
www.allitebooks.com

http://www.allitebooks.org

Web Development with
MongoDB and Node.js

Build an interactive and full-featured web application
from scratch using Node.js and MongoDB

Jason Krol

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Web Development with MongoDB and Node.js

Copyright © 2014 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the authors, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: September 2014

Production reference: 1180914

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78398-730-6

www.packtpub.com

Cover image by Jarek Blaminsky (milak6@wp.pl)

www.allitebooks.com

www.packtpub.com
http://www.allitebooks.org

Credits

Author
Jason Krol

Reviewers
Anthony Gilardi

James O'Brien

Mithun Satheesh

Peter Shannon

Acquisition Editor
Llewellyn Rozario

Content Development Editor
Susmita Panda Sabat

Technical Editor
Faisal Siddiqui

Copy Editors
Mradula Hegde

Adithi Shetty

Project Coordinator
Neha Thakur

Proofreaders
Simran Bhogal

Maria Gould

Ameesha Green

Paul Hindle

Lucy Rowland

Indexers
Monica Ajmera Mehta

Priya Sane

Graphics
Abhinash Sahu

Production Coordinator
Nitesh Thakur

Cover Work
Nitesh Thakur

www.allitebooks.com

http://www.allitebooks.org

About the Author

Jason Krol is a passionate web developer with over 15 years of professional
experience in creating highly interactive web applications using the latest in
both client and server technologies.

Previously, Jason spent a majority of his career working with the Microsoft stack
using ASP.net. Recently, he has been focusing on developing Single Page Applications
using JavaScript in the full stack with Node.js, MongoDB, and Backbone.js. After
co-owning and running a successful web development agency for a number
of years, Jason recently jumped back into the world of full time employment.

When not writing code for work or side projects, he blogs about his development
experiences and opinions at www.KrolTech.com and on Twitter at @ShortTompkins.
He loves spending his free time with his wife and 8-year-old son.

I would like to specially thank my wonderful wife for putting
up with me and for always being there to push me whenever
I doubt myself.

www.allitebooks.com

KrolTech.com
http://www.allitebooks.org

About the Reviewers

Anthony Gilardi is a full stack JavaScript developer at one of the top e-mail
marketing companies and a mobile technology enthusiast and app developer.
He started programming at the age of 12 on a Sinclair ZX80. During his formative
years, he worked on fighter jets and jet engines in the United States Air Force. He
later earned a Bachelor of Science degree from Rutgers University in Biochemical
Engineering. Programming, however, was his true passion, so he worked for over a
decade doing Microsoft development in the pharmaceutical industry. He is now fully
focused on working with JavaScript technologies for web and mobile development
in what he considers the most exciting time to be a JavaScript developer.

Anthony's personal passion and creative energy is focused toward his appMite
brand creating mobile hybrid apps. The introduction of Palm webOS and the Mojo
framework ignited his interest in using JavaScript for mobile apps. He has created
several hybrid apps, most notably his lifestyle application named lifeMite, which was
released for Android, iOS, Kindle, and Nook. He is excited about the future of hybrid
apps and learning budding technologies such as Polymer and Web Components.

If he doesn't know it, he learns it. If he doesn't understand it, he learns it more.
Anthony loves creative whims. This is something he has always had but has been
reinforced by his wife and three children who are always creating and learning.
He doesn't ever want to lose that creative drive.

Outside of technology, he is a husband and father of three, who loves camping,
walking, and finding obscure places to meditate. If you wish to see his latest apps
or programming projects, visit http://appmite.com, or if you wish to read his
personal ventures, please visit http://journeysimple.com.

www.allitebooks.com

http://appmite.com
http://journeysimple.com
http://www.allitebooks.org

James O'Brien is a software engineer with over 15 years of experience as a
web technologist, specializing in professional web application development with
technologies, including HTML5, JavaScript, CSS, Backbone.js, C#, ASP.NET, MVC,
PHP, and SQL Server. He also has experience in graphic design and online marketing.

James is a Philadelphia native and is currently Manager for Web Development
and Interactive Marketing at NextGen Healthcare. Besides this, he co-created
Fill The Part (fillthepart.com) and runs it. Launched in 2012, it gives you a
unique entertainment website experience: the chance to cast (or recast) a movie
the way you'd want to see it. His other interests include movies (of course),
playing basketball, and gaming. He's a proud husband and father.

Mithun Satheesh is an open source enthusiast and a full stack web developer
from India. Starting his career as a PHP developer, he has over 4 years of experience
in web development both in frontend and backend programming.

He has written a couple of libraries on Node.js and published them on npm,
which have got a considerable user base. One of these is called node-rules,
a forward-chaining rule engine implementation written initially to handle
transaction risks on bookmyshow.com, one of his former employers. He is a
regular on programming sites such as Stack Overflow and loves contributing
to the open source world.

Apart from programming, he is also interested in experimenting with various
PaaS solutions. He has a number of applications listed in the developer spotlight
of PaaS providers such as Red Hat's OpenShift.

You can follow him on Twitter at @mithunsatheesh.

I would like to thank my parents for allowing me to live the life
that I wanted to live. I am thankful to all my teachers for whatever
knowledge I have gained in my life.

www.allitebooks.com

fillthepart.com
bookmyshow.com
http://www.allitebooks.org

Peter Shannon is a husband and father who moonlights as a software
engineer and data scientist. Originally a chemist, he found his passion for
software engineering in high performance computing and computational
chemistry—which never really became his forte. Now, he spends most of
his time writing data-driven tools, staring at graphs, and occasionally doing
math. When relaxing, he enjoys watching Star Trek Deep Space Nine reruns
and pondering about life's biggest questions.

I would like to thank the Flying Spaghetti Monster for the noodly
strength to review this book.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers, and more
You might want to visit www.PacktPub.com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read and search across Packt's entire library of books.

Why subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print and bookmark content
• On demand and accessible via web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

www.allitebooks.com

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
http://PacktLib.PacktPub.com
www.PacktPub.com
http://www.allitebooks.org

Table of Contents
Preface 1
Chapter 1: Welcome to JavaScript in the Full Stack 7

Node.js changed JavaScript forever 8
Asynchronous callbacks 9
Node Package Manager 10
Networking and file IO 10
Not just on the web 10
Real-time web with Socket.io 11

The NoSQL movement 11
Node and MongoDB in the wild 12
What to expect from this book 13

Summary 14
Chapter 2: Getting Up and Running 15

Environment assumptions and requirements 15
Installing Node.js 16

Mac OS X installation instructions 16
Windows 7 or 8 installation instructions 17
Linux installation instructions 18
Confirming successful Node.js installation 19
Bookmarking the online documentation 20

Installing the MongoDB server 20
Mac OS X installation instructions 21
Windows 7 or 8 installation instructions 22
Linux installation instructions 24
Confirming successful MongoDB installation 25
Bookmarking the online documentation 26

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

Writing your first app 26
The code 26
Launch the sample app 30
Check the actual database 30

Summary 31
Chapter 3: Node and MongoDB Basics 33

A JavaScript Primer 33
Declaring variables 34
Declaring functions 35
Declaring objects 36
Functions are objects 37
Anonymous functions and callbacks 38
Arrays 40
Conditions and comparison operators 40
Flow 41
JSON 42

The basics of NodeJS 43
Event driven 43
Asynchronous 43
Require and modules 44
The NodeJS core 44

Installing modules using npm 45
The basics of MongoDB 46

The mongo shell 47
Inserting data 47
Querying 48
Updating data 49
Deleting data 50

Additional resources 50
Summary 51

Chapter 4: Writing an Express.js Server 53
What is Express.js? 53
Building a complete web application 54
Organizing the files 56
Server.js – where it all begins 57

Booting up server.js 58
Configuration module 59

Handlebars view engine 60
Other template engines 61

Table of Contents

[iii]

Using and understanding middleware 62
Introducing Connect 62
Activating the configure module 65

Routers and controllers 66
Custom middleware 71
Migrating to Express v4.0.0 72

Using new middleware 72
server/configure.js 73
server/routes.js 76

Summary 76
Chapter 5: Dynamic HTML with Handlebars 77

Basic syntax for Handlebars 77
Views 78
Layouts 85
Partial views 87
Handlebars Helpers 89

Global helpers 89
View-specific helpers 90

Rendering the views 91
Summary 93

Chapter 6: Controllers and View Models 95
Controllers 95
View models 96
Updating the home controller 97
Updating the image controller 100

Displaying an image 100
Uploading an image 102

Helpers for reusable code 106
The sidebar module 106
The stats module 108
The images module 109
The comments module 110
Testing the sidebar implementation 111

Iterating on the UI 112
Summary 116

Chapter 7: Persisting Data with MongoDB 117
Using MongoDB with Node 118

Connecting to MongoDB 119
Inserting a document 120
Retrieving a document 121

Table of Contents

[iv]

Introducing Mongoose 122
Schemas 123
Models 124
Built-in validation 126
Static methods 128
Virtual properties 128
Connecting with Mongoose 129

Defining the schema and models 130
Models index file 132

Adding CRUD to the controllers 133
The home controller 134
The image controller 136

Index – retrieving an image model 137
Create – inserting an image model 141
Like – updating an image model 146
Comment – inserting a comment model 148
Wrapping it up 150

Helpers 150
Introducing the async module 151
The comments helper 151
The helper sidebar 155
Troubleshooting 157
The stats helper 158
The popular images helper 161

Iterating by adding an image removal capability 162
Adding a route 162
Adding a controller handler 162
Updating the Handlebars image page template 163
Updating the jQuery 164

Refactoring and improvements 165
Summary 166

Chapter 8: Creating a RESTful API 167
What is an API? 168
What is a RESTful API? 168
Introducing Postman REST Client 169

Installation instructions 169
A quick tour of Postman REST Client 170
Using the JSONView Chrome extension 173

Creating a Basic API server 174
Creating sample JSON data 175

Responding to GET requests 176
Receiving data – POST and PUT requests 178

Table of Contents

[v]

Removing data – DELETE 183
Consuming external APIs from Node.js 185

Consuming an API endpoint using Request 185
Summary 188

Chapter 9: Testing Your Code 189
Tools of the trade 189

Running tests with the Mocha framework 190
Asserting tests with Chai.js 192

Installing Chai.js as a devDependency 194
Spies and stubs with Sinon.js 194
Stubbing node modules with Proxyquire 197

Writing and running your first test 199
Writing a test helper 199

Testing the application 201
Testing the routes 202
Testing the server 204
Testing a model 207
Testing a controller 210

Spy and stub everything! 214
Summary 215

Chapter 10: Deploying with Cloud-based Services 217
Cloud versus traditional hosting 217

Infrastructure as a Service (IaaS) versus Platform as a Service (PaaS) 218
Introduction to Git 219
Deploying your application 220

Nodejitsu 220
Heroku 226
Amazon Web Services (AWS) 231

Create a MongoLab account and database 231
Create and configure the AWS environment 233

Microsoft Azure 236
Digital Ocean 242

Summary 244
Chapter 11: Single Page Applications with Popular
Frontend Frameworks 245

What is a Single Page Application? 245
Why use a frontend framework? 246

The TodoMVC project 247
Backbone.js 248

Table of Contents

[vi]

Ember.js 250
AngularJS 251

Frontend development tools 252
Automated build task managers 252
Dependency management 254
Modularity 255
HTML template-rendering engines 256
CSS transpiling 256

Testing and test-driven development 258
PhantomJS headless browser 258

Summary 259
Chapter 12: Popular Node.js Web Frameworks 261

Meteor 262
Sails 263
hapi 264
Koa 265
Flatiron 266
Summary 267

Index 269

Preface
My goal while writing Web Development with MongDB and Node.js was simple: to
empower you, the reader, with the tools and knowledge to be able to create web
applications from scratch using Node.js and MongoDB.

In this book, we take a hands-on approach to building a complete, real-world,
interactive web application. Each chapter will build upon the previous one, exposing
new concepts, technologies, and best practices until finally ending with a completed
application deployed to the cloud. Every line of code will be covered, and you are
expected to code along with each chapter. Doing so will give you valuable insight
into the world of web development using Node.js.

By the end of this book, I hope you have the expertise to tackle any project using
Node.js and MongoDB and are limited only by your imagination!

What this book covers
Chapter 1, Welcome to JavaScript in the Full Stack, introduces you to the world
of full stack JavaScript development and reviews what to expect in the remainder
of the book.

Chapter 2, Getting Up and Running, walks you through the necessary steps to
download, install, and configure your development environment.

Chapter 3, Node and MongoDB Basics, is a brief introduction to the basics of
JavaScript, Node.js, and MongoDB.

Chapter 4, Writing an Express.js Server, introduces you to the Express.js Node.js
Web Framework and is a walkthrough of the code necessary to write the main
application server.

Preface

[2]

Chapter 5, Dynamic HTML with Handlebars, teaches you how to create dynamic HTML
pages using Handlebars, the popular template-rendering engine.

Chapter 6, Controllers and View Models, walks you through writing the Controllers and
View Models for the main application, the core of the application's functionalities.

Chapter 7, Persisting Data with MongoDB, continues with our Controllers and View
Models, where we wrap all of the logic using Mongoose with MongoDB as the main
data layer for the application.

Chapter 8, Creating a RESTful API, reviews the concepts behind REST APIs and
introduces the Postman REST Client tool to test and interact with our own custom
Node.js API.

Chapter 9, Testing Your Code, introduces the tools and techniques to write automated
tests for our Node.js code.

Chapter 10, Deploying with Cloud-based Services, is a step-by-step walkthrough of
deploying your application to a number of popular cloud-based hosting services
such as Heroku, Microsoft Azure, and Amazon's AWS.

Chapter 11, Single Page Applications with Popular Frontend Frameworks, takes a look
at the current trend in thick client applications by learning more about popular
frontend single application frameworks such as Ember.js, AngularJS, and Backbone.
js. Additionally, you will learn about the popular build tools frontend developers use
to make their lives easier.

Chapter 12, Popular Node.js Web Frameworks, takes a look at some very popular and
robust alternatives such as Meteor and Sails, even though Express.js is one of the
most popular web frameworks for Node.

What you need for this book
In this book, the following software will be required:

• Operating systems:
 ° Windows XP or superior
 ° Mac OS X or superior
 ° Linux

Preface

[3]

• Miscellaneous:
 ° A standard text editor of choice
 ° A web browser, preferably Google Chrome

• A command-line terminal of choice

Who this book is for
This book is designed for developers of any skill level that want to get up and
running using Node.js and MongoDB to build full-featured web applications.
A basic understanding of JavaScript and HTML is the only requirement for this book.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"Make sure you've npm installed all of the required modules for this chapter and
that they are saved to your package.json file."

A block of code is set as follows:

models.Image.aggregate({ $group : {
 _id : '1',
 viewsTotal : { $sum : '$views' }
}}, function(err, result) {
 var viewsTotal = 0;
 if (result.length > 0) {
 viewsTotal += result[0].viewsTotal;
 }
 next(null, viewsTotal);
});

When we wish to draw your attention to a particular part of a code block,
the relevant lines or items are set in bold:

.upload-button {
 border-bottom: solid 2px #005A8B;
 background: transparent $sprite-bg no-repeat;
 @include radius(4px);
 cursor: pointer;

Preface

[4]

Any command-line input or output is written as follows:

$ node server.js

Server up: http://localhost:3300

Mongoose connected.

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "Users
demand more from their apps these days, and if you think about the application
we've written, the Like button is a perfect example."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to
have the files e-mailed directly to you.

Preface

[5]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list of
existing errata, under the Errata section of that title. Any existing errata can be viewed
by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

Welcome to JavaScript in
the Full Stack

What an exciting time to be a JavaScript developer! What was once only considered
a language to add enhancements and widgets to a webpage has since evolved into
its own full-fledged ecosystem. I believe Atwood's law says it best— any application
that can be written in JavaScript, will eventually be written in JavaScript. While this
quote dates back to 2007, it's never been more true than today. Not only can you use
JavaScript to develop a complete single-page web application such as Gmail, but you
will also see how we can achieve the following projects with JavaScript throughout
the remaining part of the book:

• How to completely power the backend using Node.js and Express.js
• How to persist data with a powerful database like MongoDB
• How to write dynamic HTML pages using Handlebars.js
• How to deploy your entire project to the cloud using services like

Heroku and AWS

With the introduction of Node.js, JavaScript has officially gone in a direction that
was never even possible before. Now, you can use JavaScript on the server, and you
can also use it to develop full-scale enterprise-level applications. When you combine
this with the power of MongoDB and its JSON-powered data, you can work with
JavaScript in every layer of your application.

One of the great advantages of developing with JavaScript in the "full stack" of a
web application is that you are using a consistent language and syntax. Frameworks
and libraries are no longer exclusive only to the frontend or backend but can be
integrated into other layers of the application as well.

Welcome to JavaScript in the Full Stack

[8]

Underscore.js is an extremely popular JavaScript library to work with collections
that is used equally on the backend with Node.js as much as on the frontend directly
within the browser.

JavaScript in the full stack of a web application

Node.js changed JavaScript forever
Back in 2009, Ryan Dahl gave a presentation at JSConf that changed JavaScript
forever. During his presentation, he introduced Node.js to the JavaScript community,
and after a roughly 45-minute talk, he concluded it, receiving a standing ovation
from the audience in the process. He was inspired to write Node.js after he saw a
simple file upload progress bar on Flickr, the image-sharing site. Realizing that the
site was going about the whole process the wrong way, he decided that there had to
be a better solution.

As stated on the Node.js homepage, the goal of Node is to provide an easy way to build
scalable network programs. It achieves this by providing an event-driven, nonblocking
IO model that is extremely lightweight. Compared to traditional web-serving
technologies that require a new CPU thread for every connection to the server that
would eventually max out the systems resources, Node instead uses a single thread
but doesn't block the I/O of the CPU. Thus, this allows Node to support tens of
thousands of concurrent connections. It's for this very reason that Node is so popular
with high-traffic web applications.

To see an example of just how lightweight Node can be, let's take a look at some
sample code that starts up an HTTP server and sends Hello World to a browser:

var http = require('http');
http.createServer(function (req, res) {
 res.writeHead(200, {'Content-Type': 'text/plain'});
 res.end('Hello World\n');
}).listen(8080, 'localhost');
console.log('Server running at http://localhost:8080');

Chapter 1

[9]

A few basic lines of code are all it takes to write a complete Node application.
Running it with a simple node app.js command will launch an HTTP server that is
listening on port 8080. Point any browser to http://localhost:8080, and you will
see the simple output Hello World on your screen! While this sample app doesn't
actually do anything useful, it should give you a glimpse of the kind of power you
will have while writing web applications using Node.js.

At its core, Node is very low-level. It consists of a small set of modules that do very
specific things and do them very well. These modules include tools to work with the
file system, networking with TCP and HTTP, security, and streams.

Asynchronous callbacks
One of the most powerful features of Node is that it is event-driven and
asynchronous. Code gets executed via callback functions whenever an event
is broadcast. Simply put, you assign a callback function to an event, and when
Node determines that the event has been fired, it will execute your callback function
at that moment. No other code will get blocked waiting for an event to occur.
Consider the following example to see asynchronous callbacks in action:

console.log('One');
console.log('Two');
setTimeout(function() {
 console.log('Three');
}, 2000);
console.log('Four');
console.log('Five');

Downloading the example code
You can download the example code files for all Packt books you have
purchased from your account at http://www.packtpub.com. If you
purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed directly to you.

In a typical synchronous programming language, executing the preceding code
will yield the following output:

One
Two
... (2 second delay) ...
Three
Four
Five

Welcome to JavaScript in the Full Stack

[10]

However, in JavaScript and Node, the following output is seen:

One
Two
Four
Five
... (approx. 2 second delay) ...
Three

The function that actually logs Three is known as a callback to the
setTimeout function.

Node Package Manager
Writing applications with Node is really enjoyable when you realize the sheer wealth
of information and tools at your disposal! Using Node's built-in package manager
npm, you can find literally tens of thousands of modules that can be installed and
used within your application with just a few keystrokes! You can view the library of
available modules by visiting http://npmjs.org. Downloading and installing any
module within your application is as simple as executing the npm install package
command. Have you written a module that you want to share with the world? Package
it up using npm, and upload it to the public npmjs.org registry just as easily! Not sure
how a module works that you downloaded and installed? The source code is right
there in your projects' node_modules/ folder waiting to be explored!

Networking and file IO
In addition to the powerful nonblocking asynchronous nature of Node, it also has
very robust networking and filesystem tools available via its core modules. With
Node's networking modules, you can create server and client applications that accept
network connections and communicate via streams and pipes.

Not just on the web
Node isn't just for web development! It can be a powerful solution to
create command-line tools as well as full-featured locally run applications that
have nothing to do with the Web or a browser. Grunt.js is a great example of a
Node-powered command-line tool that many web developers use daily to automate
everyday tasks such as build processes, compiling CoffeeScript, launching Node
servers, running tests, and more.

http://npmjs.org
npmjs.org

Chapter 1

[11]

In addition to command-line tools, Node has recently become increasingly
popular among the hardware crowd with the Nodebots movement. Johnny-Five
and Cylon.js are two popular Node libraries that exist to provide a framework to
work with robotics.

Real-time web with Socket.io
Node achieves real-time communication with Socket.io. Using Socket.io, you can
create features such as instant collaboration, which is similar to multiuser editing in
Google Docs. What was once achieved using cumbersome (and not real-time) long
polling can now be achieved using WebSockets. While WebSockets is a feature that
is only supported in modern browsers, Socket.io also features seamless fallback
implementations for legacy browsers.

Using this lightweight core, everything else is left to the developer—but don't let that
scare you. The beauty of working with Node is that there is a thriving community
developing and releasing modules every day via npm. As of this writing, npm has
over 61,000 packages available! Throughout this book, we will use some of the most
popular packages that help make writing web applications fun and easy!

The NoSQL movement
The term NoSQL has come to mean any kind of database that doesn't adhere to the
strict structures of a typical relational database such as Microsoft SQL, MySQL,
PostgreSQL, and so on. With a relational database, you are required to define ahead
of time the exact structure of your schema. This means that you must have defined
the exact number of columns, length, and datatype for every field in a table, and that
each field must always match that exact set of criteria.

With a NoSQL database server such as MongoDB, records are stored as JSON-like
documents. A typical document (record) in a MongoDB collection (table) might look
like the following code:

$ mongo
> db.contacts.find({email: 'jason@kroltech.com'}).pretty()

{
 "email" : "jason@kroltech.com",
 "phone" : "123-456-7890",
 "gravatar" : "751e957d48e31841ff15d8fa0f1b0acf",
 "_id" : ObjectId("52fad824392f58ac2452c992"),
 "name" : {

Welcome to JavaScript in the Full Stack

[12]

 "first" : "Jason",
 "last" : "Krol"
 },
 "__v" : 0
}

One of the biggest advantages of using a NoSQL database server such as MongoDB
is that it has a dynamic schema system, allowing records in a collection to be
completely different from one another.

Some advantages of working with MongoDB are:

• Dynamic schema design
• Fast querying and indexing
• Aggregate framework
• Sharding and replication

In addition, as MongoDB was written using a JSON-like document structure,
JavaScript becomes a powerful tool when working with queries and the interactive
shell mongo. Like Node, MongoDB is also built for high performance, making it
a great counterpart for building ever demanding, high traffic web and mobile
applications. Depending on your exact needs, MongoDB may or may not be the
right solution for your application. You should truly weigh the pros and cons of each
technology before making a decision to determine which technology is right for you.

Node and MongoDB in the wild
Both Node and MongoDB are extremely popular and active in the development
community. This is true for enterprises as well. Some of the biggest names in the
Fortune 500 space have fully embraced Node to power their web applications.
This is due in large part to the asynchronous nature of Node, which makes it a
great alternative for high traffic, high IO applications such as e-commerce websites
and mobile applications.

The following is just a small list of some big companies that are working with Node:

• PayPal
• LinkedIn
• eBay
• Walmart
• Yahoo!

Chapter 1

[13]

• Microsoft
• Dow Jones
• Uber
• New York Times

MongoDB's use in the enterprise sector is equally as impressive and wide reaching
with an increasing number of companies adopting the leading NoSQL database
server, such as:

• Cisco
• Craigslist Inc.
• Forbes
• FourSquare
• Intuit
• McAfee
• MTV
• MetLife
• Shutterfly
• Under Armour

What to expect from this book
The remainder of this book is going to be a guided tour that walks you through
creating a complete data-driven website. The website we create will feature almost
every aspect of a typical large-scale web development project. At its core, it will be
powered by Node.js using a popular third-party framework called Express, and it
will persist data using MongoDB.

In the first few chapters, we will cover the groundwork involved in getting the core
of the server up and serving content. This includes configuring your environment
so you are up and running with Node and MongoDB, and a basic introduction
to the core concepts of both technologies. Then, we will write a web server from
scratch powered by ExpressJS that will handle serving all of the necessary files
for the website. From there, we will work with the Handlebars template engine to
serve both static and dynamic HTML webpages. Diving deeper, we will make the
application persistent by adding a data layer where the records for the website will
be saved and retrieved via a MongoDB server. We will cover writing a RESTful API
so that third parties can interact with your application. Finally, we will go into detail
examining how to write and execute tests for all of your code.

Welcome to JavaScript in the Full Stack

[14]

Wrapping up, we will take a brief detour as we examine some popular,
emerging frontend technologies that are becoming increasingly popular
while writing single-page applications. These technologies include Backbone.js,
Angular, and Ember.js.

Last but not least, we will go into details of how to deploy your new website to the
Internet using popular cloud-based hosting services such as Heroku and Amazon
Web Services.

Summary
In this chapter, we reviewed what is to be expected throughout the remainder of this
book. We discussed the amazing current state of JavaScript and how it can be used
to power the full stack of a web application. Not that you needed any convincing
in the first place, but I hope you're excited and ready to get started writing web
applications using Node.js and MongoDB!

Next up, we will set up your development environment and get you up and running
with Node, MongoDB, and npm as well as write and launch a quick first Node app
that uses MongoDB!

Getting Up and Running
The first thing you need to take care of is to make sure your development
environment is equipped with the necessary requirements in order for you
to use both Node and MongoDB while launching the apps you write.

In this chapter, we will cover the following topics:

• Installing and testing Node.js
• Installing, configuring, and testing MongoDB
• Writing and launching a simple app

Environment assumptions and
requirements
For the remainder of this book, I will assume that you are using either a Mac with
OS X, Linux, or Windows 7 or 8. You will also need superuser and/or administrator
privileges on the computer, as you will be installing the Node and MongoDB server
software. The code and examples after this chapter will all be OS agnostic and should
work in any environment, assuming you have taken the steps I outline here so that
you are prepared ahead of time.

You will need a good text editor to write and edit the code. Any editor of your liking
will do. Personally, I am a huge fan of Sublime Text 3 (http://sublimetext.com). It
is a simple, lightweight editor that has great color-coding syntax support. However,
its true power comes from the unlimited plugins made available by other developers.
There is literally a plugin for everything in Sublime! VI and Notepad are also good
options if you want to stay super lightweight.

www.allitebooks.com

http://sublimetext.com
http://www.allitebooks.org

Getting Up and Running

[16]

Finally, you're going to need access to the command line. Linux and Mac have
access to the command line via the Terminal program. A great alternative on
Mac is iTerm2 (http://iterm2.com). For Windows, the default command-line
program (navigate to Start | Run and insert command) works but it isn't the
best. A great alternative to the terminal program on Windows is ConEmu
(http://conemu.codeplex.com). In addition to the standard Windows command
line, ConEmu allows you to run PowerShell—an alternative in a Windows
environment that replicates a lot of the standard functionality found in the Linux
shell. A great introduction to ConEmu, PowerShell, and the command line in
general for Windows users can be found at http://www.hanselman.com/blog/
ConEmuTheWindowsTerminalConsolePromptWeveBeenWaitingFor.aspx.

For the remainder of this book, any time I reference a command line or prompt, it
will look like the following:

$ command -parameters –etc

Output from above command will typically appear as the following lines.

With the command line, actual commands will always begin with
$ to denote that this is the prompt. Lines that follow and do not
begin with $ will denote output from the previous command.

Installing Node.js
Node.js can be easily installed by visiting the official Node website and accessing the
Downloads section at http://nodejs.org/download/.

Once there, be sure to download the correct version depending on your OS and CPU
(32 bit or 64 bit).

Mac OS X installation instructions
To determine which version of Node you want to download, you first need to
determine your processor type: 32 or 64 bit. You can do this by executing the
following command from a terminal:

$ sysctl hw | grep 64bit

hw.cpu64bit_capable: 1

If you get 1 in the response, then you are running a 64-bit CPU. If the response is 0,
then you are running the 32-bit version. Fortunately, there is a universal installer
specifically for Mac available from the Node website; however, if you wanted to
download the binary, at least now you know which to get.

http://iterm2.com
http://conemu.codeplex.com
http://www.hanselman.com/blog/ConEmuTheWindowsTerminalConsolePromptWeveBeenWaitingFor.aspx
http://www.hanselman.com/blog/ConEmuTheWindowsTerminalConsolePromptWeveBeenWaitingFor.aspx
http://nodejs.org/download/

Chapter 2

[17]

Once the download is complete, double-click on the .pkg file, which will launch the
Node installer (as shown in the following screenshot):

Proceeding through each step of the wizard should be fairly self-explanatory.
Note that the installation of Node also includes the installation of npm,
Node's Package Manager.

Windows 7 or 8 installation instructions
To determine which version of Node you want to download, you first need to
determine your processor type; that is, 32 or 64 bit. You can do this by executing
the following command on the command prompt:

$ wmic os get osarchitecture

OSArchiecture

64-bit

Getting Up and Running

[18]

Once the download is complete, double-click on the .msi file that will launch the
Node installer (as shown in the following screenshot):

Proceed through all the steps of the wizard. When you get to the custom setup
screen, you will notice that the installation wizard will install not only the Node.js
runtime, but also npm and configure a PATH variable (so that node and npm can be
executed from any folder via the command line).

Linux installation instructions
As there are so many different flavors and distributions of Linux available,
installing Node isn't quite straightforward. However, if you're running Linux to
begin with, then you are more than aware of this and probably comfortable with
a few extra steps.

To determine your CPU type, whether 32 or 64 bit, execute the following command
from the command line:

$ uname -m

x86_64

Chapter 2

[19]

This command will output the chipset architecture and processor type
(that is, Intel x86 with 64 bit).

Joyent has an excellent wiki on how to install Node on Linux using the many different
package manager options available. You can read that wiki by visiting https://
github.com/joyent/node/wiki/Installing-Node.js-via-package-manager.

For Ubuntu 12.04 to 13.04 as an example, the steps to install Node would be
as follows:

$ sudo apt-get update

$ sudo apt-get install python-software-properties python g++ make

$ sudo add-apt-repository ppa:chris-lea/node.js

$ sudo apt-get update

$ sudo apt-get install nodejs

Once those steps have completed, both Node and npm should be installed on
your system.

Confirming successful Node.js installation
Now that Node has been installed on your system, let's run a quick test to
ensure everything is working properly.

Access the command line via your Terminal program and execute the
following command:

$ node --version

v0.10.26

$ npm --version

1.4.3

Assuming your Node installation was successful, you should see the version
number that was installed in the output on the screen right under the command
you executed.

Note that your version numbers will most likely be more recent
than those printed in the preceding example.

https://github.com/joyent/node/wiki/Installing-Node.js-via-package-manager
https://github.com/joyent/node/wiki/Installing-Node.js-via-package-manager

Getting Up and Running

[20]

You can also launch the Node repl, a command-line shell that lets you execute
JavaScript directly:

$ node

> console.log('Hello world!')

Hello World!

Undefined

[press Ctrl-C twice to exit]

Bookmarking the online documentation
Be sure to point your browser to the following online documentation for Node and
bookmark it, as it will undoubtedly become a resource that you will want to access
on a regular basis:

http://nodejs.org/api/

Also, check out the npm registry, outlined in the following link, where you can
find tens of thousands of modules available for Node developers:

http://npmjs.org

Installing the MongoDB server
MongoDB can also be easily downloaded by visiting the official MongoDB website
and accessing the Downloads section at http://www.mongodb.org/downloads.

Depending on the version of MongoDB you downloaded, you
will want to replace <version> in the following sections with
the appropriate version number that matches your file.

Once there, be sure to download the correct version depending on your OS and
CPU (32 or 64 bit). You should have determined this in the previous steps when you
downloaded and installed Node. For Windows users, you can opt to download the
MSI installer file, which will make installation much simpler.

http://nodejs.org/api/
http://npmjs.org
http://www.mongodb.org/downloads

Chapter 2

[21]

Mac OS X installation instructions
After completing the download, open and extract the contents of the .tgz file.
You will want to move the extracted contents to a /mongodb destination folder.
You can do this either via the Finder or the command line, whichever you prefer.

Alternatively, MongoDB can be very easily installed using
Homebrew. Homebrew is referred to as the missing package manager
for OS X. If you don't have Homebrew installed, you can do so by
visiting http://brew.sh and following the guide. The remainder
of this section of the chapter assumes you are not using Homebrew,
but if you do, you can skip most of it by simply executing:
$ brew update

$ brew install mongodb

Then, you can proceed directly to the testing section of this chapter
for MongoDB.

The following commands will create a mongodb folder, and copy the contents of
the extracted tgz file to that folder:

$ sudo mkdir -p /mongodb

$ cd ~/Downloads

$ cp -R -n mongodb-osx-x86_64-<version>/ /mongodb

You will want to ensure that the location of the MongoDB binaries is configured
in your environment PATH so that you can execute mongod and mongo from any
working directory. To do this, edit the .bash_profile file in your home folder (~/)
and append the location for MongoDB to it. Your .bash_profile file should look
something like the following code:

export PATH=~/bin:/some/of/my/stuff:/more/stuff:/mongodb/bin:$PATH

If you don't have this line or are missing .bash_profile completely, you can create
one easily by executing the following line:

$ touch .bash_profile

$ [edit] .bash_profile

export PATH=$PATH:/mongodb/bin

http://brew.sh

Getting Up and Running

[22]

You will more than likely have a lot more than what I have in the preceding line.
The important thing is that you append:/mongodb/bin: before $PATH at the end.
The : is a delimiter between different paths (so it's likely that you will be adding
your path to the end of an existing list but before the trailing $PATH).

Next, you need to create a default data folder that MongoDB will use to store all data
documents. From the command line, execute the following:

$ sudo mkdir -p /data/db

$ chown 'id -u' /data/db

Once the files have been properly extracted to the /mongodb folder and the two
data folders created, you can start the MongoDB database server by executing the
following command from the command line:

$ mongod

...

Sun Mar 16 12:26:58.885 [initandlisten] waiting for connections on port
27017

This will dump a bunch of log statements while the server starts up, but ultimately it
ends with a line that says it's waiting for connections on port 27017.

That's it! Your MongoDB server is up and running. You can type in Ctrl-C to cancel
and shut down the server.

It's important to note that because you are performing local
development on your development machine and not a production
server, you don't require the MongoDB server to be always up and
running. This would be unnecessary strain on your machine during the
majority of the time you're not developing against the server. Because
of this, throughout the remainder of this book, you will always be
required to manually launch the server every time you launch code that
expects to connect to a MongoDB server. If you want, you can certainly
configure MongoDB to run locally as a service and be "always up", but
instructions to do so are beyond the scope of this chapter.

Windows 7 or 8 installation instructions
After completing the download, the MongoDB website will automatically redirect
you to a landing page with a link to the Windows Quick Start guide: http://docs.
mongodb.org/manual/tutorial/install-mongodb-on-windows/.

http://docs.mongodb.org/manual/tutorial/install-mongodb-on-windows/
http://docs.mongodb.org/manual/tutorial/install-mongodb-on-windows/

Chapter 2

[23]

It is highly recommended that you follow this guide as it will be the most up to date
and will generally be more detailed than what I can provide here.

During the installation, MongoDB will be installed to C:\Program Files\MongoDB
2.6 Standard\ by default—feel free to change this location to c:\mongodb\ as that
will make it easier to launch MongoDB from the command line in future.

Next, you need to create a default data folder that MongoDB will use to store all data
documents. Using Windows Explorer or the command prompt, whichever you are
most comfortable with, create the C:\data folder and then C:\data\db:

$ md data

$ md data\db

You can now start the MongoDB database server by executing the following
command from a prompt:

$ c:\mongodb\bin\mongod.exe...

Sun Mar 16 16:58:05.182 [initandlisten] waiting for connections on port
27017

Getting Up and Running

[24]

As you will manually be executing this command quite a lot
throughout the remainder of this book (as well as the remainder
of your MongoDB development in general), it will be easier to
configure this path in your environment variables so that you can
simply execute mongod without requiring the full path. You can
learn more about this by visiting http://www.howtogeek.
com/118594/how-to-edit-your-system-path-for-easy-
command-line-access/.

This should dump a bunch of log statements while the server starts up, but
ultimately it should end with waiting for connections on port 27017.

That's it! Your MongoDB server is up and running. You can type in Ctrl-C to
cancel and shutdown the server.

It's important to note that as you are performing local development
on your development machine and not a production server, you don't
need the MongoDB server to always be up and running. This will
be unnecessary strain on your machine for the majority of the time
you're not developing against the server. Because of this, throughout
the remainder of this book, it will always be a requirement that you
manually launch the server every time you launch code that expects
to connect to a MongoDB server. If you want, you can certainly
configure MongoDB to run locally as a service and be "always up",
but instructions to do so are beyond the scope of this chapter.

Linux installation instructions
Once again we are faced with a slightly more challenging installation process with
Linux versus Windows or Mac. The official website has great instructions on how
to install MongoDB on a number of different Linux distributions: http://docs.
mongodb.org/manual/administration/install-on-linux/.

We will continue to use Ubuntu as our flavor of choice, and use the APT package
manager for the installation:

$ sudo apt-key adv --keyserver hkp://keyserver.ubuntu.com:80 --recv
7F0CEB10

$ echo 'deb http://downloads-distro.mongodb.org/repo/ubuntu-upstart dist
10gen' | sudo tee /etc/apt/sources.list.d/mongodb.list

$ sudo apt-get update

$ sudo apt-get install mongodb-10gen

 http://www.howtogeek.com/118594/how-to-edit-your-system-path-for-easy-command-line-access/
 http://www.howtogeek.com/118594/how-to-edit-your-system-path-for-easy-command-line-access/
 http://www.howtogeek.com/118594/how-to-edit-your-system-path-for-easy-command-line-access/
http://docs.mongodb.org/manual/administration/install-on-linux/
http://docs.mongodb.org/manual/administration/install-on-linux/

Chapter 2

[25]

Once these steps are completed, MongoDB should be installed and ready to run on
your system. Execute the following command in a terminal to be sure:

$ mongod

Sun Mar 16 12:04:20 [initandlisten] waiting for connections on port 27017

Success! Your MongoDB server is up and running. You can type in Ctrl-C to cancel
and shut down the server.

It's important to note that you are performing local development on
your development machine and not a production server, you don't
need the MongoDB server to be always up and running. This would
be unnecessary strain on your machine during the majority of the time
you're not developing against the server. Because of this, throughout the
remainder of this book, it will always be a required that you manually
launch the server every time you launch code that expects to connect to
a MongoDB server. If you want, you can certainly configure MongoDB
to run locally as a service and be "always up" but instructions to do so
are beyond the scope of this chapter.

Confirming successful MongoDB installation
Now that MongoDB has been installed on your system, let's run a quick test
to ensure everything is working properly.

Access the command line via your terminal program and execute the
following command:

$ mongod --version

db version v2.4.8

Sun Mar 16 14:17:18.280 git version: a123b456c789d012e345f678

$ mongo --version

MongoDB shell version 2.4.8

Assuming your MongoDB installation was successful, you should see the
version number that was installed in the output on the screen right below
the command you executed.

Note that your version numbers will most likely be more recent than
those printed in the preceding example.

Getting Up and Running

[26]

Bookmarking the online documentation
Be sure to point your browser to the following online documentation for MongoDB
and bookmark it, as it will undoubtedly become a resource that you will want to
access on a regular basis:

http://docs.mongodb.org/manual/.

Writing your first app
Now that you have everything installed and confirmed that it's all working, you can
write your first quick app that will use both Node and MongoDB. This will prove
that your environment is good to go, and you're ready to get started. In addition, it
will give you a brief taste of the world of Node and MongoDB development! Don't
worry if a lot of the following is confusing or just doesn't make sense to you—it will
all be made clear throughout the rest of the book!

Step one is to create a folder that you can work from while creating files and
installing Node modules. From your home or development folder, execute the
following commands:

$ mkdir testapp

$ cd testapp

The code
The first thing you need to do before you write any code is download any modules
you plan to use with your app from npm. Since this is a basic app, you'll only
need to use the MongoDB Node driver. You can easily install this by executing
the following command:

(term_1)$ npm install mongodb

After npm installs the MongoDB driver, you can list the contents of the directory,
and you'll see that a new folder named node_modules was created. This is where,
surprisingly enough, all node modules are stored whenever you install them from
npm. Inside the node_modules folder should be a single folder named mongodb.

For the purposes of this demo, it's going to be a little easier if you
have three separate terminal windows open. I've labeled each with
(term_N) to make things a little more clear as we go.

http://docs.mongodb.org/manual/

Chapter 2

[27]

Now let's write a simple app to test things out. This app is going to basically connect
to our locally running MongoDB server, insert a few records as seed data, and then
output those same records to the screen. The code should give you some insight into
the use of callbacks and the potential pitfall of Node's async nature.

You can download a gist of the following code at http://bit.ly/1nvTVcM.

Using your editor of choice, create a new file named app.js, save it to the same
location you executed npm install, and insert the following complete set of code:

var MongoClient = require('mongodb').MongoClient;

First, we require the MongoDB Node driver that you installed via npm. require is
a Node.js convention to bring in external dependencies—similar to using or import
in other languages:

var dbhost = 'mongodb://localhost:27017/test',
 myCollection = 'chapter2';

Next we declare a dbhost variable for the database server information and
collection (table) you want to work with. Here, test is the database you want
to use and chapter2 is the collection. In MongoDB, if you reference and try to
use a collection that doesn't exist, it will automatically be created.

The seedData function will first check to see whether we already have any records in
our collection or not. If the collection is empty, a few sample records will be inserted.
Note that the parameters for this function are the database and a callback function.
The callback function will be called once the work is finished:

var seedData = function(db, callback) {
 db.collection(myCollection).find({}, {}, {})
 .toArray(
 function(err, docs) {
 if (docs.length <= 0) {
 console.log('No data. Seeding...');

 // count each record as its inserted
 var ihandler = function(err, recs) {
 if (err) throw err;
 inserted++;
 }

 var toinsert = 2,
 inserted = 0;

http://bit.ly/1nvTVcM

Getting Up and Running

[28]

 // perform a MongoDB insert for each record
 db.collection(myCollection).insert({
 'Title': 'Snow Crash',
 'Author': 'Neal Stephenson'
 }, ihandler);
 db.collection(myCollection).insert({
 'Title': 'Neuromancer',
 'Author': 'William Gibson'
 }, ihandler);

 // wait for the 2 records above to be finished
 // inserting
 var sync = setInterval(function(){
 if(inserted === toinsert) {
 clearInterval(sync);
 callback(db);
 }
 }, 50);
 return;
 }
 callback(db);
 return;
 }
);
}

Take note of the use of setInterval. This is used because Node by its very nature
is asynchronous, which means it will execute all of the code line by line and won't
stop and wait for anything to finish. Since our callback might get called before we
finish inserting our records (inserts to the MongoDB server might take longer than
our lines of code can execute). We will implement a simple count mechanism that
will count the number of records inserted and compare it to the number of records
expected to be inserted. This will occur in a loop every 50 milliseconds. Once the fifth
and final record has been inserted, our callback will then be called with the database
object passed into it as a parameter.

