I particularly recommend you book‐
mark the chapters on the CMS team, content modeling and aggregation, migration,
and implementation. These are the tough topics that consultants and vendors often
don’t like to discuss, but that could make or break your CMS program. Deane covers
them with the right mix of breadth and efficiency that can only come from someone
who’s gone through them many, many times.

Although this book is written for the business generalist, if you are a developer or
architect it’s a very worthwhile read, and would have been even if Deane hadn’t
included all the useful code snippets (though he did include them, to my delight and
hopefully yours). Check out the early chapter on “points of comparison” for some key
logical distinctions you’ll want your team to follow.

If there was a magical machine that could make the perfect CMS, I would put Deane
at the controls. In the absence of such a machine, the rest of us need to figure out best
practices the old-fashioned way: by testing and experience. I hope you get the chance
to test many CMS tools, just to get a firsthand feel for the surprising variations in
approach among them. But if you are looking for a single source of received wisdom
and experience on CMS best practices, then drop what you’re doing and read this
book.

— Tony Byrne
Founder, Real Story Group

www.realstorygroup.com
December 2015

xiv | Foreword

http://www.www.realstorygroup.com/

Preface

Back in 1995 or so, I wrote my first HTML document.

I wrote it in Notepad on my 90 MHz Pentium tower from Gateway 2000. I still
remember adding a TITLE tag, refreshing the page in Internet Explorer, and watching
with awe as my document title filled the title bar of the browser window (the idea of
tabbed browsers was still years in the future, so the document’s TITLE tag became the
title of the entire window).

That first web page quickly grew into an entire website (the subject and point of
which I honestly can’t remember—I suspect it was just a list of links to other sites).
Mainstream adoption of CSS and JavaScript was still a few years off, so I didn’t have
scripts or stylesheets, but I had a handful of HTML files and a bunch of images (you
were nobody if you didn’t have a tiled, textured background on your page of links).

Quickly, I ran smack into the first problem of webmasters everywhere: how do I keep
track of all this stuff? I don’t even think the word “content” had been popularly applied
yet—it was all just “stuff.”

As websites inevitably grew, so did all the stuff. Since we were largely bound to the
filesystem, we had copies of everything on our local computers that we would FTP to
our servers. Huge problems resulted if you had more than one editor. With two peo‐
ple trying to manage files, they would inevitably get out of sync and changes would
be unintentionally overwritten. Occasionally, you had to sync against the server by
downloading everything and overwriting your local copy, just to make sure you had
the latest version of the entire site.

The process of managing a website was enormously tedious. Linking from one page
to another assumed the two pages would always exist. Broken links were common,
and if you decided to reorganize the structure of your site or rename pages, you had
to hunt through all your files to find where the previous name might have been used.

xv

1 It was called—appropriately—“Search and Replace” from Funduc Software, and actually still exists as share‐
ware. Sadly, it had no backup or undo features at the time. Remind me sometime to tell you the story of how I
accidentally did an irreversible find and replace on the letter “e.”

The most valuable thing in my toolkit might have been the global search and replace
utility that let me look for—and correct—links in hundreds of files at once.1

This was the story of being a webmaster in the mid-’90s, before content management
arrived. It was a tedious experience of manually managing hundreds of files, making
sure you had multiple backups of everything, and trying to cobble together a toolset
that gave you some modicum of control.

Fast-forward almost 20 years, and web technologies have evolved to remove most of
the tedium. Today’s web manager largely works with abstract notions of content
rather than actual files, without needing to understand the underlying technology,
file-system, or programming languages.

But even abstracting content from technology has still left us with eternal problems to
solve: How do we structure or “model” our content? How do we allow for its organi‐
zation? How do we search it? How do we work together on content without causing
conflicts?

In short, how do we manage content?

Who Is This Book For?
This book is an attempt to approach web content management from the outside,
without pushing any particular technology or methodology. It is designed for readers
who want to understand the larger context in which a specific content management
system (CMS) might work, or understand the underlying content management prob‐
lems that any particular system will need to solve.

These readers might be:

• Project managers tasked with managing the implementation of a new CMS
• Experienced developers who might be new to content management in particular
• Web managers embarking on an evaluation project to acquire a new CMS
• Content producers transitioning from offline content to web content manage‐

ment
• Existing CMS developers wanting to step outside their chosen platform and look

at their discipline from a new perspective
• Designers or content strategists wanting to understand more about the techno‐

logical context of their work

xvi | Preface

http://www.funduc.com/search_replace.htm
http://www.funduc.com/search_replace.htm

• Anyone trying to understand and justify a new CMS-related project

What Is Not in This Book?
This book is not a technical programming manual. There are some code samples scat‐
tered throughout, but many are in a fictitious templating language, and all are meant
to be purely illustrative, not practical.

Additionally, this book is intended to be language- and platform-agnostic. I will dis‐
cuss many different systems, technologies, and platforms. I neither explicitly endorse
nor condemn any of them. I have made an attempt to draw examples and screen cap‐
tures from a wide variety of systems.

How Is This Book Organized?
The book’s chapters are grouped into three parts:

Part I, “The Basics”
This part will lay the groundwork for the larger discussion of content manage‐
ment. We’ll talk about what content is, paradigms with which to compare differ‐
ent systems, the roles that make up a CMS team, and how your organization
might acquire a CMS.

Part II, “The Components of Content Management Systems”
This part will analyze the major functional areas of modern CMSs—how they
model content, aggregate content, coordinate workflow, manage assets, etc.

Part III, “Implementations”
This final part will discuss the scope and structure of a CMS implementation
project, and the best practices and process of running one successfully (or even
just surviving one). Additionally, we’ll talk about the oft-overlooked practice of
migrating web content, and how you might work with an external CMS integra‐
tor, if you need one.

A Note on Generalities
A large portion of this book is about content management systems, but not any par‐
ticular system. This means I’ll be trying to discuss every variety of content manage‐
ment system at the same time, which is a semantically challenging task.

One of the challenges of writing this book has been coming up with different phras‐
ing to subdivide the entire domain of CMSs into groups. In the following pages,
you’ll see countless phrases such as “most systems,” “some systems,” and “almost all

Preface | xvii

2 Though the CIA tried back in the 1960s. Turns out that “almost certain” is 93% and “probably” is 75%. See
“Words of Estimative Probability” on the CIA website.

systems,” as well as a lot of qualifiers such as “rare,” “uncommon,” “often,” “some‐
times,” and “usually.”

Clearly, none of these phrases are quantifiable;2 they’re simply the best of a variety of
suboptimal ways to handle generalities. Different phrases will mean different things
to different people. If you disagree with a qualifier, then you have my apologies in
advance.

A Note on Nomenclature
As we’ll discuss in the very first chapter, “content” can mean many different things,
from HTML files to images to Word documents.

I will use the terms “content” and “CMS” loosely for convenience. However, under‐
stand that this is a book about web content management specifically, so I’m specifi‐
cally talking about “web content” and “WCM” and “WCMSs.”

In dropping the “web” and “W” qualifiers, I am not staking claim to content as purely
a web asset or problem. Rather, I am merely bowing to convention and brevity.

A Note on Sidebars
Throughout the book, you will find a dozen sidebars from other professionals work‐
ing in the CMS industry. I am grateful to these friends and colleagues for taking the
time to share their experiences here.

For each sidebar, a draft copy of the chapter was provided, and the author was asked
to express an opinion about something in it. They were free to disagree, call out
something that was missed, or put a different angle on anything they read. No
attempt was made to edit their opinions.

As I say many, many times in the following chapters, content management is as much
art as science, and there are no doubt countless people who will disagree with one or
more things I’ve written here. I’m grateful that my guest authors were willing to pro‐
vide glimpses into how different experiences often lead to different conclusions.

A Note on Bias
As a consultant who has worked in this field for almost two decades, I assure you that
I have many preferences. However, I also understand that even a system I loathe still

xviii | Preface

http://1.usa.gov/1KV5gtX

has fans. My preferences will no doubt show through, but I’ve done my best to be
objective and provide adequate reasoning behind my conclusions.

I also understand that—like any consultant—my experience is likely biased toward
one type of project or problem in ways that I might not even notice. Just like you can’t
walk a mile in another person’s shoes, I can’t completely relate to problems that I have
never been tasked with solving. Systems I find enormously lacking for projects I have
worked on might be entirely appropriate for the problem in front of you.

Finally, my experience with particular systems, paradigms, and methodologies has
made it easier for me to draw examples and screen captures from those systems. For
this, I apologize, but there are many negative practicalities involved with bootstrap‐
ping a system with which I’m unfamiliar to obtain an image or example. I thank those
in the industry whom I bothered to share their experiences with some systems I felt
were important to discuss, but to which I had had no exposure or access.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program ele‐
ments such as variable or function names, databases, datatypes, environment
variables, statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

This element signifies a tip or suggestion.

This element signifies a general note.

Preface | xix

This element indicates a warning or caution.

Safari® Books Online
Safari Books Online is an on-demand digital library that deliv‐
ers expert content in both book and video form from the
world’s leading authors in technology and business.

Technology professionals, software developers, web designers, and business and crea‐
tive professionals use Safari Books Online as their primary resource for research,
problem solving, learning, and certification training.

Safari Books Online offers a range of plans and pricing for enterprise, government,
education, and individuals.

Members have access to thousands of books, training videos, and prepublication
manuscripts in one fully searchable database from publishers like O’Reilly Media,
Prentice Hall Professional, Addison-Wesley Professional, Microsoft Press, Sams, Que,
Peachpit Press, Focal Press, Cisco Press, John Wiley & Sons, Syngress, Morgan Kauf‐
mann, IBM Redbooks, Packt, Adobe Press, FT Press, Apress, Manning, New Riders,
McGraw-Hill, Jones & Bartlett, Course Technology, and hundreds more. For more
information about Safari Books Online, please visit us online.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://www.oreilly.com/catalog/
0636920034186.do.

To comment or ask technical questions about this book, send email to bookques‐
tions@oreilly.com.

xx | Preface

http://safaribooksonline.com
https://www.safaribooksonline.com/explore/
https://www.safaribooksonline.com/pricing/
https://www.safaribooksonline.com/enterprise/
https://www.safaribooksonline.com/government/
https://www.safaribooksonline.com/academic-public-library/
https://www.safaribooksonline.com/our-library/
http://safaribooksonline.com
http://www.oreilly.com/catalog/0636920034186.do
http://www.oreilly.com/catalog/0636920034186.do
mailto:bookquestions@oreilly.com
mailto:bookquestions@oreilly.com

For more information about our books, courses, conferences, and news, see our web‐
site at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments
Foremost, I’d like to thank this industry. Stepping back from this book as it came to a
conclusion, I realized that nothing I wrote here is particularly original. What I’m
doing is simply curating, collating, remixing, and elaborating on concepts and ideas
put into practice every day by thousands of people around the world.

I’ve learned that, at the most basic level, this is what a writer does: we process infor‐
mation. Unless we’re reporting on original research or writing a wholly original work
of fiction, we simply consume information from other sources, collect it, filter it, ana‐
lyze it, reorganize it, explain it, then distribute it. Considered from that perspective,
this process is not unlike the content management process itself, which we’ll spend
the next 300 pages discussing.

However, some more specific acknowledgments are clearly necessary.

Thanks to my wife Annie, my children Alec, Gabrielle, and Isabella, and my god‐
daughter Brookelynne, for putting up with me while I was writing the initial draft,
and especially after I swore it was “done”…but then kept writing anyway.

Thanks to my business partners, Joe Kepley, Karla Santi, and Dennis Breske, for giv‐
ing me the time to write this.

Thanks to the unparalleled employees at Blend Interactive for helping build a busi‐
ness that gives me the opportunity to spend my days thinking about content manage‐
ment. I hope this book represents at least a vague shadow of the breadth of experience
and knowledge that exists in the Blend office.

Thanks to my editor, Ally MacDonald, for taking a chance on some random guy who
filled out O’Reilly’s online submission form.

Thanks to the speaker crew from the Now What 2014 conference who sat around a
table in Crawford’s Bar and Grill in Sioux Falls, South Dakota, and talked me into
writing this book in the first place: Karen McGrane, Kristina Halvorson, Jeff Eaton,
Jarrod Gingras, Jeff Sauer, Corey Vilhauer, and Jeff Cram.

Thanks to my technical editors, Arild Henrichsen, Lynsey Struthers, Seth Gottlieb,
and Corey Vilhauer. Any one of them could have ended this by simply telling me the
book was no good. The fact that they didn’t was the first hurdle I had to clear.

Preface | xxi

http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

3 It’s worth pointing out that the word “copyedit” in this sentence was hyphenated in the first draft of this pref‐
ace.

Thanks to my assistant Kerrie Vilhauer, who did the first copyedit on every chapter
and spent far too much time changing “that” to “which” and crossing out my promis‐
cuous hyphenation.3 Her giddy determination at clarifying obscure rules of the
English language was both appreciated and occasionally frightening.

Thanks to Tony Byrne, a close friend and mentor for many years who has helped me
enormously by repeatedly putting this business and practice into context, and who
did me the honor of writing the foreword.

Finally, thanks to Bob Boiko for writing The Content Management Bible. I finally fin‐
ished it while on a plane that had been diverted to Kansas City back in 2006 or so. I
still clearly remember closing the 1,122-page behemoth and flopping back in my seat
to take it all in.

I think I might have actually been sweating.

xxii | Preface

PART I

The Basics

1 Bush wrote an incredibly influential essay in 1945 entitled “How We May Think” that lamented the lack of
necessary information management tools and envisioned a future that turned out to be remarkably similar to
what actually happened over the 70 years following its publication. Bush essentially described the World Wide
Web about 50 years before Tim Berners-Lee made it happen.

CHAPTER 1

What Content Management Is (and Isn’t)

We tend to look at content management as a digital concept, but it’s been around for
as long as content. For as long as humans have been creating content, we’ve been
searching for solutions to manage it.

The Library of Alexandria (300 BC to about AD 273) was an early attempt at manag‐
ing content. It preserved content in the form of papyrus scrolls and codices, and pre‐
sumably controlled access to them. Librarians were the first content managers.

Fast-forward a couple of thousand years, and the Industrial Revolution and the rise
of technology increased the accumulation of information exponentially. The problem
of managing it became more critical. The early 20th century was full of great thinkers
who examined the problem of communicating and managing information: S.R. Raga‐
nathan, Vannevar Bush,1 Paul Otlet, Claude Shannon, and even Melvil Dewey, the
father of the venerable Dewey Decimal System.

So, the need for content management didn’t begin with the World Wide Web, but
simply shifted into fast-forward when the Web was born in the early ’90s. At that
moment, the ability to create and publish content tumbled down from its ivory tower
and into the hands of the masses. Almost anyone could create a web page about virtu‐
ally anything.

Content subsequently exploded. I was a college student at the time, and was slightly
obsessed with James Bond. Suddenly, I could find reams and reams of information on

1

2 While now defunct, the site was at http://ianfleming.org for many years. There’s an archive of screencaps in a
public Facebook group, for those interested.

007. The sheer amount of trivia was staggering. Of course, I attempted to print most
of it, because if it wasn’t on paper, how would I manage it?

It wasn’t long before I was coediting a popular James Bond website—Mr. Kiss Kiss
Bang Bang.2 I learned that keeping track of content was a challenge. An article only
existed as an HTML file in the web server’s root directory at any given time. I wasn’t
an IT professional back then, so the only backup outside that file was the one on my
local computer. There was no versioning or access control—one fat-finger mistake
and the entire thing could be gone.

This struck me as dangerous. Even then, I knew that a website is essentially a content-
based business, and with nothing more than a bunch of files lying around, I was
effectively performing without a net. Content was our only business asset, and I
remember thinking it was so brittle; one unforeseen problem and it could simply
“blow away” like a dandelion in the wind.

Additionally, each HTML file was a mass of mid-’90s-era markup, complete with nes‐
ted TABLE and FONT tags all over the place. There was no way to separate what was
content from what was presentation, and each redesign of the site (there were many)
involved manually reworking these files. Server Side Includes had helped to a certain
extent, but each file was still a massive glob of mixed content and formatting code.

Some time later, I was working for The Microsoft Network as a forum manager for
The World of James Bond. We were still writing HTML files in text editors, but
Microsoft had introduced its content managers to the wonders of Visual Source Safe,
a now long-since-deprecated source code management system. It provided backups,
versioning, and file locking.

This clearly made us safer from a risk management perspective, but there was a men‐
tal shift too. We had a safety net now. The content we were creating had solidity to it.
There was history and context. We were editing and grooming a continuing body of
content, rather than just changing it in place. Content didn’t exist only in simple files,
but lived inside a larger system which provided a set of services to protect and safe‐
guard it. We had gone from hiding money inside our mattresses to depositing it at an
FDIC-insured financial institution.

Finally, at some crude level, my content was managed. It was still all mixed up with its
presentation, and probably had a host of other problems, but I was at least a couple of
steps safer than I had been before. Without me realizing it, Visual Source Safe effec‐
tively became my first content management system.

2 | Chapter 1: What Content Management Is (and Isn’t)

https://www.facebook.com/groups/249445859356

A lot has changed since then, but let’s start at the beginning. Along the way, we’ll
hopefully answer all of the following questions:

• What is content?
• What is content management?
• What is a content management system?
• What are the different types of content management systems?
• What does a content management system do?
• What doesn’t a content management system do?

What Is Content?
Many people have tried to draw a distinction between the fuzzy concepts of “data,”
“information,” “content,” and even “knowledge.” Bob Boiko dedicated the entire first
part of his seminal work The Content Management Bible (Wiley) to this question—
some 5 chapters and 61 pages.

We’re not going to go that far, but we’ll summarize by simply differentiating between
content and raw data, which is likely the highest-value return we can get out of the
question. How is content management any different from managing any other type of
data?

There are two key differences:

• Content is created differently.
• Content is used differently.

Created by Humans via Editorial Process
Content is created through “editorial process.” This process is what humans do to pre‐
pare information for publication to an audience. It involves modeling, authoring,
editing, reviewing, approving, versioning, comparing, and controlling.

The creation of a news article, for example, is highly subjective. Two editorial teams,
given the same information, might develop two completely different news articles due
to the human factors involved in the editorial process. Whereas a computational
function seeks to deliver the same output from the same input every time, an edito‐
rial process never quite does.

What Is Content? | 3

The creation of content pivots largely on the opinions of human editors:

• What should the subject of the content be?
• Who is the intended audience of the content?
• From what angle should the subject be approached?
• How long should the content be?
• Does it need to be supported by media?

Despite significant advances in computing, these are not decisions a computer will
make. These are messy, subjective, imperfect decisions that pour forth from the mind
of a human editor sitting behind a keyboard. A small deviation in any of them (the
proverbial flapping of a butterfly’s wings) can spin a piece of content in an entirely
different direction. Content is subjective and open for evaluation and interpretation.
It has nuance. It is artisanal.

The editorial process is iterative—content is rarely created once, perfectly, and then
never touched again. Rather, content is roughed in and refined over and over like clay
on a potter’s wheel, often even after being published. Content can change with the
passage of time and the evolution of circumstance. What was relevant at one point
might need to change or be withdrawn later.

Content is constantly in some state of flux and turnover. It’s never “right.” It’s just
“right now.”

Compare this process to the creation of the record of a retail sale. There is no edito‐
rial process involved with swiping your credit card across a terminal. Furthermore,
the data created is not subjected to any other process, will not be reviewed and
approved. It is not subjective, it is deterministic. The transaction happened in an
instant, a historical record was created, and that’s that.

The sales transaction is designed to be as repeatable and devoid of subjective opinion
as possible. It will never be edited (indeed, to do so would likely violate a policy or
law). It is cold, sterile, and inert by design.

Consequently, management of these two types of information is quite different.

Intended for Human Consumption via Publication to an Audience
Content is data we create for a specific purpose: to distribute it with the intention of it
ultimately being consumed by other humans. Sure, it might be scooped up by another
computer via an API and rearranged and published somewhere else, but eventually
the information is going to make its way to a human somewhere.

4 | Chapter 1: What Content Management Is (and Isn’t)

www.allitebooks.com

https://en.wikipedia.org/wiki/Butterfly_effect
http://www.allitebooks.org

3 Bob Boiko, Laughing at the CIO (Medford: CyberAge Books, 2007), 99–100.

Bob Boiko writes:
If you strip away all of the technology and terminology that we use to describe infor‐
mation systems, what do you have left? A simple and utterly commonplace idea: Infor‐
mation systems help you talk to people who are not in front of you.3

Our sales transaction from the prior section has no such destiny. It was created as a
backward-looking record of a historical event. It will likely not be consumed by
someone in the future, except in aggregate through reporting of some kind. It may be
retrieved and reviewed individually, but only by necessity and likely on an exception
basis.

Our news article, by contrast, was created as a forward-looking item to be published
in the future and consumed by humans, through whatever channel (perhaps more
than one). It might be repurposed, abbreviated, rearranged, and reformatted, but the
ultimate goal for it is to be consumed and evaluated by another human being.

Our content has value in the future. It might be consumed for years (even centuries
or millennia), and can continue providing value to the organization far into the
future. Every time our article is read, or every time a new employee reads the payroll
policy, there is a benefit attributed to the content creator.

Content is an investment in the future, not a record of the past.

A Definition of Content
Bringing these two concepts together, we arrive at our best attempt at a concise defi‐
nition:

Content is information produced through editorial process and ultimately intended for
human consumption via publication.

This definition also points to a core dichotomy of content management: the differ‐
ence between (1) management and (2) delivery. Content is created and managed, then
it is published and delivered. The two disciplines require different skills and mind‐
sets, and the state of current technology is creating more and more differences every
day.

We’ll revisit this two-sided approach to content management throughout this book.

What Is a Content Management System?
A content management system (CMS) is a software package that provides some level
of automation for the tasks required to effectively manage content.

What Is a Content Management System? | 5

4 Early CMSs were not server-based. Some of the first CMSs were client-side templating tools, such as City‐
Desk, MarsEdit, and Radio UserLand. These were installable software packages that allowed editors to work
on content in a desktop interface. The systems then templated that content and transferred the resulting
HTML to a server environment, usually via FTP. Today, these are often referred to as “desktop content man‐
agement” tools. Few of these platforms are actively developed, but most still exist for purchase.

A CMS is usually server-based,4 multiuser software that interacts with content stored
in a repository. This repository might be located on the same server, as part of the
same software package, or in a separate storage facility entirely.

A CMS allows editors to create new content, edit existing content, perform editorial
processes on content, and ultimately make that content available to other people to
consume it.

Logically, a CMS is comprised of many parts. The editing interface, repository, pub‐
lishing mechanisms, etc., might all be separate, autonomous parts of the system
behind the scenes. However, to a non-technical editor, all of these parts are generally
viewed as a single, monolithic whole: “the CMS.”

The Discipline Versus the Software
What’s important to note is that a “content management system” is a specific manifes‐
tation of software designed to enable the discipline of content management. Just like a
Ford Taurus is a specific manifestation of a device enabling personal transportation,
Drupal, WordPress, and Episerver are specific manifestations of software enabling
content management.

The discipline of content management—the accumulated theories, best practices, and
accepted patterns of the field—transcends any specific system. In this sense, it’s a Pla‐
tonic ideal: an abstract, subjective representation of how content is to be managed.

The specifics of this ideal can be very different depending on the experiences, prefer‐
ences, and needs of the observer. This means there’s no single, accepted definition for
content management as a discipline, just a set of debatable best practices. While peo‐
ple might try to lay claim to a Grand Unified Theory of Content Management, no
such thing exists.

Thankfully, this means that skill with a particular content management system can be
somewhat transferable. Even if System A differs from System B in extreme ways, they
both still need to solve transcendent problems of the discipline, like workflow, ver‐
sioning, publishing, etc. While specific technical skills might not transfer, working
with a content management system requires the exercise and development of skills in
the content management discipline.

6 | Chapter 1: What Content Management Is (and Isn’t)

5 “Flame” was the original term for two people hurling insults at each other in front of a virtual audience
through the anonymous magic of the Internet. I think this is now called “Facebook.”

6 An acronym that is the source of countless jokes, which, contrary to what some might say, just never seem to
get old.

So, a CMS is a tool to assist in and enable the theoretical ideal of content manage‐
ment. How well any one CMS successfully brings that ideal to life is the subject of
great debate and Internet flame wars.5

Types of Content Management Systems
We defined content as “information created through editorial process and intended
for human consumption.” Note that there was no mention of the Web in this defini‐
tion (nor of the Internet itself, really).

However, given that this is a book about web content management, it’s probably best
that we define some different flavors of content management rather than lumping
them into one big bucket.

The “big four” of content management might be identified as:

Web content management (WCM)
The management of content primarily intended for mass delivery via a website.
WCM excels at separating content from presentation and publishing to multiple
channels.

Enterprise content management (ECM)
The management of general business content, not necessarily intended for mass
delivery or consumption (e.g., employee resumes, incident reports, memos, etc.).
This flavor was more traditionally known as “document management,” but the
label has been generalized over the years. ECM excels in collaboration, access
control, and file management.

Digital asset management (DAM)
The management and manipulation of rich digital assets such as images, audio,
and video for usage in other media. DAM excels at metadata and renditioning.

Records management (RM)
The management of transactional information and other records that are created
as a byproduct of business operations (e.g., sales records, access records, con‐
tracts, etc.). RM excels at retention and access control.

Clearly, the line blurs here quite a bit. A DAM6 system is often used to provide con‐
tent for a website through integration with a WCM. Furthermore, some ECM systems
have systems by which they can publish some of their information to the Web.

Types of Content Management Systems | 7

Software systems are known only through their intended use and their perception in
the industry. Drupal is well known as a WCM system, but there are undoubtedly
organizations using it to manage internal enterprise content. Conversely, Documen‐
tum is an ECM system, but some organizations might use it to deliver all or part of
their websites.

DAM is interesting in that it is differentiated primarily on the basis of what it does to
content. While almost any content management system can store video and image
files, and ECM actually excels at it, DAM goes a step further by providing unique
tools to render and transform digital assets. Images can be mass-resized and video
can be spliced and edited directly inside the system, making a DAM system’s point of
differentiation one of processes that can be applied to content. Therefore, the core
management features of a DAM system overlay quite closely those of an ECM system,
with the DAM system layering a level of functionality on top. (Indeed, many DAM
systems are sold simply as add-ons to ECM systems.)

There are other, even blurrier shades of gray. Some examples:

Component content management systems (CCMSs)
Used for management of extremely fine-grained content (paragraphs, sentences,
and even individual words), often to assemble documentation or highly technical
content.

Learning management systems (LMSs)
Used for management of learning resources and student interaction; most col‐
leges and universities manage syllabi and the learning process via an LMS.

Portals
Used for management, presentation, and aggregation of multiple streams of
information into a unified system.

Again, the lines here are very blurry.

Only some of what an LMS does is specific and unique to an LMS. Many different
WCM systems, for instance, have add-ons and extensions that claim to turn them
into an LMS, and many more are simply used as such out of the box.

In the end, a given software system is mentally classified among the public based on
several factors:

• The market in which it promotes itself and in which it competes
• The use cases and examples that the user community creates and promotes
• The specific features designed to meet the needs of a particular user or type of

content

8 | Chapter 1: What Content Management Is (and Isn’t)

CMS software is targeted at particular markets or usage scenarios. That has never
stopped anyone from using it in ways outside of the one the vendor designed it for.

For the purposes of this book, we will concentrate on mainstream WCM—that soft‐
ware designed to manage a website intended for public delivery and consumption.

(And, at the risk of beating this subject to death, even this designation is blurry.
Organizations commonly power social networking platforms from their WCM sys‐
tems, managing content that ends up as Facebook updates, tweets, or even emails.
While this is not technically “website content,” our definition will have to suffice.)

What Does “Enterprise” Mean?
You see that word a lot, as part of phrases like “enterprise software” or “enterprise
content.” It has no precise definition, but it generally means “big” or “intended for
large organizations.”

It’s a vague term, and there is no exact opposite—few CMSs would describes them‐
selves as “provincial” or “boutique.” And nothing is stopping the world’s smallest
CMS from describing itself as “enterprise,” either. It’s highly subjective—what’s big to
one person is small to another.

CMS vendors use the term to indicate that their systems can handle large amounts of
content, or fit into a very distributed, sophisticated environment (multiple load-
balanced servers across multiple data centers, for instance). It’s also often used to set
expectations on pricing—“enterprise” usually means “expensive.”

“Enterprise content” is often used to refer to internal content that is not published
outside the organization. Using this definition, a news article release is not “enterprise
content,” whereas the internal minutes of an executive meeting would be.

An “enterprise content management system” is vaguely accepted to mean a system
that is designed to manage this type of internal organizational content. They are con‐
sequently heavy on management tools and light on publication tools.

What a CMS Does
Let’s break down the core functions of a CMS. In broad terms, what is the value prop‐
osition? Why are we better off with a CMS than without?

Control Content
A CMS allows us to get control of our content, which is something you’ll understand
well if your content is out of control. A CMS keeps track of content. It “knows” where
our content is, what condition it’s in, who can access it, and how it relates to other
content. Furthermore, it seeks to prevent bad things from happening to our content.

What a CMS Does | 9

Specifically, a CMS provides core control functions, such as:

Permissions
Who can see this content? Who can change it? Who can delete it?

State management and workflow
Is this content published? Is it in draft? Has it been archived and removed from
the public?

Versioning
How many times has this content changed? What did it look like three months
ago? How does that version differ from the current version? Can I restore or
republish an older version?

Dependency management
What content is being used by what other content? If I delete this content, how
does that affect other content? What content is currently “orphaned” and unused?

Search and organization
How do I find a specific piece of content? How do I find all content that refers to
X? How do I group and relate content so it’s easier to manage?

Each of these items increases our level of control over our content and reduces risk—
there is less chance that the shareholder report will be released early, or that the only
copy of our procedures manual will be deleted accidentally.

Allow Content Reuse
Using content in more than one place and in more than one way increases its value.
Some examples:

• A news article appears on its own page, but also as a teaser on a category page
and in multiple “Related Article” sidebars.

• An author’s bio appears at the bottom of all articles written by that person.
• A privacy statement appears at the bottom of every page on a website.

In these situations, this information is not created every time in every location, but
simply retrieved and displayed from a common location.

This reuse of content was one of the original problems that vexed early web develop‐
ers. Remember the James Bond site I discussed earlier? One of the great frustrations
was creating an article, and then adding it to all the index pages where it was sup‐
posed to appear. If we ever deleted the article or changed the title, we’d have to go find
all the references and remove or change them.

10 | Chapter 1: What Content Management Is (and Isn’t)

This problem was mitigated somewhat by Server Side Includes, which allowed page
editors to insert a snippet of HTML by simply referring to a separate file—the files
were combined on the server prior to delivery. Later platforms tried to automate this
even further; Microsoft FrontPage, for example, had a feature it explicitly called
“Shared Borders.”

The ability to reuse content is highly dependent on the structure of that content. Your
ability to structure your content accurately for optimal reuse is highly dependent on
the features your CMS provides for you.

Allow Content Automation and Aggregation
Having all of our content in a single location makes it easier to query and manipulate
it. If we want to find all news articles that were written last week and mention the
word “SPECTRE,” we can do that because there is one system that “knows” all about
our content.

If our content is structured correctly, we can manipulate it to display in different for‐
mats, publish it to different locations, and rearrange it on the fly to serve the needs of
our visitors more effectively:

• We can allow users to consume content in other formats, such as PDF or other
ebook formats.

• We can automatically create lists and navigation (more generally, “content aggre‐
gations”—see Chapter 7) for our website.

• We can create multiple translations of content to ensure we deliver the language
most appropriate to the current user.

• We can alter the content we publish in real time based on the specific behaviors
and conditions exhibited by our visitors.

A CMS enables this by structuring, storing, examining, and providing query facilities
around our content. It becomes the single source of information about our content;
the thing that has its arms around the entire repository; the oracle we can consult to
find information about our content.

Increase Editorial Efficiency
The ability of editors to create and edit content quickly and accurately is enormously
affected by the platform used. It’s rare to find an editor who has unconditional love
for a CMS, but the alternative, editing a website manually, is clearly much less desira‐
ble.

Editor efficiency is increased by a system that controls what type of content editors
can and can’t add, what formatting tools are available to them, how their content is

What a CMS Does | 11

structured in the editing interface, how the editorial workflow and collaboration are
managed, and what happens to their content after they publish.

A good CMS enables editors to publish more content in a shorter time frame (it
increases “editorial throughput”), and to control and manage the published content
with a lower amount of friction or drag on their process.

Editorial efficiency has a huge impact on morale, which is intangible but critical.
Many editors have a historically antagonistic relationship with their CMSs, and noth‐
ing destroys editorial efficiency more quickly than a clunky editorial interface and
flow.

What a CMS Doesn’t Do
Now for the bad news: there are things a CMS doesn’t do. More specifically, there are
things that a CMS doesn’t do but that people mistakenly assume it does, which leads to
problems and unfulfilled expectations.

Create Content
A CMS simply manages content, it doesn’t create content. It doesn’t write your news
articles, procedure documents, or blog posts. You must still provide the editorial
horsepower to generate the content that it’s supposed to be managing.

Many times, a CMS implementation has ended with a group of people looking at each
other and thinking, “So…now what?” Every web development shop in the country
can tell you stories about the shiny new CMS that was never once used by the client
because they never changed their site after the day it launched. Occasionally, my com‐
pany has taken calls from clients years after their sites launched wanting to know how
to log in to their CMS for the first time.

Related to this, a CMS won’t ensure that your content is any good, either. Although a
CMS might offer several tools to minimize poor-quality content from a technical
standpoint (ensuring that hyperlinks are valid, or that all images have ALT tags, for
instance), a CMS cannot edit your content to be sure it makes sense and meets the
needs of your audience.

The best-laid plans to create massive amounts of quality content often fall through
when confronted with the hard reality of schedule pressure and business deadlines.
You need to ensure that your content creation process exists apart from your CMS.

Create Marketing Plans
Even assuming your content is created consistently and managed well, that doesn’t
mean it actually provides your organization with any value.

12 | Chapter 1: What Content Management Is (and Isn’t)

A CMS doesn’t “know” anything about marketing. While some systems have market‐
ing tools built into them, they still depend on human beings for direction. Effective
marketing is a uniquely human practice involving a combination of aesthetics, sociol‐
ogy, psychology, experience, and intuition. A CMS can make executing your market‐
ing plans easier and more efficient, but those plans still need to be conceived, created,
and analyzed by a competent human.

A CMS doesn’t take the place of a creative team that understands your marketplace,
your customers, your competitors, and what you need to do to differentiate yourself.
No software can take the place of a good digital marketing strategy or team.

Effectively Format Content
While a CMS can structure content and automatically format it during publication,
there is still an unfortunate amount of room for a human editor to screw it up. Most
CMSs have a rich text editor or some other interface element that allows editors to
format text and images. This can lead to things like:

• Too much use of bold and italics
• Inconsistent alignment of content
• Random and inconsistent hyperlinking
• Poor image placement

Editors have never seen a button on an editing interface that they didn’t want to press.
The only way to limit this seems to be to remove as many editing options as possible,
then try to withstand the hailstorm of editor complaints that will inevitably follow.

Provide Governance
“Governance” describes the access to and processes around your content: who has
access to what, and what processes/steps they follow to make changes to it. For exam‐
ple:

• If Bob adds a news article, who needs to approve this, and what does that appro‐
val look like? Does someone copyedit and someone else edit for quality, voice,
and tone? Can you diagram this process out on a piece of paper?

• If John wants to change how the news archives are organized, and the CMS
allows him to do this…can he? What process does he have to go through to do
this?

• If Jennifer wants an account on the CMS to start creating content, how does she
get that? Who decides who is allowed to become an editor?

What a CMS Doesn’t Do | 13

Every CMS has some method to limit the actions a user can take, but these limits
have to be defined in advance. The CMS will simply carry out what your organization
directs it to do. These plans have to be created through human interaction and judg‐
ment, then converted into the permissions and access limits the CMS can enforce.

Governance is primarily a human discipline. You are determining the processes and
policies that humans will abide by when working with your content. The CMS is just
a framework for enforcement.

A Homebuilding Analogy
The home you live in is a rough combination of three things:

• The raw building materials (wood, nails, glass)
• The tools and building equipment (hammers, saws)
• The human power to make it all go (Ted, your contractor)

None of those things builds a house by itself. A pile of wood is just a pile of wood until
Ted takes his hammer and makes something happen. Ted is the key here. The materi‐
als and tools are inanimate. Ted is the prime mover.

In terms of content management:

• Raw materials = your content
• Tools and equipment = your CMS
• Ted = you

All the content in the world doesn’t do much if it’s not managed. And all the manage‐
ment in the world doesn’t do much if there’s no content. Neither of them does any‐
thing without human processes and effort to make them work together, just like a pile
of wood and a hammer don’t magically build a house.

You are the thing that ties it all together. You are the one that makes it all go. A CMS is
just a tool.

14 | Chapter 1: What Content Management Is (and Isn’t)

CHAPTER 2

Points of Comparison

In medicine, certain conditions are known as “spectrum disorders” because they’re
not simple binary conditions from which you suffer or don’t suffer. Rather, these con‐
ditions exist along a spectrum of severity. One can suffer from a condition slightly or
severely, and the difference might manifest as entirely different symptoms and
require entirely different treatments.

Web content management can be the same way.

To demonstrate this, it might help to examine the aspects of content management as a
series of comparisons or dichotomies. By understanding the range of available
options along a particular axis and what the boundaries are on either side, we can
begin to understand the full breadth of options.

There are numerous facets to systems, implementations, and practices that are simply
not black and white. In fact, there are few absolutes in content management. What’s
correct in one situation is clearly wrong in another. What’s right for one organization
would be a disaster at another. The key to making a CMS work is making the right
decisions for your situation, which often makes it seem like more art than science.

Furthermore, the fundamental differences we’re going to explore here make it diffi‐
cult to compare CMSs accurately. Instead of apples to apples, you end up with apples
to pot roast. For example:

• Drupal Gardens is a hosted service built in PHP using a coupled model, offering
few marketing tools and little in the way of customization or implementation.

• Ingenuix is an installed system built in ASP.NET using a decoupled model, offer‐
ing marketing automation and deep customization and requiring significant
implementation.

15

Technical comparisons of those two systems are difficult because they lie at opposite
ends of multiple axes of comparison:

• One is hosted, the other is installed.
• One is built in PHP, the other is in .NET (and since one is hosted, often users

simply won’t care that it’s built in any particular language).
• One is coupled, the other is decoupled.
• One is commercial, the other is open source.

The correct solution for any particular aspect of your situation will fall somewhere
between two ends of the scale. Therefore, we need to understand what each end of
that scale looks like.

Target Site Type
Different CMSs are targeted at different types of sites. The range in intended end
results is vast. A “website” could be any one of the following:

• A small, static marketing site for a dental office
• A multinational newspaper publishing hundreds of articles a day
• A single-author blog for a technology writer
• An intranet for a medium-sized accounting firm
• An extranet for the dealers of a farm implement manufacturer
• The product documentation library for a software developer
• The course materials and syllabi for a small university
• An online community and social network for owners of Porsches

There’s just no easy way to draw hard boundaries around what we mean when we say
“website.” Content management is a problem for all of the examples given here, and
CMSs exist that specialize in each of them. The CMS used for the dental office could
conceivably be used to power the newspaper’s website, though it likely wouldn’t work
very well.

A CMS is very rarely promoted as a general system to solve all problems of every type
of site. A particular CMS is usually targeted at a particular type of problem. Some
problems might be broad, some might be narrow, but the architects behind a CMS
are pursuing a target problem to be solved. It’s usually in your best interest to match
the intention of your CMS as closely to your problem as possible.

16 | Chapter 2: Points of Comparison

Systems Versus Implementations
It’s important to separate a content management system from a CMS implementation.
An implementation is the process by which a CMS is installed, configured, templated,
and extended to deliver the website you want.

Unless you build your CMS from scratch, you are not the only one using it. Other
organizations are using the same software to solve different problems and deliver dif‐
ferent types of websites, so it’s not going to be preconfigured to do any one thing par‐
ticularly well. This means a necessary step is the initial effort of adapting the CMS to
do exactly what your organization and circumstances require from it.

“Initial effort” is a gross oversimplification. The fact is, CMS
projects never seem to end. When you launch, you usually already
have a list of changes. Websites are constantly in flux. The idea that
you’ll launch your website and never have to do any further devel‐
opment is hopelessly naïve.

To revisit our homebuilding analogy from the first chapter, a pile of wood and a set of
tools are not the house you want. Ted the Contractor exerts effort to use the tools to
build the house. This is a one-time effort, and the final product is a completed house.
Furthermore, Mike the Contractor might use the same materials to build an entirely
different house.

An implementation is a significant programming project. The skillsets required are
not unlike those for other development efforts: you need designers, developers, fron‐
tend specialists, project managers, and experts in the CMS itself. Organizations some‐
times do their own implementations, but it’s often contracted out to a development
firm that specializes in the CMS being implemented.

The expense of the implementation is usually the largest expense in the budget, far
eclipsing even the license fees for a commercial CMS. The rule of thumb differs
depending on who states it, but implementation fees are usually some multiple of the
licensing cost of the software.

A friend, when asked if an organization should “buy or build,”
responded, “There’s no such thing as buy or build. It’s always buy
and build.”

The implementation should be considered at least as important to the success of the
project as the CMS software itself. There are many decisions to make during an
implementation, and two different implementations of the same website using the

Systems Versus Implementations | 17

1 “How the New Platforms vs. Products Debate Impacts Your Success,” February 23, 2010.
2 Note the intentional use of “platform-style” as a qualifier. It’s hard to definitively say if something is a platform

or not. Refer back to the comment about spectrum disorders at the start of the chapter. Some systems are
“platform-y” in some aspects, but not in others, and some systems are more “platform-y” than others overall.
Being a platform as opposed to a product is very much a matter of degree.

same CMS might bear little resemblance. Any of these decision points can be imple‐
mented well or poorly, and those results will have a huge impact on the final result.

The most perfect CMS in the world can be rendered all but useless by a poor imple‐
mentation. And while I concede there are some CMSs that are irredeemably poor or
inappropriate for a given situation, I’ve seen many stellar implementations that were
able to make mediocre CMSs work for a particular project.

Platform Versus Product
If we consider a CMS a range of functional “completeness,” the extremes might look
like this:

• No CMS functionality at all, just a raw programming platform
• A fully functional CMS ready to go out of the box, complete with prebuilt fea‐

tures to solve all your content problems with no changes

“Out of the box” is a phrase used often in the CMS world. It means
functionality that theoretically works with no implementation nec‐
essary. It’s commonly used to oversell software of all types. Be skep‐
tical whenever you encounter it.

In between these two extremes, we can insert a third option:

• A programming framework providing flexible API access to common content
management features and functions that can be used to develop your own solu‐
tion, along with a default user interface and configuration to support common
needs

Tony Byrne from Real Story Group has referred to this type of CMS as a “platform,”
and the opposite prebuilt extreme as a “product.”1

Platform-style2 systems are designed to be rearranged and customized during imple‐
mentation. Product style systems are designed to solve specific problems quickly and
without significant effort.

18 | Chapter 2: Points of Comparison

http://www.realstorygroup.com/Library/Download/43/How-the-New-Platforms-vs.-Products-Debate-Impacts-Your-Success

Platform-style systems are flexible but effort-intensive. Product-style systems are
rigid but supposedly easy to implement.

It’s a natural trade-off. With a product, you trade reduced implementation costs for
agreeing to accept how the system works. With a platform, you trade increased
implementation costs for more flexibility and control.

Many vendors market their systems as products that are ready to solve all content
problems out of the box with very little effort. The inverse is more rare: very few ven‐
dors want to be known as providing systems that require heroic customization and
programming in order to build a website. While this may appeal to hardcore develop‐
ers, they’re not usually the people making purchasing decisions.

The platform orientation of a system can be used to explain the extent and expecta‐
tion of the system’s extensibility and customizability. Some CMSs are highly custom‐
izable, and this is absolutely expected in every implementation. Other CMSs are
designed to go in as purchased and provide few options for customization.

This is simply due to the fact that every CMS vendor or development community has
use cases (literally, “cases for use”) in mind when their system is developed. Whether
these use cases are explicitly recorded somewhere or not, every CMS is created to
solve a set of theoretical problems. One system might be designed to manage a blog,
another might be designed to manage an intranet.

Your ability to use a product-style CMS to solve your problems depends highly on
how closely your situation resembles these theoretical problems. If they don’t match
up, then your ability to use this CMS for a purpose outside its original designed
intention depends highly on the extensibility of the CMS.

Often, a product-style system will provide prebuilt functionality that gets very close
to the desired solution of one of your problems. In situations where 90% isn’t enough,
the product will have to be customized to bridge the gap. Some systems are designed
to allow this, and others are not.

Actual Versus Theoretical Benefits
When discussing the benefits of any type of software, it’s important to differentiate
between actual and theoretical benefits:

• Actual benefits are benefits your organization uses and derives value from.
• Theoretical benefits are benefits that exist and could theoretically provide value to

your organization, but that you do not actually implement or use.

Software is largely sold on theoretical benefits. Those in sales know how to paint a
positive picture in your head of how you would use all the functionality they offer,

Platform Versus Product | 19

and a negative picture of what might happen to your organization (and you, profes‐
sionally) if you were caught without this theoretical benefit.

More than one CMS has been selected based solely on features that the organization
had no immediate plans to use (and usually never does). The idea of wanting a
feature-rich product is not inherently wrong, but it becomes problematic when the
desire for a particular feature causes the abandonment or minimization of a more rel‐
evant feature.

I call this “Ferrari Syndrome,” in honor of the car buyer who will never drive over 80
mph but nevertheless loves the idea that he could go 200 if he really wanted to, and
gives up a much-needed backseat in pursuit of this idea. The excitement of benefits
“possible but never realized” has been driving purchasing decisions since the begin‐
ning of commerce.

As consumers, we like the vision of ourselves as competent, skilled professionals who
solve complicated problems. We’re naturally drawn to powerful tools that promise to
help us tackle challenging issues because they reinforce this vision.

Be realistic about the features you will actually use. Identify those core features that
you absolutely cannot function without (the “must-haves”) and make sure those are
well served before moving on to features you think might work well for you and
merely hope to use one day (the “nice-to-haves”).

Be sure to evaluate what you think is a “must-have” against this criterion: if you find a
system that does everything perfectly except this one thing, will you reject it because
of this single omission? If not, then this is not a “must-have.”

Open Source Versus Commercial
With most software, both commercial (paid license) and open source options exist.
This is probably more true of content management than any other genre. Literally
thousands of options exist, and extremely common open source CMS platforms like
WordPress and Drupal power a significant percentage of websites worldwide.

Given the installed base and depth of use, open source CMSs are generally well tested,
feature rich, and have a large volume of contributed code and modules. The availabil‐
ity, responsiveness, and accuracy of community support is usually quite high, but
varies widely.

An open source CMS project can usually trace its roots back to a developer champion
who originally created it to solve a specific personal or professional problem. Very
few systems are “clean sheet” designs built from scratch with the intention to be dis‐
tributed. Rather, they begin as small, internal projects and grow until reaching critical
mass and being contributed to the open source community for continued develop‐
ment.

20 | Chapter 2: Points of Comparison

3 “Things You Should Never Do, Part I,” April 6, 2000.

This results in a fair amount of developer-centrism—some of them are written by
developers, for developers. Most open source projects subconsciously evolve to be
interesting and desirable for developers first, then everyone else second. Editors and
marketers are often the second-class citizens in these cases.

This results in a common pattern—an “open source syndrome,” if you will—charac‐
terized by:

• Platform-style systems with highly extensible APIs
• Emphasis on the database-like features of a CMS, such as content modeling and

aggregation
• An assumption that a developer will always be available for implementation and

management
• Average to below-average user interfaces with some rough edges
• A tendency to overwhelm editors with numerous options
• An emphasis on generalization, configurability, and elegance of code
• Lack of higher-end marketing or delivery tools

Open source systems normally go through large amounts of teardown and recon‐
struction over time. For many developers, the code and process of solving content
problems is an end goal in itself. Rearchitecting the system to be more elegant, effi‐
cient, or generalizable is held to be a worthwhile effort.

Over a decade ago, Joel Spolsky of Fog Creek Software was complaining about this
exact problem:

We’re programmers. Programmers are, in their hearts, architects, and the first thing
they want to do when they get to a site is to bulldoze the place flat and build something
grand. We’re not excited by incremental renovation: tinkering, improving, planting
flower beds.3

Commercial systems, on the other hand, have a built-in limitation—they need license
fees, so the end goal is selling the software, not architecting it. Clearly, this can result in
some bad decisions and wallpapering over of genuine technical problems, but it also
results in more end-user-focused development, because features for the end user is
what sells licenses. At the end of the day, commercial software has to ship for the com‐
pany to stay in business.

New open source systems are quite common, though as the market is more crowded
now, it’s harder and harder for any new system to gain any traction and achieve a sig‐

Open Source Versus Commercial | 21

http://www.joelonsoftware.com/articles/fog0000000069.html

4 I’m not an excitable person by nature. The exclamation point is actually an official part of the name of the
CMS.

nificant installed base. Consequently, the most successful open source CMSs are also
some of the oldest.

PHP-based systems form the lion’s share of the open source CMS landscape. The
three most common CMSs of any license style in popular use (WordPress, Drupal,
and Joomla!4) are all PHP systems.

Systems lose traction and developer support primarily due to the inability of their
underlying technology stack to attract new developers—there are dozens of systems
from the mid-’90s written in Perl, ColdFusion, and (occasionally) C++ that are slowly
dying off. New Java-based open source systems are also becoming more and more
rare as Java becomes a less popular web framework.

Using an open source CMS provides numerous benefits:

• The software is free.
• Community support is often plentiful.
• Contributed code is often available to solve common problems.
• Developers and contractors are usually highly available.

But some drawbacks exist too:

• The “open source syndrome” we discussed tends to make these systems less
attractive to non-editors.

• Ubiquitous usage results in large amounts of malware, penetration attempts, and
security patches (the sheer number of WordPress installations makes it an attrac‐
tive target for hackers).

• Community support for especially complicated problems will often run short.
• Professional service-level support may not be available.
• Usage of open source software may violate an organization’s IT policies.
• Open source software (not just CMSs) is heavily weighted toward the PHP and

Java technology stacks.

We’ll discuss some of these points in greater depth in Chapter 3.

22 | Chapter 2: Points of Comparison

http://issuu.com/joomladocs/docs/20150308_joomla_brandmanual_basic_d/1
http://issuu.com/joomladocs/docs/20150308_joomla_brandmanual_basic_d/1

Perspective: Commercial Software Syndrome

by Larry Garfield

While many open source CMSs start out as engineer hobbyist
projects, the successful ones have evolved to put user experience
front and center. The “Big 3” in particular (Drupal, WordPress,
and Joomla!) put a great deal of effort into making the inher‐
ently complex world of structured content more approachable
for end users.

In addition, as they tend to be more engineer-heavy, OSS
projects don’t suffer from “commercial software syndrome”; many proprietary CMSs
have very polished demos, but that polish is only skin deep. The slick UI hides a lack
of underlying power and flexibility—crucial power and flexibility that open source
developers find interesting to work on.

As a result, leading OSS projects often have much stronger functionality than their
proprietary counterparts, even if it may take a bit more training and documentation
to leverage it. And that’s while remaining free to use, which can often be a major ben‐
efit.

Larry Garfield is a Senior Architect and Community Lead at Palantir.net, a full-service
digital agency in Chicago, and one of the lead developers of Drupal 8.

Technology Stack
All software runs on a “stack” of supporting software, databases, and languages. A
CMS is always implemented in a specific language and storage framework (which
may or may not be “swappable”). This language and storage framework strongly
influence what hosting environment the CMS needs to run.

The stack includes the following:

• The CMS itself
• A programming framework
• A programming language
• A database server
• A web server
• An operating system

Technology Stack | 23

5 To developers, of course, this is usually the defining characteristic. When developers describe a CMS, they’ll
invariably lead with a stack descriptor: “Well, that’s a PHP system…” or “It’s built in .NET…”

You can envision that as a pile of technologies, with the CMS sitting on top of it all
and requiring everything below it to run properly. Table 2-1 shows an example stack
comparison for two very different systems: Episerver and eZ Platform.

Table 2-1. Comparison of the technology stacks of Episerver and
eZ Platform

Stack item Episerver eZ Platform
Programming framework ASP.NET MVC Symfony

Programming language C# PHP

Database server SQL Server Multiple (usually MySQL)

Web server Internet Information Server (IIS) Multiple (usually Apache)

Operating system Windows Multiple (usually Linux)

The crudest categorization of CMSs might be by technology stack.5 The most com‐
mon stacks are:

• LAMP (Linux, Apache, MySQL, and PHP/Python/Perl; although almost always
PHP)

• ASP.NET (Windows)
• Java/J2EE (Linux or Windows)

Less common stacks include:

• Ruby on Rails
• Python (usually the Django framework)
• Node.js

Systems cannot be swapped into different runtime languages, but hosting environ‐
ments can vary slightly. For instance, while PHP normally runs on Apache and Linux,
it can run reasonably well on Windows. ASP.NET almost always runs on Windows,
but can sometimes run on Linux via the Mono framework.

This matters primarily if your organization limits the technology stacks it will sup‐
port. While it would be ideal to select a CMS based solely on features and its fitness
for your particular situation, the CMS still has to be installed and hosted somewhere.
If your organization is hosting it, they might dictate all or parts of the stack. The same
limitation applies if your organization is going to implement in-house—if your devel‐

24 | Chapter 2: Points of Comparison

www.allitebooks.com

http://www.allitebooks.org

opment group is full of Java programmers, then there’s a good chance you’re going to
be limited to that stack.

It’s quite common for an IT department to only support specific combinations of
technologies. Windows servers are a common requirement in corporate IT, as are
specific database frameworks. Some companies dictate Oracle as their only officially
supported database, while others might be more liberal. If these limitations exist in
your organization, they will necessarily pare down the pool of possible CMSs you are
able to implement.

The desirability of any particular stack is the subject of great debate and far beyond
the scope of this book. The important point is that technology stack limitations—if
they exist—are usually very rigid. If your organization dictates that only Windows
servers can run in its data center, this is something you absolutely need to know before
picking a CMS.

Of course, hosting your CMS outside the reach of your organiza‐
tion’s IT policy is a commonly used tactic to make an end run
around imposed limits. Many a marketing department has added
hosting services to an RFP with the goal of not having to abide by
the limitations the IT department dictates.

Management Versus Delivery
While almost everything a CMS does is lumped under the umbrella of “management”
by default, the lifecycle of a piece of content can effectively be split at a hypothetical
“Publish” button.

Everything that happens to content from the moment it’s created until the moment it
dies is “management.” The subset of everything that happens to the published version
of that content from the moment it’s published is “delivery.” The two disciplines are
quite different.

Management is about security, control, and efficiency. It’s composed of functionalities
like content modeling, permissions, versioning, and workflow. These are features that
ease the creation of content, enable editorial collaboration, and keep content secure.

Delivery is about optimization and performance. The features involved in delivery
depend highly on the capabilities of the CMS. These capabilities are currently evolv‐
ing quickly in the marketplace. Until recently, delivery simply meant making content
available at a public location. Today, the modern CMS is highly concerned with the
performance and optimization of the content it delivers.

In the commercial space we’ve seen a plethora of tools that enable advanced market‐
ing during delivery. Features like personalization, A/B testing, and analytics have pro‐

Management Versus Delivery | 25

liferated as different vendors try to set their systems apart. These features used to be
provided by separate “marketing automation” software packages that operated solely
in the delivery environment. More and more, these tools are being built into the
CMS.

The unintended result is that core management tools have changed little in the last
half-decade. These tools have reached maturity in many cases, and the focus is cur‐
rently clearly on marketing and optimization tools during delivery. Management is
generally considered “good enough.”

Coupled Versus Decoupled
The “management vs. delivery” dichotomy manifests itself technically when consider‐
ing the coupling level of a CMS. What hosting relationship does the management
environment of a CMS have to the delivery environment?

In a coupled system, management and delivery occur on the same server (or farm of
servers). Editors manage content on the same system where visitors consume it.
Management and delivery are simply two sides of the same software.

This is an extremely common paradigm. Many developers and editors know of noth‐
ing else.

In a decoupled system, management and delivery are (wait for it) decoupled from one
another. Content is managed in one environment (one server or farm) and then pub‐
lished to a separate environment (another server or farm). In these situations, the
management functions are sometimes referred to as the “repository server,” and the
delivery of the content takes place on a “publishing server” or “delivery server.” In
these cases, published content is transported to an entirely separate environment,
which may or may not have any knowledge of how the content was created or how it
is managed.

Fewer and fewer systems support this paradigm, and it’s normally seen in high-
availability or distributed publishing environments, such as when a website is deliv‐
ered from multiple servers spread across multiple data centers (though this may be
changing, as we’ll discuss at the end of the book). It has the perceived benefits of secu‐
rity, stability, and some editorial advantage, as editors can make large-scale changes to
content without affecting the publishing environment, only to “push” all changes as a
single batch when the content is ready (though this advantage is steadily finding its
way into more and more coupled systems).

Actual technical benefits of decoupling include the ability to publish to multiple
servers without the need to install the CMS on each (which lowers license fees, in the
case of commercial CMSs), and the ability to publish to highly distributed environ‐
ments (multiple data centers on multiple continents, for example). Additionally, the

26 | Chapter 2: Points of Comparison

delivery environment could be running on an entirely different technology stack than
the management environment, as some systems publish “inert” assets such as simple
HTML files or database records, which have few environment restrictions.

The primary drawback to decoupling is that published content is separated from the
repository, which makes “live” features like personalization and user-generated con‐
tent more complicated. For example, accepting user comments is more difficult when
those comments have to be transported “backward” from the delivery server to the
repository server, and then the blog post on which they appear has to be republished
(with the new comments displayed) “forward” to the delivery server.

To counter this, decoupled CMSs are moving toward publishing content directly into
companion software running on the delivery servers that has some level of knowl‐
edge of the management CMS and can enable content delivery features. The result is
a CMS that’s split in half, with management features running in one environment,
and delivery features running in another.

Decoupled systems tend to be clustered on the Java technology stack. Some ASP.NET
systems exist, but virtually no PHP systems use this paradigm.

We’ll discuss the differences between the two publishing models in Chapter 9.

Installed Versus Software-as-a-Service (SaaS)
More and more IT infrastructure is moving to “the cloud,” and CMSs are no different.
While the norm used to be installation and configuration on your server infrastruc‐
ture, vendors are now offering hosted or SaaS solutions more often. It’s not uncom‐
mon to have software rented from the vendor and hosted in its environment.

The benefit purports to be a CMS that is hosted and supported by the vendor that
developed it. Whether or not this provides actual benefit is up for debate. For many,
“hosted” or “SaaS” just means “someone else’s headache,” and there are multiple other
ways to achieve this outside of the vendors themselves.

Closely related to the installed vs. SaaS debate is whether or not the CMS supports
multiple, isolated users in the same environment. So-called “single-tenant” vs. “multi‐
tenant” systems are much like living in a house vs. an apartment building. Users of a
multitenant system exist in the same shared runtime environment, isolated only by
login. They occupy a crowded room, but each appears to be the only one there.

The purported benefit here is a “hands off ” approach to technology. These systems
are promoted as giving you instant access and allowing you to concentrate on your
content, not on the technology running it. The trade-off is limits on your ability to
customize, since you’re sharing the system with other clients.

We’ll discuss this dichotomy in greater detail in Chapter 3.

Installed Versus Software-as-a-Service (SaaS) | 27

Code Versus Content
The implementation of a CMS will almost always involve two types of programming
code at some level. The system will have (1) customizations that are developed in the
native code of the system (PHP, Java, or C#, for example), and (2) custom templating
and the associated HTML, CSS, and JavaScript.

This code is usually managed in a source code management system such as Git or
Team Foundation Server. It’s usually tested in a separate environment (a test or inte‐
gration server) prior to launch. Launching new code is usually a scheduled event.
Depending on your IT policy, new code might have to have approved test and change
plans, as well as failure and backout plans in the event that something goes wrong.

With code under source control, there’s always “another place” where it lives. The
CMS installation where it’s executing and providing value is not its home; it’s just
deployed there for the moment. If that copy was ever destroyed for some reason, it
could be redeployed from source control.

Content, on the other hand, is developed by editors and lives in the CMS. In coupled
systems, it’s often developed in the production CMS and just kept unpublished until
it’s ready to launch. It might be reviewed via a formal or informal workflow process,
but often isn’t otherwise “tested.” If an editor has sufficient permissions, it’s possible
to make a content change, review it, and publish it all within the span of a few
minutes with no oversight.

Content will almost always change vastly more often than code. An organization
might publish and modify content several dozen times a day, but only adjust the pro‐
gramming code behind the website every few months. When this happens, it’s to fix a
bug or fundamentally change how something on the website functions, not simply to
change the information presented to visitors.

Code and content are sometimes confused because of the legacy of static HTML web‐
sites. For an organization that built its website with static HTML, an HTML file had
to be modified for a single word to change. Thus, a code change and a content change
were the same thing.

Decoupled content management can also blur the line between code and content. In a
decoupled system, modified content is often published to a test sandbox where it’s
reviewed for accuracy, then published to the production environment. The existence
of an entirely separate environment is similar to how code is managed. Content starts
to act like code.

In these situations, it’s sometimes mentally hard to separate the test environment for
content from the test environment for code. You have two different testing paradigms,
each with its own environment, each pushing changes into the production environ‐
ment.

28 | Chapter 2: Points of Comparison

This changes with a CMS, especially a coupled CMS. Under this paradigm, content
changes without code changing at all. The verbiage of a press release might be com‐
pletely rearranged, but the template that renders it is the same.

Organizations moving from static websites or decoupled systems sometimes have
trouble adjusting to the idea of a “virtual” test/staging environment—unpublished
content is created on the production server, and just not visible while it’s awaiting
publication.

Their past correlation with code tempts them to treat content the same way and inter-
mix the two concepts.

Code Versus Configuration
Many features in a CMS can be implemented through (1) developers writing code—
either core code or templating code—or (2) editors and administrators working from
the interface.

Developers have complete freedom, up to the limits of the system itself. There’s gen‐
erally no functionality that is not available from code, as code itself is the core under‐
pinning of the system. The only limitation on a developer is how well the API is
architected to allow access and manipulation. But even with a poorly implemented
API, a developer has the full capabilities of a programming language to get around
shortcomings.

Editors, on the other hand, have access to only a subset of what a developer can do
from code. They are limited to the functionality that has been exposed from the inter‐
face, which varies greatly depending on the system. Some systems allow minor con‐
figuration options to be set, while others have elaborate module and plug-in
architectures that allow new functionality to be created from the interface on a run‐
ning, production system.

Why wouldn’t a system expose all functionality from the interface? Sometimes it’s
because a particular setting or piece of functionality is changed too infrequently to
justify the effort of building an interface for it. Other times it’s because the person
using it is more likely to be a developer who would like to change it from code, to
ensure it gets versioned as source code and deployed like other code changes.

However, the most common reason is that the feature is simply too complicated to be
managed by an interface. The ability to write code allows for the clear expression of
extremely complex concepts. Developers are used to thinking abstractly about infor‐

Code Versus Configuration | 29

6 That wasn’t an intentional attempt at alliteration—the root of the word “codify” is “code.”
7 Commenting wasn’t even common until the “blog revolution,” circa 2002 or so.

mation and codifying it in code.6 Some features are simply too complex to easily build
a management interface around them.

While building features from configuration sounds enticing, it can be a problem for
management and maintenance. When editors are able to inject new modules and
functionality in the production environment, this can make developing new code dif‐
ficult for developers. Two groups are now developing the website together—one via
code and one via configuration. The two groups are subject to different testing and
deployment paradigms, and they might not be communicating about what they’re
doing. Mysterious and sometimes catastrophic problems can result.

Uni- Versus Bidirectional Publishing
Some CMSs are like printed newspapers—they’re intended for a small group of edi‐
tors to create and publish content to a large group of visitors who can’t directly
respond. If an article in your local newspaper angers you over breakfast, there isn’t
much you can do about it except throw your eggs, then write a letter to the editor that
might get published weeks later.

Other CMSs are like town hall meetings—you are allowed and expected to partici‐
pate. If a political candidate says something that annoys you, you can stand up, shake
your fist, and yell your input directly into the conversation.

Before social media was a thing, and before user participation in websites was
expected,7 most CMSs were very one-way. Editors published content that visitors
consumed, blindly. Visitors didn’t have accounts on websites. They couldn’t create
“profiles” or have “discussions.”

As one of my technical reviewers noted, “If user content showed up on your site, you
had been hacked.”

Times have changed, and publishing can now go in both directions.

• Unidirectional (one-way) publishing means your organization is always pushing
content “outward” to the consumer, often blindly (meaning the user is anony‐
mous, and not logged in or otherwise identified).

• Bidirectional (two-way) publishing means the consumer can sometimes push
content “backward” to the organization (by posting a comment, for instance).

Content coming back from the user is known as user-generated content (UGC). Some
systems are designed for limited UGC, while others are built around it. Some might

30 | Chapter 2: Points of Comparison

primarily be frameworks for managing UGC, more so than managing editor-created
content.

This has all changed over the last decade, and such tools are common and expected
these days. This means that older CMSs (those dating from the ’90s) have had to
backport this functionality, while newer CMSs have it built in.

Handling UGC requires some different tools than unidirectional publishing. If your
CMS doesn’t provide these, then they need to be developed, or handled by other serv‐
ices (Disqus or Facebook for commenting, for instance).

Additionally, UGC blurs the line between editors and other users who can provide
content—if visitors can create blogs on your site and publish blog posts, are they edi‐
tors? What differentiates them from “real” editors, from inside your organization? If
your entire website is built around UGC, then do you need a CMS, or do you really
need a social network or a community-building tool? What about software that pro‐
vides both?

UGC provides additional technical challenges for decoupled CMSs, as we discussed
in the prior section. In effect, content can now be created from both directions, which
makes concepts like the repository hard to isolate. In some cases, UGC like com‐
ments is actually stored directly in the delivery environment, rather than the reposi‐
tory, as it’s considered “lesser” content than that created by internal editors, and less
likely to require editorial process or management.

There are several CMSs that position themselves in this space and promote feature-
rich community tools. Other systems that don’t have these features are having to play
catch-up, either tacking them on through extensions and add-on software, or inte‐
grating with other services.

When I first encountered Drupal in about 2005, I thought, “This
isn’t a content management system at all. This is a community man‐
agement system.” The presence of community management tools
was a bit disorienting.
In his October 2004 article “Making a Better Open Source CMS,”
Jeffrey Veen was almost incredulous when he said this: “Users of a
public web site should never—never—be presented with a way to
log into the CMS.”
The migration from one-way to two-way publishing caught many
of us off guard, and it took some time to realize it was a natural
progression. Content can now be expected to come from any direc‐
tion, and systems are designed around this reality.

Uni- Versus Bidirectional Publishing | 31

http://www.veen.com/jeff/archives/000622.html

Practicality Versus Elegance, and the Problem of
Technical Debt
This final comparison isn’t specific to CMSs, but applies to software development in
general. Still, it’s important to understand when discussing the context of the develop‐
ment of a CMS over time, and the implementation of your CMS specifically.

When considering new functionality, there’s a constant battle between (1) “just get‐
ting it done” and (2) taking a step back and rationally considering the best way to fit
this functionality into the bigger picture. The former is faster and gets new features
out the door, but the latter is more sustainable over time.

Just jamming new features into software creates what’s become known as technical
debt. These are small problems and incompatibilities that accumulate over time. You
pay “interest” on this debt in the form of workarounds, hacks, and extra work you
have to do in the future to account for the poor choices made when the features were
implemented. Eventually, you have to stop and “pay off ” this debt by reimplementing
the features, or the interest expense will crush you.

Extending our discussion about UGC from earlier, consider the need to add a com‐
menting feature to an existing CMS. An eager developer might look at this and think,
“Well, this is easy. I’ll just make a new system to handle comments, with its own stor‐
age and API calls, etc.”

This is a practical, quick solution. The developer might implement it in an afternoon.

However, somewhere down the road, suppose the editors get concerned about
inflammatory comments, and decide they want the ability to hide certain comments.
Okay, our intrepid developer says, that can be added.

Then, later, the editors want to go a step further and have the ability to edit com‐
ments. This brings up larger architectural issues of permissions and versioning. Our
developer swallows hard, and declares that can also be added to the commenting sys‐
tem.

Finally, the editors have had it with flame wars in comment threads, and decide they
want to implement full-blown workflow and approval on comments.

It’s at this point that our developer realizes that comments are content too, and perhaps
they should have been implemented that way. It would have taken a little more work
and thought, but the long-term sustainability and stability of the feature would have
been improved. By treating comments as actual content—rather than a separate con‐
ceptual system—a lot of core functionality that the editors are asking for would be
built in.

Now, this is just an illustration, and there are clearly situations where a separate com‐
menting system might be appropriate. But the larger point is that sometimes the

32 | Chapter 2: Points of Comparison

https://en.wikipedia.org/wiki/Technical_debt
https://en.wikipedia.org/wiki/Technical_debt

quick fix is not the right way to do something, and developing software is a constant
battle between appeasing users who want something right now and making sure that
they stay happy over the long term.

You can see this dichotomy in different CMS platforms. Some are a hacked together
mishmash of programming paradigms and architectures, while others are well
thought out and centrally planned to work in harmony long term. The former
develop quickly, while the latter are slower but more stable and easier to learn because
there tend to be core principles and philosophies, with fewer exceptions and one-off
workarounds.

While “analysis by paralysis” can cause the development of a platform to grind to a
halt, slower and more thoughtful development is generally healthier for a platform
over time. All that glitters is not gold, and just because you got a feature quickly
doesn’t mean it was done correctly. If it wasn’t, the best scenario is that you recognize
this early, before you’re too deeply invested in it.

Practicality Versus Elegance, and the Problem of Technical Debt | 33

1 Or for another reason no one talks about: implementing expensive software is often seen as a mark of signifi‐
cance among industry peers. People like being taken seriously at conferences, and system name-dropping
happens more than anyone will admit.

CHAPTER 3

Acquiring a CMS

Before we discuss features and get into the specifics of CMS architecture, let’s take a
brief detour into the software business. In order to start working with a CMS, you
need to get your hands on one.

Your search will usually begin from one of three starting points:

Software
If you begin your search by looking for CMS software first, vendors will likely
introduce you to one of their “partners” to assist in scoping the implementation,
or they might offer their own professional services group for that (assuming they
have one).

Integrator
If you begin your search by looking for a CMS integrator (a developer or firm
that installs and configures CMSs), they will usually specialize in one or more
CMSs and will invariably attempt to steer you toward those systems. They would
obviously like to implement a system with which they’re comfortable, and/or for
which they’ll receive a markup, discount, or kickback from the vendor.1

Selection consultant
If you begin your search by using an independent CMS selection consultant, they
will help you select a system based on your requirements and desired features,
presumably free from influence or bias. The drawback is additional expense and
likely additional time, but as a participant in many formal CMS selection pro‐
cesses, I can validate that it’s money and time well spent.

35

2 For an examination of the philosophy of open source software, I highly recommend The Cathedral & the
Bazaar by Eric Raymond (O’Reilly).

Those three types of searches should identify one or more CMS vendors, each repre‐
senting one of the following paradigms of acquisition:

Open source
You download and install.

Commercial
You license (purchase) and install.

Software-as-a-Service (SaaS)
You “rent” and use.

Build your own
You develop from scratch, within your organization.

Any of these will provide you with a working CMS with which to begin implementa‐
tion. However, lurking within each of these seemingly straightforward options are
countless variations, idiosyncrasies, and paradigms.

Open Source CMSs
There are likely more open source options available in CMSs than in any other genre
of software. The most commonly used platforms in the world—systems like Word‐
Press, Drupal, and Joomla!—are all open source. (In fact, almost all LAMP-stack sys‐
tems are open source, demonstrating the close relationship between that technology
stack and the open source philosophy.)

An examination of the intricacies of open source is beyond the scope of this book,2

but a key point is that open source CMSs are typically free to use without paying a
license fee. These systems all have a website where you can download the software,
and you can then install it in your own environment and use it.

That said, remember that the license cost is not the sum total of your expenses. You
will still need to:

1. Host the software.
2. Integrate the software.

Some open source CMSs are very easy to host on commodity shared hosting
accounts costing less than $20/month. Other systems require more libraries, compu‐
tational power, and permissions than the average hosting account offers, and there‐
fore require a self-hosted environment with complete control.

36 | Chapter 3: Acquiring a CMS

http://shop.oreilly.com/product/9780596001087.do?
http://shop.oreilly.com/product/9780596001087.do?

Open Source vs. Commercial vs. Proprietary vs. Closed Source

When discussing open source software, figuring out what to call
non-open source software can be tricky. Some call it “commercial,”
but others claim it’s more accurate to say “proprietary” or “closed
source.”
For the purposes of this chapter, we’ll trade hair-splitting accuracy
for simplicity and simply use the descriptor of “commercial” to
mean software that is not free to use. The rights over a commercial
CMS are owned by a for-profit organization that is in business to
sell licenses.
Additionally, we’re not going to quibble over the different varieties
of open source licensing. There are several ways to license open
source software, the most popular being GPL (GNU General Pub‐
lic License). Discussion of open source in this book will assume
GPL licensing.

When it comes to ease of integration, open source software also varies greatly. Some
projects are mature enough to have significant documentation and bootstrapping
installers to get you up and running quickly. But these features are often developed
late in the lifecycle of open source software, so many younger systems fall quite short
in these areas. Additionally, there’s often a clear developer bias in open source soft‐
ware (“written by developers, for developers,” as mentioned in Chapter 2), and a gen‐
eral feeling that since no one is paying for it, users can just figure it out.