Using setInterval like this is actually a bad practice. Normally,
we would rely on a third-party module or framework to handle
a situation like this to prevent the need for intervals as well as
improve readability. I only included it for the sake of brevity.

Chapter 2

[29]

The showDocs function will basically connect to the database using the same
collection name we defined earlier, and loop through every record returned
and output the information to the screen using a basic console.log():

var showDocs = function(db) {
 console.log("Listing books:");
 var options = {
 sort: [['Title',1]]
 };

 // find and return an array of all records in the collection
 db.collection(myCollection).find({}, {}, options)
 .toArray(
 function(err, docs) {
 if (err) throw err;

 // for each item in the collection, print the title
and author
 for(var d = 0; d < docs.length; d++) {
 console.log(docs[d].Title + '; ' + docs[d].
Author);
 }

 db.close();
 }
);
}

Finally, we will use the actual MongoClient that we required in the very first
line of the app and use its connect() method. The callback that is executed once
the connection is established is defined right inline using an anonymous function.
This function calls seedData and passes it the db object as well as the callback we
want to use; in this case, our showDocs function:

MongoClient.connect(dbhost, function(err, db){
 if (err) throw err;

 // once connected, execute the seedData function to start the app
 seedData(db, showDocs);
});

Ironically, even though the MongoClient.connect() code is declared at the bottom
of the file, it's actually the first set of code to execute. In the next chapter, you will
learn how to write your own modules that you can require so that the seedData
and showDocs functions exist in separate files.

Getting Up and Running

[30]

Launch the sample app
Once you have the complete code saved to app.js, it's time to execute it and see
what happens. However, before you can launch an app that clearly relies on a
connection to MongoDB, you need to first boot up a server:

(term_2)$ mongod

In Windows, if you haven't set a PATH variable for mongod, you
may need to use the full path while executing MongoDB, which is
c:\mongodb\bin\mongod.exe. For your needs, the remainder
of this book will refer to the mongod command, but you may
always need to execute the full path in each instance.

Now to launch the app itself, execute the following command:

(term_1)$ node app.js

When the app first executes, you should see the following output:

No data. Seeding...

Listing books:

Neuromancer; William Gibson

Snow Crash; Neal Stephenson

If you were to run the app again, you will see that the No data. Seeding...
message doesn't appear. This is because our app is smart enough to check to make
sure it doesn't need to insert the records every time it runs (only whenever there is
no data in the collection).

Check the actual database
Let's take a quick look at the database itself to see what happened during the
execution of the app. Since the server is currently up and running, we can connect
to it using the mongo shell—a command line interface to the MongoDB server.
Execute the following commands to connect to the server using mongo, and run a
query against the chapter2 collection:

(term_3)$ mongo

MongoDB shell version: 2.4.8

connecting to: test

Chapter 2

[31]

> show collections

chapter2

system.indexes

> db.chapter2.find().pretty()

You should see something similar to the following output that lists each of the
records that were inserted during the seedData function of the app:

{
 "Title" : "Snow Crash",
 "Author" : "Neal Stephenson",
 "_id" : ObjectId("5326268a4937f98403fca895")
}
{
 "Title" : "Neuromancer",
 "Author" : "William Gibson",
 "_id" : ObjectId("5326268a4937f98403fca896")
}

Note that the use of .pretty() is simply a mongo shell command that properly
formats the output of any queries you execute. Without it, the preceding output
would have been displayed as a single line and would have been fairly unreadable.

Summary
In this chapter, we took time to make sure your development environment was
properly configured with both the Node runtime environment as well as the
MongoDB server. After making sure both were properly installed, we wrote a
basic app that utilized both technologies.

The app connected to a locally running MongoDB server, checked for the existence
of a specific set of data, and if it wasn't found, sample records were inserted
automatically. It then retrieved those same records and displayed them to the
screen, which were sorted alphabetically.

Now that the tedious but necessary tasks of set up and installation are out of the
way, we can move on to some fun and get started with learning! In the next chapter,
we will review a primer on the JavaScript language and understand the basics of
Node. Then, we will review basic Create, Read, Update, Delete (CRUD) operations
with MongoDB using the mongo shell.

Node and MongoDB Basics
Before we dig in and start building a full-blown web application using Node and
MongoDB, it's important that we review some of the basics first. This chapter will
give you a crash course on the syntax and important topics. It is broken down into
two parts where the first half focuses on JavaScript or Node and the second half covers
MongoDB. You will gain insight into some of the more common and powerful tools
available to you, and we will review a lot of sample code to get you up to speed.

In this chapter, we will review the following topics:

• Fundamentals of the JavaScript language
• The basics of NodeJS
• Node's Package Manager, npm
• The basics of MongoDB

By the end of this chapter, you should have a solid understanding of the syntax and
how to use both Node and MongoDB. There's a lot to cover, so let's get started.

A JavaScript Primer
Node.js is just JavaScript on the server. The language syntax and tools you are used
to with coding JavaScript on the browser will work verbatim on the server. Node.
js has additional tools that are only available on the server, but the language and
syntax again are the same. I'm assuming you have a general understanding of the
basic JavaScript syntax, but I will introduce JavaScript to you with a very brief
primer on the language just in case.

In general, JavaScript is a fairly simple language when it comes to syntax, and you
only need to know a few important elements.

Node and MongoDB Basics

[34]

Declaring variables
The most basic thing you can do in pretty much any programming language is
declare a variable. Unlike most other languages, JavaScript is a dynamically typed
language, which means when you declare a variable, its value can be of any type and
can change during the course of its lifetime. However, in contrast, a strongly typed
language dictates that a variable defined as a type of string must always be a string
and must always have a value of a string.

To declare a variable in JavaScript, simply use the var keyword before your
variable name:

var myVariable; // declaring a variable with no value

var myOtherVariable = 'Hello!';
var myFirstName = "Jason";
var myLastName = "Krol";
//note that strings can use ' or " interchangeably
var myFullName = myFirstName + ' ' + myLastName;
// => Jason Krol
// addition with strings will concatenate

var someNumber = 1,
 anotherNumber = 25;
/* note that you can declare multiple variables separated with commas
*/
var total = someNumber + anotherNumber; // => 26
// addition with numbers will perform Math
whatIfIForgetVar = "uh oh";

As you can see in the preceding code snippet, there are a number of options available
when declaring variables. JavaScript is pretty forgiving for the most part, as you
can use single and double quotes interchangeably (although not recommended) as
long as they match. You can declare every variable using a var keyword per line,
or you can separate a list of multiple variables with a comma using a single var.
While not mandatory, it's expected that every line of code in JavaScript ends with
a semicolon (;). Without a semicolon, the code will still work, but it may produce
unwanted results.

A quick gotcha is in there with the whatIfIForgetVar variable. Without the var
keyword, the variable is still defined, however its scope is set globally. This is bad
as it can clash with another globally scoped variable of the same name! JavaScript
follows function-level scoping, which is somewhat different from other languages.

Chapter 3

[35]

Always define your variables using the var keyword, and pay attention to the
function that variables are being defined in. With the preceding sample code, we
actually never defined a function and just started writing code. This means that
without a base function to execute in, the code itself will actually belong to the global
window object. Generally, it is considered a bad practice to ever write code directly
against a global scope like this.

Declaring functions
Using the same var keyword, you can define functions in the same way as variables.
The only difference is that you use the function signature to define your function:

function sayHello() {
 console.log('Hello!');
}
// or
var sayHello = function() {
 console.log('Hello!');
}

Both methods are almost identical in the preceding sample code. The first method is
the most common way to define a function; however, you can use the var keyword
if you want to treat your function like a variable (that is, pass it as a parameter to
another function and so on).

You will then call your named function by simply using the function (or variable)
name, followed by open and close parentheses:

sayHello();

This function will simply log the Hello! string. Functions can accept any number of
parameters and can return any value (or not). Functions can be called from within
other functions. Functions can also be passed as parameters to other functions:

var doWork = function(val) {
 var half = val / 2;
 // do more work...
}
var someValue = 20;
doWork(someValue);

var fullName = function(firstName, lastName) {
 return firstName + ' ' + lastName;
}

www.allitebooks.com

http://www.allitebooks.org

Node and MongoDB Basics

[36]

console.log(fullName('Jason', 'Krol'));
// => Jason Krol

var getFirstName = function() {
 return 'Jason';
}
var getLastName = function() {
 return 'Krol';
}

// accepting functions as parameters to be called later:
function findFullName(firstName, lastName) {
 var fname = firstName();
 var lname = lastName();
 console.log(fname + ' ' + lname);
}
findFullName(getFirstName, getLastName);
// => Jason Krol

Declaring objects
Creating an empty object in JavaScript is one of the easiest things you can do:

var myObject = {}; // that's it!

By simply using the open and close braces, { }, you have created a brand new
object. Using this new object, you can assign any properties or methods you want:

var person = {};
person.firstName = 'Jason'; // properties
person.lastName = 'Krol';

person.fullName = function() { // methods
 return this.firstName + ' ' + this.lastName;
}
person.colors = ['red', 'blue', 'green']; // array property

You can see in the preceding code that we defined a basic object called person and
assigned it some properties and a function. It's important to note the use of the this
keyword in the fullName function. The this keyword refers to the object that the
function is assigned to.

// define properties during declaration
var book = {
 title: 'Web Development with MongoDB and NodeJS',

Chapter 3

[37]

 author: 'Jason Krol',
 publisher: 'Packt Publishing'
};
console.log(book.title);
// => Web Development with MongoDB and NodeJS
book.pageCount = 150; // add new properties

Here, we instantiated a new object called book but defined some properties at the
same time. We added another property a little later.

Objects can be nested with infinite possibilities, as shown in the following code:

var jason = {
 name: 'Jason Krol'
};
var book = {
 title: 'Web Development with MongoDB and NodeJS',
 publisher: 'Packt Publishing',
 author: jason
};
console.log(book.author.name);
// => Jason Krol

Functions are objects
In JavaScript, functions are considered first-class citizens. What this means is
that a function by itself is an object, so it can be treated as such and extended
with properties and additional functions. Here, we will take a standard function
(in this case, myFunction). We will assign this function a property (timesRun),
just like we would for any other object during its execution, and show how you
can refer to that property later:

var myFunction = function() {
 if(this.timesRun)
 this.timesRun += 1;
 else
 this.timesRun = 1;

 // do some actual work

 console.log(this.timesRun);
}

Node and MongoDB Basics

[38]

myFunction();
// => 1;
myFunction();
// => 2;
myFunction();
// => 3;

console.log(myFunction.timesRun);
// => undefined

Note the last line where we tried to log the timesRun property of myFunction but
received undefined in the output. This is because the property is privately scoped
to the function so it is only visible from within the function (that is, only visible to
the code executing inside the function).

Anonymous functions and callbacks
Often, you will need to use a temporary function that you don't necessarily want to
declare ahead of time. In this type of a scenario, you can use an anonymous function,
which is simply a function that is declared at the time you need it (this function
isn't assigned to a variable, so it has no way of being referenced to later). The most
common use of anonymous functions is when they are defined as a parameter to
another function (most notably when used as a callback).

One of the most common places to use an anonymous function (which also acts as
a callback even if you didn't realize it) is with setTimeout or setInterval. These
are two standard JavaScript functions that will execute code after a specified delay
(in milliseconds) or repeat the execution of code every specified delay. Here is an
example of one of them, setTimeout, using an anonymous inline function:

console.log('Hello...');
setTimeout(function() {
 console.log('World!');
}, 5000);
// => Hello...
// (5000 milliseconds i.e. 5 second delay)
// => World!

You can see that the anonymous function was passed as the first parameter to
setTimeout because setTimeout expects a function. You can, if you so desire,
declare the function ahead of time as a variable and pass that to setTimeout
instead of the inline anonymous function:

var sayWorld = function() {
 console.log('World!');

Chapter 3

[39]

}
setTimeout(sayWorld, 5000);
// (5 second delay)
// => World!

The anonymous function just acts as a clean inline disposable function.

Callbacks are important because one of the most powerful (and confusing)
features of JavaScript is that it's asynchronous. This means that every line executes
sequentially, but it doesn't wait around for code that might be taking longer than
it should (even if by design). Consider the following idea: you want to call two
functions sequentially; however, the first function may take a while (maybe it makes
a network call, or performs a long loop). What happens if the second function is
executed before the first is finished? The answer lies in the following code:

var someValue;
var myFunction = function(){
 // change someValue eafter 5 seconds
 setTimeout(function() {
 someValue = someValue / 2;
 }, 5000);
}

someValue = 100;
myFunction();
console.log(someValue);
// => 100

When your code executes myFunction, it will actually wait 5 seconds before it
divides the someValue variable in half. However, console.log on the following line
of the function call will execute immediately after. This is contrary to our desired
effect, which is to have the console.log show the value of someValue after the work
on it has been performed via myFunction. The solution to this is to use a callback. An
anonymous function will be passed to myFunction and will only be executed once
myFunction has actually finished execution:

var someValue;
var myFunction = function(callback){
 // change someValue after 5 seconds
 setTimeout(function() {
 someValue = someValue / 2;
 callback(someValue);
 }, 5000);
}

Node and MongoDB Basics

[40]

someValue = 100;
myFunction(function() {
 console.log(someValue);
});
// => 50

Arrays
Arrays work the same way in JavaScript as they do in pretty much any other
language. They are zero indexed, and you can declare a variable as an empty
array or prepopulated array. You can manipulate the items in an array, and
arrays are not fixed in length:

var favFoods = ['pizza', 'cheeseburgers', 'french fries'];

var stuff = []; // empty array
var moreStuff = new Array(); // empty array
var firstFood = favFoods[0]; // => pizza

// array functions:
favFoods.push('salad'); // add new item
// => ['pizza', 'cheeseburgers', 'french fries', 'salad']
favFoods.pop(); // remove the last item
// => ['pizza', 'cheeseburgers', 'french fries']
var first = favFoods.shift(); // remove the first item
// => first = 'pizza';
// => favFoods = ['cheeseburgers', 'french fries']

Conditions and comparison operators
The most common condition statement you will write in JavaScript is the if
statement. All block-level code that follows an if statement should be wrapped in
{ and }. This rule extends to pretty much all code structures in JavaScript. In an if
statement, any value greater or less than zero, not null, and not undefined equates
to "truthy". 0, null, undefined, or an empty string equates to "falsey".

There are a number of comparison operators available, and understanding the
difference among these will matter when it comes to a random bug that you spend
way too much time trying to figure out because you had == instead of ===:

var x = 5;
== equal to x == 5 true, x == '5' true, x == 8 false
=== exactly equal x === 5 true, x === '5' false

Chapter 3

[41]

!= not equal to x != 6 true, x != '5' false
!== not equal to exactly

>, <, >=, <= greater than, less than, greater than or equal
to, less than or equal to

The main difference to understand is that == and != are type indifferent. So, an
integer of 5 is equal to a string of '5'. However, === and !=== are type specific.
So, a string of '5' is not equal to an integer of 5 (when compared using ===):

if(1 === 1)
 doWork();

var myVar = 1;
if(myVar > 0)
{
 myVar = myVar * 2;
 doWork(myVar);
} else
 doWork(0);

if (myVar === 0) {
 doWork();
} else if (myVar > 0 && myVar < 10) { // && is AND
 var val = doNothing();
 if (val || myVar === 5) { // || is OR
 lastMinuteCleanup();
 }
} else {
 var errorcode = abort();
 if (!errorcode) { // ! is NOT
 console.log('There was an error!');
 }
}

Flow
The basic control of flow within JavaScript is going to be handled by if statements
and any number of looping control flow statements available. A basic example of
for loop is as follows:

var myVar = 0;
for(var i = 0; i < 100; i += 1) {
 myVar = i;

Node and MongoDB Basics

[42]

 console.log(myVar);
}
// => 1 2 3 4 5 6 7 8 ... 100

Additional loops are available in JavaScript as follows:

var x = 0;
do {
 x += 1;
 console.log(x);
} while (x < 100);
// => 1 2 3 4 5 6 7 8 ... 100

while (x > 90) {
 x -= 1;
 console.log(x);
}
// => 99 98 97 96 95 94 93 92 91 90

JSON
JSON, or JavaScript Object Notation, is the standard syntax used when dealing
with data in JavaScript as well as most other languages and web services. The basic
premise of JSON is that it looks exactly like a standard JavaScript object with a few
strict exceptions:

• JSON is pure text. There are no datatypes with properties; that is, date values
are stored as strings and so on.

• All names and string values must be in double quotes.
• There can be no functions as properties.

Let's take a quick look at a pretty standard JSON object:

{
 title: 'This is the title',
 description: 'Here is where the description would be',
 'page-count': 150,
 authors: [
 { name: 'John Smith' },
 { name: 'Jane Doe' },
 { name: 'Andrea Johnson' }
],
 id: '1234-567-89012345'
}

Chapter 3

[43]

If you are familiar at all with XML, JSON is somewhat similar, except it is much
easier to read and make sense out of. As described best by the ECMA, JSON is a
text format that facilitates structured data interchange between all programming languages.

The basics of NodeJS
With the basics of JavaScript out of the way, let's focus on some of the basics
of Node.

Event driven
At its core, one of the most powerful features of Node is that it is event driven.
This means that almost all code you write in Node is going to be written in a way
that is either responding to an event or is itself firing an event (which in turn will
fire off other code listening for that event).

Let's take a look at code that we'll write in a later chapter that handles connecting to
a MongoDB server using Mongoose, a popular Node.js MongoDB ODM module:

mongoose.connect('mongodb://localhost/MyApp');
mongoose.connection.on('open', function() {
console.log("Connected to Mongoose...");
});

First, we tell our mongoose object to connect to the server provided as a string
parameter to the function. Connecting will take an undetermined amount of
time though, and we have no way of knowing how long. So, what we do is bind
a listener to the 'open' event on the mongoose.connection object. With the use
of the on keyword, we are indicating that when the mongoose.connection object
triggers an 'open' event, it executes the anonymous function that was passed in as
the parameter.

Asynchronous
Earlier, we reviewed the idea of asynchronous JavaScript code in the browser using
setTimeout—the principles apply even more in the world of Node. As you might be
making a number of network-dependent connections to different REST API services,
database servers, and anything else, it's important that your code can execute
smoothly and has proper callback usage in place whenever each service responds.

Node and MongoDB Basics

[44]

Require and modules
In an effort to make code as modular and reusable as possible, Node uses a module
system that allows you to better organize your code. The basic premise is that you
write code fulfilling a single concern and export this code as a module that serves
that single purpose. Then, whenever you need to use that code elsewhere in your
code base, you would require that module:

// ** file: dowork.js
module.exports = {
 doWork: function(param1, param2) {
 return param1 + param2;
 }
}

// ** file: testing.js
var worker = require('./dowork'); // note: no .js in the file

var something = 1;
var somethingElse = 2;

var newVal = worker.doWork(something, somethingElse);
console.log(newVal);
// => 3

Using this system, it's simple to reuse the functionality in a module (in this case, the
dowork module) in any number of other files. Furthermore, the individual files of
a module act as a private namespace. Any variables declared and used within the
module file are private to that module and not exposed to any code that uses the
module via require().

This system extends infinitely as well. Within your modules, you can require other
modules and so on and so forth.

The NodeJS core
The NodeJS core literally has hundreds of modules available for you to use while
writing your applications. These include the following:

• Events
• Filesystem
• HTTP
• Net
• Streams
• Timers

Chapter 3

[45]

Definitely make sure to check out the online docs on Node (at http://nodejs.org/
api) to see the full list of modules available in Node's core and see plenty of sample
code and explanations.

Installing modules using npm
The module system in Node is so powerful that consuming a third-party module
written by other developers is a piece of cake. Node includes its own package
manager called npm, which is a registry that currently contains over 60,000 unique
modules written in Node. These modules are completely open source and available
to you via a few short commands. In addition, you can release your own personal
modules via npm and allow anyone in the world to use your feature!

Let's say you wanted to include the popular web framework Express in your project
(the one we will be using later in this book). There are simply two steps required to
download a module and use it in your code:

$ npm install express
// ** file: usingnpm.js
var express = require('express);

And that's it! Literally, it's that simple! From the command line of the folder where
your project is located, simply execute npm install package-name, and the
package will be downloaded from npm and stored in a folder called node_modules
within your project. If you browsed to the node_modules folder, you will find a
folder for the package you installed, and within that folder, you will find the raw
source code for the package itself. Once the package is downloaded, it's as simple
as using require() from within your code.

There may be times when you want to install a Node package globally, for example,
when using a popular command-line build tool called Grunt.js. To install an npm
package globally, simply include the -g or --global flag, and the module will be
installed as a global executable instead. When installing npm packages globally,
the source files for the package are not stored within the node_modules folder of a
specific project, but instead within a node_modules folder in a system directory of
your machine.

A really powerful feature of npm is that it allows for a quick, easy, and consistent
way for other developers to boot up your code in their local environment.
Node projects typically include a special file called package.json that includes
information about the project as well as a list of all npm packages that the project
depends on. A developer with a copy of your local code can simply execute npm
install to have every dependency downloaded and installed locally using this file.

http://nodejs.org/api
http://nodejs.org/api

Node and MongoDB Basics

[46]

The npm install flag --save or --save-dev is required if you want the dependency
you are installing to be saved to the package.json file. If you are starting a new
project and don't want to create a package.json file by hand, you can simply
execute npm init and answer a few quick questions to get a default package.json
file quickly set up. You can leave every question blank during init and accept the
default values if you want:

$ npm init

$ npm install express --save
$ npm install grunt --save-dev
$ cat package.json
{
 "name": "chapter3",
 "version": "0.0.0",
 "description": "",
 "main": "index.js",
 "scripts": {
 "test": "echo \"Error: no test specified\" && exit 1"
 },
 "author": "",
 "license": "ISC",
 "dependencies": {
 "express": "^3.5.1"
 },
 "devDependencies": {
 "grunt": "^0.4.4"
 }
}

Note that the dependencies and devDependencies sections have express and
grunt listed. The difference between these two sections is that the dependencies
section is absolutely critical for the app to function properly. The devDependencies
section has only packages that need to be installed for a developer to use during
the development of the project (such as Grunt for various build steps, testing
frameworks, and so on).

The basics of MongoDB
Since MongoDB is largely powered by JavaScript, the mongo shell acts as a
JavaScript environment. In addition to being able to execute regular Mongo queries,
you can also execute standard JavaScript statements. Most of the items mentioned
earlier in the JavaScript primer apply directly to the mongo shell as well.

Chapter 3

[47]

In this next section, we will focus primarily on the various ways to perform standard
create, read, update, delete (CRUD) operations via the mongo shell.

The mongo shell
To access the mongo shell, simply execute mongo from any terminal. The mongo shell
requires the mongod server to be currently running and available on the machine as
the first thing it does is connect to the server:

$ mongo

MongoDB shell version: 2.4.5

connecting to: test

>

By default, when you first launch Mongo, you are connected to the local server and
set to use the test database. To display a list of all databases on the server, use the
following command:

> show dbs

To switch databases to any of those listed in the output of show dbs, use the
following command:

> use chapter3

switched to db chapter3

An interesting thing to make note of is that if you use use on a database that doesn't
exist, one is instantly created automatically. If you are using an existing database and
want to view a list of collections in the database, execute the following command:

> show collections

In the case of my chapter3 database, I had no existing collections since it was
automatically generated as a new database for me.

Inserting data
Since we are working with the chapter3 database that is brand new, there are
currently no collections in the database. You can use any collection (table) you
want by simply referring to a new collection name with the db object:

> db.newCollection.find()

>

Node and MongoDB Basics

[48]

Performing a find operation on an empty collection simply returns nothing.
Let's insert some data so we can experiment with some queries:

> db.newCollection.insert({ name: 'Jason Krol', website: 'http://
kroltech.com' })
> db.newCollection.find().pretty()
{
 "_id" : ObjectId("5338b749dc8738babbb5a45a"),
 "name" : "Jason Krol",
 "website" : "http://kroltech.com"
}

After we perform a simple insertion (of basically a JavaScript JSON object), we
perform another find operation on the collection and get our new record returned
this time with an additional _id field added. The _id field is Mongo's method
of tracking a unique identifier for every document (record). We also chained the
pretty() function to the end of the find that outputs the results a little more nicely.

Go ahead and insert a few more records so you have some data to play with in the
next section when we go over querying.

Querying
Querying and searching for documents in a MongoDB collection is pretty
straightforward. Using the find() function by itself with no parameters will
return every document in the collection. To narrow down the search results, you
can provide a JSON object as the first parameter with as much or as little specific
information to match against, as shown in the following code:

> db.newCollection.find({ name: 'Jason Krol' })

{ "_id" : ObjectId("533dfb9433519b9339d3d9e1"), "name" : "Jason Krol",
"website" : "http://kroltech.com" }

You can include additional parameters to make the search more precise:

> db.newCollection.find({ name: 'Jason Krol', website: 'http://kroltech.
com'})

{ "_id" : ObjectId("533dfb9433519b9339d3d9e1"), "name" : "Jason Krol",
"website" : "http://kroltech.com" }

Note that with each result set, every field is included. If you want to only return a
specific set of fields with the result, you can include a map as the second parameter
to find():

> db.newCollection.find({ name: 'Jason Krol' }, { name: true })

{ "_id" : ObjectId("533dfb9433519b9339d3d9e1"), "name" : "Jason Krol" }

Chapter 3

[49]

> db.newCollection.find({ name: 'Jason Krol' }, { name: true, _id: false
})

{ "name" : "Jason Krol" }

Note that the _id field will always be included by default unless you specifically
state that you don't want it included.

Additionally, you can use query operators to search for things that are within
ranges. These include greater than (or equal to) and less than (or equal to). If you
wanted to perform a search against a collection of homework, and you wanted to
find every document with a score within the B range (80-89), you can execute the
following search:

> db.homework_scores.find({ score: { $gte: 80, $lt: 90 } })

Finally, you can use regex while performing a search to return multiple
matching documents:

> db.newCollection.find({ name: { $regex: 'Krol'} })

The preceding query will return every document that contains the word Krol.
You can get as advanced as you want with the regex statements.

If you knew that you were going to be returning multiple documents on a query and
only wanted the first result, use findOne() in place of a regular find() operation.

Updating data
To update a record, use the update() function but include a find query as the
first parameter:

> db.newCollection.update({ name: 'Jason Krol' }, { website: 'http://
jasonkrol.com' })

There's a bit of a catch here. If you perform a new find({ name: 'Jason Krol'
}) operation, something strange happens. No data is returned. What happened?
Well, the second parameter in the update() function is actually the new version of
the complete document. Since we only wanted to update the website field, what
actually happened was that the document that was found was replaced with the new
version that consists of only the website field. To reiterate, the reason this happens
at all is because with NoSQL such as MongoDB, the document does not have a set
number of fields (like a relational database does). To fix this problem, you should use
the $set operator instead:

> db.newCollection.update({ name: 'Jason Krol' }, { $set: { website:
'http://jasonkrol.com'} })

Node and MongoDB Basics

[50]

There may be a time when you want to update a document, but the document
itself may or may not exist. What happens when the document does not exist, and
you'd like for a new one to be created instantly based on the updated values you
provide? Well, there's a handy function just for that. Pass {upsert: true} as the
third parameter to the update() function:

> db.newCollection.update({ name: 'Joe Smith' }, { name: 'Joe Smith',
website: 'http://google.com' }, { upsert: true })

If we have a document with a name field that matches 'Joe Smith', the website
field will be updated (and the name field preserved). However, if we
do not have a matching document, a new one will be created automatically.

Deleting data
Deleting documents works almost exactly like find() except instead of finding
and returning results, it deletes those documents that match the search criteria:

> db.newCollection.remove({ name: 'Jason Krol' })

If you want the nuclear option, you can use the drop() function that will remove
every document in a collection:

> db.newCollection.drop()

Additional resources
For additional learning with JavaScript, I suggest you check out some of the
following resources:

• Mozilla Developer Network at https://developer.mozilla.org/en-US/
docs/Web/JavaScript

• Secrets of the JavaScript Ninja, John Resig, Bear Bibeault, Manning
• Learning JavaScript Design Patterns, Addy Osmani, O'Reilly
• JavaScript: The Good Parts, Douglas Crockford, O'Reilly

The Node API online documentation is going to be your best bet to fully
understanding everything that's available within the Node core set of modules.
The Node API docs can be found at http://nodejs.org/api.

https://developer.mozilla.org/en-US/docs/Web/JavaScript
https://developer.mozilla.org/en-US/docs/Web/JavaScript
http://nodejs.org/api

Chapter 3

[51]

Additionally, there is a great website that teaches Node using actual programming
problems that you must solve. The emphasis with these exercises is to understand
the nuts and bolts of how Node works and get down into the fundamentals of
working with streams, asynchronous I/O, promises, and more. Node School
can be found at http://nodeschool.io.

Finally, the creators of MongoDB offer an amazing 7-8 week online training and
certification programs completely free of charge, where you will learn everything
you need to be a true MongoDB master. This can be found at MongoDB University
at https://university.mongodb.com.

Now it's time to dive in and start writing some real code!

Summary
In this chapter, you took a crash course on the basics of JavaScript, Node.js,
and MongoDB. In addition, you learned about Node's Package Manager, npm.
For further learning, additional resources were provided for JavaScript, Node.js
as well as MongoDB.

In the next chapter, you will write your first Node web server using Express.js
and get started with creating a complete web application.

http://nodeschool.io
https://university.mongodb.com

Writing an Express.js Server
Plain old vanilla Node by itself is not a very good solution for creating web
applications. You will have to write a heck of a lot of boilerplate code just to get
off the ground. All of the pieces are there, but why go through all that trouble
when somebody has already done it for us!

In this chapter:

• I will introduce you to the Express.js web application framework
• We will write the basic Node.js code necessary to bootstrap a server
• We will also take a look at what's necessary to migrate to Express.js v4

What is Express.js?
As described perfectly on its home page, Express is a minimal and flexible Node.js
web application framework, providing a robust set of features for building single and
multi-page, and hybrid web applications. In other words, it provides all of the tools and
basic building blocks you need to get a web server up and running by writing very
little code. It puts the power to focus on writing your app and not worry about the
nuts and bolts that go into making the basic stuff work in your hands.

The Express framework is one of the most popular Node-based web frameworks as
well as one of the single most popular packages available in npm.

If you look at a sample piece of code, one of the most basic implementations of
Express, you can see how easy it is to get a web server up and running, for example:

var express = require('express');
var app = express();
app.get('/', function(req, res){
 res.send('Hello World');
});
app.listen(3300);

Writing an Express.js Server

[54]

The beauty of Express is that it makes building and maintaining the server code for a
website simple.

At the time of writing this book, Express is at Version 3.5.1; however, the 4.0.0 release
candidate has just been released. 4.0.0 is available to experiment with but is generally
considered not ready for production. This chapter will focus on working with
Express 3.5.1. However, at the end of this chapter, I will go into the additional details
on how to migrate the application to Version 4.0.0 as there are a few significant
changes that will need to be taken into account.

Building a complete web application
Beginning with this chapter, we are going to build a complete web application.
The web application that we build will be a clone of a popular social image-sharing
site. We'll call our site imgPloadr.io.

The following screenshot is from the home page of the completed site:

Chapter 4

[55]

The next screenshot is an image's details page from the site:

The requirements of the site are as follows:

• The home page will allow visitors to upload an image as well as browse the
existing uploads, which will be ordered based on newest to oldest.

• Each uploaded image will be presented via its own page that shows its title,
description, and a large image display. Visitors will be able to like the image
as well as post comments.

• A consistent shared sidebar will be visible on both pages that will showcase
some general statistics about the site, the most popular images, and most
recent comments.

• The site will use Bootstrap so that it has a nice professional design and is
responsive on any device.

By the end of this book, you will have written the previously mentioned fully
functional application, and it will be available online!

Writing an Express.js Server

[56]

Organizing the files
Before you get started writing any code, we want to make sure that you have a
project folder set up correctly with the proper folder structure to house all of the
various files that you will be creating. Get started by creating a new folder for your
project, and name it anything you like. Then, inside that folder, create additional
folders to match the following structure:

Each of these folders will contain important modules that we will write throughout
the remainder of this chapter and book.

You are going to need a package.json file for this project, and the easiest way to
create one of these is by simply executing the following command from the root of
the project folder:

$ npm init

Respond to each of the questions as you are prompted, or simply press Enter
repeatedly to accept the default values. Now let's install Express via npm:

$ npm install express@3.5 --save

This will install the Express framework in the node_modules folder and also add
Express to the package.json file in the dependencies section. Note that I forced the
version to 3.5.x by including the @ character after express. Since 4.0.0 is available,
it would have installed by default, but for our purposes, we want to work with 3.5.x.

Chapter 4

[57]

When installing modules using npm, the latest version of the module
will always be installed by default. Typically, this is fine, but there are
times when the newest version might not be compatible with other
modules you are using, or it's just too new to be considered ready for
production. At the time of writing this book, Express is in the latter
category. Version 4 is available, but it is considered not ready for
production. Therefore, we need to force our version to 3.5.x.

Server.js – where it all begins
Whenever you write a Node app, you always need to start somewhere. The typical
convention while building servers with Node is that you have a single server.js
file located within the root of your project. This file will boot up the server and start
the whole process. In our case, this is the file that will create the HTTP server and
listen for all HTTP events, which is ultimately the point of our entire application.

We are going to keep our server.js pretty lean so that its contents are very
self-explanatory. Any major logic that is going to be executed within this file
will actually be defered to external modules hosted within other files.

Before we can do anything within server.js, we need to require a few modules
that we're going to work with, specifically Express:

 var express = require('express'),
 // config = require('./server/configure'),
 app = express();

In the preceding code, we are assigning the Express module to the variable express.
The config module is actually going to be our own module that we will write
shortly, but for now, since it doesn't exist, we will leave that line commented out.
Finally, we will declare a variable called app that is actually what the Express
framework returns when it is executed. This app object powers our entire app,
which is how it was so cleverly named.

Throughout this chapter and the remainder of the book, I may
include commented out code in the samples (code that starts
with //). This is so that following along will be easier when we
use the commented lines as reference points, or we can enable
those features by simply uncommenting the code.

Writing an Express.js Server

[58]

Next up, we will set a few simple settings via the app object using the app.set()
function. These settings are really just a way for us to define some app-level
constants that we can use throughout the rest of our code as handy shortcuts:

app.set('port', process.env.PORT || 3300);
app.set('views', __dirname + '/views');
// app = config(app);

The first two lines of the preceding code use built-in constants in Node. The
process.env.PORT constant is an environment setting that is set on the actual
machine for the default port value to the server. If no port value is set on the
machine, we will hardcode a default value of 3300 to use in its place. After that,
we set the location of our views (HTML pages) to __dirname + '/views' or, using
another Node constant, the /views folder from within the current working directory.
The third line of code is referencing the config module, which you haven't written
yet, so that line is commented out.

Last but not least, we will create an HTTP server using our app object and tell it to
listen for connections:

var server = app.listen(app.get('port'), function() {
 console.log('Server up: http://localhost:' + app.get('port'));
});

Here we will create a variable to hold an instance of the server. The server is created
by executing the listen function on our app that tells it which port to listen to (in
the default case, 3300) and passing in a simple anonymous callback function that will
execute once the server is up and listening by executing a simple console.log()
message. That's it! Again, make sure to save this file with the name server.js within
the root of the project. You're ready to run your server and see if it works.

Booting up server.js
Let's take your server for a spin and see how you're doing so far:

$ node server.js

Server up: http://localhost:3300

Perfect! At this point, your server doesn't actually do anything; it just listens
on port 3300 but doesn't actually respond. Try this by pointing a browser to
http://localhost:3300. You should receive a pretty basic message that just reads
Cannot GET /. This is because you haven't configured any routes or any actual logic
in your server to say how to handle certain requests, namely a GET request to the
default route of /. Before you set up your routes, however, let's first take care of that
config module and finish up the configuration of the server.

Chapter 4

[59]

A note about environment variables: You can set any number of
environment variables right from the command line before you run
your server by executing something like the following command:

$ PORT=5500 node server.js

Server up: http://localhost:5500

You can also set environment variables in your environment settings
permanently. This can be done typically by editing your .profile
file or equivalent.

Configuration module
Since we are leaving our server.js file very lean, there is still a fair amount of logic
that is required in configuring our server. For this, we will defer to a custom module
that we'll create called configure. To get started, create a file named configure.js
in the server folder. Let's first install the dependencies that we are going to be using
inside our configure module by performing another npm install:

$ npm install express3-handlebars --save

Here we just installed Handlebars, a popular template-rendering engine for HTML
pages. Now that the module is installed and ready to be used, let's start writing the
configure.js file. First, like any of our modules, we will declare our dependencies:

var connect = require('connect'),
 path = require('path'),
 //routes = require('./routes'),
 exphbs = require('express3-handlebars');

module.exports = function(app) {
 // configuration code...

 return app;
};

In the preceding code, we declared variables for each of the modules that we will
be using in our custom configure module. Then, we defined the actual module
that will be exported by this code file, more specifically a function that accepts our
app object as a parameter as well as returns that same object (after we make some
configuration modifications to it).

Writing an Express.js Server

[60]

You should see that we require Connect, which is actually
installed by default with Express.js as its one of its core
dependencies. Connect is a popular third-party middleware
framework that we will learn more about later in this chapter.

Handlebars view engine
By default, Express can and will happily render static HTML documents and
serve them back to the client. However, unless you're building a purely static
content-driven site, which is doubtful, you're more than likely going to want to
render your HTML dynamically. That is, you want to generate portions of the
HTML on the fly as pages are requested, perhaps using loops, conditional
statements, data-driven content, and so on. In order to render dynamic HTML
pages, you need to use a rendering engine.

This is where Handlebars comes in. The rendering engine is given its name because
of the syntax it uses to display data, namely double pairs of braces, {{ and }}. Using
Handlebars, you can have sections of your HTML pages that are determined at
runtime based on data passed to it. For example:

<div>
 <p>Hello there {{ name }}! Todays date is {{ timestamp }}</p>
</div>

The actual HTML that would wind up in a visitor's browser would be:

<div>
 <p>Hello there Jason! Todays date is Sun Apr 13</p>
</div>

The first thing we want to take care of in our configure module is to register
Handlebars as the default view rendering engine. In the configure.js file,
above the return(app); line, you should insert the following code:

app.engine('handlebars', exphbs.create({
 defaultLayout: 'main',
 layoutsDir: app.get('views') + '/layouts',
 partialsDir: [app.get('views') + '/partials']
}).engine);
app.set('view engine', 'handlebars');

Chapter 4

[61]

First, using the Express app object that was passed into the configure function, we
define our rendering engine of choice by calling the engine function of app. The
first parameter to the engine function is the file extension that the rendering engine
should look for, namely .handlebars.

The second parameter builds the engine by calling the exphbs module's create
function. This create function takes an options object as a parameter, and this
options object defines a number of constants for our server. Most importantly, we
will define which layout is our default layout and also where our layouts will be
stored. If you recall, in server.js, we used app.set to set a 'views' property of
our app that pointed to the current working directory + '/views'. This setting is
used when we configure the options for our rendering engine as well. You'll notice
that the partialsDir property uses an array (with a single item) versus a single
string value for layoutsDir. Both of these methods are interchangeable, and I just
wanted to demonstrate that you could have more than one partials directory, and it
could just be an array of string values.

With that set, our server now knows that any time we try to render an
HTML page that has a file extension of .handlebars, it will use the Handlebars
engine to perform the rendering. This means that we need to be sure to use
Handlebars-specific syntax in our dynamic HTML pages.

We will be learning more about Handlebars and how to write dynamic HTML
pages in the next chapter.

Using .handlebars as a file extension was purely a personal
choice. Some people prefer .hbs, and if you want, you can use
anything you like. Just make sure that the first parameter to
the app.engine() function and the second parameter in the
app.set('view engine') function are identical.

Other template engines
There are a number of different template engines available for you to use. One of
the more popular engines (and the default engine supported by Express) is called
Jade. Personally, I prefer using Handlebars because you use regular HTML, and
Handlebars is also a client-side template engine for use in single-page applications
with something like Backbone.js.

Writing an Express.js Server

[62]

To learn more about the many template engines available for use with Node, check
out this list on the official Joyent GitHub wiki at https://github.com/joyent/
node/wiki/modules#templating.

Using and understanding middleware
One of the most powerful features available with Express is the concept of
Middleware. The idea behind middleware is that it acts like a stack of filters that
every request to your server passes through. Since every request passes through
each filter, each filter can perform a specific task against the request before it passes
through to the next filter. Typically, these filters are used for tasks such as cookie
parsing, form field handling, session handling, authentication, and error handling
and logging. The list goes on and on and you can use hundreds of third-party
modules as well as simply writing your own.

The order that the middleware is called is very important. Again, using the concept
of filters, as a request passes through each filter, you want to be sure that they are
performing their responsibilities in the correct order. A great example of this is
implementing a cookie parser before a session handler—since sessions typically rely
on cookies to maintain state with a user between requests.

Another great example of how the order of middleware is important is with error
handling. If any of your middleware encounter an error, they will simply pass that
error along to the next middleware in the stack. If the last middleware, regardless
of what it is, doesn't gracefully handle that error, it will basically show up in your
application as a stack trace (and that's bad). Having an error handler configured
as one of the last middleware is like saying "if all else fails, and at any point in the
previous middleware a failure occurred, deal with it gracefully."

Introducing Connect
Fortunately, there is a great middleware framework that handles most of the
common requirements addressed during the middleware phase. These requests
include logging, parsing of HTML form fields and JSON data, cookie and session
handling, and more.

https://github.com/joyent/node/wiki/modules#templating
https://github.com/joyent/node/wiki/modules#templating

Chapter 4

[63]

Here is a current list of available middleware in the Connect framework:
• logger

• csrf

• compress

• basicAuth

• bodyParser

• json

• urlencoded

• multipart

• timeout

• cookieParser

• session

• cookieSession

• methodOverride

• responseTime

• staticCache

• static

• directory

• vhost

• favicon

• limit

• query

• errorHandler

Express versions earlier than 4.0 include and depend on these middleware by
default. However, starting with Version 4.0.0, support has been completely dropped
and certain existing implementations have been removed and moved to their own
modules to keep Express as lean as possible. We can safely use and assume that
Connect is available when using versions of Express below 4.0. However, if you used
4.0 or higher, you would need to include middleware solutions for each component
you are using.

Writing an Express.js Server

[64]

Let's wire up each of the middleware that we are going to need and ensure
that they are in the correct order. Note that we are executing our Express app's
.use() function, which is how we indicate each middleware that we want to
use. Continuing with editing the configure.js file, insert the following code
immediately before the return app; line (after the section you just added for
the Handlebars engine):

app.use(connect.logger('dev'));
app.use(connect.bodyParser({
 uploadDir:path.join(__dirname, '../public/upload/temp')
}));
app.use(connect.json());
app.use(connect.urlencoded());
app.use(connect.methodOverride());
app.use(connect.cookieParser('some-secret-value-here'));
app.use(app.router);
app.use('/public/', connect.static(path.join(__dirname, '../
public')));

if ('development' === app.get('env')) {
 app.use(connect.errorHandler());
}

Let's take a look at each of the Connect middleware we are using in the
preceding code:

• logger('dev'): The logger middleware simply performs a console.log()
output of any request that is received by the server. This is very helpful for
debugging your node server.

• bodyParser: This helps facilitate the packing of any form fields that are
submitted via an HTML form submission from a browser. Form fields that
are submitted via a POST request will be made available via the req.body
property.

• json: Similar to bodyParser except specifically for dealing with posted JSON
data via the req.body property.

• urlencoded: Similar to bodyParser except specifically fields submitted via a
GET request will be made available via the req.query property.

• methodOverride: For older browsers that don't properly support REST
HTTP verbs such as UPDATE and PUT, the methodOverride middleware
allows this to be faked using a special hidden input field.

Chapter 4

[65]

• cookieParser: This allows cookies to be sent/received.
• errorHandler: This handles any errors that occur throughout the entire

middleware process. Typically, you would write your own custom
errorHandler that might render a default 404 HTML page, or log the
error to a data store, and so on.

The app.use(app.router) line is a special component of Express that says you are
actually using a router with your server, and you can respond to requests such as
GET, POST, PUT, and UPDATE. Since you are using the Express router as one of the
last middleware, we will also define the actual routes in the next section.

Finally, the connect.static() middleware is used to render static content files to
the browser from a predefined static resource directory. This is important so that the
server can serve up static files such as .js, .css, images, regular .html, as well as
any other files you might need to serve up. The static middleware will serve up any
static files from the public directory like the following code:

http://localhost:3300/public/js/somescript.js

http://localhost:3300/public/img/main_logo.jpg

It's important that your static middleware is defined after the app.router() so that
static assets aren't inadvertently taking priority over a matching route that you may
have defined.

Activating the configure module
Now that your configure.js file is complete, you're ready to call it from your main
server.js file. If you recall, we included two lines of code that were commented out
for our configure module. Its time to uncomment those two lines so that when you
run your server, your configure module will do its part. The two lines should now
look like:

config = require('./server/configure'),

app = config(app);

Boot up your server again by executing node server.js and everything should
still be running smoothly. (Although, the app still doesn't actually do anything yet.)
If you point your browser to http://localhost:3300, you'll still get the same error.
However, this time, you will see GET / with a 404 log to your terminal thanks to the
Connect logger middleware.

Writing an Express.js Server

[66]

When you run your app, you might receive warnings similar to connect.
multipart() will be removed in Connect 3.0. This is because Express
comes bundled with an older version of Connect and depends fairly
heavily on it. With Express Version 4, this dependency has been removed
and the Connect framework middleware has been broken down into
smaller, separate pieces. More on this is covered in the section later in
this chapter, which is related to migrating to Express Version 4.

Routers and controllers
So far, you have your server.js file and a configure module that is used to wire
up all of the necessary middleware for the application. The next step is to implement
a proper router and controller.

The router is going to be a map of each of the available URL paths for the app.
Every route on the server will correspond to a function in a controller. Here is
what our routes table will look like for the particular application we are writing:

GET /(index) - home.index (render the homepage of the site)

GET /images/image_id - image.index (render the page for a specific
image)

POST /images - image.create (when a user submits and uploads a new image)

POST /images/image_id/like - image.like (when a user clicks the Like
button)

POST /images/image_id/comment - image.comment (when a user posts a
comment)

You can see that we are handling two different GET requests and three different POST
requests. In addition, we have two main controllers: home and image. Controllers
are really just modules with different functions defined that match up to the
corresponding routes. We're calling them controllers because we're using the MVC
design pattern, or Model View Controller. Typically, every route will correspond to
a controller. This controller will more than likely render a view, and that view will
more than likely have its own model (any data that is displayed in the view). You
can learn more about MVC by visiting the following Wikipedia page:

http://en.wikipedia.org/wiki/Model-view-controller

Chapter 4

[67]

Let's write our router as its own module, matching the table I outlined. First, create a
routes.js file within the server folder. The routes file is going to be pretty simple,
and the only dependencies it requires will be the controllers we define:

var home = require('../controllers/home'),
 image = require('../controllers/image');

module.exports.initialize = function(app) {
 app.get('/', home.index);
 app.get('/images/:image_id', image.index);

 app.post('/images', image.create);
 app.post('/images/:image_id/like', image.like);
 app.post('/images/:image_id/comment', image.comment);
};

Right off the bat, we declare variables for both of our controllers and require each
from the controllers folder (we haven't yet created these files but that's coming
up next). Then, we export a module that contains an initialize function, which
accepts our application as its only parameter. Inside the module, we define each of
our routes.

The first parameter for a route is the string value of the route itself, which can contain
variable values as sub paths. You can see with second app.get, we assign a route
value of '/images/:image_id' that basically equates to '/image/ANYVALUE' in the
browser address bar. When we write the image.index controller, you will see how to
retrieve the value for :image_id and use it within the controller function itself.

The second parameter for a route is a callback function. You can completely omit
the idea of using controllers and just define your callbacks as inline anonymous
functions; however, as your routes grow, this file will get larger and larger, and the
code will start to become a mess. It's always good practice to break your code up into
as many small and manageable modules as possible to keep yourself sane!

The first two app.get routes are typical routes that would be called whenever a
visitor points their browser to yourdomain.com/routepath—the browser by default
sends a GET request to the server. The other three app.post routes are defined to
handle when the browser POSTs a request to the server, typically done via an HTML
form submission.

Writing an Express.js Server

[68]

With all of our routes defined, let's now create the matching controllers. Within the
controllers folder, create both the home.js and image.js files. The home.js file
is very basic:

module.exports = {
 index: function(req, res) {
 res.send('The home:index controller');
 }
};

With this module, we are actually exporting an object that has a single function called
index. The function signature for index is the signature that is required for every
route using Express. The first parameter is a request object and the second parameter is
a response object. Every detail specific to the request that the browser sent to the server
will be available via the request object. In addition, the request object will be modified
using all of the middleware that was declared earlier. You will use the response object
to send a response back to the client—this may be a rendered HTML page, static asset,
JSON data, an error, or whatever you determine. For now, our controllers just respond
with simple text so you can see that they are all working.

Let's create the image controller that has a few more functions. Edit the /
controllers/image.js file and insert the following code:

module.exports = {
 index: function(req, res) {
 res.send('The image:index controller ' + req.params.image_id);
 },
 create: function(req, res) {
 res.send('The image:create POST controller');
 },
 like: function(req, res) {
 res.send('The image:like POST controller');
 },
 comment: function(req, res) {
 res.send('The image:comment POST controller');
 }
};

Here, we defined the index function, just like we did in the home controller,
except that we will also display image_id that is set in the route when this
controller function is executed. The params property was added to the request
object via the urlencoded Connect middleware!

Chapter 4

[69]

Take note that neither controller currently requires any dependencies (there were no
require declarations defined at the top of the file). This will change as we actually
flesh out the controller functions and start to do things such as inserting records into
our MongoDB database and using other third-party npm modules.

Now that your controllers are created and ready to be used, you just need to activate
your routes. To do this, we will insert one last line of code in our configure.js file,
right above the return app; line:

routes.initialize(app);

Don't forget to uncomment the routes = require('./routes'), line at the top of
the file as well. What we're doing here is using the routes module we defined and
executing the initialize function, which will actually wire up our routes via our
app object.

As a recap of each of the files you have created so far, here are the uninterrupted files
listed so you can view the full code:

1. First, we have the boot up with server.js:
var express = require('express'),
 config = require('./server/configure'),
 app = express();

app.set('port', process.env.PORT || 3300);
app.set('views', __dirname + '/views');
app = config(app);

var server = app.listen(app.get('port'), function() {
 console.log('Server up: http://localhost:' + app.get('port'));
});

2. Next, we will configure the server with server/configure.js:
var connect = require('connect'),
 path = require('path'),
 routes = require('./routes'),
 exphbs = require('express3-handlebars');

module.exports = function(app) {
 app.engine('handlebars', exphbs.create({
 defaultLayout: 'main',
 layoutsDir: app.get('views') + '/layouts',
 partialsDir: [app.get('views') + '/partials']
 }).engine);
 app.set('view engine', 'handlebars');

Writing an Express.js Server

[70]

 app.use(connect.logger('dev'));
 app.use(connect.bodyParser({
 uploadDir:path.join(__dirname, '../public/upload/temp')
 }));
 app.use(connect.json());
 app.use(connect.urlencoded());
 app.use(connect.methodOverride());
 app.use(connect.cookieParser('some-secret-value-here'));
 app.use(app.router);
 app.use('/public/', connect.static(path.join(__dirname, '../
public')));

 if ('development' === app.get('env')) {
 app.use(connect.errorHandler());
 }

 routes.initialize(app);

 return app;
};

3. Then, we have our routes defined in server/routes.js:
var home = require('../controllers/home'),
 image = require('../controllers/image');

module.exports.initialize = function(app) {
 app.get('/', home.index);
 app.get('/images/:image_id', image.index);

 app.post('/images', image.create);
 app.post('/images/:image_id/like', image.like);
 app.post('/images/:image_id/comment', image.comment);
};

4. Finally, we will define our controllers with controllers/home.js:

module.exports = {
 index: function(req, res) {
 res.send('The home:index controller');
 }
};

And controllers/image.js:

module.exports = {
 index: function(req, res) {
 res.send('The image:index controller ' + req.params.image_
id);
 },

Chapter 4

[71]

 create: function(req, res) {
 res.send('The image:create POST controller');
 },
 like: function(req, res) {
 res.send('The image:like POST controller');
 },
 comment: function(req, res) {
 res.send('The image:comment POST controller');
 }
};

Let's fire up the server one last time and check whether it's all working. Execute
node server.js, and this time point your browser to http://localhost:3300.
Now, you should be seeing some responses in the browser. Try going to
http://localhost:3300/images/testing123. You should see The image:index
controller testing123 on the screen!

Custom middleware
There will undoubtedly come a time when you want to write your own custom
middleware in addition to the existing middleware provided by Connect or any
other third party. Before you write your own custom anything in Node, make it a
habit to search through https://www.npmjs.org/ first, as there's a fairly big chance
someone else has already done the work.

Writing your own custom middleware is pretty simple. You simply need to write a
function that accepts four parameters: err, req, res, and next. The first parameter
is an error object, and if there were any stack errors prior to your middleware
running, that error will be passed to your middleware so you can handle
accordingly. You are already familiar with the req and res parameters having
written your routes. The fourth parameter is actually a reference to a callback. This
next parameter is how the middleware stack is able to behave like a stack—each
executing and ensuring that the next middleware in the pipeline is returned and
called via next. Here is a super basic example of a custom middleware:

app.use(function(err, req, res, next) {
 // do whatever you want here, alter req, alter res, throw err,
etc.
 return next();
});

The only important thing to keep in mind when writing your own custom
middleware is that you have the correct parameters and that you return next().
The rest is completely up to you!

https://www.npmjs.org/

Writing an Express.js Server

[72]

Migrating to Express v4.0.0
The biggest change that comes with Express Version 4.0 is that Connect is no longer a
dependency. Additionally, most of Express's (and subsequently Connect's) bundled
middleware has been stripped out and moved into individual repositories. This is
to help speed up the development and release cycles for both the newly separated
middleware modules as well as Express itself. The only middleware that remains
is express.static (for convenience). The good news here is that we're no longer
required to use Express's (and by proxy Connect's) middleware by default!

The other big change is the way routes work. In previous versions the router
was a part of the middleware and the routes were all defined as app.verb().
Now, you can either define a route object per route or just define routes by calling
app.route('route').verb(callback). Let's go through the process of modifying
our existing code so that it is ready to use Express Version 4.0.

Please note that the remainder of this section is devoted to
migrating your code to use Express Version 4.x. The remainder of
the book, however, continues to assume that you are using Express
Version 3.5.x as the code reflects as such.

Using new middleware
One of the first things we want to do is completely remove Connect and install the
new dependencies that will replace Connect. Execute the following command to
install the new packages:

$ npm install express@4.0.0 morgan body-parser cookie-parser method-
override errorhandler --save

This will not only upgrade your version of Express to 4.0.0 but also include all
of the additional middleware we will be using in place of Connect. Some of these
packages aren't the most self-explanatory (unfortunately), but you'll see what
each is used for in the upcoming section. Your package.json file should now
look something like this:

"dependencies": {
 "express": "^4.0.0",
 "morgan": "~1.0.0",
 "body-parser": "~1.0.0",
 "cookie-parser": "~1.0.0",

Chapter 4

[73]

 "method-override": "~1.0.0",
 "errorhandler": "~1.0.0",
 "express3-handlebars": "^0.5.0"
}

Next, we will want to make some changes to the server/configure.js and
server/routes.js files.

server/configure.js
We are going to be changing the way our router behaves a little bit, so we need
to make some modifications to how the router is configured (and the order in
which it is configured). First, remove the app.use(app.router) line and replace
it with the routes.initialize(app) line (that was towards the bottom). In
addition, include a second parameter with the routes.initalize(app) line so
that it looks like the following:

routes.initialize(app, new express.Router());

We are creating a new express.Router() object and passing it in our routes
module as the second parameter.

Next, require each of the new dependencies, including express, and remove
Connect (at the top of the server/configure.js file):

var path = require('path'),
 routes = require('./routes'),
 exphbs = require('express3-handlebars'),
 express = require('express'),
 bodyParser = require('body-parser'),
 cookieParser = require('cookie-parser'),
 morgan = require('morgan'),
 methodOverride = require('method-override'),
 errorHandler = require('errorhandler');

Replace the middleware that was originally set up to use Connect to use the new
modules instead.

Replace the connect.logger middleware with its replacement morgan:

//app.use(connect.logger('dev'));
app.use(morgan('dev'));

Writing an Express.js Server

[74]

Replace the connect.bodyParser, connect.json, and connect.urlencoded
middleware with a replacement bodyParser:

// app.use(connect.bodyParser({
// uploadDir:path.join(__dirname, '../public/upload/temp')
// }));
// app.use(connect.json());
// app.use(connect.urlencoded());
app.use(bodyParser({
 uploadDir:path.join(__dirname, '../public/upload/temp')
}));

Replace the connect.methodOverride middleware with its replacement
methodOverride:

// app.use(connect.methodOverride());
app.use(methodOverride());

Replace connect.cookieParser with its replacement cookieParser:

// app.use(connect.cookieParser('some-secret-value-here'));
app.use(cookieParser('some-secret-value-here'));

routes.initialize(app, new express.Router());

Replace connect.static with the built-in express.static replacement
middleware:

// app.use('/public/', connect.static(path.join(__dirname, '../
public')));
app.use('/public/', express.static(path.join(__dirname, '../
public')));

Finally, replace connect.errorHandler with its replacement errorHandler:

if ('development' === app.get('env')) {
 // app.use(connect.errorHandler());
 app.use(errorHandler());
}

Chapter 4

[75]

Note that each of the original connect middleware was commented out in the
preceding code so that you can clearly see what was replaced where. Feel free to
actually delete those lines in your own code. The final condensed version of the
previous code in server/configure.js should look as follows:

var path = require('path'),
 routes = require('./routes'),
 exphbs = require('express3-handlebars'),
 express = require('express'),
 bodyParser = require('body-parser'),
 cookieParser = require('cookie-parser'),
 morgan = require('morgan'),
 methodOverride = require('method-override'),
 errorHandler = require('errorhandler');

module.exports = function(app) {
 app.engine('handlebars', exphbs.create({
 defaultLayout: 'main',
 layoutsDir: app.get('views') + '/layouts',
 partialsDir: [app.get('views') + '/partials']
 }).engine);
 app.set('view engine', 'handlebars');

 app.use(morgan('dev'));
 app.use(bodyParser({
 uploadDir:path.join(__dirname, '../public/upload/temp')
 }));
 app.use(methodOverride());
 app.use(cookieParser('some-secret-value-here'));

 routes.initialize(app, new express.Router());

 app.use('/public/', express.static(path.join(__dirname, '../
public')));

 if ('development' === app.get('env')) {
 app.use(errorHandler());
 }

 return app;
};

Writing an Express.js Server

[76]

server/routes.js
Next, we will rewrite the original routes to use the new express.Router() object.
The main change here is that we are accepting a new Router object as a parameter
to our initialize() function and using router.verb() instead of app.verb()
for each of the routes:

var home = require('../controllers/home'),
 image = require('../controllers/image');

module.exports.initialize = function(app, router) {
 router.get('/', home.index);
 router.get('/images/:image_id', image.index);
 router.post('/images', image.create);
 router.post('/images/:image_id/like', image.like);
 router.post('/images/:image_id/comment', image.comment);

 app.use('/', router);
};

And that's it! Your app has been successfully migrated from Express 3.5.x to 4.0!
Remember, the remainder of this book will continue to use Express 3.5.x, so the
completed migration changes wont be reflected in the remaining code we write.

If you want, you can continue to use the Connect middleware framework and
save a lot of work during the migration, but I wanted to show you how the new
middleware works with Express 4.0.

Summary
In this chapter, we learned about the Express web framework for Node and
wrote a basic web server from scratch that will act as the foundation for the
image uploading website that we will build throughout the remainder of the book.

The web server you wrote handles requests to specific routes, uses controllers to
handle the logic for those routes, and supports all of the standard requirements a
typical web server should.

In the next chapter, we will cover using the Handlebars template engine to write
each of the dynamic HTML pages that the website needs. In addition, we will update
the image and home controllers to include the necessary logic to properly render
those HTML pages.

Dynamic HTML with
Handlebars

One of the most important features when creating a website is the ability to display
dynamic content on an HTML page. The difference between dynamic content and
static content is that dynamic content is typically generated via conditional statements
and/or varying data (usually retrieved from a database). In order to generate parts of
an HTML page during runtime, you will need some sort of rendering engine. There are
many different rendering engines available that can be used with Node and Express.
The particular engine we chose for this book is Handlebars.js—named for the syntax
use of {{ and }} that resembles a handlebar mustache!

Basic syntax for Handlebars
The basic syntax for Handlebars is really quite simple. Let's assume the following
JavaScript object is passed to a Handlebars template:

var model = {
 name: 'World'
};

The template file itself will contain the following markup:

<div>
 Hello {{ name }}!
</div>

This file would render to a browser in the following way:

Hello World!

Dynamic HTML with Handlebars

[78]

Of course, there's a lot more that you can do than just this! Handlebars also supports
conditional statements:

var model = {
 name: 'World',
 description: 'This will only appear because its set.'
};

<div>
 Hello {{ name }}!

 {{#if description}}
 <p>{{description}}</p>
 {{/if}}
</div>

Using an if block helper as shown in the preceding code, you can check for
truthy conditionals and only display HTML and/or data if the condition is true.
Alternatively, you can use the unless helper to do the opposite, and display
HTML only if a condition is falsey:

var model = {
 name: 'World'
};

<div>
 Hello {{ name }}!

 {{#unless description}}
 <p>NOTE: no description found.</p>
 {{/if}}
</div>

You can use both if and else as well as unless the same way you would use
conditional if/else in other programming languages.

Views
A view is what we are referring to as an HTML page. They are called views because
of the Model View Controller (MVC) design pattern. Actually, the pattern we're
using is closer to that of Model, View, ViewModel (MVVM). Typically, a Model
is the data that is going to be displayed on a page (again, in our case known as
a ViewModel), the View is the page itself, and the Controller is the brain that
communicates between the ViewModel and the View.

Chapter 5

[79]

Our particular application is going to need two views. The first view is the home
page, and the second view is the image page.

The HTML in the following section relies heavily on Bootstrap,
a popular HTML framework created by Twitter that provides a
standard set of user interface elements. These include buttons,
fonts, layout grids, color schemes, and a whole lot more. Using
Bootstrap allows us to not only present our application with a
nice clean UI, but also build it so that it is responsive and will
look correct on any device that is viewing it. You can learn more
about Bootstrap by visiting http://getbootstrap.com.

Let's start by creating the home page view. Create a new file within the views folder,
name it index.handlebars, and insert the following HTML code:

<div class="panel panel-primary">
 <div class="panel-heading">
 <h3 class="panel-title">
 Upload an Image
 </h3>
 </div>

The reason we named our file index.handlebars is purely
personal choice, but it is also based on common naming conventions
on the Web. Typically, an HTML page that acts as the root file for
any website is named index.whatever (.php, .aspx, .html, and so
on). Again, this is just common convention and not something you
need to specifically adhere to.

Create a basic HTML form and set the method to POST and action to /images.
Be sure to set the enctype attribute of the form since we will be uploading files
as well as submitting data via form fields:

 <form method="post" action="/images" enctype="multipart/form-
data">
 <div class="panel-body form-horizontal">
 <div class="form-group col-md-12">
 <label class="col-sm-2 control-label"
for="file">Browse:</label>

http://getbootstrap.com

Dynamic HTML with Handlebars

[80]

Here, we have included a standard HTML input field for the file to be uploaded:

 <div class="col-md-10">
 <input class="form-control" type="file"
name="file">
 </div>
 </div>
 <div class="form-group col-md-12">
 <label class="col-md-2 control-label"
for="title">Title:</label>
 <div class="col-md-10">

Another standard HTML input field for the title of the file can be whatever the user
wants, as shown in the following code:

 <input class="form-control" type="text"
name="title">
 </div>
 </div>
 <div class="form-group col-md-12">
 <label class="col-md-2 control-label"
for="description">Description:</label>
 <div class="col-md-10">

And a standard HTML textarea input field to allow for a description is as follows:

 <textarea class="form-control" name="description"
rows="2"></textarea>
 </div>
 </div>
 <div class="form-group col-md-12">
 <div class="col-md-12 text-right">

A standard HTML button is provided that will submit the form to the server.
Using Bootstrap classes, we provide btn and btn-success to make this look
like a Bootstrap-style button with the default color for success (green):

 <button type="submit" id="login-btn" class="btn
btn-success" type="button"><i class="fa fa-cloud-upload "></i> Upload
Image</button>
 </div>
 </div>
 </div>
 </form>
</div>

Chapter 5

[81]

After the upload form section, we will display a list of the newest images uploaded
to the website:

<div class="panel panel-default">
 <div class="panel-heading">
 <h3 class="panel-title">
 Newest Images
 </h3>
 </div>
 <div class="panel-body">
 {{#each images}}
 <div class="col-md-4 text-center" style="padding-bottom:
1em;"><img src="/public/upload/
{{filename}}" alt="{{title}}" style="width: 175px; height: 175px;"
class="img-thumbnail"></div>
 {{/each}}
 </div>
</div>

There are two important sections in the main home page HTML code. The first
is the form we define that will be the main way users will upload images to the
website. As we will be accepting image files as well as the details for the image
(title, description, and so on), we need to ensure that the form is set up to accept
multipart data. We also set the form action to point to the /images route we
defined earlier in our routes and image controller modules. When a user completes
the form and clicks on the Submit button, the form will send a POST request to
http://localhost:3300/images, and our router will catch that and forward it to our
image controller. From there, the image controller will handle processing the data and
saving it to the database, saving the image file to the filesystem, and redirecting to the
image details page. We will actually be writing this logic in the next chapter. For now,
nothing will actually happen if you submit the form.

Below the main image uploading form on the home page, we also have a section that
performs a Handlebars loop using each and iterates through an image collection,
displaying each image as a thumbnail and the link to the image page. The images
collection will be populated from our home controller when we build its ViewModel.
It's important to take note here that when you are inside an {{#each}} loop in a
Handlebars template, your context changes. That is, the path you use to access data
inside each is now based on each item in the collection. Here, our ViewModel will
have an image collection, and each item in the image collection will have a property
for uniqueid, filename, and title. With the home page view out of the way, let's
set up the view for the image page.

Dynamic HTML with Handlebars

[82]

Create another file in the views folder named image.handlebars. This file is going
to have a bit more functionality, so I'm going to break it down into chunks so we can
review each section. First, insert the following block of code:

<div class="panel panel-primary">
 <div class="panel-heading">
 <h2 class="panel-title">{{ image.title }}</h2>
 </div>
 <div class="panel-body">
 <p>{{ image.description }}</p>
 <div class="col-md-12 text-center">
 <img src="/public/upload/{{image.filename}}" class="img-
thumbnail">
 </div>
 </div>
 <div class="panel-footer">
 <div class="row">
 <div class="col-md-8">
 <button class="btn btn-success" id="btn-like" data-
id="{{ image.uniqueId }}"><i class="fa fa-heart"> Like</i></button>
 <strong class="likes-count">{{ image.likes }}
 - <i class="fa fa-eye"></i> {{ image.views }}</
strong>
 - Posted: <em class="text-muted">{{
timeago image.timestamp }}
 </div>
 </div>
 </div>
</div>

This block of code defines the bulk of the content that will be displayed on the page
for a specific image. The ViewModel for this page is going to consist of an image
object that has various properties defined that you see being used throughout the
code; properties such as title, description, filename, likes, and views.

You may have noticed a slightly different piece of syntax in there specific to
the {{ timeago image.timestamp }} timestamp. That is actually a Handlebars
helper. It is a custom function we will write shortly that will do some special string
formatting—specifically, converting a timestamp string to how long it was sometime
ago (that is, 2 days ago, 12 hours ago, 15 minutes ago, and so on).

Chapter 5

[83]

We want to allow users to post comments to images, so let's include a simple
form for that:

<div class="panel panel-default">
 <div class="panel-heading">
 <div class="row">
 <div class="col-md-8">
 <strong class="panel-title">Comments
 </div>
 <div class="col-md-4 text-right">
 <button class="btn btn-default btn-sm" id="btn-
comment" data-id="{{ image.uniqueId }}"><i class="fa fa-comments-o">
Post Comment...</i></button>
 </div>
 </div>
 </div>
 <div class="panel-body">
 <blockquote id="post-comment">
 <div class="row">

The following is another standard HTML form with the method and action set. This
form allows a user to enter, via standard HTML input fields, his/her name, e-mail
address, and comments. Another submit button is provided to save the comment:

 <form method="post" action="/images/{{ image.uniqueId
}}/comment">
 <div class="form-group col-sm-12">
 <label class="col-sm-2 control-label"
for="name">Name:</label>
 <div class="col-sm-10">
 <input class="form-control" type="text"
name="name">
 </div>
 </div>
 <div class="form-group col-sm-12">
 <label class="col-sm-2 control-label"
for="email">Email:</label>
 <div class="col-sm-10">
 <input class="form-control" type="text"
name="email">
 </div>
 </div>
 <div class="form-group col-sm-12">

Dynamic HTML with Handlebars

[84]

 <label class="col-sm-2 control-label"
for="comment">Comment:</label>
 <div class="col-sm-10">
 <textarea class="form-control"
name="comment" rows="2"></textarea>
 </div>
 </div>
 <div class="form-group col-sm-12">
 <div class="col-sm-12 text-right">
 <button type="submit" id="comment-btn"
class="btn btn-success" type="button"><i class="fa fa-comment"></i>
Post</button>
 </div>
 </div>
 </form>
 </div>
 </blockquote>

The form action for comments is set to /images/{{ image.uniqueid }}/comment.
Again, if you recall from the routes we set up, we specifically defined a route to
handle this.

Finally, we want to display any comments that have been submitted for this image.
Our ViewModel includes a collection of comments in addition to the image details,
so we can simply iterate over that collection using the Handlebars #each block helper:

 <ul class="media-list">
 {{#each comments}}
 <li class="media">

 <img class="media-object img-circle" src="http://
www.gravatar.com/avatar/{{gravatar}}?d=monsterid&s=45">

 <div class="media-body">
 {{ comment }}

<strong class="media-heading">{{ name }}</
strong> <small class="text-muted">{{ timeago timestamp }}</small>
 </div>

 {{/each}}

 </div>
</div>

Chapter 5

[85]

Much like the loop we perform on the home page to display a collection of images,
here we simply iterate through every comment in the comments collection and
display the comment and string-formatted timestamp (again using our timeago
global helper). We are also using Gravatar to display universal avatar images for
users who have commented (assuming they provided their e-mail addresses).

Gravatar is a service provided by https://wordpress.com/ that
allows a user's personal profile image to be provided via his/her e-mail
address. Many popular web services rely on Gravatar as a quick and
easy way to display a user's personal profile image, without requiring
the additional functionality to support such a feature. You can learn
more about Gravatar at http://gravatar.com.

Layouts
So far we've created two specific views for our website, one for the home page and
one for the details of an image. However, there's no consistent UI wrapping both of
these pages together. We have no consistent navigation or logo. There's no common
footer with standard copyright or additional information.

Usually, with any website that you create, you're going to want to have some form of
a standard layout or master template that every page will use. This layout typically
includes the website logo and title, main navigation, sidebar (if any), and the footer.
It would be bad practice to include the HTML code for the layout in every single
page on our website because if we wanted to make even the smallest change to
the main layout, we would have to edit every single page as a result. Fortunately,
Handlebars helps lessen the work of utilizing a layout file.

Let's create a layout file for our app by creating a new file named main.handlebars
within the views/layouts folder and inserting the following HTML code:

<!DOCTYPE HTML>
<html lang="en">
 <head>
 <title>imgPloadr.io</title>
 <link href="//netdna.bootstrapcdn.com/bootstrap/3.1.1/css/
bootstrap.min.css" rel="stylesheet">
 <link href="//netdna.bootstrapcdn.com/font-awesome/4.0.3/css/
font-awesome.min.css" rel="stylesheet">
 <link rel="stylesheet" type="text/css" href="/public/css/
styles.css">
 </head>

www.allitebooks.com

https://wordpress.com/
http://gravatar.com
http://www.allitebooks.org

Dynamic HTML with Handlebars

[86]

 <body>
 <div class="page-header">
 <div class="container">
 <div class="col-md-6">
 <h1>imgPloadr.io</h1>
 </div>
 </div>
 </div>
 <div class="container">
 <div class="row">
 <div class="col-sm-8">
 {{{ body }}}
 </div>
 <div class="col-sm-4">
 {{> stats this }}

 {{> popular this }}

 {{> comments this }}
 </div>
 </div>
 </div>
 <div style="border-top: solid 1px #eee; padding-top: 1em;">
 <div class="container">
 <div class="row">
 <div class="col-sm-12 text-center">
 <p class="text-muted">imgPloadr.io | ©
Copyright 2014, All Rights Reserved</p>
 <p class="text-center">
 <i class="fa fa-twitter-square fa-2x text-
primary"></i>
 <i class="fa fa-facebook-square fa-2x
text-primary"></i>
 </p>
 </div>
 </div>
 </div>
 </div>
 <script src="//ajax.googleapis.com/ajax/libs/jquery/1.11.0/
jquery.min.js"></script>
 <script type="text/javascript" src="/public/js/scripts.js"></
script>
 </body>
</html>

Chapter 5

[87]

Most of the preceding code is just HTML, and a lot of it uses Bootstrap for the actual
physical layout of the page as well as a few other UI-related elements. The most
important part is the highlighted section in the middle with {{{ body }}} and the
few lines below that, as they pertain to the use of Handlebars.

{{{ body }}} is a reserved word in Handlebars that is used specifically with
layouts. What we are basically saying is that any page we render that's using our
default layout file will have its content inserted to the area where {{{ body }}} is
defined. If you recall from the configure module we created earlier, we defined our
default layout file when we set up Handlebars as our rendering engine. The slightly
odd use of {{{ and }}} around the body is due to the fact that Handlebars escapes
HTML by default when using {{ and }}. Since our views contain mostly HTML,
we want this to stay intact so that we use {{{ and }}} instead.

The other three lines that use {{ > ... }} render Handlebars partials, which are
like shared HTML code blocks that we will learn about next.

Partial views
So far we've created a View, which acts as the bulk of the HTML for a specific page,
and a layout, which acts as the wrapper for the consistent parts of the website on
every page. Next up, let's take a look at creating partials, which are really just small
views that we can reuse and inject inside our layouts or views.

Partials are a terrific way to create reusable components in your website and reduce
code duplication. Consider the comments in our application. We have an HTML
form defined that a user uses to submit a comment, but what if we wanted to allow
users to post comments from a number of different areas throughout the website.
This type of scenario is a great candidate for moving our comment form out to its
own partial and then just including that partial anywhere we want to display the
comment form.

For this app, we're using partials specifically for the sidebar in the main layout.
With every view's ViewModel, we will include a JavaScript object called sidebar
that will contain the data specifically for the stats, popular images, and recent
comments found within the sidebar partial.

Let's create the HTML for each of the partials. First, create a file named stats.
handlebars within the views/partials/ path and include the following HTML code:

<div class="panel panel-default">
 <div class="panel-heading">
 <h3 class="panel-title">

Dynamic HTML with Handlebars

[88]

 Stats
 </h3>
 </div>
 <div class="panel-body">
 <div class="row">
 <div class="col-md-2 text-left">Images:</div>
 <div class="col-md-10 text-right">{{ sidebar.stats.images
}}</div>
 </div>
 <div class="row">
 <div class="col-md-2 text-left">Comments:</div>
 <div class="col-md-10 text-right">{{ sidebar.stats.
comments }}</div>
 </div>
 <div class="row">
 <div class="col-md-2 text-left">Views:</div>
 <div class="col-md-10 text-right">{{ sidebar.stats.views
}}</div>
 </div>
 <div class="row">
 <div class="col-md-2 text-left">Likes:</div>
 <div class="col-md-10 text-right">{{ sidebar.stats.likes
}}</div>
 </div>
 </div>
</div>

Next up, create views/partials/popular.handlebars and insert the following
HTML code into it:

<div class="panel panel-default">
 <div class="panel-heading">
 <h3 class="panel-title">
 Most Popular
 </h3>
 </div>
 <div class="panel-body">
 {{#each sidebar.popular}}
 <div class="col-md-4 text-center" style="padding-
bottom: .5em;"><img src="/public/
upload/{{filename}}" style="width: 75px; height: 75px;" class="img-
thumbnail"></div>
 {{/each}}
 </div>
</div>

Chapter 5

[89]

Finally, create views/partials/comments.handlebars and insert the following
HTML code into it:

<div class="panel panel-default">
 <div class="panel-heading">
 <h3 class="panel-title">
 Latest Comments
 </h3>
 </div>
 <div class="panel-body">
 <ul class="media-list">
 {{#each sidebar.comments}}
 <li class="media">
 <a class="pull-left" href="/images/{{ image.uniqueId
}}">
 <img class="media-object" width="45" height="45"
src="/public/upload/{{ image.filename }}">

 <div class="media-body">
 {{comment}}

 <strong class="media-heading">{{name}}
<small class="text-muted">{{timeago timestamp }}</small>
 </div>

 {{/each}}

 </div>
</div>

Handlebars Helpers
Handlebars supports the idea of helpers, which are special custom functions you
can write to perform some special logic from within the template during runtime.
A great example of a helper would be the date string formatter we've been using.
Helpers can be registered globally and made available to every template file, or they
can be defined per view and passed to the template on an as needed basis as a part of
the ViewModel.

Global helpers
First, let's create a global helper that will be available to every Handlebars template
we render. This global helper that you will create will be used to format a timestamp
so that it is worded as to how long ago the event occurred. We will use this
throughout our application for things such as comments and image timestamps.

Dynamic HTML with Handlebars

[90]

The first thing we need to do is update our server/configure.js module,
where we originally initially configured Handlebars as our rendering engine.
We are going to add a section to define our helpers:

app.engine('handlebars', exphbs.create({
 defaultLayout: 'main',
 layoutsDir: app.get('views') + '/layouts',
 partialsDir: [app.get('views') + '/partials'],
 helpers: {
 timeago: function(timestamp) {
 return moment(timestamp).startOf('minute').fromNow();
 }
 }
}).engine);

As you can see from the additional code we added (highlighted in the preceding
code), we defined the helpers property of the configuration options within
create(), and inside the helpers property, we can define any number of functions
we want. In this case, we defined a simple timeago function that actually uses
another npm module called moment. The moment module is a great library for doing a
number of different date string formatting. As we are using a new module, we need
to be sure to perform require()at the top of our configure module:

var connect = require('connect'),
 path = require('path'),
 routes = require('./routes'),
 exphbs = require('express3-handlebars'),
 moment = require('moment');

As well as actually install it via npm:

$ npm install moment --save

View-specific helpers
While defining helpers globally is nice because they are available to every view that's
rendered, sometimes you might only need to define a helper for use within a single
view. In this case, you can include the helper right with the ViewModel itself when
calling res.render(), as shown in the following code:

var viewModel = {
 name: 'Jason',
helpers: {
 timeago: function(timestamp) {

Chapter 5

[91]

 return 'a long time ago!';
 }
}
};
res.render('index', viewModel);

Not only are we defining a custom helper that can be used specifically from this
view in its ViewModel, but in this particular instance we are overriding the existing
timeago global helper with a slightly different version that is perfectly valid.

Rendering the views
Let's take a minute to do a quick recap and see what we've done up to this point.
So far, we have:

• Created index.handlebars and image.handlebars—the views for the
two main pages of the application

• Created layouts/main.handelbars—the main layout file for every page
in the application

• Created partials/comments.handlebars, popular.handlebars,
and stats.handlebars

• Created a global timeago Handlebars helper

So far so good; however, none of these views actually do anything, receive any
ViewModels, or even appear when you run the application! Let's make a few
quick minor modifications to our controllers to get our views to render properly.

Open /controllers/home.js so that you can edit the home controller module.
Update the contents of that file so that it looks identical to the following block of code:

module.exports = {
 index: function(req, res) {
 res.render('index');
 }
};

Instead of performing res.send, which just sends a simple response, we are calling
res.render and passing in the name of the template file we want to render as the
only parameter (for now). Using the defaults that were defined in our configure
module, the index file will be loaded from our views folder. Again, also using the
defaults, we configured the default layout of main that will be applied to this view
in our configure module.

Dynamic HTML with Handlebars

[92]

Let's update the image controller as well to do the same thing. Edit /controllers/
image.js and change the index function so that it looks identical to the following
block of code:

index: function(req, res) {
 res.render('image');
},

And that's it! Let's fire up the server and open the app in our browser and see how
it looks:

$ npm start

$ open http://localhost:3300

$ open http://localhost:3300/images/1

Success! Hopefully, you see something that closely resembles the following
screenshot of the home page:

Chapter 5

[93]

Additionally, if you provide a random URL to a specific image, for example
http://localhost:3300/images/1, you should see the following screenshot:

Summary
In this chapter, we introduced the Handlebars template-rendering engine and
reviewed the syntax used when creating dynamic HTML pages. We created a main
layout for our app as well as the home page and image page views. We included
partial views for the sidebar in the layout and created a global Handlebars helper
to display custom formatted dates.

Even though neither of the views is currently displaying any data (because we aren't
passing in a ViewModel yet), you can see that things are starting to come along
nicely! In the next chapter, we will wire up the actual logic in the controllers for each
page as well as build up the ViewModel so that we start seeing some actual content
on our screens.

Controllers and View Models
Up until this point, the controllers we wrote for our application have been extremely
basic. They were started with a simple task of sending text responses to the client. In
the previous chapter, we updated the controllers so that they render an HTML view
and send the HTML code to the client (instead of simple text). The primary job of a
controller is to act as the logic that makes all of the necessary decisions to properly
render a response to the client. In our case, this means retrieving and/or generating
the data necessary for a page to appear complete.

In this chapter, we will:

• Modify the controllers so that they generate a data model and pass
it to a view

• Include logic to support uploading and to save image files
• Update the controllers to actually render dynamic HTML
• Include helpers for the partials that generate the website statistics
• Iterate on the UI to include improved usability via jQuery

Controllers
A controller is nothing more than an object that contains similar logic and
functionality within our application. In our project, a controller is tied directly via its
functions to a corresponding route. For every route that we create in our router, two
parameters are necessary. The first parameter is the string for the route itself, that
is /images/:image_id. The second parameter is a controller function that will be
executed when that route is accessed. For any route that has to do with images, we
rely on the images controller. Likewise, any route that has to do with the home page
relies on the home controller, and so on and so forth.

Controllers and View Models

[96]

The steps we will take to define our controllers in our app are purely organizational
and based on a personal preference. We created our controllers as modules so that
our router wasn't a big, long convoluted mess of spaghetti code! We could have just
as easily kept all of the logic contained in our controllers as functions directly within
the routes themselves, but this would have been an organizational mess and made
for very hard-to-read code.

As our sample app is fairly small, we only have two controllers currently: home and
image. It is the responsibility of these controllers to build the appropriate view models
for our HTML pages and render the actual pages as well. Any logic that is required to
execute per page and build the view model will be done so via our controllers.

View models
Given a single HTML view in our app, we need to be able to attach data to that
page so that the template that is being rendered can be included in such a way that
the dynamic areas of the page are replaced with real content. To do this, we need
to generate a view model. During the render, the template engine will parse the
template itself and look for special syntax that indicates that specific sections should
be replaced at runtime with values from the view model itself. Think of this as a
fancy runtime find and replace of your HTML templates—finding variables and
replacing them with values stored in the view model sent to the template.

A view model, in the sense of how we are using one, is typically just a single
JavaScript object (or collection of objects in an array) that can be passed to the
template-rendering engine that contains all of the necessary data we need to properly
render the page. The view model for a page will typically contain all of the data
necessary to render the content-specific portions of that page. Using our application
as an example, the view model for a specific image's page may contain the title of
the image, its description, and the information necessary to display the image and
various stats such as the number of likes, views, and a collection of comments.
A view model can be as simple or as complex as you like.

Chapter 6

[97]

Updating the home controller
If you take a look at our current home controller (controllers/home.js), you can
see that the index function barely has any code in it whatsoever:

res.render('index');

The first thing we want to do is build a basic view model using sample data so that
we can see our view model at work. Replace that single res.render call with the
following updated code:

var viewModel = {
 images: [
 {
 uniqueId: 1,
 title: 'Sample Image 1',
 description: '',
 filename: 'sample1.jpg',
 views: 0,
 likes: 0,
 timestamp: Date.now
 }, {
 uniqueId: 2,
 title: 'Sample Image 2',
 description: '',
 filename: 'sample2.jpg',
 views: 0,
 likes: 0,
 timestamp: Date.now
 }, {
 uniqueId: 3,
 title: 'Sample Image 3',
 description: '',
 filename: 'sample3.jpg',
 views: 0,
 likes: 0,
 timestamp: Date.now
 }, {

Controllers and View Models

[98]

 uniqueId: 4,
 title: 'Sample Image 4',
 description: '',
 filename: 'sample4.jpg',
 views: 0,
 likes: 0,
 timestamp: Date.now
 }
]
};

res.render('index', viewModel);

In this code, we built a basic JavaScript collection of objects. The variable we declare
is called viewModel, but the name of this variable doesn't actually matter and can
be whatever you want. The viewModel variable is an object that contains a single
property called images, which is itself an array. The images array contains four
sample images, each with a few basic properties—the most obvious properties we
came up with while deciding what kind of information we want per image. Each
image in the collection has a uniqueId, title, description, filename, views and
likes count, and a timestamp property.

Once we have set up our viewModel, we simply pass it as the second parameter
to the res.render call. Doing this while rendering a view makes the data in it
available to the view itself. Now, if you recall from some of the HTML code we
wrote for the home index.handlebars view, we had a {{#each images}} loop that
iterated through each image in the images collection of the view model passed to
the template. Taking another look at our view model we created, it only has a single
property named images. The HTML code inside the Handlebars loop will then
specifically reference the uniqueId, filename, and title properties for each image
in the images array.

Chapter 6

[99]

Save the changes to the home controller, launch your app again, and point your
browser to http://localhost:3300. You should see the four images that appear
on the homepage now in the Newest Images section (although, as you can see in
the following screenshot, the images are still broken, as we didn't actually create
any image files):

The home page has a fairly simple controller and view model, and you may have
noticed that the sidebar is still completely empty. We'll cover the sidebar a little
later in this chapter.