Given the lack of a license fee, open source systems are used quite often in smaller
projects that don’t have the budgets to pay for a license. This means that applicability
to much larger projects might be questionable. For every Drupal, there are a hundred
other systems that have never been asked to scale much larger than a small to mid-
sized marketing site or blog.

Ubiquitous use does present enormous advantages in community support. Many
open source systems have thriving user communities that are available to answer
questions quickly and accurately. However, this can be offset by the lack of professio‐
nal support (which is sometimes available at cost—see the next section), and the lack
of a community’s ability or willingness to solve more intricate questions.

And, as mentioned previously, open source CMSs are tilted heavily by platform.
LAMP systems are almost always open source, while there are comparatively
fewer .NET and Java systems.

Business Models of Open Source Companies
Many open source CMS products have full-fledged companies behind them, which
either actively develop the software internally (for example, eZ and its eZ Platform

Open Source CMSs | 37

3 This raises the question of whether these companies are open source or commercial entities. eZ distributes eZ
Platform, which is an open source content management framework. It also sells eZ Studio, which is a com‐
mercial interface and editorial management system—an add-on that makes eZ Platform work better. Does
this make eZ a commercial or open source company?

CMS), or guide and manage the community development (for example, the Drupal
Association). Additionally, many open source systems have commercial companies
lurking around the edges of the community to provide paid services for those systems
(for example, Acquia is a company that provides enterprise Drupal hosting, and
which was founded by Dries Buytaert, the creator of Drupal itself).

To pay the bills, companies behind open source software operate on one or more of
the following models:

Consulting and integration
No one knows the CMS better than the company that built it, and it’s quite com‐
mon for vendors to integrate their own software from start to finish, or to at least
provide some higher-level consulting services with which to assist customers in
integrating it themselves.

Freemium
The basic software is free, but a paid option exists that allows access to more
functionality, a larger volume of managed content, or scaling options, such as the
ability to load-balance. Sometimes the free product is quite capable, and some‐
times it’s just a watered-down trial version meant to steer users toward paying for
the full product.3

Hosting
Many vendors offer “managed hosting” platforms for the open source systems
they develop. The purported benefit is a hosting environment designed specifi‐
cally for that system, and/or system experts standing by in the event of hosting
problems. Note that the actual value here is a bit questionable, as there’s rarely
secret information known only to the vendor that allows it to tailor a hosting
platform to one CMS over another. Any available performance enhancements or
configuration tweaks could just as easily be implemented by a savvy customer.
The value is often just peace of mind that an “expert” is in charge.

Training and documentation
Open source software often lacks in documentation, and developer bias can lead
to idiosyncratic, API-heavy systems. For these reasons, professional training can
be helpful. Many vendors will offer paid training options, either remote or in-
person. Less commonly, some offer paid access to higher-quality documentation.

38 | Chapter 3: Acquiring a CMS

4 In reality, however, open source enhancements are rarely released, and most organizations simply keep their
source code private in quiet violation of the open source license and philosophy. Therefore, this option is usu‐
ally only attractive for companies with strict policies governing the release of open source changes.

Commercial licensing
Depending on the exact license, changes to open source software might have to
be publicly released back to the community. Some vendors will offer paid com‐
mercial licenses for their open source systems to allow organizations to ignore
this requirement, close the source, and keep their changes to themselves.4

Support
When community support falls short, professional support can be helpful, and
some vendors will provide a paid support option, either on an annual subscrip‐
tion or a per-incident basis.

Additional testing and QA
Some vendors offer a paid version of the software that is subjected to a higher
“enterprise” level of testing and QA. In these cases, the free or “community” ver‐
sion is presented as lightly tested and nonsupported, while the enterprise (paid)
version is marketed as the only one suitable for more demanding implementa‐
tions.

Many of the paid advantages offered by open source vendors are an attempt to
address the largest fear companies traditionally have of open source: lack of account‐
ability. Companies want a “neck to choke” if something goes wrong. A CIO wants a
phone number to call, product documentation to download, a trainer to fly on-site,
and a single point to hold accountable for any problems.

Many open source companies have entire business models built around addressing
this need. In most cases, these advantages are never actually invoked or acted upon,
but exist to provide informal peace of mind, or to meet formal audit or regulatory
requirements.

Commercial CMSs
Like with any other genre of software, numerous commercial CMS vendors are avail‐
able and eager to sell you a license to use their systems.

After our discussion of open source, you may be wondering why anyone bothers pur‐
chasing when so many options are available for free. First, a commercial company
presents itself as a more formal business entity than an open source community,
which is important to some organizations (we’ll discuss this further shortly). Second,
commercial vendors generally adhere to a higher standard of quality and functional‐

Commercial CMSs | 39

ity, as they have to keep paying customers happy and they have incoming revenue
from license fees to fund professional development.

Like any generalization, this is not always true, as some open source systems are
mature and well-used enough to compete against any commercial offering. Con‐
versely, some commercial vendors are terrible at QA and sell products riddled with
bugs. But as a general rule, it holds.

Additionally, in the last five years, there has been a distinct separation between open
source and commercial CMSs along the lines of marketing features. While the open
source development community is obsessed with solving problems of content man‐
agement, the commercial world has moved on to content marketing, which is the
tools and features that help enhance your content once it’s published.

It’s been said that open source CMSs are made for the CIO (chief information offi‐
cer), while commercial CMSs are made for the CMO (chief marketing officer). This
largely holds true in how the systems are marketed, with the commercial sector con‐
centrating their selling solely on the marketing departments of their customers, while
open source providers are more interested in trying to capture the hearts and minds
of the IT staff.

Like with the open source offerings, platform distinctions are clear. Very few LAMP
systems are commercial, while many of the .NET and Java systems come with price
tags.

Finally, remember that the numbers under discussion in this section apply only to the
license costs. Buying a commercial CMS doesn’t liberate you from the costs of imple‐
menting it—you will still need to find (and pay) someone to install, configure, and
template your system. In some cases, the commercial vendors provide an option for
this (so-called “professional services”), and in other cases they have a “partner net‐
work” of integration firms who are experts in their systems and willing to integrate
for a fee.

Licensing Models
Commercial systems rarely come with a single, simple price tag. Vendors usually have
a byzantine system of formulas and tables to determine your final price, with the
overall goal of forcing well-heeled customers to pay more, while not losing smaller
sales to customers with more modest budgets.

At this writing, the “mid-market” is roughly defined as systems with a list price (the
stated “official” price) between $20,000 and $80,000, and most everything is valued in
relation to this—vendors are categorized as being either above or below the mid-
market.

40 | Chapter 3: Acquiring a CMS

5 Actually advertised as “The really little CMS.”

The range of commercial pricing is vast—Perch5 sells for $79, while Adobe CQ can’t
be had for less than $250,000 and large installations will easily cross into the seven
figures.

Here are the more common ways of determining pricing:

By editor/user
The system is priced by the number of editing users, either per seat or concur‐
rent. More rarely, the system is priced by the number of registered public users,
but this usually only applies to community or intranet/extranet systems where it’s
expected that visitors will be registered.

By server
The system is priced by the number of servers on which it runs (or, less com‐
monly, on the number of CPU cores). This is quite common as larger installa‐
tions will require more servers, thus extracting a higher price tag. With
decoupled systems where the delivery environment is separated from the reposi‐
tory environment, this can get confusing: Do you pay for repository servers or
delivery servers? Or both?

By site
The system is priced by the number of distinct websites running on it. This can
be blurred by the vagueness of what constitutes a “website.” If we move our con‐
tent from “microsite.domain.com” to “domain.com/microsite,” are we still under
the same website and license fee? What about websites with different domain
names that serve the same content (branded affinity sites, for instance)? What
about alternate domains for different languages (“en.domain.com” for English
and “de.domain.com” for German)?

By feature
The system is priced by add-on packages installed in addition to the core. Almost
every commercial vendor has multiple features or packages that can be added on
to the base system in order to increase value and price. These range from ecom‐
merce subsystems to marketing tools. Note that each one of these features might
also be licensed by user, server, or site, making their prices variable as well.

By content volume
The system is priced by the amount of content under management. This is less
common than other models, as the number of content objects managed is highly
dependent on the implementation. For example, should you manage your blog
comments? Or can you move them to a companion database (or external service,
like Disqus) and reduce content volume by 80% or more?

Commercial CMSs | 41

https://grabaperch.com

Most systems are priced on multiple axes—for instance, by a combination of editors,
servers, and sites. Final pricing can often be impossible to determine without consid‐
erable consultation with the vendor’s sales department.

Vendors attempt to price for the value provided and the customer’s ability to pay. The
methods listed here are essentially all proxy models for what a vendor might really
prefer: to have inside information on how much a customer is able to pay, and price
their product at that number. Since no customer would ever allow that, vendors use
metrics like number of editors or sites to provide some rough estimation.

When to Buy a CMS

The realities of business dictate that the end of a quarter is usually a
very good time to negotiate a license sale. Vendors have to report
their quarterly numbers to Wall Street or their board of directors at
those times, and they’re therefore highly incentivized to discount in
order to pump up their revenues.
Given that the marginal cost of production is essentially static with
software (it costs no more to “create” 100,000 copies than it does to
create 1), the only disincentive they have to discounting is that by
doing so, they increase the expectation among future customers
that the list price is up for negotiation.

Software Subscription
One thing you can always count on with commercial vendors is the need to pay for
software subscription, which is a continuing annual fee based on the purchase price.
This is not at all unique to CMSs—almost all enterprise software is priced similarly.

Subscription is usually a percentage of the purchase price—typically 18% to 22%. The
first year is often built into the purchase, but the customer will be invoiced on the
purchase anniversary date every year after.

At an average of 20% per year, this adds up quickly. Simple math will tell you that you
will effectively “rebuy” your CMS every 4–6 years.

Whether or not you have to pay this fee varies by vendor. With most, you can simply
stop paying the subscription at any time and continue to use the product, but you will
lose all the value-added benefits that your subscription fee grants. With most ven‐
dors, those benefits are some combination of the following:

• On-demand support
• Upgrades and patches as they are released
• Free licenses for development or test servers

42 | Chapter 3: Acquiring a CMS

• License management, in the event you need to license new servers or sites

The fear that keeps customers paying subscription fees is that they might be stranded
in some situation with a problem they can’t solve or a critical security bug they can’t
patch. Vendors play on this fear by forcing customers to “catch up” on their subscrip‐
tions if they stop paying and then want to restart, in order to prevent customers from
only paying for subscription when they need it.

For example, if a customer stops paying the subscription fee after year 1, and has a
problem in year 3, the vendor will require retroactive payment for years 2 and 3 in
order to restart the subscription (and sometimes with an added penalty). In some
cases, vendors will force customers to repurchase the entire system from scratch.

Software subscription has become so ingrained in the enterprise software industry
that few customers question it. Vendors simply require it in the sale of their systems,
and customers expect to pay it.

Subscription revenue is the engine that keeps many vendors in business. If their new
license sales ever slow down or stop completely, they still have a large cushion of
subscription-paying customers to keep the lights on. This continuing revenue is criti‐
cal to their viability and valuation, and subscription is sometimes more important to
them than the initial license sale itself.

The Lure of Recurring Revenue

Another reality of the software business is that companies are often
in the process of acquiring another company or being acquired
themselves. Continuing/recurring revenue is absolutely critical to
their valuation—the price they’re going to pay or be paid.
How much of this type of revenue a company has is one of the first
questions it’s going to be asked by a potential suitor. A one-time
payment of $10 might not be worth as much as a continuing pay‐
ment of $2 every year.
For these reasons, commercial software companies will often try to
steer customers into some type of recurring revenue stream. Single
license sales with no recurring component are not what they’re
looking for.

Commercial CMSs | 43

Perspective: IT Is Only One Stakeholder

by Cathy McKnight

Content and its perceived value have changed drastically over
the past few years, with simple online content now being viewed
as a valuable digital asset with many uses and purposes. Accord‐
ingly, content-related technology has also evolved, with new sol‐
ution and subset solution types being introduced to the market
every year. So before starting down the path of deciding what
type of CMS—open source (OSS), commercial, Software-as-a-
Service (SaaS), or homegrown—to acquire, you first have to answer the question, “Is a
new CMS the right solution to the business problems being solved for?”

For many organizations the decision of whether to buy a CMS (or any other enter‐
prise technology), and which one, is often deferred to the technology team—after all,
they are the ones who understand the company’s systems and technology landscape
best. Right? Perhaps. But this is a surefire way of finding a technology that fits IT’s
needs, not the organization’s. IT should be involved, but only as one of many stake‐
holders. Left to just them, their myopic view typically leads to end user and business
needs—current and future—not being met (or even considered), thus ultimately leav‐
ing the business problem at hand unresolved.

Absolutely, attention has to be given to technical considerations (hosted versus on-
premise, interoperability with implicated existing systems, in-house skillsets), as well
as the associated technology and implementation costs (implementation partner/
team, licensing/subscription, maintenance, and overall total cost of ownership). But
equally as important, if not more so, is identifying and understanding the current and
foreseeable future content management needs of the content’s owners and stakehold‐
ers.

In order to ensure that the technology acquired addresses the needs of the organiza‐
tion, representatives of impacted stakeholders need to be involved in the process from
the get-go—from confirming the need for a CMS to defining the requirements upon
which the CMS will be selected. Focusing on business needs (planned CMS-
supported channels’ business purposes and goals) instead of features will help deter‐
mine not only what type of CMS (OSS, SaaS, commercial, or homegrown) is the best
approach, but also what the solution needs to offer in order to ensure the organiza‐
tion’s content is able to be managed successfully as it, and the organization, evolves
and matures.

If the answer is “yes” to needing a CMS, then a CMS selection project can begin in
earnest and should start with thorough (not IT-driven) requirements gathering.

44 | Chapter 3: Acquiring a CMS

6 With the exception of “decoupled SaaS” models. In these architectures (which are not common), the manage‐
ment portion of the CMS is owned and hosted by the vendor, but it publishes content remotely into a delivery
environment owned by the customer, via FTP, rsync, web services, or other methods.

Cathy McKnight, Vice President of Consulting and Operations and founding partner at
Digital Clarity Group, helps clients navigate their digital transformation via strategic
advisory and consulting engagements, including technology selections.

Software-as-a-Service
Software-as-a-Service (SaaS; pronounced “sass”) used to be quite a clear and simple
proposition: rather than purchase and install a CMS, you simply paid a monthly fee
and ran your website inside a larger system managed by the vendor. You became one
of many customers running their websites inside this same system.

This is known as “multitenant” software. Whereas purchased and installed software is
“single tenant”—you are the sole occupant, much like in a single-family home you
built yourself—multitenant software is like an apartment building in which many
people live.

The purported benefits are quick ramp-up time and no hosting issues. Indeed, the
system is already running and just waiting for you, and since it runs on the vendor’s
servers, you don’t need to worry about any of the headaches that go along with infra‐
structure management.6 SaaS was “cloud” before that term became common.

Another claimed benefit is to always be on the leading edge of versions. Since the
vendor runs the hosting environment, when they release a new version, the customer
gets it right away. Indeed, “releasing a new version” is synonymous with upgrading
their customers, since that’s what has to happen to constitute a “release.”

CMS companies were early entrants into the cloud paradigm, and when vendors like
Clickability and CrownPeak came on the scene in about 2000, this model was new
and original and provided clear benefits for customers who didn’t want to install and
manage the software themselves. What happened in the intervening years is that the
market changed, and the difference between true multitenant SaaS and everything
else has gotten very blurry.

Today, “purchase and install” (often referred to as “on-premise” or “on-prem” when
comparing to SaaS) is just one way of getting open source or commercial (non-SaaS)
software. If you want either of those options but don’t want to host yourself, there is a
large ecosystem of vendors willing to install and host anything for you. In effect,
many vendors will become SaaS vendors if that’s what you want.

Software-as-a-Service | 45

The “instant on” feature of SaaS was further marginalized with the advent of server
virtualization and computing grids like Amazon’s EC2 and Microsoft Azure. You can
now get an installation of almost any CMS in less than an hour. These systems aren’t
multitenant, but offer the same benefits of minimal ramp-up time and third-party
hosting.

This raises the question: just what is SaaS? Is SaaS defined simply as when a vendor
can give you an instance immediately and also provide the hosting environment? If
so, then almost any CMS can be purchased and managed in such a way that it fulfills
these criteria.

Or does SaaS refer only to the true multitenant systems we discussed previously? If
so, then these systems are becoming less common at the higher edges of the market
(in terms of price, capabilities, and complexity of integration), and more common at
the lower edges. Vendors like WordPress.com, Drupal Gardens, and Squarespace
offer “unattended” multitenant CMSs where you can get a fully content-managed
platform in minutes with nothing but a credit card and without any human interac‐
tion. If you can live within the functional restrictions and don’t need much customi‐
zation, these systems might be exactly what you need.

However, at the enterprise level, where customers require significant customization,
SaaS CMS vendors are struggling. Some still exist, but their value proposition has
dwindled precipitously. Many enterprise SaaS vendors are offering a lower monthly
fee and comparing that to the six- and seven-figure licensing costs of purchased sys‐
tems. Traditional commercial vendors have responded by offering to “rent” licenses,
where customers pay a monthly fee for the license and lose it when they stop paying.
(This is also valuable for customers who might need to bring up extra sites or servers
for a limited time, in response to temporary load.)

If you’re considering multitenant SaaS, several questions become important:

• Is it appropriate for your industry? SaaS systems tend to group by the vertical in
which they serve. For instance, OmniUpdate traditionally services higher educa‐
tion and HubSpot specializes in smaller, marketing-heavy websites. This enables
these vendors to develop features common to those industries that will be used
by multiple tenants of their systems.

• How much control do you have over the system? To what extent can you integrate
with other systems or inject your own business logic? Since these systems are
multitenant, vendors are leery of allowing significant customization, lest this
destabilize the larger system for other clients. Some vendors will offer a dedica‐
ted, “sandboxed” environment in which you have more control, but this raises
the question of how you’re now any better off than you would be if you installed
a CMS yourself.

46 | Chapter 3: Acquiring a CMS

• Who can develop the website? Some vendors might require that template develop‐
ment or other integration be performed by their own professional services
groups. This is common in SaaS systems that grew out of the in-house CMS of a
development shop. In some cases, the subscription fee to use the system is simply
a minimal gateway to enable the vendor to generate professional services income.

• If you part ways with the vendor, what happens to your content? Can you export it?
In what format? What about your templates, which contain all of your presenta‐
tion logic? Can you get that information out? Vendors in all software genres are
notorious for lock-in, in order to prevent customers from leaving. Wise custom‐
ers will evaluate the process for leaving a vendor as a system feature like any
other.

• Are you considering the CMS on its merits, or just because it’s SaaS? Don’t engage
with a SaaS vendor solely because they offer their software as a service, especially
if you’re not particularly fond of the software itself. If SaaS if what you want,
there are numerous options to get a SaaS-like experience from software you
might like much more.

In the end, what once was a clear market for SaaS vendors has now been muddied
considerably through changes in technology and business models. If the idea and
benefits of SaaS are attractive to you, understand that almost any CMS vendor is now
willing to engage in a model that effectively emulates the SaaS model that used to be
unique to a handful of vendors.

Build Your Own
Like any other software, a CMS can be built inside your organization by your own
development team. In some senses, a CMS resembles any other data-driven applica‐
tion, and it’s not difficult to build a simple CMS fairly quickly.

There are several common justifications for this, including:

• An in-house CMS doesn’t require a license fee (clearly, this is rendered moot by
open source options, but it’s still quite common in project justifications).

• You’ll be experts in the usage of the resulting system and will not have to suffer
the learning curve for an existing system.

• You will only build the needed functionality, avoiding software bloat and unnec‐
essary complication.

On deeper analysis, few of these reasons withstand scrutiny. Often, the project is jus‐
tified based on a very superficial understanding of the needs of the organization or
the overall discipline of content management. While it’s possible to generate quick
wins, the initial thrill of progress wears off too quickly, and the organization eventu‐

Build Your Own | 47

ally finds itself rebuilding large pieces of core CMS functionality that other systems
have long since solved.

From the outside, a CMS looks like a simple exercise in editing and publishing con‐
tent. But get deeper into the project, and editors begin asking for features like ver‐
sioning, multiple languages, workflow, multisite management, etc. These functions
can be deceptively complex to develop—even more so when they have to be backpor‐
ted into a running system.

CMS development tends to “hockey stick” over time. It starts very quickly and devel‐
opment teams make huge strides early, often having a simple, workable proof of con‐
cept in a matter of weeks or even days. Simple CRUD operations (CReate, Update,
Delete) are very quick to implement, especially with modern development frame‐
works.

Other features, however, such as content aggregation, editorial usability, and espe‐
cially advanced marketing features, will cause development time to shoot skyward
and forward progress to drop to a snail’s pace. It wouldn’t be surprising to spend as
much time implementing a minor marketing feature as you did building the entire
content editing interface.

Years ago, when building a CMS from scratch with my business
partner, I remarked that the work we were doing that week seemed
much more tedious and slow-going than what we’d done the prior
week.
His response spoke volumes: “Well, I think we solved all of the easy
problems last week.”

A subtlety is that many of the problems involved with building a CMS are logical and
behavioral, rather than technical. Vendors working in this space have the benefit of
years of experience with editors and how they work with content. There’s often an
“entry fee” of implementing a feature wrong two or three times before finally getting
it right. If you build something from scratch, you’re often going to pay this fee every
time you expand the system.

Over years of work, the developers of existing CMSs have learned how editors think
and what things they want to do. This is critical, because knowing how to accomplish
something technically is often not the real problem. Rather, the problem is knowing
why the editor wants to do it. The underlying reasons for this can drive development
decisions in ways that only experience will reveal.

Additionally, in-house CMS efforts are often developer-led, and developers tend to
treat content as data, not as a business asset. To a developer, a page of content is sim‐
ply a database record like any other, not a marketing asset designed to generate reve‐

48 | Chapter 3: Acquiring a CMS

nue. As such, marketing, optimization, and enhancement features often take a
backseat to developer-centric features like data management.

Eventually, developing the CMS itself begins to take more time than solving the
organization’s core content problems, which the CMS was originally needed to rem‐
edy. Additionally, the organization realizes it has invested far more time developing
the CMS than it would have ever spent becoming an expert in an existing CMS.

The resulting software can be idiosyncratic and unstable. It’s also unknown outside
the organization, resulting in an inability to find outside contractors and creating a
significant training curve for new hires.

Finally, the system is “locked in,” meaning it has been developed to service the stated
requirements and nothing more. While this sounds like a sound development prac‐
tice, some additional features beyond what the editors immediately need are often
helpful for experimentation and understanding the scope of what’s possible.

Typically, most organizations cross a “line of regret” where they’d like to rewind and
choose a prebuilt option. It’s not common to see a positive result from an in-house
effort over the long term.

However, there are situations where it might be the right choice:

• When the content model—more on that in Chapter 6—is very specific to the
organization. (If all you publish is cat videos, building a management platform
might not be difficult.)

• When the management needs are very simple and future development plans are
absolutely known to be limited

• When the CMS is built by heavily leveraging existing frameworks to avoid as
much rework as possible (e.g., Symfony for PHP, Django for Python, Entity
Framework and MVC for ASP.NET)

If your organization is pushing for an in-house CMS, don’t begin until you’ve care‐
fully reviewed the open source options available. Ask yourself this critical question: if
we spent as much time developing expertise in Platform X as we would building a
CMS from scratch, would we be better or worse off?

There are very few situations where an honest answer to that question would indicate
that you should build your own CMS.

Questions to Ask
When considering the acquisition of a CMS, the combination of variables make your
options almost limitless. The following questions might help give you some perspec‐
tive:

Questions to Ask | 49

• Where will the final CMS reside? Are we hosting it ourselves, or having someone
else host it?

• If we’re hosting it ourselves, does our IT department have platform limitations we
must abide by?

• What is our capacity for a license fee? How much of the project budget can we
carve out for this? Do we need to consider a lower fee, payable over time rather
than all at once?

• Have we budgeted for continuing subscription costs in the years after launch?
• Are we going to integrate the CMS in-house, or do we need to find a partner firm

to do this?
• Do we have the skill and capacity to build a CMS in-house? Can we manage

maintenance and feature upgrades along with our other workload?

Finally, it’s important to note that none of these questions is perhaps the most impor‐
tant of all: will the system under consideration meet the functional needs of our organi‐
zation?

Do not invest in a system just because the method of acquisition seems easy. An open
source system that’s free but doesn’t offer marketers the tools they want isn’t good
value—you will save on a license fee, but invest money in an implementation that will
not provide the result you want. Along the same lines, a commercial vendor offering
a good deal on tools you will never use is simply helping you throw money away.

The method by which you acquire a CMS is but one aspect of a much larger question
of matching need to platform. This is the topic we’ll discuss in Chapter 5.

50 | Chapter 3: Acquiring a CMS

The CMS Selection Process and Unknown Unknowns
The selection of the appropriate CMS for your specific set of problems can be very
complex. Getting the decision right is critical, and it’s especially problematic because
you often “don’t know what you don’t know.”

I’ll quote a former Secretary of Defense talking about the search for hidden weapons
in Iraq back in 2002:

There are known knowns; there are things that we know that we know. We also know
there are known unknowns; that is to say we know there are some things we do not
know. But there are also unknown unknowns, the ones we don’t know we don’t know.

—Donald Rumsfeld

Obtuse as this seems, Rumsfeld makes a critical point: unless you understand the
entire breadth of possible scenarios, there might be unanswered questions that you
don’t even know to ask. It’s hard to pick the right option when you don’t even know a
set of options exists.

For example, I don’t know the chemical symbol for boron offhand. Neither does my
young daughter. The key difference: I know that this thing exists, whereas she does
not. If I need the answer, I know to go look for it, whereas she doesn’t. To me, the
symbol for boron is a known unknown; to her it’s an unknown unknown.

Because of this, it’s generally a best practice to break off the CMS selection process
into its own project, managed by someone who knows what questions to ask.

There are consultants that specialize in this exact type of decision. Large technology
analyst firms like Forrester and Gartner provide general analysis and assistance in this
area, and small, CMS-specific firms such as Real Story Group and Digital Clarity
Group do CMS selection process consulting as a large segment of their business.

Questions to Ask | 51

1 For more on this subject, I recommend the aptly titled Managing Chaos: Digital Governance by Design by Lisa
Welchman (Rosenfeld Media).

CHAPTER 4

The Content Management Team

From inception through launch and ongoing usage, a content management project
might impact many people throughout your organization, all with different roles and
responsibilities.

While a comprehensive look at web operations and governance is beyond the scope
of this book,1 it will be helpful to discuss these roles before digging into CMS features
so we can have some clarity about exactly which people a particular aspect of the
CMS might affect.

Primarily, members of the content management team can be divided into:

• Editors
• Site planners
• Developers
• Administrators
• Stakeholders

Note that these labels are roles, not people. It might be discouraging to look at this list
—you may think that your project is somehow deficient because you don’t have all
these people milling about. However, understand that the lines between the roles are
not absolute, and it would be rare to see a project where every single role described
here was staffed by a separate person.

53

Members of the team usually fill multiple roles, and commonly overlapping roles will
be noted in each section. In the meantime, just know that for a very small project, the
entire team might consist of a single developer and a single editor (and a developer
hobby project might be an entirely one-person show).

That said, the content management team is usually comprised of some combination
of the following.

Editors
Editors are responsible for creating, editing, and managing the content inside the
CMS. We’ll talk about editors a lot throughout this book, as this is the role that will
interact with the CMS most intimately after launch.

Editors tend to get lumped into a single group, but the “editor” role is a crude gener‐
alization: all editors are not created equal, and they might have a wide variety of capa‐
bilities.

What characterizes a “normal” or “mainstream” editor is project-specific. Therefore,
it might be helpful to discuss how editors can be limited in their capabilities to refine
their subroles:

By section/branch/location
Editors might be able to edit only a specific subset of content on the website,
whether that be a section, a branch on the content tree (we’ll talk about trees in
Chapter 7), or some other method of localization. They might have full control
over content in that area (the press section, or the English department, for exam‐
ple), but no control over content in other areas.

By content type
Editors might be able to edit only specific types of content (we’ll talk much more
about content types in Chapter 6). They might manage the employee profiles,
which appear in multiple department sites, or manage company news articles,
regardless of location. In fact, some editors might be better defined by what con‐
tent types they are not allowed to create—some editors, for instance, might not be
allowed to create advanced content like aggregations or image carousels.

By editing interface
Editors might be limited by the interface they’re allowed to use. In larger installa‐
tions, it’s not uncommon to channel certain editors through specialized, custom-
built interfaces designed to allow them to manage only the content under their
control. For instance, if the receptionist at your company is responsible for
updating the lunch menu on the intranet and nothing else, then he doesn’t need
an understanding of the larger CMS interface and all the intricacies that go with

54 | Chapter 4: The Content Management Team

it. Instead, it might be appropriate to build that person a special editing interface
to manage the lunch menu and nothing else.

In contrast to these limitations is the so-called “power editor,” who can perform all
content operations across the website. This person sometimes performs multiple
duties as a site administrator, trainer, subject matter expect, and all-around CMS
champion inside the organization.

Several other specific editorial roles are common:

Approvers
This role is responsible for reviewing submitted content, ensuring it’s valid, accu‐
rate, and of acceptable quality, and then publishing that content. That is, approv‐
ers perform steps in one or more workflows. Many editors are also approvers,
responsible for vetting content submitted by more junior editors. These editors
may also have the right to approve their own content. Some approvers might
have the ability to edit submitted content prior to publication (an editor-in-chief,
for example), while other approvers might only have the ability to approve or
reject (those in the legal or compliance department, for example). This role might
only need to understand the content approval features of the CMS.

Marketers
This role is responsible for reviewing content for marketing impact, and manag‐
ing the marketing value of the entire website. It requires an understanding of the
marketing and analytics features of the CMS. For some sites, this is the dominant
role because new content isn’t created nearly as often as existing content needs to
be optimized, promoted, and analyzed.

UGC/community managers
This role is responsible for verifying the appropriateness of content submitted by
users (user-generated content, or UGC), such as user profile information and
blog comments. These managers are similar to approvers, but they only have
control over UGC, rather than core editorial content (in some cases, this might
be the majority of the content on the site). Additionally, given that the submis‐
sion volume of UGC is often high, it’s commonly managed post-publication—
inappropriate content is reviewed and removed after publication (or after a com‐
plaint is received), rather than holding it from publication until review. This role
will only need to understand the CMS to the extent that allows them to moderate
UGC. In some cases, the CMS provides separate tools for this, while in others
this is handled as normal content.

Translators
This role is responsible for the translation of content from one language to
another. Translators only need to understand the editorial functionality of the
CMS to the extent required to add translations of specific content objects (per‐

Editors | 55

2 XML Localisation Interchange File Format, a language standard for automated import/export for content
translation. XLIFF is discussed further in Chapter 10.

haps even of only specific content attributes, in the event that content objects are
only partially translated). We will talk about localization issues much more in
Chapter 10.

Not all roles in this list will be filled. Sites without UGC will not require a role to
manage it. Organizations managing product documentation or library content might
not have a marketing/optimization role. An editorial team of one has no need for
approvers. Content presented in a single language will not need translators.

Some roles might also be filled externally. UGC/community managers might not be
employed by the organization. In community sites, it’s common to depend on the
community itself to self-monitor, empowering specific members to moderate content.
In these situations, site users will hold a quasi-editorial role, usually enforced with
permissions or perhaps a completely separate user and management system.

Content translation is often handled by third-party organizations. In these cases, the
translator will be remote and might not work with the CMS at all, instead moving
content in and out via a translation-specific workflow and exchange format, such as
XLIFF.2

Site Planners
Site planners are responsible for designing the website the CMS will manage. Most of
their involvement will be prior to launch, with sporadic further involvement as the
site develops and changes over time.

Several subroles exist:

Content strategists
This role is responsible for designing content, both holistically and tactically. As a
byproduct of the content planning process, content strategists define the content
types and interactions the website must support. This role will require knowledge
of how the CMS models and aggregates content in order to understand any limi‐
tations on the design. Additional knowledge of the marketing features will be
necessary if the content strategist is responsible for optimizing the marketing
value of the site prior to launch.

User experience (UX) designers and information architects
These roles are responsible for organizing content and designing the users’ inter‐
action with the website. They will need to understand how the CMS organizes
content, and what facilities are available to aggregate and present content to end
users.

56 | Chapter 4: The Content Management Team

Visual designers
This role is responsible for the final, high-fidelity design of the website (as
opposed to lower-fidelity prototypes and user flows provided by previous roles).
Visual designers don’t need intimate knowledge of the CMS, as CMS-related lim‐
itations will have guided the process up to their involvement. (In some cases, this
role overlaps with template development, which we’ll discuss in the next section.)

Developers
Developers are responsible for installing, configuring, integrating, and templating the
CMS to match the requirements of the project.

How much development effort this takes is specific to the complexity of the require‐
ments and how well matched the CMS is to those requirements out of the box.
Deploying a simple blog powered by WordPress will take very little development
(perhaps none at all), while an enterprise intranet built from scratch is a huge under‐
taking.

Like editors, not all developers are created equal. Under the umbrella of development,
there are multiple categories of tasks that define different roles:

CMS configuration
This role is responsible for the installation and configuration of the CMS itself,
including the establishment of the content model, creation of workflows and
other editorial tools, creation of user groups, roles, and permissions, etc. This
work is done at a fairly high level, through facilities and interfaces provided by
the CMS.

Backend (server) development
This role is responsible for more low-level development performed in a tradi‐
tional programming language (PHP, C#, Java, etc.) to accomplish more complex
content management tasks, or to integrate the CMS with other systems. This
developer should have experience in (1) the required programming language and
(2) the API of the CMS.

Frontend (client) development or templating
This role is responsible for the creation of HTML, CSS, JavaScript, template logic,
and other code required to present managed content in a browser. This developer
needs only to know the templating language and architecture provided by the
CMS, and how it integrates with HTML, CSS, and JavaScript. (Different template
architectures and paradigms can vastly change the responsibilities of this role, as
we’ll see in Chapter 9.)

In many cases, all three of these development roles are performed by the same per‐
son. Alternatively, a very common split is to have the frontend development per‐

Developers | 57

3 Drupal is famous for this. You can implement a significant amount of functionality in that CMS without ever
writing a line of code. Thus, some Drupal sites can be delivered without needing a backend developer at all—
though, as we discussed in “Code Versus Configuration” on page 29, this can lead to other complications.

formed by one developer, and the CMS and backend development performed by
another developer. In these cases, the frontend developer is responsible for templat‐
ing content that the backend developer has configured the CMS to manage and pro‐
vide.

It’s becoming increasingly common for visual designers to code their own frontend
implementations. Thus, the same person might design a complete interface from a
wireframe, then ultimately template the CMS to reflect that design.

The split between CMS and backend development depends on the CMS. Some sys‐
tems allow an enormous amount of development to be performed from the interface,
and writing programming code is considered the exception, rather than the rule3

(and remember that in multitenant SaaS environments, the option to write program‐
ming code might not be available).

Other systems are designed primarily as programming platforms, which means that
most of the configuration consists mainly of writing, compiling, and deploying pro‐
gramming code. In these cases, CMS configuration and backend development are
largely the same thing.

Administrators
Administrators are responsible for the continued operation of the CMS and the asso‐
ciated infrastructure. Within this group are several subroles:

• CMS administrator: This role is responsible for managing the CMS itself, which
includes user and permission management, workflow creation and management,
licensing management, and all other tasks not related to content creation.

• Server administrator: This role is responsible for the maintenance and support
of the server(s) on which the CMS runs and/or deploys content. This is a tradi‐
tional IT role, and the server administrator often has no understanding of the
CMS itself other than the basic architecture required for it to run without error
(operating system, runtime framework, web server, etc.). This role provides sup‐
port when there’s an underlying server issue that prevents the CMS from func‐
tioning correctly.

• Database/storage administrator: This role is responsible for managing the data‐
base server and storage networks that hold the CMS content. This administrator

58 | Chapter 4: The Content Management Team

needs very little understanding of the CMS, other than the file types, sizes, and
aggregate volumes that will need to be stored and backed up.

The CMS administrator role is often staffed by a power editor.

It’s very common to see the server administrator and database/storage administrator
roles combined in the same person (sometimes a developer even stands in for both of
these roles). However, many larger organizations have separate groups of data admin‐
istrators responsible for managing storage and nothing else.

Stakeholders
The stakeholders of a CMS project are an amorphous group representing the people
responsible for the results that the CMS is intended to bring about. Stakeholders are
normally business or marketing staff (as opposed to editorial or IT staff) who look at
the CMS simply as a means to an end.

In general, stakeholders are looking to a CMS to do one of two things:

• Increase revenue.
• Reduce costs and/or risk.

These goals can be achieved in a number of different ways, a CMS simply being one
of them. Stakeholders often have no direct contact with the CMS, and they might not
care about the specific features the CMS enables—their only goal is the result the
CMS can manifest.

For example:

• The chief marketing officer is dissatisfied with the percentage of visitors who
complete the “Get a Quote” form after browsing the website. She is convinced
that a personalization strategy—varying site content to target each visitor specifi‐
cally—will increase this conversion rate and therefore increase revenue.

• The manager of the support department feels that the company is taking too
many support calls because of the sorry state of the online product documenta‐
tion. Attempts to improve the documentation have been thwarted by technical
limitations, which a new CMS might solve, hopefully resulting in a lower volume
of incoming support calls and therefore reducing costs.

• The editor-in-chief is trying to increase article volume, but the current CMS
forces hours of editorial overhead and rework to get an article published. The
editor is hoping to increase content throughput with a CMS that has a stream‐
lined editorial workflow. The goal here is to push more content, which increases
revenues, and do it more efficiently with less editorial labor, which reduces costs.

Stakeholders | 59

Note that, in each case, the end goal was not to install a new CMS. The CMS is simply
the means to achieving a larger stated business goal.

In each of these three examples we have someone who (1) is not directly going to use
the CMS, and (2) is not going to develop or integrate the CMS. So, why are the stake‐
holders important? Because they are usually the decision makers on a CMS purchase
who control the budget from which the project will be funded.

They are included in this discussion of the CMS team because sometimes it’s easy to
lose sight of the forest for the trees. The closer you get to a CMS project—as an editor,
administrator, site planner, or developer—the easier it is to obsess over small details.

Never lose sight of the fact that stakeholders have little regard for anything beyond
the critical question: will this expense bring about the business goal we are seeking?
The specifics of exactly how the CMS does this are simply details.

Perspective: Content Management Is One Part of a Much Larger Puzzle

by Jeff Cram

The role of content management has changed considerably over
the years. What was once a relatively separate piece of enterprise
software used to manage a website has become an integral part
of an organization’s digital business. Content management sys‐
tems now act as a central hub in delivering digital experiences
that are more than marketing—experiences that are the essen‐
tial connections between a business and its customers.

This reality fundamentally changes the way organizations invest in digital capabilities,
organize teams, and rely on external partners.

Unfortunately, many organizations still look at the CMS from the inside out—as a
piece of software to install and configure before moving on to the next IT project on
the road map. You may have been able to get by with this approach 3–5 years ago. Not
today.

The elements required for success with a CMS can’t be stuffed into a single project
Gantt chart. And yet over and over we see organizations try, and then blame the tech‐
nology or an external partner when it falls short.

There are plenty of organizations that get CMSs right, though.

These are organizations that realize the path to sustainable success means investing in
new internal competencies, establishing a more customer-centric culture, and align‐
ing the organization around meaningful change.

60 | Chapter 4: The Content Management Team

These are organizations that put in place ongoing practices for content strategy, gov‐
ernance, customer insight, and measurement—and actively work on them independ‐
ently of putting in a new CMS.

These are organizations that hire external partners not just for their technology skills,
but for their ability to bring the connected expertise necessary to make the technology
successful.

These are organizations that understand that a CMS sits within a much larger (and
expanding) marketing technology ecosystem, and work to understand how it needs to
integrate, support, and often get out of the way of other systems.

Be one of these organizations. It’s a lot more work, but also a lot more fun than the
alternative.

Jeff Cram is the cofounder of and Chief Strategy Officer at Connective DX.

Stakeholders | 61

PART II

The Components of Content
Management Systems

CHAPTER 5

CMS Feature Analysis

This section of the book is devoted to describing the component features of common
content management systems. I’ll start with a warning to set your expectations, then
give you an overview of what’s to come.

Without wanting to seem overly pessimistic, this chapter is intended to set your
expectations for a feature-level evaluation of content management. Understand that
this isn’t an exact science, and if the border around a particular feature feels fuzzy and
vague, that’s likely accurate.

The Difficulties of Feature Analysis
Before we embark on a detailed analysis of content management features, we need to
make an important point: feature-by-feature analysis and comparison is hard. As much
as we want this to be a clear science, it’s messy and imperfect.

Mathematics is a very objective science. You’re not going to get much argument about
the answer to two plus two. There is a Grand Unified Theory of Basic Math that has
been accepted and perfected over millennia about how math works. This truth is
something that mathematicians can remove from debate.

Content management is not like this. There is no Grand Unified Theory of Content
Management. You can pose an architectural question to five different bona fide
experts and get five different answers (maybe six), all of which would serve to solve

65

1 The same is somewhat true of economics, a field in which much is left to interpretation and theory. Econo‐
mist Dani Rodrik has said: “The point is not to reach a consensus about which model is right…but to figure
out which model applies best in a given setting. And doing that will always remain a craft, not a science, espe‐
cially when the choice has to be made in real time.” On this same topic, Paul Romer has coined the term
“mathiness” to describe the irrational and potentially destructive desire to forcibly quantify a fuzzy discipline.
See Rodrik’s article “Economists vs. Economics” for more.

the problem posed by the question and can thus be considered “correct” to some
extent.1

Why is this?

“Fitness to Purpose”
In evaluating anything, we tend to think in terms of relativity.

If we say that some thing is “on the left side,” we’re implying that some other thing is
to the right of it. You can’t be on the left side of nothing, after all, so the concept of
leftness only exists because something else is on the right.

Likewise, content management systems exist only in clear relation to a problem they
need to solve. Their competence can only be evaluated in terms of their distance from
what is needed for your particular situation.

The correct answer for a content management question lies in an intersection of doz‐
ens of factors, including:

• The type and goals of the website
• The shape of the content being managed (see Chapter 6)
• The output and publishing requirements (see Chapter 9)
• The sophistication of the editors (see Chapter 8)
• The business environment, decision-making process, and budget

These are just five factors. There are likely hundreds more, and the weighting of the
individual factors will be different for every organization.

When comparing systems, it’s easy to look at two features and say, “This one is better.”
In doing this, the unspoken end to that sentence is “for the particular requirements
I’m thinking about right now.” What’s right for one set of requirements could be
clearly wrong for another.

Furthermore, some applications simply don’t need certain features. If you’re the only
editor of your web content and you know for certain there won’t be any other editors
in the future (this is more common than you might think), then concepts of work‐

66 | Chapter 5: CMS Feature Analysis

http://www.project-syndicate.org/commentary/economists-versus-economics-by-dani-rodrik-2015-09

2 In contrast, Basecamp (formerly 37 Signals) has famously said of its popular project management tool, “Our
default answer to every feature request is No." Features have to earn their way into the product. There’s a sig‐
nificantly high bar for inclusion, and the developers actually pride themselves on what their software doesn’t
do.

3 “Don’t Let Architecture Astronauts Scare You”, April 21, 2001.

flow, collaboration, and permissions become largely meaningless. Noting that a sys‐
tem is bad at those things might be an accurate observation, but it’s not relevant.

A content management expert once declared that the single criterion for CMS selec‐
tion should be “fitness to purpose.” That phrase describes an intersection between:

• The capabilities of a system (“fitness”)
• The requirements under consideration (“purpose”)

I doubt a better standard of evaluation exists.

“Do Everything” Syndrome
Content management systems, like other software, tend to try to include as much
functionality in one package as possible. No vendor (or open source community)
wants to say, “We don’t offer that feature,” so they’re motivated to handle every possi‐
ble situation or eventuality. If an editor has to go outside the system, that’s considered
a failure.2

As a result, content management systems are getting more and more complex every
year. The industry has steadily crept outward from the clearly defined core of 15 years
ago. We’ve already discussed the drift from content into community management,
and now we have systems managing social media, offering powerful marketing suites,
and even trying to act as general application development frameworks.

The price we pay for this is complexity. The list of features you’re going to ignore and
try to find ways to disable can easily be longer than the list of features you’re actually
going to use.

As systems become more complex, they tend to become more generic. Developers
working on any system for too long drift into larger architectural concepts and
frameworks. They become what Joel Spolsky has called “architecture astronauts”:

When you go too far up, abstraction-wise, you run out of oxygen. Sometimes smart
thinkers just don’t know when to stop, and they create these absurd, all-encompassing,
high-level pictures of the universe that are all good and fine, but don’t actually mean
anything at all.3

Hypothetical conversations like this actually happen when discussing content man‐
agement:

The Difficulties of Feature Analysis | 67

http://www.joelonsoftware.com/articles/fog0000000018.html

If we can manage web pages, then we can manage general content too! In fact, let’s just
manage random strings of text—if the user wants to make a web page out of them, she
can do that! And why even text? Everything is comprised of bytes in the end, so let’s
just manage sequences of bytes and let editors select an optional text encoding or file
type! How elegant is that?!

Remember: a system designed to do everything tends to do nothing well, and you
should only evaluate the features you actually need.

When extended features outside core content management are added, they’re often
added poorly. In many cases, the vendor is trying to “check a box” that it’s seen on
customer requirements lists. Just because a feature exists doesn’t mean it’s done well.

Form-building tools are a classic example (more on this in Chapter 10). Many sys‐
tems have them, as they’ve become a de facto requirement to compete in the market‐
place. However, I’ve never evaluated a form-building system that was developed at the
same level as the core content management tools. In almost all cases, this was an add-
on feature that had to survive only as long as a sales demo.

We have a natural desire to think that one system can solve all of our problems. How‐
ever, the solution might lie in multiple disconnected systems and how you use them
together. Do you love the collaboration features of Google Docs? Why can’t you use
that to work on content, then just paste the result into your CMS for delivery?
Clearly, this is a bit rough around the edges and has some disadvantages, but many
organizations would be better served by this plan than by a full-blown CMS imple‐
mentation to solve a single problem.

But we often look down at simplicity. We like to think that we’re burdened with very
difficult problems that require intricate solutions, and that the complexity of the solu‐
tion is a direct reflection of the sophistication of the underlying problem. Breaking
this habit is difficult.

Going outside of your shiny new CMS is not necessarily a failure. It might be exactly
the right decision, rather than suffering through using a poorly implemented feature
out of nothing but a desire for one product to “do everything.”

The Whole Is Greater than the Sum of Its Parts
Content management systems are complex and full of moving parts. The effect of all
these parts working together forms a whole that might not be representative of the
parts that make it up.

It’s understandably hard for a system made up of poorly designed features to rise
above them, but sadly it’s not uncommon to have a portfolio of features that are stel‐
lar when evaluated individually, but just don’t quite come together as a whole.

68 | Chapter 5: CMS Feature Analysis

This can be caused by poor usability in the intersections between features—a work‐
flow system that offers a stunning array of functionality but simply doesn’t interact
well with editors when they’re creating content is not much use to anyone.

Another problem can be misplacement of priorities, when one feature is over-
developed compared to others. The perfect templating system in service of content
that can’t be modeled accurately won’t help you much, and the end result is like a Fer‐
rari in a traffic jam—lots of power with no place to go.

The only way to effectively evaluate the whole is by subjecting it to as long a use case
as possible. Don’t just pick small snippets of functionality to compare (“Can we select
an approver when starting a workflow?”), but rather complete a full cycle of interac‐
tion (“Let’s publish a news release from initial conception all the way through distri‐
bution”). Scenarios like this can poke unexpected holes in systems that seemed sound
from the feature level.

Implementation Details Matter
The value of a CMS feature is not just in the final result. It also matters how you get
there. Just because different systems can check a box on a feature list doesn’t mean
that the feature was implemented equally well in both systems.

Usability matters. Many features are conceived, designed, and built by developers,
and this may result in interfaces and user models that make little sense to editors.
Developers tend to be more forgiving of rough edges, and more concerned with ulti‐
mate flexibility rather than usability.

Beyond just the interface, does the mental model of the feature make sense? When an
editor is working with it, is it easy to describe how it works and theorize ways in
which it can be used? Simple features can be made obscure by idiosyncratic philoso‐
phies and ideas that made sense to the person who designed them, but no one else.

Some features can be hopelessly complex, either through poor design or just because
they are, in fact, very complex. Consider the Drupal Views module—this is a system
designed to let editors build aggregations of content. That seemingly simple goal is
extremely complex in practice, and even though the interface has been labored over
for years and refined to an extremely high degree, it’s still going to be somewhat over‐
whelming (see Figure 7-10 in Chapter 7).

Other features might be built specifically for developers. A workflow system might be
very powerful, but if it has to be configured in code, then compiled and deployed, this
drastically limits its utility for anyone other than a developer or teams that have
developers on hand for future changes. Similarly, templating systems that are not
extractable from the core code of the system limit their utility to only people who
have access to that code.

The Difficulties of Feature Analysis | 69

4 I remember seeing a great workflow demo from an ECM company about 20 years ago. The workflow devel‐
oper could simply drag boxes around and connect them with arrows to represent states and transitions. It was
elegant and simple. They forgot to mention that it was also a $15,000 add-on (and this was in 1997 dollars).

Some features might require additional software. It’s very common for vendors to
“partner” with other firms to provide plug-in functionality. This functionality looks
great in a sales demo, but requires extra expense and often a separate purchase and
license from the third-party company.4

The lesson here is that just because a feature exists, that doesn’t mean it’s any good.
When you have a list of boxes you’re trying to check—either an actual list, or a men‐
tal list—there’s seldom room to say, “Yes this feature exists, but it doesn’t work very
well.” In most feature-matrix spreadsheets, there’s a column for “yes” and a column
for “no,” and nothing in between.

It’s a very cynical observation, but vendors know this. They realize that someone eval‐
uating their software is wondering about functionality and just assuming it works
well. It’s very hard to dive deep enough into a software demo to uncover all the warts.
The vendor might be counting on this, which is why you’ll often hear: “Sure, we do
that. Now, lemme show you this other thing we do…”

Do not evaluate features based merely on their existence or on a cursory examination
of the result. Find out exactly how the feature is implemented and ensure that you’ll
be able to use it to achieve the same result.

Does a Feature Solve the Right Problem?
Of greater importance than discussions about how well a feature works is the unspo‐
ken question of whether or not a certain feature is what you actually need to solve
your underlying problem.

Referring back to the “unknown unknowns” quote from Donald Rumsfeld in Chap‐
ter 3, it’s common to not truly understand the underlying issue, and instead jump to a
solution that might be in service of the wrong problem.

For example, many CMS customers look for systems capable of supporting compli‐
cated workflows. Deeper analysis of their situation, however, indicates that their real
problem is simply one of permissions—if they could separate “edit” and “publish”
permissions and isolate editors to subsections of the content repository, then this
would solve all the problems they’re convinced are in need of advanced workflow.

At an even more basic level, some problems a customer seeks to solve actually have
non-technical origins. Many editorial process issues have been solved by the imple‐
mentation of offline governance policies or organizational changes. A faulty org chart
is often the source of more problems than a faulty CMS.

70 | Chapter 5: CMS Feature Analysis

5 Philip Mudd, The HEAD Game: High Efficiency Analytic Decision-Making the Art of Solving Complex Problems
Quickly (Liveright Publishing Corporation, 2015).

It’s sadly common to find CMS customers who are absolutely convinced they need
feature X, and that it’s the panacea that will solve all that ails them. They complete a
large, expensive, disruptive project that gives them feature X. Unfortunately, they then
find that they just chased the problem backward, peeling off an outer layer or two and
the real problem was something larger and more foundational. In the end, feature X
just put a bandage over one of the symptoms.

Former CIA analyst Philip Mudd has promoted what he calls “thinking backward,”
meaning we should start by thinking about the underlying problem or question
rather than the set of facts (features, in our case) at our disposal:

When we’re working on how to analyze a problem, we shouldn’t start with the data or
information that we know and then build a case from there. Instead, we should begin
with the question of what we need to know…to solve a problem.5

Start with the problem. Examine that problem and work backward through potential
solutions. There are likely multiple options, and by starting at the problem and work‐
ing back, you have a better chance of viable options spreading out before you rather
than you getting stuck in the mindset that feature X is the only path to solving your
underlying problem.

An Overview of CMS Features
We’ll start by covering the Big Four of content management. These are the four fea‐
tures that are required in some form to manage content at the most basic level. They
are:

Content modeling
You need to describe the structure of content and store your content as a faithful
representation of this structure.

Content aggregation
You need to logically organize content into groups and in relation to other con‐
tent.

Editorial workflow and usability
You need to enable and assist the creation, editing, and management of content
within defined boundaries.

Publishing and output management
You need to transform content in various ways for publication, and deliver the
prepared content to publishing channels.

An Overview of CMS Features | 71

These are the core pillars of content management. If a system fails at one or more of
these four, it’s hard to manage any content effectively.

From there, we’ll review extended functionality:

• Multiple language handling
• Personalization, analytics, and marketing optimization
• Form building
• Content file management
• Image processing
• URL management
• Multisite management
• APIs and extensibility
• Plug-in architectures
• Reporting tools and dashboards
• Content search
• User and developer community support (yes, this is a feature too)

Perspective: The Truth About Buying a CMS

by David Maffei

You’re in the market to buy a WCM solution. You’ve just sat
through four vendor demonstrations. It seems like you’re on a
path to a decision on selecting the digital experience platform
that’s going to take your business to the next level. Things are
progressing just as you planned.

What you don’t know is that better than 50% of what you just
saw is all fake. That’s right. The solution you are going to buy
can do maybe half of what you just saw—the rest was a combination of imaginative
code-writing and “strategic” visioning by a really good presales team. Vendor demon‐
strations toe the not-so-bold line between “demo world” and “reality” in terms of
showcasing their solutions to you.

The question is: how do you sort through what’s real and what’s not, and which solu‐
tions get you as close to your final solution as possible?

The reality is that 100% of the tools available in the market do 80% of what every sin‐
gle end user needs. As an organization looking to select and implement the right
WCM tool, you need to focus on the other 20%: your unique needs.

72 | Chapter 5: CMS Feature Analysis

This might sound both logical and simple—it is neither. The success of a WCM
implementation hinges on the selection of the tool—not based on the tool itself, but
based on your specific and unique requirements. Hidden in that 20% is where you’ll
find the intricacies and the details that make or break the adoption and actual pro‐
duction use of your tool. That 20% is the difference between a solution that provides
operational efficiency, stability, and reliability and one that ends up as cursed-off
shelfware. What’s worse? The unique percentage that defines you was more often than
not demonstrated to you through the lens of “demo world” and not reality.

Organizations always focus on the 80%. They create thousand-row RFPs and view
demos of hundreds of tools—each one showing its strengths and limiting the visibility
of its weaknesses. To be a successful end user, you should spend less time talking with
analysts about vendors, less time viewing demos, and less time reading RFP respon‐
ses, and take all that saved time and put it into understanding two things: what your
strategic goals are (and the tactics required to achieve them), and whether the product
you want to buy can excel at the 20% that differentiates your needs from everyone
else’s. The 80% is a given—everyone does it.

David Maffei is the Chief Revenue Officer at Akumina, an enterprise software provider
delivering compelling digital web experiences for mid-sized and large enterprises.

An Overview of CMS Features | 73

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 6

Content Modeling

At the risk of triggering bad memories, consider the form you have to complete at the
local Department of Motor Vehicles when renewing your driver’s license. You’re envi‐
sioning a sheet of paper with tiny boxes, aren’t you?

But what if it wasn’t like that? Imagine that instead of a form, you just got a blank
sheet of paper on which you’re expected to write a free-form essay identifying your‐
self and providing all the information you can think of. Then someone at the DMV
sits down to read your essay and extract all the particular information the DMV
needs. If the information isn’t there—for instance, you forgot to include your birth‐
date because no one told you to put it in your essay—they send you back to try again.

You might have thought it impossible to make the experience of renewing your driv‐
er’s license worse, but I’d wager that this process might accomplish just that.

Thankfully, the DMV has forms with separate boxes for you to input different infor‐
mation: your name, your birthdate, etc. These boxes even have labels describing them
and prompts to ensure you enter the information in the correct format: there might
be “mm/dd/yyyy” in the birthdate field, two dashes in the Social Security number
field, and checkboxes for “male” or “female.”

The people who designed this form considered the range of information they needed
from people, and then structured it. They broke it into separate boxes on the form,
and took steps to ensure it was entered correctly.

Put another way, someone “modeled” the information the DMV requires. They
extracted an explicit structure from the amorphous chunk of information the DMV
needs, broke it down into smaller pieces, and provided an interface for managing it
(the form itself).

75

Similarly, a core goal of any CMS is to accurately represent and manage your content.
To do that, it has to know what your content is. Just as you can’t build a box for some‐
thing without knowing the dimensions of that thing, your CMS needs to know the
dimensions of your content to accurately store and manage it.

In most cases, you start with a logical idea of the content you need to manage in order
to fulfill the project requirements. For instance, you know that you need to display a
news release. This is a general notion of content. But what is a news release? What
does it look like? How is it structured? Ask five different people and you might get
five different answers.

A CMS can’t read your mind (much less the minds of five different people) and there‐
fore has no idea what you think a news release is. So, this logical notion of a news
release needs to be translated into a concrete form that your CMS can actually man‐
age.

To do this, you need to explain to the CMS what a news release is—what bits of infor‐
mation make up a news release, and what are the rules and restrictions around that
information? Only by knowing this will your CMS know how to store, manage,
search, and provide editing tools appropriate for this content.

This process is called content modeling. The result is a description of all of the content
your CMS is expected to manage. This is your content model.

Content modeling is often done poorly, either through mistakes in judgment or
because of the built-in limitations of a particular CMS. The stakes can be unfortu‐
nately high. Content modeling is the foundation on which a CMS implementation is
built. Mistakes made here breed multiple future problems that can be tough to
recover from.

Warning: Theory Ahead

This chapter (and the next) might seem a bit abstract or technical,
depending on your experience. We’re going to discuss the core
characteristics of content in general, separated from concrete rep‐
resentations like the interface in which editors create content or the
web pages that the CMS generates.
Even if some of this seems theoretical, please try to stick with it.
The foundation laid in these chapters will make it easier for you to
understand more specific topics later in the book.

Data Modeling 101
Modeling is not unique to content management. “Data modeling” has been around as
long as databases. For decades, database designers have needed to translate logical

76 | Chapter 6: Content Modeling

1 If you’re thinking that perhaps a background in database design would be helpful, you’re absolutely correct.
To this end, I recommend Database Design for Mere Mortals by Michael Hernandez (Addion-Wesley). Even if
you never have to design a traditional database, the ability to separate a data model from the information
stored within it is a key professional skill.

ideas of information into database representations that are in an optimally searchable,
storable, and manipulatable format.

The similarities between traditional databases and content management are obvious:
both are systems to manage information at some level. In fact, CMSs are usually built
on top of a relational database. Almost every CMS has a database underneath it where
it stores much of its information.

In this sense, a CMS might be considered a “super database,” by which we mean a
database extended to offer functionality specific to managing content. In fact, a friend
once referred to a CMS as a “relational database management system management
system” to reflect the idea that the CMS wraps the basic data management features of
a database in another layer of functionality. As such, many of the same concepts,
paradigms, benefits, and drawbacks of relational databases also apply to content man‐
agement systems in varying degrees.1

Another word for the process of transforming logical ideas into concrete data struc‐
tures is reification, which is from the Latin prefix res, which means “thing.” To reify
something is literally “to make it a thing.”

Computers don’t understand vagueness. They want hard, concrete data that’s restric‐
ted so they know exactly what they’re working with. Reification is a process of mov‐
ing from an abstract and unrestricted idea of something to a concrete representation
of it, complete with the limitations and restrictions this brings along with it.

A classic example of a modeling problem is a street address:

123 Main Street
Suite 1
New York, NY 10001

This is quite simple to store as a big lump of text, but doing so limits your ability to
ask questions of it:

• What city are you in?
• What floor of the building are you on?
• What other businesses are nearby?
• What side of the street are you on?

Data Modeling 101 | 77

To answer these questions, you would have to parse—or break apart—this address to
get at the smaller pieces. These smaller pieces only have meaning when they’re prop‐
erly labeled so a machine knows what they represent. For example, the “1” in the sec‐
ond line makes perfect sense when it refers to a unit number, but doesn’t work as a
zip code.

Consider this alternative model of the preceding address:

• Street number: 123
• Street direction: [none]
• Street name: Main
• Street suffix: Street
• Unit label: Suite
• Unit number: 1
• City: New York
• State: NY
• Postal Code: 10001

By storing this information in smaller chunks and giving those chunks labels, we can
manipulate and query large groups of addresses at once. What we’ve done here is
reify the general idea of an address into a concrete representation that our CMS can
work with.

Couldn’t you just parse the address every time you wanted to work with it? Sure. But
it’s much more efficient to do it once when the content is created, rather than every
time you want to read something from it. Common sense says that you’ll read content
far more often than you’ll create or change it. Additionally, when it’s created, a human
editor can make proactive decisions about what goes where instead of a parsing algo‐
rithm taking its best guess.

It’s worth noting that by creating a model for the address, we’ve actually made it less
flexible. As inefficient as storing the big lump of text may be, it’s certainly flexible. A
big lump of text with no rules around it can store anything, even an address like this:

123 Main Street South
Suite 200
Mail Stop 456
c/o Bob Johnson
New York, NY 10001-0001
APO AP 12345-1234

78 | Chapter 6: Content Modeling

2 These are methods to send mail to military and government personnel serving in remote locations. They’re
acronyms for Air Post Office, Fleet Post Office, and Diplomatic Post Office.

3 Josh developed the Big Medium CMS for many years, and recently authored Designing for Touch (A Book
Apart).

4 Personal communication with the author, December 2007.

This address wouldn’t fit into the model we created earlier. To make that model work
for this content, we’d need to expand our model to fit. For instance, we’d need to cre‐
ate a space for APO/FPO/DPO numbers.2

Addresses in this format might be relatively rare, but when creating a content model,
your judgment is an unavoidable part of the process. Is this situation common
enough to justify complicating the model to account for it? Does the exception
become the rule? Only your specific requirements can answer that.

While most problems seen in poor implementations involve understructured content,
know that you can go in the other direction as well. Structuring content too much can
damage the editorial experience.

Former CMS architect and current UX author3 Josh Clark had this to say about the
decision of how much to structure a particular content type:

The big advantage to structuring content, of course, is that it lets you repackage it and
present it in different forms and contexts. The downside is that it forces editors to
approach their content like machines, thinking in terms of abstract fields that might be
mixed and matched down the road. The benefits often outweigh this usability cost if
you’re going to present the content elements in multiple contexts and/or offer various
sorting options with a large number of elements. If not, then I typically go with [less
structure].4

The key, as always, is a balance driven by a solid understanding of your content, your
requirements, and your editors.

Edge Cases

In software design, our complicated address is called an “edge case,”
since it’s a usage case at the edges of the mainstream.
Software design is littered with these situations, and you can’t pos‐
sibly account for them all. Trying to handle everything will lead to
bloated software that has become so generic and complicated that it
even fails at its original purpose.
Only experience and knowledge of your users and requirements
can help you decide which edge cases to accommodate.

Data Modeling 101 | 79

http://abookapart.com/products/designing-for-touch

5 See “A Relational Model of Data for Large Shared Data Banks,” by E. F. Codd.

Data Modeling and Content Management
Every CMS has a content model. Even the simplest CMS has an internal, concrete
representation of how it defines content.

The simplest model might be a wiki, where you have nothing but a title and a body of
text. Simplistic and rigid as this is, it’s clearly a predefined content model.

The original blogging platforms—the early WordPress, Movable Type, Blogger, etc.—
worked largely the same way: everything you put into the system had a title, a body,
an excerpt, and a date. Since the only thing they needed to manage was a series of
blog posts, this was effectively a built-in content model designed specifically to fit the
requirements of that content.

In most cases, you need more flexibility than this. You need to store information
beyond what’s offered by default. When this happens, you’re limited by the content
modeling features of your CMS.

Some systems offer a limited number of “custom fields” in addition to the built-in
model (blogging platforms like WordPress have moved in this direction; see
Figure 6-1), while other systems assume nothing and depend on you to create a con‐
tent model from the ground up. To this end, they can offer a dizzying array of tools to
assist in content model definition.

Figure 6-1. A free-form custom fields interface in WordPress

The unspoken standard that most CMSs are chasing is that of a custom relational
database, which has been the traditional way to model data and information since the
early 1970s.5 CMSs have varying levels of fidelity to this ideal—some force you to

80 | Chapter 6: Content Modeling

https://www.seas.upenn.edu/~zives/03f/cis550/codd.pdf

6 A select few systems are literally thin wrappers around a custom database. Some CMSs just add a few fields
and tables to a database of your own creation to add the extended functionality of a CMS.

simplify more than you’d like, while others are essentially thin wrappers around your
own custom relational database.6

Why aren’t all CMSs like this? Because it’s often more than you need. The CMS
industry has evolved around common content problems, and has created patterns for
dealing with situations that are seen over and over again. Most web content manage‐
ment problems will fall within the range covered by these patterns—the exceptions
are…wait for it…edge cases—so they’re enough to function well under most require‐
ments.

Where a particular CMS falls in the range of modeling capabilities has a huge impact
on the success or failure of your project. Some projects have complex content models
and absolutely hinge on the ability of the CMS to represent them accurately. In these
cases, content modeling limitations can be hard to work around.

Separating Content and Presentation
It’s tempting to look at some form of your content—your news release rendered in a
browser, for instance—and say, “This is my content.”

But is it? In a pure sense, your actual content is the structure and words that make up
the news release. The information in your browser is just a web page. So, are you
managing content or are you managing web pages?

I argue that it’s the former. Your content is as close to pure information as possible.
The web page is actually a piece of media created by your content. Put another way,
it’s simply a representation of your content.

Your content has been combined with presentational information—in this case, con‐
verted to HTML tags—and published to a specific location. Ideally, you could take
those same words and use them to create a PDF, or, after publishing your web page,
you could use the title of your press release and the URL to create a Facebook update.

These publication locations (email, web, Facebook, etc.) are often called channels. The
media that is published to a channel might be referred to as a rendition or a presenta‐
tion of content in a particular channel.

The relationship of content to published media is one to many: one piece of content
can result in many presentations. In that sense, a presentation is applied to content in
order to get some piece of published media.

We can only do this if we separate our content and our presentation, which means
modeling our core content as “purely” as possible. Ideally, we do this without regard

Separating Content and Presentation | 81

7 Gideon Burton, “Silva Rhetoricae.”

to any particular presentation format. (We might need to add some extra information
to ease the application of a particular presentation, but this information won’t be used
in other presentation contexts.)

This concept is not new. Gideon Burton, an English professor at Brigham Young Uni‐
versity, has traced this all the way back to the ancient Greeks.

Aristotle phrased this as the difference between logos (the logical content of a speech)
and lexis (the style and delivery of a speech). Roman authors such as Quintilian would
make the same distinction by dividing consideration of things or substance, res, from
consideration of verbal expression, verba.7

Our content is logos, and the presentation method is lexis.

Binding your content to a specific presentation drastically limits what you can do
with that content. If your requirements are simple and won’t change, then perhaps
this isn’t a great disadvantage. But when content is structured well, its utility increa‐
ses:

Templating is easier
Having content in smaller chunks allows you to use it in more specific ways when
templating. Want to display an author’s last name first on the bio page? This is
much easier to do if the last name is stored separately from the first name.

Mass presentation changes are possible
Should author headshots and bios appear in the left sidebar now, rather than at
the bottom of the article? If this information is separable from the main body of
content, this is a simple templating change, whether you have 10 or 10,000 arti‐
cles.

Content can be easily presented in other contexts
When your pages have isolated summaries, these can be posted in other contexts
with shorter length requirements, or content can be shortened for environmental
limitations such as mobile devices.

Editorial usability is improved
Granular content models often allow you to customize the editorial interface
with specific elements to allow editors to accurately work with specific pieces of
information that make up your content. Should you limit the HTML tags that
editors can use when writing their article summaries? If Summary is its own
attribute, this is easier to do.

Going back to Burton’s Aristotelian example, Aristotle might have a theory about
man’s position in the universe. This theory is his content. He can “render” this con‐

82 | Chapter 6: Content Modeling

http://rhetoric.byu.edu/Encompassing%20Terms/Content%20and%20Form.htm

tent into an essay, a play, a speech, even a drawing. Those items are the media gener‐
ated from his content. They’re just presentations—the core concepts of Aristotle’s
theory underlie them all.

Much Ado About Nothing: The Content Versus the Presentation
Recently, I read Much Ado About Nothing, a play written by William Shakespeare
sometime toward the end of the 16th century. It’s one of his most popular works, and
it’s been performed, reprinted, and adapted thousands of times since.

I track all of my reading in a service called Goodreads, and I went there to jot down
my thoughts on it. However, I was bit frustrated by the fact that Goodreads is
presentation-centric, not content-centric. When I tried to look up Much Ado About
Nothing to add it to my list, I was confronted with 222 different published works.

My copy was printed in 2007 by Modern Library. But that wasn’t what I wanted to
review. I wanted to review the play itself. I wanted to discuss the concepts and ideas
Shakespeare wrote about 400 years ago, not the trade paperback I was holding in my
hand.

My book was just the medium through which the play was communicated in this par‐
ticular instance. The play was the content. My paperback was one possible presenta‐
tion.

For that matter, it was actually a specific instance of a type of presentation. Much Ado
About Nothing has been printed in many books; this was just one of them. It’s been a
film too, in 1993 and 2011. Those are specific instances of different types of presenta‐
tion.

Within each instance, the details changed, but the core of Shakespeare’s play stayed
the same. The play itself has been depicted in settings from British Colonial India to
Cuba of the 1950s. Joss Whedon’s 2011 film even moves it to the present day. All these
different presentations were working from the same script, presenting the same
Shakespearean content, and often using the exact same dialogue.

Content/presentation confusion is sometimes apparent when reading negative prod‐
uct reviews of creative works. Some reviewers aren’t discussing the work itself, but
rather the medium it was presented in. They don’t have an issue with the concepts in
the book they read, but they’re upset that the font size was too small. The movie on
the DVD they watched was actually great, but they’re giving it one star because the
title menu was confusing. I’ve even seen poor reviews given for the package some‐
thing was shipped in, which is really just the medium of the presentation—a wrapper
around a wrapper around the content.

Your content is an abstract ideal. It has to be wrapped in some presentation, but in
this world of digital manipulation, that presentation is not an integral part of the
work.

Separating Content and Presentation | 83

http://goodreads.com

A few days after my Goodreads experience, I watched the 1993 movie adaptation of
Much Ado About Nothing starring Denzel Washington and Kenneth Branagh. It gave
me the same goosebumps as the play. The ideas that Shakespeare explored were just
as good on screen as they were on paper. Regardless of the specific presentation, the
content was universal.

The “Page-Based” CMS
A core question is whether your CMS is managing content or pages. Does your CMS
assume every piece of content in the repository should result in a web page? Or are
they pure content objects that can then be embedded into pages?

The conflation of content object and page has resulted in the phrase “page-based
CMS” being used to describes CMS that explicitly manages web pages, over more
abstract notions of content without presentation. The phrase normally pops up when
comparing two systems and is usually meant pejoratively, with the assumption that
managing simple pages is less noble and sophisticated than managing pure content.

This is a fair point, but it might be misplaced, for a couple of reasons.

First, while multichannel publishing and content reuse is very valuable, not all instan‐
ces need it. In many cases, 99% of content views will be page views in a browser, so
managing the page is of utmost importance.

Second, just because a CMS manages pages doesn’t mean the content in those pages
can’t be used in other ways. Even if your CMS offers you a content type called News
Article Page, that doesn’t mean that content can’t be extracted and repurposed into
things like RSS feeds and web APIs.

While a true page-based CMS will likely bake in some web-page-specific properties—
META tags, menu labels, template selection, etc.—it will also include more neutral,
presentation-free information that can be used in other ways.

In the end, the difference between a “page” and a more generic “content element”
seems to be one of URL addressability. Pages get URLs and are intended to be viewed
in isolation, as the main content object resulting from a single web request. Content
elements (non-pages) are meant to exist in support of other content through refer‐
encing or embedding (see “Content Embedding” on page 97), and will not be individ‐
ually URL addressable.

84 | Chapter 6: Content Modeling

When Is Derived Content Its Own Content?

At what point does a tweet about a news article become content in
itself? To generate a tweet from our CMS, we can simply add some
attributes to the News Article content type—“Twitter Text,” for
example. This means that the tweet “piggybacks” on the same con‐
tent model as the news article itself.
But at what point would it make sense to break off the information
required for a tweet and publish it as a separate content object? We
could create another content type, “Tweet.” It would have a
attribute for text, and perhaps another attribute to link to the arti‐
cle we’re promoting with it.
In this form, it would have its own life in our CMS. It would be an
object with its own content lifecycle, permissions, workflow, and
even editing interface. Whether or not this is necessary or advanta‐
geous depends on your requirements.

Defining a Content Model
A content model is defined by three things:

• Types
• Attributes
• Relationships

These three things, used in combination, can define an almost infinite variety of con‐
tent.

Content Types
A content type is the logical division of content by structure and purpose. Each type
serves a different role in the model and is comprised of different information.

Humans think in terms of types every day. You label specific things based on what
type of thing they are—in terms of “is a”:

• This three-bedroom, two-bath Colonial is a building.
• This 2015 Colnago AC-R Ultegra Complete is a bicycle.
• This Footlong Firebreather is a burrito.

In thinking this way, we’re mentally identifying types. We understand that there are
multiple bicycles and burritos and buildings in the world, and they’re all concrete

Defining a Content Model | 85

8 For the remainder of the book, I will capitalize the names of content types as proper nouns. I will lowercase
content objects (e.g., a particular article is an object of the type Article).

representations of some type of thing. We’ve mentally separated the type of thing
from a specific instance of the thing.