Controllers and View Models

[100]

Updating the image controller
Let's create the controller and view model for the image page. The controller for the
image will be a little more complex, as we'll write the logic to handle uploading and
saving of the image files via the form on the homepage.

Displaying an image
The index function in the image controller will look almost identical to the index
function from the home controller. The only difference is that instead of generating
an array of images, we will build a view model for a single image. However, the
view model for this image will have a little more information than the one from the
homepage, since we are building a page that renders a more detailed view of an
image (versus the thumbnail collection on the homepage). The most noteworthy
inclusion is that of a comments array for the image.

Taking another look at the original index function in our controllers/image.js
file, we can see the simple existing res.render line of code:

res.render('image');

We want to replace this line with a view model and an updated res.render
statement using the following code:

var viewModel = {
 image: {
 uniqueId: 1,
 title: 'Sample Image 1',
 description: 'This is a sample.',
 filename: 'sample1.jpg',
 views: 0,
 likes: 0,
 timestamp: Date.now
 },
 comments: [
 {

Chapter 6

[101]

 image_id: 1,
 email: 'test@testing.com',
 name: 'Test Tester',
 gravatar: 'http://lorempixel.com/75/75/animals/1',
 comment: 'This is a test comment...',
 timestamp: Date.now()
 },{
 image_id: 1,
 email: 'test@testing.com',
 name: 'Test Tester',
 gravatar: 'http://lorempixel.com/75/75/animals/2',
 comment: 'Another followup comment!',
 timestamp: Date.now()
 }
]
};

res.render('image', viewModel);

Here we are declaring a new viewModel variable again, this time with an image
property that contains the properties for the single image. In addition to the image
property, there is also a comments property, which is an array of comment objects.
You can see that each comment has various properties specific to a comment for each
image. This JavaScript object is actually a pretty good preview of what our real data
will wind up looking like once we include logic to connect our app to MongoDB!

After we build our sample image object and its collection of comments, we pass that
along to our res.render call, thus sending this new viewModel directly to our image's
Handlebars template. Again, if you review the HTML code in the image.handlebars
file, you can see where each property of the viewModel is being displayed.

Again, let's run the application and make sure our image page is appearing properly:

$ node server.js

Controllers and View Models

[102]

Once the app is running and you've launched it in your browser, click on any of the
images that are listed in the Newest Images section of the homepage. This should
take you to an individual image page where you will see something like the page
shown in the following screenshot:

Notice that the title, description, the likes and views count, and timestamp are all
now appearing on the page. In addition, you can see a few comments listed below
the image as well!

Uploading an image
The next feature we need to implement in our image controller is the logic to handle
when a user submits an image via the Image Upload form on the homepage. Even
though the form is on the homepage of our app, we decided to house the logic to
handle uploading within our image controller because logically, this makes the most
sense (since this feature has primarily to do with images and not the homepage per se).
This was purely a personal decision, and you can house the logic wherever you please.

Chapter 6

[103]

You should note that the HTML for the form on the homepage has its action set
to /images and its method is post. This matches perfectly with the route we set up
previously, where we are listening for a post to the /images route and calling the
image controller's create function.

The create function in our image controller will have a few key responsibilities:

• It should generate a unique filename for the image, which will also act
as an identifier

• It should save the uploaded file to the filesystem and ensure that it is an
image file

• It should redirect to the image/image_id route once its task is complete
to display the actual image

As we are going to be working with the filesystem in this function, we are going
to need to include a few modules from the Node.js core set of modules, specifically
the File System (fs) and the Path (path) modules.

Let's begin by first editing the controllers/image.js file and inserting the two new
require statements at the very top of the file:

var fs = require('fs'),
 path = require('path');

Next, take the create function's original code:

res.send('The image:create POST controller');
res.redirect('/images/1');

Replace this original code with the following code:

var saveImage = function() {
 // to do...

};

saveImage();

Here, we created a function called saveImage, and we executed it immediately
after we declared it. This might look a little odd, but the reason for this will
become clearer when we implement database calls in the following chapter. The
main reason is that we are going to call saveImage repeatedly to ensure that the
unique identifier we generated is in fact unique and doesn't already exist in the
database (as a previously saved image's identifier).

Controllers and View Models

[104]

Let's review a breakdown of the code that will be inserted inside the saveImage
function (replacing the // to do... comment). I will cover each line of code for
this function and then give you the entire block of code at the end:

var possible = 'abcdefghijklmnopqrstuvwxyz0123456789',
 imgUrl = '';

We need to generate a random six-digit alphanumeric string to represent a unique
identifier for an image. This identifier will work similar to other websites that
provide tiny URLs for unique links (that is, bit.ly). To do this, we first provide a
string of possible characters that can be used while generating the random string:

for(var i=0; i < 6; i+=1) {
 imgUrl += possible.charAt(Math.floor(Math.random() * possible.
length));
}

Then, loop six times and randomly pull out a single character from our string
of possible characters, appending it in each cycle. By the end of this for loop,
we should have a string that consists of six random letters and/or numbers,
for example 'a8bd73':

var tempPath = req.files.file.path,
 ext = path.extname(req.files.file.name).toLowerCase(),
 targetPath = path.resolve('./public/upload/' + imgUrl + ext);

Here we declare three variables; where our uploaded files will be stored temporarily,
the file extension of the file that was uploaded (that is '.png', '.jpg', and so on), and a
destination where the uploaded image should ultimately reside. For both the latter
variables, we use the Path node module, which works great while dealing with file
names and paths and getting information from a file (such as a file extension). Next
we move the image from its temporary upload path to its final destination:

if (ext === '.png' || ext === '.jpg' || ext === '.jpeg' || ext ===
'.gif') {
 fs.rename(tempPath, targetPath, function(err) {
 if (err) throw err;

 res.redirect('/images/99');
 });
} else {
 fs.unlink(tempPath, function () {
 if (err) throw err;

 res.json(500, {error: 'Only image files are allowed.'});
 });
}

Chapter 6

[105]

This code performs some validation. Specifically, it conducts checks to make sure
that the uploaded file extension matches a list of allowable extensions—namely,
known image file types. If a valid image file was uploaded, it is moved from the
temp folder via the filesystem's rename function. Notice how the filesystem (fs)
rename function takes three parameters: the original file, the new file, and a callback
function. The callback function is executed once the rename is complete. If node
didn't work this way (always relying on callback functions), it's quite likely your
code will execute immediately following the execution of the rename function and
try to work against a file that doesn't exist yet (that is, the rename function didn't
even finish doing its work). By using a callback function, we are effectively telling
node that "once the rename of the file is finished and the file is ready and where it
should be, then execute the following code."

The else condition that follows handles the situation when the uploaded file was
invalid (that is, not an image), so we call the unlink function of the filesystem
module, which will delete the original file (from the temp directory it was uploaded
to) and then send a simple JSON 500 with an error message.

Here is the complete saveImage function (again, the following code will
replace // to do... from earlier):

var possible = 'abcdefghijklmnopqrstuvwxyz0123456789',
 imgUrl = '';

for(var i=0; i < 6; i+=1) {
 imgUrl += possible.charAt(Math.floor(Math.random() * possible.
length));
}

var tempPath = req.files.file.path,
 ext = path.extname(req.files.file.name).toLowerCase(),
 targetPath = path.resolve('./public/upload/' + imgUrl + ext);

if (ext === '.png' || ext === '.jpg' || ext === '.jpeg' || ext ===
'.gif') {
 fs.rename(tempPath, targetPath, function(err) {
 if (err) throw err;

 res.redirect('/images/' + imgUrl);
 });
} else {
 fs.unlink(tempPath, function () {
 if (err) throw err;

 res.json(500, {error: 'Only image files are allowed.'});
 });
}

Controllers and View Models

[106]

With this code in place, we can now successfully upload an image file via the
form on the homepage. Give it a try by launching the app and opening it in a
browser. Once there, click on the Browse button in the main form, and select
an image file from your computer. If successful, the image file should exist
within the public/upload folder of your project with a new random filename.

Be sure that you have the public/upload/temp folders created in
your project, or you will get runtime errors when you attempt to write
files to a location that doesn't exist. Write permissions may need to be
set on the folder depending on your OS and security access.

After the upload form completes and the create controller function does its work,
it will redirect to the individual image page for the image that was uploaded.

Helpers for reusable code
So far, each of the pages that we have rendered displays its viewModel data
perfectly, but that pesky sidebar still remains blank. We're going to fix this by
creating a few modules for the sidebar content but implementing them as helper
modules. These helper modules are those that will be used repeatedly by various
parts of our application and don't necessary belong to the controller folder or
the server folder. So, we'll just create a new home called helpers and store these
modules there.

As we are just loading temporary fixture data into our view models,
the data we set up in the helpers as well as the controllers will all
be replaced with actual live data in the next chapter once we
implement MongoDB.

The sidebar module
First, we will create a module for the entire sidebar. This module will be responsible
for calling multiple other modules to populate viewModel for each section of the
sidebar. As we are going to be populating each page's own viewModel with data
specifically for the sidebar, the sidebar module's function will accept that original
viewModel as a parameter. This is so that we can append data to the existing
viewModel for each page.

Chapter 6

[107]

Here we will be appending a sidebar property (which is a JavaScript object) that
contains properties for each of the sections of the sidebar.

To get started, first create a file named helpers/sidebar.js and insert the
following code:

var Stats = require('./stats'),
 Images = require('./images'),
 Comments = require('./comments');

module.exports = function(viewModel, callback){
 viewModel.sidebar = {
 stats: Stats(),
 popular: Images.popular(),
 comments: Comments.newest()
 };

 callback(null, viewModel);
};

In the preceding code, you can see that we first required a module for each section
of the sidebar. The existing ViewModel for any given page that displays the sidebar
is the first parameter to the function. We add a sidebar property to viewModel and
set values for each property by calling the module for each section of the sidebar.
Finally, we execute a callback that was passed in as the second parameter to the
sidebar module. This callback is an anonymous function that we will use to execute
the rendering of the HTML page.

Let's update the home and image controllers to include a call to the sidebar module
as well as defer rendering the HTML template for each page to the callback for the
sidebar module.

Edit controllers/home.js and take the following line of code:

res.render('index', viewModel);

And replace it with this new block of code:

sidebar(viewModel, function(viewModel) {
 res.render('index', viewModel);
});

Controllers and View Models

[108]

Make the exact same changes to the controllers/image.js file
replacing 'index' with 'image':

sidebar(viewModel, function(viewModel) {

 res.render('image', viewModel);

});

Again, notice how we are executing the sidebar module and passing the existing
viewModel as the first parameter and a basic anonymous function as a callback
for the second parameter. What this is doing is waiting to render the HTML for
the view until after the sidebar has completed populating viewModel. This is because
of the asynchronous nature of Node.js. Suppose we wrote the code in the following
way instead:

sidebar(viewModel);
res.render('index', viewModel);

Here, it's quite likely that the res.render statement will execute before sidebar
has even finished doing any work. This is going to become very important once we
introduce MongoDB in the next chapter.

Additionally, as we are now using the sidebar module in each controller, be sure to
require it at the top of both controllers by including the following code:

var sidebar = require('../helpers/sidebar');

Now that our sidebar module is complete, and it's being called from both controllers,
let's finish the sidebar by creating each of the submodules that are required.

The stats module
The stats module is going to display a few random pieces of statistics about our
app. Specifically, it will show the count for the total number of images, comments,
views, and likes for the entire website.

Create the helpers/stats.js file and insert the following code:

module.exports = function() {
 var stats = {
 images: 0,
 comments: 0,

Chapter 6

[109]

 views: 0,
 likes: 0
 };

 return stats;
};

This module is pretty basic and all it does is create a standard JavaScript object with
a few properties for the various stats, each set initially to 0.

The images module
The images module is responsible for returning various collections of images.
Initially, we will create a popular function that will be used to return a collection of
the most popular images on the website. Initially, this collection will simply be an
array of image objects with the sample fixture data present.

Create the helpers/images.js file and insert the following code:

module.exports = {
 popular: function() {
 var images = [
 {
 uniqueId: 1,
 title: 'Sample Image 1',
 description: '',
 filename: 'sample1.jpg',
 views: 0,
 likes: 0,
 timestamp: Date.now
 }, {
 uniqueId: 2,
 title: 'Sample Image 2',
 description: '',
 filename: 'sample2.jpg',
 views: 0,
 likes: 0,
 timestamp: Date.now
 }, {
 uniqueId: 3,
 title: 'Sample Image 3',
 description: '',

Controllers and View Models

[110]

 filename: 'sample3.jpg',
 views: 0,
 likes: 0,
 timestamp: Date.now
 }, {
 uniqueId: 4,
 title: 'Sample Image 4',
 description: '',
 filename: 'sample4.jpg',
 views: 0,
 likes: 0,
 timestamp: Date.now
 }
];
 return images;
 }
};

The comments module
Similar to the images helper module, the comments module will return a collection
of the newest comments posted to the site. The idea of particular interest is that each
comment also has an image attached to it so that the actual image for each comment
can be displayed as a thumbnail while displaying the list of comments (otherwise,
we lose context when we see a random list of comments with no related image).

Create the helpers/comments.js file and insert the following code:

module.exports = {
 newest: function() {
 var comments = [
 {
 image_id: 1,
 email: 'test@testing.com',
 name: 'Test Tester',
 gravatar: ' http://lorempixel.com/75/75/animals/1',
 comment: 'This is a test comment...',
 timestamp: Date.now(),
 image: {
 uniqueId: 1,
 title: 'Sample Image 1',
 description: '',

Chapter 6

[111]

 filename: 'sample1.jpg',
 views: 0,
 likes: 0,
 timestamp: Date.now
 }
 }, {
 image_id: 1,
 email: 'test@testing.com',
 name: 'Test Tester',
 gravatar: 'http://lorempixel.com/75/75/animals/2',
 comment: 'Another followup comment!',
 timestamp: Date.now(),
 image: {
 uniqueId: 1,
 title: 'Sample Image 1',
 description: '',
 filename: 'sample1.jpg',
 views: 0,
 likes: 0,
 timestamp: Date.now
 }
 }
];

 return comments;
 }
};

Again, this is just a basic JavaScript array of objects with a few properties for
each comment, one of which is an actual image and its properties (the image
property should look familiar since it's the same as one of the items in the
images helper module).

Testing the sidebar implementation
Now that our sidebar module is complete along with its dependent submodules for
the various stats, images, and comments, it's time to give our application another test
run. Launch the node server and open the application in your browser.

Controllers and View Models

[112]

You should now see the sidebar complete with content on both the homepage as well
as the image page:

Iterating on the UI
Now that we have our application working fairly well and can actually interact with
it, it's time to step back and take a look at some areas we may be able to improve.

One area is the Post Comment form on the image page. I don't think it's necessary
that this form is always visible, but instead it should be made available only when
someone actually wants to post a comment.

Additionally, I'd love the Like button to not have to post a full form submission to the
server and cause the entire page to reload (like the form on the homepage does when it
uploads an image). We will use jQuery to submit an AJAX call to the server to handle
the likes, and send and retrieve data in real time without ever reloading the page!

Chapter 6

[113]

To make these tweaks, we're going to need to introduce a small amount of
JavaScript on the page to add a little interactivity. To make things even easier,
we'll use the popular jQuery JavaScript library to make creating interactive
features like these a breeze.

jQuery has been around for a number of years and has been
explosively popular in frontend development. Simply put, jQuery
is JavaScript with training wheels. It allows you to manipulate
the Document Object Model (DOM—the HTML structure of any
page) extremely easily as you will see in the next section. You can
learn more about jQuery at http://jquery.com.

You may not have noticed, but in the HTML code that was provided for the
main.handlebars layout file, jQuery has already been included as an external
script tag (referencing jQuery hosted on a CDN). Additionally, a local scripts.js
tag is also included, where we will put our custom jQuery JavaScript code for the
changes we're going to make to the UI. When you look at the very bottom of
main.handlebars, you can see the following code:

<script src="//ajax.googleapis.com/ajax/libs/jquery/1.11.0/jquery.min.
js"></script>
<script type="text/javascript" src="/public/js/scripts.js"></script>

The first script tag points to Google's Code Content Delivery Network (CDN), which
means we don't have to worry about hosting that file with our code. The second file,
however, is our own file, so we are going to need to make sure that exists.

CDN is a means of delivering a file from a globally distributed network of
caching servers. What this means, generally speaking, is that files that are
very commonly downloaded by web visitors (such as jQuery for example)
can be loaded much quicker via a regionally closer download source as
well as improved caching. If multiple websites use the same CDN URL to
host jQuery, for example, it stands to reason that a visitor to your website
may have already downloaded jQuery from visiting a previous unrelated
website. Therefore, your website will load that much quicker!

Create the public/js/scripts.js file and insert the following code:

$(function(){
 // to do...
});

http://jquery.com

Controllers and View Models

[114]

This is a standard code block that you'll see almost every time anyone uses jQuery.
What this code does is execute an anonymous function within the $() jQuery
wrapper, which is shorthand for writing the following code:

$(document).ready(function(){
 // to do...
});

This code basically just means that the callback function will wait until the page
is fully loaded and ready before executing. This is important because we don't want
to apply UI event handlers and/or effects to DOM elements that don't actually exist
yet because the page is still loading. This is also another reason why the script tags in
the main.handlebars layout file are the last lines of the page; so, they are the last to
load ensuring that the document has already been fully downloaded and is ready to
be manipulated.

First, let's address the Post Comment functionality. We want to hide the comment
form by default, and then display it only when a user clicks on the Post Comment
button below an image (to the right of the Like button). Insert the following code
inside the callback function where the // to do... comment exists:

 $('#post-comment').hide();
 $('#btn-comment').on('click', function(event) {
 event.preventDefault();

 $('#post-comment').show();
 });

The first line of code executes the hide function on the HTML div that has a
'post-comment' ID. We then immediately apply an event handler to the HTML
button with a 'btn-comment' ID. The event handler we apply is for onClick
because we want it to execute the anonymous function we provided whenever a user
clicks on that button. That function simply prevents the default behavior (the default
behavior for that particular element; in this case, a button) and then calls the show
jQuery function, which reveals the 'post-comment' div that was previously hidden.
The event.preventDefault() part is important because if we didn't include that,
the action of clicking on the button would do what a browser expects it to do and try
to execute our custom JavaScript function at the same time. If we didn't include this,
it's likely that our UI will behave in ways that are less than ideal. A good example
is if you want to override the default behavior of a standard HTML link, you can
assign an onClick event handler and do whatever you want. However, if you don't
perform event.preventDefault(), the browser is going to send the user to the
HREF for that link, regardless of what your code is trying to do.

Chapter 6

[115]

Now let's add some code to handle the Like button functionality. We are going
to want to add an event handler for the button, the same way we did for the Post
Comment button, using jQuery's .on function. After the code that you added
previously, insert this additional block of code:

$('#btn-like').on('click', function(event) {
 event.preventDefault();

 var imgId = $(this).data('id');

 $.post('/images/' + imgId + '/like').done(function(data) {
 $('.likes-count').text(data.likes);
 });
});

The preceding code attaches an onClick event handler to the 'btn-like' button.
The event handler first retrieves the data-id attribute from the Like button itself
(assigned via the image.handlebars HTML template code and the viewModel)
and then performs a jQuery AJAX POST to the /images/:image_id/like route.
Recall the following line from our Node server/routes.js file:

app.post('/images/:image_id/like', image.like);

Once that AJAX call is done, another anonymous callback function will be executed
that will change the text of the HTML element with a likes-count class and replace
it with the data that was returned from the AJAX call—in this case, the updated total
count of likes (typically, it would be whatever it was previously plus one).

In order to test this functionality, we are going to need to implement some fixture
data in our like function inside the image controller. Edit controllers/image.js
and within the like function, replace the existing res.send function call with the
following code:

like: function(req, res) {
 res.json({likes: 1});
},

All this code does is return JSON to the client with a simple object that contains a
single likes property with a value of 1. In the next chapter, when we introduce
MongoDB to the app, we'll update this code to actually increment the count of likes
and return the true value for the liked image.

With all of those changes in place, you should be able to re-launch the node server
and open the website in your browser. Click on any image on the homepage to view
the image page and then click on the Like button to see it change from 0 to 1. Don't
forget to check out the fancy new Post Comment button too—clicking on this should
reveal the comment form!

Controllers and View Models

[116]

Summary
At the beginning of this chapter, we had some basic HTML pages that appear in a
browser via our application, but they contained no content and no logic whatsoever.
We implemented the logic for each of our controllers and learned about the view
model and how to populate pages with content.

In addition to displaying content on our pages via a view model, we also implemented
the code to handle uploading and saving image files to the local file system.

We tweaked the UI slightly to include some subtle enhancements using jQuery by
revealing the comment form and used AJAX to track likes instead of a relying on a
full-page postback.

Now that the groundwork has been laid for our view models and controllers,
let's tie it all together using MongoDB and start working with real data. In the next
chapter, we will update the controllers once again, this time implementing the logic
to read from and save data to our MongoDB server.

Persisting Data with
MongoDB

With almost any application written for the Web nowadays, a highly interactive
application is of limited value if the interactions of its users aren't permanently
saved. The most common way to handle this requirement is with a database that
permanently saves data to the filesystem. Imagine a world where all of the data for
your application (registered users, order transactions, and social interactions) were
all stored within the temporary memory of the server the application is running
on. The moment that server is turned off or rebooted, all of your application that
would be lost. Relying on a database to store this data permanently is crucial to
the success of any dynamic application.

In this chapter, the following topics will be covered:

• Connecting to MongoDB
• An introduction to Mongoose
• Schemas and models
• Adding CRUD to our controllers

In the previous chapter, we wrote and accounted for the actual logic of our application.
The next step in building our application is to connect it to a database so that our users'
interactions and data can be permanently saved and retrieved. Without connecting
our application to a database server to persist data, every interaction by a visitor will
be lost the second they left the page. Without some kind of database server to store
our data, most of the websites we interact with on a daily basis wouldn't even exist.
Technically, we can get around this by storing data in memory, but the moment our
web server restarts or crashes, all of that data would be lost.

Persisting Data with MongoDB

[118]

Here is a general breakdown of how our data is going to be persisted for every
visitor interaction in our app:

Consider the previous diagram, which reflects the typical lifecycle of a web
application request:

1. A visitor submits a request to view a page on our application via their
web browser.

2. Our Node.js server receives this request and queries a MongoDB server for
any data.

3. Our MongoDB server returns the queried data back to our Node.js server.
4. Our Node.js server takes that data and builds it into the view model and then

sends the rendered HTML page back to the browser.
5. The web browser receives the response from our Node.js server and renders

the HTML.
6. This cycle repeats typically for every interaction by every visitor.

For the purposes of this book, we are using MongoDB as our primary data
store—but the reality is that we can use anything to store data: mySQL,
postgreSQL, MS SQL, the filesystem, and so on.

Using MongoDB with Node
Before we officially implement MongoDB into our actual application, let's first
take a look at some basic examples of connecting to a MongoDB server from
within Node.js.

Create a new project folder to store some sample code to experiment with. I'll call my
folder mongotest. Inside this folder, create a new file called test.js and in this file
we will play around with some code to test how to connect to MongoDB and how to
insert and retrieve some data. The first thing we need to do in order to connect to a
MongoDB server from node is to require a mongodb module.

Chapter 7

[119]

To get started, change directories into the new mongotest folder and install the
mongodb module using npm:

$ cd mongotest

$ npm install mongodb

Don't be confused by the module's name. The mongodb npm module
isn't MongoDB itself, but rather a third-party npm module that
facilitates communicating to a MongoDB server from within Node.
js. Also, because this is just a sample project to experiment with, we
don't require the --save flag with npm install since
we aren't maintaining a package.json file.

Connecting to MongoDB
Now that the mongodb module is installed, we can use it in our experimentation file.
Boot up your editor, and create a file named test.js. Insert the following block of
code into it:

var MongoClient = require('mongodb').MongoClient;

MongoClient.connect('mongodb://localhost:27017/mongotest',
function(err, db) {
 console.log('Connected to MongoDB!');

 db.close();
});

Executing the preceding code should log Connected to MongoDB! to your screen.

The first thing you'll notice is that we require the mongodb module, but we
specifically use the MongoClient component of the module. This component is the
actual interface we use to actively open a connection to a MongoDB server. Using
MongoClient, we pass the mongodb://localhost:27017/mongotest string URL to
our local server as the first parameter. Notice that the path in the URL points to the
server and then the name of the database itself.

Persisting Data with MongoDB

[120]

Remember to make sure you have your local MongoDB server instance
running in another terminal for the duration of this chapter. To do so,
open a command-line terminal window and execute $ mongod. Your
server should launch and log information to the screen ending with
[initandlisten] waiting for connections on port 27017.
You may find that when run your application, you receive a stack trace
error with something like the following code:

events.js:72
 throw er; // Unhandled 'error' event
 ^
Error: failed to connect to [localhost:27017]

If this happens, you should recognize that it failed to connect to
localhost on port 27017—also known as the port that our local
mongod server runs under by default.

Once we have an active connection to our database server, it's as if we are running
the mongo shell command. The MongoClient callback function returns a database
connection object (that we named db in our code, but could have been named
anything), which is almost exactly the same object we work with in the mongo shell
when we execute use databasename. Knowing this, at this point, we can use the db
object to do anything we can do via the mongo shell. The syntax is slightly different,
but the idea is generally the same.

Inserting a document
Let's test out our new db object by inserting a record into a collection:

var MongoClient = require('mongodb').MongoClient;

MongoClient.connect('mongodb://localhost:27017/mongotest',
function(err, db) {
 console.log('Connected to MongoDB!');

 // using the db connection object, save the collection 'testing'
to
 // a separate variable:
 var collection = db.collection('testing');
 // isert a new item using the collection's insert function:
 collection.insert({'title': 'Snowcrash'}, function(err, docs) {
 // on successful insertion, log to the screen the new
 // collection's details:

Chapter 7

[121]

 console.log(docs.length + ' record inserted.');
 console.log(docs[0].title + ' – ' + docs[0]._id);
 // finally close the connection:
 db.close();
 });
});

In the preceding code, we establish a connection to the database and execute a
callback once the connection is complete. That callback receives two parameters, the
second of which is the db object itself. Using the db object, we can get a collection
we want to work with. In this case, we save that collection as a variable so that we
can more easily work with it throughout the rest of our code. Using the collection
variable, we execute a simple insert command and pass in the JSON object we want
to insert into the database as the first parameter.

The callback function that executes after insert accepts two parameters, the second
of which is an array of documents affected by the command; in this case, an array of
documents that we inserted. Once insert is complete and we are inside the callback
function, we log some data. You can see that the length of the docs array is 1 as we
only inserted a single document. Furthermore, you can see that the single document
in the array is the document we inserted, although now it has an extra _id field since
MongoDB handles that automatically.

Retrieving a document
Let's prove our code a little bit more by adding a findOne call to look up the document
we just inserted. Change the code in test.js to match the following example:

var MongoClient = require('mongodb').MongoClient;

MongoClient.connect('mongodb://localhost:27017/mongotest',
function(err, db) {
 console.log('Connected to MongoDB!');

 var collection = db.collection('testing');
 collection.insert({'title': 'Snowcrash'}, function(err, docs) {
 console.log(docs.length + ' record inserted.');
 console.log(docs[0]._id + ' - ' + docs[0].title);

 collection.findOne({title: 'Snowcrash'}, function(err, doc) {
 console.log(doc._id + ' - ' + doc.title);
 db.close();
 });
 });
});

Persisting Data with MongoDB

[122]

In this code, we are inserting a record in exactly the same way as before; only this time,
we are performing findOne on title. The findOne function accepts a JSON object to
match against (this can be as precise or loose as you want) as its first parameter. The
callback function that executes after findOne will contain the single document that
was found as its second parameter. If we executed a find operation, we would have
received an array of matching documents based on the search criteria.

The output of the last mentioned code should be:

$ node test.js

Connected to MongoDB!

1 record inserted.

538bc3c1a39448868f7013b4 - Snowcrash

538bc3c1a39448868f7013b4 – Snowcrash

In your output, you might notice that the _id parameter being reported on insert
doesn't match the one from findOne. This is likely the result of running the code
multiple times, which results in multiple records with the same title being inserted.
The findOne function will return the first document found in no particular order,
so chances are the document returned may not be the last one inserted.

Now that you have a basic understanding of how to easily connect and communicate
with a MongoDB server from Node, let's take a look at how we can work with
MongoDB in a way that's a little less raw.

Introducing Mongoose
While working directly with the mongodb module is great, it's also a bit raw and
lacks any sense of developer friendliness that we've come to expect working with
frameworks such as Express in Node.js. Mongoose is a great third-party framework
that makes working with MongoDB a breeze. Mongoose is an elegant mongodb object
modeling for Node.js.

What that basically means is that Mongoose gives us the power to organize our
database by using schemas (also known as model definitions) and providing
powerful features to our models such as validation, virtual properties, and more.
Mongoose is a great tool as it makes working with collections and documents in
MongoDB feel much more elegant. The original mongodb module is a dependency
of Mongoose, so you can think of Mongoose as being a wrapper on top of mongodb
much like Express is a wrapper on top of Node.js—both abstract away a lot of the
"raw" feeling and give you easier tools to work with directly.

Chapter 7

[123]

It's important to note that Mongoose is still MongoDB, so everything you're familiar
with and used to will work pretty much the same way; only the syntax will change
slightly. This means that the queries and inserts and updates that we know and love
from MongoDB work perfectly fine with Mongoose.

Let's take a look at some of the features that Mongoose has to offer and what we'll
take advantage of to make our lives easier when developing apps that heavily rely
on a MongoDB database.

Schemas
In Mongoose, schemas are what we use to define our models. Think of them as a
blueprint that all models you create throughout the app will derive from. Using
schemas, you can define much more than the simple blueprint of a MongoDB model.
You can also take advantage of the built-in validation that Mongoose provides by
default, add static methods, virtual properties, and more!

The first thing we do while defining a schema for a model is build a list of every field
we think we will need for a particular document. The fields are defined by type, and
the standard datatypes you would expect are available as well as a few others:

• String
• Number
• Date
• Buffer
• Boolean
• Mixed: "Anything goes" field type. Consider this when storing JSON type

data or data that is arbitrary and can literally be any JSON representation.
It doesn't need to be predefined.

• ObjectId: Typically used when you want to store the ObjectID of another
document in a field, for example when defining a relationships.

• Array: A collection of other schemas (that is, models).

Here is an example of a basic Mongoose Schema definition:

var mongoose = require('mongoose'),
 Schema = mongoose.Schema;

var Account = new Schema({
 username: { type: String },

Persisting Data with MongoDB

[124]

 date_created: { type: Date, default: Date.now },
 visits: { type: Number, default: 0 },
 active: { type: Boolean, default: false }
});

Here we define our schema for an Accounts collection. The first thing we do is
require mongoose and then define a schema object using mongoose.Schema in our
module. We define a schema by creating a new Schema instance with a constructor
object that defines the schema. Each field in the definition is a basic JavaScript object
with type, and then an optional default value.

Models
A model in Mongoose is a class that can be instantiated (defined by a schema).
Using schemas, we define models and then use them like a regular JavaScript
object. The benefit is that the model object has the added bonus of being backed
by Mongoose, so it also includes features such as saving, finding, creating, and
removing. Let's take a look at defining a model using a schema and then instantiating
a model and working with it.

The first thing we need to do is install Mongoose so that it's available to use
within our mongotest project:

$ npm install mongoose

Continuing with editing our experimentation file, mongotest/test.js, include the
following block of code after the existing code:

var mongoose = require('mongoose'),
 Schema = mongoose.Schema;

mongoose.connect('mongodb://localhost:27017/mongotest');
mongoose.connection.on('open', function() {
 console.log('Mongoose connected.');
});

var Account = new Schema({
 username: { type: String },
 date_created: { type: Date, default: Date.now },
 visits: { type: Number, default: 0 },
 active: { type: Boolean, default: false }
});

Chapter 7

[125]

var AccountModel = mongoose.model('Account', Account);
var newUser = new AccountModel({ username: 'randomUser' });
console.log(newUser.username);
console.log(newUser.date_created);
console.log(newUser.visits);
console.log(newUser.active);

Running the preceding code should result in something similar to the following:

$ node test.js

randomUser

Mon Jun 02 2014 13:23:28 GMT-0400 (EDT)

0

false

Creating a new model is great when you're working with new documents
and you want a way to create a new instance, populate its values, and then
save it to the database:

var AccountModel = mongoose.model('Account', Account);
var newUser = new AccountModel({ username: 'randomUser' });
newUser.save();

Calling .save on a Mongoose model will trigger a command to MongoDB that
will perform the necessary insert or update statements to update the server.
When you switch over to your mongo shell, you can see the new user was indeed
saved to the database:

> use mongotest

switched to db mongotest

> db.accounts.find()

{ "username" : "randomUser", "_id" : ObjectId("538cb4cafa7c430000070f6
6"), "active" : false, "visits" : 0, "date_created" : ISODate("2014-06-
02T17:30:50.330Z"), "__v" : 0 }

Note that without calling .save() on the model, the changes to the model won't
actually be persisted to the database. Working with Mongoose models in your node
code is just that—code. You have to execute MongoDB functions on a model for any
actual communication to occur with the database server.

Persisting Data with MongoDB

[126]

You can use the AccountModel to perform a find operation and return an array of
AccountModel objects based on some search criteria that retrieve results from the
MongoDB database:

// assuming our collection has the following 4 records:
// { username: 'randomUser1', age: 21 }
// { username: 'randomUser2', age: 25 }
// { username: 'randomUser3', age: 18 }
// { username: 'randomUser4', age: 32 }

AccountModel.find({ age: { $gt : 18, $lt : 30} }, function(err,
accounts){
 console.log(accounts.length); // => 2
 console.log(accounts[0].username); // => randomUser1
 mongoose.connection.close();
});

Here we use the standard MongoDB $gt and $lt for the value of age when passing
in our query parameter to find (that is, find any document where the age is above 18
and below 30). The callback function that executes after find references an accounts
array, which is a collection of AccountModel objects returned from the query to
MongoDB. As a general means of good housekeeping, we close the connection to the
MongoDB server after we are finished.

Built-in validation
One of the core concepts of Mongoose is that it enforces a schema on top of a
schema-less design such as MongoDB. In doing so, we gain a number of new
features, including built-in validation. By default, every schema type has a
built-in required validator available. Furthermore, numbers have both min
and max validators and strings have enumeration and matching validators.
Custom validators can also be defined via your schemas. Let's take a brief look
at some validation added to our example schema from earlier:

var Account = new Schema({
 username: { type: String, required: true },
 date_created: { type: Date, default: Date.now },
 visits: { type: Number, default: 0 },
 active: { type: Boolean, default: false },
 age: { type: Number, required: true, min: 13, max: 120 }
});

Chapter 7

[127]

The validation we added to our schema is that the username parameter is now
required, and we included a new field called age, which is a number that must
be between 13 and 120 (years). If either value doesn't match the validation
requirements (that is username is blank or age is less than 13 or greater than 120),
an error will be thrown.

Validation will fire automatically whenever a model's .save() function is called;
however, you can also manually validate by calling a model's .validate() function
with a callback to handle the response. Building on the example, add the following
code that will create a new mongoose model from the schema defined:

var AccountModel = mongoose.model('Account', Account);
var newUser = new AccountModel({ username: 'randomUser', age: 11 });
newUser.validate(function(err) {
 console.log(err);
});
// the same error would occur if we executed:
// newUser.save();

Running the preceding code should log the following error to the screen:

{ message: 'Validation failed',
 name: 'ValidationError',
 errors:
 { age:
 { message: 'Path 'age' (11) is less than minimum allowed value
(13).',
 name: 'ValidatorError',
 path: 'age',
 type: 'min',
 value: 11 } } }

You can see that the error object that is returned from validate is pretty useful
and provides a lot of information that can help when validating your model and
returning helpful error messages back to the user.

Validation is a very good example of why it's so important to always accept an error
object as the first parameter to any callback function in Node. It's equally important
that you check the error object and handle appropriately.

Persisting Data with MongoDB

[128]

Static methods
Schemas are flexible enough so that you can easily add your own custom static
methods to them, which then become available to all of your models that are defined
by that schema. Static methods are great to add helper utilities and functions that
you know you're going to want to use with most of your models. Let's take our
simple age query from earlier and refactor it so that it's a static method and a little
more flexible:

var Account = new Schema({
 username: { type: String },
 date_created: { type: Date, default: Date.now },
 visits: { type: Number, default: 0 },
 active: { type: Boolean, default: false },
 age: { type: Number, required: true, min: 13, max: 120 }
});

Account.statics.findByAgeRange = function(min, max, callback) {
 this.find({ age: { $gt : min, $lte : max} }, callback);
};

var AccountModel = mongoose.model('Account', Account);

AccountModel.findByAgeRange(18, 30, function(err, accounts){
 console.log(accounts.length); // => 2
});

Static methods are pretty easy to implement and will make your models much more
powerful once you start taking full advantage of them!

Virtual properties
Virtual properties are exactly what they sound like—fake properties that don't
actually exist in your MongoDB documents, but you can fake them by combining
other real properties. The most obvious example of a virtual property would be
a field for full name, when only the first and last name are actual fields in the
MongoDB collection. For the full name, you simply want to say, "return the model's
first and last name combined as a single string and label it fullname":

// assuming the Account schema has firstname and lastname defined:

Account.virtual('fullname')
 .get(function() {

Chapter 7

[129]

 return this.firstname + ' ' + this.lastname;
 })
 .set(function(fullname) {
 var parts = fullname.split(' ');
 this.firstname = parts[0];
 this.lastname = parts[1];
 });

Using the virtual function of a schema, we provide the name of the property
as a string. Then, we call the .get() and .set() functions. It's not required to
provide both, although it's fairly common. Sometimes, it may be impossible to
provide .set() functionalities based on the nature of .get().

In this example, our get() function simply performs basic string concatenation and
returns a new value. Our .set() function performs the reverse—splitting a string
on a space and assigning the models firstname and lastname field values with
each result. You can see that the .set() implementation is a little flakey if someone
attempts to set a model's fullname with a value of say, Dr. Kenneth Noisewater.

It's important to note that virtual properties are not persisted to MongoDB
since they are not real fields in the document or collection.

There's a lot more you can do with Mongoose, and we only just barely scratched
the surface. Fortunately, it has a fairly in-depth guide you can refer to at the
following link:

http://mongoosejs.com/docs/guide.html

Definitely spend some time reviewing the Mongoose documentation so that you
are familiar with all of the powerful tools and options available.

That concludes our introduction to Mongoose's models, schemas, and validation.
Next up, let's dive back into our main application and write the schemas and
models that we will be using to replace our existing sample viewModels as well
as connecting with Mongoose.

Connecting with Mongoose
The act of connecting to a MongoDB server with Mongoose is almost identical to
the method we used earlier when we used the mongodb module.

http://mongoosejs.com/docs/guide.html

Persisting Data with MongoDB

[130]

First, we need to ensure that Mongoose is installed. At this point, we are going to
be using Mongoose in our main app, so we want to install it in the main project
directory and also update the package.json file. Using your command-line terminal
program, change locations to your project folder, and install Mongoose via npm,
making sure to use the --save flag so that the package.json file is updated:

$ cd ~/projects/imgPloadr

$ npm install mongoose --save

With Mongoose installed and the package.json file updated for the project, we're
ready to open a connection to our MongoDB server. For our app, we are going to
open a connection to the MongoDB server once the app itself boots up and maintain
an open connection to the database server for the duration of the app's lifetime.
Let's edit the server.js file to include the connection code we need. First, include
Mongoose in the app by requiring it at the very top of the file:

var express = require('express'),
 config = require('./server/configure'),
 app = express(),
 mongoose = require('mongoose');

Then, insert the following code right after the app = config(app); line:

mongoose.connect('mongodb://localhost/imgPloadr');
mongoose.connection.on('open', function() {
 console.log('Mongoose connected.');
});

That's it! Those few simple lines of code are all it takes to open a connection to a
MongoDB server, and our app is ready to start communicating with the database.
The only parameter we pass to the connect function of mongoose is a URL string
to our locally running MongoDB server and a path to the collection we want to use.
Then, we add an event listener to the 'open' event of the mongoose.connection
object and when that fires, we simply log an output message that the database
server has connected.

Defining the schema and models
For the purposes of the application we are building, we're really only going to have
two different unique schemas and associated models: an image model and comment
model. If we were to take this application to production and really build it out with
all of the necessary features, we should expect to have many more models as well.

Chapter 7

[131]

First, create a new directory in your project labeled models and we will store the
Node.js modules for each of our models here. Create three files in this directory
named image.js, comment.js, and index.js. Let's take a look at the image model
first. Copy the following block of code into the models/image.js file:

var mongoose = require('mongoose'),
 Schema = mongoose.Schema,
 path = require('path');

var ImageSchema = new Schema({
 title: { type: String },
 description: { type: String },
 filename: { type: String },
 views: { type: Number, 'default': 0 },
 likes: { type: Number, 'default': 0 },
 timestamp: { type: Date, 'default': Date.now }
});

ImageSchema.virtual('uniqueId')
 .get(function() {
 return this.filename.replace(path.extname(this.filename), '');
 });

module.exports = mongoose.model('Image', ImageSchema);

First, we define our ImageSchema with the various fields that we are going to want to
store in MongoDB for each of the images. We created a virtual property of uniqueid,
which is just the filename with the file extension removed. As we want our Image
model to be available throughout the rest of our app, we export it using module.
exports. Note that we are exporting the model not the schema (as the schema itself
is fairly useless to us). Let's set up a similar model for comments. Copy the following
block of code into the models/comment.js file:

var mongoose = require('mongoose'),
 Schema = mongoose.Schema,
 ObjectId = Schema.ObjectId;

var CommentSchema = new Schema({
 image_id: { type: ObjectId },
 email: { type: String },
 name: { type: String },
 gravatar: { type: String },

Persisting Data with MongoDB

[132]

 comment: { type: String },
 timestamp: { type: Date, 'default': Date.now }
});

CommentSchema.virtual('image').set(function(image){
 this._image = image;
 }).get(function() {
 return this._image;
 });

module.exports = mongoose.model('Comment', CommentSchema);

There are a few important things to take note of with this model. First, we have a
field labeled image_id, which has an ObjectId type. We're going to use this field
to store the relationship between a comment and the image that it was posted to.
The ObjectId that gets stored in this field is the _id of the related image document
from MongoDB.

We also define virtual on the comment schema labeled image, which we provide
a getter and setter for. The image virtual property will be how we attach the related
image when we retrieve comments later in our controllers. For every comment, we
are going to iterate through and look up its associated image and attach that image
object as a property of the comment.

It's important to understand how Mongoose and MongoDB handle
the naming of collections based on your schema and models.
Typically, you name your models using singular terms, and
Mongoose will recognize this and create your collections using a
pluralized model name. So, a model defined as Image will have a
collection in MongoDB named images. Likewise, a model named
Comment will have a corresponding collection named comments.
Mongoose tries to be smart about this; however, a model defined as
Person will have a corresponding collection named people and so
on. (And yes, octopus will result in octopi!)

Models index file
There's one last file in the models folder that we haven't yet touched on in our
project. The index.js file within any folder in Node.js acts as an index file for
the modules within it. This is by convention, so you don't have to adhere to this
if you don't want to.

Chapter 7

[133]

Since our models folder will contain a number of different files, each a unique
module for one of our models, it would be nice if we could just include all of our
models in a single require statement. Using the index.js file we can do so pretty
easily too. Copy the following block of code into the models/index.js file:

module.exports = {
 'Image': require('./image'),
 'Comment': require('./comment')
};

The index.js file inside the models directory simply defines a JavaScript object
that consists of a name-value pair for each module in our directory. We manually
maintain this object, but this is the simplest implementation of the concept. Now,
thanks to this basic file, we can perform require('./models') anywhere in our
application and know that we have a dictionary of each of our models via that
module. To reference a specific model in that module, we simply refer to the specific
model as a property of the module. If we only wanted to require a specific model
somewhere in our app instead, we can perform require('./models/image') just
as easily! You will see more of this a little later and it will become much more clear.

Because our two models are so closely related, we are typically always going
to require the models dictionary using require('./models') throughout
our application.

Adding CRUD to the controllers
Now that our schemas are defined and our models are ready, we need to start
actually using them throughout our application by updating our controllers with
various CRUD methods where necessary.

CRUD stands for Create, Read, Update, and Delete.

Up until this point, our controllers have consisted of only fixture, or fake, data so
we can prove that our controllers are working, and our view models were wired up
to our templates. The next logical step in our development is to populate our view
models with data directly from MongoDB. It would be even better if we could just
pass our Mongoose models right to our templates as the viewModel itself!

Persisting Data with MongoDB

[134]

The home controller
If you recall from the Updating the Home controller section of Chapter 6, Controllers and
View Models, we originally created viewModel in our home controller that consisted
of an array of JavaScript objects that were just placeholder fixture data:

var viewModel = {
 images: [
 {
 uniqueId: 1,
 title: 'Sample Image 1',
 description: '',
 filename: 'sample1.jpg',
 views: 0,
 likes: 0,
 timestamp: Date.now
 }, {
 uniqueId: 2,
 title: 'Sample Image 2',
 description: '',
 filename: 'sample2.jpg',
 views: 0,
 likes: 0,
 timestamp: Date.now
 }, {
 uniqueId: 3,
 title: 'Sample Image 3',
 description: '',
 filename: 'sample3.jpg',
 views: 0,
 likes: 0,
 timestamp: Date.now
 }, {
 uniqueId: 4,
 title: 'Sample Image 4',
 description: '',
 filename: 'sample4.jpg',
 views: 0,
 likes: 0,
 timestamp: Date.now
 }
]
};

Chapter 7

[135]

We are going to replace that viewModel with a very stripped down version that we
will then populate with real data from our mongoose models:

var viewModel = {
 images: []
};

Before we can populate that viewModel with real data, we need to first make sure
our home controller can use our models. To do so, we must require the models
module. Include this at the very top of the controllers/home.js file:

var sidebar = require('../helpers/sidebar'),
 ImageModel = require('../models').Image;

We could have required the full models module and have had access to both the
Comment model as well as the Image model; however, for the homepage, we really
only need to use the Image model. Now that our mongoose model for Image is
available to our home controller, we can perform a find operation to retrieve a list
of the newest images to display on the homepage. Replace the existing sidebar()
call in your home controller with this updated version of the code:

ImageModel.find({}, {}, { sort: { timestamp: -1 }},
 function(err, images) {
 if (err) { throw err; }

 viewModel.images = images;
 sidebar(viewModel, function(viewModel) {
 res.render('index', viewModel);
 });
 });

Using ImageModel, we execute a MongoDB find query, but we provide no specifics
for the actual query (a blank JavaScript object), which means it will return every
document. The second parameter is also a blank JavaScript object, which means we
aren't specifying how to map the results, so the full schema will be returned. The
third parameter is an options object where we can specify things such as the sort
field and order. In this particular query, we are retrieving every single image in the
images collection sorted by timestamp in descending order (ascending order would
have had a value of 1 instead of -1).

The callback function that executes after a successful find to the MongoDB database
server will return both an error object as well as an images array of matching
models; in our case, every image in the database. Using the array that's returned
from the query, we simply attach it to our viewModel via its images property.
Then, we call our sidebar function exactly as we did previously.

Persisting Data with MongoDB

[136]

At this point, we are no longer populating our viewModel with fixture data but
instead populating it with exactly what is returned from the database when we
perform a basic find query using our mongoose Image model. The homepage
for the application is officially data driven! Here is a recap of the entire
controllers/home.js file:

var sidebar = require('../helpers/sidebar'),
 ImageModel = require('../models').Image;

module.exports = {
 index: function(req, res) {
 var viewModel = {
 images: {}
 };

 ImageModel.find({}, {}, { sort: { timestamp: -1 }},
 function(err, images) {
 if (err) { throw err; }

 viewModel.images = images;
 sidebar(viewModel, function(viewModel) {
 res.render('index', viewModel);
 });
 });
 }
};

If you were to run the app and open it in a browser, you wouldn't actually see
anything on the homepage. That's because we haven't actually inserted any data yet!
That's coming up next. However, note that the page itself still works and you didn't
get any errors. This is because MongoDB is simply returning an empty array from
the find on ImageModel, which the Handlebars homepage template is handling fine
because it's performing an each operation against an empty array so it's displaying
zero images on the homepage.

The image controller
The image controller is by far the biggest component of our application. It contains
most, if not all, of the logic that's powering our app. This includes displaying all
of the details for an image, handling the uploading of images, and handling likes
and comments. There's a lot to cover in this controller, so let's break it down by
each section.

Chapter 7

[137]

Index – retrieving an image model
The primary responsibility of the index function in our image controller is to retrieve
the details for a single specific image and display that via its viewModel. In addition
to the details for the actual image, the comments for an image are also displayed on
the page in the form of a list. Whenever an image is viewed, we need to also update
the views count for the image and increment it by one.

Begin by editing the controllers/image.js file and updating the list of required
modules at the top to include our models module:

var fs = require('fs'),
 path = require('path'),
 sidebar = require('../helpers/sidebar'),
 Models = require('../models');

We also want to strip our viewModel down to its most basic form exactly as we did
in the home controller. Replace the existing viewModel object variable with this new,
lighter version:

var viewModel = {
 image: {},
 comments: []
};

After defining our blank viewModel, let's include a find call on the Image model so
that we can look up an image specifically by its filename:

Models.Image.findOne({ filename: { $regex: req.params.image_id } },
 function(err, image) {
 if (err) { throw err; }
 if (image) {
 // to do...
 } else {
 res.redirect('/');
 }
 });

In the preceding code, we are using the Models module's Image model and
performing findOne, which is identical to find, except it will only ever return
a single document (matching or not) instead of an array as find returns. By
convention, we use a singular variable name in our callback's second parameter
versus a plural, just so we as developers can easily tell we are working with a single
object or an array/collection of objects.

Persisting Data with MongoDB

[138]

The query object we provide as the first parameter matches the filename field of
an image document using MongoDB's regex filter and comparing to req.params.
image_id, which is the value of the parameter in the URL as defined in our routes
file. The URL for an image page will always be http://localhost:3300/images/
abcdefg, where abcdefg will be the value of req.params.image_id. If you recall, we
are randomly generating this value in the create function when an image is uploaded.

After checking to make sure our err object isn't null, we then check to make sure our
image object is also not null. If it's not null, that means a model was returned from
MongoDB; so, we found our image and we're good to go. If an image model wasn't
returned because we tried searching for an image by a filename that doesn't exist,
we simply redirect the user back to the homepage.

Let's now populate our viewModel by inserting the following lines in the area where
we have the // to do... placeholder comment:

image.views = image.views + 1;
viewModel.image = image;
image.save();

We attach the image model that was returned from findOne to our viewModel.
image property, but not before incrementing the views property of that model by
1 (so that we represent our actual plus one view as we load the page). Since we
modified the model (by incrementing its views count), we need to ensure that it's
saved back to MongoDB so we call the model's save function.

Now that viewModel has been updated with the image model and the views count
has been incremented and saved, we next need to retrieve a list of comments
associated with the image. Let's include a little bit more code to query the Comment
model and find any comments that belong to the image. Insert the following block of
code immediately after image.save(); from earlier:

Models.Comment.find({ image_id: image._id}, {}, { sort: { 'timestamp':
1 }},
 function(err, comments){
 if (err) { throw err; }

 viewModel.comments = comments;

 sidebar(viewModel, function(viewModel) {
 res.render('image', viewModel);
 });
 }
);

Chapter 7

[139]

Using find on our Comment model, we can pass in an object that contains our query
as the first parameter; in this case, we are specifying that we want all comments
where the image_id field is equal to the _id property of the main image model we
attached to our viewModel earlier.

That code might look a little odd so let's elaborate. Remember that the image
object that is returned from the original Models.Image.findOne() call is available
throughout the entire scope of that callback function. No matter how deep we get
nesting callback functions, we will always have access to that original image model.
Therefore, we can access it and its properties inside the callback function that fires
when our Model.Comment.find() has executed.

Once inside the find callback of Comment, we attach the comments array that
was returned to our viewModel and then call our sidebar function exactly as
we did previously when we first opened the controller and started editing this
index function.

As a review, here is the entire index function inside the controllers/image.js
file after it's been completely updated:

index: function(req, res) {
 // declare our empty viewModel variable object:
 var viewModel = {
 image: {},
 comments: []
 };

 // find the image by searching the filename matching the url
parameter:
 Models.Image.findOne({ filename: { $regex: req.params.image_id }
},
 function(err, image) {
 if (err) { throw err; }
 if (image) {
 // if the image was found, increment its views counter
 image.views = image.views + 1;
 // save the image object to the viewModel:
 viewModel.image = image;
 // save the model (since it has been updated):
 image.save();

 // find any comments with the same image_id as the
image:

Persisting Data with MongoDB

[140]

 Models.Comment.find({ image_id: image._id},{},{ sort:
{ 'timestamp': 1 }},
 function(err, comments){
 // save the comments collection to the
viewModel:
 viewModel.comments = comments;
 // build the sidebar sending along the
viewModel:
 sidebar(viewModel, function(viewModel) {
 // render the page view with its
viewModel:
 res.render('image', viewModel);
 });
 }
);
 } else {
 // if no image was found, simply go back to the
homepage:
 res.redirect('/');
 }
 });
},

Let's quickly recall all of the index controller's responsibilities and tasks:

1. Create a new empty viewModel object.
2. The findOne image model where the filename is a regex match to

the URL image_id parameter.
3. Increment the found views of image by one.
4. Attach the found image model to viewModel.
5. Save the image model since its views has been updated.
6. Find all comments with the image_id property equal to the _id of the

original image model.
7. Attach the array of found comments to viewModel.
8. Render the page using sidebar passing in the viewModel and

callback function.

Chapter 7

[141]

Create – inserting an image model
We already have the functionality in place in our create function to handle
randomly naming and uploading an image file. Now we need to save that
information to MongoDB for the uploaded image.

Let's update the original saveImage function inside controllers/images.
js:create and include the functionality to tie it into the database.

Our goal with the saveImage function is two-fold. First, we want to make sure that
we never save an image to the database with the same randomly generated filename
as an already existing image. Second, we want to ensure that we only insert the
image into the database after it has been successfully uploaded, renamed, and saved
to the filesystem. We are going to make two modifications to the existing code to
achieve this.

The first modification is to wrap the bulk of the logic with find against the randomly
generated file name, and if any documents are returned from MongoDB as a match,
we need to start the process over to repeat this as many times as necessary until we
achieve a truly unique filename. The code to perform the search is as follows:

Models.Image.find({ filename: imgUrl }, function(err, images) {
 if (images.length > 0) {
 saveImage();
 } else {
 // do all the existing work...
 }
});

If an images array that is returned from find has a length greater than zero, it means
at least one image was found to have the same filename as was generated with our
random for loop. If that's the case, we want to call saveImage again which will
repeat the whole process (randomly generate a new name, and perform a find on
the database for that new name). We do this by previously defining the saveImage
function as a variable so that within the saveImage function itself, we can execute it
again by calling the original variable as the function.

A function that calls itself is called recursive.

Assuming no images were returned from find, it means we have generated a truly
unique filename for our image and are safe to rename the file and upload it to the
server as well as save a record to the database.

Persisting Data with MongoDB

[142]

Originally, the last step of the create function was to redirect the visitor to the image's
page within the callback that fired when the file system rename was finished. This is
where we're going to want to create a new mongoose image model. We should redirect
only when the database server is finished saving the image (again relying on a callback
function). Consider the following line in the original function:

res.redirect('/images/' + imgUrl);

Replace this with this new block of code:

var newImg = new Models.Image({
 title: req.body.title,
 description: req.body.description,
 filename: imgUrl + ext
});
newImg.save(function(err, image) {
 console.log('Successfully inserted image: ' + image.filename);
 res.redirect('/images/' + image.uniqueId);
});

Here we create a brand new Image model and pass in the default values via its
constructor. The title and description fields get set right from the values passed
in via the HTML form using req.body and the form field names (.title and
.description). The filename is what we build the same way we did originally when
we set its destination for renaming it, except we don't include the path and directory
names, just the randomly generated filename and the image's original extension.

We call the model's .save() function (just as we did earlier when we updated the
image's views property in the index controller function). The save function accepts
a second parameter in its callback, which will be the updated version of itself.
Once the save is completed, and the image has been inserted into the MongoDB
database, we then redirect to the image's page. The reason the callback returns the
updated version of itself is because MongoDB will automatically include additional
information such as _id.

As a review and sanity check, here is the complete code for the saveImage function
in controllers/image.js:create with the new lines of code clearly highlighted:

var saveImage = function() {
 var possible = 'abcdefghijklmnopqrstuvwxyz0123456789',
 imgUrl = '';
 for(var i=0; i < 6; i+=1) {
 imgUrl += possible.charAt(Math.floor(Math.random() * possible.
length));
 }

Chapter 7

[143]

 /* Start new code: */
 // search for an image with the same filename by performing a
find:
 Models.Image.find({ filename: imgUrl }, function(err, images) {
 if (images.length > 0) {
 // if a matching image was found, try again (start over):
 saveImage();
 } else {
 /* end new code: */
 var tempPath = req.files.file.path,
 ext = path.extname(req.files.file.name).toLowerCase(),
 targetPath = path.resolve('./public/upload/' + imgUrl
+ ext);

 if (ext === '.png' || ext === '.jpg' || ext === '.jpeg' ||
ext === '.gif') {
 fs.rename(tempPath, targetPath, function(err) {
 if (err) { throw err; }

 /* Start new code: */
 // create a new Image model, populate its details:
 var newImg = new Models.Image({
 title: req.body.title,
 filename: imgUrl + ext,
 description: req.body.description
 });
 // and save the new Image
 newImg.save(function(err, image) {
 res.redirect('/images/' + image.uniqueId);
 });
 /* End new code: */
 });
 } else {
 fs.unlink(tempPath, function () {
 if (err) { throw err; }

 res.json(500, {error: 'Only image files are
allowed.'});
 });
 }
/* Start new code: */
 }
 });
/* End new code: */
};

saveImage();

Don't forget to initially execute saveImage() right after the function is defined;
otherwise, nothing will happen!

Persisting Data with MongoDB

[144]

Testing everything out so far
At this point, we have most of the key functionalities wrapped with MongoDB
integration, and our app should really feel like it's coming together. Let's give it a test
run and make sure all of our end points are working so far. Launch the app and open
it in a browser:

$ node server.js

Server up: http://localhost:3300

Mongoose connected.

Open up a browser and point it to http://localhost:3300, and you should see
your application up and running as in the following screenshot:

Chapter 7

[145]

Go ahead and use the form on the homepage to browse for an image file on your
computer and select it. Provide a title and description and click on the Upload
button. You should be taken directly to the image page with the details for your
uploaded image displayed:

Persisting Data with MongoDB

[146]

Go back to the homepage, and you should now see your new image displayed under
the Newest Images section:

Like – updating an image model
Next, let's add support for the Like button. Remember that our Like button works
a little differently. It uses AJAX with jQuery so that data can be sent and received in
real time without reloading the entire page. The experience for the user is seamless
and enjoyable, as they don't lose their scroll place on the page or any other jarring
UI-related issues.

The endpoint that the Like button hits is /images/:image_id/like, so we are going
to use the value in the URL for image_id to find and retrieve the image in MongoDB,
increment its likes value by 1, and then return the new total number of likes for
the image (so that the UI can update with the new value).

Chapter 7

[147]

Currently, the like function in controllers/image.js only does a simple JSON
response with a hardcoded value of 1:

res.json({likes: 1});

Let's replace that original code with new code that will use the mongoose Image model
to find an image with a filename that matches image_id passed in via the URL:

Models.Image.findOne({ filename: { $regex: req.params.image_id } },
 function(err, image) {
 if (!err && image) {
 image.likes = image.likes + 1;
 image.save(function(err) {
 if (err) {
 res.json(err);
 } else {
 res.json({ likes: image.likes });
 }
 });
 }
 });

Assuming the callback function receives a valid image model response from the
query, we'll then increment its likes property, and since the model is then modified,
we need to execute its save function. Inside the save function's callback, we send a
JSON response back to the browser with the real current value of the image's likes.

Sometimes we will use shorthand in JavaScript and perform
the following:

if (!err && image)

What this is actually doing is checking for falsey and truthy conditions,
meaning the absence of err (or when its value is null) is treated as false.
Any value that's not null, not '' (empty string), not 0, or negative will be
considered True. In the if statement in the preceding example, we are
saying "if the err object is false (that is null) and the image object is
true (that is not null), then we're good to go!"

With this code in place, you can run the app again and test out the Like button
by viewing the image that you uploaded earlier and simply clicking on Like. If it
worked, the counter next to the button should increase by one. Refresh the page,
and the likes count should remain as the new value.

Persisting Data with MongoDB

[148]

Comment – inserting a comment model
Inserting comments will work almost exactly the same way as the likes for an image.
The only difference is that we are creating a new comment model instead of updating
an image model. The original code we had in our comment function was:

res.send('The image:comment POST controller');

Let's replace this with some code that will find the image by the image_id in
the URL again, but this time instead of updating its likes, we are going to create
a new comment and assign the comment's image_id value with the _id of the
image we are currently viewing (this is to attach a relationship to the comment
so that it actually belongs to an image). Replace the entire comment function in
controllers/image.js with the following block of code:

Models.Image.findOne({ filename: { $regex: req.params.image_id } },
 function(err, image) {
 if (!err && image) {
 var newComment = new Models.Comment(req.body);
 newComment.gravatar = md5(newComment.email);
 newComment.image_id = image._id;
 newComment.save(function(err, comment) {
 if (err) { throw err; }

 res.redirect('/images/' + image.uniqueId + '#' +
comment._id);
 });
 } else {
 res.redirect('/');
 }
 });

Here you can see that we are using the same code from the like function to query
MongoDB and find the image with the matching filename from the URL.

Assuming a valid image is returned as a match, we create a new comment object
called newComment and actually pass in the entire HTML form body into the
constructor. This is a bit of a cheat as it's a coincidence (not accidental) that our
HTML form uses form fields that have the same name and structure as that of a
comment model. If you were to perform the console.log operation on the
req.body object, you would see something like the following:

{
 name: 'Jason Krol',
 email: 'jason@kroltech.com',
 comment: 'This is what a comment looks like?!'
}

Chapter 7

[149]

That's identical to what we would have just built manually anyway, so we just
take a shortcut and pass the whole thing in as is! After that, we update a few more
properties on the newComment model. First, we manually set a property called
gravatar, which is where we will store the MD5 hash value of the commenter's
email address so we can retrieve their Gravatar profile picture. Gravatar is a
universal avatar service that stores profile pictures based on a user's e-mail address.
However, the unique ID they use for each profile is an MD5 hash value, which is
why we have to store that value.

As we are relying on the third-party MD5 module, we need to ensure that it's
installed in our project and saved to our package.json file as a dependency.
From your project's root folder, execute the following command:

$ npm install MD5 --save

In addition, we need to require the module in the controllers/image.js file at the
very top along with the other modules we are requiring:

var fs = require('fs'),
 path = require('path'),
 sidebar = require('../helpers/sidebar'),
 Models = require('../models'),
 MD5 = require('MD5');

Finally, we set the image_id property of the newComment to the _id property of the
image we found at the beginning of the function. Then, we call the comment model's
.save() function and redirect the user back to the image page. For convenience, we
append a bookmark to the new comment's _id to the URL so that when the page loads
it will automatically scroll down to the users' comments that have just been posted.

With that functionality in place, go ahead and fire up the app and open it in your
browser. Visit the image page for any images you've uploaded and post a comment.
Once the comment posts and the page reloads, you should see something like the
following screenshot under an image:

Persisting Data with MongoDB

[150]

We could have chosen to handle comments using jQuery and AJAX the
same way we handled the Like button. However, this introduces a bit
more complexity because if we were to do that, we would have needed
a slightly more sophisticated way to display that inserted comment to
the screen. This would have involved relying heavily on jQuery to do
some advanced DOM manipulation to display the comment after it was
posted using AJAX.
In a later chapter, when we review Single Page Applications, we will
take a brief look at some JavaScript frameworks that perform this kind
of functionality and a lot of other advanced features!

That concludes the code and functionality for the image controller.

Wrapping it up
Let's do a quick recap of all of the changes we've made to this controller:

1. Updated the index function to retrieve an image from MongoDB and
populate viewModel with the details of the image model. We also found
all comments related to that image and attached an array of those to
viewModel as well.

2. We tweaked the create function to insert a new image model into the
database once it has been successfully renamed and saved to the filesystem.

3. The like function was updated to actually increment the value of an image's
likes property and save that value to the database as well as return the new
value via a JSON response.

4. Comments are now inserted for a particular image via the comment function.
Not only is a comment model inserted into the database, but also its
corresponding image is found and the image model's _id value is attached to
the comment to solidify a relationship.

Helpers
The last piece of the puzzle and last area we need to tie into MongoDB is the sidebar.
To do this, we are going to need to update each of the helpers we previously
created. Most of the helpers that we write code for are going to be using concepts
and functionality that we've already covered in this chapter. However, there is the
addition of one new concept that I want to focus on before we take a look at the code.

Chapter 7

[151]

Introducing the async module
As JavaScript by its very nature is asynchronous, there undoubtedly comes a time
when we need a way to handle executing a number of different asynchronous
functions at the same time. The big issue here is that if we tried to perform three
different queries to a MongoDB server for example, how will we know when all
three are finished before we move on and do work with the results? Up until this
point, we've simply been relying on a single callback function, which works great for
a single call. How can we assign a single callback function to multiple asynchronous
calls? The answer is we can't—not directly anyway. You can use a lot of nested
callbacks to achieve this, but that is generally considered bad practice and will
significantly reduce the readability of your code. We can use a third-party module,
however, that was designed very specifically for this exact need.

async is a powerful node module that can be downloaded and installed via npm,
which provides a number of extremely useful utility functions all designed to help
when working with a series of asynchronous functions. Two functions that we are
going to work with in this chapter are series and parallel. The series function
allows us to execute asynchronous functions sequentially, each waiting until the
previous function finishes before executing a single callback function at the end. The
parallel function allows us to do the opposite—execute a number of asynchronous
functions simultaneously, waiting until they all complete before executing a single
callback function when the last function is finished. How does a single callback
function handle the responses of a number of different asynchronous functions,
you ask? By accepting an array of the responses of each function as a parameter!

Since we are going to be using async for our project, let's install it via npm and make
sure our package.json file is updated as well. Within the root of your project folder,
execute the following from the command line:

$ npm install --save async

The comments helper
Let's take a look at the first use of async in one of our helpers, the comments
helper. Originally, helpers/comments.js was a module that had a newest
function that returned an array of fixture data with some sample comments.
We are going to completely remove this code and instead query MongoDB for
the newest comments and return those as an array. Start by clearing the comment
helper module and start from scratch (note that we included a new callback
parameter to the newest function):

var models = require('../models'),
 async = require('async');

Persisting Data with MongoDB

[152]

module.exports = {
 newest: function(callback) {
 // to do...
 }
};

Notice that we added the additional require statements at the top of the file for
our models and async. Within the newest function, let's replace the // to do...
comment with code to query MongoDB and find the five most recent comments:

models.Comment.find({}, {}, { limit: 5, sort: { 'timestamp': -1 } },
 function(err, comments){
 // to do – attach an image to each comment...
 });

Notice that the first parameter in the find query is an empty JavaScript object,
meaning we will retrieve every comment in the database. For the third parameter,
however, we're using limit and sort so that we limit the number of records
returned to five, and we sort the query by timestamp in descending order.

Now that we have an array of comments, ideally, we'd like the image that each
comment belongs to returned as well. Typically, this would be accomplished with
an aggregate query in MongoDB to join different collections together (such as a
JOIN in SQL). For the purposes of our code, we're going to instead query MongoDB
separately for each comment and retrieve the image associated with the comment's
image_id value.

First, let's define a function that will query MongoDB and retrieve and attach an
image model to a comment model:

var attachImage = function(comment, next) {
 models.Image.findOne({ _id : comment.image_id},
 function(err, image) {
 if (err) throw err;
 comment.image = image;
 next(err);
 });
};

This function will accept a comment model as the first parameter, and a callback
function as the second parameter (named next). The next callback as the second
parameter is important because it's the key to how async is able to function. Imagine
that the next callback acts as a chain link. Since the same function is going to be
called for every item in a collection, there needs to be a way to daisy chain the calls
together. This is performed via the callback.

Chapter 7

[153]

Basically, every time the callback is called for an item in the array, it performs its
work and then executes the same callback with the next item in the array, and so on
and so forth, which is why we named the callback function parameter next.

Another important element to point out with this function is that when we attach the
image model to the comments image property, we are using the virtual property we
set up earlier in the main comment's schema. If you recall, when we set the image
property, we are actually setting the private _image property. Likewise, when we get
the image property, we are actually retrieving the private _image property.

After we have defined the attachImage function, we need to use the each function
of async to apply that function to every item in the comments collection:

async.each(comments, attachImage,
 function(err) {
 if (err) throw err;
 callback(err, comments);
 });

The each function of async will loop through every item in the collection in the first
parameter, and send each item as a parameter to a callback function in the second
parameter. The third parameter is the final callback function that is executed once
the entire series is finished with the collection. In this case, every comment in the
comments array will be passed individually to the attachImage function. When
the entire collection has been iterated through, the final callback will execute, which
basically fires the very first callback function that was passed into the newest
function as its only parameter. Boy that was a mouthful! Let's try to break this down
a little further so it makes a bit more sense:

• The newest function of the comment helper module accepts a single
parameter named callback—this is the function that will get called
once all of the work is finished in this entire function.

• The first thing the newest function does is find the latest five comments
and returns them as an array to an anonymously defined inline function.

• First, we define a function and store it in a variable named attachImage.
• The attachImage function accepts two parameters, an individual comment

model, and a callback function that we named next.
• The attachImage function will query MongoDB to find an image with

an _id value that is the same as the image_id property of the comment
that was passed into it as the first parameter.

• Once that image is found, it is attached to the comment via its image
property and then the next callback function is executed.

Persisting Data with MongoDB

[154]

• We use async.each to loop through every comment in the comments array
that was passed as the first parameter to each.

• Pass the attachImage function as the second parameter, which is the
function that will be called for every comment in the comments array.

• Finally, define an inline anonymous function that will be executed once the
last item in the comments collection has been iterated on. This inline function
itself only accepts an error object as its parameter. Assuming every iteration
of the comments collection was successful, this function will be executed
with no error. Inside this function, we execute the original function named
callback that was the only parameter to the newest function, and callback
is called with the newly updated comments array as its second parameter.

OK, the hardest part is over! You survived a crash course on the async module
and came out, hopefully, unscathed! Just to be safe, here is the code for the
helpers/comments.js module file in its entirety:

var models = require('../models'),
 async = require('async');

module.exports = {
 newest: function(callback) {
 models.Comment.find({}, {}, { limit: 5, sort: { 'timestamp':
-1 } },
 function(err, comments){
 var attachImage = function(comment, next) {
 models.Image.findOne({ _id : comment.image_id},
 function(err, image) {
 if (err) throw err;

 comment.image = image;
 next(err);
 });
 };

 async.each(comments, attachImage,
 function(err) {
 if (err) throw err;
 callback(err, comments);
 });
 });
 }
};

Chapter 7

[155]

Callback, callback, callbacks everywhere!
At this point, it's probably getting a little confusing with the number
of callbacks we've been dealing with. A part of the problem is the
terminology we've been using. Any function that is passed as a
parameter and only executed after certain conditions are met, typically
as the end result of the original function, is referred to as a callback.
The popular convention with JavaScript is to label a callback function
in a parameter literally with the variable name callback so that
it's obvious. This works great when you are reading code, but not so
much when you are explaining code and referring to a function named
callback that's also known as the callback!

The helper sidebar
OK! So, of course, there's a catch right!? Well, kind of. Since we introduced async
in our comments helper module, we now need to introduce it in our sidebar
helper. This is because of the simple fact that our comments helper is now really
asynchronous, so anything that uses our comments module needs to deal with that.
As our sidebar module currently stands, it's just expecting the comments helper
module to return an array and do it instantly; so, it's not expecting to have to wait
around for the actual data. Because of this, if we ran our code as is, our comments
sidebar would remain blank (because the sidebar would have rendered the page
before the MongoDB calls were even finished thinking within the comments
module). Let's fix this by updating our sidebar helper module to use async as well.

First, let's edit the helpers/sidebar.js file and replace its entire contents with this
slightly modified version that uses async.parallel:

var Stats = require('./stats'),
 Images = require('./images'),
 Comments = require('./comments'),
 async = require('async');

module.exports = function(viewModel, callback){
 async.parallel([
 function(next) {
 next(null, Stats());
 },
 function(next) {
 next(null, Images.popular());
 },

Persisting Data with MongoDB

[156]

 function(next) {
 Comments.newest(next);
 }
], function(err, results){
 viewModel.sidebar = {
 stats: results[0],
 popular: results[1],
 comments: results[2]
 };

 callback(viewModel);
 });
};

The first thing we did was make sure async was included as a required module at
the top of the file. Inside the primary exports function, we basically wrapped our
existing code and integrated it into async.parallel so that we can easily tweak it
a little later as we update each section of the sidebar helpers. Since we've so far only
completed the comments helper module, that's the only one that's actually been
changed. The other Stats and Images.popular calls are being forcibly used with
async.parallel even though it doesn't quite make sense to do that right now.
It will once those two sections become more asynchronous in the next sections.

The parallel function of async works in a similar way to its each function that we
used earlier. The main difference is that parallel isn't performing the same function
in a loop through a collection, but is instead performing a series of unique functions
all at the same time. If you look closely, you can see that the first parameter to
parallel is actually an array, and each item in the array is a unique function. Every
function in the array accepts a next callback parameter function, which is executed
at the conclusion of each of the functions. The second parameter in the next callback
is the result of the work that was performed within the function itself. In the case of
Stats and Images.popular, those two functions simply return values instantly with
no asynchronous calls to anything else, so we just expect the results to be returned by
executing them directly.

However, as you can see with the Comments.newest section, we are passing in the next
callback function as a parameter because we want its execution to be deferred until the
last second (that is, until Comments.newest is completely done all of its work). Once
that next callback function is called, it is passed the results of all of its work.

Chapter 7

[157]

The last parameter to the parallel function is an inline function that accepts a
results array as its second parameter. This array is a collection of each of the results
that were returned from each of the functions in the array in the first parameter. You
can see that when we build viewModel now, we are referring to indexes in the results
array. The index order is the order that the functions were defined in the original
array. We know that the first function was to retrieve Stats, the second function to
retrieve Images.popular, and the third function to retrieve Comments.newest. So,
we can reliably assign results[0] to viewModel.Stats, and so on. As a reference,
here is what the viewModel definition originally looked like in the sidebar module:

viewModel.sidebar = {
 stats: Stats(),
 popular: Images.popular(),
 comments: Comments.newest()
};

You can compare this with the updated version that uses async:

viewModel.sidebar = {
 stats: results[0],
 popular: results[1],
 comments: results[2]
};

Now that the sidebar is set up to properly handle the helper modules that are
(and eventually will be) asynchronous, we can run the application and test to ensure
our sidebar is properly displaying the top five most recent comments to the website.
Run the application and launch it in a browser. If you haven't already posted any
comments to an image, do so now so that you can see those comments appearing in
the sidebar along with a thumbnail of the image they belong to.

Troubleshooting
At this point, we've covered and implemented a large number of changes to our
application. It's understandable that something might be broken for you, so let's
run through a quick checklist to make sure we haven't missed any trouble spots
that might be preventing your app from running properly:

• Make sure you've npm installed all of the required modules for this chapter
and that they are saved to your package.json file. This includes mongoose,
async, and MD5.

• Make sure the appropriate dependency modules are being required at the
top of each of the module files they are used in.

Persisting Data with MongoDB

[158]

• Make sure you remember to launch mongod in another terminal instance
whenever you run the application.

• When it doubt, pay attention to the stack trace output that node is giving you
in your terminal when it fails, as it is typically pretty obvious what's wrong.
It will also give you the filename and line number of the offending module.

• When all else fails, console.log everywhere!

Next up, let's update the helper stats module to use parallel as well so we can get
some real stats for the application.

The stats helper
The primary responsibility of the stats helper module is to gather up some totals for
our application. These stats are for things such as total number of images uploaded,
total number of comments, total views for all images combined, and total likes for
all images combined. Your first inclination might be to assume that we are going
to query MongoDB for all images and loop through every image to track all of the
views and totals. That's one way to do it, but it's pretty inefficient. Fortunately,
MongoDB has some built-in functionalities that makes generating these kinds of
values a snap.

As we are going to be making a number of calls to MongoDB, we are going to rely
on the async.parallel function again much like we did in the sidebar module.
The original helpers/stats.js file was very bare bones, so let's completely
replace that file with this new version that uses parallel:

var models = require('../models'),
 async = require('async');

module.exports = function(callback) {
 async.parallel([
 function(next) {
 next(null, 0);
 },
 function(next) {
 next(null, 0);
 },
 function(next) {
 next(null, 0);
 },
 function(next) {
 next(null, 0);
 }

Chapter 7

[159]

], function(err, results){
 callback(null, {
 images: results[0],
 comments: results[1],
 views: results[2],
 likes: results[3]
 });
 });
};

This code does exactly what the module originally did; only it's a little more verbose!
I'm pretty sure we don't want to just return 0 for all of our stats forever though as
that'd be pretty useless and unimpressive to say the least! Let's update each function
to properly query MongoDB and get some stats. Looking at the object returned in
the callback in the last function, we could see that we already defined the order
of the functions that are executing in parallel. Let's start with images. Replace the
next(null, 0); line in the first function with the following code snippet:

models.Image.count({}, next);

Easy! Just use MongoDB's count method to find the total number of documents
in the images collection matching any criteria (the first parameter). Then, we just
pass the next function as the callback because coincidentally enough the parameter
signatures match. If we didn't want to use shorthand here, we could have written
this the long way as:

models.Image.count({}, function(err, total){
 next(err, total);
});

However, who feels like typing all that when you don't have to! Let's do the same
thing for the second function in the parallel array for total comments. Replace the
next(null, 0); line in the second function with the following line of code:

models.Comment.count({}, next);

Again, piece of cake!

Now the next two functions are going to be a little different, but they are almost
identical to each other. What we want to do with next is get the total views and likes
for every image. We can't use MongoDB's count because that only counts individual
documents in a collection. We need to use MongoDB's aggregate functionality instead.

Persisting Data with MongoDB

[160]

Using aggregates, we can perform a mathematical operation such as $sum to tally
up results for us. Replace the next(null, 0); line in the third function with the
following code snippet:

models.Image.aggregate({ $group : {
 _id : '1',
 viewsTotal : { $sum : '$views' }
}}, function(err, result) {
 var viewsTotal = 0;
 if (result.length > 0) {
 viewsTotal += result[0].viewsTotal;
 }
 next(null, viewsTotal);
});

Using MongoDB's aggregate function, we are telling MongoDB to group every
document together and sum up all of their views into a single new field called
viewsTotal. The resulting collection that is returned to the callback function is an
array of documents with the _id and viewsTotal fields. In this case, the results array
will only contain a single document with the grand total because we weren't that
tricky with our aggregate functionality. If there aren't any images in the collection at
all, we need to handle that and check accordingly. Finally, the next callback function
is called with the actual value for viewsTotal.

Let's use the same exact functionality to total up the likes for all images. Replace the
next(null, 0); line of code in the fourth and final function in parallel with the
following code snippet:

models.Image.aggregate({ $group : {
 _id : '1',
 likesTotal : { $sum : '$likes' }
}}, function (err, result) {
 var likesTotal = 0;
 if (result.length > 0) {
 likesTotal += result[0].likesTotal;
 }
 next(null, likesTotal);
});

Now that the sidebar helper module has been updated and is complete with the
async.parallel functionality, let's make a minor tweak back in our sidebar
module to ensure we are calling the Stats module correctly so that it's properly
asynchronous. The original line in helpers/sidebar.js was:

next(null, Stats());

Chapter 7

[161]

Replace that line of code with this slightly different version:

Stats(next);

Last but not least, let's take care of the most popular helper module of the
images sidebar.

The popular images helper
Again, the original helpers/images.js file was mostly filled with fixture data
and placeholder code that's fairly useless. Let's replace the entire file with this new
version that's actually pretty tame in comparison to all of the other helper modules:

var models = require('../models');

module.exports = {
 popular: function(callback) {
 models.Image.find({}, {}, { limit: 9, sort: { likes: -1 }},
 function(err, images) {
 if (err) throw err;

 callback(null, images);
 });
 }
};

At this point, that code should be pretty familiar to you by now. We just query
MongoDB and find the top nine most liked images by sorting the images by total
like count in descending order and limiting the results to nine documents.

Let's edit the helpers/sidebar.js file again to include the updated call to the
Images.popular function. Consider the original code:

next(null, Images.popular());

Replace this with the following slightly newer version:

Images.popular(callback);

And now the sidebar is completely finished and completely dynamic. No more
fixture data or placeholder variables anywhere. Running the application should
yield a fully functional website with all of the features we set out to implement
working perfectly! Give it a spin and make sure it's working correctly.

Persisting Data with MongoDB

[162]

Iterating by adding an image removal
capability
At this point, I think our application is pretty awesome, but there's something
missing that's nagging me. During testing, I've been creating all kinds of new images
and uploading them to the application but it's starting to get a bit cluttered and
messy. It dawned on me that the most obvious thing that's missing is the ability to
remove an image!

In reality, I left out this feature on purpose so that we could use this opportunity
to incorporate a completely new set of functionality that touches almost every area
of the application. This seemingly simple addition is actually going to require the
following changes:

• Update routes.js to include a new route to handle Delete requests
• Update controllers/image.js to include a new function for the route

This should not only remove the image from the database, but also delete the
file and all related comments

• Update the image.handlebars HTML template to include a Remove button
• Update the public/js/scripts.js file with an AJAX handler for the

Remove button

Adding a route
The first thing we need to update in order to add this new functionality is the main
routes list. Here we will add a new endpoint that handles DELETEs and points to a
function within the image controller. Edit the server/routes.js file and insert the
following new line of code:

app.delete('/images/:image_id', image.remove);

Adding a controller handler
Now that we have added a new route, we need to create the controller function that
it's using as its callback (image.remove). Edit controllers/image.js and add the
following new function code after the existing comment: function(req, res){}
operation (don't forget to add a trailing comma after the comment function since you
are adding a new function):

remove: function(req, res) {
 Models.Image.findOne({ filename: { $regex: req.params.image_id }
},

Chapter 7

[163]

 function(err, image) {
 if (err) { throw err; }

 fs.unlink(path.resolve('./public/upload/' + image.
filename),
 function(err) {
 if (err) { throw err; }

 Models.Comment.remove({ image_id: image._id},
 function(err) {
 image.remove(function(err) {
 if (!err) {
 res.json(true);
 } else {
 res.json(false);
 }
 });
 });
 });
 });
}

This function performs four primary functions (and as such nests four layers deep
with callbacks—we could have used async's series method here to prevent the
crazy amount of nesting). The first task is to find the image that is attempting to
be removed. Once that image is found, the file associated with the image should
be deleted. Next, find the comments associated with the image and remove those.
Once they have finished being removed, the last step is to remove the image itself.
Assuming all of that was a success, simply send a true Boolean JSON response back
to the browser.

Updating the Handlebars image page template
Now that we have a route and controller function to support deleting an image, we
need a way for the UI to send the request. The most obvious solution is to just add a
Delete button somewhere on the page. Edit the views/image.handlebars file and
after the existing HTML, where we had the Like button, we are going to add new
HTML for a Delete button:

<div class="col-md-8">
 <button class="btn btn-success" id="btn-like" ...
 // existing HTML for Like button and misc details
</div>

Persisting Data with MongoDB

[164]

<div class="col-md-4 text-right">
 <button class="btn btn-danger" id="btn-delete" data-id="{{ image.
uniqueId }}">
 <i class="fa fa-times"></i>
 </button>
</div>

Here we just include a new div that's set to four columns using Bootstrap and right
aligned. The UI here is that the Like button and stats are the left-most portion of the
row, and the Delete button (an X icon from Font Awesome) is all the way to the right
of the same row (and red since we use Bootstrap's danger color class).

Updating the jQuery
Finally, we are going to tie it all together by implementing code similar to the Like
button, where we send an AJAX delete to the server with the URL and the image
ID when the button is clicked on. To be safe, we display a standard JavaScript
confirmation dialog to ensure the button wasn't clicked by accident.

Assuming the server responds with a true value, we will turn the button green and
change the icon to a checkmark with the word Deleted! in place. Edit public/js/
scripts.js and insert the following block of code after the existing code (be sure to
insert the new code inside the $(function(){ ... }); jQuery function):

$('#btn-delete').on('click', function(event) {
 event.preventDefault();
 var $this = $(this);

 var remove = confirm('Are you sure you want to delete this
image?');
 if (remove) {
 var imgId = $(this).data('id');
 $.ajax({
 url: '/images/' + imgId,
 type: 'DELETE'
 }).done(function(result) {
 if (result) {
 $this.removeClass('btn-danger').addClass('btn-
success');
 $this.find('i').removeClass('fa-times').addClass('fa-
check');

Chapter 7

[165]

 $this.append(' Deleted!');
 }
 });
 }
});

Let's test out this brand new functionality by launching the application, loading it
up in a browser, finding any image we no longer want, and viewing its image page.
The Delete button should now show up in place.

Refactoring and improvements
At this point, the application that we've been building is pretty much complete!
Before we iterate anymore on the project and continue to build it out and make
it ready for production, we should probably consider some refactoring and/or
general improvements. Some areas that I would personally take a look at to
refactor and/or rewrite to improve the application's performance and overall
sanity are as follows:

• I might rethink working directly with Models so much within the controllers
and instead create a utility that I can wrap a lot of that noise and rely on
more basic CRUD calls to my Models and only providing a callback to each.
This is most visible in the image controller with like, comment, and remove.

• Validation! There is literally no validation in the project that we wrote and
that's mostly for brevity. In reality, we should have included validation on
any input fields a user interfaces with. Validation should be provided both
on the frontend via jQuery or plain old vanilla JavaScript as well as on the
backend with Node. The validation should protect from users submitting
invalid and/or malicious code (that is XSS, or Cross-Site Scripting).

• User authentication! Right now, our application is open to general public,
which means any visitor that comes along can upload images as well as
delete them! It would be fairly simple to include a user authentication
process within our application. Passport.js is a great third-party module to
integrate user authentication into Node.js applications.

• Instead of attaching images to comments for the purposes of the sidebar
(newest comments), we should consider creating a more robust aggregate
query using MongoDB to retrieve a hybrid collection of comments that
includes the image provided directly from MongoDB.