Editors working with content think the same way. An editor wants to create a new
News Release or a new Employee Bio.8 Or, this existing content is a News Release or is
an Employee Bio. In your editor’s head, the idea of a generic Page is separate from
actual representations of the “About Us” or “Products” pages.

Whether explicitly acknowledged or not, whenever you work with content you have
some mental conception of the type of content you want to manage. You mentally put
your content into boxes based on what that content is.

A content type is defined to your CMS in advance. Most CMSs allow multiple types
of content, but they differ highly in terms of how granular and specific they allow the
definitions of these types to be.

All content stored by a CMS will have a type. This type will almost always be selected
when the content is created—indeed, most CMSs won’t know what editing interface
to show an editor unless they know what content type the editor is trying to work
with. It is usually difficult to change the type of a content object once it’s created
(more on this in the next section).

It’s important to draw a clear line between a content type and a content object. A con‐
tent type is a pattern for an object—bicycle, burrito, or building, from the previous
example. You might have a single content type from which thousands of content
objects are created.

Consider making Christmas cookies. You have a cookie cutter in the shape of a
Christmas tree, candy cane, snowman, or whatever. Using this, you cut cookie dough.
You have one cookie cutter, which you use to create dozens of cookies. The cookie
cutter is your content type. The actual cookies are the content objects.

A content type can be considered the “pattern” for a piece of content, or the definition
of the information a particular type of content requires to be considered valid. An
Employee Bio, for example, might require the following information:

• First Name
• Last Name
• Job Title
• Hire Date

86 | Chapter 6: Content Modeling

• Bio
• Manager
• Image

(These are attributes, which we’ll talk about shortly.)

You must create this definition in advance so that your CMS knows what information
you’ll be putting into what spaces.

There are multiple benefits to organizing your content into types:

Structure
Different content types require different information to be considered valid. A
Person requires a First Name. This doesn’t make sense for a Page.

Usability
Most CMSs will automatically create an editing interface specific to the type of
content you’re working with. When editing the Hire Date in an Employee Bio, for
example, the CMS might render a date selection drop-down.

Search
Finding all blog posts is quite simple when they all occupy the same type.

Templating
Our Employee Bio pages will be clearly different from our News Release pages.
Since the two types store different information, they obviously have different
methods of outputting that information.

Permissions
Perhaps only the Human Resources department can edit Employee Bios.
Depending on the CMS, you might be able to limit permissions based on type.

In these ways, the content types in a CMS implementation form boundaries around
logically different types of content, allowing you to apply functionality and manage‐
ment features to just the types for which they apply.

Switching types
Switching the underlying content type after a content object has been created from it
can be logically problematic.

Let’s assume that we created a piece of content from our Employee Bio content type.
Now, for whatever reason, we want to convert this to a News Release. We have a prob‐
lem because we have information specific to the Employee Bio type that doesn’t exist
in the News Release type (First Name, for example), which means that when we
switch types, this information has nowhere to go. What happens to it?

Defining a Content Model | 87

Because of this, switching content types after content has been created is often not
allowed. If it is, you have to make hard decisions about what happens to information
that has no logical place in the future type (Figure 6-2).

Figure 6-2. Converting content types in Episerver—when the new type doesn’t contain
matching attributes for everything defined on the old type, hard questions result

Oftentimes, you must swallow hard and give the system permission to simply throw
that information away. As such, switching types is not for the faint of heart, especially
when you have hundreds or even thousands of content objects based on a specific
type.

Attributes and Datatypes
Content types are wrappers around smaller pieces of information. Refer back to our
previous definition of an Employee Bio. An Employee Bio is simply a collection of
smaller pieces of information (First Name, Last Name, etc.).

Nomenclature differs, but these smaller pieces of information are commonly referred
to as attributes, fields, or properties (we’ll use “attribute”). An attribute is the smallest
unit of information in your content model, and it represents a single piece of infor‐
mation about a content object.

Each attribute will be assigned a datatype, which limits the information that can be
stored within it. Common basic datatypes are:

• Text (of varying length)
• Number
• Date
• Image or file
• Reference to other content

Depending on the CMS, there might be dozens of possible datatypes you can use to
describe your content types, and you might even be able to create your own datatypes,

88 | Chapter 6: Content Modeling

which are specific to your content model and no other. Figure 6-3 shows some of the
options available in the eZ Platform CMS.

Figure 6-3. Predefined types of attributes available for eZ Platform

Referring back to our previous model, we can apply the following datatypes:

• First Name: short text
• Last Name: short text
• Job Title: short text
• Hire Date: date
• Bio: rich text
• Manager: reference to another Employee Bio object
• Image: reference to an image file

By specifying datatypes, you allow your CMS to do several things:

Validation
The CMS can ensure that the information you enter is valid. For instance, Man‐
ager must be a valid reference to another Employee Bio object. Additionally, the
CMS may warn you against deleting that other object while there are still out‐
standing references to it.

Defining a Content Model | 89

9 “Rich text” is often used to refer to any text that allows embedded formatting, such as bold, italics, etc. In most
cases, this means HTML. A “rich text editor” is therefore assumed to be a visual editor that generates HTML
in the background. However, some systems use the term “rich text” to refer to plain text fields that allow the
manual insertion of HTML tags, or even shorthand formats such as Markdown.

10 “What You See Is What You Get.” A WYSIWYG editor is a rich text editing interface that generates HTML but
allows you to edit the text visually, instead of using tags or other markup.

11 Globally unique identifiers. A GUID is a sequence of random numbers and characters long enough to virtu‐
ally ensure uniqueness. A common length is 32 digits, which is long enough to ensure that if each person on
Earth possessed 600 million different GUIDs, the probability of a new GUID already existing would still only
be 50%.

Editing interface generation
The CMS can render different interface elements to enable you to easily work
with different attributes. You might allow rich text9 in your Bio attribute, which
means displaying a WYSIWYG10 editor with editing controls.

Sorting and filtering
The CMS understands how to use different datatypes to sort and filter content.
By filtering and sorting by Hire Date, you could locate all employees hired
between two dates, and order them by seniority.

Some CMSs do not allow the datatyping of attributes, but this is rare. In these cases,
the CMS normally allows you to simply declare “custom fields,” which it stores as
simple text. The utility of these fields is extremely limited, as you must ensure editors
enter the values correctly (enforcing a date format in a simple text field is tricky) and
you must jump through hoops to use these values when sorting and filtering.

Built-in Attributes
Most CMSs will have a handful of built-in attributes that automatically exist in every
content type and don’t have to be explicitly added to the content model. These
include:

ID
Without exception, every content object has some type of identifier that uniquely
identifies that content, not unlike the primary key in a database table (in fact,
behind the scenes, this is often the primary key of a database table). Most systems
have numeric, incremental IDs. Some others use GUIDs,11 which is helpful when
moving content between installations since they’re guaranteed to be globally
unique.

Title or Name
Most systems will have some way to name a content object. Usually this is an
explicit Title field, which either is used only as an internal title or is dual-
purposed as the displayed title of the object (the headline of a News Release, for

90 | Chapter 6: Content Modeling

example). In some cases, the system will allow you to derive this value from other
attributes using tokens which are replaced with values. For example, specifying
the Name of an Employee Bio as $LastName, $FirstName will always set the
Name to something like “Jones, Bob” whenever the object is saved.

Body
It’s very common to have a rich text field automatically available for the “body” of
the object, whatever that might mean for the particular type. This assumes that
most objects will have a free-form Body field, which is valid in many cases. Some
types will not, and these systems usually have a way to hide the field for those
types when necessary.

Teaser or Summary
While less common than the body field, some systems will provide a smaller
Summary field. This is quite common with systems that have blog roots, such as
WordPress.

These built-in attributes, where available, are automatically present in all types, and
your content model is composed of the attributes that exist in addition to these.

Attribute Validation
To ensure information is entered correctly, it needs to be validated, which means
rejecting it unless it exhibits the correct format or value for its purpose.

Basic validation is enforced via the datatype. If something is meant to be a number,
then it has to be entered as a valid number. Additionally, the editing interface might
enforce this by only displaying a small text box that only allows entry of numeric
characters.

However, the datatype doesn’t tell the entire story. What if our number is only a num‐
ber in format, but our intention for this number is for it to be a year? Then we poten‐
tially need to validate it in other ways: against the value, the pattern, or via some
custom method.

We can validate values through ranges. In our year example, it most likely needs to be
a four-digit, positive integer (depending on whether or not we’re allowing dates BC,
or dates after AD 9999), and it most likely needs to be within a specific range. For
instance, we may require that it be in the past, or that it be within a particular defined
period (e.g., from 100 years in the past to the current year). Figure 6-4 shows an
example of specifying an allowable range for a field in Drupal.

Defining a Content Model | 91

Figure 6-4. Numeric validation options in Drupal

Alternatively, perhaps we’re storing a product stock-keeping unit (SKU), and we
know that this must always be a pattern of three letters, followed by a dash and four
numbers. A regular expression (discussed more in Chapter 8) of “[A-Z]{3}-[0-9]{4}”
can ensure we only accept data matching this pattern.

Beyond simple validation, occasionally it becomes necessary to validate input
through custom integration. Perhaps our product SKU needs to be cross-checked
against our product database to ensure it exists. In this case, when an editor saves a
content object, the CMS performs a query against the product database to ensure the
product SKU exists, and rejects the content if it doesn’t. Querying your product data‐
base is a requirement that is needed by no other customer of your CMS, so it will
clearly not support this out of the box. The best a system can do is provide you with
the ability to program around it using the API.

Value, pattern, and custom validation capabilities differ widely. If appropriate meth‐
ods are not available, then the only solution is to train editors well, and provide
graceful error handling if they enter something incorrectly.

Using Attributes for Editorial Metadata
Attributes usually store information that is either displayed to the information con‐
sumer or used to directly affect the presentation of content. However, there is a valid
case for using attributes to store administrative or “housekeeping” information.

Metadata means “data about data,” which means data that isn’t the primary purpose
of the content object, but serves some secondary purpose. The idea of metadata in
web content management is a little abstract—systems don’t usually call anything met‐
adata and instead just treat all attributes the same—but it can be accurately used to
refer to data that isn’t related to the content object directly, but rather is about the
management of that object.

For example:

• A text attribute called To Do might be used to keep running notes, wiki-style, of
things that need to be done with that content. A report could generate all content

92 | Chapter 6: Content Modeling

12 I read once about an intranet that used attributes such as these to “shame” content owners. When a page was
rendered with a Review By date more than 30 days in the past, a notice was displayed at the top of the page:
“Bob Jones is responsible for this content but has not reviewed it in 14 months. Contact Bob at extension 1234
to check if this content is still accurate.”

with some value in this attribute, which represents all content that needs some
attention.

• A user selection called Content Owner could indicate what person in the organi‐
zation is ultimately responsible for that content.

• A date attribute called Review By could indicate when the content needs to be
reviewed for accuracy. Combined with the Content Owner attribute, a report
could show a user all the content for which that user is responsible that needs to
be reviewed.12

Content Type Inheritance
If content types are simply wrappers around sets of attributes, then it follows that we
must create a new content type for every possible combination of attributes in our
content model. This makes sense, since a News Release uses a fundamentally different
set of information than an Employee Bio.

But what if two content types are very similar? Many times, you’ll have a content type
that is exactly like another type, except for the addition of one or two extra attributes.

Consider a basic Page content type that represents the simplest content we can come
up with—a basic page of rich text with a title. It consists of nothing but:

• Title
• Body

As mentioned previously, these will often be simply built-in attributes.

For our blog, we need another type for Blog Post. It needs:

• Title
• Body
• Summary
• Published Date

Do you see the similarity? A Blog Post is simply a Page with two extra attributes. You
could do this for many different types of content. A Help Topic, for example, could be

Defining a Content Model | 93

a Page with the addition of Software Version and Keywords. An Event could be a
Page with the addition of Start Date and Location.

Now suppose that sometime after your site launches, your marketing manager asks
you to add an SEO Description to all the pages on the website. You’re faced with the
prospect of adding another attribute to all the types in your content model (and then
deleting it when the marketing manager decides he doesn’t want it anymore).

Wouldn’t it be helpful if you could inherit the attribute definition of Page and simply
specify what attributes are available beyond that?

So, the definition of a Blog Post would be “everything a Page has, plus Summary and
Published Date.” By doing this, you would ensure that whenever the Page content
type changed (via the addition of SEO Description, in this case), the Blog Post type—
and all other types inheriting from Page—would change as well. Figure 6-5 shows
how this would work for our example content types.

Figure 6-5. A base type of Page provides the Title and Body to every type that inherits it:
Blog Post, Event, and Help Topic get Title and Body, and then add to them with specific
attributes of their own

To an object-oriented programmer, this is not a new concept. Class
inheritance has been a paradigm of this type of programming for
decades. The same values of conciseness and manageability apply
equally well to content management. By being able to extend one
type into another, you gain increased control over your model as it
changes in response to future requirements.

94 | Chapter 6: Content Modeling

Sadly, content type inheritance is not common in CMSs. Few systems currently offer
it, though it seems to become slightly more common every year.

Partial type composition
What’s even rarer than simple inheritance is the ability to combine multiple types (or
partial types) to create a new type. For instance, we could define a Content Header
type as:

• Title
• Subtitle

Does this make sense as a standalone type? Probably not—what content just has a
Title and a Subtitle? However, when defined as a part of a larger type, this makes
more sense. Many types might use a Title and a Subtitle as part of their definition.

To this end, we might define an Article Body as:

• Body
• Image
• Image Caption

And we might define an Author Bio as:

• Author Name
• Author Bio
• Author Image

We might then define an Article type as simply the combination of all three:

• Title
• Subtitle
• Body
• Image
• Image Caption
• Author Name
• Author Bio
• Author Image

Figure 6-6 illustrates this idea of partial type composition.

Defining a Content Model | 95

13 Note the usage of “use” rather than “inherit.” You can “inherit” from one other type. You “use” multiple types.
When composing types, the relationship is one of composition, not parentage.

Figure 6-6. The Article content type is composed of three partial types, which can also be
used to compose other types; any changes to a partial type are reflected in any type that
uses it

How are we any better off in this situation? Because we can reuse the parts to define
other types. For example, we could use our Content Header type in an Image Gallery
type, since Title and Subtitle are common to both that and an Article. Then, if
we added something to Content Header, it would be added to all types that use that
type.13

Again, this ability is rare, but where available it vastly increases the manageability of a
complicated content model. Figure 6-7 shows how partial type composition can be
achieved in the Sitecore CMS.

96 | Chapter 6: Content Modeling

14 Note that blocks or widgets often reference managed content, but they don’t have to. They may just render
non-content-related functionality on the page, such as a weather forecast, for example.

Figure 6-7. Multiple type composition in Sitecore—partial types (called “templates” in
this system) can be browsed and selected in the left pane, and then added to the right
pane to form a type composed of multiple partial types

Content Embedding
Some systems allow for the embedding of one content item into another item, either
within rich text content or in data structures that render lists of referenced content.
The embedded content is often called “blocks” or “widgets.”14

If the following sounds very vague, it is. This is a highly variable
type of functionality with few universal implementations. The best
we can do here is provide multiple examples of similar functional‐
ity in an attempt to tie it together.

Rich text embedding
Consider a project that requires a Photo Gallery page. You can easily model a Photo
Gallery type with a Title, perhaps an introductory paragraph of text at the top
(Description), and the images for the gallery underneath that.

Then suppose the editors say, “Well, we’d like to have another paragraph of text at the
bottom of the page, underneath the gallery.” You can handle this by changing the
Description attribute to Upper Description and Lower Description, then altering the
templating to display both, above and below the gallery.

Back to the editors: “Now we have some situations where we want more than one gal‐
lery on a page.”

Defining a Content Model | 97

Now what?

Perhaps the better solution is to model the Photo Gallery type as an element that can
be embedded in rich text. This means the Photo Gallery might no longer be a URL-
addressable page, but rather an embeddable content element (again, a “block” or
“widget” in many cases) that gets wrapped in a page. Using this, the editors could
write their page of content as rich text, and embed an object of this type of content
within it (Figure 6-8).

Figure 6-8. Content is embedded in rich text by placing a reference or token that identi‐
fies the embedded object; during templating, this token is detected and replaced by some
templated view of the embedded object

Beyond enabling what the editors require for this specific instance, this has two other
advantages:

• Photo Gallery objects can be used on multiple pages. One gallery could be
embedded on 100 pages across the site.

• Photo Galleries can be embedded into objects based on other types, assuming
they also allow for embedding. A gallery of Bob’s karaoke performance at the
Christmas party can be added to the rich text on his Employee Bio page, for
instance.

The actual process of embedding ranges from simple text shorthand to sophisticated
drag-and-drop interfaces.

WordPress, for instance, has something it calls “Shortcodes,” which are text snippets
that are processed during output. For example:

[photo_gallery folder="images/2015-christmas-party"]

This code might be mapped to a PHP function that renders all images from the speci‐
fied directory. Clearly, this is not a managed content object; it’s just a PHP function
mapped to a text string. The “content” is just a directory of images on the filesystem.

98 | Chapter 6: Content Modeling

If you wanted tighter control over the gallery, you might model it as a content type,
then use a Shortcode to refer to the ID of that content:

[photo_gallery id="1234"]

The corresponding PHP function would retrieve content object #1234 and use the
data to render a photo gallery.

Some systems go so far as to create HTML-like syntax that allows editors to write
markup inline. The Articles Anywhere plug-in for Joomla!, for instance, provides
syntax like this for embedding the most recent three articles from a specific category
(category #9, in this example):

{articles cat:1-3:9}
 {title}
 {text:20words:strip}
 {readmore:More...|readon}
{/articles}

This markup is detected and processed during output.

Clearly, this level of markup introduces training issues. Editors will
need to understand all the options available to them, and will likely
need access to some type of reference material.

eZ Platform uses a framework called Custom Tags, which allows for the embedding
of data through a validated form. See Figure 6-9 for an example of embedding social
media icons between two paragraphs in a body of rich text. While this embedding
doesn’t use any content, consider the content modeling we might avoid by having this
functionality. If not for this method, the content type might have to be modeled with
attributes for Show Twitter Icon, Show YouTube Icon, etc. And, even then, how
would the author indicate where on the page they should be embedded?

Defining a Content Model | 99

https://www.nonumber.nl/extensions/articlesanywhere

Figure 6-9. Custom tag embedding in eZ Platform: the data from the form is encapsula‐
ted in the custom tag embedded between two paragraphs

A smaller number of systems provide graphical interfaces for embedding content (see
Figure 6-10). Content can be created, then dragged into rich text editors for place‐
ment.

Figure 6-10. A custom photo gallery block being dragged between paragraphs in Episerv‐
er’s WYSIWYG editor—this is a managed content object, and will be rendered as a
photo gallery during content output

Blocks, widgets, and regions
Blocks or widgets can sometimes be stacked into structures we’ll call lists. These lists
hold one or more elements, which are rendered individually from the top down at
designated locations on a template.

100 | Chapter 6: Content Modeling

Content types might have element lists as attributes, or a template might have
“regions” or “dropzones” into which elements can be added or dropped. These
regions might be content-specific (“Right Sidebar for Content #1234”) or global (the
sitewide footer).

For example, Episerver will allow an attribute type of Content Area (see Figure 7-6 in
Chapter 7). This allows the “stacking” of content elements inside of it. So, an attribute
called Right Sidebar Content might allow editors to add miscellaneous content ele‐
ments, which are then rendered in a specified location on the content type’s template.

Drupal has extensive functionality for “blocks,” which can be added to regions on a
template. Likewise, WordPress offers “widgets” that can be stacked into specific
regions on the template (see Figure 6-11).

Figure 6-11. A list of widgets stacked into a template region called “Sidebar” in Word‐
Press—the widgets can be reordered as desired

Implications for page composition
Both methods of embedding enable a form of dynamic page composition. One imag‐
ines editors as artists, painting on a canvas from a palette of element options.

The idea is seductive. Think back to our Photo Gallery example from earlier—we
vastly increased the utility of this content by turning it into an embeddable object.
Instead of it being a “destination,” it became content that now supports and enriches
other content.

So why shouldn’t we do this for everything? We could create a single master type of
Page, and all other content types could be embeddable types that go into regions on it
—either lists, or rich text.

Systems like this do exist. They often have simple URL-addressable pages that are
nothing but collections of lists or dropzones to which blocks or widgets are added.

Defining a Content Model | 101

Other systems treat pages almost as folders that contain individual content elements
which are assigned to areas on a template—a page is simply a container of individual
content items that are looped over, which each item rendered individually to form a
page.

While this seems ultimately flexible on the surface, it never seems to work as well at a
large scale as one might hope.

First, this paradigm introduces more steps into the editorial process. If you want to
publish a blog post, now you have to create a Page, then find the Blog Post content
type and place it into the page. To get around this, some of these systems implement
templates or even macros that automatically provide commonly used combinations
of page and widgets.

Regardless of how the page started, this model also lets editors have aesthetic control
over the page that they might not have been intended to have. If our macro or tem‐
plate has put a Related Content widget in the sidebar by default, can an editor delete
this?

The fact is that a lot of content was simply designed to be templated. If you have
10,000 technical notes on your website, you likely don’t want editors to have any con‐
trol over presentation. Allowing editors to change the page layout for one of them on
a whim is a governance problem just waiting to happen.

Additionally, embedded content isn’t as easily available as other content, due to the
lack of URL addressability, among other things. What if we wanted to send a link to
our photo gallery? It’s not a page, remember, it’s just embedded in a page. And
remember too that it might be embedded in 100 pages, so which one is the canonical
page for it? You might say that we’ll just put it on one page and indicate that this is the
one and only page on which it appears, but that then calls into question whether it’s a
separate content object at all. When a widget is irrevocably bound to a single con‐
tainer, is it really a widget, or is it just part of the model for that type?

This also complicates APIs and content migration. Content is now buried one or
more levels deep in another construct. The relationship of widgets to regions (and
their ordinal position) and then finally to pages is something that has to be accounted
for whenever manipulating content from code.

Finally, it introduces some interesting logical questions about the relationship
between content and presentation. If an editor drags a particular widget onto a page,
does this widget have anything to do with the content itself, or is it related to the page
on which the content is embedded? Does the News Article object “contain” that widget,
or is the page itself a higher-level object that contains both the News Article and the
widget?

102 | Chapter 6: Content Modeling

A widget that tells me the current temperature might be handy, but does it have any
relationship to the news article on the same page introducing the new CEO? Does it
need to be managed in the same logical “space” as the news article? If I delete the arti‐
cle, what happens to the widget? Does one need to care about or even be aware of the
other? Is their appearance on the same page simply incidental?

Contrast this with a widget that lists additional content about the new CEO. It could
be argued that this has a logical relationship to the news article, so should be some‐
how tied or connected to it. Thus, our Related Content widget is associated with the
content, not the page.

In practice, artisanal page composition is less necessary than you might think, and
not nearly the panacea you might hope. If the idea appeals to you, the correct solu‐
tion is likely to find a system that offers the ability to compose pages on an exception
basis when necessary, but supports solid content modeling and templating as its core,
intended architecture.

Horizontal vs. Vertical Stacking

Web pages naturally flow from top to bottom. There is rarely a
hard limit on the height of a web page, and two decades of experi‐
ence with the Web has taught us that elements—paragraphs,
images, tables, whatever—can be stacked vertically without limit.
Horizontal stacking isn’t the same. Horizontally stacked elements
usually need to be grouped in a container where the width or num‐
ber of elements is constrained—“half width” or “3-wide” or “60/40.”
The width of the elements within the container might need to be
specified too—whether they take up one column or two columns,
for example—or else they’ll wrap incorrectly.
As a general rule, vertical stacking is simple and free from compli‐
cation. Horizontal stacking is much less so.

Relationships
Modeling content is of two basic varieties:

Discrete
Describing a type of content internal to itself

Relational
Describing a type of content by how it relates to other content

In our Employee Bio example, we have both varieties. Attributes like First Name and
Last Name are specific to a single content object only. The fact that one person’s name

Relationships | 103

is “Joe Smith” has no bearing on any other content. This is the discrete, self-contained
data of that content.

However, the Manager attribute is a reference to another content object, which means
it is relational, or it defines how a content object “relates” to another content object.

Figure 6-12 shows an example of relational modeling in Episerver, where a property
entitled “Link to Page” allows editors to select another page in the CMS as its target.

Figure 6-12. An attribute can be a reference to another content object

Relational content modeling opens up a number of new challenges. Considering the
Manager attribute again:

• You must ensure that the content object to which this attribute refers is another
Employee Bio, and not, for example, the “Contact Us” page.

• Can an employee have more than one manager? This is an edge case, certainly,
but if it happens, you either have to ignore it or modify the model to accommo‐
date it. This means your Manager attribute must be able to store multiple values.

• How do you ensure the reference is valid? What if someone deletes the Manager
object? Are you prepared to handle an employee with no manager?

• How do you allow editors to work with this attribute? Since this is a reference,
your editors will likely need to go search for another employee to specify, which
can make for a complicated interface.

Highly relational content models can get very complicated and are enormously
dependent on the capabilities of the CMS. The range of capabilities in this regard is
wide. A small subset of CMSs handle relational modeling well, and the relational
sophistication of your planned content model can and should have a significant influ‐
ence on your CMS selection.

We will discuss relational modeling more extensively in Chapter 7.

Content Composition
Some content isn’t simple, and is best modeled as a group of content objects working
together in a structure. Thus, a logical piece of content is composed of multiple con‐
tent objects.

104 | Chapter 6: Content Modeling

A classic example might be a magazine. We have a content type for Issue, but this is
composed of the following:

• One featured Article
• Multiple other Articles

We might support this by giving our Issue content type these attributes:

• Featured Article (reference to an Article)
• Articles (reference to multiple Articles)

We can create our Articles as their own content objects, and an Issue is essentially just
a collection (an “aggregation”) of Articles in a specific structure. Our Issue has very
little information of its own (it might have a single attribute for Published Date, for
example, and maybe one more for Cover Image), and exists solely to organize multi‐
ple Articles into a larger whole.

This is a contrived example. A much more common example requires aggregating
content in a “geographic” structure, which we’ll talk about in Chapter 7.

Content Model Manageability
Any content model is a balancing act between complexity, flexibility, and complete‐
ness. You might be tempted to account for every possible situation, but this will
almost always have the side effect of limiting flexibility or increasing complexity.

For example, when working with content types, editors need to be able to understand
the different types available, how they differ, and when to use one over another. In
some situations, it might make sense to combine two types for the sake of simplicity
and just account for the differences in presentation.

Could a Page content type double as a Blog Post? If a Page also has fields for Sum‐
mary, Author, and Published Date, is it easier to simply display those in the template
only when they’re filled in? If a Page is created within a Blog Post content type, then
can we treat that Page as a Blog Post and give editors one less type to have to under‐
stand?

Whether this makes things easier or harder depends on the situation and the editors.
If they work with the CMS often to create very demanding content, then they might
be well served with two separate types. If they create content so rarely that they
almost have to be retrained each time, then a single type might be the way to go.

If you don’t have the ability to inherit content types, then it’s to your benefit to limit
content types as much as is reasonable. Having a content model with 50 different

Content Model Manageability | 105

types becomes very hard to manage when someone wants to make model-wide
changes.

It’s hard to place general rules around manageability, but limiting content types to the
bare minimum needed is usually a good idea. More types means more training for
editors, more templating, and an increased likelihood of having to switch types after
creation (which, as we saw earlier, is problematic).

The best you can do is to keep manageability in mind when creating or adjusting
your model. Examine every request and requirement from the perspective of how this
will affect the model over time. Almost every change will increase the complexity of
the model, and is the benefit worth it?

Perspective: Content Modeling Is an Editorial Issue

by Sara Wachter-Boettcher

My love for content modeling started back in 2009, when I was
leading the content strategy practice at an agency working on
Arizona’s state-run tourism website. Only, I didn’t know to call
it that at first. I just wanted the content to work for real people.

If you were planning to go hiking on your visit to Flagstaff, you
wouldn’t want to just learn about hiking or just learn about
Flagstaff. You’d want to learn about hiking near Flagstaff. If you
were spending a weekend in Tucson, you wouldn’t want to wade through thousands
of event listings from across the state. You’d want to know what was happening where
and when you’d be visiting. But none of that was possible. Despite having thousands
of articles, guides, listings, events, and other kinds of content—much of that content
really good—everything on the site was disconnected, each item an island of informa‐
tion.

Before this project, I hadn’t been too involved in the content management systems
powering our sites. Sure, I knew how to use them—I knew how to format text prop‐
erly and strip out any cruft; I knew how to handle versioning and talk about work‐
flow. But deciding how to structure and map out the CMS itself? I’d always assumed
that was our developers’ job.

What I realized as I sifted through all that content, clustering like items and drawing
arrows and establishing taxonomies, is that no developer can create the best content
models alone. It takes editorial skill to recognize patterns and ensure content chunks
are meaningful, not just modular. It takes UX expertise to identify which connections
between content will be most valuable to users, and when. And it takes a strategic lens
to decide which content structures and relationships will help your organization reach
its goals.

106 | Chapter 6: Content Modeling

Today, I see content modeling as a core skillset for all kinds of practitioners. Because
the more a team thinks deeply about what its content is made of, and why, the better
decisions we’ll make at every stage: design, CMS development, migration, and
beyond.

Sara Wachter-Boettcher runs a content strategy consultancy and is the author of Con‐
tent Everywhere (Rosenfeld Media) and the coauthor of Design for Real Life (A Book
Apart).

A Summary of Content Modeling Features
Since this chapter has been largely about the theory of content modeling, it can be
hard to draw out specific features or methods of system evaluation. Here’s a list of
questions to ask with regard to a system’s content modeling features:

• What is the built-in or default content model? How closely does this match your
requirements?

• To what extent can this model be customized?
• Does the system allow multiple types?
• Does the system allow content type inheritance? Does it allow multiple inheri‐

tance?
• Does the system allow for the datatyping of attributes?
• What datatypes are available to add attributes to types?
• What value, pattern, and custom validation methods are available?
• Can you add custom datatypes to the system based on your specific require‐

ments?
• Does the system allow multiple values for attributes?
• What editorial interfaces are available for each datatype?
• Does the system allow an attribute to be a reference to another content object?

Can the reference be to multiple objects? Can it be limited to only those objects
of a certain type?

• What options are available for content embedding and page composition?
• Does the system allow for permissions based on types?
• Does the system allow for templating based on types?
• How close can this system get to the (usually unreachable) ideal of a custom rela‐

tional database?

A Summary of Content Modeling Features | 107

A Note About Feature Lists
We discussed this in Chapter 5, but it bears repeating:

When evaluating this list (and any other feature list in this book), please remember
that the objective is not simply to check every box on the list, for three reasons:

• It’s doubtful that any system will provide every feature.
• It’s not only important that the feature exists, but also how well it works.
• Some features aren’t binary; rather, they exist on a range of functionality. Note

that several questions in the preceding list relate to degree or extent of availabil‐
ity. These will not have yes/no answers.

Finally, always remember that features only have value in comparison to your own
requirements. As such, evaluate them in that context only.

108 | Chapter 6: Content Modeling

1 Why Information Grows: The Evolution of Order, from Atoms to Economies by César Hidalgo (Basic Books).

CHAPTER 7

Content Aggregation

In his book Why Information Grows: The Evolution of Order, from Atoms to Econo‐
mies,1 César Hidalgo discusses a super car: the Bugatti Veyron.

The author calculates that the Bugatti—which has a sticker price of $2.5 million—is
worth $600 per pound. This is quite a bit more than the $10 per pound of a Hyundai
or even the $60 per pound of a BMW.

Now imagine that you ran the Bugatti into a wall at 100 mph. Assuming you survived
the crash and then gathered up every last piece of the car, it would still weigh the
same as the instant before it hit the wall. But it wouldn’t be worth nearly $600 per
pound any longer. It’s the same steel, rubber, and glass it was, it’s just not in the same
form.

Here’s the key:
The dollar value of the car evaporated in the seconds it took you to crash it against that
wall, but its weight did not. So where did the value go? The car’s dollar value evapora‐
ted in the crash not because the crash destroyed the atoms that made up the Bugatti
but because the crash changed the way in which these parts were arranged. As the parts
that made the Bugatti were pulled apart and twisted, the information that was embod‐
ied in the Bugatti was largely destroyed.

The last sentence is key: the value of the Bugatti wasn’t in the raw materials of the car,
but rather in how these materials were arranged and ordered. Value is created by
putting smaller pieces together to work as a whole. The selection, combination, and
ordering of the parts is more valuable than the parts themselves.

109

http://www.amazon.com/Why-Information-Grows-Evolution-Economies/dp/0465048994

Likewise, content often becomes more valuable when combined with other content.
These combinations are called aggregations. In some senses, an aggregation of con‐
tent becomes content itself. The “content,” in this case, is in the selection, combina‐
tion, and ordering of smaller content items to come together to form a new whole.

Content aggregation is the ability of a CMS to group content together. Note that we’re
not being too specific here—there are many types of aggregations and many ways a
CMS might accomplish this. Furthermore, this ability is so obvious as to be taken for
granted. We tend to simply assume every CMS does this to whatever degree we need.

For example:

• Displaying navigation links is aggregation. At some point, you need to tell your
CMS to display a series of pages in a specific order to form the top menu of every
page (a static aggregation that is manually ordered).

• Index pages are aggregations. The page that lists your latest press releases
(Figure 7-1) is often simply a canned search of a specific content type, limited to
the top 10 or so, and displayed in descending order chronologically (a dynamic
aggregation with derived ordering).

• Search is aggregation. When a user enters a search term and gets results back,
this is a grouping of specific content (a dynamic, variable aggregation).

Figure 7-1. An aggregation of news releases on IBM’s website as of December 2014

110 | Chapter 7: Content Aggregation

Aggregation is such a core part of most systems that it’s assumed and often isn’t even
identified as a separate subsystem or discipline. But the range of functionality in this
regard is wide, and breakdowns in this area are enormously frustrating.

Few things are more annoying than having the content you want, but being unable to
retrieve it in the format you need. I’ve been in numerous situations working with
multiple systems where editors threw up their hands in frustration and said, “All I
want is to make this content appear in that place! Why is this so hard!?”

The answer to that question lies in a complex intersection of content shape, aggrega‐
tion functionality, and usability.

The Shape of Content
The shape of content refers to the general characteristics of a content model when
taken in aggregate and when considered against the usage patterns of your content
consumers. Different usage patterns and models result in clear differences between
content and its aggregation requirements. Content may be:

Serial
This type of content is organized in a serial “line,” ordered by some parameter.
An obvious example is a blog, which is a reverse-chronological aggregation of
posts. Very similar to that are social media updates—a tweet stream, for instance
—or a news feed. This content doesn’t need to be organized in any larger con‐
struct beyond where it falls in chronological order relative to other content. A
glossary might be considered serial as well—it’s a simple list of terms, ordered
alphabetically by title.

Hierarchical
This type of content is organized into a tree. There is a root content object in the
tree that has multiple children, each of which may itself have one or more chil‐
dren, and so on. Sibling content items (those items under the same parent) can
have an arbitrary order. Trees can be broad (lots of children under each parent)
or narrow (fewer children) and shallow (fewer levels) or deep (more levels). An
example of this is the core pages of many simple informational websites. Websites
are generally organized into trees—there is primary navigation (Products, About
Us, Contact Us), which leads to secondary navigation (Product A, Product B,
etc.). Navigational aggregations for these sites can often be derived from the posi‐
tion of content objects in the tree.

The Shape of Content | 111

2 “Tabular” meaning having the characteristics of tables, not tabs.

Tabular2

This type of content has a clearly defined structure of a single, dominant type,
and is usually optimized for searching, not browsing. Imagine a large Excel
spreadsheet with labeled header columns and thousands of rows. An example
would be a company locations database. There might be 1,000 locations, all
clearly organized into columns (address, city, state, phone number, hours, etc.).
Users are not going to browse this information. Rather, they search it based on
parameters.

Network
This type of content has no larger structure beyond the links between individual
content objects. All content is equal, flat, and unordered in relation to other con‐
tent, with nothing but links between the content to tie it together. An obvious
example of this is a wiki. Wikis have no structure (some allow hierarchical orga‐
nization of pages, but most do not), and the entire body of content is held
together only by the links between pages. A social network—if managed as con‐
tent—would be another example. Content (“people”) is equal in the network, and
arbitrarily connected (“friends”) with other content.

Relational
This type of content has a tightly defined structural relationship between multiple
highly structured content types, much like a typical relational database. The
Internet Movie Database, for example, has Movies, which have one or more
Actors, zero or more Sequels, zero or more Trivia Items, etc. These relationships
are enforced—for instance, you cannot add a Trivia Item for a Movie that doesn’t
exist. A Trivia Item is required to be linked to a Movie, and cannot be added until
the Movie exists.

Different CMSs have different levels of ability to handle the different shapes of con‐
tent. For example:

• WordPress is well suited to managing serial content (blog posts), but you couldn’t
easily run a highly hierarchical help topic database with it.

• MediaWiki is designed to handle networked content, but it would be extremely
inefficient to try to run a blog from it.

• Webnodes is perfect for defining and managing tabular and relational content.
Interestingly, this also gives it the ability to manage serial content well (a blog is
essentially a database table ordered by a date field), but it wouldn’t make sense to

112 | Chapter 7: Content Aggregation

highly structure a networked wiki with it. Figure 7-2 shows an example of a com‐
plicated relational content model implemented in Webnodes.

Figure 7-2. A complex relational content model as supported by Webnodes

In our examples, we simplified by pigeonholing websites to one shape, but the truth is
that different sections of the same website will model content differently. The average
corporate website might have many marketing pages organized into a tree (hierarchi‐
cal), a dealer locator (tabular), and a news feed (serial). The content managed in each
section has a different shape.

Additionally, when we say a particular system is not suited to a particular shape of
content, what we’re saying is that this system is not best suited to work with that shape
of content. It’s important to note that almost any system can be contorted to work
with any type of content, though this either requires heroic development efforts or
results in a very complex and confusing editor experience (often both).

Most mainstream CMSs are pursuing the middle of the road. They are usually partic‐
ularly well suited to one or more of the listed shapes, but have some ability to handle
any of them.

The Shape of Content | 113

Content Geography
Most every system has some core method of organizing content. Very rarely do edi‐
tors just throw content into a big bucket—normally, content is created somewhere,
which means it exists in a location relative to other content.

Much like geography refers to the spatial relationships of countries, content geogra‐
phy refers to the spatial nature of content—where it exists “in space,” or how it is
organized relative to the content “around” it.

The quotes in that last paragraph underscore the idea that we’re trying to place some
physical characteristic on an abstract concept. Geographies attempt to treat content as
a physical thing that exists in some location in a theoretical space representing the
domain of all of your content.

The most common example of a geography is a “content tree” where content is organ‐
ized as a parent/child structure (see Figure 7-3). All content objects can be the parent
of one or more other content objects. Additionally, each object has its own parent and
siblings (unless it’s the root object, which means it’s at the very top of the tree).

Figure 7-3. A typical content tree in an eZ Platform–powered website

In this sense, all content is created in some location. You add content as a child of
some other content object, and because of this, it instantly has relationships with
multiple other content objects. Depending on where it’s placed, it might come into
the world with siblings and (eventually) might have children, grandchildren, etc.

This content is hierarchical, and this geography allows us to traverse the tree and
make decisions based on what we find. For instance, we may form our top navigation
automatically from the children of the root object, or we may list the children of a
certain page as navigation options when displaying that page to a user.

114 | Chapter 7: Content Aggregation

In a content tree geography, content is often discussed in terms of “levels.” The most
important pages in your site are top-level pages or first-level pages. Under that we
have second-level pages, then third-level pages.

The Global Tree

A hierarchical tree is a natural way of organizing information for
humans, as it tends to mirror how we think about and work with
information—so much so that some systems use the tree globally,
not just for content. These systems store everything in a tree, with
the content of the website just being one node. Users, groups, tem‐
plates, settings, even sometimes down to the button labels on rich
text editors—it’s all stored as objects in a tree, and all data is
accessed via the same API. See Figure 7-4 for an example from Site‐
core.

Figure 7-4. An example of a global tree from Sitecore—this system stores almost every bit
of data in a tree structure, including templates and system settings

Less common is the folder structure of organizing content. Systems using this model
have “folders” into which content can be placed, similar to files in an operating sys‐
tem.

This might seem very similar to the content tree in that it’s hierarchical, but there’s an
important difference: the folder is not itself a content object. It’s simply an administra‐
tive structure for editors to use to organize their content. Content objects are not chil‐
dren of other content objects, nor do they have children. Instead, we have folders and
subfolders in which content objects are placed.

While this structure is generally clear for editors—we’ve been using files and folders
for years in every operating system—it can be limiting in practice. The inability to
directly relate content by parentage removes a valuable tool to aggregate content.

Content Geography | 115

3 This could almost be viewed as the absence of any geography, since searching by type doesn’t imply any spatial
relationship to content. Nevertheless, it’s quite common as a primary method of organization.

If we can’t have children of a page, then we have to find another way to tie these pages
together. The only spatial relationship content in these system exhibits is a sibling
relationship with content in the same folder. (What makes this more complicated is
that folders are often treated as simple buckets that don’t allow arbitrary ordering of
the content within them—more on that later in this chapter.)

Other systems might depend on a simple content type segregation model, where the
content type of a particular piece of content is the major geography.3 You can easily
subdivide the entire domain of content by content type and perhaps some other
parameters, but sometimes not much else. We can easily see all the News Releases, for
example, but we don’t create content in any specific location, and it doesn’t exist with
a spatial relationship to any other content. Figure 7-5 shows type segregation tools in
Drupal.

Figure 7-5. Listing content by type in Drupal

Like the folder structure, this can limit our options considerably, but it can be appro‐
priate in many cases. For instance, if your website is a high-volume blog, then your
editors might not need to “place” their content anywhere. They might just need to
create a Blog Post or a Movie Review and let the system itself sort out how to organize
it. In these situations, editors are creating serial, isolated content that doesn’t need any
spatial relationships (or, rather, its spatial relationship to other content is automati‐
cally derived by date).

It’s important to understand that a content geography is simply the main organization
method a system exhibits. Systems usually offer multiple ways to aggregate content,

116 | Chapter 7: Content Aggregation

4 It was Timothy Dalton, for the record. This has been definitively and conclusively settled for all eternity and is
now simply a nonnegotiable fact. If anyone disagrees, show them this footnote and back away slowly.

so when the core geography falls short there are typically multiple paths to accom‐
plish the desired aggregation.

Geography Bias
As I’ve already mentioned, I was a huge James Bond fan in college. In the early days of
the Internet, I spent hours on the alt.fan.james-bond Usenet group debating one of the
most common topics for Bond fans: who was the best actor to play the role?4 These
debates often boiled down to this point: the first actor you ever saw play 007 is proba‐
bly your favorite.

The same is true of geographies. The first geography style you worked with often
imprints itself as the “right” way to organize content. This is important because the
geography of a system is absolutely foundational to how developers and editors work
with it. Geography plays an outsized role in forming a conceptual model of a system
and the content that resides in it.

I’ve spent most of my career working with systems that have strong content trees. As
such, my thought processes about CMSs have evolved around organizing content into
a hierarchy. To this day, Drupal mystifies me, in this respect. I realize it’s immensely
popular and has thousands of adherents, but I struggle with anything that doesn’t
have a content tree at its core. I freely concede this is simply a bias that comes from
the bulk of my professional experience.

Breaking biases like these can be difficult. Because of it, integrators can struggle when
moving from one platform to another. They often try to force-fit the new platform
into the old paradigm with which they’re comfortable, and this rarely works well.

Editorial Limitations on Geography
Having editors intentionally “placing” content in a specific location in a geography
might not be ideal. As we discussed in Chapter 4, there are different ways that editors’
capabilities can be limited.

There are some editors who have limited responsibilities and might only be able to
create certain types of content that can fit into the geography in one tightly controlled
way. In these cases, you can limit them with permissions, but you might instead cre‐
ate a very simple interface for these editors to work with content.

The receptionist who manages the lunch menu on your intranet, for example, might
only see a simple text box that allows him to enter some text for the next day’s menu.

Content Geography | 117

Behind the scenes, this interface places the content in the correct location relative to
the larger geography without the editor being aware of it or being able to affect it in
any way.

Secondary Geographies: Categories, Taxonomies, Tags, Lists,
Collections, and Menus
When we talk about a geography of content, we’re normally talking about the main
way a CMS organizes its content. However, many systems have additional ways of
grouping content, which might be pervasive enough to be considered secondary
geographies.

Many systems are explicitly menued, which means there are menuing subsystems in
which you create organizational structures and assign content to them. Menuing sys‐
tems are generally very practical, in that they have to directly generate an HTML
structure at some point. They’re less about pure content, and more about providing
an interface to generate a specific snippet of HTML. As such, you can assign content
to a menu, but you also usually assign external URLs and sometimes even specify
presentational information, like whether to open the link in a new window or
whether to use an image in place of text. You sometimes even get all the way down to
CSS classes and other details.

Menus are almost always hierarchical. This leads to the sometimes odd situation of
having multiple trees. If your system uses a content tree as its core geography, you
might have menus where relationships are reversed. Object B could be a child of
Object A in the actual content tree, but Object A might be a child of Object B in one
or more menu trees. This can either be handy or confusing, depending on the situa‐
tion.

Some systems have flat structures they call lists or collections. These are just ordered
lists of content which can be used in dozens of ways to aggregate content around a
website. (Of course, a single-level menu, where the top-level items have no children,
will basically accomplish the same thing.)

Categories, taxonomies, and tagging are other popular ways to organize content.
Content objects can be assigned to a category or tag, which gives them some affinity
relationship with other content in that category or tag, much like content in a folder
or child content under a parent. The relationships in these secondary structures don’t
have to bear any resemblance to how content is organized in the primary structure.

Editors might find it easier to organize or relate to content in this way, and there are
numerous ways to use these secondary geographies to display content to the end user.

118 | Chapter 7: Content Aggregation

Is There a Difference Between Categories and Tags?

If you implement both categories and tags in the same website, be
sure that you differentiate the usage clearly. The logical architecture
behind the two methods is the same—content is assigned to a
larger structure (a category or tag) and retrieved by reference to
that structure.
The biggest difference is that categories tend to be hierarchical and
fixed, while tags are flatter and more dynamic. Editors can often
make tags up on the fly, enter them as simple text strings, and gen‐
erally treat them more casually than a rigid category tree.
However, in many cases, editors will confuse categories and tags. I
have yet to see an implementation that used them both effectively,
with a clear differentiation of when one was appropriate rather
than the other. There’s so much functional overlap that there just
aren’t many situations where a website needs both.
In one case, we completed an entire project with both categories
and tags, only to discover that the editors had thought they were
the same thing all along, and didn’t understand why the finished
website had both.

In general, content geographies are administrative concepts only. Visitors to a website
will not usually be aware of the underlying geography. They may be vaguely aware
that pages are ordered hierarchically, or that news items are ordered by date. How‐
ever, at no time will the average website call attention to the content tree (with the
possible exception of a sitemap) or explicitly name pages as “parent” or “child.”

The Tyranny of the Tree
Content trees are very common in CMSs, but they can be problematic when large
portions of functionality are bound to a single tree. In these cases, you can find that
the tree exerts tyrannical control over your content, and simple problems become
harder to resolve.

For instance, in various systems, the following functionality might be in some way
related to where a piece of content resides in the tree:

• Permissions
• Allowed content types
• Workflow
• URL
• Template settings

Content Geography | 119

If there’s only one tree, then the tree can seem “tyrannical,” forcing all this functional‐
ity onto content based solely on its position. For instance, you might group content
into one location in the tree to make assigning permissions easier, but want more
granular control over template selection than the tree position allows.

In these cases, a system needs to allow for settings and configuration to depart from
the tree in some way. Applying this information based on tree position can certainly
be efficient, but it might cross the line into restrictive, and a system needs to allow an
intelligent and intuitive way to override this when necessary.

Additionally, binding navigation to a content object’s position in the tree can become
problematic when the same link needs to appear in two places on the site. If the web‐
site navigation is generated by traversing the tree, you are limited to what is present in
the tree. If content needs to be in two places, how do you handle this?

Thankfully, most systems using a content tree have some mechanism for content to
appear in more than one location. Usually, one of the appearances is designated as the
“main” location, and the second is just a placeholder that references the first. Naviga‐
tion can be handled one of two ways: the second location actually sends the user
“across the tree” to the first location, or it renders the content “in place,” essentially
giving the same content two URLs. In practice, the former option is usually preferred.

When rendering external navigation links (to another website), these usually have to
be represented by a content object. A type named External Url, or something similar,
is modeled to contain the URL to which the editor wants to link. When rendered in
navigation, this object displays a hyperlink off-site.

Aggregation Models: Implicit and Explicit
There are two major models for building aggregations:

• Implicit/internal
• Explicit/external

Content can implicitly be created as part of a larger structure. This is common in the
content tree and type segregation models. When you create the page for Product X
under the Products page, you have created a relationship. Those two pages are inex‐
tricably bound together as parent and child.

Put another way, their relationship is internal (or “implicit”)—each content object
knows where it lives in the structure. The fact that Product X is a child of Products, or
that your Press Release is part of the larger aggregation of all Press Releases, is a char‐
acteristic that is inextricable from the content.

Conversely, an explicit aggregation means the relationship between these two content
objects doesn’t reside in the objects themselves. If we relate two objects in the Main

120 | Chapter 7: Content Aggregation

Menu, the fact that Product X is a child of Products is only true in relationship to the
Main Menu we created. Taken in isolation, the two content objects don’t know any‐
thing about each other or their relationship in this menu. The structure in these cases
is external (or “explicit”). The structure doesn’t exist within the content itself, but
rather in a separate object—the menu. If that menu goes away, so does the relation‐
ship.

One of the benefits of explicitly creating aggregation structures is that content can
take part in more than one structure. You might have a dozen different menus in use
around your site, and the Products page could appear in all of them.

Should Your Aggregation Be a Content Object?
In some cases, your aggregation is really a managed content object with relationships
to other content. However, most systems don’t treat aggregations as core content
objects, which means they’re locked out of a lot of the functionality we consider
inherent in the management of content. Sometimes, turning an aggregation into a
content object is the right way to go.

Consider your team of technical writers. They would like to maintain several lists of
help topics centered around certain subjects—topics about dealing with difficult cus‐
tomers, topics about the phone system, etc. These lists will always be manually cura‐
ted and ordered, and each list should have a title, a few sentences of introductory text,
and a date showing when the list was created and last reviewed.

Clearly, this is less of an aggregation and more of a full-fledged content object. Refer‐
ring back to the concepts discussed in Chapter 6, this situation would call for a new
content type: Topic List. It would have attributes of Title, Introduction, Date Created,
Date Reviewed, and Topics. That last attribute would be a reference to multiple Help
Topic objects from elsewhere in the geography.

By making this aggregation a content object, we gain several inherent features of con‐
tent:

Permissions
We could allow only certain editors to manage a particular Topic List.

Workflow
Changes to a Topic List might have to be approved.

Versioning
We might be able to capture and compare all changes to a particular Topic List.

URL addressability
This aggregation now has a URL from which it can be retrieved (more on this in
the next section).

Aggregation Models: Implicit and Explicit | 121

When modeling content relationally, the line between content objects and content
aggregations blurs because a referential attribute that allows multiple references is a
small aggregation in itself. In these ways, aggregations can be “carried” on the backs of
content objects.

Consider that the composition of an aggregation is really content in itself. A list of
curated content objects, placed in a specific order, fulfills the two tests of content
from Chapter 1: it’s (1) created by editorial process, and (2) intended for human con‐
sumption. Not treating this aggregation as content can lead to problems.

Let’s say your organization is legally required to list hazardous materials used in its
manufacturing process on the company intranet. Someone might accidentally remove
all the items from this list, putting the organization in violation of the law. How did
the editor get permissions to do this? Did this change not trigger an approval? Could
the organization not roll back to a previous version of the list?

Not every aggregation is as critical as this example, but in many cases, aggregations
are not backed by the safeguards associated with other content objects. When plan‐
ning and designing aggregations, your requirements might dictate that they be treated
more like content.

The URL Addressability of Aggregations
In many systems, the only data structures that are assigned URLs are full-fledged
content objects. This means that aggregations like menus, lists, and tags are not URL
addressable—no visitor can type in a URL and view a menu, for instance.

In these cases, aggregations need to be “wrapped” in content objects in order for them
to be displayed. For example, to create a list of content, an editor might have to create
a Page object, then somehow embed this aggregation inside the page. Then, a visitor
isn’t viewing the aggregation so much as viewing the particular content object in
which the aggregation is being displayed. Displaying the aggregation becomes indi‐
rect.

Not all systems work this way, though. Some systems have different mechanisms for
assigning URLs to explicit aggregations and allowing them to be directly displayed as
the target of a URL.

Aggregation Functionality
Content aggregations can have multiple features, the presence or absence of which
will drastically affect an editor’s ability to get the result she wants.

122 | Chapter 7: Content Aggregation

Static Versus Dynamic
A particular aggregation might be static, which means an editor has arbitrarily
selected specific content objects to include in the aggregation, or dynamic, meaning
the content of the aggregation is determined at any particular moment by specified
criteria:

• A static aggregation might be an index of pages from your employee handbook
that new employees should review. In this case, you have specifically found these
pages and included them in this aggregation via editorial process. For a new page
to be on this list, you need to manually include it (see Figure 7-6).

• A dynamic aggregation might simply be a list of all of the pages of the employee
handbook. For a new page to be on this list, it just needs to be added to the
employee handbook. Its appearance on this list is a byproduct of that action. A
dynamic aggregation is essentially a “canned search”—a set of search criteria
which are executed at any moment in time to return matching content.

Figure 7-6. A statically created list of content for an image carousel in Episerver

Dynamic aggregations are often a byproduct of the content geography. In the case of
a content tree, the set of children of a parent page is a dynamic aggregation. With all
such systems, it’s possible to obtain an aggregation of child pages, and a new item will
appear in this aggregation simply by virtue of being created under the parent. This is
no different than a canned search with the criterion that the returned content must be
the children of a particular parent.

Likewise, a dynamic aggregation might be “show me all the News Releases.” In a sys‐
tem relying on type segregation as its core geography, simply adding a new News
Release content object will cause a new item to appear in this aggregation.

Search criteria in dynamic aggregations
When creating a dynamic aggregation, editors will be dependent on the criteria that
the CMS allows them to use to search for content, and the interface that the CMS

Aggregation Functionality | 123

5 The direct exhortation to “externalize memory” came from The Organized Mind by Daniel Levitan (Penguin).
David Allen has talked about the same thing in the discussion of “collection systems” in his book Getting
Things Done (Penguin).

gives them to configure it. They might be able to search by type, by date published, by
author, and perhaps by property value.

When these methods fall short, it can be extremely frustrating. Either the CMS is
deficient, or the editor simply wants to aggregate content using such an esoteric com‐
bination of criteria that no CMS can reasonably be expected to provide that level of
specificity.

For example, suppose your editor wants to display an aggregation of all News Release
objects from 2015 that are categorized under “Africa,” but only when the text doesn’t
contain the phrase “AFRICON 2015” (since the preparations for a particular confer‐
ence in Africa might confuse the results). Also included should be anything that con‐
tains the word “Africa” from any category, and any News Release written by an author
assigned to a location in Africa during 2015.

There may be some CMSs that allow editors to configure this level of specificity from
the interface, but they’re few and far between. In these situations, it’s usually neces‐
sary to have a developer assist by creating a custom aggregation from code.

Supplemental Indexing
I’ve read several books on organization and productivity that have boiled down to the
same advice: externalize memory.5 Write stuff down. This is unglamorous advice, cer‐
tainly, but it’s effective.

In data management, this is the process of “indexing” data. Databases store data in
tables, but provide the ability to index data using other methods of organization to
reduce query times. Just like the index of a book gives you an alternative method of
finding information (as opposed to the table of contents, or just browsing the pages),
an index provides a different and more efficient way of finding specific data in a
larger repository.

In content management, it’s sometimes helpful to create supplemental indexes to
assist in esoteric searching. For instance, in the previous example, a developer could
write some code that executed whenever a News Release was saved. If it matched the
criteria specified, the unique ID of that content object could be added to a text file (or
removed, if it didn’t match). When the aggregation needed to be displayed, the IDs of
the matching content objects would all be in one place.

Yes, this is unglamorous and low-tech, but like writing things down, it’s highly effec‐
tive. When you consider that this aggregation will likely be displayed more often than

124 | Chapter 7: Content Aggregation

any of the content will be created or updated, it becomes obvious that enduring com‐
putational complexity at those times is much more efficient.

Perhaps if the CMS allows searching by criteria, the developer could add a hidden
true/false attribute to the content type: Africa Related. This attribute could be
searched, but not set by an editor. When saving the content, the content could be
evaluated by code and this attribute set to true or false. Then the editor could perform
a simple search on that attribute and trust that it would only be set to true if the con‐
tent matched the criteria.

This surfacing of deeper information into more consumable structures (“externalizing
memory”) is an acceptable strategy to circumvent aggregation criteria limitations and
reduce real-time computational overhead.

Variable Versus Fixed
A subset of dynamic aggregations are those that can vary based on environmental
variables. Even if the domain of content doesn’t change and no content is added or
altered, what appears in a dynamic aggregation might be different from day to day, or
user to user.

Search is a classic example of a dynamic, variable aggregation. What is displayed in a
search results page depends primarily on user input—what the user searches for. You
may specify some other criteria, such as what content is searched and how the con‐
tent is weighted or ordered, but a search is still created in real time based on user
input.

Other aggregations might also be based on user behavior. For example, a sidebar
widget displaying Recommended Articles might examine the content consumed by
that visitor during the current session to determine similar content of interest.

Aggregations might be based on other variables, too—a “This Day in History” sidebar
listing events, for example, clearly relies on the current date to aggregate its contents.
Likewise, a list of “Events Near You” relies on a geolocation of the visitor’s latitude
and longitude.

Manual Ordering Versus Derived Ordering
Once we have content in our list, how is it ordered? What appears first, second, third,
and so on? In some cases, we need to manually set this order. In other cases, we need
or want the order to be derived from some other criteria possessed by the content
itself:

• In the case of our employee handbook, if we were creating a curated guide of
pages that new employees should read, then in addition to manually selecting
those pages, we’d likely want to arbitrarily decide the order in which they appear.

Aggregation Functionality | 125

We might want more foundational topics to appear first, with more specific top‐
ics appearing further down the list.

• If we had a list of Recently Updated Handbook Topics, then in addition to this
list being dynamic (essentially a search based on the date the content was
changed), we would want this content ordered reverse-chronologically, so the
most recently updated topics appeared first. We would simply derive the search
ordering by date.

It’s obvious from our examples that the characteristics of static vs. dynamic and man‐
ual ordering vs. derived ordering often go hand in hand. It’s relatively rare (though
not impossible) to find an arbitrary aggregation that should have derived ordering.
However, in most cases, if editors are manually aggregating content they also want the
ability to manually order it (Figure 7-7).

Figure 7-7. Manually reordering a menu in Drupal

The opposite scenario—a dynamic aggregation that is manually ordered—is logically
impossible. This gets a little abstract, but if an aggregation is dynamic, then its con‐
tents are not known at creation time (indeed, you’re not building an aggregation as
much as simply configuring search parameters), so there’s no way this aggregation
can be manually ordered. You can’t manually order a group of things if the contents
are unknown.

Manual ordering of dynamic aggregations can be approximated by “weighting” or
“sort indexing,” whereby content type has a property specifically designed to be used
in sorting.

This works in most cases, but it can be quite loose. If one page has a sort index of 2
and another has an index of 4, then there’s nothing stopping an editor from inserting
something at index 3. Indeed, in many cases this is what the editor wants to do, but in
other cases editors might do this in ignorance of the consequences (remember,
they’re editing the content itself, not the content’s inclusion in the larger aggregation
—they may not even be aware of the larger aggregation).

126 | Chapter 7: Content Aggregation

Furthermore, to allow this type of ordering, you need to have a different sort index for
every single dynamic aggregation in which the content might appear. You would need
some way to say, “Weight this result by X when Bob searches for party, but weight it at
Y when Alice searches for gathering.”

Obviously, this is nigh impossible. Dynamic aggregations, by definition, can be cre‐
ated to execute arbitrary searches, so there’s no way to speculate on the sum total of
all aggregations in which a content object might appear, nor is it possible to speculate
on the other content in any particular aggregation, so as to manually tune a sort
index.

Suffice it to say that in very few cases is it possible to manually order a dynamic
aggregation of content.

Lack of the ability to arbitrarily order content is one of the limita‐
tions of aggregation using categories or tags. It’s normally not pos‐
sible to assign content to a category or tag in a specific order.
Content aggregated by these methods is essentially held in a big
bucket, which can be dynamically ordered on retrieval.

Type Limitations
It’s not uncommon to only allow certain content types in specific aggregations. If the
aggregation is dynamic and we specify the type in our search criteria (“show me all
the News Releases”), then this is natural. However, in other situations, we might want
to limit types because the content has to conform to a specific format in order to be
used in the output.

For instance, consider the image carousel frame depicted in Figure 7-8. This is one
frame of a multiframe gallery, powered by an aggregation (a flat list or collection) of
multiple content objects. This list is manually created and ordered.

Figure 7-8. An image carousel frame—the image carousel itself is an aggregation that
depends on all its content being of a specific type.

Aggregation Functionality | 127

To render correctly, every item in this aggregation must have:

• A title
• A short summary
• An image
• Some link text (the “Read the Article” text)
• A permanent URL (to route visitors to when they click on the link text)

Only content conforming to this pattern can be included in this aggregation. This
means, for example, that an Employee Bio is out, because it doesn’t have a summary.

Since this aggregation is most likely static (image carousels are always curated lists of
content), then we need a way to limit editors to only select content that is of the type
we need. If we can’t limit by type, then we run the risk of our image carousel breaking
if it encounters content not of the type it needs.

A smart template developer will account for this and simply ignore and skip over
content that doesn’t work. This prevents errors, but will likely confuse an editor who
doesn’t understand the type limitations and might result in a panicked phone call:
“My new image isn’t appearing in the front page carousel!”

These limitations are not uncommon in content tree geographies. It’s quite common
to be able to specify the type of content that can be created as a child of other content.
For example, we might be able to specify that a Comment content type can only be
created as a child of a Blog Post content type, and the inverse—Blog Posts can only
accept children that are Comments.

Quantity Limitations
This is less common, but some aggregations can store more content than others, and
some systems allow you to require a certain number of content objects, or prevent
you from going over a maximum.

Consider our image carousel—it might need at least two items (or else it’s not a car‐
ousel) and be limited to a maximum of five (or else the pager formatting will break).
It will be helpful if the interface can limit editors to adding items only within those
boundaries.

Permissions and Publication Status Filters
In one sense, an aggregation—be it static or dynamic—should be a “potential” list of
content. Every aggregation on a site should be dynamically filtered for both the cur‐
rent visitor and the publication status of the content in it.

128 | Chapter 7: Content Aggregation

6 And I hope it’s obvious by this point that a content tree geography is one big, hierarchical content aggregation.
It just happens to be the core aggregation for many CMSs.

If you manually create an aggregation with ten items, but the current visitor only has
permission to view three of them, what happens? Ideally that list should be dynami‐
cally filtered to remove the seven items that shouldn’t be viewed. The same is true
with publication status, and specifically start and end publish dates. If the current
date is prior to the start date of the current (or after the end date), then it shouldn’t be
included.

What this means is that an aggregation—even a static one—might show different
content for different visitors, and under certain conditions some visitors might not see
any content at all. This is an edge case that your template developer should be aware
of and will need to account for.

Flat Versus Hierarchical
Many aggregations are simply flat—our list of employee handbook pages, for exam‐
ple, or our image carousel. But other aggregations are often hierarchical structures of
content.

In these cases, we have multiple flat aggregations with relationships to each other. A
hierarchical list is basically multiple flat lists nested in one another. The top level is
one flat list, and each subsequent level can either be a single content object or another
flat list, and so on all the way down. The only difference (and it’s an important one) is
that these flat aggregations are aware of each other—any one of them knows that it
has children, or a parent.

The main menu for a website is a clear example. Websites often have an overhead
menu bar that either contains drop-down submenus for second-level pages, or secon‐
dary navigation that appears in the sidebar menu. 6

Interstitial Aggregations
In some situations, the inclusion of content in an aggregation requires additional
information to make sense. In these cases, the inclusion of content becomes a content
object in itself.

For example, let’s say we’re aggregating a group of Employee Bio content objects to
represent the team planning the company Christmas party. To do this, we will create a
static aggregation of content.

However, in addition to the simple inclusion in this aggregation, we want to indicate
the role each employee plays in the group represented by the aggregation. So, in the
case of Mary Jones, we want to indicate that she is the Committee Chair. Mary is

Aggregation Functionality | 129

actually the receptionist at the company, and this is the title modeled into her
Employee Bio object.

The title of Committee Chair only makes sense relative to her inclusion in this aggre‐
gation, and nowhere else. Therefore, this attribute is neither on the aggregation nor
on the Employee Bio. As Figure 7-9 demonstrates, this attribute rightfully belongs on
the attachment point between the two; it describes Mary’s assignment to this commit‐
tee.

Figure 7-9. The title “Committee Chair” belongs to neither Mary nor the committee;
rather, it correctly belongs to the intersection between the two

In this sense, her inclusion in this aggregation is a content object in itself, and our
committee is really an aggregation of Committee Assignment content objects, which
are modeled to have a Title and a reference to an Employee Bio. The Employee Bio
object is included in the aggregation “through” a Committee Assignment object, for
which we need a new content type.

Now, clearly, this gets complicated quickly, and this isn’t something you would do for
a one-off situation. But if situations like this are part of your requirements, then mod‐
eling an aggregation assignment as a content type by itself can allow you to model the
relationships.

By Configuration or by Code
As we briefly discussed in Chapter 2, certain things in a CMS environment can be
accomplished by non-technical editors working from the interface, and other tasks
need to be handled by developers working with the templating or the core code of the
system.

Aggregations are no different. As a general rule, developers can aggregate content any
which way the API allows—they have complete freedom. A subset of these capabili‐
ties are provided to editors to create and display aggregations as part of content cre‐
ation. How big this overlap is depends highly on the system, and partially on the
sophistication of your editors.

130 | Chapter 7: Content Aggregation

Aggregations can get complicated. A list of blog posts seems quite simple, but the
number of variables it involves can spiral out of control more quickly than you might
think:

• What content should be included?
• Where should this content be retrieved from?
• How many posts should be included?
• Will the aggregation be subdivided into pages?
• How should the posts be ordered? Should there be controls for visitors to order

by a different criterion?
• Should the posts come from one category? From one tag? From more than one

tag?
• Should they be filtered for permissions?
• Should they be filtered by date?
• Are there any other criteria that they should be filtered for?

These variables are usually quite simple for a developer to code, but they get very
complicated for an editor to configure via an interface.

The Drupal Views module provides a wonderful example of this basic complexity.
Views is a module that allows editors to create dynamic aggregations of content by
configuring search parameters and formatting information. It provides an enormous
number of options in order to provide editors with extreme flexibility.

Views has been developed over many years, and the interface has been through sev‐
eral rewrites with the goal of making it as simple and usable as possible. However,
complexity remains. There’s simply a basic, unresolvable level of complexity that goes
with the flexibility that Views offers. Fisher-Price doesn’t make a “Nuclear Fission
Playset” for the same reason—all the bright primary colors in the world aren’t going
to make splitting the atom any less complicated.

Consider the interface presented in Figure 7-10. You could very easily spend an entire
day training editors on just the functionality that Views offers.

By Configuration or by Code | 131

Figure 7-10. Drupal Views module configuration—note that many of the buttons and
hyperlinks hide entirely different subinterfaces for those particular aspects of the aggre‐
gation

Developers have it easier, since code is more succinct and exact, and they’re more
accustomed to thinking abstractly about information concepts and codifying those
abstractions. That said, the quality of the APIs provided varies greatly. Some are ele‐
gant, succinct, and comprehensive, while others are awkward, verbose, and have frus‐
trating gaps that prevent even a developer from aggregating the desired content in the
desired format.

132 | Chapter 7: Content Aggregation

Training and Repetition

They say that practice makes perfect, and the same is true of con‐
tent editing. Editors will remember things they do often, and forget
things they do seldom. Editing content is something they do often.
Creating content aggregations is generally done much less fre‐
quently.
This means that no matter how well they were trained originally,
editors will tend to forget those seldom-used features that require
intricate functional knowledge, and content aggregation configura‐
tion clearly fits this description.
Consequently, a system designed to give editors control over aggre‐
gated content is often more effective at generating a support call
every time an editor tries to use it. It’s not uncommon for develop‐
ers to have to configure aggregations for editors, using the inter‐
face, that ironically, was created to allow them to do it without
developers.

A Summary of Content Aggregation Features
Here are some questions to ask about the content aggregation features of any CMS:

• What is the core content geography in use by the system? Does it have a master
aggregation model, into which all content is structured?

• Can parent/child relationships be easily represented?
• What abilities do developers have to aggregate content by code?
• What abilities do editors have to aggregate content by configuration in the inter‐

face?
• What secondary aggregations, such as categories, tags, menus, and lists, are avail‐

able?
• Can editors create static aggregations?
• Are these aggregations flat or hierarchical?
• Can static aggregations be manually ordered?
• Can static aggregations be limited by type?
• Can editors configure dynamic aggregations? Based on what available criteria?

A Summary of Content Aggregation Features | 133

1 It actually wasn’t that simple. They had to individually turn thousands of phone book pages over each other.
That part is boring, but the rest of the video is incredibly entertaining.

CHAPTER 8

Editorial Tools and Workflow

The hosts of the TV show MythBusters did an experiment once where they inter‐
leaved the pages of two phone books. In effect, they set two phone books together,
then pushed them into each other so that their pages alternated, and every page of
one phone book was lying between two pages of the other.1 The only thing holding
the two phone books together was the friction of the pages on one another.

Then they tried to pull the two phone books apart.

They tried pulling with a dozen people, then they dangled a person from one of them,
then they lifted a car off the ground, then they tried to use power equipment in the
shop, then they tried two cars moving in opposite directions. Nothing could pull the
two books apart until they got two World War II–era armored vehicles. The phone
books finally came apart under 8,000 lbs of force.

Do not underestimate friction. It can sneak up on you and bring everything to a
grinding halt.

Your CMS necessarily introduces some degree of editorial friction. To do their jobs,
your editors will have to interact with the CMS, use the tools it offers, and suffer
without the tools it doesn’t. The CMS can either enable them to efficiently breeze
through their work, or introduce friction through poor usability, needless repetition,
error-prone interfaces, and poor conceptual models.

The capabilities of the CMS that editors use to perform the editorial process are col‐
lectively known as editorial tools or editorial workflow (literally meaning “flow of

135

https://www.youtube.com/watch?v=QMW_uYWwHWQ

work,” rather than workflow as a specific CMS concept, which we’ll discuss further
later in this chapter).

This is really the “management” of content management systems. These are the tools
that increase editors’ ability to create better content and gain more control over the
content under their care. This is the side of the CMS that editors are going to use, day
in and day out.

This is a critical area of functionality, because poor tools and workflow can cripple
editors and destroy morale. Sadly, editorial usability is one area of CMS development
that gets skipped over too often. As we’ve discussed, CMSs are created by developers,
but they’re often also created for developers, first and only. A developer understands
things differently than the average content editor, and when designing editorial inter‐
faces and tools, developers will often take leaps and liberties that make sense to them,
but not necessarily to people with other perspectives.

With commercial systems and larger open source systems, these usability shortcom‐
ings are corrected due to market pressures and large editorial usage. However, in
smaller open source systems that don’t have to collect a license fee and might not have
a large editor community, editorial usability problems can persist for years without
correction.

While editorial friction directly impedes editor productivity in the short term, the
more damaging aspect is the chronic drag it has on morale in the long term. Many an
editorial team has grown increasingly frustrated and resentful over time with a poorly
architected or implemented CMS. More than once, I’ve encountered teams that were
fraying at the edges and losing staff because they were tired of the extra workload
imposed on them by the system they were forced to use.

Solid, well-implemented editorial tools enhance the editorial process. Poor or non‐
existent tools will destroy it over time. At an absolute minimum, a CMS needs to stay
out of the way and not impose any friction beyond what’s absolutely necessary.

The Content Lifecycle
From the moment it’s conceived to the moment it’s irrevocably deleted, content goes
through multiple stages of “life.” The stage where it’s actually published on a website
and can be consumed by a visitor is just one among many (and might sometimes be
quite short—a news release announcing an event might be created then deleted a
week later).

These stages are collectively called the “lifecycle” of content. There is no universally
accepted definition of the exact stages and their order, but I’ll try to present a defini‐
tion here that encompasses many of the commonly accepted stages.

136 | Chapter 8: Editorial Tools and Workflow

Not represented here is the informal “Conception” phase of the
content lifecycle, where someone thinks up an idea for new con‐
tent, tosses the idea around with colleagues, and maybe starts writ‐
ing something in Microsoft Word or Google Docs. We’re skipping
this and only accounting for what happens inside the CMS itself.

The content lifecycle can be described as having the following stages:

Create
Content is initiated in the CMS. It is not complete, but exists as a managed con‐
tent object. It is not visible to the content consumer.

Edit and Collaborate
Content is actively edited and/or collaborated on by one or more editors. Con‐
tent is still not visible.

Submit and Approve
Content is created and edited, and has been submitted for one or more approvals.
Content is still not visible.

Publish
Content has been approved and is published on the website. Content in this state
is visible to the content consumer.

Archive
Content is removed from public access, but not deleted. It is usually no longer
visible.

Delete
Content is irreversibly deleted from the CMS.

Some of these stages are iterative and may apply simultaneously to different versions
of the same content.

For example, a piece of content may be published for some time, then need to be
changed. At this time (and depending on the CMS), a new version is created as a draft
(Edit and Collaborate), is submitted for approval (Submit and Approve), and then is
finally Published, which causes the previous version to Archive. There are now two
versions of this content, in different stages of their lifecycles—one is archived, the
other is published.

This is not the only way the content lifecycle can be described, and the language used
depends highly on the perspective and professional role of the observer. Marketers,
for instance, would tend to describe content in terms of “creating, distributing, and
analyzing,” without getting into the nitty-gritty of editing, approval, and archiving
that a content manager is concerned with.

The Content Lifecycle | 137

2 On LinkedIn, a group of content managers attempted to define “archiving.” The range of responses was con‐
siderable, and they were collected in “Perspectives On What ‘Archiving’ Means in Content Management”.

The Archive stage is particularly nebulous, with very few practitioners completely
agreeing on its definition. For some, to archive content just means to make it not visi‐
ble to the end consumer, without deleting it. For others, it means moving it “some‐
where else” in the CMS, out of the way of the non-archived content, but perhaps still
leaving it accessible to visitors via a different method. For others, it may mean mov‐
ing it to different storage—even into offline archival storage media.2

Regardless of the particular stages of the lifecycle, a good CMS provides functionality
across the entire scope of a content object’s existence in your website.

One inevitable constant of the content lifecycle is that it’s circular.
Search Google Images for “content lifecycle,” and you’re invariably
presented with a browser full of circles. While somewhat amusing,
this also demonstrates the circular nature of content. It tends to be
created, evaluated, edited, and republished in a cycle, over and
over.

The Editing Interface
The first job of an editing environment is to be usable and to provide content editors
with a competent and functional interface in which to create and edit content. If a
CMS fails at this, it’s tough to recover. Editors who hate working with content in their
CMS will be hard pressed to create anything of value over the long term.

Content Findability and Traversal
To edit content, an editor first has to find it. In some websites, this is simple—if a
website has 20 pages, it’s not hard to locate the right one. However, when a website
has thousands and thousands of pages, it becomes more difficult. How do you keep
track of them all?

Traditionally, websites offered dedicated management interfaces designed to be used
by editors solely to browse the content in the repository. Content would be listed in a
simple table, with search tools to assist in finding it.

As more and more CMSs embraced the content tree geography, management inter‐
faces moved into a collapsible tree structure, where editors would traverse down
through parent and child relationships to identify content.

Today, these interfaces are increasingly giving way to in-context management, where
editors simply browse their websites like content consumers do. When the editors are

138 | Chapter 8: Editorial Tools and Workflow

http://gadgetopia.com/post/9070

authenticated to the CMS, however, they have editing tools available, ranging from a
simple “Edit This Page” link to more complex pop-up/overlay interfaces that allow
them to enter an editing mode.

I can still remember visiting the vendor floor of Intranets 2001 in
Santa Clara, California, and seeing a demo of RedDot where the
salesman exclaimed, “When you’re logged in as an editor, anything
you can edit will have a little red dot next to it!” (Hence the prod‐
uct name, obviously.) We were all suitably impressed. It was like
magic at the time.

This style of finding content can be difficult for decoupled systems. When the pub‐
lishing/delivery server is separate from the management/repository server, it often
has no capability to authenticate someone as an editor, and therefore has no way to
show these users editing tools on the page. Many systems get around this by generat‐
ing a proxied version of the site—editors browse in a management interface that
shows the website in an IFRAME or proxies the entire website to another server, to
which the editor is authenticated.

This method of content traversal has become common because as website usability
has increased, the tools available for content consumers to find content have become
more similar to the tools editors use. Why build a set of editor tools when the CMS
has already provided the end user with an array of sorting and search functionality?
As we come up with better and better search technologies and interfaces for our visi‐
tors, we’re becoming hard pressed to improve on these for editors. And it would be
tough to explain if your editors had to use tools that were actually worse than what
site visitors used.

However, there are still content filtering tools that can be considered editor-specific.
These are tools that allow you to filter.

• By workflow or publication status
• By administrative task status
• By content owner
• By archival or deletion status
• By custom editorial metadata (for example, locating content tagged with “needs

review”)

In all these situations, the criterion for locating content is not something that would
be visible to the content consumer, and therefore a CMS might have special editorial
tools with which to handle these situations.

The Editing Interface | 139

3 Yes, clearly, this would be a failure in error checking. But when working with a CMS, developers will often
trust it to enforce certain standards and forgo exhaustive error checking for the sake of practicality.

Given that editors will always have some special needs beyond those of content con‐
sumers, most CMSs pursue a hybrid approach. There is a dedicated administrative
interface, supplemented by in-context editing tools of varying depth.

Scaling the Admin Interface

If there’s a dedicated admin or edit interface for a CMS, make sure
it will scale to a large amount of content if needed. Many interfaces
work fine with a few hundred content objects, but fall apart when
the number of objects reaches, say, 100,000.
Content trees with large amounts of objects under a single parent
can be especially problematic. If you have 10,000 news articles
under a single parent, how will the tree interface handle this?
Scrolling through 10,000 articles is basically pointless, and expand‐
ing that node in the tree will likely slow the interface down or break
it entirely. Can the tree paginate that list? Can it present you with a
searchable interface for just that node in the tree?
Developers writing these interfaces often don’t test with large
amounts of content. If managing high-volume content is one of
your requirements, be sure the interface can handle it.

Type Selection
When creating a new content object, the first task of an editor is usually to select the
content type on which to base it (see Chapter 6). The CMS needs to ensure the editor
can select the appropriate content type for the situation, and not a content type that
doesn’t work quite right, or will break the website should it be published.

In many cases, the integrity of a content tree is enforced through restrictions on type
parentage. We may have an Issue type, which contains one or more Article Category
types, which each contain one or more Article objects. The hierarchy is logical and
necessary to the proper modeling and rendering of content.

If an editor was allowed to create content based on the Issue type as a child of an Arti‐
cle, what would happen? The code in the template wouldn’t be expecting content of
that particular type in that location. In the best case, if the developer were checking
the type of everything, the template would simply ignore it. However, in many situa‐
tions, the templating would break—the developer would probably assume that the
CMS would enforce the type hierarchy, and would thus trust that an Issue would
never be found as a child of an Article.3

140 | Chapter 8: Editorial Tools and Workflow

In these situations, the CMS needs to be able to dictate the correct relationship
between types. Editors create content in specific locations in the content geography,
and the CMS should be able to dictate what content they can create at any particular
location. Content types therefore need to indicate what types can be created as chil‐
dren of a specific type.

Additionally, some content types might be restricted from certain editors. It’s com‐
mon that certain types are more volatile and advanced than others. As we discussed
in Chapter 4, not all editors are created equal. A power editor might be allowed
greater liberties than others, and the content types to which these editors have access
should reflect this.

In some installations, for example, a power editor might have access to a content type
that allows raw HTML inclusion—the editor might be able to type raw HTML/Java‐
Script code that is included into the page, unchanged. Clearly, this can be dangerous
—HTML could be introduced that prematurely closed tags, or JavaScript could be
added that opened the site to cross-site scripting attacks.

Other items, like image carousels, might require more care and experience than the
training of the mainstream editor allows. Editors might need to understand how to
select and edit images, address accessibility concerns of image inclusion, and deal
with other usability issues.

In these cases, these content types should be restricted to editors trained to use them
correctly.

Finally, in some installations, the list of available content types can become quite
large, occasionally numbering in the dozens. Several different features can make type
selection easier for editors:

• Intelligent naming can help with content type selection. Types often have a “sys‐
tem name” for reference from code and a “display name,” which can be expanded
to make more sense for editors.

• Some CMSs will allow a sentence or two of description about what the type does
to further explain its usage.

• Others will allow a thumbnail image of an example of a fully rendered type that
can jog an editor’s memory as to its correct usage.

• Some CMSs will even learn over time, and present editors with their most com‐
monly used types, or types most commonly used in similar situations—as chil‐
dren of the parent type, or example (see Figure 8-1).

The Editing Interface | 141

Figure 8-1. The type selection interface in Episerver

In all cases, the goal is to provide editors with a list of content types that are allowed
and appropriate to the current content problem. A CMS should be able to alter this
list based on the location of the desired content object and the role of the particular
editor.

Content Preview
While we’ll discuss the actual editing interface shortly, it’s important to consider the
relationship between editing content and previewing it. When editors make changes
to content, they usually want to see those changes before they publish their content to
the world. Hence, editors need preview functionality to enable them to see these
changes “in context,” which means in the visual environment to which they’re about
to be published.

There are two schools of thought about how content preview should relate to the
editing interface:

• Presentation-free editing was the default standard for many years. In this case, the
editor works in a standard web form, with text boxes, text areas, drop-down lists,
etc. To preview content, the editor navigates to a separate interface, then back
again to continue editing.

• In-context editing, by contrast, seeks to make the editing interface look as close to
the final content production as possible. An editor might find himself editing in

142 | Chapter 8: Editorial Tools and Workflow

4 “WYSIWTFFTWOMG!”, September 3, 2013.
5 I wrote this book in O’Reilly’s Atlas editing platform. I wrote in a text format called AsciiDoc, and could

“build” into multiple formats at any given time. I obsessed over the formatting of the print (PDF) version of
the book, showing a clear bias toward what it would look like when printed. Only later in the writing process
did I start looking at the EPUB, MOBI, and HTML output options. Often, formatting that worked in one was
problematic in another.

something that looks very much like the finished page, complete with styling.
When he types the title, for instance, the letters come out in 24 pt Arial Bold, just
like when the page will be published. The goal is to try to disguise that this is an
editing interface at all, and make it seem like the editor is simply working in the
finished page. Preview becomes effectively real-time.

While in-context editing seems advantageous on its face—who wouldn’t want to see
live, real-time previews?—there are a couple of extenuating issues:

• In-context editing doesn’t handle nonvisual properties, like META tag content, or
configuration content, such as a checkbox for “Show Sidebar,” for instance. If the
content is meant to alter page behavior rather than be consumed as content itself,
it’s harder to work into an in-context interface.

• In-context editing will often only represent a single view of the content—that of a
single web page. In today’s multichannel world, content might be published in
many places around the Internet and consumed by many different devices, so the
question becomes, what preview are you viewing?

Mark Boulton considered this very issue in a blog post:
The problem is this: The question content people ask when finishing adding content to
a CMS is “how does this look?”. And this is not a question a CMS can answer any
more-–even with a preview. How we use the web today has meant that the answer to
that questions is, “in what?”4

More modern CMSs have multipreview features where an editor can pick a view to
preview the content—as a web page, a tweet, or an RSS item, for example. However,
this preview functionality is not common, and it generally requires additional setup,
development, and templating to provide accurate views for all possible content chan‐
nels.

Understand that multichannel preview is not just a technical issue. Left to their own
devices, editors will be biased toward the main, intended output format, which will
likely be HTML. Don’t underestimate the workflow, training, and governance chal‐
lenges involved with mandating multichannel preview before publication.5

The Editing Interface | 143

http://www.markboulton.co.uk/journal/wysiwtfftwomg

The problem of personalization and preview
One of the new frontiers in content management over the last half-decade has been
personalization (discussed more in Chapter 10), or the use of behaviors and contex‐
tual information to personalize the web experience for each visitor.

Unfortunately, this complicates preview even further. When previewing content, how
can you account for all the possible permutations and combinations of factors that
might affect that content?

For example, if a visitor has viewed three pages in the section of a university’s website
about the nursing program, then a stock image of a nursing student should be dis‐
played on the Admissions page, rather than a more generic image.

How can you preview this? Will you have to manually view three pages yourself in
order to mock up the behavior your CMS requires? Or does your CMS have tools to
allow you to “spoof ” your membership in a personalization group?

Combine this with device and distribution channels, and the possible outcomes can
be endless. For one web page, an editor could conceivably create hundreds of differ‐
ent combinations of visitor behavior, consuming device, and distribution channel, all
with their own specific previews.

Editing Interface Elements
The editorial rubber meets the road in the interface. There comes a point where an
editor actually types or clicks something and creates some content. Generally speak‐
ing, a CMS should present editors with the correct editing element for the informa‐
tion they’re trying to edit. A good editing interface guides editors into the right
decisions and protects them from doing damage.

Imagine if the editing interface was simply a list of empty text boxes for all attributes.
For text, this might be appropriate, but what about for a yes/no value? Should the edi‐
tor just type “yes” or “no”? How about “true” or “false”? Does capitalization matter?
Clearly in this instance the appropriate interface element is a checkbox, which is
checked for “yes” and unchecked for “no.”

A CMS should render the editing interface to conform to the content model, making
intelligent assumptions when selecting the correct element to present to editors (and
allowing administrative overrides where needed). The goal is to present a highly pro‐
ductive working environment avoiding unnecessary error or guesswork.

In addition to the aforementioned checkbox, here are some other element choices:

• A simple text box or text area for long or short text entry
• A checkbox list for an attribute that can support multiple values from a prede‐

fined list

144 | Chapter 8: Editorial Tools and Workflow

• A radio button list or drop-down selector for an attribute that allows only one
value from a predefined list

• A rich text (WYSIWYG) editor for editing HTML
• A calendar drop-down for selecting a date
• A Google Maps interface for selecting a geographic point on a map
• A custom interface providing a search tool to locate an SKU from your product

catalog

Validation
In addition to accepting input, a content editing interface must ensure the input is
valid to prevent errors from compromising the content. Validation can be guided by
the use of editing interface elements, as discussed in the previous section; however,
the CMS should always validate data independently of the interface in the case of data
being entered through an API or service (and therefore not being subject to the
restrictions of the editing interface).

Understand that the validation of content is related to its logical value, not necessarily
its pure datatype. Datatypes do not understand context; they only understand pure
data, completely separate from how the data will be used.

As we discussed in Chapter 6, if an attribute represents a year, then the underlying
datatype might be number (or integer). However, the logical idea of a year presuppo‐
ses several other restrictions:

• It must have four digits.
• It might have to be in the past.
• It might have to fit into a logical range (while AD 4538 might make for a good

science fiction novel, it does not work in the context of when a movie was
released).

In this case, the datatype of number is wholly insufficient to enforce the necessary
restrictions around the logical value type of year. Additional validation will have to
take place.

Some systems offer expanded validation types for these instances. For instance, in the
case of a number, a range might be allowed to ensure the number is valid. The same
could be true of dates, to ensure an entered date in the future, in the past, or between
two landmark dates.

The Editing Interface | 145

6 Mastering Regular Expressions by Jeffrey E. F. Friedl (O’Reilly), currently in its third edition, is the seminal and
authoritative text on regexes.

Regular expressions (“regexes”) can be used in many cases to validate text patterns.
While a discussion of regex is far beyond the scope of this book,6 at a high level a
regex is a definition of a text pattern, which can be tested for validity.

For example, in the case of our movie release date, we can define a regular expression
to enforce:

(19|20)\d{2}

This pattern, when applied to entered text, will ensure that the first two digits are “19”
or “20” and that they are followed by two additional digits. This would limit data to
years between 1900 and 2099.

If we know that our product numbers begin with “A,” followed by two other alpha‐
betic characters, then a dash and four digits, we can write a pattern like this:

A[A-Z]{2}-\d{4}

Invariably, some validation needs simply can’t be predefined by a CMS and must be
implemented by custom code. In this example, we can certainly enforce the format of
a product number, but we can’t ensure that this product exists in our catalog.

To validate that fact, we will need to write custom code to connect to our product
database, check for the entered product number, then tell the interface whether to
accept the entered data or display an error to the editor. Different CMSs will offer dif‐
ferent levels of functionality in this regard.

Rich text editing
Most CMSs include a rich text interface to allow editors to create HTML content as
an attribute of a content object.

For example, almost all implementations will have a content type for Text Page or
Standard Page. This content type can be as simple as a Title and a Body, which will
often be rich text. Inside the editing interface for the Body, the editor will have but‐
tons for formatting items like bold text, italics, bulleted and numbered lists, image
insertion, hyperlink creation, etc. “Just like Microsoft Word,” is a common phrase
used to describe these editors.

Usage of rich text can be divisive. Editors enjoy the control, but developers and
designers can get nervous about the freedom it allows. Editors have been known to
use formatting liberally, and often in defiance of style guides and conventions. Addi‐
tionally, if they have access to the HTML source, they can manually edit the HTML,
which might cause rendering problems with the template in which the content is dis‐

146 | Chapter 8: Editorial Tools and Workflow

7 As mentioned earlier, I wrote this entire book in a variant of Markdown called AsciiDoc.

played (worse, a nefarious editor can write HTML that compromises the security of
the site itself).

Ideally, a CMS should be very careful about the formatting and access to source it
allows. Some common protective features include:

• The buttons displayed in the formatting toolbar should be centrally controlled
and contextual to both editor (certain editors get more options than others) and
attribute (more options are available when editing the Body than when editing an
Author Note, for instance).

• Regardless of editor or context, formatting tools should be heavily scrubbed of
anything that might compromise the style of the site, including font selectors,
text color palettes, font size controls, etc.

• Access to HTML source should be carefully controlled. Invalid HTML can be
introduced through direct HTML editing, in addition to malicious JavaScript
opening the site up to cross-site scripting attacks.

• HTML validation should be enabled and strict. When rich text content is saved, it
should be checked and corrected for invalid HTML.

There is a recent trend to avoid rich text altogether, and instead attempt to “structure
away” the problem by breaking content down into attributes small enough to not
need rich text at all. While this might make developers happy, it’s probably not
entirely realistic. Most editors will always want formatting tools.

Alternatively, some implementations are moving toward very lightweight markup
languages rather than HTML. These languages can be edited inside simple text area
elements and use character combinations that convert to HTML later, in the page
rendering stage. The most common example is Markdown, which looks like this:

This text is in _italics_ and this text is *bold.*
This is [a link](http://oreilly.com/).

Other examples of alternative markup languages are Textile, PanDoc, and WikiText.7

Some CMSs, like Ghost, offer real-time preview of these languages in a side-by-side
style interface, with changes in one pane reflected in the other (see Figure 8-2 for an
example).

The Editing Interface | 147

Figure 8-2. Editing in Ghost using the Markdown syntax in the lefthand pane with real-
time preview in the righthand pane

Reference content selection
In most implementations, content will need to be linked together, in one or more
ways:

• The rich text in one content object might contain a hyperlink to another content
object.

• A content object might use an image stored elsewhere in the repository.
• A content object might have an attribute that references another content object.

In all these cases, an editor will need to find the remote content object from the edit‐
ing interface. Methods of doing this vary, but commonly the editor will be presented
with a pop-up window that offers multiple methods to find the content—editors will
usually be able to browse for it, and might be able to search for it. This becomes more
and more important as the number of content objects scales up. Trying to browse for
a specific article among thousands can be frustratingly difficult.

What becomes critical is the ways in which this interface can be restricted. For exam‐
ple:

• An attribute reference might only be allowed to a specific content type. The Man‐
ager attribute of an Employee content object should only be linked to another
Employee content object.

148 | Chapter 8: Editorial Tools and Workflow

• An attribute reference might be restricted to a specific location in the geography.
Perhaps the editor can only select children of the current issue for the Featured
Article.

Additionally, a subtle but critical point is whether the reference to an object is
attached to the object itself, or to the current URL of the object. The latter is always
going to be problematic. If a CMS requires an editor to simply find the URL of
another page and paste it into the hyperlink box, what happens if the URL of that sec‐
ond content object changes?

URLs can change, so links between content should be resolved as late as possible in
the content delivery cycle. Any inserted link should just be a reference to the content,
not its actual, current URL. The reference should then be replaced with the correct
and current URL to that content when the content is rendered.

In-context help and documentation
You can’t merely assume that editors will always understand all the nuances of the
content model. Content changes can have subtle implications that it may be hard for
them to keep track of after the training session. This is especially true of seldom-used
properties and features.

Systems vary in their ability to provide editors with help in the editing interface itself.
At the very least, properties should be labeled clearly. The ability to provide a few sen‐
tences of documentation sometimes makes all the difference.

For example, when presented with a summary field, these few sentences might be
invaluable:

Content entered in the summary will be used along with the title when this content is
referenced from other locations in the website. If left blank (not recommended), the
first paragraph from the body will be used for the summary.

If there’s one thing an editor hates, it’s not knowing what to do and getting stuck.
Worse still is doing something and having it cause unintended side effects, or even an
error. In-context documentation vastly reduces uncertainty along with the ensuing
questions and frustration.

The Editing Interface | 149

Perspective: Editors Will Circumvent Poor Tools

by Rahel Anne Bailie

The great irony of content management systems is that they
don’t actually manage content. What they manage, as Deane
points out, is the editorial flow of work. Therein lies the prob‐
lem.

Because the engineers who develop editing interfaces don’t
really understand the tensions that content editors face when
creating content for multiple products, audiences, channels,
markets, and locales, the editing interfaces tend to be underdeveloped. The interfaces
rely on workflow to compensate for the shortcomings of actual management of con‐
tent.

I’ve watched a writer “break” the schema because she knew the amount of machina‐
tion it would take to finish her task would mean she would miss her train home. Writ‐
ers will work offline and copy-paste from Word into the editing interface. They will
avoid entering metadata that they don’t understand, or they will delegate “entering
stuff into the CMS” to the lowest-paid person on the team. That person will have little
understanding of what the ultimate intent is, and will merrily do the rote work of
copying and pasting. Even when there is a willingness to work within the system,
there tends to be a lot of experimentation to figure out which fields are displayed
where, in which templates, because the documentation provided tends to be less than
useful.

The fact of the matter is that unless the content editing environments make the jobs of
writers easier, they will do everything in their power to circumvent the system. And
why shouldn’t they? Developers regularly tell me that they code with the easiest solu‐
tion in mind—for them, not necessarily for the content or the writers who use the sys‐
tem. That leaves content editors to “work harder, not smarter” for years afterward.

The one caveat about how content is created within a CMS is that this book deals with
the class of software generally known as a web CMS. The class of software called a
component (CCMS) actually does manage content as well as workflow, and is more
suited to use by content developers—the gap between writers or editors and content
developers is as large as the difference between visual designers and software design‐
ers. In a CCMS, changeset publication is simply a nonissue; content developers don’t
need formatting to do their work effectively, and the editing environment allows them
to structure, chunk, and tag content in quite sophisticated ways.

Rahel Anne Bailie integrates the best from several disciplines to do content strategy her
way. She coauthored Content Strategy: Connecting the Dots Between Business, Brand,
and Benefits (XML Press).

150 | Chapter 8: Editorial Tools and Workflow

Versioning, Version Control, and Version Labels
Versioning is the act of not overwriting content with changes, but instead saving con‐
tent in a new version of an existing content object. This means that content objects
that have been edited have multiple versions—indeed, they might have hundreds of
versions—each representing how that content object looked at a certain moment in
time.

Editors can use versioning in several ways:

• As a safeguard against improper or malicious changes. Versioning is like real-
time backup for that single content object.

• As an audit trail to ensure they always have a record of what content was presen‐
ted to the public at any given time, perhaps for legal and compliance reasons.

• To separate changes to content from the currently published content, so that
changes can be approved and scheduled independently of the content currently
shown to the public.

• To enable one version to be compared to another to determine what has changed,
which is helpful for approvals (discussed later in this chapter).

Some systems make versioning automatic, while others require it to be specified by
content type. Some systems just version content, while others version everything—
content, users, media, and settings.

At any given time, an editor should be able to review a timeline of content changes
for an object and see who changed the content and when. Some systems take this a
step further by allowing editors to compare versions, either in side-by-side windows
or sometimes in a “Track Changes” style where additions, deletions, and edits are
shown inline.

Conceptually, versions become a “stack,” stretching back in time. The initial version
of content is on the bottom of the stack, with new versions stacked on top of it. Ver‐
sions are usually labeled with a status, with one of the versions being considered the
“published” version.

You might envision an arrow pointing to one version on the stack, which is the pub‐
lished version. This is hypothetical, and the actual implementation of the concept
might vary, but it’s a handy metaphor to envision the relationship between the version
stack and the various states of content within it.

To change which version is published is to “roll back” to a previous version. Different
systems handle this different ways—some will simply move the “published” arrow to
a different version, while others will copy the desired older version and make it a new

Versioning, Version Control, and Version Labels | 151

draft version at the top of the stack (thus ensuring that the published version of the
content is always the latest version).

Changes to content are considered a new unpublished version—with a label of Draft
or Awaiting Publication—sitting on top of the stack. When a new version is pub‐
lished, the publication arrow is simply moved. In some systems you can edit a prior
version, while in others you cannot; any change to any version becomes a new ver‐
sion at the top of the stack.

Logically, only one version of content can be published at any one time. Figure 8-3
shows a visual representation of this concept.

Figure 8-3. The version stack is conceptually a pile of versions, from latest to oldest,
sometimes with a designator showing which one is published (other implementations
might just consider the top version published)

Some systems will also allow mass rollback, which will allow an editor to essentially
step back in time and view the entire site as if all content was rolled back to its version
at that moment.

Almost all versioning in web content management is “serial,” meaning versions to a
content object are simply stacked in order of date. Some more advanced document
management systems, however, offer branching, where content can be split into multi‐
ple branches—version 1 can have version 1.1 and 1.2, which is further split into 1.2.1,
etc. This gets very confusing for most editors, and is only required in highly con‐
trolled document scenarios (this is common in the management of technical docu‐
mentation, for example).

Even if never used, versioning is a handy feature to have lurking in the background.
The only reasons against using versioning might be storage, since multiple versions
will obviously consume more disk space.

Versioning is designed to keep content safe, so the ability to delete or purge versions
is usually not available by default. A limit can often be set and a scheduled job will
delete excess versions beyond that limit (in the event that there are storage limita‐
tions), or the permission to delete individual versions can be granted on an exception
basis to specific editors.

152 | Chapter 8: Editorial Tools and Workflow

When considering versioning, remember that without it, the power to edit is essen‐
tially the power to delete. An innocent mistake by an editor who is too quick with the
save button can be disastrous.

Even if you’re versioning content, delete is still delete. If you delete
a content object, it’s usually gone, with all of its versions. There’s
often no version trail left when something is deleted. Many systems
will “soft delete” to a Recycle Bin or Trash, but once it’s gone from
there, understand that the object and all of its version history are
gone.

Version control
Version control is about the management of versions of content between multiple
editors working simultaneously. If two editors want to work on the same piece of
content, how does this get managed? There are a few options:

• Does the system create a version for each, calling them both “Draft”? This can be
a bit frustrating, since the two editors might not realize someone else is working
on the same content. When they go to publish, they will realize that they have to
reconcile changes between two versions for the content to be correct.

• Does the system allow an editor to “lock” a content object to prevent anyone else
from working on it? This is certainly effective, but it essentially blocks the work‐
flow of other editors, and if used haphazardly can cause a piece of content to be
locked for longer than necessary, perhaps even while a careless editor goes on
vacation.

• Does the system allow two editors to work simultaneously on the same version, à
la Google Docs?

At the very least, a CMS should have some indication that a content object is being
edited, or that there’s a draft version of this content object above the published ver‐
sion on the version stack. The editor should be notified of this, and given the option
of working with the existing draft version (which might be locked), or creating a new
draft (which might require change reconciliation with the existing draft at some point
in the future).

Dependency Management
Two content objects can be related in a number of ways:

• The HTML of an attribute might contain a hyperlink to another content object.
• An attribute reference might link to another content object.

Dependency Management | 153

• A content object might be embedded in the rich text of another content object.
• The HTML of an attribute might contain embedded media that is a separate con‐

tent object.

Many CMSs will keep track of these links and their purpose (HTML link, attribute
reference, media embed, etc.) so it’s possible to know which content depends on
which other content. This enables some helpful functionality:

• A predeletion check can inform the editor that the content he’s about to delete is
referenced from other content (see Figure 8-4).

• Broken link reports can identify content that links to a target that is no longer
available, either due to forced deletion, content expiration, or permission
changes.

• An orphaned content report could identify content not in use by any other con‐
tent.

• Dependencies can be used to determine the cascading scope of changes. When
content is published, for example, the system can know what other content needs
to be republished, in the case of a decoupled CMS, or reindexed for search.

• Search optimization can use dependencies when weighting result pages, assum‐
ing that popular content is referenced more often and should be more heavily
weighted. Other information architecture functionality might use the link graph
to extract information from content relationships.

154 | Chapter 8: Editorial Tools and Workflow

Figure 8-4. A deletion warning in Sitecore—the content pending deletion is depended on
by other content, and the system needs to know how the editor wants to handle the bro‐
ken dependencies

Content Scheduling and Expiration
Often, an editor doesn’t want content to be published immediately. Rather, content
should be scheduled for publication in the future.

This is intertwined with versioning, because what an editor is essentially doing is
scheduling the change in version labels. The content she’s scheduling is considered to
be Draft, with the version label to be changed to Published in the future. (Remember
our conceptual “publication arrow”? All the editor is doing is scheduling a time
where it moves to a different version in the stack.)

Publication scheduling has two basic forms:

Scheduling of new content
The ontent object isn’t displayed anywhere on the site until a point in time at
which it appears.

Scheduling of a new version
The content object is displayed in its current form until a point in time, when a
new version takes its place.

This can be slightly complex in some cases when editors begin working on a new ver‐
sion of content before the latest version of content has been published. In these cases,
you have the published version several levels back, then one or more versions await‐

Content Scheduling and Expiration | 155

8 I once had a client who was concerned about this exact scenario. While the logical problem could not be
solved short of simply not allowing expiration on objects that were the target of links, we did create a sched‐
uled job that emailed the webmaster every night if it found content that (1) was the target of one or more
links, and (2) was expiring in the next 72 hours. This at least gave the client some notice so they could resolve
the situation gracefully rather than have links break.

ing publication, then one or more versions ahead of those in draft, which might then
get scheduled.

And what happens if an editor elects to publish a new version directly? Or schedules
it to publish before one of the versions behind it in the version stack? Some systems
might not allow this, others might negate the scheduled publication of anything
behind it in the stack, and others might simply blindly follow instructions, which
means the scheduled publication would actually move the publication arrow back‐
ward in the stack, rather than forward.

Thankfully, it almost never gets this complicated, but poor communication between
editors can sometimes bring about complicated scheduling logic problems that can be
tricky to sort out.

Changeset Publication
Oftentimes, editors are working on a content project that requires changes to multi‐
ple content objects separately. Editors would like these changes tracked as a group
and scheduled, approved, and published together.

This is known by several names, but most commonly as a changeset (other common
names are “project,” “edition,” and “package”). A changeset is created with all related
content bound to it. The changeset itself is scheduled, rather than the individual con‐
tent versions. When the changeset reaches publication, all of the content objects are
published simultaneously.

Content Expiration
Mercifully, content expiration is quite a bit simpler. At a given point in time, content
is simply removed from publication. This means our imaginary arrow disappears
from the stack completely, and no version of the content is considered to be pub‐
lished. This is not a deletion. The content still exists, it’s just not viewable.

The only caveat here is that the unattended removal of content from a site can cause
some issues when an editor is not available to be notified. When attempting to delete
content directly, for example, an editor might be notified that the content is linked to
and from several other content objects and that deleting it will break these links. If
content is expired unattended, links might break silently without warning.8

156 | Chapter 8: Editorial Tools and Workflow

Workflow and Approvals
Workflow is the logical movement of a content object through various steps or stages
(though we’ll avoid using the word for “stage” from here on out so as not to confuse
this with the content lifecycle discussed previously). Workflow is often conflated with
approvals, and they overlap heavily, so we’ll discuss both.

Approvals
After an editor makes a change to content, he might be able to publish it directly, or
he might have to submit the change for approval. Many systems separate Edit and
Publish permissions. If an editor can edit but not publish, then he can make a change,
but it can only be published by someone with that permission.

Conceptually, the editor needs a way to signify, “I am done working on this content,
but cannot publish it directly. Someone who can publish it directly needs to review
the content and publish it for me.”

Two questions need to be resolved:

• Who gets notified?
• How are they notified?

For the former, the “owning user” (or group of users) can be specified to receive noti‐
ces of changes or submissions. In other cases, any editor with permission to publish
might be notified. In still other cases, specific workflows are created (see the next sec‐
tion) that identify the responsible party.

Notification is usually handled via simple email or through the CMS’s task manage‐
ment system (discussed in “Collaboration” on page 160), which might also generate
an email.

Workflow
Generally, workflow is a larger, more abstract concept than simple approval. The
approval of content can be a type of workflow, but many workflows have nothing to
do with content approval. Workflow is more broad than simple approval.

Workflow is the movement of content through a map or network of discrete steps. A
workflow step can be almost any process that takes some action before moving the
content to another step. As a rule, content can only be in a single step at any time in a
given workflow. A workflow step (sometimes called an “activity” or a “task”) is a clear
boundary that defines a state the content is in at a moment in time.

Workflow and Approvals | 157

9 While it would be convenient to call them “workflow types” to parallel “content types,” it seems to be an
industry convention to call them “workflow templates.”

Some examples:

• Content is waiting in a step for an editor to approve its movement to the next
step, which publishes it. It might wait in this step for three minutes or three days,
depending on how long it takes for the editor to take the action necessary for it to
continue.

• Content is moved to a step that triggers the execution of code to post a summary
of the content to Twitter. When this is complete, the content is automatically
moved to the next step.

• Content is waiting in a step for a translator to complete a Spanish translation of
the content. When this is done, the translator will signify this completion and
move the content to the next step, which creates a task for a reviewer.

In all cases, one or more steps will have no subsequent step, which ends the workflow.
Any content currently in a step is in an active workflow, and when the content pro‐
gresses past the last step, the workflow ends.

It’s important to differentiate between a workflow template and an actual running
workflow. Nomenclature varies, but like content, workflows have types (templates)
and actual instantiations of those templates currently operating on content.9

For example, a news publishing organization might have a News Approval workflow
that moves content from Submitted to Published. This is a template that defines how
the workflow should operate. In a busy newsroom, articles might be submitted for
publication every 5 minutes, so while there is one News Approval workflow template,
there may be 20–30 instances of this workflow active at any given time, all moving
individual content items through steps toward publication.

Many systems have reporting interfaces to view all the running instances of a particu‐
lar workflow, including which step the content is currently in. In some cases, content
can get “stuck” in a workflow step, which means it is waiting for an action that will
never take place, for whatever reason. Content stuck in a workflow can usually be
manually progressed, or have its workflow forcibly ended.

While not common for most organizations, content can even be in more than one
workflow at a time. For example, a news article might be in the News Approval work‐
flow, while at the same time it is in the Media Request workflow, awaiting photogra‐
phy.

What constitutes a workflow step can be vague, and it depends highly on what a par‐
ticular system allows. In some cases, workflow steps are only human-based approvals

158 | Chapter 8: Editorial Tools and Workflow

10 If you have an interest in workflow as a general process, the Workflow Patterns website is a project by two
universities “to provide a conceptual basis for process technology.” If nothing else, the site demonstrates that
workflow is a discipline that originated and is practiced far beyond the bounds of content management.

(one system even calls workflows “approval chains”), while in other cases there are
numerous prepackaged activities and actions that can happen, and many allow arbi‐
trary code execution.

External Event Engines

There are some interesting things happening in the world of exter‐
nal event engines, which are commercial services that can be noti‐
fied of events and then perform actions on other systems. These
systems, such as Zapier and If This Then That, can be triggered by
things like webhooks (a formatted HTTP request) or the appear‐
ance of a new item in an RSS feed, and can perform hundreds of
possible actions on other systems in response.
In some ways, these systems are defining a generic event API for
the Internet itself, and serving as the “glue” between standalone
software platforms. Traditionally complex and expensive system
integration can be simplified enormously.

While editors tend to envision workflows as human-centered processes, some work‐
flows have no human-powered steps at all, and are more accurately considered arbi‐
trary processes that can be initiated and performed on content. For example:

• A Post to Twitter workflow might have one step that takes mere seconds to exe‐
cute, then the workflow ends.

• An Export Content workflow could serialize content to a file, write it to the file‐
system, and notify an external process that the file is available to be moved to off‐
line storage.

In these cases, workflow is perhaps more accurately described as “work actions.” The
initiator is, in effect, saying “execute this action on this content,” and there might not
be multiple steps through which it progresses. Rather, there might be a single concep‐
tual action that happens at a moment in time and then ends.

Clearly, workflow is a broad and vague concept that defies attempts at clear defini‐
tion.10 What one system calls “workflow” might be simple approvals in another, or
code-level events in a third. Additionally, the scope and functionality of a workflow
event vary widely. Some systems allow workflow to be used for approvals only, others

Workflow and Approvals | 159

http://www.workflowpatterns.com
http://zapier.com
http://ifttt.com

allow a broad definition of processes to be performed on content, and still others use
their own internal workflow framework to manage content publication.

The Dirty Little Secret of Content Approval and Workflow
Complicated content approvals are the white whale of content management. During
the planning and sales phases of a project, editors often discuss their great need for
long, complicated workflows full of critical approvals and processes, with complex
branching logic and automated collaboration and auditing.

In reality, these scenarios almost never happen. I fully believe that 95% of content
approvals are simple, serial workflows, and 95% of those have a single step. An editor
submits content to be published, and an approver publishes it.

In fact, in most cases, workflow never even enters into the process and approval is
managed entirely with permissions. Removing the Publish permission from one edi‐
tor and granting it to another effectively institutes a single-step serial workflow
approval.

In other cases, informal workflow happens outside the CMS, consisting of an editor
yelling to her manager, “Hey, can you come look at this and tell me if I can publish
it?” No, it’s not sophisticated, but that’s often how it happens.

I even know of a CMS that changed its architecture to ensure that unpublished con‐
tent was assigned a private URL specifically to account for the ubiquitous scenario of
an editor emailing a link to someone with the note, “Can you look at this and make
sure it’s okay?” This is effectively approval via email.

While I concede there are situations where workflow and approval can and do get
complicated (lawyers can do this to an organization), I maintain that workflow is the
single most overpurchased aspect of any CMS. An astonishing amount of money has
been wasted in pursuit of hypothetical workflow fantasies that will simply never see
the light of day. And, in the event that they were ever actually realized, the volume of
content pushed through them would have to be very high and prolonged to justify the
expense of making them happen.

Unless you’re the New York Times, it’s best to keep your workflow goals modest.

Collaboration
In multieditor scenarios, there’s often a need to specify a unit of work, or have a dis‐
cussion or collaboration session, specifically related to a piece of content.

160 | Chapter 8: Editorial Tools and Workflow

To address this, some systems have task management or lightweight groupware built
in. The utility varies widely, but some common features include:

• The ability to create and assign a task, specifically bound to a content object or
changeset. An editor might create a task entitled “Update the Privacy Policy,”
then attach that content object to the task, and assign it to another editor. This
often dovetails into workflow, as the act of creating the task might have created a
workflow. Alternatively, a workflow might use the task subsystem heavily when
notifying editors of pending approvals. In some cases, the tasks attached to a
content object can be viewable in the administrative interface from that object.

• The ability to leave notes for other editors regarding specific content; provide
notes on specific versions explaining what was changed; or have threaded, multi‐
user discussions about content.

• The ability to store editorial metadata (in the event that you want this data sepa‐
rate from the actual content model).

• The ability to have real-time group chats within the CMS interface.

Clearly, this functionality overlaps heavily with non-CMS tools that editors might be
using, such as Slack, Skype, Exchange, and even email. The specific difference is the
ability for these discussions and tasks to be bound to and make changes to specific
content, and for this information to be displayed in the CMS interface. Within the
context of the CMS, these features are aware of the content and can be directed in
relation to it.

Like with workflow, though, it’s worth mentioning that these features are not often
used. Collaboration tools inside a CMS are not the primary focus of the software, and
their functionality won’t be able to compete with the dedicated collaboration tools
your organization likely uses every day. Left to their own devices, editors will usually
revert to things like email and group chat to work with other editors on content.

The key in evaluating the usefulness of a CMS collaboration system is determining
what advantages it offers by being embedded in the CMS. Sometimes, that intimacy
with content brings nice advantages. But in many cases, the advantages aren’t worth
the disruption of yet one more collaboration environment.

Collaboration | 161

11 Many systems refer to content files as “binary files,” even though they’re not technically required to be binary.
There’s nothing stopping an editor from uploading a text file to the CMS, for example (and even a text file
could be considered a “binary file” at some level).

Content File Management
Content files are the files (usually binary11) that support the editorial process. These
are images, PDF files, Word documents, or other downloads that are not structured,
modeled content, but are delivered as fully intact files by the CMS.

In many systems, files are “second-class” content. You can manage them, but in a
more rudimentary fashion than “first-class” content (modeled content types). In these
instances, binary files are often missing the following features:

• Granular permissions
• Workflow
• Language translation
• Metadata, or additional modeled data
• Personalization

In a more pure and functional implementation, binary files are simply managed con‐
tent types like any other, with one additional property—the content of the binary file
itself. So, the file is “wrapped” in a full-fledged content object that allows modeling of
additional information (copyright notice, image caption, etc.), workflow, permissions,
and so on.

Adding Content Files
Until the last few years, browsers were never stellar at file uploads, and web CMSs
were bound by these limitations. Uploading dozens of files was a tedious exercise,
with editors having to manually transfer one file after another.

Simple file upload still works and is available, but better methods now exist for get‐
ting files into your CMS. These include:

Drag and drop
Many systems will allow editors to simply drag one or more files into the browser
window and onto a designated location in the interface. All files will then upload
simultaneously.

Pseudo filesystem access
Some systems support protocols allowing for the repository to be accessed like a
filesystem. Users might be able to “map a drive” to the CMS, or access the system

162 | Chapter 8: Editorial Tools and Workflow

via FTP or WebDAV clients. Additionally, when the repository is available
natively to the filesystem, it’s much easier for automated processes to upload con‐
tent files—a scheduled script might copy files into the system every night, for
instance.

External repository integrations
Many systems have “connectors” that expose other repositories to the CMS, such
as DAM systems, ECM systems, or even remote services like Amazon S3 or
Dropbox. Editors working with content might be able to insert images directly
from a SharePoint library, for instance, without having to upload it first.

Content Association
Files are different from other content in that they rarely exist in isolation. To get to a
file, a user has to navigate to other content, and a file download is almost always rep‐
resented by a link on an HTML page (which is likely represented by a content object).

Consider how you typically download files. Unless someone has emailed you a direct
link, how often do you navigate directly to a file download without touching any
other page on a website? Usually you access a download page, then click a download
link.

Additionally, many content files serve solely in support of specific content. A photo
gallery will have multiple images that it renders. These images might not be used any‐
where else on the site, and serve no purpose other than in support of that single
photo gallery.

This means that files are often associated with specific content—they are “attached” to
that content and operate under the same management umbrella. In these cases, the
content objects and the files that support them should be managed as a package.

For example:

• A file associated with a page of content might need to mirror the permissions of
that page. If the page is only available to logged-in users, the file should have that
same limitation. If the permissions of the page change, the file permissions
should change as well.

• When selecting files to link or insert, editors should have the option to isolate
that selection to files associated with that page, rather than wading through all
the files in the system.

• When a page of content is deleted or archived, any associated files should suffer
the same fate. The lack of this feature inevitably results in a massive archive of
old content files, the vast majority of which are not in use by the CMS any longer.

Content File Management | 163

Many systems will provide for this by having files that are specifically associated with
another content object and only available for use by that object, while also allowing
for global files that are available to all the content in the system.

Image Processing
There’s a difference between an image itself (the original) and a specific file represen‐
tation of that image. An image of a sailboat might need to be converted into multiple
files at different resolutions and file sizes for insertion in content at different loca‐
tions.

Many systems will preserve the original uploaded image, but create additional rendi‐
tions of it based on a set of configurable rules that allow for multiple styles of the
image to be available to editors and template developers. For example, upon upload‐
ing an image, the CMS might resize it to three different sizes.

This manifests itself in two main ways:

• When an image is delivered, the templating system might have constructs for the
selection of different renditions, or even the detection of the container and auto‐
matic insertion of the correct size.

• Editors might be able to select from different sizes and renditions when inserting
images into rich text content.

In addition to automatic image manipulation, many systems provide some manual
image editing capability—the unspoken goal being “Photoshop in the browser”—
with varying degrees of effectiveness. Simple image editing, such as resizing and
cropping, is common, but more in-depth transforms usually require images to be edi‐
ted offline, and might require additional training for editors.

Image management is one area where external vendors do quite
well, by selling digital asset management (DAM) add-on tools.
Many CMSs have high-end image management, editing, and pro‐
cessing suites available through third parties, which are either pure
add-ons for that CMS only or standalone tools with integration
hooks into the CMS. These tools allow the DAM to act as an inte‐
grated part of the CMS, and greatly expand its image management
and processing capabilities.

Permissions
Content permissions are meant to prevent malicious manipulation of content, or
(more likely) to protect editors from doing things they don’t intend to do. Preventing

164 | Chapter 8: Editorial Tools and Workflow

an editor from changing the home page is both good editorial policy and helpful for
the editor, who might accidentally be making global changes without realizing it.

The concept of permissions in a CMS ties heavily into (and borrows liberally from)
the permissions systems that have been in use on filesystems for years. Windows and
Linux filesystems have had global permissions models since they were invented, and
many of the concepts in the modern CMS are based around them.

For example, an “access control list” or ACL is a generic computing concept. The def‐
inition from Wikipedia:

An access control list (ACL), with respect to a computer filesystem, is a list of permis‐
sions attached to an object. An ACL specifies which users or system processes are
granted access to objects, as well as what operations are allowed on given objects.

In the case of a CMS, an “object” is usually a content object, as opposed to a file on a
hard disk. Many CMSs use both the concept and nomenclature of an ACL to control
their own permissions.

A permission—or, technically, an access control entry (ACE), an ACL is a bundle of
ACEs—is an intersection between three things:

• User
• Action
• Object

In any situation involving permissions, we must ask ourselves: (1) who is trying to,
(2) do what action, (3) on what object? An ACE, bundled into an ACL, governs what
is allowable.

Authorization vs. Authentication

Permissions are technically authorization, which is the granting of
abilities to users. This is not the same as authentication, which is
the process of making sure someone is who he says he is.
We could talk all day about authorizing Michelle to take some
action, but that’s not really what we’re doing. We’re actually author‐
izing Michelle’s user account to take some action. We’re simply hop‐
ing that the user account we know as Michelle is being controlled
by the human we know as Michelle at any given time.
The process of authenticating this user and ensuring her identity by
logging her into the CMS is a completely separate system and disci‐
pline from the one authorizing her to do things once she’s inside.

Permissions | 165

Users
First, we must identify the user context in which an action will take place. For this, we
must take into account roles and permissions. For example:

• Fred the Editor has been given Edit permission for the privacy policy, but not
Publish permission.

• Mary the Corporate Counsel has been given Publish permission for the privacy
policy.

Users can be identified directly (Mary and Fred in the preceding examples), or by
group. A group or role is an aggregation of users. Users are assigned to a group, or are
considered “in” that group. If a permission is granted to a group, then any user who is
a member of that group gets that permission.

Thus, we can adjust our previous examples as follows:

• Anyone in the Editors group has been given Edit permission for the privacy policy,
but not Publish permission.

• Anyone in the Corporate Counsel group has been given Publish permission for the
privacy policy.

In most cases, this will make more sense.

In general, permissions should always be assigned by group, even when just a single
user is in that group. Permissions are usually related to the role someone is perform‐
ing, rather than to that user as a specific person.

For example, if posts to the CEO’s blog have to be approved by Jessica the CEO, is this
because she’s…well, Jessica? No, clearly it’s because she’s the CEO, and if she’s ever not
the CEO, then she should lose this permission. The permission belongs to the role of
CEO, not the person fulfilling that role.

In this situation, it would be entirely appropriate to create a group called “CEO,” put
Jessica in it as the only member, and assign the permission to the group. When Tilly
deposes Jessica in a coup and assumes control of the company, we simply remove Jes‐
sica from the CEO group and add Tilly to the group, and Tilly assumes all of Jessica’s
powers. [Insert maniacal laugh here.]

There is typically an “Anonymous” or “Everyone” group that repre‐
sents all visitors not authenticated to the system. Protecting content
is usually a matter of adjusting permissions for this group—remov‐
ing Read access from the “Anonymous” group and granting it only
to an “Authenticated Users” group, for instance.

166 | Chapter 8: Editorial Tools and Workflow

Group management can get complex. In some cases, groups can contain other
groups. So, the Corporate Counsel group could contain a subgroup called Really
Important Lawyers. Being in the Really Important Lawyers group would allow all the
rights and roles of the larger Corporate Counsel group, plus perhaps some additional
rights.

Additionally, some systems have a differentiation between groups and roles. Groups
identify users as a members, while roles indicate what they do.

For example, you may have an Editor group, in which you place all your editors, and
then have multiple roles for News Article Editor, Media Editor, etc. Permissions are
assigned to the roles, which are then assigned to the groups. Users are aggregated into
groups, permissions are aggregated into roles, and then roles and groups meet to
allow actions to take place.

Yes, this can get confusing. There’s actually an entire discipline and body of theory
called identity management. Again, from Wikipedia:

In computing, identity management (IdM) describes the management of individual
principals, their authentication, authorization, and privileges within or across system
and enterprise boundaries.

In most situations, however, groups and roles are simply conflated. Even in situations
where they’re separated, the benefit in most cases is merely hypothetical and seman‐
tic. There are no doubt scenarios where the differentiation is important, but it’s not
common. Most systems will have a method of aggregating users and assigning per‐
missions to those aggregations, whether they are called “groups” or “roles” or some‐
thing else.

Objects
In an abstract sense, an “object” is anything in a system that may need to be acted
upon. This includes:

• Content objects
• Users
• Content types
• Settings
• Templates

Different systems have different granularity in assigning and managing the permis‐
sions to act upon different objects. It’s quite possible that a CMS will have a complex
group/role ACL structure in place for everything. In many other cases, ACL-style
permissions are reserved for content, and permissions for managing other items in

Permissions | 167

the system—like templates or users—are simply binary: designated people can do it,
and other people cannot.

In most cases, permissions apply to content. These permissions are granted or denied
on specific objects, but rarely are they directly assigned to those objects. Permissions
are usually inferred from either the type of content or its location in the larger con‐
tent geography. For example:

• A user has full rights to any News Release anywhere in the system.
• A user can create any allowable object under the News section of the content tree.

Occasions exist when a specific content object has different permissions from other
content of the same type or in the same location, but this is rare. Specifying those
objects as such would become unmanageable over the long term. Therefore, manag‐
ing permissions in aggregate becomes the only reasonable method.

In many cases, permissions are inherited from some other object—often the parent
object or folder. Changing the permission of an object will also change the permis‐
sions of all its descendent objects, unless that descendant has been specifically
declared to “break” this inheritance and manage its own permissions (at which point
it might be the target for the inheritance of its child objects). This is appropriate as
permissions are often based on location, and this effectively cascades permissions
down branches of a tree.

This is an example of CMS permission models often mimicking filesystems. In Win‐
dows, for example, a new file inherits the permissions of its containing folder, unless
this connection is specifically broken. Many CMSs use this same logical model.

Actions
Once we know the user and the object to be acted on, we need to allow or deny spe‐
cific actions. While a user could have so-called “full control” of an object (a phrase
borrowed from the Windows permissions model), there’s a greater chance that what
the editor can do is limited.

Some of the more common permissions in relation to a content object are:

• Creating content of a specific type
• Editing a content object
• Publishing a content object
• Viewing an unpublished content object
• Rolling back to a previous version of a content object
• Initiating a specific workflow on a type of content object

168 | Chapter 8: Editorial Tools and Workflow

• Editing a single spec of an object of a specific type
• So-called “soft deleting” an object by moving it to the Trash or the Recycle Bin
• Irretrievably “hard deleting” a content object

Different systems have different granularity around what permissions can be assigned
to an object. Some just have binary access—either you can create/edit/publish con‐
tent, or you can’t. Others have extremely fine-grained control over specific actions.

Some actions might presuppose other actions. It could be that the right to publish
content also confers the right to create and edit it, though situations could be con‐
ceived where this doesn’t apply. Likewise, an editor might be given the right to delete
content but do nothing else to it, though envisioning a realistic usage scenario for this
is harder.

Some systems are also extensible, allowing developers to create their own permissions
to govern customizations and extensions they write to a CMS. Figure 8-5 shows one
of the permissions interfaces in the Sitecore CMS, which offers fine-grained control.

Figure 8-5. One of several permissions interfaces in Sitecore—permissions can be
allowed or denied to both content and administrative objects, and permissions “cascade”
down the tree to child objects, unless overridden

Permission conflict resolution
Permissions can get complex, especially when different rules come into conflict. In
these cases, each system will have some defined method of resolution.

For example, some systems simplify by only offering Allow permissions, but others
have explicit Deny permissions as well, which often take precedence over Allow.
Additionally, inheritance rules can come into play. Does an inherited permission take
precedence over an explicit permission? Usually not; however, as Deny often takes
precedence over Allow, an inherited Deny might overrule an explicit Allow.

Permissions | 169

It all depends on the system, and how that system implements its security model. The
simpler you can keep your permissions model, the better. A more distributed edito‐
rial base requires more complicated permissions, which can lead to some complex
models, and occasionally extended debugging when an editor can’t do what he should
be able to do.

Consequences of permissions errors can be swift and painful.
Revoking read access to the Anonymous group on the root content
node of the tree might result in instantly locking everyone out of
the website. This is one of the few situations where all that stands
between your website and a giant swan dive into the abyss is a cou‐
ple of mouse clicks.

A Summary of Editorial Tools
We’ve covered a lot of ground here. Here are some questions you might want to keep
in mind. More than in any other chapter, the warning applies here that these check‐
lists are simplistic and crude tools for analysis. Editorial tools run the gamut of func‐
tionality and polish. The room for interpretation is wide, and wide-eyed editors sick
of their current CMSs can be easily seduced by glamorous features they might never
use.

Content Traversal and Navigation
• Is there a dedicated administrative interface?
• Are there in-context editorial tools for authenticated editors?
• How is content presented and organized for review and selection?
• How can content be organized and grouped for editors?

Type Selection
• How are editors presented with types for creation? Is the interface usable and

helpful? How will it scale for potentially dozens of different content types?
• Can available types be restricted by editor role?
• Can available types be restricted by parentage or location in the geography?

Content Preview
• Can the content be previewed prior to publication?

170 | Chapter 8: Editorial Tools and Workflow

• Can the content be edited in preview mode?
• Can the editor select multiple preview modes to see how the content will appear

in different channels?
• Can the editor spoof demographic or session information to invoke various per‐

sonalization states?

The Editing Interface
• How usable are the editorial interface elements?
• What interface elements can be selected and configured for each property type?
• How can content be validated during entry? How much control is available for

error messages?
• Is in-context help available to assist editors during content creation?
• How can the editorial interface be customized? Is it possible to remove function‐

ality based on role? Is it possible to add links, buttons, and other functionality?

Versioning, Version Control, Scheduling, and Expiration
• Does the system version content at all? Is it optional or required?
• Is the versioning serial or branching?
• Can content be rolled back to a prior version?
• How can versions be compared?
• Can new content be scheduled for publication?
• Can a new version of existing content be scheduled for publication?
• Can content be scheduled for expiration?
• Is there a concept of archiving, and what does it mean? Is content actually moved

to another location in the geography? Is it deleted? Can it be retrieved?

Workflow and Approvals
• What is the process for content approvals?
• Can approvals be achieved through simple manipulation of permissions?
• How are approvers for specific content identified?
• How are approvers notified that there is content awaiting their review?
• Is there a workflow engine?

A Summary of Editorial Tools | 171

• How are workflows created? From the interface? From code? By configuration?
• What constitutes a workflow step? Are there predefined actions that can be taken

in a step? Can these steps be customized?
• Is there a task management system? How does this differ from the non-CMS col‐

laboration tools your organization uses today?

Content File Management
• Can content files be managed from the CMS?
• Can these files be associated with specific content?
• Can their permissions and archiving/deletion be synced with content?
• How are files uploaded? Is there a mass-upload feature?
• Can external file repositories be connected to the CMS?
• What automatic image processing features are available?
• What in-browser image editing is available?

Permissions
• What level of permissions does the system offer beyond binary “full control”

access?
• How can users be aggregated? Does the system offer both groups and roles?
• How can content be identified for the application of permissions? By location in

the geography? By content type?
• Can content inherit or reference its permissions from another location or object,

or are all permissions directly applied?
• What types of permissions are available?

172 | Chapter 8: Editorial Tools and Workflow

CHAPTER 9

Output and Publication Management

There’s a funny Far Side cartoon showing a group of people in a karate studio.
Through the window, you can see a flying saucer has landed on the street outside and
“aliens” made of bricks and boards are walking down the ramp, preparing to terrorize
the town.

The caption reads:
The class abruptly stopped practicing. Here was an opportunity to not only employ
their skills, but also to save the entire town.

The implication is that the karate students were very skilled at breaking boards and
bricks, and never expected they’d have a chance to use these skills to actually do
something productive in the real world.

The same goes for our CMS. Now we’re to a point where we have to output some
content for a visitor to consume. Up to this point, we’ve basically been practicing.
We’ve modeled our content, determined how to aggregate it into groups, and identi‐
fied the editorial tools necessary to enable our editors to work with it.

The one thing we haven’t done is actually publish it. To provide value, a web content
management system has to generate web content at some point. We have to get the
abstract notion of content out of our CMS and into a form and location where it does
some good.

In other words, it’s time to get out of the studio, break some boards, and save the
town.

The Difference Between Content and Presentation
As I’ve said before, there’s a tendency to look at a news article that you’ve modeled
using your CMS and delivered into a browser window and say, “That’s my content.”

173

But it’s not. That’s a web page. It just happens to be displaying your news article. Your
news article and the web page it rode in on are not the same thing.

What if you published the same article (in a shortened form) to Twitter? Would that
be your news article? No, that would be a tweet, just displaying some different infor‐
mation from your article.

The fact is, that same article might be published into 20 different distribution chan‐
nels, your website just being one among many. In each one, a new presentation arti‐
fact is created using information from your news article. These artifacts are not your
news article; they’re just things created from it.

The article might even be presented in different ways on the same website. For exam‐
ple, while the article has a “main” view where a reader can consume the entire thing,
it likely appears in some other form on several news listing pages, which just use the
title, the summary, and perhaps an image. And what about when the article appears
in search listings? That’s yet another presentation of the same article.

The key here is to separate your content in its pure form—its raw, naked data—from
the ways in which it’s used. Your article might consist of the following information
(attributes, in the content model):

• Title
• Summary
• Image
• Byline
• Body

This is the pure content that makes up the article. It might also need to have multiple
attributes to help when it’s presented in various channels, such as:

• Tweet Body
• Sidebar Position
• Facebook Link Text

This information isn’t your content. It’s not critical to the “spirit” or core of the news
article. It exists merely to aid in the translation of your news article into a format nec‐
essary for one or more channels.

In the end, does this matter? In many cases, no, this is merely an academic argument.
But as we continue, it’s important to note the difference between the content and the
presentation in which it’s displayed. Some practices are universal to both, while others
only make sense in the context of one or the other.

174 | Chapter 9: Output and Publication Management

Templating
Templating is the process of generating output based on managed content. In a very
general sense, the output will be a string of text characters, usually HTML. Less com‐
monly, a CMS will generate binary content such as PDFs.

Nomenclature: Template vs. Type

Be warned that some systems use “template” to refer to what we’ve
called content types. For example, in Sitecore, your model of a
news article is called a template, and templates (as we discuss them
here) are called renderings.
This usage is not consistent with the nomenclature of this book.
I’m not saying it’s wrong; it’s just different and less common and
might have caused considerable confusion over the next couple of
dozen pages if you weren’t aware of it.
For the purposes of this book, a template is the set of code applied
to a content object to generate output.

A CMS blends two things together to generate output:

• Templating code, or text entered by a developer, usually created and stored in a
file. Different templates create different output. One template might generate a
web page, while another might generate a tweet (see Figure 9-1).

• Managed content, or text managed by an editor, created and stored in the CMS.

The combination of both is the final, rendered output.

Figure 9-1. Multiple templates are provided to the same content object to provide multi‐
ple outputs

One of the constant balancing acts in a CMS implementation is where this dichotomy
lies. How much of the rendered output should be created and managed by a devel‐
oper in the template, and how much should be created and managed by the editor in

Templating | 175

the CMS as content? The answer to this question has a huge impact on the usability
and manageability of the final system.

Load-Bearing Walls
A house can be modified by its owners. They can paint it, move furniture around, and
maybe even knock down a wall or two.

However, eventually the homeowners will run into load-bearing walls. These walls
hold up the roof, so they can’t be moved or taken down. The owners simply have to
work around them, or call a contractor to perform major structural modifications.
The architects who designed the house can affect its future value by where they place
the load-bearing walls, since those are set in stone (sometimes literally).

The same goes for a CMS implementation. While an editor might be able to change
the layout, colors, and other superficial aspects of a page, eventually she’s going to run
into load-bearing walls. These walls are things that editors cannot change. They either
have to work around them, or call a developer to perform major modifications.

Many of these aspects exist at the template level. The developer bakes items into the
template that cannot be controlled by content or the CMS interface. These are the
load-bearing walls. How many of these exist and where they’re figuratively placed will
have a huge impact on the value of the CMS implementation over time.

Some might argue that editors should have as much control over the page design and
layout as possible, which can be accomplished either by providing configuration
options for every possible bit of output, or by allowing editors free access to the tem‐
plates (often from the CMS interface). This rarely works well. HTML/CSS technolo‐
gies have advanced to the point where someone without training can do real damage
if they’re careless.

Additionally, in most cases, templated content is an advantage, not a limitation. As I
mentioned earlier when discussing dynamic page composition, allowing an editor to
change a page for no other reason than aesthetic preference might violate the site’s
style guidelines, and dealing with exceptions (e.g., where all content is a certain way
except News Release X), is very rarely a good thing.

In general, clean separation of responsibility between templating code and editorial
content is a desirable thing to have.

176 | Chapter 9: Output and Publication Management

1 “Enforcing Strict Model-View Separation in Template Engines,” May 2004.

Warning: Code Ahead

If you’re a developer, a lot of the information in this section will be
redundant. While it differs in some ways, templating is closely
aligned with mainstream web programming. Much of the informa‐
tion in this section is simply a lightweight introduction to those
concepts.
If you’re not a developer, you’re going to see fictitious code. It’s fic‐
titious in the sense that it’s not any actual language, but it’s repre‐
sentative of the basic concepts of programming/templating
languages.
The idea here is not to try to turn you into a developer. The aim is
simply to provide an introduction to some of the issues that devel‐
opers deal with when putting together a content-managed website.
Don’t look at this as a practical tutorial. Rather, just skim the con‐
cepts and try to understand the larger logical issues at stake.

Templating Philosophy
There are varying schools of thought on the scope of templating that revolve around
how much power the templates should have. The two sides of the argument look like
this:

• Templates should not have any data that they are not directly given. Templates
should be given a defined bundle of data, and they can format this data only.

• Templates should be able to retrieve and generate data as necessary. They should
be small, encapsulated units of code that can reach “outside” themselves if they
need to.

The first option is clearly more limiting. The CMS will “give” the template some data,
and that’s all the template has to work with. The argument in favor of this is one of
maintainability. Template developers shouldn’t be allowed unrestricted logic, or con‐
fusion will result because there’s now one more location for something to go wrong.

Terence Parr, the creator of the StringTemplate templating engine, has written an
entire white paper on this subject. In it, he says:

The mantra of every experienced web application developer is the same: thou shalt sep‐
arate business logic from display. Ironically, almost all template engines allow violation
of this separation principle, which is the very impetus for HTML template engine
development.1

Templating | 177

http://www.cs.usfca.edu/~parrt/papers/mvc.templates.pdf

2 This is both philosophical and practical. Philosophically, “Model” is the “M” in “MVC.” Practically, this data is
referred to in the template as the variable named Model.

It’s a valid point. If a template can do anything, then in what sense is it a “template” at
all, and how is it different from any other code?

The other side of the debate might argue that this is limiting and that logic as it relates
to presentation is perfectly acceptable. If a template needs to present a certain set of
data, it’s simpler for the template to be able to retrieve that data instead of having to
depend on the invoking code or system to provide it. Templates only exist to make it
easier to intersperse code amongst presentational markup, not to set the code apart
for any other reason.

Regardless of your position, the fact is that different systems enforce different models,
and many are settling into a hybrid approach: the template is given a bundle of data
but can perform other operations as necessary, unless explicitly disallowed by config‐
uration.

In practical terms, this means that most templates will execute in the context of a
known set of data. Data will be provided, and most operations in the template will be
specifically to format this data.

For instance, in ASP.NET MVC’s Razor templating language, the data structure is
conventionally known as the “model.”2 This model is given to the template, and is
referred to as such. For instance, to display the TITLE tag of a page, that piece of data
is retrieved from the model:

<title>@Model.PageTitle</title>

In Symfony, multiple variables are defined and given to the template, where they’re
retrieved by name:

<title>{{title}}</title>

The point here is not to survey templating languages but merely to demonstrate that
in most situations, templates are “dumb” and intended to act on provided data.

URL mapping and the operative content object
Closely related to the architectural concept of how the template engine operates is
how the CMS determines what information to give the template to work with. In a
coupled system, this is usually accomplished by mapping a URL to a content object to
be operated on—what we’ll call the operative content object.

Consider the inbound URL:

/politics/2015/debate-report

178 | Chapter 9: Output and Publication Management

In a coupled system, there is no “politics” or “2015” directory, and no file named
“debate-report.” Rather, this URL is mapped to the operative content object. When
the request for the URL is received, that content object is retrieved and the CMS
determines what template should render it. That template is given the content object
(and often additional data) and executed to provide output that is returned to the cli‐
ent.

In the prior section I said that templates operate in the context of a specific set of
data. For content management specifically, we can say that templates usually execute
in the context of the operative content object.

In Episerver (using Razor), the operative object is provided as part of the model,
under a property called CurrentPage:

<title>@Model.CurrentPage.Name</title>

In Sitecore (also Razor):

<title>@Html.Sitecore().Field("Title", Sitecore.Context.Item)</title>

In eZ Platform (Symfony and Twig):

<title>{{ ez_field_value(content, 'title') }}</title>

In WordPress (raw PHP):

<title><?php wp_title(); ?></title>

Note that in WordPress, the title of the post is derived to the point that you don’t even
have to pass an object to it. When you call that function, the template just assumes
you mean the operative content object.

The point here is that the operative content object will be known and provided to the
template. In the previous examples, this object was known to the template and refer‐
enced as Model, Sitecore.Context.Item, content, and wp_title(), respectively.

In a decoupled system that writes files to the filesystem, the URL mapping model is
reversed. Instead of a URL being received and mapped to an object, that URL is
specified on the object and simply used to generate the file in the appropriate loca‐
tion. Put another way, the file exists before the request. When a request is received, it’s
handled by the underlying web server without invoking the CMS at all.

Templating Language Functionality
All systems invariably have a language for generating textual output. When it comes
time for the merging of content and templating, there is always some type of short‐
hand for making this happen. It consists of templating code with markers indicating
where the managed content should go and how it should behave.

Templating | 179

3 Again, this is fictitious. Different languages will define code embedding differently, but in all cases there will
basically be some character combination that specifies code content as opposed to marketing content.

Very few CMSs implement their own custom templating languages. Most modern
CMSs use an existing templating language in common use, coupled with some cus‐
tom extensions and data structures specific to that CMS.

In ASP.NET this is Web Forms or Razor for MVC projects. In PHP, Twig is currently
very popular, and Smarty has been well used in the past (to say nothing of just using
PHP itself). For Java, FreeMarker and Velocity are popular.

There are three major “levels” of functionality in templating languages. We’ll look at
these next.

Simple token replacement
By definition, a system will always have the ability to replace “tokens” (or “variables”)
in the templating code with managed content. A token is simply a placeholder that is
replaced with information specific to the operative content object being templated.

Consider the following completely hypothetical code:

The name of this article is "{article.title}"
and it was written by {article.author}.

In this case, the tokens are clearly the text surrounded by the { and } delimiters (the
control characters that identify template code).3 The system knows to examine this
code, find that particular combination of characters, and replace them with the Title
and Author attributes of the article that’s being rendered, as in:

The name of this article is "The Migration Patterns of
the Dodo Bird" and it was written by Bob Jones.

In addition to simple token replacement, the templating code might have basic out‐
put filtering available to influence the content that replaces the tokens. The pipe char‐
acter (|) is a common tool for this (taken from the old Unix practice of “piping”
command-line output from one program to another).

For example:

This article was written on {article.date|"MMM DD, YYYY"}.

In this case, the date of the article is output in a specific format. Depending on the
platform, “MMM DD, YYYY” might result in “September 3, 2015.” The format of this
date is dictated by what is placed in the template by the template editor.

180 | Chapter 9: Output and Publication Management

Other common filtering needs include:

• Causing the output to be in currency format with two decimal places:
The product costs {product.price|"$#.##"}.

• Causing the output to read “5 days ago,” rather than a specific date.
Posted {article.publish_date|relative} ago.

• This might cause the word “result” or “results” to appear, depending on how
many search results were available.

There are {search.result_count|pluralize:"result"}.

Token replacement is core to any templating language. Templating would effectively
be impossible without it.

Limited control structures
Where token replacement runs short is when templates need to perform more
advanced logic, such as repeating actions for multiple items or deciding whether or
not to output something based on criteria. These concepts are foundational to pro‐
gramming in general, and are collectively known as “control structures” or “flow con‐
trol.”

Note that the existence of control structures in a templating language is never in place
of token replacement—languages with control structures and logical processing as
described in this section will also always have the token replacement capabilities
described in the previous section. Control structures are an extension of token
replacement.

The two core control structures are:

• Looping
• Branching

Consider this (again, hypothetical) templating code:

Other articles about this topic include {article.related_articles}.

This is problematic, because what does article.related_articles output? Clearly,
it needs to output a reference to more than one article, but it can do this in many
ways—for instance, as a bulleted list or a comma-delimited string—and where is the
templating code that dictates that?

What we’d really like to do here is something like this:

Other articles about this topic include:
{foreach related_article in article.related_articles}

Templating | 181

* "{related_article.title}" by {related_article.author}
{endforeach}

What we’ve created here is a “for each” loop, which is a programming control struc‐
ture. Assuming that related_articles is a reference attribute to multiple other arti‐
cles, this code will loop through them, and inside the loop the token
related_article will be fully populated as an Article content object, from which we
can output information. We’re saying: "For each article in the related_articles col‐
lection, do this…”

We can usually refer to related_article from inside the loop only. Outside the loop
—before the foreach or after the endforeach token—the related_article token has
no value. This is called “in scope.” The token related_article is only in scope inside
the loop, and it has a different value during each pass through or iteration over the
loop. Outside the loop, it has no value (it’s “out of scope”), and referring to it might
even result in an error.

A for each loop is a very common programming construct, and one of multiple
ways to loop over a collection of items. The actual implementation will vary from sys‐
tem to system.

In addition to looping, we’ll often need to make decisions to output information
based on criteria inside a content object. For instance, what if an article had no
related articles? In this case, the related_articles property would be empty, and
there would be nothing to loop over, leaving just this in the output:

Other articles about this topic include:

This would look odd, and leave visitors wondering if they’d missed something. We
need to remove everything referring to related articles if there are none.

In this case, we could attempt something like this:

{if article.related_articles.count > 0}
 Other articles about this topic include:
 {foreach related_article in article.related_articles}
 * "{related_article.title}" by {related_article.author}
 {endforeach}
{/endif}

Here, we’re using an “if…then” control structure. We’re saying, “If the number of
items in the related_articles attribute of our article is greater than zero, then loop
over and display the related articles. If this is not true, do nothing between if and
endif.” If our article has no related articles nothing will output, which is what we
want.

Almost all templating languages have some capacity for at least primitive control
structures. Without them, you’re limited to basic token replacement, which will
quickly fall short of even basic templating tasks.

182 | Chapter 9: Output and Publication Management

4 PHP might be unique in that it was originally built with the primary intention of generating web pages. One
of my technical reviewers noted: “I would argue that PHP is a templating syntax that grew into a program‐
ming language.” There’s truth to this. The roots of PHP as a web templating language are hinted at in a core
function called nl2br, which converts line break characters into the
 HTML tag. This function has no
purpose outside generating HTML and has been in the language since version 4, released in 2000.

Native programming language
Templating code can often get complicated. When branching and looping are intro‐
duced, templates effectively become little procedural computer programs. The line
between the template code and the actual code of a CMS can begin to get blurry.

This causes some to ask, why do templating languages exist at all? If native computer
languages are available, why not simply use them? It might seem silly or even unfair
to constrain a developer into a more primitive language. The underlying language of
your CMS—PHP, C#, or Ruby, for example—can no doubt do a great many things, so
why can’t you just do your templating in that language?

In some cases you can, and this often removes the need for a separate templating lan‐
guage altogether. For example, our original token replacement example could be writ‐
ten in PHP like this:

The name of this article is "<?php print $article->title; ?>"
and it was written by <?php print $article->author; ?>

Assuming “article” is a populated PHP object representing the operative content
object, this would output the same thing as the prior token replacement example.
Actually, many systems will allow this. In fact, WordPress—the most ubiquitous CMS
in current use—uses PHP as its templating language.4 Here’s some actual WordPress
templating from my own blog:

<a href="<?php the_permalink(); ?>">
 <?php the_title(); ?>

<p class="date"><?php echo get_the_date(); ?></p>
<?php the_excerpt(); ?>

The code between <?php and ?> is executed by the PHP interpreter.

So, why isn’t templating done in a full programming language rather than having
access to a templating language?

Remember back in Chapter 4, we identified a subset of developers responsible for the
frontend of the website—mainly the HTML/CSS and the templating. This template
developer might not be the same person as the backend or server-side developer
responsible for completely integrating the CMS. The roles and responsibilities are dif‐
ferent. While the server-side developer is concerned with the grand architecture of

Templating | 183

the entire system, the template developer is only concerned with how things are ren‐
dered.