Persisting Data with MongoDB

[166]

Summary
What a journey! This chapter was a monster but was also the last piece of the puzzle
to complete our app and have a fully dynamic database driven Node.js app that uses
MongoDB. Congratulations on making it this far and sticking with it! You're well on
your way to being a true full-stack JavaScript developer.

In the next chapter, we'll step away from our application for a bit as we take a look at
working with REST APIs using Node.js.

Creating a RESTful API
Now that your application is complete and ready for the world to see, you might
start thinking of ways to make it more popular. What if you wanted to allow external
systems with access rights to your data in a way that they could mass produce
inserts to your website without the need for users to visit the actual website? One
example that comes to mind almost immediately is suppose users of another website,
say www.facebook.com, can upload an image to Facebook and have it automatically
uploaded to your website as well; can this be done?

The only way to make a scenario like this even possible is by providing an API
to your data and code that gives external developers access to a suite of tools that
will allow them to perform actions without the need to interact with the actual
web pages.

In this chapter, we will review the following topics:

• Introducing RESTful APIs
• Installing a few basic tools
• Creating a basic API server and sample JSON data
• Responding to GET requests
• Updating data with POST and PUT
• Removing data with DELETE
• Consuming external APIs from Node

www.facebook.com

Creating a RESTful API

[168]

What is an API?
An Application Programming Interface (API) is a set of tools that a computer system
makes available that provides unrelated systems or software the ability to interact with
each other. Typically, a developer uses an API when writing software that will interact
with a closed, external, software system. The external software system provides an API
as a standard set of tools that all developers can use. Many popular social networking
sites provide developer's access to APIs to build tools to support those sites. The most
obvious examples are Facebook and Twitter. Both have a robust API that provides
developers with the ability to build plugins and work with data directly, without them
being granted full access as a general security precaution.

As you will see with this chapter, providing your own API is not only fairly simple,
but also it empowers you to provide your users with access to your data. You also
have the added peace of mind knowing that you are in complete control over what
level of access you can grant, what sets of data you can make read-only, as well as
what data can be inserted and updated.

What is a RESTful API?
Representational State Transfer (REST) is a fancy way of saying CRUD over HTTP.
What this means is when you use a REST API, you have a uniform means to create,
read, and update data using simple HTTP URLs with a standard set of HTTP verbs.
The most basic form of a REST API will accept one of the HTTP verbs at a URL and
return some kind of data as a response.

Typically, a REST API GET request will always return some kind of data such as
JSON, XML, HTML, or plain text. A POST or PUT request to a RESTful API URL will
accept data to create or update. The URL for a RESTful API is known as an endpoint,
and while working with these endpoints, it is typically said that you are consuming
them. The standard HTTP verbs used while interfacing with REST APIs include:

• GET: This retrieves data
• POST: This submits data for a new record
• PUT: This submits data to update an existing record
• PATCH: This submits a date to update only specific parts of an existing record
• DELETE: This deletes a specific record

Chapter 8

[169]

Typically, RESTful API endpoints are defined in a way that they mimic the data
models and have semantic URLs that are somewhat representative of the data
models. What this means is that to request a list of models, for example, you would
access an API endpoint of /models. Likewise, to retrieve a specific model by its ID,
you would include that in the endpoint URL via /models/:Id.

Some sample RESTful API endpoint URLs are as follows:

• GET http://myapi.com/v1/accounts: This returns a list of accounts
• GET http://myapi.com/v1/accounts/1: This returns a single account by

Id: 1

• POST http://myapi.com/v1/accounts: This creates a new account (data
submitted as a part of the request)

• PUT http://myapi.com/v1/accounts/1: This updates an existing account
by Id: 1 (data submitted as part of the request)

• GET http://myapi.com/v1/accounts/1/orders: This returns a list of
orders for account Id: 1

• GET http://myapi.com/v1/accounts/1/orders/21345: This returns the
details for a single order by Order Id: 21345 for account Id: 1

It's not a requirement that the URL endpoints match this pattern; it's just
common convention.

Introducing Postman REST Client
Before we get started, there are a few tools that will make life much easier when
you're working directly with APIs. The first of these tools is called Postman REST
Client, and it's a Google Chrome application that can run right in your browser or
as a standalone-packaged application. Using this tool, you can easily make any kind
of request to any endpoint you want. The tool provides many useful and powerful
features that are very easy to use and, best of all, free!

Installation instructions
Postman REST Client can be installed in two different ways, but both require Google
Chrome to be installed and running on your system. The easiest way to install the
application is by visiting the Chrome Web Store at https://chrome.google.com/
webstore/category/apps.

http://myapi.com/v1/accounts
http://myapi.com/v1/accounts/1
http://myapi.com/v1/accounts
http://myapi.com/v1/accounts/1
http://myapi.com/v1/accounts/1/orders
http://myapi.com/v1/accounts/1/orders/21345
https://chrome.google.com/webstore/category/apps
https://chrome.google.com/webstore/category/apps

Creating a RESTful API

[170]

Perform a search for Postman REST Client and multiple results will be returned.
There is the regular Postman REST Client that runs as an application built into your
browser, and then separate Postman REST Client (packaged app) that runs as a
standalone application on your system in its own dedicated window. Go ahead and
install your preference. If you install the application as the standalone packaged
app, an icon to launch it will be added to your dock or taskbar. If you installed it as a
regular browser app, you can launch it by opening a new tab in Google Chrome and
going to Apps and finding the Postman REST Client icon.

After you've installed and launched the app, you should be presented with an output
similar to the following screenshot:

A quick tour of Postman REST Client
Using Postman REST Client, we're able to submit REST API calls to any endpoint
we want as well as modify the type of request. Then, we can have complete access
to the data that's returned from the API as well as any errors that might have
occurred. To test an API call, enter the URL to your favorite website in the Enter
request URL here field and leave the dropdown next to it as GET. This will mimic
a standard GET request that your browser performs anytime you visit a website.
Click on the blue Send button. The request is made and the response is displayed
at the bottom half of the screen. In the following screenshot, I sent a simple GET
request to http://kroltech.com and the HTML is returned as follows:

http://kroltech.com

Chapter 8

[171]

If we change this URL to that of the RSS feed URL for my website, you can see the
XML returned:

Creating a RESTful API

[172]

The XML view has a few more features as it exposes the sidebar to the right that
gives you a handy outline to glimpse the tree structure of the XML data. Not only
that, you can now see a history of the requests we've made so far along the left
sidebar. This is great when we're doing more advanced POST or PUT requests and
don't want to repeat the data setup for each request while testing an endpoint.

Here is a sample API endpoint I submitted a GET request to that returns the JSON
data in its response:

A really nice thing about making API calls to endpoints that return JSON using
Postman Client is that it parses and displays the JSON in a very nicely formatted
way, and each node in the data is expandable and collapsible.

The app is very intuitive so make sure you spend some time playing around and
experimenting with different types of calls to different URLs.

Chapter 8

[173]

Using the JSONView Chrome extension
There is one other tool I want to let you know about (while extremely minor) that is
actually a really big deal. The JSONView Chrome extension is a very small plugin
that will instantly convert any JSON you view directly via the browser into a more
usable JSON tree (exactly like Postman Client). Here is an example of pointing to a
URL that returns JSON from Chrome before JSONView is installed:

And here is that same URL after JSONView has been installed:

Creating a RESTful API

[174]

You should install the JSONView Google Chrome extension the same way you
installed Postman REST Client—access the Chrome Web Store and perform a
search for JSONView.

Now that you have the tools to be able to easily work with and test API endpoints,
let's take a look at writing your own and handling the different request types.

Creating a Basic API server
Let's create a super basic Node.js server using Express that we'll use to create our
own API. Then, we can send tests to the API using Postman REST Client to see how
it all works. In a new project workspace, first install the npm modules that we're
going to need in order to get our server up and running:

$ npm init

$ npm install --save express body-parser underscore

Now that the package.json file for this project has been initialized and the modules
installed, let's create a basic server file to bootstrap up an Express server. Create a file
named server.js and insert the following block of code:

var express = require('express'),
 bodyParser = require('body-parser'),
 _ = require('underscore'),
 json = require('./movies.json'),
 app = express();

app.set('port', process.env.PORT || 3500);

app.use(bodyParser.urlencoded());
app.use(bodyParser.json());

var router = new express.Router();
// TO DO: Setup endpoints ...
app.use('/', router);

var server = app.listen(app.get('port'), function() {
 console.log('Server up: http://localhost:' + app.get('port'));
});

Chapter 8

[175]

Most of this should look familiar to you. In the server.js file, we are requiring the
express, body-parser, and underscore modules. We're also requiring a file named
movies.json, which we'll create next.

After our modules are required, we set up the standard configuration for an Express
server with the minimum amount of configuration needed to support an API server.
Notice that we didn't set up Handlebars as a view-rendering engine because we
aren't going to be rendering any HTML with this server, just pure JSON responses.

Creating sample JSON data
Let's create the sample movies.json file that will act as our temporary data store
(even though the API we build for the purposes of demonstration won't actually
persist data beyond the app's life cycle):

[{
 "Id": "1",
 "Title": "Aliens",
 "Director": "James Cameron",
 "Year": "1986",
 "Rating": "8.5"
},
{
 "Id": "2",
 "Title": "Big Trouble in Little China",
 "Director": "John Carpenter",
 "Year": "1986",
 "Rating": "7.3"
},
{
 "Id": "3",
 "Title": "Killer Klowns from Outer Space",
 "Director": "Stephen Chiodo",
 "Year": "1988",
 "Rating": "6.0"
},
{
 "Id": "4",
 "Title": "Heat",
 "Director": "Michael Mann",
 "Year": "1995",
 "Rating": "8.3"

Creating a RESTful API

[176]

},
{
 "Id": "5",
 "Title": "The Raid: Redemption",
 "Director": "Gareth Evans",
 "Year": "2011",
 "Rating": "7.6"
}]

This is just a really simple JSON list of a few of my favorite movies. Feel free to
populate it with whatever you like. Boot up the server to make sure you aren't
getting any errors (note we haven't set up any routes yet, so it won't actually do
anything if you tried to load it via a browser):

$ node server.js

Server up: http://localhost:3500

Responding to GET requests
Adding a simple GET request support is fairly simple, and you've seen this before
already in the app we built. Here is some sample code that responds to a GET request
and returns a simple JavaScript object as JSON. Insert the following code in the routes
section where we have the // TO DO: Setup endpoints ... waiting comment:

router.get('/test', function(req, res) {
 var data = {
 name: 'Jason Krol',
 website: 'http://kroltech.com'
 };

 res.json(data);
});

Just like we set up viewModel in Chapter 5, Dynamic HTML with Handlebars,
we create a basic JavaScript object that we can then send directly as a JSON response
using res.json instead of res.render. Let's tweak the function a little bit and
change it so that it responds to a GET request against the root URL (that is /) route
and returns the JSON data from our movies file. Add this new route after the /test
route added previously:

router.get('/', function(req, res) {
 res.json(json);
});

Chapter 8

[177]

The res (response) object in Express has a few different methods
to send data back to the browser. Each of these ultimately falls back
on the base send method, which includes header information,
statusCodes, and so on. res.json and res.jsonp will automatically
format JavaScript objects into JSON and then send using res.send.
res.render will render a template view as a string and then send it
using res.send as well.

With that code in place, if we launch the server.js file, the server will be listening
for a GET request to the / URL route and will respond with the JSON data of our
movies collection. Let's first test it out using the Postman REST Client tool:

Creating a RESTful API

[178]

GET requests are nice because we could have just as easily pulled that same URL
via our browser and received the same result:

However, we're going to use Postman for the remainder of our endpoint testing as
it's a little more difficult to send POST and PUT requests using a browser.

Receiving data – POST and PUT requests
When we want to allow our users using our API to insert or update data, we need
to accept a request from a different HTTP verb. When inserting new data, the POST
verb is the preferred method to accept data and know it's for an insert. Let's take a
look at code that accepts a POST request and data along with the request, and inserts
a record into our collection and returns the updated JSON. Insert the following block
of code after the route you added previously for GET:

router.post('/', function(req, res) {
 // insert the new item into the collection (validate first)

Chapter 8

[179]

 if(req.body.Id && req.body.Title && req.body.Director && req.body.
Year && req.body.Rating) {
 json.push(req.body);
 res.json(json);
 } else {
 res.json(500, { error: 'There was an error!' });
 }
});

You can see the first thing we do in the POST function is check to make sure the
required fields were submitted along with the actual request. Assuming our data
checks out and all the required fields are accounted for (in our case every field), we
insert the entire req.body object into the array as is using the array's push function.
If any of the required fields aren't submitted with the request, we return a 500 error
message instead. Let's submit a POST request this time to the same endpoint using
the Postman REST Client. (Don't forget to make sure your API server is running with
node server.js.):

Creating a RESTful API

[180]

First, we submitted a POST request with no data, so you can clearly see the 500 error
response that was returned.

Next, we provided the actual data using the x-www-form-urlencoded option in
Postman and provided each of the name/value pairs with some new custom data.
You can see from the results that the STATUS was 200, which is a success and the
updated JSON data was returned as a result. Reloading the main GET endpoint in a
browser yields our original movies collection with the new one added.

Chapter 8

[181]

PUT requests will work in almost exactly the same way except traditionally, the Id
property of the data is handled a little differently. In our example, we are going to
require the Id attribute as a part of the URL and not accept it as a parameter in the
data that's submitted (since it's usually not common for an update function to change
the actual Id of the object it's updating). Insert the following code for the PUT route
after the existing POST route you added earlier:

router.put('/:id', function(req, res) {
 // update the item in the collection
 if(req.params.id && req.body.Title && req.body.Director && req.
body.Year && req.body.Rating) {
 _.each(json, function(elem, index) {
 // find and update:
 if (elem.Id === req.params.id) {
 elem.Title = req.body.Title;

Creating a RESTful API

[182]

 elem.Director = req.body.Director;
 elem.Year = req.body.Year;
 elem.Rating = req.body.Rating;
 }
 });

 res.json(json);
 } else {
 res.json(500, { error: 'There was an error!' });
 }
});

This code again validates that the required fields are included with the data that
was submitted along with the request. Then, it performs an _.each loop (using the
underscore module) to look through the collection of movies and find the one whose
Id parameter matches that of the Id included in the URL parameter. Assuming
there's a match, the individual fields for that matched object are updated with the
new values that were sent with the request. Once the loop is complete, the updated
JSON data is sent back as the response. Similarly, in the POST request, if any of the
required fields are missing, a simple 500 error message is returned. The following
screenshot demonstrates a successful PUT request updating an existing record.

Chapter 8

[183]

The response from Postman after including the value 1 in the URL as the Id parameter,
which provides the individual fields to update as x-www-form-urlencoded values,
and finally sending as PUT shows that the original item in our movies collection is now
the original Alien (not Aliens, its sequel as we originally had).

Removing data – DELETE
The final stop on our whirlwind tour of the different REST API HTTP verbs is
DELETE. It should be no surprise that sending a DELETE request should do exactly
what it sounds like. Let's add another route that accepts DELETE requests and will
delete an item from our movies collection. Here is the code that takes care of DELETE
requests that should be placed after the existing block of code from the previous PUT:

router.delete('/:id', function(req, res) {
 var indexToDel = -1;
 _.each(json, function(elem, index) {
 if (elem.Id === req.params.id) {
 indexToDel = index;
 }
 });
 if (~indexToDel) {
 json.splice(indexToDel, 1);
 }
 res.json(json);
});

This code will loop through the collection of movies and find a matching item by
comparing the values of Id. If a match is found, the array index for the matched item
is held until the loop is finished. Using the array.splice function, we can remove
an array item at a specific index. Once the data has been updated by removing the
requested item, the JSON data is returned. Notice in the following screenshot that the
updated JSON that's returned is in fact no longer displaying the original second item
we deleted.

Creating a RESTful API

[184]

Note that ~ in there! That's a little bit of JavaScript black magic!
The tilde (~) in JavaScript will bit flip a value. In other words, take a
value and return the negative of that value incremented by one, that is
~n === -(n+1). Typically, the tilde is used with functions that return
-1 as a false response. By using ~ on -1, you are converting it to a 0. If
you were to perform a Boolean check on -1 in JavaScript, it would return
true. You will see ~ is used primarily with the indexOf function and
jQuery's $.inArray()—both return -1 as a false response.

All of the endpoints defined in this chapter are extremely rudimentary,
and most of these should never ever see the light of day in a production
environment! Whenever you have an API that accepts anything other
than GET requests, you need to be sure to enforce extremely strict
validation and authentication rules. After all, you are basically giving
your users direct access to your data.

Chapter 8

[185]

Consuming external APIs from Node.js
There will undoubtedly be a time when you want to consume an API directly from
within your Node.js code. Perhaps, your own API endpoint needs to first fetch data
from some other unrelated third-party API before sending a response. Whatever
the reason, the act of sending a request to an external API endpoint and receiving
a response can be done fairly easily using a popular and well-known npm module
called Request. Request was written by Mikeal Rogers and is currently the third
most popular (and most relied upon) npm module after async and underscore.

Request is basically a super simple HTTP client, so everything you've been doing
with Postman REST Client so far is basically what Request can do, only the resulting
data is available to you in your node code as well as the response status codes
and/or errors, if any.

Consuming an API endpoint using Request
Let's do a neat trick and actually consume our own endpoint as if it was some
third-party external API. First, we need to ensure we have Request installed and
can include it in our app:

$ npm install --save request

Next, edit server.js and make sure you include Request as a required module at
the start of the file:

var express = require('express'),
 bodyParser = require('body-parser'),
 _ = require('underscore'),
 json = require('./movies.json'),
 app = express(),
 request = require('request');

Now let's add a new endpoint after our existing routes, which will be an endpoint
accessible in our server via a GET request to /external-api. This endpoint, however,
will actually consume another endpoint on another server, but for the purposes of
this example, that other server is actually the same server we're currently running!

The Request module accepts an options object with a number of different
parameters and settings, but for this particular example, we only care about a few.
We're going to pass an object that has a setting for the method (GET, POST, PUT,
and so on) and the URL of the endpoint we want to consume. After the request is
made and a response is received, we want an inline callback function to execute.

Creating a RESTful API

[186]

Place the following block of code after your existing list of routes in server.js:

router.get('/external-api', function(req, res) {
 request({
 method: 'GET',
 uri: 'http://localhost:' + (process.env.PORT || 3500),
 }, function(error, response, body) {
 if (error) { throw error; }

 var movies = [];
 _.each(JSON.parse(body), function(elem, index) {
 movies.push({
 Title: elem.Title,
 Rating: elem.Rating
 });
 });
 res.json(_.sortBy(movies, 'Rating').reverse());
 });
});

The callback function accepts three parameters: error, response, and body.
The response object is like any other response that Express handles and has all
of the various parameters as such. The third parameter, body, is what we're really
interested in. That will contain the actual result of the request to the endpoint that
we called. In this case, it is the JSON data from our main GET route we defined earlier
that returns our own list of movies. It's important to note that the data returned from
the request is returned as a string. We need to use JSON.parse to convert that string
to actual usable JSON data.

Using the data that came back from the request, we transform it a little bit. That is,
we take that data and manipulate it a bit to suit our needs. In this example, we took
the master list of movies and just returned a new collection that consists of only
the title and rating of each movie and then sorts the results by the top scores.
Load this new endpoint by pointing your browser to http://localhost:3500/
external-api, and you can see the new transformed JSON output to the screen.

Let's take a look at another example that's a little more real world. Let's say that we
want to display a list of similar movies for each one in our collection, but we want
to look up that data somewhere such as www.imdb.com. Here is the sample code that
will send a GET request to IMDB's JSON API, specifically for the word aliens, and
returns a list of related movies by the title and year. Go ahead and place this block of
code after the previous route for external-api:

router.get('/imdb', function(req, res) {
 request({
 method: 'GET',

www.imdb.com

Chapter 8

[187]

 uri: 'http://sg.media-imdb.com/suggests/a/aliens.json',
 }, function(err, response, body) {
 var data = body.substring(body.indexOf('(')+1);
 data = JSON.parse(data.substring(0,data.length-1));
 var related = [];
 _.each(data.d, function(movie, index) {
 related.push({
 Title: movie.l,
 Year: movie.y,
 Poster: movie.i ? movie.i[0] : ''
 });
 });

 res.json(related);
 });
});

If we take a look at this new endpoint in a browser, we can see the JSON data that's
returned from our /imdb endpoint is actually itself retrieving and returning data
from some other API endpoint:

Creating a RESTful API

[188]

Note that the JSON endpoint I'm using for IMDB isn't actually from
their API, but rather what they use on their homepage when you type in
the main search box. This would not really be the most appropriate way
to use their data, but it's more of a hack to show this example. In reality,
to use their API (like most other APIs), you would need to register and
get an API key that you would use so that they can properly track how
much data you are requesting on a daily or an hourly basis. Most APIs
will to require you to use a private key with them for this same reason.

Summary
In this chapter, we took a brief look at how APIs work in general, the RESTful
API approach to semantic URL paths and arguments, and created a bare bones API.
We used Postman REST Client to interact with the API by consuming endpoints and
testing the different types of request methods (GET, POST, PUT, and so on). You also
learned how to consume an external API endpoint by using the third-party node
module Request.

In the next chapter, we will revisit our original application as we implement
best practices by introducing testing in Node.js. We'll take a look at popular
testing frameworks and write tests for the application to prove that our code
works as expected.

Testing Your Code
Up until this point, we've been pretty much flying by the seat of our pants when it
comes to the code we've been writing! We've literally had no way of knowing if the
code worked until we tested it out in an actual browser.

In this chapter, we will cover the following topics:

• Running tests with the Mocha test framework
• Writing tests with the Chai assertion library
• Spies and Stubs with Sinon and Proxyquire
• Writing your first test
• Testing our application

Tests are great for making sure your code functions properly, but they're also
awesome for preventing new unexpected bugs from suddenly popping up
because of an innocent little change you made to some unsuspecting code.

Tools of the trade
Let's start by taking a look at the various tools and libraries we're going to be using
to run and write our tests. There are three main concepts we need to cover before we
can actually start writing real tests. The first is a test runner, or the framework we use
to run our suite of tests. The second is the assertion library itself, the language we use
to write our tests. Finally, we'll take a look at the idea of spies and stubs, which are
fake representatives of certain parts of our code that are relied on when we need to
track function calls to ensure an expected behavior.

Testing Your Code

[190]

Running tests with the Mocha framework
When writing tests for an application, you typically write them in batches that are
module specific. These batches are referred to as suites or specs. Each suite typically
contains a batch of tests organized in a way that almost mirrors the application itself.
With Node, the idea is no different in that each suite of tests we write will be specific
to an individual module. You'll require the module you want to test against, and
write a collection of tests for each part of the module's functionality.

Since you'll have many different test files testing each and every component of your
application, you'll want a way to quickly execute all of the tests. This is where the
test runner comes in. The test runner that we've decided to use is called Mocha.
You can install Mocha globally like any other npm package:

$ npm install –g mocha

Once installed, the Mocha command-line tool is now available. Simply executing
mocha from a command line will execute the test run with a few default options.
Most notably, the test runner will look for a folder named 'test' and any .js file
within. In our case, we haven't actually set up any tests yet so executing mocha alone
won't actually accomplish anything.

When the Mocha test runner does find any .js files, it executes them like any other
Node file except it looks for a few specific keywords within the file.

The first thing Mocha will scan the file for is a describe block. A describe block is a
way to define a specific group of tests. You can have many describe blocks in a test
file, and each describe block can have many specific tests. In addition, describe
blocks can be nested as deep as you like to better organize your tests.

Once a describe block is found, a few other items are executed within it.

A beforeEach and afterEach block is checked for to see if there is any pretest work
that needs to be executed before each test is executed. Likewise, any cleanup that
needs to occur between tests can be taken care of within the afterEach block. Both
of these blocks are optional and therefore not required. A good example of when you
would want to use a beforeEach block is if you need to instantiate an object that
you will be testing, you would want to create a new instance before every single test.
This way, whatever changes a test might push to the object will be reset and will not
inadvertently affect any other tests. Likewise, any changes you've made during a test
to any other related objects can be reset during an afterEach block.

Chapter 9

[191]

Within the describe block, defining individual tests is done with it statements.
Within each it statement, it's generally considered good practice to include a single
expect to assert the actual test (although you can include as many expect function
calls as you like, its still only considered a single test because of the single it.)
Here is some sample code for a typical test block:

describe('The code', function() {
 beforeEach(function(){
 // optional preparation for each test
 });
 afterEach(function(){
 // optional cleanup after each test
 });

 it('should test something', function(){
 var something = 1;
 // here we "expect" some condition to declare our test
 // in this case, we expect the variable to exist
 // more on the assertion syntax a little later
 expect(something).to.exist;
 });
 it('should test something_else', function(){
 var something_else = false;
 // now we test a different variable against its value
 // and expect that value to equal false
 expect(something_else).to.equal(false);
 });
});

We're using the Behavior-driven Development (BDD) style syntax when writing
our suites, which allows our tests to read like user stories. With the preceding
example, you can read the tests as "The code should test something" and "The code
should test something else". In fact, if we ran the previous tests we would see the
following output:

 The code

 should test something

 should test something_else

 2 passing (5ms)

Testing Your Code

[192]

Asserting tests with Chai.js
As you saw in the previous example, we used special blocks to define our test groups
with Mocha but we used a separate language when defining our actual individual
tests. These tests are called assertions and we chose to use the Chai.js library. This
is purely a personal preference, as there are a number of different assertion libraries
that exist. Each library does basically the same thing with slight variations on the
syntax and style of actually writing the tests.

Chai itself has a few different flavors of API styles that can be used when writing
tests. The BDD API, which is what we will use for the tests we write, uses
expect and should. There's also the assert API, which is more of a Test-driven
Development (TDD) style. The benefit of using the BDD style with expect/should
is that you can chain the assertion methods to improve readability of the tests.

You can learn more about BDD as well as TDD by accessing the
following Wikipedia page:
http://en.wikipedia.org/wiki/Behavior-driven_
development

Using the BDD assertion API with Chai provides a number of methods at
our disposal:

• to

• be

• been

• is

• that

• and

• has

• have

• with

• at

• of

• same

Chapter 9

[193]

All of these will follow an expect() statement and can be coupled with not to flip
the assertion. In addition, they will be combined with any of the following Chai
methods to determine a test's outcome:

• ok

• true

• false

• null

• undefined

• exist

• empty

• equal

• eql

• above

• least

• below

• most

• within

• instanceof

• property

• match

• string

• respondTo

Here are a few examples:

var foo = 'bar';
expect(foo).to.equal('bar')
foo = false;
expect(foo).to.not.equal(true);
expect(true).to.be.ok;
expect(true).to.be.true;
expect(false).to.be.false;
expect(somevar).to.be.undefined;
expect(foo).to.not.be.undefined;
expec(5).to.be.within(0,10);

There are many different assertion methods that can be used and combined in
different ways. For a more detailed list, refer to the Chai documentation by
visiting: http://chaijs.com/api.

http://chaijs.com/api

Testing Your Code

[194]

Installing Chai.js as a devDependency
Since Chai is project specific and based on a personal preference, we're going to
install it as a project dependency (instead of globally). In addition, as our tests are
not actually required for our application to run, we'll include the dependency as
devDependency. What this means is that performing npm install on a developers
machine will install all of the dependencies listed in the dependencies list so that an
application can run but it will also install all of the development-specific dependencies
listed in devDependencies as well. When npm install is performed on a production
server the application is loaded on, only the dependencies list will be installed
(since developers typically aren't developing directly on a production server).

In order to include Chai in our project as a devDependency, we will use the
--save-dev flag instead of --save when performing npm install:

$ npm install --save-dev chai

Spies and stubs with Sinon.js
Testing your code will prove to be extremely difficult if there isn't an easy way to
"spy" on functions and know whenever they are called. Additionally, when one of
your functions is called, it will be nice to know what arguments were passed to it
and what was returned. A spy in testing is a special placeholder function that
replaces an existing function when you want to check specifically if/when it was
called. Spies track a number of properties for a function when it's called and can
also pass through to the expected functionality of the original function.

Imagine you have a function that simply adds two numbers together and returns
the sum:

var sum = function(a, b) {
 return a + b;
}
var doWork = function() {
 var x = 1,
 y = 2;
 console.log(sum(x,y));
}

Chapter 9

[195]

When writing a test for the doWork function, we want to assert that the sum function
was called. We don't necessarily care what the function does or that it even works;
we just want to make sure since doWork relies on sum that it's actually calling the
function. In this scenario, the only way we could be sure is if we had a way to "spy"
on the sum function and know if it was ever called. Using a spy, we can do just that:

describe('doWork', function() {
 var sum;

 it('should call sum', function() {
 sum = sinon.spy();
 doWork();
 expect(sum).to.be.calledWith(1,2);
 });
});

In the preceding scenario, the sum function is replaced with a spy function.
So its actual functionalities will no longer exist. If we want to ensure that the
sum function is not only spied on but still functions the way we expect, we need
to attach .andCallThrough() after sinon.spy():

describe('doWork', function() {
 var sum;
 console.log = sinon.spy();

 it('should call sum', function() {
 sum = sinon.spy().andCallThrough();
 doWork();
 expect(sum).to.be.calledWith(1,2);
 expect(console.log).to.be.calledWith(3);
 });
});

Notice that by including andCallThrough on our sum spy, we're able to not only
spy on it and assert that it was called but also spy on the console.log function
and assert that it was called with the correct value returned by sum.

Where a spy is typically just a watcher to a function and only reports if the function
was called, a stub allows you to provide custom functionalities for a function
on-the-fly during test execution.

Testing Your Code

[196]

Think of a stub as a super spy, where it reports the same things that a spy does,
but also performs whatever specific tasks you want as well. Using the same
example, let's stub the sum function to always return the same value:

it('should console.log sum response', function(){
 // replace the existing sum function with a new stub,
 // a generic function that does exactly what we specify
 // in this case always just return the number 2
 sum = sinon.stub(function(){
 return 2;
 });
 // lets replace the standard console.log function
 // with a spy
 console.log = sinon.spy();
 // call our doWork function (which itself uses console.log)
 doWork();
 // and if doWork executed the way its supposed to, console.log
 // should have been called and the parameter 2 passed to it
 expect(console.log).to.be.calledWith(2);
});

Stubbing a function is great when a function performs work that might yield
unexpected results, and you just want to force the response for the purposes of
your test. Stubbing is also handy when you're doing TDD and you're testing
against a function that you haven't even written yet.

The Sinon.js library provides both spy and stub functionalities and is quite
extensive. For a complete list of the different options available with this powerful
framework, I strongly recommend you spend some time reading the documentation
at http://sinonjs.org/docs.

Since we are going to be using Sinon.js with our tests, we should install it as another
devDependency exactly the same way we did with Chai.js. In addition, we should
also install the sinon-chai helper, which provides additional Chai assertion verbs
specifically for use with Sinon:

$ npm install --save-dev sinon sinon-chai

The inclusion of sinon-chai allows us to write assertions such as to.be.calledWith,
which would otherwise not work with Chai alone.

http://sinonjs.org/docs

Chapter 9

[197]

Stubbing node modules with Proxyquire
Spies and stubs are great when writing tests against code within the same module,
but when you need to spy on or stub a module required within another node
module, things get a little trickier. Fortunately, there's a tool called Proxyquire
that will allow you to stub modules that are required from your code.

Examine the following code sample:

// google.js
var request = require('request');

module.exports = function() {
 request('http://www.google.com', function (err, res, body) {
 log(body);
 });
}

You can see that we require the request module. The request module accepts
two parameters, the second of which is a callback function. This is where things
start to get tricky. How are we going to implement spies and/or stubs in this type
of scenario? Furthermore, how can we prevent our tests from explicitly making a
network call to fetch google.com? What if google.com is down (ha!) when we run
our tests?

In order to be able to spy on the request module, we need a way to intercept the
actual require and attach our own stubbed version of request instead. The
request module is actually a great example of a module that you would want to
stub because request is used to make a network call, and that's something that you
want to make sure your tests never actually do. You don't want your tests relying
on an external resource like a network connection or being dependent on the data
returned from a live request.

Using Proxyquire, we can actually set up our tests in a way that they'll intercept
the require module and replace what gets executed with our own stub. Here's an
example of a test file written against the module we created earlier:

var log = sinon.spy(),
 requestStub = sinon.stub().callsArgWith(1, null, null, 'google.
com'),
 google = proxyquire('../google', { 'request': requestStub });

Testing Your Code

[198]

describe('google module', function(){
 beforeEach(function() {
 google();
 });
 it('should request google.com', function() {
 expect(reqstub).to.be.called();
 });
 it('should log google body', function(){
 expect(callback).to.be.calledWith(null, null, 'google.com');
 });
});

The first thing the test suite does is set up a spy and generic stub function that will be
used as the request module. Then, we include our google module but we include it
using proxyquire instead of a typical require module. Using proxyquire, we pass
the path to the module the same way we would with require, except the second
parameter is the module that would be required within that module and the stub
function to use in its place.

Before each test, we execute the original google module and assert against our stub
that it was in fact called. Additionally, we assert that the log spy was called with
whatever data was returned from the request module. Since we are in control of that
module, we can test, quite literally, that the string google.com was returned when a
request was made to http://google.com (which we know for a fact is not true—not
only that, but we know that a network call was never sent to www.google.com either).

We're using a special power of a stub that allows us to execute a particular parameter
to the stubbed function assuming it was a callback function. Here, we're using
callsArgWith and including the argument index (zero based) as the first parameter;
in this case, 1. Of the two parameters that were passed to request, the first (index
0) was the URL itself and the second (index 1) was the callback function. By using
callsArgWith, we can execute the callback function and specifically provide its
parameters; in this case, null, null, and a string.

Like Sinon.js and Chai.js, Proxyquire will also need to be included in our project
as devDependency:

$ npm install --save-dev proxyquire

http://google.com
www.google.com

Chapter 9

[199]

Writing and running your first test
Up to this point, all of the test code we've seen has just been demos and examples
and we haven't actually run any tests. Let's set up the basic structure of our
application so that we can start writing real tests.

The first thing to do is set up the folder structure that will house all of our tests.
Within the root of the application project folder, create a folder named tests. Within
the tests folder, create three more folders for controllers, models, and server:

/(existing app root)
tests/
----/controllers/
----/models/
----/server/

Writing a test helper
Before we start writing the tests for our application, there's a small amount of
overhead we need to take care of to prepare for our tests. To take care of this
overhead, we're going to write a test helper file that will be included and run
with every test file we execute via Mocha.

Create a file named testhelper.js within the tests folder and insert the
following block of code:

var chai = require('chai'),
 sinon = require('sinon'),
 sinonChai = require('sinon-chai');

global.expect = chai.expect;
global.sinon = sinon;
chai.use(sinonChai);

This is code that we would typically need to include at the top of every one of our
test files, but by including it in a single file we can instruct Mocha to automatically
require this file for every test file that is run. The file itself just includes the chai and
sinon modules and defines a few globals variables as shortcuts for our test writing.
Additionally, it instructs chai to use the sinonChai module so that our syntax is
extended and we can write Sinon-specific Chai assertions.

The command to actually run our suite of tests is:

$ mocha -r tests/testhelper.js -R spec tests/**/*.test.js

Testing Your Code

[200]

Remember that we installed Mocha globally earlier so that we
can execute the mocha command from anywhere.

Based on the path to our tests in the preceding command, it's assumed that the
command will be executed from the root of the application project folder. The –r flag
instructs Mocha to require the testhelper.js module. The –R flag is an option to
define the style of the test reporting output. We chose to use the spec style, which lists
our report in a nested indentation style with each describe and it statement along
with a green checkmark for the passed tests. Finally, the last argument is the path to
our test files; in this case, we provided wildcards so that all of our tests will be run.

Mocha has a few different reporting styles that you can choose
from. These include dot (repeating dots for each test), list, progress
(a percentage bar), json, and spec. One of the more interesting,
albeit somewhat useless, is the –R nyan reporting style.

Executing that Mocha command from earlier at this point will simply return
0 passing (2ms) because we don't have any tests yet. Let's write a quick sample
test to make sure our project is properly set up. Within the tests folder, create
a new file named mocha.test.js and include the following code:

describe('Mocha', function() {
 describe('First Test', function() {
 it('should assert 1 equals 1', function() {
 expect(1).to.equal(1);
 });
 });
});

The preceding test is pretty straightforward and simply asserts that 1 is equal to
1. Save this file and run the Mocha test command again, and you should get the
following output:

$ mocha -r tests/testhelper.js -R spec tests/mocha.test.js

Mocha

 First Test

 should assert 1 equals 1

1 passing (5ms)

Chapter 9

[201]

You may find remembering and executing that long convoluted command for Mocha
to be tiresome and frustrating. Fortunately, there's a pretty easy solution. Edit the
package.json file in the application and add the following section:

"scripts": {
 "start": "node server.js",
 "test": "mocha -r tests/testhelper.js -R spec tests/**/*.test.js"
 },

By providing this tweak to the package.json file, you can now simply execute
npm test from a command line as a quick and easy shortcut. This is a standard
convention with the package.json file so other developers will know to simply
execute npm test whenever they want to run tests for your project.

Now that the package.json file has been updated, you can simply execute
npm test to execute the suite of tests for the project:

$ npm test

> chapter9@0.0.0 test /Users/jasonk/repos/nodebook/chapter9

> mocha -r tests/testhelper.js -R spec tests/**/*.test.js

Mocha

 First Test

 should assert 1 equals 1

1 passing (5ms)

Now that your project is set up to properly run and execute tests, let's start writing
some real tests for the application.

Testing the application
With all of that background information out of the way, let's focus on writing some
real tests for the application we've built. In the following sections, we will write tests
for the routes, servers, models, and controllers in our application.

Testing Your Code

[202]

Testing the routes
Let's start things a little slow by taking a look at one of the most basic files in our
application, the routes.js file. This file simply defines the number of routes that
the application should respond to. This is going to be one of the easiest files to
write tests for.

Since the routes.js file is in the server folder within our main application, let's
put its corresponding test file in a similar location. Within the tests/server folder,
create a file named routes.test.js. Since the routes.test.js file is going to
be testing the functionalities of our routes.js file, we need it to require the same
modules. Include the following code in test/server/routes.test.js:

var home = require('../../controllers/home'),
 image = require('../../controllers/image'),
 routes = require('../../server/routes');

Notice that the paths are different since we require modules from within our
test/server folder, but we also require app-specific modules. Also, note that in
addition to the modules that our original routes.js file requires, we also require
the routes module itself. How else are we going to be able to test the functionalities
of the module if it isn't included? Next, let's set up the structure of the test suite and
create a few spies. Include this new block of code following the previous code within
tests/server/routes.test.js:

describe('Routes', function(){
 var app = {
 get: sinon.spy(),
 post: sinon.spy(),
 delete: sinon.spy()
 };
 beforeEach(function(){
 routes.initialize(app);
 });

 // to do: write tests...
});

If you recall, the routes module's initialize function accepted a single parameter,
an app object. In our tests, we defined app as a simple anonymous object with three
functions for get, post, and delete, each of which is a spy. We include a beforeEach
block to execute the initialize function before every one of our tests run.

Chapter 9

[203]

Now let's include some tests. First, we'll test that the GET endpoints are configured
correctly. Immediately after the // to do: write tests... comment, place the
following block of code:

describe('GETs', function() {
 it('should handle /', function(){
 expect(app.get).to.be.calledWith('/', home.index);
 });
 it('should handle /images/:image_id', function(){
 expect(app.get).to.be.calledWith('/images/:image_id', image.
index);
 });
});

Then, test the POST endpoints:

describe('POSTs', function() {
 it('should handle /images', function(){
 expect(app.post).to.be.calledWith('/images', image.create);
 });
 it('should handle /images/:image_id/like', function(){
 expect(app.post)
 .to.be.calledWith('/images/:image_id/like', image.like);
 });
 it('should handle /images/:image_id/comment', function(){
 expect(app.post)
 .to.be.calledWith('/images/:image_id/comment', image.
comment);
 });
});

Finally, test the DELETE endpoint:

describe('DELETEs', function() {
 it('should handle /images/:image_id', function(){
 expect(app.delete)
 .to.be.calledWith('/images/:image_id', image.remove);
 });
});

Each of these tests assert the same thing, that the app object's corresponding get, post,
or delete function was executed with the correct parameters for each route. We were
able to test against the parameters because the app object we used was a spy.

Testing Your Code

[204]

If you run the mocha command to execute the suite of tests, you should see the
following output:

$ npm test

Routes

 GETs

 should handle /

 should handle /images/:image_id

 POSTs

 should handle /images

 should handle /images/:image_id/like

 should handle /images/:image_id/comment

 DELETEs

 should handle /images/:image_id

 6 passing (14ms)

Testing the server
Testing the server.js file will be slightly different than any of our other files.
The file runs as the root of our application, so it doesn't export a module or any
object that we can directly test. Since we launch our server using server.js, we
need to emulate launching our server from our code. We'll create a function called
server, which will require the server.js file using Proxyquire, and stub each of the
modules that it requires itself. Executing the function server() will be exactly the
same as executing node server.js from a command line. All of the code within the
file will execute via that function, and then we can test against each of the calls that
are made using stubs from within Proxyquire.

Create a file named server.test.js within the tests/server/ folder and insert
the following block of code:

var proxyquire, expressStub, configStub, mongooseStub, app,
 server = function() {
 proxyquire('../../server', {
 'express': expressStub,
 './server/configure': configStub,
 'mongoose': mongooseStub
 });
 };

Chapter 9

[205]

describe('Server', function() {
 beforeEach(function(){
 proxyquire = require('proxyquire'),
 app = {
 set: sinon.spy(),
 get: sinon.stub().returns(3300),
 listen: sinon.spy()
 },
 expressStub = sinon.stub().returns(app),
 configStub = sinon.stub().returns(app),
 mongooseStub = {
 connect: sinon.spy(),
 connection: {
 on: sinon.spy()
 }
 };

 delete process.env.PORT;
 });

 // to do: write tests...
});

Before each test is run for our server, we reset the stubs for all of the major
components of the server. These stubs include the app object itself, express,
config, and mongoose. We're stubbing each of these modules since we want to
spy on them (and we use a stub because some of them need to return objects that
we'll work with in our file). Now that we have all of our spies in place and our
app object scaffold set up, we can start testing the main functionalities of our code.

We need to check if the following conditions pass:

• An application is created
• The views directory is set
• The port is set and can be configured and/or defaults
• The app itself is configured (config is called with it)
• Mongoose connects to a database URI string
• Finally, the app itself is launched

Testing Your Code

[206]

Replace the // to do: write tests... comment in the earlier code with the
following block of code:

describe('Bootstrapping', function(){
 it('should create the app', function(){
 server();
 expect(expressStub).to.be.called;
 });
 it('should set the views', function(){
 server();
 expect(app.set.secondCall.args[0]).to.equal('views');
 });
 it('should configure the app', function(){
 server();
 expect(configStub).to.be.calledWith(app);
 });
 it('should connect with mongoose', function(){
 server();
 expect(mongooseStub.connect).to.be.calledWith(sinon.match.
string);
 });
 it('should launch the app', function(){
 server();
 expect(app.get).to.be.calledWith('port');
 expect(app.listen).to.be.calledWith(3300, sinon.match.func);
 });
});

In the preceding group of tests, we are testing the bootstrapping of our server,
which is all of the functionalities that initially run within server.js. The names of
the tests are pretty self-explanatory. We're checking against the various methods
of the app object, ensuring that they're called and/or the correct parameters were
passed in. Notice for the tests we want to test that a specific type of parameter was
called but not literally what the parameter value was; we use Sinon's match element,
which allows our tests to be a little more generic. We wouldn't want to hard code the
MongoDB URI string in our tests because that's just another place we would have to
maintain—although you could very well do this if you wanted your test to be that
strict (that is to assert that quite literally the exact URI string was passed).