As such, it’s generally desirable for a template developer to only work with a subset of
programming functionality, rather than having access to the full scope and power of
the underlying programming language in use by the CMS. Giving a template devel‐
oper unrestricted access to the full programming language introduces three prob‐
lems:

• Complication
• Security
• Stability

First, programming languages can be fundamentally complex. There are often many
nonintuitive things that a programmer needs to understand, such as variable scoping,
the difference between reference and value types, and recursion. These concepts are
far beyond what’s necessary to render a simple page of content.

In 2006, Tim Berners-Lee (the founder of the World Wide Web itself) and Noah
Mendelsohn edited a paper called “The Rule of Least Power”. Their abstract states:

When designing computer systems, one is often faced with a choice between using a
more or less powerful language…. The “Rule of Least Power” suggests choosing the
least powerful language suitable for a given purpose.

More power almost always involves more complication, and most programming lan‐
guages are designed to solve problems more complex than templating.

A dedicated templating language can be domain-specific, meaning it is aware of its
intended usage and can contain constructs and concepts designed solely to make it
easier to achieve that goal—to generate textual (usually HTML) output, in most cases.
The full programming language, by contrast, is designed to do anything and every‐
thing a programmer may be tasked with doing.

Second, and closely related, is the issue of security. If a full programming language is
available to a template developer, that template could then be allowed to do basically
anything the programming language allows. Just because the code is executing in the
context of a template doesn’t make it any less dangerous.

Something like this would cause an error during rendering:

Here's what happens when you divide something by zero: <?php print 1/0; ?>.

This is fairly benign compared to more potentially destructive practices like raw data‐
base access. If a template developer was given such access, he could circumvent the
security features of the CMS by going directly to the database for content, perhaps out
of genuine frustration over CMS limitations.

184 | Chapter 9: Output and Publication Management

http://www.w3.org/2001/tag/doc/leastPower-2006-02-23.html

Finally, templating languages are designed to be stable by being fault tolerant. If an
error occurs, it’s often ignored and the template simply carries on with execution.
Templates do not (or at least, should not) manipulate data, so the risk of data corrup‐
tion is low. Additionally, template logic issues can be isolated so that they simply
affect one portion of a page, and continued execution can still generate usable con‐
tent. Issues that arise during templating are rarely something that will or should dam‐
age the stability of the website as a whole.

The Danger of Prebuilt Interface Widgets

Many CMS vendors relentlessly promote prebuilt interface ele‐
ments that they claim will automatically generate HTML for com‐
mon interface needs, like photo galleries, image carousels,
comment forms, etc.
Be very careful here. These will certainly generate HTML, but you
usually have to simply take what you get. The odds that they gener‐
ate the correct HTML for your project, style library, planned
responsive breakpoints, and coding standards are lower than you
might think.
These elements often don’t save time because other code (CSS and
JavaScript, usually) has to be adapted to work with them. And
sometimes they become a net time loss, as you find yourself wres‐
tling to get the HTML structures you need, until finally just throw‐
ing them out and templating from scratch.

The Surround
When considering a rendered HTML page, there’s a need to separate between the
managed content of the page and “the surround.” The surround is everything that
(wait for it) surrounds the content object on the page.

The concept of the surround has been with us since long before content management.
Server Side Includes have long allowed web developers to provide common markup
for headers and footers, and some client-side editing systems provided explicit sup‐
port for this concept, such as Microsoft Front Page’s “Shared Borders” feature.

Templating | 185

Consider the news article in Figure 9-2. Several items on this page are the direct
result of the operative content object being rendered on the page:

• The title
• The byline
• The body

Then, there’s everything else above, below, and to the sides of the news article. The
“everything else” is the surround.

Figure 9-2. A news article from the New York Times: everything outlined—the headline,
byline, and body of the article—is content from the actual (operative) content object,
and everything else is the surround

In most systems, these items are handled by two different templates. The surround is
the outer shell of the HTML document, which is common to all content, while the
content object has its own template. The content object is rendered by its template,
and placed inside the surround template.

Here’s an example of a surround from the Razor templating language of ASP.NET
MVC:

<html>
 <body>
 <h1>Website Title</h1>
@RenderBody()

186 | Chapter 9: Output and Publication Management

 </body>
</html>

The @RenderBody() is a method call that will render the subtemplate for the content
in that location. Here’s an example of that template:

<h2>@Article.Title</h2>
<p>
by @Article.Author
</p>
@Article.Body

Like in our previous examples, the @Article.Body and @Article.Title are tokens
that are replaced with managed content. The entire result is then embedded in the
larger surround and delivered to the end user.

The final result looks like this:

<html>
 <body>
 <h1>Website Title</h1>
<h2>The Migration Patterns of the Dodo Bird</h2>
<p>
 by Bob Jones
</p>
<p>Lorem ipsum dolar...</p>
<p>More paragraphs of content here...</p>
 </body>
</html>

The surround is valuable because there is often infrastructural HTML that is com‐
mon to every single page on a website. Every page may require a reference to the
same stylesheet in the HEAD tag, or open with the same containing DIV. Keeping this
code in one place is simply a good design practice.

Where templates depart from one another is often in the rendering of different con‐
tent types. Your Employee Bio content type has fundamentally different information
than your News Release content type. Each of these types will likely have its own tem‐
plate, though the output of these templates will be placed within the same surround
for final delivery.

It’s possible that different content types might have entirely different surrounds, but
this is more rare than you’d think. Occasionally, a “landing page” content type might
have a very bare surround, or certain content designed for machine consumption (an
RSS feed, for example) will have no surround at all. However, the vast majority of
types in the average content management installation will be rendered in the same
surround.

Templating | 187

Context in the surround
In the examples just presented, the surround is completely ignorant of the content
being ultimately rendered inside of it. Our sample surround will render the exact
same way each time regardless of the content type.

But let’s add a HEAD and a TITLE tag to the current surround:

<html>
 <head>
 <title>...</title>
 <body>
 <h1>Website Title</h1>
{object_template}
 </body>
</html>

The question now becomes, what do we put in our TITLE tag and how do we get it
there? The article template itself (the “inner” template) clearly knows how to do this
with the {article.title} token, but what about the surround? What does it “know”
about the content rendering inside of it?

Remember, all the templates we’ve discussed so far have known about the operative
content object. They’ve all executed in the context of a specific content object to which
they could refer. Does the surround have this same luxury? Or is it completely igno‐
rant of what happens inside the inner template being placed within it?

This is a matter of context, or the ability for the surround to take action based on an
understanding of the content that is ultimately being rendered. In our example, we
could do this:

<title>{article.title}</title>

But remember, our surround is universal to all content types. Would an Employee Bio
content type have a “title” attribute? (Well, it might, but it would likely refer to the job
title, which is not what we want.)

Additionally, would the templating language even understand the token {article}?
We’re not necessarily rendering an article anymore. The surround has to be generic
enough to handle any content type we throw at it.

Here’s the brute force approach to solving this problem:

<title>
{if object.type == "Article") {
 {article.title}
}
{if object.type == "EmployeeBio") {
 {employee.first_name} {employee.last_name}
}
</title>

188 | Chapter 9: Output and Publication Management

5 If that sounds a little cynical, it is. There is no Grand Unified Theory of Related Content, though wireframe
designers usually assume it just magically happens somehow, so they routinely throw it into every sidebar.

This would work—and I’m sure it’s been done—but it’s not very scalable. We’d have to
add to this mess of code for every possible content type.

There might be a better way to solve this problem. Back in Chapter 6 when we dis‐
cussed content modeling, we talked about inheritance, where content types can
inherit from more general types and gain all their properties in the process.

Using that, we could create a Web Page content type with a text attribute of Title Tag.
Then, our News Article and Employee Bio types could inherit from the Web Page
type and get the Title Tag attribute in the process. Then we might do something like
this:

<title>{object.title_tag}</title>

Note that we’re using an {object} token in the templating code of the surround. This
is purely hypothetical, but common. The surround usually has access to a piece of
content in a form that has information common to all content. It might not be able to
dig into the specifics of the content object, but it can deal in generalities.

Of Abstractions and Polymorphism

The preceding example is what’s known in programming as an
“abstraction” (more specifically, it’s called “polymorphism”). Yes, a
News Article is a specific thing, but at the same time, it’s a more
abstract thing: a Web Page that has a Title Tag. At the same time, it
might be an even more abstract type: a Content Object, that has
attributes like a Published Date and an Author.
Dealing with content—and especially templating content—often
means thinking about it at different levels of abstraction and specif‐
icity.

In reality, most web CMSs have specific ways of handling the TITLE tag, but this is
just one example of how the surround often needs to deal with functionality that is
specific to the content that is being rendered.

Consider the common requirement of “Related Content.” CMS integrators see this all
the time in wireframes—the idea that content related to the content being viewed can
be magically conjured out of thin air.5 Regardless of the technical challenges involved,
this interface element usually appears in a sidebar, or somewhere in the surround.

Templating | 189

To render this, the surround has to know enough about the specific content being
viewed—the content in the “inner” template. Will it have this information in enough
detail to act on it?

Navigation is another very common contextual requirement. Often, the surround
needs to know where the content lives in the larger content geography. For the left
navigation menu of the site, perhaps your plan is to render links to all of the “sibling”
pages to the one being viewed, or simply to format the link to the current page differ‐
ently. To do this, the surround has to know what content is currently being rendered.
A crumbtrail is another example—a crumbtrail only makes sense when the position
of the current content is known in relation to other content.

Is your surround going to have access to this information? Will it be able to get refer‐
ences to the current object so it can query the repository for the sibling pages?

Lack of context in the surround can occasionally be supremely frustrating. While a
template for a specific content object is relatively simple, other things can be made
unnecessarily complex by a lack of abstraction and lack of awareness when rendering
the surround.

Template Selection
Content objects need a template to render. How is that template selected? How are
objects and templates matched up for rendering?

In most cases, templates are selected based on content type. This is natural because a
content type is the most obvious determinant of what a template needs to do. The
templating code required to render an Employee Bio will almost always be very dif‐
ferent from the code required to render a News Release.

In some cases, however, the template selected to render a content object can differ
based on factors other than type.

Editors may have a selection of templates, usually in order to alter layout. For
instance, an editor might select a “two-column” template in order to display a sidebar.

In these instances, confusion might result from the fact that a different template may
require different content to render, and the existence of that content might be a better
way to do automatic selection.

In the case of our two-column template, content has to exist for that sidebar column.
Does the content object have an attribute for Sidebar Content? And if it does, could
the regular template simply show or hide the sidebar based on whether that property
was populated? It would be confusing for an editor to populate a Sidebar Content
attribute but still not see a sidebar simply because she had failed to select a template
that supports it.

190 | Chapter 9: Output and Publication Management

6 Again, this is hypothetical, but “.tpl” is a very common extension for template files. The files are simple text
files, and could just as easily use an “.html” or “.txt” extension, but the “.tpl” extension identifies their purpose
by name, which can be helpful.

In other cases, we might want to supply a different template for a specific content
object to enable some extended functionality. If, for instance, we had a custom-
programmed mortgage calculator, we could create a Mortgage Calculator content
type, with its own template based on the type. Depending on the effort required,
however, this might be a waste for a content type that will only be used one time—
there will be exactly one content object created from that type.

It might be easier to simply create a Page object and call it “Mortgage Calculator,”
then use a different template for that specific object that contains the code to render
our calculator. This could be by editorial selection, but that runs the risk of an editor
selecting this template for other pages as well. It would likely be better to force this
template for that content object at the code or configuration level. (See “Proxy Con‐
tent Objects” on page 192.)

Some systems do this by filenaming standards, with a defined “fallback” list for how a
content object will render. The system will look for a template from most to least spe‐
cific. For example, say we have an Employee Bio content object that has a unique ID
of #632. Our system might look in the templates directory for files named:

• content-id-632.tpl6

• content-employee-bio.tpl
• content.tpl

The system will look for a template specific to the ID first (content-id-632.tpl). If it
doesn’t find this, it will look for a template specific to the content type (content-
employee-bio.tpl). If it doesn’t find that, it will use a generic template (con
tent.tpl) for all content (which, in most cases, would be highly undesirable—one
would hope that there would be a template for each content type, at the very least;
how would we possibly render completely different content types from the same tem‐
plate?).

While falling back based on file naming is common, other systems have much more
elaborate ways of determining template selection, including evaluation of specific
properties or specific locations in the geography, and even advanced rules engines
involving esoteric combinations of environment and content variables.

Templating | 191

Finally, many systems will also provide developer tools to override template selection
at the code level. A developer might be able to write code that takes any variables into
consideration when assigning a template to a content object for rendering.

Proxy Content Objects
The mortgage calculator we discussed in this section is a good example of a “proxy
object.” In our example, the mortgage calculator was entirely code-driven—all of the
functionality was in the template and some backend code written by a developer. In
fact, the code might have been written as a standalone executable page, and simply
linked to on the filesystem as calculator.aspx or calculator.php.

Doing this, however, would make that page an “orphan.” The CMS probably won’t
know anything about it, which limits or eliminates any extended functionality the
CMS can offer. Ideally, we could find a way to “wrap” this custom functionality in a
construct that the CMS knows about and can provide functionality to.

The content object in our example did just this. It was a “wrapper” or “proxy” around
this template. We created a content object, then assigned a specific template to just
that object. This template contained all the functionality required for our calculator.

By creating a proxy object in the CMS to wrap this code, we effectively told our CMS
this content exists, and consequently enabled significant editorial functionality
around it. For example:

• We can provide a paragraph of help text or an introduction, which can be man‐
aged by an editor (perhaps as the Main Body attribute of the page).

• The calculator can be presented in the same surround as the rest of the site.
• The calculator can use our permissions model, perhaps only allowing access to

logged-in visitors.
• We can configure the calculator based on its relationship to other content (if it

appears in the Commercial Mortgage section, brand it like that; otherwise, brand
it as a Residential Mortgage calculator).

• We can configure navigation items (crumbtrails, especially) based on the con‐
tent’s location in the geography.

• If an editor is writing another page and wants to link to the calculator, he can
select the calculator as another page in the CMS, rather than having to copy and
paste the URL. Then, if the URL of the calculator changes, we won’t have to go
tracking all those links down.

• We can get a clean URL, as provided by the CMS.

192 | Chapter 9: Output and Publication Management

Template Abstraction and Inclusion
In addition to the relationship between the template and its surround, a template will
quite often contain “subtemplates” or “included templates,” which are separate tem‐
plates injected into specific places in the “containing” template.

This is the continuation of a very common technique of web programming lan‐
guages. Server Side Includes have been used for years to insert chunks of HTML and
programming code in languages like PHP, Classic ASP, and ColdFusion. And this
itself is a continuation of the programming principle of DRY (“Don’t Repeat Your‐
self ”), which encourages programmers to elevate common code to central “libraries”
that are referenced in multiple places.

The goal of this model is to avoid repetition and ease the maintenance of templates as
changes need to be made. If common template code is concentrated in one location, it
can be changed once with potentially wide-ranging effects.

For example, in several places in a website, we might want to generate an HTML
structure like this:

 Article #1
 Article #2
 Article #3

This a simple bulleted list of three articles and their titles. We might use this in our
Related Content sidebar, our Latest News menu, and our Other Articles in This Series
promotional box. In each case, it would display different articles, but the general pre‐
sentational structure of displaying a list of articles and titles would apply in all cases.

The code to generate this output might look like this:

 {foreach article in article_list}
 {article.title}"
 {endforeach}

We could, of course, simply include that template code in all three places in our tem‐
plates. But what if we wanted to change it? Rather than including it three times, it
would be more efficient to have the code in one place, and simply refer to it.

Perhaps instead, we could insert the following code:

{include:article_list.tpl}

This code would find the article_list.tpl file, in which our code lives, and insert the
contents in that location. Used in multiple places, this code would have the effect of
centralizing the template structure and allowing us to maintain it in one place.

Templating | 193

Remember that the actual articles will be different in each of our three use cases, so
we need a way to specify what the article_list variable means inside the subtem‐
plate. This is usually accomplished by specifying the value when calling the template:

{include:article_list.tpl article_list=article.related_articles}

In this case, we’re calling the subtemplate and telling it that—for this instance only—
the article_list is comprised of the related_articles attribute of the article we’re
rendering.

Template inclusion is quite common (both in CMSs and web development in gen‐
eral), and is extremely helpful to reduce the complexity of templates by abstracting
common output structures into their own templates and managing them there.

Inside-Out Templating
If we consider the operative content object’s template as the “main” template, the sur‐
round is often described as wrapping this main template. Conceptually, it looks like
this:

surround.tpl
 content-object.tpl

However, there’s a subtle difference, and I want to make sure you understand that
templating is generally driven from the inside out, not the outside in. The surround
doesn’t pick the inner template; rather, the inner template selects the surround.

Remember that the content-object.tpl template is the main template—it is the template
that’s directly invoked. It’s calling the shots, essentially, and can sometimes control
what surround is applied. In this way, it “includes itself ” in the surround template,
which turns the concept inside out.

For example, a Razor template in ASP.NET MVC includes this code at the top:

@{
 layout = "/path/to/layout/template.cshtml";
}

This says, in effect, “Execute me, then insert me inside of this particular surround.” The
main template specifies the surround that it wants, and remains in control of the ren‐
dering flow.

The operative content object is a lot like someone getting ready for a party. First, they
get all cleaned up, dressed nicely, and looking great. Then, at the last second, they
look through the hall closet for a matching coat that complements their outfit, throw
it on, and head out the door. They picked out a coat based on their outfit, they didn’t
pick their outfit based on their coat. The surround template is the coat that the opera‐
tive template throws on at the last second.

194 | Chapter 9: Output and Publication Management

7 Very few other systems force template development solely through the interface. This is rare, but you see it
occasionally, and it often throws developers into disarray. Files are the universal container of web develop‐
ment—they’re the thing that developers base their work on and use as an encapsulation and transport mecha‐
nism for code. Almost all programming processes and methodologies assume that code exists in files, not
database records, and without file artifacts to manage, many programming methodologies and workflows will
completely break down.

Template Development and Management
We’ve spent lots of time talking about templates, but what are they exactly, and how
do they differ from content itself?

Templates are almost always file-based. Whereas content exists in the CMS as some‐
thing editors work with through the interface, templates exist on the filesystem as
files that developers work on using their standard development tools. (See “Code Ver‐
sus Content” on page 28.)

Some systems also allow for template editing through the interface, though this is rare
and would usually only be done in an emergency when access to the underlying code
was not available. A textarea in an HTML page offers very little in the way of the
coding support even the most rudimentary code editing tool offers—line numbering,
syntax highlighting, autocomplete, etc.7

The existence of file-based templates highlights another difference between templates
and content—templates are a code asset, not a content asset. A template change will
usually be treated as a code-level change and subject to the developer’s workflow pro‐
cess, not the editors’ workflow process. The two workflow processes are quite differ‐
ent.

Templates are normally stored in a source code management system such as Git or
Team Foundation Server. Sometimes they’re stored alongside the CMS code itself,
and sometimes separately. Changes to templates are often tested and deployed
through well-known build tools like Jenkins or Cruise Control (we’ll talk more about
development tools in Chapter 12).

The relationship between code and content is often misunderstood, and the two are
often conflated. Editors might expect content to be handled like code, and code to be
handled like content. Understanding the difference between the two and the bound‐
aries between them is critical to an overall understanding of the CMS itself.

Responsive Design and Output Agnosticism
More and more, prospective CMS customers are asking to what extent a CMS enables
or inhibits responsive design. The answer to either question should be “not at all.”
Responsive design is largely a byproduct of HTML and CSS markup, and a CMS

Templating | 195

should neither enable nor inhibit any particular output paradigm. A CMS should ide‐
ally strive to be “output-agnostic.”

Some CMSs do provide device detection and use this information for template selec‐
tion (technically, this is adaptive design, not responsive), but even in systems that
don’t, this functionality can be provided by the web server or some other element in
the technology stack.

The earlier warning about prebuilt interface widgets looms large here. A canned
HTML structure provided by a CMS “feature” will stick out like a sore thumb when
it’s the only nonresponsive element on a page or doesn’t respond in the way every‐
thing else does. And given that the HTML for your responsive design will be highly
specific to the CSS framework you choose, how will these prebuilt widgets decide
what HTML to output?

In a larger sense, this question speaks to the division of responsibilities. Is it the
responsibility of a CMS to manage the detection of devices and the generation of
responsive HTML? Most developers would say no—this should be handled by other
components in the technology stack. So long as the CMS does not hinder the genera‐
tion of any HTML the template developer desires, then the responsiveness of the out‐
put is not the CMS’s concern.

When a CMS gets too cozy with the HTML it generates, in the
form of prebuilt widgets or by promoting specific frontend design
and coding paradigms, it’s said to “infiltrate the browser.” It slowly
starts to expand its sphere of influence beyond managing content
and begins to try to manage what happens when a page is loaded
into the browser. Resist this infiltration. In most cases, a CMS has
no business being there, and it’s rarely helpful in the long term.

Publishing Content
Once we understand the relationship between our content and our presentation, and
we’ve developed templates to render content in the format we want, then we need to
get this content into a state where someone can consume it. How we do this depends
highly on the relationship between our management environment and our delivery
environment.

Coupled Versus Decoupled Content Management
One of the more significant architectural principles behind a CMS is the coupling
model between its management and delivery environments. By “management,” I
mean the system in which content is created, edited, and managed. By “delivery,” I
mean the system from which content is consumed by a visitor.

196 | Chapter 9: Output and Publication Management

8 Usually. Some installations might simply publish content to a different location on the same server.

In many cases, these are the same system. Editors manage content and visitors con‐
sume it from the same server, using the same execution environment. For example,
an editor working on content in Sitecore and a visitor reading that content are both
talking to the same Sitecore installation, just from different sides.

These systems are said to be “coupled.” Management and delivery are inextricably
linked in the same environment.

Contrast this to a system where the authoring and management environment is on
one server, and the delivery environment is on a completely different server, perhaps
in a different data center, and even in a different geographic location entirely. Content
is created and managed in one place, and is then transmitted to another place where
it’s consumed by visitors.

The delivery environment might be only vaguely aware the management environ‐
ment even exists. If content is placed onto it via FTP or file copy, the web server in the
delivery environment will dutifully serve the content up without knowing or caring
where it came from.

These systems are said to be “decoupled.” Management and delivery are separated
into two environments.

When it comes to actually publishing content, the two options are handled quite dif‐
ferently:

• With a coupled system, the act of publishing content simply means changing a
setting on the content to make it publicly available. From the first moment it’s
created, content is already in the delivery environment; it’s just hidden from pub‐
lic view. Referring back to the versioning discussion in the last chapter, to make it
available for public view, we simply mark one of the versions as “published.” It’s
almost anticlimactic.

• With a decoupled system, we have to actually move the data from one environ‐
ment to another. All content intended for publishing is gathered up from the
management environment, then transmitted to another server entirely.8

These two models often make the concept of a “staging environment” confusing. In a
coupled system, the staging environment is virtual—if you have permission to see
draft content and are perhaps in a “preview mode,” then you’re effectively viewing the
staging environment on the same server as the production environment. With a
decoupled system, a staging environment might be a literally different environment
to which content is transmitted for preview.

Publishing Content | 197

9 I’ve even worked on a highly specialized build that simply populated an entire SQLite database with content
and pushed that into the delivery environment. So, the CMS swapped out the entire data source of a running
website whenever content was published. While clearly not appropriate for many situations, it was the right
choice for those particular requirements and demonstrates that decoupled data can be published in many dif‐
ferent formats beyond static files.

Which is the default architecture?
Back in the early days of content management, decoupling was the default architec‐
ture. Content management systems were largely static file generators that simply hel‐
ped website managers turn data into formatted HTML files that were then copied to
the root of the website.

But as web programming languages and websites became more sophisticated, the
decoupling model began to show cracks. Having simple, static HTML files worked
well when content didn’t change much and wasn’t required to do anything, but the
market was starting to demand that content become active.

Website managers wanted users to interact with content in contextual ways—they
wanted to hide some content from users who weren’t logged in, or they wanted to
change the way content was organized based on the user, or they wanted to enable
real-time search of content. Static HTML files didn’t adapt well to these needs.

Gradually, the CMS and the content it managed began to become more coupled. Why
write out an HTML file when a PHP script could simply query and retrieve content
from a database in real time? In the years since, the coupled CMS has become the
default model, and decoupled systems are becoming harder to find (though this
might be changing; we’ll talk about this a bit in Chapter 15).

In situations where decoupling is still used, the CMS normally either publishes scrip‐
ted web pages (PHP files, for example) that execute on request, or doesn’t publish files
at all. Some systems publish pure data records into a database,9 and the website is
built to render them live (oddly, now you sort of have two CMSs—a decoupled one
populating a database as its destination, and a coupled one using that database as its
source).

The argument for decoupling
While not appropriate for many situations, decoupling does have undeniable advan‐
tages:

• It allows your repository system and publishing system to be on different archi‐
tectures. You could have a Java-based CMS pushing content onto a Windows
server running .NET. Your delivery environment is not limited by your manage‐
ment environment.

198 | Chapter 9: Output and Publication Management

• It will usually result in a more secure delivery environment. The potential hack
points on a stripped-down web server are tiny compared to a full CMS.

• You can publish content to multiple delivery environments. A large media enter‐
prise might have hundreds of servers in dozens of countries on multiple conti‐
nents. In these situations, deploying content is much more complex than just
manipulating the version stack. Caching servers need to be updated, media needs
to be pushed into a CDN, reverse proxies need to be reset, failover servers need
to be updated, etc.

• Since you don’t need to install a CMS on all the delivery servers, you might not
need to license them. Depending on the size of your delivery environment, this
could save you enormous amounts of money.

• It can be easier to scale a decoupled delivery tier. Adding a simple web server to
your load balancer is vastly easier than bringing up a new CMS installation and
somehow synchronizing it with the others. Your management environment
might actually be quite modest, but it could publish content into a mammoth
delivery architecture.

• Reliability is usually higher. Not having a CMS in the delivery environment
means fewer moving parts. There are fewer chances for error when serving static
HTML files.

• You can publish content from multiple repositories and systems. Your CMS may
only be one system of many that generate content, so your delivery tier might
need to publish content without knowing (or caring) where it came from. It’s eas‐
ier to blend content from multiple points of origin in a decoupled environment.

• In some cases, the content in a CMS is secondary to the website’s primary pur‐
pose. An online banking system, for instance, might be a massive, custom-built
banking platform that incidentally also displays some content. You can’t simply
drop a coupled CMS on top of this—the CMS can’t “own” the delivery environ‐
ment. Instead, the CMS has to be subservient to it, exist somewhere else, and
push content into it.

• Some editors demand a true “staging environment” from which to develop con‐
tent. They want a sandbox in which to publish content for preview before public
delivery.

Decoupled Publishing Targets
In decoupled environments, the CMS transmits content to “publishing targets,” which
are environments intended for content delivery. Most systems can support more than
one publishing environment and publish content to them simultaneously.

Publishing Content | 199

10 Clearly, another benefit for commercial CMS companies in this model is that all the delivery servers need to
be accounted for and subsequently licensed. The cost of licensing the delivery environment might constitute
the largest portion of the vendor’s total price tag.

The actual method of transmission is often one of the following:

• FTP or SFTP
• File copy (obviously, the two systems would need to be on the same network or

VPN)
• WebDAV
• rsync
• SCP
• Web service

Some transmission methods are universal (almost every server will support FTP),
while others need something on the other end to receive the content. There is no uni‐
versal web service, for example, that would receive content from any CMS. Therefore,
a CMS might provide a web service to run in the delivery environment that will be
used to get content from one environment to another.

Once this happens, the neutrality of the decoupled model is broken. If the delivery
environment needs something running inside it, then that environment becomes an
extension of the CMS, to some extent. The CMS no longer publishes to a neutral
environment, but instead publishes to a known endpoint that is prepared to receive
the content from it.

Some systems are even more specific—they run proprietary software to receive con‐
tent in the delivery environment. The CMS effectively comes in two pieces, resulting
in a system where management software pushes content into delivery software that is
required on every delivery server.10

Delivery environment synchronization
Here’s a seemingly simple question: how does a decoupled system delete published
content from the delivery environment? Say your decoupled CMS pushes an HTML
file (a database record, whatever) to a delivery server. Later, the content “behind” that
file gets deleted from the repository. Does the decoupled system then delete the out‐
put file from the delivery server?

Some do, but others might only update the delivery environment when you publish,
which means that when you delete, there’s an orphaned file sitting out there. Over
time, these accumulate, and you wind up with a mix of active files that represent con‐

200 | Chapter 9: Output and Publication Management

tent and orphaned files that have no corresponding content. How can you tell the two
apart?

Can you just wipe out the delivery environment and republish the entire repository
from scratch? Only if everything for your site is in the CMS. Some solutions are just
partially managed—supporting files live in the delivery environment (or are deployed
there from source control) and content files are published from the CMS, and these
files are all intermingled in the same locations on the delivery server. How can you
tell which files were published from the CMS and which files exist only in the deliv‐
ery environment?

This raises a larger question: how does a decoupled CMS ensure it stays perfectly in
sync with its published environment? Does it “own” the delivery environment and
exert ironclad control over it? Or is it designed to “contribute” to the delivery envi‐
ronment and not disrupt files that are already out there? The answer to this question
varies by system.

A Summary of Output Management and Publication
Features
The following checklists provide you with some guidance on points to keep in mind
when evaluating your output and publication needs.

Architecture
• Is the system a coupled or decoupled system?
• Does the system manage content without reference to delivery on the Web, or

does it have web-centric features built in?

Templating
• Is templating done in a domain-specific language, or is it done in the underlying

programming language of the CMS itself?
• Does the language allow for token replacement? Does it permit filtering and for‐

matting of replaced values?
• What control structures are available for template logic?
• How does the templating system allow you to manage and include the surround?

How can the surround obtain the correct context of the content object being ren‐
dered?

• How does the templating system allow you to abstract and include other tem‐
plates?

A Summary of Output Management and Publication Features | 201

• How are templates selected for content? How are you able to affect this selection?
• How are templates developed and managed by template developers?

Decoupled Publishing
• How is content transmitted to publishing targets?
• How are publishing targets configured and managed? Are they required to run

CMS-specific software?
• Can the CMS capture publishing events? Can processes be run before or after

content is pushed into the delivery environment?
• What data artifacts are actually published? Just files, or can the system publish

records to a database or other non-filesystem storage method?
• How does the CMS ensure the delivery environment stays in sync with the repos‐

itory?
• Is the CMS expected to manage non-content files as well, or should supporting

files live in the delivery environment and only content files be published from the
CMS?

• What needs to be installed on the delivery servers in order for them to receive
content from the management environment?

• How are delivery servers licensed?

202 | Chapter 9: Output and Publication Management

CHAPTER 10

Other Features

In prior chapters, we’ve discussed edge cases, which are usage patterns at the outside
edge of what a typical user might do. Edge cases are the bane of software developers
because they have to be accounted for, even though they occur infrequently. And
sometimes the level of work that goes into handling an edge case will equal or exceed
the level of work that goes into developing something that every user does, all the
time.

One of the problems with writing complicated, feature-rich software is that any indi‐
vidual user of the software might only use 25% of its total features. But everyone uses
a different 25%. Which means that beyond the basic, core functionality, everything
becomes an edge case to some extent.

Once a platform’s user base hits a significant size, every edge case can be a huge prob‐
lem. If 30,000 people are using your software, and a feature is used by only 1% of
them, that’s still 300 people who expect it work with the same level of polish as every‐
thing else.

These users don’t know that this is an edge case. They don’t know that very few other
people are using the feature. Just ask any vendor who has tried to remove a feature it
didn’t think anyone was using, only to be greeted with howls of protest by a small
subset of users who were depending on it.

In the previous four chapters, we’ve discussed the core features of web content man‐
agement:

• Content modeling
• Content aggregation
• Editorial workflow

203

1 Multilingual content management was originally much more advanced in systems coming from Europe,
because it had to be built in from the start. Europeans are more multilingual than the rest of the world due to
the sheer number of different languages spoken in close proximity. As such, the CMS coming from Europe a
decade ago tended to be multilingual from their roots, while systems from the rest of the world often had to
retrofit this feature later in their lifecycles.

• Output management

It can be safely assumed that every implementation will use these four features to
some degree or another. If a system falls down on one or more of these, it’s tough to
get much done.

However, in this chapter, we’re going to talk about features on the edges. These are
things that might be used in some implementations, and not in others. Some systems
won’t implement some of these features, because they haven’t had a user base
demanding them.

Features that address use cases on the edges often have a “backwater” feel to them.
They’re somewhere off the mainstream, and might offer functionality that even expe‐
rienced integrators (or members of the product’s development team itself!) have for‐
gotten exists, or never knew about in the first place.

Backwater features are those that don’t get nearly the attention of the core features
and are sometimes created just so a vendor can check few boxes on an RFP and say it
offers them. Consequently, their value tends to fall into narrow usage patterns.

Note that not everything discussed in this chapter is a “backwater feature,” but all the
features we’ll look at here represent functionality that might not be present in all sys‐
tems.

A sadly common scenario is when a prospective customer asks to
see feature X, and the sales team scrambles to remember if it’s han‐
dled by the product and, if so, where the functionality exists and
how it works. They find someone on the development team who
vaguely remembers something that was poorly implemented many
years ago and hasn’t been touched or updated in years, and then
pray that it holds together long enough for them to demo to the
prospect and act like it’s something they show off every day.

Multiple Language Handling
Content localization is a deep, rich topic. Technical documentation writers have been
developing methods to manage multiple translations of their content for decades.
Websites have just made the problem more immediate and more granular.1

204 | Chapter 10: Other Features

2 I’ll assume English for the purposes of this chapter, though I apologize for the ethnocentrism.

Having your website content in more than one language is often not a binary ques‐
tion, but rather one of degrees. In some cases, you might simply have two versions of
your website, with all content translated into both languages. In others, however, you
might have some content in your primary language,2 and some content translated
into a secondary language. Not translating all your content into another language
might be due to the expense involved, or due to lack of regulatory requirements in
situations where an organization is only required to have specific content in multiple
languages.

Multiple languages add an additional dimension to your CMS. In terms of your con‐
tent model, each attribute may or may not require additional versions of itself. The
Title attribute of your News Release content type clearly has to exist in multiple ver‐
sions, one for each language, but other attributes won’t be translated. The checkbox
for Show Right Sidebar, for instance, is universal. To account for optional translation
when modeling content, you might be required to indicate whether a particular
attribute is “translatable” or not.

The end result is not a simple duplication of a content type, but rather a more com‐
plex selective duplication of individual content attributes. Content objects are popula‐
ted from the required combination of universal attributes, translated attributes in the
correct language, and “fallback” translations for attributes without the correct lan‐
guage.

Nomenclature
When discussing multilanguage content, some terms can be tricky. Here are a few
definitions to keep in mind:

• Localization is the translation of content into another language.
• Internationalization is the development of software in such a way that it supports

localization.

For example, a CMS that is “internationalized” has been created in such a way that
multiple languages can be supported, in either the content under management or the
CMS interface itself.

That last point is worth noting: there’s a difference between a CMS that manages con‐
tent in multiple languages and one that presents itself in multiple languages. If your
Chinese translator doesn’t speak English (let’s assume she’s translating content from,
say, Swedish), having a CMS interface that can only be presented in English can be a
problem.

Multiple Language Handling | 205

3 “ISO” refers to the International Organization for Standardization. This is a worldwide organization that col‐
lects, manages, and publishes standards across a wide variety of industries and disciplines. The existence of an
ISO standard indicates that this is a commonly accepted standard for the relevant subject matter and is used
by many organizations. In this case, the language abbreviations contained in ISO-639 are common not only to
content management, but across the business world in general. A CMS could implement its own language
codes, but that would be fairly pointless.

Language Detection and Selection
The language in which your visitor wants to consume content can be communicated
via three common methods:

• The domain name from which the content is accessed
• A URL segment of the local path to the content
• The visitor’s browser preferences, communicated via HTTP header

In the first case, the content is delivered under a completely separate domain or sub‐
domain—for example:

www.mywebsite.se
se.mywebsite.com

In these cases, “se” is the ISO-6393 abbreviation for Swedish. While the two domains
look similar, there’s actually a marked difference.

The first example requires that your organization own the country-specific domain
name. This might be difficult if a country puts restrictions on who can purchase those
domains (you may have to be incorporated or based in the country in question, for
example). The second example uses a subdomain, which is available at no cost to the
organization that owns the “mywebsite.com” domain.

An additional consideration is that “mywebsite.se” is considered to “belong” to a
country, and there are rumors of more search engine optimization (SEO) considera‐
tion when using search engines in those countries. In this instance, content served
under the “mywebsite.se” domain might perform better when using Google Sweden.

The ability to map languages by domain name may or may not be supported by a
CMS. In some cases, the alternative domain would be considered another website,
while others will allow the mapping of multiple domains to a single site for the pur‐
pose of mapping languages to specific domains.

If you don’t want to change domain names, many systems will allow for the first URL
segment to indicate language. For example:

www.mywebsite.com/se/my-news-release

206 | Chapter 10: Other Features

http://google.se

4 While it would make sense to simply list languages in order of preference, the “q=” indicates the “quality fac‐
tor,” which is the order of preference for languages. Why the complication? It’s related to a larger concept of
“content negotiation” built into the HTTP specification. Other content variations, like quality or type, might
be based more granularly on the quality factor. In practice, however, content negotiation is rarely used at this
level.

In this case, the “se” at the beginning of the local path is detected and Swedish-
language content is served. In systems where URLs are automatically generated based
on site structure, this URL segment is usually added automatically, is transparent to
the editor, and will not map to any particular content object. (For now we’ll ignore
the fact that the remainder of the URL should actually read “mitt-pressmeddelande”;
we’ll talk more about that in the next section.)

Finally, many systems support automatic detection of the language preference from
the inbound request. Hidden in web requests are pieces of information called “head‐
ers” that your browser sends to indicate preferences. One such header looks like this:

Accept-Language: se, en;q=0.9, fr;q=0.8

In this case, the user’s browser is saying, “Send me content in Swedish, if you have it.
If not, I’ll take English. If not that, then use French as a last resort.”4

This language preference is built into your browser, and can be modified in the
browser settings (you may have to look deeply because it’s rarely changed, but I
promise you it’s in there somewhere)—see Figure 10-1 for an example. For most
users, this is set (and then never changed) by your operating system based on the ver‐
sion you purchased. If you bought your copy of Windows in Sweden, then the operat‐
ing system language likely defaulted to Swedish, and Internet Explorer will be
automatically set to transmit an Accept-Language header preferring Swedish.

Figure 10-1. The language settings dialog in Chrome—these settings resulted in a header
of “Accept-Language: en-US,en;q=0.8,sv;q=0.6,fi;q=0.4”

Multiple Language Handling | 207

5 Technically, the correct status code should be “406 Not Acceptable,” which means that content can only be
produced with “characteristics not acceptable according to the accept headers sent in the request.” However,
this is rarely used and might be confusing, so most sites will return a 404 Not Found.

6 This is common with “language families” or “proto-languages,” which are groups of similar regional lan‐
guages. For example, Norwegian, Swedish, Danish, Faroese, and Icelandic are all vaguely related to a historic
language called Old Norse. Most European languages are also considered to be Germanic, and share many
common features (large portions of the alphabet, punctuation, and formatting, such as left-to-right reading
direction).

Language Rules
What if a user selects a language for which you do not have content? Your site might
only offer its content in English and Swedish. What do you do with a browser
requesting Finnish?

First, you need to understand that the information in the Accept-Language header,
domain name, or URL segment is simply a request. The user is asking for content in
that language. Clearly, you can’t serve a language you don’t have. Nothing is required
to break in these cases; you just need to make choices regarding how you want to
handle things.

You have a few options:

• Return a “404 Not Found,” which tells the visitor that you don’t have the content.5

• Serve content in the default language, perhaps with a notice that the content
doesn’t exist in the language the user requested. In this case, we would serve
English and perhaps explain to the user that Swedish wasn’t available by putting a
notice at the top of the page.

• Fall back according to a set of rules. You could, for example, configure the system
to treat Swedish and Finnish the same, so users requesting Finnish content would
receive content in Swedish. Clearly, these are different languages, but many Finns
also speak Swedish, which would at least get you into the right ballpark.6

Assuming the content does exist in the language the user requested, how do you han‐
dle requests for specific-language content when rendering the rest of the page, espe‐
cially the content in the surround? If you have 100% of the content translated, then
this isn’t a problem, but what if the site is only partially translated?

In most cases, a CMS will require the specification of a “default” language (English, in
our example), in which all of the content exists. This is the base language, and any
other language is assumed to be a translation of content in the default language. This

208 | Chapter 10: Other Features

7 Though not strictly related to your CMS, a little-used variant of the LINK tag can be used to point to equiva‐
lent content in other languages: <link rel="alternate" hreflang="se" href="http://se.myweb
site.com/" />. Some search engine indexers will use this to identify the same content in multiple languages.

might mean, for some systems, that content cannot exist in another language if it
doesn’t exist in the default language first.7

In a partially translated site, there might be content translations for some of the con‐
tent in other languages. If someone requests one of these languages (Swedish, as an
example), and you can manage to produce the desired content in that language, you
still have the problem of rendering other content on the page—the navigation menu,
for example—when parts of it may require content that has not been translated.

You have two options here:

• Simply remove any untranslated content.
• Display the content according to fallback rules.

With the first option, the site might shrink, sometimes considerably. If only 30% of
the site is translated into Swedish, then the navigation will be considerably smaller. In
the second example, all content will be available, but some links will be in Swedish
and others in English (our default).

Language Variants
There may also be specific dialects of a language per country. In these cases, in
accordance with ISO-639, the language codes are hyphenated. For instance, “fr-ca” is
for “French as spoken in Canada,” and “en-nz” is for “English as spoken in New Zea‐
land.”

Some countries mandate differentiation. For example, Norway has two official writ‐
ten and spoken language variants:

Bokmål
“no-nb,” the official variant

Nynorsk
“no-nn,” literally “new Norwegian”

All governmental branches are required by law to publish/transmit 25% of their con‐
tent in Nynorsk. In these cases, fallback rules are common. For the 75% of content
that doesn’t have to be in Nynorsk, a request for content in “no-nn” would likely be
configured to fall back to “no-nb”.

Language Rules | 209

8 This is more accurately referred to as “culture translation” rather than “language translation.”
9 These settings are often referred to as the “locale settings” of a user.

10 Which, incidentally, might be one reason why Germans use Twitter at a rate markedly less than other coun‐
tries. It is much harder to shoehorn the German language into 140 characters than other languages.

Beyond Text
While text is the content most commonly affected by localization, it’s not the only
content:

• Images and other media might have multiple translations, based on language or
culture. It’s easy to inadvertently offend visitors from some countries by showing
images outside their cultural norms. For example, for many years, it was com‐
mon to avoid showing images of families with more than one child when deliver‐
ing Chinese content. Similarly, in predominantly Muslim countries, the Red
Cross is known as the Red Crescent, with a different logo to match the name.8

• URLs might be specific per language, as we noted earlier. This results in the addi‐
tional complication that content can no longer be translated into a different lan‐
guage simply by changing the language indicator (whether this be the domain
name, a URL segment, or a request header), since the actual path to the content
in another language is different. If someone changes the “se” language indicator
to “en,” they might get a 404 Not Found because “/en/min-nyheter-releasen” is
not a valid path, even though that content does exist in English under another
path (“/en/my-news-release”).

• Template text will need to be changed. The word “Search” on an HTML button is
often not content-managed but is baked into the template. It will need to be ren‐
dered as “Sök” when accompanying Swedish content. Depending on the platform
and templating language, these text snippets are often stored in resource files
managed alongside templates and then retrieved and included at render time.

• Template formatting is often culture-specific. For example, “$1,000.00” in English
is “$1.000,00” in Italian and “$1 000,00” in Swedish. Clearly, the “$” is problem‐
atic too, but changing it to the symbol for the euro or krona fundamentally
changes the value. This formatting information is often available as a template
setting, though this setting will need to be detected and set by the template devel‐
oper.9

• Template structure sometimes has to change based on the structural characteris‐
tics of the language. French, for example, takes up 30% more space than English
on average. German is notoriously long as well.10 Additionally, some languages
are read right-to-left (Hebrew and Arabic, for example), and others vertically

210 | Chapter 10: Other Features

(multiple East Asian languages). These languages can require major template
changes, and sometimes even a specific template set all their own.

Editorial Workflow and Interface Support
Content translation and language management is fundamentally an editorial concern,
so the editorial interface and tools can provide functions to assist:

• In many cases, the editorial interface of a CMS can be configured to provide side-
by-side presentation of content that needs to be translated. This allows a transla‐
tor to view the content in one language while simultaneously rewriting the
content in another, on the same screen.

• Editing languages can be limited by permissions to ensure that a monolingual
English speaker doesn’t try to “wing it” and make a change to the Swedish ver‐
sion of a page.

• Translations might be lockable and grouped with the default language so new
content can’t be published until translations in all other required languages have
been added or updated.

• Many systems come with preconfigured workflows and user groups for adding
additional translations. User groups can be language-specific, and beginning a
workflow for a specific group can automatically add a new translation and route
a task to a qualified translator.

• Rich text editors have varying support for multiple languages, especially non-
Germanic languages such as Arabic and Japanese. Symbol insertion might be
required to add language-specific characters for users not possessing the correct
keyboard mappings. An “O” is not an “Ø,” and if you don’t have this on your key‐
board, you’re going to need to find a way to insert it.

• Links from one content object to another might need to be language-specific. In
some cases, you might want to link to a specific piece of content in a specific lan‐
guage. By default, links will likely target the same language as the one used on the
page on which they appear (Swedish to Swedish, for example), but if the linked-
to content is not available in that language, another language will need to be
selected.

External Translation Service Support
Many organizations provide commercial translation support, and your CMS might be
able to communicate with the translation service directly through automation.

XLIFF (XML Localisation Interchange File Format; commonly pronounced “ex-lif ”)
is an OASIS-standard XML specification for the transmission of content for transla‐

Language Rules | 211

tion. Content can be converted to XLIFF and delivered to a translation firm, and the
same file will be returned with the translated content included. Many systems will
allow direct import of this content, adding the provided language translation (or
updating an existing version).

Taking this a step further, many translation vendors offer plug-ins for common CMS
platforms that allow you to initiate an external translation workflow that automati‐
cally transmits content to the translation service. The content is translated and
returned to the CMS, and the content object is updated and either published auto‐
matically or presented to an editor for review. Some of these plug-ins are provided at
no cost as an enticement to use the translation service that offers them.

Perspective: The Complexity of Internationalization

by Seth Gottlieb

When I hear someone complain about the complexity of man‐
aging a single-language website, I feel like a father of ten chuck‐
ling at the overwhelmed hysterics of a first-time parent. I
remember the stress, but at a scale of one language, it seems so
trivial that I can’t understand how I got worked up about it. It is
especially adorable when I see “supports localization” thrown in
with other requirements like “WYSIWYG editor.”

The truth is, internationalization is not a feature; it is an aspect that multiplies the
complexity of every other feature and facet of the platform. To illustrate this point,
let’s review some content management challenges and how they are amplified when
publishing into multiple languages:

Consensus building
One of the hardest parts of web projects is discovering latent points of disagree‐
ment and building consensus among stakeholders. With a multilingual website,
you are bringing in very different perspectives and needs. You might even be ask‐
ing other groups to give up autonomy and control.

Design
Remember how much effort was spent obsessing over design? The buttons had to
be big enough to fit the words on them, the titles shouldn’t wrap, etc. Multilingual
websites have to accommodate text expansion (for example, German translations
of English use up to 40% more characters). Plus, that nifty font that you selected
probably doesn’t support all of the characters you need.

Development
You would be surprised how much content is managed in the templates them‐
selves. For example, the word “search” on the search button was probably hardco‐
ded into the template file. Even worse, a developer could have cut a corner by

212 | Chapter 10: Other Features

putting that word in an image to get the layout just right. To be localizable, all of
these strings should be managed in separate files that can be sent to a translator.
Moving those strings out of the templates is incredibly labor intensive and error
prone. Cutting new images with translated text and keeping them up-to-date is
nearly impossible.

Review
Remember how embarrassed you were when that typo got through review? Well,
how many typos do you think are in that text that you can’t even read? Did you
consider the frustration of not being about to publish the source language con‐
tent until it was translated and those translations were reviewed?

Keeping content fresh
I can’t tell you how many companies vow to update the home page every week—
“just to keep the content fresh.” You expected the CMS to practically update itself,
and you probably didn’t factor in the cost of translating all of that content. Just
getting the content over to the translators and back is nearly a full-time job on a
regularly updated website.

The bitter irony is that most organizations are motivated to implement (or reimple‐
ment) a CMS because they think managing a website is too hard. They throw interna‐
tionalization into the mix as a “while we’re at it” requirement (or to help justify the
budget), and they wind up with more work than they started with.

So, if you are entertaining the idea of multilingual publishing, make serving those
markets the core of your business case and prepare to invest the money and effort it
takes to get it right.

Seth Gottlieb is the Vice President of Product Development at Lionbridge Technologies,
the world’s largest localization firm.

Personalization, Analytics, and Marketing Automation
In the current competitive business climate, many organizations are not buying a
content management system so much as they’re buying a content marketing system.
To explain why requires a little history.

Some time in the last decade, CMS vendors suddenly caught up to customers. For
years, customers had been clamoring for more and more editorial and management
features, and the vendors were constantly playing catch-up. However, there suddenly
came a point where vendors reached rough parity with what editors were asking for,
and were finally providing most of the functionality that editors and content manag‐
ers wanted.

Continually trying to differentiate themselves from the competition, the commercial
vendors looked for another audience with unmet needs, and they found the market‐

Personalization, Analytics, and Marketing Automation | 213

11 Several years ago, a system with a list price of $4,999 released a marketing and personalization add-on module
at a list price of $14,999—three times the cost of the CMS itself.

ers. From there, the race was on to bundle more and more marketing functionality
into their CMSs.

The content marketing industry had been around for years—companies like Adobe,
HubSpot, eTrigue, and Exact Target had long been providing content targeting and
personalization services—but CMS vendors poured into that market. The link
between content management and marketing was obvious, so the commercial ven‐
dors tried to strengthen their offerings with these tools.

The result has been marketing toolkits of varying functionality and applicability, built
on top of and often bundled with a CMS (or available as an add-on or module at
additional fee11).

Anonymous Personalization
A goal of any marketing-focused website is to adapt to each visitor individually. In
theory, a single website could change in response to information about the visitor,
and provide content and functionality that particular visitor needs at that particular
moment, in an effort to more effectively prompt visitors to take action.

This functionality is collectively known as “personalization.” Two very distinct types
exist:

• Known personalization, where the identity of the visitor is definitively known
over time. Clearly, this only works when visitors proactively identify themselves,
usually by logging in. Thus, each user has a permanent identity with the website,
and actions and preferences can be tracked and stored for that user specifically.
The users might have a “control panel” or other interface where they can modify
their own settings.

• Anonymous personalization, where the visitor is not known to the website. In
these cases, the website has to deduce information about the identity or demo‐
graphic group of the visitor from clues provided through behavior or other infor‐
mation like geolocation, referring website, or even time of day.

Known personalization has been available for years. In these cases, users clearly know
that the website has their identity, and often expect to be able to modify how the web‐
site interacts with them. The New York Times website, for example, has an entire
interface devoted to allowing subscribing users to select their preferred news sections,
and this information pervades their interaction with the service (even beyond the
website, extending to the New York Times mobile applications).

214 | Chapter 10: Other Features

12 The generic term “personalization” once referred solely to known personalization when that was the only type
available. However, when anonymous personalization tools began to hit the market, the accepted meaning of
the term changed, and now it’s more commonly used to refer to anonymous personalization. The implication
is that known personalization is such an obvious and accepted feature that it no longer requires a differentiat‐
ing name.

13 Note that user tracking is limited by browser technology and privacy safeguards. A user with strict privacy
settings, using a different browser than usual, or even clearing the browser cache will likely disrupt any
attempt at this type of personalization.

14 This is surprisingly easy information to get using a combination of geolocation and freely available weather
web services.

But anonymous personalization has been the big trend of the last half-decade.12 It’s
still mostly limited to commercial vendors, who as a group tend to be more
marketing-focused.

The first step of anonymous personalization requires marketers to create demo‐
graphic groups into which they can segment visitors. Creating these groups requires
the identification and configuration of multiple criteria to evaluate the visitor against.
The criteria fall into three general types:

Session
Factors specific to the visitor’s current session (e.g., location, incoming search
terms, the technical parameters of the web request, etc.)

Global
Factors related to external criteria and universal to all visitors and sessions (e.g.,
time of day, available content, etc.)

Behavior
Factors related to the accumulated content that a specific visitor has consumed
and the actions a visitor has taken on the website (usually in the current session,
but optionally including previous sessions as well), with the assumption that
users’ selection of this content contributes to their audience identification13

For example, for a travel agency website, we could decide to apply extra marketing to
our Caribbean travel packages by targeting visitors who might be feeling the effects of
winter. To do this, we’ll identify a demographic group we’ll call Icebox Inhabitants.
Our criteria for this group are:

• The visitor’s location must be north of the 40th latitude, or the current tempera‐
ture in their location must be less than 50 degrees Fahrenheit.14

• The current date must be between October 15 and March 15.
• The visitor must have viewed at least one vacation package to a location we have

classified as “Warm Weather.”

Personalization, Analytics, and Marketing Automation | 215

15 If personalization interests you, I highly recommend The Filter Bubble by Eli Pariser (Penguin), which delves
deeply into the sometimes sinister ways websites and companies use personalization, and the resulting
changes to our culture and opinions.

Anyone falling into this group is “tagged” for their browsing session as an Icebox
Inhabitant.

The second step of personalization is to use the information we’ve gained about the
user to modify the site and its content in such a way as to elicit a desired reaction
from the user. Some options provided by CMSs that have these capabilities include:

• Changing content elements, such as adding a promotional element in the sidebar,
based on group membership

• Showing, hiding, or changing specific paragraphs of text or images inside rich
text areas

• Template-level or API-level changes to alter rendering logic or other functional‐
ity

• Redirection, allowing the substitution of different content for specific URLs
• Modification of site navigation, by showing or hiding options from different

demographic groups

Building on our previous example, we could include a custom promotional element
in the sidebar for Icebox Inhabitants highlighting the temperature in Bora Bora and
our fantastic vacation packages there. Additionally, we could load a supplemental
stylesheet to incrementally change the color palette of the website to warmer colors.

Implemented at a practical level, this allows a marketer to highlight relevant content
for users who they think will react to it. At its most absurd extreme, this would allow
the management of smaller, individual content elements that are then combined
dynamically at request time to render a one-off, bespoke website for each and every
user.15

Clearly, with great power comes great responsibility. It’s quite easy to introduce usa‐
bility problems by changing a website’s structure or content in real time. If a user has
viewed personalized content and sends the URL to a friend, that friend might not see
the same thing when he visits. The original user might not even see the same thing
the next time she visits the site, or even the second time she navigates to the same page
in the same session.

This also raises the question of how to handle search engine indexing. When the
Googlebot (or even the site’s own indexer) visits the site, what content does it index?
Do you leave it to the default, nonpersonalized content, or do you create a personali‐
zation group specifically for search engine indexers and display all the content, in an

216 | Chapter 10: Other Features

attempt to have as much indexed as possible? But then what happens when a page is
returned by a Google search based on content that isn’t present unless the user’s
behavior has put him into a specific personalization group?

Personalization is an exciting feature, certainly but it does call into question one of
the core principles of the World Wide Web: content is singularly identified by a URL.
On a heavily personalized site, a URL is really just the “suggestion” of content. The
actual content delivered in response to a URL can be highly variable.

Perspective: Personalization: The Idea Versus The Reality

by Jarrod Gingras

Everyone loves the idea of true personalization. Getting the
right content to the right user at the right time is the goal of
every marketer. In demos, CMS vendors love to impress selec‐
tion teams with their product’s ability to provide this sophistica‐
ted level of content delivery. However, the reality is that while
many enterprises buy CMSs that are technically able to provide
this functionality, very few enterprises have the internal capacity
to properly execute this type of personalization strategy.

The development of a personalization or segmentation strategy goes beyond design‐
ing the database and code to feed dynamic, personalized content to users. In many
cases, you will need to make sure a CMS has an interface for audience management to
enter custom user information, manage groups and profiles, or override automatic
processes. You will probably want user- and group-based reporting that typical web
log analysis tools will not be able to provide. The effort to implement and customize
these administrative and reporting tools should not be underestimated.

Depending on how fine-grained your profiling is, bigger groups might be easier to
manage, but the depth of personalization may suffer, since targeting specific content
at the individual user level can be very unpredictable. While a CMS can help you by
lending a set of features to drive your personalization efforts, a bigger effort lies in the
design of your strategy, and picking an efficient and feasible approach.

Any effective personalization strategy requires a significant up-front and ongoing
investment. The necessary resource demands make this type of personalization cost
prohibitive for most enterprises. Unfortunately, many ambitious enterprises realize
that they are in over their heads only when it is too late.

Savvy CMS buyers will not get swept away by vendors’ slick personalization demos.
Rather, they will be realistic about their internal abilities and resources. Usually this
means starting small with broader segmentation and lots of testing and refining until
they get to the right level of personalization for them and their consumers.

Personalization, Analytics, and Marketing Automation | 217

Jarrod Gingras is Managing Director and Analyst of Real Story Group, a research and
advisory firm specializing in helping enterprises make better digital marketing and digi‐
tal workplace technology decisions.

Analytics Integration
Website analytics systems are not new, but there was a push some years ago to begin
including this functionality inside the CMS. The result was analytics packages that
were not providing much in the way of new functionality, but were simply offering it
inside the CMS interface.

The key question is: what new functionality does integrating with a CMS enable? The
answer, seemingly, is not much. Analytics is mainly based on two things:

• The inbound request itself
• Events hooked to activity happening when the page is loaded

The inbound request is usually captured before the CMS has even come into play, and
client-side events are tracked using code developed during templating. Given this, the
value of analytics integration is questionable.

The trend in the years since then has been to integrate analytics packages from other
vendors, the most common being Google Analytics. Many systems now offer the abil‐
ity to connect to a designated Google Analytics account for the site the CMS manages
and show that information inside the interface, mapped to the content itself.

Editors might be able to view a piece of content in the CMS, then move to a different
tab or sidebar widget inside the same interface to view analytics information on that
content specifically.

With the personalization functionality described in the last section, some analytics
reporting might have value in terms of reporting how many visitors fulfilled the crite‐
ria for a specific demographic group. This would give editors some idea of how com‐
mon or rare a particular combination of visitors is.

Marketing Automation and CRM Integration
Beyond the immediate marketing role of the website, there’s a larger field of function‐
ality called “marketing automation” that seeks to unify the marketing efforts of an
organization through multiple channels. This is what’s being used when you get a ser‐
ies of emails from a company, click on a link in one (with a suspiciously long and
unique URL), and that action seemingly exposes you to a new round of marketing
geared specifically to that subject.

218 | Chapter 10: Other Features

Clearly, your actions are being tracked across multiple platforms, with all your
actions feeding a centralized profile based on you in the vendor’s customer relation‐
ship management (CRM) system.

Many CMSs offer integrations with CRM or marketing automation platforms. Inte‐
gration goes in two different directions:

• The CMS might include tracking data in links, or otherwise report back to the
CRM on actions that known users are taking on the website. In this sense, the
CMS “spies” on the users and reports their activity back to a central location.

• The CMS might offer CRM demographic groups as personalization groups or
criteria, allowing editors to more easily customize content for groups of users
already created and represented inside their CRM.

Some CMS vendors have offered creeping functionality in this space, with the CMS
incorporating more and more CRM and marketing automation features into the core.
Some go so far as to offer email campaign management directly out of the CMS, com‐
plete with link and click tracking, and even direct customer management.

However, as marketing automation vendors such as HubSpot, Marketo, Pardot, and
others have become more and more sophisticated, the industry is realizing that pre‐
built integrations with those systems are more likely to win customers. Thus, the
marketing automation vendors are building integrations between their systems and
CMS vendors in an effort to present a unified platform that provides a more desirable
product on both sides.

Perspective: The Shift to Digital Experience

by Bob Egner

Web content management (WCM) systems have long offered
benefits for both IT and business users. With a WCM in place,
business users can manage and display content on the Web
while relying less on assistance from their IT departments, and
in turn, IT departments are free to focus more time on other
initiatives after the initial implementation. In an age when the
Web served as a form of broadcast media (similar to a billboard
or radio ad), these systems provided information technology
geared toward solving internal problems.

But just like the Internet, times are changing. Companies that broadcast a “one size
fits all” message are losing their competitive edge. This is the age of the customer, and
companies who, as Forrester Research put it in a recent report, are focused on
“understanding, interacting with, and serving empowered customers” are the ones
noticing a difference in their bottom line. These companies are using the same tech‐

Personalization, Analytics, and Marketing Automation | 219

http://bit.ly/20jo8z7

nology they once used to make their employees’ lives more convenient as a means for
transferring that convenience to their customers.

This shift is turning information technology into business technology, turning WCM
into digital experiences (DX). By shifting their focus from mass marketing to the indi‐
vidual digital experience, companies like Amazon, Target, and Pizza Hut are tailoring
their message according to the interaction: Is this a first time visitor? Or has this visi‐
tor already purchased something? What was it they purchased? How close is the visi‐
tor to a location, and what can we offer them to entice them to visit?

In the age of the customer, consumers demand contextual relevance combined with
immediacy. They are open to letting you know more about them, so that you can
make their lives easier. It’s up to both IT and business leaders to work together to
ensure the step forward from WCM to DX and drive business value. It’s time to stop
focusing on what your technology does and instead focus on how you can use it to
uncover ways to differentiate your company in the marketplace.

Bob Egner is VP of Product Management and Marketing for Episerver.

Form Building
Content management is usually about content output; however, most systems have
some methods for handling content intake, via the generation of forms.

When creating forms, an editor has two main areas of concern:

• Generating the form interface
• Handling the form data once it’s submitted

In both cases, the range of possible functionality is wide, and edge cases abound. The
market does well at supporting the mainstream use cases, but cases on the edges are
often ignored or poorly implemented. The result is usually systems that work for sim‐
ple data collection, but feel constraining for power editors trying to push the enve‐
lope.

Form building in CMSs drives significant overlap between editors and developers.
The line between a simple data intake form and a data-driven application can become
blurry. Editors might think that form building gives them the ability to do compli‐
cated things with data intake and processing, when rarely is that actually true.

220 | Chapter 10: Other Features

Form Editing Interfaces
Editors use two main styles of system to create forms:

• A simple form editor, which allows the insertion and configuration of form fields
to allow for content intake.

• A type of “reverse content management,” where content to be collected is mod‐
eled as a content type and the interface presented to the user is, in effect,
“reversed,” with the user seeing the edit/creation interface, rather than the output.
Unknowingly, users are creating managed content objects with their form input.
(e.g., we might create a content type for “Contact Us Data,” and the visitor would
see the creation form for that and would actually be creating a content object
from the type by completing the form).

The former is vastly more common than the latter, and quite a bit more useful. Gen‐
eration of input forms is usually an editorial task, while content modeling is a devel‐
oper task. Expecting editors to model content to represent intake from visitors might
be too much to ask.

Form editors operate in varying levels of structure:

• A minority are based on rich text editors that allow the free-form insertion of
form fields like any other HTML-based element. These are very flexible, allowing
for the creation of highly designed forms. Form fields are simply placed alongside
information, such their labels and help text, like any other rich, designed content.

• Most editors, however, are structured, meaning users are walked through the
process of adding form fields with their accompanying labels and help text. The
fields are then rendered in sequence, via a template.

In the latter (and far more common) case, editors can “Add a Form Field” and specify
information similar to the following:

• Field type (text box, multiline text box, date picker, drop-down list, checkbox,
etc.)

• Field name/label
• Help or additional text
• Validation rules
• Error messages
• Default value

Form Building | 221

These fields are ordered, then generated in a templated format. This usually generates
clean forms that comply with style guidelines, but editors can find it constraining
from a design perspective. For example, seemingly simple needs like having two fields
stacked next to each other horizontally might not be supported (vertical stacking is a
common restriction with form rendering).

Forms Can Be Stylistically Complex

We don’t often take note of the fact that forms can be visually com‐
plex. For each element, there’s often (1) a label, (2) an input ele‐
ment, (3) optional entry instructions, and (4) a validation/error
message. And this is repeated for every field on a form. Addition‐
ally, all these elements have to work well together (which often
means grouping fields by conceptual purpose), flow correctly, and
ultimately make sense for the end user.
There’s no particular argument about how to read a series of text
paragraphs. In comparison, every form is some degree of a UX
problem to be solved. Are your editors qualified to solve it?

Whenever you’re dealing with user-generated content, edge cases and the sanitizing/
validation of data become concerns. As we discussed in Chapter 6, the possible
requirements for data formats—and ways for users to circumvent and otherwise
abuse them—are almost infinite.

Here are some common validation specifications:

• The input is required.
• The input must match a specified format (numeric, a certain number of digits, or

a regex pattern).
• The date input (or numeric input) must be within a specified range.
• The input must be from a specified list of options.

(Does this sound like content modeling? It should. You’re essentially modeling the
intake of data. This is reification at its most basic level.)

Three additional areas of functionality are commonly requested by editors, but
poorly supported in the market. They are:

• Conditional fields, which display, hide, or change their selection options based on
prior input. The classic example is two drop-down menus, where the options of
the second change based on the selection made in the first (e.g., selecting a car
manufacturer in one drop-down changes the second drop-down to list all the
models offered by that manufacturer).

222 | Chapter 10: Other Features

• Multipart forms, which allow users to complete one section of a form, then some‐
how move to a second section that adds to the data collected by the first. Even
more complex, the sections might be conditional, so that the values selected in
the first section will dictate what options are offered in subsequent sections (or
whether subsequent sections are offered at all).

• Form elements configured by content, where the options offered in drop-down
menus, radio buttons, or checkbox lists are driven by content data. For example,
a class signup form might show a list of classes pulled from content objects stored
in the CMS.

These options again bring into focus (or blur further) the line between editorial and
developer control. At what point does the complexity of a form cross over from
something an editor can handle to something a developer must implement? The line
is not clear, but it is quite firm—editors usually don’t know where the edges are until
they stumble on a requirement that cannot be implemented.

Form Data Handling
Once a form collects data and validates it, a decision needs to be made on what to do
with it. Common options include:

• The data can be emailed to a specified set of addresses.
• The data can be stored in the CMS for retrieval, viewing, and exporting.
• The data can be sent to a specified URL, usually as an HTTP POST request or,

less commonly, or as a web service payload.

Most systems will allow you to select the first two in parallel.

The third option, while seemingly offering limitless integration possibilities, again
causes the form creation and management process to become bifurcated between edi‐
tors and developers. While an editor can create a form and send the data to a web
service that has been developed for it, this limits the value of creating the form edito‐
rially in the first place. The web service is likely expecting the data in a specific for‐
mat, and if an editor changes the form and the resulting data it transmits, there’s a
good chance that the web service will not function correctly without a developer hav‐
ing to modify it.

The best advice for working with form builders and handlers might be to simply
lower your expectations. Your goal should be simple data collection and handling and
not much more. Too many editors assume form builders will allow them to create
applications or otherwise play a part in complex enterprise data integration without
any developer oversight or assistance. This is an unreasonable assumption and always
leads to unmet expectations.

Form Building | 223

16 “Semantics” is the study of meaning. To describe something as “semantic” is to say that it provides some larger
meaning beyond its original or obvious purpose. The actual purpose of a URL is simply to identify content. A
semantic URL provides some indication of what the content is, in addition to identifying it.

Simple data collection is quite possible, but an application development platform that
completely removes the need for custom development in the future is just not an
expectation that can reasonably be met.

Integrating External Form Engines

There are a number of well-adopted form engine services, such as
Wufoo and FormSite, and even Google Docs can be adapted for
this purpose. All these services offer ways to embed forms into
existing sites.
Perhaps a better way to approach form building is to use an exter‐
nal service and render the forms as some type of embedded con‐
tent. Editors can create their forms in another service, then embed
a reference to the form ID in the managed content, which will ren‐
der the necessary JavaScript to display the form.

URL Management
In the early days of CMSs, content URLs were commonly “ugly” and betrayed the
internal working of the system. For example:

/articles/two_column_layout.asp?article_id=354

This was in opposition to “friendly” or “pretty” URLs that looked like they were man‐
ually crafted from file and folder names, and which imparted some semantic16 value
to the content. For instance:

/articles/2015/05/politics/currency-crisis-in-china

Today, it’s quite rare to find a CMS that doesn’t implement some method of semantic
URLs. In the case of systems with a content tree (discussed in Chapter 7), these URLs
are usually formed by assigning a segment to each content object, then aggregating
the segments to form the complete URL (and perhaps adding a language indicator to
the beginning).

So, if your tree looked liked this:

• Articles (segment: “articles”)
• 2015 (“2015”)
• May (“05”)
• Politics (“politics”)

224 | Chapter 10: Other Features

http://wufoo.com
http://formsite.com

• The Currency Crisis in China (“currency-crisis-in-china”)

it would result in the URL displayed second.

Other systems without a content tree invariably have some logic for forming URLs,
whether by content type, menu position, or folder location. It’s rare to find a CMS
that doesn’t account for semantic URLs in some form.

In most systems, the URL segment for a particular content object is automatically
formed based on the name or title of the object, but is also editable both manually
and from code. An editor might manually change the URL segment for some reason,
and a developer might write code to change it based on other factors (to insert the
date to ensure uniqueness, for example).

Forming the URL based on a content object’s position in the geography is convenient,
efficient, and most of the time results in a correct URL (or at least one that isn’t objec‐
tionable). However, the “tyranny of the tree” applies here as well—the URL is formed
by the tree, but an object might be in some position in the tree for reasons other than
the URL, which makes it problematical to form the URL from its position.

For example, our news article example might have been organized in that particular
manner (under a year object, then a month object, then a subject object) for conve‐
nience in locating content administratively, or for other reasons related to permis‐
sions or template selection. However, this organization forces a URL structure as a
byproduct, and what if you want something different? For example:

/articles/currency-crisis-in-china-0515

In this case, for whatever reason, you want the title of the article to form most of the
URL, with the year and month appended to the end. Effectively, the year and month
need to be “silent” in the URL, and you need to adjust the article’s specific URL seg‐
ment to add the date. Some systems will allow for this, and some won’t.

Historical URLs, Vanity URLs, and Custom Redirects
URLs are part of the permanent record of the Internet. They are indexed by search
engines, sent in emails, posted to social media, and bookmarked by users. So, chang‐
ing a URL might introduce broken links. Additionally, when the URL is formed by
the tree, changing the URL segment of an object “high” on the tree will necessarily
change all the URLs for the content below it, which might amount to thousands of
pages. Carelessness can be catastrophic in these situations.

Some systems will account for this by storing historical URLs for objects, so if an
object’s URL changes, the system will remember the old URL and can automatically
redirect a request for it. Other systems won’t do this, and this functionality has to be
added manually.

URL Management | 225

17 There might also be negative SEO implications to having the same content available under more than one
URL.

Editors might also want to provide a completely alternate URL for a content object—
for example, a shorter URL to use for other media (print or signage), or a URL with
marketing significance for content deep in the site that might have a less advanta‐
geous URL naturally.

For example:

www.mywebsite.com/free-checking
www.mywebsite.com/signup

In these cases, an alternate URL can sometimes be provided that either produces the
content directly, or redirects the user to the content. If the former, the content might
still be available under the natural URL as well, which raises the question of which
URL the site itself uses when referencing the content in navigation.17

In addition to reasons of vanity, editors might want alternate URLs for their content
to account for vocabulary changes. For example, when the name of your product has
changed, and the old name is in 100 different URLs, this presents a marketing prob‐
lem. Other situations might be to continue to provide access to content after a site
migration. In these cases, a series of alternate URLs for a content object might be
required in order to provide for continuity.

Some systems will allow for storage of alternate URLs with content, while others
might provide an interface to maintain data that maps old URLs to new URLs. Some
systems might redirect automatically in the event of a 404, while other systems will
have to wire up these redirects manually, usually by including lookup and redirection
code in the execution of the 404 page itself. (This means the code only executes and
redirects in the event of an old URL access that would otherwise return a 404.)

Multisite Management
If you want to deploy a second website using a CMS that supports multiple sites, you
can choose between two solutions:

• Stand up a completely separate instance of the software (on the same server, or
even on another server). The new instance of the CMS in question will have no
knowledge of, or relation to, the existing website.

• Host the second website inside the existing instance of the CMS. This website
will have a more intimate knowledge of the first website, and might be able to
share content and assets with it.

226 | Chapter 10: Other Features

18 So-called “affinity sites” are common. My company once performed an implementation for an organization
that sold branded financial products. They had 86 individual websites in the same CMS installation, all of
which shared 90% of the same content, with just styling changes and minor content changes to differentiate
them.

Hosting more than one website in the same CMS instance can, in theory, reduce your
management and development costs by sharing data between the two websites. Items
that are often shared include:

• Content objects, such as images or other editorial elements. Your two websites
might share the same privacy policy, for example, or display the same news relea‐
ses.

• Users, either editorial or visitors. The same editors might be working on content
in both sites, and users might expect the same credentials to work across sites.

• Code, including backend integration code and templating code. The sites might
share functionality, and the ability to develop it for one site and reuse it on
another can be a significant advantage.

However, it’s hard to generalize about whether or not this is advantageous, because
two sites in the same CMS instance might have a wide range of relationships. In some
situations, sharing is an advantage, while in others it’s a liability.

On one extreme, the second site might just be a reskinning of the first. It might have
the exact same content and architecture, just branded in a slightly different way.18 In
this case, sharing editors, content, and code is extremely advantageous.

On the other end of the scale, the second site might be for an entirely different orga‐
nization (perhaps you’re a third party providing SaaS-like CMS hosting). In this case,
sharing the same CMS instance is likely to be more trouble than it’s worth since pre‐
venting the sharing of editors, content, and code will be far more important than
sharing any of it, and will require policing and increased code complexity.

Somewhere in the middle is the most common scenario: the second site is for the
same organization, so sharing editors is beneficial, and the second site requires some
of the content of the main site, which can also be helpful. But the second site will also
bring a lot of unique content, functionality, and formatting, to the point that sharing
code and templating is not feasible. This is becoming more common as marketing
departments support larger campaigns with individual microsites that are intention‐
ally quite different from the main site in terms of style and format.

Additionally, the second site might need content modeling changes, so sharing con‐
tent types will be difficult. For instance, if your microsite has a right sidebar on its
pages (and the main site does not), how do you handle that? Do you add a Right Side‐
bar attribute to the Text Page content type for the entire installation, and just ensure

Multisite Management | 227

that editors of the main site know that it doesn’t apply to them? Or do you create a
new content type for the microsite, and suffer through the added complexity of main‐
taining both Main Site Text Page and Microsite Text Page content types? What hap‐
pens when the next microsite needs to launch with another slightly different content
model?

The resulting confusion can make multisite management difficult. The core question
comes back to what level of sharing between the two sites is advantageous, and how
the CMS makes this easier or more difficult. Organizations have been known to force
through a multisite CMS installation on dogmatic principle (“We should be able to do
this!”) when simply setting up another site instance would have been less work and
resulted in a better experience for both editors and users.

Reporting Tools and Dashboards
Two things that content editors and managers are consistently looking for are control
and peace of mind. Many CMSs are implemented because the organization is unsure
of how much content it has, and what condition that content is in. There’s a distinct
lack of clarity in most organizations about their content, and the metaphor of “getting
our arms around our content” comes up often.

For these reasons, simple reporting goes a long way. Editors and content managers
love to see reports that give them an overhead view of their content. For example,
many organizations would like to simply see a list of all the image files in their CMSs
not being used by any content that can be safely deleted.

Reporting tends to be glossed over by vendors for two reasons:

• Like all editorial tools, it affects a smaller audience of people (you have fewer edi‐
tors than visitors), so it can fade in importance compared to more public-facing
functionality.

• Developing reporting tools can be frustrating because there are an infinite num‐
ber of reports that an editor or manager could request. It’s virtually impossible to
predict what someone might want, so it becomes a huge bundle of edge cases.

Many systems offer reporting dashboards or tools to provide insight into content
residing in the system. These systems will usually come with a set of preconfigured
reports for common reporting needs. Some examples are:

• Content in draft
• Content scheduled for publication
• Expired content
• Content with broken hyperlinks

228 | Chapter 10: Other Features

19 Ad hoc is Latin for “for this purpose,” and generally means “something done for a specific or particular reason
without prior planning.”

• Pending workflow tasks assigned to you
• Workflow states that have been pending for longer than a specified time period

While this is certainly valuable information, no system can anticipate the level of
reporting required by any individual user. All it takes is one editor to say, “Well, I
really just want to see articles in the politics section that are in draft, not everything
else” to render a canned report useless.

A lot of reporting is simply ad hoc.19 The ultimate level of functionality in this space
would be for an editor to simply ask a plain-language question of the content reposi‐
tory, Siri-style: “Repository, show me all of the articles in the politics section that have
a status of Draft." Clearly, technology hasn’t caught up to this need just yet, so queries
like this would have to be converted to some search format to allow for this level of
reporting.

Some systems might have an interface to develop reports. However, the type and
range of possible queries are so varied, that a completely generalized interface would
be far too complex—take another look at the screencap of the Drupal Views interface
from Chapter 7 (Figure 7-10), and increase the complexity an order of magnitude or
more.

Additionally, some editors simply don’t understand all the intricacies of their content
or query logic enough to be trusted to build a report they can depend on. If they don’t
understand that content Pending Approval can also technically be considered to be in
Draft, then they might construct and depend on a report that’s fundamentally invalid.

In these cases, a competent API (as discussed in the previous section) coupled with a
solid reporting framework is the best solution. Developers who have good searching
tools and a framework to quickly build and deploy reports can hopefully respond
quickly to editors’ needs for developing reports when required.

Content Search
We’ve discussed variants of search in prior sections—in Chapter 7 we discussed
searching for content as a method of aggregation, and we just discussed searching in
terms of a system’s API or reporting. However, search in these contexts was “paramet‐
ric” search, or searching by parameter.

This is an exact, or “hard,” search. If you want a list of all content published in 2015,
reverse-ordered by date, then that’s a very clear search operation that’s not subject to
interpretation. The year—2015 in this case—is a clear, unambiguous parameter, and a

Content Search | 229

20 “The PageRank Citation Ranking: Bringing Order to the Web,” January 29, 1998. Interesting side note: the
original patent for this was actually owned by Stanford itself. See “Method for Node Ranking in a Linked
Database,” September 4, 2001.

content object either matches it or doesn’t. The ordering is also unambiguous—dates
can easily be reverse-ordered without having to resort to any interpretation.

Content search is the opposite. This is the searching that users do for content—the
ubiquitous search box in the upper-right corner of the page. This is a “soft” search,
which is inexact by design. The goal is to interpret what the user wants, rather than
do exactly what the user says. The results provided should be an aggregation of con‐
tent related to the query—even if not exactly matching the query—and ordered in
such a way that the closest match is at the top.

The Science of Information Retrieval
Information retrieval (IR) is a long-standing field of study. Entire college courses and
even advanced degrees are offered in IR, and tens of thousands of pages of theory
exist on the subject. The discipline of turning a language-based query into a mathe‐
matical formula and using that to evaluate bodies of text is an area of science that has
been studied for decades.

Keep in mind that Google, one of the most valuable companies in the world, was fun‐
damentally based on an IR theory that Larry Page and Sergey Brin developed while
students at Stanford.20 In this sense, IR has been solely responsible for billions and
billions of dollars in corporate value.

I mention this just to put the discipline in context. IR exists far apart from content
management, and has been studied and implemented for far longer than content
management. Since search is a subfeature of a CMS, it might be tempting to think
that IR is a subdiscipline of content management, when the exact reverse is far more
true. Thus, it’s not realistic to assume that every CMS platform will also provide
Google-level search capabilities on top of all the other features it has to implement.

Search can be very vague and idiosyncratic to implement. Editors and content man‐
agers often have specific things they want to see available, and this is exacerbated by
“the Google Effect,” which postulates that anything Google does simply increases our
expectation of having that feature in other contexts. Google offers spellchecking, so
this must be a simple feature of search, right? Google does related content, so why
can’t we?

230 | Chapter 10: Other Features

http://ilpubs.stanford.edu:8090/422/1/1999-66.pdf
http://patft.uspto.gov/netacgi/nph-Parser?patentnumber=6285999
http://patft.uspto.gov/netacgi/nph-Parser?patentnumber=6285999

Requested features of content searching can include any of the following:

Full-text indexing
Return results for nonadjacent terms (for example, content that includes the
phrase “fishing in the lake” will match when someone searches for “lake fishing”).

Spellchecking and fuzzy query matching
Understand search terms that almost match and account for them.

Stemming
Conjugate verbs and normalize suffixes (for example, a search for “swimming”
also returns results for “swim” and “swam”).

Geo-searching
Search for locations based on geographic coordinates—either distance from a
point, or locations contained within a “bounding box.”

Phonetic or Soundex matching
Calculate how a word might sound and search for terms that sound the same.

Repository isolation
Search only a specific section of the content geography.

Synonyms and authority files
Specify that two terms are similar and should be evaluated identically.

Boolean operators
Allow users to add AND, OR, and NOT logic to their queries.

Biasing
Influence search results by increasing the score for content related to a specific
search term, and perhaps allow editors or administrators to change bias settings
from the interface.

Result segregation
Allow for the visual separation of specific content at the top of the results.

Related content searching
Suggest content related to the content a user is searching for (“show me more like
this”).

Type-ahead or predictive searching
Attempt to complete a user’s search term in the search box while the user types.

Faceting or filtering
Let users refine their searches to specific parameter values (this represents a mix‐
ing of parametric and content search paradigms).

Content Search | 231

Search analytics and reporting
Track search terms, result counts, and clickthrough on result pages.

Stopwords
Remove common words from indexed content.

Some of these might seem bizarre or esoteric, but this is simply because most users
don’t realize that they’re implemented in search engines without being announced or
obvious. These technologies have been advanced to the level that they’ve become an
inextricable part of our expectation of how search works.

Now consider the hapless CMS vendors who have to implement and duplicate these
features in their systems, out of the box. Commercial search systems exist that rival
and exceed the complexity of many content management systems. The average CMS
vendor will never be able to compete, especially considering that search isn’t the core
function of their product.

For this reason, search is likely the feature most often implemented outside the CMS
itself. Large CMS implementations usually have search services provided by some
other platform, not built into the CMS itself. This has exacerbated the position of the
CMS vendors—since many customers look elsewhere for search, there is even less
incentive for vendors to spend a lot of time working on it.

This is magnified even further by the difficulty of evaluating search effectiveness.
When we see a page of search results, how often do we spend time evaluating whether
or not it’s accurate, or whether or not the results are in the most correct order? By
design, this type of search is fuzzy and inexact, so we’re likely to simply accept the
default results as optimal since we assume the vendor knows more than we do. Ven‐
dors will often simply allow (or even encourage) users to continue to think this.

The result is that search is a feature where CMS vendors simply seek to “check the
box.” They usually implement search superficially, just so they can say their products
have it. They hope that their implementations will suffice for 90% of customers
(which is often true), and assume those who have more advanced needs will use
another product for search.

Finally, understand that the underlying search technology is only one part of the
user’s search experience. An enormous amount of the value from search is driven by
the user interface. How are the results displayed? How does the predictive search
work? How well can users refine their queries? These are fundamentally user experi‐
ence problems that a searching system cannot solve, and that are fairly specific to the
implementation. It’s always a bit dangerous for a CMS vendor to add client interface
functionality because it runs a very real chance of conflicting with the customer’s
design or UX standards (remember the discussion about “infiltrating the browser”
from Chapter 9).

232 | Chapter 10: Other Features

21 Yes, the name is unique. Doug Cutting, the original developer, took inspiration from his wife’s middle name,
which was her maternal grandmother’s first name. It appears that the last time “Lucene” was even vaguely
popular as a girl’s name in the United States was in the 1930s.

What support can the CMS offer in these situations? The most crucial is a clear API
that allows developers to customize search features as the editors and content manag‐
ers desire and as the users need. Alternatively, the CMS needs to provide hooks and
events to which a developer can attach an external system to allow for searching to be
powered by a separate product.

Lucene

Most systems implementing advanced full-text search are using an
open source technology called Lucene.21 Lucene is a search index‐
ing and retrieval system released in 1999. It is the de facto industry
standard for text search and is in wide use across the Internet as a
whole.
Lucene is wrapped by two major open source search servers: Solr
and Elasticsearch. These systems provide a vast range of function‐
ality, and it’s very common for vendors to either use them behind
the scenes, or offer tools to integrate with them directly.

User and Developer Ecosystem
This might seem to be an odd “feature” with which to round out this chapter, but the
support and development community surrounding a CMS platform is perhaps its most
important feature. There is simply little substitute for the support, discourse, and con‐
tributions of a thriving community of users and developers who assist others.

Vendors can help or hamper this effort. Most vendors will provide an official com‐
munity location for their users through forums and code-sharing platforms. If a ven‐
dor does not, one might spring up organically, though its existence might not be
known outside a smaller group.

Vendors can further support the community by participating in it. Several CMS com‐
munity forums are patrolled in part by the developers behind the products, which
provides a backchannel support mechanism and, perhaps more importantly, gives
these developers a front-row seat to observe the struggles of its users and the ways in
which the product should be developing to meet their needs.

Developers contributing code to the community is a huge advantage that can be
measured in raw budget. You are often not the first organization to try to solve a par‐
ticular problem, and tested, vetted code for your exact situation might already exist,

User and Developer Ecosystem | 233

saving you the expense of (re)building it. (I maintain that there are few problems that
a contributed Drupal module doesn’t already exist to solve.)

When evaluating a CMS, evaluate the community in parallel. It will likely have an
outsized impact on your experience and satisfaction with the platform.

Interestingly, the question-and-answer site Stack Overflow is
becoming home to many impromptu software support communi‐
ties based around its use of tags.
For instance, at the time of this writing, various permutations of
the tag “drupal” have been assigned to over 30,000 questions on
Stack Overflow. My own experience has shown that developers
experienced in a particular system or library will monitor relevant
tags and pick out questions to provide support and answers for.
In the future, CMS vendors may find that their official support
communities and forums are increasingly being bypassed by ad
hoc, spontaneous groups of developers that come together on sites
like Stack Overflow.

234 | Chapter 10: Other Features

http://stackoverflow.com

CHAPTER 11

APIs and Extensibility

The customization of a CMS is accomplished on two levels. There’s templating, which
is fully expected in almost every implementation and is handled by a combination of
HTML and templating code. Then there are deeper customizations to change or add
to the operation of the CMS itself. These customizations are normally done in the
native language of the CMS (PHP, C#, Java, etc.).

Editors might assume that the extensibility of the CMS applies only to developers, but
it actually has a significant impact on the entire team. When developers respond to an
editor’s request by saying, “We can’t do that,” it’s often because the extensibility of the
CMS has failed them in some way, and they simply have no way to accomplish what
the editor wants to do.

Some systems have elegantly designed methods of accessing content and limitless
ways of manipulating it, while others are clunky and frustrating and almost seem to
be working against the developers, rather than with them. Some systems are designed
from the ground up to be programming platforms that incorporate and cooperate
with code developed by the integrator. Other systems are closed off from this to some
degree, either intentionally due to architecture limitations (multitenant SaaS, for
example), or because of the product design.

Ultimately, the extensibility of a CMS can be traced back to a core question: did the
vendor expect anyone to extend it? I’ve worked with CMS vendors who were sur‐
prised to find out what we were trying to do with their systems. Some of them just
never expected that a developer might try to work with the system in a particular way,
either due to naïveté or due to the targeting of a different use case. Other systems are
little more than raw APIs against which it’s expected the integrators will implement
their own interfaces and functionality.

235

I’m using the term “API” loosely in this discussion. The API is tech‐
nically the attachment points available from code. In a larger sense,
all of the extensibility points—code, events, web services, etc.—are
often referred to collectively as the API of a system. The functional‐
ity in this chapter might be more accurately described as the
“extensibility model” of a CMS.

The Code API
The application programming interface (API) behind any software product is the set
of programming tools that a developer is given to work with content from code.

For example, here’s some code from Episerver to retrieve the title of a page of content
in C#:

var repo = ServiceLocator.Current.GetInstance<IContentRepositoryService>();
var myPage = repo.Get<TextPage>(new ContentReference(123));
var title = myPage.Property["PageTitle"].Value;

The concepts represented in this code—the existence of the repository as an injected
service, the content object available as strongly typed TextPage object, the identifica‐
tion of content by numeric ID, the properties of content represented by a keyed dic‐
tionary—represent the API available for this particular CMS. The underlying
language is C#, but the API is the vocabulary and tools provided to C# to work with
Episerver.

For comparison, here’s the same general code in Concrete5 (PHP):

$my_page = Page::getByID(123);
$title = $page->getAttribute('PageTitle');

In Magnolia (Java, using JCR):

Session session = MgnlContext.getJCRSession("myWorkspace");
Node myPage = session.getNodeByIdentifier(123);
String title = myPage.getProperty("pageTitle").getString();

And in Plone (Python):

from plone import api
my_page = api.content.get(UID=123)
title = my_page.page_title

The specifics are clearly different, but the general goal and result are the same. The
API is the set of tools available to developers from code. (It’s worth noting that the
preceding code samples are from APIs generally considered to be quite competent.
Less capable APIs would have less elegant samples.)

236 | Chapter 11: APIs and Extensibility

1 Yes, you can drive at 14 in South Dakota. This revelation is often greeted with abject horror by people in more
restrictive parts of the country.

2 Additionally, usability expert Don Norman has referred to the “conceptual model” of something, which is the
mental understanding of how a user expects it to work. Norman was speaking about consumer products, but
the same thing is true of an API: the system should strive to work the way most developers expect it to work.

Recently, I’ve been teaching my 14-year-old daughter how to drive.1 During this pro‐
cess, I’ve identified an aspect of driving that I really never noticed before: you need to
be predictable. A goal as a driver is to do what other people expect you to do. A lot of
what happens on the road involves other people making assumptions about what
you’re planning to do. To be unpredictable is to be unsafe.

The same is true of an API. Consistency and predictability are key. An API should
have a consistent interface that a developer can predict. This has actually been named
the Principle of Least Astonishment.2 The ability of a developer to predict how an
API might work and what functionality it can offer is of huge benefit when extending
a system.

The dynamics of general software development is a topic far beyond the scope of this
book, but the quality of the API of any piece of software is driven by how the software
was built over time. Software is often built haphazardly, and the API evolves as
needed—a product manager or sales rep says, in a panic, “We need feature X to sell
the product!” and the development team hurriedly writes feature X, changing the API
along the way in whatever way it has to.

A more reasonable development team plans and writes the API first, so it has the
capacity to anticipate the needs of the product and sales teams, and new features fit
into the larger logical model and philosophy of how the CMS models and manages its
content. This software tends to be written proactively from the API outward, instead
of reactively from the “feature of the day” inward. The API drives the features, not the
other way around.

Reality Check

Clearly, this is an idealized description of the process. The fact is,
no software product of any significant size is uniformly developed
and uniformly adheres to the same standard of quality.
Different teams work on different parts of the system, other com‐
panies are acquired and their code is integrated, and technology
evolves and renders some parts of the software obsolete or subopti‐
mal. As a result, even the most elegantly architected software has
some dark, murky corners that the development team is intending
to clean out at some point.

The Code API | 237

Evaluating APIs can be difficult. Occasionally, an API that appears to be competent
has an idiosyncrasy buried deep inside it that a development team runs into at 3 a.m.
while trying to get a change out the door and it stops them dead in their tracks.

To mitigate this, it’s helpful when a CMS adopts a known development framework
and leverages its tools, conventions, and philosophies, as that gives developers some
measure of familiarity with it from the start.

For example:

• Many .NET systems are based entirely on the ASP.NET MVC framework. These
systems are MVC applications first and just happen to have a CMS behind them.
Any .NET developer with some understanding of the styles and conventions of
MVC will immediately be right at home.

• Many PHP systems are adopting the Symfony MVC framework to handle the
basic tasks of routing and data management, making extension of those systems
quite easy for existing Symfony developers.

When trying to determine the competence of the underlying API, the only reasonable
method is a code-level walkthrough for your developers by a vendor’s technical team.
You should require answers to at least the following questions:

• How do you retrieve content from code? Once you have content in code, how can
you manipulate it and save a new version?

• How granular can code-level retrieval be? How many different ways can you
search for content? Can you get a list of content based on X different criteria and
have it ordered by one of more of those criteria?

• How can you create new content from code?
• How can you implement new functionality, which may not even be content-

related? How can custom code for your organization live alongside the CMS’s
code?

• What code-level events, hooks, or triggers are available? When content is pub‐
lished, for instance, can your code detect that event and inject new logic into the
process?

• What ability exists to run command-line or scheduled jobs from inside the CMS
interface?

• How can the administrative interface be customized to allow for the management
of custom functionality?

• Is the API only accessible from code local to the CMS installation, or are there
web services or other remote APIs available?

238 | Chapter 11: APIs and Extensibility

3 Though attempts have been made. Content Management Interoperability Services (CMIS) and the Content
Repository API for Java (JCR) are both attempts to unify the API-level handling of content. They have met
with varying degrees of success and have limited implementations in the marketplace, mostly in larger, enter‐
prise systems.

APIs are notoriously idiosyncratic. Once again, there is no Grand Unified Theory of
Content Management, so there is no Grand Unified API either.3

Additionally, the quality of an API often has no relation to the quality of the product
from a user or editor standpoint. Some very slick-looking systems have atrociously
difficult APIs behind them that continually frustrate developers, while other systems
that appear simplistic have incredible power and elegance from code. (Which, ironi‐
cally, might be why they look simplistic out of the box—they’re simply so easy to cus‐
tomize that most customers do so considerably.)

Again, the only way to ensure and validate the competence of a CMS API is for your
developers to actually work with it.

Event Models
One of the problems with any packaged software is inserting logic into it, so that cus‐
tom code will execute amongst the system’s core code. One solution would be to dig
into the source code, and just paste new code in places where you want it to execute.
Clearly, however, this opens up numerous problems of maintainability and stability,
not to mention that source code is simply not provided with many commercial sys‐
tems.

A more manageable way to achieve this result is by using what’s known as an event
model. Event-based programming is not at all specific to CMSs; it’s a common pro‐
gramming architecture.

When code executes, it can raise events. An event is a declaration that something has
happened inside the executing software. External code can “subscribe” to these
events, in effect saying, “When thing X happens, execute this block of code.” This
code is generically known as an event handler.

Event handlers do not need to know exactly where the events occur in the CMS code.
Developers simply need to know what events are available, and what information
those events provide when they are raised. Any code inside the CMS could raise the
event, and so long as an event handler is subscribed, it will execute. More than one
event handler might be subscribed to an event, and they will normally execute in the
order they were subscribed.

Events usually provide information to a handler about what has occurred. This infor‐
mation might simply be a notification, so that code can be written to take action

The Code API | 239

4 In some systems, an “ing/ed” convention is used. Before events are “ing” and after events are “ed” (e.g., “Con‐
tent Publishing” and “Content Published”).

when something occurs. Other events might provide information that the event han‐
dler can change. In these cases, the event is giving the subscribing code the opportu‐
nity to change how the system functions by hooking into code and changing values as
necessary. In effect, the code is saying, “I’m about to perform task X. Before I do this,
would you like to give me any advice?”

Most systems will provide some event model to which your custom code can sub‐
scribe. There is no standard list of events that a CMS should raise, but most events
will be based around the changing state of content during its lifecycle. From incep‐
tion to final deletion, a content object might raise dozens of events.

Some examples (referenced events are invented, but common):

• A website is heavily cached by a content delivery network (CDN) to provide
faster content delivery times around the world. Whenever new content is pub‐
lished, the CDN needs to be notified of the URL of the affected content so that its
cache can be cleared and it can retrieve the updated content. For example, an
event handler could subscribe to the “After Content Published” event and make a
call to the CDN’s API with the URL of the published content.

• The editor-in-chief is getting frustrated with editors using acronyms instead of
full names. An event handler could subscribe to the “Before Content Saved”
event and be provided with content that was about to be saved to the repository.
The event handler could scan the text for acronyms and replace them (for exam‐
ple, changing the text string “FBI” to “Federal Bureau of Investigation”). The cor‐
rected text would be saved to the repository instead.

• Pricing for events is not announced until 30 days prior to the event. Rather than
build and enforce this logic in dozens of places in the templates (and trust tem‐
plate developers to always use it), a developer instead subscribes to the “Attribute
Displaying” event. When the requested attribute is Price, and the Start Date is
more than 30 days away, an attribute value of “Not Available” is returned.

It’s common for two events to “bookend” code. A “before” event will be raised before
the code, often providing information to handlers that can be changed to affect how
the ensuing code will run. The code will execute, then an “after” event will be raised.
The same information will usually be provided to the after event, but modifying it
will have no effect.4

240 | Chapter 11: APIs and Extensibility

If events seem suspiciously like workflow, that’s not entirely wrong. The differences
are subtle:

• Editors do not directly invoke events, like they might with a workflow. An event
occurs indirectly, usually as a result of some action taken on content.

• Events execute at a single moment in time. They normally do not create a persis‐
tent process that outlives the event itself.

• Events usually force the calling code to wait for them to complete execution.
Calling code executes subscribed event handlers in order, waiting for each to
complete, before it is allowed to continue.

• Events have no user interface, as they neither expect nor allow user input.

Some things accomplished with workflow might instead be implemented in event
handlers, and vice versa.

Since event handlers usually run in the same process as the CMS
itself and block the calling code from continuing until they’re fin‐
ished, a poorly implemented event handler can bring an entire sys‐
tem down. Either the event handler throws an error that ends
execution completely, or it takes so long to execute that the system
feels sluggish. Implement with care, especially when subscribing to
frequent events like the retrieval of an attribute value.

In some systems, events are called “hooks” (to represent the idea of “hooking into”
things that happen in the CMS code); in other systems they’re called “triggers” or
“actions.”

As a way of illustration, here’s an example of subscribing to an event in Episerver (in
C#) to execute a method called NotifyCDN after content is published (the first of our
earlier examples):

DataFactory.Instance.ContentPublished += NotifyCDN;

(Note that this is standard C# event-based programming syntax, not anything specific
to Episerver.) In this instance, the event handler (the method NotifyCDN) would be
provided with a reference to the content that was just published, so that it could find
its URL and send an invalidation request to the CDN.

Sitecore uses XML configuration files to specify event handlers:

<event name="item:published">
 <handler type="EventHandlers, MySiteAssembly" method="NotifyCDN"/>
</event>

The Code API | 241

WordPress allows developers to specify events by adding “actions” (in PHP):

add_action ('publish_post', 'notify_CDN');

Event-based programming is not at all specific to CMSs, but rather is an important
way for developers to extend the functionality of any system. An event model allows a
clear, maintainable way for custom code to be injected into an otherwise closed sys‐
tem.

Perspective: The CMS as a Digital Hub

by Allan Thraen

When I first joined the world of content management, I was
expecting it to be a rather boring one. I mean, a CMS is basically
a database where you put content in, you edit it, and you pull it
out and present it. Big deal, right?!

But what I quickly learned was that as our world becomes more
and more online, the role of the WCMS grows from being “just
content management” to being the naturally evolving platform
the entire business sometimes spins around.

Where websites used to be static brochure-ware, they are becoming a platform for
marketing, sales, and customer service. To support this, the WCMS needs to be con‐
nected to all the relevant systems: CRM, marketing automation, enterprise resource
planning, in-house databases and systems, social media, analytics, business intelli‐
gence, search engines, ecommerce, and so on.

The extensibility model of the CMS is essential to ensure that there are good connec‐
tions to all these other systems. Sure, most CMSs will come with a number of connec‐
tors available—either out of the box or as add-ons—but you will often find yourself
missing the right connectors to exactly the system you want connected.

A good API and code framework will allow developers to extend the CMS and its
administrative interface to be connected in all the places you need to the other
business-critical systems as part of the implementation phase.

Imagine you work for an airline about to replace its entire online presence with a new
CMS. Aside from the regular implementation work, there are myriad systems you’ll
want to integrate with:

• You probably have a flight search and booking engine already connected with
your flight operations system. That needs to be seamlessly integrated with the
CMS in a way that editors can use it and place search or flight-suggestion boxes
throughout the site where it makes sense. This will almost always require custom
extension of a good API.

242 | Chapter 11: APIs and Extensibility

• You’ll probably want editors writing articles on your website promoting certain
destinations to be able to list the current cheapest flight prices to those destina‐
tions in their articles dynamically. This requires custom integration to your oper‐
ations and ticket sales systems.

• When visitors are browsing the site you’ll probably want to personalize their con‐
tent so they only see frequent flyer offers if they are frequent flyers, so you’ll need
an integration that might very well be custom to your CRM or marketing auto‐
mation system, or wherever you keep track of your loyalty members.

• After a flight has been purchased you might want to integrate with third-party ad
providers to suggest hotel offers or similar to your customers.

Depending on your business, you can imagine how specific integration functionality
to your existing systems can improve your online business, improve your conversion
rate, or empower visitors to do self-service—and a good API is the underlying key to
achieving it.

Allan Thraen is a Technical Fellow with Episerver and a veteran of many integration
projects.

Plug-in Architectures
Closely related to the API that a system offers is the ability for customizations to be
packaged and distributed, either commercially or via open source solutions. Some
systems have vast extensions to their core functionality available through bundles of
code variously called plug-ins, add-ons, extensions, components, or modules (we’ll
use “plug-in”).

A “plug-in architecture,” therefore, is a set of established API concepts, events, and
attachment points that lets a developer create some functionality for a CMS, and then
bundle it in some form that can then be installed on another installation of that CMS.

Open source CMSs usually have well-developed plug-in architectures, due to the
nature of their development. Open source software is driven by a community of
developers, and the plug-in architectures are often created to ensure the integration
of new functionality in a uniform way when a large, distributed group of people are
contributing. Additionally, the increased user communities of open source systems
result in many different people trying many different things. The sheer volume of
implementations tends to result in more code spinning off into available plug-ins.

Commercial software, in contrast, has an official organization behind it, and the
assumption is that this organization will be providing functionality. Additionally,
license fees will naturally reduce the user base compared to open source alternatives,
so there will be fewer implementations. Those implementations will be performed by

Plug-in Architectures | 243

organizations that, on average, tend to be less embracing of open source as a philoso‐
phy and more protective of their code.

The number and quality of plug-ins available is usually directly related to the adop‐
tion of a particular platform. Systems like WordPress and Drupal have thousands of
available plug-ins to fulfill almost any requirement. Indeed, for many systems, the
most valuable skill a developer can possess is a deep knowledge of what functionality
is available through the respective plug-in libraries. A large part of any implementa‐
tion with these systems is the selection, configuration, and adaption of the most
appropriate plug-ins to accomplish the stated requirements.

The downside of plug-ins is issues with security, maintainability, and consistency.
When a plug-in is injected into an installation, a third party essentially has access to
the environment. The integrator is assuming that this plug-in is reliable, well tested,
and doesn’t create security holes (inadvertently, or by sinister intent).

Many security exploits don’t target the CMS itself, but instead tar‐
get common plug-ins, which are usually not subject to the same
level of security testing.

Additionally, the implementation is now bound to the plug-in. Once an implementa‐
tion depends on a plug-in, then it becomes beholden to that plug-in in addition to the
core CMS code. If an upgrade for the CMS is available, but a critical plug-in doesn’t
work with the new version, the upgrade has to wait until the plug-in is updated,
replaced, or modified directly (which then divorces it from the original source code,
likely rendering it nonupdateable in the future).

Finally, the editorial experience on a site supported by many plug-ins might be incon‐
sistent. You essentially now have a CMS developed by many people who didn’t neces‐
sarily communicate or plan their functionality to work well together. Most
communities have standards and conventions that hopefully are followed by plug-in
developers, but you might find plug-ins that deviate considerably from the UX stand‐
ards and even the core architecture of the system.

I’ve seen plug-ins that were essentially small applications of their own, just dropped
onto the larger CMS without any attempt to integrate with the underlying user expe‐
rience or design. Working with these plug-ins was almost like working in a com‐
pletely different software package, somehow embedded inside my CMS. Training and
adoption might suffer in these situations.

Some CMS vendors have a process of “certifying” plug-ins, whereby they will inspect
a plug-in for security, performance, and compliance with best practices and give it a
stamp of approval. This is usually done for a fee, which generally limits it to plug-ins
that are sold commercially.

244 | Chapter 11: APIs and Extensibility

Note that certifying a plug-in doesn’t necessarily mean supporting it. If something
goes wrong with an implementation, the vendor will want to know what plug-ins are
installed and will likely be quick to point the finger at one or more plug-ins and sim‐
ply refer the customer to the plug-in developers for support. And since many plug-
ins are open source, there is usually no formal support to speak of.

As with anything, there are advantages and disadvantages, and not all plug-ins are
created equal. Some are well known, used by thousands of implementations, and con‐
sidered almost standard tools necessary when using a particular CMS. Others are just
one-off code that a developer somewhere decided someone else might find useful.
Make sure you know where your desired plug-in falls on that range.

Core CMS Components as Plug-ins
Some systems consider their plug-in model to be a core part of their architecture, and
actually implement large parts of their base functionality as plug-ins to ease the ability
to change them when necessary.

Drupal, for instance, bundles its user management features into a plug-in (a Drupal
module) called “User.” Similarly, basic content functions are handled by a plug-in
called “Node” (the description of which innocently states: “Allows content to be sub‐
mitted to the site and displayed on pages”). Because these are developed as plug-ins,
interactions between large sections of the codebase happen in an expected and con‐
trolled manner, and developers could conceivably throw away large sections of pro‐
vided functionality and swap in their own.

Episerver has built its entire administration UI as a plug-in, to ease its ability to
upgrade when necessary. An upgrade to the admin UI is now simply a process of
updating a plug-in, not the entire core platform.

In most systems, a “plug-in” is some extra functionality to enhance the system. In
others, the architecture extends to and defines the communications and interaction
paths between large sections of the codebase.

Customizing the Editorial Interface
It’s often helpful to customize the editorial interface to add implementation-specific
functionality. Editors might need additional links, buttons, and reporting information
directly in the interface from which they edit content.

These customizations might be global to all editors. For example, seeing Google Ana‐
lytics data alongside content is often helpful. In other cases, editors might be able to
customize the interface just for themselves, by adding gadgets or widgets to provide
information they find helpful that others might not.

Customizing the Editorial Interface | 245

In many cases, developers will seek to turn off functionality that’s not being used to
avoid confusion and the need for support. Streamlining the editorial interface as
much as possible is helpful, even more so when this can be done on a per-editor basis.
As discussed earlier, different editors have different needs, and the ability to display a
specific feature for just a few power editors reduces the chance of inadvertent error,
and likely makes all editors less nervous about making a mistake.

Customizing Rich Text Editors
Rich text editors might also need configuration and customization. Most systems
implement one of two common JavaScript-based, open source rich text editors:
TinyMCE or CKEditor. A smaller number of others use commercial editors such as
EditLive! by Ephox or RadEditor by Telerik, and an even smaller number implement
their own custom rich text editors.

Here are some common customizations:

• Enabling or disabling of buttons on the interface
• Customization of styling information, such as the list of classes or block elements

that can be applied
• Configuration of HTML validation or “cleaning” processes, which enforce allow‐

able HTML tags and remove invalid markup
• Enabling or disabling of access to the HTML source
• Customization of various pop-up interfaces, such as the image or table insertion

interface
• Adding custom plug-ins, including buttons that execute arbitrary client-side

code (a JavaScript function, for example)
• Styling the contents of the rich text editor to match the final site output

Both TinyMCE and CKEditor have well-documented plug-in and extensibility archi‐
tectures. A CMS using one of these editors should provide some way to load the
required files and inject the JavaScript code necessary to load the plug-in on startup.

Repository Abstraction
It’s assumed that most of the content in a CMS installation will be stored in the CMS
repository itself. However, this doesn’t have to be the case.

Some systems will allow for the abstraction of parts of the repository. The code to
actually gather the data for content objects is swappable and can be delegated to other
code and other sources. Custom code can allow some data to come from other stor‐
age sources, and be presented and manipulated just like content that actually lives in

246 | Chapter 11: APIs and Extensibility

the repository. This might happen for only specific content objects or locations in the
geography.

For example:

• An organization maintains its news releases in Microsoft SharePoint. The sup‐
port team also wants these releases displayed on the website. The CMS repository
might be abstracted so that a section of the geography (the children of the News
page, for example) will actually retrieve content in real time from SharePoint,
presenting this information as if the news releases actually resided in the CMS
itself. Visitors (and perhaps even editors) might never be aware that this content
isn’t actually stored in the repository.

• Technical writers store product code samples as Markdown files in Git. The CMS
repository might be abstracted to connect to Git in real time and list the files
contained within it as child content objects of a Code Samples page.

Users of the Unix operating system might recognize this as the concept of “mounting
a filesystem.” In Unix, a completely separate filesystem (System B, we’ll say) can be
mapped to what appears to be a simple directory in System A. Users navigating
through System A might enter a certain directory, and—unbeknownst to them—
actually be browsing the filesystem on an entirely different machine.

Repository abstraction is essentially the same thing: a section of the repository might
“mount” some other system to provide data. Data exchange between the CMS and the
source system takes place silently in the background. Some systems can even write
data back to the external source, so an editor might change an object in the CMS and
not realize he’s actually changing data in a completely separate system, somewhere
else entirely.

Clearly, this is an advanced feature, and there’s a judgment call to be made as to when
this is more appropriate than simply importing the content to the repository and
updating it when it changes. Depending on an external data source for real-time
access raises issues of performance, network latency, security, and stability. However,
in cases where external data might be accessed outside the CMS—by making a direct
database query using SQL, for instance—abstracting the repository to present that
data as content can increase consistency and simplify templating.

Pluggable Authentication
One of the drawbacks of bringing new software into an organization is having a new
set of credentials to manage, and for users to remember. One of the easiest ways for
users to feel that a system is an integrated part of their organization is to allow them
to use the same credentials they use for other systems. Adding yet another set of cre‐

Pluggable Authentication | 247

5 Many developers wouldn’t call REST a “protocol,” but would rather consider it a convention or philosophy.

dentials creates password fatigue, which usually results in sticky notes containing
passwords attached to the sides of monitors.

Many CMSs will allow their systems to either be integrated with common methods of
authentication, or be swapped entirely for a custom system. Integration with Micro‐
soft’s Active Directory is common, as is more generic LDAP integration. Some sys‐
tems have OAuth, OpenID, or Facebook Connect integration, allowing users to log in
by authenticating against their Google or Facebook accounts.

In the event an organization is using a less well-known or even custom authentication
system, code can sometimes be developed and provided to the CMS to handle
authentication tasks. In these cases, it’s clearly incumbent on the implementing devel‐
opers to provide well-tested code, as the CMS will be only as secure as this code
allows. The CMS will communicate only with this custom code, and will assume it’s
authenticating users in a secure and rigorous manner.

Note that pluggable authentication and shared credentials does not necessarily mean
single sign-on. To achieve single sign-on, your editors sign into one system and are
seamlessly authenticated across multiple other systems—your CMS included, hope‐
fully. Even if you hook your CMS up to your Active Directory provider, the editors
will still need to enter their credentials, but they’ll be the same credentials that they
use everywhere else, which is helpful in itself.

Web Services
Many systems will provide a web service interface to allow remote interaction with
the CMS over HTTP. Systems vary by (1) the specific web service protocol used, and
(2) the depth of the interaction allowed.

SOAP (Simple Object Access Protocol) was the standard web service protocol for
years, but that position has been usurped by REST (REpresentational State Transfer).5

Likewise, XML has long been the dominant serialization format, but is being dis‐
placed by JSON. Most systems will offer some combination of the two variables
(XML via SOAP or JSON via REST, or occasionally vice versa).

Some web services are read-only, but other systems strive to provide complete expo‐
sure to their APIs over a web services. Some systems go a step further and run their
own user interfaces from their web service. Abstraction levels in many programming
languages and frameworks have advanced to the point where a web service can be
accessed via a common API, and even swapped out underneath that.

248 | Chapter 11: APIs and Extensibility

If a system’s web service API falls short, custom web services can be implemented
fairly easily. In many cases, there’s little difference between a normally templated con‐
tent object and a REST service request. Templating languages that generate HTML
can usually generate XML or JSON just as easily, and creating custom web service
endpoints for specific situations is quite common. Some implementations might even
deliver XML or JSON versions of any content simply by appending a designated argu‐
ment to the query string (e.g., ?format=json).

RSS is also well suited as a simple API for the delivery of content, and benefits from
some level of standardization. RSS feeds can be extended with custom, namespaced
tags to deliver more than the traditional blog-based feed of content, and RSS is just as
adept at delivering aggregations or single content items.

Scheduled or On-Demand Jobs
In many situations, CMS editors and administrators just need to execute arbitrary
code, either on demand or scheduled and unattended. This code usually doesn’t need
user input and has no visual interface component. It is typically intended to perform
batch manipulation of content. Many systems will offer some framework for imple‐
menting this code, generally referred to as a “job.”

For example:

• Many systems will have a job that checks hyperlinks on a scheduled basis. The
job will retrieve all content, examine it for external URLs, then send a request to
each of those URLs to ensure they’re still valid. URLs that are no longer reachable
might be flagged for review, added to a report, or emailed to an administrator.

• An editor-in-chief might want to impose strict editorial guidelines to ensure
compliance with governance policies. A scheduled job might run every night,
find all content changed since the last execution, and process it to ensure gover‐
nance policies have been followed: images have ALT tags, usages of the company’s
name are followed by a trademark symbol, periods are only followed by a single
space, etc.

• The information security department might require that certain site content be
written out to a flat file once per month and entered into an enterprise content
management system for auditing by a regulatory agency.

• A product name might change, and all website references must change as well. A
job can be developed to review tens of thousands of content objects and change
references from the old name. This job can be installed, executed, then removed
once the results have been confirmed.

Scheduled or On-Demand Jobs | 249

• During content migration (see Chapter 13), the entire migration script might be
implemented as an on-demand job. The developer might execute the job, review
the results, modify the script, then execute it again.

The API as a Time-Shifted Relationship
A system’s API is the “fingerprint” of the vendor’s development team. The API is the
crumbtrail the vendor leaves for developers using its product to navigate around
sticky problems and unique customizations during an implementation.

In a strange way, developers build a kind of time-shifted relationship with the original
vendor team through the API. A clean, consistent, well-documented API gives a good
impression of the vendor’s team. The implementing developers learn to trust them,
and gain confidence that requested customizations can actually be achieved. When a
user asks if something can be done, the answer becomes, “I’m pretty sure there’s a
way.”

A poor API is the exact opposite. Inconsistent and awkward APIs breed distrust
among developers. In some cases, it seems like the API—and, by proxy, the vendor
itself—is actually working against them. It’s like having a team member who doesn’t
pull her weight and drags the rest of the team down. Whenever a customization is
asked for, the answer becomes, “I’ll check, but I doubt it.”

In this way, the competence of a system’s API is a critical feature that has an outsized
influence on the success or failure of an implementation—especially one requiring
heavy customization—not unlike a human member of the team.

When evaluating a CMS, allow your developers to “interview” the API to see if they
want to make it a member of their team. Demand a code-level walkthrough for your
developers and gauge their feelings about what they saw. If this relationship fails, the
rest of the project might go with it.

250 | Chapter 11: APIs and Extensibility

PART III

Implementations

1 A technical reviewer noted: “Without totally overdoing this metaphor, you could extend it to keeping the
house clean. Companies implementing a CMS are often like a family building a new house and then never
taking out the garbage. When the house gets too smelly, they just build a new house.”

CHAPTER 12

The CMS Implementation

I have two teenage daughters. They’re obsessed with their future weddings. They’ve
both planned out the perfect day dozens of times. When they ask why I don’t get
nearly as excited about it as they do, I always respond the same way: “I’m less con‐
cerned with your wedding day than I am with the 50 years that come after it.”

In the process of building a content-managed website, organizations often get
obsessed with finding the right CMS for their needs. They’re dazzled by sales demos
and starry-eyed over the things they’ll do once it’s implemented. Emboldened by
finding what they consider a flawless piece of technology, they rush into the imple‐
mentation, then don’t understand why the reality of what they wake up with every
day doesn’t live up to their dreams.

Identifying and acquiring a CMS is only the first part of building a content-managed
website. It’s like spending hours and hours at the building materials store, identifying
and purchasing everything you need to build a house, and having those things deliv‐
ered to an empty lot. It doesn’t matter how many materials you have, or whether or
not they are high quality—someone still has to build a house with them.1

What plays more into the success or failure of a website: the quality of the CMS, or
the quality of the implementation? This is a hotly debated question. Can a fantastic
CMS be ruined by a terrible implementation? And can a stellar implementation sal‐
vage what is an objectively poor CMS?

The answer to both questions is yes. The greatest CMS in the world can be rendered
completely useless by a poor implementation, and a below-average CMS can be made

253

surprisingly functional by a creative integrator who is willing to work around short‐
comings.

I’ve long maintained that being forced to work with a particularly
poor CMS for many years had more impact on my professional
development than any other experience before or since. Seeing
things done the wrong way is the best way to learn how to do
things the right way, and having to work around immovable (and
often irrational) limitations forces people to think creatively in
ways they normally wouldn’t.

Clearly, you’re ideally looking for both: a solid CMS coupled with a solid implementa‐
tion. Even a simple understanding and acceptance of the fact that the implementation
is just as important as the CMS itself will put you in the right frame of mind.

Principle Construction Versus Everything Else
An old adage of project management says if you want to know how long a project will
take, “Add up the time you think it will take to complete all the tasks, then double it.”
While clearly a joke, it’s often not far from the truth.

The amount of time required to implement a content management system is always
more than the sum of its parts. Planning out every idiosyncrasy of an implementation
before you start is not a straightforward process. During the project there will be
bumps in the road that will lengthen the required time considerably: changes, hidden
requirements, misunderstandings, staff turnover, bugs, and rework.

We tend to underestimate the time required by concentrating on the activities we
consider “principle construction,” which are, by nature, development-centric. We
look through the functionality required to finish the build, add up the implementa‐
tion time, and think that’s everything that needs to be done.

Along the way, we forget things that fall outside the mainstream path. Things like:

• Environment setup, such as development, test, and integration environments, not
to mention source control repositories and build servers

• Testing and QA, including the inevitable “fine-tuning” period in the days or
weeks directly prior to launch when bug fixes consume the development team

• Content migration (a subject so chronically overlooked that I’ll devote an entire
chapter to it)

• Editorial and administrator training—the initial editorial team, future team
members, and ad hoc training on specific tasks

• Production environment infrastructure planning

254 | Chapter 12: The CMS Implementation

2 Called a forklift because the website is “lifted up” and a new CMS is swapped in “underneath” it.

• Deployment planning and execution, including initial launch and postlaunch
changes

• Documentation, either of the implementation itself or of the project process
• Project management, including progress reporting
• Internal marketing to affected staff and stakeholders
• User transition management, including moving user accounts, ensuring users are

notified of changes, and password resets
• Load and security testing
• Transition of SSL certificates
• DNS changes and propagation
• URL redirection

These are all activities outside of principle construction, and they often get left out of
estimates as a result. In some projects, the actual development becomes a minority of
the work when compared to all the non-development work surrounding it.

That adage of doubling the initial effort estimate perhaps isn’t unreasonable after all.

Types of Implementations
At the most general level, CMS implementations can be grouped into three types,
based on their relationship with the current website:

CMS only, or “forklift”2

In this case, the goal is for nothing on the website to change—the design, the
content, and the information architecture will carry over identically, but the CMS
powering the website will be swapped for another (or, less commonly, a statically
managed website will have a CMS introduced). In this type of implementation,
the current website is the model for the new website.

CMS plus reskin or reorganization
This is an extension to the forklift implementation where the organization
decides to do some light housekeeping, as they’re going to the trouble of imple‐
menting the CMS. New designs are often applied since templating has to be
redone anyway, and a content migration often means that content can be cleaned
up or reorganized without considerable extra work. Some things will change, but
the changes are limited to styling and editorial, which means the current website
is still somewhat relevant as a model.

Types of Implementations | 255

Complete rebuild
In these cases, the entire website is reenvisioned. The new CMS might be only
one part of a larger digital turnover. The website will get a new design, new con‐
tent, new information architecture, and new functionality—little or nothing of
the old site will remain. The CMS implementation often comes after a large con‐
tent strategy and UX planning phase. Clearly, the existing website is irrelevant as
a model for the new website.

While the first type, the forklift implementation, might seem the most simple, it can
be deceptively complex because you’re now faced with wrapping an existing base of
historic functionality around a new CMS. The new system will invariably do things
differently than the old CMS, and the website will likely have adapted over time to fit
how the old CMS worked. Implementation teams have often found themselves trying
to backport existing functionality into a new system to replicate how a website
evolved around an old system.

The edge case adage discussed earlier holds true here as well. Given a sufficient
amount of time, editors will have found every nook and cranny of a CMS. As men‐
tioned in Chapter 10, any given editor might only use 25% of the total functionality,
but every editor might be using a different 25%, meaning the editorial team collec‐
tively expects all of the old functionality to work in the new system, sometimes in the
same manner, even if that’s an inefficient way of accomplishing some goal.

On the other end of the extreme, a complete rebuild at least gives you flexibility to
weigh new functionality against the new CMS that will power it. Weighing new
design and functionality requirements against technical feasibility is an expected
dynamic to a rebuild project, which gives an implementation team the opportunity to
influence plans toward functionality the new CMS will support.

Perspective: The Hidden Challenges of Forklift Projects

by Jeff Eaton

On large projects, decision makers often push for “forklift”
migrations to reduce the cost in both dollars and time. That’s
not an unreasonable goal, especially given the scale and com‐
plexity of many organizations’ sites. However, as Deane men‐
tions, there are several common pitfalls to watch for if you go
down this path.

First, there’s the risk of a creeping redesign. Forklift migrations promise time and cost
savings because they reuse the navigation, organization, and appearance of the site’s
existing design. In the real world, though, stakeholders often get cold feet. With all the
time and money spent on a migration, they reason, shouldn’t they get something that’s
obvious to the average visitor? “Minor updates” to the site’s look and feel are sug‐

256 | Chapter 12: The CMS Implementation

gested, but soon all of the decisions embodied in the old design are being revisited
and questioned. Hold the line at purely superficial updates, or invest in a well-
planned design process: “sneaking” a redesign in this way is death by a thousand cuts
for timelines and budgets.

The second danger is architectural mismatch. Different CMS platforms approach
content organization and presentation in different ways. Sometimes, slavishly dupli‐
cating the appearance of the old site can force you into odd, uncomfortable work‐
arounds that consume disproportionate time and resources. The logical choice is to
tweak the design to fit the new tool’s approach, but if that’s not done carefully, it can
trigger a ripple effect of design complications.

The last and most serious risk is a distorted content model. Ideally, a site’s content
model serves an organization’s business and communication needs, and a design is
developed to effectively present that content. When visual design is the focus of early
planning (whether it’s new wireframes or the current site’s look and feel), the model‐
ing process often focuses on duplicating that design’s idiosyncrasies and edge cases
rather than the big picture. When the time comes for another redesign, those assump‐
tions baked into the content model can make the process much more difficult.

In my experience, true forklift migrations are rare: most successful ones turn into
complete redesigns by the time the project is complete. Keeping these risks in mind,
however, makes realizing the promised savings much more likely.

Jeff Eaton is a Digital Strategist at Lullabot, Inc.

Preimplementation
Before you implement, you need to take stock of what you have to work with, then
use that to develop a plan.

Discovery and Preimplementation Artifacts
The amount of preimplementation documentation depends highly on the level of
change planned from the existing website.

For a forklift implementation, there’s a possibility of using the current website as a de
facto requirements document. When simply swapping the CMS out from under an
existing website, a project mandate might simply be to make things function the same
as they have in the past. So long as the development team sufficiently understands the
inner workings of the current site and someone from the editorial team is available
for questions, this might be enough to suffice.

If the website is being reskinned or reorganized, some consideration needs to be paid
to how the changes will affect the CMS. If the changes are limited to the design and
content alone—and none of these changes require modification to the content model

Preimplementation | 257

itself—then they might not be relevant to the development effort. For example, the
developer doesn’t care if the design calls for a serif or sans serif font, or if the content
is written in the first- or third-person perspective. The development effort is the
same.

Be careful here—design and content changes need to be thoroughly investigated for
potential content model changes. Seemingly simple design and content changes
might require significant underlying model changes to support, and these changes
have an uncanny way of snowballing. Changing thing A suddenly forces changes to
thing B and thing C. Changes beget more changes, until, two weeks later, you’re
changing thing Z and realizing the initial change went much deeper than you
thought.

A Single Screw

One of my technical reviewers relayed this anecdote, which is sur‐
prisingly similar to many CMS projects:

It all started when a screw fell out of our old dishwasher.
We could have replaced the screw, but decided that the
dishwasher was old and was probably going to fail soon
anyway. So we bought a new one. The new dishwasher
called more attention to our ugly kitchen. So we renova‐
ted that—and the dining room that was attached. When
that project was finished the view from our new dining
room into our old living room was pathetic. So we gut
renovated the third floor, moved the kids there. Made one
of the kid’s rooms a TV room and turned our living room
into a nice sitting room…all because of one screw.

What’s the single screw of your project?

For a complete rebuild, significant site documentation is required for an effective
implementation. At a minimum, the development team will need the following:

• A set of wireframes that displays the layout of each major content type, including
all relevant content elements (see Figure 12-1).

• A set of functional requirements (or equivalent annotations to the wireframes)
that explains how nonvisual functionality should work, especially navigation and
contextual functionality in the surround

• A sitemap showing an overhead view of how all the content fits together and is
organized

258 | Chapter 12: The CMS Implementation

Figure 12-1. A sample wireframe with numbered callouts, which would normally be
annotated with nonvisual information about how the elements function—wireframes
are helpful to separate content and functionality from the finished design, which can be
distracting when developing a technical plan

Depending on the scope of the integrator’s responsibilities, they might also need:

• A fully rendered design with all supporting art files
• Frontend HTML/CSS of the implemented design

Over the last half-decade, frontend development has become its own discipline.
Implementations used to be achievable with a single set of development skills, but
with the advent of responsive design and increased use of client-side technologies, the
frontend development is now often assigned its own team. Additionally, many
projects will have the frontend development completed before the CMS implementa‐
tion begins.

Preimplementation | 259

The discovery phase of a CMS project is normally handled by a team of content
strategists or UX/IA specialists who work with the organization to determine needs.
A key point is whether this team needs to work with the knowledge of the intended
CMS or not, if that information is even knowable at the time.

Some say that sites should be planned to be CMS-agnostic and that the focus should
be on giving the organization the best possible website. However, a more practical
school of thought says that if the intended CMS is known, then plans and designs
need to be vetted for what can actually be implemented, which means filtering out
idealistic and grandiose plans that can’t be brought to fruition. Planning a compre‐
hensive personalization strategy, for example, is an expensive waste of time if your
CMS doesn’t support personalization and you can’t integrate the necessary function‐
ality from an external service.

If the intended CMS is known, it’s generally wise to have the implementation team
review plans and designs for feasibility as they become available. Early discussions
about hypothetical functionality can help ground the design team in a firm under‐
standing of which ideas can actually work.

Developing the Technical Plan
There’s an old saying among trial lawyers: “Never ask a question you don’t already
know the answer to.” Something similar can be said of implementations: “Don’t ever
start implementing a wireframe that you don’t already have a plan for.”

At some point, the implementation team needs to review the preimplementation arti‐
facts and come up with technical plans for everything in them. While it’s tempting to
try to plan a site from the top down, it’s best to start from the bottom up. This means
paging through the set of wireframes and asking a lot of questions about each.

These questions need to be answered in some form prior to development. In some
cases, the developer will write a formal technical implementation plan (TIP). In other
cases, the wireframes are simply reviewed in a “build meeting” to ensure understand‐
ing and to make sure there’s nothing present that isn’t implementable.

For each wireframe, consider the following questions:

• Is there an operative content object present? What type is it? What attributes does
it need to support?

• Can a clear line be drawn around the operative content object and the surround?
What content will be handled by the object’s template, and what content is in the
surround?

• Of the content in the surround, what is contextually dependent on the operative
content object?

260 | Chapter 12: The CMS Implementation

• Of this contextual information, what will be derived from context or geographic
position, and what is based on the discrete content present in the object?

• What aggregations are present? Can they be powered through geography alone,
or will there need to be secondary structures created to support them?

• What non-content functionality is present? How will this execute alongside the
CMS?

• How repeatable do the elements in this wireframe need to be? Are they just for
this one page, or do they occur again and again?

• Is this wireframe literal, or simply suggestive of a wide range of possible manifes‐
tations? What areas on this wireframe might be swappable by editors?

• How often will this particular content need to be modified? Is this something edi‐
tors will manage every day, or will this be set on launch and never touched again?

• How much relation is there to future functionality? Should this wireframe be
interpreted narrowly as an exact, literal representation of what the site planner
wants, or is it indicative or suggestive of other things?

These are all visual questions, driven by what’s actually on the wireframe. However,
lurking below the surface are several questions about the content represented in the
wireframe, which have nothing to do with the wireframe itself:

• What are the URL requirements for this content?
• What are the editorial workflow requirements? Will an editor create this content

directly in the CMS interface, or is it coming from somewhere else? What appro‐
vals need to be in place for this content?

• Who should have permissions to this content? Who can create it, edit it, or delete
it?

• Does the content have to be localized? Into how many languages? What non-text
elements (images, for example) will also need to be localized?

• Does this content need to be versioned? Will it need to be archived at some
point? In the context of this project and this content, what does that mean?

• What other channels does this content need to be published into? Will this hap‐
pen on the same schedule? Does it need to happen at any time? Who can initiate
this?

• Does this content exist now? If so, where is it, and how can we get access to it for
migration? What is the current velocity of this content—how fast does it change
or turn over?

To this end, the most valuable question the developer can ask might simply be:
“Where does this come from?”

Preimplementation | 261

For any element on the wireframe, the site planners, owners, or editors need to
explain where it comes from. Is it managed content? Is it from the operative content
object? Is it from another content object? Is it from an external data source? Is it con‐
textual logic, like related content or sidebar navigation? If so, on what data is this
logic based?

They do not need to have complete technical understanding (this is the developer’s
job), but they need to have at least some logical idea of where the content sources
from. If they don’t, the developer can back up and ask more general questions about
the nature of the information:

• Is it specific to this page?
• Is it global?
• Is it based on the content type?
• Can everyone see it?
• Is it from someplace outside the CMS?

From the answers, the developer might be able to extrapolate some content model or
method of populating the information. This should be repeated for every single ele‐
ment on the wireframe: every menu, every sidebar element, every snippet of text.

It’s easy to short-circuit this process. It can get tedious, and there’s a temptation to
think, “Well, I’m sure someone has a plan for that.” Resist this temptation. The process
of answering these questions is vital, both for the developer’s understanding and also
for the editors and site planners. Many times, the provided answers will be in conflict,
and you’ll uncover misunderstandings and incorrect assumptions.

If no one can explain where a wireframe element comes from or
how it’s determined, go ahead and draw a big X through it. If it
can’t be explained in a simple conversation, then it certainly can’t
be implemented.

Equally important as the actual answers, the directions these conversations go in will
often reveal underlying motivations and goals. The answer to where something
comes from will often lead to a discussion about why it’s there and what goal the site
planner was trying to achieve with it. These discussions help provide context and
background, which the developers can use later in the project when they need to
make more intricate implementation decisions.

By starting at the bottom and proceeding through the wireframes one by one, larger
top-down questions will slowly begin to fill in. Once every interface has been
reviewed, the team can back up and look at larger questions such as:

262 | Chapter 12: The CMS Implementation

3 Of course, if the CMS has already been selected, this might be a moot point, but it could at least inform
specifics of how that geography should be formed.

• What is the shape of this content? What content geography is needed to support
it?3

• What does the aggregate content model look like? Can types be abstracted to base
types from which other types might inherit? Can type composition be used to
simplify the model?

• What content appears to be global to the installation, and where will that content
be stored?

• What larger, nongeographic aggregation structures are needed? Is there a global
tagging, categorization, or menuing strategy that ties the content together?

• What is the overall need for page composition? How much of the site is templa‐
ted, and how much is artisanal?

• What do the aggregate localization requirements look like? How many languages
will need to be supported, and how should language preferences and fallbacks be
managed?

• What does the user model look like? How many different user groups will need
to be created, and what reach will each of them have?

• What external systems need to be integrated with? What APIs are available, and
what access is allowed? Can this information be retrieved in real time, or does an
import strategy need to be defined?

• What does our overall migration strategy look like?
• If the target CMS is known, how well does the revealed functionality overlay on

what’s available out of the box? How much customization will be needed to com‐
plete the implementation?

• If the target CMS is not known, what CMS might be a good fit?

The answers to both the big and small questions collectively form the technical plan.
This plan will drive the implementation process, and, as discussed in Chapter 14, the
scoping and budgeting process.

Taking the organization and the team into account
It’s important to understand that answers to the questions in the previous section are
simply not universal. Many are contextual to the specific combination of this organi‐
zation, this particular team, and the long-term plan for this website. The same site
plan for combination X might be implemented differently for combination Y.

Preimplementation | 263

4 What gets trickier is when the integrator is external and is being paid for its work. While the integrator might
pursue the second option in a genuine attempt to increase flexibility, the client might view the first option as
clearly better and interpret the integrator’s plan as lack of skill, or—worse—a desire to deliver a shoddy prod‐
uct to increase its profit margin.

Things the team will need to take into account during a feature-level analysis include:

• How much budget is available for implementation?
• How experienced are the editors? How well can they be trained and be expected

to understand technical concepts?
• What portion of the budget will a particular feature consume, and does that need

to be balanced against its value? Can it be responsibly implemented at a lower
level of functionality or polish to save budget?

• To what extent does the organization want to make structural changes to the site
without developer involvement? To what extent will it have users who under‐
stand HTML or CSS enough to share some responsibility for output?

• How long will this implementation be used? Is it permanent or temporary?
• What is the future development plan? Is there a phase 2? Does the organization

plan to invest in this site over the long term, or is this a one-shot effort? What
level of internal developer support does it have?

Here’s an example.

Say the site design calls for numerous text callouts, all with different styles. Should
there be a visual “palette” of different styles that editors can browse through and
select one with a mouse click? Or, on the opposite end of the scale, can these editors
be trusted with a simple text box in which to type in the name of a known CSS class
that will be applied to the surrounding DIV?

The former is clearly more user-friendly and polished, but it also may cost considera‐
bly more to implement and be less flexible. With the second option, new CSS classes
might be created on the fly, and editors can simply type them in, while with the first
option, the style palette might have to be manually changed to represent a new style.

Some editors want the most user-friendly, controlled experience possible. Others
want to get “close to the metal” and have more manual control over these things.
These editors might resent being spoon-fed options, and be annoyed that they can’t
just type in a CSS class that they know exists. Only knowledge of the editor’s prefer‐
ences, skill, training, experience, and governance policies can help you make this
decision.4

The usage of Markdown and other markup formats is another clear example. Some
editors enjoy the precision and speed that Markdown brings with it. Other editors

264 | Chapter 12: The CMS Implementation

expect WYSIWYG editing, and might consider Markdown as “low rent” and even
question why such an expensive CMS or implementation isn’t competent enough to
feel like Microsoft Word. In these situations, does the technical plan acquiesce to
what the editors expect, or does the case need to be made for the alternative?

This opens up much larger questions to do with user adoption and internal market‐
ing, which are crucial but beyond the scope of this book. Perhaps 10–15% of the
effort for any implementation might be social engineering and training to get users
on board, both with the system itself and with the decisions that were made during
the implementation. Back to our example, do editors simply need to be trained on
Markdown, and educated about its benefits and why it’s the right solution for this sit‐
uation? How far down that rabbit hole is the team prepared to go? Will they need to
“walk that decision back” to larger concepts like the separation of content and presen‐
tation?

The Right Way

We had a raging discussion at my company once on the acceptabil‐
ity of cutting corners and leaving some rough edges to save budget
(with the client’s understanding, of course).
One of the developers said, “I wouldn’t do that because I want to do
things the right way.” Left unsaid there was what “right” meant.
Does it mean an architecturally perfect way? Or does it mean a
practical but less-polished way that achieves the customer’s goals,
one of which is staying under budget?
Developers have to make these types of decisions dozens of times
during any implementation. (Refer back to “Load-Bearing Walls”
on page 176.)

The end goals of a project will also exert an influence on implementation decisions.
Consider these two projects:

• A temporary promotional microsite to support a single conference event with
content that won’t change. This site needs to be launched very quickly, and will
stay up for six months at most.

• The main website for the organization. There will be thousands of pages of con‐
tent, authored by dozens of editors of varying skill levels turning over content
multiple times per day. This implementation needs to be functional and relevant
for at least the next five years.

These two scenarios will likely result in drastically different implementation deci‐
sions. For the temporary microsite, corners might be justifiably cut for the sake of
budget, time, and the fact that more complex implementation won’t provide much

Preimplementation | 265

5 Elaborated on by Stewart Brand in How Buildings Learn: What Happens After They’re Built (Penguin).

return on investment. However, the main site of the organization has a much longer
time span and a larger, distributed editorial base. For this project, a more measured
implementation is required. Deeper investments in usability and flexibility will have
the breadth and time required to provide value to justify their expense.

Pace Layering
Architect Frank Duffy is known for a concept called “shearing layers” or “pace layer‐
ing.” He considers the design of a building in layers, which move and change at differ‐
ent “paces.” There are six layers, all starting with “S”:5

Site
The actual ground the building site is on

Structure
The immovable parts of the building

Skin
The outer surface of the building

Services
The underlying electrical, plumbing, and HVAC systems of the building

Space
The interior design of the building

Stuff
All the furniture and finishes inside the building

These layers move at different paces. The furniture in a room will be rearranged at a
much greater rate than the ground under the building will erode with the passage of
time. Likewise, the outer surface of the building is changed much more easily than the
foundation or supporting pillars.

The same is true of a website and the content within it. It all changes at different
paces. The underlying purpose of the CMS will change at a different pace than the
words stored within it. And the logo in the upper corner will change at a different
pace than the list of news releases.

Each element has a pace. Those paces need to be taken into account when planning.
Items that move at a slower pace might need fewer management tools (or perhaps less
refined management tools). Clearly, understanding the paces is key to making smart
decisions about how to implement.

266 | Chapter 12: The CMS Implementation

The urge to generalize
Developers love to generalize. Specificity gives us a lingering unease, like we’re build‐
ing something too tight around a set of requirements, and what if there’s more func‐
tionality to be gained by loosening up a bit?

Additionally, developers love to deal in abstractions. Yes, this particular content
object is of the type Article, but it could also be considered of the type Web Page, and
even more abstractly, it’s an instance of some root, generic type like Content Object.

This manifests itself as a desire to interpret wireframes and site plans, and generalize
them in such a way as to handle situations that aren’t explicitly called for. Developers
have mental conversations like this all the time:

Well, a News Article is really just a Page with a Date and Author. If we add a date field
to the Page type, then we can collapse those two types into one. And then, in the
future, they can create mixed lists of Pages and News Articles. For that matter, I won‐
der if we shouldn’t just make Help Topic a Page too. We could make just the Subject
attribute a category assignment, and now we have one less type and those can be added
to lists too. Plus, they could add Subjects to other types of content too. You know, the
home page wireframe didn’t call for it, but I could see them wanting to add these lists
in the sidebars in the future.

Some of this might be interpreted as laziness, but it’s mostly a genuine attempt to
enlarge the solution to encompass scenarios which the developer is projecting onto
the users. If a user wants to do thing X, then the developer naturally thinks ahead that
he might want to do thing Y in the future, and the developer can address that need in
advance.

There’s truly nothing a developer likes more than hearing an editor say, “We’re think‐
ing about maybe doing thing Y—” and cutting them off, leaning back in her chair,
and saying, “No problem. I figured you would want that so I already handled it for
you…” [insert exaggerated, magician-like hand flourish here].

Some of this is healthy, but sometimes developers can be a little too clever. We’ve dis‐
cussed previously how developers are used to thinking about complex information
problems and dealing in abstractions. Occasionally they can be convinced that editors
will share in that enjoyment and skill. But usually, editors like concreteness to the
same extent that developers like abstraction.

Developers and site planners need to have productive conversations about whether
the site plan is suggestive or literal, and those need to be followed by conversations
with editors about things they might want to do in the future, and then those need to
be followed by conversations with project managers about how these things might
affect budget and timeline, both for the immediate project and potentially for follow-
on projects as well.

Preimplementation | 267

6 Tyson said this, but it wasn’t recorded. Accounts differ as to whether he said “in the face,” “in the nose,” or “in
the mouth.” Given how hard Iron Mike punched, I doubt this distinction is really necessary.

In some cases, developers might need to be reminded that they’re not building a
framework or an abstraction. They are, in fact, building an actual website with a finite
set of problems to be solved.

Mike Tyson on Planning
Boxer Mike Tyson is known for many things, but when asked about his opponent’s
strategy before a match, he made one of his more profound statements: “Everyone
has a plan until they get punched in the face.”6

Mike’s point was this: all the planning in the world has a tendency to break down
under load. When you’re in the middle of a project, a plan is a great starting point and
a good guide to keep you on track, but be prepared to adapt when necessary.

Do not stick with a plan just because it’s a plan. A plan should be a living document.
When you get down in the weeds during an implementation, be prepared to change
the plan if it becomes obvious that something isn’t workable.

The Implementation Process
CMS implementations can be difficult to generalize, but the following description is
meant to be as inclusive as possible and to reasonably represent the significant phases
through which an implementation will progress.

Environment Setup
In most cases, developers will develop the new website on their local workstations.
They will submit their code to a central repository, which is a source code manage‐
ment (SCM) platform such as Git, Subversion, or Team Foundation Server. Multiple
developers might be submitting new code, which is then combined and deployed to
an integration server for review and testing.

Developers continue a cycle of developing new features, submitting their own code to
SCM, and downloading code submitted by others to bring their local workstations
up-to-date. Throughout, each developer maintains a fully functioning version of the
CMS and developing website on his or her local workstation.

The process of deploying this code to servers is generically known as “building.” It is
usually accomplished by tools called “build servers.” A build server is software run‐
ning on the integration server that monitors the SCM repository. It detects new code

268 | Chapter 12: The CMS Implementation

7 These tools are also known as “continuous integration” servers. The idea is that new code should continually
be integrated into the whole so that problems can be found early, instead of doing infrequent builds of the
entire solution that don’t reveal problems until late in the process. Submitting code that doesn’t work and pre‐
vents the solution from being successfully deployed is known as “breaking the build.” This is usually a source
of ostracism and open derision among a developer’s colleagues.

8 Note that the test and integration websites might be on the same server, making them more accurately
referred to as test and integration instances.

9 Project managers have been known to proudly report to management that they have “Completed the installa‐
tion of the CMS!” while failing to mention that this impressive-sounding milestone might have been a three-
minute process.

submissions and launches a process that checks out the code and performs the tasks
necessary to get it running on the server—compiling the code, deleting source files,
copying the code to the web server directory, injecting license files, etc.7 Jenkins and
Cruise Control are two popular open source build servers.

In addition to the integration server, often a “test” server is used to provide a more
stable environment. While the website is built on the integration server, new code
(submitted often by developers, sometimes several times per hour) is deployed to the
test server less frequently to maintain a semistable environment for testing. The test
server usually has a build server of its own, but it’s either activated manually or con‐
nected to a different branch of the SCM repository where code is merged less fre‐
quently. 8

Installation, Configuration, and Content Reconciliation
Once all necessary environments have been created, the CMS is installed and config‐
ured. This is less momentous than it sounds, as many CMSs will install merely
through double-clicking an icon, or deploying files to the root of a web server and
walking through an installation wizard.9

Some CMSs are designed as self-contained web applications that are purposely inde‐
pendent of anything else on the server. In these cases, the CMS isn’t installed on the
server so much as it’s installed within the web server process. Others require a more
holistic installation where background services and perhaps other files are stored out‐
side the bounds of the web server. In some of these cases, these files and services can
be used by more than one implementation of that CMS on the same server.

Once the installation is complete, the resulting website—simple as it is—will need to
be checked into SCM, deployed to integration, and then checked out by other devel‐
opers.

Reconciling the installation and its content between all developers working on the
project can be a tricky phase. One of the perennial questions is how to handle the
database that powers most CMSs. Does every developer keep their own copy of the

The Implementation Process | 269

10 And this is to say nothing of all the content files created and managed in production, though thankfully those
have to be “brought backward” to development less frequently.

database, or do all the developers talk to a central database? And which databases do
the integration and test servers work with—their own, or a central version?

If each developer has a copy of the database, they’re free to work knowing that their
changes won’t affect other developers. However, multiple database copies mean that
everyone is working from a different copy of the content, and code changes requiring
accompanying data changes might require these changes to be replicated on multiple
versions of the database. Code might be deployed that breaks other developers’ instal‐
lations because the accompanying data changes haven’t been made on their copies of
the database.

This can be eased considerably by a CMS that stores and manages configuration as
code. In some systems, creating a new content type is accomplished by writing code:
in Plone, a new content type is defined as a new Python file; in Episerver, a new con‐
tent type is a new C# class file. With these systems, deploying code and configuration
are the same process. The act of a developer deploying code also deploys the configu‐
ration changes necessary for that code to work.

In other systems, new content types might be created by clicking through the admin‐
istrative interface of the CMS. These type changes are stored in the database to which
that copy of the CMS is connected. If a developer creates a new content type on his
local workstation, he now has that content type definition local to his database. He
either needs to re-create the type on the integration server (and then the test server,
and then the production server…) or use some external tool to move that data from
his database to another.

Finally, how do the developers account for content continuously created by the edito‐
rial team? If editors find a bug with new content, or a developer needs to embark on
changes that require the latest content, how does the developer bring her local data‐
base up-to-date with production?

The process of “reconciling” content changes is the bane of CMS developers. While
some systems have developed considerable technology to migrate content changes
between environments, other systems simply have a developer community that has
gotten used to manually pushing content around. Other CMSs have external vendors
that specialize in tools specifically to solve problems of reconciliation.

Developers will usually work off a local database that slowly becomes more and more
out of date until they feel it’s sufficiently “stale” that they need to refresh it from the
production or test data, often via a manual backup and restore.10

270 | Chapter 12: The CMS Implementation

A notable milestone in the implementation process occurs when all developers have a
running copy of the codebase on their workstations, this code can be submitted and
built successfully in all integration and test environments, and a plan is in place for
data reconciliation.

Content Modeling, Aggregation Modeling, and Rough-in
Just like you can’t test drive a car without putting gas in it, you can’t develop a CMS
without having content in it. The content types for the required model need to be cre‐
ated. Types need to be defined and properties need to be added, along with their
accompanying validation rules. Custom properties might need to be developed, in the
instances where the built-in properties run short.

In addition to the discrete model of each type, relationships between types and
objects need to be defined, including properties that reference other objects, and rela‐
tionships between content types. This means that at least some of the content tree will
need to be “roughed in” to represent these relationships before further development
can continue.

For example, if you’re publishing a magazine, you might have an Issue type, a Section
type, and an Article type. An issue will have multiple sections as children, which will
have multiple articles as children. You can’t work on templating or other functionality
until you have a representative set of content roughed in, which means creating
“dummy” content as a placeholder to continue developing.

Implicit navigation is similarly dependent on a roughed-in content tree. If the naviga‐
tion for a site is rendered by iterating through the tree to form primary and secon‐
dary content menus, objects will need to be created before development can continue.