In the second set of tests, we want to ensure that the port is set, that it defaults to
3300, and that it can be changed via the use of a node environment variable:

describe('Port', function(){
 it('should be set', function() {

Chapter 9

[207]

 server();
 expect(app.set.firstCall.args[0]).to.equal('port');
 });
 it('should default to 3300', function() {
 server();
 expect(app.set.firstCall.args[1]).to.equal(3300);
 });
 it('should be configurable', function() {
 process.env.PORT = '5500';
 server();
 expect(app.set.firstCall.args[1]).to.equal('5500');
 });
});

With these tests in place, run the npm test command again and you should get the
following output:

$ npm test

Server

 Bootstrapping

 should create the app (364ms)

 should set the views

 should configure the app

 should connect with mongoose

 should launch the app

 Port

 should be set

 should default to 3300

 should be configurable

Testing a model
When testing our models, we want to include the model module itself and then write
tests against it. The easiest solution here is that we create a test model object and then
assert that the model has all of the fields that we expect, as well as any virtuals we
might have created.

Create the file test/models/image.test.js and insert the following code:

var ImageModel = require('../../models/image');

describe('Image Model', function() {

Testing Your Code

[208]

 var image;

 it('should have a mongoose schema', function(){
 expect(ImageModel.schema).to.be.defined;
 });

 beforeEach(function(){
 image = new ImageModel({
 title: 'Test',
 description: 'Testing',
 filename: 'testfile.jpg'
 });
 });

 // to do: write tests...
});

First, we include the ImageModel using require (note the path for the require
statement). The very first test we run is to make sure that the ImageModel has a
mongoose schema property. After this test, we define the beforeEach block that
we'll rely on for the remainder of our tests. Before every test, we want to instantiate
a new image model object that we can test against. We do this in a beforeEach
block so that we're sure we're dealing with a fresh object in every test and that it
hasn't been tainted by any tests that were previously run. It's also important to note
that the order of the first test and the beforeEach block doesn't actually matter, as
the beforeEach block will run before every test in its parent describe function
regardless of the order it was defined in.

Include the following suite of tests replacing the placeholder // to do: write
tests... comment:

describe('Schema', function() {
 it('should have a title string', function(){
 expect(image.title).to.be.defined;
 });
 it('should have a description string', function(){
 expect(image.description).to.be.defined;
 });
 it('should have a filename string', function(){
 expect(image.filename).to.be.defined;
 });
 it('should have a views number default to 0', function(){
 expect(image.views).to.be.defined;

Chapter 9

[209]

 expect(image.views).to.equal(0);
 });
 it('should have a likes number default to 0', function(){
 expect(image.likes).to.be.defined;
 expect(image.likes).to.equal(0);
 });
 it('should have a timestamp date', function(){
 expect(image.timestamp).to.be.defined;
 });
});

Here, we check to ensure that each property we expect an ImageModel instance to
have is defined. For the properties that have default values set, we also check to
ensure the default values are set as well.

Next, we test against the virtuals we expect an ImageModel to have, and verify that
they function the way they're supposed to:

describe('Virtuals', function(){
 describe('uniqueId', function(){
 it('should be defined', function(){
 expect(image.uniqueId).to.be.defined;
 });
 it('should get filename without extension', function(){
 expect(image.uniqueId).to.equal('testfile');
 });
 });
});

When testing the uniqueId virtual, it should return the image model's filename
without the extension. As the beforeEach defined our image model with a filename
of 'testfile.jpg', we can assert with our test that the uniqueId returned is equal
to 'testfile' (the filename without the extension).

Running the tests for our model should output the following results:

$ npm test

Image Model

 should have a mongoose schema

 Schema

 should have a title string

 should have a description string

 should have a filename string

Testing Your Code

[210]

 should have a views number default to 0

 should have a likes number default to 0

 should have a timestamp date

 Virtuals

 uniqueId

 should be defined

 should get filename without extension

Testing a controller
Last but not least, let's take a look at the image controller, and specifically tests for the
main index function. Because the index function does a lot of work and performs a
number of different tasks, the test file will make extensive use of stubs and spies. The
first thing we need to do before any tests is declare a number of global variables for
our tests as well as set up all of our stubs, spies, and placeholder objects for use with
Proxyquire. Then, we require the actual image controller using Proxyquire. Create a
file named tests/controllers/image.test.js and insert the following code:

var proxyquire = require('proxyquire'),
 callback = sinon.spy(),
 sidebarStub = sinon.stub(),
 fsStub = {},
 pathStub = {},
 md5Stub = {},
 ModelsStub = {
 Image: {
 findOne: sinon.spy()
 },
 Comment: {
 find: sinon.spy()
 }
 },
 image = proxyquire('../../controllers/image', {
 '../helpers/sidebar': sidebarStub,
 '../models': ModelsStub,
 'fs': fsStub,
 'path': pathStub,
 'md5': md5Stub
 }),
 res = {},
 req = {},
 testImage = {};

Chapter 9

[211]

With this code, we define a number of global variables as spies, stubs, or empty
placeholder JavaScript objects. Once our stubs are prepared, we call Proxyquire to
include our image controller (ensuring that the required modules within the image
controller are actually replaced with our various stubs and spies). Now that all of our
globals, stubs, and spies are prepared, let's include some tests.

Include the following code after the previous block of code:

describe('Image Controller', function(){
 beforeEach(function() {
 res = {
 render: sinon.spy(),
 json: sinon.spy(),
 redirect: sinon.spy()
 };
 req.params = {
 image_id: 'testing'
 };
 testImage = {
 _id: 1,
 title: 'Test Image',
 views: 0,
 likes: 0,
 save: sinon.spy()
 };
 });
 // to do: write tests...
});

Once again, we build up some setup using a beforeEach block for our tests. This
sets spies on each of the res object's functions including render, json, and redirect
(each of these are used throughout the image controller). We fake the query string
parameter by setting the req.params object with an image_id property. Finally, we
create a test image object that will be used by our fake mongoose image model stub
to emulate a database object being returned from MongoDB:

describe('Index', function(){
 it('should be defined', function(){
 expect(image.index).to.be.defined;
 });
 it('should call Models.Image.findOne', function(){
 ModelsStub.Image.findOne = sinon.spy();
 image.index(req, res);

Testing Your Code

[212]

 expect(ModelsStub.Image.findOne).to.be.called;
 });
 it('should find Image by parameter id', function(){
 ModelsStub.Image.findOne = sinon.spy();
 image.index(req, res);
 expect(ModelsStub.Image.findOne).to.be.calledWith(
 { filename: { $regex: 'testing' } }, sinon.match.func);
 });
 // to do: write more tests...
});

The first test we run is to ensure that the index function actually exists. Within the
index function, the very first action that occurs is that the image model is found via
the Models.Image.findOne function. In order to test that function, we need to first
set it as a spy. The reason we do this here and not in our beforeEach is because we
might want the findOne method to behave slightly differently per test, so we don't
want to set a strict rule to be applied for all the tests.

In order to emulate that a GET call was posted to our server and our image index
controller function was hit, we can just fire the function manually. We do this
using image.index(req, res) and pass in our fake request and response objects
(defined earlier as globals and stubbed in the beforeEach function).

Since ModelsStub.Image.findOne is a spy, we can test that it was called, and then
separately test that it was called specifically with the parameters we expect it to be
called with. In the case of the findOne where the second parameter is a callback
function, we don't care or want to test the very specific function that was included;
only that an actual function was included. To do this, we can use Sinon's matcher
API and specify that a func, or function, was included as the second parameter.

This last set of tests tests the code that executes when an image is found and
returned from the findOne function:

describe('with found image model', function() {
 beforeEach(function(){
 ModelsStub.Image.findOne =
 sinon.stub().callsArgWith(1,null,testImage);
 });
 it('should incremement views by 1 and save', function(){
 image.index(req, res);
 expect(testImage.views).to.equal(1);
 expect(testImage.save).to.be.called;
 });

Chapter 9

[213]

 it('should find related comments', function(){
 image.index(req, res);
 expect(ModelsStub.Comment.find).to.be.calledWith(
 {image_id: 1},
 {},
 { sort: { 'timestamp': 1 }},
 sinon.match.func
);
 });
 it('should execute sidebar', function(){
 ModelsStub.Comment.find =
 sinon.stub().callsArgWith(3, null, [1,2,3]);
 image.index(req, res);
 expect(sidebarStub).to.be.calledWith(
 {image: testImage, comments: [1,2,3]}, sinon.match.func);
 });
 it('should render image template with image and comments',
function(){
 ModelsStub.Comment.find =
 sinon.stub().callsArgWith(3, null, [1,2,3]);
 sidebarStub.callsArgWith(1, {image: testImage, comments:
[1,2,3]});
 image.index(req, res);
 expect(res.render).to.be.calledWith('image', {image:
testImage, comments: [1,2,3]});
 });
});

The first thing to notice here is that findOne is no longer a spy in these tests, but
a stub that will manually fire the callback function that's provided as its second
parameter. The callback function that's fired will include our test image model.
With this stub, we are emulating that the database call was in fact made via findOne
and that a valid image model was returned. Then, we can test the remainder of the
code that executes within that main callback. We perform a similar setup with the
Comment.find call as well.

When the sidebarStub gets executed, we use the callsArgWith Sinon
function—which fires the callback function that was originally included
as a parameter. Within that callback function, we include the fake viewModel
as a parameter.

Once the sidebarStub does its job, we expect the res.render to have been called,
and specify the exact parameters we expect it to have been called with.

Testing Your Code

[214]

Running the tests for the image controller should yield the following output:

$ npm test

Image Controller

 Index

 should be defined

 should call Models.Image.findOne

 should find Image by parameter id

 with found image model

 should incremement views by 1 and save

 should find related comments

 should execute sidebar

 should render image template with image and comments

Spy and stub everything!
When in doubt, the safest thing you can do when writing your tests is spy on
everything and stub everything else. There are always going to be times that you'll
want a function to execute naturally; in that case, leave it alone. Ultimately, you
never want your tests to be dependent on any other system—that includes database
servers, other network servers, other APIs, and so on. You only want to test that your
own code works, nothing more. If your code is expected to make a call to an API, spy
on the actual call and just assert that your code attempted to make the call. Likewise,
fake the response from the server via a stub and ensure that your code handles the
response properly.

The easiest way to check for dependencies in your code is to stop any other services
from running (your local node app, and so on), as well as possibly even disabling
your network connection. If your tests timeout or fail somewhere unexpectedly, it's
likely because you missed a function you needed to spy on or stub along the way.

Don't get stuck going down a rabbit hole when writing your tests. It's easy to get
carried away and start testing functionalities that should safely be assumed works.
An example of this is writing tests to ensure a third-party module is performing
correctly. If it's not a module you wrote, don't test it. Test that your code uses it
properly, makes calls to it with the correct parameters, and handles any returns,
but don't worry about writing tests to prove the module does what it says it should.

To learn more about TDD specifically when writing JavaScript, I would highly
recommend Christian Johansen's beast of a book Test-Driven JavaScript Development.
This book is huge and speaks to the sheer volume of information related to TDD.
In some circles, TDD truly is a way of life and it will define the style with which
you write your code.

Chapter 9

[215]

Summary
This has definitely been a crash course on testing, but the groundwork has been laid
and I hope that you have a solid understanding of the tool chain that you can use
to write your own tests. We installed the Mocha test framework and wrote our first
tests for Node.js. Using a custom testhelper.js file, we integrated the various
libraries and frameworks necessary to write tests for our code. These tools included
Chai.js to write our assertions and Sinon.js for our spies and stubs. Trust this
powerhouse suite of tools and you'll be writing bulletproof code in no time!

The ultimate goal with writing tests is to have 100 percent complete code coverage
and have unit tests exist for every line of code you write. From here, the true test is
to switch to TDD, which dictates that you write tests before any code exists at all.
Obviously, tests against nonexistent code will fail, so then you'll need to write the
least amount of code to get it to pass, and repeat!

In the next chapter, we'll take a look at a number of cloud-based hosting options
available to get your application up and running online.

Deploying with Cloud-based
Services

Inevitably, you'll want the application you've been building to be online and
available to the world—whether you want to host your application online during
its development process or whether it's complete and ready for production. There
are a number of different hosting options currently available for Node.js- and
MongoDB-based apps, and in this chapter, we'll take a look at deploying to a
few different popular services.

In this chapter, we will cover:

• Cloud versus traditional web hosting
• Introduction to Git source control
• Deploying an application with Nodejitsu
• Deploying an application with Heroku
• Deploying an application with Amazon Web Services
• Deploying an application with Microsoft Azure
• A brief look at Digital Ocean

Cloud versus traditional hosting
If you have had any previous experience with website hosting in the past, which I'll
refer to as traditional hosting, you're probably pretty familiar with the process of
using FTP to upload your web files to your hosting provider. With traditional web
hosting, service providers typically offer shared space to every user, each configured
with their own public folder that houses the web files. In a scenario like this, every
customer is hosting the same kind of website, and their files are all stored and served
from a single web server.

Deploying with Cloud-based Services

[218]

Traditional web hosting is fairly inexpensive because a single web server can host
literally hundreds, if not thousands, of individual websites. Scaling is typically a
problem with traditional hosting because if your website demanded more power,
it would need to be moved to another server (with more hardware) and could
experience potential downtime during this move. As a side effect, if a website
on the same server as your own is being particularly demanding of the hardware,
every site on that server could suffer.

With cloud-based hosting, every instance of a website or service is hosted on its
own Virtual Private Server (VPS). When a customer uploads a copy of their website,
that website is running in its own isolated environment, and the environment is
specifically designed to run only that website. Virtual private servers are instances of
a server, typically all running simultaneously on the same hardware. Because of their
isolated nature, VPS scales very well because settings simply need to be changed
for hardware allocation and the server restarts. If your VPS is hosted on the same
hardware as others, and they are experiencing high-volume spikes, your website
will not suffer because of the isolated nature of the VPS.

Infrastructure as a Service (IaaS) versus
Platform as a Service (PaaS)
The beauty of the cloud is that the level and amount of service one can obtain
varies greatly. From something as simple as a basic hosting plan to run your web
application, you can use any number of services that are considered a Platform
as a Service (PaaS). This is a service that provides a platform for you to host and
run your web application. Increasing in scale and complexity, you can turn to an
Infrastructure as a Service (IaaS) provider, which offers an entire cloud-based
data center at your disposal.

You can learn more about the differences between IaaS, PaaS, and
Software as a Service (SaaS) by reading this detailed article at:
http://www.rackspace.com/knowledge_center/
whitepaper/understanding-the-cloud-computing-
stack-saas-paas-iaas

Cloud-based hosting costs can vary greatly because of the simple fact that they
are so scalable. Your costs could fluctuate throughout a single month dramatically
depending directly on your need for power (that is more demanding times of the
month and/or big social media hits such as HackerNews or Reddit). On the flip side,
if you require very little power for a server, often you can get cloud hosting for free!

 http://www.rackspace.com/knowledge_center/whitepaper/understanding-the-cloud-computing-stack-saas-paas-iaas
 http://www.rackspace.com/knowledge_center/whitepaper/understanding-the-cloud-computing-stack-saas-paas-iaas
 http://www.rackspace.com/knowledge_center/whitepaper/understanding-the-cloud-computing-stack-saas-paas-iaas
 http://www.rackspace.com/knowledge_center/whitepaper/understanding-the-cloud-computing-stack-saas-paas-iaas

Chapter 10

[219]

Traditional web hosting service providers include GoDaddy, Dreamhost, 1&1,
HostGator, and Network Solutions. Popular cloud-based hosting options include
Nodejitsu (PaaS), Heroku (PaaS), Amazon Web Services (IaaS), Microsoft Azure
(IaaS), and Digital Ocean.

Introduction to Git
With traditional hosting providers, the standard method for connecting to your
server and uploading your files was to use File Transfer Protocol (FTP). You would
connect using any standard FTP software and push a copy of your files to the server
and those changes would be reflected instantly online when accessing your website
URL. With cloud-based hosting providers, the standard typically is to use the Git
source control. Git is a source control technology that allows you to track changes
and history with your project source code as well as provide an easy-use means of
collaboration with multiple developers. The most popular Git online code repository
provider currently is www.GitHub.com.

For the purposes of this chapter, we are going to use Git in order to track our
application project source code as well as the method of pushing our code up
to the various cloud-hosting providers. When you push code using Git, you are
effectively transferring all or only the changed version of your code to an online
repository (like www.GitHub.com).

Git and www.GitHub.com are both topics that are relatively easy to get into but can
seem intimidating and complex. If you're unfamiliar with Git and/or GitHub.com,
I would strongly suggest taking a moment to get acquainted by checking out the
following guides:

• https://help.github.com/articles/set-up-git
• http://lifehacker.com/5983680/how-the-heck-do-i-use-github

The guides will take you through the following concepts:

• Downloading and installing Git
• Registering an account at www.GitHub.com
• Authenticating your machine with www.GitHub.com
• Creating your first repository
• Committing your project source code to the repository

Once you have your project source code configured as a local Git repository and all
of the code committed to the master branch, proceed to the following sections.

www.GitHub.com
www.GitHub.com
www.GitHub.com
https://help.github.com/articles/set-up-git
http://lifehacker.com/5983680/how-the-heck-do-i-use-github
www.GitHub.com
www.GitHub.com

Deploying with Cloud-based Services

[220]

Deploying your application
Now that you have your project set up as a local GitHub repository, its time to take
that code and get it online! The following sections will each cover the process of
deploying your application to a few different popular cloud-based hosting providers.

Feel free to explore and experiment with each as most have free or relatively
inexpensive plans. Each provider has its strengths and weaknesses, so I'll leave it up
to you to decide which to stick with for your particular needs. The services that we
cover aren't presented in any particular order.

Note that for the purposes of this chapter, I will consistently name my
app imgploadr; however, your app name needs to be different and
unique. Wherever I include imgploadr in this chapter, you should
replace it with your own app's unique name.

Nodejitsu
To get started with Nodejitsu, first visit http://nodejitsu.com and register for a free
account. After providing your e-mail address, username, and password, you will be
presented with a pricing plan page where you can configure your service. If you just
want to create the free account and experiment, simply click on the No Thanks button
and the registration process is complete. Once you're finished, simply click on the
Login button in the upper right corner to log in and proceed to your Apps dashboard:

http://nodejitsu.com

Chapter 10

[221]

Deploying your app to Nodejitsu is going to require a new command-line interface
tool, specifically, the jitsu CLI. Clicking on the big blue Deploy an app with jitsu
button will take you to the www.github.com repository for this tool. You can skip
that step and just install the CLI manually using the following npm command:

$ sudo npm install –g jitsu

Note that the sudo part of the command to install an npm
package globally (using the –g flag) is sometimes required.
Depending on your access level of the machine you are using,
you may or may not need to include sudo.

Now that the jitsu CLI is installed, you can use this handy tool to log in to your
Nodejitsu account, create an app, and deploy your project code. First, let's log in:

$ jitsu login

info: Welcome to Nodejitsu

info: jitsu v0.13.18, node v0.10.26

info: It worked if it ends with Nodejitsu ok

info: Executing command login

help: An activated nodejitsu account is required to login

help: To create a new account use the jitsu signup command

prompt: username: jkat98

prompt: password:

info: Authenticated as jkat98

info: Nodejitsu ok

You can see that after successfully providing your username and password, you are
now authenticated with Nodejitsu and ready to go.

www.github.com

Deploying with Cloud-based Services

[222]

Before we can deploy the actual application, we need to first configure the MongoDB
database in our Nodejitsu dashboard. Switch back to your browser, and on the
Nodejitsu Apps dashboard, switch sections by clicking on the Databases tab:

Let's choose MongoHQ for our needs, so click on the large MongoHQ button.
You will be prompted for a name for the new database and then it will be listed at
the bottom of the screen in the Your databases section. The important part we need
is the connection string, and there's a convenient copy link right next to it to copy it
to your clipboard.

Edit the server.js file and update the mongoose.connect line to use this new
connection string you copied for your Nodejitsu database:

[/server.js]
mongoose.connect('YOUR_NODEJITSU_CONNECTION_STRING_HERE');
mongoose.connection.on('open', function() {
 console.log('Mongoose connected.');
});

Chapter 10

[223]

The only thing left remaining is to open a terminal, change directories to your
project home, and execute the following command to package up your app and
push it to Nodejitsu:

$ jitsu deploy

info: Welcome to Nodejitsu jkat98

info: jitsu v0.13.18, node v0.10.26

info: It worked if it ends with Nodejitsu ok

info: Executing command deploy

warn:

warn: The package.json file is missing required fields:

warn:

warn: Subdomain name

warn:

warn: Prompting user for required fields.

warn: Press ^C at any time to quit.

warn:

prompt: Subdomain name: (jkat98-imgploadr) imgploadr

warn: About to write /Users/jasonk/repos/nodebook/imgploadr/package.
json

... (a lot of npm install output) ...

info: Done creating snapshot 0.0.1

info: Updating app myapp

info: Activating snapshot 0.0.1 for myapp

info: Starting app myapp

info: App myapp is now started

info: http://imgploadr.nodejitsu.com on Port 80

info: Nodejitsu ok

After executing jitsu deploy, the CLI first prompts to confirm what the subdomain
will be under the www.nodejitsu.com domain. Feel free to change this to whatever
you like (it will check to confirm availability). It will then make a few minor
modifications to your package.json file, specifically including the subdomain
option with whatever value you provided. Finally, it uploads your source code and
performs a remote npm install operation. Assuming all went well, the app should
be deployed and a confirmation of the URL outputs to the screen. Feel free to open
that URL in your browser to view the app online!

www.nodejitsu.com

Deploying with Cloud-based Services

[224]

You can also now see that the app is listed in your Apps dashboard:

Now that the application has been successfully uploaded, launch it via its URL and
give it a test run by attempting to upload a new image. The first thing you should
notice is that attempting to upload an image fails with a fairly useless error (you can
see the following error by accessing the Logs tab from your app's dashboard):

400 Error: ENOENT, open '/opt/run/snapshot/package/public/upload/
temp/72118-89rld0.png

This error is far from helpful! Basically, what's happening here is that the
application is attempting to upload and save the image to the temp folder
that doesn't actually exist! We need to add a snippet of code to our application to
check for this condition and create the folders if necessary.

Chapter 10

[225]

Edit the server/configure.js file and insert the following snippet of code right
between routes.initialize(app); and return app;:

// Ensure the temporary upload folders exist
fs.exists(path.join(__dirname, '../public/upload/temp'),
function(exist) {
 if (!exist) {
 fs.mkdir(path.join(__dirname, '../public/upload'),
function(err){
 console.log(err);
 fs.mkdir(path.join(__dirname, '../public/upload/temp'),
 function(err){
 console.log(err);
 });
 });
 }
});

Here we're using the filesystem fs module to check whether the upload/temp folder
exists, and if not, create both the parent upload folder as well as the temp subfolder.
Don't forget to require the fs module at the top of the file too:

var connect = require('connect'),
 path = require('path'),
 routes = require('./routes'),
 exphbs = require('express3-handlebars'),
 moment = require('moment'),
 fs = require('fs');

There is an npm module called node-mkdirp that will
perform a recursive mkdir, which basically would accomplish
the double mkdir we called in the preceding example. The
only reason I didn't include it was for brevity and to not
unnecessarily include additional instructions to install the
module, require it, and use it. More info can be found at
https://www.npmjs.org/package/mkdirp.

With the mentioned changes made to your code, you need to deploy your
application again. Simply execute another jitsu deploy and a fresh copy
of your code will be uploaded to your instance:

$ jitsu deploy

Open your app URL again, and this time you should be able to interact with the
application and successfully upload a new image! Congratulations, you have
successfully deployed your application and it is now online using the Nodejitsu
hosting service!

https://www.npmjs.org/package/mkdirp

Deploying with Cloud-based Services

[226]

Heroku
Another popular cloud-based hosting provider for Node.js apps is www.Heroku.
com. The one thing that sets Heroku apart from other providers is the number of
powerful add-ons that are available. Any kind of service you can imagine your
application requiring is available as an add-on, including data stores, search, logging
and analytics, e-mail and SMS, workers and queuing, monitoring, and media! Each
of these add-ons can be quickly and easily added to your service and integrated into
your application with ease.

Like Nodejitsu, Heroku allows you to register a free account and work within the
confines of their "sandbox" pricing plans. The plans are free, but limited in scope
with regard to bandwidth, processing power, and so on. Most, if not all, of the
add-ons typically also offer some sort of free sandbox- or trial-based plan. Just like
Nodejitsu, one of the add-ons we will be using with our Heroku app is MongoHQ,
a cloud-based MongoDB service provider.

To get started, first go to http://heroku.com and sign up for your free account.
While registration doesn't require a credit card, in order to include any add-ons with
your application, you will have to have a credit card on file (even though it won't
be charged unless you choose to scale up the services). After registering, clicking on
the link in the confirmation e-mail and providing a password, you will be presented
with your Apps dashboard:

www.Heroku.com
www.Heroku.com
http://heroku.com

Chapter 10

[227]

You'll notice that the first thing you need to do is download the Heroku Toolbelt
(again, much like the jitsu CLI for Nodejitsu). Click on the download button to
download and install the toolbelt. The toolbelt is a CLI, specifically to create and
deploy apps to Heroku and gives you the heroku command.

Once you have the toolbelt installed, open a command-line terminal and change
directories to your project's root. From there, execute the following command to
log in to Heroku:

$ heroku login

Enter your Heroku credentials.

Email: jkat98@gmail.com

Password (typing will be hidden):

Authentication successful.

Now that you're logged in you can issue commands directly to your Heroku
account and use those commands to create an application, install add-ons,
and deploy your project.

The first thing you'll want to do is create a new application. Do so by executing
heroku create from the command line:

$ heroku create

Creating secret-shore-2839... done, stack is cedar

http://secret-shore-2839.herokuapp.com/ | git@heroku.com:secret-
shore-2839.git

After creating the app, Heroku randomly assigned it a unique name; in my case,
secret-shore-2839 (don't worry though as this can easily be changed):

$ heroku apps:rename imgploadr --app secret-shore-2839

Renaming secret-shore-2839 to imgploadr... done

http://imgploadr.herokuapp.com/ | git@heroku.com:imgploadr.git

Don't forget to update your Git remotes on any local checkouts.

Let's address that last part next. Heroku relies on the Git source control on your
machine in order to push your project source code up to your server, unlike
Nodejitsu, which uses its own file transfer mechanism. Assuming you followed the
directions earlier with regard to Git and www.GitHub.com, your project source code
should be all set and committed to the master branch and ready to go. What we
need to do next is add a new remote for Git on your machine to point to Heroku and
specifically your new app.

www.GitHub.com

Deploying with Cloud-based Services

[228]

Execute the following command to create a new remote for Heroku:

$ git remote add heroku git@heroku.com:imgploadr.git

Before you can push your source code up to your Heroku account, we need to take
care of a few things first.

A special file is required before your application will be able to run on your
Heroku server. This file is called Procfile, and it specifically contains the
command necessary to launch your application. Create this new file named
Procfile (no extension) in the root of your project and include the following line:

web: node server.js

That's it! With that file, Heroku will use that command to launch your application.
Now that you have Procfile set up and your project source code ready, there's only
one thing left to do—install the MongoHQ add-on and configure your app to use it:

$ heroku addons:add mongohq --app imgploadr

Adding mongohq on imgploadr... done, v3 (free)

Use 'heroku addons:docs mongohq' to view documentation.

With the MongoHQ add-on added, you can now configure the database itself and
retrieve the connection string (much like you did earlier with Nodejitsu). Access
your http://heroku.com Apps dashboard, and it should look something like the
following screenshot:

http://heroku.com

Chapter 10

[229]

The app's dashboard screen is a great place to get a snapshot of your application and
a quick glance at its current cost. Since I'm using the sandbox and/or free plans for
my application and add-ons, my current estimated monthly cost is $0.00. However,
you can quickly and easily scale your apps should you demand more power. Pay
attention, as you can also just as quickly and easily escalate your monthly cost
through the roof! (Scaling everything to maximum, I was able to get my estimated
cost to roughly $60,000 per month!)

To configure your MongoHQ database, simply click on the MongoHQ link under the
Add-ons section of your app's dashboard:

Click on the Admin tab with the gear icon below the Collections tab. Click on the
Users tab and provide a username and password that your application will use to
connect with your MongoHQ database. I'll create the imgploadrdb username with
a secure password. With the new user added, switch back to the Overview tab and
copy the Mongo URI string.

Deploying with Cloud-based Services

[230]

Again, just like with Nodejitsu, edit the server.js file in your project and replace
the mongoose.connect string with the new URI you just copied. Edit the string and
replace <username> and <password> with the appropriate values based on the new
user account you just created. The server.js mongoose.connect code should look
like the following:

mongoose.connect('mongodb://imgploadrdb:password@kahana.mongohq.
com:10089/app26');
mongoose.connection.on('open', function() {
 console.log('Mongoose connected.');
});

Since you just made changes to your project's source code, you need to remember
to commit those changes to your Git repository master branch so that they can get
uploaded to Heroku. Execute the following command to permanently commit these
changes to your source code and upload your code to your Heroku server:

$ git commit -am "Update mongoose connection string"

$ git push heroku master

Initializing repository, done.

Counting objects: 50, done.

Delta compression using up to 8 threads.

Compressing objects: 100% (43/43), done.

Writing objects: 100% (50/50), 182.80 KiB | 0 bytes/s, done.

Total 50 (delta 3), reused 0 (delta 0)

... npm install output ...

To git@heroku.com:imgploadr.git

 * [new branch] master -> master

The final step to get your application up and running is to create an instance of
your server (basically the equivalent of turning it on). To do this, execute the
following command:

$ heroku ps:scale web=1 --app imgploadr

Scaling dynos... done, now running web at 1:1X.

$ heroku open

Opening imgploadr... done

Chapter 10

[231]

Success! Hopefully, your browser launched and your website is up and running.
Go ahead, give it a try and upload an image! Thanks to the bug we caught during the
Nodejitsu deployment, this updated version of the application should work just fine.

While deploying with Heroku seems more complicated than Nodejitsu, this is
probably because it uses Git source control to facilitate the transfer of your project
files. Also, because Heroku is so flexible with the power of its scaling and add-ons,
the toolbelt CLI is a little more robust.

Amazon Web Services (AWS)
While Nodejitsu and Heroku can be considered developer-level service
providers because they are Platforms as a Service, Amazon Web Services (AWS)
(and Microsoft Azure) would be considered enterprise-level services because they
are more Infrastructure as a Service. The sheer volume of options and services
available with AWS and Azure is staggering. These are definitely top-tier services
and hosting an application like ours is kind of like using a bazooka to kill a fly!

AWS does provide its own NoSQL database called DynamoDB, but for our
purposes, we want to continue to work with MongoDB and use Mongoose in our
app. To do this, we can use a third-party MongoDB provider. If you recall, when we
originally set up Nodejitsu, one of the MongoDB providers listed was MongoLab.
MongoLab provides "MongoDB-as-a-Service", which means we can use their service
to host our MongoDB database, but use all of the power of AWS to host our Node.js
application (this is not unlike what's already happening with Nodejitsu and Heroku
already—they just streamline the process a little better). Remember that AWS is
an Infrastructure as a Service provider, so you could also just create another server
instance and install MongoDB on it yourself and use that as your data source. That's
slightly beyond the scope of this chapter however.

Create a MongoLab account and database
In order to use MongoLab with our app in AWS, we first need to register a new
account on http://mongolab.com and create an AWS database subscription. After
you register a new account and activate it using the link they send you via e-mail,
you can create your first database subscription.

http://mongolab.com

Deploying with Cloud-based Services

[232]

From your main dashboard, click on the Create new button (with the lightning
bolt icon):

From the Create new subscription page, configure the following settings:

• Cloud provider: amazon web services
• Location: (whichever region you prefer)
• Plan: Select Single-node (development)

 ° Sandbox (shared/free)

• MongoDB version: 2.4.x
• Database name: anything_you_want (I chose: imgploadr)
• Confirm that the price is $0 per month
• Click on Create new MongoDB deployment

Chapter 10

[233]

Back at your main dashboard, you should now see that your new database has been
created and is ready to go. The next thing we need to do is create a user account that
our app will use to connect to the server. Click on the database listed on the main
dashboard and then select the Users tab. Provide a new username and password.
After the new user account has been added, copy the URI located at the top of the
screen (it only appears after a user has been added) that starts with mongodb://.

Now that you have the new URI connection string, we need to update server.js
to include this new connection string in our mongoose.connect. Edit the file and
update the following code:

mongoose.connect('mongodb://imgploadrdb:password@ds061248.mongolab.
com:61248/imgploadr');
mongoose.connection.on('open', function() {
 console.log('Mongoose connected.');
});

Make sure to replace <username> and <password> with the appropriate information
from the user account you created on the MongoLab dashboard.

With our application code updated to point to the new MongoLab database
connection string, we need to zip up the project files so that they can be uploaded via
the AWS dashboard. From your computer's file browser, locate the project root that
contains all of your applications' source code files, select all of them and right-click
on them to add to an archive or ZIP file. The name of the ZIP file can be whatever
you choose. One thing to note is that you shouldn't include the node_modules
folder with this ZIP file (the easiest solution might be to simply delete the folder
altogether). The AWS online docs has a great write-up on creating ZIP files if you
need more information:

https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/using-
features.deployment.source.html

Once your source code has been updated to use the new MongoLab connection
string and you've created a ZIP file of the entire project (excluding the node_modules
folder), you're ready to create the new AWS application and deploy your app.

Create and configure the AWS environment
If you don't already have an account with Amazon, you're going to need one to
use their AWS services. Point your browser to http://aws.amazon.com and click
on Sign Up (even if you already have an Amazon account). From the screen that
follows, you can log in using your existing Amazon account or register for a new
account. Once you've registered and logged in, you should be presented with the
entire suite of cloud services AWS has to offer.

https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/using-features.deployment.source.html
https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/using-features.deployment.source.html
http://aws.amazon.com

Deploying with Cloud-based Services

[234]

The primary service we're interested in is Elastic Beanstalk (located under
Deployment and Managed with a green icon):

From this screen, click on the Create New Application link in the upper right corner.
The screens that follow will walk you through a multistep wizard process where you
will configure the environment in which the application will reside. Configure the
following settings where appropriate:

• Application Information:
 ° Application name: anything_you_want

• Environment Type:
 ° Environment tier: Web Server
 ° Predefined configuration: Node.js
 ° Environment type: Load balancing, autoscaling

• Application Version:
 ° Upload your own (choose the ZIP file that you created earlier)

Chapter 10

[235]

• Environment Information:
 ° Environment name: anything_you_want
 ° Environment URL: anythingyouwant (this is the subdomain for

your app)

• Configuration Details:
 ° Instance type: t1.micro
 ° The remaining fields can be left blank or at their default values

• Environment Tags:
 ° (skip this step—unnecessary for this app)

The final step is to review the configuration settings and then launch the
environment (by clicking the blue Launch button). It may take a few minutes
for Elastic Beanstalk to configure and launch your environment and application
so you might need to sit tight:

With the environment officially launched and the application online, go ahead and
open your app (by clicking the link at the top of the page) and give it a test run.
Assuming everything went according to plan, your application should be up and
running and working just fine!

Deploying with Cloud-based Services

[236]

Microsoft Azure
Microsoft's Azure service is very similar to Amazon's AWS. Both can be considered
enterprise-level services and both offer a tremendous level of flexibility and power
with a really slick UI. Surprisingly, even though it's a Microsoft product, you can
spin up instances of Linux environments using Azure as well host your Node.js and
MongoDB apps!

The first thing you're going to need, like any other service, is a registered account
at http://azure.microsoft.com. You can use an existing Microsoft Live Login if
you have one, otherwise you can register a new account fairly easily. Once you're
logged into the Azure service, the first thing you'll be presented with is your primary
dashboard. The icons to the left are all of the various services and options available
with Azure:

http://azure.microsoft.com

Chapter 10

[237]

Clicking the +NEW icon at the bottom-left corner will present you with the
main dialog you can use to add any new service. For our purposes, we want
to add a website:

1. Select Compute, Web Site, and From Gallery.
2. Select Node JS Empty Site from the long list of gallery options. This will

create the necessary environment so that you have somewhere you can
put your application.

3. On the screen that follows, provide the URL for your app.
4. Leave the remaining fields as their default values.
5. Click on the checkmark icon to complete the setup process, and your

website will be created.

The next step we need to do is set up the database server. Again, very similar to
AWS or Nodejitsu, we are going to once again select MongoLab as our database
service provider:

1. Click on the +NEW icon again and select Store and browse the list until you
find and select MongoLab.

2. Click on the next arrow and browse through the various plans. For our
needs, we will leave Sandbox selected (since it's free).

3. Provide a name for your database; in my case, I entered imgploadrdb.
4. Click next again to review and confirm the plan and monthly price

(should be 0.00 per month).
5. Finally, click on the checkmark icon to Purchase this new subscription plan.

Deploying with Cloud-based Services

[238]

After a few seconds, you should be taken back to your dashboard where you will see
entries for both the website and database app service listed:

Now that the database has been created and is ready, we need to include its
connection string in our application before we can upload our code:

1. Click the database row to select it and go to its overview.
2. The bottom of this screen will contain a few icons, one of which is labeled

Connection Info (and has an icon that looks like >i). Click on that icon to
pop up a modal window that contains the connection string URI for your
new MongoLab database server.

3. Copy that URI to your clipboard.
4. Edit server.js in your local app and replace the mongoose.connect

connection string with the new string you just copied. No need to update
username and password as Azure has already taken care of this for you:

mongoose.connect('mongodb://your_specific_azure_mongolab_uri');
mongoose.connection.on('open', function() {
 console.log('Mongoose connected.');
});

Chapter 10

[239]

Once that change has been made, save the file and don't forget to update your local
Git repository with the change, as we'll be using Git in the next section to push your
code to Azure (just like we did earlier with Heroku):

$ git commit -am "Azure connection string"

Back at the Azure dashboard, click on the Web Site in All Items list (or filter by
websites using the icons on the left toolbar). From this overview screen, locate
the Integrate source control section towards the bottom and click on the Set up
deployment from source control link. The following screenshot shows what you
should see at this point:

Select Local Git repository and then continue by clicking the next arrow icon.

The screen that follows will present instructions on how to push your local code to
the remote Git repository that has just been created for your Azure website. The gist
is to add a new Git remote (much like we did earlier with Heroku) that points to
your Azure repository and then push your code:

$ git remote add azure SPECIFIC_URL_FOR_YOUR_SERVER

$ git push azure master

Deploying with Cloud-based Services

[240]

You should notice the Git information screen in your Azure dashboard update in
real-time as your code starts to push up after the git push command. From the
command line, you will see a lot of remote npm install output as well. Once
completed, the deployment history in your Azure dashboard will update showing
the information for the last active deployment:

Now that your code has been deployed to your Azure website and your website
connection string is pointing to your MongoLab Azure app service, you're
ready to give the website a test run! Launch it by pointing your browser to
http://yourappname.azurewebsites.net:

Chapter 10

[241]

Azure does a lot of things right (UI/UX) and has some really powerful options and
scaling features available! Taking a quick glance at the dashboard for a website
(the preceding screenshot) you can see that there is a lot going on! There are many
different configuration options as well as health monitoring and general information
(FTP settings, website URL, usage metrics, and so on), so feel free to poke around
and explore.

Deploying with Cloud-based Services

[242]

Digital Ocean
The last service I wanted to mention and briefly take a look at is Digital Ocean
http://digitalocean.com. Digital Ocean is a true Virtual Private Server (VPS)
service provider and is a good example of a service that gets you just about as "close
to the metal" as possible. What this means is that Digital Ocean doesn't really have
all the bells and whistles that the other services we've seen offer. What Digital Ocean
does offer, however, is direct unfiltered access to the Linux server instance you spin
up; in this case, referred to as Droplets:

Digital Ocean allows you to boot up new Linux virtual server instances very quickly.
They offer very competitive prices and they're a great service if you need to get a
Linux server super fast because you only need one for a short period of time, or you
want to boot up your own Linux server that you plan to use to host a production
environment. The only "downside" (if I had to refer to it as such) is that you have
to be pretty familiar with Linux, specifically administering a server and all the
responsibilities that come with that.

http://digitalocean.com

Chapter 10

[243]

You can very easily clone your project using Git on a new Droplet, but an example
of the actual raw nature of a new Droplet is that Git is not installed on the server
by default. You need to manually install Git before you can clone your repository.
Depending on which image you decided to clone when creating a new Droplet, you
might need to install and configure Node.js as well as MongoDB. Fortunately, Digital
Ocean offers a number of predefined servers you can choose from when creating a
new server—one of which includes the MEAN (MongoDB, Express, Angular, and
Node.js) stack. Beyond that, actually launching your app will only run as a process
during your currently logged in session—once you log out, your application will go
down. You would need to further administer the server to configure your app to run
as a service.

Digital Ocean allows you to connect directly to your server using the console
access tool within the website itself, or using SSH directly from a terminal on
your own machine:

I mention Digital Ocean only because a lot of people will find this kind of raw
power quite refreshing and want to do their own hands-on kind of configuration
and maintenance of their server. Digital Ocean is an awesome service but it's not for
everyone. I wanted to talk about it specifically because I feel that it rounds out and
completes the list of services we've covered so far.

Deploying with Cloud-based Services

[244]

Summary
We've covered the full spectrum of cloud-based hosting service providers and
walked through configuring your service and deploying your project code. Nodejitsu
and Heroku are great services that cater more to developers and give them a lot of
power through very accessible and slick user interfaces. Amazon and Microsoft,
both industry juggernauts, services are representative of the kind of power and
sophistication you'd expect with enterprise-level service providers. Digital Ocean
is a no-frills, "close to the metal" cloud-based VPS provider that sacrifices bells and
whistles for raw and direct access to the server.

All of the hosting options we covered are great and not the only choices out there.
They're just a sample but speak to the power of the Cloud! Within a few minutes
and very little to no cost at all, you can have an environment configured, and your
website up and running online!

In the next chapter, we will take a look at the concept of Single Page Applications
and popular client-side development frameworks and tools.

Single Page Applications
with Popular Frontend

Frameworks
In this chapter, we will take a look at web application development from the
frontend perspective, specifically with a Single Page Application (SPA), also
referred to as thick client apps. With SPA, a large chunk of the presentation layer
is off-loaded to the browser, and the browser is responsible for rendering pages,
handling navigation, and making data calls to an API.

In this chapter, we will cover:

• What exactly a single page application is
• Why use a frontend framework such as Backbone.js, Ember.js, or Angular.js
• Popular frontend development tools such as Grunt, Gulp, Browserify, SAAS,

and Handlebars
• Test-driven development on the frontend

What is a Single Page Application?
The current trend with sophisticated web applications is to emulate desktop
applications and veer away from the "feel" of a traditional website. With traditional
websites, every interaction with the server would require a full-page postback that
makes a complete round trip. As our web applications become more sophisticated,
the need to send and retrieve data to and from the server increases.