Note that it’s not uncommon to find problems during rough-in. Plans that seemed to
make sense in the abstract may become clearly unworkable when actually creating
content. Be prepared that some plans may need to be reworked during this phase.
This is a natural part of the implementation process.

Other modeling tasks include:

Defining permissible content aggregations
To continue the previous example, perhaps we stipulate that an Issue object can
only contain children of type Section, which can further only contain children of
type Article.

Refining the editorial interface
Just creating the types and properties isn’t enough. The editorial interface needs
to be considered from a UX standpoint: Are items labeled clearly? Is there ade‐
quate help text? Have unnecessary interface elements been removed? Have

The Implementation Process | 271

advanced options been hidden from users who won’t understand or shouldn’t
have access to them?

Defining permissions
This requires at least a minimal rough-in of the user model, so that groups can be
given varying access to content. Specifically, you need to be careful of allowing
delete permission, since many content objects will be the “load-bearing walls” of
the content structure, and if they were deleted, then the entire site might stop
working.

Beyond actual content, other structures might have to be created at this point to sup‐
port various aggregations, including:

• Category trees and taxonomies
• Controlled tag sets
• Menus
• Search indexes
• Lists and collections
• Configured searches

Don’t Develop in an Administrator Bubble

During development, there’s a tendency for a developer to only
work as an administrator-level user, which is convenient, but dan‐
gerous.
Many times, the editorial team has finally gotten a chance to add
some content, and found that half the site doesn’t work because the
developer did things that require administrator privileges to func‐
tion. Since the developer was testing code as an administrator, he
might never have known this was a problem. The development
team needs to log in as editors or users every once in a while, just
to make sure they’re not depending on access that the average per‐
son won’t have.
Even worse is when the QA tester works as an administrator.
Remember: a feature doesn’t work correctly until it works correctly
for the intended user. Just because an editorial feature works for an
administrator, doesn’t mean it actually works. To confirm that,
someone needs to authenticate as the intended user and test under
those privileges.

When content modeling is complete, the basic content structure should be available,
and it should be resilient, which means protected from careless (or even malicious)

272 | Chapter 12: The CMS Implementation

usage. Types should be validated correctly, any hierarchies or relationships should be
enforced, and the editorial interface should be intuitive and safe for editors.

Early Content Migration
While the entire next chapter is devoted to content migration, it’s important to note
that it should begin in some form as soon as a valid content model is available. Many
implementations have run off the rails at the end when “real” content is migrated,
revealing multiple problems.

Content migrated at this stage doesn’t have to be complete or perfect, but it needs to
be pushed into the system regardless. There is just no substitute for having real con‐
tent in a CMS while it’s being developed.

Early content migration can be considered “extended content rough-in.” Much like
the continuous integration philosophy in development seeks to fully integrate code
early and often, a “continuous migration” philosophy seeks to integrate content early
and often.

The risk of not doing this is that the development team only works with a theoretical
body of content. Sure, they’ve roughed some in to the extent they need to continue
development, but it’s not actual content—it was contrived simply so they could keep
developing, and it was created by someone with intimate knowledge of how the sys‐
tem works. Consciously or subconsciously, the roughed-in content was designed to
avoid delay, not to accurately represent the real world.

Real content has warts. It frequently has bumps and bruises and doesn’t quite match
up with what you envision. You need to account for missing data, varying formats,
problems with length, missing relationships, etc.

The prior warning about developing in an “administrator bubble” holds just as true
for content. Don’t develop in a “contrived content bubble.” Unless the development
team occasionally has to stop and deal with content that is representative of what the
site will eventually have to manage, they’re going to take liberties and ignore edge
cases that will cause problems down the road.

Empty House Syndrome
When I got my first apartment, I was so excited to move in. I had the entire layout
planned in my head. It was going to be perfect.

On move-in day, I sadly realized that some of the furniture I had bought didn’t fit. In
particular, the couch was too long for the wall (or perhaps the apartment was too
small), and it stuck out into the hallway. The result was that the furnished apartment
was less majestic and quite a bit more awkward in reality than the perfect version that
had been in my head.

The Implementation Process | 273

I had been suffering from Empty House Syndrome. A house is perfect with no furni‐
ture. When you move things in, you find out that some stuff just doesn’t work. There’s
a nasty glare from the window on the TV, a picture is too small for a vast expanse of
wall, and, yes, a couch might stick out into the hallway.

While we can’t fix the actual furniture problem, we can do something about content.
Test your content against your website early and often. Find out what is going to work
fine, and what needs to be rearranged or swapped to avoid a move-in day surprise.

Templating
By this point, the environment is set up, the CMS is installed, the content model is
created, and roughed-in content is available.

Finally, it is time for templating. This is the moment you’ve been waiting for, when
you actually get to generate some presentations of the content you’re implementing
this system to manage.

Templating comes in two forms:

• The surround, which is the outer shell of each page
• The object, which is the specific object you’re presenting

Remember, the output of the object template is “injected” into the surround. Your
object is templated, then this output is nested inside the shell of the surround.

Surround templating
In most cases, the surround has to work for all content. While having multiple sur‐
round templates can happen, it’s uncommon. In most cases, the template architecture
has a single surround that is flexible enough to adapt to all content types. In some
cases, surrounds can even nest inside one another, but this is also uncommon.

Templating the surround is unique in that it doesn’t execute in a vacuum. The sur‐
round is dependent on the object being rendered for information. The information
can be of two types:

Discrete
Information drawn from the value of one or more attributes

Relational
Information drawn from the position of the content object in relation to other
content

274 | Chapter 12: The CMS Implementation

Additionally, the surround will often retrieve other content objects and data struc‐
tures in addition to the object being rendered, to provide data for other sections of
the page.

The primary navigation, for instance, is often explicit, meaning there is a specific
content aggregation that drives it. Systems with a content tree might depend on the
top-level pages for this, while other systems might have a specific menu structure of
some kind that lists these pages.

Again, the “tyranny of the tree” can be a problem here—if the top-level pages are in
that position for reasons other than being the primary navigation options, then how
do you depart from this? It’s not uncommon to see explicit menuing for primary nav‐
igation, even in systems that otherwise depend on their tree for navigation.

For example, the surround often depends on determining the correct navigation
logic. A crumbtrail, clearly, only makes sense in relation to the content object being
rendered. Where that object is located in the geography will dictate what appears in
the crumbtrail.

Additionally, many sites have a left sidebar menu. How do you know what appears
there? Is it dependent on the current content object in some way? For instance, does
it render all the items in the same section or group of content as the primary item? Is
the menu hierarchical—does it “open”? How do we determine where and how it
opens? Based on what criteria?

Despite this emphasis on global and relational information, some items in the sur‐
round are more directly contextual to the content being rendered. For example, a
common element in the sidebar (the ubiquitous Related Content, for example) is
dependent on the actual content item being rendered. It will extract information from
that object to render itself. Do all objects have this information, or does the element
in the surround have to account for varying information, and even hide itself if the
primary object being rendered is not of a compatible type?

A question often becomes: do elements like this get templated in the surround, or do
we template them as part of the content object itself and then inject the results into
the surround? Content object templates can often be divided into “sections,” some of
which can be mapped to places in the surround. Thus, if the related content element
only appears for one type, then perhaps the more appropriate place for it is with the
object templating, rather than the surround templating. If this surround element is
required in more than one template, however, this is an inefficient duplication of

The Implementation Process | 275

11 It’s a peculiar truth that some of the most lively arguments in a development project can be philosophical disa‐
greements about where code belongs. There might be no argument about the existential validity of a particular
block of code or how it works, but two developers can have almost violent disagreements about what place in
the codebase is the “correct” location for that code to live.

code, meaning it should be abstracted to an include or moved to the surround tem‐
plate.11

Object templating
Inside the surround lives the output created for a particular content object. This is
usually far more straightforward than the surround, since the template knows what
object it’s rendering and can make specific decisions based on safe assumptions about
what data is available. The object template doesn’t have to work for all content, just a
single content type.

Additionally, the operative object template doesn’t really have any dependence on the
surround template. While the surround depends highly on the object, the inverse is
usually not true. The object can often execute neither knowing nor caring what sur‐
round it will eventually be wrapped in.

Some content object templates are nothing more than one or two lines, perhaps to
simply output the title and the body of a simple text page of content.

A single content object might have multiple templates for the same channel, depend‐
ing on criteria. Most implementations will have a one-to-one relationship between
type and template, but in some cases, the template might vary based on location or
content, or on some particular combination of property values inside the content
itself. (However, if several content types have multiple templates that vary considera‐
bly, some thought might be given to creating different types altogether.)

Templating (both the surround and the objects) can sometimes take the majority of
the development time of an implementation. With some teams, a single developer
might be responsible for writing the frontend code (the HTML/CSS), while in other
situations, a whole team might be responsible for that code specifically, and either
provide it to the backend developers or create the templates themselves. If the latter,
then the backend developer might “rough in” the templates, then provide access from
frontend developers to complete the code.

When templating is complete, the site will be navigable with all objects publishing
correctly, and will appear largely complete.

276 | Chapter 12: The CMS Implementation

Non-Content Integration and Development
It’s common to find CMS implementations that don’t entirely start and stop with the
CMS alone. Many implementations involve external systems and data, or custom-
programmed elements not dealing with content.

For example, a bank might have a custom-programmed loan application on its web‐
site. This is a complicated, standalone application that has absolutely nothing to do
with the CMS—it doesn’t use CMS content to render, and doesn’t create or alter any
content by its use. It just needs to “live” in the CMS so it can be viewed alongside all
the other content in the CMS.

The ability for non-CMS functionality to exist within a content-managed website
varies. Some systems “play nice” with non-CMS code that needs to run inside it, but
some systems are “jealous” and make it very difficult to do custom programming
within the bounds of the CMS.

A developer can always write custom code outside the system, and simply have the
executable application or files accessed without invoking the CMS, but a lot of CMS-
related functionality is then lost. Ideally, the custom code can execute within the
scope of the CMS and take advantage of the surround templating, URL management,
permissions, etc.

Using this method, the output of our loan application could be “wrapped” by the sur‐
round, and by using a proxy content object, the page containing the application could
be “placed” inside the CMS geography so the surround has context to work from
when rendering. (See “Proxy Content Objects” on page 192.)

Problems will arise when migrating from a different system running on an entirely
different technology stack. In these cases, the application simply has to be rewritten
to comply with the new system’s technology stack, which might be a considerable
investment—perhaps even greater than the CMS implementation itself.

Some situations might require functionality to be hosted externally and brought into
the website via reverse proxy, or—less ideally—an IFRAME. Even less desirable would
be to have to transition the user to another website entirely (for example, “loan‐
app.bigbank.com” for the previous application example). Site transitions often pro‐
duce jarring visual and UX transitions, along with other technical issues such as
cookie domain mismatches and authentication issues.

The practice of content integration
These issues live under the heading of “content integration,” which is the process of
combining external data with content in a CMS installation. There are dozens of
models for accomplishing this, all with advantages and disadvantages, and as with
everything, the best fit depends on requirements:

The Implementation Process | 277

12 Another way to handle this would be via repository abstraction, as discussed in Chapter 11. The course repos‐
itory might be “mounted” in real time as a section of the repository.

• Where does the external data live?
• How volatile is it? How often does it change?
• Does it need to be moved into the CMS, or can it be accessed where it is?
• If it needs to be moved into the CMS for access, what does the schedule need to

be? How “stale” can it be allowed to get before being refreshed?
• Does each record in the external source correspond to a complete content object,

or are we simply adding content to an existing object?
• What is the access latency? How fast can it be retrieved?
• How stable is the connection between the CMS and the data source?
• Will it ever need to be modified in the CMS environment and sent back?
• What are the security issues? Can anyone have access to it?
• Do individual records need to be URL addressable, or is the data only meant to

be viewed in aggregate?

For example, universities often want to have their course descriptions available on
their websites. However, these descriptions are invariably maintained in a separate
software system. In these cases, a scheduled job might execute every night, detect
course descriptions that have changed in the last 24 hours, and update corresponding
content objects in the CMS with that data. The descriptions of the content objects
wouldn’t be editable directly in the CMS, since that isn’t the “home” for this data, and
they can be overwritten whenever the external data changes.12

The potential needs for content integration are so vast that the discipline largely boils
down to a set of practices, tools, and raw experience that are applied individually to
each situation.

Production Environment Planning and Setup
Sometime during the development process, the production environment needs to be
planned, created, and tested, and the developing website should be deployed. Basic
questions need to be answered about physical/logical locations, the organization’s
relationship to the environment (both technically and administratively), and the tech‐
nical parameters of the environment.

278 | Chapter 12: The CMS Implementation

13 I still remember installing and configuring Ektron CMS400.NET from a hastily burned installation CD (the
server initially had no network access) for hours while standing in front a physical server in a rack in some
freezing data center back in the early 2000s. We’ve come a long way.

Hosting models
Common hosting models are:

• On-premise hosting, in the organization’s own data center
• Third-party hosting under the organization’s control, where the organization cre‐

ates a hosting account on a platform like Microsoft Azure or Amazon Web Serv‐
ices and manages this environment directly

• Third-party “managed” hosting under external control, where the organization
cedes control over the hosting to another vendor (often the integrator, as part of
a package deal, or the CMS vendor)

Like almost every other type of application, CMSs are trending toward the cloud
more than on-premise hosting. Financial institutions and the healthcare sector held
out longer than most due to privacy concerns (or the perception of such), but even
those organizations are slowly giving up on on-premise installations.

Vendor-provided hosting is becoming more and more common as CMS vendors seek
to transition from product companies to service companies. Many are bundling host‐
ing and license fees together in a SaaS-like model. Some vendors are selling on-
premise licenses only when directly asked for them—new sales are assumed to be
cloud sales.

Hosting environment design
The ease of setting up virtual servers and redundant cloud architectures has com‐
pletely changed how hosting is initiated and managed. Setting up servers used to be a
time- and capital-intensive process.13 Getting the servers running and the CMS
installed was a major milestone. Now it can happen between meetings.

A full discussion of application hosting is beyond the scope of this book, and thank‐
fully it doesn’t differ remarkably from hosting other types of applications. When dis‐
cussing hosting, major points to consider and discuss with your infrastructure team
include:

Fault tolerance and redundancy
How redundant is the environment, and how protected is it from architecture
failures? Perfect, seamless redundancy is clearly the ideal situation, but it’s rarely
fully realized and is often expensive.

The Implementation Process | 279

Failover and disaster recovery
If something does go wrong, what’s the process to recover? Will you restore from
backup in a new environment, or will you maintain a second environment with a
version of your content that you can cut away to?

Performance
How much traffic can the website handle? How is it load-tested? How fast can it
scale to increased load? Can scaling be scheduled in anticipation of increased
load? (For example, can you plan a temporary or “burst” scaling of the environ‐
ment for 72 hours in anticipation of increased traffic after a major product
release?)

Security and access
Who has access to the server? How is new code deployed to the website? Who
can approve those deployments?

Regardless of the model and technical features of the environment, the environment
needs to be available far enough in advance of launch to be load-tested, have backup
and failover procedures established and tested, and have enough test deployments to
ensure the process is free from error. What you clearly don’t want is an environment
made available the night before launch.

Once the production environment is available, ensure that code deployments have
been pushed all the way through and the development team has verified the site is
functional in the environment. Many launch plans have been scrapped at the last
minute due to unforeseen problems caused by a production deployment happening
for the first time.

Training and Support Planning
Editors and administrators will need to be trained in the operation of the new CMS.
Two different types of training exist:

CMS training
This is generic training on the CMS at its defaults, which means training on Con‐
crete5 or Sitecore or BrightSpot or whatever system your website was imple‐
mented in. This is usually provided by the vendor.

Implementation training
This is training on your specific website, which means understanding how the
generic CMS was wrapped around your requirements, and understanding con‐
cepts and structures that might exist in your website and no other. This can only
be provided by a trainer familiar with the implementation, since the vendor has
no knowledge or understanding of how its product was implemented.

280 | Chapter 12: The CMS Implementation

14 Michael Sampson has written an entire book of strategies to increase user adoption of new technologies. His
User Adoption Strategies (The Michael Sampson Company) is one of the few books on the market to specialize
in that subject.

Both are valuable, though the latter is more important for most editors. Understand‐
ing how the underlying CMS works is not without merit, but editors will primarily
need to understand how the features of their particular site were implemented. Rele‐
vant aspects of the underlying architecture can be worked into that training as neces‐
sary, but it’s common to have a select few “product champions” in the organization
who know the basic system inside and out, and for the rest of the editing team to sim‐
ply have specific knowledge of the work within their professional jurisdiction.

Beyond the initial training, a plan should be put together for training future editors.
In larger, more distributed organizations (e.g., a university), new staff might be hired
each month who will need training on how to add and edit content in the CMS.

In addition to formal training hours, an ad hoc training and support process needs to
be considered. What happens when an editor has a problem, or needs more in-depth
help with a content initiative? Who is available to walk editors through the system on
short notice? And how will the CMS fit into the organization’s existing IT support
infrastructure? Is the IT help desk aware of the new CMS? Do they know how to use
it? How do problems get escalated?

Sadly, training is seldom given much attention, and many organizations do as little as
possible in the hopes that it will all “just work out.” Remember that training is a direct
foundation for user adoption. When users understand and are comfortable with the
system, they are more likely to embrace it and use it to its fullest capabilities. More
than one project has failed due to tepid user response that grew out of a lack of
understanding and training.14

Final Content Migration, QA, and Launch
We’ll be discussing content migrations at length in the next chapter. However, some‐
time late in the development cycle, final content migration will begin, when content
starts entering the system in the form in which it will remain.

This content will need to be QA’d and edited, sometimes considerably. This never fails
to take longer than planned, and launch date extensions are common while the edito‐
rial team slaves over the content in an attempt to “get it in shape” enough to launch.

The tail end of a CMS integration is never relaxed. Usually, the editors, developers,
and project managers are juggling an ever-changing list of QA tickets and content
fixes. You need to budget for an “all hands on deck” approach during the last few days
or weeks of a CMS launch. The editorial team needs to be on standby for emergency
content fixes.

The Implementation Process | 281

http://michaelsampson.net/books/useradoption

Final features might still be under development right up until launch, though it’s
common for many features to be thrown overboard in the mad scramble to launch.
Many get deferred until the ubiquitous “Phase 1.1” project that’s invariably planned
for immediately after the initial launch (whether it actually happens or not may be
hotly debated).

Launch can be a complex affair, depending on whether the new site is taking the place
of an existing site in an existing hosting environment or is being deployed to a new
environment. The latter is always preferred, since then launch is simply a matter of
changing where the domain name (DNS) resolves, rather than having to bring the
site down, perform an installation and regression test, then release it. Given the ease
of setting up new virtualized environments, it’s usually more efficient to deploy the
site to a new, parallel environment, launch via DNS change, and then simply archive
the old environment.

If you’re depending on a DNS change, UGC might have to be shut off temporarily.
During DNS propagation—a process ranging from instantaneous to lengthy (up to 24
hours), depending on the user—some users will be interacting with the new site and
some with the old site. While the editors should be creating content on the new site
exclusively, there’s no way to ensure the same for users. In some cases, a user might
have a DNS lag, make a comment on the old site, then have the DNS change occur,
leaving the user looking at the new site and wondering why that comment is missing.

Plan and rehearse site launches in advance. There’s nothing more frustrating than
having everything ready to launch and finding out that the one person able to change
a DNS record has gone on vacation. Walk through the launch ahead of time, down to
a minute-by-minute schedule, if necessary.

Avoiding Development Centrism
If there’s one thing this chapter should have demonstrated, it’s that the actual develop‐
ment of the website is often a minority of the total work. Yet it’s still very common in
CMS projects to find a development-centric approach, as if all you need to do is build
the site and everything else will work out.

Consider building a new house. The image that comes to mind is a carpenter ham‐
mering away on some lumber. However, let’s look at the bigger picture. Let’s step back
and account for everything that goes into the process, from start to finish.

Our hypothetical homeowners have to:

• Decide to build a new house
• Figure out what they didn’t like in their existing house, and decide what to

change
• Come up with specific plans and designs for the new house

282 | Chapter 12: The CMS Implementation

• Get financing for the house
• Get the required city permits
• Interview contractors and get bids and proposals
• Select a contractor
• Find an empty lot to build the house on
• Finance and purchase the lot
• Schedule a time period in which to get the house built

At this point, construction can begin. But the other work is a still a long way from
being completed. While the home is being built, our homeowners still need to:

• Explain to their children why they’re moving
• Find new schools and reregister their children
• Determine new travel and commute patterns
• Perhaps buy new vehicles to account for new commuting patterns
• Determine what new stores and services they will use from their new house
• Begin packing up the furnishings in their old house
• Pick out finishes and fixtures for the new house
• Perhaps arrange for temporary housing and storage if their first house sells early
• File change of address cards at the post office
• Arrange for new utilities
• Change billing information with all the companies and people who send them

mail

Finally, the house is done. But the work isn’t. Now our homeowners still have to:

• Actually move all their belongings into the new house
• Buy new belongings to account for changes in décor and room size and type
• Get rid of things that don’t work with the new house
• Learn how to work all the new appliances
• Find somewhere to store all of the house documentation and manuals
• Begin maintaining and cleaning the new house, accounting for changes in size,

scope, and type of furnishings
• Have a housewarming party for their friends and family

The list could go on and on. And note that we have completely omitted any tasks
related to actually building the new house. All of these were simply the “meta tasks”
around building the house.

The Implementation Process | 283

In saying this, I’m not downplaying the importance and scope of development. But be
prepared that there’s much more to do than simply implementing a new CMS. From
the beginning to the end, a new CMS project is just as much a collection of social,
organizational, political, budgetary, and logistical challenges as it is of technical chal‐
lenges.

The lesson is clear: ignore the vast scope of non-development work at your own peril.

284 | Chapter 12: The CMS Implementation

1 Clearly, I know nothing about making ice cream.

CHAPTER 13

Content Migration

Imagine making the greatest ice cream sundae in the world. First, you start out with
the best ingredients—sweet cream, cane sugar, real vanilla—and then you spend
hours mixing them together.1 You add real whipping cream, homemade hot fudge,
and the sweetest, most perfectly ripe banana and cherry the world has ever seen.

Then, to complete the masterpiece, you finish it off with a massive squirt of…
ketchup.

You were doing great right up until the very end.

This is the story of many content migrations—the task of moving the existing content
out of your old CMS and into your new CMS. Just as problems tend to occur when
focusing too much on the software rather than the implementation, the exact same
thing happens when those two are given too much precedence and the content
migration is ignored. Organizations will find the perfect CMS, manage a fantastic
implementation, and then completely botch the project at the very end with a disas‐
trous content migration.

Remember, a CMS manages content. It’s only as good as the content you put into it.
And the content your organization currently manages might be the result of years
and years of creation, aggregation, and management. There could easily be millions
of dollars invested in this content as a business asset. Ignoring this final phase of your
project is disrespecting that content and devaluing all the effort that’s gone into it.

Migrations are often viewed as “extra” work. However, in some cases, the migration
might be the majority of the project. A CMS implementation project might really be a
migration project with a small development component attached to it.

285

More than one project has been cancelled when the organization was confronted with
the cost of moving all the existing content. In other cases, this cost drove the decision
to simply upgrade and refresh an existing CMS, leaving the content where it was
rather than moving it to a new CMS.

And as with content management itself, there is no Grand Unified Theory of Content
Migration. Each one is idiosyncratic. Your current website uses a CMS that was modi‐
fied through hundreds of implementation decisions. Your new website uses another
CMS, which has likewise been modified by hundreds of different implementation
decisions.

In this sense, both websites are unique little snowflakes, and there’s little way to gen‐
eralize from migration to migration. The ability to perform a migration is less of a
defined methodology, and more of a set of best practices and painful lessons that
drive a unique plan for that specific migration.

Content migrations are simply an art and science all their own, and are chronically
underestimated. Doing them effectively, on time, and within budget might be the
hardest part of a project.

Warning: Vagueness Ahead

Talking about content migrations can be extremely vague, since
we’re discussing a hypothetical existing CMS filled with hypotheti‐
cal content that is moving to a new hypothetical content model in a
new hypothetical CMS. Discussing these things in definitive terms
is nigh impossible, so be prepared to consider this subject in
theory, with the understanding that the specifics of your situation
will always differ.

The Editorial Challenge
While the seemingly central challenge of a migration is to move bytes on disk from
one system to another, the first challenge of a migration is actually editorial—what
content is migrating, and how will it change?

For some projects (such as forklift implementations, discussed in Chapter 12), the
answers are (1) all of the content, and (2) it won’t change at all. However, for many
others, a migration presents a valuable opportunity to clean house, remove unwanted
content, and change existing content to more effectively serve the organization’s
goals.

286 | Chapter 13: Content Migration

2 A technical reviewer noted, “Have a yard sale before you move.”
3 Paula Land has written a handbook called Content Inventories and Audits on this subject (XML Press). Simi‐

larly, David Hobbs (see the sidebar at the end of the chapter) has written a report on the topic called “Rethink‐
ing the Content Inventory.”

A key point: the easiest content to migrate is content you don’t migrate. Now is the time
to clean house.2 Reviewing your analytics for content that’s no longer accessed can
remove an enormous amount of migration effort. I’ve seen intranet projects where
90% of the existing content was simply discarded. For any website that’s been in exis‐
tence for multiple years, there’s little doubt that some of the content is simply no
longer relevant.

Can these decisions be derived automatically? For instance, is it possible to say, “All
news releases over three years old will be discarded”? Or will all these decisions
require editorial input?

Many content migrations are preceded by content inventories, where all the existing
content is identified and analyzed, and decisions are made regarding its future viabil‐
ity. Inventorying content is an art in itself, and far beyond the scope of this book,3 but
the result of the inventory needs to be recorded somewhere, ideally in a form that can
be used to make programmatic decisions about content.

Many inventories are accompanied by an unwieldy spreadsheet that is of little use to
the developer trying to move content. A better idea is to record the intended disposi‐
tion of content directly with the content itself, by adding Migrate to New Website or
Requires Review checkboxes to the CMS, effectively making the existing CMS the
record-keeping location for the content inventory. The developers performing the
export of content from the existing CMS can then safely ignore that content in their
code.

The first milestone in a content migration will always be a definitive decision and
recording of all the content that must be moved to the new system. It’s hard to plan
any further steps in a migration without knowing at least this.

Automated or Manual?
The most low-tech method of migrating content will always consist of a person copy‐
ing content from one browser window and pasting it into another. While admittedly
tedious, it does have advantages:

• There are no technology incompatibilities.
• A human is available to make real-time editorial decisions about how to adapt

content.

Automated or Manual? | 287

http://xmlpress.net/content-strategy/audits-and-inventories
http://davidhobbsconsulting.com/report/rethinking-content-inventory
http://davidhobbsconsulting.com/report/rethinking-content-inventory

• File format changes are simpler. Copying content from binary files like Word or
PDF isn’t much more work than copying from an HTML page. And dynamically
composed pages can be more easily deconstructed and reassembled.

The drawback, of course, is that manual migrations are labor intensive and tedious.
However, they’re not always the wrong answer. For migrations of a small amount of
content that will change significantly on the way over, a manual migration might be
exactly the right answer.

The argument against manual migration often comes down to volume or cost. Deci‐
sions about manual content migrations need to take into account the cost and availa‐
bility of personnel. Many manual migrations have been performed by interns or
college work study students. It might not be glamorous work, but it’s often effective.

Crossing a certain threshold of content, however, will make automation the most
cost-effective choice. Content migrations that don’t require significant editorial deci‐
sions during migration can usually be automated far more efficiently.

That said, know that automation has limits, and it’s often easier to simply reconstruct
selected content in the new CMS manually. Home pages, for example, tend to be very
artisanal, with intricate content elements ordered and placed very carefully. Automat‐
ing the extraction, importation, and placement of elements might be more trouble
than it’s worth, especially when only a handful of pages need special handling. In
these cases, be prepared for a hybrid approach, where certain content is simply rebuilt
in place rather than automatically migrated.

The Migration Process
In a perfect world, you’d simply be able to open an administrative console in your
new CMS and press a button that says, “Import content from [insert your existing
CMS here].” This situation actually exists in some form for highly visible and compet‐
itive open source platforms like Drupal and WordPress, but it isn’t available for oth‐
ers.

Migrating content between two systems is usually a custom endeavor. There’s simply
no standardization between systems, and even less standardization between method‐
ologies of architecting content models. Even content coming out of and going into
different installations of the same CMS might require significant changes, depending
on how the content in each installation was modeled and aggregated. It would be rare
for the content model in one installation to simply map directly to the content model
in another installation.

288 | Chapter 13: Content Migration

Successfully migrating content is a loosely structured process, progressing through
the following stages:

1. Extraction. Content is extracted from the current environment.
2. Transformation. Content is altered, to simply clean it up or to change it to work

properly in the new environment.
3. Reassembly. Content is aggregated to correctly fit the new environment.
4. Import. Content is imported to the new environment.
5. Resolution. Links between content objects are identified and resolved.
6. QA. Imported content is checked for accuracy.

We’ll discuss each step in the process in greater depth in the following sections.

Extraction
The content inside your current CMS will need to be accessed and transferred to a
neutral format from which it can be transformed and imported. Content needs to be
extracted at two levels: (1) individual content objects, which are broken into (2) indi‐
vidual content attributes.

So, you need to extract all of your articles, but also have those articles broken down
by attribute.

So long as those two criteria are met, the actual target format doesn’t matter. XML is
common, as is JSON. Even inserting the content into a simple database might work
fine. It simply needs to be in a format that is free from presentation data (such as
extra HTML inserted from a rendering template) and is easily manipulated and
accessible. I’ve even seen extracted content simply stored in the new CMS, to be
moved and refined later.

In a perfect world, your existing CMS has an export function that can give you all
your content in a presentation-free format. Unfortunately, built-in export is often not
supported, or it results in a format that isn’t workable for future steps in the migra‐
tion process. Trying to work with a predefined export format over time might reveal
that it would have been simpler to write your own export process in the first place.

Without a usable export function, there are two other ways to extract content:

• From the repository, which means using the system’s API or even going directly
to the database, via SQL (or some other method, for non-SQL repositories)

• From the website itself, which means writing code to request pages and then
extracting pieces of the resulting HTML (also known as “screen scraping”)

The Migration Process | 289

4 Some might say that a decoupled system is designed in exactly this way, and that the act of publishing is really
a form of export.

5 Not to mention prior versions of content, though I have yet to see a content migration that bothered to bring
over any version other than the current, published version. Bringing over the entire version history of every
content object would be extremely ambitious. Many systems don’t even have the ability to explicitly re-create
older versions from the API (by design), so the content would have to be first imported as its oldest known
version, then successively overwritten with newer versions, while hoping that all relational content references
in use for a particular version would also be available at the time the object was being imported. Suffice it to
say that most organizations are satisfied with simply keeping the old CMS available somewhere in case they
have to refer to older versions of content.

While going directly to the repository might seem the simpler of the two methods, it
depends greatly on the capabilities of the system’s API. The system might have a poor
API, or be in a situation where the API is not available (a hosted system, for example,
especially one with a vendor who doesn’t know their customer is planning to leave
them).

Even if this is possible, there’s risk because the repository stores its content optimized
for that particular system. It would be uncommon for the CMS to store content in a
way designed specifically for export.4 From repository to screen, content might be
transformed. How content sits inside the repository might not be how it’s output to
the end user. This might be further changed by the templating code, making the
actual HTML that is output substantially different from the HTML in the repository.

When screen scraping, you’re guaranteed to get the content in the correct output
form (given that it is, in fact, being output at that exact moment), but you’re limited
to the content that is actually output. There might be many unrendered, administra‐
tive content properties such as expiration dates, author names, permissions, and met‐
adata that are not output to the end user.5

Screen scraping is also limited by the quality of the current HTML. If the current site
uses a CMS, then it’s probably templated, so you can expect at least a minimum
amount of consistency. It’s even better when the templates can be modified to make
this process easier—it can be very helpful, for instance, to temporarily put some con‐
tent in clearly defined HTML structures, then simply hide those from the public via
CSS during the extraction process. This content will still be available to the screen
scraping process, but the page will not appear to have changed to the public.

Sites that are currently static and not templated can be extremely problematic. When
the HTML has been hand-coded, there’s usually much less consistency, and trying to
extract data might be impossible. (Mercifully, sites that have been hand-coded are
usually so small that it’s easier to just migrate them manually.)

No two extraction scenarios are the same. In any migration, a multitude of factors
will need to be analyzed to determine the best method to extract content in a neutral
format.

290 | Chapter 13: Content Migration

6 Carrying a BLINK tag over to a new implementation might violate international treaties. Check with your
attorney.

The Complication of Embedded Content When Migrating

While I extolled the functionality of dynamic page composition
and content embedding earlier (see “Content Embedding” on page
97), this vastly increases the complication of migrating between
systems. If a content object has another element embedded in it, a
hard decision needs to be made on how to handle that during a
migration:

• Do we attempt to identify and extract all embedded content
and create an equivalent embedded item in the new system?
(Does the new system even support this?)

• Do we flag this content as requiring follow-up and have an
editor manually reverse engineer and re-create the content
embedding?

• Do we abandon the embedding and “flatten” the content—i.e.,
just scrape the content from the browser as if the embedded
content was rendered HTML like everything else?

To date, I have never seen a migration that automatically replicated
even a moderate amount of content embedding successfully. The
differences in architectural paradigms for that functionality are
simply too vast.

Transformation
When content has been extracted, it’s rarely in a form appropriate for your new CMS.
There’s a good chance it came out with extra HTML tags or structure that is not
appropriate for your new system and implementation standards.

For example, content that was created many years ago might be full of obsolete
HTML tags, such as FONT and even BLINK.6 More commonly, styling information that
was valid in your old implementation will have simply changed. The new implemen‐
tation might have new CSS classes, new methods of specifying content headers, new
methods of aligning images, etc.

HTML content will need to be changed to reflect these new standards. You will usu‐
ally extract content that contains large blocks of HTML, and you can’t treat this
HTML as an impenetrable unit. You will often need to “reach into” this HTML and
change it in some way.

The Migration Process | 291

Common transformations include:

• Removing old HTML tags
• Removing embedded SCRIPT and STYLE tags
• Swapping heading levels (changing all H1 tags to H2 tags, for example)
• Rearranging HTML structures (moving images out of table-based captioning

structures, for example)
• Fixing invalid HTML (incorrect nesting, for example)

The end result should be HTML that can be imported into the new CMS and be com‐
patible with new styles, coding standards, and rich text editors.

While rich text requires the lion’s share of transformation, other data might need to
be modified as well:

• Formally weak attribute references might need to be resolved to their targets and
stored as IDs instead.

• Attributes might need to be combined, or split. The old system might have stored
first and last name as a single unit, for instance, and the new system requires
them to be separated.

• Extraneous data might need to be stripped out of attributes to allow for type con‐
versions. The old system might have stored Price as a text string of “$1,000”,
while the new system wants a numeric integer of “1000” and will format the
number during templating.

• In rare cases, new content objects might need to be created. If the old system
stored comments in the Article objects directly and the new system plans to
manage them as individual content objects, each comment will need to be parsed
out of the parent and created as a new, separate object.

The number of potential transformations is limitless. Once the cleanest possible data
has been extracted from the old CMS, the developer of the new implementation
needs to evaluate it for potential problems and identify all the ways in which it must
change before import.

Reassembly
When discussing content modeling in Chapter 6, we differentiated between discrete
modeling and relational modeling. The former was describing the information about
content that is limited to the content object itself. The latter is about how that content
fits into (“relates”) to other content.

292 | Chapter 13: Content Migration

7 I remember a particularly difficult project with an existing CMS that had no built-in hierarchy and a new
CMS with a very strong content tree. Unfortunately, the URLs had been “SEO optimized” to make all content
appear to be on the top level, containing just a single URL segment. With absolutely no other way to figure
out content geography, we were reduced to parsing the HTML that formed the crumbtrails and re-
constructing the hierarchy from that information.

After you’ve extracted hundreds or thousands of content objects from your existing
CMS, these objects will need to be assembled and organized to correctly reflect their
relationships in the new system. It’s not only the content that has to be migrated, but
the relationships between content as well.

Content trees, in particular, need to be transferred, which means content needs to be
extracted in such a way that parent/child relationships remain intact or can be recon‐
structed. In some cases, this might mean exporting the parent ID with each content
object. If you’re screen scraping, this might mean outputting the parent ID in a META
tag, or even attempting to reverse engineer the hierarchy from the URL paths (assum‐
ing they correctly reflect the tree structure).7

Changing Geographies

Moving from tree-based system to tree-based system is intuitive,
but more problems result when trying to switch geographies. If
your old system is based on a content tree and your new CMS is
based on a folder structure, how do you handle this? Content has
parentage in the old system, but in the new system, the parent is a
folder.
There is no universal answer here. Hard decisions need to be made
about how to adapt content for foundational geography changes.

In some cases, there is simply no way to reconstruct the structure of content. This
might be due to an inherent structural parameter (thousands of blog posts ordered by
nothing but date, for example), or because of poor organization and architecture in a
legacy site.

Sites that have grown organically over time often reflect poor and idiosyncratic navi‐
gation, where menu options were added on an ad hoc basis to create a desired naviga‐
tion pattern without any thought to an overarching content geography. These sites
can be notoriously hard to migrate since it’s hard to impose structure on something
that was poorly structured at best, and wildly unstructured at worst.

In these cases, content might have to be imported without relational structure and
then structured in the new system. Groups of content can be imported to a “holding
area” on the new site, then organized using the tools of the new system.

The Migration Process | 293

Content Stubbing
In some situations, content reassembly becomes a critical problem. The new system
might require a precise geography, but content from the old system contains no
extractable structure that can be reused.

In these cases, it might be a valid option to “stub” content in the new system. Using
this method, you manually create empty content objects in the new system, organized
into the correct relational structure but each containing nothing but a reference to the
corresponding object in the existing system (and perhaps a title, to easily identify
them).

Using this method, editors create the “shell” of a new content geography, while input‐
ting nothing but the existing content IDs. When this structure is complete, the refer‐
ences to the existing content items are used to automatically extract content from the
existing CMS and populate the corresponding objects in the new CMS.

The larger principle at work here is that content references can be structured in the
new system to represent a new relational content geography, without any actual dis‐
crete content. You’re stubbing out the geographic relationships of content as place‐
holders, which can be populated at a later time. In this way, you’re separating the
discrete from the relational migration.

Import
Up until this point, we’ve only been getting content out of the old system. Once con‐
tent has been extracted, transformed, and reassembled into a workable structure, the
content actually needs to be brought into the new CMS. This is usually a task involv‐
ing custom programming.

The only exception would be when your new system has an import function, and it
has a known, documented format where you can organize your exported content.
This is rare.

In most systems, a developer will write a custom job to get new content into the sys‐
tem. This can either be in the form of a standalone program that uses a web service or
similar API to “push” content, or as code that runs inside the new system that “pulls”
content.

In many cases, the developer will not just have to import the content, but will have to
create other data structures to support secondary geographies, such as tags, cate‐
gories, or menus.

For example, if your content objects are assigned to categories in the old system, then
these categories will need to be created in the new system in advance of a migration

294 | Chapter 13: Content Migration

8 Which is, let’s face it, just another form of ID.

(perhaps through a separate “pre-import” script), or created in real time as content is
imported. Either way, incoming content will have to be checked for category assign‐
ments, which will need to be created at that time.

Also, given the iterative nature of content migrations (discussed more later in this
chapter), an import job cannot assume the content hasn’t already been imported once
before. Any particular execution of an import job might be a rerun to update or refine
imported content. This being the case, any import job needs to determine if the con‐
tent object being imported already exists. If so, the existing object should be updated
in place.

There might be a temptation to simply delete the imported object and re-create it, but
this becomes complicated when dealing with relational content. Once imported
object X has a “resolved” relationship (see the next section) to imported object Y, a
deletion and recreation will break that relationship. As such, once created, imported
objects should be updated.

Resolution
Content objects have links between them. They might exist in a geography that was
re-created during the reassembly phase discussed earlier, but they might also have
explicit references—the Author property of an Article object, for example, might link
to another content object. Additionally, there might be numerous HTML links inside
rich text.

These links will likely break during extraction and import. If an HTML link deep
inside the rich text of content object X links to content object Y, you need to ensure
that link is still valid once X and Y have moved into their new system. When migrat‐
ing content, the URL structure of content often changes. These internal links need to
be found and corrected to represent the new URL structure.

To do this, you must always store an old identifier with the new content object. The
imported content object must know where it came from, which means it needs to
know the ID or URL8 of the corresponding content object in the old CMS. It’s quite
common to create temporary properties on content types in the new CMS to hold
these values during development and migration, then delete these fields and their val‐
ues after a successful launch, when they’re no longer needed.

The ability to discover links between content objects depends highly on the API of
the existing system. When processing an Article, can you simply export the ID of the
Author? Or does your existing CMS store that as the public URL to the author? Or

The Migration Process | 295

does the API of the system give you the entire Author content object when that prop‐
erty is referenced?

For referential attributes, attempt to export an identifier if at all possible. If your arti‐
cle links to an author, bring over the ID of that Author object as the value of the
attribute. You’d much rather know that the Author is content object #634 than that it’s
“Bob Jones.” In the latter case, you’re going to have search for authors named “Bob
Jones,” and hope there’s only one of them.

The process of reconnecting or “resolving” all these references happens at the end of
an import job. Content is imported with broken links, then once all the content is in
the new system, those links are resolved to point back to the correct objects. This can‐
not be done as content is imported, because there’s no guarantee that the target object
is already in the system—an Article might be imported before its Author is imported,
for example.

In some cases, you might have to adjust your content model to allow weaker refer‐
ences during import. For example, if the Author property of your Article content type
is intended to be required, you might have to relax this during import to allow Arti‐
cles to be imported without an Author, then have the Author resolved later in the
process. Once all content is in, the references can be resolved, and required restric‐
tions can be reenabled.

To resolve HTML links, you will usually have to parse the HTML, which means find‐
ing a competent parsing library such as AngleSharp for .NET or Beautiful Soup for
Python. All HTML needs to be processed, looking for all anchor or media tags, which
then must be examined to determine if they link to external websites or internal con‐
tent objects. For anchors linking to other objects that are imported, those objects
need to be found based on the link and have the target of the link changed to reflect
the new URL (or alternative method of linking). The URL should be inserted in the
correct repository format for the new CMS, which might not be the public URL, but
rather a placeholder URL intended for request-time resolution.

Normally, the resolution of content references doesn’t happen immediately. It’s com‐
mon for several import jobs to occur before all the content is imported successfully
and reference resolution can begin.

296 | Chapter 13: Content Migration

9 In some cases, a CMS will use a 32-bit GUID as an ID. With these systems, explicitly specifying the ID on
content creation is sometimes possible. If both CMSs have this format, it’s theoretically possible to retain the
same IDs during a migration. Clearly, however, this would be rare, and even then, the actual text of the link
(which is detected and replaced) would be different.

“Let’s Just Keep the URLs the Same!”

This is great for SEO, but it might not actually help your import
process. In many systems, embedded URLs are actually stored as
ID references to the target content. So, the URL inside the reposi‐
tory might look like this:

At render time, CMSLINK:634 is detected and replaced with the
actual URL to content object #634 at that instant. It’s unlikely that
both CMSs support the same ID format and sequence, and you
normally can’t specify a new ID when creating new content. This
means that keeping your URLs the same likely won’t help you,
because the ID of the target content object (“634” in the example)
will almost certainly change on import.9

QA
Once content is in the new CMS and the links are resolved, migration QA can begin.
Migration QA is designed to verify that content was moved into the new system suc‐
cessfully.

It has two levels:

Functional QA
This can be performed by someone with no domain knowledge, which means no
knowledge of what the content actually means. All this tester is reviewing is
whether or not the content is generally intact—whether all the content properties
are populated, all the links work, any images are broken, etc. This person does
not need to understand the content itself.

Domain QA
This needs to be performed by someone with domain knowledge, which means
an understanding of the subject matter of the content. This tester is reviewing
whether content is in the right place in the navigation, whether it was categorized
correctly, if it’s responding to search queries correctly, etc. This person needs to
be qualified to make editorial decisions about content.

Ideally, there will be a specific checklist of content to review and a highly structured
method of recording problems. If a tester finds a problem with content, where is that
information logged? In many cases, adding temporary content properties is helpful,

The Migration Process | 297

such as a checkbox for Migration QA Complete or a text box to record migration
defects directly in the content object itself. Alternatively, the ticket or issue manage‐
ment system used for functional QA can be used for migration defects.

When a defect is found, it needs to be evaluated for scope. Defects can be one of two
types:

Import defects
These are defects that need to be fixed at the import level, which means they’re
likely widespread. Often, small defects are harbingers of a larger problem. Find‐
ing one or two articles that have no Author property populated might reveal that
a large portion of Author objects were accidentally skipped during migration and
the only solution is to rerun the import and start over. Import defects can be very
disruptive, and the entire migration team might need to stop in the middle of
what they’re doing while the import is corrected and rerun.

Object defects
These are defects specific to a particular content object. These aren’t the result of
the import, but are issues that were either present on the old site and carried
over, or resulted from something introduced through interaction with the new
CMS—a missing style or JavaScript library, for instance. You do not have to reex‐
ecute the entire import for these, but they need to be marked for manual correc‐
tion after the import has run for the final time.

Efficiency is key in these situations. Having the new website on one screen and the
old website on another screen can ease the process of comparing versions of content.
If the old URL is stored with the new content object, the old page could even be dis‐
played under the new page in a temporary IFRAME, so testers can review both simulta‐
neously.

Automated QA can be helpful during migration testing. Having a link checker run‐
ning once a day and delivering a report of broken links can increase the testers’ ability
to find problems.

Migration Script Development
The process of automated migration tends to be iterative, with phases running in
cycles. It’s very much a process of performing some action, reviewing the result, mod‐
ifying the process, then repeating.

The goal is to develop a migration script that exports content, transforms it correctly,
imports it, and resolves all the references in one uninterrupted execution that might
take minutes or hours. Then this script can be executed immediately prior to launch.
All prior work during the migration cycle might be considered a “dry run” for the
actual migration to take place closer to launch.

298 | Chapter 13: Content Migration

The word “script” here has dual meaning: it usually takes the form of an actual pro‐
gramming script that is executed, and in a more generic sense, it refers to a choreo‐
graphed series of actions—both machine-powered and human-powered—that are
intended to be executed in sequence at a later time.

Migration script development often looks like this:

1. Concurrently with the start of implementation of the new CMS, a developer
begins investigating options for exporting content from the existing CMS. Multi‐
ple methods might be tested until one is identified that provides the least number
of obstacles.

2. Once a workable method of export is found, the developer performs a test
export. The results are reviewed, often found to be deficient in some way (a prop‐
erty is missing, the references are not correct, etc.), and the export is repeated.
The developer might iterate through this cycle for days or weeks until arriving at
an export that is deemed acceptable.

3. The exported content is compared against the requirements for the new CMS
(which, in many cases, are still developing), and required transformations are
identified. Methods of making these transformations are developed and incorpo‐
rated into the export job, which can then be rerun with the transformations exe‐
cuted in real time.

4. When the new CMS has reached a state where content can be imported (at the
very least, the content model must be implemented), an import job is developed
to bring the exported content into the new CMS. Like the export, the import is
performed once, reviewed, often found to be lacking, modified, and run again.
This process is repeated multiple times until the imported content is found to be
satisfactory. Often, the process of importing reveals a defect with the export or
transformation, which moves the developer backward in the process.

At a certain point, the migration script has been refined to the point where further
work is inefficient. If the launch date is still far in the future, development on the
migration script might halt for weeks or months at this stage until the launch date
approaches.

The One-to-One Migration
There’s a school of thought that says a migration should simply be as direct as possi‐
ble. Content types in the old system should be mapped to identical types in the new
system. Templates should be mapped to identical templates. The content tree should
be identical, navigation should be rendered using the same logic, etc.

Even if you can do this, it’s often not a great idea. Different systems do things different
ways, and what worked well in one system might not be the best way to do something

Migration Script Development | 299

in another system. Trying to force-fit the paradigms of one CMS onto another is a
perfect recipe for a suboptimal implementation.

For example, perhaps your old system had “global attributes,” which were applied to
every content type, but your new system doesn’t have these. It does have content type
inheritance, which can accomplish the same thing, but this involves creating a more
general abstraction type, then inheriting all types from it. A one-to-one migration
would completely miss this technique, and the implementation would suffer for it.

Content Velocity and Migration Timing
The rate of content change on a particular website can be referred to as its “velocity.”
A news website has a high velocity of content, meaning new content is added multiple
times per day. A small website for, say, a dental office might have a slower velocity,
with pages that change every few months at most.

Even different areas on the same website can have differing velocities. On a high-
traffic media site, content like the privacy policy likely has an extremely low velocity.
It may be reviewed once a year, at most, and change once every few years.

The perfect content for migration has a velocity of zero, meaning the content will not
change from the beginning of migration to the launch of the new website. Referring
to the migration cycle we just discussed, a developer can begin exporting content and
know that none of that content will change during the inevitable trial and error pro‐
cess that might take weeks or months.

In the real world, content will change. The content that is initially exported early in
the cycle might change the very next day. Thus, the ideal situation is to refine the
migration script to the point that nothing further is required to migrate content, and
then run the completed script immediately prior to launch.

This type of “push-button migration” is a bit of a mirage. It can be done, but usually
takes an enormous amount of work. Migrations can be idiosyncratic, in that specific
content items might need intricate fine-tuning that’s not easily scriptable. These will
surface as object defects in the QA process. These one-off content corrections are
quite common in order to fix problems with individual content items that are not
efficient to incorporate into the migration script.

What normally happens is that a developer refines the migration script until further
refinement is impossible or inefficient. The developer might get the migration script
to the point where the content is extremely close to a launchable state. Even so, there
will almost always be some amount of manual correction that needs to take place
after the script completes execution.

300 | Chapter 13: Content Migration

The goal is to run this script as close to launch as possible, in order to include the
most recent content changes from the existing site, then plan and execute the manual
interventions immediately between that moment and launch.

At a scheduled point prior to launch, the migration script is executed for the final
time. Rehearsal is over, and this is the actual migration. Content brought over during
this execution will be officially considered “rehomed” in the new CMS. Unless mass
import defects are found during QA, the migration script will not be executed again.

This period of time starts what’s known as a “content freeze,” because the editorial
team is told to cease content changes on the existing site. Once the migration script
has executed for the final time, the old site should not be changed because those
changes will never make it to the new site. Content on the existing site is considered
frozen, and cannot be changed until the new site is launched and it is changed there.

The alternative to a content freeze is editorial duplication, meaning
content is changed in both locations. This is clearly inefficient, but
often happens when content is frozen and a critical content change
needs to be made. While sometimes unavoidable, content editing
during a freeze should be minimized as much as possible.

Content freezes are always stressful, as the editorial team has their hands tied while
the organization has one foot in the old system and one foot in the new system. The
goal is to resolve the object defects and finish the fine-tuning required to launch the
new site as soon as possible and to allow the editorial team to begin managing con‐
tent in the new system.

Sadly, some projects can run into major problems right before launch that push the
launch date back. In these cases, staying in a content freeze might not be reasonable,
and it makes sense to allow content editing to resume in the existing system with the
intention of rerunning the migration script closer to the new launch date. Any man‐
ual interventions that were already made to the migrated content might be lost and
have to be repeated during the new content freeze prior to the new launch date.

For these reasons, the timing of a migration can be an intricate balance between the
velocity of content changes and the intended launch date. The goal is to refine a
migration script to the point where manual interventions are minimal, and to sched‐
ule and execute those interventions during a content freeze window that is kept as
short as is reasonably possible.

A Final Word of Warning
Do not underestimate a content migration. It can easily be the most labor-intensive
and riskiest portion of a CMS implementation.

A Final Word of Warning | 301

As soon as the CMS project is identified, a content inventory should be started to
identify which content is moving and how it needs to be changed. You do not need to
even know the new CMS platform to start this. If you know a migration will have to
occur, it’s time to start planning.

If you’re ambitious and have the capacity, a developer might even start on extraction
prior to any activity on the new CMS. Remember, the content has to be extracted at
some point, and the extraction is fairly universal and not particularly dependent on
the new CMS.

Work on the actual migration script should begin concurrently with development, as
show-stopping problems with content import, export, and transformation are com‐
mon. Do not simply lump migration script development in with other development
work. Development of the migration script should be an assigned task, just like any
other, and the developer should be given adequate time to complete it. In migration-
intensive projects, a developer might be assigned to migration work and nothing else.

The migration script can often be some of the most complicated code in the entire
project. And while it is temporary code, resist the urge to treat it as such. Good devel‐
opment practices should still be followed, including source control, testing, and con‐
tinuous integration. This code is just as important to the success of the
implementation as anything else the development team does.

Editorial staff need to be acutely aware of the migration schedule. They need to know,
long in advance, when a content freeze will be imposed. During this time, it usually
becomes an “all hands on deck” environment as the team works to QA and fine-tune
migrated content in preparation for launch. Having half your editorial team go on
vacation during the final weeks prior to launch is a recipe for a failed migration
attempt.

Finally, overbudget for your migration, in terms of both time and funding. Too many
projects have fallen over right before launch because of a migration that simply wasn’t
planned adequately. The industry is saturated with stories of new CMS implementa‐
tions that stood idle for months, or even years, waiting for content to be migrated.

Perspective: Forecasting a Content Migration

by David Hobbs

Migrations—especially large ones—are complex beasts. They
must be tamed. The good news is that organizations have more
control over them than may be obvious.

Deane’s ketchup analogy is apt since many organizations put off
even seriously thinking about migrations until it is time to

302 | Chapter 13: Content Migration

migrate, at which time we have to do what’s easy (squirt the ketchup bottle that’s just
sitting there) rather than what’s important (perhaps preparing a sauce that would have
completely transformed the dish but taken far more lead time). Although there are
always migration surprises, we want to reduce those surprises. The key is early plan‐
ning, which needs to happen even before those early migration tests that Deane
rightly points out as important in the previous chapter.

Even light, early migration planning goes a long way. For instance, a healthy dose of
“How is that content going to happen?” when looking at beautiful wireframes goes a
long way, quickly pointing out areas where a last-minute dump of content from one
system to another isn’t going to achieve the vision everyone rallied behind via the
wireframes. Aside from generally keeping migration in mind, a way to drive very con‐
crete migration discussions (and broader discussions about the project goals) is to
estimate the migration effort—perhaps even before sending RFPs to implementers—
to make sure you are ready to actually execute upon what you are envisioning (and
modify the plans or budget if not).

At its core, we have three migration control knobs:

• Weight (how much is moving)
• Quality (what quality we are attaining)
• Distance (how much of a change from the current content/site we are attempt‐

ing)

We need to play with those control knobs in planning, and estimation gives us feed‐
back as we turn the knobs. Even wild estimates will squeeze out useful dialog about all
the other aspects of content management that Deane talks about in the book (for
instance, you may discover that you need significant content modeling changes in
addition to content changes).

An effective way to estimate is to attempt to consider buckets of content (for instance,
product descriptions), look at samples (from your content inventory), and then con‐
sider what steps will need to be taken to handle the content during the migration (to
decide which can be skipped, which can be automated, and how much effort the man‐
ual ones will take) to achieve a particular quality level. Then you can tweak and reesti‐
mate as needed going forward in the project.

But above all: plan for the migration early!

David Hobbs helps organizations make higher-impact web and intranet changes through
early planning, and is the author of Website Migration Handbook v2 and “Rethinking
the Content Inventory” (David Hobbs Consulting).

A Final Word of Warning | 303

CHAPTER 14

Working with External Integrators

When it comes time to actually start an implementation, who does it? The organiza‐
tion wanting the CMS can certainly do it themselves, but there also exists a vast net‐
work of professional integration firms. Some CMS vendors will also integrate their
own CMSs for their customers. Which option is the right one?

Many organizations have no development staff, making the decision clear. Even if an
organization does have internal development staff, they might still seek an integrator
for several different reasons:

• Their development staff is too busy with other work, and they simply don’t have
the capacity to do the work in-house.

• Their development staff is not focused on the Web; in many cases these resources
are concentrated on internal, line-of-business applications, not what they view as
a marketing exercise.

• Their development staff might do web development, but have no experience with
this particular CMS.

• The reality of organizational politics and relationships often makes going outside
the company more attractive. Marketing and IT have not normally been good
bedfellows, and this often manifests itself as a search for an external integrator in
an attempt to avoid IT restrictions or conflicts.

In these situations, contracting the CMS implementation can be a wise choice,
through varying engagement models discussed in the following section.

Before considering a project, organizations should look at their internal resources
and determine where they fit in. The result of that inventory will likely inform any
decisions made about strategy, functionality, and system selection.

305

To ease confusion, this chapter will use the following definitions:

• The organization is the entity purchasing the CMS to use it in
the future.

• The vendor is the entity selling the CMS software.
• The integrator is the entity installing, configuring, and tem‐

plating the software for the project; in some cases (noted
below), the vendor and the integrator might be the same.

This organizational trifecta is quite common in CMS implementa‐
tions.
From this point forward, this chapter is targeted toward the organi‐
zation. Henceforth, all usages of the pronoun “you” are intended to
refer to the implementing organization, specifically.

Engagement Models
There are a number of ways of working with an integrator, based on the distribution
of work:

Integrator develops
In this case, you simply write a check and get a website in return. In some cases,
you might even contract with the integrator for hosting and support, which
means you might not ever actually take possession of the implementation.

Integrator and organization codevelop
In this situation, you and the integrator develop the website together, splitting the
work through some agreed-on method.

Organization develops, integrator consults
In situations where you want to do most of the work in-house, you might still
engage with an integrator for expert consulting. During scheduled or ad hoc
meetings, the integrator can review the current work, discuss upcoming chal‐
lenges, and provide guidance for how to handle specific situations or challenges.

Organization develops
Technically, there is no integrator in this situation, though occasionally the soft‐
ware will be sold through another party. Either you will purchase from the ven‐
dor, or the software will be resold through an integrator.

The range is single-party on the extremes—solely the integrator on one end, and
solely your organization on the other—with varying shades of gray in between.

Of the two options in the middle, the codevelopment model is the most logistically
challenging. Collaborating on the same codebase can often be difficult, especially
between teams spread across two otherwise unrelated organizations. How do you

306 | Chapter 14: Working with External Integrators

split development? Along functional lines? Or does your organization want to be
embedded in every decision?

Knowledge transfer incurs overhead. Some engagements quickly turn into long-term
training relationships. Hopefully, this training is solely about the CMS, though in
some cases integrators find themselves training on more fundamental questions of
web development or development operations. Unfortunately, the need for this level of
training is often not obvious until the project is underway.

Differences in experience between teams will quickly become apparent. An integrator
might implement anywhere from 10 to 100 websites per year, whereas the average
organization might reimplement their own website only once every three to five
years.

These difficulties can be magnified when you consider deeper, subtler differences
between a professional integrator and the typical organization:

Motivations
The integrator might be paid by the hour, while salaries at an organization are
sunk costs.

Success metrics and time horizons
An organization has to live with the result, whereas the integrator typically disen‐
gages after the project is delivered.

Competition for attention
The integrator’s clients have no affinity with each other—one client doesn’t care
about the other clients’ projects, and is essentially competing with other clients
for attention. By contrast, the employees at an organization are ostensibly work‐
ing to advance a single mission and “client”—the organization itself.

Project styles
Integrators are often more agile and iterative than larger organizations. Con‐
versely, an organization has the benefit of a more open-ended project—they can
keep working to make an implementation better over time, while the integrator
has to define a “hard” stopping point.

Interpersonal skills and experience
An integrator works with many clients and organizational styles, while an organi‐
zation might be more insular and more accustomed to vendors adapting to it.

CMS Vendor Professional Services
Many CMS vendors offer “professional services,” which are integration services for
the CMSs they produce. For some vendors, this is simply a side business, meant to

Engagement Models | 307

provide real-world exposure to their own products and to give customers an expert-
services option to make a license purchase more attractive.

However, for other vendors, professional services represent a significant portion of
their revenue. For a small subset, the CMS might even be sold at break-even or a loss
and exist solely to position the vendor to sell integration services. For these vendors, a
license sale without a professional services component might be viewed as a failure by
the sales team.

The benefit of this arrangement is ostensibly that the vendors know their own sys‐
tems better than anyone else and have unparalleled access to the product and techni‐
cal teams. While this is undeniably true, the use of vendor professional services is
polarizing for many in the industry—it can be viewed positively for the aforemen‐
tioned reasons, or negatively due to problems of insularity.

The issue here is that when the only CMS a vendor works with is their own, the ven‐
dor might become insulated to other developments in the industry. More than once,
I’ve observed vendor professional services teams that were unaware of developments
and techniques in use by the broader CMS community. In these cases, a vendor might
fall into the “my way or the highway” trap—they’ve always done task X this way, and
their product is designed to do task X this way, so clearly this is the correct way to do
task X.

Additionally, a vendor might be loath to admit their product has a shortcoming, and
will therefore be resistant to helpful workarounds or external integrations. Whereas a
third-party integrator might be willing to say, “This CMS is bad at task X, so we’re
going to use hack Y to fix that,” a vendor typically won’t do this because that might
raise the awkward question of why they don’t fix the underlying problem.

A trickier gray area is when the integrator recommends a CMS
product to the organization for purchase, which happens quite
often as organizations will often begin their search at the integrator
level, not the vendor level. In these cases, the integrator is not the
vendor, but the integrator has tacitly endorsed the vendor, meaning
the integrator has some skin in that game and will be expected to
answer for vendor shortcomings at some level.

In the end, there are just as many arguments to use vendor professional services as
there are not to. Vendors will often push professional services just as hard as they
push their products, sometimes to the point of competing with other integrators that
work with their products for the services business.

308 | Chapter 14: Working with External Integrators

Sales and Scoping
Without question, the hardest problem for an integrator is defining the scope of the
project. You and the vendor have to come to some agreement about the work that has
to be done. This is harder than you might think.

You know what you want. Your website is already built in your heads. You have a
vision of what the final product looks like. The integrator doesn’t share this vision.
They can’t read your mind.

Furthermore, if you haven’t integrated this particular CMS before, you are very likely
making assumptions about how it works. You assume that feature X works in some
particular way, or perhaps you don’t know how it works, but you assume that for the
amount of money you paid for the system, you should certainly be able to achieve
result X through some method.

In Chapter 6, we defined the term reification, which is Latin for “to make real.”
Projects are a constant process of reification—taking a vague idea or goal and making
it real through the application of information structures.

Consider these statements:

• “We’re really failing at digital. We need to do better.”
• “Our customers are uninformed. We need to keep them updated.”
• “We need a database of technical notes that customers can subscribe to.”

These statements are a progressive reification. They’re a movement down a contin‐
uum toward a goal. Knowing that your organization is not doing well digitally is one
thing. Defining exactly where you think you’re failing is better. Defining a potential
solution is even better yet. The problem is slowly being reified over time.

Unfortunately, all these statements have something in common: none of them can be
bid by an implementation firm. The last one is the only one with an actionable plan,
but it’s still missing key information:

• What does a technical note look like?
• How many will there be?
• Who is authoring them?
• In what system will they be authored?
• How do they need to look?
• How do they need to be delivered?
• How does access need to be controlled?

Sales and Scoping | 309

• What does it mean to “subscribe” to the database?

I could go on—there are at least 50 questions that need to be answered here, and the
answers to those questions would likely spark 100 more.

In many cases, these questions are assumptively answered by a common understand‐
ing of similar use cases with which both the organization and the integrator have
experience. If the organization wants an RSS feed, this is something that’s been done
many times before, and both the organization and the integrator have a fairly com‐
mon understanding of it and a common vision of where to start.

Other needs are far more variable: message boards, calendars, profile systems, com‐
menting, etc. These things have also been done before, but the range of functionality
from one example to another is so vast that the “common” understanding between
organization and integrator might not be nearly as common as one or both of them
think—the organization may think feature X is obvious and should be included, but
only because it was present in the one example they’ve seen.

Websites are simply highly variable things. There are patterns, certainly, but two
descriptions of a problem could result in wildly different websites, just as the phrase
“single-family dwelling” could result in wildly different houses being built.

Preimplementation Artifacts
A key factor in trying to get a scope from an implementer is what you are bringing to
the relationship. The integrator has to start from somewhere. What are you providing
them with to guide their scoping process?

Consider these starting points:

• You have a vague idea of a shortcoming: “We need a new website.”
• You have an existing website that has a problem: “We don’t like the design,” or

“Our CMS is too hard to use.”
• You have some narrative explaining what you want: “Here are the different sec‐

tions we want the new website to have.”
• You have detailed analysis by a qualified consultant: “Here is a functional specifi‐

cation, annotated wireframes, and a sitemap.”

Of those, the last one is the only one that could conceivably be scoped and bid
without further elaboration. The documents described—a functional specification,
annotated wireframes, and a sitemap—are collectively referred to as “pre-
implementation artifacts.” This is the plan from which a website can be scoped.

310 | Chapter 14: Working with External Integrators

Just as you wouldn’t walk into a contractor’s office and say, “How much for a house?”
you can’t really ask an integrator, “How much for a website?” The integrator will want
a plan.

The Problem Behind the Problem

Although coming to an integrator well armed with a plan is better
than the alternative, be careful of attempting to solve your own
problem. Many times, problem statements like the one we saw ear‐
lier (“Our customers are uninformed…”) are just the symptom of a
bigger problem that’s hiding behind the first.
Why are customers uninformed? Perhaps your documentation is
poorly written. No CMS will fix this. Perhaps the problem is even
bigger. Maybe your products are poorly named, and this causes
confusion. Even bigger: maybe your product line is bloated with
too much overlap.
This is not a book on general business practices, but just know that
a CMS often gets blamed for problems that come from sources far
removed from what a CMS can control. Before laying blame any‐
where, do some research and make sure you’re solving the right
problem.

As we discussed in Chapter 12, the documents that most integrators need are:

Functional specification
This is a narrative document explaining how the website should work. It should
describe all content types and aggregations, users and groups, workflows and
permissions, etc.

Annotated wireframes
These are line drawings of how each interface should look. There should be at
least one wireframe for each content type and aggregation, and there should be
wireframes showing those at different responsive breakpoints (tablet, phone,
etc.). Callouts should explain how specific functionality should work.

Sitemap or IA diagram
This is the classic “boxes and arrows” diagram showing all the content on the
website (or content groups; news articles in aggregate, for example). It should
show logical and geographical relationships between content, and it should seek
to be as comprehensive as possible.

This is the generally accepted minimum for a comprehensive, firm bid. A smart inte‐
grator, when presented with less than this, will seek to get to this point before provid‐
ing you with a number.

Sales and Scoping | 311

If you don’t bring this information with you to the integrator, expect to be referred to
another firm to develop the information, or expect the integrator to do it for you and
charge you for it.

Perhaps even consider treating the development of this set of documentation as a sep‐
arate project with the integrator. If you’re having trouble coming to a well-defined
scope, the integrator can help you develop and document that scope as a self-
contained project (perhaps even at a flat fee), then bid the resulting plan. Do not con‐
sider this an “extra” expense, since it has to be done at some point (remember,
architects design houses for a reason). Breaking it off into its own project gives you
the benefit of both a defined cost for it and more realistic and firm pricing for the
larger project, due to better documentation.

With any project of moderate scope or larger, there will likely always be some level of
misunderstanding between you and the integrator about scope. Experienced integra‐
tors know this and have planned for a certain amount of leeway in this respect. A
shared goal is to limit these misunderstandings to the point where none of them have
a material effect on the project.

Reality Check: Padding Costs as a Defensive Measure
Do websites get scoped and bid with less information than what I’ve described here?
Yes, all the time. This is the optimal method of scoping a project, but I absolutely con‐
cede that this standard is often not reached.

The important point to understand is this: vagueness will result in padding.

If an integrator doesn’t know exactly how you want feature X to work, they have two
choices:

• Push you harder to define your requirements.
• Increase (or “pad”) their bid to cover things they think you might want to do.

The first choice is the correct one, clearly, but the second choice is what often ends up
happening. The integrator might fear losing the work, or they may have a hole in their
schedule and need to get the work started, so they just pad their bid and hope for the
best. If your actual requirements grow, they’re covered; if they don’t, the vendor pock‐
ets the padding.

An intelligent, rational scoping process is often the first casualty of the realities of
running a professional services firm.

312 | Chapter 14: Working with External Integrators

Costs
In years past, the rule of thumb was that a CMS implementation will cost three to
four times what the CMS itself cost. Thus, a CMS that cost $50,000 to purchase will
cost between $150,000 and $200,000 to implement, making the total cost of the
project roughly four to five times the cost of the software (or estimated equivalent
expense for an open source system).

This is a crude measure and not universally applicable, but it’s valuable to at least
frame how expensive implementations can be. They are almost always the majority
cost in the total budget. Exhausting most of your budget on the CMS license will limit
your ability to have it implemented, whether you do it internally or hire a third party.

In practice, content management implementations run the gamut from simple blogs
that might work out of the box to incredibly complex content aggregation platforms
that require massive development efforts. Consequently, there’s no simple way to gen‐
eralize about budget scope. Some of the factors that go into a budget include:

• The number of content types required
• The number of content aggregations required and their complexity
• The number of unique templates required and their selection rules and criteria
• The complexity of the design, and the number of pages that require advanced

page composition
• The level of content migration and transformation required to bring existing

content into the new CMS
• The amount of integration required with systems external to the CMS and the

level of risk that brings with it
• The amount of editorial workflow and customizations required to support the

editorial process
• The amount of project coordination and project documentation required
• The number of “one-off ” page designs, not seemingly related to any other design

These factors can be combined in almost unlimited degrees for a wide range of budg‐
ets.

Perhaps surprisingly, aside from migration QA effort, total volume of content doesn’t
play as big a part in the budget or level of effort as you might think.

Consider a website with 100,000 content objects, all having the same content type,
structure, and aggregation requirements. The implementing developer is really work‐
ing with that content at the content type level, not the content object level. Even
though there are 100,000 objects, there’s still only one type. It’s only a slight exaggera‐

Costs | 313

1 My company generally titles its proposal documents as “Proposal for Professional Services.” A few times, a
prospective customer has said, “This looks great, now we just need a Statement of Work.” These situations
have sometimes been resolved by simply changing the title on the document and resubmitting it.

tion to say that the developer cares very little if there are 100 objects or 100,000—the
level of effort required to create the types, aggregations, and editorial tools is largely
the same.

This is the same reason that “one-off ” page designs can inflate the cost of an imple‐
mentation. UX firms have been known to run wild, delivering detailed, individual
designs for dozens and dozens of pages, each introducing a content management or
templating idiosyncrasy for which the integrator will have to account. Remember that
inconsistency is the bane of templating, and each unique page design comes with a
price tag.

Even dynamic page composition has limits, because those systems work from a
palette of available interface elements. Each of those elements has to be identified
along with all of its variations, and then developed, templated, and managed in such a
way that the page fits together the way the designer intended.

Finally, when budgeting, things that are unknown are what get an outsized allotment
of time and funds. External integration is likely the best example. When your CMS
has to work with Other System X, unless the implementation team has worked with
both, the schedule and budget will suffer for it. Making two systems work together
can be difficult, or sometimes impossible. The effort required for even seemingly sim‐
ple integrations can sometimes dwarf that expended on the remainder of the project.

Written Agreements
At some point, the agreement between you and the integrator will need to be codified
and executed via some written instrument. This document is ostensibly the enforcea‐
ble agreement for both parties.

Nomenclature is a problem here, because there’s no agreed-upon vocabulary for this
industry, especially when it comes to project documentation. What one firm calls a
“proposal” might be a “statement of work” or a “memorandum of understanding” to
another.1

In general, documentation falls into the following types. You’ll often see all three of
these when working with an integrator:

Marketing proposal
This is an attractive sales package meant to sell you on a firm’s capabilities. It
might not speak to your project at all, or even your organization, but instead pro‐
motes the integrator’s capabilities in general terms. You might see this package

314 | Chapter 14: Working with External Integrators

one time, when your organization is initially being courted by the integrator. This
is not an executable document (there is no signature line).

General Services Agreement (GSA)
This is a highly legal document spelling out things like warranties, required
insurance coverage, intellectual property rules, etc. GSAs are usually drafted and
reviewed by attorneys. There will likely not be a mention of a specific project, as
these documents are usually meant to govern the life of the entire relationship
between the integrator and the organization. These are executable documents,
and often the subject of significant negotiation and revision. These documents
are also known as “Master Services Agreements” or “Master Vendor Agree‐
ments.”

Statement of Work (SOW)
This is the project-specific document that explains exactly what the integrator is
doing for this specific project. If you do more than one project with an integrator,
you will likely have one SOW for each project. As the title implies, a Statement of
Work is an explanation of the details around a specific unit of work. This is an
executable document. The SOW is sometimes referred to as a “proposal” or a
“project proposal.”

When it comes to the General Services Agreement, a key question is: which side gen‐
erates it? The integrator no doubt has one of their own, but there’s a good chance
your organization has one as well. Do you execute both? What if they conflict? Do
you need to review both and come to a third, resolved version? For many compliance
departments in larger organizations, this isn’t acceptable as they want their GSA exe‐
cuted, specifically.

Many times, the side with the most lawyers wins. The integrator will submit their
GSA for execution, and the client will return it with so many changes that the integra‐
tor decides it’s easier to review the organization’s GSA and just ensure nothing in it is
objectionable.

When negotiating a project, there’s often an unspoken vibe as to which organization
is going to require the more stringent documentation. That organization usually gets
their document executed, even if it doesn’t differ remarkably from the other side’s ver‐
sion. So long as both parties agree to the contents, who “owned” the document in the
beginning is of little import.

The Statement of Work is important enough to require its own section for discussion.

The Statement of Work
The Statement of Work is the guiding document for any particular project. If there is
a disagreement about some aspect of a project, the SOW is usually the arbitrating
document. If something isn’t in the SOW, then it doesn’t legally exist.

Written Agreements | 315

2 Note that hosting agreements are almost always separate from integration agreements. The model of engage‐
ment for hosting a website over time as opposed to a one-time integration makes the nature of the agreements
entirely different.

At a minimum, the SOW needs to explain:

• What is being done
• When it is being done
• How much will it cost

What, when, and how much. Those are the critical questions in any implementation.

What is being done?
The SOW has to clearly state the scope of the project. In many cases, the preimple‐
mentation artifacts discussed previously will be attached to this document and refer‐
enced as exhibits.

The scope in the SOW often says something to the effect of, “Integrator will develop a
website to fulfill the functionality and requirements described in Exhibit A.” In other
cases, the functionality will be described in the document itself, though this is more
rare since the requirements can be lengthy.

The SOW should also state what form the deliverables should take. Is the integrator
delivering the website as a set of files and a database backup for the organization to
deploy? Or is the integrator actually deploying the website to a server somewhere?
Are they hosting it?2

In practice, there is a constant debate on the required depth of this documentation.
To what level of detail does the website need to be described?

This is hard to quantify, for the simple reason that a website can always be described in
more detail. No matter how specific you are, you can always be more specific, and
what level of description is “good enough”?

The desire to describe every last aspect of a website can turn into a black hole of time
lost, and it often drifts past simple scoping and into deeper consulting as technical
questions get more detailed and are answered with more and more specificity. There’s
only so much analysis an integrator will do without being paid, and there’s only so
much time either side will wait before they need to get started.

Where to draw this line varies for every organization and integrator, and it’s often
simply a level of comfort and trust. When both sides agree that the level of descrip‐
tion is enough and they feel comfortable moving forward, they do. There are no hard
and fast rules here.

316 | Chapter 14: Working with External Integrators

3 If an integrator can get started on a huge project instantly, it might be a good idea to ask why. Sometimes the
integrator just happens to have a convenient hole in their schedule. In other cases, they may be overstaffed or
not have enough business to sustain themselves.

Nonimplementation Consulting

Occasionally you might engage with an integrator for reasons other
than an implementation. They might be consulting to answer some
questions, or evaluating a poorly performing implementation, or
perhaps helping you evaluate and plan some new functionality.
For these agreements, it’s best to concentrate on deliverables. What
is the integrator delivering in exchange for payment? A document?
A set number of hours of analysis? A series of phone calls? Some
prototyped code?
When a project doesn’t involve a concrete implementation, it can
be vague and ill-defined. Clearly defining what the integrator is
delivering helps all parties understand the goal the project is mov‐
ing toward.

When is it being done?
The Statement of Work needs to address dates in the following two ways:

Start date
When is the integrator available to start? Expect a delay for the start—it will be
rare for an integrator to have enough staff just sitting around that they can start
right away. Some integrators might be booked three to four months in advance.3

Project duration
Regardless of when it starts, how long will the project take? This shouldn’t be dis‐
cussed in hours, because that’s generally a function of project cost (projects are
almost always priced against some nominal hourly rate). Rather, you want to
know actual calendar duration. From the start date, how many weeks will there
be until launch?

It’s wise to be clear with the integrator whether your project is date-driven or quality-
and feature-driven. Do you have a desired launch date, and is this date set in stone?
Should the integrator plan their development to hit a specific date no matter what, or
should they plan on delivering the best final product possible, even if that means
investing more time?

How much will it cost?
Clearly, you need to have some idea of your final cost, but determining this is rarely
simple. Projects can be priced in several ways:

Written Agreements | 317

Flat fee
You will get website X for $Y, full stop. Expect this on projects where you’ve
defined your requirements clearly. If your requirements are vague and explora‐
tory, the only way you’ll get a flat fee is with significant padding (or foolishness
on the part of the integrator).

Time and materials
The integrator will perform work for $X per hour or per day. The integrator
should give you an estimate of total hours. If they don’t, then you’re simply agree‐
ing to pay a certain hourly rate, open-ended.

Fee-capped
You will spend $X, and the integrator will get as much functionality done for that
amount as possible.

Clearly, the first option is the most rigid and therefore the safest for both sides. With
that option, both scope and cost are defined in the SOW. However, because this is so
rigid, it leads to two other phenomena that we’ve discussed previously: a tendency for
cost padding, and a need to excessively define the scope of work, often leading to
delays.

The other two options are both more flexible. A time-and-materials project has the
scope defined, but the cost is open-ended. The integrator will simply keep working by
the hour until the job is done. This can be risky for the organization. A fee-capped
project has a hard limit on expense, but no expectation of delivered functionality. The
integrator could theoretically hit the cap with only 50% of the project finished.

In the end, deals are fundamentally negotiated around the assignment of risk. Both
sides—the organization and the integrator—are trying to minimize their risk. Rigid
deals are risky for the integrator, so they’re often padded to compensate (which
implies a type of risk for the organization—the risk of overpayment). On the other
hand, flexible deals are risky for the organization in that there’s no clear correlation
between functionality and expense.

It’s entirely possible to pursue a hybrid approach. If 90% of your project is straightfor‐
ward, consider a fixed fee for that portion of work. The 10% that’s exploratory and
risky might be handled under different terms—time and materials or fee-capped.
This method allows work to start quickly on the mainstream part of the project,
instead of the entire project being delayed while details of the more complicated sec‐
tions are labored over.

Regardless of deal structure, the payment terms and schedule need to be defined:

• When is payment due?
• Are payments tied to milestones?

318 | Chapter 14: Working with External Integrators

• If it’s a time-and-materials project, how are hours recorded? Can they be audited?
• What are the terms of acceptance in order for the integrator to request payment?
• Is there a deposit required before work can begin?

Beware of large deposit requirements. On smaller, shorter projects and consulting
engagements where there is no functioning deliverable, 50% is common. But on
longer projects, a requirement to pay half up front may be indicative of an integrator
who needs the money to fund current payroll and liabilities. Some professional serv‐
ices firms can be extended to the point where they need deposits in order to stay in
business. This is clearly dangerous.

When discussing deal structure and payment terms, remind yourself that at some
point, your Accounts Payable department will need to write a check to pay an invoice
from the integrator. What information will they need to be able to do that?

You Are Not Buying a Used Car

This is not a book on business negotiation, but when discussing
implementation costs, my experience has made one point very
clear: you do not want to be the client an integrator is losing money
on.
This relationship is not brief—it needs to last for a significant
period of time, both during the implementation and through post-
launch and the inevitable changes that come later. My firm has cli‐
ents that we’ve been actively working with for almost a decade.
Additionally, remember that your integrator has other clients, and
in some respects, you’re competing with them for attention.
With all due respect to used car salesmen, taking advantage of one
is usually something to be celebrated. It’s not the same with your
integrator. They have a business to run. When their capacity gets
tight, you absolutely do not want to be known as “the unprofitable
client.”

Production
There’s a temptation to think that since you’re paying the integrator specifically for
production, once the project is started, you’re hands-off. Resist this thought process.
You have several critical things to keep track of during production.

Team Proximity and Dedication
What will your relationship with the project team be? While it’s common to work
with a remote team, other firms might work on a staff augmentation model, where
the developers come to your site and work in-house.

Production | 319

This is getting rarer, and is almost always unnecessary, but some organizations
require it. Some organizations have such stringent security requirements that access
is controlled down to geographic locations (this is quite common in banking and
finance). In other cases, the code might have to interact closely with other parts of the
organization’s infrastructure that are only available on their network.

Define your proximity to the team. If they are coming on-site, do you have the physi‐
cal accommodations for them? More than one project has gotten off to an awkward
start because no one thought to ask where the project team would sit while they’re in
the building.

Additionally, to what extent is the production team dedicated to your project specifi‐
cally? Are you employing them full time, or are you sharing them with other clients?
Can you expect that they will always be working on your project?

Unless specifically stated, assume that the production team is working on more than
just your project. As such, you usually can’t micromanage their work schedule or
their process.

Development and Testing Infrastructure
Where will the work in progress be located, and what will your access be to it? Devel‐
opers commonly work on their local workstations and deploy code at regular inter‐
vals to an integration environment. Who controls this environment? Will it be on
your infrastructure, or on a server controlled by the integrator?

Where will the source code be stored? It’s quite common for an integrator to store
source code in their own environment, but at what times are they required to turn it
over to you? Additionally, what level of visibility do you have into the source code
management system? Can you inspect it at any time?

How do you record issues? During development, you might bring up a concern, only
to be told it will be addressed later. How does this issue get tracked? Is there a ticket
management system or a wiki where these items can be tracked so they don’t fall
through the cracks? Unless your concerns are recorded somewhere, the likelihood of
a production team remembering each of them and circling back proactively is quite
small.

Project Communication and Check-in
You need to establish what level of communication you will have with the integrator’s
production team, and what level of visibility you will have into the project.

It’s very common to have a scheduled project call with the project team to discuss the
work in progress. Define the schedule for this call in advance. Weekly is common. If
you have an extremely intensive project with a larger, dedicated team, perhaps a sub‐

320 | Chapter 14: Working with External Integrators

4 Programmers are usually trying to reach that ideal state of “flow,” where they’re in the zone and making extra‐
ordinary progress. This phenomenon is well known and much heralded in programming, and interruptions
are antithetical to it. It might be worth reading the seminal paper on this concept: “Flow: The Psychology of
Optimal Experience” by Mihaly Csikszentmihalyi.

set of the team might have a daily “standup” meeting to discuss progress. However,
daily meetings are often unnecessary.

Remember that your project often won’t be the only project the developers are work‐
ing on. Additionally, they might not work on your project every day. If they’re waiting
on something, or had to fight a fire on another project, there’s a good chance that they
simply won’t have done anything on your project that day. For this reason, daily
meetings are usually too much. They’ll often be cancelled because no one has any‐
thing to report, and when they’re cancelled multiple days in a row is usually the time
it becomes obvious that they were overkill to start with.

As with any meeting, be careful of inviting people who don’t need to be there. In
some cases, having the development team in a design meeting is helpful, but only if
you need their specific input. Having them on the phone “just in case” wastes their
time, and you should expect to be charged for this.

Meeting costs add up quickly. Having a five-person development
team on a one-hour call at a rate of $150/hour makes it a $750
meeting. There are not a lot of situations where this is money well
spent.

You need to define your point of communication at the integrator. Will you have a
dedicated project manager? If you have a concern, who do you contact, and how will
this concern be escalated if you’re not satisfied with the result? What will be your level
of ad hoc, unscheduled contact with the development team? Can you call a developer
out of the blue? Will you have access to developers directly via email or instant mes‐
sage?

It’s common for integrators to limit direct access to developers. This isn’t to make
things difficult, but just to limit interruptions, which can be deadly to productivity.
You might think, “Well, it’s just a quick question,” but when this happens with multi‐
ple clients, multiple times per day, it becomes a serious drain on progress.4

Work Acceptance and QA
At some point, the integrator will invoice for the project, which is contingent (explic‐
itly or implicitly) on the organization accepting the work product. What does this

Production | 321

https://www.researchgate.net/publication/224927532_Flow_The_Psychology_of_Optimal_Experience
https://www.researchgate.net/publication/224927532_Flow_The_Psychology_of_Optimal_Experience

process look like? This can get closely intertwined with the methodology and devel‐
opment style the integration firm uses.

To describe what they do, many development teams throw around the term “agile.”
This term only makes sense when looking at how software used to be built.

In years past, software development used what was informally known as a “waterfall”
methodology. The development process proceeded down a serial line of tasks. Just
like water can’t go back up and fall down a waterfall a second time, each task built on
the first, moving slowly and steadily forward. The result was that the software prod‐
uct tended to not come together until the very end of the process. There might have
been nothing to see until the project was almost complete.

The problem here should be obvious: with nothing to see, how do you know if the
product is coming together well? A huge problem might be only identified upon test‐
ing the final product, and by then it’s too late to change anything.

In 2001, a group of software engineers released what they called “The Agile Mani‐
festo,” which was a declaration that the old methodology wasn’t working well. The
manifesto has 12 principles, but the first one is key:

Our highest priority is to satisfy the customer through early and continuous delivery of
valuable software.

This is the key to agile software development: deliver early and often. Get something
into the hands of the client as soon as possible, no matter how rough or stripped
down, then collect feedback and iterate back through the process. Refine the product
over time with the client’s feedback an integral part of the process.

The term “agile” is overused (and is often thrown around by developers too young to
have even been exposed to a “non-agile” process), but it should be accepted as a stan‐
dard practice. The key is for the integrator to avoid the “crawl into a cave” syndrome
of building the website without you seeing it until immediately before launch.

Back in 1999, my business partner and I built the website for an
NFL football team. The team’s marketing department approved a
design comp, then saw nothing else for months. I remember a
phone call one week before the site launched in which the client
said, “The site is actually getting built, right?” They first laid eyes
on it a few days before we changed DNS to coincide with a planned
marketing campaign that could not be delayed. I present this as a
textbook case of what not to do.

In practical terms, you need to know how often you will be given the opportunity to
inspect and pass judgment on the work product. There should be scheduled times
during the project where parts of the final product are released for your inspection.

322 | Chapter 14: Working with External Integrators

http://agilemanifesto.org/principles.html
http://agilemanifesto.org/principles.html

These will usually coincide with invoicing. You will often be asked to inspect,
approve, and officially accept the work product at these points.

Related to this, at what point do you officially “take possession” of the work product?
This is likely related to the final disposition of the code. If it’s meant to be deployed to
your environment, the integrator might state that this happens upon deployment, but
it gets murkier when the code is to be hosted by the integrator themselves, or by a
third party. At what moment do you state that the work product is acceptable and ful‐
fills the agreement? This should be clearly defined in advance.

Define the level of QA you require in advance. Will you require the integrator to
develop formal test scripts and provide you with results for each iteration, including
regressions of prior tests? Or will you just take the integrator’s word that everything
works fine? Do you want to see the code? Do you want line-level input on coding
decisions? Different organizations require different levels of QA and documentation,
and don’t let this be a surprise when it comes time to accept the work. If you have
high expectations of formal QA, the integrator needs to know this so they can build
that into their scope.

Content Development
It’s very likely that the implementation project will change your website in such a way
that content changes will be required. Content will have to be reorganized, or new
content will have to be created. And this doesn’t take into account all the content that
will have to be migrated.

Who will make these changes or create this content? Are you paying the integrator
for these changes? Are you paying another firm? Or do you need to make these
changes yourself?

The scope of content development is often underestimated by the organization, and is
consequently delayed. Many websites have been completed and have sat for months
waiting for necessary content changes to happen. “We’ll launch as soon as we get the
content in shape” is a common refrain.

Define what needs to be done on your side prior to launch, and dedicate staff and
resources to this. Make sure the timing is clear. When does your content have to be
complete, and what disposition should it be in? Can you input it directly into the
developing website, or will you need to stage it in some neutral location such as Goo‐
gle Docs or a service specifically designed for this, such as Gather Content? More
than one integrator has gotten an unexpected ZIP file of hundreds of Word docu‐
ments right before launch with the note, “Here’s all our content. Let us know when it’s
in the system!”

There’s a joke in this industry (and many others, I’m sure) that “this job would be
great if not for the clients.” While clearly dark humor, understand that the biggest

Production | 323

http://gathercontent.com

threat to your project might actually be you. Make sure you have your own bases cov‐
ered during the implementation process.

Don’t Be THAT Client

Every integrator has dozens of horror stories of clients who drag‐
ged their feet on every task assigned to them. No matter how clear
the integrator is on what needs to be done and when, some clients
never hold up their side of the bargain.
Worse: when the client finally does come through with what they
were supposed to supply, they expect the integrator to drop every‐
thing and get back on their project immediately. These clients don’t
understand that an integrator has to avoid schedule holes, and
when it becomes obvious that a client isn’t going to deliver, they’re
removed from the production schedule.
Always remember that your integrator has other clients. If you
cause your project to come grinding to a halt, expect the integrator
to move on. When and if you finally come through, expect to suffer
through a delay while you’re slotted back into their production
schedule.

Training and Support
As we discussed in Chapter 12, training and support can be tricky because the website
is often a combination of a vendor’s software and an integrator’s implementation.

When planning training, determine who in your organization needs to get trained at
what level. How many people need to know basic, foundational principles about the
CMS software? On the other extreme, how many people need to know nothing more
than what it takes to get the job done?

Most integrators won’t do the basic, fundamental training, for the reason that the
vendors use training as a revenue stream. Vendors make money from training and
would frown on integrators offering formalized training courses on their software as
competition.

Most vendors offer training in one or more of several models:

On-site
A trainer from the vendor travels to your organization, which is appropriate for
training larger groups.

Hosted
Your employees fly to the vendor’s location (either their actual location, or a
remote location from which they’re offering training at a particular time); this is

324 | Chapter 14: Working with External Integrators

appropriate to train a smaller number of people than would justify flying a
trainer in.

Remote
The vendor runs a training class online, usually in real time, for a group of par‐
ticipants.

Unlike the basic training, implementation training is something only the integrator
can provide. The most effective training is likely a mixture of both, though partici‐
pants might have to be prepared to unlearn some vendor training principles when
undergoing the implementation training (“I know they told you it worked like that,
but this is how we actually implemented it…”).

Much like training, support becomes a jurisdictional issue between vendor and inte‐
grator. If problems arise, are they related to the software (vendor) or the implementa‐
tion (integrator)?

A running website being actively managed also brings in the variables of the hosting
environment and the editors themselves. There are dozens of combinations of vari‐
ables that might be the source of any given problem.

There are four major types of support that an integrator may provide to an organiza‐
tion:

Downtime support
In these situations, the site is significantly and obviously impaired for some rea‐
son that an editor cannot fix. Thankfully, critical software errors in mainstream
CMS products are relatively rare. Most products are tested to such an extent that
glaring, show-stopping bugs aren’t common. When such a problem does happen,
it’s often infrastructure-related (the hard drive is full, DNS is broken, the data‐
base server stopped working, etc.).

Error support
In these situations, a user has encountered an error that may or may not be pub‐
lic (it might only be visible to editors). The user is doing the task correctly, but
something in the software has clearly failed. The editor cannot fix this problem
and needs external assistance.

User support
Sometimes there is no error, but the editor does not know how to accomplish a
specific, defined task that she feels she should be able to complete. This is often
due to a training deficiency.

Consulting support
Again, there is no error in these cases, but the editor wants to accomplish a
larger, more systemic goal, and doesn’t know the best way to do this. This is less

Training and Support | 325

support, and more advice. The editor needs to know the most optimal route to
bring about some larger goal.

The last two types—user and consulting support—can get tricky because the lines
between support, training, and consulting can be blurry. At what point is this less of a
support issue and more of a consulting issue, where the integrator is being asked to
explain foundational concepts of content management and web development, and
assist the organization in planning out new functionality? By the same token, at what
point is it obvious that some people just didn’t pay attention during training and the
integrator is explaining the same thing for the tenth time? These conversations can
get awkward.

Much like with the scoping process, there’s only so much an integrator will do
without being paid. The line between what’s considered support and what’s consid‐
ered consulting or additional, unscoped training can be tricky to navigate.

It’s becoming quite common in professional services to pursue retainer-style agree‐
ments where organizations pay a monthly fee for access to a development and con‐
sulting team as necessary. These are generally “use or lose” hours that allow ad hoc
access to expert services but do not carry over between periods. Even if such support
is not needed long term, it’s still quite beneficial to have such access in the months
immediately following launch, when most questions and issues are bound to arise.

A Final Word
While it would be ideal if the relationship between organization and integrator was
perfectly business-like and free from interpersonal issues, this is never the case. The
organization and the integrator (and, to a lesser extent, the vendor) will work
together closely, usually for an extended period of time. This relationship can stretch
for years after launch in some cases.

In a relationship like this, human factors will come into play over time. Organiza‐
tional politics can and will have an influence on the project. Development teams at
the organization might be resentful of an external vendor coming in, marketing
teams might have had bad experiences in the past, or an integrator might not be able
to look past their perception of the organization’s unsophisticated thinking.

A friend once remarked that “some of the most childish, immature
people I know are sitting in corner offices, hiding behind six-figure
salaries.”

326 | Chapter 14: Working with External Integrators

It’s crucial to establish a relationship of trust and communication between both par‐
ties. If you don’t feel like this exists, keep looking. A poor relationship at the beginning
of the project often doesn’t improve, and barriers between teams can fester over years
and have a devastating negative effect on the project over time.

Perspective: Mutual Trust Is the Key to an Integrator Relationship

by Joe Kepley

I’ve been working in consulting relationships for around fifteen
years, and what I’ve found is that like any relationship, the rela‐
tionship between an integrator and a client thrives on mutual
trust and respect.

In the best client relationships, we’ve worked with a client long
enough to understand their business well. Our team trusts the
client to know their business, and they trust us to provide a
great CMS experience. When there’s a problem, we work through it together, and we
have each other’s best interests at heart because we all think of ourselves as part of the
same team.

The relationships that don’t work, like any relationship, are the ones where one side
wants to squeeze the most out of the other party and move on to something else.
We’ve had clients that made it clear that we were the means to an end, felt our time or
advice should be free, or just wanted to use us as leverage against an internal team.

CMS experts are rare, and if Blend as an organization continually subjects our team to
groups that are willing to grind them down or ignore their advice, we’re telling them
they’re not important. If we’re willing to keep pushing ourselves into client relation‐
ships where we’re not a good fit, we’re saying the invoice has more value than the suc‐
cess of the project.

As a professional services firm, we’ve spent years building a team of CMS experts.
That team is the most valuable asset our company has. We owe it to both our clients
and our employees to maximize the healthy relationships, and minimize the unheal‐
thy ones.

When we have a client that values our work and our input, participates in their solu‐
tion by taking the time to communicate, and treats us as a trusted partner, we’ll bend
over backwards to make sure they have a great site and a great experience with us.
Every group on both the client and integrator side of the relationship should work
together to develop that.

Joe Kepley is the CTO of Blend Interactive, a CMS integration firm.

A Final Word | 327

CHAPTER 15

Where Content Management Is Going

Web content management is constantly in a state of flux. As a discipline, it rides on
the back of the Internet itself, and as the Internet landscape changes, content manage‐
ment changes with it.

In writing this book, I’ve had to navigate the blurry line between what aspects of con‐
tent management are foundational and unlikely to change (content modeling, for
example) and what aspects are still being defined by the marketplace (marketing
automation and personalization, to name but two). In five years, parts of this book
will still be wholly relevant, other parts will be showing their age, and a half-dozen
new chapters will need to be added.

As a preemptive strike, I’d like to look forward a bit and consider where content man‐
agement might be headed in the future. This is a practical exercise in that I’d like you
to be ready for what might be around the corner, but it’s also an exercise in perspec‐
tive, as I want you to understand the axes and inflection points along which this
industry might expand, to give you some sense of the elasticity of content manage‐
ment—the industry, the software, and the discipline.

Chapters like this are difficult to write because they’re always a combination of legiti‐
mate prediction, documenting the obvious, and unavoidably spinning the conversa‐
tion in the direction the author would like something to go. While I think evidence
exists for all of the following predictions, only time will tell how accurate they are. In
five years, I’m quite prepared for someone to find me at a conference and mock me
for how wrong some of them turned out to be.

Additionally, predictions like these inevitably involve looking back at history and
making interpretations of what has happened in the industry. My preferences and
opinions will show through here. If you have a long history in this industry, you will

329

no doubt disagree with my perspective on some of what has gone before. All that said,
let’s take a look…

Fewer Open Source CMSs Will Get Traction
The open source CMS market is already crowded. I’ve long maintained that develop‐
ers like to architect new CMS platforms more than any other type of software. This is
due largely to a quick ramp-up time (a lot can get done in a short period of time,
before development inevitably hockey sticks upward), but it’s also due to the Lure of
the Framework.

Developers simply love writing frameworks. We love solving problems that stay theo‐
retical. And that’s basically what a CMS does: it solves a problem that doesn’t exist yet.
Someday, the CMS we build will solve an actual problem, certainly. But initially, it’s
just a framework for a website, and the developer receives all the joy and endorphin
rush of “solving” that problem, while the associated problems remain safely hypothet‐
ical. It’s all of the fun with none of the accountability.

Ten years ago, there was a dizzying array of open source projects launching seemingly
every week, each one claiming some new angle on the content problem. Every once
in a while, one would get a toehold in the collective attention span of CMS developers
and claw its way toward some user base of note. All the others would fall away.

But even getting that initial toehold is becoming harder and harder. So many prod‐
ucts are available in the marketplace that developers are seemingly retreating into
what’s well known as a defensive mechanism. Existing open source systems are exert‐
ing something of a gravitational pull, drawing in more and more developers while
slowly getting larger and larger, which allows them to draw in even more developers.

Very few new open source platforms have gotten traction in the last five years, espe‐
cially compared to the five years before that. Systems like Concrete5 and ProcessWire
are still young, but have managed to knit together vibrant and dedicated communi‐
ties.

In contrast, Microsoft’s open source CMS offering, Orchard, has been unable to gain
much traction or mindshare, even with a gigantic community of ASP.NET MVC
developers to draw from and relatively few open source options in that space. And
there are dozens of other new entrants that will simply never reach critical mass.

The thing that sustains and grows an open source project is the ability to attract
developers, and the excitement of a new system is quickly tempered by the lack of a
community and installed base in which the system might grow and be tested.

What will give birth to new systems is the adoption of new web frameworks. Every
time a new language or programming paradigm gets traction, a handful of open
source projects will spin off of early projects written for those platforms.

330 | Chapter 15: Where Content Management Is Going

http://www.concrete5.org
https://processwire.com
http://www.orchardproject.net

At the time of writing, the new darling of web developers is Node.js. We will no doubt
see a handful of CMS options for that framework in the coming years, and those
frameworks will have the benefit of few competitors. They will sink or swim based on
the adoption of the underlying platform—if it withers, so will they.

In no way am I predicting that the development of open source CMSs will completely
dry up, but there is simply less and less reason to roll the dice on a new system. While
some developers enjoy being contrarian and iconoclastic as a rule, most others will
simply be seduced by the array of plug-ins and support available for the larger plat‐
forms.

Decoupling Will Make a Comeback
Decoupled CMSs built the Web. When I first entered this industry, we didn’t even
have the term “CMS.” We barely had the term “content.” As I noted in the preface, we
just had a bunch of files sitting around and were forced to manage them by raw
necessity.

Some of the first CMSs, in fact, were simply collections of Perl scripts that templated
data and made aggregations easier to manage. Movable Type—one of the earliest
blogging platforms, launched in 2001—was a Perl-based scripting system that gener‐
ated static HTML.

But decoupled CMSs suffered from a need for active delivery environments. The
need for real-time interactivity (message boards, commenting, rating) never lent itself
well to static files. As websites became more variable, immediate access to the reposi‐
tory was required and the concept of a clearly defined “moment of publication” got
blurrier and blurrier. Small changes in the delivery environment (a comment, a rat‐
ing, etc.) were forcing full republishing, which became problematic.

Over time, more and more functionality was pushed into the delivery environment,
until it became obvious to new developers that content should be managed there as
well. With this, decoupled architectures began to decline.

At the same time, managed websites got smaller and smaller. While CMSs were used
on larger sites, many smaller websites were still managed with client-side editors like
Microsoft FrontPage and Adobe Dreamweaver. As CMSs began to filter downward, a
generation of sites came online that couldn’t suffer through the complexities of
decoupling and required the latest delivery-side interactivity. This further spurred the
adoption of coupled CMS platforms.

But the tide is slowly turning back. What seems to have happened is that the interac‐
tivity needed in the delivery environment has become detached from the CMS—it’s
now serviceable by systems that might not need interaction with the CMS at all.
Adding commenting to a website now is as simple as using a pluggable system like

Decoupling Will Make a Comeback | 331

Disqus, IntenseDebate, or even Facebook. Client-side technologies have advanced to
the point where integration with social networking platforms is simply done with a
JavaScript include. Marketing automation vendors can integrate solely on the client
side, and even A/B testing is available with virtually no templating changes.

This means that rich, variable user experiences can now ride “on top” of static HTML
files. The HTML files containing the content simply play host for a dizzying array of
interactivity provided by other services. Most client-side technologies neither know
nor care whether their HTML hosts exist in files written to disk 10 years ago or gen‐
erated on the fly a millisecond ago.

Even further down this road, the relationship between server-generated content and
client technologies may be on the verge of flipping entirely. Full-stack JavaScript
frameworks like AngularJS, React, and Dojo are giving rise to “single-page apps,”
where what’s delivered to the client is not content at all, but an application that runs
in the browser and might retrieve content based on user behavior. In these situations,
instead of content delivering the client functionality, we now have the opposite—the
client functionality is delivering the content. In effect, we’re installing a templating and
output engine in the browser every time a visitor comes to the website.

All of these changes are eliminating some significant benefits of coupled CMSs.
Removing post-publication functionality, and sometimes even templating, leaves an
editorial core that can survive just as well as a decoupled system and might be the
better for it.

As noted in Chapter 9, decoupled publishing brings unique advantages in terms of
scalability, stability, and security. And delivery environments are becoming simpler
and simpler to create and maintain. Amazon Web Services allows the hosting of static
content from the Amazon S3 storage framework, and with a couple of mouse clicks
this can be integrated into CloudFront, its content delivery network. Combine this
with a decoupled CMS and you can literally have an almost endlessly scalable envi‐
ronment to stage content for optimized worldwide delivery in five minutes. (For
developers who have been working in this space since the mid-’90s, the mind bog‐
gles.)

We may very well see the CMS withdrawing back into its core, which has traditionally
been the modeling, management, and aggregation of content. When and if this hap‐
pens, decoupling is poised to play an enormous role in the landscape that results.

332 | Chapter 15: Where Content Management Is Going

1 See https://www.staticgen.com for a comprehensive list of these tools.

The Rise of Static Site Generators

A new wave of static site generators coupled with grid hosting is an
interesting development.1 Many command-line tools now exist to
template and assemble content stored in flat files, usually in Mark‐
down. The resulting HTML is then pushed into a hosting environ‐
ment.
Some tools even turn CMS-powered sites into static sites. You
might have a Drupal or WordPress site on your local workstation
or behind your corporate firewall, and these tools connect to it and
“flatten” it into static HTML for hosting elsewhere.
Tools like these are effectively turning coupled CMSs into decou‐
pled ones. All the editorial features are still used to model, manage,
aggregate, and template content, but the delivery features are aban‐
doned in favor of all the other benefits that decoupling provides.

Focus on Marketing Tools and Integration Will Increase
Two years ago, I attended a networking event for CMS professionals on the East
Coast. One of the speakers was the web marketing manager for a services company,
who came in to explain how they handled their content. For an hour, he detailed the
remarkable process and techniques they used to monitor, personalize, deliver, and
optimize their content. It was obvious that his team was the focus of an enormous
amount of attention and budget at this organization.

I was interested to know what CMS they were using that supported this level of mar‐
keting optimization. When I asked, he mentioned the name of a marketing automa‐
tion vendor. I knew this particular vendor wasn’t a CMS provider, so I pressed him on
what content management platform they were using.

He simply didn’t know. He explained that he was notified by the editorial team of
what the content calendar looked like so his team could prepare, and then given a
URL just before that content was published. He had no idea how the content was
managed or generated. He and his team didn’t need to know.

I’ve already made the point that many organizations aren’t looking for a content man‐
agement system as much as they’re looking for a content marketing system. The fact

Focus on Marketing Tools and Integration Will Increase | 333

https://www.staticgen.com

2 During the writing process the website for this book, http://flyingsquirrelbook.com, was a single page of con‐
tent for almost a year and only changed through the addition of chapter titles as they were written. There
simply wasn’t much content to present, and the entire purpose of the website was to drive the visitor to the
ordering page at O’Reilly’s website.

3 It’s worth noting that some of these “integrations” are ridiculously thin. One commercial vendor offered a
plug-in for an A/B optimization tool. After installation, it became apparent that the only thing this plug-in did
was add a single JavaScript reference at the top of every page, something that would take a template developer
10 seconds to add manually.

is, most corporate websites don’t turn over that much—their content velocity is
extremely low, and content might change monthly, at most.2

However, even though the content might not be new, most user interactions with it
are new. That page explaining the features of the product might have been unchanged
on the website for two years, but Bob is looking at it for the first time, and this sce‐
nario repeats itself a hundred times a day.

Every combination of visitor + content is a brand new experience, which needs to be
managed. We might not change the content, but we need to optimize this visitor’s
interaction with it through an arsenal of marketing and optimization tools such as
personalization, A/B testing, and predictive analytics.

How the industry reacts to this need over time remains to be seen. There are two
camps:

• Do it internally, by developing large marketing automation and customer experi‐
ence suites inside the system itself

• Integrate externally with existing marketing automation vendors

The open source community is generally concentrated on the latter option. They’re
content to leave marketing automation to specialized vendors, and keep their systems
centered around management.

The commercial vendors are hedging their bets on both. Many are building market‐
ing suites inside their systems. While some claim this is to provide high levels of inte‐
gration between management and marketing, one has to assume that they simply see
another market and source of revenue to capture. At the same time, most commercial
vendors are also offering integrations to popular marketing automation vendors.3

What we may see is commercial vendors pushing further and further into this market
until it becomes obvious that they’re going to be outdone by dedicated marketing
automation vendors that don’t need to worry about core management features. When
this happens, some management vendors will likely acquire marketing platforms,
others will spend less on their own systems and more on integrations, and a select few

334 | Chapter 15: Where Content Management Is Going

http://flyingsquirrelbook.com

might break off their marketing platforms into separate products and recenter their
efforts around core management.

Entry-Level SaaS Will Eat Away the Lower End of the
Market
In Chapter 3, I expressed skepticism about pure multitenant SaaS offerings at the
higher end of the market where customers require heavy customization. However, the
entry-level SaaS market appears to be thriving and will continue to shake up that end
of the CMS spectrum.

By “entry-level,” I’m referring to SaaS products that can generally be set up with noth‐
ing but a credit card and some personal information. Services like Squarespace and
Wix have been popular in this space for years—and this is to say nothing of the blog‐
ging platforms like WordPress that can be repurposed into basic, limited CMSs
without much trouble.

These systems will chew up the lower fringes of the CMS market, as organizations
decide this level of management is good enough and concentrate their budget and
staffing on marketing optimization using many of the platforms, tools, and method‐
ologies discussed previously.

Yes, the functionality of these systems is undeniably limited, but they will still exceed
the need of many organizations, or the organizations’ more demanding requirements
will be abandoned or delayed in the face of the immediate availability and low cost of
the platforms.

With these entry-level options, with nothing more than a credit card, a couple of
hours, and some knowledge of the marketplace, an organization can come away with
a simple website platform and an extensive marketing suite (which, admittedly, still
needs to be visually themed and populated with content, but this is a task that needs
to be done no matter how the website is actually acquired).

What will be key to the success of these platforms is the ability to balance the needs of
a massive range of users. There will be the aforementioned organizations that “just
need a website,” but there will inevitably also be a group that requires more and more
customization. As these systems evolve, the ability to balance these groups—provid‐
ing the latter with more and more ability to customize while not making the platform
too expensive for the former—will drive or destroy adoption.

Beyond pure user adoption, these platforms are redefining functionality. Previously,
we talked about “the Google Effect” which drives our expectation of how search plat‐
forms work. Perhaps “the WordPress Effect” is that which drives our expectations of
how CMSs should work.

Entry-Level SaaS Will Eat Away the Lower End of the Market | 335

4 There was a huge trend a few years back among smaller organizations toward using Facebook as an official
website, and having a domain name simply redirect to the Facebook page. At the time, Facebook was essen‐
tially letting organizations build static websites as their Facebook pages. However, this architecture was
changed to force more of a timeline-style page with continuing, serial content. With this change, the platform
became less attractive and the trend lost steam.

I envision vendor salespeople having to reorganize their sales decks as entry-level
platforms develop. When WordPress finally began offering versioning, for example,
that was no longer a competitive advantage for systems costing tens of thousands of
dollars. This will begin to happen throughout the entry-level SaaS market. Vendors
will have to reorient their systems and sales processes around what they offer beyond
these platforms.

A system that costs $15/month today is quite similar to a system you might have paid
$30,000 for a decade ago. This is healthy. Not only do customers with modest budgets
get more functionality, but it pushes the industry forward. Lack of a vibrant entry-
level market allows the higher-end vendors to stagnate.

Multichannel Distribution Will Increase
For years, vendors paid lip service to multichannel publishing. They claimed their
systems would publish content into many distribution channels (wink, wink), but
they knew the average user would never build more than a single website with them.

However, the rise of social networking has forced the multichannel issue. Massive
amounts of content are being created that will never see the inside of an organization’s
website. This content will spend its entire lifecycle in third-party, hosted distribution
platforms. Facebook, Twitter, and Pinterest are enormous marketing and communi‐
cation channels, and some organizations could simply forgo a formal website entirely
and market solely through those channels.4 But this content still needs to be managed.

What we’re seeing is the rise of the “social networking CMS” in the form of manage‐
ment platforms for social media updates. Platforms like Hootsuite, Buffer, and Tweet‐
Deck abstract content creators away from the actual platforms, allowing authoring
and management in centralized applications. The line between these and more tradi‐
tional CMSs is getting blurrier.

What we’ll likely see in the future is more vendors encouraging social media manage‐
ment from their core CMS products. Some have done this through add-ons and sub‐
systems, but others will pursue a more “pure” approach, where a social media update
is treated as a content object like any other, subject to workflow, permissions, audit‐
ing, etc. When content is published, it doesn’t appear on the website; it’s simply injec‐
ted to the various social networking platforms through various APIs.

336 | Chapter 15: Where Content Management Is Going

Social networking is just one channel among many. Marketing departments have
been quick to embrace microsites, where a multitude of smaller websites are created
to support ad campaigns. While these sites can often be managed out of the same
CMS, the complication and overhead (not to mention the potential licensing costs)
might encourage organizations to create static websites or use smaller SaaS platforms
and push selected content to them from their core CMSs.

And while mainstream usage of RSS continues to (sadly) wane, RSS is still a valuable
content distribution mechanism. Many platforms and systems consume RSS feeds,
and one might envision a CMS that “publishes” content simply by including it in an
RSS feed, where it’s devoured to be repurposed by dozens of other systems.

Electronic book formats continue to evolve, but repurposing content in a format like
PDF, EPUB, or MOBI might be a preferred way for visitors to consume it, especially
for long-form, reference content.

Finally, how about offline channels? Video billboards are becoming more and more
popular (and distracting). As different as this application may seem, it’s still content
that needs to be managed. I look forward to the day when my publication target
menu includes options for “10th Street at 63rd” and “I-90, west of Sioux Falls.”

Distributed Content Intake Will Start to Grow
Services are starting to appear that are targeted directly at the editorial and content
creation process. Platforms like GatherContent and Divvy are centered around man‐
aging editorial calendars, task creation, and collaboration. They have effectively bro‐
ken off that set of functionality from the CMS, and are concentrating on it
specifically.

Some organizations will turn to these services as editorial process tools inside their
CMSs run short. Teams will begin working on the sometimes laborious process of
content creation, with an API call that actually creates or updates the content in the
CMS at the last moment.

Additionally, organizations will begin demanding more and more distributed content
intake. I don’t think it’ll be long before we see a CMS offering content editing and
collaboration directly from Google Docs, for instance. Other systems, like Beegit and
O’Reilly’s own Atlas platform, provide high-end document collaboration based on
traditional source control and Markdown-like syntax.

Organizations might likewise begin to distribute their content management, having
multiple systems internally but one external CMS that delivers all content. Internal
blog authors, for example, might write their posts on a private WordPress installation
that then pushes content into a more robust marketing CMS for delivery.

Distributed Content Intake Will Start to Grow | 337

https://gathercontent.com
http://divvyhq.com
http://beegit.com
http://atlas.oreilly.com

To date, the default assumption of a CMS vendor is that all content will begin life in
the CMS itself. This will start to change, as vendors begin to realize and adapt to the
fact that other platforms are handling the editorial process with more focus and func‐
tionality.

COPE, CAPE, and the CMS as Content Middleware
In 2009, two developers at National Public Radio (NPR) delivered a conference talk
about a system they called COPE, which stood for Create Once Publish Everywhere.
NPR had built a content platform that allowed for the creation and management of
content in a neutral format, and then used this platform to push it to dozens of end‐
points: its own website, affiliates’ websites, mobile apps, third-party portals, iTunes,
etc.

This was multichannel publishing, which was the picture that CMS vendors had pain‐
ted for years about what we could do with their products. However, the COPE pre‐
sentation was one of the first examples many people had seen of this idea practically
implemented at scale. The industry was fascinated by it.

I interviewed Zach Brand, one of the architects of COPE, several years ago, and he
told me that the system eventually morphed into what they informally called CAPE:
Create Anywhere Publish Everywhere. Instead of a single interface for entering con‐
tent, they developed the API to accept content from multiple different channels. After
content intake (from “anywhere”), the system provided management functions, then
pushed the content out (to “everywhere”).

In this sense, their platform had become content middleware. It was the “glue” that
connected many different content creation methods with many different content
delivery methods. Content streamed in from multiple points to an editorial “traffic
cop,” then streamed out to be delivered to end consumers.

Is this the future of the CMS? Vendors have given us all the tools we need for dis‐
tributed content delivery, and, as we discussed earlier, social networking has been the
impetus for many customers to move forward on that front. What will be the com‐
panion development to kick-start distributed content intake and creation?

I have no doubt that the majority of web content will continue to be developed inside
a CMS itself, but organizations will increasingly look for the ability to push non-CMS
content to their CMSs, solely to be delivered alongside everything else.

338 | Chapter 15: Where Content Management Is Going

Afterword

Content management is simply not a static discipline. We’re constantly rearranging
the sails on a ship that is floating on rough seas. We never stop changing and stretch‐
ing the boundaries of something that is built on a platform—the Internet itself—that
never stops changing either.

It can sometimes seem hopeless to try to keep up, and I can assure you that trying to
write a book about the topic took this problem to another order of magnitude. I
shudder to think how quaint and naïve sections of this book might appear a decade
from now.

However, no matter how variable the current industry is, it’s important to note that
web content management is a new spin on a set of very old disciplines.

Always remember the four pillars of content management:

• Content modeling
• Content aggregation
• Editorial workflow
• Output management

We have been practicing these disciplines in some form or another for millennia.
Scribes in Ancient Egypt still had to structure content, organize content, control the
workflow of creating it, and find a way to distribute it.

This industry can often be self-important. There’s a tendency to believe what we’re
doing is wholly new and original. But while the superficial constructs of the moment
might change, the practice of managing content manifested in these four disciplines
is transcendent.

All the rest is merely details.

339

1 Ironically, the website for this book does not use a content management system. The glossary is maintained in
Markdown and the website is generated by a wonderful static site generator called Wyam.

Next Steps
To continue learning about web content management, I invite you to do two things:

• Visit this book’s glossary at http://flyingsquirrelbook.com/glossary. There, I define
and relate hundreds of terms used throughout this book and include links to
related resources.1

• Please don’t hesitate to contact me if you’d like to discuss any of the topics in this
book further, or if you have any comments or objections about anything you’ve
read here. I enjoy and welcome raging debates about content management. My
email is deane@blendinteractive.com and I can be found on Twitter at @gadgeto‐
pia.

• Since 2003, I’ve been blogging about web technology at Gadgetopia. My content
management-specific writing is aggregated at http://gadgetopia.com/cm. Some of
these blog posts are over a decade old, and it’s occasionally interesting (and
mildly embarrassing) to see how my thinking has evolved over that time.

340 | Afterword

http://wyam.io
http://flyingsquirrelbook.com/glossary
mailto:deane@blendinteractive.com
http://gadgetopia.com/cm

Index

A
abstraction(s), 189

of parts of repository, 246
template, 193-194

access control entry (ACE), 165
access control list (ACL), 165
acquisition, CMS, 35-51

from commercial vendors, 39-44
in-house development, 47-49
open source options, 36-39
questions/checklists for, 49
risks of IT-driven requirements, 44
SaaS, 45-47
timing of purchase, 42
unknown unknowns in selection process, 51

actions, permissions for, 168
admin interface, 140
administrator, 58
administrator-level user, developer as, 272
Adobe Dreamweaver, 331
affinity sites, 227
aggregation (see content aggregation(s))
agreements, written, 314-319
Amazon Web Services, 332
analytics integration, 218
AngularJS, 332
annotated wireframes, 311
anonymous personalization, 214-217
APIs (application programming interfaces),

235-250
and plug-in architectures, 243-245
as time-shifted relationship, 250
code API, 236-243
event models, 239-242

web services, 248
approvals

editorial, 157
features summary, 171

approvers, 55
attributes

and datatypes, 88-90
as editorial metadata, 92
built-in, 90
validation, 91

authentication
authorization vs., 165
plug-in architectures for, 247

automated content migration, 288
automation of content, 11

B
backwater features, 204
Basecamp, 67
benefits, actual vs. theoretical, 19
Berners-Lee, Tim, 184
bias, 117
bidirectional publishing, 30
blogging platforms, 80
Body field, 91
Boiko, Bob, 5
Boulton, Mark, 143
budget scope, 313
buying, CMS (see acquisition, CMS)

C
CAPE (Create Anywhere Publish Everywhere),

338
categories

341

as secondary geography, 118
tags vs., 119

CCMSs (component content management sys‐
tems), 8, 150

CDN (content delivery network), 240
changeset, 156
channels, 81
CKEditor, 246
Clark, Josh, 79
cloud computing (see software-as-a-service)
CloudFront, 332
CMSs (see content management systems)
code API, 236-243
collaboration, workflow for, 160
collections, as secondary geography, 118
commercial CMS software

acquisition of, 39-44
and recurring revenue, 43
licensing models, 40
open-source software vs., 20-23
pricing methods, 41
risks of IT-driven requirements, 44
software subscription, 42
terminology of, 37
timing of purchase, 42

commercial software syndrome, 23
community (user and developer ecosystem),

233
community managers, 55
complexity, feature analysis and, 67
component content management systems

(CCMSs), 8, 150
conditional fields, 222
configuration, 269
content

as created by humans via editorial process, 3
as intended for human consumption via

publication, 4
automation/aggregation of, 11
code vs., 28
defined, 5
presentation vs., 83, 173
publishing, 196-202
raw data vs., 3
separating presentation from, 81-85

content aggregation(s), 109-133
and global tree, 115
by configuration or by code, 130-131
content geography, 114-120

flat vs. hierarchical, 129
functionality, 122-130
implicit/explicit models, 120-122
interstitial, 129
making content object from, 121
manual ordering vs. derived ordering,

125-127
modeling for implementations, 271-273
permissions, 128
publication status filters, 128
quantity limitations, 128
shape of content, 111-113
static vs. dynamic, 123-125
summary of features, 133
type limitations, 127
URL addressability of, 122
variable vs. fixed, 125

content approvals, 171
content creation, 12
content delivery

and coupled vs. decoupled systems, 26
content management vs., 5, 25

content delivery network (CDN), 240
content development, integrators and, 323
content embedding

and content modeling, 97-103
and migration, 291
blocks, 100
implications for page composition, 101-103
regions, 101
rich text embedding, 97-100
widgets, 100

content expiration, 156
content files

adding, 162
association, 163
image processing, 164
management, 162-164, 172

content formatting, 13
content freeze, 301
content geography, 114-120

and bias, 117
changing during content migration, 293
editorial limitations on, 117
secondary geographies, 118
trees, 115, 119

content integration, 277
content lifecycle, 136-138
content management

342 | Index

and CMS, 5-7
basic characteristics, 1-14
content delivery vs., 5, 25
content in, 3-5
data modeling and, 80
discipline vs. software, 6
early days of, xv
evolving role of, 60
four pillars of, 339
future of, 329-338
multilingual (see multilingual content man‐

agement)
systems vs. implementations, 17

content management systems (CMSs)
acquiring (see acquisition, CMS)
actual vs. theoretical benefits, 19
and commercial software syndrome, 23
and editorial efficiency, 11
and technical debt, 32
as digital hub, 242
code vs. configuration, 29
code vs. content, 28
content automation/aggregation, 11
content control, 9
content formatting limitations, 13
content reuse, 10
core functions, 9-12
coupled vs. decoupled, 26
defined, 5-7
extensibility of (see extensibility)
feature analysis (see feature analysis)
functions not handled by, 12-14
homebuilding analogy for, 14
implementation (see implementation)
implementations vs. systems, 17
installed vs. SaaS, 27
management vs. delivery, 5, 25
multisite management, 226-228
open-source vs. commercial software, 20-23
page-based, 84
platform-style vs. product-style, 18
points of comparison for choosing a system,

15-33
practicality vs. elegance, 32
systems vs. implementations, 17
target site types, 16
technology stack, 23-25
types of, 7-9
uni- vs. bi-directional publishing, 30

content management team, 53-61
administrators, 58
and project stakeholders, 59
developers, 57
editors, 54-56
site planners, 56

content middleware, 338
content migration, 285-303

and content velocity, 300
and embedded content, 291
automated vs. manual, 287
changing geographies during, 293
dangers of underestimating, 301
early in implementation process, 273
editorial challenge, 286
extraction, 289-291
final, 281
import, 294
migration script development, 298
one-to-one, 299
planning, 302
process, 288-298
QA for, 297
reassembly, 292-294
resolution of migrated content, 295-297
stubbing, 294
timing, 300
transformation, 291

content modeling, 75-108
and content embedding, 97-103
as editorial issue, 106
attribute validation, 91
attributes and datatypes, 88-90
attributes as editorial metadata, 92
built-in attributes, 90
composition, 104
content type, 85-88
content type inheritance, 93-96
content vs. presentation, 83
data modeling and content management, 80
data modeling basics, 76-79
defining a model, 85-104
features checklist, 107
for implementation, 271-273
manageability, 105
page-based CMS, 84
relationships, 103
separating content and presentation, 81-85
types, 85-88

Index | 343

content navigation, 170
content objects

content type vs., 86
converting aggregation into, 121
operative, 178
templating, 276
type selection, 140-142

content permissions, 164-170
(see also permissions)

content preview, 170
content reconciliation, 269
content scheduling, 155, 171
content search, 229-233

and information retrieval, 230
Lucene, 233

content strategists, 56
content stubbing, 294
content traversal, 138-140, 170
content trees, 114

functionality problems, 119
hierarchical, 115
migration process, 293

content type
and content modeling, 85-88
content object vs., 86
in aggregations, 127
inheritance, 93-96
selection for new content object, 140-142
switching types, 87
template vs., 175

content velocity, 300
context, surround and, 188
continuing/recurring revenue, 43
control structures, 181
COPE (Create Once Publish Everywhere), 338
costs

of CMS implementation, 313
padding, 312

coupled CMS system
decoupled system vs., 26
publishing content with, 196-199

Cruise Control, 269
custom redirects, 225
customer relationship management (CRM),

218

D
DAM (digital asset management), 7
dashboards, 228

data handling, forms and, 223
data modeling

and content management, 80
basics, 76-79

database administrators, 58
datatypes, 88-90
decoupled CMS system

advantages, 198
content vs. code in, 28
coupled system vs., 26
delivery environment synchronization, 200
features summary, 202
finding content in, 139
future of, 331
publishing content with, 196-199
publishing features summary, 202
publishing targets in, 199-201

delivery (see content delivery)
delivery environment synchronization, 200
dependency management, 153
developers

and API quality, 250
and functionality, 29
and generalization, 266
as administrator-level users, 272
avoiding development centrism, 282-284
ecosystem, 233
on content management team, 57

development centrism, 282-284
development community, 233
digital asset management (DAM), 7
digital hub, 242
discrete content modeling, 103
discrete information, 274
Disqus, 331
distributed content intake, 337
DNS (domain name system), 282
do everything syndrome, 67
document management, 7
documentation

and open source software, 38
in-context, 149

Documentum, 8
Dojo, 332
domain name system (DNS), 282
domain QA, 297
dropzones, in templates, 101
Drupal, 8, 31, 101
Drupal Gardens, 15

344 | Index

Drupal plug-ins, 244
Drupal Views module, 131
dynamic aggregation, 123-125

ordering of, 125-127
search criteria in, 123
variable vs. fixed, 125

dynamic page composition, 101-103

E
ECM (enterprise content management), 7
edge cases, 79, 203
editing

and content aggregation creation, 133
content modeling as editorial issue, 106
editorial limitations on geography, 117

editing interface, 138-150
circumvention of poor tools, 150
content findability/traversal, 138-140
content preview, 142-144
customizing, 245
elements of, 144-150
features summary, 171
for form building, 221
in-context help/documentation, 149
multilingual content management, 211
personalization and preview, 144
reference content selection, 148
rich text editing, 146
rich text editor customization, 246
scalability of, 140
type selection, 140-142
validation, 145

EditLive!, 246
editorial friction, 135
editorial metadata, attributes as, 92
editorial process

and content migration, 286
CMS and efficiency of, 11
content creation via, 3

editorial tools/workflow, 135-172
approvals, 157
changeset publication, 156
collaboration, 160
content approval, 160
content expiration, 156
content file management, 162-164
content lifecycle, 136-138
content scheduling, 155
dependency management, 153

editing interface, 138-150
editors circumvention of poor tools, 150
features summary, 170-172
image processing, 164
multilingual content management, 211
permissions, 164-170
version control, 153
version labels, 151
versioning, 151-153
workflow, 157-160

editors
access to functionality, 29
on content management team, 54-56

elegance, practicality vs., 32
embedded content, migration of, 291
embedding (see content embedding)
Empty House Syndrome, 273
enterprise content management (ECM), 7
Episerver, 24, 101, 179
event handlers, 239
event models, 239-242
event(s), 239
expiration, 156, 171
explicit/external aggregation model, 120
export function, 289
extensibility, 235-250

and code API, 236-243
editorial interface customization, 245
event models, 239-242
plug-in architectures, 243-245
pluggable authentication, 247
repository abstraction, 246
scheduled/on-demand jobs, 249
web services, 248

external event engines, 159
external integrators (see integrators, external)
extraction, 289-291
eZ Platform, 24, 99

F
Facebook, 331
feature analysis, CMS, 65-73

and implementation details, 69
and unique needs of an organization, 72
content aggregation checklist, 133
content modeling checklist, 107
difficulties of, 65-71
do everything syndrome, 67
editorial tools checklist, 170-172

Index | 345

fitness to purpose, 66
matching features to problems, 70
objectives of, 108
output management checklist, 201
overview of CMS features, 71
publishing management checklist, 201
whole vs. parts of system, 68

file-based templates, 195
filters, 128
fitness to purpose, 66
flat aggregations, 129
flow control, 181
foreign languages (see multilingual content

management)
forklift implementation, 255-257
form building, 220-224

data handling, 223
editing interfaces for, 221
integrating external form engines, 224
problems with add-on tools, 68
stylistic complexity of, 222

form engine services, 224
formatting (content), 13
freemium software model, 38
friction, 135
function specification document, 311
functional QA, 297
future of content management, 329-338

decoupled systems, 331
distributed content intake, 337
entry-level SaaS, 335
marketing tools and integration, 333-335
multichannel distribution, 336
open source CMSs, 330

G
general services agreement (GSA), 315
generalization, 266
geography of content (see content geography)
global tree, 115
Goodreads, 83
governance, 13
GPL (GNU General Public License), 37
GSA (general services agreement), 315
GUID (globally unique identifiers), 90

H
help, in-context, 149
hierarchical aggregations, 129

hierarchical tree, 111, 115
historical URLs, 225
homebuilding, as analogy for CMS, 14
hosting models, 279
HTML, from prebuilt widgets, 185

I
IA diagram, 311
identity management (IdM), 167
image processing, 164
implementation(s), 253-284

aggregation modeling, 271-273
as part of feature analysis, 69
code vs. content, 28
configuration, 269
content migration, 273, 281

(see also content migration)
content modeling, 271-273
content reconciliation, 269
costs, 313
environment setup, 268
final content migration, 281
installation, 269
launch, 282
non-content integration/development, 277
preimplementation, 257-268
principle construction, 254
process of, 268-284
production environment planning/setup,

278
QA, 281
rough-in, 271-273
support, 280
systems vs., 17
templating, 274-276
training, 280
types of, 255-257

implicit navigation, 271
implicit/internal aggregation model, 120
import defects, 298
import function, 294
importing, 294

(see also content migration)
in-context editing, 142
in-context help, 149
in-context management, 138
in-house CMS development, 47-49
indexes, supplemental, 124
information architects, 56

346 | Index

information retrieval (IR), 230
Ingenuix, 15
inheritance, 93-96
inner template, 194
installation, 269
integrators, external

as starting point for CMS acquisition, 35
CMS vendor professional services, 307
content development, 323
costs, 313
development and testing infrastructure, 320
during production, 319-324
engagement models, 306-308
nonimplementation consulting, 317
pre-implementation artifacts, 310-312
project communication and check-in with,

320
QA, 323
relationship with, 327
scoping of project, 309-312
support provided by, 325
team proximity and dedication, 319
training models, 324
trust and, 327
work acceptance, 321-323
working with, 305-327
written agreements with, 314-319

IntenseDebate, 331
interface widgets, prebuilt, 185
internationalization, 205

(see also multilingual content management)
IR (information retrieval), 230
ISO (International Organization for Standardi‐

zation), 206
IT department, organizations requirements vs.,

44

J
Jenkins, 269
jobs, scheduled/on-demand, 249

K
known personalization, 214

L
languages

native programming languages vs. templat‐
ing code, 183-185

spoken (see multilingual content manage‐
ment)

launch, 282
learning management systems (LMSs), 8
licensing

commercial CMS software, 40
open source software, 39

lifecycle (see content lifecycle)
lists, 100, 118
LMSs (learning management systems), 8
localization, 205
Lucene, 233

M
managed hosting, 38
management (see content management) (see

content management systems (CMSs))
manual content migration, 287
manual ordering, derived ordering vs., 125-127
marketing

analytics integration, 218
and CRM integration, 218
anonymous personalization, 214-217
as beyond scope of CMS, 12
as editorial role, 55
automation, 213-220
future of marketing tools/integration,

333-335
proposal document, 314

Media Wiki, 112
meetings, with integrators, 320
Mendelsohn, Noah, 184
menus, as secondary geography, 118
metadata

attributes as, 92
defined, 92

Microsoft FrontPage, 11, 331
middleware, 338
migration (see content migration)
migration script, 298
modeling (see content modeling)
multichannel distribution, 336
multilingual content management, 204-213

content management challenges, 212
external translation service support, 211
language detection/selection, 206
language rules, 208-209
language variants, 209
nomenclature, 205

Index | 347

non-text content, 210
multipart forms, 223
multisite management, 226-228
multitenant software, 45

(see also software-as-a-service (SaaS) CMS
systems)

N
network content, 112
non-content integration/development, 277
non-open source software, terminology of, 37
nonimplementation consulting, 317
Norman, Don, 237

O
object defects, 298
objects

content (see content objects)
permissions for, 167

one-to-one content migration, 299
open-source CMS software

acquiring, 36-39
and terminology of non-open source soft‐

ware, 37
business models, 37-39
commercial software vs., 20-23
future of, 330

operative content object, 178
Oracle, 25
Orchard, 330
ordering, manual vs. derived, 125-127
output agnosticism, 195
output management, 173-196

content vs. presentation, 173
features summary, 201
templating, 175-196

P
pace layering, 266
padding (of costs), 312
page composition

content embedding and, 101-103
horizontal vs. vertical stacking, 103

page-based CMS, 84
Parr, Terence, 177
partial types, combining, 95
permissions

and editorial workflow, 164-170

authorization vs. authentication, 165
conflict resolution, 169
features summary, 172
for actions, 168
for objects, 167
for users, 166
with aggregations, 128

personalization, 214-217
anonymous, 214-217
idea vs. reality of, 217
known, 214
when previewing content, 144

plans, limitations of, 268
platform-style CMS systems, 18
plug-in architectures, 243-245

core CMS components as, 245
for authentication, 247

polymorphism, 189
power editor, 55
practicality, elegance vs., 32
preimplementation, 257-268

discovery and artifacts, 257-260
technical plan development, 260-268

presentation
content vs., 83, 173
separating content from, 81-85

presentation-free editing, 142
principle construction, 254
problem statements, 311
problems, matching features to, 70
product-style CMS systems, 18
production environment

hosting models for, 279
planning and setup, 278

professional services, 307
proprietary software, terminology of, 37
proxy content objects, 192
publication

as characteristic of content, 4
features summary, 201
uni- vs. bi-directional, 30

publishing management, 196-202
coupled vs. decoupled content management,

196-199
delivery environment synchronization, 200
features summary, 201

publishing targets, decoupled, 199-201
purchasing, CMS (see acquisition, CMS)

348 | Index

Q
QA

for content migration, 297
of migrated content, 281
with integrators, 323

R
RadEditor, 246
React, 332
reassembly

and stubbing, 294
content migration, 292-294

reconciliation (see content reconciliation)
records management (RM), 7
recurring revenue, 43
regions, in templates, 101
regular expressions (regex), 146
reification, 77, 309
relational content, 112
relational content modeling, 103
relational information, 274
renditions, 81
reporting tools, 228
repository, abstraction of, 246
requirements gathering, 44
resolution of migrated content, 295-297
responsive design, 195
REST (REpresentational State Transfer), 248
reuse, content, 10
reverse content management, 221
rich text

defined, 90
editing interface for, 146
editor interface customization, 246
embedding, 97-100

RM (records management), 7
rough-in, 271-273

S
SaaS CMS systems (see software-as-a-service

CMS systems)
scale/scaling, 140
scheduling, 155, 171
SCM (source code management) platform, 268
scoping, 309-312
screen scraping, 289
script, migration (see migration script)
searches

as dynamic variable aggregation, 125
content, 229-233
criteria in dynamic aggregations, 123
Lucene, 233
supplemental indexes for, 124

selecting, CMS (see acquisition, CMS)
selection consultant, 35
selection process (see acquisition, CMS)
serial content, 111
server administrators, 58
Server Side Includes, 11, 185, 193
shape of content, 111-113
shearing layers, 266
single-page apps, 332
site planners, 56
sitemap, 311
SOAP (Simple Object Access Protocol), 248
social networking, 336
software-as-a-service (SaaS) CMS systems

acquisition of, 45-47
future of, 335
installed software vs., 27

source code management (SCM) platform, 268
SOW (statement of work), 315-319
Spolsky, Joel, 21, 67
stack (technology stack), 23-25
Stack Overflow (website), 234
stacking (web page composition), 103
stakeholders, content management team and,

59
statement of work (SOW), 315-319
static aggregation, 123-125
storage administrators, 58
StringTemplate, 177
stubbing, 294
subscriptions, software, 42
Summary field, 91
supplemental indexes, 124
support

by integrators, 325
of implementation, 280
of open source software, 39

surround, the
and inner template, 194
and templating, 185-190, 274
context in, 188

T
tabular content, 112

Index | 349

tags
as secondary geography, 118
categories vs., 119

taxonomies, 118
team

content management (see content manage‐
ment team)

technical plan development, 263
technical debt, 32
technical implementation plan (TIP), 260
technical plan development, 260-268
technology stack, 23-25
templating, 175-196

and control structures, 181
and implementation, 274-276
and proxy objects, 192
and the surround, 185-190
dangers of prebuilt interface widgets, 185
defined, 175
features summary, 201
language functionality, 179-185
native programming languages vs. templat‐

ing code, 183-185
of objects, 276
of surround, 274
output agnosticism, 195
philosophies of, 177-179
responsive design, 195
simple token replacement, 180
surrounds relationship to inner template,

194
template abstraction/inclusion, 193-194
template development/management, 195
template selection, 190-192
type vs. template, 175

TinyMCE, 246
TIP (technical implementation plan), 260
Title field, 90
tokens, 180
training

and implementation, 280
and open source software, 38
and repetition, 133
by integrators, 324

transformation (content migration), 291
translation services, 211
translators, 55
trees (see content trees)
type (see content type)

type selection
features summary, 170
for new content object, 140-142

U
UGC (user-generated content), 30-31, 55
unidirectional publishing, 30
URL management, 224-226, 297

(see also resolution)
URL mapping, 178
URLs, aggregations and, 122
usability, 69
user experience (UX) designers, 56
user-generated content (UGC), 30-31, 55
users

ecosystem, 233
permissions for, 166

UX (user experience) designers, 56

V
validation

and editing interface, 145
of attributes, 91

vanity URLS, 225
Veen, Jeffrey, 31
velocity, content, 300
vendors

and user/developer ecosystem, 233
for integration (see integrators, external)

version control, 153, 171
version labels, 151
versioning, 151-153, 171
visual designers, 57

W
web service interface, 248
Webnodes, 112
widgets, prebuilt, 185
WordPress, 112, 179, 244
workflow, 157-160

(see also editorial tools/workflow)
content approval and, 160
features summary, 171
informal, 160

written agreements, 314-319
WYSIWYG (What You See Is What You Get)

editor, 90

350 | Index

About the Author
Deane Barker has been working in web content management since the mid-’90s—
before the discipline even had a name. He is the veteran of hundreds of implementa‐
tions ranging from small marketing sites to massive publishing operations. Deane has
worked on almost all programming architectures and dozens of different CMS plat‐
forms. He has been writing about content management for over a decade, and speaks
frequently on the content management conference circuit.

About the Technical Reviewers
Seth Gottlieb transforms ideas into technology platforms and is equal parts devel‐
oper, architect, and team builder. As VP of Product Development at Lionbridge Tech‐
nologies, Seth designs and implements technology to support strategic business
initiatives. Seth draws from a deep background in software development and integra‐
tion. For more than 20 years, he has led consulting and in-house project teams and
built performance-oriented engineering cultures.

Lynsey Struthers developed her CMS chops wrangling content for higher education
—helping to create her employer college’s first home-grown content management
system in the early 2000s. Since then, she’s consulted with organizations large and
small on implementing and maintaining an effective web presence. Lynsey is cur‐
rently a senior user experience consultant with Evantage Consulting in Minneapolis,
Minnesota.

Arild Henrichsen has been building websites, portals, and intranets for over a dec‐
ade, specializing in content management systems. He’s a certified developer, architect,
tech lead, trainer, speaker, and blogger—and an Episerver MVP.

Colophon
The animal on the cover of Web Content Management is a pygmy flying squirrel. This
smallest species of flying squirrel can be found in the jungles of Borneo and Malaysia.

A flying squirrel is more appropriately called a gliding squirrel. A large flap of skin,
called the patagium, extends from the animal’s flanks all the way up to its wrists and
ankles. It launches itself into the air with arms and legs extended, pulling the pata‐
gium taught. Like a furry kite, the pygmy flying squirrel floats outward and down‐
ward, sailing three feet for every one-foot drop. It uses its long whiskers to detect
branches and lands with its eyes closed.

Pygmy flying squirrels have an omnivorous diet consisting of nuts, seeds, fruits, ber‐
ries, insects, and bird eggs. It forages under the cover of night to avoid predators.

Many of the animals on O’Reilly covers are endangered; all of them are important to
the world. To learn more about how you can help, go to animals.oreilly.com.

The cover image is from Beeton’s Dictionary. The cover fonts are URW Typewriter
and Guardian Sans. The text font is Adobe Minion Pro; the heading font is Adobe
Myriad Condensed; and the code font is Dalton Maag’s Ubuntu Mono.

http://animals.oreilly.com

	Copyright
	Table of Contents
	Foreword
	Preface
	Who Is This Book For?
	What Is Not in This Book?
	How Is This Book Organized?
	A Note on Generalities
	A Note on Nomenclature
	A Note on Sidebars
	A Note on Bias
	Conventions Used in This Book
	Safari® Books Online
	How to Contact Us
	Acknowledgments

	Part I. The Basics
	Chapter 1. What Content Management Is (and Isn’t)
	What Is Content?
	Created by Humans via Editorial Process
	Intended for Human Consumption via Publication to an Audience
	A Definition of Content

	What Is a Content Management System?
	The Discipline Versus the Software

	Types of Content Management Systems
	What a CMS Does
	Control Content
	Allow Content Reuse
	Allow Content Automation and Aggregation
	Increase Editorial Efficiency

	What a CMS Doesn’t Do
	Create Content
	Create Marketing Plans
	Effectively Format Content
	Provide Governance

	Chapter 2. Points of Comparison
	Target Site Type
	Systems Versus Implementations
	Platform Versus Product
	Open Source Versus Commercial
	Technology Stack
	Management Versus Delivery
	Coupled Versus Decoupled
	Installed Versus Software-as-a-Service (SaaS)
	Code Versus Content
	Code Versus Configuration
	Uni- Versus Bidirectional Publishing
	Practicality Versus Elegance, and the Problem of Technical Debt

	Chapter 3. Acquiring a CMS
	Open Source CMSs
	Business Models of Open Source Companies

	Commercial CMSs
	Licensing Models
	Software Subscription

	Software-as-a-Service
	Build Your Own
	Questions to Ask

	Chapter 4. The Content Management Team
	Editors
	Site Planners
	Developers
	Administrators
	Stakeholders

	Part II. The Components of Content Management Systems
	Chapter 5. CMS Feature Analysis
	The Difficulties of Feature Analysis
	“Fitness to Purpose”
	“Do Everything” Syndrome
	The Whole Is Greater than the Sum of Its Parts
	Implementation Details Matter

	An Overview of CMS Features

	Chapter 6. Content Modeling
	Data Modeling 101
	Data Modeling and Content Management
	Separating Content and Presentation
	The “Page-Based” CMS

	Defining a Content Model
	Content Types
	Attributes and Datatypes
	Built-in Attributes
	Attribute Validation
	Using Attributes for Editorial Metadata
	Content Type Inheritance
	Content Embedding

	Relationships
	Content Composition
	Content Model Manageability
	A Summary of Content Modeling Features

	Chapter 7. Content Aggregation
	The Shape of Content
	Content Geography
	Editorial Limitations on Geography
	Secondary Geographies: Categories, Taxonomies, Tags, Lists, Collections, and Menus
	The Tyranny of the Tree

	Aggregation Models: Implicit and Explicit
	Should Your Aggregation Be a Content Object?
	The URL Addressability of Aggregations

	Aggregation Functionality
	Static Versus Dynamic
	Variable Versus Fixed
	Manual Ordering Versus Derived Ordering
	Type Limitations
	Quantity Limitations
	Permissions and Publication Status Filters
	Flat Versus Hierarchical
	Interstitial Aggregations

	By Configuration or by Code
	A Summary of Content Aggregation Features

	Chapter 8. Editorial Tools and Workflow
	The Content Lifecycle
	The Editing Interface
	Content Findability and Traversal
	Type Selection
	Content Preview
	Editing Interface Elements

	Versioning, Version Control, and Version Labels
	Dependency Management
	Content Scheduling and Expiration
	Changeset Publication
	Content Expiration

	Workflow and Approvals
	Approvals
	Workflow

	Collaboration
	Content File Management
	Adding Content Files
	Content Association
	Image Processing

	Permissions
	A Summary of Editorial Tools
	Content Traversal and Navigation
	Type Selection
	Content Preview
	The Editing Interface
	Versioning, Version Control, Scheduling, and Expiration
	Workflow and Approvals
	Content File Management
	Permissions

	Chapter 9. Output and Publication Management
	The Difference Between Content and Presentation
	Templating
	Templating Philosophy
	Templating Language Functionality
	The Surround
	Template Selection
	Template Abstraction and Inclusion
	Template Development and Management
	Responsive Design and Output Agnosticism

	Publishing Content
	Coupled Versus Decoupled Content Management
	Decoupled Publishing Targets

	A Summary of Output Management and Publication Features
	Architecture
	Templating
	Decoupled Publishing

	Chapter 10. Other Features
	Multiple Language Handling
	Nomenclature
	Language Detection and Selection

	Language Rules
	Language Variants
	Beyond Text
	Editorial Workflow and Interface Support
	External Translation Service Support

	Personalization, Analytics, and Marketing Automation
	Anonymous Personalization
	Analytics Integration
	Marketing Automation and CRM Integration

	Form Building
	Form Editing Interfaces
	Form Data Handling

	URL Management
	Historical URLs, Vanity URLs, and Custom Redirects

	Multisite Management
	Reporting Tools and Dashboards
	Content Search
	User and Developer Ecosystem

	Chapter 11. APIs and Extensibility
	The Code API
	Event Models

	Plug-in Architectures
	Customizing the Editorial Interface
	Customizing Rich Text Editors

	Repository Abstraction
	Pluggable Authentication
	Web Services
	Scheduled or On-Demand Jobs

	Part III. Implementations
	Chapter 12. The CMS Implementation
	Principle Construction Versus Everything Else
	Types of Implementations
	Preimplementation
	Discovery and Preimplementation Artifacts
	Developing the Technical Plan

	The Implementation Process
	Environment Setup
	Installation, Configuration, and Content Reconciliation
	Content Modeling, Aggregation Modeling, and Rough-in
	Early Content Migration
	Templating
	Non-Content Integration and Development
	Production Environment Planning and Setup
	Training and Support Planning
	Final Content Migration, QA, and Launch

	Chapter 13. Content Migration
	The Editorial Challenge
	Automated or Manual?
	The Migration Process
	Extraction
	Transformation
	Reassembly
	Import
	Resolution
	QA

	Migration Script Development
	Content Velocity and Migration Timing

	A Final Word of Warning

	Chapter 14. Working with External Integrators
	Engagement Models
	CMS Vendor Professional Services

	Sales and Scoping
	Preimplementation Artifacts

	Costs
	Written Agreements
	The Statement of Work

	Production
	Team Proximity and Dedication
	Development and Testing Infrastructure
	Project Communication and Check-in
	Work Acceptance and QA
	Content Development

	Training and Support
	A Final Word

	Chapter 15. Where Content Management Is Going
	Fewer Open Source CMSs Will Get Traction
	Decoupling Will Make a Comeback
	Focus on Marketing Tools and Integration Will Increase
	Entry-Level SaaS Will Eat Away the Lower End of the Market
	Multichannel Distribution Will Increase
	Distributed Content Intake Will Start to Grow

	Afterword
	Next Steps

	Index
	About the Author
	Colophon