Single Page Applications with Popular Frontend Frameworks

[246]

If we rely on full-page postbacks every time we need to facilitate one of these
requests, our app will feel sluggish and unresponsive as the user will have to wait for
a full, round trip with every request. Users demand more from their apps these days,
and if you think about the application we've written, the Like button is a perfect
example. Having to send a full-page postback to the server just because we wanted
to increment a counter by one seems like a lot of unnecessary overhead. Fortunately,
we were able to easily rectify this using jQuery and AJAX. This is a perfect example
of how a single page application works (only on a much larger scale).

A great example of one of the first, standout single page applications is Google's
Gmail. Gmail gives you an interface that is similar to Microsoft Outlook or any
traditional desktop-based e-mail client. User interaction with the application feels
just as responsive as a desktop application—the "page" never reloads, you can
switch panes and tabs within the application with ease, and data is constantly
being refreshed and updated in real time.

Creating a Single Page Application typically involves having a single HTML page
as the source of the application that loads all of the necessary JavaScript in order to
trigger a series of events that include:

• Bootstrapping the app—connecting to the server via AJAX to download the
necessary startup data.

• Rendering the screens based on user actions—monitoring events triggered by
the user and manipulating the DOM so that sections of the app are hidden,
revealed, or redrawn, which emulate the feel of a desktop application.

• Communicating with the server—using AJAX to constantly send and receive
data from the server, which maintains the illusion of a stateful connection via
the browser.

Why use a frontend framework?
We use frameworks to increase our productivity, keep us sane, and generally make our
development process more enjoyable. In most of the chapters throughout this book,
we worked with the Express.js MVC framework for Node.js. This framework allows
us to organize our code and extrapolates out a lot of boilerplate code, freeing up our
time to focus on our custom business logic. The same should be said for the front of
an application as well. Any amount of complex code is eventually going to need to be
properly organized and use a standard set of reusable tools to achieve common tasks.
Express.js makes our life easy while writing our backend code with Node.js. There are
a number of popular frontend frameworks that you can rely on as well.

Chapter 11

[247]

The TodoMVC project
When deciding which frontend framework to choose for your next large scale
frontend project, the decision-making process can be crippling! Keeping track of all
of the different frameworks and the pros and cons of each can seem like an exercise
in futility. Luckily, people have answered the call and a handy website exists to not
only demonstrate the same application written in nearly every framework, but also
to offer the complete annotated source code for each as well!

The TodoMVC project, http://todomvc.com, is a website that focuses on creating
a simple, single page, to-do application, which is written using each of the proven
JavaScript MVC frameworks—there's even one written in vanilla JavaScript!

Definitely spend some time checking out the website and digging into each of the
featured frameworks. You can get a really good feel for the different frameworks by
seeing the same code written in completely different ways. No two are identical, and
ultimately, it's up to you to evaluate and figure out which you prefer and why.

For the sake of brevity, I'm going to focus on the three that I personally like and
believe are at the top of the current list of front runners.

http://todomvc.com

Single Page Applications with Popular Frontend Frameworks

[248]

Backbone.js
Backbone.js is an extremely lightweight (6.5 Kb in production) MV* Framework that
has been around for a few years. It has an extremely large established user base, and
many very large-scale web applications have been written using this framework.
Some companies that have embraced Backbone.js for development of their flagship
products include:

• USA Today
• Hulu
• LinkedIn
• Trello
• Disqus
• Khan Academy
• Walmart Mobile

Backbone.js is a great framework to start with if you're comfortable with jQuery and
have been using it for a while and want to start improving your code organization
and modularity. Additionally, Backbone.js requires jQuery and integrates it pretty
tightly, so that's one less thing to worry about learning as you ease into this new
world of frontend development.

Backbone.js works on the basic idea of models, collections, views, and routers.
Models are the basic elements that store and manage all of the data in your
application. Collections store models. Views render HTML to the screen retrieving
dynamic data from models and collections. Routers power the URL of your
application, allowing each individual section of your application its own unique URL
(without actually loading live URLs) and ultimately tying the whole thing together.

As Backbone.js is so lightweight, an extremely small and simple set of sample code
can be put together very quickly:

var Person = Backbone.Model.extend();
var PersonView = Backbone.View.extend({
 tag: 'div',
 render: function() {
 var html = [
 this.model.get('name'),
 '
',

Chapter 11

[249]

 this.model.get('website')
].join('');

 this.$el.html(html);

 return this;
 }
});

var person = new Person({
 name: 'Jason Krol',
 website: 'http://kroltech.com'
 }),
 view = new PersonView({ model: person });

$('body').append(view.render().el);

The one thing to notice is that Backbone.js by its very nature is so lightweight that
it doesn't include most of the functionalities that you'd expect to work right out of
the box. As you can see in the preceding code, in the View object that we created,
we had to provide a render function that manually renders the HTML for us. For
this reason, many people shy away from Backbone.js, but others embrace it for the
raw power and flexibility it gives to developers.

Traditionally, you wouldn't put all of your code into a single file like the earlier
example. You would organize your models, collections, and views into individual
folders in a structure, just like how we organized the code in our Node.js application.
Bundling all of the code together would be the job of a build tool (discussed later in
this chapter).

You can learn more about Backbone.js by visiting its official website at
http://backbonejs.org.

Also, don't forget to check out the Backbone.js implementation of the to-do
application on the TodoMVC website!

I maintain a repository on GitHub that has a boilerplate web
application with complete code that uses the full stack we've
covered in this book as well as Backbone.js with Marionette for
the frontend. Feel free to check it out at: http://github.com/
jkat98/benm (B.ackbone, E.xpress, N.ode, M.ongoDB).

http://backbonejs.org
http://github.com/jkat98/benm
http://github.com/jkat98/benm

Single Page Applications with Popular Frontend Frameworks

[250]

Ember.js
Ember.js bills itself as the framework for creating ambitious web applications. Ember's
goal is to target fairly large-scale SPAs so the idea of using it to build something very
simple might seem like overkill but is certainly doable. A fair assessment is to take a
look at the production file size of the Ember library, which comes in at around 90 Kb
(versus 6.5 Kb for Backbone.js). That being said, if you are building something very
robust with a very large codebase, the added 90 Kb might not be a big deal for you.

Here is a very small sample application using Ember.js:

var App = Ember.Application.create(),
 movies = [{
 title: "Big Trouble in Little China",
 year: "1986"
 }, {
 title: "Aliens",
 year: "1986"
 }];

App.IndexRoute = Ember.Route.extend({
 model: function() {
 return movies;
 }
});

<script type="text/x-handlebars" data-template-name="index">
 {{#each}}
 {{title}} - {{year}}

 {{/each}}
</script>

Ember.js's code looks somewhat similar to that of Backbone.js, and it's no surprise
that a lot of seasoned Backbone.js developers find themselves migrating to Ember.
js, as their needs for more robust solutions increase. Ember.js uses familiar items,
including views, models, collections, and routes as well as an Application object.

Additionally, Ember.js features Components, which is one of its more powerful and
beloved features. Giving a sneak preview of the future of the Web, Components
allow you to create small, modular, reusable HTML components that you can plug
into your application as needed. With Components, you can basically create your
own custom HTML tags that look and behave exactly how you define them, and
they can easily be reused throughout an application.

Developing with Ember.js is all about convention. Unlike Backbone.js, Ember.js tries
to get a lot of the boilerplate out of the way and makes certain assumptions for you.
Because of this, you need to do things a certain way, and controllers, views, and
routes need to follow a somewhat strict pattern with regard to naming conventions.

Chapter 11

[251]

The Ember.js website features incredible online documentation and getting-started
guides. If you're interested in learning more about Ember.js, check it out at
http://emberjs.com/guides/.

Also, don't forget to take a look at the TodoMVC implementation!

AngularJS
AngularJS exploded onto the scene because of the simple fact that it's built by
Google (it is open source). AngularJS is basically like putting HTML on steroids.
The applications and pages that you create use regular HTML that we're all used
to, but they include a number of new and custom directives that extend the core
functionality of HTML giving it awesome new power.

Another great feature about AngularJS that has seasoned non-Web developers
flocking to it is that it is built from the group to be heavily tested and supports
dependency injection. It's a framework that makes creating sophisticated web
applications not feel like traditional web development. This is an extremely robust
framework, clocking in at the largest file size of the three we're looking at with 111
Kb of compressed production code:

<!doctype html>
<html ng-app>
 <head>
 <script src="https://ajax.googleapis.com/.../angular.min.js"></
script>
 </head>
 <body>
 <div>
 <label>Name:</label>
 <input type="text" ng-model="yourName" placeholder="Enter a name
here">
 <hr>
 <h1>Hello {{yourName}}!</h1>
 </div>
 </body>
</html>

You can see by the sample code provided that no custom JavaScript was written at
all. Yet the page features real-time data binding between an input field and an h1 tag.
This is stock power and functionality right out of the box, and a demonstration of the
extended nature of regular HTML that AngularJS provides.

Make no mistake, however, that JavaScript still plays a huge role in the development
of AngularJS. AngularJS features controllers, models, and routes as well as many
more features.

http://emberjs.com/guides/

Single Page Applications with Popular Frontend Frameworks

[252]

Learn more about AngularJS by visiting its website at http://angularjs.org.

And take a look at the TodoMVC implementation as well!

Frontend frameworks have recently taken on somewhat religious undertones.
Post a negative comment or criticism about a particular framework and it's likely
you'll get blasted by its supporters. Likewise, talk positive about a particular
framework and, again, it's likely you'll get attacked about how much better a
different framework handles the same topic. The bottom line when deciding
which framework is right for you and/or your project is typically going to be
about personal preference. Each of the frameworks featured on the TodoMVC
website can clearly accomplish the same goals, each in its own unique way.
Take some time to evaluate a few and decide for yourself!

Frontend development tools
Because of the sophisticated nature of single page applications, there exists a
growing suite of tools a frontend developer needs to be familiar with to manage
many day-to-day, and sometimes minute-to-minute tasks.

Automated build task managers
A build tool is just what it sounds like, a tool used to build your application.
When a frontend developer creates and maintains an application, there could be a
number of tasks that need to be repeated literally every time a file is changed and
saved. Using a build tool, a developer can free up time and mental resources by
offloading the responsibility to an automated task manager that can watch files for
changes and execute any number of tasks needed. These tasks might include any
number of the following:

• Concatenation
• Minification
• Uglification and obfuscation
• Manipulation
• Dependency installation and preparation
• Custom script firing
• Concurrent watchers
• Server launching
• Test automation

http://angularjs.org

Chapter 11

[253]

Some of the more popular build tools today include Grunt, Gulp, and Broccoli.
Grunt.js has been around for a number of years and is very well-established in the
development community. Gulp and Broccoli are fairly new but quickly gaining
traction and work a little differently than Grunt. With Grunt you define and manage
your tasks using a configuration file whereas with Gulp and Broccoli you write
Node.js code and use the raw power of streams. Many developers find working with
Grunt's configuration file to be fairly convoluted and frustrating and find working
with Gulp to be a refreshing change. However, it's hard to dispute Grunt's history
and popularity.

All three feature extensive ecosystems of plugins that help automate literally
everything and anything you can think of with your build process.

Here is some sample output from a typical Grunt build command:

Single Page Applications with Popular Frontend Frameworks

[254]

In a typical single page application, the build manager can be responsible for:
downloading and installing dependencies, concatenating multiple JavaScript files
into a single file, compiling and shimming Browserify modules, linting JavaScript
files for syntax errors, transpiling LESS files into production-ready CSS files, copying
files to a runtime destination, watching files for changes to repeat any of the tasks
again, and finally running appropriate tests any time the code is changed—all from a
single command!

Grunt can be installed using npm and should be installed globally. Execute the
following command to install the Grunt CLI on your machine:

$ npm install -g grunt-cli

Refer to the getting-started guide on the official Grunt.js website for more
information at http://gruntjs.com/getting-started.

Additionally, feel free to check out Gulp and Broccoli as well for more information:

http://gulpjs.com/

https://github.com/broccolijs/broccoli

Dependency management
There are literally millions of JavaScript libraries that exist to help you with
everything from DOM manipulation (jQuery) to timestamp formatting (moment.js).
Managing these libraries and dependencies can sometimes be a bit of a headache.
For the frontend, the dependency manager of choice is Bower.io.

Bower works almost exactly the same way as npm. While working on the frontend,
and you need a known JavaScript library or plugin (such as underscore, for
example), simply execute bower install underscore and the JavaScript files will
be downloaded to a local bower_components folder in your project. From there, you
can automate the inclusion of those scripts by updating your build process, or simply
copy the file, include a script tag in your HTML, and you're all set.

Bower can be installed using npm and should be installed globally. Execute the
following command to install Bower on your machine:

$ npm install –g bower

$ bower install jquery

bower cached git://github.com/jquery/jquery.git#2.1.0

bower validate 2.1.0 against git://github.com/jquery/jquery.git#*

bower new version for git://github.com/jquery/jquery.git#*

http://gulpjs.com/
https://github.com/broccolijs/broccoli

Chapter 11

[255]

bower resolve git://github.com/jquery/jquery.git#*

bower download https://github.com/jquery/jquery/archive/2.1.1.tar.gz

bower extract jquery#* archive.tar.gz

bower resolved git://github.com/jquery/jquery.git#2.1.1

bower install jquery#2.1.1

jquery#2.1.1 bower_components/jquery

Visit the Bower.io website (http://bower.io) for more information as well as the
full directory of scripts available to be installed via bower install.

Modularity
When writing large JavaScript applications, the key is to keep your source code
well-organized and structurally sane. Unfortunately, JavaScript doesn't inherently
support the idea of modular code very well right out of the box. To solve this
problem, two popular libraries exist to allow you to write modular code and
rely on only the modules you need within each individual piece of code.

An absolute must-read and incredible resource for frontend design
patterns is Addy Osmandi's Learning JavaScript Design Patterns, which
you can read for free by visiting the following URL:
http://addyosmani.com/resources/
essentialjsdesignpatterns/book/

Require.js and Browserify are two of the most popular module loaders today.
Each has a very unique syntax and its own set of benefits. Personally, I've worked
with Require.js in the past, and recently I've found that I really like working with
Browserify. One of Browserify's strengths is that it uses the same modular pattern as
Node.js; so, writing frontend code using Browserify feels identical to that of Node.
You use module.exports and require on the frontend, and you don't have to worry
about syntax context switching if you go back and forth between Node and the
frontend within the same application.

Using a module loader in conjunction with one of the popular MVC frameworks
mentioned earlier is almost a requirement because the two go together like peanut
butter and jelly!

For more information, visit the following links:

• http://browserify.org/

• http://requirejs.org/

http://bower.io
http://addyosmani.com/resources/essentialjsdesignpatterns/book/
http://addyosmani.com/resources/essentialjsdesignpatterns/book/
http://browserify.org/
http://requirejs.org/

Single Page Applications with Popular Frontend Frameworks

[256]

HTML template-rendering engines
Fortunately, we've covered the idea of HTML template-rendering engines already
throughout the course of this book. The topics and concepts transfer directly to
frontend applications as well. There are many different HTML template engines to
choose from for use in the browser.

Many template engines will be mustache-based, meaning they use {{ and }} for
merge variables. Handlebars is currently my personal favorite, mainly because
it works so well in the backend and frontend of an application, and I really like
working with its helpers. Underscore.js has a built-in "lite" template-rendering
engine for use with Backbone.js, but its syntax uses <% and %> (much like classic
ASP or ASP.net MVC Razor syntax). Typically, most frontend MVC frameworks
allow you to customize the template-rendering engine and use any engine you want.
For example, Backbone.js can be very easily set up to use Handlebars.js instead of
underscore.js by default.

Here's just a small sample list of some of the currently available frontend
template-rendering engines:

• Underscore.js: http://underscorejs.org
• Handlebars: http://handlebarsjs.com
• Mustache: http://mustache.github.io
• Dust.js: http://akdubya.github.io/dustjs
• EJS: http://embeddedjs.com

Some of these will work at the backend as well as on the frontend.

CSS transpiling
The idea of using variables and logic within a CSS file sounds like a dream come
true, right? We aren't quite there yet (in the browser anyway), however there are a
few tools that will let us use variables and logic in our CSS files and compile them
during our build step. LESS and SASS are two of the most popular CSS transpilers
currently available. They behave almost identically, with only slight differences in
syntax and features. The big difference is that LESS was written using JavaScript and
Node, whereas SASS uses Ruby; therefore, each has different requirements to get
running on your machine.

http://underscorejs.org
http://handlebarsjs.com
http://mustache.github.io
http://akdubya.github.io/dustjs
http://embeddedjs.com

Chapter 11

[257]

Here is a sample SASS style sheet file:

$sprite-bg:url("/images/editor/sprite-msg-bg.png");

@mixin radius($radius) {
 -moz-border-radius: $radius;
 -webkit-border-radius: $radius;
 -ms-border-radius: $radius;
 border-radius: $radius;
}

.upload-button {
 border-bottom: solid 2px #005A8B;
 background: transparent $sprite-bg no-repeat;
 @include radius(4px);
 cursor: pointer;
}

#step-status {
 color:#dbdbdb; font-size:14px;

 span.active {
 color:#1e8acb;
 }

 &.basic-adjust, &.message-editor {
 width: 525px;
 }

 .icon {
 height:65px;
 width: 50px;
 margin:auto;
 }
}

@import "alerts";
@import "attachments";
@import "codemirror";
@import "drafts";

Single Page Applications with Popular Frontend Frameworks

[258]

Looking at the sample code, you can see that we have a few new elements that
wouldn't typically work in a regular CSS file. Some of these include:

• Defining custom variables for use throughout the style sheet
• Defining mixins, which act as pseudo functions for reusable styles

(with dynamic parameters)
• Including mixins and variables within our style definitions
• Nesting styles with parent/child relationships

When the previous code is transpiled using LESS (or in the case of the sample
code SASS), the output is a standard .css style sheet that adheres to all the
normal browser rules and syntax.

For more information on LESS and SASS, check out the following links:

• http://lesscss.org

• http://sass-lang.com

Testing and test-driven development
The development of a sophisticated frontend application is no different than any
other software application. The code is going to be complicated and robust, and
there's no reason not to write tests as well as practice test-driven development. The
availability of testing frameworks and languages for the frontend is just as robust as
any other language. All of the tools and concepts we've used for testing the Node.js
code that we've written in this book can be used directly on the frontend as well.

Some other tools to consider for testing your frontend JavaScript are:

• Karma for running tests: http://karma-runner.github.io
• Jasmine for writing tests: http://jasmine.github.io

PhantomJS headless browser
One thing I'd like to point out with testing frontend code is that typically the test
runners want to run in a browser window. This is great and makes perfect sense,
but in the real world, automating your tests or quickly executing them with TDD
can be a bit painful when a browser window wants to open every time your test
suite runs. PhantomJS is a headless browser available that works perfectly in this
kind of scenario. A headless browser simply means it's a browser that runs from
the command line, in memory, with no actual interface (like a typical browser).

http://lesscss.org
http://sass-lang.com
http://karma-runner.github.io
http://jasmine.github.io

Chapter 11

[259]

You can easily configure Karma to launch the test suite using PhantomJS instead of
your browser of choice. When using PhantomJS as your browser, your tests execute
behind the scenes and only errors are reported. Here is a sample output of a test suite
running with Karma using PhantomJS:

Summary
This was a whirlwind tour of some of the most common frontend tools and
frameworks used when doing typical web development. We took a look at the
TodoMVC project and reviewed three popular JavaScript frameworks to build
robust and sophisticated frontend applications.

Popular build tools such as Grunt.js, Gulp, and Broccoli help developers streamline
their workflow process by automating a lot of the repetitive tasks that need to
occur every time a file is modified. From concatenating scripts into a single file to
minifying and compressing to executing automated test suites, the task runners can
be configured to handle pretty much everything under the sun!

We took a look at two popular CSS transpilers with LESS and SASS and saw how
they can make creating and managing CSS style sheets dynamic with the use of
mixins, variables, and nesting.

Finally, we learned about PhantomJS, the headless browser, and using it when
running frontend tests so that the tests can be executed quickly and easily from
the command line using a test runner like Karma.

In the next and final chapter, we'll review some alternative frameworks to develop
web applications using Node.js and MongoDB.

Popular Node.js Web
Frameworks

Throughout this book, we've focused exclusively on using Express.js as our
web framework of choice, primarily because it's one of the most popular web
development frameworks for Node, has been around for quite a while, and is very
widely used. However, there are a number of alternate frameworks available that I
want to introduce to you. Some of these frameworks are much more powerful and
robust than Express.js, while others are right in line or slightly less feature packed.

Most of the frameworks that exist today and discussed in this chapter are still in their
early stages of development; some have not even reached a 1.0 status. The use of
these in a production environment should be considered carefully and under a fair
amount of scrutiny.

In this chapter, we will take a brief look at the following frameworks:

• Meteor
• Sails
• hapi
• Koa
• Flatiron

Popular Node.js Web Frameworks

[262]

Meteor
Meteor is a simple, complete web framework with the goal of giving developers
of any skillset the ability to build robust web applications in a fraction of the time.
Meteor is pretty close to what we've used throughout this book—it relies exclusively
(at the time of writing) on MongoDB as a primary data store and uses Handlebars
for HTML templates. It features a handy CLI tool that you can use to scaffold new
projects very quickly.

The Meteor website (http://meteor.com) is shown in the following screenshot:

It is quickly gaining traction and becoming increasingly popular every
day—currently, its GitHub repo has over 17,000 stars!

More information about Meteor can be found on its website as well as its
official GitHub repo at https://github.com/meteor/meteor.

http://meteor.com
https://github.com/meteor/meteor

Chapter 12

[263]

Sails
Sails is another great MVC framework for building web applications using Node.
js that sometimes compares itself to Ruby on Rails. Unlike Meteor, Sails is database
agnostic, so it doesn't matter which data store you choose. Sails includes some handy
scaffolding tools such as automatic RESTful API generation. Socket.io, a real-time
communication framework for Node.js, is built into Sails; so, including real-time
functionalities in your application should be a breeze. Sails features some nice
production-level automation that would typically need to be handled by a tool such
as Grunt.js or Gulp (this includes minification and bundling of CSS and JavaScript
for the frontend). Sails also includes basic security and role-based authentication for
your app should you require that level of functionality.

The Sails website (http://sailsjs.com) is shown in the following screenshot:

More information about Sails can be found at its website as well as its official
GitHub repo at https://github.com/balderdashy/sails.

http://sailsjs.com
https://github.com/balderdashy/sails

Popular Node.js Web Frameworks

[264]

hapi
hapi is the result of the team behind Walmart's online mobile website. The team
that built that website developed a rich set of Node.js utilities and libraries that
can be found under the Spumko umbrella. Considering the tremendous amount of
traffic Walmart's website receives on any given day, it's no wonder that the team at
WalmartLabs is at the top of their game when it comes to Node.js development and
best practices. hapi is the web framework that was born from the ashes of real-world
trial and error.

The hapi website (http://hapijs.com) is shown in the following screenshot:

More information about hapi can be found at its website as well as its official
GitHub repo:

https://github.com/spumko/hapi

http://hapijs.com
https://github.com/spumko/hapi

Chapter 12

[265]

Koa
Koa is a new web framework designed by the same team that created Express.js.
The goal of Koa is to be smaller, more expressive, and a more robust foundation for
web applications. One of the key features of Koa is the use of generators, which is
a feature found in other popular programming languages such as Python, C#, and
Ruby, and it is coming soon to JavaScript with ECMAScript 6 (the next version of
JavaScript). Generators prevent the standard callback hell that is so popular with the
development process in Node.js. As Koa is so lightweight, it does not come with any
middleware out of the box. This is by design so that the choice of how to implement
certain features can be left to the developer.

The Koa website (http://koajs.com) is shown in the following screenshot:

More information about Koa can be found on its website as well as its official
GitHub repo at https://github.com/koajs/koa.

http://koajs.com
https://github.com/koajs/koa

Popular Node.js Web Frameworks

[266]

Flatiron
Flatiron is yet another Node.js MVC web application framework. What sets Flatiron
apart from other frameworks is its package-based approach. Since it gives the power
and freedom to decide how much or how little the framework should include,
developers can pick and choose the packages they want to work with and include with
their project. It handles a lot of the basic data management responsibilities and CRUD
for you by supplying a powerful ODM that takes care of a lot of the heavy lifting.

The Flatiron website (http://flatironjs.com) is shown in the following screenshot:

More information about Flatiron can be found on its website as well as its official
GitHub repo at https://github.com/flatiron/flatiron.

http://flatironjs.com
https://github.com/flatiron/flatiron

Chapter 12

[267]

Summary
Even though we used Express.js exclusively throughout this book, there are many
other options available when creating web applications using Node.js. We examined
a few of those options in this chapter, including Meteor, Sails, hapi, Koa, and
Flatiron. Each framework features its own strengths and weaknesses and its own
unique approach to the standard functionality a web application requires.

The beauty of web development with Node.js is that there's no shortage of opinions
on how to accomplish a single task. MVC frameworks are no exception, and you can
see from this chapter there are a lot of really robust and feature-packed frameworks
to choose from.

Index
Symbols
_id field 48
-R flag 200

A
additional resources, JavaScript 50
Amazon Web Services. See AWS
AngularJS

about 251, 252
URL 252

anonymous function 38, 39
API 168
API endpoint

consuming, request used 185-188
application

AWS 231
controller, testing 210-214
deploying 220
Digital Ocean 242, 243
Heroku 226-230
Microsoft Azure 236-240
model, testing 207-209
Nodejitsu 220-225
routes, testing 202, 203
server, testing 204-206
testing 201

Application Programming
Interface. See API

arrays 40
array.splice function 183

asynchronous callbacks 9
asynchronous JavaScript code 43
async module 151
automated build task managers 252-254
AWS

about 231
environment, configuring 233-235
environment, creating 233-235
MongoLab account, creating 231-233
MongoLab database, creating 231-233

B
Backbone.js

about 248, 249
URL 249

Basic API server
creating 174
sample JSON data, creating 175, 176

Behavior-driven Development (BDD)
about 191
URL 192

bodyParser, Connect middleware 64
Bootstrap

URL 79
Bower.io

URL 255
Broccoli

URL 254
Browserify

about 255
URL 255

[270]

C
callback function 105
callbacks 38, 39
Chai documentation

URL 193
Chai.js

installing, as devDependency 194
tests, asserting with 192, 193

cloud
versus traditional hosting 217, 218

code
writing, for app 26-29

command-line tools
creating 10

comment model
inserting 148-150

comments helper 151-154
comments module 110, 111
comments property 101
comparison operators 40
complete data-driven website

creating 13
condition statement 40
ConEmu

about 16
URL 16

configure module
about 59
activating 65
Connect middleware 62-65
Handlebars view engine 60, 61
middleware, defining 62
middleware, using 62

Connect framework
middleware 63

Connect middleware
about 62-65
bodyParser 64
cookieParser 65
errorHandler 65
json 64
logger('dev') 64
methodOverride 64
urlencoded 64

connect.static() middleware 65
Content Delivery Network (CDN) 113
controller handler

adding 162, 163
controllers

about 66-71, 95, 96
CRUD, adding 133
testing 210-214

cookieParser, Connect middleware 65
create function

about 61, 142
key responsibilities 103

CRUD (Create, Read, Update, and Delete)
about 47
adding, to controllers 133

CSS transpiling 256-258
custom middleware 71

D
data

deleting 50
inserting 47, 48
updating 49

database
checking 30, 31

data, DELETE requests
removing 183, 184

data, POST requests
receiving 178-183

data, PUT requests
receiving 178-183

dbhost variable 27
dependency management 254, 255
describe block 190
devDependency

Chai.js, installing as 194
Digital Ocean

about 242, 243
URL 242

document
inserting 120, 121
retrieving 121, 122

Document Object Model (DOM) 113
drop() function 50
Dust.js

URL 256

[271]

E
EJS

URL 256
else condition 105
Ember.js

about 250, 251
URL 251

environment
assumptions 15, 16
requisites 15, 16

errorHandler, Connect middleware 65
event driven 43
Express.js 53, 54
Express v4.0.0

middleware, using 72, 73
migrating to 72

external APIs
API endpoint consumption,

request used 185-188
consuming, from Node.js 185

F
file IO 10
files

organizing 56
File Transfer Protocol (FTP) 219
find() function 48
findOne function 122
first app

code, writing 26-29
database, checking 30, 31
sample app, launching 30
writing 26

Flatiron
about 266
URL 266

flow 41
frontend development tools

about 252
automated build task managers 252-254
CSS transpiling 256-258
dependency management 254, 255
HTML template-rendering engines 256
modularity 255

frontend framework
AngularJS 251, 252
Backbone.js 248, 249
Ember.js 250, 251
need for 246
TodoMVC project 247

frontend JavaScript
PhantomJS headless browser 258
testing 258

functions
about 37, 38
declaring 35

G
GET requests

responding to 176-178
Git

about 219
URL 219

global helpers 89
Gravatar

about 149
URL 85

Gulp
URL 254

H
Handlebars

image page template, updating 163
syntax 77, 78
URL 256

Handlebars helpers
about 89
global helpers 89
view-specific helpers 90

Handlebars view engine
about 60, 61
template engines 61

hapi
about 264
URL 264

[272]

helpers
about 150
comments helper 151-154
images helper 161
popular images helper 161
sidebar 155-157
stats helper 158-160
troubleshooting 157, 158

helpers, for reusable code
about 106
comments module 110, 111
images module 109
sidebar implementation, testing 111
sidebar module 106-108
stats module 108

helper sidebar 155-157
helpers property 90
Heroku

about 226-230
URL 226

Homebrew
URL 21

home controller
about 134-136
updating 97-99

HTML template-rendering engines 256
HTTP verbs, REST APIs

DELETE 168
GET 168
PATCH 168
POST 168
PUT 168

I
IaaS

versus PaaS 218, 219
image

displaying 100-102
uploading 102-106

image controller 136
image controller, updating

about 100
image, displaying 100-102
image, uploading 102-106

image model
inserting 141-143
retrieving 137-140
updating 146, 147

image property 101
image removal capability, adding

about 162
controller handler, adding 162, 163
Handlebars image page template,

adding 163
jQuery, updating 164, 165
route, adding 162

images helper 161
images module 109
imgPloadr.io 54
index function

about 137
controller's responsibilities 140

Infrastructure as a Service. See IaaS
initialize function 67

J
Jasmine, for writing tests

URL 258
JavaScript

about 34
developing, advantages 7
using 7

JavaScript Object Notation. See JSON
JavaScript Primer

about 33
anonymous function 38, 39
arrays 40
callbacks 38, 39
comparison operators 40
condition statement 40
flow 41
functions 37, 38
functions, declaring 35
JSON 42
objects, declaring 36, 37
variables, declaring 34, 35

Joyent GitHub wiki
URL 62

[273]

jQuery
updating 164, 165

JSON 42
json, Connect middleware 64
JSONView Chrome extension

using 173, 174

K
Karma, for running tests

URL 258
Koa

about 265
URL 265

L
layouts 85-87
LESS

URL 258
library, modules

URL 10
lightweight Node

example 8
Like button 146, 147
like function 115
Linux, MongoDB server

installation instructions 24
Linux, Node.js

installation instructions 18
listen function 58
logger('dev'), Connect middleware 64

M
Mac OS X, MongoDB server

installation instructions 21, 22
Mac OS X, Node.js

installation instructions 16, 17
MEAN (MongoDB, Express, Angular,

and Node.js) 243
Meteor

about 262
URL 262

methodOverride, Connect middleware 64

Microsoft Azure
about 236-240
URL 236

middleware
defining 62

middleware, using
about 62
server/configure.js 73, 74
server/routes.js 76

mkdir
URL 225

Mocha framework
tests, running with 190, 191

model
about 124-132
index file 132, 133
testing 207-209

Model View Controller (MVC) 78
Model, View, ViewModel (MVVM) 78
modularity, frontend development

tools 255
modules

about 44
installing, npm used 45, 46

moment module 90
MongoDB

about 12, 46
advantages 12
connecting to 119, 120
data, deleting 50
data, inserting 47, 48
data, updating 49
document, inserting 120, 121
document, retrieving 121, 122
installation, confirming 25
mongo shell 47
querying 48, 49
testing 144-146
using, with node 118

mongodb npm module 119
MongoDB server, installing

about 20
installation, confirming 25
Linux, installation instructions 24, 25

[274]

Mac OS X, installation instructions 21, 22
online documentation, bookmarking 26
Windows 7, installation instructions 22-24
Windows 8, installation instructions 22-24

MongoDB University
URL 51

MongoLab account
creating 231-233

MongoLab database
creating 231-233

Mongoose
about 122
built-in validation 126, 127
connecting with 129, 130
models 124-126
schemas 123
static methods 128
URL 129
virtual properties 128, 129

mongoose object 43
mongo shell 47
Mozilla Developer Network

URL 50
Mustache

URL 256

N
networking 10
next parameter 71
Node

about 12
companies, working with 12
MongoDB used 118
URL 45

Node API
URL 50

node app.js command 9
Nodejitsu

about 220-225
URL 220

Node.js
about 8, 9, 33
and JavaScript 8
asynchronous callbacks 9

command-line tools, creating 10
external APIs, consuming from 185
file IO 10
networking 10
Node Package Manager 10
real-time web, with Socket.io 11
URL 16

NodeJS
about 43
asynchronous JavaScript code 43
event driven 43
modules 44
NodeJS core 44
require() function 44

NodeJS core 44
Node.js, installing

about 16
installation, confirming 19, 20
Linux, installation instructions 18
Mac OS X, installation instructions 16, 17
online documentation, bookmarking 20
Windows 7, installation instructions 17, 18
Windows 8, installation instructions 17, 18

Node.js Web Frameworks
Flatiron 266
hapi 264
Koa 265
Meteor 262
Sails 263

node-mkdirp 225
node modules

stubbing, with Proxyquire 197, 198
Node School

URL 51
NoSQL movement

about 11, 12
MongoDB 12
Node 12

NoSQL, using
advantages 12

npm (Node Package Manager)
about 10
used, for installing modules 45, 46

[275]

O
objects

declaring 36, 37
online documentation, MongoDB server

bookmarking 20, 26
online documentation, Node.js

bookmarking 20
options object 61

P
PaaS

versus IaaS 218, 219
partial views 87-89
PhantomJS headless browser 258
Platform as a Service. See PaaS
popular function 109
POST

reference links 169
Postman REST Client

about 169
installation instructions 169
JSONView Chrome extension,

using 173, 174
using 170-172

pretty() function 48
Proxyquire

node modules, stubbing with 197, 198
PUT

reference links 169

Q
querying 48, 49

R
real-time web

used, with Socket.io 11
refactoring 165
Representational State Transfer (REST) 168
Request

used, for consuming API
endpoint 185-188

request module 197
require() function 44

Require.js
about 255
URL 255

RESTful API 168, 169
route

adding 162
testing 202, 203

routers 66-71

S
Sails

about 263
URL 263

sample app
launching 30

sample JSON data
creating 175, 176

SASS
URL 258

schemas
about 123-132
datatypes 123

seedData function 27
server

testing 204-206
server/configure.js 73, 74
server.js

about 57, 58
booting up 58

server/routes.js 76
showDocs function 29
sidebar implementation

testing 111
sidebar module 106-108
Single Page Application (SPA)

about 245, 246
creating 246

Sinon.js
spies, using with 194-196
stubs, using with 194-196
URL 196

site
requisites 55

Socket.io
about 263
real-time web, using with 11

[276]

Software as a Service (SaaS) 218
spies

with Sinon.js 194-196
static methods 128
stats helper 158-160
stats module 108
stubs

with Sinon.js 194-196
Sublime Text 3

URL 15

T
template engines 61
test

asserting, with Chai.js 192, 193
running 199
running, with Mocha framework 190, 191
test helper, writing 199-201
writing 199

Test-driven Development (TDD)
about 192
URL 192

test helper
writing 199-201

this keyword 36
TodoMVC project

about 247
URL 247

tools, trade
node modules, stubbing with

Proxyquire 197, 198
spies, with Sinon.js 194-196
stubs, with Sinon.js 194-196
tests, asserting with Chai.js 192, 193
tests, running with Mocha

framework 190, 191
trade

tools 189
traditional hosting

versus cloud 217, 218

U
UI

iterating on 112-115
Underscore.js

URL 256
update() function 49
urlencoded, Connect middleware 64

V
validation 127
variables

declaring 34, 35
var keyword 35
view models 96
views

about 78-85
rendering 91, 93

view-specific helpers 90
Virtual Private Server (VPS) 218, 242
virtual properties 128, 129

W
web application

building 54, 55
web application request

lifecycle 118
Windows 7, MongoDB server

installation instructions 22-24
Windows 7, Node.js

installation instructions 17, 18
Windows 8, MongoDB server

installation instructions 22-24
Windows 8, Node.js

installation instructions 17, 18
Windows Quick Start guide

URL 22

Thank you for buying
Web Development with MongoDB

and Node.js

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around Open Source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each Open Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would like
to discuss it first before writing a formal book proposal, contact us; one of our commissioning
editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Mastering Node.js
ISBN: 978-1-78216-632-0 Paperback: 346 pages

Expert techniques for building fast servers and
scalable, real-time network applications with
minimal effort

1. Master the latest techniques for building
real-time, big data applications, integrating
Facebook, Twitter, and other network services.

2. Tame asynchronous programming, the event
loop, and parallel data processing.

3. Use the Express and Path frameworks to speed
up development and deliver scalable, higher
quality software more quickly.

Node.js Blueprints
ISBN: 978-1-78328-733-8 Paperback: 268 pages

Develop stunning web and desktop applications
with the definitive Node.js

1. Utilize libraries and frameworks to develop
real-world applications using Node.js.

2. Explore Node.js compatibility with AngularJS,
Socket.io, BackboneJS, EmberJS, and GruntJS.

3. Step-by-step tutorials that will help you to
utilize the enormous capabilities of Node.js.

Please check www.PacktPub.com for information on our titles

Pentaho Analytics for MongoDB
ISBN: 978-1-78216-835-5 Paperback: 146 pages

Combine Pentaho Analytics and MongoDB to create
powerful analysis and reporting solutions

1. This is a step-by-step guide that will
have you quickly creating eye-catching
data visualizations.

2. Includes a sample MongoDB database of web
clickstream events for learning how to model
and query MongoDB data.

3. Full of tips, images, and exercises that cover
the Pentaho development lifecycle.

Instant Node.js Starter
ISBN: 978-1-78216-556-9 Paperback: 48 pages

Program your scalable network applications and web
services with Node.js

1. Learn something new in an Instant!
A short, fast, focused guide delivering
immediate results.

2. Learn how to use module patterns and node
packet manager (npm) in your applications.

3. Discover callback patterns in NodeJS.

4. Understand the use Node.js streams in
your applications.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Welcome to JavaScript in the Full Stack
	Node.js changed JavaScript forever
	Asynchronous callbacks
	Node Package Manager
	Networking and file IO
	Not just on the web
	Real-time web with Socket.io

	The NoSQL movement
	Node and MongoDB in the wild
	What to expect from this book

	Summary

	Chapter 2: Getting Up and Running
	Environment assumptions and requirements
	Installing Node.js
	Mac OS X installation instructions
	Windows 7 or 8 installation instructions
	Linux installation instructions
	Confirming successful Node.js installation
	Bookmarking the online documentation

	Installing the MongoDB server
	Mac OS X installation instructions
	Windows 7 or 8 installation instructions
	Linux installation instructions
	Confirming successful MongoDB installation
	Bookmarking the online documentation

	Writing your first app
	The code
	Launch the sample app
	Check the actual database

	Summary

	Chapter 3: Node and MongoDB Basics
	A JavaScript Primer
	Declaring variables
	Declaring functions
	Declaring objects
	Functions are objects
	Anonymous functions and callbacks
	Arrays
	Conditions and comparison operators
	Flow
	JSON

	The basics of NodeJS
	Event driven
	Asynchronous
	Require and modules
	The NodeJS core

	Installing modules using npm
	The basics of MongoDB
	The mongo shell
	Inserting data
	Querying
	Updating data
	Deleting data

	Additional resources
	Summary

	Chapter 4: Writing an Express.js Server
	What is Express.js?
	Building a complete web application
	Organizing the files
	Server.js – where it all begins
	Booting up server.js

	Configuration module
	Handlebars view engine
	Other template engines

	Using and understanding middleware
	Introducing Connect
	Activating the configure module

	Routers and controllers
	Custom middleware
	Migrating to Express v4.0.0
	Using new middleware
	server/configure.js
	server/routes.js

	Summary

	Chapter 5: Dynamic HTML with Handlebars
	Basic syntax for Handlebars
	Views
	Layouts
	Partial views
	Handlebars Helpers
	Global helpers
	View-specific helpers

	Rendering the views
	Summary

	Chapter 6: Controllers and View Models
	Controllers
	View models
	Updating the home controller
	Updating the image controller
	Displaying an image
	Uploading an image

	Helpers for reusable code
	The sidebar module
	The stats module
	The images module
	The comments module
	Testing the sidebar implementation

	Iterating on the UI
	Summary

	Chapter 7: Persisting Data with MongoDB
	Using MongoDB with Node
	Connecting to MongoDB
	Inserting a document
	Retrieving a document

	Introducing Mongoose
	Schemas
	Models
	Built-in validation
	Static methods
	Virtual properties
	Connecting with Mongoose

	Defining the schema and models
	Models index file

	Adding CRUD to the controllers
	The home controller
	The image controller
	Index – retrieving an image model
	Create – inserting an image model
	Like – updating an image model
	Comment – inserting a comment model
	Wrapping it up

	Helpers
	Introducing the async module
	The comments helper
	The helper sidebar
	Troubleshooting
	The stats helper
	The popular images helper

	Iterating by adding an image removal capability
	Adding a route
	Adding a controller handler
	Updating the Handlebars image page template
	Updating the jQuery

	Refactoring and improvements
	Summary

	Chapter 8: Creating a RESTful API
	What is an API?
	What is a RESTful API?
	Introducing Postman REST Client
	Installation instructions
	A quick tour of Postman REST Client
	Using the JSONView Chrome extension

	Creating a Basic API server
	Creating sample JSON data

	Responding to GET requests
	Receiving data – POST and PUT requests
	Removing data – DELETE
	Consuming external APIs from Node.js
	Consuming an API endpoint using Request

	Summary

	Chapter 9: Testing Your Code
	Tools of the trade
	Running tests with the Mocha framework
	Asserting tests with Chai.js
	Installing Chai.js as a devDependency

	Spies and stubs with Sinon.js
	Stubbing node modules with Proxyquire

	Writing and running your first test
	Writing a test helper

	Testing the application
	Testing the routes
	Testing the server
	Testing a model
	Testing a controller

	Spy and stub everything!
	Summary

	Chapter 10: Deploying with Cloud-based Services
	Cloud versus traditional hosting
	Infrastructure as a Service (IaaS) versus Platform as a Service (PaaS)

	Introduction to Git
	Deploying your application
	Nodejitsu
	Heroku
	Amazon Web Services (AWS)
	Create a MongoLab account and database
	Create and configure the AWS environment

	Microsoft Azure
	Digital Ocean

	Summary

	Chapter 11: Single Page Applications with Popular Frontend Frameworks
	What is a Single Page Application?
	Why use a frontend framework?
	The TodoMVC project
	Backbone.js
	Ember.js
	AngularJS

	Frontend development tools
	Automated build task managers
	Dependency management
	Modularity
	HTML template-rendering engines
	CSS transpiling

	Testing and test-driven development
	PhantomJS headless browser

	Summary

	Chapter 12: Popular Node.js Web Frameworks
	Meteor
	Sails
	hapi
	Koa
	Flatiron
	Summary

	Index

